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Introduction

The majority (�90%) of the regulatory loops in the process
industries use conventional proportional–integral–derivative
(PID) controllers. Because of the abundance of PID controllers
in practice and the varied nature of processes that the PID
controllers regulate, extensive research studies have been ded-
icated to the analysis of the closed-loop properties under PID
controllers and to devising new and improved tuning guidelines
for them, focusing on closed-loop stability, performance, and
robustness1-7 (also see the survey papers8,9). Most of the tuning
rules are based on obtaining linear models of the system, either
through running step tests or by linearizing a nonlinear model
around the operating steady state, and then computing values of
the controller parameters that incorporate stability, perfor-
mance, and robustness objectives in the closed-loop system.

Although the use of linear models for the PID controller
tuning makes the tuning process easy, the underlying dynamics
of many processes are often highly complex because of such
phenomena as the inherent nonlinearity of the underlying
chemical reaction or operating issues such as actuator con-
straints, time delays, and disturbances. Ignoring the inherent
nonlinearity of the process when setting the values of the
controller parameters may result in the controller’s inability to
stabilize the closed-loop system and may call for extensive
retuning of the controller parameters.

The shortcomings of classical controllers in dealing with
complex process dynamics, together with the abundance of
such complexities in modern-day processes, have been an
important driving force behind the significant and growing
body of research work within the area of nonlinear process
control over the past two decades, leading to the development
of several practically implementable nonlinear control strate-

gies that can deal effectively with a wide range of process
control problems such as nonlinearities, constraints, uncertain-
ties, and time-delays10-13 (also see the books by Sepulchre et
al.,14 Khalil,15 and Isidori16). Whereas process control practice
has the potential to benefit from these advances through the
direct implementation of the developed nonlinear controllers,
an equally important direction in which process control prac-
tice stands to gain from these developments lies in investigat-
ing how nonlinear control techniques can be used for the
improved tuning of classical PID controllers. This is an appeal-
ing goal because it allows control engineers to potentially take
advantage of the improved stability and performance properties
provided by nonlinear control without actually forsaking the
ubiquitous conventional PID controllers or redesigning the
control system hardware.

There has been some research effort toward incorporating
nonlinear control tools in the design of PID controllers. For
example, in Wright et al.17 it is shown that controllers resulting
from nonlinear model–based control theory can be put in a
form that looks like the PI or PID controllers for first and
second-order systems. Other examples include Benaskeur and
Desbiens,18 in whose work adaptive PID controllers are de-
signed using a backstepping procedure, and Chang et al.,19

where a self-tuning PID controller is derived using Lyapunov
techniques. In these works, however, even though the resulting
controller has the same structure as that of a PID controller, the
controller parameters (gain, Kc; integral time constant, �I; and
derivative time constant, �D) are not constant but functions of
the error or process states. Even though such analysis provides
useful analogies between nonlinear controllers and PID con-
trollers, implementation of these control designs would require
changing the control hardware in a way that allows the tuning
parameter values to be continuously changed while the process
is in operation.

Motivated by the above considerations, we propose in this
work a two-level, optimization-based method for the derivation
of tuning guidelines for PID controllers that take nonlinear
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process behavior explicitly into account. The central idea be-
hind the proposed method is the selection of the tuning param-
eters in a way that has the PID controller emulate, as closely as
possible, the control action and closed-loop response obtained
under a given nonlinear controller, for a broad set of initial
conditions and set-point changes. To this end, classical tuning
guidelines (typically derived on the basis of linear approxima-
tions, running open or closed-loop tests) are initially used in the
first level to obtain reasonable bounds on the range of stabi-
lizing tuning parameters over which the search for the param-
eters best matching the PID and nonlinear controllers is to be
conducted. In addition to stability, performance and robustness
considerations for the linearized closed-loop system can be
introduced in the first level to further narrow down the param-
eter search range. The bounds obtained from the first level are
then incorporated as constraints on the optimization problem
solved at the second level to yield a set of tuning parameter
values that enforce closed-loop behavior under the PID con-
troller that closely matches the closed-loop behavior under the
nonlinear controller. Implications of the proposed method, as a
transparent and meaningful link between the classical and
nonlinear control domains, as well as possible extensions of the
tuning guidelines and other implementation issues, are dis-
cussed. Finally, the proposed tuning method is demonstrated
through a chemical reactor example.

Two-Level PID Tuning Method

In this work, we consider continuous-time single-input/sin-
gle-output (SISO) nonlinear systems, with the following state–
space description

ẋ�t� � f� x�t�� � g� x�t��u�t�

y � h� x� (1)

where x � [x1
. . .xn]� � �n denotes the vector of state variables

and x� denotes the transpose of x; y � � is the controlled
output; u � � is the manipulated input; f � is a sufficiently
smooth nonlinear vector function, with f (0) � 0; g� is a
sufficiently smooth nonlinear vector function; and h� is a
sufficiently smooth scalar nonlinear function, with h(0) � 0.
Throughout the paper, the notation Lfh denotes the standard Lie
derivative of a scalar function h� with respect to the vector
function f �, that is, Lfh(x) � (�h/�x) f (x).

The basic idea behind the proposed approach is the design
(but not implementation) of a nonlinear controller that achieves
the desired closed-loop response, and then the tuning of the
PID controller parameters so as to best “emulate” the control
action and the closed-loop process response under the nonlin-
ear controller, subject to constraints derived from classical PID
controller tuning rules. These ideas are described algorithmi-
cally below (see also Figure 1):

(1) Construct a nonlinear process model and derive a linear
model around the operating steady state (either through linear-
ization or by running step tests).

(2) On the basis of the linear model, use classical tuning
guidelines to determine bounds on the stabilizing range of the
tuning parameters, Kc, �I, and �D.

(3) Using the nonlinear process model and the desired
closed-loop response, design a nonlinear controller.

(4) For a set-point change, compute off-line, through simu-
lations, the input trajectory [unl(t)] “prescribed” by the nonlin-
ear controller over the time interval, [0, tfinal], required to
achieve the set-point change. Compute the corresponding
closed-loop output profile under the nonlinear controller, ynl(t).

(5) Compute the PID controller tuning parameters, Kc, �I,
and �D, as the solution to the following optimization problem

min
Kc,�I,�D

J ��
0

tfinal

��ynl�t� � yPID�t��2 � �unl�t� � uPID�t��2	dt

(2)

s.t. uPID�t� � Kc�e �

0

t e�t��dt�

�I
� �D

de

dt�
e�t� � ysp � yPID

ẋ�t� � f� x�t�� � g� x�t��uPID�t�

yPID � h� x�

�1Kc
c � Kc � �4Kc

c

�2�I
c � �I � �5�I

c

�3�D
c � �D � �6�D

c

�Kc, �I, �D� � argmin�J� (3)

where ysp is the desired set point; ynl and unl are the closed-loop
process response and control action, respectively, under the
nonlinear controller; Kc

c, �I
c, and �D

c are parameter values ob-
tained using (first-level) tuning rules based on linear models;
and 0 � �i � 1, i � 1, 2, 3 and 1 � �i � �, i � 4, 5, 6 are
design parameters.

Remark 1. The optimization problem of Eqs. 2 and 3
computes values for Kc, �I, and �D such that the closed-loop
control action and process response under the PID controller
are similar to those under the nonlinear controller, while being

Figure 1. Implementation of the proposed two-level, op-
timization-based tuning method.
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within acceptable ranges of the values obtained from the clas-
sical tuning methods. The method thus allows fine-tuning the
closed-loop performance under the PID controller to mimic
that of the nonlinear controller. Note that, in principle, the PID
controller parameters could have been tuned to mimic any
desired arbitrarily chosen closed-loop behavior. Mimicking the
behavior of the nonlinear controller, however, is a meaningful
objective because the nonlinear controller uses the nonlinear
system dynamics in generating the prescribed input and output
response, and therefore provides a “target” closed-loop system
behavior that is realizable. Note also that the performance
index of Eq. 2 can be generalized to include a weight factor (in
front of the input penalty term) to quantify the relative impor-
tance of the two main terms: the first one that aims at mini-
mizing the closed-loop output mismatch associated with the
nonlinear vs. the PID controller, and the second input penalty
term. Furthermore, the inclusion of a weight factor would
ensure consistency of units for the two terms in the perfor-
mance functional.

Remark 2. It should be noted that the controller actually
implemented in the closed-loop system is the PID controller
with fixed parameter values and that it may not always be
possible for the PID controller to exactly match the closed-loop
behavior under the nonlinear controller. The purpose behind
introducing the first-level tuning is twofold: (1) to ensure that
important objectives (such as closed-loop stability) are not
sacrificed in the (possibly unsuccessful) quest for a nonlinear
controller–like behavior (which is accomplished through the
optimization), and (2) to provide a rational way of constructing
a range of the tuning parameter values over which the optimi-
zation is performed. With respect to the first objective, we note
that the essence of the second-level optimization is to try to find
the best tuning parameter values that make the PID controller
emulate the behavior of the nonlinear controller. However, this
objective should not come at the expense of more overriding
objectives such as closed-loop stability. In particular, if the
optimization problem were to be carried out without imposing
any constraints on the parameter values, the solution may
indeed lead to a closer match, but no longer guarantee that the
PID controller enforces closed-loop stability when imple-
mented. This is one reason why the proposed method includes
the first level whose purpose, in part, is to make use of existing
methods for PID controller tuning to first determine the range
of tuning parameters for which closed-loop stability of the
linearized process model under the PID controller is guaran-
teed. For such a range of values, the PID controller will enforce
local closed-loop stability when implemented on the nonlinear
process.

Remark 3. Having obtained the stabilizing parameter range
and incorporated it as a constraint on the optimization, the
search for the “optimal” gain then can take place only over this
range. However, the stabilizing range may be too large to
search over and the designer may wish to limit this range
further by incorporating additional performance and robustness
considerations. The use of first-level methods (which are based
on the use of linear models) provides a rational—although not
necessarily unique—way of constructing an appropriate sub-
range to work with. For example, if certain robustness margins
can be obtained (and quantified explicitly as ranges on the
tuning parameters) through the use of existing methods based
on the linearized model, these margins can be incorporated as

constraints that further limit the search range. This of course
does not (nor is intended to) guarantee that the PID controller
will exhibit such robustness or performance when implemented
on the nonlinear process because the margins are based on the
linearized model. However, at a minimum, this is a meaningful
way to go about constructing or, more precisely, narrowing
down the range over which the optimization is done (by re-
questing that the performance of the linearized model be con-
sistent with what existing methods based on linear models
yield). Ultimately, it is the “closeness” of the PID controller to
the nonlinear controller resulting from the second-level opti-
mization (not the first-level methods) that is essentially respon-
sible for the performance properties exhibited by the PID
controller when implemented on the nonlinear process. Given
that different (first-level) tuning methods lead to different per-
formance properties and yield different parameter values, the
designer can examine the values obtained from different meth-
ods to form a reasonable idea about what an acceptable range
might be around these nominal values and then construct such
a range (through choosing appropriate �i values) and imple-
ment it as constraints on the optimization (see the simulation
study for an example). If the parameter values obtained (after
performing the optimization) do not yield satisfactory perfor-
mance (tested through simulations), then the parameter range
could be expanded further (but still within the stabilizing range
determined initially) in an iterative procedure.

Remark 4. The �i values in Eq. 3 are introduced into the
optimization as design parameters that allow the designer flex-
ibility in tightening or relaxing the range of parameter values
over which the optimization is carried out. If a given method
yields satisfactory performance, and it is desired that the tuning
parameters not be changed appreciably, this can be enforced by
using values of the design parameters (�i) close to 1. The
tuning parameters resulting from the solution to the optimiza-
tion problem in this case, although changed to mimic the
nonlinear control action, will be close to those obtained from
the classical tuning method considered in the first level. If, on
the other hand, it is decided that some further improvement is
warranted, then, at a minimum, the �i values should be chosen
to reflect the range (or a subset of the range) within which the
parameter values can be changed by the optimization without
losing stability. If the designer seeks to constrain the search
over a smaller range (using certain performance or robustness
margins such as those obtained from the first-level methods for
the linearized closed-loop system), then the �i values can be
modified to reflect the new range. In general, the choice of �i

varies depending on the particular process under consideration
and on the particular tuning methods that are being considered
in the first level.

Remark 5. Regarding the performance properties of the
proposed method with respect to those of the first-level meth-
ods, we first note that the first-level tuning guidelines are
derived on the basis of the linearized process model, and
therefore the robustness and performance properties obtained
when using these methods to tune the PID controller are not
guaranteed to carry over when the PID controller is imple-
mented on the nonlinear system. So even if retuning of the
first-level methods may bring about further performance im-
provement in the linear case (by possibly sacrificing stability
and robustness margins), this does not imply that a similar
improvement should be expected in the nonlinear setting. In
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general, there is no systematic way in which such methods can
be retuned (if at all possible) to improve the performance in the
nonlinear case. By contrast, the proposed method aims to
improve the performance of the PID controller in the nonlinear
setting by explicitly accounting for process nonlinearity
through the optimization (an objective not shared by the first-
level approaches). Whether this necessarily means that the
resulting parameters will always yield performance that is
“better” than what a given tuning method might yield is diffi-
cult to judge, but, more important, is not a point that the
method is intended to address. The point is that the proposed
approach is a meaningful way of tuning PID controllers that
can yield good performance when implemented on the nonlin-
ear system. From this perspective, the first-level methods serve
as a rational starting point for the construction of the search
ranges as discussed in Remark 2.

Remark 6. The optimization problem of Eqs. 2 and 3 is
solved off-line as part of the design procedure to compute the
optimal values of the tuning parameters. Also, the above opti-
mization problem can be carried out over a range of initial
conditions and set-point changes that are locally representative
of the process operation to obtain PID tuning parameters that
allow the PID controller to approximate, in an average (with
respect to initial conditions and set-point changes) sense, the
closed-loop response under the nonlinear controller. If the
process is required to operate at an equilibrium point that is
very far from the operating point for which the parameters are
tuned, then it is best to perform the optimization again around
the new, desired operating point to yield new tuning parameter
values (as is also done in classical tuning). Regarding the
optimization complexity issue, we note that possible complex-
ity of the proposed optimization is mainly a function of the
model complexity (such as nonlinearity, model order, and so
on). The increase in computational demand expected in the
case of higher-order and highly nonlinear systems is primarily
attributed to the need to solve a higher-order system of non-
linear differential equations. However, with current computa-
tional capabilities, this does not pose unduly significant limi-
tations on the practical implementation prospects of the
proposed method, especially when compared with the compu-
tational complexity encountered in typical nonlinear optimiza-
tion problems [such as nonlinear model predictive control
(MPC)]. Furthermore, the approximations discussed in Remark
9 below provide possible means that can help manage potential
complexities even further. Finally, we note that, because the

method involves a form of nonlinear optimization, it is ex-
pected that, in general, multiple optimal solutions may exist.

Remark 7. The basic idea behind the proposed PID con-
troller tuning methodology, that is, that of tuning the PID
controller to emulate some other well-designed controller that
effectively handles complex dynamics, can be used to develop
conceptually similar tuning methods for PID control of pro-
cesses with other sources of complexities (besides nonlinearity)
such as uncertainty, time delays, and manipulated input con-
straints. The logic behind such extensions is based on the
following intuitive parallel: just as a nonlinear controller is a
meaningful guide to be emulated by a PID controller being
implemented on a nonlinear process, a controller that effec-
tively handles constraints, uncertainty, and/or time delays can
also be a meaningful guide to be emulated by a PID controller
that is being implemented on a process with these characteris-
tics. In principle, the extensions can be realized by adequately
accounting for the complex characteristics of these processes
within both levels of the tuning method. For example, for
systems with uncertainty, classical tuning methods that provide
sufficient robustness margins can be used to come up with the
first-level parameter values. Then a robust nonlinear controller
(see, for example, El-Farra and Christofides10) can be designed
and the closed-loop profiles, obtained under the robust nonlin-
ear controller for a sufficient number of realizations of the
uncertainty (which may be simulated, for instance, using ran-
dom number generators), may be computed. Finally, the pa-
rameter values obtained from the first-level tuning method may
be improved upon by solving an optimization problem that
minimizes the error over the profiles in the representative set.
In a conceptually similar fashion, for systems with constraints,
an anti-windup scheme could be used initially to obtain the
first-level parameter values. A nonlinear controller design that
handles input constraints can then be chosen for the second-
level optimization. The PID controller tuning guidelines can
then serve to “carry over” the constraint handling properties of
this nonlinear controller and improve upon the first-level tuning
methods in two ways: (1) through the objective function, by
requiring the control action and closed-loop process response
under PID control to mimic that under the constrained nonlin-
ear controller; and (2) through the incorporation of the input
constraints directly into the optimization problem. However, it
should be noted that, although such extensions are intuitively
appealing, a detailed assessment and characterization of their
potential requires further investigation.

Remark 8. Note that the derivative part of the PID control-
ler is often implemented using a filter. This feature can be
easily incorporated in the optimization problem by explicitly
accounting for the filter dynamics. Constraints on the filter time
constant �f, obtained empirically through knowledge of the
nature of noise in the process, can be imposed to ensure that the
filtering action restricts the process noise from being transmit-
ted to the control action.

Remark 9. To allow for simple computations, approxima-

Table 1. Process Parameters and Steady-State Values

Parameter Value Unit

V 0.1 m3

E/R 8000 K
CA0 1.0 kmol/m3

TA0 400.0 K

H 2.0 � 105 kJ/kmol
k0 7.85 � 106 s�1

cp 1.0 kJ kg�1 K�1

� 1000.0 kg/m3

UA 1.667 � 103 kJ s�1 K�1

F 0.001667 m3/s
CA

s 0.52 kmol/m3

TR
s 398.97 K

Tj
nom 493.87 K

Table 2. PI Tuning Parameters

Tuning Method Kc �I

IMC 1.81 0.403
Ziegler–Nichols 2.86 4.16
Proposed method 5.56 0.297
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tions can be introduced in solving the optimization problem of
Eqs. 2 and 3. For instance, in the computation of the control
action, the error e(t) may be approximated by simply taking the
difference between the set point ysp and the process output
under the nonlinear controller ynl(t), leading to a simpler opti-
mization problem that can be easily solved using numerical
solvers such as Microsoft Excel (for a given choice of the
decision variables, the objective function can be computed
algebraically and does not involve integrating the process dy-
namics). The justification behind this is that, if the resulting
value of uPID(t) is “close enough” to unl(t), then this approxi-
mation holds (see the simulation example for a demonstration).
If the solution of the optimization problem does not yield a
sufficiently small value for the objective function (indicating
that uPID, and thus yPID, is significantly different from unl, and
ynl), this approximation may no longer be valid. In this case,
one could revert to using e(t) � ysp � yPID(t) in the optimiza-
tion problem, where yPID is the closed-loop process response
under the PID controller. Note also that, in some cases (par-
ticularly for low-dimensional systems with real analytic vector
fields), the value of the performance index may be calculated
explicitly as an algebraic function of the controller parameters
(leading to a static finite-dimensional optimization problem) by
solving Zubov’s partial differential equation using techniques
similar to those presented in Kazantzis et al.20 Those tech-
niques can also be used in designing an optimally tuned non-
linear controller that serves as a meaningful target to be emu-
lated by the PID controller.

Remark 10. Finally, we note that the proposed method
does not turn the PID controller into a nonlinear controller.
The tuning method can only serve to improve upon the
process response of the PID controller for operating condi-
tions for which PID control action can be used to stabilize
the process. If the process is highly nonlinear, or a complex
process response is desired, it may be possible that the PID
controller structure is not adequate and, in this case, the
appropriate nonlinear controller should be implemented in
the closed loop to achieve the desired closed-loop proper-
ties.

Application to a Chemical Reactor Example

We consider a continuous stirred-tank reactor where an

irreversible, first-order reaction of the form A ¡
k

B takes place.

The inlet stream consists of pure species A at flow rate F,
concentration CA0, and temperature TA0. Under standard mod-
eling assumptions, the mathematical model for the process
takes the form

ĊA �
F

V
�CA0 � CA� � k0e

�E/RTRCA

ṪR �
F

V
�TA0 � TR� �

��
H�

�cp
k0e

�E/RTRCA �
UA

�cpV
�Tj � TR�

(4)

where CA denotes the concentration of the species A; TR de-
notes the temperature of the reactor; Tj is the temperature of the
fluid in the surrounding jacket; U is the heat-transfer coeffi-
cient; A is the jacket area; V is the volume of the reactor; k0, E,
and 
H are the preexponential constant, the activation energy,
and the enthalpy of the reaction, respectively; and cp and � are
the heat capacity and fluid density in the reactor, respectively.
The values of all process parameters are given in Table 1. At
the nominal operating condition of Tj

nom � 493.87 K, the
reactor is operating at the unique, stable steady state (CA

s ,
TR

s ) � (0.52 kmol/m3, 398.97 K). The control objective is to
implement set-point changes in the reactor temperature using
the jacket fluid temperature Tj as the manipulated input, using
a P, PI, or PID controller.

To proceed with our controller tuning method, we initially
design an input/output linearizing nonlinear controller. Note
that the linearizing controller design is used in the simulation
example only for the purpose of illustration, and any other
nonlinear controller design deemed fit for the problem at hand
can be used as part of the proposed controller tuning method.

Defining x � [CA � CA
s , TR � TR

s ]� and u � Tj � Tj
nom, the

Figure 2. Closed-loop output (a) and manipulated input (b) profile under a linearizing controller (solid line) and a PI
controller tuned using the proposed method (dashed line).
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process of Eq. 4 can be recast in the form of Eq. 1, where the
explicit form of f � and g� are omitted for brevity. Consider
the control law

u �
	 � y�t� � 
Lfh� x�


Lgh� x�
(5)

where Lfh(x) and Lgh(x) are the Lie derivatives of the function
h(x) with respect to the vector functions f (x) and g(x), respec-
tively; 
, a positive real number, is a design parameter; and 	
is the set point. Taking the derivative of the output in Eq. 1 with
respect to time, we get ẏ � Lfh(x) � Lgh(x)u. Substituting the
linearizing control law of Eq. 5, we get ẏ � (	 � y)/
.

Under the control law of Eq. 5, the controlled output y
evolves linearly, to achieve the prescribed value of 	, and the
design parameter 
 is the time constant of the closed-loop
response.

It is well known that when a first-order closed-loop response,
with a given time constant, is requested for a linear first-order
process, the method of direct synthesis yields a PI controller.
Note that the relative order of the controller output TR, with
respect to the manipulated input Tj, in the example of Eq. 4 is
also one. Even though the nonlinear controller is a static
controller, and the PI controller is dynamic, both controllers are
capable of generating closed-loop behaviors that are of the
same kind (a linear first-order response with a prescribed
closed-loop time constant). This encourages the use of a PI
controller and tuning its parameters to achieve the prescribed
first-order response.

For the purpose of tuning the PI controller, the nonlinear
process response generated under the nonlinear controller, us-
ing a value of 
 � 0.25, was used in the optimization problem.
An appropriate range for the tuning parameters was derived
from the Kc and �I suggested by the IMC-based and Ziegler–
Nichols tuning rules (where the parameters Kcu � 6.36 and Pu

� 5.0 are obtained using the method of relay auto tuning).21 In
particular, the constraints on the values of the parameters were
chosen as follows: for a given parameter, the largest and the
smallest values prescribed by the available tuning methods (in
this case the IMC-based and Ziegler–Nichols) were chosen and
the upper bound on the parameters was chosen as twice the

maximum value, and the lower bound was chosen as half the
minimum value: 0.9 � Kc � 5.7 and 0.2 � �I � 8.2. The values
of the parameters, computed using the IMC method, Ziegler–
Nichols, and the two-level PI tuning method are reported in
Table 2.

The solid lines in Figures 2a and 2b show the closed-loop
response of the output and the manipulated input under the
nonlinear control of Eq. 5. Note that the value of 
 was chosen
as 0.25 to yield a smooth, fast transition to the desired set point.
The optimization problem was solved approximately, using the
closed-loop process response under the nonlinear controller to
compute e(t), and the objective function included only penal-
ties on the difference between the control actions under the PI
controller and the nonlinear controller (see Remark 9). The
dashed line shows the response of the PI controller tuned using
the proposed optimization-based method. The result shows that
the response under the PI controller is close to that under the
nonlinear controller and demonstrates the feasibility of using a
PI controller to generate a closed-loop response that mimics the
response of the nonlinear controller.

In Figure 3a, we present the closed-loop responses when the
controller parameters computed using the IMC-based tuning
rules and Ziegler–Nichols are implemented. As can be seen, the
transition to the new set point under the PID controller tuned
using the proposed method (dashed lines) is fastest when
compared to a classical PI controller tuned using IMC tuning
rules (solid line) and Ziegler–Nichols tuning rules (dotted line).
The corresponding manipulated input profiles are shown in
Figure 3b.

We now demonstrate the application of the proposed method
to the same system, but with CA as the controlled variable and
Tj as the manipulated variable. As in the previous case, we
initially design an input/output linearizing nonlinear controller

Table 3. PID Tuning Parameters

Tuning Method Kc �I �D

IMC-I �678.8 0.95 0.0524
IMC-II �1208.9 1.00 0.114
Ziegler–Nichols �2072.0 0.149 0.028
Proposed method �951.21 0.978 0.114

Figure 3. Closed-loop output (a) and manipulated input (b) profile using IMC tuning rules for PI controller (solid line),
using Ziegler–Nichols tuning rules (dotted line), and the proposed method (dashed line).
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to yield a second-order linear input–output response in the
closed-loop system of the form �cl

2 ÿ � (2�/�cl)ẏ � y � 	, where
�cl and � are design parameters and were chosen as �cl � 0.2
and � � 1.05 (implying that the closed-loop system is a slightly
overdamped second-order system). The following tuning meth-
ods were used for the first level: (1) IMC-based tuning rule,
where a step test is run to approximate the system by a
first-order � time-delay process, hereafter referred to as
IMC-I; (2) IMC-based tuning rule, where the process is linear-
ized around the operating steady state to obtain a second-order
linear model, hereafter referred to as IMC-II; and (3) Ziegler–
Nichols tuning rules, where the parameters Kcu � �34,543 and
Pu � 0.223 are obtained using the method of relay autotuning21

(the tuning parameter values are reported in Table 3). Based on
the parameter ranges suggested by the first-level tuning meth-
ods, the following constraints were used in the optimization
problem set up to compute Kc, �I, and �D: �2072.0 � Kc �
�678, 0.149 � �I � 1, and 0.0114 � �D � 0.052. The
derivative part of the controller was implemented using a
first-order filter with time constant �f � 0.1.

The solid lines in Figures 4a and 4b show the closed-loop
response of the output and the manipulated input under the

linearizing control design. The dashed-line shows the response
of the PID controller tuned using the proposed method, which
is close to the response of the nonlinear controller. As is clear
from Figure 4, the resulting PID controller yields a response
that is sufficiently close to that of the nonlinear controller. In
Figure 5a, we present the closed-loop responses when the
controller parameters computed using the classical tuning rules
are implemented. The values suggested by Ziegler–Nichols
tuning lead to closed-loop instability. In the simulation, a
smaller value for Kc � �518.4 and a larger �I � 0.14 were
used. As can be seen, the transition to the new set point using
the proposed tuning method (dashed lines in Figure 5) com-
pares favorably to that obtained when using the IMC-based
tuning rules I and II (dotted and solid lines, respectively) and
the Ziegler–Nichols tuning rules (dash–dotted line). The cor-
responding manipulated input profiles are shown in Figure 5b.

In summary, the proposed tuning method leads to PID con-
troller parameters that achieve a closed-loop response that is
sufficiently close to the one obtained under the nonlinear con-
troller, and compares favorably with the responses obtained
using classical tuning techniques.

Figure 4. Closed-loop output (a) and manipulated input (b) profile under a linearizing controller (solid line) and a PID
controller tuned using the proposed method (dashed line).

Figure 5. Closed-loop output (a) and manipulated input (b) profile using IMC tuning rules I (dotted line), IMC tuning
rules II (solid line), Ziegler–Nichols tuning rules (dash–dotted line), and the proposed method (dashed line).
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