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SUMMARY

In this work, we consider robust predictive control of switched uncertain nonlinear systems required to
satisfy a prescribed switching sequence with uncertainty in the switching times subject to state and input
constraints. To illustrate our approach, we consider first the problem of satisfying a prescribed schedule
subject to uncertainty only in the switching times. Predictive controllers that guarantee the satisfaction of
state and input constraints from an explicitly characterized set of initial conditions are first designed. The
performance and constraint-handling capabilities of the predictive controllers are subsequently utilized
in ensuring the satisfaction of the switching schedule while preserving stability. The results are then
generalized to address the problem in the presence of parametric uncertainty and exogenous time-varying
disturbances in the dynamics of the constituent modes. The proposed control method is demonstrated
through application to a scheduled chemical process example. Copyright � 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Chemical processes often have to undergo discrete switches between different modes of operation
to satisfy, for instance, the requirements of different product grades and to process different streams
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through the same unit. The operation schedule has to be executed while preserving process stability
and respecting constraints on variables that arise due to performance and safety considerations.
Furthermore, uncertainty in switching times due, for example, to the uncertainty in stream avail-
abilities from the upstream processing units must be accounted for in the process operation. Even
in the absence of such uncertainties, the hybrid nature of the process arising due to switching
between different modes of operation makes the operation and control of the process a challenging
problem. Motivated by these challenges, as well as the abundance of situations where hybrid
systems arise in practice, significant research efforts have focused on the study of hybrid systems
over the past decade, covering a wide range of problems including, for example, modelling [1],
optimization [2], stability analysis [3–6], and control [7–10]. When considering switched systems,
which constitute an important class of hybrid systems, the stability of the constituent modes of
operation as well as that of the switching sequence is important. The stability analysis of switched
systems has been addressed within the multiple Lyapunov function (MLF) framework for linear
[11] as well as nonlinear [3] systems, and issues such as dwell time [5] have been studied (see
[4, 6] for a survey of results in this area). These results have motivated the development of methods
for control of various classes of switched systems (see, for example, [9, 12–14]).

In [15], a framework for coordinating feedback and switching for control of hybrid nonlinear
systems with input constraints was developed, and switching laws were derived to determine
(though not enforce), whether a scheduled transition will preserve stability of the overall switched
closed-loop system. Enforcing a prescribed switching schedule, however, requires guiding the
system trajectory via a control algorithm that incorporates both state and input constraints in
the control design. One such control method is model predictive control (MPC), which has been
studied extensively in the context of purely continuous and purely discrete time linear and nonlinear
systems (see, for example, [16–20] and the survey paper, [21]).

An important issue that arises when implementing predictive control policies for the purpose
of stabilization of the constituent modes, however, is the difficulty in identifying, a priori (i.e.
before controller implementation), the set of initial conditions starting from where feasibility
and closed-loop stability under the predictive controller are guaranteed. In [22, 23], predictive
controllers that guarantee stabilization of the constituent modes from an explicitly characterized
set of initial conditions subject to input and state constraints and uncertainty were designed, but did
not consider the problem of satisfying a prescribed switching schedule. The constraint-handling
capabilities of the predictive controller were utilized in [24] to ensure that the prescribed switching
schedule is satisfied while preserving closed-loop stability. The work in [24], however, did not
account for uncertainty in the switching times (the switching times were assumed to be explicitly
known), and the controllers of the constituent modes of operation did not account for the presence
of state constraints and uncertainty in the dynamics of the constituent modes. The presence of
state constraints and uncertainty negatively impact the feasibility and stability properties of the
controllers of the constituent modes in [24] and may destabilize the overall switched closed-loop
system.

Motivated by these considerations, we consider in this work predictive control of switched
nonlinear systems required to satisfy a prescribed switching sequence with uncertainty in the
switching times, parametric uncertainty and time-varying exogenous disturbances in the dynamics
of the constituent modes, and state and control constraints. The rest of the paper is organized as
follows. Following some preliminaries in Section 2, we address first the problem of‘uncertainty
in the switching times in Section 3. In Section 3.1, we review a predictive controller design that
guarantees the satisfaction of state and input constraints from an explicitly characterized set of
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initial conditions. The performance and constraint-handling capabilities of the predictive controllers
are subsequently utilized in Section 3.2 to ensure the satisfaction of the switching schedule subject
to uncertainty while preserving stability. Specifically, the system trajectory is required to reside
in the stability region of the target mode by the earliest possible time that a switch out from the
current mode can occur and to stay there up until the switch out occurs. The presence of uncertainty
in the constituent modes of operation is then accounted for in Section 4, and its impact on the
control policy demonstrated. To this end, robust predictive controllers are presented in Section 4.1
and the predictive controller formulated to satisfy the switching sequence is presented in Section
4.2. The proposed control method is demonstrated through application to a scheduled chemical
process example in Section 5.

2. PRELIMINARIES

We consider the class of switched nonlinear systems represented by the following state-space
description:

ẋ(t)= f�(t)(x(t))+ G�(t)(x(t))u�(t)(t)+W�(t)(x)��(t)(t)

u�(t) ∈ U�, ��(t) ∈��, �(t)∈K := {1, . . . , p} (1)

where x(t)∈Rn denotes the vector of continuous-time state variables, u�(t)=[u1�(t) . . . um� (t)]T
∈U�⊂Rm denotes the vector of constrained manipulated inputs taking values in a non-empty com-
pact convex set U� := {u� ∈Rm : u�,min�u��u�,max}, u�,min, u�,max ∈Rm denote the minimum
and maximum allowable values for the manipulated inputs, unorm� >0 is a positive real number such
that ‖u�‖�unorm� implies u� ∈U� where ‖·‖ is the Euclidian norm, ��(t)(t)=[�1�(t)(t) . . . �q�(t)(t)]T
∈��⊂Rq denotes the vector of uncertain (possibly time varying) but bounded variables taking
values in a non-empty compact convex subset of Rq , � : [0,∞)→K is the switching signal which
is assumed to be a piecewise continuous (from the right) function of time, i.e. �(tk)= limt→t+k

�(t)
for all k, implying that only a finite number of switches is allowed on any finite interval of time. p
is the number of modes of the switched system, �(t), which takes different values in the finite index
setK, represents a discrete state that indexes the vector field f (·), the matrices G(·) and W (·), and
the control input u(·), which altogether determine ẋ . Throughout the paper, we use the notations tkinr
and tkoutr

to denote the (a priori) unknown time at which the kth subsystem is switched in and out,
respectively, for the r th time, i.e. �(t+

kinr
)= �(t−koutr

)= k. The times tkinr,min
, tkinr,max

denote the known

range within which a transition into mode k can take place for the r th time, and tkoutr,min
and tkoutr,max

de-

note the known range within which the transition out of mode k can take place. With this notation,
it is understood that the continuous state evolves according to ẋ = fk(x)+Gk(x)uk +Wk(x)�k(t)
for t ∈ [tkinr , tkoutr

) where tkinr,min
�tkinr �tkinr,max

and tkoutr,min
�tkoutr

�tkoutr,max
. It is assumed that all entries

of the vector functions fk(x), and the n×m and n× q matrices Gk(x) and Wk(x), are suffi-
ciently smooth and that fk(0)= 0 for all k ∈K. Throughout the paper, the notation L f h̄ denotes
the standard Lie derivative of a scalar function h̄(x) with respect to the vector function f (x),
L f h̄(x)= (�h̄/�x) f (x), and lim supt→∞ f (x(t))= limt→∞{sup��t f (x(�))}. To simplify the de-
velopment and presentation of our results, we focus on the state feedback control problem (ex-
tensions to the output feedback control problem are possible and are the subject of other research
work) where measurements of x(t) are assumed to be available for all t .
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3. IMPLEMENTING A PRESCRIBED SWITCHING SEQUENCE AT UNCERTAIN TIMES

In this section, we first consider the problem where the uncertainty appears only in the switching
times, and not in the dynamics of the constituent modes of operation. We first present a predictive
controller design that guarantees the satisfaction of state and input constraints from an explicitly
characterized set of initial conditions and then employ it to ensure stabilization while following
the prescribed switching sequence.

3.1. Predictive controller guaranteeing state and control constraints satisfaction

In this section, we consider predictive control of the system of Equation (1) without the uncertainty
term (i.e. with ��(t)≡ 0) for a fixed �(t)= k for some k ∈K. We briefly review a Lyapunov-based
design of MPC that guarantees feasibility of the optimization problem and hence constrained
stabilization of the closed-loop system from an explicitly characterized set of initial conditions
subject to state and control constraints. For this predictive control design, the control action at
state x and time t is obtained by solving, online, a finite horizon optimal control problem of the
form

P(x, t) : min{J (x, t, uk(·))|uk(·)∈ Sk, x(·)∈ Xk} (2)

s.t. ẋ = fk(x)+ Gk(x)uk (3)

V̇k(x(�))�− �k if Vk(x(t))>�′k, �∈ [t, t + �) (4)

Vk(x(�))��′k if Vk(x(t))��′k, �∈ [t, t + �) (5)

where Xk denotes the constraints that the state variables are required to respect in each mode;
note that this is part of the control objective and not inherent to the dynamics of the system (it
is therefore not included in the system description of Equation (1)). The parameters �k , �′k are
to be determined later, Sk = Sk(t, T ) is the family of piecewise continuous functions (functions
continuous from the right), with period �, mapping [t, t + T ] into Uk , T is the specified horizon
and Vk is a control Lyapunov function. A control uk(·) in Sk is characterized by the sequence
{uk[ j]} where uk[ j] := uk( j�) and satisfies uk(�) = uk[ j] for all �∈ [t + j�, t + ( j + 1)�). The
performance index is given by

J (x, t, uk(·))=
∫ t+T

t
[‖xu(s; x, t)‖2Q + ‖uk(s)‖2R] ds (6)

where Q is a positive semidefinite symmetric matrix, and R is a strictly positive definite symmetric
matrix. xu(s; x, t) denotes the solution of Equation (1), due to control u, with initial state x at
time t . The minimizing control u0k(·)∈ Sk is then applied to the plant over the interval [t, t + �)

and the procedure is repeated indefinitely.
To characterize the stability and constraint-handling properties of the predictive controller of

Equations (2)–(6), an auxiliary-bounded controller is employed. Specifically, for the system of
Equation (1) under a mode k (the subscript k will henceforth be dropped with the understanding
that the controller for mode k is being described), using the results in [25], the following bounded
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control law [26] (see also [27]) can be constructed:

ubc(x)=
{−k(x)(LGV )′(x), ‖(LGV )T(x)‖ 
= 0

0, ‖(LGV )T(x)‖= 0

}
(7)

where

k(x)=
L∗f V (x)+

√
(L∗f V (x))2 + (unorm‖(LGV )T(x)‖)4

‖(LGV )T(x)‖2[1+√
1+ (unorm‖(LGV )T(x)‖)2] (8)

LGV (x)=[Lg1V . . . Lgm V ] is a row vector, where gi is the i th column of G, L∗f V = L f V + �V
and �>0. One can show, using a standard Lyapunov argument, that the set

�x,u ={x ∈Rn : V (x)�cmax
x,u } (9)

such that cmax
x,u >0 is the largest number for which �x,u ⊆�x,u with

�x,u ={x ∈ X : L∗f V (x)�unorm‖(LGV )T(x)‖} (10)

provides an estimate of the stability region, starting from where the origin of the constrained
closed-loop system, under the control law of Equations (7)–(8), is guaranteed to be asymptotically
stable and state and input constraints are satisfied for all time. Utilizing the robustness of the
control law of Equation (7) with respect to discrete implementation, the following result can be
derived for the predictive controller of Equations (2)–(6) (see [22] for the proof).

Theorem 1 (Mhaskar et al. [22])
Consider the constrained system of Equation (1) for a fixed value of �(t)= k under the MPC control
law of Equations (2)–(6), designed using a control Lyapunov function Vk that yields a stability
region �k under continuous implementation of the bounded controller of Equations (7)–(8) with
a fixed �k>0. Then, given any positive real number dk , there exist positive real numbers �k , �∗k
and �′k , such that if x(0)∈�k and �∈ (0, �∗k ], then x(t)∈�k ∀t�0 and lim supt→∞ ‖x(t)‖�dk .

Remark 1
Some of the distinguishing features of the predictive controller formulation of Equations (2)–(6)
are that the stability guarantees do not assume initial feasibility of the problem and the feasibility
of the problem does not rely on the horizon being sufficiently large. Furthermore, the stability
is ensured simply from a feasible solution to the optimization problem, and does not require
the solution to be the global optimum (see [22] for further discussion and explanation of these
points). Finally, the most important characteristic, and the one that makes it most suitable for use
in the present work, is the explicit characterization of the stability region that is possible for each
constituent mode of the switched system. It is this characterization that is utilized in formulating
the constraints to ensure that the prescribed switching sequence can be executed while preserving
closed-loop stability.

3.2. Handling uncertain switching times

Consider now the nonlinear switched system of Equation (1) with �(t)≡ 0, with a prescribed switch-
ing sequence defined byTk,in={tkin1 , tkin2

, . . .} andTk,out={tkout1
, tkout2

, . . .}, with tkinr,min
�tkinr �tkinr,max

and tkoutr,min
�tkoutr

�tkoutr,max
. Assume that for each mode of the switched system, a Lyapunov-based pre-

dictive controller of the form of Equations (2)–(6) has been designed and an estimate of the
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stability region generated. The control problem is formulated as the one of designing a Lyapunov-
based predictive controller that guides the closed-loop system trajectory in a way that the schedule
described by the switching times is followed in the presence of uncertainty in the switching times
and stability of the closed-loop system is preserved. A predictive control algorithm that addresses
this problem is presented in Theorem 2.

Theorem 2
Consider the constrained nonlinear system of Equation (1) with �(t)≡ 0, the control Lyapunov
functions Vk , k= 1, . . . , p, and the stability region estimates �k , k= 1, . . . , p, under continuous
implementation of the bounded controller of Equations (7)–(8) with fixed �k>0, k= 1, . . . , p. Let
0<Tdesign<∞ be a design parameter. Let the system be evolving in mode k, scheduled to switch
to mode m between tkoutr,min

and tkoutr,max
. Consider the following optimization problem:

P(x, t) : min{J (x, t, uk(·))|uk(·)∈ Sk} (11)

J (x, t, uk(·))=
∫ t+T

t
[‖xu(s; x, t)‖2Q + ‖uk(s)‖2R] ds (12)

where T is the prediction horizon given by T = tkoutr,max
−t , if tkoutr,max

<∞ and T = Tdesign if tkoutr,max
=∞,

subject to the following constraints:

ẋ = fk(x)+ Gk(x)uk (13)

V̇k(x(�)) �−�k if Vk(x(t))>�′k, �∈ [t, t + �kr ) (14)

Vk(x(�)) � �′k if Vk(x(t))��′k, �∈ [t, t + �kr ) (15)

And if tkoutr,max
<∞ then

Vm(x(�))�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Vm(x(tmin

j−1
))− �∗, j>1, Vm(x(tmin

j−1
))>�′m

�′m, j>1, Vm(x(tmin
j−1

))��′m

cmax
m , j = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(16)

∀�∈ [tkoutr,min
, tkoutr,max

], where �∗ is a positive real number. Then, given a positive real number dmax,

there exist positive real numbers �′k , k= 1, . . . ,m such that if the optimization problem of Equations
(11–16) is feasible at all times, the minimizing control is applied to the system over the interval
[t, t +�kr ], where �kr ∈ (0,�∗] with tkoutr,min

= tkinr + lkr,min�kr , tkoutr
= tkinr + lkr�kr and tkoutr,max

= tkinr +
lkr,max�kr for some integers lkr,min, lkr , lkr,max>0 and the procedure is repeated, then, lim supt→∞‖x(t)‖�dmax.

Proof
The proof of this theorem follows from the assumption of feasibility of the constraints of Equations
(14)–(16) at all times, and is divided into two parts. The first part considers the case where the
switching sequence is infinite, while the second part considers the case of a finite switching
sequence. In both cases, given the radius of the ball around the origin, dmax, the values of �′k for
all k ∈K are first computed such that Vk(x)��′k implies ‖x‖�dmax.

Copyright � 2007 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2008; 22:161–179
DOI: 10.1002/acs



ROBUST PREDICTIVE CONTROL OF SWITCHED SYSTEMS 167

Part 1. First consider the case when the switching sequence is infinite. Let t be such that
tkinr �t<tkoutr

and tmin
j
= tkoutr

<∞. Consider the active mode k. If Vk(x)>�′k , the continued feasibility

of the constraint of Equation (14) implies that Vk(x(tkoutr
))<Vk(x(tkinr )). The transition constraint

of Equation (16) ensures that if this mode is switched out and then switched back in, then
Vk(x(tkinr+1

))<Vk(x(tkinr )). In general, Vk(x(tkinl
))<Vk(x(tkinl−1

))< · · ·<cmax
k . Under the assumption

of feasibility of the constraints of Equations (14)–(16) for all future times, therefore, the value of
Vk(x) continues to decrease. If the mode of this Lyapunov function is not active, there exists at
least some j ∈ 1, . . . , p such that mode j is active and Lyapunov function Vj continues to decrease
until the time that Vj��′j (this happens because there are finite number of modes, even if the
number of switches may be infinite). From this point onwards, the constraint of Equation (15)
ensures that Vj continues to be less than �′j . Hence, lim supt→∞ ‖x(t)‖�dmax.

Part 2. For the case of a finite switching sequence, consider a t such that tkinr �t<tkoutr
=∞. Un-

der the assumption of continued feasibility of Equations (14)–(16), Vk(x(tkinr ))<Vk(x(tkinr−1
))< · · ·

<cmax
k . At the time of the switch to mode k, therefore, x(tkinr )∈�k . From this point onwards, the

Lyapunov-based controller is implemented using the Lyapunov function Vk , and the constraint of
Equation (16) is removed, in which case the predictive controller of Theorem 2 reduces to the
predictive controller of Equations (2)–(6). Since the value of �kr is chosen to be in (0,�∗], where
�∗ = mink=1,...,p �∗k , therefore �kr<�∗k , which guarantees feasibility and convergence to the ball
‖x‖�dmax for any value of the prediction horizon (hence, for a choice of T = Tdesign), and leads
to lim supt→∞ ‖x(t)‖�dmax. This completes the proof of Theorem 2. �

Remark 2
Note that the stability properties of the predictive controller of Equations (2)–(6) ensure that the
constraints of Equations (14)–(15) are feasible between mode transitions, provided that the system
is initialized within the stability region. These constraints formulate one of the criteria in the MLF
stability analysis, which is to enforce the continued decay of the Lyapunov function of a given
mode whenever the mode is active. The constraint of Equation (16) then requires that during the
time that the switch out may take place: (1) the state of the process reside within the stability
region of the target mode if it is the first switch to the target mode; (2) if the system did switch
to the target mode before but did not reach the desired neighbourhood of the origin then for the
value of the Lyapunov function to be less than what it was the last time the system switched into
that mode (required when the switching sequence is infinite, see [3] for details); and finally, (3)
to reside in the desired neighbourhood of the origin under the target mode if the system did reach
the desired neighbourhood of the origin the last time the system switched into the target mode.
The exact time when the switch is going to take place, however, is not known, and only a bound
on the minimum and maximum value of the switching time is known. The constraints therefore
are required to hold during the entire interval where the switch can take place. Once the switch
takes place, however, this constraint is ‘updated’ for the next switch.

Remark 3
The algorithm below explains the implementation of the predictive controller of Theorem 2:

1. Given the system model of Equation (1) and the constraints on the input, design the predictive
controller of Equations (2)–(6) and estimate its stability region �k as well as the discretization
time �k , such that if x(0)∈�k then lim supt→∞ ‖x(t)‖�dmax.
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2. For a time tkinr , which designates the time that the closed-loop system switches to the kth mode
for the r th time, and the state belongs to the stability region of the kth mode, consider the
predictive controller of Theorem 2. The first part of the constraint of Equation (16) requires
that during the time when the closed-loop system may enter the mode m, the value of Vm is
less than what it was at the time that the system last entered mode m (this is a version of
the MLF stability condition, see [3]). If the system has never entered mode m before, i.e. for
j = 1, require the value of the Lyapunov function during the possible time of transition to be
less than cmax

m (i.e. for the state to evolve in the stability region of the target mode during the
possible time of switch). Finally, if the closed-loop state has already entered the desired ball
around the origin, require the state to evolve within the neighbourhood during the possible
time of switch.

3. If subsequent switches are scheduled, go back to step 2 else implement the Lyapunov-based
predictive controller of Equations (2)–(6) for the current mode to stabilize the closed-loop
system.

Remark 4
Note that the use of the predictive controller is imperative to the problem of implementing a
prescribed switching schedule subject to uncertainty in the switching schedule. In particular,
while bounded controllers can achieve stabilization under single-mode operation, the bounded
controller framework simply does not allow for incorporating transition constraints, and there
is no guarantee that the bounded controller (or even the Lyapunov-based predictive controller,
if it does not incorporate the transition constraints) can stabilize the closed-loop system when
following a prescribed switching schedule subject to uncertainty (see the simulation example for
a demonstration). In contrast, the predictive controller approach provides a natural framework
for specifying appropriate transition constraints, which upon being feasible, ensure closed-loop
stability.

Remark 5
Note that for the purpose of illustration, it is assumed that the (uncertain) switching time is an
integer multiple of the discretization time and this assumption can be easily removed. This can
be achieved by requiring the constraints to hold starting from the largest time which is an integer
multiple of the discretization time and is less than the uncertain switching time. The stability
guarantees would not be compromised because the stability and transition constraints are required
to be satisfied during the possible times that the switch out may take place, and even if the
switch out takes place at a time which is not an integer multiple of the implementation time, the
satisfaction of the transition constraints preserves stability.

4. IMPLEMENTING A PRESCRIBED SWITCHING SEQUENCE AT UNCERTAIN TIMES
SUBJECT TO UNCERTAINTY IN THE MODES

In the previous section, the uncertainty was present only in the switching times. We now consider the
problem where the uncertainty appears not only in the switching times, but also in the dynamics of
the constituent modes of operation. To handle parametric uncertainty and time-varying exogenous
disturbances in the dynamics of the constituent modes, we first present a robust predictive controller
design that guarantees the satisfaction of state and input constraints from an explicitly characterized
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set of initial conditions. Subsequently, the controller implementing the prescribed schedule is
developed in a way that it accounts for the uncertainty in the switching times as well as in the
modes of operation.

4.1. Robust predictive controller

Consider the system of Equation (1) and assume that the uncertain variable term is vanishing in the
sense that Wk(0)�k(t)= 0 for any �k ∈�k , i.e. disturbances that do not perturb the system from its
nominal equilibrium point, and that a robust control Lyapunov function [28], Vk exists. Consider
the receding horizon implementation of the control action computed by solving an optimization
problem of the form:

P(x, t) : min{J (x, t, u(·))|u(·)∈ S} (17)

s.t. ẋ = fk(x)+ Gk(x)u (18)

LGVk(x)u(t)�LGVkubc(x(t)) (19)

where

ubc=−
⎛
⎝�k(x)+

√
(�1,k(x))2 + (unormk 	k(x))4

(	k(x))2[1+
√
1+ (unormk 	k(x))2]

⎞
⎠ (LGVk(x))

T (20)

when LGVk(x) 
= 0 and ubc= 0 when LGVk(x)= 0, where �k(x)= L f Vk(x) + (�k‖x‖ +

k�b,k‖LWV T

k ‖)(‖x‖/(‖x‖ + �k)), �1,k(x)= L f Vk+�k‖x‖+
k�b,k‖LWV T
k ‖, 	k(x)=‖(LGVk)T‖,

LGVk=[Lg1Vk . . . Lgm Vk] and LWVk =[Lw1Vk . . . Lwq Vk] are row vectors, �b,k is a positive
real number such that ‖�k(t)‖��b, for all t�0, and �k , 
k , and �k are adjustable parameters that
satisfy �k>0, 
k>1 (note that larger values of �k and 
k enforce faster decay of the Lyapunov
function, albeit at the cost of lower stability region estimates) and �k>0, S= S(t, T ) is the family
of piecewise continuous functions (functions continuous from the right), with period �, mapping
[t, t + T ] into U . Equation (18) is the ‘nominal’ nonlinear model (without the uncertainty term)
describing the time evolution of the state x . A control u(·) in S is characterized by the sequence
{u[ j]} where uk(�)= uk[ j] for all �∈ [t + j�, t + ( j + 1)�). The performance index is given by

J (x, t, u(·))=
∫ t+T

t
[‖xu(s; x, t)‖2Q + ‖u(s)‖2R] ds (21)

where Q and R are positive semidefinite, and strictly positive definite, symmetric matrices,
respectively, and xu(s; x, t) denotes the solution of Equation (18), due to control u, with ini-
tial state x at time t and T is the specified horizon. The minimizing control u0(·)∈ S is then
applied to the plant over the interval [t, t + �) and the procedure is repeated indefinitely.

Preparatory to the formalization of the stability and feasibility properties of the robust MPC,
we recall the following result for the control law described by Equation (20) [26]. Specifically,
let �k be the set defined by �k ={x ∈Rn : �1,k(x)�unormk 	k(x)} and assume that �k := {x ∈Rn :
V (x)�cmax

k } ⊆ �k(�b,k, unormk ) for some cmax
k >0. Then, for any initial condition x0 ∈�k , it can
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be shown that there exists a positive real number �∗k such that if �k/(
k − 1)<�∗k , the states of the
closed-loop system of Equations (1) and (20) satisfy x(t)∈� ∀t�0 and the origin of the closed-
loop system is asymptotically stable. The stability properties of the predictive controller design
follow from ensuring that V̇ under the predictive controller is at least as negative as that under
the implementation of the controller of Equation (20) (expressed in Equation (19)); feasibility of
the optimization problem and stability properties of the closed-loop system under the predictive
controller are formalized in Theorem 3, for proof, see [23].
Theorem 3 (Mhaskar [23])
Consider the constrained system of Equation (1) under the mode k under the MPC law of Equations
(17)–(21). Then, given any positive real number d , there exists a positive real number �∗∗k such
that if �∈ (0,�∗∗k ] and x(0) := x0 ∈�, then the optimization problem of Equations (17)–(21) is
guaranteed to be initially and successively feasible, x(t)∈� ∀t�0 and lim supt→∞ ‖x(t)‖�d .

Remark 6
The two key characteristics of the stability constraint of Equation (19) include: (1) the stability
constraint can be guaranteed to be feasible, while respecting the other constraints, from an explicitly
characterized set of initial conditions; and (2) the feasibility of the stability constraint guarantees
closed-loop stability. In contrast, if the min–max approach was to be followed to handle uncertainty,
one possible form that the stability constraint would take is V̇ (x(�))�0, ∀�∈ [t, t+�),∀�(t)∈�,
i.e. to require the control action to enforce negative definiteness of the Lyapunov function derivative
during the next step for all possible realizations of the uncertainty. The continued satisfaction of
such a constraint would then imply stabilization. The presence of such a constraint, however, turns
the optimization problem into a computationally expensive problem. Furthermore, the presence of
such a constraint by itself would not allow for explicitly characterizing the set of initial conditions
starting from where the optimization problem is guaranteed to be feasible. The stability constraint
of Equation (19), in contrast, allows the characterization of the set of initial conditions starting
from where the optimization problem is guaranteed to be feasible, without turning it into a min–
max problem. Note that the constraint of Equation (19) essentially requires the control action to
be computed such that it renders the time derivative of the Lyapunov function, evaluated at the
value of the current state, to be more negative than the time derivative of the Lyapunov function
that one would achieve if one were to implement the Lyapunov-based bounded robust controller
of Equation (20). Specifically, the bounded robust design uses the bound on the uncertainty
to prescribe a control action ubc that yields V̇bc= L f V + LGVubc + LW�<0. The Lyapunov-
based predictive controller, by requesting a u such that LGVu�LGVubc, essentially renders
V̇�V̇bc<0. Furthermore, negative definiteness of V̇ during the first time step, not just for the
initial value of the state, is ensured by exploiting the robustness margin of the control law of
Equation (20). The robustness margin ensures that for a sufficiently small hold time (i.e. there
exists a �∗ such that if �<�∗), V̇ continues to remain negative during the first time step. For
further details on the robust predictive control design and its stability and optimality properties,
see [23].
Remark 7
While, for the sake of simplicity, the results in the present work have been presented under the
assumption of vanishing disturbances, modifying the robust predictive control design to account
for non-vanishing disturbances is relatively straightforward. The line of reasoning is as follows: let
d1 denote the neighbourhood of the origin that the closed-loop state is required to converge to, then
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pick a d2<d1, and pick parameters in the control design of Equation (20) to achieve convergence
to the d2 neighbourhood of the origin under continuous implementation. This, in turn implies
that under continuous implementation of the robust predictive controller (i.e. with �= 0), one
can still achieve convergence to the same neighbourhood of the origin. Finally, compute �∗, such
that under sample and hold implementation, with sampling time less than �∗, convergence to the
neighbourhood d1 is achieved. The reasoning can also be understood as follows: under vanishing
disturbances, given an acceptable ‘loss’ in convergence due to discrete implementation (i.e. instead
of requiring convergence to the origin, to require convergence to a neighbourhood of the origin),
one can come up with a bound on the implement and hold time such that the convergence to the
desired neighbourhood of the origin is achieved. Similarly, under non-vanishing disturbances with
discrete implementation, the ‘loss’ in convergence to the origin is due to two factors, one due to
the non-vanishing disturbance, and the other due to discrete implementation, however, both can
be made as small as desired via appropriate choice of parameters.

4.2. Handling uncertain switching times and uncertainty in modes of operation

Consider now the switched uncertain system of Equation (1), subject to uncertainty in the switching
time. Due to the presence of uncertainty in the constituent mode dynamics, constraints requiring
the state to converge to a target mode’s stability region by the earliest possible time of switching,
computed using the nominal process model (without the uncertainty term) no longer ensure stability
for the uncertain switched system. Theorem 4 presents a controller designed to account for the
uncertainty in the switching times as well as the constituent modes of operation. The key idea is
to enforce tighter constraints using the nominal model so that the stability constraints continue to
be satisfied for the uncertain system.

Consider again the nonlinear switched system of Equation (1), with a prescribed switching
sequence defined by Tk,in={tkin1 , tkin2

, . . .} and Tk,out={tkout1
, tkout2

, . . .}, with tkinr,min
�tkinr �tkinr,max

and tkoutr,min
�tkoutr

�tkoutr,max
. For each mode of the switched system, a robust predictive controller of the

form of Equations (17)–(21) has been designed and an estimate of the stability region generated.
The control problem is formulated as the one of designing a Lyapunov-based predictive controller
that guides the closed-loop system trajectory in a way that the schedule described by the switching
times is followed in the presence of uncertainty in the switching times and stability of the closed-
loop system is achieved. A predictive control algorithm that addresses this problem is presented
in Theorem 4.

Theorem 4
Consider the constrained nonlinear system of Equation (1), the control Lyapunov functions Vk ,
k= 1, . . . , p, and the stability region estimates �k , k= 1, . . . , p under continuous implementation
of the bounded controller of Equation (20) with fixed �k>0, k= 1, . . . , p. Let 0<Tdesign<∞ be a
design parameter. Let the system be evolving in mode k, scheduled to switch to mode m between
tkoutr,min

and tkoutr,max
. Consider the following optimization problem:

P(x, t) : min{J (x, t, uk(·))|uk(·)∈ Sk} (22)

J (x, t, uk(·))=
∫ t+T

t
[‖xu(s; x, t)‖2Q + ‖uk(s)‖2R] ds (23)
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where T is the prediction horizon given by T = tkoutr,max
−t , if tkoutr,max

<∞ and T = Tdesign if tkoutr,max
=∞,

subject to the following constraints:

ẋ = fk(x)+ Gk(x)uk (24)

LGk Vk(x)u(t) � LGk Vkubc(x(t)) (25)

And if tkoutr,max
<∞ then

Vm(x(t�))�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Vm(x(tmin

j−1
))− �∗∗1 , j>1, Vm(x(tmin

j−1
))>�′m

�′m − �∗∗2 , j>1, Vm(x(tmin
j−1

))��′m

cmax
m − �∗∗3 , j = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(26)

∀�∈ [tkoutr,min
, tkoutr,max

]. Then, given a positive real number dmax, there exist positive real numbers �∗

and �′k , k= 1, . . . ,m, �∗∗1 , �∗∗2 and �∗∗3 such that if the optimization problem of Equations (22)–(26)
is feasible at all times, the minimizing control is applied to the system over the interval [t, t+�kr ],
where �kr ∈ (0,�∗] with tkoutr,min

= tkinr + lkr,min�kr , tkoutr
= tkinr + lkr�kr and tkoutr,max

= tkinr + lkr,max�kr for

some integers lkr,min, lkr , lkr,max>0 and the procedure is repeated, then, lim supt→∞ ‖x(t)‖�dmax.

Proof
In contrast to Theorem 2, the proof of this theorem does not follow only from the assumption of
feasibility of the constraints of Equations (25)–(26) at all times, but relies also on the fact that the
difference between the system without uncertainty and that with bounded uncertainty can be made
as small as desired via reducing the time over which the system is observed/predicted. This allows
for showing that the satisfaction of the tighter constraints of Equation (26), enforced via using the
model of Equation (24) (note that this model does not consider uncertainty) ensures satisfaction
of the stability constraints for the true system with uncertainty.

To this end, consider a time tkoutr
− �kr , for which x(tkoutr

− �kr )∈�k (with x(tkinr )∈�k , this
follows from Theorem 3) and the two systems

ẋ1= fk(x1)+ Gk(x1)uk (27)

and

ẋ2= fk(x2(t))+ Gk(x2(t))uk(t)+Wk(x2)�k(t) (28)

with x1(tkoutr
− �kr )= x2(tkoutr

− �kr ). Since the control action that is computed satisfies the con-
straint of Equation (26), therefore, depending on j and Vm(x(tmin

j−1
)), we have that Vm(x1(tkoutr

))�
Vm(x(tmin

j−1
))− �∗∗1 , or Vm(x1(tkoutr

))��′m − �∗∗2 or Vm(x1(tkoutr
))�cmax

m − �∗∗2 . From the continuity

of the functions Vk(·), there exists a positive real number �x , such that if ‖x2 − x1‖��x then
Vm(x1)�Vm(x(tmin

j−1
))−�∗∗1 implies Vm(x2)�Vm(x(tmin

j−1
))−�∗1, Vm(x1)��′m−�∗∗2 implies Vm(x2)�

�′m − �∗2 and Vm(x1)�cmax
m − �∗∗2 implies Vm(x2)�cmax

m − �∗2 where �∗1, �∗2, �∗3 are positive real num-
bers. From the continuity of solutions for Equations (27) and (28) and that the difference between
the two right-hand sides is a bounded function for all x ∈�k , it follows that given a positive
real number �x , if x1(tkoutr

− �kr )= x2(tkoutr
− �kr ), then there exists a positive real number �∗k
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such that if �kr��∗k then ‖x2(tkoutr
) − x1(tkoutr

)‖��x . In summary, such a choice of ���∗k en-
sures that the MLF criteria as well as the stability region criteria are satisfied. The rest of the
proof follows along similar lines as parts 1 and 2 of the proof of Theorem 2. This completes the
proof of Theorem 4. �

Remark 8
Note that as opposed to the case without uncertainty in the constituent modes of operation, the
transition constraints that preserve stability while satisfying the switching schedule are tighter to
accommodate the fact that the model of Equation (24) used for the prediction does not include the
uncertainty term. Note that the cause of the difference between the predicted and the true systems in
satisfaction of the MLF stability constraints is the effect of the uncertainty only over the implement
and hold time and not over the entire prediction horizon (due to the updating of the process state at
the end of every implement and hold interval). While larger values of �∗∗i would allow for greater
implementation and hold times it may negatively impact the assumption of continued feasibility
of the tightened constraint and motivate a smaller ‘tightening’ of the constraints (smaller values of
�∗∗i , which, as a natural trade-off would necessitate smaller implementation and hold times). The
satisfaction of the tightened constraints, however, ensure satisfaction of the stability and transition
constraints (as in Equation (16)) for the real uncertain system.

5. APPLICATION TO A CHEMICAL PROCESS EXAMPLE

We consider a continuous stirred tank reactor where an irreversible, first-order exothermic reaction

of the form A
k→ B takes place. The operation schedule requires switching between two available

inlet streams consisting of pure A at flow rates F1, F2, concentrations CA1, CA2, and temperatures
TA1, TA2, respectively. For each mode of operation, the mathematical model for the process takes
the form

ĊA = F�

V
(CA� − CA)− k0e

(−E/RTR)CA

ṪR = F�

V
(TA� − TR)+ (−�H)

�cp
k0e

(−E/RTR)CA + Q�

�cpV

(29)

where CA denotes the concentration of the species A, TR denotes the temperature of the reactor,
Q� is the heat removed from the reactor, V is the volume of the reactor, k0, E , �H are the pre-
exponential constant, the activation energy, and the enthalpy of the reaction, cp and �, are the heat
capacity and fluid density in the reactor and �(t)∈ {1, 2} is the discrete variable. The values of all
process parameters can be found in Table I. The control objective is to stabilize the reactor at the
unstable equilibrium point (Cs

A, T s
R)= (0.57 kmol/m3, 395.3K) using the rate of heat input, Q�,

and change in inlet concentration of species A, �CA�=CA� − CA�s as manipulated inputs with
constraints: |Q�|�0.5KJ/s and |�CA�|�0.5 kmol/m3, �= 1, 2. For both the modes, we considered
quadratic Lyapunov functions of the form V (x)= x ′Pkx where x = (CA − Cs

A, TR − T s
R), with

P1=
[
7.39 0.32

0.32 0.016

]
and P2=

[
33.24 1.32

1.32 0.06

]
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Table I. Process parameters and steady state values.

V = 0.1m3

R= 8.314 kJ/kmolK
CA1s = 0.79 kmol/m3

CA2s = 1.0 kmol/m3

TA1= 352.6K
TA2= 310.0K
Q1s = 0.0 kJ/s
Q2s = 0.0 kJ/s
�H =−4.78× 104 kJ/kmol
k0= 1.2× 109 s−1
E = 8.314× 104 kJ/kmol
cp = 0.239 kJ/kgK
�= 1000.0 kg/m3

F1= 3.34× 10−3 m3/s
F2= 1.67× 10−3 m3/s
TRs = 395.33K
CAs = 0.57 kmol/m3
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Figure 1. Closed-loop state trajectory without accounting for the uncertainty in the switching schedule
(dashed line) and under the predictive controller of Equations (11)–(12) (solid line). The circles mark the

state variables at the time of the switch.

and used these in the Lyapunov-based controller design to compute the stability regions for the
two modes, �1 and �2, shown in Figure 1. The matrices Pk were computed by solving a Riccatti
inequality using the linearized system matrices. The computation of the stability region (using
Equations (9)–(10)), however, was done using the nonlinear system dynamics. The parameters
in the objective function of Equation (6) are chosen as Q= q I , with q = 1, and R= r I , with
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r = 1.0. The constrained nonlinear optimization problem is solved using the MATLAB subroutine
fmincon, and the set of ordinary differential equations (ODEs) is integrated using the MATLAB
solver ode45.

In the simulations, we first demonstrate the implementation of the predictive controller formula-
tion to preserve stability subject to uncertainty in the switching schedule. To this end, we consider
an initial condition that belongs to the stability region of the predictive controller for mode 1.
Starting from the initial condition (CA, TR)= (0.14 kmol/m3, 404.9K), we choose a schedule in-
volving a switch from inlet stream 1 (mode 1) to inlet stream 2 (mode 2). It is only known that
the stream 2 may become available between t = 0.1 and 0.2min. We first implement the predictive
controller that does not account for the uncertainty in the switching schedule and simply drives
the state of the system to the stability region by t = 0.2min. The state of the closed-loop system
moves towards the desired steady state (as seen from the dashed line in Figure 1); however, when
the system switches to mode 2 at t = 0.1min, the system state has not yet been driven inside the
stability region of mode 2 (marked by the o in Figure 1). Switching to the predictive controller for
mode 2 does not yield a feasible solution. If the bounded controller for mode 2 is implemented, the
resulting control action is not able to stabilize the closed-loop system (dashed lines in Figures 1
and 2). In contrast, if the predictive controller of Equations (11)–(15) is implemented, it drives the
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Figure 2. Closed-loop state and input profiles without accounting for the uncertainty in the switching
schedule (dashed lines) and under the predictive controller of Equations (11)–(12) (solid lines).
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state inside the stability region of mode 2 by the earliest time at which a switch may take place
(i.e. at t = 0.1min). From this point onwards, after the switch takes place, the predictive controller
for mode 2 is able to stabilize the closed-loop system (solid lines in Figures 1 and 2).

We next demonstrate the application of the controller of Equations (22)–(23) with the uncertainty
appearing in the dynamics of the constituent modes. We focus on demonstrating the required
‘tightening’ of the constraints expressed in Equation (26) to enable satisfaction of the constraints
for the uncertain nonlinear system, while only using the nominal model of the system in the
predictive controller formulation. To this end, we again consider the system of Equation (29) with
�1(t)= TA0−TA0s , �2(t)=�H−�Hn , where the subscript s denotes the steady-state value and�Hn
denotes the nominal value of the heat of reaction. In the simulation runs, �1(t)= �0 sin(3t), where
�0= 0.08TA0s and �2(t)=−0.5(−�Hn), with manipulated input constraints as |Q�|�92 kJ/s and
|�CA�|�0.5 kmol/m3, �= 1, 2. As for the case without uncertainty, we considered quadratic
Lyapunov functions of the form V (x)= x ′Pkx where x = (CA − Cs

A, TR − T s
R), with

P1=
[
2.13 0.04

0.04 0.014

]
and P2=

[
3.0486 0.0433

0.0433 0.0014

]

Starting from the initial condition (CA, TR)= (0.17 kmol/m3, 400.25K), we choose a schedule
involving an early switch from inlet stream 1 (mode 1) to inlet stream 2 (mode 2) at t = 1.2 s,
and, for the sake of comparison, initially run the simulations in the absence of uncertainty. The
controller computes a control action requiring the state to reside in the stability region of mode 2
(as predicted using the nominal model). As seen from the dotted line in Figure 3 (and the inset),
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Figure 3. Closed-loop state trajectory without accounting for the uncertainty in the constituent
dynamics in the absence (dotted line) and presence (dashed line) of uncertainty and under the
controller of Equations (22)–(23) (solid line) in the presence of uncertainty. The circles mark the

state variables at the time of the switch.
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the closed-loop state trajectory of the system does reside in the stability region of mode 2 at the time
of the switch because in the absence of uncertainty, the predicted behaviour of the system (using
the nominal model) and the true evolution of the system are identical. However, in the presence of
uncertainty, while the controller again computes a control action that requires the state to reside in
the stability region of mode 2 (as predicted using the nominal model), the state of the system at
the time of the switch does not reside in the stability region of mode 2 (dashed line in Figure 3).
This happens because the predictive controller computes a control action that would have driven
the closed-loop state inside �2 in the absence of uncertainty. After the switch, the controller for
mode 2, however, is able to stabilize the closed-loop system underscoring the fact that while the
controller provides stability guarantees for all initial conditions in �2, states outside �2 may also
be stabilized using the robust predictive controller (albeit without a priori guarantees). Finally, as
seen by the solid line in Figure 3, when the controller of Equations (22)–(23) is implemented and
the constraint of Equation (26) is imposed in the predictive controller, the predictive controller
implements a more ‘aggressive’ control action (solid lines in the insets in Figure 4) that drives the
system state sufficiently inside �2 (as predicted using the nominal model) so that the state of the
uncertain nonlinear system also resides within �2 at the time of the switch. The robust predictive
controller for mode 2 successfully stabilizes the closed-loop system after the switch.
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Figure 4. Closed-loop state and input profiles without accounting for the uncertainty in the constituent
dynamics in the absence (dotted lines) and presence (dashed lines) of uncertainty and under the controller

of Equations (22)–(23) (solid lines) in the presence of uncertainty.
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6. CONCLUSIONS

In this work, the problem of developing a robust predictive control framework for the constrained
stabilization of switched nonlinear systems was considered. The switched nonlinear system transits
between the constituent modes at prescribed switching times subject to uncertainty in the con-
stituent mode dynamics as well as in the switching times. We designed Lyapunov-based predictive
controllers for each of the constituent modes in which the switched system operates, and incor-
porated constraints in the predictive controller design which upon satisfaction ensure stability of
the switched closed-loop system while accounting for the presence of uncertainty in the switching
schedule and the dynamics of the constituent modes. Simulation results, through application to a
chemical process example, demonstrated the efficacy of the proposed predictive controller.
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