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Predictive Control of Switched Nonlinear Systems
With Scheduled Mode Transitions
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Abstract—In this work, a predictive control framework is
proposed for the constrained stabilization of switched nonlinear
systems that transit between their constituent modes at prescribed
switching times. The main idea is to design a Lyapunov-based pre-
dictive controller for each constituent mode in which the switched
system operates and incorporate constraints in the predictive con-
troller design which upon satisfaction ensure that the prescribed
transitions between the modes occur in a way that guarantees
stability of the switched closed–loop system. This is achieved as
follows: For each constituent mode, a Lyapunov-based model
predictive controller (MPC) is designed, and an analytic bounded
controller, using the same Lyapunov function, is used to explicitly
characterize a set of initial conditions for which the MPC, irre-
spective of the controller parameters, is guaranteed to be feasible,
and hence stabilizing. Then, constraints are incorporated in the
MPC design which, upon satisfaction, ensure that: 1) the state of
the closed–loop system, at the time of the transition, resides in
the stability region of the mode that the system is switched into,
and 2) the Lyapunov function for each mode is nonincreasing
wherever the mode is reactivated, thereby guaranteeing stability.
The proposed control method is demonstrated through application
to a chemical process example.

Index Terms—Bounded Lyapunov-based control, input con-
straints, model predictive control (MPC), multiple Lyapunov
functions, stability regions, switched systems.

I. INTRODUCTION

THE operation of processes often involves controlled, dis-
crete transitions between multiple, continuous modes of

operation in order to handle, for example, changes in raw ma-
terials, energy sources, product specifications and market de-
mands. The superposition of discrete events on the continuous
process dynamics gives rise to a hybrid system behavior, i.e.,
intervals of piecewise continuous behavior interspersed by dis-
crete transitions. Compared with purely continuous systems, the
hybrid nature of these systems makes them more difficult to de-
scribe, analyze, and control. Motivated by these challenges as
well as the abundance of situations where hybrid systems arise
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in practice, significant research efforts have focused on the study
of hybrid systems over the last decade, covering a wide range
of problems including, for example, modeling [1], optimization
[2], stability analysis [3]–[6], and control [7]–[10].

A class of hybrid systems that has attracted significant at-
tention recently, because it can model several practical con-
trol problems that involve integration of supervisory logic-based
control schemes and feedback control algorithms, is the class of
switched (or multimodal) systems. For this class, results have
been developed for stability analysis using the tools of multiple
Lyapunov functions (MLFs), for linear [11] and nonlinear [3]
systems, and the concept of dwell time [5]; the reader may refer
to [4] and [6] for a survey of results in this area. These results
have motivated the development of methods for control of var-
ious classes of switched systems (see, e.g., [12], [13], and [9]).

In [14], a framework for coordinating feedback and switching
for control of hybrid nonlinear systems with input constraints
was developed. The key feature of the control methodology in
[14] is the integrated synthesis of: 1) a family of lower-level
bounded nonlinear controllers that stabilize the continuous dy-
namical modes, and provide an explicit characterization of the
stability region associated with each mode, and 2) upper-level
switching laws that determine, on the basis of the stability re-
gions, whether or not a transition will preserve stability of the
overall switched closed-loop system. While the approach al-
lows one to determine whether or not a switch can be made at
any given time without loss of stability, it does not address the
problem of ensuring that such a switch be made safely at some
predetermined time.

Guiding the system through a prescribed switching sequence
requires a control algorithm that can incorporate both state and
input constraints in the control design. One such control method
is model predictive control (MPC) and has been studied exten-
sively (see, for example, [15]–[17] and [18]). One of the im-
portant issues that arise in the possible use of predictive control
policies for the purpose of stabilization of the individual modes,
however, is the difficulty they typically encounter in identifying,
a priori (i.e., before controller implementation), the set of ini-
tial conditions starting from where feasibility and closed-loop
stability are guaranteed. This typically results in the need for
extensive closed-loop simulations to search over the whole set
of possible initial conditions, thus adding to the overall compu-
tational load. This difficulty is more pronounced when consid-
ering MPC of hybrid systems that involve switching between
multiple modes.

For linear systems, the switched system can be transformed
into a mixed logical dynamical system, and a mixed-integer
linear program can be solved to come up with an optimal
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switching sequence and switching times [19], [20]. For non-
linear systems, one can, in principle, set up the mixed integer
nonlinear programming problem, where the decision variables
include the control action together with the switching schedule.
The presence of nonlinear dynamics, that typically make the
optimization problem nonconvex, together with the discrete
decision variables results in high computational complexity,
and the computation time requirements render it unsuitable for
the purpose of real-time control.

In many systems of practical interest, the switched system is
required to follow a prescribed switching schedule, where the
switching times are no longer decision variables, but are pre-
scribed via an operating schedule. Motivated by this practical
problem, we propose a predictive control framework for the con-
strained stabilization of switched nonlinear systems that transit
between their constituent modes at prescribed switching times.
The main idea is to design a Lyapunov–based predictive con-
troller for each constituent mode in which the switched system
operates and incorporate constraints in the predictive controller
design which upon satisfaction ensure that the prescribed transi-
tions between the modes occur in a way that guarantees stability
of the switched closed–loop system. This is achieved as fol-
lows: for each constituent mode, a Lyapunov-based model pre-
dictive controller (MPC) is designed, and an analytic bounded
controller, using the same Lyapunov function, is used to explic-
itly characterize a set of initial conditions for which the MPC,
irrespective of the controller parameters, is guaranteed to be fea-
sible and, hence, stabilizing. Then, constraints are incorporated
in the MPC design which, upon satisfaction, ensure that: 1) the
state of the closed–loop system, at the time of the transition,
resides in the stability region of the mode that the system is
switched into, and 2) the Lyapunov function for each mode is
nonincreasing wherever the mode is reactivated, thereby guar-
anteeing stability. The proposed control method is demonstrated
through application to a chemical process example.

II. PRELIMINARIES

We consider the class of switched nonlinear systems repre-
sented by the following state–space description:

(1)

where denotes the vector of continuous-time state
variables, denotes
the vector of constrained manipulated inputs taking values in a
nonempty compact convex set

, where is the Euclidian norm, is the mag-
nitude of the constraints, is the switching
signal which is assumed to be a piecewise continuous (from
the right) function of time, i.e., for all

, implying that only a finite number of switches is allowed
on any finite interval of time. is the number of modes of the
switched system, , which takes different values in the finite
index set , represents a discrete state that indexes the vector
field , the matrix , and the control input , which

altogether determine . Throughout this paper, we use the no-
tations and to denote the time at which, for the th
time, the th subsystem is switched in and out, respectively, i.e.,

. With this notation, it is understood that
the continuous state evolves according to
for . and

denote the set of switching times at which the
th subsystem is switched in and out, respectively. It is assumed

that all entries of the vector functions , and the ma-
trices , are sufficiently smooth and that for
all . Throughout the paper, the notation denotes
the standard Lie derivative of a scalar function with re-
spect to the vector function , , and

.
In order to provide the necessary background for our main

results in Section III, we will briefly review in the remainder
of this section a bounded controller design the stability proper-
ties of which are exploited in the design of a Lyapunov–based
model predictive controller and in explicitly characterizing its
stability region. For simplicity, we focus on the state feedback
control problem where measurements of are assumed to be
available for all .

A. Bounded Lyapunov-Based Control

Consider the system of (1), for a fixed for some
, for which a control Lyapunov function, , exists. Using the

results in [21] (see also [22]), the following continuous bounded
control law can be constructed:

(2)

with

(3)

is a row vector, where is
the th column of , and .
For the previous controller, one can compute an estimate of the
stability region that is described by

(4)

where is the largest number for which
, and

(5)
The bounded controller of (2)–(3) possesses a robustness prop-
erty with respect to measurement errors, that preserves closed–
loop stability when the control action is implemented in a dis-
crete (sample and hold) fashion with a sufficiently small hold
time ( ). Specifically, the control law ensures that, for all ini-
tial conditions in , the closed–loop state remains in and
eventually converges to some neighborhood of the origin whose
size depends on . This robustness property, formalized below
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in Proposition 1, will be exploited in the Lyapunov-based pre-
dictive controller design of Section II-B. For further results on
the analysis and control of sampled-data nonlinear systems, the
reader may refer to [23]–[26].

Proposition 1: Consider the constrained system of (1) for
a fixed value of , under the bounded control law of
(2)–(3) designed using the Lyapunov function and ,
and the stability region estimate under continuous imple-
mentation. Let for all and

, . Then, given any positive
real number , there exists a positive real number such that
if and , then
and .

Proof of Proposition 1: The proof consists of two parts. In
the first part, we establish that the bounded state feedback control
law of (2)–(3) enforces asymptotic stability for all initial condi-
tions in with a certain robustness margin. In the second part,
given the size, , of a ball around the origin that the system is
required to converge to, we show the existence of a positive real
number , such that if the discretization time is chosen to
be in , then remains invariant under discrete imple-
mentation of the bounded control law, and also that the state of
the closed–loop system converges to the ball .

Part 1: Substituting the control law of (2)–(3) into the
system of (1) for a fixed it can be shown that

(6)

for all , where was defined in (4). Since the denom-
inator term in (6) is bounded in , there exists a positive real
number, , such that for all , which im-
plies that the origin of the closed–loop system, under the control
law of (2)–(3), is asymptotically stable, with as an estimate
of the domain of attraction.

Part 2: Note that since is a continuous function of
the state, one can find a finite, positive real number, , such
that implies . In the rest of the proof, we
show the existence of a positive real number such that all
state trajectories originating in converge to the level set of

( ) for any value of and hence we
have that .

To this end, consider a “ring” close to the boundary of the
stability region, described by

(see also Fig. 1), for a . Let
the control action be computed for some
and held constant until a time , where is a positive
real number ( ). Then,

(7)

Fig. 1. Schematic representation of the stability region and the evolution of
the closed–loop state trajectory under discrete implementation of the bounded
controller.

Since the control action is computed based on the states in
, . By

definition, for all , , therefore
.

Since the function and the elements of the matrix
are continuous, , and is bounded, then one can
find, for all and a fixed , a positive real number

, such that for all .
Since the functions , are continuous, then

given that , one can find positive real
numbers and such that

and
. Using these inequalities in (7), we get

(8)

For a choice of
where is a positive real number such that

(9)

we get that for all . This implies
that, given , if we pick such that and
find a corresponding value of then if the control action is
computed for any , and the “hold” time is less than ,
we get that remains negative during this time and, therefore,
the state of the closed–loop system cannot escape (since
is a level set of ). We now show the existence of such that
for all , we
have that , where

, for any .
Consider such that

(10)

Since is a continuous function of , and evolves con-
tinuously in time, then for any value of , one can
choose a sufficiently small such that (10) holds. Let

. We now show that for all and
, for all .
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For all , by definition for
(since ). For all (and therefore

), for (since ). Since
is a level set of , then for . Either way,
for all initial conditions in , for all future times.

We note that for such that , negative defi-
niteness of is guaranteed for . Hence, all
trajectories originating in converge to , which has been
shown to be invariant under the bounded control law with a
hold time less than and, therefore, for all ,

. Finally, since implies
, therefore we have that .

This completes the proof of Proposition 1.
Remark 1: Control Lyapunov function (CLF)-based stabi-

lization of nonlinear systems has been studied extensively in
the nonlinear control literature (e.g., see [27], [21], and [28]).
The construction of constrained CLFs (i.e., CLFs that take the
constraints into account) remains a difficult problem (especially
for nonlinear systems) that is the subject of ongoing research.
For several classes of nonlinear systems that arise commonly
in the modeling of engineering systems, systematic, and com-
putationally feasible methods are available for constructing
unconstrained CLFs (CLFs for the unconstrained system) by
exploiting the system structure. Examples include the use of
quadratic functions for feedback linearizable systems and the
use of back-stepping techniques to construct CLFs for systems
in strict feedback form. In this work, the bounded controllers in
(2)–(3) are designed using unconstrained CLFs, which are also
used to explicitly characterize the associated regions of stability
via (4)–(5). While the resulting estimates do not necessarily
capture the entire domain of attraction (this remains an open
problem even for linear systems), we will use them throughout
the paper for a concrete illustration of the results. It is possible
to obtain substantially improved estimates by using a combina-
tion of several CLFs (see, for example, [29] and [30]).

B. Lyapunov-Based Predictive Control

In this section, we consider predictive control of the system
of (1), for a fixed for some . We present here
a Lyapunov–based design of MPC that guarantees feasibility of
the optimization problem and hence constrained stabilization of
the closed–loop system from an explicitly characterized set of
initial conditions. For this predictive control design, the control
action at state and time is obtained by solving, online, a finite
horizon optimal control problem of the form

(11)

(12)

if (13)

if (14)

where , are defined in (9) and Proposition 1, respectively,
is the family of piecewise continuous functions

(functions continuous from the right), with period , mapping
into , is the specified horizon and is the

Lyapunov function used in the bounded controller design. A
control in is characterized by the sequence

where and satisfies for all
. The performance index is given by

(15)

where is positive–semidefinite symmetric matrix, and is
strictly positive–definite symmetric matrix. denotes
the solution of (1), due to control , with initial state at time .
The minimizing control is then applied to the plant
over the interval and the procedure is repeated in-
definitely. Stability properties of the closed–loop system under
the Lyapunov–based predictive controller are inherited from the
bounded controller under discrete implementation and are for-
malized in Proposition 2.

Proposition 2: Consider the constrained system of (1) for
a fixed value of under the MPC control law of
(11)–(15), designed using a control Lyapunov function that
yields a stability region under continuous implementation
of the bounded controller of (2)–(3) with a fixed . Then,
given any positive real number , there exist positive real
numbers and , such that if and ,
then and .

Proof of Proposition 2: From the proof of Proposition
1, we infer that given a positive real number, , there exists
an admissible manipulated input trajectory (provided by the
bounded controller), and values of and , such that for
any and ,
and . The rest of the proof is divided
in three parts. In the first part we show that for all ,
the predictive controller of (11)–(15) is feasible. We then
show that is invariant under the predictive control algo-
rithm of (11)–(15). Finally, we prove practical stability for the
closed–loop system.

Part 1: Consider some under the predictive con-
troller of (11)–(15), with a prediction horizon , where

is the hold time and is the number of prediction
steps. The initial condition can either be such that
or .

Case 1: If , the control input trajec-
tory under the bounded controller of (2)–(3) provides a feasible
solution to the constraint of (13) (see Proposition 1), given by

, . Note that if for
, and , then

and [since is computed using the bounded
controller of (2)–(3)].

Case 2: If , once again we infer from Propo-
sition 1 that the control input trajectory provided by the bounded
controller of (2)–(3) provides a feasible initial guess, given by

, (recall from Proposition
1, that under the bounded controller of (2)–(3), if
then ). This shows that for all

, the Lyapunov-based predictive controller of (11)–(15) is
feasible.

Part 2: As shown in Part 1, for any , the
constraint of (13) in the optimization problem is feasible. Upon
implementation, therefore, the value of the Lyapunov function
decreases. Since is a level set of , the state trajectories
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cannot escape . On the other hand, if , feasibility
of the constraint of (14) guarantees that the closed–loop state
trajectory stays in . In both cases, continues to be an
invariant region under the Lyapunov-based predictive controller
of (11)–(13).

Part 3: Finally, consider an initial condition .
Since the optimization problem continues to be feasible, we
have that for all i.e., . All
trajectories originating in , therefore converge to . For

, the feasibility of the optimization problem implies
, i.e., . Therefore, for all ,

. Also, since implies
, we have that . This com-

pletes the proof of Proposition 2.
Remark 2: Note that Lyapunov-based predictive control ap-

proaches (see, for example, [16] and [17]) typically incorporate
a similar Lyapunov function decay constraint, albeit requiring
the constraint of (13) to hold at the end of the prediction horizon
as opposed to during the first time step, and assume the initial
feasibility of this constraint. In contrast, the predictive controller
formulation of (11)–(15) requires that the value of the Lyapunov
function decrease during the first step only, allowing for the use
of the bounded controller as an auxiliary controller to explicitly
characterize the set of initial conditions stating from where the
predictive controller is guaranteed to be feasible.

Remark 3: The fact that only practical stability is achieved
is not a limitation of the MPC formulation, but is due to dis-
crete-time implementation of the control action into a contin-
uous-time dynamical system. Even if the bounded controller is
used instead, under the same implement-and-hold time of , the
bounded controller can also only guarantee that the state of the
closed–loop system converges to the set , the size of which is
limited by the value of the hold time, (in the limit as goes
to zero – continuous implementation– the bounded controller
and the predictive controller enforce asymptotic stability). Note
also that any other Lyapunov-based analytic control design that
provides an explicit characterization of the stability region and
is robust with respect to discrete implementation can be used as
an auxiliary controller.

Remark 4: One of the key challenges that impact on the
practical implementation of nonlinear model predictive control
(NMPC) is the inherent difficulty of characterizing, a priori,
the set of initial conditions starting from where a given NMPC
controller is guaranteed to stabilize the closed–loop system, or
for a given set of initial conditions, to identify the value of
the prediction horizon for which the optimization problem will
be feasible. Use of conservatively large horizon lengths to ad-
dress stability only increases the size and complexity of the
nonlinear optimization problem and could make it intractable.
Owing to the fact that closed–loop stability is guaranteed by the
Lyapunov-based predictive controller from an explicitly char-
acterized set of initial conditions, irrespective of the prediction
horizon, the time required for the computation of the control ac-
tion, if so desired, can be made smaller by reducing the size of
the optimization problem by decreasing the prediction horizon.

Remark 5: In the event that measurements are not continu-
ously available, but are available only at sampling times

, i.e., greater than what a given bounded control design can

tolerate (and, therefore, greater than the maximum allowable
discretization for the Lyapunov-based predictive controller), it
is necessary to redesign the bounded controller to increase the
robustness margin, and generate a revised estimate of the fea-
sibility (and stability) region under the predictive controller. A
larger value of may be achieved by increasing the value of
the parameter in the design of the bounded controller (see
proof of Proposition 1). If the value of the sampling time is
reasonable, an increase in the value of the parameter , while
leading to a shrinkage in the stability region estimate, can in-
crease to a value greater than and preserve the desired
feasibility and stability guarantees of the Lyapunov-based pre-
dictive controller.

III. PREDICTIVE CONTROL OF SWITCHED NONLINEAR SYSTEMS

Consider now the nonlinear switched system of (1), with
a prescribed switching sequence (including the switching
times) defined by and

. Also, assume that for each mode of the
switched system, a Lyapunov–based predictive controller of
the form of (11)–(15) has been designed and an estimate of the
stability region generated. The control problem is formulated
as the one of designing a Lyapunov-based predictive controller
that guides the closed–loop system trajectory in a way that
the schedule described by the switching times is followed and
stability of the closed–loop system is achieved. A predictive
control algorithm that addresses this problem is presented in
Theorem 1.

Theorem 1: Consider the constrained nonlinear system of
(1), the control Lyapunov functions , , and the
stability region estimates , under continuous
implementation of the bounded controller of (2)–(3) with fixed

, . Let be a design
parameter. Let be such that and
for some , . Consider the following optimization problem:

(16)

(17)

where is the prediction horizon given by , if
and if , subject to the fol-

lowing constraints:

(18)

if (19)

if (20)

and if then

,

, (21)

where is a positive real number. Then, given a positive real
number , there exist positive real numbers and ,
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Fig. 2. Schematic representation of the predictive control structure comprised of the predictive and bounded controllers for the constituent modes, together with
transition constraints.

such that if the optimization problem of (16)–(21) is
feasible at all times, the minimizing control is applied to the
system over the interval , where and

for some integer and the proce-
dure is repeated, then, .

Proof of Theorem 1: The proof of this theorem follows
from the assumption of feasibility of the constraints of (19)–(21)
at all times. Given the radius of the ball around the origin, ,
the value of and for all is computed the same
way as in the proof of Proposition 1. Then, for the purpose of
MPC implementation, a value of is chosen where

and for some in-
teger (note that given any two positive real numbers

and , one can always find a positive real number
such that for some integer

).
Part 1: First, consider the case when the switching

is infinite. Let be such that and
. Consider the active mode . If ,

the continued feasibility of the constraint of (19) implies
that . The transition constraint
of (21) ensures that if this mode is switched out and then
switched back in, then . In general

. Under the assump-
tion of feasibility of the constraints of (19)–(21) for all future
times, therefore, the value of continues to decrease. If
the mode of this Lyapunov function is not active, there exists at
least some such that mode is active and Lyapunov
function continues to decrease until the time that
(this happens because there are a finite number of modes, even
if the number of switches may be infinite). From this point
onwards, the constraint of (20) ensures that continues to be
less than . Hence, .

Part 2: For the case of a finite switching sequence, con-
sider a such that . Under the as-
sumption of continued feasibility of (19)–(21),

. At the time of the switch to
mode , therefore, . From this point onwards, the

Lyapunov based controller is implemented using the Lyapunov
function , and the constraint of (21) is removed, in which case
the predictive controller of Theorem 1 reduces to the predictive
controller of (11)–(15). Since the value of is chosen to be
in , where , therefore ,
which guarantees feasibility and convergence to the ball

for any value of the prediction horizon (hence, for a choice
of ), and leads to . This
completes the proof of Theorem 1.

Remark 6: Note that the constraint of (19) is guaranteed to
be feasible between mode transitions, provided that the system
is initialized within the stability region, and does not require
the assumption of feasibility. This stability constraint ensures
that the value of the Lyapunov function of the currently active
mode keeps decreasing (recall that one of the criteria in the
multiple Lyapunov-function stability analysis is that the indi-
vidual modes of the switched system be stable). The constraint
of (19) expresses two transition requirements simultaneously:
1) the MLF constraints that requires that the value of the Lya-
punov function be less than what it was the last time the system
switched into that mode (required when the switching sequence
is infinite, see [3] for details), and 2) the stability region con-
straint that requires that the state of the process reside within the
stability region of the target mode at the time of the switch; since
the stability regions of the modes are expressed as level sets of
the Lyapunov functions, the MLF-constraint also expresses the
stability region constraint. The understanding that it is a reason-
ably chosen switching schedule (that is, one that does not result
in closed–loop instability), motivates assuming the feasibility
of the transition constraints for all times. Note that the feasi-
bility of the transition constraints can also be used to validate
the switching schedule, and can be used to abort the switching
schedule (i.e., to decide that the remaining switches should not
be carried out) in the interest of preserving closed–loop stability.

Remark 7: Fig. 2 is a schematic that depicts the main fea-
tures of the predictive controller for mode transitions, for repre-
sentative switching between two modes, where the switching
schedule dictates the transitions, and is accounted for in the
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Fig. 3. Schematic representation of the closed–loop trajectory of a switched
system under the implementation of the predictive control algorithm of Theorem
1 (solid line) and using the relaxed constraints of Remark 9 (dashed line).

predictive control design. A representative implementation of
the predictive control algorithm of Theorem 1 is also depicted
schematically by the solid lines in Fig. 3. The algorithm that fol-
lows explains the implementation of the predictive controller of
Theorem 1, including the course of action that needs to be taken
if the predictive controller does not yield a feasible solution.

1) Given the system model of (1) and the
constraints on the input, design the
bounded controller of (2)–(3) for each
mode and compute the stability region
estimate, , for the bounded con-
troller using (4)–(5).
2) Given the size of the ball, ,
that the state is required to converge
to, compute , for the pre-
dictive controller of (11)–(15), such
that under single mode operation for
each mode, . Compute

, and use a for
which for some integer

, for the purpose of MPC implementa-
tion.
3) Consider the time , which desig-
nates the time that the closed–loop system
switches to the th mode for the th time,
and the state belongs to the stability re-
gion of the th mode (for the purpose of
initialization, i.e., at , this would
correspond to , and the state belonging
to the stability region ).
4) From the set of prescribed switching
times, pick ( , therefore, is
the time that the next switch takes place,
and that the system, upon exiting from the
current mode enters mode for the th
time).
5) Consider the predictive con-
troller of Theorem 1. The constraint

requires that when
the closed–loop system enters the mode

, the value of is less than what
it was at the time that the system last
entered mode (this is a version of
the multiple Lyapunov function stability
condition, see [3]). If the system has
never entered mode before, i.e., for

, set (this requires
that the state belongs to the stability
region corresponding to mode ). If the
closed–loop state has already entered the
desired ball around the origin, implement

, that ensures that the state

stays within the ball, .
6) If at any time, the predictive con-
troller of Theorem 1 does not yield a fea-
sible solution, or the switching schedule
does not prescribe another switch, go to
step 7); else implement the predictive
controller up-to time , i.e., until
the time that the system switches into
mode and go back to step 4) to proceed
with the rest of the switching sequence.
7) Implement the Lyapunov-based predictive
controller of (11)–(15) for the current
mode to stabilize the closed–loop system.

Remark 8: Note that since the switching times are fixed,
the prediction of the states in the controller needs to be car-
ried out from the current time up-to the time of the next switch
only. The predictive controller is therefore implemented with
a shrinking horizon between successive switching times. Note,
however, that the value of the horizon is not a decision variable
(and, therefore, does not incur any computational burden); its
value is obtained simply by evaluating the difference between
the next switching time and the current time. However, in the
case that the switching schedule terminates, then after the last
switch has been made and the system is evolving in the terminal
mode, the horizon is fixed and set equal to a preset design param-
eter . Note that from this point onward, the controller de-
sign of (16)–(20) reduces to the Lyapunov based predictive con-
troller of (11)–(15) for the terminal mode, and guarantees prac-
tical stability of the closed–loop system for any value of predic-
tion horizon, including for . Note also that picking
the hold time ( ) during the operation between and
such that the time interval between switches be an integer mul-
tiple of the sampling time is made to ensure that the system
does not go through a transition while the final control move
in a given mode is being implemented. To see the reasoning be-
hind this, note first that, due to the discrete nature of controller
implementation, the final control in the pre-switching mode is
implemented for time. Therefore, if the system undergoes a
transition during that time (i.e., if is greater than ),
then the control could cause the closed–loop state to leave the
stability region of the target mode after switching has been ex-
ecuted. Picking as before precludes such a possibility.

Remark 9: The constraints of (19)–(20) require that the
closed–loop state evolve so that the value of the Lyapunov
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function for the current mode continues to decay, and there-
fore the closed–loop state trajectory evolves in a way that it
enters the stability region of the target mode [due to (21)],
while, up-to the time of the switch, continuing to evolve in
the stability region of the current mode. Owing to this, if at
any time the transition constraints are not feasible, and the
switching sequence is aborted, the Lyapunov-based predictive
controller for the then-current mode is guaranteed to stabilize
the closed-loop system. While this condition safeguards against
instability, it may be restrictive, and hamper the feasibility
of the optimization problem, especially if the boundaries of
the stability regions of the constituent modes do not have
a significant overlap. When dealing with a finite switching
sequence, the constraints of (19)–(20) can be relaxed for all
times before the final switch takes place and also a relaxed
version of the constraint of (21) may be used up to the time of
the terminal switch, requiring only that (i.e.,
the closed–loop state resides in the stability region of the target
mode, see dashed lines in Fig. 3).

Remark 10: For purely continuous systems, the problem of
implementing various predictive control algorithms (not nec-
essarily ones using Lyapunov-based stability constraints) with
guaranteed stability regions was recently addressed for linear
systems under state [31] and output [32] feedback control, non-
linear systems [29] and for nonlinear systems in the presence
of uncertainty [30], by means of a hybrid control structure that
uses bounded control as a fall-back controller in the event of
infeasibility or instability of the predictive controller. In this
paper, the bounded controller design is not used as a fall back
controller, but rather for the purpose of providing an estimate
of the stability region for the Lyapunov-based predictive con-
troller, and feasible initial guesses for the control moves (the
decision variables in the optimization problem). Note that the
Lyapunov-based predictive controller of (11)–(15) is guaranteed
to be feasible and stabilizing from an explicitly characterized set
of initial conditions.

Remark 11: Note that the use of the predictive controller is
both beneficial and essential to the problem of implementing
a prescribed switching schedule using the proposed approach.
In particular, while the bounded controller can achieve stabi-
lization under single mode operation, the bounded controller
framework simply does not address performance considera-
tions, and more importantly does not allow for incorporating
transition constraints, and there is no guarantee that the bounded
controller (or even the Lyapunov-based predictive controller, if
it does not incorporate the transition constraints) can stabilize
the closed–loop system when following a prescribed switching
schedule (see the simulation example in the next section for a
demonstration of this point). In contrast, the predictive control
approach provides a natural framework for specifying appro-
priate transitions constraints, which upon being feasible, ensure
closed–loop stability.

Remark 12: For a nonlinear switched system of the form
of (1), while one can in principle set up a mixed integer non-
linear programming problem, where the decision variables (and,
hence, the solution to the optimization problem) include the
control action together with the switching schedule, it is not
possible to use it for the purpose of online implementation.

TABLE I
PROCESS PARAMETERS AND STEADY–STATE VALUES

In many systems of practical interest, however, the switched
system may be only required to follow a prescribed switching
schedule. The predictive controller algorithm provides an imple-
mentable controller for switched nonlinear systems with a pre-
scribed switching sequence by incorporating appropriate con-
straints on the implemented control action in each of the indi-
vidual modes. Note also that if it is possible to solve the mixed
integer optimization problem offline, it can be used to provide
a set of optimal switching times, and an associated switching
sequence, which can be then implemented online using the pro-
posed approach.

IV. APPLICATION TO A CHEMICAL PROCESS EXAMPLE

We consider a continuous stirred tank reactor where an ir-
reversible, first-order exothermic reaction of the form
takes place. The operation schedule requires switching between
two available inlet streams consisting of pure at flow rates ,

, concentrations , , and temperatures , , re-
spectively. For each mode of operation, the mathematical model
for the process takes the form

(22)

where denotes the concentration of the species , de-
notes the temperature of the reactor, is the heat removed
from the reactor, is the volume of the reactor, , , are
the pre-exponential constant, the activation energy, and the en-
thalpy of the reaction, and , are the heat capacity and fluid
density in the reactor and is the discrete variable.
The values of all process parameters can be found in Table I.
The control objective is to stabilize the reactor at the unstable
equilibrium point using the rate of
heat input, , and change in inlet concentration of species ,

as manipulated inputs with constraints:
and , . For both

the modes, we considered quadratic Lyapunov functions of the
form where , with
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Fig. 4. Closed–loop state trajectory when the reactor is operated in mode 1 for all times under the stabilizing MPC formulation of (11)–(15) (solid line), when
the reactor operation involves switching from mode 1 to mode 2 at t = 0:1 hr, under the predictive controller design of (11)–(15) (dashed line), and when the
reactor operation involves switching from mode 1 to mode 2 at t = 0:1 hr, under the predictive controller of Theorem 1 (dashed–dotted line).

and and used

these in the Lyapunov-based controller design to compute the
stability regions for the two modes, and , shown in Fig. 4.
The matrices were computed by solving a Riccatti inequality
using the linearized system matrices. The computation of the
stability region [using (4) and (5)], however, was done using
the nonlinear system dynamics. The parameters in the objective
function of (15) are chosen as , with , and ,
with . The constrained nonlinear optimization problem
is solved using the MATLAB subroutine fmincon, and the set
of ODEs is integrated using the MATLAB solver ODE45.

We first demonstrate the implementation of the Lyapunov-
based predictive controller to a single mode operation of the
chemical reactor, i.e., one in which the process is operated for
all times in mode 1. To this end, we consider an initial condition
that belongs to the stability region of the predictive controller
for mode 1. As shown by the solid line in Fig. 4 (see Fig. 5 for
the state and input profiles), starting from the initial condition

, which belongs to the stability region
of the predictive controller for mode 1, successful stabilization
of the closed–loop system is achieved.

To demonstrate the need to account for the switched nature of
the system, we choose a schedule involving a switch from inlet
stream 1 (mode 1) to inlet stream 2 (mode 2) at time .
Once again the system is initialized within the stability region of
mode 1, and the predictive controller for mode 1 is implemented.
Up until , the state of the closed–loop system moves
toward the desired steady state (as seen from the dashed–lines in
Fig. 4); however, when the system switches to mode 2, the MPC
controller, designed for the stabilization of the process in mode
2, does not yield a feasible solution. If the bounded controller for
mode 2 is implemented, the resulting control action is not able
to stabilize the closed–loop system (dashed lines in Figs. 4–5).

This happens because at the time of the transition, the state of
the closed–loop system (marked by the in Fig. 4) does not
belong to the stability region of mode 2. Note also that while
the predictive formulation of (11)–(15) guarantees stabilization
for all initial conditions belonging to the stability region of mode
1, it does not incorporate constraints which enable or ensure a
safe transition to mode 2.

Finally, the predictive control algorithm of Theorem 1
(which incorporates constraints that account for switching)
is implemented (dashed–dotted lines in Figs. 4 and 5). The
MPC controller of mode 1 is designed to drive the state of the
closed–loop system such that the state belongs to the stability
region of mode 2 at the switching time. Consequently, when
the system switches to mode 2 at , the closed–loop
system state at the switching time (marked by the in
Fig. 4) belongs to the stability region of the MPC designed
for mode 2. At this time, when the process switches to mode
2 and the corresponding predictive controller is implemented,
closed–loop stability is achieved.

V. CONCLUSION

In this work, a predictive control framework was proposed
for the constrained stabilization of switched nonlinear systems
that transit between their constituent modes at prescribed
switching times. The main idea is to design a Lyapunov–based
predictive controller for each of the constituent modes in which
the switched system operates, and incorporate constraints in
the predictive controller design which upon satisfaction ensure
stability of the switched closed–loop system. This was achieved
as follows: For each constituent mode, a Lyapunov-based MPC
is designed, and an analytic bounded controller, using the same
Lyapunov function is used to explicitly characterize the set
of initial conditions for which the MPC, irrespective of the
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Fig. 5. Closed-loop state (top plots) and manipulated input (bottom plots) profiles: when the reactor is operated in mode 1 for all times under the stabilizing MPC
formulation of (11)–(15) (solid line), when the reactor operation involves switching from mode 1 to mode 2 at t = 0:1 hr, under the predictive controller design
of (11)–(15) (dashed line), and when the reactor operation involves switching from mode 1 to mode 2 at t = 0:1 hr, under the predictive controller of Theorem 1
(dashed–dotted line).

controller parameters, is guaranteed to be feasible, and hence
stabilizing. Then, constraints were incorporated in the MPC de-
sign which, upon satisfaction, ensure that: 1) the state of the
closed–loop system, at the time of the transition, resides in the
stability region of the mode that the system is switched into,
and 2) the value of the Lyapunov function for each of the modes
eventually decays to zero, thereby guaranteeing stability. The
proposed control method was demonstrated through application
to a chemical process example.

REFERENCES

[1] E. C. Yamalidou and J. Kantor, “Modeling and optimal control of dis-
crete-event chemical processes using petri nets,” Comput. Chem. Eng.,
vol. 15, pp. 503–519, 1990.

[2] I. E. Grossmann, S. A. van den Heever, and I. Harjukoski, “Discrete
optimization methods and their role in the integration of planning and
scheduling,” in Proc. 6th Int. Conf. Chemical Process Control, Tucson,
AZ, 2001, pp. 124–152.

[3] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems,” IEEE Trans. Autom. Control, vol. 43,
no. 4, pp. 475–482, Apr. 1998.

[4] D. Liberzon and A. S. Morse, “Basic problems in stability and design of
switched systems,” IEEE Control Syst. Mag., vol. 19, no. 5, pp. 59–70,
Oct. 1999.

[5] J. Hespanha and A. S. Morse, “Stability of switched systems with
average dwell time,” in Proc. 38th IEEE Conf. Decision and Control,
Phoenix, AZ, 1999, pp. 2655–2660.

[6] R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Leenartson, “Per-
spectives and results on the stability and stabilizability of hybrid sys-
tems,” Proc. IEEE, vol. 88, no. 7, pp. 1069–1082, Jul. 2000.

[7] J. Lygeros, D. N. Godbole, and S. S. Sastry, A Game Theoretic Approach
to Hybrid System Design. ser. Lecture Notes in Computer Science, R.
Alur and T. Henzinger, Eds. Berlin, Germany: Springer-Verlag, 1996,
vol. 1066, pp. 1–12.

[8] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework for
hybrid control: Model and optimal control theory,” IEEE Trans. Autom.
Control, vol. 43, no. 1, pp. 31–45, Jan. 1998.

[9] J. Hespanha and A. S. Morse, “Switching between stabilizing con-
trollers,” Automatica, vol. 38, pp. 1905–1917, 2004.

[10] X. P. Xu and P. J. Antsaklis, Results and Perspectives on Computational
Methods for Optimal Control of Switched Systems, ser. Lecture Notes in
Computer Science. New York: Springer-Verlag, 2003, vol. 2623, pp.
540–555.

[11] P. Peleties and R. DeCarlo, “Asymptotic stability ofm-switched systems
using Lyapunov-like functions,” in Proc. Amer. Control Conf., Boston,
MA, 1991, pp. 1679–1684.

[12] M. A. Wicks, P. Peleties, and R. A. DeCarlo, “Switched controller syn-
thesis for the quadratic stabilization of a pair of unstable linear systems,”
Eur. J. Control, vol. 4, pp. 140–147, 1998.

[13] B. Hu, X. Xu, P. J. Antsaklis, and A. N. Michel, “Robust stabilizing
control law for a class of second-order switched systems,” Syst. Control
Lett., vol. 38, pp. 197–207, 1999.

[14] N. H. El-Farra and P. D. Christofides, “Coordinated feedback and
switching for control of hybrid nonlinear processes,” AIChE J., vol. 49,
pp. 2079–2098, 2003.

[15] H. Michalska and D. Q. Mayne, “Robust receding horizon control of
constrained nonlinear systems,” IEEE Trans. Automa. Control, vol. 38,
no. 11, pp. 1623–1633, Nov. 1993.

[16] S. L. D. Kothare and M. Morari, “Contractive model predictive control
for constrained nonlinear systems,” IEEE Trans. Autom. Control, vol.
45, no. 6, pp. 1053–1071, Jun. 2000.

[17] J. A. Primbs, V. Nevistic, and J. C. Doyle, “A receding horizon gener-
alization of pointwise min-norm controllers,” IEEE Trans. Autom. Con-
trol, vol. 45, no. 5, pp. 898–909, May 2000.



1680 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 11, NOVEMBER 2005

[18] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, pp. 789–814, 2000.

[19] A. Bemporad and M. Morari, “Control of systems integrating logic, dy-
namics and constraints,” Automatica, vol. 35, pp. 407–427, 1999.

[20] V. Dua, N. A. Bozinis, and E. N. Pistikopoulos, “A multiparametric pro-
gramming approach for mixed-integer quadratic engineering problems,”
Comput. Chem. Eng., vol. 26, pp. 715–733, 2002.

[21] Y. Lin and E. D. Sontag, “A universal formula for stabilization with
bounded controls,” Syst. Control Lett., vol. 16, pp. 393–397, 1991.

[22] N. H. El-Farra and P. D. Christofides, “Integrating robustness, optimality
and constraints in control of nonlinear processes,” Chem. Eng. Sci., vol.
56, pp. 1841–1868, 2001.

[23] J. W. Grizzle and P. V. Kokotovic, “Feedback linearization of sampled-
data systems,” IEEE. Trans. Autom. Control, vol. 33, no. 9, pp. 857–859,
Sep. 1988.

[24] D. Nesic, A. R. Teel, and P. V. Kokotovic, “Sufficient conditions for sta-
bilization of sampled-data nonlinear systems via discrete-time approxi-
mations,” Syst. Control Lett., vol. 38, pp. 259–270, 1999.

[25] N. Kazantzis, “A functional equations approach to nonlinear discrete-
time feedback stabilization through pole-placement,” Syst. Control Lett.,
vol. 43, pp. 361–369, 2001.

[26] L. Zaccarian, A. R. Teel, and D. Nesic, “On finite gain L stability
of nonlinear sampled-data systems,” Syst. Control Lett., vol. 49, pp.
201–212, 2003.

[27] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Anal., vol.
7, pp. 1163–1173, 1983.

[28] R. Sepulchre, M. Jankovic, and P. Kokotovic, Constructive Nonlinear
Control. Berlin, Germany: Springer-Verlag, 1997.

[29] N. H. El-Farra, P. Mhaskar, and P. D. Christofides, “Hybrid predictive
control of nonlinear systems: Method and applications to chemical pro-
cesses,” Int. J. Robust Nonlinear Control, vol. 4, pp. 199–225, 2004.

[30] P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Robust hybrid pre-
dictive control of nonlinear systems,” Automatica, vol. 41, pp. 209–217,
2005.

[31] N. H. El-Farra, P. Mhaskar, and P. D. Christofides, “Uniting bounded
control and MPC for stabilization of constrained linear systems,” Auto-
matica, vol. 40, pp. 101–110, 2004.

[32] P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Hybrid predictive
control of process systems,” AIChE J., vol. 50, pp. 1242–1259, 2004.

Prashant Mhaskar was born in Varanasi, India, in
1977. He received the B.Tech. degree in chemical
engineering from the Indian Institute of Technology,
Bombay, in 1999, the M.S. degree in chemical
engineering from Louisiana State University, Baton
Rouge, in 2001, and the Ph. D. degree in chemical
engineering from the University of California, Los
Angeles (UCLA), in 2005.

Since September 2005, he has been an Assistant
Professor in the Department of Chemical Engi-
neering, McMaster University, Hamilton, ON,

Canada. His research interests include model predictive control and hybrid
control.

Dr. Mhaskar is a recipient of the UCLA Dissertation Year Fellowship for the
academic year 2004–2005, Best Presentation in Session Awards at the 2004 and
2005 American Control Conferences, and the 2003 Teaching Assistant of the
Year Award from the AIChE Student Chapter of UCLA.

Nael H. El-Farra was born in Kuwait in 1972. He re-
ceived the B.Sc. and Ph.D. degrees in chemical engi-
neering, with highest honors, from the University of
California, Los Angeles (UCLA), in 1998 and 2004,
respectively.

Since July 2004, he has been an Assistant Pro-
fessor in the Department of Chemical Engineering
and Materials Science at the University of California,
Davis. His research interests include constrained
nonlinear control and estimation, fault-tolerant
control, robust control of hybrid systems, analysis

and design of networked process control systems, and computational modeling,
simulation and systems-level analysis of biological networks. He has published
over 20 refereed articles and is coauthor of the book Control of Nonlinear and
Hybrid Process Systems: Designs for Uncertainty, Constraints and Time-De-
lays (New York: Springer-Verlag, 2005).

Dr. El-Farra is a recipient of the 2004 Edward K. Rice Outstanding Doctoral
Student Award from the UCLA Henry Sameuli School of Engineering and Ap-
plied Science, Best Presentation in Session awards at the 2000 and 2003 Amer-
ican Control Conference, the 2000 Teaching Assistant of the Year Award from
the AIChE student chapter at UCLA, the UCLA Chancellor’s Fellowship, for
1998–2002, and the UCLA School of Engineering and Applied Science Out-
standing Bachelor of Science Award in 1998.

Panagiotis D. Christofides (M’02) was born in
Athens, Greece, in 1970. He received the Diploma
in chemical engineering from the University of
Patras, Patras, Greece, in 1992, the M.S. degrees in
electrical engineering and mathematics in 1995 and
1996, respectively, and the Ph.D. degree in chemical
engineering in 1996, all from the University of
Minnesota, Minneapolis.

Since July 1996, he has been with the Department
of Chemical Engineering, the University of Cali-
fornia, Los Angeles (UCLA), where he is currently a

Professor. His theoretical research interests include nonlinear control, singular
perturbations, and analysis and control of distributed parameter systems, mul-
tiscale systems, and hybrid systems, with applications to advanced materials
processing, particulate processes, biological systems, and fluid flows. His
research work has resulted in a large number of articles in leading scientific
journals and conferences and two books entitled Nonlinear and Robust
Control of PDE Systems: Methods and Applications to Transport-Reaction
Processes (Norwell, MA: Birkhäuser, 2001) and Model-Based Control of
Particulate Processes (Boston, MA: Kluwer, 2002). He has also coauthored
(with N. H. El-Farra) the recent book Control of Nonlinear and Hybrid Process
Systems: Designs for Uncertainty, Constraints and Time-Delays (New York:
Springer-Verlag, 2005). A description of his research interests and a list of his
publications can be found at http://www.chemeng.ucla.edu/pchristo/index.html.

Dr. Christofides has been a Member of the Control Systems Society Con-
ference Editorial Board, the 2004 Program Coordinator of the Applied Math-
ematics and Numerical Analysis Area of AIChE and the Program Vice-Chair
for Invited Sessions for the 2004 American Control Conference. He is currently
an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL. He
has received the Teaching Award from the AIChE Student Chapter of UCLA in
1997, a Research Initiation Award from the ACS-Petroleum Research Fund in
1998, a CAREER award from the National Science Foundation in 1998, the Ted
Peterson Student Paper Award from the Computing and Systems Technology
Division of AIChE in 1999 and a Young Investigator Award from the Office of
Naval Research in 2001. He has also received twice the O. Hugo Schuck Best
Paper Award in 2000 (with A. Armaou) and 2004 (with D. Ni, Y. Lou, L. Sha,
S. Lao and J. P. Chang), and the Donald P. Eckman Award in 2004, all from the
American Automatic Control Council. He was a Plenary Speaker in the 2005
American Control Conference.


	toc
	Predictive Control of Switched Nonlinear Systems With Scheduled 
	Prashant Mhaskar, Nael H. El-Farra, and Panagiotis D. Christofid
	I. I NTRODUCTION
	II. P RELIMINARIES
	A. Bounded Lyapunov-Based Control
	Proposition 1: Consider the constrained system of (1) for a fixe
	Proof of Proposition 1: The proof consists of two parts. In the 
	Part 1: Substituting the control law of (2) (3) into the system 
	Part 2: Note that since $V_{k}(\cdot )$ is a continuous function




	Fig.€1. Schematic representation of the stability region and the
	Remark 1: Control Lyapunov function (CLF)-based stabilization of
	B. Lyapunov-Based Predictive Control
	Proposition 2: Consider the constrained system of (1) for a fixe
	Proof of Proposition 2: From the proof of Proposition 1, we infe
	Part 1: Consider some $x_{0}\in \Omega _{k}$ under the predictiv
	Case 1: If $\delta _{k}^{\prime}< V_{k}(x_{0})\leq c_{k}^{\max}$
	Case 2: If $V_{k}(x_{0})\leq \delta _{k}^{\prime}$, once again w
	Part 2: As shown in Part 1, for any $x_{0}\in \Omega _{k} \backs
	Part 3: Finally, consider an initial condition $x_{0}\in \Omega 

	Remark 2: Note that Lyapunov-based predictive control approaches
	Remark 3: The fact that only practical stability is achieved is 
	Remark 4: One of the key challenges that impact on the practical
	Remark 5: In the event that measurements are not continuously av

	III. P REDICTIVE C ONTROL OF S WITCHED N ONLINEAR S YSTEMS
	Theorem 1: Consider the constrained nonlinear system of (1), the


	Fig.€2. Schematic representation of the predictive control struc
	Proof of Theorem 1: The proof of this theorem follows from the a
	Part 1: First, consider the case when the switching is infinite.
	Part 2: For the case of a finite switching sequence, consider a 
	Remark 6: Note that the constraint of (19) is guaranteed to be f
	Remark 7: Fig.€2 is a schematic that depicts the main features o

	Fig.€3. Schematic representation of the closed loop trajectory o
	1) Given the system model of (1) and the constraints on the inpu
	2) Given the size of the ball, $d^{\max}$, that the state is req
	3) Consider the time $t_{k^{\rm in}_{r}}$, which designates the 
	4) From the set of prescribed switching times, pick $t_{m^{\rm i
	5) Consider the predictive controller of Theorem 1. The constrai
	6) If at any time, the predictive controller of Theorem 1 does n
	7) Implement the Lyapunov-based predictive controller of (11) (1
	Remark 8: Note that since the switching times are fixed, the pre
	Remark 9: The constraints of (19) (20) require that the closed l
	Remark 10: For purely continuous systems, the problem of impleme
	Remark 11: Note that the use of the predictive controller is bot
	Remark 12: For a nonlinear switched system of the form of (1), w

	TABLE I P ROCESS P ARAMETERS AND S TEADY S TATE V ALUES
	IV. A PPLICATION TO A C HEMICAL P ROCESS E XAMPLE

	Fig.€4. Closed loop state trajectory when the reactor is operate
	V. C ONCLUSION
	Fig.€5. Closed-loop state (top plots) and manipulated input (bot

	E. C. Yamalidou and J. Kantor, Modeling and optimal control of d
	I. E. Grossmann, S. A. van den Heever, and I. Harjukoski, Discre
	M. S. Branicky, Multiple Lyapunov functions and other analysis t
	D. Liberzon and A. S. Morse, Basic problems in stability and des
	J. Hespanha and A. S. Morse, Stability of switched systems with 
	R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Leenartson,
	J. Lygeros, D. N. Godbole, and S. S. Sastry, A Game Theoretic Ap
	M. S. Branicky, V. S. Borkar, and S. K. Mitter, A unified framew
	J. Hespanha and A. S. Morse, Switching between stabilizing contr
	X. P. Xu and P. J. Antsaklis, Results and Perspectives on Comput
	P. Peleties and R. DeCarlo, Asymptotic stability of $m$ -switche
	M. A. Wicks, P. Peleties, and R. A. DeCarlo, Switched controller
	B. Hu, X. Xu, P. J. Antsaklis, and A. N. Michel, Robust stabiliz
	N. H. El-Farra and P. D. Christofides, Coordinated feedback and 
	H. Michalska and D. Q. Mayne, Robust receding horizon control of
	S. L. D. Kothare and M. Morari, Contractive model predictive con
	J. A. Primbs, V. Nevistic, and J. C. Doyle, A receding horizon g
	D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, C
	A. Bemporad and M. Morari, Control of systems integrating logic,
	V. Dua, N. A. Bozinis, and E. N. Pistikopoulos, A multiparametri
	Y. Lin and E. D. Sontag, A universal formula for stabilization w
	N. H. El-Farra and P. D. Christofides, Integrating robustness, o
	J. W. Grizzle and P. V. Kokotovic, Feedback linearization of sam
	D. Nesic, A. R. Teel, and P. V. Kokotovic, Sufficient conditions
	N. Kazantzis, A functional equations approach to nonlinear discr
	L. Zaccarian, A. R. Teel, and D. Nesic, On finite gain $L_{P}$ s
	Z. Artstein, Stabilization with relaxed controls, Nonlinear Anal
	R. Sepulchre, M. Jankovic, and P. Kokotovic, Constructive Nonlin
	N. H. El-Farra, P. Mhaskar, and P. D. Christofides, Hybrid predi
	P. Mhaskar, N. H. El-Farra, and P. D. Christofides, Robust hybri
	N. H. El-Farra, P. Mhaskar, and P. D. Christofides, Uniting boun
	P. Mhaskar, N. H. El-Farra, and P. D. Christofides, Hybrid predi



