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The operation of chemical processes often requires respecting constraints on manipulated
inputs and process states. Input constraints typically reflect limits on the capacity of control
actuators, such as valves or pumps, whereas state constraints represent desirable ranges of
operation for process variables, such as temperatures or concentrations. Constraints, how-
ever, limit the set of initial conditions, starting from where a process can be stabilized at a
possibly open-loop unstable steady state. Therefore, in control of constrained processes, it is
important to obtain an explicit characterization of the region of closed-loop stability. Model
predictive control (MPC) provides a suitable framework for implementing control that
respects manipulated input and process variable constraints while meeting prescribed per-
formance objectives. Unfortunately, the implicit nature of the feedback law in MPC (the
control action is computed by solving on-line a constrained optimization problem at each
sampling time) makes the a priori computation of the closed-loop stability region a very
difficult task. Such a computation, however, is possible when Lyapunov-based bounded control
techniques are used to design controllers for the stabilization of systems with manipulated
input constraints. Motivated by this, the present work proposes a hybrid predictive control
structure, which seamlessly unites MPC and bounded control, for output feedback stabiliza-
tion of linear systems with input constraints. The design of the proposed structure is based on
the idea of using a bounded controller, with its associated region of stability, as a “fallback”
controller for the output feedback implementation of MPC. Switching laws are derived to
orchestrate the transition between the two controllers in a way that reconciles their respective
stability and optimality properties. The switched closed-loop system is shown to possess a
region of guaranteed stability, achieved by appropriately switching between the two control-
lers. The proposed hybrid control structure is shown to provide a safety net for the practical
implementation of MPC by providing a priori knowledge, through off-line computations, of a
large set of initial conditions for which closed-loop stability is guaranteed. Finally, two
simulation studies are presented to demonstrate the implementation and evaluate the effec-
tiveness of the proposed hybrid predictive control scheme, as well as test its robustness with
respect to modeling errors and measurement noise. © 2004 American Institute of Chemical
Engineers AIChE J, 50: 1242–1259, 2004
Keywords: input constraints, model predictive control, Lyapunov-based bounded control,
state estimation, controller switching, closed-loop stability region, process control

Introduction

The operation of chemical processes invariably requires
respecting constraints. The physical limitations on the func-

tioning of the control actuators (for example, the maximum
flow rate that a given pump can generate is always limited)
impose constraints on the manipulated inputs, whereas perfor-
mance, safety, and environmental considerations (requiring, for
example, the reactor temperature to stay below a certain value,
or the emissions to be within an allowable range) give rise to
state constraints. Constraints automatically impose limitations
on our ability to steer the dynamics of the closed-loop system

Correspondence concerning this article should be addressed to P. D. Christofides at
pdc@seas.ucla.edu.

© 2004 American Institute of Chemical Engineers

1242 AIChE JournalJune 2004 Vol. 50, No. 6



at will, and can cause severe deterioration in the closed-loop
performance, and may even lead to closed-loop instability, if
not explicitly taken into account at the stage of controller
design.

For open-loop unstable processes, one of the key limitations
imposed by input constraints is the restriction on the set of
initial states of the closed-loop system that can be steered to the
origin with the available control action (the so-called null
controllable region). Furthermore, a given control law can
typically guarantee closed-loop stability from only a subset of
initial states included in the null controllable region. An ade-
quate characterization of the stability properties of a given
stabilizing control law involves a priori (that is, before con-
troller implementation) knowledge of this region of stability,
required to ascertain stabilizability of the system from a given
initial condition. The absence of an a priori explicit character-
ization of this set (or an appropriate estimate thereof) can have
an impact on the practical implementation of the given control
policy.

Model predictive control (MPC), also known as receding
horizon control, is one control method for handling constraints
(both on manipulated inputs and state variables) within an
optimal control setting (Richalet et al., 1978). In MPC, the
control action is obtained by solving repeatedly, on-line, a
finite-horizon constrained open-loop optimal control problem.
The popularity of this approach stems largely from its ability to
handle, among other issues, multivariable interactions, con-
straints on controls and states, and optimization requirements.
Its success in many commercial applications is well docu-
mented in the literature (see, for example, Garcia et al., 1989;
Qin and Badgwell, 1997). Numerous research studies have
investigated the stability properties of model predictive con-
trollers and led to a plethora of MPC formulations that focus on
closed-loop stability (see, for example, De Oliveira and
Biegler, 1994; Genceli and Nikolaou, 1993;Keerthi and Gil-
bert, 1988; Rawlings and Muske, 1993; see also the review
paper by Mayne et al., 2000).

The significant progress in understanding and improving the
stability properties of MPC notwithstanding, the issue of ob-
taining, a priori, an explicit characterization of the region of
constrained closed-loop stability for model predictive control-
lers remains to be adequately addressed. Part of the difficulty in
this direction is attributed to the fact that the stability of model
predictive controllers depends on a complex interplay between
several factors such as the choice of the horizon length, the
penalties in the performance index, the initial condition, and
the constraints on the state variables and manipulated inputs. A
priori knowledge of the stability region requires an explicit
characterization of these interplays, which is a very difficult
task. This difficulty can have an impact on the practical imple-
mentation of MPC by imposing the need for extensive closed-
loop simulations over the whole set of possible initial condi-
tions to check for closed-loop stability, or by potentially
limiting operation within an unnecessarily small neighborhood
of the nominal equilibrium point.

The desire to implement control approaches that allow for an
explicit characterization of their stability properties has moti-
vated significant work on the design of stabilizing control laws,
using Lyapunov techniques, that provide explicitly defined,
large regions of attraction for the closed-loop system; the
reader may refer to Kokotovic and Arcak (2001) for a survey of

results in this area. Recently, in El-Farra and Christofides
(2001a,b) and El-Farra and Christofides (2003a), a class of
Lyapunov-based bounded robust nonlinear controllers, inspired
by the results on bounded control originally presented in Lin
and Sontag (1991), was developed. The controllers enforce
robust stability in the closed-loop system and provide, at the
same time, an explicit characterization of the region of guar-
anteed closed-loop stability. Despite their well-characterized
stability and constraint-handling properties, those Lyapunov-
based controllers are not guaranteed to be optimal with respect
to an arbitrary performance criterion.

However, the fact that Lyapunov-based control methods
provide an easily implementable controller with an explicitly
characterized stability region for the closed-loop system moti-
vates developing control techniques that use the a priori guar-
antees of stability provided by the bounded controller as a
safety net for the implementation of the high performance
model predictive controller. Reconciliation of different control-
lers (designed to satisfy different control objectives) calls for
invoking the hybrid control paradigm, where the control struc-
ture consists of a blend of continuous (that is, classical) con-
trollers and discrete components (for example, a logic-based
supervisor that determines switching between the various con-
tinuous controllers; see Figure 1). In El-Farra et al. (2004b), we
proposed such a hybrid control structure that uses switching
between a model predictive controller and a bounded analytical
controller for the state feedback stabilization of linear systems
with input constraints. The hybrid control structure was sub-
sequently extended to nonlinear systems with input constraints
in El-Farra et al. (2004a). This structure differs from other
hybrid control structures found in the literature, in the sense
that it uses structurally different controllers as opposed to most
of the work on hybrid control that uses switching between
different models (which results in an implicit switching be-
tween different controllers), or uses multiple structurally sim-
ilar controllers; examples along these lines include gain sched-
uling as a tool for control of nonlinear systems (for example,
see Rugh and Shamma, 2000), the use of multiple linear
models for transition control (for example, see Banerjee and
Arkun, 1998; Sun and Hoo, 1999) and for predictive control
(for example, see Aufderheide et al., 2001; Schott and Be-
quette, 1998), and hybrid control of switched nonlinear systems
(El-Farra and Christofides, 2003b).

In addition to constraints, another important issue in chem-
ical process control is the lack of complete measurements of
the process state variables. This problem is usually addressed

Figure 1. Hybrid control structure.
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by designing appropriate state estimators (observers) to obtain
estimates of the state variables from the available measure-
ments (outputs). The state estimators are then appropriately
coupled with state feedback controllers, leading to output feed-
back controllers that can be implemented with the available
measurements. The problems of state estimation and output
feedback controller design for constrained systems have been
the subject of several research studies. For example, recent
results on moving horizon estimation, as an extension of Kal-
man filtering, for constrained and nonlinear processes, can be
found in Rao and Rawlings (2002). Examples of results on
output feedback stabilization of constrained systems include
output feedback control of linear systems (Shamma and Tu,
1998) and the combination of a moving horizon regulator with
a moving horizon observer for output feedback control of
nonlinear systems (Michalska and Mayne, 1995). In these
works, however, the output feedback stability region of the
constrained closed-loop system is not explicitly characterized.

Motivated by the above considerations, the present work
proposes a hybrid predictive control structure that seamlessly
unites MPC and bounded control for the output feedback
stabilization of linear systems with input constraints. The pro-
posed strategy is based on the idea of embedding the imple-
mentation of MPC within the output feedback stability region
of the bounded controller, and using this controller as a “fall-
back” in the event that MPC is unable to achieve closed-loop
stability (due, for example, to improper tuning of MPC param-
eters). Because of the absence of complete state measurements,
a state observer is constructed to provide the controllers, as
well as the supervisor, with appropriate state estimates. The
observer is tuned in a way so as to guarantee closed-loop
stability for all initial conditions within the bounded control-
ler’s output feedback stability region (which can be chosen
arbitrarily close in size to its state feedback counterpart, pro-
vided that the observer gain is sufficiently large). Switching
laws, which monitor the evolution of the state estimates, are
derived to orchestrate the transition between the two controllers
in a way that reconciles their respective stability and optimality
properties and safeguards closed-loop stability in the event of
MPC infeasibility or instability. In addition to the set of switch-
ing rules being different from the one proposed in El-Farra et
al. (2004b) under state feedback, an important characteristic of
the hybrid predictive control strategy under output feedback is
the inherent coupling, brought about by the lack of full state
measurements, between the tasks of controller design, charac-
terization of the stability region, and supervisory switching
logic design, on one hand, and the task of observer design, on
the other. The rest of the article is organized as follows:
initially, we present some preliminaries that describe the class
of systems considered, and review the design of a Luenberger
state observer. Next, we review the design procedure, and
stability properties, of both MPC and Lyapunov-based
bounded control, respectively. Then, we formulate the hybrid
control problem within the framework of switched linear sys-
tems and propose the hybrid predictive control structure. The
theoretical underpinnings and practical implications of the pro-
posed hybrid predictive control structure are highlighted, and
possible extensions of the supervisory switching logic, which
address a variety of practical implementation issues, are dis-
cussed. Finally, two simulation studies are presented to dem-
onstrate the implementation and evaluate the effectiveness of

the proposed control strategy, as well as test its robustness with
respect to modeling errors and measurement noise.

Preliminaries

In this work, we consider the problem of output feedback
stabilization of continuous-time linear time–invariant (LTI)
systems with input constraints, with the following state–space
description

ẋ � Ax � Bu (1)

y � Cx (2)

u � � � �m (3)

where x � [x1
. . .xn]� � �n denotes the vector of state variables,

y � [y1
. . .yk]� � �k denotes the vector of output variables, and

u � [u1
. . .um]� � �m is the vector of manipulated inputs,

taking values in a compact and convex subset, � :� {u �
�m : �u� � umax}, which contains the origin in its interior,
where � � � denotes the standard Euclidean norm of a vector and
umax � 0 is the magnitude of actuator constraints. The matrices
A, B, and C are constant n � n, n � m, and k � n matrices,
respectively. The pair (A, B) is assumed to be controllable and
the pair (C, A) is assumed to be observable. Throughout the
article, the notation � � �Q refers to the weighted norm, defined
by � x�Q

2 � x�Qx for all x � �n, where Q is a positive-definite
symmetric matrix and x� denotes the transpose of x.

We will now briefly review the design of a Luenberger state
observer for the system of Eqs. 1 and 2, which will be used
later in the development of the hybrid predictive control struc-
ture (see Remark 1 below for a discussion on the use of other
possible estimation schemes). Specifically, we consider a stan-
dard Luenberger state observer described by

ẋ̂ � Ax̂ � Bu � L� y � Cx̂� (4)

where x̂ � [ x̂1
. . .x̂n]� � �n denotes the vector of estimates of

the state variables and L is a constant n � k matrix that
multiplies the discrepancy between the actual and estimated
outputs. Under the state observer of Eq. 4, the estimation error
in the closed-loop system, defined as e � x � x̂, evolves,
independently of the controller, according to the following
equation

ė � � A � LC�e (5)

The pair (C, A) is assumed to be observable in the sense that the
observer gain matrix, L, can be chosen such that the norm of
the estimation error in Eq. 5 evolves according to �e(t)� �
�(�)�e(0)�exp(��t), where �� � 0 is the largest eigenvalue of
A � LC and �(�) is a polynomial function of �.

Remark 1. Referring to the state observer of Eq. 4, it
should be noted that the results presented in this work are not
restricted to this particular class of observers. Any other ob-
server, which allows us to control the rate of decay of the
estimation error at will, can be used. Our choice of using this
particular observer design is motivated by the fact that it
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provides a transparent relationship between the temporal evo-
lution of the estimation error bound and the observer parame-
ters. For example, this design guarantees convergence of the
state estimates in a way such that for larger values of �, the
error decreases faster. As we discuss later (see the section on
hybrid predictive control), the ability to ensure a sufficiently
fast decay of the estimation error is necessary to guarantee
closed-loop stability under output feedback control. This re-
quirement or constraint on the error dynamics is present even
when other estimation schemes, such as moving horizon ob-
servers, are used (for example, see Michalska and Mayne,
1995; Rao and Rawlings, 2002) to ensure closed-loop stability.
For such observers, however, it is difficult in general to obtain
a transparent relationship between the tunable observer param-
eters and the error decay rate.

Remark 2. For large values of �, the estimation error could
possibly increase to large values before eventually decaying to
zero (a phenomenon known as “peaking”; see Sussmann and
Kokotovic, 1991). However, this does not pose a problem in
our design because the physical constraints on the manipulated
inputs prevent transmission of the incorrect estimates to the
process (see also Remark 9 for a detailed discussion of this
issue). In the special case when C is a square matrix of rank n,
the observer gain matrix L can be chosen as L � AC�1 �
RC�1, where R is a diagonal matrix whose diagonal elements
are of the form Rii � ��ai, where ai 	 aj � 1. For this choice
of L, the evolution of each error state is completely decoupled
from the rest of the error states, that is, each error state evolves
according to ėi � ��aiei. In this case, no peaking occurs
because each error term decreases monotonically.

Model Predictive Control

We consider model predictive control of the system de-
scribed by Eq. 1, subject to the control constraints of Eq. 3. The
control action at time t is conventionally obtained by solving,
on-line, a finite horizon optimal control problem (Mayne,
1997) of the form

P� x, t� : min
J�x, t, u���u� � S
 (6)

where S � S(t, T) is the family of piecewise continuous
functions (functions continuous from the right), with period �,
mapping [t, t � T] into � and T is the specified horizon. A
control u( � ) in S is characterized by the sequence {u[k]},
where u[k] :� u(k�). A control u( � ) in S satisfies u(t) � u[k]
for all t � [k�, (k � 1)�). The performance index is given by

J� x, t, u�� � �
t

t�T

�� xu�s; x, t��Q
2 � �u�s��R

2�ds

� F� x�t � T�� (7)

where R and Q are strictly positive-definite, symmetric matri-
ces, xu(s; x, t) denotes the solution of Eq. 1, due to control u,
with initial state x at time t, and F( � ) denotes the terminal
penalty. In addition to penalties on the state and control action,
the objective function may also include penalties on the rate of
change of the input, reflecting limitations on actuator speed (for
example, a large valve requiring few seconds to change posi-

tion). The minimizing control u0( � ) � S is then applied to the
process over the interval [k�, (k � 1)�) and the procedure is
repeated indefinitely. This defines an implicit model predictive
control law

M� x� :� u0�t; x, t� (8)

It is well known that the control law defined by Eqs. 6–8 is not
necessarily stabilizing (Bitmead et al., 1990). To achieve
closed-loop stability, early versions of MPC focused on tuning
the horizon length T, and/or increasing the terminal penalty (for
a survey of these approaches, see Bitmead et al., 1990),
whereas more recent formulations focused on imposing stabil-
ity constraints on the optimization (for surveys of different
constraints proposed in the literature and the concomitant the-
oretical issues, see Mayne et al., 2000) or using off-line com-
putations to generate explicit model predictive control laws (for
example, see Pistikopoulos et al., 2002). The additional stabil-
ity constraints serve either to enforce convergence of the states
of the closed-loop system to the equilibrium point, or to force
the states to reach some invariant terminal set at the end of the
horizon.

For the sake of a concrete illustration of the hybrid predictive
control strategy, we will consider the following stabilizing
MPC formulation (Keerthi and Gilbert, 1988; Michalska and
Mayne, 1990), which includes a terminal equality constraint in
the optimization problem (see Remark 3 below for more ad-
vanced MPC formulations that can also be used). This model
predictive controller is mathematically described by

Js� x, t, u�� � �
t

t�T

� x��s�Qx�s� � u��s� Ru�s��ds (9)

u� � argmin
Js�x, t, u���u� � S
 :� Ms�x�

s.t. ẋ � Ax � Bu x�0� � x0

x�t � T� � 0 (10)

Remark 3. It should be noted that the hybrid predictive
control strategy to be proposed in this work is not restricted to
the MPC formulation given in Eqs. 9 and 10, or any other MPC
formulation for that matter. The results apply to any MPC
formulation for which a priori knowledge of the set of admis-
sible initial conditions is lacking (or computationally expensive
to obtain). In this sense, the above formulation is really in-
tended as a symbolic example of stabilizing MPC formulations,
with the understanding that other advanced MPC formulations
that use less-restrictive constraints and/or penalties on the state
at the end of the horizon can be used. Examples include
formulations with terminal inequality constraints, such as con-
tractive MPC (for example, see Polak and Yang, 1993; Kothare
and Morari, 2000) and CLF-based receding horizon control
(for example, see Primbs et al., 2000), as well as formulations
that employ a combination of terminal penalties and inequality
constraints (for example, see Chen and Allgöwer, 1998; Magni
et al., 2001; Sznaier et al., 2003). The reader is referred to
Mayne et al. (2000) for a more exhaustive list.

Remark 4. By incorporating stability conditions directly as
part of the optimization problem in Eq. 10, asymptotic stability
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under state feedback MPC is guaranteed provided that the
initial condition is chosen so that the optimization yields a
feasible solution. However, the implicit nature of the MPC
control law, obtained through repeated on-line optimization,
limits our ability to obtain, a priori, an explicit characterization
of the admissible initial conditions starting from where the
given model predictive controller (with fixed horizon length) is
guaranteed to be feasible and enforce asymptotic stability. This
set is a complex function of the constraints and the horizon
length. Estimates of sufficiently large horizon lengths that
ensure stability (for example, see Chmielewski and Manou-
siouthakis, 1996) are typically conservative and, if used, may
lead to a significant computational burden due to the increased
size of the optimization problem. Therefore, in practice, the
initial conditions and/or horizon lengths are usually chosen
using ad hoc criteria and tested through closed-loop simula-
tions, which can add to the computational burden in imple-
menting the model predictive controller. The difficulties en-
countered in characterizing the stability region under state
feedback control carry over to the case of output feedback
control, where the lack of state measurements requires that the
control action be computed using the state estimates. Feasibil-
ity of the MPC optimization problem based on the state esti-
mates, however, does not guarantee closed-loop stability or
even the continued feasibility of the optimization problem
based on the ensuing state estimates. This motivates imple-
menting MPC within a hybrid control structure that provides a
“fallback” controller for which a region of constrained closed-
loop stability can be obtained off-line. Lyapunov-based con-
troller design techniques provide a natural framework for the
design of a stabilizing “fallback” controller for which an ex-
plicit characterization of the region of closed-loop stability can
be obtained.

Lyapunov-Based Bounded Control

In this section, we initially assume that measurements of all
the state variables are available and design a state feedback
bounded controller using Lyapunov techniques and provide an
explicit characterization of the stability region of the resulting
closed-loop system. Then, we couple the state feedback con-
troller with the state observer of Eq. 4 to design an output
feedback controller and characterize the stability properties of
the resulting closed-loop system including the set of initial
conditions for which closed-loop stability under output feed-
back is guaranteed.

State feedback controller design

Consider the Lyapunov function candidate V � x�Px, where
P is a positive-definite symmetric matrix that satisfies the
Riccati equation:

A�P � PA � PBB�P � �Q� (11)

for some positive-definite matrix Q� . Using this Lyapunov func-
tion, we can construct, using a modification of Sontag’s for-
mula for bounded controls proposed in Lin and Sontag (1991)
(see also El-Farra and Christofides, 2003a), the following
bounded nonlinear controller

u� x� � �2k�x�B�Px :� b�x� (12)

where

k� x� � � L*fV � ��L*fV�2 � �umax��LgV����4

��LgV���2�1 � �1 � �umax��LgV����2�
� (13)

with L*f � x�(A�P � PA)x � �x�Px, (LgV)� � 2B�Px and � �
0. This controller is continuous everywhere in the state–space
and smooth away from the origin. Using a Lyapunov argument,
one can show that whenever the closed-loop state trajectory
evolves within the state–space region described by the set

��umax� � 
x � �n : L*fV 	 umax��LgV���
 (14)

The resulting control action respects the constraints (that is, �u�
� umax) and enforces, simultaneously, the negative definiteness
of the time derivative of V along the trajectories of the closed-
loop system. Note that the size of the set � depends on the
magnitude of the constraints in a way such that the tighter the
constraints, the smaller the region described by this set. Start-
ing from any initial state within �(umax), asymptotic stability of
the constrained closed-loop system can be guaranteed, pro-
vided that the closed-loop trajectory remains within the region
described by �(umax). To ensure this, we consider initial con-
ditions that belong to an invariant subset, preferably the largest,
which we denote by �(umax). A similar idea was used in
El-Farra and Christofides (2001) and El-Farra and Christofides
(2003a) in the context of bounded robust control of constrained
nonlinear systems. One way of constructing such a subset is
using the level sets of V (see chapter 4 in Khalil, 1996 for
details), that is

��umax� � 
x � �n : x�Px � cmax
 (15)

where cmax � 0 is the largest number for which all nonzero
elements of �(umax) are contained within �(umax). The invari-
ant region described by the set �(umax) provides an estimate of
the stability region, starting from where the origin of the
constrained closed-loop system under the control law of Eqs.
12 and 13 is guaranteed to be asymptotically stable. To sim-
plify the notation, we will suppress the dependency of the sets
� and � on umax in the remainder of the article.

Remark 5. The stability region under a given stabilizing
control law is typically only a subset of the null controllable
region (the exact computation of which remains an open re-
search problem) and the bounded controller of Eqs. 12 and 13
is only one choice, out of many others, that provides an explicit
characterization of the stability region. Furthermore, although
the level sets of V provide only an estimate of the stability
region under the bounded controller, less conservative esti-
mates that capture larger portions of the null controllable
region can be obtained using, for example, a combination of
several Lyapunov functions (for example, see Hu and Lin,
2002; El-Farra et al., 2004a). In general, well-tuned bounded
control laws provide larger estimates of the stability region
than controllers designed without taking the constraints into
account (for further details on this issue, see El-Farra and
Christofides, 2001).
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Remark 6. Referring to the optimality properties of the
bounded controller, it should be noted that, within a well-
defined subset of �, this class of controllers can be shown to be
inverse optimal with respect to some meaningful, but unspec-
ified a priori, cost functional that imposes meaningful penalties
on the state and control action (for a proof and further details,
see El-Farra and Christofides, 2001). However, unless this cost
functional (which is determined only after controller design)
coincides with the actual cost functional considered by the
control system designer (this conclusion cannot be ascertained
a priori), the performance of the bounded controller will not be
optimal with respect to the actual cost functional. An explicit
quantitative characterization of the cost incurred by implement-
ing the bounded controller in this case is difficult to obtain.
Furthermore, given an arbitrary cost functional, there is no
transparent way of “tuning” the bounded controller to achieve
optimality because, by design, the goal of the bounded con-
troller is to achieve stabilization for an explicitly defined (a
priori) set of initial conditions.

Remark 7. When comparing the optimality properties of
the bounded and predictive controllers, it is important to realize
that, in general, it is possible that the total cost of steering the
system from the initial state to the origin under the bounded
controller could be less than the total cost incurred under MPC.
Keep in mind that MPC formulations typically consider mini-
mizing a given cost over some finite horizon. Therefore, for a
given objective function of the form of Eq. 7 for example, by
solving the optimization problem once and implementing the
resulting input trajectory in its entirety, the cost of taking the
system from the initial state to the state at the end of the
horizon under MPC is guaranteed to be smaller than the cor-
responding cost for the bounded controller. However, because
MPC implementation involves repeated optimizations using
finite horizons (that is, only the first control move of the input
trajectory is implemented each time), one could in some cases
end up with a higher total cost for MPC. This possibility,
however, cannot be ascertained a priori (that is, before imple-
menting both controllers and computing the total cost).

Stability properties under output feedback bounded
control

The lack of state measurements necessitates the use of a state
estimator to obtain estimates of the state variables. When a
state estimator of the form of Eq. 4 is used, the resulting
closed-loop system is composed of a cascade, between the
error system and the plant, of the form

ẋ � Ax � Bu� x � e�

ė � � A � LC�e (16)

Note that the values of the states used in the controller
contain errors. The state feedback stability region, therefore,
is not exactly preserved under output feedback. However, by
exploiting the error dynamics of Eq. 5, it is possible to
recover arbitrarily large compact subsets of the state feed-
back stability region, provided that the poles of the observer
are placed sufficiently far in the left half of the complex
plane (which can be accomplished by choosing the observer
gain parameter � sufficiently large). This idea is consistent
with earlier results on semiglobal output feedback stabiliza-

tion of unconstrained systems using high-gain observers (for
example, see Teel and Praly, 1994; Mahmoud and Khalil,
1996; Christofides, 2000), as well as results on semiglobal
stability of nonlinear singularly perturbed systems (Christ-
ofides and Teel, 1996).

By viewing the estimation error as a dynamic perturbation
to the state feedback problem, the basic idea, in constructing
the output feedback controller and characterizing its stabil-
ity region, is to design the observer in a way that exploits the
robustness of the state feedback controller with respect to
bounded estimation errors. To this end, given the state
feedback stability region �, we initially quantify the robust-
ness margin by deriving a bound on the estimation error, em

� 0, that can be tolerated by the state feedback controller, in
the sense that the closed-loop state trajectory does not
escape � for all �e� � em. Once this bound is computed, the
idea is to initialize the states and the state estimates within
any subset �b � � and choose a consistent observer gain
matrix L (parameterized by �) to ensure that, before the
states reach the boundary of �, the norm of the estimation
error has decayed to a value less than em (see Figure 2 for a
pictorial representation of this idea). These arguments are
formalized in Propositions 1 and 2 below (the proofs are
given in the Appendix).

Proposition 1. Consider the constrained LTI system of Eqs.
1–3 under the bounded control law of Eqs. 12 and 13 with u �
u(x � e), where e is the state measurement error. Then, there
exists a positive real number, em, such that if x(0) � � and
�e(t)� � em @ t � 0, then x(t) � � @ t � 0.

Remark 8. The bounded control law of Eqs. 12 and 13 will
be used in the next section to illustrate the basic idea of the
proposed hybrid control scheme. Our choice of using this
particular design is motivated by its explicit structure and

Figure 2. Evolution of the trajectories of the closed-loop
state and state estimate.
Starting from within �b, the observer gain ensures that, before
the state of the closed-loop system reaches the boundary of �,
the state estimate has converged close enough to the true
value of the state, so that the norm of the estimation error is
below the allowable error tolerated by the controller within �.
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well-defined region of stability, which allows for an estimation
of the robustness margin of the state feedback controller with
respect to bounded measurement errors. However, the results
of this work are not restricted to this particular choice of
bounded controllers. Any other analytical bounded control law,
with an explicit structure and well-defined region of robust
stability with respect to bounded measurement errors, can also
be used in implementing the proposed control strategy.

Proposition 2. Consider the constrained LTI system of Eqs.
1–3, the state observer of Eq. 4 and the bounded control law of
Eqs. 12 and 13. Then, given any positive real number, 
b, such
that �b � {x � �n : � x�P

2 � 
b} � �, there exists a positive
real number �* such that if � x(0)�P

2 � 
b, �x̂(0)�P
2 � 
b and

� � �*, the origin of the constrained closed-loop system is
asymptotically stable.

Remark 9. Because the only assumption on C is that the
pair (C, A) is observable, the observer states may “peak” before
they converge to the true state values. This, however, does not
pose a problem in our design because: (a) the physical con-
straints on the manipulated input eliminate the occurrence of
instability attributed to peaking of the state estimates (that is,
they prevent transmission of peaking to the process), and (b) by
“stepping back” from the boundary of the state feedback sta-
bility region and choosing an appropriate value for �, the
design ensures that the system states cannot leave the stability
region of the bounded controller before the estimation errors
have gone below the permissible value.

Remark 10. In principle, the stability region under output
feedback, �b, can be chosen as close as desired to � by
increasing the observer gain parameter �. However, it is well
known that large observer gains can amplify measurement
noise and induce poor performance (see the section on simu-
lation studies for how this issue is addressed in observer
implementation). This points to a fundamental trade-off that
cannot be resolved by simply changing the estimation scheme.
For example, although one could replace the high-gain ob-
server design with other observer designs (for example, a
moving horizon estimator) to gain a better handle on measure-
ment noise, it is difficult in such schemes to obtain an explicit
relationship between the observer tuning parameters and the
output feedback stability region.

Remark 11. Note that, for the bounded controller, initial-
izing x and x̂ within �b guarantees that x cannot escape �
because of the inherent robustness of the bounded controller
design with respect to bounded estimation errors (see the proof
of Proposition 2 in the Appendix). For MPC, however, there is
no guarantee that x will stay in �, even if both x and x̂ are
initialized within �b, and, therefore, whenever MPC is used, it
will be necessary to rely on the evolution of the estimate, x̂(t),
to deduce whether x(t) is or is not within �. As we discuss in
greater detail in the next section, the ability to reliably deduce
the position of the true state at any given time is essential to the
ability of the bounded controller to “step in” to preserve closed-
loop stability in the event of failure of MPC (see Remark 14).
One way of ascertaining bounds on the position of the true
states, by looking only at the values of the estimates, is de-
scribed in Proposition 3 below. The proof of this proposition is
given in the Appendix.

Proposition 3. Consider the constrained LTI system of Eqs.
1–3, the state observer of Eq. 4 and the bounded control law of
Eqs. 12 and 13. Let T*d :� (1/�)ln{[�(�)emax(0)]/[��cmax/
�max(P)]} for some 0 � � � 1, where emax(0) �
maxx̂(0), x(0)��b

�x̂(0) � x(0)�. Then, there exists a positive real
number 
*s � cmax such that for all 
s � 
*s, and for all t � T*d,
x̂�(t) Px̂(t) � 
s f x�(t)Px(t) � cmax.

Remark 12. The above proposition establishes the exis-
tence of a set, �s :� {x � �m : x�Px � 
s}, that allows us to
ascertain bounds on the position of the true state, by looking
only at whether the estimate is within this set. Specifically, for
a given bound on the norm of the estimation error, at any given
time, if the state estimate is within �s, then we can conclude
with certainty that the true state cannot be outside of �,
irrespective of the controller being used (see the proof in the
Appendix for the mathematical details of this argument).

Hybrid Predictive Control

Although the bounded controller possesses a well-defined re-
gion of initial conditions that guarantee closed-loop stability in the
presence of constraints, the performance of this controller may not
be optimal with respect to a given performance criterion. On the
other hand, the model predictive controller is well suited for
handling constraints within an optimal control setting; however,
the analytical characterization of its set of initial conditions, for
which closed-loop stability is guaranteed, is a more difficult task
than it is through bounded control. The lack of state measurements
introduces an additional layer of complexity in implementing the
controllers designed under the assumption of state feedback. In
this section, we show how to reconcile the two control approaches
by means of a hybrid control structure that combines the desirable
properties of both approaches.

To this end, we consider the LTI system of Eqs. 1–3, for
which the bounded controller of Eqs. 12 and 13, the state
estimator of Eq. 4, and the model predictive controller of Eqs.
9 and 10 have been designed. The control problem is formu-
lated as the one of designing a set of switching laws that
orchestrate the transition between the predictive controller and
the bounded controller under output feedback in a way that: (1)
respects input constraints; (2) guarantees asymptotic stability
of the origin of the closed-loop system, starting from any initial
condition within arbitrarily large compact subsets of the state
feedback stability region of the bounded controller; and (3)
utilizes the optimality properties of MPC whenever possible
(that is, when closed-loop stability is guaranteed). For a precise
statement of the problem, we first cast the system of Eqs. 1–3
as a switched linear system of the form

ẋ � Ax � Bui�t�

y � Cx
�ui� � umax

i�t� � 
1, 2
 (17)

where i : [0, �) 3 {1, 2} is the switching signal, which is
assumed to be a piecewise continuous (from the right) function
of time, implying that only a finite number of switches is
allowed on any finite interval of time. The index i(t), which
takes values in the finite set {1, 2}, represents a discrete state
that indexes the control input, u( � ), with the understanding that
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i(t) � 1 if and only if ui[x̂(t)] � b[x̂(t)] (that is, the bounded
controller is implemented in the closed-loop system), and
i(t) � 2 if and only if ui[x̂(t)] � Ms[x̂(t)] (that is, MPC is
implemented in the closed-loop system). We note that while we
have already used the subscript i in u to denote the different
manipulated inputs, we place the index i(t) as a subscript in u
to avoid complicating further the notation and this distinction
will be made clear throughout this article. Our goal is to
construct a switching law, based on the available state esti-
mates

i�t� � 
� x̂�t�, t� (18)

that provides the set of switching times that ensure asymptotically
stabilizing transitions between the predictive and bounded con-
trollers, in the event that the predictive controller is unable to
enforce closed-loop stability for a given initial condition within �.
In the remainder of this section, we present a switching scheme
that addresses this problem. Theorem 1 below summarizes the
main result (the proof is given in the Appendix).

Theorem 1. Consider the constrained system of Eq. 17, the
bounded controller of Eqs. 12 and 13, the state estimator of Eq. 4,
and the MPC law of Eqs. 9 and 10. Let x(0) � �b, x̂(0) � �b, � �
�*, 
s � 
*s, �s(T*d) � {x � �n : x�Px � 
s(T*d)}, and 0 � Td �
Tmin :� min{t � 0 : V[x(0)] � 
b, V[x(t)] � cmax, u(t) � �},
where �b and �* were defined in Proposition 2, and 
*s and T*d
were defined in Proposition 3. Let Tm � max{Td, T*d } be the
earliest time for which x̂(Tm) � �s and the MPC law prescribes
a feasible solution, Ms[ x̂(Tm)]. Also, let Tf � Tm be the earliest
time for which V̇[ x̂(Tf)] � 0. Then, the following switching rule

i�t� � �1, 0 � t 	 Tm

2, Tm � t 	 Tf

1, t � Tf

� (19)

where i(t) � 1 if and only if ui[x̂(t)] � b[x̂(t)] and i(t) � 2 if
and only if ui[ x̂(t)] � Ms[ x̂(t)], asymptotically stabilizes the
origin of the closed-loop system.

Remark 13. Figure 3 depicts a schematic representation of
the hybrid predictive control structure proposed in Theorem 1.
The four main components of this structure include the state
estimator, the bounded controller, the predictive controller, and
a high-level supervisor that orchestrates the switching between
the two controllers.

The implementation of the control strategy can be under-
stood through the following stepwise procedure (see Figure 4):

(1) Given the system of Eq. 1 and the constraints of Eq. 3,
design the bounded controller using Eqs. 12 and 13. Given the
performance objective, design the predictive controller.

(2) Compute the stability region estimate for the bounded
controller under state feedback, �, using Eqs. 14 and 15 and,
for a choice of the output feedback stability region, �b � �,
compute em, �, and Td defined in Propositions 1 and 2.

(3) Compute the region �s and T*d (see Proposition 3),
which ensure that x̂ � �s f x � � for all times greater than
T*d.

(4) Initialize the closed-loop system at any initial condition,
x(0), within �b, under the bounded controller using an initial
guess for the state, x̂(0), within �b. Keep the bounded con-
troller active for a period of time, [0, Tm).

(5) At t � Tm (by which time x̂ � �s), test the feasibility of
MPC using values of the estimates generated by the state
observer. If MPC yields no feasible solution, keep implement-
ing the bounded controller.

(6) If MPC is feasible, disengage the bounded controller
from the closed-loop system and implement the predictive
controller instead. Keep MPC active for as long as x̂ � �s and
V( x̂) continues to decay.

(7) At the first instance that either V( x̂) begins to increase
under MPC, or MPC runs into infeasibilities, switch back to the
bounded controller and implement it for all future times; else
keep the predictive controller active.

Remark 14. An important feature that distinguishes the
switching logic of Theorem 1 from the state feedback logic in

Figure 3. Hierarchical hybrid predictive control struc-
ture merging the bounded and model predic-
tive controllers and a state observer.

Figure 4. Evolution of the closed-loop system under the
controller switching strategy proposed in The-
orem 1.
Note that MPC is not activated (even if feasible) before x̂
enters �s.
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(El-Farra et al., 2004b) is the fact that, in the output feedback
case, MPC implementation does not begin until some period of
time, [0, Tm), has elapsed, even if MPC is initially feasible. The
rationale for this delay (during which only bounded control is
implemented) is the need to ensure that, by the time MPC is
implemented, the norm of the estimation error has already
decayed to sufficiently low values that would allow the super-
visor to switch back to the bounded controller and preserve
closed-loop stability in the event that MPC needs to be
switched out after its implementation. More specifically, before
MPC can be safely activated, the supervisor needs to make sure
that: (1) the estimation error has decayed to levels below em,
and (2) the state x will be contained within � at any time that
MPC could be switched out after its implementation. The first
requirement ensures that the bounded controller, when (and if)
reactivated, is able to tolerate the estimation error and still be
stabilizing within � (see Proposition 1). This requirement also
implies that Tm must be greater than Td, which is the time
beyond which the observer design guarantees �e� � em (see
Part 1 of the proof of Proposition 2). The second requirement,
on the other hand, implies that MPC cannot be safely switched
in before the estimate enters �s and the norm of the error is
such that x̂ � �s f x � � (see Remarks 11 and 12). Recall
from Proposition 3 that this property holds for all t � T*d; thus
Tm must also be greater than T*d, that is, Tm � max{Td, T*d}.
For times greater than Tm, the implementation of MPC can be
safely tested without fear of closed-loop instability, because
even if x̂ tries to escape �s (possibly indicating that x under
MPC is about to escape �), the switching rule allows the
supervisor to switch back immediately to the bounded control-
ler (before x̂ leaves �s), thus guaranteeing that at the switching
time x̂ � �s, x � � and �e� � em, which together imply that
the bounded controller, once switched in, will be asymptoti-
cally stabilizing (see the proof of Theorem 1 for the mathe-
matical details of this argument).

Remark 15. The proposed approach does not require or
provide any information as to whether the model predictive
controller itself is asymptotically stabilizing, starting from any
initial condition within �b. In other words, the approach does
not turn �b into a stability region for MPC. What the approach
does, however, is turn �b into a stability region for the
switched closed-loop system. The value of this can be under-
stood in light of the difficulty in obtaining, a priori, an analyt-
ical characterization of the set of admissible initial conditions
that the model predictive controller can steer to the origin in the
presence of input constraints. Given this difficulty, by embed-
ding MPC implementation within �b and using the bounded
controller as a fallback controller, the switching scheme of
Theorem 1 allows us to safely initialize the closed-loop system
anywhere within �b with the guarantee that the bounded con-
troller can always intervene to preserve closed-loop stability in
case the MPC is infeasible or destabilizing (due, for example,
to a poor choice of the initial condition and/or improper tuning
of the horizon length). This safety feature distinguishes the
bounded controller from other fallback controllers that could be
used, such as PID controllers, which do not provide a priori
knowledge of the constrained stability region and thus do not
guarantee a safe transition in the case of unstable plants. For
these controllers, a safe transition is critically dependent on
issues such as whether the operator is able to properly tune the
controller on-line, which, if not achieved, can possibly result in

instability and/or performance degradation. The transition from
the MPC to the bounded controller, on the other hand, is not
fraught with such uncertainty and is always safe because of the
a priori knowledge of the stability region. This aspect helps
make plant operation safer and smoother.

Remark 16. Note that, once MPC is switched in, if V( x̂)
continues to decrease monotonically, then the predictive con-
troller will be implemented for all t � Tm. In this case, the
optimality properties of the predictive controller are practically
recovered. Note also, that in this approach, the state-feedback
predictive controller design is not required to be robust with
respect to state measurement errors (see Grimm et al., 2003, for
example, when MPC is not robust) because even if it is not
robust, closed-loop stability can always be guaranteed by
switching back to the bounded controller (within its associated
stability region), which provides the desired robustness with
respect to the measurement errors.

Remark 17. Even though the result of Theorem 1 was
derived using the MPC formulation of Eqs. 9 and 10, it is
important to point out that the same result applies to MPC
formulations that use different types of stability constraints (see
Remark 3). The basic commonality between the formulation of
Eqs. 9 and 10 and other stability-handling formulations is the
fact that, in all of these formulations, the implementation of
MPC depends on whether the optimization problem, subject to
the stability constraints, is feasible. This issue of feasibility is
therefore accommodated in the switching logic by requiring the
supervisor to check the feasibility of MPC in addition to
monitoring the evolution of V. On the other hand, when a
conventional MPC formulation (that is, one with no stability
constraints) is used, potential infeasibility of the optimization
problem is no longer a concern, and, therefore, in this case the
supervisory switching logic rests only on monitoring the evo-
lution of V.

Remark 18. In conventional MPC formulations (with no
stability constraints), the objective function is typically a tun-
ing parameter that can be manipulated, by changing the weight-
ing matrices, to ensure stability. In the hybrid predictive control
framework, on the other hand, because closed-loop stability is
guaranteed by the bounded controller, the objective function
and the weights, instead of being arbitrarily tuned to guarantee
stability, can be chosen to reflect actual physical costs and
satisfy desirable performance objectives (for example, fast
closed-loop response).

Remark 19. The switching strategy of Theorem 1 can be
generalized to allow for multiple switchings between MPC and
the bounded controller. According to Theorem 1, once MPC is
terminated, the bounded controller is implemented for all fu-
ture times. In a more general scheme, however, the bounded
controller need not stay in the closed-loop system for all future
times. Instead, it can be used only until it brings the closed-loop
state trajectory sufficiently closer to the origin (for example, to
a predetermined inner level set of V) at which point MPC is
reactivated (if feasible) and its behavior monitored once again.
Potential chattering problems attributed to undesirable back-
and-forth switching, are eliminated by allowing only a finite
number of switches between the two controllers over any finite
time interval. This scheme offers the possibility of further
enhancement in the closed-loop performance (over that ob-
tained from the bounded controller) by implementing MPC for
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longer periods of time (as permitted by stability consider-
ations).

Remark 20. The hybrid predictive control structure pro-
posed in this article can be further extended to deal with the
case when both input and state constraints are present. In one
possible extension, state constraints would be incorporated
directly as part of the constrained optimization problem that
yields the model predictive control law. In addition, an estimate
of the stability region for the bounded controller would be
obtained by intersecting the region described by Eq. 14 with
the region described by the state constraints (presumed closed,
convex, and containing the origin in its interior) and computing
the largest invariant subset within the intersection. Using this
stability region (which now accounts for both input and state
constraints) in place of �, the implementation of the hybrid
predictive control strategy can proceed following the same
methodology outlined in Theorem 1.

Remark 21. The proposed switching scheme differs, both
in its objective and implementation, from other MPC formu-
lations that involve switching. For example, in dual-mode MPC
(Michalska and Mayne, 1993), the strategy involves switching
from MPC to a locally stabilizing controller once the state is
brought near the origin by MPC. The purpose of switching in
this approach is to relax the terminal equality constraint whose
implementation is computationally burdensome for nonlinear
systems. However, the set of initial conditions for which MPC
is guaranteed to steer the state close to the origin is not
explicitly known a priori. In contrast, switching from MPC to
the bounded controller is used in our work only to prevent any
potential closed-loop instability arising from implementing
MPC without the a priori knowledge of the admissible initial
conditions. Therefore, depending on the stability properties of
the chosen MPC, switching may or may not occur, and if it
occurs, it can take place near or far from the origin.

Simulation Studies

In this section, two simulation studies are presented to dem-
onstrate the implementation, and evaluate the effectiveness of
the proposed hybrid predictive control strategy as well as test
its robustness with respect to modeling errors and measurement
noise.

Illustrative example

In this section, we demonstrate an application of the pro-
posed hybrid predictive control strategy to a three-dimensional
linear system where only two of the states are measured.
Specifically, we consider an exponentially unstable linear sys-
tem of the form of Eqs. 1 and 2 with

A � �0.55 0.15 0.05
0.15 0.40 0.20
0.10 0.15 0.45

� B � �1 0
0 1
1 1

�
C � �1 0 0

0 0 1�
where both inputs u1 and u2 are constrained in the interval [�1,
1] (throughout the text of the example, and the associated
figures, subscripts 1 and 2 in u1 and u2 refer to the two different

manipulated inputs and do not refer to the values of the discrete
variable i(t)). Using Eqs. 12 and 13, we initially designed the
bounded controller and constructed its stability region � using
Eqs. 14 and 15. The matrix P was chosen as

P � �6.5843 4.2398 �3.830
4.2398 3.6091 �2.667
�3.830 �2.667 2.8033

�
and the observer gain parameter was chosen to be � � 500 to
ensure closed-loop stability for all initial conditions within a set
�b � �. For the model predictive controller, the parameters in
the objective function of Eq. 9 were chosen as Q � qI, with
q � 1 and R � rI, with r � 0.1. We also chose a horizon length
of T � 1.5 in implementing the predictive controller of Eqs. 9
and 10. The resulting quadratic program was solved using the
MATLAB (MathWorks, Natick, MA) subroutine QuadProg,
and the set of ODEs integrated using the MATLAB solver
ODE45.

In the first simulation run (solid lines in Figures 5 and 6), the
states were initialized at x0 � [0.75 –0.5 1.0]�, whereas the
observer states were initialized at x̂0 � [0 0 0]� (which belong
to the stability region of the bounded controller, �b). The
supervisor uses the bounded controller, while continuously
checking the feasibility of MPC. At t � 5.45, MPC (based on
the state estimates) becomes feasible and is implemented in the
closed-loop system to achieve asymptotic stability. The total
cost of stabilization achieved by the switching strategy (as
measured by Eq. 9) is J � 80.12. The switching scheme leads
to better performance when compared with the scenario where
the bounded controller is implemented for all times (the cost in
this case is J � 121.07), and also better than the model
predictive controller, because, starting from this initial condi-
tion, the predictive controller prescribes no feasible control
move (equivalent to an infinite value for the objective func-
tion). Note that even though feasibility of MPC could have
been achieved earlier by increasing the horizon length to T �
3.5 (dashed lines in Figures 5 and 6), this conclusion could not
be reached a priori, that is, before running the closed-loop
simulation in its entirety to check whether the choice T � 3.5
is appropriate. In the absence of any a priori knowledge of the
necessary horizon length, for a given initial condition, the
proposed hybrid predictive control can be used to guarantee
closed-loop stability regardless of the choice of the horizon
length.

In the second set of simulation results, we demonstrate the
need for a choice of an observer gain consistent with the choice
of �b. To this end, we consider an observer design with a
relatively low gain (� � 0.5) placing the observer poles at
�0.5, �1.0, and �1.5. With the low observer gain, the esti-
mates take a long time to converge to the true state values,
resulting in the implementation of “incorrect” control action for
a large period of time, by the end of which the states have
already escaped out of � (even though the states and state
estimates were initialized within �b), thus resulting in closed-
loop instability (dashed lines in Figures 7 and 8). Recall that
stability was achieved when the observer gain was chosen to be
� � 500 in the first set of simulation runs (the state and input
profiles for this case are reproduced by the solid lines in
Figures 7 and 8 for convenience of comparison).
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To recover, as closely as possible, the state feedback stability
region, large values of the observer gain are needed. However,
it is well known that high observer gains can amplify measure-
ment noise and induce poor performance. These observations
point to a fundamental trade-off that cannot be resolved by
simply changing the estimation scheme (see Remark 10). For
example, if the observer gain consistent with the choice of the
output feedback stability region is abandoned, the noise prob-

lem may disappear, but then stability cannot be guaranteed.
One approach to avoid this problem in practice is to initially
use a large observer gain that ensures quick decay of the initial
estimation error, and then switch to a low observer gain. In the
following simulation, we demonstrate how this idea, in con-
junction with switching between the controllers, can be used to
mitigate the undesirable effects of measurement noise. To
illustrate this point, we switch between the high and low
observer gains used in the first two simulation runs and dem-
onstrate the attenuation of noise. Specifically, we consider the
nominal system described by Eqs. 1 and 2 (see the first para-
graph of this subsection for the values of A, B, and C), together
with model uncertainty and measurement noise. The model
matrix Am (used for controller and observer design) is assumed
to be within 5% error of the system matrix A and the sensors
are assumed to introduce noise in the measured outputs as
y(t) � Cx(t) � 
(t), where 
(t) is a random Gaussian noise with
zero mean and a variance of 0.01. As seen by the solid lines in
Figure 9, starting from the initial condition, x0 � [0.75 �0.5 1.0]�,
using a high observer gain followed by a switch to a low observer
gain at t � 1.0, and a switch from bounded control to MPC at t �
3.5, the supervisor is still able to preserve closed-loop stability,
while at the same time resulting in a smoother control action (solid
lines in Figure 10) when compared to the case where a high

Figure 5. States of the closed-loop system under the
proposed hybrid predictive control strategy
using two different horizon lengths of T � 1.5
(solid) and T � 3.5 (dashed) in MPC implemen-
tation, and an observer gain parameter of � �
500.

Figure 6. Manipulated input profiles under the proposed
hybrid predictive control strategy using two
different horizon lengths of T � 1.5 (solid) and
T � 3.5 (dashed) in MPC implementation, and
an observer gain parameter � � 500.
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observer gain is used for the entire duration of the simulation
(dotted lines in Figures 9 and 10).

Application to a chemical reactor example

In this subsection, we consider a nonlinear chemical reactor
example to test the robustness of the proposed hybrid predic-
tive control structure (designed on the basis of the linearization
of the nonlinear model around the operating steady state) with

respect to modeling errors arising due to the presence of
nonlinear terms. Specifically, we consider a well-mixed con-
tinuous stirred tank reactor where an irreversible elementary
exothermic reaction of the form A ¡k B, takes place, where A is
the reactant species and B is the product. The feed to the reactor
consists of pure A at flow rate F, molar concentration CA0, and
temperature TA0. A jacket is used to remove/provide heat to the
reactor. Under standard modeling assumptions, a mathematical
model of the process can be derived from material and energy
balances and takes the following form

V
dTR

dt
� F�TA0 � TR� �

���H�

�cp
k0exp	�E

RTR

CAV �

Q

�cp

V
dCA

dt
� F�CA0 � CA� � k0exp	�E

RTR

CAV (20)

where CA denotes the concentrations of the species A; TR

denotes the temperature of the reactor; Q denotes rate of heat
input/removal from the reactor; V denotes the volume of the
reactor; �H, k, and E denote the enthalpy, preexponential
constant, and activation energy of the reaction, respectively;
and cp and � denote the heat capacity and density of the reactor,

Figure 7. States of the closed-loop system under the
proposed hybrid predictive control strategy
using two different gain parameters of � � 500
(solid) and � � 0.5 (dashed) in observer imple-
mentation, and horizon length of T � 1.5 in the
predictive controller.

Figure 8. Manipulated input profiles under the proposed
hybrid predictive control strategy using two
different gain parameters of � � 500 (solid)
and � � 0.5 (dashed) in observer implementa-
tion, and horizon length of T � 1.5 in the pre-
dictive controller.
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respectively. The values of the process parameters are given in
Table 1. It was verified that these conditions correspond to
three steady states, one unstable (given in Table 1) and two
locally asymptotically stable.

The control problem is to regulate both the outlet concen-
tration of the reactant CA, and the reactor temperature TR, at the

unstable steady state by manipulating the inlet reactant con-
centration CA0, and the rate of heat input Q, provided by the
jacket. The control objective is to be accomplished in the
presence of constraints on the manipulated inputs (�Q� � 1
kJ/min, ��CA0� � �CA0 � CA0s� � 1 mol/L) using only mea-
surements of the reactor temperature. For the purpose of im-Figure 9. States of the closed-loop system under the

proposed hybrid predictive control strategy in
the presence of measurement noise and mod-
eling errors.
The solid profiles depict the case when the state observer is
initially implemented using � � 500 and then switched to
� � 0.5 at t � 1.0. The dotted profiles depict the case when
the state observer is implemented using � � 500 for all times.
The horizon length for the predictive controller is T � 1.5.

Figure 10. Manipulated input profiles under the pro-
posed hybrid predictive control strategy in
the presence of measurement noise and
modeling errors.
The solid profiles depict the case when the state observer is
initially implemented using � � 500 and then switched to
� � 0.5 at t � 1.0. The dotted profiles depict the case when
the state observer is implemented using � � 500 for all
times. The horizon length for the model predictive controller
is T � 1.5.

Table 1. Process Parameters and Steady-State Values

Parameter Value Unit of Measure

V 0.1 m3

R 8.314 kJ/kmol � K
CA0s 1.0 kmol/m3

TA0s 310.0 K
�H �4.78 � 104 kJ/kmol
k0 1.2 � 109 s�1

E 8.314 � 104 kJ/kmol
cp 0.239 kJ/kg � K
� 1000.0 kg/m3

F 1.67 � 10�3 m3/s
TRs 395.33 K
CAs 0.57 kmol/m3
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plementing the control scheme, the process model of Eq. 20
was linearized around the unstable steady state, and the result-
ing linear model was used for the design of the hybrid predic-
tive control structure. Using Eqs. 12 and 13, we initially
designed the bounded controller and constructed its stability
region using Eqs. 14 and 15. The matrix P was chosen as

P � �0.027 0.47
0.47 15.13�

and the observer gain parameter was chosen to be � � 5. It
should be noted here that, because of the linearization effect,
the largest invariant region, �, computed using Eqs. 13–15
applied to the linear model, includes physically meaningless
initial conditions (CA � 0) and, therefore, a smaller level set,
�� � �, that includes only physically meaningful initial con-
ditions, was chosen and used as the stability region estimate for
the bounded controller (see Figure 11). For the predictive
controller, the parameters in the objective function of Eq. 9
were chosen as Q � qI, with q � 1 and R � rI, with r � 1. We
also chose a horizon length of T � 2 in implementing the
predictive controller of Eqs. 9 and 10. The resulting quadratic
program was solved using the MATLAB subroutine QuadProg,
and the set of ODEs integrated using the MATLAB solver
ODE45. In all simulations, the controllers, designed on the
basis of the linearization around the unstable steady state, were
implemented on the nonlinear system of Eq. 20.

As seen by the solid lines in Figures 12 and 13, starting from
the point (TR, CA) � (395.53 K, 0.47 kmol/m3), the model
predictive controller is able to stabilize the process at the
desired steady state (TRS, CAS) � (395.33 K, 0.57 kmol/m3).
From the initial condition, (TR, CA) � (397.33 K, 0.67 kmol/
m3); however, the model predictive controller yields an infea-

sible solution. Therefore, using the proposed hybrid control
strategy (dotted lines in Figures 12 and 13), the supervisor
implements the bounded controller in the closed-loop system,
while continuously checking the feasibility of MPC. At t �
0.9 s, MPC is found to be feasible and the supervisor switches
to the model predictive controller, which in turn stabilizes the
nonlinear closed-loop system at the desired steady state. These
results clearly demonstrate a certain degree of robustness that
the proposed hybrid predictive control structure possesses with
respect to modeling errors (arising in this case because of
neglecting the nonlinearities).

Remark 22. In both simulation studies presented above, we
have treated robustness as a practical implementation issue and
performed simulations that test the performance of the control
strategy in the event of some plant–model mismatch to show
that the hybrid predictive controller does possess some robust-
ness margins that make it suited for practical implementation.
We note that our objective here is not to incorporate robustness
explicitly into the controller design, but rather to investigate theFigure 11. Stability region estimate ��, based on the

linearization of the nonlinear model of Eq. 20.
The solid line depicts the closed-loop state trajectory starting
from an initial condition for which MPC (designed based on
the linear model with T � 2) is feasible and stabilizes the
nonlinear closed-loop system, whereas the dotted line de-
picts the state trajectory starting from an initial condition for
which MPC is infeasible, and the hybrid predictive control
strategy is implemented instead to enforce closed-loop sta-
bility.

Figure 12. Closed-loop reactant concentration (top) and
reactor temperature (bottom) starting from
an initial condition for which MPC (designed
based on the linear model with T � 2) is fea-
sible and stabilizes the nonlinear closed-loop
system (solid), and starting from an initial
condition for which MPC is infeasible, and the
hybrid predictive control strategy is imple-
mented instead to enforce closed-loop stabil-
ity (dotted).
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robustness margins of the controllers. The issue of incorporat-
ing robustness explicitly into the hybrid predictive control
strategy is beyond the scope of the current work and is the
subject of other research work (see El-Farra et al., 2003;
Mhaskar et al., 2003). Furthermore, within predictive control, a
common approach to the robust controller design problem is
through the min–max type formulations. However, these for-
mulations are well known to be computationally demanding
and, more important, suffer from similar difficulties in identi-
fying the set of initial conditions from which robust closed-
loop stability can be guaranteed a priori.

Conclusions

In this work, a hybrid predictive control structure, which
seamlessly unites MPC and bounded control, was proposed for
the output feedback stabilization of linear systems with input
constraints. The hybrid control structure consists of four com-
ponents, including a bounded controller, a model predictive
controller, a state estimator, and a higher-level supervisor that
orchestrates the switching between the two controllers. The
output feedback bounded controller provides a well-defined
stability region (but no optimal performance), whereas the
model predictive controller allows for constraint handling
within an optimal control setting (but no explicit characteriza-

tion of the stability region). Switching laws were derived to
reconcile the two approaches in a way that guarantees: (1)
closed-loop stability for all initial conditions within the stabil-
ity region of the bounded controller, and (2) achievement of the
MPC performance whenever the pertinent stability criteria are
met. The hybrid predictive control structure was shown to
provide a safety net for the practical implementation of output
feedback MPC by providing, through off-line computations, a
priori knowledge of a large set of initial conditions for which
stability of the switched closed-loop system is guaranteed.
Finally, simulation studies were presented to demonstrate the
implementation and evaluate the effectiveness of the proposed
hybrid predictive control strategy, as well as test its robustness
with respect to modeling errors and measurement noise.

Acknowledgments
Financial support from the National Science Foundation (Grant CTS-

0129571) is gratefully acknowledged.

Literature Cited
Aufderheide, B., V. Prasad, and B. W. Bequette, “A Comparison of

Fundamental Model-Based and Multiple Model Predictive Control,”
Proc. 40th IEEE Conf. on Decision and Control, 4863–4868, Orlando,
FL (2001).

Banerjee, A., and Y. Arkun, “Model Predictive Control of Plant Transitions
Using a New Identification Technique for Interpolating Nonlinear Mod-
els,” J. Process Control, 8, 441 (1998).

Bitmead, R. R., M. Gevers, and V. Wertz, Adaptive Optimal Control—The
Thinking Man’s GPC, Prentice-Hall, Englewood Cliffs, NJ (1990).
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Appendix

Proof of Proposition 1. The proof consists of two parts. In the
first part, we establish that the bounded state feedback control
law of Eqs. 12 and 13 enforces asymptotic stability for all
initial conditions within �. In the second part, we compute an
estimate of the tolerable measurement error, em, which guar-
antees that a state trajectory starting within � remains within it
for all �e� � em, for all t � 0.

Part 1. Substituting the state feedback control law of Eqs.
12 and 13 into the system of Eq. 1 and evaluating the time
derivative of the Lyapunov function along the closed-loop
trajectories, it can be shown that

V̇� x� � LfV� x� � LgV� x�u� x�

�
��x�Px

�1 � �1 � �2umax�B�Px��2�
(A1)

for all x � �, and thus for all x � �, where � and � were
defined in Eqs. 14 and 15, respectively. Because the denomi-
nator term in Eq. A1 is bounded on �, there exists a positive
real number �*, such that

V̇ � ��*x�Px (A2)

for all x � �, which implies that the origin of the closed-loop
system, under the control law of Eqs. 12 and 13, is asymptot-
ically stable, with � as an estimate of the domain of attraction.

Part 2. In this part, we analyze the behavior of V̇ on the
boundary of � [that is, the level surface described by V(x) �
cmax] under bounded measurement errors, �e� � em. To this
end, we have

V̇� x� � LfV� x� � LgV� x�u� x � e�

� LfV� x� � LgV� x�u� x� � LgV� x��u� x � e� � u� x��

� ��*cmax � �LgV� �u� x � e� � u� x��
� ��*cmax � M�u� x � e� � u� x�� (A3)

for all x � V�1(cmax), where M � maxV( x)�cmax
(�LgV(x)�) (note

that M exists given that �LgV( � )� is continuous and the
maximization is considered on a closed set). Because u( � ) is
continuous, then given any positive real number r such that
� � (�*cmax � r)/M � 0, there exists em � 0 such that if �(x �
e) � x� � �e� � em, then �u(x � e) � u(x)� � � and,
consequently

V̇� x� � ��*cmax � M� � �r 	 0 (A4)

for all x � V�1(cmax). This implies that for all measurement
errors such that �e� � em, we have V̇ � 0 on the boundary of
�. Therefore, under the bounded controller, any closed-loop
state trajectory, starting within �, cannot escape this region,
that is, x(t) � � @ t � 0. This completes the proof of the
proposition.
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Proof of Proposition 2. The proof is divided into two parts. In
the first part, we show that given 
b � 0 (the size of the output
feedback stability region) such that �b � �, there exists a
choice of � such that the closed-loop trajectories are bounded
for all x(0) and x̂(0) belonging in �b. In the second part, we use
a Lyapunov argument, together with boundedness of the states
of the closed-loop system and of the estimation error, to show
that the state is ultimately bounded with a bound that depends
on the norm of the estimation error, and converges to zero to
zero.

Part 1. From Eq. 5, we have that the error dynamics are
given by ė � (A � LC)e, where A � LC is Hurwitz, and all the
eigenvalues of the matrix A � LC satisfy � � ��. It then
follows that an estimate of the form �e(t)� � �(�)
�e(0)�exp(��t) holds for some �(�) � 0, for all t � 0. Given
any positive real number, 
b, such that �b � {x � �n : � x�P

2 �

b} � �, let Tmin � min{t � 0 : V[x(0)] � 
b, V[x(t)] � cmax,
u(t) � �} (that is, Tmin is the shortest time during which the
closed-loop state trajectory can reach the boundary of � start-
ing from the boundary of �b using any admissible control
action). Furthermore, let emax(0) � maxx, x̂��b

�x(0) � x̂(0)�
[emax(0) therefore is the largest possible initial error given that
both the states and state estimates are initialized within �b].
Choose Td such that 0 � Td � Tmin and let �* be such that em

� �(�*) emax(0)exp(��*Td) [the existence of such a �* fol-
lows from the fact that �(�) is polynomial in �]. For any choice
of � � �*, therefore, it follows that �e(Tmin)� � em [given that
�e(Td)� � em, Tmin � Td and the bound on the norm of the
estimation error decreases monotonically with time for all t �
0). This implies that the norm of the estimation error decays to
a value less than em before the closed-loop state trajectory,
starting within �b, could reach the boundary of �. It then
follows from Proposition 1 that the closed-loop state trajectory
cannot escape � for all t � 0, that is, the trajectories are
bounded and � x(t)�P

2 � cmax @ t � 0.
Part 2. To prove asymptotic stability, we note that for all

x � �

V̇� x� � LfV� x� � LgV� x�u� x � e�

� LfV�x� � LgV�x�u�x� � �LgV�x�� �u�x � e� � u�x��
� ��*�x�p

2 � M�u�x � e� � u�x�� (A5)

The term �u(x � e) � u(x)� is continuous and vanishes when
e � 0. Therefore, given that both x and e are bounded, there
exists a positive real number �(em) such that �u(x � e) � u(x)�
� ��e� for all �x�2

p� cmax, �e� � em. Substituting this estimate
into Eq. A5 yields

V̇� x� � ��*�x�p
2 � M��e� � �

�*

2
�x�p

2

� �x�p � �2M��e�
�*

:� �1��e�� (A6)

where �1( � ) is a class � function [a continuous function �(�)
is said to belong to class � if it is strictly increasing and �(0) �
0; see also Khalil, 1996]. The above inequality implies that V̇
is negative outside some residual set whose size depends on
�e�. Using the result of Theorem 5.1–Corallary 5.2 in (Khalil,

1996), this implies that, for any x(0) � �b, there exists a class
KL function �� (�,�) and a class K function �2(�), such that

� x�t�� � �� �� x�0��, t� � �2�sup��0�e����� � t 	 0 (1)

implying that the x subsystem of Eq. 16, with e as input, is
input-to-state stable (recall, from Proposition 1, that x(t) � �b

@t�0). Noting also that the e subsystem of Eq. 16 is asymp-
totically stable (limt3��e(t)� � 0), and using Lemma 5.6 in
(Khalil, 1996), we get that the interconnected system of Eq. 16
is asymptotically stable. This completes the proof of the prop-
osition.

Proof of Proposition 3. Because the error dynamics obey a
bound of the form �e(t)� � �(�)emax(0)exp(��t), substituting
T*d into this expression yields �e(T*d)� :� e* � ��cmax/�max�P�.
Then, for all t � T*d, if x̂�(t) Px̂(t) � 
s for some 
s � 0, we
can write

x��t� Px�t� � � x̂�t� � e�t���P� x̂�t� � e�t��
� x̂��t� Px̂�t� � 2x̂��t� Pe�t� � e��t� Pe�t�
� 
s � 2�Px̂�t�� �e�t�� � �e�t��p

2

� 
s � 2��max�P2�
s

�min�P�
e* � �max�P�e*2

:� f�
s� (A9)

Note that f ( � ) is a continuous, monotonically increasing
function of 
s � 0, with f (0) � �2cmax � cmax and f (cmax) �
cmax. This implies that there exists 0 � 
*s � cmax such that, for
all 
s � 
*s, the relation f (
s) � cmax holds, that is, x�(t)Px(t) �
cmax. This completes the proof of the proposition.

Proof of Theorem 1. Given x(0)� �b, x̂(0) � �b, � � �*

(see Proposition 2), and 
s � 
*s (see Proposition 3), we
consider the following cases.

Case 1. Consider first the case when Tm � � (that is, MPC
is never feasible). Then, we have from Eq. 19 that i(t) � 1 and
u[ x̂(t)] � b[ x̂(t)] for all t � 0. It then follows from Proposi-
tion 2 that the origin of the closed-loop system is asymptoti-
cally stable.

Case 2. Now, consider the case when Tm � � and Tf � �.
Given that Tm � Td and �e(Td)� � em (see Part 1 of the proof
of Proposition 2), we have that �e(Tm)� � em. Because only the
bounded controller is implemented, that is, i(t) � 1, for 0 � t �
Tm, it follows from Proposition 1 that x(t) � � for all 0 � t �
Tm [or that x(Tm

�) � �]. This fact, together with the continuity
of the solution of the switched closed-loop system, which
follows from the fact that the righthand side of Eq. 17 is
continuous in x and piecewise continuous in time—given that
only a finite number of switches is allowed over any finite time
interval—implies that, upon switching (instantaneously) to the
model predictive controller at t � Tm, we have x(Tm) � �.
Because Tf � �, then from the definition of Tf in Theorem 1 it
follows that u[ x̂(t)] � Ms[x̂(t)] and V̇[ x̂(t)] � 0 for all t � Tm.
This implies that x̂(t) � �s for all t � Tm and, consequently
from the definition of Tm (note that Tm � T*d, where T*d was
defined in Proposition 3), that x(t) � � for all t � Tm (that is,
the closed-loop state trajectory is bounded). Furthermore, given
that x̂(t) � x(t) � e(t) and limt3��e(t)� � 0, it follows that
limt3� x̂�(t) Px̂(t) � 0; and thus limt3� x�(t)Px(t) � 0. The
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origin of the switched closed-loop system is therefore asymp-
totically stable.

Case 3. Finally, consider the case when Tm � � and Tf �
�. From the analysis in case 2 above, we have that x(t)� � @
0 � t � Tf [ or that x(Tf

�) � �. This fact, together with the
continuity of the solution of the switched closed-loop system,
implies that, upon switching (instantaneously) to the bounded
controller at t � Tf, we have x(Tf) � � and u(t) � b[ x̂(t)] for
all t � Tf. We also have �e(t)� � em for all t � Tf, given that Tf

� Td. Therefore, from Proposition 1 it is guaranteed that x(t)
�� for all t � Tf. Finally, following the same arguments
presented in part 2 of the proof of Proposition 2, it can be
shown that �x(t)� 3 0 as t 3 �, which together with bound-
edness of the state trajectory, establishes asymptotic stability of
the origin of the closed-loop system. This completes the proof
of the theorem.
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