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The problem of control of nonlinear process systems subject to input constraints and
sensor faults (complete failure or intermittent unavailability of measurements) is con-
sidered. A fault-tolerant controller is designed that utilizes reconfiguration (switching
to an alternate control configuration) in a way that accounts for the process nonlinear-
ity, the presence of constraints and the occurrence of sensor faults. To clearly
illustrate the importance of accounting for the presence of input constraints, first the
problem of sensor faults that necessitate sensor recovery to maintain closed-loop sta-
bility is considered. We address the problem of determining, based on stability region
characterizations for the candidate control configurations, which control configuration
should be activated (reactivating the primary control configuration may not preserve
stability) after the sensor is rectified. We then consider the problem of asynchronous
measurements, that is of intermittent unavailability of measurements. To address this
problem, the stability region (that is, the set of initial conditions starting from where
closed-loop stabilization under continuous availability of measurements is guaranteed),
as well as the maximum allowable data loss rate which preserves closed-loop stability
for the primary and the candidate backup configurations are computed. This character-
ization is utilized in identifying the occurrence of a destabilizing sensor fault, and in
activating a suitable backup configuration that preserves closed-loop stability. The pro-
posed method is illustrated using a chemical process example and demonstrated via
application to a polyethylene reactor. � 2007 American Institute of Chemical Engineers
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Introduction

Safe and profitable operation of chemical plants relies,
among other things, on controller designs that account for the
inherently complex dynamics of the processes (manifested as

nonlinearities), operational issues, such as constraints and
uncertainties, as well as abnormalities (arising, for example,
due to faults in sensors/actuators). The interconnected nature
of chemical processes puts a greater emphasis on handling
these issues to avoid propagation of the faults and causing
entire plant shutdowns or safety hazards. These considerations
motivate development of control strategies that account for
constraints, nonlinearities, uncertainty, as well as are tolerant
to faults (fault-tolerant control). Fault-tolerant control has
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been an active area of research for the past ten years, and has
motivated many research studies in the context of aerospace
engineering applications (see, for example,3,47).

The ability to implement fault-tolerant control relies on
some degree of redundancy in the control configurations
(availability of sets of sensor/actuator combinations that can
be used to implement controllers), that can either be used all
at one time (the reliable control approach, for example,21),
or activated when the need arises (the reconfiguration
approach). The use of only as many control loops as required
at a time is motivated by economic considerations (to save
on unnecessary control action), and has been employed in
the context of chemical processes; however, the available
results are mostly based on the assumption of a linear system
description (for example,8,22), and do not account for com-
plexities such as control constraints.

In implementing fault-tolerant control (as well as feedback
control), the importance of sensors is well-recognized and
several researchers have focused on the problem of efficient
sensing and measurement for well-functioning sensors and
networks of sensors.9,18,19 In4,5,17,27 the problem of measure-
ments arriving at different known rates, and its implication
on simulation and control (multirate control) is addressed. In
chemical processes, sensor data losses arising due to sam-
pling, measurement or communication irregularities are more
likely to be manifested as intermittent availability of mea-
surements (asynchronous measurements), where only an
average rate of availability of measurements is known, but
not the exact times when the measurements will be available.

When explicitly considered, irregular measurements can be
analyzed as a robustness problem. Specifically, for a given
stabilizing control law, a bound on the sensor data loss rate
(defined as the ratio of the time during which measurements
are available over the total time) can be computed such that
if the sensor data loss rate is within this bound, closed-loop
stability is preserved. The difference in the nature of sensor
irregularities (measurements arriving at different known rates
as opposed to asynchronously) has important implications in
the robustness of a given system to sensor data losses. Fur-
thermore, for unconstrained systems, such a bound for the
data loss rate (defined over an infinite time interval) can be
computed (for example, see6,48 and the references therein).
For constrained systems, however, for such a bound on the
data loss rate to exist, it has to be defined over a finite time
interval where the derived bound accounts for the limitations
imposed by the presence of constraints.

The extensive work in the area of nonlinear process con-
trol can be utilized toward computing such a bound, and in
choosing the appropriate feedback law (for excellent reviews
of results in the area of nonlinear process control see7,23,49,50;
for a more recent review see51). These approaches have
recently been utilized to address the problem of fault-tolerant
control of nonlinear processes subject to constraints and
faults in the control actuators. In44 a reconfiguration-based
approach was utilized for the purpose of achieving tolerance
to actuator faults under the assumptions that the measure-
ments were continuously available. In45,52 sensor faults aris-
ing due to communication losses were modeled as delays in
implementing the control action and a reconfiguration strat-
egy was devised to achieve fault-tolerance subject to faults
in the control actuators. The results of44,45 however, do not

take the presence of intermittent sensor data losses into
account either in the implementation of individual control
configurations, or in the reconfiguration strategies. The fault-
tolerant (or even stabilizability in the absence of faults) capa-
bilities of the results of44,45 therefore, do not hold in the
presence of sensor data losses. Furthermore, outside of these
recent results as well the problem of fault-tolerant control for
handling sensor faults for nonlinear systems subject to con-
straints in the control actuators has received limited attention.

Motivated by the above, in this work we consider the
problem of fault-tolerant control of non-linear process sys-
tems subject to input constraints and sensor faults (both com-
plete failures and asynchronous measurements). We employ
a reconfiguration-based approach, wherein, for a given pro-
cess, a set of candidate control configurations are first identi-
fied, and in the event of a fault an appropriate backup config-
uration is activated to maintain stability. To illustrate the
importance of accounting for the presence of constraints, we
first consider sensor faults manifested as complete loss of
measurements (faults that necessitate taking corrective action
to repair the sensors). We address the problem of determin-
ing which candidate control configuration should be imple-
mented in the closed-loop system to achieve stability after
the sensor is recovered (this analysis is carried out under the
assumption of continuous availability of measurements when
the sensor is functioning). We then consider the problem in
the presence of intermittent sensor data losses. We define the
sensor data loss rate to account for the presence of con-
straints (specifically, we define the data loss rate over a finite
time interval), and analyze the stability properties in the pres-
ence of input constraints and sensor data losses. We charac-
terize the stability region (that is, the set of initial conditions
starting from where closed-loop stabilization under continu-
ous availability of measurements is guaranteed) and the max-
imum allowable data loss rate that a given control configura-
tion can tolerate. If the data loss rate goes above the allow-
able data loss rate, reconfiguration is triggered and a
candidate backup configuration is activated for which the
state of the closed-loop system resides in the stability region
of the candidate configuration, and the data loss rate is less
than the allowable data loss rate for the candidate control
configuration. We use a chemical reactor example to illus-
trate our method and then demonstrate an application to a
polyethylene reactor.

Preliminaries

We consider nonlinear processes with input constraints,
described by

ẋ ¼ f ðxÞ þ GkðtÞðxÞukðtÞðyðtÞÞ

yðtÞ ¼
xðtÞ t 2 ½t2i; t2iþ1Þ

xðt2iþ1Þ t 2 ½t2iþ1; t2iþ2Þ

( )

uk 2 Uk; kðtÞ 2 K ¼ f1; . . . ;Ng; N , 1 ð1Þ

where x [ IRn denotes the vector of state variables, y 2 IRn

denotes the vector of measured variables, [t2i, t2iþ1) and
[t2iþ1, t2iþ2) denote the time intervals during which measure-
ments of the state variables are available, and are lost,
respectively, with t0 ¼ 0 (that is, measurement being initially
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available), uk(t)(y(t)) [ IRm denotes the manipulated inputs
under the kth configuration taking values in a nonempty con-
vex subset Uk of IRm, where Uk ¼ {u [ IRm : kuk „ uk

max},
k�k is the Euclidean norm of a vector, uk

max > 0 is the magni-
tude of input constraints and f(0) ¼ 0. The vector function
f(x), and the matrix Gk(x) ¼ [g1,k(x) � � � gm,k(x)] are assumed
to be sufficiently smooth on their domains of definition. k(t),
which takes values in the finite index set K, represents a dis-
crete state that indexes the matrix Gk(�), as well as the
manipulated input uk(�). For each value that k assumes in K,
the system is controlled via a different set of manipulated
inputs which defines a given control configuration. The nota-
tion Lf h denotes the standard Lie derivative of a scalar func-
tion h(�) with respect to the vector function f(�), and the nota-
tion x(T�) denotes the limit of the trajectory x(t) as T is
approached from the left, that is, xðT�Þ ¼ limt!T� xðtÞ.
Throughout the manuscript, we assume that for any uk [ Uk the
solution of the system of Eq. 1 exists and is continuous for all t.

We next review one example of a state feedback control-
ler40,41 (inspired by the results on bounded control in13) that,
under the assumption of continuous availability of measure-
ments, provides an explicit estimate of the stability region
for the closed-loop system subject to constraints (for more
details on the controller design, and the proof, see40,41).
Theorem 141: Consider the nonlinear system of Eq. 1
under state feedback (that is, x(t) is available for all t ” 0)
for a configuration k, for which a Control Lyapunov Func-
tion Vk exists, under the following bounded nonlinear feed-
back controller

uk ¼ �wkðx; umaxk ÞðLGk
VkðxÞÞT (2)

where wk(x,uk
max) ¼

akðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2kðxÞ þ ðumaxk kbTk ðxÞkÞ4

q
kbTk ðxÞk2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðumaxk kbTk ðxÞkÞ2

q� � ; bTk ðxÞ 6¼ 0

0; bTk ðxÞ ¼ 0

8>>><
>>>:

(3)

with ak(x) ¼ LfkVk(x) þ rkVk(x), rk > 0 and bk(x) ¼ LGk
Vk(x).

Assume that the set Fk(uk
max) of x satisfying

LfkVkðxÞ þ rkVkðxÞ � umaxk kðLGk
VkðxÞÞTk (4)

contains the origin and a neighborhood of the origin. Also,
let Ok(uk

max) :¼ {x [ IRn : Vk(x) „ ck
max} be a level set of Vk,

completely contained in Fk, for some ck
max > 0. Then for

all x(0) [ Ok(uk
max) the control law of Eqs. 2–4 guarantees

that the origin of the closed-loop system is asymptotically
stable.
Remark 1: The problems caused by input constraints have
motivated numerous studies on the dynamics and control of
systems subject to input constraints. Important contributions
include results on optimization-based methods such as model
predictive control (for example,1,2,23) and Lyapunov-based
control (for example,10,13,14,24). Stabilizing control laws that
provide explicitly-defined regions of attraction for the closed-
loop system have been developed using Lyapunov techni-
ques; the reader may refer to24 for a survey of results in this

area. Recently, we developed a hybrid predictive control
structure that employs switching between bounded control
and MPC for stabilization of nonlinear systems,37 and nonlin-
ear systems with uncertainty,46 subject to input constraints
via using Lyapunov-based controllers40,41 as fall-back con-
trollers. More recently Lyapunov-based model predictive
controllers were designed that guarantee stabilization from an
explicitly characterized set of initial conditions in the pres-
ence of input42 and input and state43 constraints. The control-
ler of Eq. 3 is one example of a controller design that pro-
vides an explicit characterization of the stability region in
the presence of input constraints, and is only used to illus-
trate the main ideas behind the proposed approach. The
results in this work are not limited to this particular control-
ler design, and any other controller design that provides an
explicit characterization of the stability region can be used
instead (for example, the hybrid predictive controller37,46 or
the Lyapunov-based predictive controller42,43) for further
details and references, see.51

Chemical reactor example

In this section, we describe a chemical reactor that we will
use to illustrate the key features of the proposed method. To
this end, consider a well-mixed, non-isothermal continuous
stirred-tank reactor where three parallel irreversible elemen-
tary exothermic reactions of the form A

k1�! B, A
k2�! U

and A
k3�! R take place, where A is the reactant species, B is

the desired product and U, R are undesired byproducts. The
feed to the reactor consists of pure A at flow rate F, molar
concentration CA0, and temperature TA0. Due to the non-iso-
thermal nature of the reactions, a jacket is used to remove/pro-
vide heat to the reactor. Under standard modeling assumptions,
a mathematical model of the process can be derived from ma-
terial and energy balances and takes the following form

dT

dt
¼ F

V
ðTA0 � TÞ þ

X3
i¼1

RiðCA; TÞ þ Q

rcpV

dCA

dt
¼ F

V
ðCA0 � CAÞ �

X3
i¼1

ki0e
�Ei=RTCA ð5Þ

where RiðCA; TÞ ¼ ð�DHiÞ
rcp

ki0e
�Ei
RT CA, CA denotes the concentra-

tions of the species A, T denotes the temperature of the reac-
tor, Q denotes the rate of heat input/removal from the reactor,
V denotes the volume of the reactor, DHi, ki, Ei, i ¼ 1, 2, 3,
denote the enthalpies, pre-exponential constants and activa-
tion energies of the three reactions, respectively, cp and r
denote the heat capacity and density of fluid in the reactor. The
values of the process parameters and the corresponding steady-
state values and details of controller design can be found
in.29,44 It was verified that under these conditions, the system
of Eq. 5 has three steady-states (two locally asymptotically sta-
ble and one unstable at (Ts, CAs) ¼ (388 K, 3.59 mol/L)).

The control objective considered here is that of stabilizing
the reactor at the (open-loop) unstable steady-state using the
measurements of concentration and temperature. The follow-
ing manipulated input candidates are assumed to be available
(see Figure 1):

1. Configuration 1: Rate of heat input, u1 ¼ Q, subject to
the constraints |Q| „ umax

1 ¼ 748 KJ/s.
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2. Configuration 2: Inlet stream temperature, u2 ¼ TA0 �
TA0s, subject to the constraints |u2| „ umax

2 ¼ 100 K.
3. Configuration 3: Inlet reactant concentration, u3 ¼ CA0

� CA0s, subject to the constraints |u3| „ umax
3 ¼ 4 mol/L.

Configuration 2 will be used as the primary manipulated
input.

We will use this chemical reactor to motivate our results.
To this end, we consider the chemical reactor operating
under a given control configuration. At a certain time one of
the sensors fails in a way that it is imperative to recover the
sensor to implement feedback control. The problem that we
analyze is whether reactivating the original control configura-
tion (after sensor recovery) guarantees closed-loop stability.
We will next consider the problem where the sensors do not
fail, however, the process experiences intermittent loss of
measurements (and this rate increases at a certain time due
to sampling/measurement/communication errors). In this
case, how much measurement data loss can be tolerated by
the currently active control configuration, before it becomes
necessary to reconfigure, and, if necessary, which backup
configuration should be activated in the closed-loop system?
Note that while we use the simple chemical reactor example
only to motivate our results, the scenarios that we describe
are relevant to all process operations. We also include an
application to a more realistic process example, a polyethyl-
ene reactor, on the second example.

Stabilization subject to sensor failures

In this section, we consider the problem arising out of sen-
sor failures that lead to the failure of the control loop and ne-
cessitate recovery. In analyzing this problem and in devising

the fault-tolerant control strategy, we account for the pres-
ence of nonlinearity and constraints, and show how they
impact the reconfiguration logic.

Reconfiguration law

Consider the closed-loop system of Eqs. 1–4 for which can-
didate control configurations have been identified and the sta-
bility region under each candidate configuration has been ex-
plicitly characterized. Let the closed-loop system of Eqs. 1–4
be initialized under a configuration k with x0 [ Ok. Let T

f be
the time at which the sensor fails, and T r be the time at
which the sensor recovers. In the absence of measurements,
the process runs open loop from the time T f to Tr. Conse-
quently, during this time the process state may drift further
away from the desired operating condition. When the meas-
urements become available again, switching to the original
control configuration may not achieve closed-loop stability.
The key consideration in devising the reconfiguration logic is
the limitation imposed on the stability region under a given
control configuration by the presence of input constraints and
is formalized in Theorem 2.
Theorem 2: Let k(0) ¼ i for some i [ k and x(0):¼ x0 [
Oi. Let T

f be the time that the sensor measurements become
unavailable, and let T r be the earliest time that they become
available again. Then, the following switching rule:

kðtÞ ¼ i; 0 � t , Tf

l; t � Tr; xðTrÞ 2 Ol

( )
(6)

guarantees asymptotically stabilization of the origin of the
closed-loop system.
Proof of Theorem 2: We consider the two possible cases;
first if no sensor failure occurs (T f ¼ ?), and second if a
failure occurs at some finite time T f and the sensors are
recovered at time Tr.
Case 1: The absence of a failure implies k(t) ¼ i V t ” 0.
Furthermore, since x(0) [ Oi, and control configuration i is
implemented for all times in this case, asymptotic stability
follows from Theorem 1.
Case 2: At time Tr, the supervisor switches to a control con-
figuration l for which x(Tr) [ Ol. From this time onwards,
since configuration l is implemented in the closed-loop sys-
tem for all times, and since x(T f) [ Ol, once again, asymp-
totic stability follows from Theorem 1. This completes the
proof of Theorem 2.
Remark 2: Theorem 2 accounts for the presence of
constraints in the reconfiguration logic via the consideration
of the stability region of candidate control configurations.
Note that the problem that we consider here are sensor
failures that result in loss of controllability. For the sake
of illustration, consider a linear system of the form
ẋ ¼ Axþ Bu; y ¼ Cx, where x is the state vector, y is the
vector of measured variables, and u is the vector of manipu-
lated variables, with A, B and C being matrices of appropri-
ate dimensions. Consider the case when all state variables
are being measured (C ¼ I), and a state feedback law of the
form u ¼ Ky ¼ Kx is used to stabilize the system. Further-
more let some of the sensors fail at some time, resulting in a
new C matrix denoted by C. The same feedback gain matrix

Figure 1. CSTR showing the three candidate control
configurations.
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K may no longer be stabilizing. If C is such that it can be
used to reconstruct (estimate) the unstable states of the sys-
tem (that is, all the unstable states remain observable) then
feedback control (with an observer, and with a different feed-
back gain matrix) can still be used to stabilize the system.
However if C is such that some of the unstable states of the
system become unobservable, then the system simply cannot
be stabilized using feedback control, and fixing the sensors
becomes imperative. In other words, it is when measurements
become unavailable (due to individual sensor malfunction, or
loss of communication lines) that result in loss of controll-
ability, that it becomes imperative to detect, isolate and cor-
rect the problem. Due to the open-loop behavior of the pro-
cess during this intermediate time, the process states may
drift and go out of the stability region of the currently active
control configuration. Reactivating the original control con-
figuration may, therefore, not stabilize the closed-loop system
making it necessary to ascertain the suitability of a candidate
control configuration by using Theorem 2 (see the simulation
example for a demonstration).
Remark 3: While in this work we do not focus on the
problem of fault-detection and isolation (considering instead
the problem of determining the corrective action that needs
to be taken once the fault information is available), this prob-
lem has been approached using a data-based or a model-
based strategy. Statistical and pattern recognition techniques
for data analysis and interpretation (for example,15,16,20,25,33),
use past plant data to construct indicators that identify devia-
tions from normal operation, and help in isolating faults. The
problem of using fundamental process models for the pur-
pose of detecting faults has been studied extensively in the
context of linear systems11,12,26; and recently, some existen-
tial results in the context of nonlinear systems have been
derived.28–30

In44 we proposed an integrated fault-detection and fault-
tolerant control structure that handles faults in the control
actuators under the assumption of continuous availability of
state or output measurements. The fault-detection filter in44

relies on the measurements to observe deviations of the pro-
cess behavior from the expected closed-loop behavior to
detect faults, and needs to be redesigned if required to detect
and isolate faults in the sensors. While the problem of
designing sensor fault-detection and isolation filter remains
outside the scope of this work, we note that the proposed
fault-tolerant controller allows the use of any data- or model-
based fault-detection and isolation filter to provide informa-
tion about the occurrence of the fault (leading to its recov-
ery). In this work, we focus instead on determining what cor-
rective action needs to be taken after a fault has been
reported and how the time that it takes to recover the fault
impacts on the reconfiguration logic. Specifically, the re-
configuration logic points to the necessity of recovering the
sensor sufficiently fast to avoid the situation where the pro-
cess state, by the time of recovery, has escaped the stability
region of the backup configurations. Alternatively, the pro-
posed method can also be used for the purpose of designing
the control configurations in a way that maximizes the region
in state space covered by the backup configurations to
increase the chances that the process state at the time of
recovery lies in the stability region of at least one backup
configuration.

Application to the chemical reactor

In this section, we illustrate the utility of the reconfigura-
tion law of Eq. 6. To this end, consider the chemical reactor
of Eq. 5 with the three candidate control configurations avail-
able. The first step in implementing the reconfiguration law
of Eq. 6 is that of determining the stability regions of the
individual control configurations under the control law of
Eqs. 2–4. An explicit characterization of the stability regions
is obtained and is shown in Figure 2. The area indicated by
I, II and III indicates the set of initial conditions starting
from where all three configurations can stabilize the close-
dloop system, I and II starting from where only configura-
tions 1 and 2 can achieve stability, and I and III indicate the
set of initial conditions starting from where only configura-
tions 1 and 3 can stabilize the closed-loop system.

The closed-loop system is initialized under configuration 2
from an initial condition belonging to the stability region of
configuration 2. At t ¼ 200 min, however, a sensor failure
occurs resulting in open-loop operation, and the process state
begins to drift away from the desired equilibrium point (see
dotted line in Figure 2). Recognizing that it is imperative to
rectify this fault, the sensors are recovered (alternatively,
redundant sensors are activated) at t ¼ 220 min. With the
state information again available, if the original control con-
figuration (configuration 2) is reactivated, closed-loop stabil-
ity is not achieved (see dash-dotted lines in Figure 2). This
happens because during the time that the process was running
open-loop, the states of the closed-loop system moved away
from the desired equilibrium point, and out of the stability
region of configuration 2. In contrast, if the reconfiguration

Figure 2. Evolution of the state profile under configura-
tion 2 (dashed line) followed by loss of mea-
surements (dotted line), and upon recovery
reactivating configuration 2 (dash-dotted line),
closed-loop stability is not preserved; how-
ever, switching to configuration 1 (solid line)
preserves closed-loop stability.
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law of Eq. 6 is used, the law dictates activation of configura-
tion 1 (since the process state, when state information
becomes available again, lies in the stability region of config-
uration 1). Closed-loop stability is subsequently achieved
(solid line in Figure 2). Note that at the time the state infor-
mation became available again, the state was also in the sta-
bility region of configuration 3, and switching to either con-
figuration 1 or 3 would guarantee closed-loop stability. In
such cases (when more than one control configurations satisfy
the stability criteria), additional performance criteria, such as
ease/cost of use can be used to decide which control configu-
ration should be implemented in the closed-loop system.38

Stabilization subject to sensor data losses

In the previous section, we considered the problem of
devising the reconfiguration law in a way that accounts for
the presence of constraints on the manipulated inputs under
the available control configurations. We now consider the
problem of intermittent sensor data losses (not complete fail-
ures), and develop a reconfiguration law that achieves fault-
tolerance in the presence of sensor data-losses. As evidenced
in the previous section, a prerequisite to implementing fault-
tolerant control is the characterization of the stability proper-
ties under the available control configurations, which we
undertake in this section, and in the next section present the
reconfiguration law. We consider the closed-loop system of
Eqs. 1–4 under a configuration k, and drop the subscript k in
the remaining of this section with the understanding that the
robustness of the closed-loop system under control configura-
tion k is being analyzed.

Modeling sensor data loss

Preparatory to the analysis of the stability properties of the
closed-loop system under sensor data losses, we describe
how we model the occurrence of sensor data losses. Specifi-
cally, sensor data availability is modeled as a random Pois-
son process. At a given time t an ‘‘event’’ takes place that
determines whether the system will be closed-loop or open-
loop (see Figure 3). For a given rate of data loss 0 „ r „ 1,
a random variable P is chosen from a uniform probability
distribution between 0 and 1. If P „ r, the event is deemed
to be ‘‘measurement loss’’, while if P > r, the event is
understood to be ‘‘measurement available’’. Furthermore,
with W defined as the number of events per unit time,

another random variable w with uniform probability distribu-
tion between 0 and 1 determines the time for which the cur-
rent event will last, given by D ¼ �lnw

W . At t þ D another
event takes place, and whether it represents a measurement
or loss of measurement, as well as its duration, is similarly
determined. Note that in the presence of constraints, pro-
longed duration of measurement loss may land the system
states at a point starting from where stabilization may not be
achievable (even with continuous measurement); in charac-
terizing the stability properties of constrained systems, we
therefore need to define data loss rates over a finite time
interval as stated in assumption 1 below.
Assumption 1: For a positive real number T*, defining r [
[0, 1] as the sensor data loss rate implies that over every
successive finite time interval T*, the measurements are
available for a total time of T* � (1 � r).

Note that assumption 1 does not impose any restrictions
on the distribution of sequences of measurement loss and
availability over the time interval T*. Furthermore, the
assumption does not need to hold for any finite interval T*,
but only successive time intervals T*. To illustrate the differ-
ence, consider the case where the assumption requires the
data loss rate to hold over any finite time interval T*, and
that one such interval is t, t þ T*. Requiring the data loss
rate to hold over any interval T* would mean that the same
data loss rate should also hold over the interval t þ et, t þ
T* þ et, for any positive real number et, which can only be
true if the data loss and measurement events are periodic
with a period T*. The requirement that the data loss rate
hold over successive intervals T* only says that over the
time interval T*, if the duration of all the measurement loss
events is summed up, then that sum is equal to T* � r, and
the data loss events could be distributed arbitrarily during
this time interval. In simulating data losses, assumption 1
can be practically realized by picking W to be sufficiently
large; the reasoning behind this is as follows: a larger value
of W increases the number of events per unit time, and when
W is sufficiently large, we can get a sufficiently large number
of events over every finite time interval T*, such that the
rate of data loss is sufficiently close to r.

Analyzing closed-loop stability

In this section, we consider the closed-loop system subject
to sensor data losses as defined in previous section, and ana-
lyze the stability properties (robustness) with respect to sen-
sor data losses. Specifically, the objective is to establish, for
convergence to a desired neighborhood of the origin, a data
loss rate r*, defined over a finite time interval T, such that if
r „ r* then convergence to a desired neighborhood is
achieved in the presence of data losses. Note that implicit in
this analysis (also in the formulation of Eq. 1) is the under-
standing that during the time that sensor measurements are
unavailable, the values of the measured variables (in comput-
ing the control action) are ‘‘frozen’’ at the last available mea-
surement. This results in the value of the manipulated vari-
able being frozen at the last computed value. The implica-
tions of this intuitive assumption on the stabilizing properties
under a given control configuration is discussed in Remark 5.

We first consider the closed-loop system under the control-
ler of Eq. 3, where the control action is computed in an

Figure 3. Closed-loop system in the (a) absence, and
(b) presence of sensor data losses.
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implement and hold fashion with a hold time D. We establish
that for convergence to a desired neighborhood of the origin,
there exists a bound on the implement and hold time D*,
such that if the hold time is less than D*, then during the
entire hold time, we get (outside of the desired neighborhood
of the origin) thatV̇, 0 (by virtue of the fact that the control
action is ‘‘held’’ at the value computed using the last avail-
able measurement) and eventual convergence to the desired
neighborhood can be achieved. This analysis reveals that
anytime the control action is ‘‘updated’’ by using the current
state value, the closed-loop Lyapunov-function decreases dur-
ing the next D (for D „ D*) time. In essence, it reveals that
the worst distribution of the measurement loss events, or the
most destabilizing that they can be, would be if they were to
occur consecutively. The sum of the duration of all the mea-
surement loss events not being greater than r � T* over a fi-
nite time interval T* can be exploited to yield the desired
result, which is formalized in Theorem 3 below.
Theorem 3: Consider the constrained system of Eq. 1
under the bounded control law of Eqs. 2–4 designed using
the Lyapunov function V and r > 0, and the stability region
estimate O under continuous implementation. Then, given
any positive real number d such that kxk „ d implies x [ O
and T* over which a data loss rate r is defined, there exists
a positive real number r* such that if x(0) :¼ x0 [ O and is
known, and r [ (0, r*], then x(t) [ O V t ” 0 and
lim supt!1 jjxðtÞjj � d.

Proof of Theorem 3: The proof consists of two parts. In
the first part, we assume that the measurement loss events
occur consecutively, and show the existence of a bound on
the data loss rate r* below which convergence to the desired
neighborhood is achieved. In part 2, we show that this result
also holds for any distribution of the open loop events over
the time interval T*.
Part 1: Substituting the control law of Eqs. 2–4 into the sys-
tem of Eq. 1 it can be shown that

V̇ðxÞ � �r�VðxÞ (7)

for all x [ O, where O was defined in Eq. 4. Note that since

V(�) is a continuous function of the state, one can find a fi-

nite, positive real number, d0, such that V(x) „ d0 implies

kxk „ d. Consider now evolution of the states between the

time 0 to T*, where T* is the time interval over which the

data loss rate is defined, and for a given data loss rate r,
denote the duration of open-loop operation as D. In the rest

of the proof, we show the existence of a positive real number

D* such that all state trajectories originating in O converge

to the level set of V (V(x) „ d0) for any value of D [
(0, D*]. Hence, we have that lim supt!1 jjxðtÞjj � d. We
then use the definition of the data loss rate to come up with
an r* to show that the result holds for any r „ r*.

To this end, consider a ‘‘ring’’ close to the boundary of
the stability region, described by m :¼ {x [ IRn : (cmax � d)
„ V(x) „ cmax}, for a 0 „ d „ cmax. Let the control
action be computed for some x(0) :¼ x0 [ m, and, upon
unavailability of subsequent measurements, held constant
until a time D**, where D** is a positive real number (u(t)
¼ u(x0) :¼ u0 V t [ [0,D**]) to be determined. Then, V t [
[0, D**]

V̇ðxðtÞÞ ¼ Lf VðxðtÞÞ þ LGVðxðtÞÞu0
¼ Lf Vðx0Þ þ LGVðx0Þu0 þ ðLf VðxðtÞÞ � Lf Vðx0ÞÞ

þ ðLGVðxðtÞÞu0 � LGVðx0Þu0Þ ð8Þ

Since the control action is computed based on the states in
m ( O, LfV(x0) þ LGV(x0)u0 „ �r*V(x0). By definition,
for all x0 [ m, V(x0) ” cmax � d, therefore, LfV(x0) þ
LGV(x0)u0 „ �r*(cmax � d).

Since the function f(�), and the elements of the matrix G(�)
are continuous, kuk „ umax, m is bounded, and LfV(�),
LGV(�) are Lipschitz, then one can find, for all x0 [ m, posi-
tive real numbers D**, K1, K2 and K3 such that kx(t) � x0k
„ K1D** for all t „ D**, kLfV(x(t)) � LfV(x0)k „
K3K1D**, kLGV(x(t))u0 � LGV(x0)u0k „ K2K1D** for all t
„ D**, and D**, r�ðcmax�dÞ�e

ðK1K2þK1K3Þ where e is a positive real num-

ber such that

e , r*ðcmax � dÞ (9)

Using these inequalities in Eq. 8, we get

V̇ðxðtÞÞ � �e , 0 8 0 � t � D** (10)

This implies that, given d0, if we pick d such that cmax � d
< d0, then if the control action is computed for any x [ m,
and the measurement loss time is less than D**, we get that
V̇ remains negative during this time, and, therefore, the state
of the closed-loop system cannot escape O (since O is a level
set of V). We now show the existence of D0 such that for all
x0 [ Of :¼ {x [ IRn : V(x0) „ cmax � d}, we have that x(D)
[ Ou :¼ {x0 [ IRn : V(x0) „ d0}, where d0 < cmax, for any D
[ (0, D0].

Consider D0 such that

d0 ¼ max
Vðx0Þ�cmax�d;u2U;t2½0;D0 �

VðxðtÞÞ (11)

Since V is a continuous function of x, and x evolves continu-

ously in time, then for any value of d < cmax, one can

choose a sufficiently small D0, such that Eq. 11 holds. Let D*
¼ min{D**, D0}. We now show that for all x0 [ Ou, and D [
(0, D*], x(t) [ Ou for all t ” 0.

For all x0 [ Ou \ Of, by definition x(t) [ Ou for 0 „ t „
D (since D „ D0). For all x0 [ Ou \Of (and therefore x0 [
m), V̇ < 0 for 0 „ t „ D (since D „ D**). Since Ou is a
level set of V, then x(t) [ Ou for 0 „ t „ D.

We note that for x such that x [ O\Ou, negative definite-
ness of V̇ is guaranteed for D „ D* „ D**. Finally, for all
D* „ t „ T*, negative definiteness of V̇ is guaranteed by
the control law of Eq. 3. Now for a given value of T*, the
worst case scenario (that is, the maximum time over which
the system may run open-loop) involves loss of measure-
ments for the last D time for a given interval, followed by
consecutive loss of measurements for the first D time of the
next interval. Therefore, continued negative definiteness of V̇
(and convergence to the desired neighborhood) can be guar-
anteed if the measurement loss time in each interval D is less
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than equal to D�
2
. An r* ¼ D*

2T*
will ensure that the maximum

duration of measurement loss over the interval T* is less
than D*/2, and also maximum loss of measurement between
two successive intervals is less than D* (If D�

2
> T�, then we

have to restrict r* to 1 to ensure that r < 1, and that we get
at least one measurement over the entire interval T*). There-
fore, for all x(0) [ O, there exists an r* such that if r „ r*,
lim supt!1 VðxðtÞÞ � d0. Finally, since V(x) „ d0 implies kxk
„ d, therefore, we have that lim supt!1 kxðtÞk � d.
Part 2: Consider now the finite time interval T*, such that
for convergence to a desired neighborhood of the origin, the
bound on the data loss rate r*, under the assumption that the
data-loss events all occur consecutively, has been computed.
Consider now that the data-loss events do not occur continu-
ously, but occur in N intervals, each of duration Di withPN

i¼1 Di ¼ T*� r*. From part 1 of the proof, for each of
these durations Di, negative definiteness of V̇ can be estab-
lished. For the duration during which the measurements are
available, V̇ , 0 is achieved by virtue of the control law. In
summary, having established the bound r* under consecutive
loss of measurement, the same bound r* continues to guaran-
tee practical stability irrespective of the distribution of
the measurement loss events. This completes the proof of
Theorem 3.
Remark 4: Note that one can easily remove the assump-

tion that x0 is known by ‘‘stepping back’’ from the boundary

of the stability region enough to ensure that during the time

r*T*, the state trajectory cannot escape the boundary of the

stability region. By the definition of rate of data loss, the first

measurement is guaranteed to be available by (r*T*)þ. Any
time during the interval T* that a measurement is received

with the state still residing in the stability region (due to the

‘‘stepping back’’) Theorem 3 can be used to establish practi-

cal stability. Note also, that the value of r* depends on the

interval T* over which it is defined (see the simulation exam-

ple in section for a demonstration). To understand this more

clearly, let us revisit the proof of Theorem 3. It can be

seen that for convergence to a desired neighborhood of the

origin, one can come up with a value D*, such that if only

one measurement was received every D*, then convergence

to the desired neighborhood would be achieved. Theorem 3

exploits this fact together with the definition of the data

loss rate, to ensure that over a D* duration within T* (and

across two time intervals), at least one measurement is

received. In summary, D* is fixed by the given size of the

neighborhood to the origin where convergence is desired

(d0); given a T* over which the data loss rate is defined, r*
can then in turn be picked such that the maximum duration

of open-loop behavior across intervals stays less than D*.
Remark 5: In our results, no bound on the open-loop insta-
bility is assumed to be known, leading to practical (and not as-
ymptotic) stability to the desired equilibrium point. If addi-
tional assumptions are made on the open-loop growth of the
Lyapunov-function (locally) around the desired equilibrium
point, asymptotic stability can be shown using the same line
of reasoning as in.48 Specifically, during the time that the
measurements are not available, the value of V is allowed to
increase during T*, so long as the increase in V can be ‘‘coun-
tered’’ by the decrease in V during the rest of the time (which
relies on assuming a known measure of open-loop instability).

The limitations imposed by the presence of constraints, how-
ever, would still need to be accounted for, with the data loss
rate having to be defined over a finite interval. Furthermore,
the set of stabilizable initial conditions will only be a subset
of O, such that starting from this subset, the closed-loop state
can not escape O during the time of open-loop evolution
r*T*. In our results, with x0 known, r* is picked so that V̇
stays negative during the entire duration of T* (until conver-
gence to the desired neighborhood is achieved), thereby, obvi-
ating the need to restrict the set of initial conditions to a sub-
set of O. Note also that V being allowed to increase during T*
(as long as it decays by the end of T*) could possibly lead to a
larger allowable r*. The tradeoff would be that the Lyapunov
function would not be guaranteed to decay all the time but
only to decay in value at steps of T*, and it could take longer
to reach the desired neighborhood of the origin. Note that the
problem considered in this work is not that of ascertaining fi-
nite-time stability (ensuring convergence to the desired equi-
librium point in finite time, see, for example,31) under contin-
uous availability of measurement, but rather that of analyzing
preservation of stability under asynchronous measurements.
Note that for the case when sensor measurements are lost but
it is possible to change the value of the manipulated input, sta-
tistical (for example,32) or first principles model based meth-
ods designed to ‘‘fill-in’’ the unavailable state measurement
can very well be included within the proposed framework,
and can serve to improve the data-loss handling capabilities of
the control designs (depending upon the accuracy of the data
prediction). The proposed fault-tolerant control structure,
however, addresses a more general problem, that of intermit-
tent loss of communication between the controller and the
process, including asynchronous measurements, as well as the
inability to change the manipulated input value during the
communication lapses.
Remark 6: The proof of theorem 3 relies on the stabilizing
properties of the controller during the time that measure-
ments are not available to ensure that even during that time
V̇ , 0. Note that the rate of decay of the Lyapunov function
that is achieved under continuous measurements is closely
related to how much data loss can be tolerated in the system
in the sense that for a given process, and constraints on the
manipulated inputs, if one control law achieves greater decay
of the Lyapunov function over the other, then it can tolerate
greater sensor data loss compared to the other (note that the
tradeoff could be a smaller stability region estimate). The
continued decay of the Lyapunov function, however, can
only be achieved over a finite time, and in turn, requires the
data loss rate to be defined over a finite time. Even if one
were to use the approach discussed in Remark 4 to come up
with an alternate bound, the limitations imposed by the con-
straints on the definition of the rate of data loss (specifically,
the need to define it over a finite time interval) would be
present and can be understood as follows: If there were no
constraints, V̇ , 0 under continuous measurement could pos-
sibly be achieved over the entire state space. No matter how
‘‘far’’ the states go during the unavailability of measure-
ments, when (over the infinite time duration) the measure-
ments do become available, one could require them to be
available for a large enough time (compared to the time for
which they were not available) to achieve an overall reduc-
tion in the value of the Lyapunov function. Constraints, how-
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ever, limit the set of initial conditions (estimated using the
stability region O) starting from where V̇ , 0 is achievable.
If the measurements are not available for a large duration,
the states may go too ‘‘far’’ (that is, out of the stability
region) and then even if measurements were available for all
time after that, V̇ , 0 could not be achieved simply due to
limited available control action (see the simulation example
for a demonstration). In contrast, defining the data loss rate
over a finite time interval enables restricting the states to
stay within the region from where V̇ , 0, and, hence, closed-
loop stability is achievable.
Remark 7: Note that the specific problem that this work
considers yields a solution that is essentially different from,
and cannot be handled by simply using adaptive or other
robust control approaches. These approaches, however, can
very well be integrated within the proposed framework. The
key requirement being that the controller design (whether it
be an adaptive control design or another robust controller
design) for the individual control configuration allow for an
explicit characterization of its stability properties in the pres-
ence of input constraints and asynchronous data losses. It is
this characterization that can be subsequently used in fault-
tolerant reconfiguration strategies. Note also that multirate
data loss problems, where data is available at predetermined
(but different) times for the different measurements can be
analyzed as special cases for the problem considered in the
present work which does not assume data availability at pre-
determined rates.

Control of a chemical reactor subject to sensor data loss

Consider the chemical reactor of Eq. 5 again with the inlet
stream temperature, as the manipulated input u2 ¼ TA0 �
TA0s, subject to the constraints |u2| „ umax

2 ¼ 100 K, and sub-
ject to measurement data losses. We first design the bounded

controller and estimate the stability region (see Figure 4). For
a given value of T* ¼ 10 min, we pick a value of W ¼ 10
events per minute (the simulations are run as discussed in sec-
tion); which yields an overall event rate of 1/W that is, about
one event every six seconds (or about 100 events in 10 min).
It was verified that with this value of W, the rate of data loss,
as defined, was approximately achieved over the duration of
every ten minutes, in other words, that W ¼ 10 is a suffi-
ciently large value of W. Starting from an initial condition
within the stability region of the first configuration, the
closed-loop system is unstable with a data loss rate r ¼ 0.4
(dashed lines in Figure 4; the corresponding manipulate input
profile can be seen in Figure 5). However, if the data loss rate
is kept at 0.1, closed-loop stability is achieved (see solid lines
in Figures. 4–5), demonstrating the need for the data loss to
be sufficiently small.

The next simulation run demonstrates the dependence of
r* on the time interval over which it is defined (as discussed
in Remark 6). Specifically, we now run the same simulation
with an even smaller data loss rate (r ¼ 0.05), however, with
the data rate defined over the duration of the simulation of
68 min. A scenario where measurements are received contin-
uously for the first five minutes, lost consecutively for the
next 3.6 min, and received thereafter results in an overall
rate of data loss of only 0.05. We see however, that closed-
loop stability is not achieved (dash-dotted lines in Figures 4–5).
This is so because with this larger value of T*, the accepta-
ble bound on the rate of data loss decreases, and illustrates
the interconnection between the maximum allowable data
loss rate, and the interval over which it is defined. In sum-
mary, the above simulations demonstrate the need for the
data loss rate to be less than what the system can tolerate

Figure 4. Evolution of the state trajectory under control
configuration 2 in the presence of sensor
data loss (defined over a finite interval) at a
rate of 0.4 (dashed line), sensor data loss
(defined over an infinite interval) at a rate of
0.05 (dash-dotted line), and sensor data loss
(defined over a finite interval) at a rate of 0.1
(solid line).

Figure 5. Manipulated input profile under control con-
figuration 2 in the presence of sensor data
loss (defined over a finite interval) at a rate
of 0.4 (dashed line), sensor data loss (defined
over an infinite interval) at a rate of 0.05
(dash-dotted line), and sensor data loss
(defined over a finite interval) at a rate of 0.1
(solid line).
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(that is, for r „ r*), with r* appropriately computed for a
given time interval T* over which the rate is defined.

Fault-Tolerant Control Subject to Sensor
Data Losses

Having analyzed the stability properties of the individual
control configurations subject to sensor data losses, in this
section we present a fault-tolerant controller that maintains
closed-loop stability in the presence of sensor data losses.

Reconfiguration law

Fault-tolerance is achieved via switching to a backup con-
figuration for which the state of the closed-loop system is
within the stability region, and the sensor data loss rate is
less than the bound on the data loss rate required for closed-
loop stability. To formalize this idea, consider the con-
strained nonlinear system of Eq. 1 for which the bounded
controllers of the form of Eq. 3 have been designed and the
stability regions Oj, j ¼ 1, . . . , N have been explicitly char-
acterized under each control configuration, and the bounds
on the data loss rate rj

*, j ¼ 1, . . . , N for a given interval T
have been computed. Let dmax ¼ maxj¼1;...;N dj, where dj was

defined in Theorem 3 and let OU ¼ SN
j¼1 Oj. We consider the

problem where the process starts operating under configura-
tion i with a data loss rate of ri(0), and at some point in time
the data-loss rate r(t) possibly becomes greater than ri*.
Theorem 4: Let k(0) ¼ i for some i [ k and x(0): ¼ x0 [
Oi. Let T

f be the earliest time such that r(t) > ri* with x(Tf)
measured. Then, the following switching rule

kðtÞ ¼ i; 0 � t , Tf

l; t � Tf ; xðTf Þ 2 Ol; rðTf Þ � r1*

( )
(12)

and r(t) „ rl* V t ” T f guarantees that x(t) [ OU V t ” 0
and lim supt!1 kxðtÞk � dmax.
Proof of Theorem 4: We consider the two possible cases;
first if the data-loss rate r stays less than or equal to ri

* for
all times, and second if r > ri

* at some time T f.
Case 1: The absence of a switch implies k(t) ¼ i V t ” 0.
Furthermore, since x(0) [ Oi, r(t) „ ri

* and control configu-
ration i is implemented for all times in this case, we have
that x(t) [ Oi V t ” 0 and lim supt!1 kxðtÞk � di. Finally,
since Oi ( OU and di „ dmax, we have that x(t) [ OU V t ”
0 and lim supt!1 kxðtÞk � dmax.

Case 2: At time T f, the supervisor switches to a control con-
figuration l for which x(T f) [ Ol and r „ rl*. From this time
onwards, since configuration l is implemented in the closed-
loop system for all times, and since x(Tf) [ Ol and r(t) „ rl*,
we have that x(t) [ Ol V t ” 0 and lim sup

t!1
kxðtÞk � dl. As in

case 1, since Ol ( OU and dl „ dmax, we have that x(t) [
OU V t ” 0 and lim sup

t!1
kxðtÞk � dmax. This completes the

proof of Theorem 4.
Remark 8: Theorem 4 explicitly takes into consideration
the constraints in the manipulated inputs, and the measure-
ment losses in deciding which backup configuration to imple-
ment in the closed-loop system, and, therefore, requires that
a backup configuration is implemented for which the state

resides in its stability region and the data loss rate is less
than the data loss rate that the backup configuration can
tolerate. Disregarding either of these factors could lead
to instability (see the simulation example for a demons-
tration).
Remark 9: Note that the result of Theorem 4 assumes
explicit knowledge of the current data loss rate to not only
identify the appropriate backup configuration, but also to
trigger reconfiguration. In this sense, the reconfiguration logic
has an in-built fault detection mechanism, with faults being
defined as data loss rate exceeding the allowable data loss
rate. In practice, the data loss rate can only be estimated
over finite intervals of time, and this estimate can be used in
deciding which backup configuration should be activated
according the reconfiguration rule of Theorem 4. Note also,
that other than the data loss rate (estimate) going over the
allowable bound, other means of detecting instability like
behavior (such as the state trajectory going close to the
boundary of the stability region under the currently-active
control configuration), can be used to trigger the reconfigura-
tion. It is worth pointing out, however, that this fault-detec-
tion capability is only limited to the rate of data loss exceed-
ing the tolerable value. As discussed in Remark 3, explicit
fault detection mechanisms which detect faults in the sensors
(such as sensors reporting incorrect values) can be used
within the proposed approach to tackle sensor faults mani-
fested as erroneous measurements.
Remark 10: While we assume the availability of measure-
ments of all the state variables, the same approach can be
used to analyze the case where each control configuration is
comprised of a set of sensors and actuators with the sensors
(measurements) different in different control configurations.
Specifically, under each control configuration, an estimation
scheme, coupled with the feedback controller, will have to
be implemented, and the output feedback-stability region,
subject to constraints and sensor data losses characterized.
Subsequently, the reconfiguration rule will have to be modi-
fied to account for the fact that the reconfiguration decision
is made on the basis of state estimates (which may contain
errors); for a switching scheme that addresses these issues in
the context of switched nonlinear systems under continuous
output feedback control, see.36

Fault-tolerant control of a chemical reactor

Consider, once again, the chemical reactor of Eq. 5 in the
presence of sensor data losses. As seen in Figure 5, the
closed-loop system using configuration 2 experiences insta-
bility when the data loss rate becomes 0.4. In the event of
such data losses, one of the backup control configurations
need to be activated, and this choice cannot be made only by
looking at the states with respect to the stability region. In
this section, we demonstrate the application of the switching
rule of Theorem 4 that achieves fault-tolerance. To this end,
we first characterize the stability region under each backup
configuration. Figure 6 depicts the stability region, in the
(T, CA) space, for each configuration. The desired steady-
state is depicted with an asterisk that lies in the intersection
of the three stability regions. For configurations 1, 2 and 3,
the bound on the data loss rate is estimated at r1

* ¼ 0.35, r2
*

¼ 0.3 and r3
* ¼ 0.15, respectively.
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We consider an initial condition, T(0) ¼ 300 K, CA(0) ¼
4.0 mol/L, CB (0) ¼ 0.0 mol/L, using the TA0-control configu-
ration within the stability region of configuration 2, and con-
sider a case where the rate of sensor data loss increases from
an initial value of 0.1 to 0.35. As shown by the solid line in
Figure 6, the controller proceeds to drive the closed-loop tra-
jectory towards the desired steady-state, up until time 13.5
min of reactor startup when the sensor data-loss rate increases
to 0.35. If the supervisor does not use the result of Theorem
4 to trigger reconfiguration, but persists with using configura-
tion 2, stability is not achieved (see dotted lines in Figures 6–
7). Note that at this time, the state of the closed-loop system
resides in the stability region of both backup configurations 1
and 3. If the supervisor does implement reconfiguration, but
in a way that does not account for the presence of sensor data
loss and activates configuration 3, the state trajectory does
not converge to the desired steady-state (see dashed line in
Figure 6) even though the state at the switching time is within
stability region of control configuration 3. This happens
because the rate of data loss is not within the tolerable bound
for configuration 3. In contrast, if the reconfiguration rule of
Eq. 12 is implemented, and the supervisor activates configu-
ration 1, the state trajectory converges to the desired steady-
state (see dashed-dotted line in Figure 6). The corresponding
manipulated input profiles are shown in Figure 7.

Fault-tolerant control of a polyethylene reactor subject
to sensor data loss

Having demonstrated the application of the proposed fault-
tolerant controller on the illustrative example, we next con-
sider a more complex process, specifically, an industrial gas-
phase polyethylene reactor system (see Figure 8). This reac-
tor was also studied in39 in the context of faults in the con-
trol actuator (under assumption of continuous availability of
process measurements).

The feed to the reactor consists of ethylene, comonomer,
hydrogen, inerts, and catalyst. A stream of unreacted gases
flows from the top of the reactor and is cooled by passing
through a heat exchanger in counter-current flow with cool-
ing water. Cooling rates in the heat exchanger are adjusted
by instantaneously blending cold and warm water streams,
while maintaining a constant total cooling water flow rate
through the heat exchanger. Mass balance on hydrogen and
comonomer have not been considered in this study because
hydrogen, and comonomer have only mild effects on the re-
actor dynamics.35 A mathematical model for this reactor has
the form:34

Figure 6. Evolution of the state trajectory: At t 5 13.5
min the data loss rate goes up to 0.35 under
configuration 2 (solid line).

Keeping with configuration 2 (dotted line) or switching to
configuration 3 (dashed line) does not preserve stability,
while switching to configuration 1 (dash-dotted line) pre-
serves stability.

Figure 7. Manipulate input profiles: At t 5 13.5 minutes
the data loss rate goes up to 0.35 under con-
figuration 2 (solid line), switching to configura-
tion 3 does not preserve stability (dashed line),
while switching to configuration 1 (dash-dot-
ted line) preserves stability.
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d½In�
dt

¼
FIn � ½In�

½M1� þ ½In� bt
Vg

d½M1�
dt

¼
FM1

� ½M1�
½M1�þ½In� bt � RM1

Vg

dY1
dt

¼ Fcac � kd1Y1 �
RM1MW1

Y1
Bw

dY2
dt

¼ Fcac � kd2Y2 �
RM1MW1

Y2
Bw

dT

dt
¼ Hf þ Hg1 � Hg0 � Hr � Hpol

MrCpr þ BwCppol

dTw1

dt
¼ Fw

Mw
ðTwi � Tw1

Þ � UA

MwCpw
ðTw1

� Tg1Þ
dTg1
dt

¼ Fg

Mg
ðT � Tg1Þ þ

UA

MgCpg
ðTw1

� Tg1Þ ð13Þ

where

bt ¼ VpCv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½M1� þ ½In�Þ � RR � T � Pv

p
RM1 ¼ ½M1� � kp0 � exp �Ea

R

1

T
� 1

Tf

� �� �
� ðY1 þ Y2Þ

Cpg ¼ ½M1�
½M1� þ ½In�Cpm1 þ ½In�

½M1� þ ½In�CpIn

Hf ¼ FM1
Cpm1ðTfeed � Tf Þ þ FInCpInðTfeed � Tf Þ

Hg1 ¼ FgðTg1 � Tf ÞCpg

Hg0 ¼ ðFg þ btÞðT � Tf ÞCpg

Hr ¼ HreacMW1
RM1

Hpol ¼ CppolðT � Tf ÞRM1MW1
ð14Þ

For the definition of all the variables used in Eqs. 13–14,
the values of the process parameters, and details on control-
ler design, see.39 The open-loop system at the nominal oper-
ating condition exhibits an unstable equilibrium point sur-
rounded by a limit cycle. The control objective is to stabilize
the reactor at the unstable equilibrium point using measure-
ments of the state variables. To accomplish this objective we
consider the following manipulated input candidates:
1. Catalyst flow rate, u1 ¼ (Fc � Fc

s)ac, subject to the con-
straint ju1j � u1max ¼ ð 2

3600
Þac mol

s .

2. Feed temperature, u2 ¼ FM1
Cpm1þFInCpIn

MrCprþBwCppol
ðTfeed � Ts

feedÞ, sub-

ject to the constraint ju2j � u2max ¼ FM1
Cpm1þFInCpIn

MrCprþBwCppol
ð20Þ Ks .

First, process operation under primary control configura-
tion was considered (that is, the catalyst flow rate, Fc, was
the manipulated input) and a bounded nonlinear controller
was designed using the formula of Eqs. 2–4. Specifically, a
quadratic function of the form V1 ¼ e1

TP1e1 and r1 ¼ 0.01
were used to design the controller, and a composite Lyapu-
nov function of the form Vc1

¼ 5 � 10�3 (In � Ins)
4 þ 5 �

10�4(M1 � M1s)
2 þ 5 � 10�11(Y1 � Y1s)

2 þ 5 � 10�11(Y2
� Y2s)

2 þ 5 � 10�4(T � Ts)
2 þ 5 � 10�11(Tw1

� Tw1s
)2 þ 5

� 10�11(Tg1 � Tg1s)
2 was used to estimate the stability region

of the primary control configuration yielding a c1
max ¼ 56.8.

A quadratic Lyapunov function of the form V2 ¼ 1
2
(T � Ts)

2

and r2 ¼ 0.01 were used to design the controller that used

Figure 8. Industrial gas-phase polyethylene-reactor
system.

Figure 9. Evolution of the closed-loop state profiles
under primary control configuration under
continuous measurements (solid lines), and
sensor data loss rate of 0.75 (dotted lines).
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the fall-back control configuration (that is, the feed tempera-
ture Tfeed, was the manipulated input), and a composite Lya-
punov function of the form Vc2

¼ 5 � 10�3(In � Ins)
4 þ 5

� 10�4(M1 � M1s)
2 þ 5 � 10�11(Y1 � Y1s)

2 þ 5 �
10�11(Y2 � Y2s)

2 þ 5 � 10�4(T � Ts)
2 þ 5 � 10�2(Tw1

�

Tw1s
)2 þ 5 � 10�11(Tg1 � Tg1s)

2 was used to estimate the sta-
bility region of the fallback control configuration yielding a
c2
max ¼ 62.
Figure 9 shows the evolution of the closed-loop state pro-

files under continuous measurement (solid lines) starting
from the initial condition Inð0Þ ¼ 450 mol

m3 , M1ð0Þ ¼ 340 mol
m3 ,

Y1(0) ¼ 4.6 mol, Y2(0) ¼ 4.6 mol, T(0) ¼ 360 K, Tw1
(0) ¼

300 K, and Tg1(0) ¼ 300 K for which Vc1 ¼ 56.78. Since this
initial state is within the stability region of the primary con-
trol configuration (that is, Vc1

(x(0)) „ c1
max), the primary

control configuration is able to stabilize the system at the
steady-state of interest. The corresponding manipulated
inputs are shown on Figures 10–11. The dynamics of the
process also reveal an important feature regarding tolerance
to sensor data losses. Specifically, for this particular process,
even under no control (equivalent to complete data loss), the
process goes to a limit cycle which is within the stability
region for the closed-loop system under continuous availabil-
ity of measurements. This characteristic impacts positively
on the tolerance of the closed-loop system to data losses, and
a high-sensor data-loss rate of 0.75 ends up being tolerable
(see dotted lines in Figures 9 and 11), even with the value of
the manipulated input variable set to the nominal value dur-
ing the time that the measurements are unavailable (equiva-
lent to open-loop operation).

Figure 10. Evolution of the manipulated input profile
under primary control configuration under
continuous measurements.

Figure 12. Evolution of the closed-loop state profiles
under the primary configuration with the
data loss rate increasing from 0.75 to 0.80
at 0.97 h.

Figure 11. Evolution of the manipulated input profile
under primary control configuration with
sensor data loss rate of 0.75.
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Consider now a case where the rate of sensor data loss
increases from an initial value of 0.75 to 0.80 at 0.97 h of re-
actor startup. As shown by the dashed lines in Figure 12, the
controller proceeds to drive the closed-loop trajectory
towards the desired steady-state up until 0.97 h. If the super-
visor does not account for the increase of sensor data loss
and continues utilizing the primary control configuration to
control the reactor, the state trajectory does not converge to
the desired steady-state (see Figure 12) even though the state
at the time that the data-loss rate increases is within the sta-
bility region of the primary configuration (Vc1(x(t ¼ 0.97
hour)) ¼ 1.6380 „ c1

max). This happens because the rate of
data loss is not within the tolerable bound for primary con-
trol configuration (r > r1* ¼ 0.75).

In this case, the supervisor had available a fall-back con-
trol configuration with the feed temperature as the manipu-
lated input. At time 0.97 h when sensor data-loss rate
increases from 0.75 to 0.80, Vc2

¼ 1.6382 implying that the
state of the closed-loop system resides in the stability region
of the fall-back configuration (that is, Vc2 (x(t ¼ 0.97 hour))
„ c2

max), as well as r „ r2
* ¼ 0.95. If the reconfiguration

rule of Eq. 12 is implemented, and the supervisor activates
the fall-back configuration, the state trajectory converges to
the desired steady-state (see Figure 13). The corresponding
manipulated input profiles are shown in Figure 14.

Conclusions

In this work we considered the problem of designing a
fault-tolerant controller for nonlinear process systems subject
to constraints and sensor data losses. Having identified candi-
date control configurations for a given system, we first ex-
plicitly characterized the stability properties that is, the set of
initial conditions starting from where closed-loop stabiliza-
tion under continuous availability of measurements is guaran-
teed, as well as derived a bound on the maximum allowable
data-loss rate which preserves closed-loop stability. This
characterization was utilized in designing a reconfiguration
logic that was shown to achieve practical stability in the
presence of sensor data losses. The application of the pro-
posed method was illustrated using a chemical process exam-
ple and demonstrated on a polyethylene reactor.
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Figure 13. Evolution of the closed-loop state profiles
under the reconfiguration law of Eq. 12 with
the data loss rate increasing from 0.75 to
0.80 at 0.97 h.

Figure 14. Evolution of the closed-loop input profiles
under the reconfiguration law of Eq. 12 with
the data loss rate increasing from 0.75 to
0.80 at 0.97 h.

AIChE Journal March 2007 Vol. 53, No. 3 Published on behalf of the AIChE DOI 10.1002/aic 667



Literature Cited

1. Valluri S, Soroush M, Nikravesh M. Shortest-prediction-horizon
non-linear model-predictive control. Chem Eng Sci. 1998;53:273–
292.

2. Garcia CE, Prett DM, Morari M. Model predictive control – Theory
and practice – A survey. Automatica. 1989;25:335–348.

3. Zhou DH, Frank PM. Fault diagnostics and fault tolerant control.
IEEE Transactions on Aerospace and Electronic Systems. 1998;34:
420–427.

4. Bequette BW. Nonlinear predictive control using multirate sampling.
Canadian J of Chem Eng. 1991;69:136–143.

5. Sheng J, Chen TW, Shah SL. Optimal filtering for multirate systems.
IEEE Transactions on Circuits and Systems II – Express Briefs.
2005;52:228–232.

6. Zhang W, Branicky MS, Phillips SM. Stability of networked control
systems. IEEE Control Systems Magazine. 2001;21:84–99.

7. Bequette BW. Nonlinear control of chemical processes – A review.
Ind & Eng Chem Res. 1991;30:1391–1413.

8. Bao J, Zhang WZ, Lee PL. Decentralized fault-tolerant control system
design for unstable processes.Chem Eng Sci. 2003;58:5045–5054.

9. Musulin E, Bagajewicz M, Nougues JM, Puigjaner L. Instrumenta-
tion design and upgrade for principal components analysis monitor-
ing. Ind & Eng Chem Res. 2004;43:2150–2159.

10. Kapoor N, Daoutidis P. Stabilization of systems with input con-
straints. Intl J of Control. 1997;66:653–675.

11. Massoumnia M, Verghese GC, Wilsky AS. Failure detection and
identification. IEEE Transactions on Automatic Control. 1989;34:
316–321.

12. Garcia EA, Frank PM. Deterministic nonlinear observer-based
approaches to fault diagnosis: A survey. Control Eng Practice.
1997;5:663–670.

13. Lin Y, Sontag ED. A universal formula for stabilization with
bounded controls. Systems & Control Letts. 1991;16:393–397.

14. Teel AR. Global stabilization and restricted tracking for multiple inte-
grators with bounded controls. Systems & Control Letts. 1992;18:
165–171.

15. Rollins DK, Davis JF. Gross error-detection when variance-covari-
ance matrices are unknown. AIChE J. 1993;39:1335–1341.

16. Aradhye HB, Bakshi BR, Strauss RA, Davis JF. Multiscale SPC using
wavelets: Theoritical analysis and properties. AIChE J. 2003;49:
939–958.

17. Tatiraju S, Soroush M, Ogunnaike BA. Multirate nonlinear state esti-
mation with application to a polymerization reactor. AIChE J. 1999;
45:769–780.

18. Chen JG, Bandoni JA, Romagnoli JA. Robust PCA and normal region
in multivariate statistical process monitoring. AIChE J. 1996;42:
3563–3566.

19. Bagajewicz M, Cabrera E. A new MILP formulation for instrumen-
tation network design and upgrade. AIChE J. 2002;48:2271–2282.

20. Aradhye HB, Bakshi BR, Davis JF, Ahalt SC. Clustering in wavelet
domain: A multiresolution ART network for anomaly detection.
AIChE J. 2004;50:2455–2466.

21. Yang GH, Wang JL, Soh YC. Reliable H? control design for linear
systems. Automatica. 2001;37:717–725.

22. Wu NE. Coverage in fault-tolerant control. Automatica. 2004;40:
537–548.

23. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM. Constrained
model predictive control: Stability and optimality. Automatica.
2000;36:789–814.

24. Kokotovic P, Arcak M. Constructive nonlinear control: A historical
perspective. Automatica. 2001;37:637–662.

25. Harris TJ, Boudreau F, MacGregor JF. Performance assessment of
multivariable feedback controllers. Automatica. 1996;32:1505–1518.

26. Frank PM. Fault-diagnosis in dynamic-systems using analytical and
knowledge-based redundancy – A survey and some new results.
Automatica. 1990;26:459–474.

27. Garcia-Osorio V, Ydstie BE. Distributed, asynchronous and hybrid
simulation of process networks using recording controllers. Int J of
Robust & Nonlinear Control. 2004;14:227–248.

28. Saberi A, Stoorvogel AA, Sannuti P, Niemann H. Fundamental prob-
lems in fault detection and identification. Int J of Robust & Nonlin-
ear Control. 2000;10:1209–1236.

29. Niemann H, Saberi A, Stoorvogel AA, Sannuti P. Exact, almost and
delayed fault detection: An observer based approach. Int J of Robust
& Nonlinear Control. 1999;9:215–238.

30. De Persis C, Isidori A. On the design of fault detection filters with
game-theoretic-optimal sensitivity. Int J of Robust & Nonlinear Con-
trol. 2002;12:729–747.

31. Bhat SP, Bernstein DS. Finite-time stability of continuous autono-
mous systems. SIAM J on Control and Optimization. 2000;38:751–
766.

32. Nelson PRC, Taylor PA, MacGregor JF. Missing data methods in
PCA and PLS: Score calculations with incomplete observations.
Chemometrics and Intelligent Laboratory Systems. 1996;35:45–65.

33. Mehranbod N, Soroush M, Panjapornpon C. A method of sensor
fault detection and identification. J of Process Control. 2005;15:
321–339.

34. Dadebo SA, Bell ML, McLellan PJ, McAuley KB. Temperature con-
trol of industrial gas phase polyethylene reactors. J of Process Con-
trol. 1997;7:83–95.

35. McAuley KB, Macdonald DA, McLellan PJ. Effects of operating
conditions on stability of gas-phase polyethylene reactors. AIChE J.
1995;41:868–879.

36. El-Farra NH, Mhaskar P, Christofides PD. Output feedback control
of switched nonlinear systems using multiple Lyapunov functions.
Systems & Control Letts. 2005;54:1163–1182.

37. El-Farra NH, Mhaskar P, Christofides PD. Hybrid predictive control
of nonlinear systems: Method and applications to chemical proc-
esses. Intl J of Robust & Nonlinear Control. 2004;14:199–225.

38. Mhaskar P, Gani A, Christofides PD. Fault-tolerant control of non-
linear processes: Performance-based reconfiguration and robustness.
Int J of Robust & Nonlinear Control. 2006;16:91–111.

39. Gani A, Mhaskar P, Christofides PD. Fault-tolerant control of a gas-
phase polyethylene reactor. J of Process Control. 2007; in press.
DOI: 10.1016/j.jprocont.2006.04.002.

40. El-Farra NH, Christofides PD. Integrating robustness, optimality, and
constraints in control of nonlinear processes. Chem Eng Sci.
2001;56:1841–1868.

41. El-Farra NH, Christofides PD. Bounded robust control of constrained
multivariable nonlinear processes. Chem Eng Sci. 2003;58:3025–3047.

42. Mhaskar P, El-Farra NH, Christofides PD. Predictive control of
switched nonlinear systems with scheduled mode transitions. IEEE
Transactions on Automatic Control. 2005;50:1670–1680.

43. Mhaskar P, El-Farra NH, Christofides PD. Stabilization of nonlinear
systems with state and control constraints using Lyapunov-based
predictive control. Systems & Control Letts. 2006;55:650–659.

44. Mhaskar P, Gani A, El-Farra NH, McFall C, Christofides PD, Davis
JF. Integrated fault-detection and fault-tolerant control for process
systems. AIChE J. 2006;52:2129–2148.

45. El-Farra NH, Gani A, Christofides PD. Fault-tolerant control of pro-
cess systems using communication networks. AIChE J. 2005;51:
1665–1682.

46. Mhaskar P, El-Farra NH, Christofides PD. Robust hybrid predictive
control of nonlinear systems. Automatica. 2005;41:209–217.

47. Patton RJ. Fault-tolerant control systems: The 1997 situation. In:
Proceedings of the IFAC Symposium SAFEPROCESS 1997. Hull,
U. K.; 1997:1033–1054.

48. Hassibi A, Boyd SP, How JP. Control of asynchronous dynamical sys-
tems with rate constraints on events. In: Proceedings of 38th IEEE
Conference on Decision and Control. Phoenix, AZ; 1999:1345–1351.

49. Kravaris C, Arkun Y. Geometric nonlinear control—an overview.
In: Proceedings of 4th Intl Conference on Chemical Process Con-
trol. Padre Island, TX; 1991:477–515.

50. Ydstie BE. Certainty equivalence adaptive control: Paradigms puz-
zles and switching. In: Proceedings of 5th Intl Conference on Chem-
ical Process Control. Tahoe City, CA; 1997:9–23.

51. Christofides PD, El-Farra NH. Control of nonlinear and hybrid pro-
cess systems: Designs for uncertainty, constraints and time-delays.
New York: Springer; 2005.

52. El-Farra NH, Christofides PD. Coordinating feedback and switch-
ing for control of hybrid nonlinear processes. AIChE J. 2003;49:
2079–2098.

Manuscript received Jun. 9, 2006, and revision received Dec. 7, 2006.

668 DOI 10.1002/aic Published on behalf of the AIChE March 2007 Vol. 53, No. 3 AIChE Journal


