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a b s t r a c t

In this work, we focus on the problem of monitoring and retuning of low-level proportional-integral-

derivative (PID) control loops used to regulate control actuators to the values computed by advanced

model-based control systems like model predictive control (MPC). We consider the case where the real-

time measurement of the actuation level is unavailable, and thus PID controller monitoring has to be

achieved on the basis of process state measurements. A fault detection and isolation (FDI) method

involving process models and real-time process measurements is used to monitor the PID control loops

and compute appropriate residuals. Once poor tuning is detected and isolated, a PID tuning method

based on the estimated transfer function of the control actuator is applied to the isolated, poorly

functioning PID controller. An example of a non-linear reactor–separator process operating under MPC

with low-level PID controllers regulating the control actuators is used to demonstrate the approach.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is widely used in industry
because of its ability to handle input/state constraints and to
incorporate optimization considerations in a single formulation
(Mayne et al., 2000; Qin and Badgwell, 2003). In general, in the
calculation of the optimal input trajectories for the manipulated
inputs via MPC, the dynamics of the corresponding control actuators
that will implement the control actions computed by the MPC are
neglected and the MPC-computed control actions are assumed to be
directly implemented by the control actuators. However, in practice,
these control actuators have their own specific dynamics. As a result
of this, there are always discrepancies (i.e., time lags, magnitude
differences, etc.) between the actual control actions applied to the
process by the control actuators and the control actions requested
by the MPC. To mitigate the influence of these discrepancies in
closed-loop performance, PID controllers (typically called ‘‘low-
level’’ PID controllers) are usually implemented on the control
actuators to regulate the outputs of the actuators at the values
requested by the MPC (Astrom et al., 1993). The representation of
this added extra layer of the PID controllers around the control
actuators is shown in Fig. 1. In this case, the tuning of the PID
controllers is critical for the overall control actuator and closed-loop
system performance. An actuator with a well-tuned PID controller

can effectively implement the actions requested by the MPC;
whereas, an actuator with a poorly tuned PID controller may reduce
the performance of the closed-loop system dramatically or may
even cause instability of the closed-loop system.

Monitoring the performance of low-level PID loops provides
the motivation for this work. With respect to previous works on
the subject, there is indeed a plethora of techniques discussed in
the literature on monitoring of the performance and tuning of PID
controller parameters. With respect to tuning, methods such as
Ziegler–Nichols (Ziegler and Nichols, 1942; Hang et al., 1991),
Cohen–Coon (Cohen and Coon, 1953), internal model control
(Skogestad, 2003; Veronesi and Visioli, 2009), pole placement
(Wang et al., 2009; Zayed et al., 2009), and others have been
widely used to tune PID controller parameters based on either the
estimated plant’s transfer function or experimentally obtained
step response and/or frequency response curves. Gain scheduling
(Rugh, 1991; Zhao et al., 1993) has also been developed to allow
PID controllers to be able to self-tune to accommodate changing
operating conditions. Multiple works have also been published on
automatic retuning of PID parameters based on the current
performance of the PID controller and online system identifica-
tion (Sung et al., 1998; Veronesi and Visioli, 2009; Zhuang and
Atherton, 1993; Chand, 1992; Saito, 1990; Teng et al., 2008;
Anderson et al., 1988; Nishikawa et al., 1984). On the monitoring
front, Eriksson and Isaksson (1994) and Qin (1998) provide a
survey of available monitoring techniques. Specifically, minimum
variance control (Harris, 1989) has been developed as a tool to
assess PID performance, while Tsung and Shi (1999), Tsung et al.
(1999), and Tsung (2000) utilize statistical process control (SPC)
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to monitor and provide performance criteria to assess the perfor-
mance of PID controllers. In another work (Shi and Tsung, 2003), a
monitoring scheme was proposed to determine poor tuning/faults
using principal component analysis (PCA) and neural networks.
One common feature in all of the works in the PID monitoring
field mentioned above is the assumption that measurements of
the output of the PID-controlled loop are available.

Motivated by the above considerations, we address the problem
of real-time monitoring and retuning of low-level PID controllers in
the case where the measurement of the actual control action
implemented on the process is unavailable. Specifically, we present
a method for monitoring the PID performance via a model-based FDI
method (Mhaskar et al., 2006, 2007) coupled with real-time process
measurements. Using an estimated transfer function model of the
control actuators, model-based FDI can be used to detect the
discrepancies between the expected actuation level and the actual
actuation level performed by the control actuators. Based on the
patterns of the residuals, a poorly tuned actuator can be isolated and
retuned accordingly. An example of a non-linear reactor–separator
process under MPC with low-level PID controllers around the
control actuators is used to demonstrate the approach.

2. Preliminaries

2.1. Class of non-linear systems

In this work, we consider non-linear process systems with
constraints on the inputs described by the following state-space
model:

_xðtÞ ¼ f ðxðtÞÞþGðxðtÞÞuaðtÞþwðtÞ ð1Þ
where xðtÞARnx is an nx-element column vector representing nx
states of the system, uaðtÞAUDRmu is an mu-element column
vector representing mu inputs to the system, and wðtÞAWDRnx is
an nx-element column vector representing the process noise to
the system. U is a convex set, f ð�Þ is a non-linear sufficiently
smooth vector function, and Gð�Þ is a nx �mu matrix whose
elements are sufficiently smooth functions that relate the jth
input to the ith state with 1r jrmu and 1r irnx. Without loss
of generality, x¼0 is assumed to be the equilibrium of the
unforced system, i.e., _xðtÞ ¼ 0 when x¼0, ua¼0, and w¼0. The
operator 9 � 9 is used to denote the absolute value of a scalar. The
operator J � J is used to denote Euclidean norm of a vector.

Since the central focus of this work is on the difference
between the requested actuation computed by the model-based
controller and the actual actuation level applied to the process by
the control actuators, we shall distinguish the two elements by
calling the requested actuation um(t) and the actual actuation ua(t).

2.2. Lyapunov-based MPC

In this work, the model-based controller that is used to
determine the set-points for each actuator is a Lyapunov-based

model predictive controller (LMPC) (Mhaskar et al., 2006). One
assumption about the design of the model-based control system
used in this work is that it does not explicitly account for the
dynamics of the control actuators and the presence of the process
noise. Therefore, the model used for the design of the model-
based control system assumes the following dynamics for the
process:

_~x ðtÞ ¼ f ð ~xðtÞÞþGð ~xðtÞÞumðtÞ ð2Þ
where um is the computed actuation by the high-level MPC.

We make the following assumptions regarding the stability of
the closed-loop system. We assume that there exists a Lyapunov-
based controller hð ~xÞ such that the origin of the nominal closed-
loop system under this controller, i.e., system of Eq. (2) with
umðtÞ ¼ hð ~xÞ 8t, is asymptotically stable; this controller hð ~xÞ can be
designed using geometric control or Lyapunov-based control
techniques (e.g., Christofides and El-Farra, 2005). Using converse
Lyapunov theorems, this implies that there exist class K
functions1aið�Þ, i¼ 1;2,3;4 and a continuously differentiable Lya-
punov function Vð ~xÞ for the nominal closed-loop system that
satisfy the following inequalities:

a1ðJ ~xJÞrVð ~xÞra2ðJ ~xJÞ ð3aÞ

@Vð ~xÞ
@x

ðf ð ~xÞþGð ~xÞhð ~xÞÞr�a3ðJ ~xJÞ ð3bÞ

@Vð ~xÞ
@x

����
����ra4ðJ ~xJÞ ð3bÞ

for all ~xADDRnx where D is an open neighborhood of the origin.
We denote the region OrDD2 as the stability region of the
nominal closed-loop system, i.e., Eq. (2), under the control
umðtÞ ¼ hð ~xÞ.

The existence of the controller hð ~xÞ allows us to formulate an
MPC that inherits the stability properties of hð ~xÞ (Mhaskar et al.,
2006), and it is described by the following optimization problem:

min
uc ASðDÞ

Z NcD

0
½x̂T ðtÞQx̂ðtÞþuT

c ðtÞRucðtÞ� dt ð4aÞ

_̂x ðtÞ ¼ f ðx̂ðtÞÞþGðx̂ðtÞÞucðtÞ ð4bÞ

x̂ð0Þ ¼ xðtkÞ ð4cÞ

ucðtÞAU ð4dÞ

@VðxðtkÞÞ
@x

GðxðtkÞÞucð0Þr
@VðxðtkÞÞ

@x
GðxðtkÞÞhðxðtkÞÞ ð4eÞ

where SðDÞ is the family of piece-wise constant functions with
sampling period D, Q and R are strictly positive definite sym-
metric weighting matrices, xðtkÞ is the process state measurement

Fig. 1. Closed-loop system with MPC as advanced model-based controller and low-level PID controller implemented to regulate the control actuators.

1 A continuous function a : ½0,aÞ-½0,1Þ is said to belong to class K if it is

strictly increasing and að0Þ ¼ 0.
2 We use Or to denote the set Or :¼ fxARnx 9VðxÞrrg.
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obtained at tk, x̂ is the predicted trajectory of the system under
the MPC, Nc is the number of steps in the prediction horizon, and
V is the Lyapunov function corresponding to the controller hð ~xÞ.

The optimal solution to this optimization problem is denoted
by un

c ðt9tkÞ. The LMPC is implemented following a receding
horizon strategy; at each sampling time tk, a new state measure-
ment xðtkÞ is received from the sensors and the optimization
problem of Eq. (4) is solved, and un

c ð09tkÞ is sent to the actuators
and it is implemented for tA ½tk,tkþ1�. The constraint of Eq. (4e)
guarantees that the value of the time derivative of the Lyapunov
function at the initial evaluation time of the LMPC is less than or
equal to the value obtained if only the Lyapunov-based control
um ¼ hð ~xÞ is implemented. This constraint allows the LMPC to
inherit the stability properties of the Lyapunov-based control hð ~xÞ
for sufficiently small sampling period D; in particular, practical
stability of the closed-loop system can be proven for sufficiently
small D. For detailed results on Lyapunov-based MPC, see
Mhaskar et al. (2006).

Remark 1. Note that in the design of the LMPC of Eq. (4) and its
closed-loop stability analysis, one assumption is that the
requested actuation um(t) is applied directly to the process by
the control actuators. In a practical setting, however, um(t) has to
go through the dynamics of the PID-controlled actuators before
the system is actuated with ua(t). The central focus of this work is
on how to bring ua(t) to be as close as possible to um(t). The
relationship between ua(t) and um(t) will be discussed in detail in
the next section.

Remark 2. Though a Lyapunov-based MPC is used in this paper
as the model-based control system to demonstrate how the
problem of low-level PID monitoring and retuning based on
process state measurements can be approached, the monitoring
and retuning methods presented here can be applied to any type
of model-based control system (i.e., geometric control or Lyapu-
nov-based control, Christofides and El-Farra, 2005; distributed
MPC, Liu et al., 2009, 2010, etc.). Specifically, as long as the
requested actuation level um(t) and the process state measure-
ments are available to the monitoring and retuning system at all
times, the same method presented in this work can be applied to
detect the deviation of the actual actuation level ua(t) from the
requested actuation level um(t).

2.3. Low-level PID control loops

As depicted in Fig. 1, um(t) is sent from the model-based
controller as the set-point to the control actuators. PID controllers
are installed around these control actuators to help accelerate the
actuator’s response so that ua(t) can approach the value of um(t)
faster. Eq. (5) shows the relationship between um and ua in the
Laplace domain:

uaðsÞ ¼
GpGc

1þGpGc
umðsÞ ð5Þ

where Gp is the actuator’s transfer function and Gc is the PID
controller’s transfer function. Gc contains three parameters: Kc

(proportional gain), tI (integral time constant), and tD (derivative
time constant) and takes the following form:

Gc ¼ Kc 1þ 1

tIs
þtDs

� �
ð6Þ

The transfer function of the actuator’s dynamics, Gp, on the other
hand, can be approximated as a first-order transfer function with
dead time G0

p as follows:

G0
p ¼ Kp

e�tds

tpsþ1
ð7Þ

where Kp is the actuator’s gain, td is the actuator dead time, and
tp is the actuator’s time constant.

The estimation of the actuator’s transfer function ðG0
pÞ will be

needed by the FDI algorithm below when the actuator’s expected
behavior is calculated and also at the retuning step when a new
set of PID parameters is calculated. The expected actuation level
(denoted by u0

aðtÞ) will be used as the benchmark upper limit of
how well the control actuators can perform. We note that the
parameters of the PID controller should be tuned in such a way
that the low-level closed-loop response (i.e., actuator under the
PID controller) is fast relative to the sampling time of the MPC
such that the actual actuator output (control action implemented
on the process) is as close as possible to the control action
requested by the MPC at each sampling time. A rigorous analysis
of this problem can be done using singular perturbation techni-
ques for two-time-scale processes.

3. Monitoring and retuning of low-level PID loops

We consider the case where there is no access by the
monitoring system to the measurements of the actual actuation
levels ua(t) implemented by the control actuators on the process.
Therefore, the detection of poor PID tunings must be performed
based on the measurements of the states of the process. To this
end, an FDI method is used as the main tool to extract actuator
behavior from the process state measurements (Chilin et al.,
2010). We use exponentially weighted moving average (EWMA)
residuals to detect and isolate poorly tuned PID loops. Once a
poorly tuned actuator is isolated, a model-based tuning rule such
as Cohen–Coon or internal model control is applied to the PID
controller that regulates the poorly tuned actuator.

The residuals are constructed from the difference between the
expected behavior and the actual behavior of the plant. This is
done by comparing the evolution of the actual system obtained
from the state measurements against the evolution of the ideal
filtered states based on the plant model. The actual closed-loop
system state (x(t)) evolves in the following manner:

_xðtÞ ¼ f ðxðtÞÞþGðxðtÞÞuaðtÞþwðtÞ

uaðsÞ ¼
GpGc

1þGpGc
umðsÞ ð8Þ

where um(t) is the control action computed by the MPC and ua(t)
is the actual actuation performed by the actuators. The filter state
( �xðtÞ), on the other hand, evolves as follows:

_�x iðtÞ ¼ f iðx̂iðtÞÞþGiðx̂iðtÞÞu0
aðtÞ

x̂i ¼ ½x1 � � � xi�1, �xi,xiþ1 � � � xnx �T

u0
aðsÞ ¼

G0
pG

0
c

1þG0
pG

0
c

umðsÞ

�xðNDmÞ ¼ xðNDmÞ, 8N¼ 0;1,2, . . . ð9Þ
where Dm is the MPC sampling time, G0

p is the estimated transfer
function matrix of the control actuators, and G0

c is a well-tuned
PID controller transfer function matrix based on the estimated
model of the actuator G0

p. This makes u0
aðtÞ the expected actuation

level of ua(t).
Using Eqs. (8) and (9), the real-time measurements of x(t) can

be compared against the evolution of �xðtÞ. The residual, or the
difference between xi(t) and �xiðtÞ denoted by ri(t), is expressed in
the following manner:

riðtÞ ¼ 9 �xiðtÞ�xiðtÞ9 ð10Þ
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In the absence of noise and if G0
p ¼ Gp, whenever the jth

element of ua deviates from its expected behavior u0
aj and the

ith-row–jth-column element of the G(x) matrix is non-zero, the
ith residual (ri) would instantaneously become non-zero. In other
words, ri is non-zero only when there is a problem with the
actuators that directly affect the ith state of the system (relative
degree of 1) (Mhaskar et al., 2006, 2007).

In practice, however, model mismatch, process noise, and
measurement noise are always present to some degree. Therefore,
in a practical setting, the residuals will be non-zero regardless of
the accuracy of the process model used in Eq. (9). Thus, before the
model-based FDI method can be used in practice, the effects of
process and measurement noise levels must first be recorded
from fault-free closed-loop process operation data (with both the
PID controllers and the MPC being well-tuned). On the basis of
these noisy closed-loop system states, the mean and the standard
deviation of the residuals are calculated and the thresholds are
determined.

Occasional noise spikes can make the residuals exceed the
thresholds for a brief period of time even when the actuators are
functioning well; this can lead to the common problem of false
alarms. To reduce the incidence of false alarms, we define a
modified residual rE,i,i¼ 1, . . . ,nx, for each residual ri, calculated at
discrete time instants tk with tk ¼ t0þkDr , k¼ 0;1,2, . . . and Dr

being the interval between two consecutive state measurements.
The weighted residual is calculated using an exponentially
weighted moving average (EWMA) method as follows (Chilin
et al., 2010, in press):

rE,iðtkÞ ¼ lriðtkÞþð1�lÞrE,iðtk�1Þ ð11Þ

with rE,iðt0Þ ¼ riðt0Þ and the weighting factor lAð0;1�. The para-
meter l determines the rate at which past data enters into the
calculations of the weighted residual. When l¼ 1, rE,i is equiva-
lent to ri. The typical range of l is between 0.2 and 0.5 depending
on the desired level of sensitivity (Chilin et al., in press; Lucas and
Saccucci, 1990). Lower values of l make the rE(t) curve smoother
as potential noise spikes will have a smaller effect on the overall
shape of the curve; i.e., instances of false alarm will be reduced.
However, in the event where an actual poor tuning occurs, it may
be detected and isolated more slowly.

The threshold, denoted by OE,i, for fault detection is defined as
follows:

OE,i ¼ miþasi

ffiffiffiffiffiffiffiffiffiffi
l

2�l

r
ð12Þ

where a is a threshold parameter determining how sensitive the
FDI is; typical value of a is an integer value between 1 and 5. The
parameters mi and si are the mean and the standard deviation of
the ith residual during normal operation. Once rE,i exceeds the
threshold ðOE,iÞ for a fixed amount of time td (determined by the
user), then poor tuning is declared in the actuator(s) directly
affecting the ith state and the retuning algorithm is activated.
Fig. 2 shows the schematic of how the EWMA residuals are used
to activate the PID retuning algorithm at the end of waiting
time td.

Once a poorly tuned actuator is isolated, a PID tuning method
can be applied to the PID controller based on the estimated
transfer function of the actuator G0

p. To help ensuring the stability
of the retuning algorithm, we employ a stability constraint.
Specifically, whenever retuning is performed, the retuning algo-
rithm makes sure that G0

pGc=ð1þG0
pGcÞ contains only strictly

negative poles. In this work, we use Cohen–Coon and internal
model control method to retune the PID parameters to demon-
strate the approach. If desired, other model-based tuning rules
may be used as well. See Skogestad (2003), Sung et al. (1998),

Veronesi and Visioli (2009), and Zhuang and Atherton (1993) for
other PID tuning methods.

Remark 3. One feature that should be noted is that the PID
retuning will be initiated if the magnitude of the residuals is
above a certain threshold. This means that even if the difference
between uaj(t) and u0

ajðtÞ is appreciable but the difference between
�xiðtÞ and xi(t) is smaller than the threshold, the retuner will do
nothing. This is a direct result of the fact that the real value of
ua(t) is unknown and has to be estimated from the trajectories of
the process states. A scenario like this can also happen when Gijð�Þ
is small.

Remark 4. The isolability structure of the system is also critical
to the use of the monitoring algorithm proposed here. If, from the
patterns of the residuals, a poorly performing actuator cannot be
isolated with high confidence (i.e., two actuators have the same
signature because they directly affect the same system state),
then all control actuators that may be poorly tuned should be
retuned. In principle, it is also possible to use empirical models
from input–output data in the MPC design as well as in the
monitoring of the PID control loops. One potential problem of
using this approach is the difficulty of isolating which specific PID
control loop is poorly performing because input/output empirical
models cannot account for the coupling between different process
variables the way state-space first principles models do.

Remark 5. In the design of the filter of Eq. (9), a well-tuned PID
controller, G0

c , is assumed to be known and is used to calculate the
benchmark performance of the overall control system. In the case
that G0

c is not known, the control action computed by the MPC, um,
can be used directly in the filter design (i.e., replace u0

a by um in Eq.
(9)) to obtain an estimate of the expected process state evolution.
Furthermore, once a poorly tuned actuator is isolated, retuning of
the parameters of PID controller used in this actuator should be
carried out to account for changes in operation conditions as well
as control actuator wear and tear over time.

4. Application to a non-linear chemical process network

4.1. Process description and modeling

We demonstrate the PID monitoring and retuning methodol-
ogy presented in the previous section using a three-vessel
reactor–separator chemical process network. A schematic of the
process is shown in Fig. 3. The first two vessels are assumed to be
ideal CSTRs, followed by a flash tank separator. There are two
fresh feed streams of pure reactant A of concentration CA10 to both
reactors (with flow rates F10 and F20 respectively) and a recycle
stream (Fr) from the flash tank to the first reactor. Specifically, the
overhead vapor from the flash tank is condensed and recycled to

Fig. 2. Monitoring scheme of PID response behavior based on the EWMA residuals

of the process state. Poor tuning is declared after rE,i exceeds its threshold OE,i

continuously for t¼ td .
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the first CSTR, and the bottom product stream is removed. The
effluent of vessel 1 is fed to vessel 2 and the effluent from vessel
2 is fed to the flash tank. Each vessel has an external heat input or
heat removal system (Q1, Q2 and Q3). The steady-state flow rate
and heat input are denoted by F10s, F20s, Q1s,Q2s and Q3s and their
values are given in Table 1. There are two parallel chemical
reactions considered in this process; first, reactant A is converted
to desired product B and second, A is converted to undesired
product C (referred to as reactions 1 and 2, respectively). Under
standard modeling assumptions, the dynamic energy and mate-
rial balance equations that can describe this process take the
following form:

dT1

dt
¼ F10

V1
ðT10�T1Þþ

Fr
V1

ðT3�T1Þþ
Q1

rCpV1
þ�ðDH1Þ

rCp
k1e

�E1=RT1CA1

þ ð�DH2Þ
rCp

k2e
�E2=RT1CA1 ð13aÞ

dCA1

dt
¼ F10

V1
ðCA10�CA1Þþ

Fr
V1

ðCAr�CA1Þ�k1e
�E1=RT1CA1�k2e

�E2=RT1CA1

ð13bÞ

dCB1

dt
¼ �F10

V1
CB1þ

Fr
V1

ðCBr�CB1Þþk1e
�E1=RT1CA1 ð13cÞ

dCC1

dt
¼ �F10

V1
CC1þ

Fr
V1

ðCCr�CC1Þþk2e
�E2=RT1CA1 ð13dÞ

dT2

dt
¼ F1

V2
ðT1�T2Þþ

F20
V2

ðT20�T2Þþ
Q2

rCpV2
þ ð�DH1Þ

rCp
k1e

�E1=RT2CA2

þð�DH2Þ
rCp

k2e
�E2=RT2CA2 ð13eÞ

dCA2

dt
¼ F1

V2
ðCA1�CA2Þþ

F20
V2

ðCA20�CA2Þ�k1e
�E1RT2CA2�k2e

�E2=RT2CA2

ð13fÞ

dCB2

dt
¼ F1

V2
ðCB1�CB2Þ�

F20
V2

CB2þk1e
�E1=RT2CA2 ð13gÞ

dCC2

dt
¼ F1

V2
ðCC1�CC2Þ�

F20
V2

CC2þk2e
�E2=RT2CA2 ð13hÞ

dT3

dt
¼ F2

V3
ðT2�T3Þ�

HvapFr
rCpV3

þ Q3

rCpV3
ð13iÞ

dCA3

dt
¼ F2

V3
ðCA2�CA3Þ�

Fr
V3

ðCAr�CA3Þ ð13jÞ

dCB3

dt
¼ F2

V3
ðCB2�CB3Þ�

Fr
V3

ðCBr�CB3Þ ð13kÞ

dCC3

dt
¼ F2

V3
ðCC2�CC3Þ�

Fr
V3

ðCCr�CC3Þ ð13lÞ

where T1, T2, and T3 are the temperatures of vessels 1, 2, and 3,
respectively, T10 and T20 are the temperatures of the feed streams
to vessels 1 and 2, respectively, F10 and F20 are the volumetric
feed flow rates into vessels 1 and 2, respectively, and F1 and F2 are
the volumetric flow rates out of vessels 1 and 2, respectively. Fr is
the recycle stream volumetric flow rate from vessel 3 to vessel 1.
V1, V2, and V3 are the volumes of the three vessels, Q1, Q2, and Q3

are the heat inputs into the vessels, CA1, CB1, CC1, CA2, CB2, CC2, CA3,
CB3, and CC3 are the concentrations of A, B, and C in the vessels 1, 2,
and 3, respectively, CAr, CBr, and CCr are the concentrations of A, B,
and C in the recycle stream. r is the mass density of the reacting
fluid, Cp is the heat capacity of the reacting fluid, k1 and k2 are the
pre-exponential reaction rate constants of reactions 1 and 2,
respectively, E1 and E2 are the activation energies of reactions
1 and 2, respectively, DH1 and DH2 are the enthalpies of reactions
1 and 2, respectively, and Hvap is the heat of vaporization for the
fluid in vessel 3. Finally, R is the universal gas constant.

The composition of the flash tank recycle stream is described
by Eq. (14), which assumes constant relative volatility for each
species within the temperature operating range. This assumption
allows calculation of the composition in the recycle stream
relative to the composition of the liquid holdup in the flash tank.
Each tank is assumed to have static holdup and the reactions in
the flash tank are considered negligible. Specifically, we have:

CAr ¼
aACA3

K
ð14aÞ

CBr ¼
aBCB3

K
ð14bÞ

CCr ¼
aCCC3

K
ð14cÞ

K ¼ aACA3
MWA

r
þaBCB3

MWB

r
þaCCC3

MWC

r
þaDxD ð14dÞ

where aA, aB, aC , and aD are the relative volatility constants of the
three reacting species along with the inert species D. MWA, MWB,
and MWC, are the molecular weights of the three reacting species.
Finally, xD is the mass fraction of the inert species D in the liquid
phase of vessel 3. The values of the process parameters are given
in Table 1.

The system of Eq. (13) is solved numerically using explicit
Euler method with a time step of Dp ¼ 0:001 h. Process and sensor
measurement noise are also used in the process simulation. The
sensor measurement noise is generated using a zero-mean
normal distribution with a standard deviation of 2.5 K for the
three temperature state measurements and 1 kmol=m3 for the
nine concentration state measurements. The process noise is
generated similarly and it is included as an additive term in the

Fig. 3. Schematic of the process. Two CSTRs and a flash tank with recycle stream.

Table 1
Process parameter values.

T10¼300, T20¼300 K

F10s¼5, F20s¼5, Fr¼1.9 m3/h

Q1s¼0, Q2s¼0, Q3s¼0 kJ/h

V1¼1.0, V2¼0.5, V3¼1.0 m3

E1¼5E4, E2¼5.5E4 kJ/kmol

k1¼3E6, k2¼3E6 1/h

DH1 ¼�5E4, DH2 ¼�5:3E4 kJ/kmol

Hvap¼5 kJ/kmol

Cp¼0.231 kJ/kg K

R¼8.314 kJ/kmol K

r¼ 1000 kg/m3

aA ¼ 2, aB ¼ 1, aC ¼ 1:5, aD ¼ 3 Unitless

MWA¼50, MWB¼50, MWC¼50 kg/kmol
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right-hand-side of the ordinary differential equations of Eq. (13)
with a zero-mean normal distribution and the same standard
deviation values used for the measurement noise. In all three
vessels, the heat inputs are used as the manipulated variables for
controlling the process network at the operating steady-state.
Therefore, the corresponding relative degrees of these variables
with respect to the temperatures of the three vessels (reactor 1,
reactor 2 and separator) are all one, thereby allowing isolation of
poor-tuning in each one of these actuators from process measure-
ments. In addition the second tank’s inlet flow rate is chosen as
another manipulated variable. The system has one unstable and
two stable steady states. The operating steady-state is the
unstable steady-state shown in Table 2.

We focus on the problem of monitoring and retuning of the
PID controllers used to regulate the three heat input control
actuators to each of the vessels: Q1, Q2, Q3, at the values computed
by the MPC in each sampling time. In order to calculate the
benchmark performance for each actuator ðu0

aðsÞÞ and a new set of
PID parameters when PID retuning is needed, a first-order
approximation of the transfer function of the actuator ðG0

pÞ must
be computed. In this example, all actuator dynamics are modeled
with first-order transfer functions with time delay. All actuators
have the same time constant ðtpÞ of 2.82 s and time delay ðtdÞ of
3.60 s, resulting in the following transfer function:

Gactuator ¼
e�3:60s

2:82sþ1
ð15Þ

The control action computed by the MPC is sent to the control
actuators every Dm ¼ 0:01 h. Thus, at every sampling time
t¼NDm, N¼ 0;1,2 . . ., the low-level PID controllers take the
MPC command (um(t)) as the set-point and drive the actual
actuation level (ua(t)) to the set-point under the following
closed-loop dynamics:

uaðsÞ ¼
GpGc

1þGpGc
umðsÞ

We choose the following parameters for PID monitoring and
retuning. We pick the EWMA parameter l to be 0.2. The EWMA
residual threshold parameter a is chosen to be 5. The waiting time
for fault isolation based on the EWMA residual is set to be
td ¼ 0:01 h.

For the actuators with the transfer function presented in Eq.
(15), the PID parameters that give the best closed-loop response
were found to be the following:

Kn

c ¼ 0:648

tnI ¼ 5:94 s

tnD ¼ 0:54 s ð16Þ
These parameters were used to calculate G0

c. The poles of
G0
pG

0
c=ð1þG0

pG
0
cÞ calculated with the parameters above are found

to be all negative. This, in conjunction with the approximate
transfer function ðG0

pÞ of the actuators of Eq. (15), was then used to
approximate the ideal actuation performance ðu0

aðsÞÞ of each
control actuator.

4.2. Simulation results

In the following two examples, we will illustrate how PID
monitoring and retuning are applied to the system.

4.2.1. Example 1

In this example, we start the process from the following initial
condition: xð0Þ ¼ 0:8xs where xs is the operating steady-state. All
the control actuators are properly tuned with the PID parameters
shown in Eq. (16). At time t¼ 0:45 h, we apply poor tuning to the
PID controller for the actuator Q1 with the following parameters:

Kc ¼ 0:00909

tI ¼ 11:9 s

tD ¼ 0:655 s ð17Þ
Fig. 4 shows the comparison between the requested actuation

level um(t) and the actual actuation level ua(t) for Q1 if the
monitoring and retuning system is inactive. The EWMA residuals
of the temperature in three vessels are shown in Fig. 5.

With the monitoring system active, Fig. 6 shows the evolution
of PID response ua(t) as it is retuned at t¼ 0:475 h. As shown in
Fig. 7, at t¼ 0:465 h, rE,T1

starts exceeding its threshold OE,T1
. At

this point, the value of rE,T1
starts being monitored closely for

td ¼ 0:01 h. By the time the system reaches t¼ 0:475 h, the value
of rE,T1

is found to have been above its threshold OE,T1
for the

entire duration from t¼ 0:465 h to t¼ 0:475 h. Because the
process state T1 is the only state that is directly affected by the
control actuator Q1, given the model-based FDI filter design, any
anomaly detected in rE,T1

is the result of a problem with the Q1

control actuator. Therefore, the actuator Q1 can be isolated with
high confidence as the actuator with poor PID tuning. While other
residuals (rE,T2

and rE,T3
) occasionally exceed their thresholds at

various time instances during the operation, they do not exceed
the thresholds for longer than td ¼ 0:01 h. Thus, the monitoring
system concludes that their values exceed their thresholds simply
because of process and measurement noise.

Table 2
Operating steady-state (xs).

T1 370 K

CA1 3.32 kmol/m3

CB1 0.17 kmol/m3

CC1 0.04 kmol/m3

T2 435 K

CA2 2.75 kmol/m3

CB2 0.45 kmol/m3

CC2 0.11 kmol/m3

T3 435 K

CA3 2.88 kmol/m3

CB3 0.50 kmol/m3

CC3 0.12 kmol/m3
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Fig. 4. Example 1: requested actuation level by the MPC (um(t)) and actual

actuation level (ua(t)) when PID retuning is not implemented.
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Once the Q1 control actuator is isolated as the poorly tuned
actuator, Cohen–Coon tuning method is applied to the controller
around Q1 based on the estimated transfer function of the control
actuator G0

p. The Cohen–Coon tuning rule is based on the first-
order-plus-dead-time estimation of the transfer function of the
controlled process. Specifically, the Cohen–Coon tuning rule is as
follows (Cohen and Coon, 1953):

Kc ¼
tp

Kptd
4

3
þ td

4tp

� �
ð18aÞ

tI ¼ td
32þ6

td
tp

13þ8
td
tp

ð18bÞ

tD ¼ td
4

11þ2
td
tp

ð18cÞ

where Kp is the actuator’s gain, td is the actuator dead time, and
tp is the actuator’s time constant. With this tuning rule and the
estimated transfer function of the actuator G0

p presented in
Eq. (15), the resulting parameters for the PID of Q1 are as follows:

Kc ¼ 1:29

tI ¼ 6:15 s

tD ¼ 1:06 s ð19Þ
After Q1 is retuned, no more problem can be detected from the

EWMA residuals of T1. In terms of the actual control actuator
performance, after being retuned with Cohen–Coon method, ua(t)
tracks um(t) quite well; see Fig. 6.

4.2.2. Example 2

In this example, we will use internal model control tuning rule
(Skogestad, 2003) to tune the PID parameters. We initialize the
process model from the following initial condition: xð0Þ ¼ 0:8xs
where xs is the operating steady-state. All PID controllers start out
being properly tuned with the parameters presented in Eq. (16).
At time t¼ 0:1 h, a poor PID tuning with the following para-
meters:

Kc ¼ 6:48

tI ¼ 0:594 s

tD ¼ 5:40 s ð20Þ
is applied to the PID controller for the control actuator Q3. Fig. 8 shows
that the tuning of the PID controller for Q3 causes ua(t) to oscillate
significantly. Fig. 9 shows the EWMA residuals of the temperature of
the three vessels when PID retuning is not implemented.

With the monitoring system implemented, Fig. 11 shows that
rE,T3

is found to start exceeding its threshold OE,T3
at t¼ 0:206 h.

After waiting for td ¼ 0:01 h, rE,T3
is found to have been continu-

ously above its threshold until t¼ 0:216 h. Because Q3 is the only
actuator that has relative degree 1 with the process state T3, at
t¼ 0:216 h the monitoring system isolates Q3 and declares that Q3

is poorly tuned. As a result, at t¼ 0:216 h, a set of PID parameters
is calculated via internal model control tuning method based on
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Fig. 5. Example 1: temperature residuals for the three vessels computed via

EWMA when PID retuning is not implemented. The dashed lines represent the

EWMA residual thresholds OE,i.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

u m
(t)

Control Action for Q1 (105 KJ/hr)

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

u a
(t)

Time (hr)

Fig. 6. Example 1: requested actuation level by the MPC (um(t)) and actual

actuation level (ua(t)) when PID retuning is implemented.
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Fig. 7. Example 1: temperature residuals for the three vessels computed via

EWMA when PID retuning is implemented. The dashed lines represent the EWMA

residual thresholds OE,i .
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the estimated transfer function of the control actuator G0
p. For a

tuning with fast PID step response, internal model control tuning
rule suggests the following PID parameters for processes that can
be approximated with first-order-plus-dead-time transfer func-
tion (Skogestad, 2003):

Kc ¼
tp

2Kptd
ð21aÞ

tI ¼minðtp,8tdÞ ð21bÞ
tD ¼ 0 ð21cÞ
where Kp is the actuator’s gain, td is the actuator dead time, and
tp is the actuator’s time constant. This results in the following PID
parameters:

Kc ¼ 0:392

tI ¼ 2:82 s

tD ¼ 0 s ð22Þ

Fig. 10 shows the resulting actual actuation level (ua(t)) of Q3.
Though poor PID tuning is applied at t¼ 0:1 h, its effect in terms
of PID response of the control actuator is observed at t¼ 0:185 h
when the step change happens. In terms of detecting this
oscillation pattern from the process sate measurements, this is
detected and isolated at t¼ 0:216 h and the PID parameters of Q3

are retuned.
Notice in Fig. 9 that the magnitude of the residuals of the

directly affected process state (rE,T3
in this case) is much lower

than rE,T1
in Example 1 (shown in Fig. 5). This is because the poor

PID tuning problem in this example results in an actuator
oscillation (ua(t)) that oscillates with very high frequency around
the set-point (um(t)). In terms of the process states, this leads to a
smaller overall deviation of the actual process state (x(t)) from the
expected process state ( �xðtÞ). This is why there is a slightly larger
time lag between the initial time when ua(t) starts deviating from
um(t) and the time when the poor tuning is isolated, compared to
Example 1.
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Fig. 8. Example 2: requested actuation level by the MPC (um(t)) and actual

actuation level (ua(t)) when PID retuning is not implemented.
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Fig. 9. Example 2: temperature residuals for the three vessels computed via

EWMA when PID retuning is not implemented. The dashed lines represent the

EWMA residual thresholds OE,i .
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Fig. 10. Example 2: requested actuation level by the MPC (um(t)) and actual

actuation level (ua(t)) when PID retuning is implemented.
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Fig. 11. Example 2: temperature residuals for the three vessels computed via

EWMA when PID retuning is implemented. The dashed lines represent the EWMA

residual thresholds OE,i .
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Remark 6. While the mean and standard deviation of the
residuals are calculated in the presence of process noise under
normal operation at the desired steady-state, the applicability of
the proposed dynamic filter for computing the residuals together
with real-time state variable measurements is not limited to
steady-state operation; the reason is the design of the proposed
dynamic filter which can accurately predict normal evolution of
the process state variables away from the steady-state in the
closed-loop system, thereby leading to the computation of resi-
dual values that are valid for process operation away from the
steady-state (note that the initial condition in the example is not
chosen to be the steady-state).

5. Conclusion

In this work, we focused on the problem of monitoring and
retuning of low-level PID control loops used to regulate control
actuators to the values computed by advanced model-based
control systems like MPC. Focusing on the case where the real-
time measurement of the actuation level is unavailable, we use
process state measurements and process models to carry out PID
controller monitoring and compute appropriate residuals. Once a
poorly tuned PID controller is detected and isolated, a PID tuning
method based on the estimated transfer function of the control
actuator was applied to retune this PID controller. The proposed
method was applied to a non-linear reactor–separator process
operating under MPC with low-level PID controllers regulating
the control actuators and its performance was successfully
evaluated via extensive simulations.
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Chilin, D., Liu, J., Muñoz de la Peña, D., Christofides, P.D., Davis, J.F., 2010.
Detection, isolation and handling of actuator faults in distributed model
predictive control systems. J. Process Control 20, 1059–1075.

Christofides, P.D., El-Farra, N.H., 2005. Control of Nonlinear and Hybrid Process
Systems: Designs for Uncertainty, Constraints and Time-Delays. Springer, New
York, NY.

Cohen, G.H., Coon, G.A., 1953. Theoretical consideration of retarded control. ASME
75, 827–834.

Eriksson, P.-G., Isaksson, A.J., 1994. Some aspects of control loop performance
monitoring. Control Appl. 2, 1029–1034.

Hang, C., Astrom, K., Ho, W., 1991. Refinements of Zeigler–Nichols tuning formula.
IEE Proc.—D 138, 111–118.

Harris, T.J., 1989. Assessment of control loop performance. Can. J. Chem. Eng. 67,
856–861.
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