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Abstract

In this work, we focus on two-dimensional, incompressible viscous channel flow over an infinitely long cylinder and examine the effect of
controlled rotational cylinder oscillation in reducing the drag exerted on the cylinder. Based on an analysis of the open-loop simulations, a
control system is designed that automatically determines the frequency of cylinder oscillation, based on the Reynolds number, to consistently
reduce the drag exerted on the cylinder for Reynolds numbers in the range 100-500.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction 1967) The reader may refer tfNilliamson, 1988, 1996)
for detailed studies of the behavior of cylinder wakes, espe-
Control of flow past a circular cylinder is studied for a cially focusing on the relationship between vortex shedding
number of practical reasons. Wake modification, reduction frequency and Reynolds number.
of flow-induced vibrations, design of heat exchangers, and The effective control of drag exerted by the fluid on the
improvement of chemical mixing are among the diverse ap- cylinder has been a challenge that has received particular at-
plications involving flow past a circular cylinder. This prob- tention. The drag force on the cylinder may be reduced by
lem is also studied for stall control and lift enhancement as active control in the form of cylinder rotational oscillation.
well as for design of aerodynamic vehicles. Taneda (1977nade early visual observations and studied
The formation of vortices behind the flow past a cir- the behavior of the wake of several different bluff bodies. In
cular cylinder above a critical Reynolds number has been this work, the effect of a number of different kinds of un-
well documented, both numerically and experimentally (e.g., steady motions was studied, including impulsive start from
Batchelor, 1967Li, Chambarel, Donneaud, & Martin, 1991  rest, change of velocity, and rotational oscillation. While pro-
Lu & Sato, 1996 Shiels & Leonard, 2001Taneda, 1977 viding detailed observations of wake structures and observ-
Tokumaru & Dimotakis, 1991Williamson, 1998§. Initially, ing boundary layer development, this work did not consider
at flows below Reynolds number 10, the fluid travels along a range of rotational oscillation conditions (varying ampli-
the boundary of the cylinder and streamlines form around the tude and frequency of rotation) and did not carry out drag
cylinder. At Reynolds number above roughly 10, the stream- measurements on the circular cylinder undergoing rotational
lines separate from the boundary behind the cylinder and oscillation.Tokumaru & Dimotakis (1991 xonducted exper-
vortices are formed. These vortices remain behind the cylin- iments on flow past a cylinder at Reynolds number 15,000 for
der. At Reynolds number above roughly 47, these vortices area variety of amplitudes and frequencies of oscillation, find-
successively formed and then shed from the top and bottoming that significant drag reduction was possible with active
of the cylinder periodically. The regular pattern of shedding control. In this work, the effects of multiple forcing condi-
vortices is called the von Karman vortex stréBatchelor, tions are considered in detail, however, essentially all of this
study is performed at Reynolds number 15,000 and the effects
* Corresponding author. Tel.: +1 310 794 1015; fax: +1 310 206 4107.  Of active control at a range of different Reynolds numbers is
E-mail addresspdc@seas.ucla.edu (Panagiotis D. Christofides). notinvestigated. The control methodology proposed in Toku-
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maru et al. is open-loop and, therefore, does not involve any 2. Flow field: description and governing equations
elements of feedback or feedforward controbKumaru &

Dimotakis, 199). Shiels and Leonard (200Egarried out nu- We consider a two-dimensional incompressible, viscous
merical studies to complement Tokumaru’s work; see also channel flow past a cylinder. A schematic of the flow field is
(Lu & Sato, 1996 Protas & Wesfreid, 200Zor further para- given inFig. L The incompressible Navier—Stokes equations

metric studies. are used to describe the flow field. In two dimensions, the
Studies have also been conducted on closed-loop controldimensionless Navier—Stokes equations take the following
of the circular cylinder wakeRoussopoulos (19933on- form:

ducted an experimental study where the wake of a circular 5, 5,
cylinder in low Reynolds number flow was stabilized by x ay

feeding back velocity data from the flow field behind the ., u u p 1 (Pu Pu
cylinder using acoustic actuatio8ingh, Myatt, Addington, —tu—tv—=—"7+ (—2 + —2)
Banda and Hall, 200lused linear optimal control theory or 0x oy 0x  Re 82)6 82y
to control a reduced-order cylinder flow model that was 9 9 v _ o 1 <Q 4 Q)

constructed by applying proper orthogonal decomposition 97 ox  dy dy  Re \ox2 = 9y?

(POD) to flow field data, see alséinaou & Christofides,  \hereu andv are the components of the velocity along the
2000a, 2000pBaker, Armaou, & Christofides, 200Baker x (parallel to the channel wall) and(normal to the channel

& Christofides, 2002 Christofides & Armaou, 20Q0for —\yq))) axes, respectively, andis the pressure. The Reynolds
further results on linear/nonlinear feedback control of fluid L mber is defined age = (Umeard /v) Where Umeanis the

dynamic systems using reduced-order models a0 mean velocity in the channel js the diameter of the cylinder
& Krstic, 2003 for a recent review of results on feedback 5nqy is the kinematic viscosity. Eq1) is subjected to the

control of fluid flows).Gillies (2001)used multiple sensors following no-slip, no-penetration boundary conditions at the
to control the one-dimensional Ginzburg—Landau equation, top and bottom walls of the channel:

which is a PDE model that captures some of the stability
features of the two-dimensional cylinder wakark, Ladd,  u(x,y=0,7) =u(x,y=1,1)=0
and Hendricks (1993)sed blowing/suction actuationonthe y(x,y=0,7) =v(x,y=1,1)=0
one-dimensional Ginzburg-Landau equation and examined
the effect of sensor location on the performance of the
feedback controller.

The present work focuses on two-dimensional, incom-
pressible viscous channel flow over an infinitely long
cylinder and examines the effect of controlled rotational
cylinder oscillation in reducing the drag exerted on the
cylinder. Initially, a description of the flow field and of
the governing equations is given together with a precise
specification of the drag exerted on the cylinder. Then,
the solution of the flow field for the stationary cylinder

1)

| o3}

()

The lack of knowledge of the flow field at the outlet boundary
of the spatial domain prohibits the use of traditional boundary
conditions, such as assuming zero total force or axial force, or
assuming some fully developed profiRgpanastasiou, Mala-

| mataris & Ellwood, 199p Motivated by this, the so-called
free boundary condition is employed at the outlet boundary
(Papanastasiou et al., 1992; Renardy, }49&e als@Baker,
Myatt, & Christofides, 200Zor an implementation of this
boundary condition in flow over a flat plate). The solution
of the flow field with the free boundary condition can be ac-

is given and the drag on the cylinder is validated against complished by determining the surface and volume integrals

available numerical studies. The effect of controlled cylinder from the_ reS|d_uaI§ of the Na_wer—Stokes equations formed
oscillation in reducing the drag exerted on the cylinder is sub- uring discretization. According to the free boundary con-

sequently examined. Based on an analysis of the open-loopd't'on’ the pressure is specified as a constant at the outlet

simulations, a control system is designed that automatically P0undary Papanastasiou et al., 1992; Renardy, 3997
determines the frequency of cylinder oscillation, based on ,(y =1,y 1) =0 ©)
the Reynolds number, to consistently reduce the drag exertedl7

on the cylinder for Reynolds numbers in the range 100- For stationary cylinder simulations, the boundary of the cylin-
500. der is subjected to the same no-slip, no-penetration boundary

Fig. 1. Schematic of the spatial domain of the flow field and structure of the finite element mesh.
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conditions of the type of E@2). The inletboundary condition ~ whereP is the pressure) the unit outward normal vector at

is specified as follows: the boundaryy the viscous stress tensor defined at a generic
point s taken on the boundarl of the cylinder, and, the

u(x =0.y.1) = AUmaxy(1 - ) ) unit vector in thex coordinate direction. The first term of

v(x=0,y,1)=0 the integral isFyress and the second term is the contribution

from Fyict. The objective of implementing active control in
this problem is to reduce the overall drag experienced by
the cylinder using rotational oscillation. The dimensionless
drag coefficient (per unit length) is defined by the following
expressior{Batchelor, 1967)

whereUpmay is the maximum incoming velocity in the center
of the channel.

To simulate a rotating cylinder, the no-slip boundary con-
ditions used for the stationary cylinder are modified. The
cylinder is subjected to periodically oscillating boundary con-
ditions, described by the following equations: Co = Fp

2
u = yAsin(2tfir) 1/2(pUtearl)
v = —xAsinifif) (5) where Fp is the total drag force on the cylinder as defined
in Eq. (7), p is the density of the fluid, which is unity in our
These boundary conditions result in an overall rotation of the simulations, and is the diameter of the cylinder.
cylinder with amplitudeA and forcing frequencys;.

The equations that describe the flow field are solved within
the FEMLAB simulation environmerfCOMSOL Incorpo- 3. Solution of the flow field
rated, 2001}hat uses a finite element approach to compute
the solution of the flow field. The structure of the finite ele- In this section, we present representative results of our
ment mesh used in our calculations is showifrig. 1L The simulations and compare with existing results (further de-
region of the flow field with the largest temporal and spatial tails of our study can be found {{Ray, 2003). Specifically,
gradients is around and directly behind the cylinder, there- in a study to compare different solution methods, &eh
fore, the mesh is very well refined around the cylinder edges. (Scrarfer & Turek, 199%compared the results of 15 different
Toreduce the computational load, the mesh is less refined fur-groups that were tasked to solve the flow problem considered
ther away from the cylinder, where the temporal and spatial in this work at Reynolds numbers 20 and 100; we compare
gradients are smaller. Further increase in the number of ele-our results with $charfer & Turek, 1998.
ments and decrease of the step size of the temporalintegration The profile of the flow field at Reynolds number 20 is
did not influence the accuracy of the computed results. shown inFig. 2 Vortices are formed behind the cylinder at

At Reynolds number 100, vortices are shed regularly at a this Reynolds number but remain attached to the cylinder
frequency f which has different values for various geome- and are not shed into the flow field; the drag on the cylinder
tries. To facilitate comparison of results obtained for different remains constant over time. The resultifig is 5.58 which
flow fields, the dimensionless frequency, the Strouhal num- compares very well with th€p computed by the groups in

(8)

ber, St, is defined by the following relationship: Schafer’s study which was between 5.57 and 5.S8térfer
d & Turek, 199§.
St = (6) At Reynolds numbers above the critical value of roughly
Umean 47, vortex shedding from the cylinder occurs. This vortex

The natural Strouhal numbefinay, is obtained by using the shedding results in fluctuations of the drag force on the
natural vortex shedding frequengas, for fin Eq.(6) (Shiels cylinder. Vortices are shed from alternate sides of the
& Leonard, 200} cylinder. As each vortex is shed, a force is applied to each
A cylinder moving through a fluid experiences a drag Side of the cylinder and the overall mean drag fluctuates (see
force, Fp, in the direction parallel to the flow. This force has Fig. 3). Solutions of the flow field at Reynolds number 100
two components: the frictional (or viscous) drdgct, and are also summarized fBcharfer & Turek (1996) A total of
the pressure (or form) dragipress(Batchelor, 1967Juarez, ten different approaches were used. Based on these results,
Scott, Metcalfe, & Bagheri, 2000 The frictional drag is  the maximumCp was between 3.22 and 3.28dfarfer &
caused by the formation of the boundary layer on the sur- Turek, 199§. For the present study, the resulting maximum
face, while pressure drag is attributed to the formation of the drag coefficient was found to be 3.22. The variation of drag
wake behind the cylinder. The pressure dréigess is the ~ coefficient over time is shown iig. 3
component of pressure that is normal to the surface of the After the maximum drag is reached, the valueCef ex-
cylinder, and the frictional dragiict, is the tangential com-  hibits small oscillations around its mean value, 3.17. The
ponent of the shear stress. The total dr&g, is defined by velocity field after 10 s at Reynolds number 100 is shown in

(Batchelor, 1967; Jrez et al., 2000) Fig. 4. At Reynolds numbers greater than a critical value, in
incompressible, viscous flow, vortices develop in the wake

Fp = / (=Pn+7-n)(s) - e, ds @ behind the cylinder and are shed into the passing fluid.
r The shed vortices form a periodic pattern known as the
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Fig. 2. Velocity field forRe = 20 after 10s.

35 . . . : . As discussed above, the total drag forég, consists of
two components: the pressure drdgress and the friction
drag, Fict- For a bluff body at low Reynolds number such
as the circular cylinder studied in the present work, the ma-
MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWY jority of the drag force comes from the pressure dRx@tas
and Wesfreid (2002jound that, at Reynolds number 150
7 3r 1 for the circular cylinder Fyressconstitutes roughly 81% of
the total drag. This value was in agreement with that found
in the present study, 81%, fdte = 150. Moreover, as the
Reynolds number increases, the fractional contribution of
FpressincreasegRay, 2003)

We now turn to the case of flow past a rotationally os-

25, 5 8 - 8 9 10 cillating cylinder. There are three main parameters which
time may be varied for uniform flow past a rotationally oscil-
lating cylinder: Reynolds numbeRe = Umeand/v, forcing
Fig. 3. Change in drag vs. time féte= 100. Strouhal numbersts = f; d/Umean(Where f; is the forcing

frequency), andd, the amplitude of rotationL{ & Sato,
von Karman vortex stregBatchelor, 1967)According to 1996. For compactness, we present our results in terms of
Williamson (1996)the critical Reynolds number is 49, while R j/n = Stt/Stnay, the ratio of the forcing Strouhal number to
Li etal. (Li etal., 1991)cite a range of 35-47 from a few dif-  the natural Strouhal number, alid= A d/2Umean the nor-
ferent researchers. In our study, the critical Reynolds numbermalized amplitude. For Reynolds number 16@. 6 shows

was found to be around 47. Cp versusR y, for varying values of W. At the largest val-
Ata given Reynolds number, the vortices are shed from the Ues of W,Cp changes very rapidly at values &f;, below
cylinder at characteristic natural frequengy, correspond- 2. Small values of W result in large values of drag at low

ing to a dimensionless frequency called the Strouhal num- frequencies. Ast 5, increases, the rate of change(af de-

ber, Stnat = fnat d/Umean FOr our problemfna at Reynolds creases. ARy, =5, very little change irCp is seen even
number 100 is determined to be 3.0, which corresponds toWhen W s increased by a factor of six. The natural drag was
Stnat = 0.30. The frequency of vortex shedding varies lin- doubled atR ;, = 1, followed by a sharp decrease and a very
early with Reynolds number in the range 50-500, as shown oW Cb at Rz, = 5. This plot shows that a cylinder oscillat-

in Fig. 5; this result is in very good agreement with the results ing at fiv_e timesgtqat exhibits a redut':tion.irCD compared
in (Williamson, 1988, 1996) to a stationary cylinder (compare with Fig. 3); this conclu-
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Fig. 4. Velocity field forRe= 100 after 10s.
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Fig. 6. Cp vs. Ry, for varying values oV — Re = 100.

sion was also drawn for several other Reynolds numbers in
the range 100-500. The relationship betweégnand W is
shown inFig. 7 for multiple values ofR /,,.

4. Active control

The present study, among othdrsl & Sato, 1996 Protas
& Wesfreid, 2002 Shiels & Leonard, 200ITokumaru & Di-
motakis, 199}, has shown that a cylinder oscillating at five
timesStnatexhibits areduction i@p compared to a stationary
cylinder for Reynolds numbers in the range 100-500. Moti-
vated by this, a control system is developed which senses the
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flow is brought to Reynolds number 150, it is held there for

- E;ﬁg:g;g? another 4s. In this manner, the Reynolds number is raised
7 —=- Rf/n=1.07 over 4s and successively held for 4 s at 200, 250, and 500.
—¥— Rf/in=2.67 . . .
In the closed-loop simulation, the controller is turned on at
6 5s at Reynolds number 100. Using the linear relationship
- given inFig. 5, the frequency of oscillation is determined by
= measuring the Reynolds number every 0.01 s and altering the
il frequency of rotation at the cylinder boundary accordingly.
During the periods where the Reynolds number is gradually
3 increased, the frequency of oscillation is also gradually in-
creased, as the controller takes Reynolds number readings
o ; ; : : every 0.01s and adjusts the frequency of rotation based on
0 1 2 3 4 5

its measurements.

One way to evaluate the performance of the controller is
Fig. 7. Cpp vs. W for varying values oR . to compare the effect of each of the five frequencies used in
the controller at all five of the Reynolds numbers that were
consideredTable 1shows the reduction afp at each com-
bination of frequency and Reynolds number. The boldface
values are the percent reduction @ achieved by oscil-
lating the cylinder at a forcing frequency specified by the
controller for the specific Reynolds number.

In most cases, the reductions 66 resulting from the
frequencies specified by the controller are above average
compared to the other frequencies tested. For example, for
Re = 100 the improvement iilCp achieved using the con-
troller (7.49% reduction) is significantly better than that
achieved by using all other forcing frequencies (note that the
minus sign corresponds to a drag increase compared to the
drag under stationary cylinder for the same Reynolds num-
ber). The results ofable lalso emphasize the fact that the
proposed controller is not an optimal one, i.e., producing the
time for two different cases: one open-loop simulation and greatest possible reduction in drag for any given Reynold_s

number. Rather, the proposed controller produces a consis-

one closed-loop simulatiorkig. 8 shows only the change . e
from Reynolds number 100-250 in each case. Initially, in Fent drag reduction at a broad range of flow speeds; this is

both cases, the Reynolds number is 100. After 10s, thelmportant glven_the d|ff|c_ulty. to determine the appropriate

. : ; frequency of cylinder oscillation that decreases the drag ex-
Reynolds number is gradually increased (over a period of erted on the cylinder, for a given Reynolds number, without
45s) from 100 to 150. This is accomplished by raising the y ' g y '

. extensive numerical simulation.
average flow speed at the inlet boundaifean After the The performance of the controller in the presence of mea-

surement errors was also evaluated. The simulation described

W

speed of the flow field and determines appropriate oscilla-
tion parameters based on the Reynolds number. Specifically
an almost linear relationship exists (d€ig. 5 between the
natural frequency of vortex shedding,a, and the Reynolds
number of the flow field in the range 50-500. Using this
linear relationship,thét (= (fi d/Umean = 5Stna) was de-
termined for each of the following five Reynolds numbers:
100, 150, 200, 250, and 500. Based on this, a controller was
designed which computes the value of the oscillation fre-
quency of the cylinderf;, for each Reynolds number using
the relationshipf; = 5(0.035Re — 0.53) for Rein the range
50-500.

To evaluate the performance of this controller, we run
several simulations. Specifically, the Reynolds number is in-
creased from 100 to 50@ig. 8 shows the values afp vs.

openloop simulation above, where the Reynolds number is increased from 100 to
36 — closed-loop simulation | | 500 (holding the Reynolds number constant at each interme-
diate Reynolds number for 4 s) is repeated in the presence of

3.4- Re100 to 200 | Re 200 to 250 [Re 250 measurement errors.
Two cases with measurement errors are simulated. The
£ 32 first case corresponds to underestimation of the sensed flow

speed. Specifically, the controller uses 80% of the actual

3 . .
Reynolds number value to determine the forcing frequency.

28 For example, when the flow field is at Reynolds number 100,
the controller uses a reading of Reynolds number 80 (instead
2.6 of the real value of 100), and it then adjusts the frequency of

5 10 15 20 25 30 rotation as if the Reynolds number is actually 80. FhiZ)%
time error is maintained throughout the simulation so that, at ev-
Fig. 8. Closed-loop feedback contralp vs. time for Reynolds number ery Reynolds number, the controlier uses a Reynolds number

varying from 100 to 250 under open-loop (dashed line) and closed-loop th_at is 20% less than the actual. As can be seéigrd, even _
(solid line) conditions. with the presence of the measurement error, the controller is
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Table 1
Percent reduction afp by rotating the cylinder with differenf; for Reynolds numbers in the range 100-500

883

Re Forcing frequencyf Nominal Cp
15 23.256 31.25 40 85

100 7.49 —-2.08 -5.32 —4.01 0.00 3.19

150 16.32 8.78 6.21 2.82 0.18 3.11

200 16.35 11.14 6.14 7.63 0.45 3.11

250 10.37 0.45 7.31 5.04 0.85 3.12

500 —-12.04 3.35 -1.90 1.97 1.15 3.13

With bold face letters, we show the reduction achieved by using a forcing frequency specified by the controller for a specific Reynolds numbersigre minus
corresponds to a drag increase compared to the drag under stationary cylinder for the same Reynolds number.

openloop simulation openloop simulation

- closed-loop simulation —— closed-loop simulation

’ Re 100 Re 150 Re 200 Bl

Re 100 |5 150 [Re 150 to 200 Re 200 to 250 [Re 250 to 150 |Re 150
3.4 ‘
a 3.2 a3.2)
(@) ! O

3
28
2.6

5 10 15 20 25 30 5 10 15 20 25 30

time time

Fig. 9. Closed-loop simulation in the presence of measurement e€grs: Fig. 10. Closed-loop simulation in the presence of measurement efprs:

vs. time for Reynolds number varying from 100 to 250 under open-loop vs. time for Reynolds number varying from 100 to 250 under open-loop
conditions (dashed line) and under closed-loop conditions in the presenceconditions (dashed line) and under closed-loop conditions in the presence
of —20% measurement error (solid line). of +20% measurement error (solid line).

successful at reducing the drag compared to the open-loop
case. tional oscillation, where wake stabilization (i.e., vortices are

The second case with measurement error corresponds tao longer formed) has been accomplished.

the overestimation of the sensed flow speed. In this case, theremark 2. The underlying idea for the proposed control
controller uses 120% of the actual Reynolds number value algorithm is based on stationary cylinder and open-loop rota-
to determine the forcing frequency. Reynolds number 120 is tional observations at various Reynolds numbers. Data from
used by the controller when the actual Reynolds number is seyeral stationary cylinder simulations revealed a linear re-
100. This is a+20% error, and is maintained throughout the lationship between the natural shedding frequerfigy, and
simulation so that, at every Reynolds number, the controller e Reynolds number betwe&e= 50-500. This linear re-
uses a Reynolds number that is 20% more than the aCtualiationship is shown irFig. 5 of the paper. The open-loop
Fig. 10shows the performance of the controller in the pres- rotational studies revealed that, at low Reynolds numbers,
ence of this error. Again the controller exhibits very good graq reduction is observed consistently when the cylinder is
robustness with respect to measurement error, reducing theygcijllated at Hnat. The central idea behind the proposed con-
drag compared to the open-loop case. trol algorithm involved combining these two observations.

Remark 1. Previous studies on the effect of cylinder rotation SPecifically, the controller has the following structure. The
on the structure of the wake behind the cylinder have shown cylinder has a sensor that determines the incoming flow speed

that it is possible with appropriate cylinder rotation to influ- (O Reynolds number). Using the linear relationship between
ence the wake behind the cylind@apeda, 1977Tokumaru ~ fnatand Reynolds number shown ig. 5 the forcing fre-

& Dimotakis, 199). For our problem, we have found that 9Uency. fi, of rotation was then set by the controller to be
the proposed controller, using cylinder rotation, can prevent 2/nat by changing the cylinder boundary conditions from
vortex formation up to Reynolds number @dg. 11illus- no-slip to a sinusoidal, time-varying function with period
trates the stabilizing effect of cylinder rotation. The top plot (1/5/nat)-

of the figure shows the flow field in the case of stationary Remark 3. Multiple control configurations have been ap-
cylinder atRe = 60, and the bottom plot of the figure shows plied to flow past the circular cylinder. Various types of actua-
the flow field atRe = 60 with the cylinder undergoing rota-  tion have been used in these control configurations, including
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Fig. 11. Wake stabilization @&e = 60. Top plot: velocity field under stationary cylinder; bottom plot: velocity field under rotating cylinder based on the
controller W = 3.2 andRy, = 5).

blowing and suction along the cylinder boundary, in-line range of Reynolds numbers. Additional details about these
oscillation, and transverse oscillation. For rotational oscilla- controllers can be found ifRay, 2003) These controller
tion, we have also implemented a few different controllers. In designs, as well as controller designs based on reduced-order
(Ray, 2003)a proportional (P) controller and a proportional- models which describe the dominant dynamics of this fluid
integral (P1) controller which adjusted the amplitude of cylin- dynamic systemRay, 2003 see alsoChristofides, 200for

der rotational oscillation based on drag measurements takerfurther results on feedback control of nonlinear PDES), are
along the cylinder boundary were implemented. It was found limited by how much the cylinder can be actuated and how
that the closed-loop feedback controller could not provide much this actuation ultimately affects the cylinder drag. Con-
better performance than the open-loop controller for the sametrol schemes are also limited by the self-excited oscillations
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that are inherentin the cylinder drag at this range of Reynolds Christofides, P. D., & Armaou, A. (2000). Global stabilization of the

numbers.

5. Conclusions

Inthis work, we focused on two-dimensional, incompress-

ible viscous channel flow over an infinitely long cylinder and
examined the effect of controlled rotational cylinder oscilla-

tion in reducing the drag exerted on the cylinder. Based on
an analysis of the open-loop simulations, a control system

Kuramoto—Sivashinsky equation via distributed output feedback control.
Systems & Control Letter89, 283-294.

Gillies, E. A. (2001). Multiple sensor control of vortex sheddiddAA
Journal 39, 748-750.

COMSOL Incorporated. (2001). FEMLAB: model library. Stockholm, Swe-
den: COMSOL.

Juarez, H., Scott, R., Metcalfe, R., & Bagheri, B. (2000). Direct simulation
of freely rotating cylinders in viscous flows by high-order finite element
methodsComputers & Fluids29, 547-582.

Li, J., Chambarel, A., Donneaud, M., & Martin, R. (1991). Numerical study
of laminar flow past one and two circular cylindeBamputers & Fluids
19, 155-170.

was designed that automatically determines the frequency ofLu, X. Y., & Sato, J. (1996). A numerical study of flow past a rotationally

cylinder oscillation, based on the Reynolds number, to con-
sistently reduce the drag exerted on the cylinder for Reynolds

numbers in the range 100-500.
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