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Control of flow over a cylinder using rotational oscillations
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Abstract

In this work, we focus on two-dimensional, incompressible viscous channel flow over an infinitely long cylinder and examine the effect of
controlled rotational cylinder oscillation in reducing the drag exerted on the cylinder. Based on an analysis of the open-loop simulations, a
control system is designed that automatically determines the frequency of cylinder oscillation, based on the Reynolds number, to consistently
reduce the drag exerted on the cylinder for Reynolds numbers in the range 100–500.
© 2004 Elsevier Ltd. All rights reserved.
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. Introduction

Control of flow past a circular cylinder is studied for a
umber of practical reasons. Wake modification, reduction
f flow-induced vibrations, design of heat exchangers, and

mprovement of chemical mixing are among the diverse ap-
lications involving flow past a circular cylinder. This prob-

em is also studied for stall control and lift enhancement as
ell as for design of aerodynamic vehicles.
The formation of vortices behind the flow past a cir-

ular cylinder above a critical Reynolds number has been
ell documented, both numerically and experimentally (e.g.,
atchelor, 1967; Li, Chambarel, Donneaud, & Martin, 1991;
u & Sato, 1996; Shiels & Leonard, 2001; Taneda, 1977;
okumaru & Dimotakis, 1991; Williamson, 1996). Initially,
t flows below Reynolds number 10, the fluid travels along

he boundary of the cylinder and streamlines form around the
ylinder. At Reynolds number above roughly 10, the stream-
ines separate from the boundary behind the cylinder and
ortices are formed. These vortices remain behind the cylin-
er. At Reynolds number above roughly 47, these vortices are
uccessively formed and then shed from the top and bottom
f the cylinder periodically. The regular pattern of shedding

1967). The reader may refer to(Williamson, 1988, 1996
for detailed studies of the behavior of cylinder wakes, e
cially focusing on the relationship between vortex shed
frequency and Reynolds number.

The effective control of drag exerted by the fluid on
cylinder has been a challenge that has received particu
tention. The drag force on the cylinder may be reduce
active control in the form of cylinder rotational oscillatio
Taneda (1977)made early visual observations and stud
the behavior of the wake of several different bluff bodies
this work, the effect of a number of different kinds of u
steady motions was studied, including impulsive start f
rest, change of velocity, and rotational oscillation. While p
viding detailed observations of wake structures and ob
ing boundary layer development, this work did not cons
a range of rotational oscillation conditions (varying am
tude and frequency of rotation) and did not carry out d
measurements on the circular cylinder undergoing rotat
oscillation.Tokumaru & Dimotakis (1991); conducted expe
iments on flow past a cylinder at Reynolds number 15,00
a variety of amplitudes and frequencies of oscillation, fi
ing that significant drag reduction was possible with ac
control. In this work, the effects of multiple forcing con
ortices is called the von Karman vortex street(Batchelor,

7.

tions are considered in detail, however, essentially all of this
study is performed at Reynolds number 15,000 and the effects
o rs is
n oku-

d.
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f active control at a range of different Reynolds numbe
ot investigated. The control methodology proposed in T
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maru et al. is open-loop and, therefore, does not involve any
elements of feedback or feedforward control (Tokumaru &
Dimotakis, 1991). Shiels and Leonard (2001)carried out nu-
merical studies to complement Tokumaru’s work; see also
(Lu & Sato, 1996; Protas & Wesfreid, 2002) for further para-
metric studies.

Studies have also been conducted on closed-loop control
of the circular cylinder wake.Roussopoulos (1993)con-
ducted an experimental study where the wake of a circular
cylinder in low Reynolds number flow was stabilized by
feeding back velocity data from the flow field behind the
cylinder using acoustic actuation.Singh, Myatt, Addington,
Banda and Hall, 2001used linear optimal control theory
to control a reduced-order cylinder flow model that was
constructed by applying proper orthogonal decomposition
(POD) to flow field data, see also (Armaou & Christofides,
2000a, 2000b; Baker, Armaou, & Christofides, 2002; Baker
& Christofides, 2002; Christofides & Armaou, 2000) for
further results on linear/nonlinear feedback control of fluid
dynamic systems using reduced-order models and (Aamo
& Krsti ć, 2003) for a recent review of results on feedback
control of fluid flows).Gillies (2001)used multiple sensors
to control the one-dimensional Ginzburg–Landau equation,
which is a PDE model that captures some of the stability
features of the two-dimensional cylinder wake.Park, Ladd,
a he
o ined
t the
f

om-
p ng
c nal
c the
c of
t cise
s hen,
t er
i inst
a der
o sub-
s -loop
s cally
d d on
t erted
o 00–
5

f the flo

2. Flow field: description and governing equations

We consider a two-dimensional incompressible, viscous
channel flow past a cylinder. A schematic of the flow field is
given inFig. 1. The incompressible Navier–Stokes equations
are used to describe the flow field. In two dimensions, the
dimensionless Navier–Stokes equations take the following
form:

∂u
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+ ∂v

∂y
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+ u
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∂y2

)
(1)

whereu andv are the components of the velocity along the
x (parallel to the channel wall) andy (normal to the channel
wall) axes, respectively, andp is the pressure. The Reynolds
number is defined asRe = (Umeand/ν) whereUmean is the
mean velocity in the channel,d is the diameter of the cylinder
andν is the kinematic viscosity. Eq.(1) is subjected to the
following no-slip, no-penetration boundary conditions at the
top and bottom walls of the channel:

u(x, y = 0, t) = u(x, y = 1, t) = 0
(2)
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nd Hendricks (1993)used blowing/suction actuation on t
ne-dimensional Ginzburg–Landau equation and exam

he effect of sensor location on the performance of
eedback controller.

The present work focuses on two-dimensional, inc
ressible viscous channel flow over an infinitely lo
ylinder and examines the effect of controlled rotatio
ylinder oscillation in reducing the drag exerted on
ylinder. Initially, a description of the flow field and
he governing equations is given together with a pre
pecification of the drag exerted on the cylinder. T
he solution of the flow field for the stationary cylind
s given and the drag on the cylinder is validated aga
vailable numerical studies. The effect of controlled cylin
scillation in reducing the drag exerted on the cylinder is
equently examined. Based on an analysis of the open
imulations, a control system is designed that automati
etermines the frequency of cylinder oscillation, base

he Reynolds number, to consistently reduce the drag ex
n the cylinder for Reynolds numbers in the range 1
00.

Fig. 1. Schematic of the spatial domain o
 w field and structure of the finite element mesh.

v(x, y = 0, t) = v(x, y = 1, t) = 0

he lack of knowledge of the flow field at the outlet bound
f the spatial domain prohibits the use of traditional boun
onditions, such as assuming zero total force or axial forc
ssuming some fully developed profile (Papanastasiou, Mal
ataris & Ellwood, 1992). Motivated by this, the so-calle

ree boundary condition is employed at the outlet boun
Papanastasiou et al., 1992; Renardy, 1997) (see alsoBaker,
yatt, & Christofides, 2002for an implementation of th
oundary condition in flow over a flat plate). The solut
f the flow field with the free boundary condition can be
omplished by determining the surface and volume inte
rom the residuals of the Navier–Stokes equations for
uring discretization. According to the free boundary c
ition, the pressure is specified as a constant at the
oundary (Papanastasiou et al., 1992; Renardy, 1997):

(x = 1, y, t) = 0 (3)

or stationary cylinder simulations, the boundary of the cy
er is subjected to the same no-slip, no-penetration bou
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conditions of the type of Eq.(2). The inlet boundary condition
is specified as follows:

u(x = 0, y, t) = 4Umaxy(1 − y)

v(x = 0, y, t) = 0
(4)

whereUmax is the maximum incoming velocity in the center
of the channel.

To simulate a rotating cylinder, the no-slip boundary con-
ditions used for the stationary cylinder are modified. The
cylinder is subjected to periodically oscillating boundary con-
ditions, described by the following equations:

u = yA sin(2πff t)

v = −xA sin(2πff t)
(5)

These boundary conditions result in an overall rotation of the
cylinder with amplitudeA and forcing frequencyff .

The equations that describe the flow field are solved within
the FEMLAB simulation environment(COMSOL Incorpo-
rated, 2001)that uses a finite element approach to compute
the solution of the flow field. The structure of the finite ele-
ment mesh used in our calculations is shown inFig. 1. The
region of the flow field with the largest temporal and spatial
gradients is around and directly behind the cylinder, there-
fore, the mesh is very well refined around the cylinder edges.
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whereP is the pressure,n the unit outward normal vector at
the boundary,τ the viscous stress tensor defined at a generic
point s taken on the boundary� of the cylinder, andex the
unit vector in thex coordinate direction. The first term of
the integral isFpress, and the second term is the contribution
from Ffrict . The objective of implementing active control in
this problem is to reduce the overall drag experienced by
the cylinder using rotational oscillation. The dimensionless
drag coefficient (per unit length) is defined by the following
expression(Batchelor, 1967):

CD = FD

1/2(ρU2
meand)

(8)

whereFD is the total drag force on the cylinder as defined
in Eq. (7), ρ is the density of the fluid, which is unity in our
simulations, andd is the diameter of the cylinder.

3. Solution of the flow field

In this section, we present representative results of our
simulations and compare with existing results (further de-
tails of our study can be found in(Ray, 2003)). Specifically,
in a study to compare different solution methods, Schäfer
(Scḧarfer & Turek, 1996) compared the results of 15 different
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o reduce the computational load, the mesh is less refine
her away from the cylinder, where the temporal and sp
radients are smaller. Further increase in the number o
ents and decrease of the step size of the temporal integ
id not influence the accuracy of the computed results.

At Reynolds number 100, vortices are shed regularly
requencyf which has different values for various geom
ries. To facilitate comparison of results obtained for diffe
ow fields, the dimensionless frequency, the Strouhal n
er,St, is defined by the following relationship:

t = fd

Umean
(6)

he natural Strouhal number,Stnat, is obtained by using th
atural vortex shedding frequency,fnat, for f in Eq.(6)(Shiels
Leonard, 2001).
A cylinder moving through a fluid experiences a d

orce,FD, in the direction parallel to the flow. This force h
wo components: the frictional (or viscous) drag,Ffrict , and
he pressure (or form) drag,Fpress(Batchelor, 1967; Júarez
cott, Metcalfe, & Bagheri, 2000). The frictional drag i
aused by the formation of the boundary layer on the
ace, while pressure drag is attributed to the formation o
ake behind the cylinder. The pressure drag,Fpress, is the
omponent of pressure that is normal to the surface o
ylinder, and the frictional drag,Ffrict , is the tangential com
onent of the shear stress. The total drag,FD, is defined by
Batchelor, 1967; Júarez et al., 2000):

D =
∫

�

(−Pn + τ · n)(s) · ex ds (7)
roups that were tasked to solve the flow problem consid
n this work at Reynolds numbers 20 and 100; we com
ur results with (Scḧarfer & Turek, 1996).

The profile of the flow field at Reynolds number 20
hown inFig. 2. Vortices are formed behind the cylinder
his Reynolds number but remain attached to the cyli
nd are not shed into the flow field; the drag on the cylin
emains constant over time. The resultingCD is 5.58 which
ompares very well with theCD computed by the groups
cḧafer’s study which was between 5.57 and 5.59 (Scḧarfer
Turek, 1996).
At Reynolds numbers above the critical value of roug

7, vortex shedding from the cylinder occurs. This vo
hedding results in fluctuations of the drag force on
ylinder. Vortices are shed from alternate sides of
ylinder. As each vortex is shed, a force is applied to e
ide of the cylinder and the overall mean drag fluctuates
ig. 3). Solutions of the flow field at Reynolds number 1
re also summarized inScḧarfer & Turek (1996). A total of

en different approaches were used. Based on these re
he maximumCD was between 3.22 and 3.24 (Scḧarfer &
urek, 1996). For the present study, the resulting maxim
rag coefficient was found to be 3.22. The variation of d
oefficient over time is shown inFig. 3.

After the maximum drag is reached, the value ofCD ex-
ibits small oscillations around its mean value, 3.17.
elocity field after 10 s at Reynolds number 100 is show
ig. 4. At Reynolds numbers greater than a critical value

ncompressible, viscous flow, vortices develop in the w
ehind the cylinder and are shed into the passing fl
he shed vortices form a periodic pattern known as
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Fig. 2. Velocity field forRe = 20 after 10 s.

Fig. 3. Change in drag vs. time forRe= 100.

von Karman vortex street(Batchelor, 1967). According to
Williamson (1996), the critical Reynolds number is 49, while
Li et al. (Li et al., 1991)cite a range of 35–47 from a few dif-
ferent researchers. In our study, the critical Reynolds number
was found to be around 47.

At a given Reynolds number, the vortices are shed from the
cylinder at characteristic natural frequency,fnat, correspond-
ing to a dimensionless frequency called the Strouhal num-
ber,Stnat = fnat d/Umean. For our problem,fnat at Reynolds
number 100 is determined to be 3.0, which corresponds to
Stnat = 0.30. The frequency of vortex shedding varies lin-
early with Reynolds number in the range 50–500, as shown
in Fig. 5; this result is in very good agreement with the results
in (Williamson, 1988, 1996).

As discussed above, the total drag force,FD, consists of
two components: the pressure drag,Fpress, and the friction
drag,Ffrict . For a bluff body at low Reynolds number such
as the circular cylinder studied in the present work, the ma-
jority of the drag force comes from the pressure drag.Protas
and Wesfreid (2002)found that, at Reynolds number 150
for the circular cylinder,Fpressconstitutes roughly 81% of
the total drag. This value was in agreement with that found
in the present study, 81%, forRe = 150. Moreover, as the
Reynolds number increases, the fractional contribution of
Fpressincreases(Ray, 2003).

We now turn to the case of flow past a rotationally os-
cillating cylinder. There are three main parameters which
may be varied for uniform flow past a rotationally oscil-
lating cylinder: Reynolds number,Re = Umeand/ν, forcing
Strouhal number,Stf = ff d/Umean(whereff is the forcing
frequency), andA, the amplitude of rotation (Lu & Sato,
1996). For compactness, we present our results in terms of
Rf/n = Stf/Stnat, the ratio of the forcing Strouhal number to
the natural Strouhal number, andW = A d/2Umean, the nor-
malized amplitude. For Reynolds number 100,Fig. 6shows
CD versusRf/n for varying values of W. At the largest val-
ues of W,CD changes very rapidly at values ofRf/n below
2. Small values of W result in large values of drag at low
frequencies. AsRf/n increases, the rate of change ofCD de-
c n
w was
d ery
l at-
i
t clu-
reases. AtRf/n = 5, very little change inCD is seen eve
hen W is increased by a factor of six. The natural drag
oubled atRf/n = 1, followed by a sharp decrease and a v

ow CD atRf/n = 5. This plot shows that a cylinder oscill
ng at five timesStnat exhibits a reduction inCD compared
o a stationary cylinder (compare with Fig. 3); this con
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Fig. 4. Velocity field forRe= 100 after 10 s.

Fig. 5. Relationship between vortex shedding andRe. Top plot: frequency;
bottom plot: Strouhal number.

Fig. 6. CD vs.Rf/n for varying values ofW − Re = 100.

sion was also drawn for several other Reynolds numbers in
the range 100–500. The relationship betweenCD and W is
shown inFig. 7for multiple values ofRf/n.

4. Active control

The present study, among others (Lu & Sato, 1996; Protas
& Wesfreid, 2002; Shiels & Leonard, 2001; Tokumaru & Di-
motakis, 1991), has shown that a cylinder oscillating at five
timesStnatexhibits a reduction inCD compared to a stationary
cylinder for Reynolds numbers in the range 100–500. Moti-
vated by this, a control system is developed which senses the
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Fig. 7. CD vs. W for varying values ofRf/n.

speed of the flow field and determines appropriate oscilla-
tion parameters based on the Reynolds number. Specifically,
an almost linear relationship exists (seeFig. 5) between the
natural frequency of vortex shedding,fnat, and the Reynolds
number of the flow field in the range 50–500. Using this
linear relationship,theStf (= (ff d/Umean) = 5Stnat) was de-
termined for each of the following five Reynolds numbers:
100, 150, 200, 250, and 500. Based on this, a controller was
designed which computes the value of the oscillation fre-
quency of the cylinder,ff , for each Reynolds number using
the relationshipff = 5(0.035Re − 0.53) forRein the range
50–500.

To evaluate the performance of this controller, we run
several simulations. Specifically, the Reynolds number is in-
creased from 100 to 500.Fig. 8 shows the values ofCD vs.
time for two different cases: one open-loop simulation and
one closed-loop simulation.Fig. 8 shows only the change
from Reynolds number 100–250 in each case. Initially, in
both cases, the Reynolds number is 100. After 10 s, the
Reynolds number is gradually increased (over a period of
4 s) from 100 to 150. This is accomplished by raising the
average flow speed at the inlet boundary,Umean. After the

F er
v -loop
(

flow is brought to Reynolds number 150, it is held there for
another 4 s. In this manner, the Reynolds number is raised
over 4 s and successively held for 4 s at 200, 250, and 500.
In the closed-loop simulation, the controller is turned on at
5 s at Reynolds number 100. Using the linear relationship
given inFig. 5, the frequency of oscillation is determined by
measuring the Reynolds number every 0.01 s and altering the
frequency of rotation at the cylinder boundary accordingly.
During the periods where the Reynolds number is gradually
increased, the frequency of oscillation is also gradually in-
creased, as the controller takes Reynolds number readings
every 0.01 s and adjusts the frequency of rotation based on
its measurements.

One way to evaluate the performance of the controller is
to compare the effect of each of the five frequencies used in
the controller at all five of the Reynolds numbers that were
considered.Table 1shows the reduction ofCD at each com-
bination of frequency and Reynolds number. The boldface
values are the percent reduction ofCD achieved by oscil-
lating the cylinder at a forcing frequency specified by the
controller for the specific Reynolds number.

In most cases, the reductions ofCD resulting from the
frequencies specified by the controller are above average
compared to the other frequencies tested. For example, for
Re = 100 the improvement inCD achieved using the con-
t hat
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ig. 8. Closed-loop feedback control:CD vs. time for Reynolds numb
arying from 100 to 250 under open-loop (dashed line) and closed
solid line) conditions.
roller (7.49% reduction) is significantly better than t
chieved by using all other forcing frequencies (note tha
inus sign corresponds to a drag increase compared
rag under stationary cylinder for the same Reynolds n
er). The results ofTable 1also emphasize the fact that
roposed controller is not an optimal one, i.e., producing
reatest possible reduction in drag for any given Reyn
umber. Rather, the proposed controller produces a co

ent drag reduction at a broad range of flow speeds; th
mportant given the difficulty to determine the appropr
requency of cylinder oscillation that decreases the dra
rted on the cylinder, for a given Reynolds number, with
xtensive numerical simulation.

The performance of the controller in the presence of m
urement errors was also evaluated. The simulation desc
bove, where the Reynolds number is increased from 1
00 (holding the Reynolds number constant at each inte
iate Reynolds number for 4 s) is repeated in the presen
easurement errors.
Two cases with measurement errors are simulated

rst case corresponds to underestimation of the sensed
peed. Specifically, the controller uses 80% of the a
eynolds number value to determine the forcing freque
or example, when the flow field is at Reynolds number

he controller uses a reading of Reynolds number 80 (in
f the real value of 100), and it then adjusts the frequen
otation as if the Reynolds number is actually 80. This−20%
rror is maintained throughout the simulation so that, a
ry Reynolds number, the controller uses a Reynolds nu

hat is 20% less than the actual. As can be seen inFig. 9, even
ith the presence of the measurement error, the contro
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Table 1
Percent reduction ofCD by rotating the cylinder with differentff for Reynolds numbers in the range 100–500

Re Forcing frequency,ff NominalCD

15 23.256 31.25 40 85

100 7.49 −2.08 −5.32 −4.01 0.00 3.19
150 16.32 8.78 6.21 2.82 0.18 3.11
200 16.35 11.14 6.14 7.63 0.45 3.11
250 10.37 0.45 7.31 5.04 0.85 3.12
500 −12.04 3.35 −1.90 1.97 1.15 3.13

With bold face letters, we show the reduction achieved by using a forcing frequency specified by the controller for a specific Reynolds number. The minussign
corresponds to a drag increase compared to the drag under stationary cylinder for the same Reynolds number.

Fig. 9. Closed-loop simulation in the presence of measurement errors:CD

vs. time for Reynolds number varying from 100 to 250 under open-loop
conditions (dashed line) and under closed-loop conditions in the presence
of −20% measurement error (solid line).

successful at reducing the drag compared to the open-loop
case.

The second case with measurement error corresponds to
the overestimation of the sensed flow speed. In this case, the
controller uses 120% of the actual Reynolds number value
to determine the forcing frequency. Reynolds number 120 is
used by the controller when the actual Reynolds number is
100. This is a+20% error, and is maintained throughout the
simulation so that, at every Reynolds number, the controller
uses a Reynolds number that is 20% more than the actual.
Fig. 10shows the performance of the controller in the pres-
ence of this error. Again the controller exhibits very good
robustness with respect to measurement error, reducing the
drag compared to the open-loop case.

Remark 1. Previous studies on the effect of cylinder rotation
on the structure of the wake behind the cylinder have shown
that it is possible with appropriate cylinder rotation to influ-
ence the wake behind the cylinder (Taneda, 1977; Tokumaru
& Dimotakis, 1991). For our problem, we have found that
the proposed controller, using cylinder rotation, can prevent
vortex formation up to Reynolds number 60.Fig. 11 illus-
trates the stabilizing effect of cylinder rotation. The top plot
of the figure shows the flow field in the case of stationary
cylinder atRe = 60, and the bottom plot of the figure shows
the flow field atRe = 60 with the cylinder undergoing rota-

Fig. 10. Closed-loop simulation in the presence of measurement errors:CD

vs. time for Reynolds number varying from 100 to 250 under open-loop
conditions (dashed line) and under closed-loop conditions in the presence
of +20% measurement error (solid line).

tional oscillation, where wake stabilization (i.e., vortices are
no longer formed) has been accomplished.

Remark 2. The underlying idea for the proposed control
algorithm is based on stationary cylinder and open-loop rota-
tional observations at various Reynolds numbers. Data from
several stationary cylinder simulations revealed a linear re-
lationship between the natural shedding frequency,fnat, and
the Reynolds number betweenRe= 50–500. This linear re-
lationship is shown inFig. 5 of the paper. The open-loop
rotational studies revealed that, at low Reynolds numbers,
drag reduction is observed consistently when the cylinder is
oscillated at 5fnat. The central idea behind the proposed con-
trol algorithm involved combining these two observations.
Specifically, the controller has the following structure. The
cylinder has a sensor that determines the incoming flow speed
(or Reynolds number). Using the linear relationship between
fnat and Reynolds number shown inFig. 5, the forcing fre-
quency,ff , of rotation was then set by the controller to be
5fnat by changing the cylinder boundary conditions from
no-slip to a sinusoidal, time-varying function with period
(1/5fnat).

Remark 3. Multiple control configurations have been ap-
plied to flow past the circular cylinder. Various types of actua-
tion have been used in these control configurations, including
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Fig. 11. Wake stabilization atRe= 60. Top plot: velocity field under stationary cylinder; bottom plot: velocity field under rotating cylinder based on the
controller (W = 3.2 andRf/n = 5).

blowing and suction along the cylinder boundary, in-line
oscillation, and transverse oscillation. For rotational oscilla-
tion, we have also implemented a few different controllers. In
(Ray, 2003), a proportional (P) controller and a proportional-
integral (PI) controller which adjusted the amplitude of cylin-
der rotational oscillation based on drag measurements taken
along the cylinder boundary were implemented. It was found
that the closed-loop feedback controller could not provide
better performance than the open-loop controller for the same

range of Reynolds numbers. Additional details about these
controllers can be found in(Ray, 2003). These controller
designs, as well as controller designs based on reduced-order
models which describe the dominant dynamics of this fluid
dynamic system (Ray, 2003; see also,Christofides, 2001, for
further results on feedback control of nonlinear PDEs), are
limited by how much the cylinder can be actuated and how
much this actuation ultimately affects the cylinder drag. Con-
trol schemes are also limited by the self-excited oscillations
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that are inherent in the cylinder drag at this range of Reynolds
numbers.

5. Conclusions

In this work, we focused on two-dimensional, incompress-
ible viscous channel flow over an infinitely long cylinder and
examined the effect of controlled rotational cylinder oscilla-
tion in reducing the drag exerted on the cylinder. Based on
an analysis of the open-loop simulations, a control system
was designed that automatically determines the frequency of
cylinder oscillation, based on the Reynolds number, to con-
sistently reduce the drag exerted on the cylinder for Reynolds
numbers in the range 100–500.
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