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Abstract

This work considers the problem of control actuator fault detection and isolation and fault-tolerant control for a multi-input multi-output
nonlinear system subject to constraints on the manipulated inputs and proposes a fault detection and isolation filter and controller reconfiguration
design. The implementation of the fault detection and isolation filters and reconfiguration strategy are demonstrated via a chemical process
example.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The operation of chemical processes is characterized by the
complexity of the individual units together with an intricate
interconnection of these geographically distributed units via
a network of material and energy streams, and control loops.
The nonlinear behavior exhibited by most chemical processes,
together with the presence of constraints on the operating con-
ditions, modeling uncertainty and disturbances, and the lack
of availability of state measurements has motivated several re-
search results in the area of nonlinear process control focusing
on these issues (see, e.g., El-Farra & Christofides, 2001, 2001;
El-Farra, Mhaskar, & Christofides, 2005; Lin & Sontag, 1991;
Mhaskar, El-Farra, & Christofides, 2004; Soroush, Valluri, &
Mehranbod, 2005 and, for a review of results, Allgöwer &
Doyle, 1997; Bequette, 1991; Christofides & El-Farra, 2005;
Henson & Seborg, 1997 and the references therein). The
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development of the advanced control algorithms outlined
above (alongside development in sensing, communicating and
computing technologies) has led to extensive automation of
plant operation. Increased automation, however, also makes the
plant susceptible to faults (e.g., defects/malfunctions in process
equipment, sensors and actuators, failures in the controllers
or in the control loops), which, if not appropriately handled
in the control system design, can potentially cause a host of
undesired economic, environmental, and safety problems that
seriously degrade the operating efficiency of the plant.

The above considerations provide a strong motivation for
the development of advanced fault-tolerant controllers that ac-
count for system complexities such as nonlinearity, uncertainty
and constraints and provide a mechanism for an efficient and
timely response to enhance fault recovery. One of the prereq-
uisites for implementing fault-tolerant control is the ability to
detect and isolate the faults. Statistical and pattern recognition
techniques for data analysis and interpretation (e.g., Aradhye,
Bakshi, Davis, & Ahalt, 2004; Davis, Piovoso, Kosanovich, &
Bakshi, 1999; Kresta, Macgregor, & Marlin, 1991; Negiz &
Cinar, 1997; Nomikos & Macgregor, 1994; Rollins & Davis,
1992) use historical plant-data to construct indicators that
identify deviations from normal operation to detect faults. The
problem of using fundamental process models for the purpose
of detecting faults has been studied extensively in the context of
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linear systems (e.g., Frank, 1990; Frank & Ding, 1997;
Massoumnia, Verghese, & Wilsky, 1989; Mehranbod, Soroush,
& Panjapornpon, 2005); and more recently, fundamental re-
sults in the context of nonlinear systems have been derived
(e.g., DePersis & Isidori, 2001; Pisu, Serrani, You, & Jalics,
2006; Saberi, Stoorvogel, Sannuti, & Niemann, 2000).

Fault-tolerant control can be achieved, in one approach, via
controller designs using enough actuators to withstand the fail-
ure of some of the control actuators (e.g., see Bonivento, Isidori,
Marconi, & Paoli, 2004; Yang, Wang, & Soh, 2001) and the ro-
bustness of the active control configuration to such faults can
be analyzed. Economic considerations (to save on unnecessary
control action), however, dictate the use of only as many con-
trol loops as is required at a time. In such cases, faults in a
control actuator cannot be handled via changing the control
algorithm and necessitates control-loop reconfiguration (acti-
vating appropriate backup control actuators). Using these ap-
proaches, fault-tolerant control has been actively pursued in the
context of aerospace engineering applications (see, e.g., Patton,
1997; Zhou & Frank, 1998). Recently it has also gained atten-
tion in the context of chemical process control; however, most
available results are based on the assumption of a linear pro-
cess description (e.g., Bao, Zhang, & Lee, 2003; Wu, 2004) and
do not account for process nonlinearity, constraints and lack of
state measurements.

Controller reconfiguration to achieve fault-tolerant control
via switching to well-functioning control actuators makes the
closed-loop system a hybrid system, since the closed-loop sys-
tem exhibits discrete transitions between continuous modes
of operations. While a large number of research works have
focused on a diverse array of hybrid system problems (e.g.,
DeCarlo, Branicky, Pettersson, & Lennartson, 2000; El-Farra
& Christofides, 2003b; El-Farra et al., 2005; Garcia-Onorio &
Ydstie, 2004), the use of a hybrid system framework for the
study of fault-tolerant control problems has received limited
attention. Under the assumption of state feedback and knowl-
edge of fault, in El-Farra, Gani, and Christofides (2005), a hy-
brid systems approach to fault-tolerant control was employed
where upon occurrence of a fault, stability region-based re-
configuration is done to achieve fault-tolerant control and in
Mhaskar, Gani, and Christofides (2006), performance and ro-
bustness considerations were incorporated in the fault-tolerant
control structure. In Mhaskar et al. (2006) the problem of fault
detection and fault-tolerant control for single input systems was
considered and the problem of deciding which backup control
configuration should be implemented to preserve closed–loop
stability was addressed. In Mhaskar et al. (2006), however, only
single input systems were considered which did not require
isolating the fault in a given control configuration. In a multi-
input system, where the faults can occur in any of the actuators,
the inability to isolate which actuator has failed can negatively
impact the selection of the backup control configuration, and if
incorrectly chosen, may fail to preserve closed–loop stability
(due to the fact that the faulty actuator may be a member of
the backup control configuration).

Motivated by these considerations, this work considers the
problem of implementing fault-tolerant control on a multi-input

multi-output nonlinear system subject to faults in the control
actuators and constraints on the manipulated inputs. The case
where all the states of the system are measured is first consid-
ered. The state measurements and the model is used to design
filters that essentially capture the difference between fault-free
evolution and the observed evolution of the system to detect
and isolate faults. In the event of a fault, a configuration is cho-
sen that (1) does not use the failed control actuator, and (2)
guarantees stability of the closed-loop system starting from the
system state at the time of the failure. To be able to ascertain the
second condition, Lyapunov-based controllers, which provide
an explicit characterization of the closed-loop stability region,
are used in designing the control laws for the individual con-
trol configurations. Next the problem where not all the system
states are measured is considered. First, output-feedback con-
trollers are designed that allow for an explicit characterization
of the output-feedback stability region. The state estimates are
employed in implementing the fault detection and isolation fil-
ters, and the reconfiguration rule. While this work focusses on
the rigorous development of fault-detection and isolation filter
designs for the state and output-feedback cases, other practical
issues such as uncertainty, disturbances, measurement noise and
sampling delays are investigated in the implementation of the
fault detection and isolation filters and reconfiguration strategy
on a chemical process example.

2. Preliminaries

Consider nonlinear systems with input constraints, des-
cribed by

ẋ = f (x) + Gk(t)(x)(uk(t)(y) + ũk(t)(t)),

y(x) = h(x), uk(y) ∈ Uk, (uk(t)(y) + ũk(t)(t)) ∈ Uk ,

k(t) ∈ K = {1, . . . , N}, N < ∞, (1)

where x ∈ Rn denotes the vector of state variables, y ∈ Rm

denotes the vector of measured variables and uk(t)(y) ∈ Rm

denotes the control action prescribed by the control law for the
vector of constrained manipulated inputs under the kth config-
uration. ũk(t) denotes the unknown fault vector with uk(t)(y)+
ũk(t) taking values in a non-empty convex subset Uk of Rm,
where Uk = {uk + ũk ∈ Rm : ‖uk + ũk‖�umax

k }, ‖ · ‖ is the
Euclidean norm of a vector, umax

k > 0 is the magnitude of in-
put constraints and f (0) = 0. The vector function f (x) and
the matrices Gk(x) = [g1,k(x) · · · gm,k(x)] are assumed to be
sufficiently smooth on their domains of definition. k(t), which
takes values in the finite index set K, represents a discrete
state that indexes the matrix Gk(·) as well as the manipulated
input uk(·) and the possible faults in the manipulated inputs
ũk(·). For each value that k assumes in K, the process is con-
trolled via a different set of manipulated inputs which defines
a given control configuration. The notation Lf h denotes the
standard Lie derivative of a scalar function h(·) with respect
to the vector function f (·) and the notation x(T +) denotes the
limit of the trajectory x(t) as T is approached from the right,
i.e., x(T +) = limt→T +x(t).

Throughout the manuscript, it is assumed that for any
uk ∈ Uk the solution of the system of Eq. (1) exists and is
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continuous for all t. Next, one example of a state-feedback con-
troller that provides an explicit estimate of the stability region
for the closed-loop system subject to constraints is reviewed
(for more details on the controller design, and the proof, see
El-Farra & Christofides, 2001; Lin & Sontag, 1991).

Theorem 1 (El-Farra and Christofides, 2001). Consider the
switched nonlinear system of Eq. (1) for a configuration k for
which a control Lyapunov function Vk exists, with ũk(t) ≡ 0,
under state-feedback using the following bounded nonlinear
feedback controller:

uk = −wk(x, umax
k )(LGk

Vk(x))T, (2)

where

wk(x, umax
k )

=

⎧⎪⎪⎨
⎪⎪⎩

�k(x) +
√

�2
k(x) + (umax

k ‖bT
k (x)‖)4

‖bT
k (x)‖2[1 +

√
1 + (umax

k ‖bT
k (x)‖)2]

, bT
k (x) �= 0,

0, bT
k (x) = 0

(3)

with �k(x)=Lfk
Vk(x)+�kVk(x), �k > 0 and bk(x)=LGk

Vk(x).
Assume that the set �k(u

max
k ) of x satisfying

Lfk
Vk(x) + �kVk(x)�umax

k ‖(LGk
Vk(x))T (4)

contains the origin and a neighborhood of the origin. Also, let
�k(u

max
k ) := {x ∈ Rn : Vk(x)�cmax

k } be a level set of Vk ,
completely contained in �k , for some cmax

k > 0. Then ∀x(0) ∈
�k(u

max
k ) the control law guarantees that the origin of the

closed–loop system is asymptotically stable.

3. State-feedback fault-tolerant control

In this section, the state-feedback problem is first considered
to illustrate the main idea behind the fault detection and isola-
tion and fault-tolerant controller design.

3.1. State-feedback fault detection and isolation filter

To be able to detect the occurrence of a fault in a control
actuator via observing the state evolution, it is necessary that the
control actuator influences the evolution of at least some of the
states. To be able to isolate the occurrence of a fault, it becomes
further necessary that the control actuator in question be the
only one influencing at least some state. To understand this
better, consider the following single state, two input example:
ẋ=x+u1(x)+ũ1+u2(x)+ũ2. As is clear from the equation, the
faults in the manipulated inputs u1 and u2 effect the evolution
of the state additively, i.e., as the sum (ũ1 + ũ2). While it may
be possible to detect that a fault has occurred in either u1 or u2
(if the faults do not cancel out each other, i.e., if ũ1 + ũ2 �= 0),
it is not possible, in this case, to determine by observing the
evolution of the system (and finding it to be different when
compared to the expected evolution with ũ1 = ũ2 = 0) whether
ũ1 �= 0 or ũ2 �= 0, or both. In other words, while it may be
possible to detect the occurrence of a fault, it is not possible to

isolate it using any available technique (data-based or model-
based). Below a verifiable assumption on the structure of the
system of Eq. (1) that allows for fault detection and isolation
is formulated.

Assumption 1. Consider the system of Eq. (1) in configuration
k under state-feedback. Then for every input uj,k , j =1, . . . , m,
there exists a unique state xi,k , i ∈ {1, . . . , n} such that with
xi,k as output, the relative degree of xi,k with respect to uj,k

and only with respect to uj,k is equal to 1.

Remark 1. Assumption 1 rigorously states a fundamental
requirement to achieve fault-detection and isolation and does
not represent a limitation of the proposed approach. It sim-
ply states that the effect of a specific control actuator on the
system evolution needs to be completely distinguishable to
allow for isolation of fault in that specific control actuator. If
this effect is not fundamentally distinguishable, then no fault-
isolation technique (model-based or data-based) will be able to
isolate the occurrence of such fault (see Remark 3 for further
discussion on this point).

Consider now the system of Eq. (1) in configuration k for
which Assumption 1 holds. Theorem 2 formulates the fault
detection and isolation filter.

Theorem 2. Consider the system of Eq. (1) in configuration k
which satisfies Assumption 1, under the control law of Eq. (2).
Let the fault detection and isolation filter for the jth manipulated
input in the kth configuration be described by

˙̃xi,k=fi(x1, . . ., x̃i,k, . . ., xn)+gj,k[i](x1, . . ., x̃i,k, . . ., xn)

× uj,k(x1, . . . , x̃i,k, . . . , xn),

ei,k = x̃i,k − xi , (5)

where gj,k[i] denotes the ith element of the vector gj,k , x̃i,k(0)=
xi(0) and the subscripts i, k refer to the ith state under the kth
control configuration. Let T

f
j,k be the earliest time for which

ũj,k �= 0, then the fault detection and isolation filter of Eq. (5)

ensures that ei,k(T
f
j,k

+
) �= 0. Also, ei,k(t) �= 0 only if ũj,k(s) �=

0 for some 0�s < t .

Proof of Theorem 2. Part 1: First, the only if part of the theo-
rem is shown by contradiction. To this end, consider the equa-
tion describing the evolution of the ith state, xi described by

ẋi = fi(x) + gj,k[i](x)(uj,k(x) + ũj,k(t)) (6)

and let us assume that ũj,k(s) = 0, for all 0�s < t . Then for
all 0�s < t Eq. (6) reduces to

ẋi = fi(x) + gj,k[i](x)uj,k(x). (7)

Since xi(0) = x̃i,k(0), therefore ẋi (s) = ˙̃xi,k(s) for s = 0 and
subsequently for all 0�s < t . Therefore, ei,k(s) = 0 for all
0�s < t , which leads to a contradiction. This means that the
assumption that ũj,k(s)=0, for all 0�s < t does not hold, i.e.,
ũj,k(s) �= 0 for some 0�s < t . This completes the proof of the
first part of the theorem.
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Part 2: To prove the if part of the theorem, consider once
again Eqs. (5) and (6) with ũk

j (t) = 0 for all t �T
f
k . Then fol-

lowing the line of reasoning as in Part 1, xi(T
f
j,k) = x̃i,k(T

f
j,k).

From ũj,k(T
f
j,k) �= 0 follows ẋi (T

f
j,k) �= ˙̃xi,k(T

f
j,k), and there-

fore, that xi(T
f
j,k

+
) �= x̃i,k(T

f
j,k

+
), i.e., ei,k(T

f
j,k

+
) �= 0. This

completes the proof of Theorem 2. �

Remark 2. The if part of Theorem 2 characterizes the detec-
tion capabilities where the residual for a manipulated input
becomes non-zero if a fault occurs in the given manipulated
input. The only if part of the theorem allows isolation since a
residual is non-zero only if a fault has occurred at some previ-
ous time in the given manipulated input. Note that in general it
is possible that a fault occurs for some time and disappears, and
also the fault profile is such that after some time the evolution
of the system becomes identical again to the fault-free system,
in which case the residual would once again go back to zero.
The immediate detection capability of the filter above, however,
precludes the possibility that such a fault goes undetected.

Remark 3. Note that Assumption 1 is a sufficient condition
that allows fault detection and isolation filter design, and can
be readily relaxed. For instance, if the inputs influence the evo-
lution of the states in an ‘upper triangular’ or ‘lower triangular’
form, fault detection and isolation is possible using the same
idea as in Theorem 2. As an illustration, consider a two state
two input system, of the form

ẋ1 = f1(x) + g1[1](x)(u1(x) + ũ1(t)),

ẋ2 = f2(x) + g1[2](x)(u1(x) + ũ1(t))

+ g2[2](x)(u2(x) + ũ2(t)), (8)

where fi(·) denotes the ith elements of the vector function
f (·) and gi[j ] denotes the jth element of the vector gi . While
this system does not satisfy Assumption 1, fault detection and
isolation can still be achieved. Specifically, a filter design of the
form of Eq. (5) can be used to build a detection filter for the first
manipulated input. The second filter can then be designed as

˜̇x2 = f2(x1, x̃2) + g1[2](x1, x̃2)(u1(x1, x̃2))

+ g2[2](x1, x̃2)(u2(x1, x̃2)),

e2 = x̃2 − x2. (9)

In this setup, faults in u1 will be captured in both e1 and e2,
while faults in u2 will only effect e2. The task of fault detection
and isolation can therefore be carried out via a simple process
of elimination.

3.2. State-feedback fault-tolerant controller

In this section we address the problem of determining an
appropriate backup configuration. The first requirement for an
appropriate backup control configuration is that it does not use
the faulty control actuator. Secondly, the limitations imposed
by the presence of input constraints must be accounted for, and
in particular, a backup configuration should be implemented for

which the state of the closed-loop system resides in its stability
region. This idea is formalized in Theorem 3.

Theorem 3. Consider the closed-loop system of Eqs. (1)–(2)
under state-feedback and let x(0) := x0 ∈ �k0 for some
k0 ∈ K. Let Tj,k0 be the earliest time such that ei,k0 �= 0 for
some i corresponding to a manipulated input uj,k0 in Eq. (5).
Then the following switching rule:

k(t) =
{

k0, 0� t < Tj,k0 ,

q �= k0, t �Tj,k0 , x(Tj,k0) ∈ �q,

uj,k0 /∈ uq

}
(10)

guarantees asymptotic stability of the origin of the closed-loop
system.

Proof of Theorem 3. Consider the two cases, (1) ei,k0(t) = 0
for all t �0 for all i ∈ {1, . . . , n} and (2) ei,k0(t) �= 0 for some
Tj,k0 for some j ∈ {1, . . . , m}.

Case 1: ei,k0(t) = 0 ∀t �0 for all j ∈ {1, . . . , m} implies
(using Theorem 2) that ũj,k(t) = 0 for all t �0 and for all j ∈
{1, . . . , m}. The switching rule of Eq. (10) then dictates that
k(t) = k0 ∀t �0. Since x(0) ∈ �k0 , asymptotic stability of the
origin of the closed-loop system follows from Theorem 1.

Case 2: If ei,k0(t) �= 0 for some Tj,k0 for some j ∈
{1, . . . , m}, the switching rule dictates switching to configu-
ration q such that x(Tj,k0) ∈ �q . Closed-loop stability of the
origin of the closed-loop system again follows from Theorem
1. This completes the proof of Theorem 3. �

Remark 4. In the event that a given control configuration can
continue to be stabilizing even with one failed control actuator
(verified by the presence of the state at the time of the failure in
the stability region of this ‘reduced’ control configuration) The-
orem 3 dictates the continued use of the control configuration
while preserving stability (without needing to invoke a backup
control actuator). However, for faults that do not preserve the
stability of the active control configuration, early detection of a
fault enhances the chances that corrective action can be taken in
time to achieve fault-tolerant control. Note also that in the pres-
ence of plant model mismatch or unknown disturbances, the
value of ei,k(t) will be non-zero even in the absence of faults.
The presence of time varying disturbances �(t) with known
bounds �b on the disturbances can be accounted for in the fil-
ter design as well as reconfiguration. Specifically, the filter can
be redesigned to declare a fault only if the value of ‖ei,k(t)‖
increases beyond some threshold, �(�b), where �(�b) accounts
for the deviation of the plant dynamics from the nominal dy-
namics in the absence of faults. Furthermore, robust controllers
can be utilized and the robust stability regions can be used
as criteria for deciding which backup configuration should be
implemented in the closed-loop system.

4. Output-feedback fault-tolerant control

In this section, the case where only some of the process
states are available for measurement is considered and an
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output–feedback controller design (El-Farra & Christofides,
2001) that provides estimates of the states (for other examples
of nonlinear observer and output-feedback controller designs,
see Kazantzis & Kravaris, 1999; Khalil & Esfandiari, 1993)
along with an explicit characterization of the output-feedback
stability region is first reviewed.

4.1. Output feedback controller

In the absence of full state measurement, at least enough
measurements need to be available to ‘reconstruct’ or esti-
mate the states from the available measurements. Assumption 2
states this requirement which will be used in designing the out-
put feedback controllers for the individual configurations (see
El-Farra & Christofides, 2001 for further discussion on the ne-
cessity of such an assumption).

Assumption 2. Consider the system of Eq. (1) in configuration
k with ũk ≡ 0. There exists a set of integers r1,k, r2,k, . . . , rm,k

(with r1,k + r2,k + · · · + rm,k = n for each k) and a coordinate
transformation �k = 	k(x) such that the representation of the
system of Eq. (1), in the �k coordinates, takes the form:

�̇(i)
1,k = �(i)

2,k ,

...

�̇(i)
ri,k−1 = �(i)

ri,k
,

�̇(i)
ri,k

= L
ri,k
f hi(x) + Lgi,k

L
ri,k−1
f hi(x)ui,k , (11)

where x = 	−1
k (�k) and �k = [�(1)

k

T · · · �(m)
k

T]T.

Theorem 4 (El-Farra and Christofides, 2001). Consider the
constrained nonlinear process of Eq. (1) with ũk(t) ≡ 0 for
which Assumption 2 holds, under the output-feedback controller
using the kth control configuration:

˙̃yi,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Li,ka
(1)
i,k 1 0 · · · 0

−L2
i,ka

(2)
i,k 0 1 · · · 0

...
...

...
. . .

...

−L
ri−1
i,k a

(ri−1)
i,k 0 0 · · · 1

−L
ri
i,ka

(ri )
i,k 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ỹi,k

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Li,ka
(1)
i,k

L2
i,ka

(2)
i,k

...

Ln−1
i,k a

(ri−1)
i,k

Ln
i,ka

(ri )
i,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

yi,k ,

uk = − wk(x̂, umax
k )(LGk

Vk(x̂))T, (12)

where x̂ = 	−1
k (sat(ỹk)), ỹk = [ỹT

(1,k) · · · ỹT
(m,k)]T, i = 1, . . . , m

where the parameters, a
(1)
i,k , . . . , a

(ri )
i,k are chosen such that

the polynomial sri + a
(1)
i,k sn−1 + a

(2)
i,k sri−2 + · · · + a

(ri )
i,k = 0

is Hurwitz, x̂ = 	−1
k (sat(ỹ)), sat(·) = min{1, �max,k/‖ · ‖}(·),

with �max,k = 
�(��,k, 0) where 
� is a class KL function and
��,k is the maximum value of the vector [lT

1 (x)lT
2 (x) · · · lT

m(x)]T

for Vk(x)��b,k , where li (x)=[hi(x)Lf hi(x) · · · Lri−1
f hi(x)]T,

and let �k = maxi1/Li,k . Then, given �b,k := {x ∈
Rn|Vk(x)��b,k} and positive real numbers em,k , ũ∗

k and dk

there exists �∗k > 0, T b
k > 0 such that if �k ∈ (0, �∗k], x(0) ∈

�b,k , and ‖ỹ(0)‖���,k , the origin of the closed-loop sys-
tem is asymptotically (and locally exponentially) stable, and
if ‖ũk(t)‖� ũ∗

k then ‖x(t) − x̂(t)‖�em,k for all t �T b
k and

lim supt→∞x(t) = dk .

Theorem 4 provides the estimation and controller design that
guarantees asymptotic stability in the case of fault-free system
as well as practical stability in the presence of ‘small’ faults
(that preserve stability). The result relies on closeness of the
state estimates to the true states over the infinite time inter-
val. In fault detection and isolation, the closeness of solution
would be required to hold even in the presence of large, pos-
sibly destabilizing faults, at least up to some finite time to be
able to detect and isolate the faults. In other words, it should
not happen that the actuator fault causes the process states to
become unobservable (i.e., results in a loss of confidence on
the state estimates) even before the state estimates can be used
to isolate the fault. This inherent requirement is formalized in
Assumption 3.

Assumption 3. Consider the system of Eq. (1) in configu-
ration k under the output-feedback controller of Theorem 4.
There exist positive real numbers Tclose > T b

k and �k such that
if ‖ũk(t)‖ > ũ∗

k for some Tfault > T b
k where ũ∗

k was defined in
Theorem 4, then ‖x(t) − x̂(t)‖�em,k for all t ∈ [T b

k , Tfault +
T close

k ] and ‖ ∫ t

T b
k

gj,k[i](x(�))ũj,k(�) d�‖ > �k for some t ∈
[Tfault, Tfault + T close

k ].

Due to the lack of full state measurements, the reconfigu-
ration decision needs to be done based only on the available
state estimates. It is therefore necessary to be able to make re-
liable inferences regarding the states using the state estimates.
Proposition 1 establishes the existence of a set, �s,k := {x ∈
Rn : Vk(x)��s,k}, such that once the state estimation error
has fallen below a certain value (note that the decay rate can
be controlled by adjusting Lk), the presence of the state within
the output-feedback stability region, �b,k , can be guaranteed
by verifying the presence of the state estimates in the set �s,k .
A similar approach was employed in the construction of the
output-feedback stability regions �b,k and the regions for the
state estimates �s,k in the context of output-feedback control
of linear systems in Mhaskar et al. (2004), and for nonlinear
systems in El-Farra et al. (2005). For a proof of the proposition,
see El-Farra et al. (2005).

Proposition 1. Given any positive real number �b,k , there exist
positive real numbers e∗

m,k and �s,k such that if ‖x − x̂‖�em,k ,
where em,k ∈ (0, e∗

m,k], and Vk(x̂)��s,k , then Vk(x)��b,k .
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4.2. Output-feedback fault detection and isolation filter

For the system of Eq. (1), the fault detection and isolation
filter for the jth manipulated input in the kth configuration is
designed as

˙̃xi,k = fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k)

+ gj,k[i](x̂1,k, . . . , x̃i,k, . . . , x̂n,k)

× uj,k(x̂1,k, . . . , x̃i,k, . . . , x̂n,k),

ei,k = x̂i,k − x̃i,k , (13)

where gj,k[i] denotes the ith element of the vector gj,k , and
x̃i,k(T

b
k ) = x̂i,k(T

b
k ), where T b

k was defined in Theorem 4.

Proposition 2. Consider the nonlinear system of Eq. (1), for
a fixed mode under the output-feedback controller of Eq. (12)
and the filter of Eq. (13). Given ũ∗

j,k , �k and T close
k there exist

positive real numbers �j,k and �∗∗
k such that if |ũj,k(t)|� ũ∗

j,k for

some T fault
k �Tb,k and �k � min{�∗k, �∗∗

k } then ‖ei,k(t)‖ > �j,k

for some t ∈ [T fault
k , T fault

k + T close
k ].

Proof of Proposition 2. Consider, the filter of Eq. (13) and the
evolution of xi for t ∈ [T b

k , T fault
k + T close

k ], i.e., consider the
systems

˙̃xi,k = fi(x) + gj,k[i](x)(uj,k(x))

+ (fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k) − fi(x))

+ (gj,k[i](x̂1,k), . . . , x̃i,k, . . . , x̂n,k)

× uj,k(x̂1,k, . . . , x̃i,k, . . . , x̂n,k)

− gj,k[i](x)uj,k(x), (14)

ẋi,k = fi(x) + gj,k[i](x)(uj,k(x) + ũj,k(t)). (15)

We have that

ẋi,k − ˙̃xi,k = gj,k[i](x)ũj,k(t)

+ (fi(x) − fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k))

+ (gj,k[i](x)uj,k(x))

− gj,k[i](x̂1,k, . . . , x̃i,k, . . . , x̂n,k)

× uj,k(x̂1,k, . . . , x̃i,k, . . . , xn,k + x̂n,k). (16)

Note that x̂(Tb) − x(Tb) can be made as small as desired
by choosing a sufficiently small �. From the continuity of
fi(·) and gj,k[i](·), this implies that the last two terms in
Eq. (16) can be made as small as desired. The difference be-
tween ẋi,k and ˙̃xi,k can therefore be made as close as desired
to gj,k[i](x)(ũj,k(t)). Using Assumption 3, therefore, given a
time T close > T b

k , there exists a positive real number �∗
j,k = �∗

k

such that if |ũj,k(t)| > ũ∗
j,k for some T fault

k �T b
k then ‖xi,k(t)−

x̃i,k(t)‖��∗
j,k for some t ∈ [T fault

k , T fault
k + T close

k ].Finally,
once again since x̂(t) − x(t) can be made as close as de-
sired (up until T close

k ), then given that ‖xi,k(t)− x̃i,k(t)‖��∗
j,k ,

there exists a positive real number �j,k such that ‖ei,k‖ =
‖x̂i,k(t) − x̃i,k(t)‖��j,k for some t ∈ [T fault

k , T fault
k + T close

k ].
In summary, there exists a positive real number �∗∗

k such that
if �k � min{�∗k, �∗∗

k } and |ũj,k(t)|� ũ∗
j,k for some T fault

k �Tb,k

then ‖ei,k(t)‖ > �j,k for some t ∈ [T fault
k , T fault

k + T close
k ]. �

Remark 5. Note that unlike the case of full state-feedback,
the fault detection filter is initialized only after the passage of
some short period of time, T b

k (which can be chosen arbitrar-
ily small by increasing the observer gain), to ensure that the
closed-loop state estimates have converged sufficiently close to
the true closed-loop states and thus—by setting the filter state
x̃i,k at this time equal to the value of the state estimate—ensure
that the filter state is initialized sufficiently close to the true
values of the state. While the use of a higher observer gain
impacts negatively on the noise handling capabilities of the state
estimator, an observer gain is chosen that represents a desirable
tradeoff between handling measurement noise and the neces-
sity to achieve early fault detection (note that fault isolation is
an added consideration over and above that of obtaining state
estimates to implement feedback control alone). Note that un-
like the case of full state availability, where the filter is able to
immediately detect and isolate the occurrence of fault, the lack
of measurements which induces the error in the initialization of
the filter states allows detection of only such faults that impact
the states of the closed–loop system above a certain threshold.
The key is to ensure that the only faults that may go unde-
tected do not undesirably impact the stability of the closed-loop
system.

4.3. Output-feedback fault detection and isolation and
fault-tolerant control

Consider the nonlinear system of Eq. (1), for which the
output-feedback controller of Eq. (12) and the filters of Eq. (13)
have been designed for each manipulated input under the pri-
mary configuration, k(0)= k0 under possible faults in only one
control actuator. The theorem below formalizes the integrated
output-feedback fault detection and isolation and fault-tolerant
control structure.

Theorem 5. Let k(0) = k0 for some k0 ∈ K, x(0) ∈ �b,k0 ,
x̃i,k(T

b
i,k)= x̂(T b

i,k). Given a positive real number dk0 there exist
positive real numbers �i,k and �∗∗∗

k such that if �k ∈ (0, �∗∗∗
k ]

then under the switching rule

k(t) =
{

k0, 0� t < Tdetect,

q �= k0, t �Tdetect, x̂(Tdetect) ∈ �s,q ,

uj,k0 /∈ uq

}
(17)

where Tdetect is the earliest time for which ‖ei,k‖ > �i,k for some
i ∈ [0, . . . , n], we have that lim supt→∞x(t)�dk0 .

Proof of Theorem 5. Consider the two cases, (1) ‖ei,k(t)‖��i,k

∀t and (2) ‖ei,k(t)‖ > �i,k for some t = Tdetect.
Case 1: From Theorem 4, we have that given a positive real

number dk , there exist positive real numbers �∗∗
k and ũ∗

k such that
if ‖ũj,k(t)‖� ũ∗

k , then lim supt→∞x(t)= dk0 . For such choices
of �∗∗

k and ũ∗
k , we have from Proposition 2 that there exists a

positive real number �i,k such that if �k ∈ (0, min{�∗k, �∗∗
k } =

�∗∗∗
k ] then ‖ei,k‖��i,k ⇒ ‖ũj,k(t)‖� ũ∗

k . Therefore, for the
above choices of ũ∗

k ,�∗∗∗
k and �j,k , we have that ‖ei,k(t)‖��i,k

implies ‖ũi,k0(t)‖� ũ∗
i,k0

yielding lim supt→∞x(t) = dk0 .
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Case 2: The switching rule of Eq. (17) ensures that at t =
Tdetect, x̂(t) ∈ �s,q , which in turn implies that x(t) ∈ �b,q

(Proposition 1). This, together with the switching to the qth
control configuration ensures asymptotic stability of the origin
of the closed–loop system (Theorem 4). In either cases we
get that lim supt→∞x(t)�dk0 . This completes the proof of the
theorem. �

Remark 6. Note that the above switching rule provides a suffi-
cient condition for practical stability. In other words, the value
of the residual going above the threshold does not imply that
a destabilizing fault has occurred. However, the value of the
residual being less than the threshold does ensure that no desta-
bilizing fault has occurred. This is not a limitation of the pro-
posed filter, but stems simply from the fundamental problem of
differentiating between the error introduced in the filtering sys-
tem due to the presence of estimation errors and those due to
the faults. Note also that while the algorithm above is written
for the case of a single fault, generalization to multiple faults,
whether simultaneous or otherwise, is straightforward: the cur-
rent fault detection filter design can detect and isolate multiple
faults, while the reconfiguration rule can be ‘re-initialized’ af-
ter the first backup control configuration is activated to handle
subsequent faults.

5. Simulation example

Consider two well mixed, non-isothermal continuously
stirred tank reactors, where three parallel irreversible elemen-

tary exothermic reactions of the form A
k1→ B, A

k2→ U and

A
k3→ R take place. A is the reactant species, B is the desired

product and U and R are undesired byproducts. The feed to
the first reactor consists of pure A at a flow rate F0, molar
concentration CA0 and temperature T0. The output from the
first reactor is fed to the second reactor along with a fresh feed
that consists of pure A at a flow rate F3, molar concentration
CA03, and temperature T03. Under standard modeling assump-
tions, a mathematical model of the process can be derived from
material and energy balances and takes the following form:

dT1

dt
= F0

V1
(T0 − T1)

+
3∑

i=1

(−�Hi)

�cp

Ri(CA1, T1) + Q1 + Q3

�cpV1
,

dCA1

dt
= F0

V1
(CA0 − CA1) −

3∑
i=1

Ri(CA1, T1),

dT2

dt
= F0

V2
(T1 − T2) + F3

V2
(T03 − T2)

+
3∑

i=1

(−�Hi)

�cp

Ri(CA2, T2) + Q2

�cpV2
,

Table 1
Process parameters and steady state values for the chemical reactors
of Eq. (18)

F0 = 4.998 m3/h F1 = 4.998 m3/h
F3 = 4.998 m3/h V1 = 0.5 m3

R = 8.314 kJ/kmol K V2 = 0.5 m3

T0 = 300 K T03 = 300 K
CA0 = 4.0 kmol/m3 Cs

A03 = 3.0 kmol/m3

�H1 = −5.0 × 104 kJ/kmol k10 = 3.0 × 106 h−1

�H2 = −5.2 × 104 kJ/kmol k20 = 3.0 × 105 h−1

�H3 = −5.4 × 104 kJ/kmol k30 = 3.0 × 105 h−1

E1 = 5.0 × 104 kJ/kmol cp = 0.231 kJ/kg K
E2 = 7.53 × 104 kJ/kmol � = 1000.0 kg/m3

E3 = 7.53 × 104 kJ/kmol T s
1 = 388.57 K

Cs
A1 = 3.59 kmol/m3 T s

2 = 433.96 K
Cs

A2 = 2.88 kmol/m3

dCA2

dt
= F0

V2
(CA1 − CA2) + F3

V2
(CA03 − CA2)

−
3∑

i=1

Ri(CA2, T2), (18)

where Ri(CAj , Tj ) = ki0 exp(−Ei/RT j )CAj , for j = 1, 2. T,
CA, Q, and V denote the temperature of the reactor, the con-
centration of species A, the rate of heat input/removal from
the reactor, and the volume of reactor, respectively, with sub-
script 1 denoting CSTR 1 and subscript 2 denoting CSTR 2.
�Hi, ki, Ei , i = 1, 2, 3, denote the enthalpies, pre-exponential
constants and activation energies of the three reactions, re-
spectively, cp and � denote the heat capacity and density of
the fluid. The values of the process parameters can be found
in Table 1. CSTR 1, with Q1 = Q3 = 0, has three steady
states: two locally asymptotically stable and one unstable at
(T s

1 , Cs
A1) = (388.57 K, 3.59 kmol/m3). The unstable steady

state of CSTR 1 corresponds to three steady states for CSTR
2 (with Q2 = 0), one of which is unstable at (T s

2 , Cs
A2) =

(433.96 K, 2.88 kmol/m3).
The control objective is to stabilize the reactors at the (open-

loop) unstable steady state. Operation at this point is typically
sought to avoid high temperatures while simultaneously achiev-
ing reasonable reactant conversion. To accomplish this objec-
tive in the presence of actuator failures, we consider as input
candidates Q1, subject to the constraint |Q1|�2.33(106) kJ/h,
Q2, subject to the constraint |Q2|�1.17(106) kJ/h, and Q3 (an
emergency fall-back heat exchanger on reactor one), subject to
the constraint |Q3|�2.33(106) kJ/h. The primary control con-
figuration (k =1) involves two inputs consisting of the two pri-
mary heating jackets (Q1, Q2). In the event of a partial failure
in this configuration the supervisor needs to detect and isolate
the fault and activate a fall-back configuration (Q3, Q2) in or-
der to maintain closed–loop stability.

We first illustrate the application of the fault detection and
isolation and fault-tolerant control under state-feedback con-
trol. Several steps have been taken to account for practical
considerations such as plant-model mismatch, measurement
sampling, noise and delay. The temperature measurements are
assumed to have a gaussian noise with a standard deviation of
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Fig. 1. Evolution of reactor one closed-loop temperature profile under the switching rule of Theorem 3 (solid line) and in the absence of fault-tolerant control
(dashed line) subject to failure reactor one heating jacket.

0.2 K, and the concentration measurements are assumed to have
a gaussian noise with a standard deviation of 0.01 kmol/m3.
The measurements are sampled at a rate of one measurement
every 12 s with a 12 s delay. F0 and F3 for the process are each
5% smaller than the F0 and F3 used in the model. The residual
threshold to account for the presence of plant-model mismatch
and noise is chosen as 3 K.

A quadratic Lyapunov function of the form Vk = xTPkx,
where Pk is a diagonal (and therefore positive-definite symmet-
ric) matrix with 0.01, 0.001, 0.008 and 0.001 as the elements
on the diagonal is chosen. Note that this particular choice of
the Lyapunov function is driven by the desire to appropriately
‘scale’ the variables, and not by the necessity for the Lyapunov
function to be a control Lyapunov function. In the simulation
example, the construction of the set � is executed by specifi-
cally ensuring that for all points in the set, negative definiteness
of V̇ can be achieved (either with or without control effort),
thereby ensuring that the chosen Lyapunov function is a control
Lyapunov function.

The state-feedback controller of Eq. (2) is subsequently de-
signed for both the control configurations, and their stability
region characterized, yielding cmax

1 =cmax
2 equal to 0.2. The re-

actors as well as the filter states for the first control configuration
are initialized at the steady state T1(0) = 388.57 K, CA1(0) =
3.59 kmol/m3, T2(0)=433.96 K, CA2(0)=2.88 kmol/m3 with
a V1(x)=0�cmax

1 =0.2. As shown by the solid line in Fig. 1 the
controller keeps the process states close to the desired steady
state until Q1 fails 50 min after reactor startup. As can be seen in
Figs. 2 and 3 the value of only the residual e1(t) increases to the
detection threshold of 3, thereby detecting as well as isolating
the faults in the control actuator Q1. If the supervisor does not
perform any switching at this point, closed-loop stability is not
achieved (dashed lines in Fig. 1). Since the fall-back configura-
tion does not use the failed actuators and the state of the closed
loop system is within the stability region of the backup con-
trol configuration (V2(x(t =54.8 min))=0.1188 < cmax

2 =0.2),
the supervisor activates the fall-back configuration with the
manipulated inputs Q3 and Q2 (solid line in Fig. 1) which
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Fig. 2. Evolution of residual e1 corresponding to the manipulated input for
reactor one. e1 is initialized at t = 0 and again at t = 54.8 min.
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Fig. 3. Evolution of residual e2 corresponding to the manipulated input for
reactor two. e2 is initialized at t = 0 and again at t = 54.8 min.

stabilizes the closed-loop system and achieves fault-tolerant
control.

The next simulation illustrates the case when not all process
states are available for measurement. For the output-feedback
case, the P matrix for the Lyapunov function was obtained
by solving the Riccati inequality for the linearized system.
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Fig. 4. Evolution of the closed-loop temperature (solid line), estimate of
temperature (dash-dotted line), and the temperature profile generated by the
FDI filter (dashed line) with fault-tolerant control in place. Evolution of the
temperature (dotted line) without fault-tolerant control in place.
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Fig. 5. Evolution of the residual corresponding to Q1 for before switching
(k = 1, solid line), and Q3 after switching (k = 2, dashed line). A fault is
declared when e1,1 reaches the threshold at 0.1.

In order to implement the state-feedback Lyapunov-based
controllers, estimates of T1 and T2 are generated using a
state estimator of the form of Eq. (12) with Li,k = 10 000,
a

(1)
i,k = 5, and a

(2)
i,k = 1 for i = 1, 2 and k = 1, 2. The reactors

are initialized at T1(0) = 386.97 K, CA1(0) = 3.59 kmol/m3,
T2(0) = 432.36 K, and CA2(0) = 2.88 kmol/m3. The state es-
timator is initialized at the steady-state values for this system
(T̃1(0)=388.57 K, C̃A1(0)=3.59 kmol/m3, T̃2(0)=433.96 K,
and C̃A2(0) = 2.88 kmol/m3). The fault detection filter
states are initialized with the value of the state estimates at
t = 0.00132 s ≡ T b

1 . Note that by this time the estimates have
converged sufficiently close to the true values as can be seen
as the dash-dotted lines in Fig. 4.

As shown by the solid line in Fig. 4, the controller drives
the closed-loop system to the desired steady state (for the sake
of brevity, only T1 is shown). A complete failure occurs in Q1
early on at Tf = 0.01 s while the system is still moving to-
ward the desired steady state. If the fault is not detected and
no switching takes place the value of T1 moves away from the
desired operating temperature as shown by the dotted line in
Fig. 4. However, when the fault detection and isolation filter is
utilized we can see that the value of the filter state T̂1, dashed
line in Fig. 4, diverges from the estimated value T̃1. This dis-

crepancy causes the residual e1,1(t) corresponding to Q1 to rise
to the threshold value of 0.1 K (chosen to ensure that all desta-
bilizing faults are detected) at time t = 0.012 s, as shown in
Fig. 5. A fault in Q1 is declared at this time, and the supervi-
sor checks the value of the Lyapunov function for k = 2. Since
V2(x(0.012 s))= 0.38 < cmax

2 = 9.4 the supervisor activates the
fall-back configuration to achieve closed-loop stability (solid
line in Fig. 4).

6. Conclusions

This work considered the problem of fault detection and iso-
lation and fault-tolerant control for a multi-input multi-output
nonlinear system subject to faults in the control actuators and
constraints on the manipulated inputs for both the state and
output-feedback cases. Necessary conditions for the design of
state- and output-feedback fault detection and isolation filters
were derived. Filters were designed that essentially capture the
difference between fault-free evolution of the system and the
observed (or estimated) evolution of the system states to detect
and isolate faults in the control actuators. Reconfiguration rules
were devised to identify the appropriate backup control config-
uration accounting for the faulty actuator and constraints. The
impact of lack of complete state measurements in the filter de-
sign, control law and the reconfiguration logic was illustrated.
Finally, the implementation of the fault detection and isolation
filters and reconfiguration strategy as well as robustness with
respect to plant-model mismatch, measurement sampling and
delay and measurement noise were demonstrated via a chemi-
cal process example.
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