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Abstract

In this work, we consider nonlinear systems with input constraints and uncertain variables, and develop a robust hybrid predictive
control structure that provides a safety net for the implementation of any model predictive control (MPC) formulation, designed with
or without taking uncertainty into account. The key idea is to use a Lyapunov-based bounded robust controller, for which an explicit
characterization of the region of robust closed-loop stability can be obtained, to provide a stability region within which any available
MPC formulation can be implemented. This is achieved by devising a set of switching laws that orchestrate switching between MPC and
the bounded robust controller in a way that exploits the performance of MPC whenever possible, while using the bounded controller as a
fall-back controller that can be switched in at any time to maintain robust closed-loop stability in the event that the predictive controller
fails to yield a control move (due, e.g., to computational difficulties in the optimization or infeasibility) or leads to instability (due, e.g., to
inappropriate penalties and/or horizon length in the objective function). The implementation and efficacy of the robust hybrid predictive
control structure are demonstrated through simulations using a chemical process example.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Stabilization of nonlinear systems subject to uncertainty
and manipulated input constraints is a fundamental control
problem that has been the subject of significant research
work. One of the control methods suited for handling con-
straints within an optimal control setting is model predic-
tive control (MPC). Numerous research studies have investi-
gated the stability properties of model predictive controllers
for systems without uncertainty (e.g., seeKeerthi & Gilbert,
1988; De oliveira & Biegler, 1994; Adetola & Guay, 2003
and the review paperMayne, Rawlings, Rao, & Scokaert,
2000).

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor M.
Guay under the direction of Editor F. Allgower.

∗ Corresponding author. Tel.: +1 3107941015; fax: +13102064107.
E-mail addresses:mhaskar@seas.ucla.edu(P. Mhaskar),

farra@ucla.edu(N.H. El-Farra),pdc@seas.ucla.edu
(P.D. Christofides).

0005-1098/$ - see front matter� 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2004.08.020

The problem of analysis and design of predictive con-
trollers for uncertain linear systems has been extensively
investigated (e.g., seeGenceli & Nikolaou, 1993; Lee &Yu,
1997; Scokaert & Mayne, 1998; Lee & Kouvaritakis, 2002;
Bemporad, Borrelli, & Morari, 2003and Bemporad &
Morari, 1999; Mayne et al., 2000for surveys of results in this
area). For uncertain nonlinear systems, the problem of robust
MPC design continues to be an area of ongoing research
(see, e.g.,Michalska & Mayne, 1993; Fernando, Fontes, &
Magni, 2003; Magni, Nicolao, Scattolini, & Allgower,
2003; Alamo, Muoz de la Pea, Limon, & Camacho, 2003;
Sakizlis, Kakalis, Dua, Perkins, & Pistikopoulos, 2004).
While min–max formulations provide a natural setting
within which to address this problem, computational prob-
lems with these approaches are well known, and stem in part
from the nonlinearity of themodel which typically makes the
optimization problem nonconvex and in part from perform-
ing the min–max optimization over the nonconvex prob-
lem. Furthermore, the robust stability guarantee in various
MPC formulations (with or without stability conditions and
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with or without robustness considerations) is contingent
upon the assumption of initial feasibility, and the set of ini-
tial conditions starting from where feasibility and stability
is guaranteed is not explicitly characterized.
Stabilizing control laws that provide explicitly-defined re-

gions of attraction for the closed-loop system have been
developed using Lyapunov techniques; the reader may re-
fer to Kokotovic and Arcak (2001)for a survey of results
in this area. InEl-Farra and Christofides(2003a,b), a class
of Lyapunov-based bounded robust nonlinear controllers,
inspired by the results on bounded control originally pre-
sented inLin and Sontag (1991), was developed. While
these Lyapunov-based controllers have well-characterized
stability and constraint-handling properties, they cannot, in
general, be designed to be optimal with respect to a pre-
specified, arbitrary cost function.
From the above discussion, it is clear that both MPC

and Lyapunov-based analytic control approaches possess,
by design, their own distinct stability and optimality prop-
erties. Recently, we proposed a hybrid predictive control
structure that employs switching between bounded con-
trol and MPC for the stabilization of linear systems under
state (El-Farra, Mhaskar, & Christofides, 2004a) and output
feedback (Mhaskar, El-Farra, & Christofides, 2004), and in
El-Farra, Mhaskar, and Christofides (2004b)for nonlinear
systems, subject to input constraints while providing a priori
(off-line) the set of initial conditions, for which closed-loop
stability is guaranteed (through bounded control).
The presence of uncertainty, however, may alter the sta-

bility region of the nominal controllers (designed without
taking the uncertainty into account) or even render the
closed-loop system unstable. Furthermore, simply replacing
the fall-back controller by an appropriate robust controller
and implementing the same switching logics proposed in
El-Farra et al.(2004a,b)may lead to switching that is too
conservative, resulting in the implementation of the fall-
back controller for almost all times. Motivated by these
considerations, we consider in this work nonlinear systems
with input constraints and uncertain variables, and develop
a robust hybrid predictive control structure. The proposed
method provides a safety net for the implementation of
any available MPC formulation, designed with or without
taking uncertainty into account, and allows for an explicit
characterization of the set of initial conditions starting from
where the closed-loop system is guaranteed to be stable.
The key idea is to use a Lyapunov-based robust controller,
for which an explicit characterization of the closed-loop
stability region can be obtained, to provide a stability region
within which MPC can be implemented. A set of switching
laws are designed that exploit the performance of MPC
whenever possible, while using the bounded controller to
provide the stability guarantees.
The rest of the paper is organized as follows. In Section

2, we present the class of systems under consideration and
review how the robust constrained control problem is ad-
dressed within the bounded control and MPC frameworks.

In Section 3, two controller switching schemes, that address
(with varying degrees of flexibility) robust stability and per-
formance objectives, are described. Finally in Section 4, the
implementation and efficacy of the robust hybrid predictive
control structure are demonstrated through a chemical pro-
cess example.

2. Preliminaries

We consider nonlinear systems with uncertain variables
and input constraints, described by

ẋ = f (x)+G(x)u+W(x)�(t), u ∈ U, (1)

wherex ∈ Rn denotes the vector of state variables,u ∈ Rm

denotes the vector of constrained manipulated inputs, tak-
ing values in a nonempty convex subsetU of Rm, where
U = {u ∈ Rm : ‖u‖�umax}, ‖ · ‖ is the Euclidean norm
of a vector,umax>0 is the magnitude of input constraints,
and �(t) = [�1(t) . . . �q(t)]T ∈ � ⊂ Rq denotes the vec-
tor of uncertain (possibly time-varying) but bounded vari-
ables taking values in a nonempty compact convex subset
of Rq andf (0) = 0. The vector functionf (x), the matri-
cesG(x)=[g1(x) . . . gm(x)] andW(x)=[w1(x) . . . wq(x)],
wheregi(x) ∈ Rn, i = 1 · · ·m, andwi(x) ∈ Rn, i = 1 · · · q,
are assumed to be sufficiently smooth on their domains
of definition. The notationLf h denotes the standard Lie
derivative of a scalar functionh(·) with respect to the vec-
tor functionf (·), the notationx(T −) denotes the limit of
the trajectoryx(t) as T is approached from the left, i.e.,
x(T −)= lim t→T − x(t) and the notation�� is used to donate
the boundary of a closed set,�. Throughout the manuscript,
we assume that for anyu ∈ U the solution of the system of
Eq. 1 exists and is continuous for allt, and we focus on the
state feedback problem where measurements of the entire
state,x(t), are assumed to be available for allt.

2.1. Bounded robust Lyapunov-based control

Referring to the system of Eq. (1), we assume that the un-
certain variable term,W(x)�, is non-vanishing (in the sense
that the origin is no longer the equilibrium point of the un-
certain system) and that a robust control Lyapunov function
(RCLF) (Freeman & Kokotovic, 1996), V exists. Consider
also, the bounded state feedback control law (seeEl-Farra
& Christofides, 2001, 2003a, b,for details on controller
design):

u= −

�(x)+

√
(�1(x))2 + (umax�(x))4

(�(x))2[1+
√
1+ (umax�(x))2]


 (LGV )

T (2)

when LGV �= 0 and u = 0 when LGV = 0, where

�(x)= Lf V + (�‖x‖ + ��b‖(LWV )T‖)
( ‖x‖

‖x‖+�

)
, �1(x)=

Lf V + �‖x‖ + ��b‖(LWV )T‖, �(x) = ‖(LGV )T‖,



P. Mhaskar et al. / Automatica 41 (2005) 209–217 211

LGV =[Lg1V · · · LgmV ] andLWV =[Lw1V · · · LwqV ]
are row vectors,�b is a positive real number such that
‖�(t)‖��b, for all t�0, and�, � and� are adjustable pa-
rameters that satisfy�>0,�>1 and�>0. Let	 be the set
defined by	(�b, umax)= {x ∈ Rn : �1(x)�umax�(x)} and
assume that� := {x ∈ Rn : V (x)�cmax} ⊆ 	(�b, umax)
for somecmax>0. Then, given any positive real number,d,
such that:

D := {x ∈ Rn : ‖x‖�d} ⊂ � (3)

and for any initial conditionx0 ∈ �, it can be shown that
there exists a positive real number
∗ such that if�/(� −
1)< 
∗, the states of the closed-loop system of Eqs. (1) and
(2) satisfyx(t) ∈ � ∀ t�0 and lim supt→∞‖x(t)‖�d.

Remark 1. Referring to the above controller design, it is
important to make the following remarks. First, a general
procedure for the construction of RCLFs for nonlinear sys-
tems of the form of Eq. (1) is currently not available. Yet,
for several classes of nonlinear systems that arise commonly
in the modeling of engineering applications, it is possible to
exploit system structure to construct RCLFs. For example,
for feedback linearizable systems, quadratic Lyapunov func-
tions can be chosen as candidate RCLFs and can be made
RCLFs with appropriate choice of the function parameters
based on the process parameters (see, for example,Freeman
& Kokotovic, 1996). Also, for nonlinear systems in strict
feedback form, backstepping techniques can be employed
for the construction of RCLFs (Krstic, Kanellakopoulos, &
Kokotovic, 1995). Second, given that an RCLF,V, has been
obtained for the system of Eq. (1), it is important to clarify
the essence and scope of the additional assumption that there
exists a level set,�, ofV that is contained in	. Specifically,
the assumption that the set,	, contains an invariant subset
around the origin, is necessary to guarantee the existence of
a set of initial conditions for which closed-loop stability is
guaranteed (note that even thoughV̇ <0 ∀ x ∈ 	\D, there
is no guarantee that trajectories starting within	 remain
within	 for all times). Moreover, the assumption that� is a
level set ofV is made only to simplify the construction of�.
This assumption restricts the applicability of the proposed
control method because a direct method for the construction
of an RCLF with level sets contained in	 is not available.
However, the proposed control method remains applicable
if the invariant set� is not a level set ofV but can be con-
structed in some other way (which, in general, is a difficult
task).

Remark 2. Regarding the choice of the above controller
design, we note that the problem of designing control
laws that guarantee stability in the presence of input con-
straints has been extensively studied (see, for example,Lin
& Sontag, 1991; Teel, 1992; Liberzon, Sontag & Wang,
2002; El-Farra & Christofides, 2003a,b). The bounded ro-
bust controller design of Eq. (2), proposed inEl-Farra and
Christofides(2003a,b)(inspired by the results on bounded

control in Lin & Sontag, 1991for systems without uncer-
tainty) is an example of a controller design that (1) guaran-
tees robust stability in the presence of constraints, and (2)
allows for an explicit characterization of the closed-loop
stability region. The results of this paper are not limited to
this particular choice of controllers and any other robust
controller that satisfies (1) and (2) above, can be used.

2.2. Model predictive control

The model predictive control approach provides a frame-
work with the ability to handle, among other issues, multi-
variable interactions, constraints on controls, and optimiza-
tion requirements, all in a consistent, systematic manner. For
the purpose of illustrating our results, we describe here a
symbolic MPC formulation that incorporates most existing
MPC formulations as special cases. This is not a new for-
mulation of MPC; the general description is only intended
for the purpose of highlighting the fact that the robust hy-
brid predictive control structure (to be proposed in the next
section) can incorporate any available MPC formulation. In
MPC, the control action at timet is conventionally obtained
by solving, on-line, a finite horizon optimal control prob-
lem. The generic form of the optimization problem can be
described as

u(·)= arg min{max{Js(x, t, u(·))|�(·) ∈ �}|u(·) ∈ S}
s.t. ẋ(t)= f (x(t))+G(x)u+W(x)�(t),

x(0)= x0, x(t + T ) ∈ �MPC(x, t, �), (4)

where

Js(x, t, u(·))

=
∫ t+T

t

(x′(s)Qx(s)+ u′(s)Ru(s))ds

+ F(x(t + T )) (5)

andS= S(t, T ) is the family of piecewise continuous func-
tions, with period�, mapping[t, t+T ] into the set of admis-
sible controls,T is the horizon length and� is the bounded
uncertainty assumed to belong to a set�. A control u(·)
in S is characterized by the sequence{u[k]}, whereu[k] :=
u(k�) and satisfiesu(t) = u[k] for all t ∈ [k�, (k + 1)�).
Js is the performance index,R andQ are strictly positive
definite, symmetric matrices and the functionF(x(t + T ))

represents a penalty on the states at the end of the hori-
zon. The maximization over� may not be carried out if
the MPC version used is not a min–max type of formula-
tion. The set�MPC(x, t, �) could be a fixed, terminal set,
or may represent inequality constraints (as in the case of
MPC formulations that require some norm of the state, or
a Lyapunov function for the system, to decrease at the end
of the horizon). This stability constraint may or may not ac-
count for uncertainty. The stability guarantees in MPC for-
mulations (with or without explicit stability conditions, and
with or without robustness considerations, and whether or
not it is a min–max type of formulation) are dependent on
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the assumption of initial feasibility. Obtaining an explicit
characterization of the closed-loop stability region of the
predictive controller under uncertainty and constraints re-
mains a difficult task.

3. Robust hybrid predictive control structure

We first cast the system of Eq. (1) as a switched system
of the form

ẋ = f (x)+G(x)ui(t) +W(x)�(t), ‖ui(t)‖�umax, (6)

wherei : [0,∞) → {1,2} is the switching signal which is
assumed to be a piecewise continuous (from the right) func-
tion of time, implying that only a finite number of switches
between the two controllers is allowed on any finite-time in-
terval. The index,i(t), represents a discrete state that indexes
the control input,u, with the understanding thati(t) = 1
if and only if ui(x(t)) = Ms(x(t)) (i.e., MPC is used) and
i(t)=2 if and only ifui(x(t))= b(x(t)) (i.e., bounded con-
trol is used). Our goal is to construct a switching law that
provides the supervisor with the switching times that ensure
stabilizing transitions between the two controllers. We first
present a scheme in Theorem 1 that focuses on the issue of
robust closed-loop stability, and then in Theorem 2, provide
more flexible switching rules that, in addition, enhance the
overall closed-loop performance. The proofs of both theo-
rems are given in the appendix.

3.1. Stability-based controller switching

Theorem 1. Consider the switched nonlinear system of Eq.
(6), the model predictive controller of Eqs. (4) and (5) and
the bounded controller of Eq. (2). Let x(0) = x0 ∈ �,
and initially setTs = TD = Tinf = ∞. At the earliest time
t�0 for which the closed-loop state under MPC satisfies
V (x(t−)) = cmax setTs = t . At the earliest time for which
the closed-loop state under MPC satisfies‖x(t)‖�d,where
d was defined in Eq. (3), set TD = t . Finally, at the ear-
liest time t that MPC is infeasible, set Tinf = t . Define
Tswitch=min{Ts, TD, Tdesign, Tinf }, where0�Tdesign<∞ is
arbitrary. Then, the switching rule

i(t)=
{
1, 0� t < Tswitch
2, t�Tswitch

}
(7)

guarantees thatx(t) ∈ � ∀ t�0 and lim supt→∞
‖x(t)‖�d.

Remark 3. The robust hybrid predictive controller of The-
orem 1 is designed and implemented as follows:

• Given the nonlinear system of Eq. (1),�b and umax,
design the bounded robust controller of Eq. (2), and
calculate an estimate of its stability region�.

• Design/pick an MPC formulation (the MPC formula-
tion could be min–max optimization based, linear or
nonlinear, and with or without stability constraints). For
convenience, we refer to the general MPC formulation
of Eqs. (4) and (5).

• Given anyx0 ∈ �, check the feasibility of the opti-
mization in Eqs. (4) and (5) att = 0, and if feasible,
start implementing MPC (i.e., setu(0)=Ms(x0)).

• If at any time, MPC becomes infeasible (t=Tinf ), or the
states of the closed-loop system approach the boundary
of � (t = Ts) or the closed-loop states enter the setD

(t = TD) then switch to the bounded robust controller,
else keep MPC active in the closed-loop system until
a timeTdesign.

• Switch to the bounded robust controller atTs , TD,
Tdesign, or Tinf , whichever comes earliest, to achieve
practical closed-loop stability.

Remark 4. The purpose of switching to the bounded robust
controller after the timeTdesign is to ensure convergence to
D and avoid possible cases where the closed-loop states, un-
der MPC, could wander inside� without actually converg-
ing to, and staying within,D. Convergence toD could also
be achieved (see, for example,El-Farra et al., 2004a,b), by
switching to the bounded controller whenV̇ �0 under MPC.
However, in the presence of uncertainty, such a condition
might be very restrictive in the sense that it may terminate
MPC implementation too early. Note that if an MPC design,
that guarantees robust stability for the uncertain nonlinear
system if initially feasible, is used it could be implemented
for all time (Tdesigncan be chosen to be practically infinity)
to stabilize the closed-loop system. The stability safeguards,
provided by the bounded controller, are still required be-
cause the stability of any MPC formulation, robust or other-
wise, is based on the assumption of initial feasibility, which
cannot be verified short of testing, via simulation, an initial
condition for feasibility.

Remark 5. We note that while the MPC framework pro-
vides a transparent way of specifying a performance objec-
tives, the various MPC formulations, in general, may not be
optimal, and only approximate the infinite horizon optimal
cost to varying degrees of success. The choice of a particu-
lar MPC design can be made entirely on the basis of the de-
sired tradeoff between performance and computational com-
plexity because the stability guarantees of the robust hybrid
predictive controller are independent of the specific MPC
formulation being used.

3.2. Enhancing closed-loop performance

In this section we relax the switching rules of Theorem 1,
in order to take better advantage of the MPC performance.
The relaxed switching scheme uses a family ofl fall back
controllers together with the MPC and allows for multiple
switchings between MPC and the bounded controllers. We
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recast the system of Eq. (1) as a switched system of the form:

ẋ = f (x)+G(x)ui(t) +W(x)�(t)
‖ui(t)‖�umax, i(t) ∈ {1,2, . . . , l + 1}, (8)

wherei(t) = k if and only if ui(x(t)) = bk(x(t)) (i.e., the
kth bounded controller is used) andi(t)= l + 1 if and only
if ui(x(t))=Ms(x(t)) (i.e., MPC is used). We also define,
for the l bounded controllers, and the robust control Lya-
punov functions,Vk, k=1, . . . , l, 0< �<1, cmaxk,j =�j cmaxk ,

�j
k = {x ∈ Rn : Vk(x)�cmaxk,j } and �j

L = ⋃l
k=1�

j
k , for

j = 0, . . . , N − 1, whereN <∞ is an integer, anddmax=
maxk=1,...,l{dk}, wheredk are arbitrarily small positive num-
bers such thatDk = {x ∈ Rn : ‖x‖�dk} ⊂ �N−1

k .

Theorem 2. Consider the constrained switched nonlinear
system of Eq. (8), the model predictive controller of Eqs.
(4) and (5) and the l bounded controllers of the form of Eq.
(2), designed using the robust control Lyapunov functions
Vk, k=1, . . . , l.Consider any initial conditionx(0) ≡ x0 ∈
�0
L and initially setT0=0,T1=T2=· · ·=TN =TD=∞.At

the earliest time, t�0, for which the closed-loop state under
MPC satisfies‖x(t)‖�dmax, setTD= t .At the earliest time,
t�0, under MPC such that

x(t) ∈ ��j−1
L , x(t−) ∈ �j−1

L and Tj−1<∞ (9)

for somej ∈ {1, . . . , N}, or MPC is infeasible, setTj = t .
DefineTswitch=min{TD, TN, Tdesign},where0�Tdesign<∞
is arbitrary. Then the switching rule

i(t)=



l + 1, 0�Tj � t�Tj+1�Tswitch, x ∈ �j

L

a, 0�Tj � t�Tj+1�Tswitch, x /∈�j
L

f, t > Tswitch



(10)

for somea ∈ {1, . . . , l} for which x(Tj ) ∈ �j−1
a , and for

somef ∈ {1, . . . , l} for whichx(Tswitch) ∈ �0
f , guarantees

that x(t) ∈ �0
L∀ t�0 and lim supt→∞‖x(t)‖�dmax.

Remark 6. The robust hybrid predictive controller of The-
orem 2 is designed and implemented as follows (see also
the schematic representation inFig. 1 for an example when
l =N = 2):

• For each Lyapunov functionVk, k=1, . . . , l: construct
a bounded controller using Eq. (2), a set ofNconcentric
level sets,�j

k , j=0, . . . , N−1, with�N−1
k ⊂ �N−2

k ⊂
· · · ⊂ �1

k ⊂ �0
k, and a terminal set,Dk ⊂ �N−1

k .
• Initialize the closed-loop system using MPC at any ini-
tial condition,x0, within�0

L (the union of the level sets
�0
k) and monitor the Lyapunov function value.

• At the earliest time that either the closed-loop state ap-
proaches the boundary of�0

L or MPC is infeasible,
switch to bounded control (this corresponds to encoun-
teringT1; seeFig. 1).

0

T1

x (0)

Ω1

1Ω1

0Ω2

1Ω2

0Ω2

1Ω2

0Ω1

1Ω1

T2

T1

x (0)

MPC
Bounded controller 1 
Bounded controller 2 

(a)

(b)

Fig. 1. Examples of the evolution of closed-loop state trajectory under
the switching scheme of Theorem 2.

• Implement any of the bounded controllers whose sta-
bility region contains the state atT1 until the state en-
ters�1

L (the union of the level sets�1
k) after which

switch back to MPC (inFig. 1 this happens when the
state enters�1

1).
• If the closed-loop state under MPC does not escape
the boundary of�1

L and MPC continues to be feasible,
keep MPC in the closed-loop system (this happens in
Fig. 1(a), where the state continues to stay within�1

L).
If the closed-loop state, however, tries to escape the
boundary of�1

L (this happens inFig. 1(b) when the
state hits the boundary of�1

2 at t = T2) or MPC is
infeasible again, switch to bounded control and imple-
ment it until the states are driven inside the next safety
zone where MPC is re-activated and confined (note that
each time MPC is switched back in, its implementation
is confined within a smaller safety zone since�1

L ⊃
�2
L ⊃ · · · ⊃ �N−1

L ). Repeat this process until either the
state under MPC is about to escape theNth safety zone,
�N−1
L , or the state enters the largest terminal set,Dmax,

or a time greater than the design parameter,Tdesign, has
elapsed. At the earliest time that any of these events
takes place, switch permanently to any of the bounded
controllers whose stability region contains the state at
the time to ensure practical stability of the closed-loop
system.
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Table 1
Process parameters and steady-state values.

VR = 0.1m3 R = 8.314 J/mol · K
CA0s = 1.0Kmol/m3 TA0s = 310.0K
�Hn = −4.78× 104 J/mol k0 = 72× 109min−1

E = 8.314× 104 J/mol cp = 0.239 J/g · K
� = 1000.0Kg/m3 F = 0.1m3/min
TRs = 395.3K CAs = 0.57Kmol/m3

4. Application to a chemical reactor

Consider the following model of an irreversible elemen-

tary exothermic reaction of the formA
k→B in a well-mixed

continuous stirred tank reactor:

VR
dCA

dt
= F(CA0 − CA)− k0 exp

(−E
RT

)
CAV,

VR
dT

dt
= F(TA0 − T )− �H

�cp
k0 exp

(−E
RT

)
CAV

+ Q

�cp
, (11)

whereCA denotes the concentration of species A,T , VR
denote the temperature and volume of the reactor, respec-
tively, Q denotes the rate of heat input to the reactor,k0, E,
�H denote the pre-exponential constant, the activation en-
ergy, and the enthalpy of the reaction, respectively, andcp
and� denote the heat capacity and density of the fluid in
the reactor, respectively.Table 1lists the steady-state values
and process parameters. The control objective is to regulate
both the reactor temperature and reactant concentration at
the (open-loop) unstable equilibrium point by manipulating
both the rate of heat input/removal and the inlet reactant
concentration. Defining

x1 = CA − CAs, x2 = T − Ts, u1 = CA0 − CA0s ,

u2 =Q, �1(t)= TA0 − TA0s , �2(t)= �H − �Hn,

where the subscriptsdenotes the steady-state value and�Hn
denotes the nominal value of the heat of reaction, the process
model of Eq. (11) can be cast in the form of Eq. (1). In all
simulation runs,�1(t)=�0 sin(3t), where�0=0.08TA0s and
�2(t)=0.5(−�Hnom), and the manipulated input constraints
were|u1|�1.0Kmol/m3 and|u2|�92KJ/s.
A quadratic Lyapunov function was used to design the

bounded robust controller of Eq. (2), using� = 1.01, � =
0.0001, and�=0.01. The term�2 in the denominator of the
control law of Eq. (2) was replaced by the number�=0.001
close to the origin to alleviate chattering of the control action
(note that for this example, the denominator term�2 = 0 if
and only ifx=0). The set of nonlinear ODEs was integrated
using the MATLAB solver, ODE45, and the optimization
problem in MPC was solved using the MATLAB nonlinear
constrained optimization solver,fmincon.
The first set of simulation runs demonstrate the use of the

robust hybrid predictive control strategy of Theorem 1, with
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Fig. 2. Closed-loop state trajectory: implementation of the robust hybrid
predictive controller of Theorem 1 using a nominal MPC formulation
without stability constraints (solid line) and an MPC formulation with
stability constraints, from two different initial conditions (dashed and
dotted lines).
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Fig. 3. Closed-loop state trajectory: implementation of the robust hybrid
predictive controller of Theorem 2, withl = 2, N = 1, using a nominal
MPC formulation without stability constraints (solid line).

the closed-loop system initialized from a point within the
stability region�(umax, �b). In the first scenario, a nominal
nonlinear MPC formulation, without stability constraints, is
used as part of the robust predictive control structure (setting
�MPC=Rn,F(x(t+T ))=0,T=0.02 min in Eqs. (4) and (5))
and with the design parameterTdesign=10 min. Shortly after
the initial implementation of MPC, the supervisor detects, at
t=0.6 s, that the closed-loop states are close to the boundary
of �(umax, �b) and therefore switches to the bounded robust
controller to stabilize the closed-loop system (solid lines in
Figs. 2and4). Note that the stability region information is
completely contained in the value of the level set obtained
at the time of the computation of the stability region (cmax)
and the supervisor reaches this inference by simply evalu-
ating the Lyapunov function, and comparing it tocmax. In
the next scenario, a stabilizing formulation of MPC is used
(requiring the states to go to a small invariant set at the end
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Fig. 4. Closed-loop state (top) and input (bottom) profiles: implementation of the robust hybrid predictive controller of Theorem 1 using a nominal MPC
formulation without stability constraints (solid lines), an MPC formulation with stability constraints, from two different initial conditions (dashed and
dotted lines) and the robust hybrid predictive controller of Theorem 2, withl = 2, N = 1, using a nominal MPC formulation without stability constraints
(dash–dotted lines).

of the horizon), with a horizon length ofT = 0.02 min and
aTdesign=20 min. For the initial condition of the trajectory
shown by the dashed lines inFigs. 2and4, the MPC yields
a feasible solution and drives the states close to the ori-
gin. For the initial condition depicted by the dotted lines in
Figs. 2 and 4, however, the MPC does not yield a feasi-
ble solution, and therefore the supervisor initially imple-
ments the bounded robust controller, switching to the MPC
at t=0.465 min, when the MPC becomes feasible, and leads
to closed-loop stability.
Finally, we demonstrate the implementation of the relaxed

switching scheme of Theorem 2 using two Lyapunov func-
tions.We use a nominal nonlinear MPC formulation, without
stability constraints (setting�MPC = Rn, F(x(t + T ))= 0,
T = 0.02 min in Eqs. (4) and (5)) and with the design pa-
rameterTdesign= 3 min. Starting from an initial condition
within �2 under MPC, the switching logic allows MPC to
be implemented in the closed-loop even though the states
escape out of�2, since they are still within�1 (see solid
line in Fig. 3 and dashed lines inFig. 4). Note also that in
this case the nominal MPC does not enforce the desired de-
gree of uncertainty attenuation (note the oscillations). After
the timeTdesignhas elapsed, the supervisor implements the
bounded controller (associated with�2) in the closed-loop
system to achieve practical stabilization.
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Appendix A.

Proof of Theorem 1. The proof uses the fact that if the state
of the closed-loop system resides in� when the bounded
controller is switched in, i.e.,x(Tswitch) ∈ �, thenx(t) ∈
� ∀ t�Tswitch, and convergence to the setD under the
bounded robust controller are guaranteed (for a proof, see
El-Farra & Christofides, 2003a,b). Therefore, we need only
show that, under the switching scheme of Eq. (7), the closed-
loop state is always within� until the time the bounded
controller is switched in. For this purpose, we enumerate the
four possible values thatTswitch could take, and show that
x(Tswitch) ∈ � in all cases.

• Case1: If Tswitch = Ts , then from the definition of
Ts , x(T −

s ) ∈ �. By continuity of the solution of the
system of Eq. (1) (which follows from the fact that
the right-hand side of Eq. (6) is continuous inx and
piecewise continuous in time, since only a finite num-
ber of switches is allowed), we havex(Ts) ∈ �, i.e.,
x(Tswitch) ∈ �.

• Case2: If Tswitch = TD, then from the definition ofTD,
x(TD) ∈ D ⊂ �; hencex(Tswitch) ∈ D ⊂ �.

• Case3: If Tswitch = Tdesign, then from the definition of
Tswitch, Tdesign�Ts . To prove thatx(Tdesign) ∈ �, we
proceed by contradiction. Assumex(Tdesign) /∈�. Then
V (x(Tdesign))> c

max (from the definition of�). By con-
tinuity of the solution, continuity ofV (·) and the fact
that V (x0)�cmax, there exists a time 0�T ′

s �Tdesign

for which V (x(T
′−
s )) = cmax. Since Ts is the
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earliesttime for whichV (x(t
′−)) = cmax, then it must

be thatTs�T ′
s �Tdesign, which leads to a contradiction

(Tdesign�Ts). Therefore, once again,x(Tswitch) ∈ �.
• Case4: If Tswitch = Tinf , the same argument as in Case
3 can be used (replacingTdesign by Tinf ) to show that
x(Tswitch) ∈ �. �

Proof of Theorem 2. The proof of this theorem uses the fact
that if the state of the closed-loop system resides in�0

f at
the time that thef th bounded controller is switched in (and
kept in the closed-loop for all future times), then under the
bounded robust controllerf, the region�0

f is invariant (for
a proof, seeEl-Farra & Christofides, 2003a,b), and conver-
gence toD is guaranteed. We now show that fort�Tswitch
(i.e., up until the time that the switching between the con-
trollers is governed by Eqs. (9) and (10)), the closed-loop
state, initialized within�0

L, stays within�
0
L. We only need

to show that the switching logic ensures that the bounded
controller is switched in before the states have escaped�0

L

under MPC. To this end, we first note thatcmaxk,j < cmaxk,0 , for

all k = 1, . . . , l. Therefore,�j
L ⊂ �0

L. This implies that if

x ∈ �j
L thenx ∈ �0

L.

Consider any time,t, when Tj � t < Tj+1<Tswitch, for
somej�1. BetweenTj andTj+1, we have from Eq. (10)
that MPC is switched in (and the bounded controller is
switched out) only whenx(t) ∈ �j

L. Now consider the time
Tj+1 at which time the bounded controller is switched back
in, either due to Eq. (9) or because MPC is infeasible. In
the first case,x(Tj+1) ∈ �j

L ⊂ �0
L. In the second case,

since the right-hand side of the Eq. (8) is a piecewise con-
tinuous function of time and a continuous function of its
states, and the closed-loop system is initialized within�j

L

under MPC, any time the MPC optimization problem is in-
feasible,x(t) ∈ �j

L ⊂ �0
L. At the timet = Tswitch, the state

of the closed-loop system can be shown to be within�0
L

following the same line of reasoning used in the proof of
Theorem 1, with the additional possibility ofTswitch= TN .
As shown above,x(t) ∈ �0

L for all Tj−1� t�Tj and there-
fore x ∈ �0

L for TN−1� t�TN and thereforex(TN) ∈ �0
L

implying once again thatx(Tswitch) ∈ �0
L. For all t�Tswitch,

the closed-loop state evolves under some bounded con-
troller u(x) = bk(x), for which x(Tswitch) ∈ �0

k. There-
fore, lim supt→∞ ‖x(t)‖�dk (seeEl-Farra & Christofides,
2003a,bfor the proof). Note that sincedmax is chosen
to be the largest ofdk, k = 1, · · · , l, ‖x(t)‖�dk implies
‖x(t)‖�dmax; hence lim supt→∞ ‖x(t)‖�dmax. This com-
pletes the proof of Theorem 2.�
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