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Increasingly faced with the requirements of safety, reliability, and profitability,

chemical process operation is relying extensively on highly automated process con-

trol systems. Automation, however, tends to increase vulnerability of the process to

faults (for example, defects/malfunctions in process equipment, sensors and actua-

tors, failures in the controllers or in the control loops) potentially causing a host of

economic, environmental, and safety problems that can seriously degrade the oper-

ating efficiency of the process. Problems due to faults may include physical damage

to the process equipment, increase in the wasteful use of raw material and energy

resources, increase in the downtime for process operation resulting in significant pro-

duction losses, and jeopardizing personnel and environmental safety. Management of

abnormal situations is a challenge in the chemical industry since abnormal situations

account annually for 10 billion in lost revenue in the U.S. alone.

The above considerations provide a strong motivation for the development of meth-
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ods and strategies for the design of advanced fault-tolerant control systems that ensure

an efficient and timely response to enhance fault recovery, prevent faults from propa-

gating or developing into total failures, and reduce the risk of safety hazards. To this

end, the present doctoral dissertation focuses on the design of advanced fault-tolerant

control systems for chemical processes which explicitly deal with actuator/controller

failures and sensor data losses. Specifically, the dissertation proposes a methodology

for the design of fault-tolerant control systems for nonlinear processes with actuator

constraints and uncertainty in the presence of actuator and sensor faults, incorporat-

ing performance and robustness considerations. The proposed methodology employs

a hybrid systems framework and is predicated upon the idea of integrating fault-

detection, local feedback control, and supervisory control over networks. The efficacy

and implementation of the proposed methodology are demonstrated through a single

unit chemical reactor, a cascading multi-unit chemical reactor, a polyethylene reactor,

batch and continuous crystallizers.
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Chapter 1

Introduction

1.1 Background and Motivation for Fault-Tolerant Control

Safety and reliability are primary goals in the operation of industrial chemical plants.

An important need currently exists for enhancing the safety and reliability of chem-

ical plants in ways that reduce their vulnerability to serious failures. Increasingly

faced with the requirements of operational flexibility under tight performance speci-

fications and other economic drivers, plant operation is relying extensively on highly

automated process control systems. Automation, however, tends to increase vul-

nerability of the plant to faults, such as defects/malfunctions in process equipment,

sensors and actuators, failures in the controllers or in the control loops, which, if not

appropriately handled in the control system design, can potentially cause a host of

undesired economic, environmental, and safety problems that seriously degrade the

operating efficiency of the plant. These considerations provide a strong motivation

for the development of systematic methods and strategies for the design of fault-

tolerant control systems and have motivated many research studies in this area (see,

for example, [172, 179, 9] and [136, 18, 105] for references).
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Given the complex dynamics of chemical processes (due, for example, to the pres-

ence of nonlinearities and constraints) and the geographically distributed, intercon-

nected nature of plant units, as well as the large number of distributed sensors and

actuators typically involved, the success of any fault-tolerant control strategy requires

an integrated approach that brings together several essential elements, including: (1)

the design of advanced feedback control algorithms that handle complex dynam-

ics effectively, (2) the design of supervisory switching schemes that orchestrate the

transition from the failed control configuration to available well-functioning fall-back

configurations to ensure fault-tolerance, and (3) the efficient exchange of information

and communication between the different plant units through a high-level supervisor

that coordinates the overall plant response in failure situations and minimizes the

effects of failure propagation.

The realization of such an approach is increasingly aided by a confluence of re-

cent, and ongoing, advances in several areas of process control research, includ-

ing advances in nonlinear controller designs for chemical processes (for example,

[88, 86, 46, 48, 163]) and advances in the analysis and control of hybrid process

systems leading to the development of a systematic framework for the integration

of feedback and supervisory control [47, 49]. A hybrid systems framework provides

a natural setting for the analysis and design of fault-tolerant control systems since

the occurrence of failure and subsequent switching to fall-back control configurations

induce discrete transitions superimposed on the underlying continuous dynamics. Hy-

brid control techniques have been useful in dealing with a wide range of problems that

cannot be addressed using classical control approaches, including fault-tolerant con-

trol of spatially-distributed systems (for example, [50, 53]), control of processes with

switched dynamics (for example, [49, 13]), and the design of hybrid predictive con-

2



trol structures that overcome some of the limitations of classical predictive control

algorithms (for example, [54]). In addition to control studies, research work on hy-

brid systems spans a diverse set of problems ranging from the modeling (for example,

[177, 12]) and simulation (for example, [12, 68]) to the optimization (for example,

[73, 72]) and stability analysis (for example, [80, 39]) of several classes of hybrid

systems.

1.2 Background and Motivation for Networked Control Sys-

tems

A major trend in modern industrial and commercial systems is to integrate computing,

communication, and control into different levels of plant operations and information

process. The traditional communication architecture for control system, which has

been successfully implemented in industry for decades, is a point-to-point connection

system (Figure 1.1), that is, a wire connects the central control computer with each

sensor or actuator point. However, a traditional centralized point-to-point control

system is no longer suitable to meet new requirements, such as modularity, decentral-

ization of control, integrated diagnostics, system agility, quick and easy maintenance,

and low cost.
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Figure 1.1: Generic setup of point-to-point connection systems.

Current industry application is a distributed control system (DCS), Figure 1.2,

where several interacting computers connected to a serial network sharing the same

3



workload. However, control modules in a DCS are loosely connected because most

of the real-time control tasks (sensing, calculation, and actuation) are carried out

within the individual process stations themselves. Only on/off signals, monitoring

information, alarm information, and the like are transmitted on the serial network.
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Figure 1.2: Generic setup of distributed control systems.

Recent innovations in actuator/sensor and communication technologies are in-

creasingly enabling the integration of communication and control domains [181]. For

example, the use of communication networks as media to interconnect the differ-

ent components in an industrial control system is rapidly increasing and expected

to replace the more costly point-to-point connection schemes currently employed in

distributed control systems.

Figure 1.3 shows the basic networked control architecture within a single-unit

plant with few actuators and sensors (centralized structure) and Figure 1.4 shows the

basic networked control architecture for a larger plant with several interconnected

processing units and larger number of actuators and sensors (distributed hierarchical

structure). Currently, networked control systems is an active area of research within

control engineering (for example, see [169, 124, 159, 135, 176, 130, 139, 143, 155]

for some recent results and references in this area). In addition to the advantages

of reduced system wiring (reduced installation, maintenance time and costs) in this

architecture, the increased flexibility and ease of maintenance of a system using a

4



network to transfer information is an appealing goal. In the context of fault-tolerant

control in particular, systems designed in this manner allow for easy modification

of the control strategy by rerouting signals, having redundant systems that can be

activated automatically when component failure occurs, and in general they allow

having a high-level supervisor control over the entire plant. The appealing features

of communication networks motivate investigating ways for integrating them in the

design of fault-tolerant control systems to ensure a timely and coordinated response

of the plant in ways that minimize the effects of failure propagation between plant

units. This entails devising strategies to deal with some of the fundamental issues

introduced by the network, including issues of bandwidth limitations, quantization

effects, network scheduling, communication delays time-varying transmission period,

unreliable transmission paths, and single-packet versus multiple-packet transmission,

which continue to be topics of active research (see [185, 169, 130, 101] for further

discussion on these issues).
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Figure 1.3: Block diagram [101] of a centralized networked control system for a single-unit

plant.
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Figure 1.4: Block diagram of a hierarchical distributed networked control architecture for

a multi-unit plant.

1.3 Dissertation Objectives and Structure

Motivated by the above considerations, we develop a fault-tolerant control methodol-

ogy together with fault-detection and communication components for handling actua-

tor and sensor malfunctions in the process systems, specifically in chemical processes.

The rest of the dissertation is structured as follows.

In Chapter 2, we develop a fault-tolerant control system design methodology, for

plants with multiple (distributed) interconnected processing units, that accounts ex-

plicitly for the inherent complexities in supervisory control and communication tasks

resulting from the distributed interconnected nature of plant units. The proposed ap-

proach provides explicit guidelines for managing the interplays between the coupled

tasks of feedback control, fault-tolerance, and communication.

In Chapter 3, we focus on incorporating performance and robustness considera-
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tions for fault-tolerant control problems. Performance considerations are incorporated

via the design of a Lyapunov-based predictive controller that enforces closed-loop

stability from an explicitly characterized set of initial conditions. Robustness consid-

erations are incorporated via the design of a robust hybrid predictive controller for

each candidate control configuration that guarantees stability subject to uncertainty

and constraints.

In Chapter 4, we consider the integration of fault-detection, feedback, and super-

visory control. The fault-detection filter computes the expected closed-loop behavior

in the absence of faults and the deviations of the process states from the expected

closed-loop behavior are used to detect faults. This approach is demonstrated both

for the state-feedback and the output-feedback problem.

In Chapter 5, we implement fault-detection and fault-tolerant control strategies

to industrial gas phase polyethylene reactor modeled by seven nonlinear ordinary

differential equations (ODEs). The effectiveness of the fault-tolerant control strategy

and the applicability of the stability region concept toward a complex system are

investigated as well as the presence of measurement noise and robustness issues.

In Chapter 6, we consider the problem of fault-tolerant control subject to input

constraints and sensor faults (complete failure or intermittent unavailability of mea-

surements). For each control configuration, the stability region and the maximum

allowable data loss rate which preserves closed-loop stability is computed. Fault-

tolerance to sensor faults can be achieved via controller reconfiguration that accounts

for the nonlinearity of the system, the presence of constraints, and the maximum

allowable data loss rate.

In Chapter 7, we focus on feedback control of particulate processes in the presence

of sensor data losses. Two typical particulate processes, a continuous crystallizer and

7



a batch protein crystallizer, modeled by population balance models, are considered.

In Chapter 8, we extend the applicability of Lyapunov-based tools, hybrid systems

theory, and concept of stability regions (discuss in Chapter 2) to biological networks.

We present a methodology for the analysis and control of mode transitions in biolog-

ical networks. The proposed method can provide both qualitative and quantitative

insights into the description, analysis and manipulation of biological networks. From

a practical point of view, these techniques could potentially reduce the degree of

trial-and-error experimentation. More importantly, computational and theoretical

approaches can lead to testable predictions regarding the current understanding of

biological networks, which can serve as the basis for revising existing hypotheses.

Finally, in Chapter 9, we conclude this dissertation.
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Chapter 2

Fault-Tolerant Control of

Constrained Nonlinear Processes

Using Communication Networks

2.1 Introduction

We develop in this chapter a fault-tolerant control system design methodology, for

plants with multiple (distributed) interconnected processing units, that accounts ex-

plicitly for the inherent complexities in supervisory control and communication tasks

resulting from the distributed interconnected nature of plant units. The approach

brings together tools from Lyapunov-based control and hybrid systems theory and

is based on a hierarchical distributed architecture that integrates lower-level feed-

back control of the individual units with upper-level logic-based supervisory control

over communication networks. The local control systems consist each of a family of

feedback control configurations together with a local supervisor that communicates

with actuators and sensors, via a local communication network, to orchestrate the

transition between control configurations, on the basis of their fault-recovery regions,
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in the event of failures. The local supervisors communicate, through a plant-wide

communication network, with a plant supervisor responsible for monitoring the dif-

ferent units and coordinating their responses in a way that minimizes the propagation

of failure effects. The communication logic is designed to ensure efficient transmis-

sion of information between units while also respecting the inherent limitations in

network resources by minimizing unnecessary network usage and accounting explic-

itly for the effects of possible delays due to fault-detection, control computations,

network communication, and actuator activation. The proposed approach provides

explicit guidelines for managing the interplays between the coupled tasks of feedback

control, fault-tolerance and communication. The efficacy of the proposed approach is

demonstrated through chemical process examples.

2.2 Preliminaries

2.2.1 System Description

We consider a plant composed of l connected processing units, each of which is mod-

eled by a continuous-time multivariable nonlinear system with constraints on the

manipulated inputs, and represented by the following state-space description:

ẋ1 = fk1
1 (x1) + Gk1

1 (x1)u
k1
1

ẋ2 = fk2
2 (x2) + Gk2

2 (x2)u
k2
2 + W k2

2,1(x2)x1

...

ẋl = fkl
l (xl) + Gkl

l (xl)u
kl
l +

l−1∑

p=1

W kl
l,p(xl)xp

‖uki
i ‖ ≤ uki

i,max

ki(t) ∈ Ki := {1, · · · , Ni}, Ni < ∞, i = 1, · · · , l

(2.1)
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where xi := [x
(1)
i x

(2)
i · · · x

(ni)
i ]T ∈ IRni denotes the vector of process state variables

associated with the i-th processing unit, uki
i := [uki

i,1 uki
i,2 · · · uki

i,mi
]T ∈ IRmi denotes

the vector of constrained manipulated inputs associated with the ki-th control con-

figuration in the i-th processing unit, uki
i,max is a positive real number that captures

the maximum size of the vector of manipulated inputs dictated by the constraints,

‖ ·‖ denotes the Euclidean norm of a vector, and Ni is the number of different control

configurations that can be used to control the i-th processing unit. The index, ki(t),

which takes values in the finite set Ki, represents a discrete state that indexes the

right-hand side of the set of differential equations in Equation 2.1. For each value

that ki assumes in Ki, the i-th processing unit is controlled via a different set of ma-

nipulated inputs which define a given control configuration. For each unit, switching

between the available Ni control configurations is controlled by a local supervisor that

monitors the operation of the unit and orchestrates, accordingly, the transition be-

tween the different control configurations in the event of control system failures. This

in turn determines the temporal evolution of the discrete state, ki(t), which takes the

form of a piecewise constant function of time. The local supervisor ensures that only

one control configuration is active at any given time, and allows only a finite number

of switches over any finite interval of time.

Without loss of generality, it is assumed that xi = 0 is an equilibrium point of the

uncontrolled i-th processing unit (i.e., with uki
i = 0) and that the vector functions,

fki
i (·), and the matrix functions, Gki

i (·) and W
kj

j,p(·), are sufficiently smooth on their

domains of definition, for all ki ∈ Ki, i = 1, · · · , l, j = 2, · · · , l, p = 1, · · · , l−1. For the

j-th processing unit, the term, W
kj

j,p(xj)xp, represents the connection that this unit

has with the p-th unit upstream. Note from the summation notation in Equation

2.1 that each processing unit can in general be connected to all the units upstream
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from it. Our nominal control objective (i.e., in the absence of control system failures)

is to design, for each processing unit, a stabilizing feedback controller that enforces

asymptotic stability of the origin of the closed-loop system in the presence of control

actuator constraints. To simplify the presentation of our results, we will focus only

on the state feedback problem where measurements of all process states are available

for all times.

2.2.2 Problem Statement and Solution Overview

Consider the plant of Equation 2.1 where, for each processing unit, a stabilizing feed-

back control system has been designed and implemented. Given some catastrophic

fault – that has been detected and isolated – in the actuators of one of the control

systems, our objective is to develop a plant-wide fault-tolerant control strategy that:

(1) preserves closed-loop stability of the failing unit, if possible, and (2) minimizes the

negative impact of this failure on the closed-loop stability of the remaining processing

units downstream. To accomplish both of these objectives, we construct a hierarchical

control structure that integrates lower-level feedback control of the individual units

with upper-level logic-based supervisory control over communication networks. The

local control system for each unit consists of a family of control configurations for each

of which a stabilizing feedback controller is designed and the stability region is ex-

plicitly characterized. The actuators and sensors of each configuration are connected,

via a local communication network, to a local supervisor that orchestrates switch-

ing between the constituent configurations, on the basis of the stability regions, in

the event of failures. The local supervisors communicate, through a plant-wide com-

munication network, with a plant supervisor responsible for monitoring the different

units and coordinating their responses in a way that minimizes the propagation of
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failure effects. The basic problem under investigation is how to coordinate the tasks

of feedback, control system reconfiguration and communication, both at the local

(processing unit) and plant-wide levels in a way that ensures timely recovery in the

event of failure and preserves closed-loop stability.

Remark 2.1 In the design of any fault-tolerant control system, an important task

that precedes the control system reconfiguration is the task of fault-detection and

isolation (FDI). There is an extensive body of literature on this topic including, for

example, the design of fault-detection and isolation schemes based on fundamental

process models (for example, [61, 37]) and statistical/pattern recognition and fault

diagnosis techniques (for example, [170, 74, 35, 132, 6, 168, 166, 167]). In this chap-

ter, we focus mainly on the interplay between the communication network and the

control system reconfiguration task. To this end, we assume that the FDI tasks take

place at a time scale that is very fast compared to the time constant of the overall

process dynamics and the time needed for the control system reconfiguration, and

thus can be treated separately from the control system reconfiguration (we note that

the time needed for FDI is accounted for in the control system reconfiguration through

a time-delay; see the next section and the simulation studies for details). In the con-

text of process control applications, this sequential and decoupled treatment of FDI

and control system reconfiguration is further justified by the overall slow dynamics

of chemical plants. Integration of fault-detection and fault-tolerant control will be

covered in Chapter 4.

2.2.3 Motivating Example

In this section, we introduce a simple benchmark example [52] that will be revisited

later to illustrate the design and implementation aspects of the fault-tolerant control

design methodology to be proposed in the next section. While the discussion will cen-

ter around this example, we note that the proposed framework can be applied to more
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complex plants involving more complex arrangements of processing units as shown

in Equation 2.1. To this end, consider two well-mixed, non-isothermal continuous

stirred tank reactors (CSTRs) in series, where three parallel irreversible elementary

exothermic reactions of the form A
k1→ B, A

k2→ U and A
k3→ R take place, where A

is the reactant species, B is the desired product and U, R are undesired byproducts.

The feed to CSTR 1 consists of pure A at flow rate F0, molar concentration CA0 and

temperature T0, and the feed to CSTR 2 consists of the output of CSTR 1 and an

additional fresh stream feeding pure A at flow rate F3, molar concentration CA03 and

temperature T03. Due to the non-isothermal nature of the reactions, a jacket is used

to remove/provide heat to both reactors. Under standard modeling assumptions, a

mathematical model of the plant can be derived from material and energy balances

and takes the following form:

dT1

dt
=

F0

V1

(T0 − T1) +
3∑

i=1

(−∆Hi)

ρcp

Ri(CA1, T1) +
Q1

ρcpV1

dCA1

dt
=

F0

V1

(CA0 − CA1)−
3∑

i=1

Ri(CA1, T1)

dT2

dt
=

F1

V2

(T1 − T2) +
F3

V2

(T03 − T2) +
3∑

i=1

(−∆Hi)

ρcp

Ri(CA2, T2) +
Q2

ρcpV2

dCA2

dt
=

F1

V2

(CA1 − CA2) +
F3

V2

(CA03 − CA2)−
3∑

i=1

Ri(CA2, T2)

(2.2)

where Ri(CAj, Tj) = ki0 exp
(−Ei

RTj

)
CAj, for j = 1, 2. T , CA, Q, and V denote the tem-

perature of the reactor, the concentration of species A, the rate of heat input/removal

from the reactor, and the volume of reactor, respectively, with subscript 1 denoting

CSTR 1 and subscript 2 denoting CSTR 2. ∆Hi, ki, Ei, i = 1, 2, 3, denote the

enthalpies, pre-exponential constants and activation energies of the three reactions,

respectively, cp and ρ denote the heat capacity and density of fluid in the reac-

tor. Using typical values for the process parameters (see Table 2.1), CSTR 1, with

Q1 = 0, has three steady-states: two locally asymptotically stable and one unstable
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at (T s
1 , Cs

A1) = (388.57 K, 3.59 kmol/m3). The unstable steady-state of CSTR 1 cor-

responds to three steady-states for CSTR 2 (with Q2 = 0), one of which is unstable

at (T s
2 , Cs

A2) = (429.24 K, 2.55 kmol/m3).

Table 2.1: Process parameters and steady-state values for the chemical reactors of Equation

2.2.

F0 = 4.998 m3/hr
F1 = 4.998 m3/hr
F3 = 30.0 m3/hr
V1 = 1.0 m3

V2 = 3.0 m3

R = 8.314 KJ/kmol ·K
T0 = 300.0 K
T03 = 300.0 K
CA0 = 4.0 kmol/m3

Cs
A03 = 3.0 kmol/m3

∆H1 = −5.0× 104 KJ/kmol
∆H2 = −5.2× 104 KJ/kmol
∆H3 = −5.4× 104 KJ/kmol
k10 = 3.0× 106 hr−1

k20 = 3.0× 105 hr−1

k30 = 3.0× 105 hr−1

E1 = 5.0× 104 KJ/kmol
E2 = 7.53× 104 KJ/kmol
E3 = 7.53× 104 KJ/kmol
ρ = 1000.0 kg/m3

cp = 0.231 KJ/kg ·K
T s

1 = 388.57 K
Cs

A1 = 3.59 kmol/m3

T s
2 = 429.24 K

Cs
A2 = 2.55 kmol/m3

The control objective is to stabilize both reactors at the (open-loop) unstable

steady-states. Operation at these points is typically sought to avoid high tempera-

tures, while simultaneously achieving reasonable conversion. To accomplish the con-

trol objective under normal conditions (with no failures), we choose as manipulated
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inputs the rates of heat input, u1
1 = Q1, subject to the constraint |Q1| ≤ uQ1

max = 2.7×
106 KJ/hr and u2

1 = Q2, subject to the constraint |Q2| ≤ uQ2
max = 2.8× 106 KJ/hr.

As shown in Figure 2.1, each unit has a local control system with its sensors

and actuators connected through a communication network. The local control sys-

tems in turn communicate with the plant supervisor (and with each other) through

a plant-wide communication network. Note that in designing each control system,

only measurements of the local process variables are used (for example, the con-

troller for the second unit uses only measurements of T2 and CA2). This decentralized

architecture is intended to minimize unnecessary communication costs incurred by

continuously sending measurement data from the first to the second unit over the

network. We note that while this issue may not be a pressing one for the small plant

considered here (where a centralized structure can in fact be easily designed), real

plants nonetheless involve a far more complex arrangement of units with thousands

of actuators and sensors, which makes the complexity of a centralized structure as

well as the cost of using the network to share measurements between units quite sig-

nificant. For this reason, we choose the distributed structure in Figure 2.1 in order

to highlight some of the manifestations of the inherent interplays between the control

and communication tasks.

The fault-tolerant control problem under consideration involves a total failure

in both control systems after some time of startup, with the failure in the first unit

being permanent. Our objective will be to preserve closed-loop stability of CSTR 2 by

switching to an alternative control configuration involving, as manipulated variables,

the rate of heat input, u1
2 = Q2, subject to the same constraint, and the inlet reactant

concentration, u2
2 = CA03 − Cs

A03, subject to the constraint |CA03 − Cs
A03| ≤ uCA03

max =

0.4 kmol/m3 where Cs
A03 = 3.0 kmol/m3. The main question, which we address in

16



the next section, is how to devise the switching and network communication logics in

a way that ensures fault-tolerance in the second unit and, simultaneously, accounts for

the inherent limitations in network resources and possible delays in fault-detection,

communication and actuator activation.
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Figure 2.1: Process flow diagram of two CSTR units in series.

2.3 Fault-Tolerant Control System Design Methodology

In this section, we outline the main steps involved in the fault-tolerant control system

design procedure. These include: (1) the synthesis of a stabilizing feedback controller

for each of the available fall-back control configurations, (2) the explicit characteri-

zation of the stability region for each configuration which characterize the operating

conditions for which fault-recovery can be guaranteed, (3) the design of a switching

law that orchestrates the re-configuration of the failing control system in a way that

safeguards closed-loop stability in the event of failures, and (4) the design of the net-

work communication logic in a way that minimizes the propagation of failure effects
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between plant units while also accounting for bandwidth constraints and delays. A

major feature of the design methodology is the inherent coupling between the afore-

mentioned tasks whereby each task affects how the rest are carried out. Below is a

more detailed description of each step and a discussion on how the tradeoffs between

the different steps are managed.

2.3.1 Constrained Feedback Controller Synthesis

Referring to the system of Equation 2.1, consider first the case when no failures

take place anywhere in the plant. Under such conditions, our objective is to design,

for each processing unit, a “nominal” feedback controller that enforces asymptotic

closed-loop stability and provides an explicit characterization of the stability region

under actuator constraints. One way to do this is to use Lyapunov-based control

techniques. Specifically, consider the nonlinear system describing the i-th processing

unit under the ki-th control configuration, for which a control Lyapunov function, V ki
i ,

is available. Using this function, one can construct the following bounded nonlinear

control law (see [103, 46]):

uki
i = −r(xi, u

ki
i,max)β

T (xi) (2.3)

where

r(xi, u
ki
i,max) =

α∗(xi) +

√
(α∗(xi))2 +

(
uki

i,max‖βT (xi)‖
)4

‖βT (xi)‖2
[
1 +

√
1 + (uki

i,max‖βT (xi)‖)2

] (2.4)

α∗(xi) = α(xi) + ρki
i ‖xi‖2, ρki

i > 0 is a real number, α(xi) = L
f

ki
i

V ki
i (xi), βT (xi) =

(L
G

ki
i

V ki
i )T (xi), the notation L

f
ki
i

V ki
i is used to denote the Lie derivative of the scalar

function, V ki
i , with respect to the vector field, fki

i , and L
G

ki
i

V ki
i is a row vector whose

constituent components are the Lie derivatives of V ki
i along the column vectors of

the matrix Gki
i . Note that the control law of Equations 2.3-2.4 requires measure-
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ments of the local process state variables, xi, only and not measurements from other

plant units upstream. This fully decentralized design is motivated by the desire to

minimize unnecessary communication costs which would be incurred when sharing

measurement data between the different units over the communication network. By

disregarding the interconnections between the units in the controller design, however,

closed-loop stability for a given unit rests on the stability properties of the upstream

units. In particular, using a combination of Lyapunov and small-gain theorem type

arguments, one can show that, starting from any invariant subset (for example, a

level-set of V ki
i ) of the region described by:

Φi(u
ki
i,max) := {xi ∈ IRni : α(xi) + ρki

i ‖xi‖2 ≤ uki
i,max‖βT (xi)‖}, (2.5)

the control law of Equations 2.3-2.4 asymptotically stabilizes the i-th unit, under the

ki-th control configuration, at the origin provided that the closed-loop states of the

upstream units, x1, x2, · · · , xi−1, converge asymptotically to the origin. In this case,

and because of the way the various units are connected (see Equation 2.1), the closed-

loop states of the upstream units can be viewed as bounded vanishing perturbations

that affect the i-th unit and, therefore, a control law that asymptotically stabilizes

the unperturbed i-th unit (i.e., disregarding the upstream states) also stabilizes the

closed-loop system when the perturbations (connections) are added.

Having designed the nominal feedback control systems, we now proceed to con-

sider the effect of control actuator failure on the feedback controller design for each

unit. To this end, let us consider a total failure in the actuators of the ki-th control

configuration in the i-th control system. This failure, if not addressed properly, can

lead to closed-loop instabilities both within the i-th processing unit itself (where the

failure has occurred) and within all the remaining units downstream. Minimizing

the effects of failure propagation throughout the plant can be achieved in one of two
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ways. The first involves reconfiguring the local control system of the i-th unit - once

the failure is detected and isolated - by appropriately switching from the malfunc-

tioning control configuration to some well-functioning fall-back configuration (recall

that each processing unit has a family of control configurations). If this is feasible

and can be done sufficiently fast, then the inherent fault-tolerance of the local control

system is sufficient to preserve closed-loop stability not only for the i-th unit with

the failing control system but also for the other units downstream without having

to reconfigure their control systems. However, if local fault-recovery is not possible

(this can happen, for example, in cases when the failure occurs at times that the state

lies outside the stability regions of all the available fall-back control configurations;

see the next subsection for details), then it becomes necessary to communicate the

failure information to the control systems downstream and reconfigure them in order

to preserve their closed-loop stability.

The main issue here is how to design the feedback control law for a given fall-

back configuration in the units downstream in a way that respects the actuators’

constraints and guarantees closed-loop stability despite the failure in the control sys-

tem of some upstream unit. The choice of the feedback law depends on our choice

of the communication policy. To explain this interdependence, we first note that a

total failure in the control system of the i-th unit will cause its state, xi, to move

away from the origin (possibly settling at some other steady-state). Therefore, unless

the nominal feedback controllers for the downstream units, i + 1, i + 2, · · · , l, are

re-designed to account for this incoming “disturbance”, the evolution of their states,

xi+1, xi+2, · · · , xl, will be adversely affected driving them away from the origin. To

account for the disturbance caused by the upstream control system failure, one option

is to send available measurements of xi, through the communication network, to the
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affected units and redesign their controllers accordingly. From a communications cost

point of view, however, this option may be costly since it requires continued usage of

the network resources after the failure, which can adversely affect the performance of

other units sharing the same communication medium due to bandwidth limitations

and overall delays.

To reduce unnecessary network usage, we propose an alternative approach where

the failure in the i-th processing unit is viewed as a bounded non-vanishing dis-

turbance affecting units i + 1, i + 2, · · · , l, and use the available process models

of these units to capture, or estimate, the size of this disturbance (by comparing,

for example, the evolution of the process variables for the i-th unit under the failed

and well-functioning control configurations through simulations). In this formulation,

state measurements from the i-th unit need not be shared with the other units; in-

stead, only bounds on the disturbance size are transmitted to the downstream units.

This approach involves using the network only once at the failure time and not con-

tinuously thereafter. The disturbance information can then be used to design an

appropriate robust controller for each downstream unit to attenuate the effect of the

incoming disturbance and enforce robust closed-loop stability. To illustrate how this

can be done, let us assume that the failure in the control system of unit i occurs at

t = Tf and that the failure is detected immediately (the effect of possible delays in

fault-detection and how to account for them are discussed below in the subsection on

communication logic design). Consider some unit, j, downstream from the i-th unit,

that is described by the following model

ẋj = f
kj

j (xj) + G
kj

j (xj)u
kj

j + δi

i−1∑

p=1

W
kj

j,p(xj)xp +
j−1∑

p=i

W
kj

j,p(xj)θp (2.6)

for i = 1, · · · , l − 1, j = i + 1, · · · , l, where δi = 0 for i = 1, and δi = 1 for

i = 2, · · · , l − 1. The third term on the right-hand side of Equation 2.6 describes

21



the input from all the units upstream of unit i. The θp’s are time-varying, but

bounded, functions of time that describe the evolution of the states of the i-th unit

and all the units downstream from unit i but upstream from unit j (i.e., θp(t) = xp(t),

p = i, · · · , j−1). The choice of using the notation θp, instead of xp, for units i, · · · , j−1

is intended to distinguish the effect of these units (where the failure originates and

propagates downstream) as non-vanishing disturbances to the j-th unit, compared

with the units upstream from unit i which are unaffected by the failure. Note that

for unit j = i + 1, which immediately follows the failing unit, the only source of

disturbances that should be accounted for in its controller design is that coming from

the i-th unit with the failing control system. However, for units that lie further

downstream, i.e., for j = i + 2, · · · , l, the controller design needs to account for the

additional disturbances resulting from the effect of the failure on the intermediate

units separating units i and j.

For a system of the form of Equation 2.6, one possible choice of a stabilizing

controller is the following bounded robust Lyapunov-based control law proposed in

[48] which has the general form:

u
kj

j = −rj(xj, u
kj

j,max, θb)β
T (xj), (2.7)

where

rj(xj, u
kj

j,max, θb) =
α1(xj) +

√
(α2(xj))2 +

(
u

kj

j,max‖βT (xj)‖
)4

(‖βT (xj)‖)2

[
1 +

√
1 + (u

kj

j,max‖βT (xj)‖)2

] (2.8)

α1(xj) = α(xj) +


ρ

kj

j ‖xj‖+
j−1∑

p=i

χ
kj

j θp
b (Tf )‖ωT

p (xj)‖




 ‖xj‖
‖xj‖+ φ

kj

j


 (2.9)

α2(xj) = α(xj) + ρ
kj

j ‖xj‖+
j−1∑

p=i

χ
kj

j θp
b (Tf )‖ωT

p (xj)‖ (2.10)
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θp
b (Tf ) := max

t≥Tf

‖xp(t)‖, p = i, · · · , j − 1 are positive real numbers the capture the

size of the disturbances, originating from the failure in the control system of the i-th

unit and propagating downstream, ωp(xj) = (L
W

kj
j,p

V
kj

j )(xj) is a row vector whose

constituent components are the Lie derivatives of V
kj

j along the column vectors of

the matrix W
kj

j,p, V
kj

j is a robust control Lyapunov function for the j-th system under

the kj-th control configuration, and ρ
kj

j > 0, χ
kj

j > 1, φ
kj

j > 0 are tuning parameters.

Estimates of the disturbance bounds, θp
b , can be obtained by comparing, through

simulations for example, the responses of the p-th unit under the pre- and post-

failure configurations (see the simulation studies section for an example). It should

be noted that since all the incoming disturbances to unit j take effect only after Tf ,

the controller of Equations 2.7-2.10 is implemented only for t ≥ Tf . For t < Tf , the

nominal controllers of Equations 2.3-2.4 are used.

Remark 2.2 When compared with the nominal controller of Equations 2.3-2.4, we

observe that the nonlinear gain function for the fall-back controller, rj(·) in Equa-

tions 2.7-2.10, depends not only on the size of actuator constraints, u
kj

j,max, and the

particular fall-back control configuration being used, kj, but also on the size of the

disturbances caused by the occurrence of failure, θp
b . This gain re-shaping procedure

is carried out in order to guarantee constraint satisfaction and enforce robust closed-

loop stability, with an arbitrary degree of attenuation of the effect of the failure on

the j-th unit downstream. Note that, owing to the assumption of a persistent failure

in the i-th unit (i.e., a non-vanishing disturbance), asymptotic closed-loop stability

cannot be achieved for any of the units downstream. Instead, practical stability can

be enforced whereby the states of each unit are driven, in finite-time, to a neighbor-

hood of the origin whose size can be made arbitrarily small by selecting the controller

tuning parameters (ρ
kj

j , χ
kj

j , φ
kj

j ) appropriately (see [50] for a detailed proof). These

closed-loop properties are enforced within a well-defined state-space region that is

explicitly characterized in the next subsection.
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Remark 2.3 Note that since the processing units upstream of unit i are not affected

by its failing control system, the nominal controllers designed for these units (see

Equations 2.3-2.4) will asymptotically stabilize their states, xp, p = 1, · · · , i−1, at the

origin regardless of the failure; hence these state can be viewed as bounded vanishing

inputs to the j-th unit and thus need not be accounted for in the controller design.

The terms describing the intermediate units, p = i + 1, · · · , j − 1 cannot however

be treated as vanishing inputs. The reason is that even if the control systems of

these units are immediately and appropriately re-configured to suppress the effect

of the failure, their controllers, as discussed above, will at best be able to drive the

states of these units, in finite time, only near the origin without achieving asymptotic

convergence.

Remark 2.4 It should be noted that the fault-tolerant control system design method-

ology proposed in this section is not restricted to the use of the bounded controller

designs given in Equations 2.3-2.4 (for the nominal case) and in Equations 2.7-2.10

(for the case with failure). Any other stabilizing controller design that accounts for

the constraints, enforces the desired robustness properties under failure, and provides

an explicit characterization of the stability region can be used, including recently-

developed hybrid predictive control algorithms [55, 114, 54, 116] which embed the

implementation of predictive controllers within the explicitly-characterized stability

region of Lyaponov-based nonlinear bounded controllers.

Remark 2.5 Control Lyapunov Function (CLF)-based stabilization of nonlinear

systems has been studied extensively in the nonlinear control literature (for example,

see [103, 62, 149]). The construction of constrained CLFs (i.e., CLFs that take the

constraints into account) remains a difficult problem (especially for nonlinear systems)

that is the subject of ongoing research. For several classes of nonlinear systems that

arise commonly in the modeling of practical systems, systematic and computationally

feasible methods are available for constructing unconstrained CLFs (CLFs for the

unconstrained system) by exploiting the system structure. Examples include the use
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of quadratic functions to construct CLFs. In this chapter, the bounded controllers

in Equations 2.3-2.4 and Equations 2.7-2.10 are designed using unconstrained CLFs,

which are also used to explicitly characterize the associated stability regions. While

the resulting estimates do not necessarily capture the entire domain of attraction,

we will use them throughout the paper only for a concrete illustration of the basic

ideas of the results. It is possible to obtain estimates using other methods such as the

Zubov’s method [42] and a combination of several CLFs which can yield substantially

less conservative estimates.

Remark 2.6 The treatment of the failure in the control system of unit i as a bounded

disturbance is rooted in the assumption that xi, while moving away from the origin af-

ter failure, will eventually settle at some other (undesirable) steady-state (recall that

this is how the disturbance bound is computed). In the case when the i-th processing

unit has only a single steady-state in the post-failure configuration, however, the fail-

ure cannot be treated as a bounded disturbance since xi will simply grow unbounded

after the failure and not settle anywhere. In such a case, unless the control system of

unit i is fixed in time, a shutdown of the plant will be unavoidable.

2.3.2 Characterization of Fault-Recovery Regions

Consider once again the j-th processing unit described by the model of Equation

2.6. In the previous section, we outlined how to design, for a given fall-back control

configuration, kj ∈ Kj, a robust feedback controller that, when implemented, can pre-

serve closed-loop stability for this unit in the event of control system failure in some

upstream unit, i. Given that actuator constraints place fundamental limitations on

the ability of the controller to steer the closed-loop dynamics at will, it is important

for the control system designer to explicitly characterize these limitations by identi-

fying, or estimating, the set of admissible states starting from where the controller of

Equations 2.7-2.10 is guaranteed to robustly stabilize the closed-loop system for unit
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j (region of robust closed-loop stability). Since suppression of the upstream failure

effects on unit j is formulated as a robust stabilization problem, we shall refer to

the robust stability region associated with any of the fall-back configurations also as

the fault-recovery region. As discussed in the next subsection, the characterization

of this region plays a central role in devising the appropriate switching policy that

reconfigures the control system and ensures fault-recovery.

For the class of robust control laws given in Equations 2.7-2.10, using a Lyapunov

argument one can show that the set

Π
kj

j (u
kj

j,max, θb(Tf )) := {xj ∈ IRnj : α(xj) + ρ
kj

j ‖xj‖+
j−1∑

p=i

χ
kj

j θp
b (Tf )‖ωT

p (xj)‖

≤ u
kj

j,max‖βT (xj)‖}
(2.11)

describes a region in the state-space where the control action satisfies the constraints

and the Lyapunov function decays monotonically along the trajectories of the closed-

loop system (see [48] for the detailed mathematical analysis). Note that the size

of this set depends both on the magnitude of the constraints and the size of the

disturbance (which in turn depends on the failure time, Tf ). In particular, as the

constraints become tighter and/or the disturbances greater, the set becomes smaller.

Since Π
kj

j , however, is in general, not an invariant set, there is no guarantee that

a trajectory starting within Π
kj

j will remain within it for all the times that the kj-

th control configuration is active, that is, Π
kj

j by itself is not necessarily a stability

region. One way to estimate the fault-recovery region associated with a given control

configuration using Equation 2.11 is to contruct an invariant subset – preferably the

largest – within Π
kj

j , which we denote by Ω
kj

j (u
kj

j,max, θb(Tf )) (for example, Ω
kj

j can be

chosen as a level-set of V
kj

j ). For a given fall-back configuration, kj, implementation

of the controller of Equations 2.7-2.10 at any time that the state is within Ω
kj

j ensures

that the closed-loop trajectory stays within the region defined by Πj – and, hence V
kj

j
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continues to decay monotonically outside of a small neighborhood around the origin

– for all the times that the kj-th configuration is active. The estimate provided by

Ω
kj

j can be conservative but can also be improved using computer simulations. This

approach was followed in the simulation examples in order to obtain appropriate

estimates of the fault-recovery regions.

Remark 2.7 Note that, unlike the nominal stability regions associated with the

nominal controllers of Equations 2.3-2.4 and obtained from Equation 2.5, the fault-

recovery region of any downstream unit, j, cannot be computed a priori (i.e., before

plant startup) since this region, as can be seen from Equation 2.11, depends on the

failure time which is unknown prior to startup. However, once the failure occurs,

estimates of the disturbance bounds can be computed by the local supervisors of the

upstream units, i, · · ·, j−1 (through on-line simulations of each unit’s response under

the pre- and post-failure configurations) and then transmitted, through the communi-

cation network, to unit j which in turn uses these bounds to construct, on-line, both

the controller and the fault-recovery region (see the subsection on communication

logic for a discussion on how the resulting computational delays can be handled).

2.3.3 Supervisory Switching Logic Design

Having designed the robust feedback control law and characterized the fault-recovery

region associated with each fall-back configuration, the third step in our design

methodology is to derive the switching policy that the local supervisor of the down-

stream unit, j, needs to follow in reconfiguring the local control system (i.e., ac-

tivating/deactivating the appropriate fall-back configurations) in the event of the

upstream failure. In the general case, when more than one fall-back control config-

uration is available for the unit under consideration, the question is how to decide

which of these configurations can and should be activated at the time of failure in

order to preserve closed-loop stability. The key idea here is that, because of the
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limitations imposed by constraints on the fault-recovery region of each configuration,

the local supervisor can only activate the configuration whose fault-recovery region

contains the closed-loop state at the time of the failure. Without loss of generality,

let the active control configuration in the j-th unit, priori to the occurrence of failure

in unit i, be kj(T
−
f ) = µ for some µ ∈ Kj, where kj(T

−
f ) = lim

t→T−
f

kj(t) and Tf is the

time that the control system of unit i fails, then the switching rule given by

kj(T
+
f ) = ν if xj(Tf ) ∈ Ων

j (u
ν
j,max, θb(Tf )) (2.12)

for some ν ∈ Kj, ν 6= µ, guarantees that the closed-loop system of the j-th unit is

stable. The implementation of the above switching law requires monitoring, by the

local supervisor, of the evolution of the closed-loop state trajectory with respect to

the fault-recovery regions associated with the various control actuator configurations.

Another way to look at the above switching logic is that it implicitly determines,

for a fixed fall-back configuration, the times that the control system of the j-th unit

can tolerate upstream failures by switching to this configuration. If failure occurs at

times when xj lies outside the fault-recovery region of all available configurations, this

analysis suggests that either the constraints should be relaxed – to enlarge the fault-

recovery region of the given configurations – or additional fall-back control loops must

be introduced. The second option, however, is ultimately limited by the maximum

allowable number of control loops that can be designed for the given processing unit.

If neither option is feasible, a shutdown could be unavoidable. The proposition of

constructing the switching logic on the basis of the stability regions was first proposed

in [47] for the control of switched nonlinear systems.
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2.3.4 Design of Communication Logic

Given the distributed interconnected nature of the plant units – and thus the poten-

tial for failure effects propagating from one unit to another – an essential element in

the design of the fault-tolerant control system is the use of a communication medium

that ensures fast and efficient transmission of information during failure events. As

discussed earlier, communication networks offer such a medium that is both fast (rela-

tive to the typically slow dynamics of chemical processes) and inexpensive (relative to

current point-to-point connection schemes which require extensive cabling and higher

maintenance time and costs). The ability of the network to fulfill this role, however,

requires that we devise the communication policy in a way that respects the inherent

limitations in network resources, such as bandwidth constraints and overall delays,

by minimizing unnecessary usage of the network.

In the section on feedback controller synthesis, we have already discussed how the

bandwidth constraint issue can be handled by formulating the problem as a robust

control problem, where the failure in the control system of the i-th processing unit and

the consequent effects on units i+1, · · ·, j−1 are treated as a bounded non-vanishing

disturbances that affect unit j downstream. The communication policy requires that

the local supervisors of units i, · · ·, j − 1 perform the following tasks: (1) compute

the disturbance bounds using the process model of each unit, and (2) send this infor-

mation, together with other relevant information such as the failure type, the failure

time and operating conditions, to the plant supervisor. The plant supervisor in turn

forwards the information to the local supervisor of unit j utilizing the plant-wide

communication network (see Figure 1.4). This policy avoids unnecessary overloading

of the network (which could result when measurements from the upstream units are

sent continuously to unit j) while also guaranteeing fault-tolerance in the downstream
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units. The idea of using knowledge of the plant dynamics to balance the tradeoff be-

tween bandwidth limitations (which favor reduced communication of measurements)

and optimum control performance (which favors increased communication of mea-

surements) is conceptually aligned with the notion of minimum attention control (for

example, see [22, 124]). In our work, however, this idea is utilized in the context of

fault-tolerant control.

The second consideration in devising the communication logic is the issue of time-

delays which typically result from the time sharing of the communication medium as

well as the computing time required for the physical signal coding and communication

processing. The characteristics of these time-delays depend on the network protocols

adopted as well as the hardware chosen. For our purposes here, we consider an

overall fixed time-delay (which we denote by τ j
max) that combines the contribution

of several delays, including: (1) delays in fault-detection, (2) the time that the local

supervisors of units i, · · · , j − 1 take to compute the effective disturbance bounds

(through simulations comparing the pre- and post-failure state evolutions in each

unit), (3) the time that the local supervisors of units i, · · · , j − 1 take to send the

information to the plant supervisor, (4) the time that it takes the plant supervisor to

forward the information to the local supervisor of unit j, (5) the time that it takes

the local supervisor for unit j to compute the fault-recovery region for the given fall-

back configurations using the information arriving from the upstream units and the

time that it takes for the supervisor’s decision to reach and activate the appropriate

fall-back configuration, and (6) the inherent actuator/sensor dead-times.

Failure to take such delays into account can result in activating the wrong control

configuration and subsequent instability. For example, even though the upstream

failure may take place at t = Tf , the fall-back configuration in the control system of

30



unit j will not be switched in before t = Tf +τ j
max. If the delay is significant, then the

switching rule in the previous section should be modified such that the local supervisor

for unit j activates configuration, kj = ν, for which xj(Tf + τ j
max) ∈ Ων

j (u
ν
j,max, θb).

This modification is yet another manifestation of the inherent coupling between the

switching and communication logics. The implementation of the modified switching

rule that accounts for delays requires that the local supervisor of unit j be able to

predict where the state trajectory will be at t = Tf + τ j
max (for example, through

simulations using the process model) and check whether the state at this time is

within the fault-recovery region of a given fall-back configuration. If not, then either

an alternative fall-back configuration, for which the fault-recovery region contains the

state at the end of the delay, should be activated or a shutdown maybe unavoidable.

The availability of several fall-back control loops, however, is limited by process design

considerations which dictate, for example, how many variables can be used for control.

Figure 2.2 summarizes the overall fault-tolerant control strategy for a two-unit plant.

2.4 Simulation Studies

In this section, we present two simulation studies that demonstrate the application

of the proposed fault-tolerant control system design methodology to two chemical

processes. In the first application, a single chemical reactor example is considered to

demonstrate the idea of re-configuring the local control system in the event of failures

on the basis of the stability regions of the constituent control configurations, and

how overall communication delays impact the re-configuration logic. In the second

application, a cascade of two chemical reactors in series is considered to demonstrate

how the issue of failure propagation between a multi-unit plant is handled within

the proposed methodology, and how the various interplays between the feedback,
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Figure 2.2: Summary of the fault-tolerant control strategy, for a two-unit plant, using

communication networks.
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supervisory control and communication tasks are handled in the multi-unit setting.

2.4.1 Application to a Single Chemical Reactor

Consider a well-mixed, non-isothermal continuous stirred tank reactor where three

parallel irreversible elementary exothermic reactions of the form A
k1→ B, A

k2→ U and

A
k3→ R take place, where A is the reactant species, B is the desired product and

U, R are undesired byproducts. The feed to the reactor consists of pure A at flow

rate F , molar concentration CA0 and temperature TA0. Due to the non-isothermal

nature of the reactions, a jacket is used to remove/provide heat to the reactor. Under

standard modeling assumptions, a mathematical model of the process can be derived

from material and energy balances and takes the following form:

dT

dt
=

F

V
(TA0 − T ) +

3∑

i=1

(−∆Hi)

ρcp

Ri(CA, T ) +
Q

ρcpV

dCA

dt
=

F

V
(CA0 − CA)−

3∑

i=1

Ri(CA, T )

dCB

dt
= −F

V
CB + R1(CA, T )

(2.13)

where Ri(CA, T ) = ki0 exp
(−Ei

RT

)
CA, CA and CB denote the concentrations of the

species A and B, respectively, T denotes the temperature of the reactor, Q denotes

the rate of heat input to the reactor, V denotes the volume of the reactor, ∆Hi, ki, Ei,

i = 1, 2, 3, denote the enthalpies, pre-exponential constants and activation energies of

the three reactions, respectively, cp and ρ denote the heat capacity and density of fluid

in the reactor. The values of the process parameters and the corresponding steady-

state values are given in Table 2.2. It was verified that under these conditions, the

process model of Equation 2.13 has three steady-states: two locally asymptotically

stable and one unstable at (T s, Cs
A, Cs

B) = (388 K, 3.59 kmol/m3, 0.41 kmol/m3).

The control objective is to stabilize the reactor at the (open-loop) unstable steady-
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Table 2.2: Process parameters and steady-state values for the chemical reactor of Equation

2.13.

F = 4.998 m3/hr
V = 1.0 m3

R = 8.314 KJ/kmol ·K
TA0 = 300.0 K
CA0 = 4.0 kmol/m3

CB0 = 0.0 kmol/m3

∆H1 = −5.0× 104 KJ/kmol
∆H2 = −5.2× 104 KJ/kmol
∆H3 = −5.4× 104 KJ/kmol
k10 = 3.0× 106 hr−1

k20 = 3.0× 105 hr−1

k30 = 3.0× 105 hr−1

E1 = 5.0× 104 KJ/kmol
E2 = 7.53× 104 KJ/kmol
E3 = 7.53× 104 KJ/kmol
ρ = 1000.0 kg/m3

cp = 0.231 KJ/kg ·K
T s = 388.57 K
Cs

A = 3.59 kmol/m3

Cs
B = 0.41 kmol/m3
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state. Operation at this point is typically sought to avoid high temperatures while,

simultaneously, achieving reasonable reactant conversion. To accomplish this objec-

tive in the presence of control system failures, we consider the following manipulated

input candidates:

1. Rate of heat input, u1 = Q, subject to the constraint |Q| ≤ u1
max = 748 KJ/s.

2. Inlet stream temperature, u2 = TA0 − T s
A0, subject to the constraint |u2| ≤

u2
max = 100 K.

3. Inlet reactant concentration, u3 = CA0 − Cs
A0, subject to the constraint |u3| ≤

u3
max = 4 kmol/m3.

Q

A0T

A0C

A B

A, B, C CCoolant in T

A0F

Temp.
sensor

Composition analyzer

Supervisor

Actuator 1

Actuator 2

Actuator 3

                          Coolant out

Figure 2.3: Fault-tolerant control structure for a single unit operation, integrating supervi-

sory and feedback control over a communication network.

Each of the above manipulated inputs represents a unique control configuration (or

control-loop) that, by itself, can stabilize the reactor using available measurements of

the reactor temperature, reactant and product concentrations provided by the sensors.
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The sensors and control actuators of each configuration are connected to the unit

supervisor (for example, a distant control room) over a communication network (see

Figure 2.3). The first loop involving the heat input, Q, as the manipulated variable

will be considered as the primary control configuration. In the event of a total failure

in this configuration, however, the supervisor will have to activate one of the other two

fall-back configurations in order to maintain closed-loop stability. The main question

that we address in this simulation study is how can the supervisor determine which

control loop to activate once failure is detected in the active configuration and how

overall communication delays influence this decision.

Following the proposed methodology, we initially synthesize, for each control con-

figuration, a feedback controller that enforces asymptotic closed-loop stability in the

presence of actuator constraints. This task is carried out on the basis of the process in-

put/output dynamics. While our control objective is to achieve full-state stabilization,

auxiliary process outputs are introduced here to facilitate transforming the system of

Equation 2.13 into a form more suitable for explicit controller synthesis. In the case

of the process of Equation 2.13, a further simplification can be obtained by noting

that CB does not affect the evolution of either T or CA and, therefore, the controller

design can be addressed on the basis of the T and CA equations only. A controller

that stabilizes the (T, CA) subsystem also stabilizes the entire closed-loop system.

For the first configuration with u1 = Q, we consider the output y1 = (CA − Cs
A)/Cs

A.

This choice yields a relative degree of r1 = 2 for the output with respect to the ma-

nipulated input. The coordinate transformation (in error variables form) takes the

form: e1 = (CA − Cs
A)/Cs

A, e2 = (F/V )(CA0 − CA)/Cs
A −

∑3
i=1ki0 exp

(−Ei

RT

)
CA/Cs

A.

For the second configuration with u2 = TA0 − T s
A0, we choose the output y2 =

(CA − Cs
A)/Cs

A which yields the same relative degree as in the first configuration,
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r2 = 2, and the same coordinate transformation. For the third configuration, with

u3 = CA0 − Cs
A0, we choose the output y3 = (T − T s)/T s which yields a relative

degree of r3 = 2 and a coordinate transformation of the form: e1 = (T − T s)/T s,

e2 = (F/V )(TA0 − T )/T s +
∑3

i=1
(−∆Hi)
ρcpT s Ri(CA, T ) + Q

ρcpV T s .

Note that since our objective is full-state stabilization, the choice of the output in

each case is really arbitrary. However, to facilitate the controller design and subse-

quent stability analysis, we have chosen in each case an output that produces a system

of relative degree 2. For each configuration, the corresponding state transformation

yields a system, describing the input/output dynamics, of the following form:

ė = Ae + lk(e) + bαkuk

:= f̄k(e) + ḡk(e)uk, k = 1, 2, 3
(2.14)

where A =

[
0 1
0 0

]
, b =

[
0
1

]
, lk(·) = L2

fk
hk(x), αk(·) = Lgk

Lfk
hk(x), hk(x) = yk is

the output associated with the k-th configuration, x = [x1 x2]
T with x1 = (T−T s)/T s,

x2 = (CA − Cs
A)/Cs

A, and the functions fk(·) and gk(·) can be obtained by re-writing

the (T, CA) model equations in Equation 2.13 in the form of Equation 2.1. The explicit

forms of these functions are omitted for brevity. Using a quadratic Lyapunov function

of the form Vk = eT Pke, where Pk is a positive-definite symmetric matrix that satisfies

the Riccati inequality AT Pk + PkA − Pkbb
T Pk < 0, we synthesize, for each control-

loop, a bounded nonlinear feedback control law of the form of Equations 2.3-2.4 and

characterize the associated stability region with the aid of Equation 2.5. Figure 2.4

depicts the stability region, in the (T, CA) space, for each configuration. The stability

region of configuration 1 includes the entire area of the plot. The stability region

of configuration 2 is the entire area to the left of the solid line, while the stability

region of configuration 3 covers the area to the right of the dashed vertical line. The

desired steady-state is depicted with an asterisk that lies in the intersection of the

three stability regions.
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Figure 2.4: Stability regions of the three control configurations (I, II, III) considered for the

chemical reactor example of Equation 2.13.

We consider first the case when no time-delays are involved and the supervisor

can switch immediately between the different control loops in the event of failures.

To this end, the reactor is initialized at T (0) = 300 K, CA(0) = 4.0 kmol/m3,

CB(0) = 0.0 kmol/m3, using the Q–control configuration, and the supervisor pro-

ceeds to monitor the evolution of the closed-loop trajectory. As shown by the solid

parts of the closed-loop trajectory in Figure 2.4, the state profiles in Figure 2.5 and the

rate of heat input profile in Figure 2.6, the controller proceeds to drive the closed-loop

trajectory towards the desired steady-state until the control actuators Q-configuration

experiences a total failure after 2.0 hrs of startup (simulated by fixing Q = 0 for all

t ≥ 2.0 hr). From the solid part of the trajectory in Figure 2.4, it is clear that the

failure of the primary control configuration occurs when the closed-loop trajectory is

within the stability region of the second control configuration, and outside the stabil-

ity region of the third control configuration. Therefore, on the basis of the switching

logic, the supervisor immediately activates the second configuration, with TA0 as the

manipulated input. The result is shown by the dashed parts of the closed-loop trajec-

tory in Figure 2.4, the state profiles in Figure 2.5 and the inlet stream temperature
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profile in Figure 2.6 where it is seen that, upon switching to the TA0-configuration,

the corresponding controller continues to drive the closed-loop trajectory closer to the

desired steady-state. At t = 15.0 hr, we consider another total failure in the control

actuators of the TA0-configuration (simulated by fixing TA0 for all t ≥ 15.0 hr). From

the dashed part of the trajectory in Figure 2.4, it is clear that this failure occurs

when the closed-loop trajectory is within the stability region of the third configura-

tion. Therefore, the supervisor immediately activates the third control configuration,

with CA0 as the manipulated input, which then successfully stabilizes the reactor at

the desired steady-state (see the dotted parts of the closed-loop trajectory in Figure

2.4, the state profiles in Figure 2.5 and the inlet reactant concentration in Figure 2.6).

To demonstrate the effect of delays on the implementation of the switching logic,

we consider an overall delay, between the supervisor and the constituent control con-

figurations, of τmax = 8.0 min (accounting for possible delays in fault-detection, con-

trol computations, network transmission and actuator activation). In this case, the

reactor is initialized at T (0) = 300 K, CA(0) = 4.0 kmol/m3, CB(0) = 0 kmol/m3

under the first control configuration (with Q as the manipulated input). The actual

failure of this configuration occurs at t = 10 hr which, as can be seen from Figure

2.7, is a time when the closed-loop state trajectory is within the intersection of all

three stability regions. In the absence of delays, this suggests that switching to ei-

ther configuration 2 or 3 should preserve closed-loop stability. We observe, however,

from Figure 2.8 that, when the delay is present, activation of configuration 3 leads to

instability (dotted profile) while activation of configuration 2 achieves stabilization

at the desired steady-state (dashed profiles). The reason is the fact that, for the

time period between the actual failure (t = 10 hr) and the activation of the backup

configuration (t = 10.13 hr), the process evolves in an open-loop fashion leading the
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Figure 2.5: Evolution of the closed-loop state profiles under repeated control system failures

and subsequent switching by the supervisor from configuration 1 (solid lines) to configura-

tion 2 (dashed lines) to configuration 3 (dotted lines).
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Figure 2.6: Manipulated input profiles for each control configuration as the supervisor

switches from configuration 1 to configuration 2 at t = 2 hr and from configuration 2 to

configuration 3 at t = 15 hr.
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Figure 2.7: A phase plot showing the closed-loop state trajectory leaving the intersection

zone (I, II, & III) during the delay period (dashed-dotted trajectory) rendering configuration

3 destabilizing (dotted trajectory).

trajectory to move out of the intersection zone such that at t = 10.13 hr the state

is within the stability region of configuration 2 and outside that of configuration 3.

This is shown in Figure 2.7. The corresponding manipulated input profiles are shown

in Figure 2.9. To activate the correct configuration in this case, the supervisor needs

to predict where the state trajectory will be at the end of the communication delay

period.

2.4.2 Application to Two Chemical Reactors in Series

In this section, we revisit the two chemical reactors in series of Equation 2.2, in-

troduced earlier in the motivating example section, to illustrate the implementa-

tion of the proposed fault-tolerant control methodology. To this end, the reactors

are initialized at (T1(0), CA1(0)) = (300 K, 4.0 kmol/m3), and (T2(0), CA2(0)) =

(440 K, 4.0 kmol/m3). Under normal operating conditions (with no failures), each

reactor is controlled by manipulating the rate of heat input, using a bounded nonlinear

control law of the form of Equations 2.3-2.4.
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Figure 2.8: Evolution of the closed-loop state profiles when configuration 1 (solid lines) fails

at t = 10 hr and an overall delay of τmax = 8.0 min elapses before the backup configuration

is activated. Activation of configuration 2 preserves closed-loop stability (dashed lines)

while activation of configuration 3 leads to instability (dotted lines).
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Figure 2.9: Manipulated input profiles when configuration 1 fails at t = 10 hr and an overall

delay of τmax = 8.0 min elapses before the backup configuration is activated.
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For the first CSTR, the controller design procedure is the same as the one used

for the Q-configuration in the previous simulation example. For the second CSTR,

we design the controller on the basis of the temperature equation only. Specifically,

a quadratic function of the form V2 = 1
2
a2(x

(1)
2 )2, where x

(1)
2 = (T2 − T s

2 )/T s
2 , is used

to design the controller and estimate the resulting stability region using Equation

2.5. The values of the controller tuning parameters are chosen to be a2 = 0.5 and

ρ2 = 0.0001. Figure 2.10 (solid profiles) and Figure 2.11 show the resulting closed-loop

state and manipulated input profiles when the controllers are implemented without

failure for both reactors. We observe that each controller successfully stabilizes the

corresponding reactor at the desired steady-state.

Consider now a total failure in the actuators of both control systems (Q1 and Q2)

at Tf = 5 min. In this case, both reactors revert to their open-loop mode of behavior

and, consequently, if no fall-back control configuration is activated, the states move

away from the desired steady-state, as shown by the dashed lines in Figure 2.10 for

the first reactor, and Figure 2.12 for the second reactor (note that CA03 remains

fixed for all times since it is not used as a manipulated variable in the pre-failure

configuration). As stated in the motivation example subsection, we assume that the

controller failure in the first reactor is permanent; and our objective is to prevent

the propagation of this effect to the second reactor. A permanent failure in the first

unit could be the result of lack of sufficient fall-back configurations or because failure

occurs at a time when the state is outside the stability regions of all the available

configurations for this unit.

Using the proposed methodology, the supervisor of CSTR 1, at the failure time,

runs both open-loop and closed-loop simulations using the process model of CSTR

1 to estimate the size of the disturbance affecting CSTR 2, and transmits this infor-
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Figure 2.10: Evolution of the closed-loop state and manipulated input profiles for CSTR 1

under a well-functioning control system (solid lines) and when the control actuator fail at

t = 5 min (dashed lines).
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Figure 2.11: Evolution of the closed-loop state and manipulated input profiles for CSTR 2

under a well-functioning control system.
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Figure 2.12: Evolution of the closed-loop state and manipulated input profiles for CSTR

2 when the controller of the fall-back configuration (Q2, CA03) is activated immediately

after the failure (solid lines), and the open-loop state and input profiles resulting when the

fall-back configuration is not activated after the failure (dashed lines).
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mation to the local supervisor of CSTR 2 through the communication network. The

maximum disturbance size is proportional to the largest discrepancy (after the fail-

ure time) between the values of CA1, T1 in the well-functioning (solid lines in Figure

2.10) and in the failed (dashed lines in Figure 2.10) modes. Using this information,

the local supervisor of CSTR 2 designs a robust control law of the form of Equa-

tions 2.7-2.10 to stabilize CSTR 2, using the available fall-back configuration with

(Q2, CA03) as the manipulated inputs, and constructs the associated fault-recovery

region for this configuration. The controller design procedure involves re-writing the

process model of CSTR 2 in Equation 2.2 in the form of Equation 2.6, using the di-

mensionless variables, x
(1)
i = (Ti− T s

i )/T s
i , x

(2)
i = (CAi−Cs

Ai)/C
s
Ai, i = 1, 2, and with

the states of CSTR 1 re-defined as the disturbance variables, θ1(t) = [θ
(1)
1 (t) θ

(2)
1 (t)]T ,

where θ
(1)
1 (t) = (F1T

s
1 /V2T

s
2 )(x

(1)
1 (t)+1) and θ

(2)
1 (t) = (F1C

s
A1/V2C

s
A2)(x

(2)
1 (t)+1), for

all t ≥ Tf . Then, using a quadratic function of the form V2 = 1
2
a2(x

(1)
2 )2 + 1

2
a2(x

(2)
2 )2,

the controller of Equations 2.7-2.10 is constructed and its fault-recovery region is

computed with the aid of Equation 2.11. The disturbance bound is computed as

θ1
b = supt≥Tf

‖θ1(t)‖. The values of the controller tuning parameters are selected to

be a2 = 0.5, ρ2 = 0.0001, χ2 = 2.0001 and φ2 = 0.0001. The fault-recovery region is

depicted by the shaded area in Figure 2.13.

From Figure 2.13, we observe that the failure occurs when the states of CSTR 2 are

within the fault-recovery region. Therefore, assuming no delays in the fault-detection,

computations and communication processing (i.e., instantaneous switching), when the

fall-back controllers are activated, closed-loop stability is preserved and the closed-

loop states converge close to the desired steady-state as shown by the solid lines in

Figure 2.12.

When delay effects are taken into account, we see from Figure 2.13 (top plot)
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Figure 2.13: Fault-recovery region of the fall-back control configuration (Q2, CA03) for

CSTR 2, with constraints |Q2| ≤ 2.8× 106 KJ/hr and |CA03 −Cs
A03| ≤ 0.4 kmol/m3 when

failure occurs at Tf = 5 min. Activation of the fall-back configuration after a 3 min delay

preserves closed-loop stability (top plot), while activation after 4.1 min delay fails to ensure

fault-tolerance (bottom plot).
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Figure 2.14: Evolution of the closed-loop state and input profiles when the failure occurs

at Tf = 5 min and the fall-back configuration (Q2, CA03), with constraints |Q2| ≤ 2.8 ×
106 KJ/hr and |CA03−Cs

A03| ≤ 0.4 kmol/m3 is activated after a total delay of 3 min (solid

lines) and after a total delay of 4.1 min (dashed lines).
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that if an overall delay of 3 min (accounting for delays in fault-detection, controller

computations, information transmission and actuator activation) elapses between the

failure and the activation of the (Q2, CA03) configuration – during this delay, CSTR

2 evolves in an open-loop mode as indicated by the dotted line – the state at the

end of the delay still resides within the fault-recovery region and, therefore, closed-

loop stability is preserved by switching to the (Q2, C
s
A0) configuration at the end of

the delay. The corresponding state and input profiles are shown by the solid lines

in Figures 2.13-2.14. By contrast, we see from the bottom plot in Figure 2.13 that

when an overall delay of 4.1 min is considered, the state at the end of the delay lies

outside the fault-recovery region; hence the fall-back configuration cannot stabilize

the system at the desired steady-state, as can be seen from the dashed lines in Figures

2.13-2.14.
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Figure 2.15: Fault-recovery region of the fall-back control configuration (Q2, CA03) for

CSTR 2, with constraints |Q2| ≤ 1.4× 107 KJ/hr and |CA03 −Cs
A03| ≤ 2.0 kmol/m3 when

failure occurs at Tf = 5 min. Activation of the fall-back configuration after a delay of either

3 min or 4.1 min ensures fault-tolerance.

Examination of Figure 2.13 provides useful insights into how the tradeoff between
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Figure 2.16: Evolution of the closed-loop state and manipulated input profiles when the

failure occurs at Tf = 5 min and the fall-back configuration (Q2, CA03), with constraints

|Q2| ≤ 1.4 × 107 KJ/hr and |CA03 − Cs
A03| ≤ 2.0 kmol/m3 is activated after a total delay

of 3 min (solid lines) and after a total delay of 4.1 min. (dashed lines).
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the controller design, switching and communication logics can be managed to ensure

fault-tolerance. For example, the figure suggests that with a larger fault-recovery re-

gion, even large delays maybe tolerated by switching to this particular configuration.

A larger region can be obtained by relaxing the constraints. Figure 2.15 shows the re-

sulting fault-recovery region for the (Q2, CA03) configuration when the constraints are

relaxed to |Q2| ≤ uQ2
max = 1.4×107 KJ/hr and |CA03−CA03s| ≤ uCA03

max = 2.0 kmol/m3.

In this case, the fault-recovery region includes the entire area of the plot. As a result,

activation of the fall-back configuration, whether after 3 min or 4.1 min from the

failure time, stabilizes the reactor since the state at the end of the delay in both cases

is contained within the fault-recovery region. Figure 2.16 shows the corresponding

closed-loop state and input profiles of CSTR 2 for both scenarios.

2.5 Conclusions

In this chapter, we proposed a methodology for the design of fault-tolerant control

systems for chemical plants with distributed interconnected processing units. Bring-

ing together tools from Lyapunov-based nonlinear control and hybrid systems theory,

the approach is based on a hierarchical architecture that integrates low-level feed-

back control of the individual units with high-level logic-based supervisory control

over communication networks. The local control system for each unit consists of a

family of control configurations for each of which a stabilizing feedback controller

is designed and the stability region is explicitly characterized. The actuators and

sensors of each configuration are connected, via a local communication network, to a

local supervisor that orchestrates switching between the constituent configurations,

on the basis of the stability regions, in the event of failures. The local supervisors

communicate, through a plant-wide communication network, with a plant supervi-
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sor responsible for monitoring the different units and coordinating their responses in

a way that minimizes the propagation of failure effects. The communication logic

is designed to ensure efficient transmission of information between units while also

respecting the inherent limitations in network resources by minimizing unnecessary

network usage and accounting explicitly for the effects of possible delays due to fault-

detection, control computations, network communication and actuator activation.

Explicit guidelines for managing the various interplays between the coupled tasks of

feedback control, fault-tolerance and communication were provided. The efficacy of

the proposed approach was demonstrated through chemical process examples.
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Chapter 3

Fault-Tolerant Control of

Nonlinear Processes:

Performance-Based

Reconfiguration and Robustness

3.1 Introduction

In Chapter 2, we presented a hybrid system approach to fault-tolerant control where

upon occurrence of a fault, stability region-based reconfiguration is implemented to

achieve fault-tolerant control. The reconfiguration in Chapter 2, however, does not

incorporate performance or robustness considerations, which can lead to performance-

loss or even instability for processes subject to uncertainty.

Motivated by these considerations, in this chapter, we consider the problem of

control system/actuator failures in nonlinear processes subject to input constraints

and present two approaches for fault-tolerant control that focus on incorporating

performance and robustness considerations, respectively. In both approaches, first
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a family of candidate control configurations, characterized by different manipulated

inputs, is identified for the process under consideration, and then performance and

robustness considerations are incorporated in the implementation of fault-tolerant

control [118].

We first introduce the class of systems considered, present a motivating exam-

ple, and review two control approaches for handling process nonlinearity, inputs and

constraints. Next, we present performance-based reconfiguration where performance

considerations are incorporated in the controller design and in the switching logic.

Specifically, we design a Lyapunov-based predictive controller that enforces closed-

loop stability from an explicitly characterized set of initial conditions. The switching

logic uses stability considerations (evaluated via the presence of the state in the stabil-

ity region of a control configuration) to ascertain the suitability of a candidate backup

configuration and then performance considerations are again considered in choosing

between the suitable backup configurations. We demonstrate the implementation of

the method on the chemical process example.

To show robustness considerations, we consider the problem of implementing fault-

tolerant control to nonlinear processes subject to input constraints and uncertainty.

To this end, we first design a robust hybrid predictive controller for each candidate

control configuration that guarantees stability from an explicitly characterized set of

initial conditions, subject to uncertainty and constraints. A switching policy is then

derived to orchestrate the activation/deactivation of the constituent control configu-

rations. We demonstrate the implementation of the robust fault-tolerant controller

on the chemical process example.
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3.2 Preliminaries

We consider nonlinear systems with uncertain variables and input constraints, de-

scribed by:

ẋ = f(x) + Gk(x)uk + Wk(x)θk(t), uk ∈ Uk, θk ∈ Θk

k(t) ∈ K = {1, · · · , N}, N < ∞
(3.1)

where x ∈ IRn denotes the vector of state variables, u ∈ IRm denotes the vector of

constrained manipulated inputs, taking values in a nonempty convex subset Uk of IRm,

where Uk = {u ∈ IRm : ‖u‖ ≤ umax
k }, ‖·‖ is the Euclidean norm of a vector, umax

k > 0

is the magnitude of input constraints, and θk(t) = [θ1
k(t) · · · θq

k(t)]
T ∈ Θk ⊂ IRq denotes

the vector of uncertain (possibly time-varying) but bounded variables taking values in

a nonempty compact convex subset of IRq and f(0) = 0. The vector function f(x), the

matrices Gk(x) = [g1
k(x) · · · gm

k (x)] and W (x) = [w1
k(x) · · ·wq

k(x)], where gi
k(x) ∈ IRn,

i = 1 · · ·m, and wi
k(x) ∈ IRn, i = 1 · · · q, are assumed to be sufficiently smooth on their

domains of definition. k(t), which takes values in the finite index set K, represents

a discrete state that indexes the vector field gk(·) as well as the manipulated input

uk(·). For each value that k assumes in K, the process is controlled via a different

manipulated input which defines a given control configuration. Switching between

the available N control configurations is controlled by a higher-level supervisor, thus

determining the temporal evolution of the discrete state, k(t). The supervisor ensures

that only one control configuration is active at any given time, and allows only a finite

number of switches over any finite interval of time. The notation Lfh denotes the

standard Lie derivative of a scalar function h(·) with respect to the vector function

f(·), the notation x(T−) denotes the limit of the trajectory x(t) as T is approached

from the left, i.e., x(T−) = lim
t→T−

x(t) and the notation ∂Ω is used to donate the

boundary of a closed set, Ω. Throughout the manuscript, we assume that for any
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uk ∈ Uk the solution of the system of Equation 3.1 exists and is continuous for all t,

and we focus on the state feedback problem where measurements of the entire state,

x(t), are assumed to be available for all t.

3.2.1 Motivating Example

To illustrate how performance and robustness considerations are incorporated in the

fault-tolerant control design, we use chemical reactor example introduced in Section

2.4.1. The values of the process parameters are given in Table 2.2. It was veri-

fied that under these conditions, the open-loop process of Equation 2.13 has three

steady-states (two locally asymptotically stable and one unstable at (Ts, CAs, CBs) =

(388.57 K, 3.59 kmol/m3, 0.41 kmol/m3)). The manipulated input variables avail-

able for use within a control configuration include (see Figure 2.3) rate of heat input,

u1 = Q, inlet stream temperature, u2 = TA0−TA0s := ∆TA0 and inlet reactant concen-

tration, u3 = CA0−CA0s := ∆CA0, subject to the constraints |Q| ≤ umax
1 = 748 KJ/s,

|u2| ≤ umax
2 = 100 K, with TA0s = 300 K and |u3| ≤ umax

3 = 4 kmol/m3, with

CA0s = 4 kmol/m3, respectively.

The first loop involving the heat input, Q, will be considered as the primary

configuration. In the event of some failure in this configuration, however, the plant

supervisor will have to activate one of the other two backup configurations in order

to maintain closed-loop stability. Note, however, that the presence of constraints on

the manipulated inputs limits the set of initial conditions starting from where the

process states can be driven to a given (open-loop unstable) equilibrium point. Given

that the primary control configuration fails, it is important to pick the appropriate

backup control configuration that preserves closed-loop stability (safety criterion),

and upon availability of more than one backup control configurations that satisfy the
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safety criterion, to formulate and evaluate a performance index to choose between

them (performance consideration). To this end, for each individual control configu-

ration subject to constraints, it is important to implement control laws that provide

an explicit estimate of the set of initial conditions starting from where closed-loop

stability can be achieved. Such estimates of the stability region can subsequently be

used to evaluate the suitability of a given backup control configuration.

Lyapunov-based nonlinear controllers are an example of such controllers that pro-

vide an explicit estimate of the stability regions. These controllers, however, are

typically not designed to be optimal with respect to arbitrarily specified performance

criterion. Model predictive controllers, while typically not allowing for an explicit

characterization of their stability region, allow for incorporation of performance con-

siderations, via the objective function or as constraints on the state variables. In the

remainder of the paper, we will use a combination of analytical and predictive ap-

proaches, at the level of design and analysis or via directly switching between the two

control approaches for incorporating performance and robustness considerations in

fault-tolerant control of processes. We next review an example of a Lyapunov-based

nonlinear controller followed by a representative description of the model predictive

control approach.

3.2.2 Bounded Lyapunov-Based Control

Referring to the system of Equation 3.1, for a fixed value of k ∈ K, we assume that

the uncertain variable term, Wk(x)θk, is non-vanishing (in the sense that the origin

is no longer the equilibrium point of the uncertain system) and that a robust control

Lyapunov function (RCLF [62]), Vk exists. Consider also, the bounded state feedback
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control law (see [49, 46] for details on controller design):

ub
k = −




αk(x) +
√

(α1,k(x))2 + (umax
k βk(x))4

(βk(x))2
[
1 +

√
1 + (umax

k βk(x))2

]


 (LGk

Vk)
T := bk(x) (3.2)

when LGk
Vk 6= 0 and uk = 0 when LGk

Vk = 0, where

αk(x) = LfVk +
(
ρk‖x‖+ χkθ

b
k‖LWk

Vk‖
) ( ‖x‖

‖x‖+ φk

)

α1,k(x) = LfVk + ρk‖x‖+ χkθ
b
k‖LWk

Vk‖

βk(x) = ‖(LGk
Vk)

T‖

LGk
Vk = [Lgk

1Vk · · · Lgk
mVk]

LWk
Vk = [Lwk

1Vk · · · Lwk
qVk],

LGk
Vk and LWk

Vk are row vectors, θb
k is a positive real number such that ‖θk(t)‖ ≤ θb

k,

for all t ≥ 0, and ρk, χk and φk are adjustable parameters that satisfy ρk > 0, χk > 1

and φk > 0. Let Πk be the set defined by Πk(θ
b
k, u

max
k ) = {x ∈ IRn : α1,k(x) ≤

umax
k βk(x)} and assume that Ωk := {x ∈ IRn : Vk(x) ≤ cmax

k } ⊆ Πk(θ
b
k, u

max
k ) for some

cmax
k > 0. Then, given any positive real number, dr

k, such that:

IDr
k := {x ∈ IRn : ‖x‖ ≤ dr

k} ⊂ Ωk
(3.3)

and for any initial condition x0 ∈ Ωk, it can be shown that there exists a positive

real number εr∗
k such that if φk/(χk − 1) < εr∗

k , the states of the closed-loop system of

Equations 3.1-3.2 satisfy x(t) ∈ Ωk ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dr
k.

Remark 3.1 Referring to the above controller design, it is important to note that

a general procedure for the construction of RCLFs for nonlinear systems of the form

of Equation 3.1 is currently not available. Yet, for several classes of nonlinear sys-

tems that arise commonly in the modeling of engineering applications, it is possible

to exploit system structure to construct RCLFs (see, for example, [97, 62]). Note
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also that the computation of the stability region above only involves algebraic com-

putations, and furthermore, for implementation purposes, the entire stability region

information is contained in the value of the level set cmax
k which defines the boundary

of the stability region. The presence of a given initial condition in the stability region

can be ascertained by simply checking the value of the Lyapunov function for the

given initial condition against cmax
k (V (x(0)) ≤ cmax

k implies x(0) ∈ Ωk). Note also

that possibly larger estimates of the stability region can be computed using construc-

tive procedures such as Zubov’s method [42] or by using a combination of several

Lyapunov functions.

3.2.3 Model Predictive Control

The model predictive control approach provides a framework with the ability to han-

dle, among other issues, multi-variable interactions, constraints on controls, and op-

timization requirements, all in a consistent, systematic manner. For the purpose of

illustrating our results, we describe here a symbolic MPC formulation that incorpo-

rates most existing MPC formulations as special cases. In MPC, the control action at

time t is conventionally obtained by solving, on-line, a finite horizon optimal control

problem. The generic form of the optimization problem can be described as:

uk(·) = argmin{max{Js(x, t, uk(·))|θk(·) ∈ Θk}|uk(·) ∈ Sk} := Mk

s.t. ẋ(t) = f(x(t)) + Gk(x)uk + Wk(x)θk(t)

x(0) = x0, x(t + Tk) ∈ ΩMPC(x, t, θk)

Js(x, t, uk(·)) =
∫ t+Tk

t
(x′(s)Qkx(s) + u′(s)Rku(s))ds + Fk(x(t + Tk))

(3.4)

and Sk = Sk(t, T ) is the family of piecewise continuous functions, with period ∆k,

mapping [t, t+Tk] into the set of admissible controls, Tk is the horizon length and θk is

the bounded uncertainty assumed to belong to a set Θk. A control uk(·) in Sk is char-

acterized by the sequence {uk[j]} where uk[j] := uk(j∆) and satisfies uk(t) = uk[j]

for all t ∈ [j∆k, (j + 1)∆k). Js is the performance index, Rk and Qk are strictly pos-
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itive definite, symmetric matrices and the function Fk(·) represents a penalty on the

states at the end of the horizon. The maximization over θk may not be carried out if

the MPC version used is not a min-max type of formulation. The set ΩMPC(x, t, θk)

could be a fixed, terminal set, or may represent inequality constraints (as in the case

of MPC formulations that require some norm of the state, or a Lyapunov function

for the system, to decrease at the end of the horizon). This stability constraint may

or may not account for uncertainty. The stability guarantees in MPC formulations

(with or without explicit stability conditions, and with or without robustness consid-

erations, and whether or not it is a min-max type of formulation) are dependent on the

assumption of initial feasibility. Obtaining an explicit characterization of the closed-

loop stability region of the predictive controller under uncertainty and constraints

remains a difficult task.

3.3 Fault-Tolerant Control: Performance-Based Reconfigu-

ration

To clearly illustrate the main idea behind incorporating performance considerations

in fault-tolerant control of processes, in this section we consider processes without

uncertainty. The performance considerations are incorporated both at the lower-

level; by using a predictive control design described in next section that incorporates

performance objectives without sacrificing the explicit characterization of the stability

region (essential to implementing fault-tolerant control in the proposed method) and

also at the upper-level; by incorporating performance considerations in the switching

rule.
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3.3.1 Lyapunov-Based Predictive Control

We review here a Lyapunov-based design of MPC that guarantees feasibility of the

optimization problem and hence constrained stabilization of the closed-loop system

from an explicitly characterized set of initial conditions (for more details, see [115]).

Preparatory to the characterization of the stability properties of the Lyapunov-based

predictive controller, we first present a proposition stating the stability properties

of the bounded controller of Equation 3.2. Specifically, the bounded controller of

Equation 3.2 possesses a robustness property with respect to measurement errors, that

preserves closed-loop stability when the control action is implemented in a discrete

(sample and hold) fashion with a sufficiently small hold time (∆). The control law

ensures that, for all initial conditions in Ωk, the closed-loop state remains in Ωk

and eventually converges to some neighborhood of the origin whose size depends

on ∆. This robustness property, stated below in Proposition 3.1, is exploited in

the Lyapunov-based predictive controller design (for a proof, see [115]). For further

results on the analysis and control of sampled-data nonlinear systems, the reader may

refer to [71, 128, 87, 182].

Proposition 3.1 Consider the constrained system of Equation 3.1 for a fixed value

of k with θk(t) = 0 ∀ t ≥ 0, under the bounded control law of Equation 3.2 designed

using the Lyapunov function Vk and ρk > 0, and the stability region estimate Ωk

under continuous implementation. Let uk(t) = uk(j∆k) for all j∆k ≤ t < (j + 1)∆k

and uk(j∆k) = bk(x(j∆k)), j = 0, · · · ,∞. Then, given any positive real number

dk, there exist positive real numbers ∆∗
k, δ

′
k and ε∗k such that if ∆k ∈ (0, ∆∗

k] and

x(0) := x0 ∈ Ωk, then x(t) ∈ Ωk ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dk. Also, if Vk(x0) ≤ δ
′
k

then Vk(x(τ)) ≤ δ
′
k ∀ τ ∈ [0, ∆k) and if δ

′
k < Vk(x0) ≤ cmax

k , then V̇k(x(τ)) ≤
−ε∗k ∀ τ ∈ [0, ∆k).
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For the Lyapunov-based predictive control design, the control action at state x

and time t is obtained by solving, on-line, a finite horizon optimal control problem of

the form

P (x, t) : min{J(x, t, uk(·))|uk(·) ∈ Sk} (3.5)

s.t. ẋ = fk(x) + Gk(x)uk (3.6)

V̇k(x(τ)) ≤ −εk if Vk(x(t)) > δ
′
k, τ ∈ [t, t + ∆k) (3.7)

Vk(x(τ)) ≤ δ
′
k if Vk(x(t)) ≤ δ

′
k, τ ∈ [t, t + ∆k) (3.8)

where εk, δ
′
k are defined in Proposition 3.1, Sk = Sk(t, T ) is the family of piecewise

continuous functions (functions continuous from the right), with period ∆k, mapping

[t, t + Tk] into Uk, T is the specified horizon and Vk is the Lyapunov function used in

the bounded controller design. A control uk(·) in Sk is characterized by the sequence

{uk[j]} where uk[j] := uk(j∆k) and satisfies uk(t) = uk[j] for all t ∈ [j∆k, (j + 1)∆k).

The performance index is given by

J(x, t, uk(·)) =
∫ t+T

t

[
‖xu(s; x, t)‖2

Qk
+ ‖uk(s)‖2

Rk

]
ds (3.9)

where Qk, Rk are positive semi-definite, strictly positive definite, symmetric matrices,

respectively, and xu(s; x, t) denotes the solution of Equation 3.1, due to control uk,

with initial state x at time t. The minimizing control u0
k(·) ∈ Sk is then applied

to the plant over the interval [t, t + ∆k) and the procedure is repeated indefinitely.

Stability properties of the closed-loop system under the Lyapunov-based predictive

controller are inherited from the bounded controller under discrete implementation

and are stated in Proposition 3.2 below (for a proof and more details, see [115]).
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Proposition 3.2 Consider the constrained system of Equation 3.1 for a fixed value

of k with θk(t) = 0 ∀ t ≥ 0 under the MPC control law of Equations 3.5-3.9, designed

using a control Lyapunov function Vk that yields a stability region Ωk under continuous

implementation of the bounded controller of Equation 3.2 with a fixed ρk > 0. Then,

given any positive real number dk, there exist positive real numbers ∆∗
k and δ

′
k, such

that if x(0) ∈ Ωk and ∆ ∈ (0, ∆∗
k], then x(t) ∈ Ωk ∀ t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ dk.

Remark 3.2 Note that Lyapunov-based predictive control approaches (see, for ex-

ample, [93, 137]) typically incorporate a similar Lyapunov function decay constraint,

albeit requiring the constraint of Equation 3.7 to hold at the end of the prediction

horizon as opposed to during the first time step, and assume the initial feasibility of

this constraint. In contrast, the predictive controller formulation of Equations 3.5-

3.9 requires that the value of the Lyapunov function decrease during the first step

only, allowing for the use of the auxiliary controller to explicitly characterize the set

of initial conditions stating from where the predictive controller is guaranteed to be

feasible and stabilizing.

Remark 3.3 The fact that only practical stability is achieved is not a limita-

tion of the MPC formulation, but is due to discrete implementation. Even if the

bounded controller is used instead, under the same implement-and-hold time of ∆k,

the bounded controller can also only guarantee that the state of the closed-loop sys-

tem converges to a neighborhood of the origin the size of which is limited by the value

of the hold time, ∆k (in the limit as ∆k goes to zero – continuous implementation

– the bounded controller and the predictive controller enforces asymptotic stability).

Note also, that any other Lyapunov-based nonlinear control design that provides an

explicit characterization of the stability region, and is robust with respect to discrete

implementation can be used as an auxiliary controller.

Remark 3.4 One of the key challenges that impact on the practical implementation

of MPC is the inherent difficulty of characterizing, a priori, the set of initial conditions

starting from where a given MPC controller is guaranteed to stabilize the closed-loop
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system, or for a given set of initial conditions, to identify the value of the prediction

horizon for which the optimization problem will be feasible. Use of conservatively

large horizon lengths to address stability only increases the size and complexity of

the nonlinear optimization problem and could make it intractable. Owing to the fact

the closed-loop stability is guaranteed by the Lyapunov-based predictive controller

from an explicitly characterized set of initial conditions, irrespective of the prediction

horizon, the time required for the computation of the control action, if so desired,

can be made smaller by reducing the size of the optimization problem by decreasing

the prediction horizon.

3.3.2 Performance-Based Reconfiguration

The main idea behind the fault-tolerant control design is as follows: (1) use the

presence of the state in the stability regions of the candidate control configurations to

compute the set of suitable backup configurations, and (2) use the auxiliary Lyapunov-

based nonlinear controller to estimate the ‘cost’ under each of the suitable control

configurations, and choose the one with the minimum cost. To formalize this idea,

consider the constrained nonlinear system of Equation 3.1 without uncertainty (i.e.,

θk(t) = 0 ∀ t ≥ 0 and ∀ k = 1, . . . , N) for which the bounded controllers of the form of

Equation 3.2 and Lyapunov-based predictive controllers of the form of Equations 3.5-

3.8 have been designed and the stability regions Ωj, j = 1, . . . , N under the Lyapunov-

based predictive controllers have been explicitly characterized. Let dmax = max
j=1,...,N

dj,

where dj was defined in proposition 3.1 and let ΩU =
N⋃

j=1

Ωj. For a given control

configuration, define Jj(t) =
∫ t+Tj

t

[
‖xu(s; x, t)‖2

Q + ‖bk(s)‖2
R

]
ds where t + Tj ≥ t

is the earliest time at which the state of the closed-loop system under the bounded

controller enters the level set defined by Vj(x) = δ
′
j, and Qj, Rj are the penalty

matrices used in the predictive controller design. Theorem 3.1 below formalizes the
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result.

Theorem 3.1 Let k(0) = i for some i ∈ K and x(0) := x0 ∈ Ωi. Let T f
i be the

earliest time that a fault occurs. Furthermore, let F ∈ K := {j : j 6= i, x(T f
i ) ∈ Ωj},

and let l be such that Jl = min
j∈F

Jj then the following switching rule:

k(t) =





i, 0 ≤ t < T f
i

l, t ≥ T f
i





(3.10)

guarantees that x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax.

Proof of Theorem 3.1 We consider the two possible cases; first if no switching

occurs, and second if a switch occurs at a time T f
i .

Case 1: The absence of a switch implies k(t) = i ∀ t ≥ 0. Furthermore, since

x(0) ∈ Ωi, and control configuration i is implemented for all times in this case, we

have that x(t) ∈ Ωi ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ di. Finally, since Ωi ⊆ ΩU and

di ≤ dmax, we have that x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax.

Case 2: At time T f
i , the supervisor switches to a control configuration l for which

x(T f
i ) ∈ Ωl. From this time onwards, since configuration l is implemented in the

closed-loop system for all times, and since x(T f
i ) ∈ Ωl, we have that x(t) ∈ Ωl ∀ t ≥ 0

and lim sup
t→∞

‖x(t)‖ ≤ dl. As in case 1, since Ωl ⊆ ΩU and dl ≤ dmax, we have that

x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax.

This completes the proof of Theorem 3.1.

Remark 3.5 The fault-tolerant controller is implemented as follows:

• Given the nonlinear process of Equation 3.1, identify the available control config-

urations k = 1, . . . , N and for each control configuration, design the controllers

of Equation 3.2, and Equations 3.5-3.8 and calculate an estimate of the stability

region Ωk, k = 1, . . . , N .

• Given any x0 ∈ Ωi, initialize the closed-loop system under the Lyapunov-based

predictive controller of Equations 3.5-3.8.
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• At any time T f
i that a fault occurs, out of the available backup configurations

ascertain the suitability of a candidate backup configuration j 6= i (i.e., other

than the current one) via checking whether or not the state of the closed-loop

system resides in the stability region estimate under the candidate control con-

figuration (i.e., to check if x(T f
i ) ∈ Ωj). If the state of the closed-loop system

resides in the stability region of control configuration j, include its index in

the set F . For all the backup-configurations whose index is present in the set

F , compute the cost Jj, by running closed-loop simulations under the bounded

controller of Equation 3.2, over a time by which the bounded controller drives

the closed-loop state into the neighborhood of the origin defined by the level set

of Vj(x) = δ
′
j.

• Pick the control configuration that yields the lowest cost. Apply the Lyapunov-

based predictive controller using this control configuration to achieve closed-loop

stability.

Remark 3.6 Fault-tolerant controller in this chapter incorporates performance con-

siderations in the switching logic as well as in computing the control action under

the fall-back control configurations. In the event that the process state, at the time

of the failure of the primary control configuration, lies in the stability region of more

than one backup control configuration, the performance considerations expressed in

the objective function are used in choosing which control configuration should be

implemented in the closed-loop system. Note, however, that the receding horizon

implementation of the predictive controller renders it unsuitable for evaluating online

an estimate of the value of the objective function in driving the state from the current

value to the equilibrium point (the cost-to-go). To this end, the auxiliary controller

is used in estimating the control configuration that yields a lower cost; the practical

justification behind doing this is that (1) the Lyapunov-based predictive controller

enforces the decay of the same Lyapunov function that is used in the auxiliary con-

troller, and (2) the auxiliary controller provides an explicit control law, thus making
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it easier to estimate the ‘cost-to-go’ using fast simulations. In case that the cost-to-go

can be computed using other computational techniques, these can be used within the

proposed approach to pick the appropriate backup control configuration that yields

the lowest cost. Either ways, once the cost has been estimated, the optimization

problem in the switching logic involves only finding the minimum out of a set of

numbers (costs), and picking out the index that corresponds to the minimum cost.

Note also that if the state at the time of a failure lies outside the stability region

of all of the backup controllers, then this indicates that the back up controllers do

not have enough control action available and calls for increasing the allowable control

action in the fall-back configurations. Note that the set of initial conditions starting

from where a given control configuration can stabilize a steady state – the so-called

null-controllable region – is fundamentally limited by the constraints on the avail-

able control action, and that different control laws typically provide estimates of the

stability region which are subsets of the null-controllable region.

3.3.3 Application to Chemical Process Example

We first design the Lyapunov-based predictive controller and compute an estimate of

the stability region under each control configuration using the auxiliary Lyapunov-

based bounded controller. In the simulations, the constraints of Equations 3.7-3.8 are

replaced by a constraint of the form Vk(x(t + ∆k)) ≤ V b
k (x(t + ∆k)) (with ∆k = 0.02

min) where V b
k (x(t + ∆k)) is the predicted value of the Lyapunov function at t + ∆k

under the auxiliary controller. Note that once again the control action computed

by the auxiliary controller provides a feasible solution to this constraint. Figure 3.1

depicts the stability region, in the (T, CA) space, for each configuration. The desired

steady-state is depicted with an asterisk that lies in the intersection of the three

stability regions. The reactor under the first control configuration is initialized at

T (0) = 330 K, CA(0) = 3.6 kmol/m3, CB(0) = 0.0 kmol/m3, using the Q-control
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configuration, and the supervisor proceeds to monitor the evolution of the closed-loop

trajectory.

We first demonstrate the overriding stability considerations in the choice of the

backup control configuration, i.e., a case where at the time of the failure of the primary

control configuration, the state of the closed-loop system resides in the stability region

of only one of the backup control configurations, and only a switch to that control

configuration achieves closed-loop stability. As shown by the solid lines in Figures

3.1-3.2, the controller proceeds to drive the closed-loop trajectory towards the desired

steady-state, up until the Q-configuration fails after 1 minute of reactor startup (see

Figure 3.3(a)). If the supervisor switches arbitrarily, and in particular, switches to

backup configuration 3, closed-loop stability is not achieved (dashed lines in Figures

3.1-3.2). Note that this happens because the closed-loop process state is outside the

stability region of the third control configuration, and even though the third control

configuration does not encounter a fault, the limited control action available in this

configuration is unable to achieve closed-loop stability. From Figure 3.1, it is clear

that the failure of the primary control configuration occurs when the closed-loop

trajectory is within the stability region of the second control configuration. Hence,

on the basis of the switching logic of Equation 3.10, when the supervisor activates

the second configuration (with TA0 as the manipulated input, see Figure 3.3(b)), the

result is that upon switching to the TA0-configuration, the corresponding controller

stabilizes the closed-loop system.

We next demonstrate the scenario where performance considerations dictate the

choice of the backup control configuration. To this end, consider the closed-loop

system from the same initial condition as before under control configuration 1, but

that control configuration 1 continues to be operative until 5.5 minutes, and at the
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Figure 3.1: Evolution of closed-loop state profiles subject to failure in control configuration

1 (solid line) under the switching rule of Theorem 3.1 (dotted line) and under arbitrary

switching (dashed line).

time of the failure, the closed-loop state resides in the stability region of both the

backup control configurations (see Figure 3.4). The auxiliary controllers are used

to estimate the cost under the control configurations 2 and 3, and yield costs of

307.88 and 105.31, respectively. Using the switching rule, control configuration 3

is implemented in closed-loop system and stabilizes the closed-loop incurring a cost

of 105.31. In contrast, if one were to use configuration 2, the cost incurred would

be 276.94 which is lower than the estimate obtained using the auxiliary controller,

yet more than the cost incurred under control configuration 3 (the corresponding

state and input profiles are showed by dashed and dotted lines in Figures 3.5-3.6,

respectively).
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Figure 3.2: Evolution of closed-loop (a) temperature and (b) concentration subject to failure

in control configuration 1 (solid lines) under the switching rule of Theorem 3.1 (dotted lines)

and under arbitrary switching (dashed lines).
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Figure 3.3: Manipulated input profiles under (a) control configuration 1 (solid line), (b)

control configuration 2 (under the switching rule of Theorem 3.1 (dotted line)), and (c)

control configuration 3 (under arbitrary switching (dashed line)).
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Figure 3.4: Evolution of closed-loop state profiles subject to failure in control configuration

1 (solid line) and switching to configuration 2 (dotted line) and, according to the switching

rule of Theorem 3.1, to configuration 3 (dashed line).

3.4 Fault-Tolerant Control: Robustness Considerations

In this section, we consider the problem of incorporating robustness into the fault-

tolerant control method. Note that in the presence of uncertainty, the feasibility

guarantees of the predictive controller of Equations 3.5-3.8 may no longer hold, or

it may happen that the predictive controller is feasible but not stabilizing (enforcing

negative-definiteness of V̇ without accounting for the uncertainty does not imply that

V̇ < 0 in the presence of uncertainty). Preparatory to its use within the robust fault-

tolerant controller, we review a robust hybrid predictive controller that provides an

explicit characterization of the stability region in the presence of uncertainty and

input constraints.
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Figure 3.5: Evolution of closed-loop (a) temperature and (b) concentration subject to failure

in control configuration 1 (solid line) and switching to configuration 2 (dotted lines) and,

according to the switching rule of Theorem 3.1, to configuration 3 (dashed lines).
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Figure 3.6: Manipulated input profiles under (a) control configuration 1 (solid line), (b)

control configuration 2 (dotted lines) and (c) according to the switching rule of Theorem

3.1 to control configuration 3 (dashed lines).
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3.4.1 Robust Hybrid Predictive Controller

In this section, we employ switching between the bounded robust controller of Equa-

tion 3.2 and the representative predictive controller of Equation 3.4, to provide the

switched (the switching here is between control algorithms, and not control configura-

tions) closed-loop system with an explicit characterization of the closed-loop stability

region. To this end, we first cast the system of Equation 3.1, for a fixed value of k

(i.e., under a given control configuration) as a switched system of the form:

ẋ = f(x) + Gk(x)uj
k + Wk(x)θk(t), ‖uj

k‖ ≤ umax
k

(3.11)

where j : [0,∞) → {1, 2} is the switching signal which is assumed to be a piecewise

continuous (from the right) function of time, implying that only a finite number

of switches between the two controllers is allowed on any finite-time interval. The

index, j(t), represents a discrete state that indexes the control input, uk, with the

understanding that j(t) = 1 if and only if MPC is used and j(t) = 2 if and only if

bounded control is used. Theorem 3.2 below presents the robust hybrid predictive

controller (for the proof and more details, see [116]).

Theorem 3.2 Consider the switched nonlinear system of Equation 3.11, the model

predictive controller of Equation 3.4 and the bounded controller of Equation 3.2. Let

x(0) = x0 ∈ Ωk, and initially set T s
k = TD

k = T inf
k = ∞. At the earliest time t ≥ 0

for which the closed-loop state under MPC satisfies Vk(x(t−)) = cmax
k set T s

k = t.

At the earliest time for which the closed-loop state under MPC satisfies ‖x(t)‖ ≤ dr
k

where dr
k was defined in Equation 3.3, set TD

k = t. Finally, at the earliest time t that

MPC is infeasible, set T inf
k = t. Define T switch

k = min{T s
k , TD

k , T design
k , T inf

k }, where

0 ≤ T design
k < ∞ is arbitrary. Then, the switching rule

j(t) =





1, 0 ≤ t < T switch
k

2, t ≥ T switch
k





(3.12)
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guarantees that x(t) ∈ Ωk ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dr
k.

Remark 3.7 The robust hybrid predictive controller of Theorem 3.1 is designed

and implemented to achieve closed-loop stability using a control configuration k as

follows:

• Given the nonlinear system of Equation 3.11, θb
k and umax

k , design the bounded

robust controller of Equation 3.2, and calculate an estimate of its stability region

Ωk for the control configuration k.

• Design/pick an MPC formulation (the MPC formulation could be min-max op-

timization based, linear or nonlinear, and with or without stability constraints).

For convenience, we refer to the general MPC formulation of Equation 3.4.

• Given any x0 ∈ Ωk, check the feasibility of the optimization problem in Equation

3.4 at t = 0, and if feasible, start implementing MPC.

• If at any time, MPC becomes infeasible (t = T inf
k ), or the states of the closed-

loop system approach the boundary of Ωk (t = T s
k ), or the closed-loop states

enter the set IDr
k (t = TD

k ), then switch to the bounded controller, else keep

MPC active in the closed-loop system until a time T design.

• Switch to the bounded robust controller at T s
k , TD

k , T design
k , or T inf

k , whichever

comes earliest, to achieve practical closed-loop stability under the k-th control

configuration.

Remark 3.8 The purpose of switching to the bounded robust controller after the

time T design
k is to ensure convergence to IDr

k and avoid possible cases where the closed-

loop states, under MPC, could wander inside Ωk without actually converging to, and

staying within, IDr
k. Convergence to IDr

k could also be achieved (see, for example,

[55, 54]), by switching to the bounded controller when V̇k ≥ 0 under MPC. However,

in the presence of uncertainty, such a condition might be very restrictive in the sense

that it may terminate MPC implementation too early. Note that if an MPC design
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is used that guarantees robust stability for the uncertain nonlinear system if initially

feasible, it could be implemented for all time (T design
k can be chosen to be practically

infinity) to stabilize the closed-loop system. The stability safeguards, provided by the

bounded controller, are still required because the stability of any MPC formulation,

robust or otherwise, is based on the assumption of initial feasibility, which cannot be

verified short of testing, via simulation, an initial condition for feasibility.

Remark 3.9 We note that while the MPC framework provides a transparent way

of specifying a performance objectives, the various MPC formulations, in general,

may not be optimal, and only approximate the infinite horizon optimal cost to vary-

ing degrees of success. The choice of a particular MPC design can be made entirely

on the basis of the desired tradeoff between performance and computational com-

plexity because the stability guarantees of the robust hybrid predictive controller are

independent of the specific MPC formulation being used.

3.4.2 Robust Fault-Tolerant Control

The robust fault-tolerant controller is implemented as follows:

1. Given the nonlinear process of Equation 3.1, identify the available control con-

figurations k = 1, . . . , N and for each control configuration, design the robust

hybrid predictive controllers of Theorem 3.2 and calculate an estimate of the

stability region Ωk, k = 1, . . . , N .

2. Given any x0 ∈ Ωk, initialize the closed-loop system under the robust hybrid

predictive controller of Theorem 3.2.

3. At any time T f
1 that a fault occurs, implement the control configuration j for

which the closed-loop state resides in its stability regions estimate (Ωj) to achieve

closed-loop stability.
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Remark 3.10 Note that robustness considerations are incorporated in the controller

design (use of robust hybrid predictive controllers) and also in characterizing the

stability region. Performance considerations can be incorporated in the switching

rule in a similar fashion as in the previous section, and in the design of controllers via

use of robust predictive control designs as a component of the robust hybrid predictive

controllers (for a demonstration, see the simulation example below).

3.4.3 Application to Chemical Process Example with Uncertainty and

Disturbance

In this section, we consider once again the motivating example of chemical process

reactor, albeit with uncertainty and disturbances. In particular, we consider para-

metric uncertainty in the heat of reactions, and in particular a 50% uncertainty

in the heats of reactions, i.e., θi(t) = 0.5 (−∆Hi,nom), i = 1, . . . , 3, and distur-

bance in the inlet feed temperature, simulated by θ4(t) = 0.5TA0s sin t. Figure

3.7 depicts the stability region computed using the bounded robust controller with

ρ = 0.0001, φ = 0.0001, χ = 1.0001, in the (T, CA) space, for the control configura-

tions using Q as the manipulated input variable and using TA0 as the manipulated

input variable. The desired steady-state is depicted with an asterisk that lies in the

intersection of the two stability regions (note the reduction in the estimate of the

stability region as a result of accounting for the presence of uncertainty).

The hybrid predictive control structure allows for the use of any predictive con-

troller formulation, while still guaranteing stability from an explicitly characterized

set of initial conditions. Within the hybrid predictive controller, we use a modifica-

tion of the Lyapunov-based predictive controller of Section 3.3.1. In particular, for

the predictive control design, the control action at state x and time t is obtained by
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solving, on-line, a finite horizon optimal control problem of the form

P (x, t) : min{J(x, t, uk(·))|uk(·) ∈ Sk, θk(t) = θ0 ∈ Θk} (3.13)

s.t. ẋ = fk(x) + Gk(x)uk + Wk(x)θk(t) (3.14)

Vk(x(t + ∆k)) ≤ V b
k (x(t + ∆k)) (3.15)

where V b
k (x(t + ∆k)) is the predicted value of the Lyapunov function at t + ∆ under

the robust bounded controller with θk(t) = θ0 ∈ Θk, Sk = Sk(t, T ) is the family of

piecewise continuous functions (functions continuous from the right), with period ∆k,

mapping [t, t+Tk] into Uk, Tk is the specified horizon and Vk is the Lyapunov function

used in the bounded controller design. The performance index is given by

J(x, t, uk(·), θ0) =
∫ t+Tk

t

[
‖xu(s; x, t)‖2

Qk
+ ‖uk(s)‖2

Rk

]
ds (3.16)

where Qk, Rk are positive semi-definite, strictly positive definite, symmetric matrices,

respectively, and xu(s; x, t) denotes the solution of Equation 3.1, due to control uk

under a fixed value of uncertainty θk(t) = θ0, with initial state x at time t. The

minimizing control u0
k(·) ∈ Sk is then applied to the plant over the interval [t, t + ∆k)

and the procedure is repeated indefinitely.

Note that as in the case without uncertainty, initial feasibility of the optimiza-

tion problem of Equations 3.13-3.16 is guaranteed for all initial conditions within the

stability region of the bounded robust controller. There is no guarantee, however,

that the control action computed by the predictive controller will lead to a decay in

the value of the Lyapunov function; this is so because the control action is computed

by using only a fixed value of the uncertainty, and is not computed to ensure the

satisfaction of the Lyapunov-function decay constraint for all possible realizations

of the uncertainty, as is customarily done in robust predictive control approaches.
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The modification used in the simulation example, however, while not providing rig-

orous robust stability guarantees, incorporates some robustness consideration in the

Lyapunov-based predictive controller without making the computation intractable by

requiring min-max computations.

The reactor under the first control configuration is initialized at T (0) = 360 K,

CA(0) = 3.7 kmol/m3, CB(0) = 0.0 kmol/m3, using the Q-control configuration,

under the hybrid predictive controller for configuration 1 (with T design = 100 min)

and the supervisor proceeds to monitor the evolution of the closed-loop trajectory.

As shown by the solid lines in Figures 3.7-3.8, the controller proceeds to drive the

closed-loop trajectory towards the desired steady-state, up until the Q-configuration

fails after 3 minutes of reactor startup (see Figure 3.9(a)). Until this time, only

the predictive controller component of the robust hybrid predictive controller is used

for the first control configuration. From Figure 3.7, it is clear that the failure of

the primary control configuration occurs when the closed-loop trajectory is within

the stability region of the second control configuration. Hence, on the basis of the

switching algorithm, when the supervisor activates the second configuration (with

TA0 as the manipulated input, see Figure 3.9(b)), the result is that upon switching to

the TA0-configuration, the corresponding robust hybrid predictive controller stabilizes

the closed-loop system. Note also that in operating the second control configuration,

the robust Lyapunov-based predictive controller is able to drive the state trajectory

sufficiently close to the origin, and the robust bounded controller is used only toward

the end to drive the state trajectory into the desired neighborhood of the origin.
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Figure 3.7: Evolution of closed-loop state profiles under the switching rule of Section 3.4.2

subject to failure in control system 1.

3.5 Conclusions

In this chapter, we considered the problem of control system/actuator failures in

nonlinear processes subject to input constraints and presented two approaches for

fault-tolerant control that focussed on incorporating performance and robustness con-

siderations, respectively. Performance considerations were incorporated in the design

of the controllers (via the use of predictive control approach) as well as in the reconfig-

uration logic to achieve fault-tolerant control. To handle the problem of uncertainty,

robust hybrid predictive controllers were designed for the individual control configu-

rations. The application of the fault-tolerant control methods incorporating perfor-

mance and robustness considerations was demonstrated via a benchmark chemical

reactor example.
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Figure 3.8: Evolution of closed-loop (a) temperature and (b) concentration under the switch-

ing rule of Section 3.4.2 subject to failure in control system 1.

85



0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

Time (min)

Q
 (

K
J/

s)

(a)

0 50 100 150 200
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (min)

∆ 
T

A
0 (

K
)

(b)

Figure 3.9: Manipulated input profiles under (a) control configuration 1 and (b) control

configuration 2 under the switching rule of Section 3.4.2 subject to failure in control system
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Chapter 4

Integrated Fault-Detection and

Fault-Tolerant Control of Process

Systems

4.1 Introduction

In process control, given the complex dynamics of chemical processes (for example,

nonlinearities, uncertainties and constraints), the success of any fault-tolerant con-

trol method requires an integrated approach that brings together several essential

elements, including: (1) the design of advanced feedback control algorithms that

handle complex dynamics effectively, (2) the quick detection of process faults, and

(3) the design of supervisory switching schemes that orchestrate the transition from

the failed control configuration to available well-functioning fall-back configurations

to ensure fault-tolerance. The realization of such an approach is increasingly aided

by a confluence of recent, and ongoing, advances in several areas of process control

research, including advances in nonlinear controller designs, advances in the analysis

and control of hybrid process systems and advances in fault detection.
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The highly nonlinear behavior of many chemical processes has motivated extensive

research on nonlinear process control. Excellent reviews of results in the area of

nonlinear process control can be found, for example, in [14, 180, 79]; for a more

recent review, see [29]. The problems caused by input constraints have motivated

numerous studies on the dynamics and control of systems subject to input constraints.

Important contributions in this area include results on optimization-based control

methods such as model predictive control (for example, [66, 109, 59]), Lyapunov-

based control (for example, [103, 158, 85, 92, 46, 48]) and hybrid predictive control

(for example, [54, 116]).

The occurrence of faults in chemical processes and subsequent switching to fall-

back control configurations naturally leads to the superposition of discrete events on

the underlying continuous process dynamics thereby making a hybrid systems frame-

work a natural setting for the analysis and design of fault-tolerant control structures.

Proper coordination of the switching between multiple (or redundant) actuator/sensor

configurations provides a means for fault-tolerant control. However, at this stage,

despite the large and growing body of research work on a diverse array of hybrid

system problems (for example, [72, 68, 80, 39, 13, 49]), the use of a hybrid system

framework for the study of fault-tolerant control problems for nonlinear systems sub-

ject to constraints has received limited attention. In Chapter 2, a hybrid systems

approach to fault-tolerant control was employed where, under the assumption of full

state measurements and knowledge of the fault, stability region-based reconfiguration

is implemented to achieve fault-tolerant control.

Existing results on the design of fault-detection filters include those that use past

plant-data and those that use fundamental process models for the purpose of fault-

detection filter design. Statistical and pattern recognition techniques for data analysis
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and interpretation (for example, [96, 145, 131, 44, 126, 43, 35, 156, 4, 187]) use past

plant-data to construct indicators that identify deviations from normal operation to

detect faults. The problem of using fundamental process models for the purpose of

detecting faults has been studied extensively in the context of linear systems [108,

60, 61, 112]; and more recently, some existential results in the context of nonlinear

systems have been derived [146, 37].

In summary, a close examination of the existing literature indicates the lack

of general and practical methods for the design of integrated fault-detection and

fault-tolerant control structures for chemical plants accounting explicitly for actu-

ator/controller failures, process nonlinearities and input constraints. Motivated by

these considerations, we consider in this chapter the problem of implementing fault-

tolerant control to nonlinear processes with input constraints subject to control actu-

ator failures, and present and demonstrate an approach predicated upon the idea of

integrating fault-detection, feedback and supervisory control. To illustrate the main

idea behind the proposed approach, we first assume availability of measurements of

all the process state variables. For the processes under consideration, a family of can-

didate control configurations, characterized by different manipulated inputs, is first

identified. For each control configuration, a Lyapunov-based controller that enforces

asymptotic closed-loop stability in the presence of constraints, is designed, and the

constrained stability region, associated with it, is explicitly characterized. A fault-

detection filter is used to compute the expected closed-loop behavior in the absence

of faults. Deviations of the process states from the expected closed-loop behavior are

used to detect faults. A switching policy is then derived, on the basis of the stability

regions, to orchestrate the activation/deactivation of the constituent control config-

urations in a way that guarantees closed-loop stability in the event that a failure is
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detected. Often, in chemical process applications, all state variables are not available

for measurement. To deal with the problem of lack of process state measurements, a

nonlinear observer is designed to generate estimates of the states, which are then used

to implement the state feedback controller and the fault-detection filter. A switching

policy is then derived to orchestrate the activation/deactivation of the constituent

control configurations in a way that accounts for the estimation error. Finally, sim-

ulation studies are presented to demonstrate the implementation and evaluate the

effectiveness of the proposed fault-tolerant control scheme as well as to investigate an

application in the presence of uncertainty and measurement noise [119].

4.2 Preliminaries

4.2.1 Process Description

We consider a class of continuous-time, single-input nonlinear processes with con-

straints on the manipulated input, represented by the following state-space descrip-

tion:
ẋ(t) = f(x(t)) + gk(t)(x(t))(uk(t) + mk(t)), ym = hm(x)

k(t) ∈ K = {1, · · · , N}, N < ∞, |uk(t)| ≤ uk
max

(4.1)

where x(t) ∈ Rn denotes the vector of process state variables, ym ∈ R denotes the

measured variable, uk(t) ∈ [−uk
max, u

k
max] ⊂ R denotes the constrained manipulated

input associated with the k-th control configuration and mk(t) ∈ R denotes the fault

in the k-th control configuration. For each value that k assumes in K, the process is

controlled via a different manipulated input which defines a given control configura-

tion.

It is assumed that the origin is the equilibrium point of the nominal process (i.e.,

f(0) = 0), gk(x) 6= 0 ∀ x ∈ Rn, and that the vector functions f(·) and gk(·) are
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sufficiently smooth, for all k, on Rn. Throughout this chapter, a function β(r, s) is

said to belong to class KL if, for each fixed s, the mapping β(·, s) belongs to class K
(a continuous function α(·) is said to belong to class K if it is strictly increasing and

α(0) = 0) and for each fixed r, the mapping β(r, ·) is decreasing, and β(r, s) → 0 as

s → ∞; see also [91]. The notation ‖ · ‖ is used to denote the standard Euclidean

norm of a vector, the notation | · | is used to denote the absolute value of a scalar

and x′ denotes the transpose of x and the notation R = [r1 r2] is used to denote

the augmented vector R ∈ Rm+n comprising of the vectors r1 ∈ Rm and r2 ∈ Rn.

The notation Lfh denotes the standard Lie derivative of a scalar function h(·) with

respect to the vector function f(·) and the notation x(T+) denotes the limit of the

trajectory x(t) as T is approached from the right, i.e., x(T+) = lim
t→T+

x(t). Throughout

the manuscript, we assume that for any |uk| ≤ uk
max the solution of the system of

Equation 4.1 exists and is continuous for all t.

4.2.2 Motivating Example

To illustrate our fault-tolerant control design methodology, we use a benchmark chem-

ical reactor example introduced in Section 2.4.1. In the event of some failure in the

primary configuration (involving the heat input, Q), the important questions that

arise include how can the supervisor detect this fault (note that measurements of

the manipulated input variable are not available), and which control loop to activate

once failure is detected in the active configuration. The answer to the first question

involves the design of an appropriate fault-detection filter. The approach that we will

utilize to answer the second question, i.e., that of deciding which backup controller

should be activated in the event of a fault, will be based on the stability regions under

the individual control configuration. To this end, we next review a state feedback con-
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trol design that allows for characterizing the constrained stability region under each

control configuration. Note that this particular choice of the controller is presented

only as an example to illustrate our results, and that any other controller design that

allows for an explicit characterization of the constrained stability region can be used

instead. Note also, that while the above example will be used to illustrate the main

ideas behind the proposed fault-detection and fault-tolerant control method, we also

investigate in the simulation studies an application to a network of chemical reactors

in the presence of uncertainty and measurement noise.

4.2.3 Bounded Lyapunov-Based Control

Consider the system of Equation 4.1, for which a family of control Lyapunov functions

(CLFs), Vk(x), k ∈ K ≡ {1, · · · , N} has been found (see below for a discussion on the

construction of CLFs). Using each control Lyapunov function, we construct, using

the results in [103] (see also [46]), the following continuous bounded control law:

uk(x) = −
L∗fVk(x) +

√(
L∗fVk(x)

)2
+ (uk

max‖(Lgk
Vk)(x)‖)4

‖(Lgk
Vk)(x)‖2

[
1 +

√
1 + (uk

max‖(Lgk
Vk)(x)‖)2

] (Lgk
Vk)(x) (4.2)

when (Lgk
Vk)(x) 6= 0 and uk(x) = 0 when (Lgk

Vk)(x) = 0, L∗fVk(x) =
∂Vk(x)

∂x
f(x) +

ρkVk(x), ρk > 0 and Lgk
Vk(x) =

∂Vk(x)

∂x
gk(x). Let Πk be the set defined by

Πk(u
k
max) = {x ∈ IRn : L∗fVk(x) ≤ uk

max‖(Lgk
Vk)(x)‖} (4.3)

and assume that

Ωk := {x ∈ IRn : Vk(x) ≤ cmax
k } ⊆ Πk(u

k
max) (4.4)

for some cmax
k > 0. It can be shown, using standard Lyapunov arguments, that in

the absence of faults (mk(t) = 0), Ωk provides an estimate of the stability region,
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starting from where the control law of Equation 4.2 guarantees asymptotic (and lo-

cal exponential) stability of the origin of the closed-loop system under each control

configuration. This implies that there exist class KL functions βi, i = 1, · · · , N , such

that ‖x(t)‖ ≤ βi(‖x(0)‖, t). We will use this property later in the design of the output

feedback controllers.

Referring to the above controller design, it is important to make the following

remarks. First, a general procedure for the construction of CLFs for nonlinear systems

of the form of Equation 4.1 is currently not available. Yet, for several classes of

nonlinear systems that arise commonly in the modeling of engineering applications,

it is possible to exploit system structure to construct CLFs (see, for example, [97, 62]).

Second, given that a CLF, Vk, has been obtained for the system of Equation 4.1, it

is important to clarify the essence and scope of the additional assumption that there

exists a level set, Ωk, of Vk that is contained in Πk. Specifically, the assumption that

the set, Πk, contains an invariant subset around the origin, is necessary to guarantee

the existence of a set of initial conditions for which closed-loop stability is guaranteed

(note that even though V̇k < 0 ∀ x ∈ Πk\{0}, there is no guarantee that trajectories

starting within Πk remain within Πk for all times). Moreover, the assumption that Ωk

is a level set of Vk is made only to simplify the construction of Ωk. This assumption

restricts the applicability of the proposed control method because a direct method for

the construction of a CLF with level sets contained in Πk is not available. However,

the proposed control method remains applicable if the invariant set Ωk is not a level

set of Vk but can be constructed in some other way (which, in general, is a difficult

task). Note also that possibly larger estimates of the stability region can be computed

using constructive procedures such as Zubov’s method [42] or by using a combination

of several Lyapunov functions.
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4.3 Integrated Fault-Detection and Fault-Tolerant Control:

State Feedback Case

4.3.1 State Feedback Fault-Tolerant Control

Consider the system of Equation 4.1, where all process states are available as mea-

surements, i.e., hm(x) = x, and without loss of generality, assume that it starts

operating using control configuration i, under the controller of Equation 4.2. At

some unknown time, T f
i , a fault occurs in the first control configuration such that

for all t ≥ T f
i , mi = −ui, i.e., control configuration i fails. The problems at hand

are those of detecting that a fault has occurred and, upon detection, to decide which

of the available backup configurations should be implemented in the closed-loop to

achieve fault-tolerant control. To this end, we consider a fault-detection filter and a

switching logic of the form:

ẇ(t) = ff (w, x), r(t) = hf (w, x), k(t) = ϕ(r, w, x) (4.5)

where w ∈ Rn is the state of the filter, r(t) ∈ R is a residual that indicates the

occurrence of a fault, and is the output of the filter, ff ∈ Rn is the vector field

describing the evolution of the filter state w, and ϕ(r, w, x) is the switching logic that

dictates which of the available control configurations should be activated.

The main idea behind the fault-tolerant control design is as follows: (1) use the

available state measurements, the process model, and the computed control action

to simulate the evolution of the closed-loop process in the absence of actuator faults,

compare it with the actual evolution of the states, and use the difference between

the two behaviors, if any, to detect faults, and (2) having detected the fault, activate

a backup control configuration for which the closed-loop state is within its stability

region estimate. To formalize this idea, consider the constrained system of Equation
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4.1 for which a bounded controller of the form of Equation 4.2 has been designed

for each control configuration, and the stability region, Ωj, j = 1, . . . , N has been

explicitly characterized. The fault-detection filter and the fault-tolerant control design

are described in Theorem 4.1 below.

Theorem 4.1 Let k(0) = i for some i ∈ K and x(0) := x0 ∈ Ωi. Set w(0) = x(0),

and consider the system

ẇ = f(w) + gi(w)ui(w); r = ‖w − x‖ (4.6)

where w ∈ IRn is the filter state and ui(·) is the feedback control law defined in

Equation 4.2. Let T f
i be such that mi(t) = 0 ∀ 0 ≤ t ≤ T f

i , then r(T f+
i ) > 0 if and

only if mi(T
f
i ) 6= 0. Furthermore, let T s

i be the earliest time such that r(t) > 0, then

the following switching rule:

k(t) =





i, 0 ≤ t < T s
i

j 6= i, t ≥ T s
i , x(T s

i ) ∈ Ωj





(4.7)

guarantees asymptotic stability of the origin of the closed-loop system.

Proof of Theorem 4.1 We split the proof of the theorem in two parts. In the first

part we show that the filter detects a fault if and only if one occurs, and in the second

part we establish closed-loop stability under the switching rule of Equation 4.7.

Part 1: Let x(T f
i ) := xT f

i
and w(T f

i ) := wT f
i

and consider

ẇ(T f
i )−ẋ(T f

i ) = f(xT f
i
)+g(xT f

i
)(ui(xT f

i
)+mi(T

f
i ))−(f(wT f

i
)+g(wT f

i
)ui(wT f

i
)) (4.8)

with mi(T
f
i ) 6= 0. Since wT f

i
= xT f

i
, we have that

f(xT f
i
)+g(xT f

i
)(ui(xT f

i
)+mi(T

f
i ))−(f(wT f

i
)+g(wT f

i
)ui(wT f

i
)) = g(xT f

i
)mi(T

f
i ) (4.9)

Furthermore, since g(xT f
i
) 6= 0, we have that

ẇ(T f
i )− ẋ(T f

i ) = g(xT f
i
)mi(T

f
i ) 6= 0 (4.10)
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if and only if mi(T
f
i ) 6= 0. Since wT f

i
− xT f

i
= 0 and ẇ(T f

i )− ẋ(T f
i ) 6= 0 if and only if

mi(T
f
i ) 6= 0, we have that

w(T f+
i )− x(T f+

i ) 6= 0 (4.11)

or

r(T f+
i ) = ‖w(T f+

i )− x(T f+
i )‖ > 0 (4.12)

if and only if mi(T
f
i ) 6= 0.

Part 2: We prove closed-loop stability for the two possible cases; first if no

switching occurs, and second if a switch occurs at a time T s
i .

Case 1: The absence of a switch implies ri(t) = 0. Furthermore, ri(t) = 0 =⇒
x(t) = w(t). Since x(0) = w(0) ∈ Ωi, and control configuration i is implemented for

all times in this case, we have that asymptotic closed-loop stability is achieved.

Case 2: At time T s
i , the supervisor switches to a control configuration j for

which x(T s
i ) ∈ Ωj. From this time onwards, since configuration j is implemented

in the closed-loop system for all times, and since x(T s
i ) ∈ Ωj, closed-loop stability

follows.

This completes the proof of Theorem 4.1.

The fault-detection filter and fault-tolerant controller are designed and imple-

mented as follows (see also Figure 4.1):

• Given any x0 ∈ Ωi, initialize the filter states as w(0) = x0 and integrate the

filter dynamics using Equation 4.6.

• Compute the norm of the difference between the filter states and the process

states, r(t) = ‖w(t) − x(t)‖ and if r(t) = 0, continue to implement control

configuration i.

• At any time T s
i that r(T s

i ) > 0, switch to a control configuration j 6= i, for

which x(T s
i ) ∈ Ωj to achieve asymptotic stability of the origin of the closed-loop
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Figure 4.1: Integrated fault-detection and fault-tolerant control design: state feedback case.

system.

Note that the fault-detection filter uses a replica of the process dynamics, and

that the state of the filter w is initialized at the same value as the process states x(0).

In the absence of faults, the evolution of w(t) is identical to x(t), and hence r(t) = 0.

In the presence of faults, however, the effect of the fault is registered by a change

in the evolution of the process, but not in that of the filter state (since the filter

state dynamics include the computed control action, ui(w), and not the implemented

control action, ui(w) + mi). This change is detected by a change in the value of r(t)

and declared as a fault. Note also, that the fact that the faults mi appear as additive

terms to the manipulated input variable is a natural consequence of focussing on the

problem of detecting (through the design of appropriate fault-detection filters) and

dealing (via reconfiguration) with faults in control actuators. The approach employed

in the design of the fault-detection filter can also be used to detect faults that do not
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necessarily appear in the control actuators, as long as they influence the evolution of

the state variables.

Remark 4.1 Once a fault is detected, the switching logic ensures that the backup

control configuration that is implemented in the closed-loop is one that can guarantee

closed-loop stability in the presence of constraints, and this is achieved by verifying

that the state of the process, at the time that a fault is detected, is present in the

constrained stability region of the candidate control configuration. Note that while

the bounded controller is used for a demonstration of the main ideas, other control

approaches, that provide an explicit characterization of the set of initial conditions

for which closed-loop stability is guaranteed (achieved, for example, via the use of

the hybrid predictive approach [54] or via a Lyapunov-based model predictive control

design [115]) can be used within the proposed framework. Note also that early de-

tection of a fault enhances the chances that corrective action can be taken in time to

achieve fault-tolerant control (Theorem 4.1 guarantees that a fault is detected as soon

as it occurs). Specifically, it may happen that a fault occurs when the closed-loop

state resides in the stability region of one of the backup configurations, but if the

fault is not immediately detected, the destabilizing effect of the fault may drive the

state outside the stability region of the backup configuration by the time a fault is

detected (for a demonstration, see the simulation example).

In the event that the process state, at the time of the failure of the primary control

configuration, lies in the stability region of more than one backup control configura-

tion, additional performance considerations such as ease and/or cost of implementing

one control configuration over another, can be used in choosing which control config-

uration should be implemented in the closed-loop system (Chapter 3). If the state

at the time of a failure lies outside the stability region of all the backup controllers,

then this indicates that the back up controllers do not have enough control action

available and calls for increasing the allowable control action in the fall-back config-
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urations. Note that the set of initial conditions starting from where a given control

configuration can stabilize a steady state – the so-called null-controllable region – is

fundamentally limited by the constraints on the available control action, and that

different control laws typically provide estimates of the stability region which are

subsets of the null-controllable region.

Remark 4.2 In the presence of plant model mismatch or unknown disturbances,

the value of r(t) will be nonzero even in the absence of faults. The FDFTC problem

in the presence of time varying disturbances with known bounds on the disturbances

can be handled by (1) redesigning the filter to account for the disturbances; specif-

ically, requiring that a fault be declared only if the value of r(t) increases beyond

some threshold, δ, where δ accounts for the deviation of the plant dynamics from

the nominal dynamics in the absence of faults (please see the simulation example for

a demonstration of this idea in an application to a network of chemical reactors in

the presence of uncertainty and measurement noise) and (2) by redesigning the con-

trollers for the individual control configurations to mitigate the effect of disturbances

on the process, and characterizing the robust stability regions and using them as cri-

teria for deciding which backup controller should be implemented in the closed-loop.

Note that while Theorem 4.1 presents the fault-detection filter and fault-tolerant con-

trol (FDFTC) design for a fault in the primary control configuration, extensions to

faults in successive backup configurations are straightforward and involve similar fil-

ter designs for the active control configuration and a switching logic that orchestrates

switching to the remaining control configurations.

Remark 4.3 While we illustrate our idea using a single input, extensions to multi-

input systems are possible, and fault-detection filters can be designed in the same

way, using a replica of the process dynamics. The case of multi-input systems, how-

ever, introduces an additional layer of complexity due to the need of identifying which

particular manipulated input has failed, i.e., the additional problem of fault-isolation.

For the purpose of presenting the integrated fault-detection and fault-tolerant control
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structure, we focus here on multiple control configurations, where each control con-

figuration comprises of a single input that does not require the filter to perform the

additional task of fault-isolation. For a detailed discussion and illustrative examples

on integrated fault-detection and isolation and fault-tolerant control (FDIFTC) of

nonlinear systems, please see [121] and [122].

Remark 4.4 Note that the fault-detection filter presented in Theorem 4.1 detects

the presence of both complete and partial failures. Once a fault is detected, the

control reconfiguration strategy is the same for both cases, and that is to shut down

the faulty configuration and switch to some well-functioning fall-back configuration.

Note that in the case of a partial failure, unless the faulty configuration is shut

down, the backup control configurations will have to be redesigned to be robust with

respect to the bounded disturbance generated by the faulty configuration (for the

backup control configuration, the unmeasured actuator action of the faulty control

configuration will act as a disturbance and will be bounded because of the fact that

the actuator itself has a limited capacity and, therefore, even if the implemented

control action is not the same as that prescribed by the controller, it cannot exceed

the physical limitations and will remain bounded). By shutting down the faulty

configuration, however, the source of the disturbance is eliminated and no controller

redesign is needed for the backup control configurations.

4.3.2 Simulation Results

In this section, we illustrate the implementation of the proposed fault-detection and

fault-tolerant control methodology to the chemical reactor introduced as a motivating

example. We first describe the controller design for the individual control configu-

rations. Note that our objective is full state stabilization; however, to facilitate the

controller design and subsequent stability analysis, we use a state transformation

to transform the system of Equation 2.13 into the following one describing the in-
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put/output dynamics:

ė = Ae + lk(e) + bαkuk := f̄k(e) + ḡk(e)uk (4.13)

where e ∈ IRn is the variable in transformed co-ordinate (for the specific transforma-

tions used for each control configuration, please see below), A =

[
0 1
0 0

]
, b =

[
0
1

]
,

lk(·) = L2
fk

hk(x), αk(·) = Lgk
Lfk

hk(x), hk(x) = yk is the output associated with

the k-th configuration, x = [x1 x2]
T with x1 = T − Ts, x2 = CA − CAs, and the

functions fk(·) and gk(·) can be obtained by re-writing the (T, CA) model equations

in Equation 2.13 in the form of Equation 4.1. The explicit forms of these functions

are omitted for brevity. A quadratic Lyapunov function of the form Vk = eT Pke,

where Pk is a positive-definite symmetric matrix that satisfies the Riccati inequality

AT Pk + PkA− Pkbb
T Pk < 0, is used for controller design. In particular:

1. For the first configuration with u1 = Q, we consider the controlled output

y1 = CA − CAs. The coordinate transformation (in error variables form) takes

the form: e1 = CA − CAs, e2 = F
V

(CA0 − CA) − ∑3
i=1ki0e

−Ei
RT CA and yields a

relative degree of two with respect to the manipulated input.

2. For the second configuration with u2 = TA0 − TA0s, we choose the output y2 =

CA − CAs which yields the same relative degree as in the first configuration,

r2 = 2, and the same coordinate transformation.

3. For the third configuration with u3 = CA0 − CA0s, a coordinate transformation

of the form used for configurations 1 and 2 above does not yield a sufficiently

large estimate of the stability region, we therefore choose a candidate Lyapunov

function of the form V3(x) = x′Px, where P > 0 and x = [T − Ts CA − CAs]
′

with P =

[
0.011 0.019
0.019 0.101

]
.
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Figure 4.2: Evolution of the closed-loop state profiles under the switching rule of Equation

4.7 subject to failures in control systems 1 and 2 (solid line) and under arbitrary switching

(dashed line).

Figure 4.2 depicts the stability region, in the (T, CA) space, for each configuration.

The desired steady-state is depicted with an asterisk that lies in the intersection of

the three stability regions. The reactor as well as the fault-detection filter for the

first control configuration is initialized at T (0) = 330 K, CA(0) = 3.6 kmol/m3,

CB(0) = 0.0 kmol/m3, using the Q-control configuration, and the supervisor proceeds

to monitor the evolution of the closed-loop trajectory.

As shown by the solid lines in Figures 4.2-4.3, the controller proceeds to drive the

closed-loop trajectory towards the desired steady-state, up until the Q-configuration

fails after 3 minutes of reactor startup (see Figure 4.5(a)). As can be seen in Figure

4.4(a), at this time the value of r1(t) becomes non-zero and the fault-detection filter

detects this fault. If the supervisor switches arbitrarily, and in particular, switches to

backup configuration 3, closed-loop stability is not achieved (dashed lines in Figures

4.2-4.3). Note that this happens because the closed-loop state is outside the stability

region of the third control configuration, and even though the third control config-
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Figure 4.3: Evolution of the closed-loop (a) temperature and (b) concentration under the

switching rule of Equation 4.7 subject to failures in control systems 1 and 2 (solid lines)

and under arbitrary switching (dashed lines).
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uration does not encounter a fault (r3(t) = 0; see dashed line in Figure 4.4(b)), the

limited control action available in this configuration is unable to achieve closed-loop

stability. On the basis of the switching logic of Equation 4.7, the supervisor activates

the second configuration (with TA0 as the manipulated input, see Figure 4.5(b)),

which continues to drive the state trajectory closer to the desired steady-state.

To demonstrate the implementation of the proposed FDFTC strategy when faults

occur in successive control configurations, we consider the case when a second failure

occurs (this time in the TA0-configuration) at t = 13 minutes. Once again, the filter

detects this failure via an increase in the value of r2(t) (solid line in Figure 4.4(b))

using the fault-detection filter for control configuration 2. From Figure 4.2, it is

clear that the failure of the second control configuration occurs when the closed-

loop trajectory is within the stability region of the third configuration. Therefore,

the supervisor immediately activates the third control configuration (with CA0 as

the manipulated input, see Figure 4.5(c)) which finally stabilizes the reactor at the

desired steady-state.

4.4 Integrated Fault-Detection and Fault-Tolerant Control:

Output Feedback Case

The feedback controllers, the fault-detection filters and the switching rules in the

previous section were designed under the assumption of availability of measurements

of all the process states. The unavailability of full state measurements has several

implications. First, it necessitates generating estimates of the states to be used in

conjunction with both the state feedback controller and the fault-detection filter.

The state estimates, however, contain errors, and this results in a difference between

the expected closed-loop behavior of the measured variables (computed using the
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uration 2, and (c) control configuration 3 under the switching rule of Equation 4.7 subject
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state estimates) and the evolution of the measured variables, even in the absence of

actuator faults. The fault-detection filter has to be redesigned to account for this fact

so that it does not treat this difference to be an indicator of an actuator fault (i.e., to

prevent a false alarm). Also, the switching logic has to account for the fact that the

supervisor can monitor only the state estimates and needs to make inferences about

the true values of the states using the state estimates.

In the remainder of this section, we first review an output feedback controller

design, proposed in [48], based on a combination of a high-gain observer and a state

feedback controller (see also [106, 89, 90, 154, 27] for results on observer designs and

output feedback control for unconstrained nonlinear systems) and characterize the

stability properties of the closed-loop system under output feedback control. Then,

we present the fault-detection filter and fault-tolerant controller and demonstrate its

application via a simulation example.

4.4.1 Output Feedback Control

To facilitate the design of a state estimator with the required convergence properties,

we make the following assumption:

Assumption 4.1 For each i ∈ K, there exists a set of coordinates

[
ξi

]
=




ξ1
i

ξ2
i

...

ξn
i




= χi(x) =




hm(x)

Lfhm(x)
...

ÃLn−1
f hm(x)




(4.14)
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such that the system of Equation 4.1 takes the form

ξ̇1
i = ξ2

i

...

ξ̇n−1
i = ξn

i

ξ̇n
i = Ln

fhm(χ−1
i (ξ)) + Lgi

Ln−1
f hm(χ−1

i (ξ))(ui(t) + mi(t))

(4.15)

where Lgi
Ln−1

f hm(x) 6= 0 for all x ∈ IRn. Also, ξi −→ 0 if and only if x −→ 0.

We note that the change of variables is invertible, since for every x, the variable

ξi is uniquely determined by the transformation ξi = χi(x). This implies that if one

can estimate the values of ξi for all times, using an appropriate state observer, then

we automatically obtain estimates of x for all times, which can be used to implement

the state feedback controller. The existence of such a transformation will facilitate

the design of high-gain observers which will be instrumental in preserving the same

closed-loop stability properties achieved under full state feedback.

Proposition 4.1 below presents the output feedback controller used for each mode

and characterizes its stability properties. To simplify the statement of the proposition,

we first introduce the following notation. We define αi(·) as a class K function that

satisfies αi(‖x‖) ≤ Vi(x). We also define the set Ωb,i := {x ∈ IRn : Vi(x) ≤ δb,i},
where δb,i is chosen such that βi(α

−1
i (δb,i), 0) < α−1

i (cmax
i ), where βi(·, ·) is a class KL

function and cmax
i is a positive real number defined in Equation 4.4.

Proposition 4.1 Consider the nonlinear system of Equation 4.1, for a fixed mode,

k(t) = i, and with mi(t) ≡ 0, under the output feedback controller:

˙̃y =




−Lia
(i)
1 1 0 · · · 0

−L2
i a

(i)
2 0 1 · · · 0

...
...

...
. . .

...

−Ln
i a

(i)
n 0 0 · · · 0




ỹ +




Lia
(i)
1

L2
i a

(i)
2

...

Ln
i a

(i)
n




ym

ui = uc
i(x̂, umax

i )

(4.16)
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where uc
i is defined in Equation 4.2, the parameters, a

(i)
1 , · · · , a(i)

n are chosen such

that the polynomial sn+a
(i)
1 sn−1+a

(i)
2 sn−2+ · · ·+a(i)

n = 0 is Hurwitz, x̂ = χ−1
i (sat(ỹ)),

sat(·) = min{1, ζmax,i/| · |}(·), with ζmax,i = βζ(δζ,i, 0) where βζ is a class KL function

and δζ,i is the maximum value of the norm of the vector [hm(x) · · · Ln−1
fi

hm(x)] for

Vi(x) ≤ cmax
i and let εi = 1/Li. Then, given Ωb,i, there exists ε∗i > 0 such that if

εi ∈ (0, ε∗i ], x(0) ∈ Ωb,i, and ‖ỹ(0)‖ ≤ δζ,i, the origin of the closed-loop system is

asymptotically (and locally exponentially) stable. Furthermore, given any positive real

numbers, em,i and T b
i , there exists a real positive number ε∗∗i such that if εi ∈ (0, ε∗∗i ]

then ‖x(t)− x̂(t)‖ ≤ em,i for all t ≥ T b
i .

Proof of Proposition 4.1 The proof of the proposition, which invokes singular

perturbation arguments (for a result on input-to-state stability with respect to sin-

gular perturbations, and further references, see [31]), is a special case of the proof of

Theorem 4.2 in [48], and is omitted for brevity.

The state observer in Equation 4.16 ensures sufficiently fast convergence that is

necessary for the implementation of both the state feedback controller (and preserving

its stability properties under output feedback control), and the fault-detection filter.

The most important feature of this estimator (and one that will be used in the fault-

detection filter design) is that the estimation error is guaranteed to fall below a

certain value in a small period of time, T b
i , which can be chosen arbitrarily small by

sufficiently increasing the observer gain. This requirement or constraint on the error

dynamics is needed even when other estimation schemes, such as moving horizon

observers, are used (for example, see [123, 141]). For such observers, however, it is

difficult in general to obtain a transparent relationship between the tunable observer

parameters and the error decay rate.

Due to the lack of full state measurements, the supervisor can rely only on the

available state estimates to decide whether switching at any given time is permissible,
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and, therefore, needs to make reliable inferences regarding the position of the states

based upon the available state estimates. Proposition 4.2 below establishes the ex-

istence of a set, Ωs,i := {x ∈ IRn : Vi(x) ≤ δs,i}, such that once the state estimation

error has fallen below a certain value (note that the decay rate can be controlled by

adjusting Li), the presence of the state within the output feedback stability region,

Ωb,i, can be guaranteed by verifying the presence of the state estimates in the set

Ωs,i. A similar approach was employed in the construction of the output feedback

stability regions Ωb,i and the regions for the state estimates Ωs,i in the context of

output feedback control of linear systems in [114].

Proposition 4.2 Given any positive real number δb,i, there exist positive real numbers

e∗m,i and δs,i such that if ‖x− x̂‖ ≤ em,i, where em,i ∈ (0, e∗m,i], and Vi(x̂) ≤ δs,i, then

Vi(x) ≤ δb,i.

Proof of Proposition 4.2 From the continuity of the function Vi(·), we have that

for any positive real number em,i, there exists a positive real number γi such that

‖x − x̂‖ ≤ em,i =⇒ |Vi(x) − Vi(x̂)| ≤ γi =⇒ Vi(x) ≤ Vi(x̂) + γi. Since γi can be

made small by choosing em,i small, it follows that given any positive real number δb,i,

there exists a positive real number, e∗m,i, such that for all em,i ∈ (0, e∗m,i], γi < δb,i.

Now, let δs,i be any positive real number that satisfies δs,i + γi ≤ δb,i. Then if

‖x− x̂‖ ≤ em,i ≤ e∗m,i and Vi(x̂) ≤ δs,i, we have Vi(x) ≤ Vi(x̂) + γi ≤ δs,i + γi ≤ δb,i.

This completes the proof of Proposition 4.2.

Note that for the inference that x̂ ∈ Ωs,i =⇒ x ∈ Ωb,i to be useful in executing

the switching, the set Ωs,i needs to be contained within Ωb,i. From Proposition 4.2,

this can be ensured if em,i is sufficiently small, which in turn is ensured for all times

greater than T b
i provided that the observer gain is sufficiently large. In practice, use

of a sufficiently high observer gain leads to an Ωb,i that is almost identical to Ωi, and
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furthermore, once the error has sufficiently decreased, Ωs,i can be taken to be almost

equal to Ωb,i.

4.4.2 Integrating Fault-Detection and Fault-Tolerant Output Feedback

Control

In this section we will present a fault-tolerant controller that uses the estimates gen-

erated by the high-gain observer for the implementation of the fault-detection filter,

the state feedback controllers and the switching logic (see Figure 4.6). We proceed by

first showing how the implementation of the design and implementation of the fault-

detection filter should be modified to handle the absence of full state measurements.

To this end, we consider the following system:

ẇ(t) = f(w) + gi(w)ui(w)

r(t) = ‖x̂(t)− w(t)‖ (4.17)

Note that, as in the full state feedback case, the state equation for the filter in Equa-

tion 4.17 is a replica of the closed-loop state equation under full state feedback and

in the absence of faults. However, because of the absence of full state measurements,

the residual can only be defined in terms of the state estimates, not the actual states.

The residual therefore provides a measure of the discrepancy between the evolution

of the nominal closed-loop system (i.e., with no faults) under full state feedback and

the evolution of the closed-loop state estimates under output feedback. Since the dis-

crepancy can be solely due to estimation errors and not necessarily due to faults, it is

important to establish a bound on the residual which captures the expected difference

in behavior in the absence of faults. This bound, which is given in Proposition 4.3

below, will be useful as a threshold to be used by the supervisor in declaring when a

fault has occurred and consequently when switching becomes necessary.
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Figure 4.6: Integrated fault-detection and fault-tolerant control design under output feed-

back.

Proposition 4.3 Consider the nonlinear system of Equation 4.1, for a fixed mode,

k(t) = i, and with mi(t) ≡ 0, under the output feedback controller of Equation

4.16. Consider also the system of Equation 4.17. Then, given the set of positive

real numbers {δb,i, δζ,i, δm,i, T
b
i }, there exists a positive real number, ε′i > 0, such that

if εi ∈ (0, ε′i], Vi(x(0)) ≤ δb,i, ‖ỹ(0)‖ ≤ δζ,i, w(T b
i ) = x̂(T b

i ), the residual satisfies a

relation of the form r(t) ≤ δm,i for all t ≥ T b
i .

Proof of Proposition 4.3 Consider the system of Equation 4.1 with mi(t) ≡ 0

under the output feedback controller of Equation 4.16. From the result of Proposition

4.1, we have that given x(0) ∈ Ωb,i and any positive real number T b
i , there exists a

real positive number ε∗∗i such that ‖x(t)− x̂(t)‖ ≤ k1εi, for all t ≥ T b
i , εi ∈ (0, ε∗∗i ], for

some k1 > 0, i.e., x(t) = x̂(t)+O(εi), where O(εi) is the standard order of magnitude

notation. Now, consider the following two systems for t ≥ T b
i :

ẋ(t) = f(x(t)) + gi(x(t))ui(x̂(t)) (4.18)

ẇ(t) = f(w(t)) + gi(w(t))ui(w(t)) (4.19)
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where w(T b
i ) = x̂(T b

i ). The system of Equation 4.19 is exactly the closed-loop sys-

tem under full state feedback and has an asymptotically (and exponentially) stable

equilibrium at the origin, for all initial conditions within Ωi. The system of Equation

4.18 is the closed-loop system under output feedback and (from Proposition 4.1) has

an asymptotically (and locally exponentially) stable equilibrium at the origin, for all

initial conditions within Ωb,i ⊂ Ωi and for all εi ≤ ε∗i . Since x(t) = x̂(t) + O(εi)

for all t ≥ T b
i , we have that x(T b

i ) = x̂(T i
b ) + O(εi) and, when εi = 0, the two sys-

tems of Equations 4.18-4.19 become identical. Let Fi(·) = f(·) + gi(·)ui(·), and

x(T b
i ) = x̂(T i

b ) + O(εi) := η(εi), where η is a continuous function that depends

smoothly on εi, then we can write

ẋ(t) = Fi(x(t), εi), x(T b
i ) = η(εi)

ẇ(t) = Fi(w(t)), w(T b
i ) = η(0)

(4.20)

It is clear from the above representation that the state equations for both the filter

system and the closed-loop system, as well as their initial conditions at T b
i , are iden-

tical when εi = 0. Therefore, we can use the theory of regular perturbations (see

Chapter 8 in [91]) to establish the closeness of solutions between the two systems

over the infinite time interval. In particular, since Fi(·) is continuous and bounded

on Ωb,i, and the w-system is exponentially stable, an application of the result of

Theorem 8.2 in [91] yields that there exists ε
′′
i > 0 such that for all εi ∈ (0, ε

′′
i ],

x(t) = w(t) + O(εi) for all t ≥ T b
i . We therefore have that, for εi ∈ (0, min{ε∗∗i , ε

′′
i }],

r(t) = ‖x̂(t)−w(t)‖ = ‖x̂(t)− x(t) + x(t)−w(t)‖ ≤ ‖x̂(t)− x(t)‖+ ‖x(t)−w(t)‖ ≤
(k1 + k2)εi for all t ≥ T b

i . This implies that given any positive real number δm,i, there

exists ε′i > 0 such that ‖x̂(t) − w(t)‖ ≤ δm,i for all εi ∈ (0, ε′i], for all t ≥ T b
i , where

ε′i = min{ε∗∗i , ε
′′
i , δm,i/(k1 + k2)}.

We conclude that given the set of positive real numbers {δb,i, δζ,i, δm,i, T
b
i }, there

exists a positive real number, ε′i > 0, such that if εi ∈ (0, ε′i], Vi(x(0)) ≤ δb,i,

‖ỹ(0)‖ ≤ δζ,i, w(T b
i ) = x̂(T b

i ), the residual satisfies a relation of the form r(t) ≤ δm,i

for all t ≥ T b
i .

This completes the proof of Proposition 4.3.
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Note that the bound δm,i can be chosen arbitrarily small by choosing the observer

gain to be sufficiently large. Note also that, unlike the case of full state feedback,

the fault-detection filter is initialized only after the passage of some short period of

time, [0, T b
i ] (which can be chosen arbitrarily small by increasing the observer gain),

to ensure that the closed-loop state estimates have converged sufficiently close to the

true closed-loop states and thus – by setting the filter state w at this time equal to the

value of the state estimate – ensure that the filter state is initialized sufficiently close

to the true values of the state. From this point onwards, the filter simply integrates

a replica of the dynamics of the process in the absence of errors. In the absence of

actuator faults, the difference between the filter states and the process states is a

function of the initial error, which can be bounded from above by a value that can be

made as small as desired by decreasing the initial error, which in turn can be done

by appropriate choice of the observer parameters.

Having established a bound on the residual in the absence of faults, we are now

ready to proceed with the design of the switching logic. To this end, consider the

nonlinear system of Equation 4.1 where, for each control configuration, an output

feedback controller of the form of Equation 4.16 is available and, given the desired

output feedback stability regions Ωb,i ⊂ Ωi, i = 1, · · · , N , as well as the desired

values for δm,i, T i
b , an appropriate observer gain has been determined (for example,

εi ≤ min{ε∗i , ε′i, ε∗∗i } to guarantee both stability and satisfaction of the desired bound

on the residual) and the sets Ωs,i (see Proposition 4.2) have been computed. The

implementation of the fault-detection filter and fault-tolerant controller is described

in Theorem 4.2 below.

Theorem 4.2 Let k(0) = i for some i ∈ K, x(0) ∈ Ωb,i, w(T b
i ) = x̂(T b

i ), and consider

a fault for which r(T s
i ) ≥ δm,i, where T s

i > T b
i is the earliest time for which r(t) ≥ δm,i.
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Then under the switching rule

k(t) =





i, 0 ≤ t < T s
i

j 6= i, t ≥ T s
i , x̂(T s

i ) ∈ Ωs
j





(4.21)

the origin of the closed-loop system is asymptotically stable.

Proof of Theorem 4.2 Consider the nonlinear system of Equation 4.1, under the

output feedback controller of Equation 4.16, and the system of Equation 4.17, where

k(0) = i for some i ∈ K, x(0) ∈ Ωb,i, w(T b
i ) = x̂(T b

i ), εi ≤ min{ε∗i , ε′i, ε∗∗i }, where ε∗i ,

ε∗∗i were defined in Proposition 4.1 and ε′i was defined in Proposition 4.3. Since we

consider only faults for which r(T s
i ) ≥ δi

m, where T s
i > T b

i is the earliest time for

which r(t) ≥ δi
m, it follows that:

(a) in the absence of such faults, no switching takes place and configuration i

is implemented for all times. Since x(0) ∈ Ωb,i and εi ≤ ε∗i , asymptotic closed-loop

stability of the origin follows directly from Proposition 4.1.

(b) in the case that such faults take place, the earliest time a fault is detected

is T s
i > T b

i and we have, from Equation 4.21, that k(t) = i for 0 ≤ t < T s
i . From

the stability of the i-th closed-loop system established in Proposition 4.1, we have

that the closed-loop trajectory stays bounded within Ωb,i for 0 ≤ t < T s
i . At time

T s
i , the supervisor switches to a control configuration j for which x̂(T s

i ) ∈ Ωs,j. By

design, x̂(t) ∈ Ωs,j =⇒ x(t) ∈ Ωb,j for all t ≥ T s
i > T b

i . From this point onwards,

configuration j is implemented in the closed-loop system for all future times and,

since x(T s
i ) ∈ Ωb,j, asymptotic closed-loop stability of the origin follows from the

result of Proposition 4.1.

This completes the proof of Theorem 4.2.

The design and implementation of the fault-detection filter and fault-tolerant con-

troller proceed as follows:

1. Given the nonlinear process of Equation 4.1, identify the available control con-

figurations, k = 1, . . . , N . For each configuration, design the output feedback
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controller of Equation 4.16, and for a given choice of the output feedback sta-

bility region, Ωb,i, determine a stabilizing observer gain, ε∗i .

2. Given any positive real numbers, δm,i and T b
i , determine the observer gain, ε′i, for

which the maximum possible difference between the filter states and the state

estimates, in the absence of faults, is less than the threshold δm,i for all times

greater than T b
i .

3. Given the output feedback stability region, Ωb,i, determine the maximum error,

e∗m,i, and the set Ωs,i such that if ‖x− x̂‖ ≤ em,i ≤ e∗m,i (i.e., the error between

the estimates and the true values of the states is less than em,i) and x̂ ∈ Ωs,i

(i.e., the state estimates belong to Ωs,i), then x ∈ Ωb,i (i.e., the state belongs to

the output feedback stability region).

4. For a choice of em,i ∈ (0, e∗m,i] and given T b
i , determine the observer gain, ε∗∗i ,

for which the maximum possible difference between the states and the state

estimates, in the absence of faults, is less than the threshold em,i for all times

greater than T b
i . Set εi := min{ε∗i , ε′i, ε∗∗i }. Note that this choice guarantees that

by time T b
i : (1) the residual is within the desired threshold and (2) the presence

of x̂ within Ωs,i guarantees that x belongs to Ωb,i.

5. Initialize the closed-loop system such that x(0) ∈ Ωb,i, for some i ∈ K, and start

generating the state estimates x̂(t). At time T b
i , initialize and start integrating

the filter dynamics of Equation 4.17 with w(T b
i ) = x̂(T b

i ), where x̂ is the state

estimate generated by the high-gain observer.

6. At the earliest time T s
i > T b

i that r(t) > δm,i (implying that the difference

between the expected evolution of the process states and the estimates of the

process states is more than what can be accounted for by the error in the ini-
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tialization of the filter states, implying that a fault has occurred), activate the

backup configuration for which x̂(T s
i ) ∈ Ωs,j (note that since t = T s

i > T b
i , we

have that ‖x(T s
i ) − x̂(T s

i )‖ ≤ em,i; this together with x̂(T s
i ) ∈ Ωs,j implies that

x(T s
i ) ∈ Ωb,j, i.e., the state belongs to the stability region of configuration j).

Implement the backup configuration j to achieve closed-loop stability.

Theorem 4.2 considers faults that are “observable” from the filter’s residual, in

the sense that if the residual in Equation 4.17 exceeds the allowable threshold δm,i at

any time, then the supervisor can conclude with certainty that a fault has occurred.

On the other hand, if the residual does not exceed the allowable threshold, it might

still be possible that some “unobservable” fault – the effect of which is within the

filter threshold – has taken place. Note that in contrast to the case of full state

feedback, the states in this case are only known up to a certain degree of accuracy.

Therefore, any fault that causes a difference in the closed-loop behavior that is within

that margin of (i.e., indistinguishable from) the effect of the estimation error will, in

principle, go undetected. This class of faults is not considered in Theorem 4.2 since its

effect on closed-loop stability cannot be discerned from the behavior of the residual.

This, however, is not a restriction since the observability threshold δm,i is a design

parameter and can be chosen arbitrarily small, thus rendering the possibility of major

(i.e., destabilizing) faults that cannot be detected quite small. Ultimately, the choice

of δm,i reflects a fundamental tradeoff between the need to avoid false alarms that

could be caused by estimation errors (this favors a relatively large threshold) and

the need to minimize the possibility of some faults going undetected (this favors a

relatively small threshold).

Note that for all times prior to T b
i , the filter is inactive. Up-until this time,

the state estimates have not yet converged close enough to the true values of the
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states, and no inference about the state of the system can be drawn by looking at the

evolution of the state estimate, and therefore no inference about any possible faults

can be drawn via the fault-detection filter. If a fault occurs within this time, the filter

will detect its occurrence only after the time T b
i . By choosing a larger value of the

observer gain, however, the time T b
i can be reduced further, if so desired. Note also

that while we consider the problem of unavailability of some of the state variables

as measurements, we do not consider the problem of sensor faults, i.e., we assume

that the sensors do not malfunction both in the state and output feedback cases. In

the event of availability of multiple measurements in a way that each of them can be

used to estimate of the process states, the estimates of the states generated using the

different measurements can be used to also detect sensor faults.

Remark 4.5 The central idea behind the model-based fault-detection filter design,

that of comparing the evolution of the process to the expected evolution of the process

in the absence of faults, can also be used to design a rule-based fault-detection filter.

One example of a rule-based fault-detection filter is to declare a fault if the state

estimates, after a time T b
i , touch the boundary of Ωs,i, indicating that the closed-loop

states themselves may be about to escape the output feedback stability region Ωb,i.

The rule-based fault detection filter, however, would be able to detect the fault only

when the state estimates hit the boundary of Ωs,i, as opposed to the model-based

fault detection filter, which detects a fault as soon as the effect of the fault on the

closed-loop evolution goes beyond a prescribed threshold. This delay in a rule-based

approach could result in the state escaping the stability region of the available backup

configurations (see the simulation for an example). Also, it may happen that the fault

causes the closed-loop process states evolving within Ωs,i to neither escape Ωs,i nor

converge to the origin. The rule based fault-detection filter would not be able to

detect such a fault. In contrast, the model-based fault-detection filter of Theorem

4.2, is able to detect faults that have an effect, up-to a desirable threshold, on the
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evolution of the closed-loop process. Note also that the model-based fault-detection

filter of Theorem 4.2 and the rule-based fault-detection filter discussed above differ

only in that the model-based filter of Theorem 4.2 uses a more quantitative knowledge

of the closed-loop dynamics to predict the expected closed-loop trajectory, instead of

using the qualitative knowledge that the fault-free closed-loop state trajectory does

not the escape the stability region.

4.4.3 Simulation Results

In this section, we first illustrate the implementation of the proposed fault-tolerant

control methodology to the chemical reactor introduced as a motivating example to

clearly explain the main ideas behind the application of the proposed fault-detection

and fault-tolerant control method, and then demonstrate an application to a net-

worked chemical reactor example, investigating issues such as uncertainty and mea-

surement noise.

For the chemical reactor of the motivating example, Figure 4.10 depicts the sta-

bility region, in the (T, CA) space, for each configuration. The desired steady-state

is depicted with an asterisk that lies in the intersection of the three stability regions.

For the first two control configurations, a state estimator of the form of Equation

4.16 is designed. For thresholds of δm = 0.0172 and 0.00151 in the fault detection

filters, the parameters in the observer of Equation 4.16 are chosen as L1 = L2 = 100,

a
(1)
1 = a

(2)
1 = 10 and a

(1)
2 = a

(2)
2 = 20. For the third configuration, the estimates,

T̂ , ĈA are generated as follows:

dT̂

dt
=

F

V
(TA0 − T̂ ) +

3∑

i=1

(−∆Hi)

ρcp

ki0e

−Ei

RT̂ ĈA + α1(CA − ĈA)

dĈA

dt
=

F

V
(CA0 − ĈA)−

3∑

i=1

ki0e

−Ei

RT̂ ĈA + α2(CA − ĈA)

(4.22)

where α1 = −104 and α2 = 10 and CA is the measured output. The reactor is
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initialized at T (0) = 330 K, CA(0) = 3.6 kmol/m3, CB(0) = 0.0 kmol/m3, using the

Q-control configuration, while the state estimates are initialized at T̂ (0) = 390 K,

ĈA(0) = 3.6 kmol/m3 and the supervisor proceeds to monitor the evolution of the

closed-loop estimates.

We first demonstrate the need to wait for a sufficient time before initializing the

filter. To this end, consider the fault-detection filter initialized at t = 0.005 minutes

≡ T b
1 at which time the state estimates (dash-dotted lines in Figure 4.7) have not

converged to the true values (solid lines in Figure 4.7). As a result, the fault-detection

filter shows a false alarm (see Figure 4.8(a)) by crossing the threshold even when

control configuration 1 is functioning properly (see Figure 4.8(b)) and stabilizes the

closed-loop system. Note that while the initialization of the filter at a time when

the state estimates have not converged leads to the residual crossing the threshold,

the residual eventually goes to zero as expected, since both the filter states and the

closed-loop process states eventually stabilize and go to the same equilibrium point.

We now demonstrate the application of the fault-detection filter and fault-tolerant

controller of Theorem 4.2. Starting from the same initial conditions, the estimates of

T and CA (dash-dotted lines in Figures 4.9(a-b)) converge very quickly to the true

values of the states (solid lines in Figures 4.9(a-b)). The states in the fault-detection

filter are initialized and set equal to the value of the state estimates at t = 0.01

minutes ≡ T b
1 ; note that by this time the estimates have converged to the true values.

By initializing the fault-detection filter appropriately, a false alarm is prevented (the

value of r1(t) does not hit the threshold in the absence of a fault after a time t = 0.01

minutes, see Figure 4.11(a)). As shown by the solid lines in Figure 4.10, the controller

proceeds to drive the closed-loop trajectory towards the desired steady-state, up until

the Q-configuration fails after 3.0 minutes ≡ T f
1 of reactor startup (see solid lines in
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Figure 4.7: Evolution of the closed-loop (a) temperature (solid line), estimate of temper-

ature (dash-dotted line) and the temperature profile generated by the filter (dashed line)

and (b) concentration (solid line), estimate of concentration (dash-dotted line) and the con-

centration profile generated by the filter (dashed line) under control configuration 1 when

the fault detection filter is initialized at t = 0.005 minutes.
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Figure 4.8: Evolution of (a) the residual and (b) the manipulated input profile for the first

control configuration when the fault detection filter is initialized at t = 0.005 minutes.
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Figure 4.13(a)). Note that at this time, the value of r1(t) becomes non-zero and hits

the threshold at t = 3.3 minutes ≡ T s
1 . From Figure 4.10, it is clear that the failure of

the primary control configuration occurs when the closed-loop trajectory is within the

stability region of the second control configuration, and outside the stability region

of the third control configuration. Therefore, on the basis of the switching logic of

Equation 4.21, the supervisor activates the second configuration (with TA0 as the

manipulated input). The result is shown by the solid line in Figure 4.10 where it

is seen that upon switching to the TA0-configuration, the corresponding controller

continues to drive the state trajectory closer to the desired steady-state.

When a second failure occurs (this time in the TA0-configuration) at t = 13.0

minutes ≡ T f
2 (which is simulated by fixing TA0 for all t ≥ 13.0 minutes, see solid

lines in Figure 4.13(b)) before the process has reached the steady state, the filter

detects this failure via the value of r2(t) hitting the threshold (see Figure 4.11(b)).

From the solid line in Figure 4.10, it is clear that the failure of the second control

configuration occurs when the closed-loop trajectory is within the stability region of

the third configuration. However, if the fault-detection filter is not in place and the

backup configuration is implemented late in the closed-loop (at t = 30 minutes ≡ T s
3 ),

by this time the state of the closed-loop system has moved out of the stability region

of the third control configuration, and closed-loop stability is not achieved (see dashed

line in Figure 4.10, see also Figure 4.12 and dashed lines in Figure 4.13). In contrast,

when the fault-detection filter is in place, it detects a fault at t = 15.82 minutes ≡ T s
2

and when the supervisor switches to configuration 3, closed-loop stability is achieved

(see solid line in Figure 4.10).

Having illustrated the application and effectiveness of the proposed fault-detection

and fault-tolerant control method in the case of a single reactor, we next demonstrate
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Figure 4.9: Evolution of the closed-loop (a) temperature (solid line), estimate of temper-

ature (dash-dotted line) and the temperature profile generated by the filter (dashed line)

and (b) concentration (solid line), estimate of concentration (dash-dotted line) and the con-

centration profile generated by the filter (dashed line) under the switching rule of Equation

4.21 subject to failures in control systems 1 and 2.
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tion 4.21 subject to failures in control systems 1 and 2, using an appropriate fault-detection

filter (solid line) and in the absence of a fault-detection filter (dashed line).

application of the method to a networked chemical reactor example in the presence

of uncertainty and measurement noise. To this end, consider the two well-mixed,

non-isothermal continuous stirred tank reactors shown in Figure 4.14. Three parallel

irreversible elementary exothermic reactions of the form A
k1→ B, A

k2→ U and A
k3→ R

take place in each reactor, where A is the reactant species, B is the desired product,

U and R are undesired byproducts. The feed to the first reactor consists of pure A

at a flow rate F0, molar concentration CA0 and temperature T0. The output from

the first reactor is fed to the second reactor along with a fresh feed that consists of

pure A at a flow rate F3, molar concentration CA03, and temperature T03. Due to the

non-isothermal nature of the reactors, a jacket is used to remove heat from or provide

heat to the reactor. Under standard modeling assumptions, a mathematical model of

the process can be derived from material and energy balances and takes the following
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Figure 4.11: Evolution of the residual for (a) the first control configuration and (b) the

second control configuration.
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Figure 4.12: Evolution of the closed-loop (a) temperature (solid line), estimate of temper-

ature (dash-dotted line) and the temperature profile generated by the filter (dashed line)

and (b) concentration (solid line), estimate of concentration (dash-dotted line) and the con-

centration profile generated by the filter (dashed line) under the switching rule of Equation

4.21 subject to failures in control systems 1 and 2 in the absence of a fault-detection filter.
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Figure 4.13: Manipulated input profiles under (a) control configuration 1, (b) control config-

uration 2, and (c) control configuration 3 under the switching rule of Equation 4.21 subject

to failures in control systems 1 and 2 in the presence (solid lines) and absence (dashed lines)

of a fault-detection filter.
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form:

dT1

dt
=

F0

V1

(T0 − T1) +
3∑

i=1

(−∆Hi)

ρcp

Ri(CA1, T1) +
Q1

ρcpV1

dCA1

dt
=

F0

V1

(CA0 − CA1)−
3∑

i=1

Ri(CA1, T1)

dT2

dt
=

F0

V2

(T1 − T2) +
F3

V2

(T03 − T2) +
3∑

i=1

(−∆Hi)

ρcp

Ri(CA2, T2) +
Q2

ρcpV2

dCA2

dt
=

F0

V2

(CA1 − CA2) +
F3

V2

(CA03 − CA2)−
3∑

i=1

Ri(CA2, T2)

(4.23)

where Ri(CAj, Tj) = ki0 exp
(−Ei

RTj

)
CAj, for j = 1, 2. T , CA, Qi (i = 1, 2), and V

denote the temperature of the reactor, the concentration of species A, the rate of

heat input/removal from the reactor, and the volume of reactor, respectively, with

subscript 1 denoting CSTR 1 and subscript 2 denoting CSTR 2. ∆Hi, ki, Ei, i =

1, 2, 3, denote the enthalpies, pre-exponential constants and activation energies of the

three reactions, respectively, cp and ρ denote the heat capacity and density of the

fluid in the reactor. For the values of the process parameters given in Table 4.1 and

for Q1 = Q2 = 0 the process model of Equation 4.23 has multiple steady states.

The control objective is to stabilize at the open-loop unstable steady-state where

(T s
1 , Cs

A1) = (388.57 K, 3.59 kmol/m3) and (T s
2 , Cs

A2) = (433.96 K, 2.8811 kmol/m3).

The measurements of temperature and concentrations are assumed to contain noise

of magnitude 1K and 0.1 kmol/m3, respectively. Also, the concentrations of A in

the inlet streams CA0 and CA03 used in the process model are 10% smaller than the

values used in the filter equations and the controller. The available manipulated

inputs include the rate of heat input into reactor one, Q1, subject to the constraint

|Q1| ≤ 2.333(106) kJ/hr, the rate of heat input into reactor two, Q2, subject to the

constraint |Q2| ≤ 1.167(106) kJ/hr and a duplicate backup heating configuration for

reactor two, Q3, subject to the constraint |Q3| ≤ 1.167(106) kJ/hr.

The primary control configuration consists of the manipulated inputs Q1 and Q2,
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Table 4.1: Process parameters and steady-state values for the chemical reactors of Equation

4.23.

F0 = 4.998 m3/hr
F1 = 4.998 m3/hr
F3 = 4.998 m3/hr
V1 = 1.0 m3

V2 = 0.5 m3

R = 8.314 KJ/kmol ·K
T0 = 300.0 K
T03 = 300.0 K
CA0 = 4.0 kmol/m3

Cs
A03 = 3.0 kmol/m3

∆H1 = −5.0× 104 KJ/kmol
∆H2 = −5.2× 104 KJ/kmol
∆H3 = −5.4× 104 KJ/kmol
k10 = 3.0× 106 hr−1

k20 = 3.0× 105 hr−1

k30 = 3.0× 105 hr−1

E1 = 5.0× 104 KJ/kmol
E2 = 7.53× 104 KJ/kmol
E3 = 7.53× 104 KJ/kmol
ρ = 1000.0 kg/m3

cp = 0.231 KJ/kg ·K
T s

1 = 388.57 K
Cs

A1 = 3.59 kmol/m3

T s
2 = 433.96 K

Cs
A2 = 2.88 kmol/m3
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while the backup configuration is comprised of manipulated inputs Q1 and Q3. As

before, quadratic Lyapunov functions of the form Vk = xT Pkx are used for controller

design, where Pk is a positive-definite symmetric matrix that satisfies the Riccati

inequality AT Pk + PkA − Pkbkb
T
k Pk < 0 for A and b obtained via linearization of

the system around the desired steady-state with x = [T1 − T1s CA1 − CA1s T2 −
T2s CA2 − CA2s]

′, and are not reported here for the sake of brevity. The controller

design yields a stability region estimate with cmax
1 and cmax

2 both approximately equal

to 9.4. Note that all the information about the stability region is completely contained

in the values of cmax
1 and cmax

2 , and the computation of these values is sufficient

for the task of implementing the proposed method to the four-state system in this

example. Specifically, the presence of the closed-loop state in the stability region can

be ascertained by simply evaluating the value of the Lyapunov-function and checking

against the value of cmax (for example, V (x) < cmax
1 implies that x ∈ Ω1).
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Figure 4.14: Flow diagram showing two CSTRs operating in series.

Note that unlike the single reactor example, each control configuration consists of

more than one manipulated input, which necessitates designing filters that detect as
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well as isolate faults. To this end, fault detection and isolation filters are designed

that are dedicated to each manipulated input in the control configurations. The filter

designs for Q1 and Q2 in the primary control configuration take the form:

dT̃1

dt
=

F0

V1

(T0 − T̃1) +
3∑

i=1

(−∆Hi)

ρcp

Ri(CA1, T̃1) +
Q1

ρcpV1

r1 = T̃1 − T1

(4.24)

dT̃2

dt
=

F0

V2

(T1 − T̃2) +
F3

V2

(T03 − T̃2) +
3∑

i=1

(−∆Hi)

ρcp

Ri(CA2, T̃2) +
Q2

ρcpV2

r2 = T̃2 − T2

(4.25)

As can be seen, the fault-detection and isolation filter for Q1 includes a state T̃1

whose dynamics are a copy of the model state, however, the dynamics are evaluated

using the state measurements together with using T̃1 in place of T1. The value of

the manipulated variable is also calculated in the same manner. For example, Q1 in

the filter is computed using (T̃1, CA1, T2, CA2). The filters for the other manipulated

inputs are designed similarly. Note that due to the presence of measurement noise

and disturbances, the values of the residual are non-zero even in the absence of faults,

therefore, faults are declared only if the value of the residual exceeds a non-zero

threshold value, where the threshold is obtained by evaluating the maximum value

of the residual in the absence of faults to account for the effects of uncertainty and

measurement noise.

In the first scenario the ability to detect a fault in the presence of multiple distur-

bances and noise is demonstrated. The reactors as well as the fault detection filter

for the first control configuration are initialized at the desired steady state T1(0) =

388.57 K, CA1(0) = 3.591 kmol/m3, T2(0) = 433.96 K and CA2(0) = 2.881 kmol/m3.

For the sake of brevity, we show here only the evolution of T2 and of the residuals.

As can be seen in Figure 4.15(a), the controller proceeds to stabilize the closed-loop
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trajectory near the desired steady-state until heating jacket two (Q2) fails 40 minutes

after reactor startup. If a fault-detection filter is not in place, and the fault is not

detected, closed-loop stability is not achieved (dotted lines in Figure 4.15(a)). The

fault-detection filter design of the form of Equations 4.24-4.25, however, detects this

fault, and the value of residual r2(t) becomes greater than the threshold value of 2.0

at 40.79 minutes (see Figure 4.15(c)) while r1(t) (Figure 4.15(b)) remains below the

threshold of 2.0, allowing the detection and isolation of the fault. While at the time

of the failure (t = 40 min), the state of the closed-loop system is within the stabil-

ity region of the backup-configuration, by the time that the failure is detected (at

t = 40.79 min), operation of reactor 2 in an open-loop fashion (for 0.79 min) results

in the closed-loop state moving out of the stability region of the backup configuration

(V2 = 73.17 > cmax
2 = 9.4) and stability is not guaranteed after switching. However,

it is possible that stability may still be achieved by using the fall-back configuration.

In particular, having been alerted by the fault-detection filter of the occurrence of

the fault, the supervisor activates the fall-back configuration (with Q1 and Q3 as the

manipulated inputs, solid lines in Figure 4.15(a)) and is able to drive the system to

the desired steady state and enforce closed-loop stability.

Detection of faults in the presence of process disturbances and noise is clearly

possible using the methodology above. In order to guarantee stability after switching,

however, the disturbances acting on the system should be reduced or the constraints

on the control action should be relaxed to enlarge the closed-loop stability region. In

the second scenario, the ability to detect a fault in the presence of noise and a single

disturbance (in contrast to two disturbances in the first scenario), then switch to a

fall-back configuration with guaranteed stability is demonstrated. In this case, the

measurements of temperature and concentrations are again assumed to contain noise
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Figure 4.15: Two reactors in series scenario one: (a) temperature profile of reactor two

with reconfiguration (solid line) and without reconfiguration (dotted line), (b) Q1 residual

profile, (c) Q2 residual profile (note fault detection at time t = 40.79 min).
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Figure 4.16: Two reactors in series scenario two: (a) temperature profile of reactor two

with reconfiguration (solid line) and without reconfiguration (dotted line), (b) Q1 residual

profile, (c) Q2 residual profile (note fault detection at time t = 41.33 min).
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of magnitude 1K and 0.1 kmol/m3, respectively. Also, the concentration of A in the

inlet stream CA03 used in the process model is 10% smaller than the values used in

the filter equations and the controller.

The reactors as well as the fault detection filter for the first control configuration

are initialized at the desired steady state T1(0) = 388.57 K, CA1(0) = 3.591 kmol/m3,

T2(0) = 433.96 K, CA2(0) = 2.881 kmol/m3. As can be seen in Figure 4.16(a), the

controller proceeds to stabilize the closed-loop trajectory near the desired steady-

state until heating jacket two (Q2) fails 40 minutes after reactor startup. If a fault-

detection filter is not in place, and the fault is not detected, closed-loop stability is

not achieved (dotted lines in Figure 4.16(a)). The fault-detection filter design of the

form of Equations 4.24-4.25, however, detects this fault, and the value of residual

r2(t) becomes greater than the threshold value of 2.0 at 41.33 minutes (see Figure

4.16(c)) while r1(t) (Figure 4.16(b)) remains below the threshold of 2.0, allowing the

detection and isolation of the fault. In this scenario, at the time of the failure and by

the time that the fault is detected, the state of the closed-loop system resides within

the stability region of configuration two (V2 = 8.03 < cmax
2 = 9.4). Therefore, the

supervisor activates the fall-back configuration (with Q1 and Q3 as the manipulated

inputs, solid lines in Figure 4.16(a)) and the control system is able to drive the process

to the desired steady state and enforce closed-loop stability.

4.5 Conclusions

In this chapter, we presented an integrated fault-detection and fault-tolerant control

(FDFTC) structure, for nonlinear processes with input constraints subject to control

actuator failures. Under the assumption of full state feedback, the FDFTC structure

comprised of (1) a family of control configurations, each with a stabilizing feedback
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controller and an explicitly characterized stability region, (2) a fault-detection fil-

ter that detects faults by comparing the fault-free behavior of the closed-loop states

with their actual behavior, and (3) a high-level supervisor that orchestrates switching

between the control configurations, based on the stability regions, once a fault is de-

tected. When measurements of the full state were not available, a nonlinear observer

with sufficiently fast convergence properties was incorporated into the FDFTC struc-

ture to generate appropriate state estimates that were used to implement the state

feedback controllers, the fault-detection filter and the switching logic. It was shown

that by properly tuning the observer parameters and modifying the implementation of

the filter, the effect of the estimation error on the filter’s residual could be decoupled

from the effect of faults, thus preventing unnecessary false alarms. Finally, simulation

studies were presented to illustrate the main ideas behind the proposed method as

well as to successfully demonstrate an application in the presence of uncertainty and

measurement noise.
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Chapter 5

Fault-Tolerant Control of a

Polyethylene Reactor

5.1 Introduction

Industrial processes stand to gain from an application of fault-tolerant control struc-

tures that prevent loss of product (due, for example, to limit cycles) and possible

loss of equipment (due, for example, to unacceptably high temperatures) in the event

of a fault in the control configuration, while accounting explicitly for the complex

process characteristics manifested in the form of nonlinearities, constraints, and un-

certainty. One of the prerequisites in implementing fault-tolerant control is the abil-

ity to detect and isolate the occurrence of faults. Existing results on the design of

fault-detection filters include those that use past plant-data and those that use fun-

damental process models for the purpose of fault-detection filter design. Statistical

and pattern recognition techniques for data analysis and interpretation (for example,

[96, 145, 131, 44, 126, 43, 35, 156, 4, 187]) use past plant-data to construct indicators

that identify deviations from normal operation to detect faults. The problem of using

fundamental process models for the purpose of detecting faults has been studied ex-
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tensively in the context of linear systems [108, 60, 61, 40, 112] and more recently some

existential results in the context of nonlinear systems have been derived [146, 37].

This chapter focuses on fault-detection and fault-tolerant control of an industrial

gas phase polyethylene reactor modeled by seven nonlinear ordinary differential equa-

tions (ODEs). Polyethylene is the most popular of all synthetic commodity polymers,

with current worldwide production of more than 40 billion tonnes per year. Large

proportion of this polyethylene is produced in gas phase reactors using Ziegler-Natta

catalysts. In a gas phase polyethylene reactor, the temperature in the reaction zone

is kept above the dew point of the reactant and below the melting point of the poly-

mer to prevent melting and consequent agglomeration of the product particles. Most

commercial gas phase fluidized bed polyethylene reactors are operated in a relatively

narrow temperature range between 75◦C and 110◦C [174]. It has been demonstrated

[26, 111, 82] that without feedback temperature control (or in the event of failure

in the control configuration), industrial gas phase polyethylene reactors are prone to

unstable steady-states, limit cycles, and excursions toward unacceptable high temper-

ature steady-states which can lead to loss of product as well as damage the equipment.

To develop a fault-tolerant control system for the gas phase polyethylene reactor

[64], we initially describe the process evolution on the basis of a detailed model and

identify a family of candidate control configurations. For each control configuration,

a bounded nonlinear feedback controller, that enforces asymptotic closed-loop stabil-

ity in the presence of constraints, is designed, and the constrained stability region

associated with it is explicitly characterized using Lyapunov-based tools. Next, a

fault-detection filter is designed to detect the occurrence of a fault in the control ac-

tuator by observing the deviation of the process states from the expected closed-loop

behavior. A switching policy is then derived, on the basis of the stability regions,
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to orchestrate the activation/deactivation of the constituent control configurations

in a way that guarantees closed-loop stability in the event of control system faults.

Closed-loop system simulations demonstrate the effectiveness of the fault-tolerant

control strategy as well as investigate an application in the presence of measurement

noise.

5.2 Process Description and Modeling

Cooling
Water

Bleed

Catalyst

Product

Fresh Feed
Ethylene
Comonomer
Inerts
Hydrogen

Figure 5.1: Industrial gas phase polyethylene reactor system.

Figure 5.1 shows a schematic of an industrial gas phase polyethylene reactor sys-

tem. The feed to the reactor consists of ethylene, comonomer, hydrogen, inerts, and

catalyst. A stream of unreacted gases flows from the top of the reactor and is cooled by

passing through a heat exchanger in counter-current flow with cooling water. Cooling

rates in the heat exchanger are adjusted by instantaneously blending cold and warm

water streams while maintaining a constant total cooling water flowrate through the

heat exchanger. Mass balance on hydrogen and comonomer have not been considered

in this study because hydrogen and comonomer have only mild effects on the reactor
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dynamics [111]. A mathematical model for this reactor has the form [32]:

d[In]

dt
=

FIn − [In]

[M1] + [In]
bt

Vg

d[M1]

dt
=

FM1 −
[M1]

[M1] + [In]
bt −RM1

Vg

dY1

dt
= Fcac − kd1Y1 − RM1MW1Y1

Bw

dY2

dt
= Fcac − kd2Y2 − RM1MW1Y2

Bw

dT

dt
=

Hf + Hg1 −Hg0 −Hr −Hpol

MrCpr + BwCppol

dTw1

dt
=

Fw

Mw

(Twi − Tw1)−
UA

MwCpw

(Tw1 − Tg1)

dTg1

dt
=

Fg

Mg

(T − Tg1) +
UA

MgCpg

(Tw1 − Tg1)

(5.1)

where
bt = VpCv

√
([M1] + [In]) ·RR · T − Pv

RM1 = [M1] · kp0 · exp[−Ea

R
( 1

T
− 1

Tf
)] · (Y1 + Y2)

Cpg = [M1]
[M1]+[In]

Cpm1 + [In]
[M1]+[In]

CpIn

Hf = FM1Cpm1(Tfeed − Tf ) + FInCpIn(Tfeed − Tf )

Hg1 = Fg(Tg1 − Tf )Cpg

Hg0 = (Fg + bt)(T − Tf )Cpg

Hr = HreacMW1RM1

Hpol = Cppol(T − Tf )RM1MW1

(5.2)

Table 5.1 includes the definition of all the variables used in Equations 5.1-5.2.

The values of the process parameters are listed in Table 5.2. Under these operating

conditions, the open-loop system behaves in an oscillatory fashion (i.e., the system

possesses an open-loop unstable steady-state surrounded by a limit cycle).
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Table 5.1: Process variables.

ac active site concentration of catalyst
bt overhead gas bleed
Bw mass of polymer in the fluidized bed
Cpm1 specific heat capacity of ethylene
Cv vent flow coefficient
Cpw, CpIn, Cppol specific heat capacity of water, inert gas and polymer
Ea activation energy
Fc, Fg flow rate of catalyst and recycle gas
FIn, FM1 , Fw flow rate of inert, ethylene and cooling water
Hf enthalpy of fresh feed stream
Hg0 enthalpy of total gas outflow stream from reactor
Hg1 enthalpy of cooled recycle gas stream to reactor
Hpol enthalpy of polymer
Hr heat liberated by polymerization reaction
Hreac heat of reaction
[In] molar concentration of inerts in the gas phase
kd1 , kd2 deactivation rate constant for catalyst site 1, 2
kp0 pre-exponential factor for polymer propagation rate
[M1] molar concentration of ethylene in the gas phase
Mg mass holdup of gas stream in heat exchanger
MrCpr product of mass and heat capacity of reactor walls
Mw mass holdup of cooling water in heat exchanger
MW1 molecular weight of monomer
Pv pressure downstream of bleed vent
R ideal gas constant, unit of J

mol·K
RR ideal gas constant, unit of m3·atm

mol·K
T reactor temperature
Tf reference temperature
Tfeed feed temperature
Tg1 temperature of recycle gas stream from exchanger
Tw1 temperature of cooling water stream from exchanger
Twi inlet cooling water temperature to heat exchanger
UA product of heat exchanger coefficient with area
Vg volume of gas phase in the reactor
Vp bleed stream valve position
Y1, Y2 moles of active site type 1, 2
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Table 5.2: Parameter values and units.

Vg = 500 m3

Vp = 0.5
Pv = 17 atm
Bw = 7 · 104 kg

kp0 = 85 · 10−3 m3

mol·s
Ea = (9000)(4.1868) J

mol

Cpm1 = (11)(4.1868) J
mol·K

Cv = 7.5 atm−0.5 mol
s

Cpw = (103)(4.1868) J
kg·K

CpIn = (6.9)(4.1868) J
mol·K

Cppol = (0.85 · 103)(4.1868) J
kg·K

kd1 = 0.0001 s−1

kd2 = 0.0001 s−1

MW1 = 28.05 · 10−3 kg
mol

Mw = 3.314 · 104 kg
Mg = 6060.5 mol
MrCpr = (1.4 · 107)(4.1868) J

K

Hreac = (−894 · 103)(4.1868) J
kg

UA = (1.14 · 106)(4.1868) J
K·s

FIn = 5 mol
s

FM1 = 190 mol
s

Fg = 8500 mol
s

Fw = (3.11 · 105)(18 · 10−3) kg
s

F s
c = 5.8

3600
kg
s

Tf = 360 K
T s

feed = 293 K
Twi = 289.56 K

RR = 8.20575 · 10−5 m3·atm
mol·K

R = 8.314 J
mol·K

ac = 0.548 mol
kg

umax
1 = 5.78 · 10−4 K

s

umax
2 = 3.04 · 10−4 mol

s

[In]s = 439.68 mol
m3

[M1]s = 326.72 mol
m3

Y1s , Y2s = 3.835, 3.835 mol
Ts = 356.21 K
Tw1s

= 290.37 K
Tg1s

= 294.36 K

143



The control objective is to stabilize the reactor. To accomplish this objective we

consider the following manipulated input candidates:

1. Feed temperature, u1 =
FM1

Cpm1+FInCpIn

MrCpr+BwCppol
(Tfeed−T s

feed), subject to the constraint

|u1| ≤ u1
max =

FM1
Cpm1+FInCpIn

MrCpr+BwCppol
(20) K

s
.

2. Catalyst flowrate, u2 = (Fc − F s
c )ac, subject to the constraint |u2| ≤ u2

max =

( 2
3600

)ac
mol
s

.

Each of the above manipulated inputs represents a unique control configuration (or

control loop) that, by itself, can stabilize the reactor. The first control configuration,

with feed temperature (Tfeed) as the manipulated input, will be considered as the

primary configuration. In the event of some faults in this configuration, however, the

plant supervisor, will have to activate the fall-back configuration in order to maintain

closed-loop stability. The question which we address in the next section, is how

the supervisor determines, from observing the evolution of the process, that a fault

has occurred in the control configuration and whether or not the fall-back control

configuration will be able to stabilize the reactor if the primary control configuration

fails.

5.3 Fault-Tolerant Control

Having identified the candidate control configurations that can be used, we outline

in this section the main steps involved in the fault-tolerant control system design

procedure. These include: (a) the synthesis of a stabilizing feedback controller for

each control configuration, (b) the explicit characterization of the constrained stability

region associated with each configuration, (c) the design of a fault-detection filter,

and (d) the design of a switching law that orchestrates the re-configuration of control
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system in a way that guarantees closed-loop stability in the event of faults in the

active control configuration.

To present our results in a compact form, we write the model of Equation 5.1

in a deviation (from the operating unstable steady-state) variable form, by defining

x = [x1 x2 x3 x4 x5 x6 x7]
T where x1 = In − Ins, x2 = M1 − M1s , x3 = Y1 − Y1s ,

x4 = Y2−Y2s , x5 = T −Ts, x6 = Tw1−Tw1s
, x7 = Tg1−Tg1s

, and obtain a continuous-

time nonlinear system with the following state-space description:

ẋ(t) = fk(t)(x(t)) + gk(t)(x(t))uk(t)

|uk(t)| ≤ umax
k

k(t) ∈ K = {1, 2}
(5.3)

where x(t) ∈ IR7 denotes the vector of state variables and uk(t) ∈ [−umax
k , umax

k ] ⊂ IR

denotes the constrained manipulated input associated with the k-th control configu-

ration. k(t), which takes values in the finite index set K, represents a discrete state

that indexes the vector fields fk(·), gk(·) as well as the manipulated input uk(·). The

explicit form of the vector fields fk(t)(x(t)) and gk(t)(x(t)) can be obtained by com-

paring Equation 5.1 and Equation 5.3 and is omitted for brevity. For each value that

k assumes in K, the process is controlled via a different manipulated input which

defines a given control configuration. Switching between the two available control

configurations is controlled by a higher-level supervisor that monitors the process

and orchestrates, accordingly, the transition between the different control configu-

rations in the event of control system fault. This in turn determines the temporal

evolution of the discrete state, k(t). The supervisor ensures that only one control

configuration is active at any given time, and allows only a finite number of switches

over any finite interval of time. The control objective is to stabilize the process of

Equation 5.3 in the presence of actuator constraints and faults in the control system.

The basic problem is how to detect the occurrence of a fault and coordinate switching
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between the different control configurations (or manipulated inputs) in a way that re-

spects actuator constraints and guarantees closed-loop stability in the event of faults.

To simplify the presentation of our results, we will focus only on the state feedback

problem where measurements of all process states are available for all times.

5.3.1 Constrained Feedback Controller Synthesis

In this step, we synthesize, for each control configuration, a feedback controller that

enforces asymptotic closed-loop stability in the presence of actuator constraints. This

task is carried out on the basis of the process input/output dynamics. While our

control objective is to achieve full state stabilization, process outputs are introduced

only to facilitate transforming the system of Equation 5.1 into a form more suitable

for explicit controller synthesis.

1. For the primary control configuration with u1 =
FM1

Cpm1+FInCpIn

MrCpr+BwCppol
(Tfeed−T s

feed),

we consider the output y1 = T − Ts. This choice yields a relative degree of r1 = 1

with respect to u1. The input/output dynamics can be then expressed in terms of

the time-derivative of the variable: e1 = T − Ts.

2. For the fall-back control configuration with u2 = (Fc − F s
c )ac, we choose the

output y2 = T − Ts which yields a relative degree of r2 = 2 and the corresponding

variables for describing the input/output dynamics take the form: e1
2 = T − Ts,

e2
2 =

Hf+Hg1−Hg0−Hr−Hpol

MrCpr+BwCppol
. In particular, for the fall-back control configuration, the

system describing the input/output dynamics has the following form:

ė2 = A2e2 + l2(e2) + b2α2u2

:= f̄2(e2) + ḡ2(e2)u2
(5.4)

where A2 =

[
0 1
0 0

]
, b2 =

[
0
1

]
, e2 =

[
e1
2

e2
2

]
, l2(·) = L2

f2
h2(x), α2(·) = Lg2Lf2h2(x),

h2(x) = y2 is the output associated with the fall-back control configuration (the

explicit form of the functions f2(·) and g2(·) is omitted for brevity).
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The inverse dynamics, for both the first and second control configurations, have

the following form:
η̇1 = Ψ1,k(e, η)

...
η̇7−rk

= Ψ7−rk,k(e, η)

(5.5)

where k = 1, 2 and Ψ1,k · · ·Ψ7−rk,k are nonlinear functions of their arguments describ-

ing the evolution of the inverse dynamics of the k-th mode.

Using a quadratic Lyapunov function of the form Vk = eT
k Pkek, where Pk is a

positive-definite symmetric matrix that satisfies the Riccati inequality AT
k Pk +PkAk−

Pkbkb
T
k Pk < 0, we synthesize, for each control-loop, a bounded nonlinear feedback

control law (see [103, 46, 48]) of the form:

uk = −r(x, umax
k )Lḡk

Vk (5.6)

where r(x, umax
k ) =

L∗̄fk
Vk +

√
(L∗̄

fk
Vk)2 + (umax

k |Lḡk
Vk|)4

(|Lḡk
Vk|)2

[
1 +

√
1 + (umax

k |Lḡk
Vk|)2

] (5.7)

and L∗̄fk
Vk = Lf̄k

Vk + ρ|ek|2, ρ > 0. The scalar function r(·) in Equations 5.6-

5.7 can be considered as a nonlinear controller gain. It can be shown that each

control configuration asymptotically stabilizes the e states in each mode. This result,

together with the property of the η states to be input-to-state stable, can be used to

show, via a small gain argument, asymptotic stability for each control configuration

(verified through simulation and analysis of the system of Equation 5.7 with ek = 0

for both k = 1 and k = 2). This controller gain, which depends on both the size of

actuator constraints, umax
k , and the particular configuration used is shaped in a way

that guarantees constraint satisfaction and asymptotic closed-loop stability within a

well-characterized region in the state-space. The characterization of this region is

discussed in the next step.
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5.3.2 Characterization of Constrained Stability Regions

Given that actuator constraints place fundamental limitations on the initial conditions

that can be stabilized, it is important for the control system designer to explicitly

characterize these limitations by identifying, for each control configuration, the set of

admissible initial conditions starting from where the constrained closed-loop system

is asymptotically stable. As discussed in step (d) below, this characterization is

necessary for the design of an appropriate switching policy that ensures the fault-

tolerance of the control system. The control law designed in step (a) provides such a

characterization. Specifically, using a Lyapunov argument, one can show that the set

Θ(umax
k ) = {x ∈ IR7 : L∗̄fk

Vk ≤ umax
k |Lḡk

Vk|} (5.8)

describes a region in the state space where the control action satisfies the constraints

and the time-derivative of the corresponding Lyapunov function is negative-definite

along the trajectories of the closed-loop system. Note that the size of this set de-

pends, as expected, on the magnitude of the constraints. In particular, the set be-

comes smaller as the constraints become tighter (smaller umax
k ). For a given control

configuration, one can use the above inequality to estimate the stability region asso-

ciated with this configuration. This can be done by constructing the largest invariant

subset of Θ, which we denote by Ω(umax
k ). Confining the initial conditions within the

set Ω(umax
k ) ensures that the closed-loop trajectory stays within the region defined

by Θ(umax
k ), and thereby Vk continues to decay monotonically, for all times that the

k-th control configuration is active (see [46] for further discussion on this issue).

An estimate of the region of constrained closed-loop stability for the full system

is obtained by defining a composite Lyapunov function of the form Vck
= Vk + Vηk

,

where Vηk
= ηT Pηk

η and Pηk
is a positive definite matrix and choosing a level set of

Vck
, Ωck

, for which V̇ck
< 0 for all x in Ωck

.
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Remark 5.1 Note that the composite Lyapunov functions, Vck
, used in implement-

ing the switching rules, are in general different from the Lyapunov functions Vk used

in designing the controllers. Owing to the ISS property of the ηk-subsystem of each

mode, only a Lyapunov function for the ek subsystem, namely Vk, is needed and

used to design a controller that stabilizes the full ek − ηk interconnection for each

mode. However, when implementing the switching rules (constructing the Ωck
), we

need to track the evolution of x (and hence the evolution of both ek and ηk). There-

fore, the Lyapunov functions used in verifying the switching conditions at any given

time, Vck
, are based on x. From the asymptotic stability of each mode, the existence

of these Lyapunov functions is guaranteed by converse Lyapunov theorems. Note

also that the above controller design is only one example of a controller design that

allows for an explicit characterization of the stability region and is used for the pur-

pose of illustration. Other controller designs such as the hybrid predictive controller

[55, 114, 54, 116] that enable implementation of predictive controllers with a well

characterized stability region can also be used to achieve fault-tolerant control within

the proposed framework.

Remark 5.2 Note that in practical implementation when the state trajectory gets

close to the desired equilibrium point, the first (|Lḡk
Vk|)2 term in the denominator of

the control law of Equation 5.7 could cause chattering in the control action. To alle-

viate this chattering, a small positive number νk may be added to the first (|Lḡk
Vk|)2

term in the denominator. The addition of νk allows for achieving practical stability,

with decrease in magnitude of νk (while keeping it large enough to avoid chattering)

resulting in the state trajectory going further closer to the desired equilibrium point.

5.3.3 Fault-Detection Filter Design

The next step in implementing fault-tolerant control is that of designing appropriate

fault-detection filters that can detect the occurrence of a fault in the control actuator

by observing the behavior of the closed-loop process. To this end, we design for a
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given control configuration, a fault detection filter of the form:

ẇ(t) = fk(w(t)) + gk(w(t))uk(w)

|uk| ≤ umax
k

rk(t) = ‖x(t)− w(t)‖
(5.9)

where x(t) ∈ IR7 denotes the vector of state variables and uk(t) ∈ [−umax
k , umax

k ] ⊂ IR

denotes the constrained manipulated input associated with the k-th control config-

uration, w(t) ∈ IR7 is the vector of filter states and rk(t) ∈ IR is the residual that

detects the occurrence of a fault. The filter states are initialized at the same value as

the process states (w(0) = x(0)) and essentially predict the evolution of the process

in the absence of actuator faults. The residuals captures the difference between the

predicted evolution of the states in the absence of faults and that of the process state,

thereby detecting faults in the control actuators. Specifically, the value of rk(t) be-

comes non-zero at the earliest time that a fault occurs (for a detailed analysis of the

detection properties of the filter, see Chapter 4).

Remark 5.3 Note that in the presence of measurement noise, the value of r(t) will

be nonzero even in the absence of faults. To handle this problem, the filter should

declare a fault only if the value of r(t) increases beyond some threshold, δ, where δ

accounts for the deviation of the plant measurements from the nominal measurements

in the absence of faults (see the simulation section for a demonstration). Note also,

that plant model mismatch or unknown disturbances can also cause the value of r(t)

to be nonzero even in the absence of faults. The FDFTC problem in the presence of

time varying disturbances with known bounds on the disturbances can be handled by

redesigning the filter as well as the controllers for the individual control configuration.

Specifically, as in the case of measurement noise, the filter should declare a fault only if

the value of r(t) increases beyond some threshold, δ, where δ accounts for the deviation

of the plant dynamics from the nominal dynamics in the absence of faults. The

controllers for the individual control configurations need to be redesigned to mitigate

the effect of disturbances on the process, in a way that allows the characterization
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of the robust stability regions. The robust stability region can subsequently be used

in deciding which backup control configuration should be implemented in the closed-

loop. With regard to the fault-detection filter, the detection threshold provides a

suitable handle that can be used to achieve early fault detection. In the presence of

noise, however, having a small fault-detection threshold can lead to the triggering of

false alarms (as demonstrated in the simulation example) and should be picked to

achieve the desired tradeoff between avoiding false alarms and detecting faults.

5.3.4 Fault-Tolerant Switching Logic

Having designed the feedback control laws, characterized the stability region asso-

ciated with each control configuration, and designed the fault-detection filter, the

fourth step is to derive the switching policy that the supervisor needs to employ

to activate/deactivate the appropriate control configurations in the event of faults.

The key idea here is that, because of the limitations imposed by constraints on the

stability region of each configuration, the supervisor can only activate the control

configuration for which the closed-loop state is within the stability region at the time

of control system fault. Without loss of generality, let the initial actuator configura-

tion be k(0) = 1, Tfault be the time when this configuration fails and let Tdetect be

the earliest time at which the value of r1(t) > δr1 > 0 (where δr1 is the detection

threshold chosen based on the acceptable level of deviation of the actual closed-loop

performance from the desired one), then the switching rule given by

k(t ≥ Tdetect) = 2 if x(Tdetect) ∈ Ωc2(u
max
2 ) (5.10)

guarantees asymptotic closed-loop stability. The implementation of the above switch-

ing law requires monitoring the closed-loop state trajectory with respect to the sta-

bility regions associated with the various actuator configurations. This idea of tieing

the switching logic to the stability regions was first proposed in [49] for the control
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of switched nonlinear systems.

5.4 Simulation Results

Several simulation runs were carried out to evaluate the effectiveness of the proposed

fault-detection and fault-tolerant control strategy. Figure 5.2 shows the evolution

of the open-loop state profiles. Under the operating conditions listed in Table 5.2,

the open-loop system behaves in an oscillatory fashion (i.e., the system possesses an

open-loop unstable steady-state surrounded by a stable limit cycle).

First, process operation under primary control configuration was considered (i.e.,

the feed temperature, Tfeed, was the manipulated input) and a bounded nonlinear con-

troller was designed using the formula of Equations 5.6-5.7. Specifically, a quadratic

function of the form V1 = 1
2
(T −Ts)

2 and ρ1 = 0.01 were used to design the controller

and a composite Lyapunov function of the form Vc1 = 5 × 10−3(In − Ins)
4 + 5 ×

10−4(M1−M1s)
2 + 5× 10−11(Y1− Y1s)

2 + 5× 10−11(Y2− Y2s)
2 + 5× 10−4(T − Ts)

2 +

5×10−2(Tw1−Tw1s)
2 +5×10−11(Tg1−Tg1s)

2 was used to estimate the stability region

of the primary control configuration yielding a cmax
1 = 62.

The first (|Lḡk
Vk|)2 term in the denominator of the control law of Equation 5.7 was

replaced by (|Lḡk
Vk|)2+νk (as discussed in Remark 5.2), with ν1 = 1 and ν2 = 5×10−9,

to alleviate chattering of the control action close to the desired equilibrium point under

configurations 1 and 2, respectively. Figure 5.3 shows the evolution of the closed-loop

state profiles and Figure 5.4 shows the evolution of the manipulated inputs starting

from the initial condition In(0) = 450 mol
m3 , M1(0) = 340 mol

m3 , Y1(0) = 4.6 mol,

Y2(0) = 4.6 mol, T (0) = 360 K, Tw1(0) = 300 K, and Tg1(0) = 300 K for which

Vc1 = 61.4. Since this initial state is within the stability region of the primary control

configuration (i.e., Vc1(x(0)) ≤ cmax
1 ), the primary control configuration is able to
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Figure 5.2: Evolution of the open-loop process states.
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stabilize the system at the steady-state of interest.
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Figure 5.3: Closed-loop state profiles under the primary control configuration.

Next, we considered the case of having a fault in the primary control configuration.

In this case, the supervisor had available a fall-back control configuration with the

catalyst flowrate, Fc, as the manipulated input. A quadratic Lyapunov function of

the form V2 = eT
2 P2e2 and ρ2 = 0.01 was used to design the controller that used

the fall-back control configuration and a composite Lyapunov function of the form

Vc2 = 5 × 10−3(In − Ins)
4 + 5 × 10−4(M1 − M1s)

2 + 5 × 10−11(Y1 − Y1s)
2 + 5 ×
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10−11(Y2− Y2s)
2 + 5× 10−4(T − Ts)

2 + 5× 10−11(Tw1 − Tw1s)
2 + 5× 10−11(Tg1 − Tg1s)

2

was used to estimate the stability region of the fall-back control configuration yielding

a cmax
2 = 56.8.

To demonstrate that control loop reconfiguration results in fault-tolerant reactor

control in the presence of input constraints, we carried out the following simulations:

We first initialized the reactor at In(0) = 450 mol
m3 , M1(0) = 340 mol

m3 , Y1(0) = 4.6 mol,

Y2(0) = 4.6 mol, T (0) = 360 K, Tw1(0) = 300 K, and Tg1(0) = 300 K resulting

in Vc1 = 61.4 which implied that this initial state was within the stability region

of the primary control configuration. Consider now, a fault in the primary control

configuration at time Tfault = 5 hrs 34 mins (see dashed lines in Figures 5.5-5.6).

In the case of no switching to fall-back control configuration or no backup control

configurations available, closed-loop stability is not achieved and the process behaves

in an oscillatory fashion (solid line in Figure 5.5).

However, applying our fault-detection and fault-tolerant control strategy, the su-
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Figure 5.5: Evolution of the closed-loop state profiles under primary control configuration

(dashed lines) and no fall-back control configuration available to switch to (or fall-back

control configuration is not activated) resulting in open-loop oscillatory behavior (solid

lines) after primary control configuration fails at Tfault = 5 hrs 34 mins.
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Figure 5.6: Evolution of the closed-loop state profiles under primary control configuration

(dashed lines) which fails at Tfault = 5 hrs 34 mins. At this point, the process starts

operating open-loop (dotted lines). At Tdetect = 5 hrs 54 mins, the detection filter verifies

that there is a fault on the primary control configuration and the control system switches

to the fall-back control configuration (solid lines).
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pervisor kept track of the residual value r1 (see dashed line in Figure 5.7) and ob-

served the residual value r1 becoming non-zero at Tfault = 5 hrs 34 mins. At

Tdetect = 5 hrs 54 mins, the residual value r1 reached the detection threshold

(δr1 = 0.5) and a fault on primary control configuration was declared. The supervisor,

then, checked if switching to fall-back control configuration would preserve stability.

This was done by evaluating the value of the composite Lyapunov function of the

fall-back control configuration at Tdetect = 5 hrs 54 mins where the states were of

the following values: In(Tdetect) = 449.7 mol
m3 , M1(Tdetect) = 316.9 mol

m3 , Y1(Tdetect) =

3.86 mol, Y2(Tdetect) = 3.86 mol, T (Tdetect) = 356.3 K, Tw1(Tdetect) = 290.4 K, and

Tg1(Tdetect) = 294.3 K. Since Vc2(x(Tdetect)) = 49.6 ≤ cmax
2 , the state, at the time the

filter detected the fault in the primary control configuration, was within the stability

region of the fall-back control configuration. Therefore, switching to fall-back control

configuration would preserve closed-loop stability (see solid lines in Figure 5.6).

Next, we also investigated the implementation of the fault-detection and fault-

tolerant control strategy in the presence of measurement noise. Specifically, we

considered Gaussian measurement noise of the following magnitude: In = 0.5 mol
m3 ,

M1 = 0.3 mol
m3 , Y1 = 0.04 mol, Y2 = 0.04 mol, T = 0.8 K, Tw1 = 0.3 K, and

Tg1 = 0.3 K. Note that in the presence of measurement noise, the value of the

residual stayed non-zero even in the absence of actuator faults (for the measurement

noise considered in this study, a detection threshold of δr1 = 0.5 was no longer appro-

priate and triggered false alarms). A new threshold that captured the effect of the

measurement noise on the value of the residual was needed. A detection threshold

of (δr1 = 0.7) was then picked. Consider once again a fault in the primary control

configuration at time Tfault = 5 hrs 34 mins. This fault was detected by the fault-

detection filter via the residual reaching the threshold at Tdetect = 5 hrs 54 mins (see
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Figure 5.7: Evolution of the detection filter residual value under primary control configura-

tion (dashed line). At Tdetect = 5 hrs 54 mins, the detection filter residual value reaches the

detection threshold of 0.5 which verifies that a fault on the primary control configuration

occurs. A switch to the fall-back control configuration (solid line) resets the detection filter

residual back to zero.
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Figure 5.8: Evolution of the closed-loop state profiles in the case of measurement noise under

primary control configuration (dashed lines) which fails at Tfault = 5 hrs 34 mins. At this

point, the process starts operating open-loop (dotted lines). At Tdetect = 5 hrs 54 mins,

the detection filter verifies that there is a fault on the primary control configuration and

the control system switches to the fall-back control configuration (solid lines).
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Figure 5.9: Evolution of the detection filter residual value in the case of measurement noise.

A detection threshold of 0.5 triggers false alarm even before real fault on primary control

configuration at Tfault = 5 hrs 34 mins. A new detection threshold of 0.7 is picked and

implemented. At Tdetect = 5 hrs 54 mins, the detection filter residual value reaches the

detection threshold of 0.7 which verifies that a fault on the primary control configuration

occurs. A switch to the fall-back control configuration resets the detection filter residual

back to normal.
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Figure 5.10: Evolution of the open-loop (dotted lines) and closed-loop (solid lines) state

profiles under the primary control configuration in the presence of parametric model uncer-

tainty and disturbances.
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dashed line in Figure 5.9). The supervisor, then, checked if switching to fall-back

control configuration would preserve stability. As before, this was done by evaluating

the value of the composite Lyapunov function of the fall-back control configuration

at Tdetect = 5 hrs 54 mins where the states were of the following values: In(Tdetect) =

449.3 mol
m3 , M1(Tdetect) = 327.5 mol

m3 , Y1(Tdetect) = 3.83 mol, Y2(Tdetect) = 3.83 mol,

T (Tdetect) = 355.6 K, Tw1(Tdetect) = 290.4 K, and Tg1(Tdetect) = 294.4 K. Since

Vc2(x(Tdetect)) = 42.7 ≤ cmax
2 , the state, at the time the filter detected the fault in the

primary control configuration, was within the stability region of the fall-back control

configuration. Subsequent switching to the fall-back control configuration once again

resulted in closed-loop stability (see solid lines in Figure 5.8).

Finally, we also evaluated the robustness of the controller that is a vital com-

ponent of the fault-tolerant control structure. We considered values of some of the

process parameters being different from the ones used in the controller design, specif-

ically, Ea = 38.058 kJ/mol and Hreac = 3780.429 kJ/kg and also in the presence of

disturbance in the inlet coolant temperature, with Twi = 288.56K. The dotted lines

in Figure 5.10 show the open-loop profiles illustrating the effect of the presence of

disturbances and uncertainty in the parameters on the process states. In contrast,

when the primary control configuration is implemented, the controller is able to reject

the disturbances and stabilize the process at the desired equilibrium point (see solid

lines in Figure 5.10).

5.5 Conclusions

In this chapter, we focused on fault-tolerant control of an industrial gas phase poly-

ethylene reactor. Initially, a family of candidate control configurations, characterized

by different manipulated inputs, were identified. For each control configuration, a
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bounded nonlinear feedback controller, that enforced asymptotic closed-loop stabil-

ity in the presence of constraints, was designed, and the constrained stability region

associated with it was explicitly characterized using Lyapunov-based tools. A fault-

detection filter was designed to detect the occurrence of a fault in the control actuator

by observing the deviation of the process states from the expected closed-loop behav-

ior. A switching policy was then derived, on the basis of the stability regions, to

orchestrate the activation/deactivation of the constituent control configurations in a

way that guaranteed closed-loop stability in the event of control system faults. Closed-

loop simulations were carried out to implement the fault-tolerant control strategy on

the gas phase polyethylene reactor and to demonstrate the implementation of the

fault-tolerant control method in the presence of measurement noise.
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Chapter 6

Fault-Tolerant Control of

Nonlinear Process Systems Subject

to Sensor Faults

6.1 Introduction

The ability to implement fault-tolerant control relies on some degree of redundancy

in the control configurations (availability of sets of sensor/actuator combinations that

can be used to implement controllers), that can either be used all at one time (the

reliable control approach, for example, [178]), or activated when the need arises (the

reconfiguration approach). The use of only as many control loops as required at a

time is motivated by economic considerations (to save on unnecessary control action),

and has been employed in the context of chemical processes; however, the available

results are mostly based on the assumption of a linear system description (for example,

[10, 173]), and do not account for complexities such as control constraints.

In implementing fault-tolerant control (as well as feedback control), the impor-

tance of sensors is well-recognized and several researchers have focused on the prob-
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lem of efficient sensing and measurement for well-functioning sensors and networks

of sensors [23, 7, 125]. In [15, 157, 68, 150] the problem of measurements arriving at

different known rates and its implication on simulation and control (multi-rate con-

trol) is addressed. In chemical processes, sensor data losses arising due to sampling,

measurement or communication irregularities are more likely to be manifested as in-

termittent availability of measurements (asynchronous measurements), where only an

average rate of availability of measurements is known, but not the exact times when

the measurements will be available.

When explicitly considered, irregular measurements can be analyzed as a robust-

ness problem. Specifically, for a given stabilizing control law, a bound on the sensor

data loss rate (defined as the ratio of the time during which measurements are avail-

able over the total time) can be computed such that if the sensor data loss rate is

within this bound, closed-loop stability is preserved. The difference in the nature of

sensor irregularities (measurements arriving at different known rates as opposed to

asynchronously) has important implications in the robustness of a given system to

sensor data losses. Furthermore, for unconstrained systems, such a bound for the

data loss rate (defined over an infinite time interval) can be computed (for example,

see [75, 186] and the references therein). For constrained systems, however, for such

a bound on the data loss rate to exist, it has to be defined over a finite time inter-

val where the derived bound accounts for the limitations imposed by the presence of

constraints.

The extensive work in the area of nonlinear process control can be utilized toward

computing such a bound, and in choosing the appropriate feedback laws (for excel-

lent reviews of results in the area of nonlinear process control see [95, 14, 180, 109];

for a more recent review see [29]). These approaches have recently been utilized to
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address the problem of fault-tolerant control of nonlinear processes subject to con-

straints and faults in the control actuators. In Chapter 2, sensor faults arising due to

communication losses were modeled as delays in implementing the control action and

a reconfiguration strategy was devised to achieve fault-tolerance subject to faults in

the control actuators. In Chapter 4, a reconfiguration based approach was utilized

for the purpose of achieving tolerance to actuator faults under the assumptions that

the measurements were continuously available. The results of Chapter 2 and 4 how-

ever, do not take the presence of intermittent sensor data losses into account either

in the implementation of individual control configurations, or in the reconfiguration

strategies. The fault-tolerant (or even stabilizability in the absence of faults) capa-

bilities of the results of Chapter 2 and 4 therefore do not hold in the presence of

sensor data losses. Furthermore, outside of these recent results as well the problem

of fault-tolerant control for handling sensor faults for nonlinear systems subject to

constraints in the control actuators has received limited attention.

Motivated by the above, in this chapter, we consider the problem of fault-tolerant

control of nonlinear process systems subject to input constraints and sensor faults

(both complete failures and asynchronous measurements) [120]. We employ a recon-

figuration approach, wherein, for a given process, a set of candidate control configu-

rations are first identified, and in the event of a fault an appropriate backup config-

uration is activated to maintain stability. To illustrate the importance of accounting

for the presence of constraints, we first consider sensor faults manifested as complete

loss of measurements (faults that necessitate taking corrective action to repair the

sensors). We address the problem of determining which candidate control configura-

tion should be implemented in the closed-loop system to achieve stability after the

sensor is recovered (this analysis is carried out under the assumption of continuous
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availability of measurements when the sensor is functioning). We then consider the

problem in the presence of intermittent sensor data losses. We define the sensor data

loss rate to account for the presence of constraints (specifically, we define the data loss

rate over a finite time interval) and analyze the stability properties in the presence of

input constraints and sensor data losses. We characterize the stability region (that

is, the set of initial conditions starting from where closed-loop stabilization under

continuous availability of measurements is guaranteed) and the maximum allowable

data loss rate that a given control configuration can tolerate. If the data loss rate

goes above the allowable data loss rate, reconfiguration is triggered and a candidate

backup configuration is activated for which the state of the closed-loop system re-

sides in the stability region of the candidate configuration and the data loss rate is

less than the allowable data loss rate for the candidate control configuration. We use

a chemical reactor to illustrate our method and then demonstrate an application to

a polyethylene reactor.

6.2 Preliminaries

We consider nonlinear processes with input constraints, described by:

ẋ = f(x) + Gk(t)(x)uk(t)(y(t))

y(t) =

{
x(t) t ∈ [t2i, t2i+1)

x(t2i+1) t ∈ [t2i+1, t2i+2)

}

uk ∈ Uk, k(t) ∈ K = {1, · · · , N}, N < ∞

(6.1)

where x ∈ IRn denotes the vector of state variables, y ∈ IRn denotes the vector

of measured variables, [t2i, t2i+1) and [t2i+1, t2i+2) denote the time intervals during

which measurements of the state variables are available, and are lost, respectively,

with t0 = 0 (that is, measurement being initially available), uk(t)(x) ∈ IRm denotes

the manipulated inputs under the kth configuration taking values in a nonempty
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convex subset Uk of IRm, where Uk = {u ∈ IRm : ‖u‖ ≤ umax
k }, ‖ · ‖ is the Euclidean

norm of a vector, umax
k > 0 is the magnitude of input constraints and f(0) = 0.

The vector function f(x) and the matrix Gk(x) = [g1,k(x) · · · gm,k(x)] are assumed

to be sufficiently smooth on their domains of definition. k(t), which takes values

in the finite index set K, represents a discrete state that indexes the matrix Gk(·)
as well as the manipulated input uk(·). For each value that k assumes in K, the

system is controlled via a different set of manipulated inputs which defines a given

control configuration. The notation Lfh denotes the standard Lie derivative of a

scalar function h(·) with respect to the vector function f(·) and the notation x(T−)

denotes the limit of the trajectory x(t) as T is approached from the left, that is,

x(T−) = lim
t→T−

x(t). Throughout the manuscript, we assume that for any uk ∈ Uk the

solution of the system of Equation 6.1 exists and is continuous for all t.

We next review one example of a state feedback controller [46, 48] (inspired by

the results on bounded control in [103]) that, under the assumption of continuous

availability of measurements, provides an explicit estimate of the stability region

for the closed-loop system subject to constraints (for more details on the controller

design, see [46, 48]).

Theorem 6.1 Consider the nonlinear system of Equation 6.1 under state feedback

(that is, x(t) is available for all t ≥ 0) for a configuration k, for which a Control Lya-

punov Function Vk exists, under the following bounded nonlinear feedback controller:

uk = −wk(x, umax
k )(LGk

Vk(x))T (6.2)
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where wk(x, umax
k ) =





αk(x) +
√

α2
k(x) + (umax

k ‖bT
k (x)‖)4

‖bT
k (x)‖2

[
1 +

√
1 + (umax

k ‖bT
k (x)‖)2

] , bT
k (x) 6= 0

0, bT
k (x) = 0

(6.3)

with αk(x) = Lfk
Vk(x) + ρkVk(x), ρk > 0 and bk(x) = LGk

Vk(x). Assume that the

set Φk(u
max
k ) of x satisfying

Lfk
Vk(x) + ρkVk(x) ≤ umax

k ‖(LGk
Vk(x))T‖ (6.4)

contains the origin and a neighborhood of the origin. Also, let Ωk(u
max
k ) := {x ∈ IRn :

Vk(x) ≤ cmax
k } be a level set of Vk, completely contained in Φk, for some cmax

k > 0.

Then for all x(0) ∈ Ωk(u
max
k ) the control law of Equations 6.2-6.4 guarantees that the

origin of the closed-loop system is asymptotically stable [48].

Proof of Theorem 6.1 Please refer to [46, 48] for proof of Theorem 6.1.

Remark 6.1 The problems caused by input constraints have motivated numerous

studies on the dynamics and control of systems subject to input constraints. Im-

portant contributions include results on optimization-based methods such as model

predictive control (for example, [66, 164, 109]) and Lyapunov-based control (for ex-

ample, [103, 158, 85, 92]). Stabilizing control laws that provide explicitly-defined

regions of attraction for the closed-loop system have been developed using Lyapunov

techniques; the reader may refer to [92] for a survey of results in this area. Recently,

we developed a hybrid predictive control structure that employs switching between

bounded control and MPC for stabilization of nonlinear systems [54], and nonlinear

systems with uncertainty [116], subject to input constraints via using Lyapunov-based

controllers [46, 48] as fall-back controllers. More recently Lyapunov-based model pre-

dictive controllers were designed that guarantee stabilization from an explicitly char-

acterized set of initial conditions in the presence of input [115] and input and state

[117] constraints. The controller of Equation 6.3 is one example of a controller design
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that provides an explicit characterization of the stability region in the presence of

input constraints, and is only used to illustrate the main ideas behind the proposed

approach. The results in this chapter are not limited to this particular controller

design, and any other controller design that provides an explicit characterization of

the stability region can be used instead (for example, the hybrid predictive controller

[54, 116] or the Lyapunov-based predictive controller [115, 117]; for further details

and references, see [29]).

6.2.1 A Chemical Reactor Example

In this section, we re-visit the chemical reactor in Section 2.4.1 that we will use to

illustrate the key features of our proposed method. The mathematical model of the

process described in Equation 2.13. The values of the process parameters and the

corresponding steady-state values can be found in Section 2.4.1. It was verified that

under these conditions, the system of Equation 2.13 has three steady-states (two

locally asymptotically stable and one unstable at (Ts, CAs) = (388 K, 3.59 mol/L)).

The control objective considered here is that of stabilizing the reactor at the

(open-loop) unstable steady-state using the measurements of concentration and tem-

perature. The following manipulated input candidates are assumed to be available

(see Figure 2.3):

1. Configuration 1: Rate of heat input, u1 = Q, subject to the constraints |Q| ≤
u1

max = 748 KJ/s.

2. Configuration 2: Inlet stream temperature, u2 = TA0 − TA0s, subject to the

constraints |u2| ≤ u2
max = 100 K.

3. Configuration 3: Inlet reactant concentration, u3 = CA0 − CA0s, subject to the

constraints |u3| ≤ u3
max = 4 mol/L.
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where configuration 2 will be used as the primary manipulated input.

To this end, we consider the chemical reactor operating under a given control con-

figuration. At a certain time, one of the sensors fails in a way that it is imperative

to recover the sensor to implement feedback control. The problem that we analyze is

whether reactivating the original control configuration (after sensor recovery) guar-

antees closed-loop stability. We will next consider the problem where the sensors do

not fail, however, the process experiences intermittent loss of measurements (and this

rate increases at a certain time due to sampling/measurement/communication errors.

In this case, how much measurement data loss can be tolerated by the currently active

control configuration, before it becomes necessary to reconfigure, and, if necessary,

which backup configuration should be activated in the closed-loop system. Note that

while we use the simple chemical reactor example only to motivate our results, the

scenarios that we describe are relevant to all process operations. We also include an

application to a more realistic process example, a polyethylene reactor, on the second

example.

6.3 Stabilization Subject to Sensor Failures

In this section, we consider the problem arising out of sensor failures that lead to

the failure of the control loop and necessitate recovery. In analyzing this problem

and in devising the fault-tolerant control strategy, we account for the presence of

nonlinearity and constraints and show how they impact the reconfiguration logic.

6.3.1 Reconfiguration Law

Consider the closed-loop system of Equations 6.1-6.4 for which candidate control

configurations have been identified and the stability region under each candidate con-
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figuration has been explicitly characterized. Let the closed-loop system of Equations

6.1-6.4 be initialized under a configuration k with x0 ∈ Ωk. Let T f be the time at

which the sensor fails and T r be the time at which the sensor recovers. In the absence

of measurements, the process runs open loop from the time T f to T r. Consequently,

during this time the process state may drift further away from the desired operating

condition. When the measurements become available again, switching to the original

control configuration may not achieve closed-loop stability. The key consideration

in devising the reconfiguration logic is the limitation imposed on the stability re-

gion under a given control configuration by the presence of input constraints and is

formalized below:

Theorem 6.2 Let k(0) = i for some i ∈ K and x(0) := x0 ∈ Ωi. Let T f be the time

that the sensor measurements become unavailable and let T r be the earliest time that

they become available again. Then, the following switching rule:

k(t) =





i, 0 ≤ t < T f

l, t ≥ T r, x(T r) ∈ Ωl





(6.5)

guarantees asymptotically stabilization of the origin of the closed-loop system.

Proof of Theorem 6.2 We consider the two possible cases; first if no sensor failure

occurs (T f = ∞), and second if a failure occurs at some finite time T f and the sensors

are recovered at time T r.

Case 1: The absence of a failure implies k(t) = i ∀ t ≥ 0. Furthermore, since

x(0) ∈ Ωi, and control configuration i is implemented for all times in this case,

asymptotic stability follows from Theorem 6.1.

Case 2: At time T r, the supervisor switches to a control configuration l for

which x(T r) ∈ Ωl. From this time onwards, since configuration l is implemented in

the closed-loop system for all times, and since x(T f ) ∈ Ωl, once again, asymptotic

stability follows from Theorem 6.1.
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This completes the proof of Theorem 6.2.

Remark 6.2 Theorem 6.2 accounts for the presence of constraints in the reconfig-

uration logic via the consideration of the stability region of candidate control config-

urations. Note that the problem that we consider here are sensor failures that result

in loss of controllability. For the sake of illustration, consider a linear system of the

form ẋ = Ax + Bu; y = Cx, where x is the state vector, y is the vector of measured

variables and u is the vector of manipulated variables, with A, B and C being matri-

ces of appropriate dimensions. Consider the case when all state variables are being

measured (C = I), and a state feedback law of the form u = Ky = Kx is used to

stabilize the system. Further let some of the sensors fail at some time, resulting in a

new C matrix denoted by C̄. The same feedback gain matrix K may no longer be

stabilizing. If C̄ is such that it can be used to reconstruct (estimate) the unstable

states of the system (that is, all the unstable states remain observable) then feedback

control (with an observer, and with a different feedback gain matrix) can still be used

to stabilize the system. However if C̄ is such that some of the unstable states of the

system become unobservable, then the system simply cannot be stabilized using feed-

back control, and fixing the sensors becomes imperative. In other words, it is when

measurements become unavailable (due to individual sensor malfunction, or loss of

communication lines) that result in loss of controllability, that it becomes imperative

to detect, isolate and correct the problem. Due to the open-loop behavior of the

process during this intermediate time, the process states may drift and go out of the

stability region of the currently active control configuration. Reactivating the origi-

nal control configuration may therefore not stabilize the closed-loop system making

it necessary to ascertain the suitability of a candidate control configuration by using

Theorem 6.2 (see the simulation example for a demonstration).

Remark 6.3 While in this chapter we do not focus on the problem of fault-detection

and isolation (considering instead the problem of determining the corrective action

that needs to be taken once the fault information is available), this problem has been

174



approached using a data-based or a model-based strategy. Statistical and pattern

recognition techniques for data analysis and interpretation (for example, [144, 74,

5, 4, 112]), use past plant data to construct indicators that identify deviations from

normal operation, and help in isolating faults. The problem of using fundamental

process models for the purpose of detecting faults has been studied extensively in the

context of linear systems [108, 60, 67]; and recently, some existential results in the

context of nonlinear systems have been derived [129, 146, 38].

In Chapter 4 we proposed an integrated fault-detection and fault-tolerant control

structure that handles faults in the control actuators under the assumption of contin-

uous availability of state or output measurements. The fault-detection and isolation

filter in Chapter 4 relies on the measurements to observe deviations of the process

behavior from the expected closed-loop behavior to detect faults, and needs to be

redesigned if required to detect and isolate faults in the sensors. While the problem

of designing sensor fault-detection and isolation filter remains outside the scope of

the work in this chapter, we note that the proposed fault-tolerant controller allows

the use of any data- or model-based fault-detection and isolation filter to provide in-

formation about the occurrence of the fault (leading to its recovery). In this chapter

we focus instead on determining what corrective action needs to be taken after a fault

has been reported and how the time that it takes to recover the fault impacts on the

reconfiguration logic. Specifically, the reconfiguration logic points to the necessity of

recovering the sensor sufficiently fast to avoid the situation where the process state,

by the time of recovery, has escaped the stability region of the backup configurations.

Alternatively, the proposed method can also be used for the purpose of designing the

control configurations in a way that maximizes the region in state space covered by

the backup configurations to increase the chances that the process state at the time

of recovery lies in the stability region of at least one backup configuration.
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6.3.2 Application to Chemical Reactor

In this section, we illustrate the utility of the reconfiguration law of Equation 6.5. To

this end, consider the chemical reactor of Equation 2.13 with the three candidate con-

trol configurations available. The first step in implementing the reconfiguration law

of Equation 6.5 is that of determining the stability regions of the individual control

configurations under the control law of Equations 6.2-6.4. An explicit characteriza-

tion of the stability regions is obtained and is shown in Figure 6.1. The area indicated

by I, II and III indicates the set of initial conditions starting from where all three

configurations can stabilize the closed-loop system, I, II starting from where only con-

figurations 1 and 2 can achieve stability and I, III indicate the set of initial conditions

starting from where only configurations 1 and 3 can stabilize the closed-loop system.

The closed-loop system is initialized under configuration 2 from an initial condi-

tion belonging to the stability region of configuration 2. At t = 200 min, however,

a sensor failure occurs resulting in open-loop operation, and the process state be-

gins to drift away from the desired equilibrium point (see dotted line in Figure 6.1).

Recognizing that it is imperative to rectify this fault, the sensors are recovered (alter-

natively, redundant sensors are activated) at t = 220 min. With the state information

again available, if the original control configuration (configuration 2) is reactivated,

closed-loop stability is not achieved (see dash-dotted lines in Figure 6.1). This hap-

pens because during the time that the process was running open-loop, the states of

the closed-loop system moved away from the desired equilibrium point and out of the

stability region of configuration 2. In contrast, if the reconfiguration law of Equation

6.5 is used, the law dictates activation of configuration 1 (since the process state,

when state information becomes available again, lies in the stability region of config-

uration 1). Closed-loop stability is subsequently achieved (solid line in Figure 6.1).
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Figure 6.1: Evolution of the state profile under configuration 2 (dashed line) followed by loss

of measurements (dotted line) and upon recovery reactivating configuration 2 (dash-dotted

line), closed-loop stability is not preserved; however, switching to configuration 1 (solid line)

preserves closed-loop stability.
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Note that at the time the state information became available again, the state was

also in the stability region of configuration 3, and switching to either configuration

1 or 3 would guarantee closed-loop stability. In such cases (when more than one

control configurations satisfy the stability criteria), additional performance criteria,

such as ease/cost of use can be used to decide which control configuration should be

implemented in the closed-loop system (see Chapter 3).

6.4 Stabilization Subject to Sensor Data Losses

In the previous section, we considered the problem of devising the reconfiguration

law in a way that accounts for the presence of constraints on the manipulated inputs

under the available control configurations. We now consider the problem of inter-

mittent sensor data losses (not complete failures) and develop a reconfiguration law

that achieves fault-tolerant in the presence of sensor data-losses. As evidenced in the

previous section, a prerequisite to implementing fault-tolerant control is the charac-

terization of the stability properties under the available control configurations, which

we undertake in this section, and in the next section present the reconfiguration law.

We consider the closed-loop system of Equations 6.1-6.4 under a configuration k and

drop the subscript k in the remaining of this section with the understanding that the

robustness of the closed-loop system under control configuration k is being analyzed.

6.4.1 Modeling Sensor Data Loss

Preparatory to the analysis of the stability properties of the closed-loop system under

sensor data losses, we describe how we model the occurrence of sensor data losses.

Specifically, sensor data availability is modeled as a random Poisson process. At

a given time t an ‘event’ takes place that determines whether the system will be
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closed-loop or open-loop (see Figure 6.2). For a given rate of data loss 0 ≤ r ≤ 1, a

random variable P is chosen from a uniform probability distribution between 0 and

1. If P ≤ r, the event is deemed to be ‘measurement loss’, while if P > r, the event

is understood to be ‘measurement available’. Furthermore, with W defined as the

number of events per unit time, another random variable χ with uniform probability

distribution between 0 and 1 determines the time for which the current event will last,

given by ∆ =
−lnχ

W
. At t + ∆ another event takes place and whether it represents a

measurement or loss of measurement, as well as its duration, is similarly determined.

Note that in the presence of constraints, prolonged duration of measurement loss

may land the system states at a point starting from where stabilization may not

be achievable (even with continuous measurement); in characterizing the stability

properties of constrained systems, we therefore need to define data loss rates over a

finite time interval as stated in Assumption 6.1 below.

Controller Process

Sensor

v ue y+
−

(a)

Controller Process

Sensor

v ue y+
−

(b)

Figure 6.2: Closed-loop system in the (a) absence, and (b) presence of sensor data losses.

Assumption 6.1 For a positive real number T ∗, defining r ∈ [0, 1] as the sensor data

loss rate implies that over every successive finite time interval T ∗, the measurements

are available for a total time of T ∗ × (1− r).
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Note that Assumption 6.1 does not impose any restrictions on the distribution

of sequences of measurement loss and availability over the time interval T ∗. Fur-

thermore, the assumption does not need to hold for any finite interval T ∗ but only

successive time intervals T ∗. To illustrate the difference, consider the case where the

assumption requires the data loss rate to hold over any finite time interval T ∗, and

that one such interval is τ, τ + T ∗. Requiring the data loss rate to hold over any in-

terval T ∗ would mean that the same data loss rate should also hold over the interval

τ + εt, τ + T ∗ + εt, for any positive real number εt, which can only be true if the data

loss and measurement events are periodic with a period T ∗. The requirement that the

data loss rate hold over successive intervals T ∗ only says that over the time interval

T ∗, if the duration of all the measurement loss events is summed up, then that sum is

equal to T ∗ × r, and the data loss events could be distributed arbitrarily during this

time interval. In simulating data losses, Assumption 6.1 can be practically realized

by picking W to be sufficiently large; the reasoning behind this is as follows: a larger

value of W increases the number of events per unit time, and when W is sufficiently

large, we can get a sufficiently large number of events over every finite time interval

T ∗ such that the rate of data loss is sufficiently close to r.

6.4.2 Analyzing Closed-Loop Stability

In this section, we consider the closed-loop system subject to sensor data losses as

defined in previous section, and analyze the stability properties (robustness) with

respect to sensor data losses. Specifically, the objective is to establish, for convergence

to a desired neighborhood of the origin, a data loss rate r∗, defined over a finite

time interval T , such that if r ≤ r∗ then convergence to a desired neighborhood is

achieved in the presence of data losses. Note that implicit in this analysis (also in the
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formulation of Equation 6.1) is the understanding that during the time that sensor

measurements are unavailable, the values of the measured variables (in computing

the control action) are ‘frozen’ at the last available measurement. This results in

the value of the manipulated variable being frozen at the last computed value. The

implications of this intuitive assumption on the stabilizing properties under a given

control configuration is discussed in Remark 6.5.

We first consider the closed-loop system under the controller of Equation 6.3,

where the control action is computed in an implement and hold fashion with a hold

time ∆. We establish that for convergence to a desired neighborhood of the origin,

there exists a bound on the implement and hold time ∆∗, such that if the hold time

is less than ∆∗, then during the entire hold time, we get (outside of the desired

neighborhood of the origin) that V̇ < 0 (by virtue of the fact that the control action

is ‘held’ at the value computed using the last available measurement) and eventual

convergence to the desired neighborhood can be achieved. This analysis reveals that

anytime the control action is ‘updated’ by using the current state value, the closed-

loop Lyapunov-function decreases during the next ∆ (for ∆ ≤ ∆∗) time. In essence,

it reveals that the worst distribution of the measurement loss events, or the most

destabilizing that they can be, would be if they were to occur consecutively. The sum

of the duration of all the measurement loss events not being greater than r×T ∗ over a

finite time interval T ∗ can be exploited to yield the desired result which is formalized

in Theorem 6.3 below.

Theorem 6.3 Consider the constrained system of Equation 6.1 under the bounded

control law of Equations 6.2-6.4 designed using the Lyapunov function V and ρ > 0,

and the stability region estimate Ω under continuous implementation. Then, given

any positive real number d such that ‖x‖ ≤ d implies x ∈ Ω and T ∗ over which a data

loss rate r is defined, there exists a positive real number r∗ such that if x(0) := x0 ∈ Ω
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and is known, and r ∈ (0, r∗], then x(t) ∈ Ω ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ d.

Proof of Theorem 6.3 The proof consists of two parts. In the first part, we assume

that the measurement loss events occur consecutively, and show the existence of a

bound on the data loss rate r∗ below which convergence to the desired neighborhood

is achieved. In part 2, we show that this result also holds for any distribution of the

open loop events over the time interval T ∗.

Part 1: Substituting the control law of Equations 6.2-6.4 into the system of

Equation 6.1 it can be shown that:

V̇ (x) = −ρ∗V (x) (6.6)

for all x ∈ Ω, where Ω was defined in Equation 6.4. Note that since V (·) is a

continuous function of the state, one can find a finite, positive real number, δ
′
, such

that V (x) ≤ δ
′
implies ‖x‖ ≤ d. Consider now evolution of the states between the

time 0 to T ∗, where T ∗ is the time interval over which the data loss rate is defined,

and for a given data loss rate r, denote the duration of open-loop operation as ∆. In

the rest of the proof, we show the existence of a positive real number ∆∗ such that

all state trajectories originating in Ω converge to the level set of V (V (x) ≤ δ
′
) for

any value of ∆ ∈ (0, ∆∗]. Hence we have that lim sup
t→∞

‖x(t)‖ ≤ d. We then use the

definition of the data loss rate to come up with an r∗ to show that the result holds

for any r ≤ r∗.

To this end, consider a “ring” close to the boundary of the stability region,

described by M := {x ∈ IRn : (cmax − δ) ≤ V (x) ≤ cmax}, for a 0 ≤ δ < cmax. Let

the control action be computed for some x(0) := x0 ∈M and, upon unavailability of

subsequent measurements, held constant until a time ∆∗∗, where ∆∗∗ is a positive real

number (u(t) = u(x0) := u0 ∀ t ∈ [0, ∆∗∗]) to be determined. Then, ∀ t ∈ [0, ∆∗∗],

V̇ (x(t)) = LfV (x(t)) + LGV (x(t))u0

= LfV (x0) + LGV (x0)u0

+(LfV (x(t))− LfV (x0))

+(LGV (x(t))u0 − LGV (x0)u0)

(6.7)
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Since the control action is computed based on the states in M ⊆ Ω, LfV (x0) +

LGV (x0)u0 ≤ −ρ∗V (x0). By definition, for all x0 ∈ M, V (x0) ≥ cmax − δ, therefore

LfV (x0) + LGV (x0)u0 ≤ −ρ∗(cmax − δ).

Since the function f(·) and the elements of the matrix G(·) are continuous, ‖u‖ ≤
umax, M is bounded and LfV (·), LGV (·) are Lipschitz, then one can find, for all

x0 ∈M, positive real numbers ∆∗∗, K1, K2 and K3 such that ‖x(τ)− x0‖ ≤ K1∆∗∗

for all τ ≤ ∆∗∗, ‖LfV (x(τ))−LfV (x0)‖ ≤ K3K1∆∗∗, ‖LGV (x(τ))u0−LGV (x0)u0‖ ≤
K2K1∆∗∗ for all τ ≤ ∆∗∗, and ∆∗∗ <

ρ∗(cmax − δ)− ε

(K1K2 + K1K3)
where ε is a positive real

number such that

ε < ρ∗(cmax − δ) (6.8)

Using these inequalities in Equation 6.7, we get

V̇ (x(τ)) ≤ −ε < 0 ∀ 0 ≤ τ ≤ ∆∗∗ (6.9)

This implies that, given δ
′
, if we pick δ such that cmax− δ < δ

′
then if the control

action is computed for any x ∈ M, and the measurement loss time is less than ∆∗∗,

we get that V̇ remains negative during this time, and therefore the state of the closed-

loop system cannot escape Ω (since Ω is a level set of V ). We now show the existence

of ∆
′

such that for all x0 ∈ Ωf := {x ∈ IRn : V (x0) ≤ cmax − δ}, we have that

x(∆) ∈ Ωu := {x0 ∈ IRn : V (x0) ≤ δ
′}, where δ

′
< cmax, for any ∆ ∈ (0, ∆

′
].

Consider ∆
′
such that

δ′ = max
V (x0)≤cmax−δ, u∈U , t∈[0,∆

′
]
V (x(t)) (6.10)

Since V is a continuous function of x, and x evolves continuously in time, then for

any value of δ < cmax, one can choose a sufficiently small ∆
′
such that Equation 6.10

holds. Let ∆∗ = min{∆∗∗, ∆
′}. We now show that for all x0 ∈ Ωu and ∆ ∈ (0, ∆∗],

x(t) ∈ Ωu for all t ≥ 0.
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For all x0 ∈ Ωu ⋂
Ωf , by definition x(t) ∈ Ωu for 0 ≤ t ≤ ∆ (since ∆ ≤ ∆

′
). For

all x0 ∈ Ωu\Ωf (and therefore x0 ∈M), V̇ < 0 for 0 ≤ t ≤ ∆ (since ∆ ≤ ∆∗∗). Since

Ωu is a level set of V , then x(t) ∈ Ωu for 0 ≤ t ≤ ∆.

We note that for x such that x ∈ Ω\Ωu, negative definiteness of V̇ is guaranteed for

∆ ≤ ∆∗ ≤ ∆∗∗. Finally, for all ∆∗ ≤ t ≤ T ∗, negative definiteness of V̇ is guaranteed

by the control law of Equation 6.3. Now for a given value of T ∗, the worst case scenario

(that is, the maximum time over which the system may run open-loop) involves loss of

measurements for the last ∆ time for a given interval, followed by consecutive loss of

measurements for the first ∆ time of the next interval. Therefore, continued negative

definiteness of V (and convergence to the desired neighborhood) can be guaranteed

if the measurement loss time in each interval ∆ ≤ ∆∗

2
. An r∗ =

∆∗

2T ∗ will ensure that

the maximum duration of measurement loss over the interval T ∗ is less than ∆∗/2,

and also maximum loss of measurement between two successive intervals is less than

∆∗ ( If
∆∗

2
> T ∗, then we have to restrict r∗ to 1 to ensure that r < 1 and that we

get at least one measurement over the entire interval T ∗). Therefore, for all x(0) ∈ Ω,

there exists an r∗ such that if r ≤ r∗, lim sup
t→∞

V (x(t)) ≤ δ
′
. Finally, since V (x) ≤ δ

′

implies ‖x‖ ≤ d, therefore we have that lim sup
t→∞

‖x(t)‖ ≤ d.

Part 2: Consider now the finite time interval T ∗, such that for convergence to

a desired neighborhood of the origin, the bound on the data loss rate r∗, under the

assumption that the data-loss events all occur consecutively, has been computed.

Consider now that the data-loss events do not occur continuously, but occur in N

intervals, each of duration ∆i with
N∑

i=1

∆i = T ∗ × r∗. From part 1 above, for each

of these durations ∆i, negative definiteness of V̇ can be established. For the dura-

tion during which the measurements are available, V̇ < 0 is achieved by virtue of

the control law. In summary, having established the bound r∗ under consecutive

loss of measurement, the same bound r∗ continues to guarantee practical stability

irrespective of the distribution of the measurement loss events.

This completes the proof of Theorem 6.3.
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Remark 6.4 Note that one can easily remove the assumption that x0 is known

by ‘stepping back’ from the boundary of the stability region enough to ensure that

during the time r∗T ∗, the state trajectory cannot escape the boundary of the stability

region. By the definition of rate of data loss, the first measurement is guaranteed to

be available by (r∗T ∗)+. Any time during the interval T ∗ that a measurement is

received with the state still residing in the stability region (due to the ‘stepping

back’) Theorem 6.3 can be used to establish practical stability. Note also, that the

value of r∗ depends on the interval T ∗ over which it is defined (see the simulation

example in section 6.4.3 for a demonstration). To understand this more clearly, let

us revisit the proof of Theorem 6.3. It can be seen that for convergence to a desired

neighborhood of the origin, one can come up with a value ∆∗ such that if only one

measurement was received every ∆∗, then convergence to the desired neighborhood

would be achieved. Theorem 6.3 exploits this fact together with the definition of the

data loss rate, to ensure that over a ∆∗ duration within T ∗ (and across two time

intervals), at least one measurement is received. In summary, ∆∗ is fixed by the given

size of the neighborhood to the origin where convergence is desired (δ
′
); given a T ∗

over which the data loss rate is defined, r∗ can then in turn be picked such that the

maximum duration of open-loop behavior across intervals stays less than ∆∗.

Remark 6.5 In our results, no bound on the open-loop instability is assumed to be

known, leading to practical (and not asymptotic) stability to the desired equilibrium

point. If additional assumptions are made on the open-loop growth of the Lyapunov-

function (locally) around the desired equilibrium point, asymptotic stability can be

shown using the same line of reasoning as in [75]. Specifically, during the time that the

measurements are not available, the value of V is allowed to increase during T ∗, so long

as the increase in V can be ‘countered’ by the decrease in V during the rest of the time

(which relies on assuming a known measure of open-loop instability). The limitations

imposed by the presence of constraints, however, would still need to be accounted for,

with the data loss rate having to be defined over a finite interval. Furthermore, the set

of stabilizable initial conditions will only be a subset of Ω such that starting from this
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subset, the closed-loop state can not escape Ω during the time of open-loop evolution

r∗T ∗. In our results, with x0 known, r∗ is picked so that V̇ stays negative during

the entire duration of T ∗ (until convergence to the desired neighborhood is achieved),

thereby obviating the need to restrict the set of initial conditions to a subset of Ω.

Note also that V being allowed to increase during T ∗ (as long as it decays by the end

of T ∗) could possibly lead to a larger allowable r∗. The tradeoff would be that the

Lyapunov function would not be guaranteed to decay all the time but only to decay in

value at steps of T ∗, and it could take longer to reach the desired neighborhood of the

origin. Note that the problem considered in this chapter is not that of ascertaining

finite-time stability (ensuring convergence to the desired equilibrium point in finite

time, see, for example, [17]) under continuous availability of measurement but rather

that of analyzing preservation of stability under asynchronous measurements. Note

that for the case when sensor measurements are lost but it is possible to change the

value of the manipulated input, statistical (for example, [127]) or first principles model

based methods designed to ‘fill-in’ the unavailable state measurement can very well

be included within the proposed framework, and can serve to improve the data-loss

handling capabilities of the control designs (depending upon the accuracy of the data

prediction). The proposed fault-tolerant control structure, however, addresses a more

general problem, that of intermittent loss of communication between the controller

and the process, including asynchronous measurements as well as the inability to

change the manipulated input value during the communication lapses.

Remark 6.6 The proof of theorem 6.3 relies on the stabilizing properties of the

controller during the time that measurements are not available to ensure that even

during that time, V̇ < 0. Note that the rate of decay of the Lyapunov function that

is achieved under continuous measurements is closely related to how much data loss

can be tolerated in the system in the sense that for a given process and constraints

on the manipulated inputs, if one control law achieves greater decay of the Lyapunov

function over the other, then it can tolerate greater sensor data loss compared to

the other (note that the tradeoff could be a smaller stability region estimate). The
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continued decay of the Lyapunov function, however, can only be achieved over a

finite time, and in turn, requires the data loss rate to be defined over a finite time.

Even if one were to use the approach discussed in Remark 6.4 to come up with an

alternate bound, the limitations imposed by the constraints on the definition of the

rate of data loss (specifically, the need to define it over a finite time interval) would be

present and can be understood as follows: If there were no constraints, V̇ < 0 under

continuous measurement could possibly be achieved over the entire state space. No

matter how ‘far’ the states go during the unavailability of measurements, when (over

the infinite time duration) the measurements do become available, one could require

them to be available for a large enough time (compared to the time during which

they were not available) to achieve an overall reduction in the value of the Lyapunov

function. Constraints, however, limit the set of initial conditions (estimated using

the stability region Ω) starting from where V̇ < 0 is achievable. If the measurements

are not available for a large duration, the states may go too ‘far’ (that is, out of

the stability region) and then even if measurements were available for all time after

that, V̇ < 0 could not be achieved simply due to limited available control action (see

the simulation example for a demonstration). In contrast, defining the data loss rate

over a finite time interval enables restricting the states to stay within the region from

where V̇ < 0 and hence closed-loop stability is achievable.

Remark 6.7 Note that the specific problem that this chapter considers yields a solu-

tion that is essentially different from, and cannot be handled by simply using adaptive

or other robust control approaches. These approaches, however, can very well be inte-

grated within the proposed framework. The key requirement being that the controller

design (whether it be an adaptive control design or another robust controller design)

for the individual control configuration allow for an explicit characterization of its sta-

bility properties in the presence of input constraints and asynchronous data losses. It

is this characterization that can be subsequently used in fault-tolerant reconfiguration

strategies. Note also that multi-rate data loss problems, where data is available at

predetermined (but different) times for the different measurements can be analyzed
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as special cases for the problem considered in this chapter which does not assume

data availability at predetermined rates.

6.4.3 Control of a Chemical Reactor Subject to Sensor Data Loss

Consider the chemical reactor of Equation 2.13 again with the inlet stream tem-

perature, as the manipulated input u2 = TA0 − TA0s, subject to the constraints

|u2| ≤ u2
max = 100 K, and subject to measurement data losses. We first design

the bounded controller and estimate the stability region (see Figure 6.3). For a given

value of T ∗ = 10 minutes, we pick a value of W = 10 events per minute (the simula-

tions are run as discussed in Section 6.4.1); which yields an overall event rate of 1/W

that is, about one event every six seconds (or about 100 events in 10 minutes). It was

verified that with this value of W , the rate of data loss, as defined, was approximately

achieved over the duration of every ten minutes, in other words, that W = 10 is a

sufficiently large value of W . Starting from an initial condition within the stability

region of the first configuration, the closed-loop system is unstable with a data loss

rate r = 0.4 (dashed lines in Figure 6.3; the corresponding manipulate input profile

can be seen in Figure 6.4). However, if the data loss rate is kept at 0.1, closed-loop

stability is achieved (see solid lines in Figures 6.3-6.4), demonstrating the need for

the data loss to be sufficiently small.

The next simulation run demonstrates the dependence of r∗ on the time interval

over which it is defined (as discussed in Remark 6.6). Specifically, we now run the

same simulation with an even smaller data loss rate (r = 0.05), however, with the

data rate defined over the duration of the simulation of 68 minutes. A scenario where

measurements are received continuously for the first five minutes, lost consecutively

for the next 3.6 minutes, and received thereafter results in an overall rate of data loss
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of only 0.05. We see however, that closed-loop stability is not achieved (dash-dotted

lines in Figures 6.3-6.4). This is so because with this larger value of T ∗, the acceptable

bound on the rate of data loss decreases, and illustrates the interconnection between

the maximum allowable data loss rate and the interval over which it is defined. In

summary, the above simulations demonstrate the need for the data loss rate to be

less than what the system can tolerate (that is, for r ≤ r∗), with r∗ appropriately

computed for a given time interval T ∗ over which the rate is defined.

6.5 Fault-Tolerant Control Subject to Sensor Data Losses

Having analyzed the stability properties of the individual control configurations sub-

ject to sensor data losses, in this section we present a fault-tolerant controller that

maintains closed-loop stability in the presence of sensor data losses.

6.5.1 Reconfiguration law

Fault-tolerance is achieved via switching to a backup configuration for which the state

of the closed-loop system is within the stability region, and the sensor data loss rate

is less than the bound on the data loss rate required for closed-loop stability. To

formalize this idea, consider the constrained nonlinear system of Equation 6.1 for

which the bounded controllers of the form of Equation 6.3 have been designed and

the stability regions Ωj, j = 1, . . . , N have been explicitly characterized under each

control configuration, and the bounds on the data loss rate r∗j , j = 1, . . . , N have

been computed. Let dmax = max
j=1,...,N

dj, where dj was defined in Theorem 6.3 and

let ΩU =
N⋃

j=1

Ωj. We consider the problem where the process starts operating under

configuration i with a data loss rate of ri(0), and at some point in time the data loss

rate r(t) possibly becomes greater than r∗i .
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Theorem 6.4 Let k(0) = i for some i ∈ K and x(0) := x0 ∈ Ωi. Let T f be the

earliest time such that r(t) > r∗i with x(T f ) measured. Then, the following switching

rule:

k(t) =





i, 0 ≤ t < T f

l, t ≥ T f , x(T f ) ∈ Ωl, r(T
f ) ≤ r∗l





(6.11)

and r(t) ≤ r∗l ∀ t ≥ T f guarantees that x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax.

Proof of Theorem 6.4 We consider the two possible cases; first if the data loss

rate r stays less than or equal to r∗i for all times, and second if r > r∗i at some time

T f .

Case 1: The absence of a switch implies k(t) = i ∀ t ≥ 0. Furthermore, since

x(0) ∈ Ωi, r(t) ≤ r∗i and control configuration i is implemented for all times in this

case, we have that x(t) ∈ Ωi ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ di. Finally, since Ωi ⊆ ΩU

and di ≤ dmax, we have that x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax.

Case 2: At time T f , the supervisor switches to a control configuration l for which

x(T f ) ∈ Ωl and r ≤ r∗l . From this time onwards, since configuration l is implemented

in the closed-loop system for all times, and since x(T f ) ∈ Ωl and r(t) ≤ r∗l , we have

that x(t) ∈ Ωl ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dl. As in case 1, since Ωl ⊆ ΩU and

dl ≤ dmax, we have that x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax.

This completes the proof of Theorem 6.4.

Remark 6.8 Theorem 6.4 explicitly takes into consideration the constraints in the

manipulated inputs and the measurement losses in deciding which backup configu-

ration to implement in the closed-loop system, and therefore requires that a backup

configuration is implemented for which the state resides in its stability region and the

data loss rate is less than the data loss rate that the backup configuration can toler-

ate. Disregarding either of these factors could lead to instability (see the simulation

example for a demonstration).

Remark 6.9 Note that the result of Theorem 6.4 assumes explicit knowledge of

the current data loss rate to not only identify the appropriate backup configuration
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but also to trigger reconfiguration. In this sense, the reconfiguration logic has an in-

built fault detection mechanism, with faults being defined as data loss rate exceeding

the allowable data loss rate. In practice, the data loss rate can only be estimated

over finite intervals of time, and this estimate can be used in deciding which backup

configuration should be activated according the reconfiguration rule of Theorem 6.4.

Note also, that other than the data loss rate (estimate) going over the allowable

bound, other means of detecting instability like behavior (such as the state trajectory

going close to the boundary of the stability region under the currently-active control

configuration) can be used to trigger the reconfiguration. It is worth pointing out,

however, that this fault-detection capability is only limited to the rate of data loss

exceeding the tolerable value. As discussed in Remark 6.3, explicit fault detection

mechanisms which detect faults in the sensors (such as sensors reporting incorrect

values) can be used within the proposed approach to tackle sensor faults manifested

as erroneous measurements.

Remark 6.10 While we assume the availability of measurements of all the state

variables, the same approach can be used to analyze the case where each control con-

figuration is comprised of a set of sensors and actuators with the sensors (measure-

ments) different in different control configurations. Specifically, under each control

configuration, an estimation scheme, coupled with the feedback controller, will have

to be implemented and the output feedback stability region, subject to constraints

and sensor data losses characterized. Subsequently, the reconfiguration rule will have

to be modified to account for the fact that the reconfiguration decision is made on

the basis of state estimates (which may contain errors); for a switching scheme that

addresses these issues in the context of switched nonlinear systems under continuous

output feedback control, see [56].
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6.5.2 Fault-Tolerant Control of a Chemical Reactor

Consider, once again the chemical reactor of section 6.4.3 in the presence of sensor

data losses. As seen in section 6.4.3, the closed-loop system using configuration 2

experiences instability when the data loss rate becomes 0.4. In the event of such data

losses, one of the backup control configurations need to be activated and this choice

cannot be made only by looking at the states with respect to the stability region. In

this section we demonstrate the application of the switching rule of Theorem 6.4 that

achieves fault-tolerance. To this end, we first characterize the stability region under

each backup configuration. Figure 6.5 depicts the stability region, in the (T, CA)

space, for each configuration. The desired steady-state is depicted with an asterisk

that lies in the intersection of the three stability regions. For configurations 1, 2 and

3, the bound on the data loss rate is estimated at r∗1 = 0.35, r∗2 = 0.3 and r∗3 = 0.15,

respectively.

We consider an initial condition, T (0) = 300 K, CA(0) = 4.0 mol/L, CB(0) =

0.0 mol/L, using the TA0-control configuration within the stability region of config-

uration 2, and consider a case where the rate of sensor data loss increases from an

initial value of 0.1 to 0.35. As shown by the solid line in Figure 6.5, the controller

proceeds to drive the closed-loop trajectory towards the desired steady-state, up until

time 13.5 minutes of reactor startup when the sensor data loss rate increases to 0.35.

If the supervisor does not use the result of Theorem 6.4 to trigger reconfiguration,

but persists with using configuration 2, stability is not achieved (see dotted lines in

Figures 6.5-6.6). Note that at this time, the state of the closed-loop system resides

in the stability region of both backup configurations 1 and 3. If the supervisor does

implement reconfiguration, but in a way that does not account for the presence of

sensor data loss and activates configuration 3, the state trajectory does not converge
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Figure 6.5: Evolution of the state trajectory: At t = 13.5 minutes the data loss rate goes

up to 0.35 under configuration 2 (solid line). Keeping with configuration 2 (dotted line)

or switching to configuration 3 (dashed line) does not preserve stability, while switching to

configuration 1 (dash-dotted line) preserves stability.

to the desired steady-state (see dashed line in Figure 6.5) even though the state at

the switching time is within stability region of control configuration 3. This happens

because the rate of data loss is not within the tolerable bound for configuration 3. In

contrast, if the reconfiguration rule of Equation 6.11 is implemented, and the supervi-

sor activates configuration 1, the state trajectory converges to the desired steady-state

(see dashed-dotted line in Figure 6.5). The corresponding manipulated input profiles

are shown in Figure 6.6.

6.5.3 Fault-Tolerant Control of a Polyethylene Reactor Subject to Sensor

Data Loss

Having demonstrated the application of the proposed fault-tolerant controller on the

illustrative example, we next consider a more complex process, specifically, an indus-
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trial gas phase polyethylene reactor system (see Figure 5.1). This reactor was also

studied in Chapter 5 in the context of faults in the control actuator (under assump-

tion of continuous availability of process measurements). Mathematical model for

this reactor is described in Equations 5.1-5.2. For the definition of all the variables

and the values of the process parameters, please refer to Chapter 5. The open-loop

system at the nominal operating condition exhibits an unstable equilibrium point

surrounded by a limit cycle. The control objective is to stabilize the reactor using

measurements of the state variables. To accomplish this objective we consider the

following manipulated input candidates:

1. Catalyst flowrate, u1 = (Fc − F s
c )ac, subject to the constraint |u1| ≤ u1

max =

( 2
3600

)ac
mol
s

.

2. Feed temperature, u2 =
FM1

Cpm1+FInCpIn

MrCpr+BwCppol
(Tfeed−T s

feed), subject to the constraint

|u2| ≤ u2
max =

FM1
Cpm1+FInCpIn

MrCpr+BwCppol
(20) K

s
.

First, process operation under primary control configuration was considered (that

is, the catalyst flowrate, Fc, was the manipulated input) and a bounded nonlinear con-

troller was designed using the formula of Equations 6.2-6.4. Specifically, a quadratic

function of the form V1 = eT
1 P1e1 and ρ1 = 0.01 were used to design the controller

and a composite Lyapunov function of the form Vc1 = 5 × 10−3(In − Ins)
4 + 5 ×

10−4(M1−M1s)
2 + 5× 10−11(Y1− Y1s)

2 + 5× 10−11(Y2− Y2s)
2 + 5× 10−4(T − Ts)

2 +

5 × 10−11(Tw1 − Tw1s)
2 + 5 × 10−11(Tg1 − Tg1s)

2 was used to estimate the stability

region of the primary control configuration yielding a cmax
1 = 56.8. A quadratic Lya-

punov function of the form V2 = 1
2
(T − Ts)

2 and ρ2 = 0.01 were used to design the

controller that used the fall-back control configuration (that is, the feed tempera-

ture, Tfeed, was the manipulated input) and a composite Lyapunov function of the

form Vc2 = 5× 10−3(In− Ins)
4 + 5× 10−4(M1 −M1s)

2 + 5× 10−11(Y1 − Y1s)
2 + 5×
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10−11(Y2−Y2s)
2 +5×10−4(T −Ts)

2 +5×10−2(Tw1−Tw1s)
2 +5×10−11(Tg1−Tg1s)

2 was

used to estimate the stability region of the fall-back control configuration yielding a

cmax
2 = 62.

Figure 6.7 shows the evolution of the closed-loop state profiles under continuous

measurement (solid lines) starting from the initial condition In(0) = 450 mol
m3 , M1(0) =

340 mol
m3 , Y1(0) = 4.6 mol, Y2(0) = 4.6 mol, T (0) = 360 K, Tw1(0) = 300 K, and

Tg1(0) = 300 K for which Vc1 = 56.78. Since this initial state is within the stability

region of the primary control configuration (that is, Vc1(x(0)) ≤ cmax
1 ), the primary

control configuration is able to stabilize the system at the steady-state of interest.

The corresponding manipulated inputs are shown on Figures 6.8-6.9. The dynamics

of the process also reveal an important feature regarding tolerance to sensor data

losses. Specifically, for this particular process, even under no control (equivalent

to complete data loss), the process goes to a limit cycle which is within the stability

region for the closed-loop system under continuous availability of measurements. This

characteristic impacts positively on the tolerance of the closed-loop system to data

losses, and a high sensor data loss rate of 0.75 ends up being tolerable (see dotted lines

in Figures 6.7 and 6.9), even with the value of the manipulated input variable set to

the nominal value during the time that the measurements are unavailable (equivalent

to open-loop operation).

Consider now a case where the rate of sensor data loss increases from an initial

value of 0.75 to 0.80 at 0.97 hour of reactor startup. As shown by the dashed lines

in Figure 6.10, the controller proceeds to drive the closed-loop trajectory towards the

desired steady-state up until 0.97 hours. If the supervisor does not account for the

increase of sensor data loss and continues utilizing the primary control configuration to

control the reactor, the state trajectory does not converge to the desired steady-state
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Figure 6.7: Evolution of the closed-loop state profiles under primary control configuration

under continuous measurements (solid lines) and sensor data loss rate of 0.75 (dotted lines).
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Figure 6.10: Evolution of the closed-loop state profiles under the primary configuration

with the data loss rate increasing from 0.75 to 0.80 at 0.97 hours.
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(see Figure 6.10) even though the state at the time that the data loss rate increases

is within the stability region of the primary configuration (Vc1(x(t = 0.97hour)) =

1.6380 ≤ cmax
1 ). This happens because the rate of data loss is not within the tolerable

bound for primary control configuration (r > r∗1 = 0.75).

In this case, the supervisor had available a fall-back control configuration with

the feed temperature as the manipulated input. At time 0.97 hour when sensor data

loss rate increases from 0.75 to 0.80, Vc2 = 1.6382 implying that the state of the

closed-loop system resides in the stability region of the fall-back configuration (that

is, Vc2(x(t = 0.97hour)) ≤ cmax
2 ) as well as r ≤ r∗2 = 0.95. If the reconfiguration rule of

Equation 6.11 is implemented, and the supervisor activates the fall-back configuration,

the state trajectory converges to the desired steady-state (see Figure 6.11). The

corresponding manipulated input profiles are shown in Figure 6.12.

6.6 Conclusions

In this chapter, we considered the problem of designing a fault-tolerant controller

for nonlinear process systems subject to constraints and sensor data losses. Hav-

ing identified candidate control configurations for a given system, we first explicitly

characterized the stability properties that is, the set of initial conditions starting

from where closed-loop stabilization under continuous availability of measurements

is guaranteed as well as derived a bound on the maximum allowable data loss rate

which preserves closed-loop stability. This characterization was utilized in designing

a reconfiguration logic that was shown to achieve practical stability in the presence

of sensor data losses. The application of the proposed method was illustrated using

a chemical process example and demonstrated on a polyethylene reactor.
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Figure 6.11: Evolution of the closed-loop state profiles under the reconfiguration law of

Equation 6.11 with the data loss rate increasing from 0.75 to 0.80 at 0.97 hours.
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Chapter 7

Handling Sensor Malfunctions in

Control of Particulate Processes

7.1 Introduction

Particulate processes play a key role in a broad range of process industries rang-

ing from chemical, materials and minerals to agricultural, food and pharmaceutical.

These areas of manufacturing have a current value exceeding, according to some es-

timates, two trillion dollars and a growth factor of five to ten over the next decade.

Examples include the crystallization of proteins for pharmaceutical applications, the

emulsion polymerization for the production of latex, the fluidized bed production

of solar-grade silicon particles through thermal decomposition of silane gas and the

aerosol synthesis of titania powder used in the production of white pigments. Partic-

ulate processes are widely recognized as presenting a number of processing challenges

which are not encountered in gas or liquid processes. One of these challenges is to

operate the particulate process in a way that it consistently makes products with a

desired particle size distribution. For example, in crystallization processes, the shape

of the crystal size distribution is an important quality index which strongly affects
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crystal function and downstream processing such as filtration, centrifugation, and

milling [142].

Population balances have provided a natural framework for the mathematical

modeling of particle size distributions (PSDs) (see, for example, the tutorial article

[81] and the review article [140]), and have been successfully used to describe PSDs

in many particulate processes. Population balance modeling of particulate processes

typically leads to systems of nonlinear partial integro-differential equations that de-

scribe the rate of change of the PSD. The population balance models (PBMs) are also

coupled with the material, momentum and energy balances that describe the rate of

change of the state variables of the continuous phase, leading to complete particu-

late process models. In the context of PBM-based control of particulate processes,

the main difficulty in synthesizing practically implementable nonlinear feedback con-

trollers is the distributed parameter nature of the PBMs which does not allow their

direct use for the synthesis of low-order (and therefore, practically implementable)

nonlinear output feedback controllers. To overcome this problem, we took advantage

of the property that the dominant dynamic behavior of many particulate process

models is low-dimensional and proposed [24] a model reduction procedure, based on

a combination of the method of weighted residuals and the concept of approximate

inertial manifold, which leads to the construction of low-order ordinary differential

equation (ODE) systems that accurately reproduce the dominant dynamics of broad

classes of particulate process models. These ODE systems were subsequently used for

the synthesis of nonlinear [24, 84, 28], robust [25, 45], and predictive [151, 152] con-

trollers that enforce desired stability, performance, robustness and constraint handling

properties in the closed-loop system. Owing to the low-dimensional structure of the

controllers, the computation of the control action involves the solution of a small set
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of ODEs, and thus, the developed controllers can be readily implemented in real-time

with reasonable computing power. In addition to these results, an on-line optimal

control methodology including various performance objectives was developed for a

seeded batch cooling crystallizer in [175, 183]. The reader may refer to [33, 41, 20, 30]

for reviews of results on simulation and control of particulate processes.

Despite this progress on the design of advanced feedback control systems for par-

ticulate processes, the problem of investigating controller stability, performance and

robustness in the presence of sensor data losses has received no attention. Sensor

data losses may arise due to a host of reasons including measurement sample loss,

intermittent failures associated with measurement techniques, as well as those in-

duced via data packet losses over transmission lines. Previous work on control sub-

ject to actuator/sensor faults has exclusively focused on lumped parameter systems.

Specifically, in Chapter 2, communication losses were modeled as delays in imple-

menting the control action and in Chapter 4 the problem of unavailability of some

of the states for measurement was considered and reconfiguration-based strategies

were devised to achieve fault-tolerance subject to faults in the control actuators. Fur-

thermore, in Chapter 6, a theoretical framework was developed for the modeling,

analysis and reconfiguration-based fault-tolerant control of nonlinear processes sub-

ject to asynchronous sensor data losses (intermittent unavailability of measurements).

Specifically, for each control configuration, the stability region (i.e., the set of initial

conditions starting from where closed-loop stabilization under continuous availability

of measurements is guaranteed) as well as the maximum allowable data loss rate which

preserves closed-loop stability was computed and this characterization was utilized

in taking preventive action, i.e., to trigger reconfiguration, as well as in making the

decision as to which backup configuration should be employed in the closed-loop sys-
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tem to maintain stability. The method was applied to a lumped polyethylene reactor

model.

This chapter focuses on the problem of feedback control of particulate processes

in the presence of sensor data losses [65]. Two typical particulate process examples,

a continuous crystallizer and a batch protein crystallizer, are considered and are

modeled by population balance models. In the case of the continuous crystallizer, a

Lyapunov-based nonlinear output feedback controller is first designed on the basis of

an approximate moment model and is shown to stabilize an open-loop unstable steady

state of the population balance model in the presence of input constraints. Then,

the robustness of the nonlinear controller with respect to data losses is extensively

investigated through simulations. In the case of the batch crystallizer, a predictive

controller is first designed to obtain a crystal size distribution at the end of the batch

that has desired shape while satisfying state and input constraints. Subsequently, we

point out how the constraints in the predictive controller can be modified as a means

of achieving constraint satisfaction in the closed-loop system in the presence of sensor

data losses. Extensive simulations are presented to demonstrate the effect of sensor

data losses on closed-loop stability and performance in both examples.

7.2 Handling Sensor Malfunctions: Continuous Crystallizer

In the present section, we consider a standard model of a continuous crystallizer and

address the problem of stabilization of its open-loop unstable steady-state using both

state feedback and output feedback control in the presence of sensor data losses. We

begin with the presentation of the crystallizer model, continue with the controller

design and modeling of sensor data losses and conclude with extensive simulation

results and discussion.
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7.2.1 Population Balance Model of a Continuous Crystallizer

We consider a continuous crystallizer which is fed by a stream of solute at concen-

tration c0. Under the assumptions of isothermal operation, constant volume, mixed

suspension, nucleation of crystals of infinitesimal size, and mixed product removal, a

dynamic model for a continuous crystallizer can be derived from a population balance

for the particle phase and a mass balance for the solute concentration of the following

form [98, 83]:
∂n

∂t̄
= −∂(R(t̄)n)

∂r
− n

τ
+ δ(r − 0)Q(t̄)

dc

dt̄
=

(c0 − ρ)

ε̄τ
+

(ρ− c)

τ
+

(ρ− c)

ε̄

dε̄

dt̄

(7.1)

where n(r, t̄) is the density of crystals of radius r ∈ [0,∞) at time t̄ in the suspension,

τ is the residence time, c is the solute concentration in the crystallizer, c0 is the solute

concentration in the feed, and ε̄ = 1 −
∫ ∞

0
n(r, t̄)

4

3
πr3dr is the volume of liquid per

unit volume of suspension. R(t̄) is the growth rate, δ(r − 0) is the standard Dirac

function, and Q(t̄) is the nucleation rate. The term δ(r − 0)Q(t̄) accounts for the

production of crystals of infinitesimal (zero) size via nucleation. R(t̄) and Q(t̄) are

assumed to follow McCabe’s law and Volmer’s nucleation law, respectively:

R(t̄) = k1(c− cs)

Q(t̄) = ε̄k2 exp


−

k3(
c

cs

− 1
)2




(7.2)

where k1, k2, and k3 are constants and cs is the concentration of solute at saturation.

A second-order accurate finite-difference spatial discretization scheme with 1,000

discretization points was used to obtain the solution of the system of Equations 7.1-7.2

(simulations of the system using more discretization points led to identical results).

The values of the process parameters used in the simulations can be found in Table

7.1. The crystallizer exhibits highly oscillatory behavior, which is the result of the
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Table 7.1: Process parameters of the continuous crystallizer.

c0 = 1000.0 kg m−3

cs = 980.2 kg m−3

c0s = 999.943 kg m−3

ρ = 1770.0 kg m−3

τ = 1.0 hr
k1 = 5.065× 10−2 mm m3 kg−1 hr−1

k2 = 7.958 mm−3 hr−1

k3 = 1.217× 10−3

interplay between growth and nucleation caused by the relative nonlinearity of the

nucleation rate as compared to the growth rate (compare the nonlinear dependence of

Q(t̄) and R(t̄) on c in Equation 7.2). To establish that the dynamics of the crystallizer

are characterized by a small number of degrees of freedom, the method of moments

is applied to the system of Equations 7.1-7.2 to derive an approximate ODE model.

Specifically, the jth moment of n(r, t̄) is defined as:

µj =
∫ ∞

0
rjn(r, t̄)dr, j = 0, . . . , (7.3)

and upon multiplying the population balance in Equation 7.1 by rj, integrating over

all particle sizes, and introducing the following set of dimensionless variables and

parameters:

x̃0 = 8πσ3µ0, x̃1 = 8πσ2µ1, x̃2 = 4πσµ2, x̃3 =
4

3
πµ3, ...,

t =
t̄

τ
, σ = k1τ(c0s − cs), Da = 8πσ3k2τ,

F =
k3c

2
s

(c0s − cs)2
, α =

(ρ− cs)

(c0s − cs)
, ỹ =

(c− cs)

(c0s − cs)
, u =

(c0 − c0s)

(c0s − cs)

(7.4)

where c0s is the steady-state solute concentration in the feed, the dominant dynamics

of the process of Equation 7.1 can be adequately captured by the fifth-order moments

model which includes the dynamics of the first four moments and those of the solute
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concentration in the following form:

dx̃0

dt
= −x̃0 + (1− x̃3)Dae

−F

ỹ2

dx̃1

dt
= −x̃1 + ỹx̃0

dx̃2

dt
= −x̃2 + ỹx̃1

dx̃3

dt
= −x̃3 + ỹx̃2

dỹ

dt
=

1− ỹ − (α− ỹ)ỹx̃2

1− x̃3

+
u

1− x̃3

(7.5)

where x̃ν , ν = 0, 1, 2, 3, are dimensionless moments of the crystal size distribution, ỹ is

dimensionless concentration of the solute in the crystallizer, and u is a dimensionless

concentration of the solute in the feed. Note that the moments of order four and

higher do not affect those of order three and lower, and moreover, the state of the

infinite dimensional system is bounded when x̃3 and ỹ are bounded, and it converges

to a globally exponentially stable equilibrium point when lim
t→∞ x̃3 = c1 and lim

t→∞ ỹ = c2,

where c1, c2 are constants. The reader may refer to [45] for a detailed derivation of

the moments model, and to [28] for further results and references in this area. The

stability properties of the fifth-order model of Equation 7.5 have been also studied

and it has been shown [83] that the global phase space of this model has a unique

unstable steady-state surrounded by a stable periodic orbit, and that the linearization

of the system of Equation 7.1 around the unstable steady-state includes two isolated

complex conjugate eigenvalues with a positive real part.

7.2.2 Bounded Lyapunov-Based Control

Having obtained a low-order ODE model that captures the dominant dynamics of the

continuous crystallizer, we proceed in this section to address the controller synthesis

problem on the basis of the low-order model of Equation 7.5. The control objective
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is to stabilize the crystallizer at an unstable steady-state (which corresponds to a

desired PSD) using constrained control action. To this end, we initially re-write the

moments model of Equation 7.5 in a more compact form:

˙̃x(t) = f(x̃(t)) + g(x̃(t))ũ(t)

|u| ≤ umax

z̃(t) = h(x̃(t))

(7.6)

where x̃ = [x̃0 x̃1 x̃2 x̃3 ỹ]′, x̃ν = xν − xs
ν , ν = 0, 1, 2, 3, z̃ = z − zs, ũ = u − us,

umax > 0 denotes the bound on the manipulated input, the superscript at xs
ν refers

to the unstable steady-state at which we would like to asymptotically stabilize the

system, h(x̃(t)) = x̃0 and z denotes the measured output. In the system of Equation

7.6, f and g have the following form:

f(x̃) =




−x̃0 + (1− x̃3)Dae

−F

ỹ2

−x̃1 + ỹx̃0

−x̃2 + ỹx̃1

−x̃3 + ỹx̃2

1− ỹ − (α− ỹ)ỹx̃2

1− x̃3




, g(x̃) =




0

0

0

0
1

1− x̃3




Next we will review the design procedure of the bounded controller through state

feedback and output feedback approaches. In the state feedback problem, measure-

ments of x̃ν(t) and ỹ(t) are assumed to be available for all t. In the output feedback

problem, with the measurements of only z̃ = x̃0 available, the controller is constructed

through a standard combination of a state feedback controller with a state observer.

The state feedback controller is synthesized via Lyapunov techniques and the state

observer is an extended Luenberger-type observer.

State Feedback Control

Consider the system of Equation 7.6, for which a control Lyapunov function (CLF),

V (x̃), is available. Using the control Lyapunov function, we construct, using the
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results in [103] (see also [46, 48]), the following continuous bounded control law:

u(x̃) = −k(x̃)LgV (x̃) (7.7)

where

k(x̃) =





LfV (x̃) +
√

(LfV (x̃))2 + (umaxLgV (x̃))4

(LgV (x̃))2
[
1 +

√
1 + (umaxLgV (x̃))2

] , LgV (x̃) 6= 0

0 , LgV (x̃) = 0

(7.8)

where LfV (x̃) =
∂V (x̃)

∂x̃
f(x̃), and LgV (x̃) =

∂V (x̃)

∂x̃
g(x̃). An estimate of the con-

strained stability region of the above controller can be obtained using the level sets

of V , i.e.,

Ω = {x̃ ∈ IRn : V (x̃) ≤ cmax} (7.9)

where cmax > 0 is the largest number for which every nonzero element of Ω is fully

contained in the set:

Φ = {x̃ ∈ IRn : LfV (x̃) < umax|LgV (x̃)|}. (7.10)

Output Feedback Control

Under the hypothesis that the system of Equation 7.6 is locally observable (that is, its

linearization around the desired operating steady-state is observable), the practical

implementation of a nonlinear state feedback controller of the form of Equation 7.7

will be achieved by employing the following nonlinear state observer:

dω

dt
= f(ω) + g(ω)u + L(z̃ − h(ω)) (7.11)

where ω denotes the observer state vector (the dimension of the vector ω is equal to

the dimension of x̃ in the system of Equation 7.6), z̃ is the measured output, and L is

a matrix chosen so that the eigenvalues of the matrix CL =
∂f

∂ω
|
(ω=ωs)

− L
∂h

∂ω
|
(ω=ωs)

,
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where ωs is the operating steady-state, lie in the open left-half of the complex plane.

The state observer of Equation 7.11 consists of a replica of the system of Equation 7.6

plus a linear gain multiplying the discrepancy between the actual and the estimated

value of the output, and therefore, it is an extended Luenberger-type observer. The

combination of the state observer of Equation 7.11 with the state feedback controller

of Equation 7.7 leads to the following nonlinear output feedback controller:

dω0

dt
= −ω0 + (1− ω3)Dae

−F

ω2
4 + L0(h(x̃)− h(ω))

dω1

dt
= −ω1 + ω4ω0 + L1(h(x̃)− h(ω))

dω2

dt
= −ω2 + ω4ω1 + L2(h(x̃)− h(ω))

dω3

dt
= −ω3 + ω4ω2 + L3(h(x̃)− h(ω))

dω4

dt
=

1− ω4 − (α− ω4)ω4ω2

1− ω3

+ L4(h(x̃)− h(ω))

u = −k(ω)LgV (ω)

(7.12)

where L = [L0 L1 L2 L3 L4]
T are the observer parameters and h(ω) = ω0. The

practical implementation of the nonlinear controller of Equation 7.12 requires online

measurements of the controlled output x̃0; in practice, such measurements can be

obtained by using, for example, light scattering [19, 142] and FBRM (focused-beam

reflectance measurement) [11].

7.2.3 Modeling Sensor Data Loss

Following the approach presented in Chapter 6, sensor data losses are modeled within

the framework of random Poisson processes. Specifically, at a given time t an ‘event’

takes place that determines whether the system will be closed-loop or open-loop (see

Figure 7.1). For a given rate of data loss 0 ≤ r ≤ 1, a random variable P is chosen

from a uniform probability distribution between 0 and 1. If P ≤ r, the event is
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deemed to be ‘measurement loss’ (which implies that the process operates in open-

loop), while if P > r, the event is understood to be ‘measurement available’ (which

implies that the process operates in closed-loop). Furthermore, with W defined as the

number of events per unit time, another random variable χ with uniform probability

distribution between 0 and 1 determines the time for which the current event will last,

given by ∆ =
−lnχ

W
. At t + ∆ another event takes place and whether it represents a

measurement or loss of measurement, as well as its duration, is similarly determined.

(a)

(b)

Figure 7.1: Closed-loop system in the (a) absence, and (b) presence of sensor data losses.

Note that in the presence of constraints in the manipulated input, prolonged du-

ration of measurement loss may land the system states at a point starting from where

stabilization may not be achievable (even with continuous measurement). Therefore,

the presence of manipulated input constraints implies that the sensor data loss rate

should be defined over a finite time interval. Specifically, for a positive real num-

ber T ∗, we define r ∈ [0, 1] as sensor data loss rates over the finite time interval of

duration T ∗. This implies that over every successive finite time interval T ∗, the mea-
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surements are available for a total time of T ∗× (1− r). Note that this definition does

not impose any restrictions on the distribution of sequences of measurement loss and

availability over the time interval T ∗ and does not need to hold for any finite interval

T ∗ but only successive time intervals T ∗ (requiring the data loss rate to hold over any

fixed finite time interval T ∗ would be equivalent to require it hold over infinitesimal

time intervals). All it says is that over the time interval T ∗, if the duration of all

the measurement loss events is summed up, then that sum is equal to T ∗ × r. In

simulating data losses, this definition can be practically realized by picking W to be

sufficiently large; the reasoning behind this is as follows: a larger value of W increases

the number of events per unit time, and when W is sufficiently large, we can get a

sufficiently large number of events over every finite time interval T ∗ such that the

rate of data loss is sufficiently close to r.

7.2.4 Simulation Results

In this section, we apply the state feedback controller of Equation 7.7 and output

feedback controller of Equation 7.12 to the crystallizer process model and evaluate

their robustness in the presence of sensor data losses. Specifically, the objective is

to compute a data loss rate r∗, defined over a finite time interval T ∗, such that if

r < r∗ then convergence to a desired neighborhood is achieved in the presence of data

losses. Note that implicit in this analysis is the understanding that during the time

that sensor measurements are unavailable, the values of the measured variables (in

computing the control action) are ‘frozen’ at the last available measurement. This

results in the value of the manipulated variable being frozen at the last computed

value.

Note also, that the value of r∗ is expected to depend on the interval T ∗ over which
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it is defined (see the simulation example in [119] for a demonstration). To understand

this more clearly, note that for convergence to a desired neighborhood of the origin,

one can come up with a value ∆∗ such that if only one measurement was received

every ∆∗, then convergence to the desired neighborhood would be achieved. The

robustness analysis in [119] exploits this fact together with the definition of the data

loss rate, to ensure that over a ∆∗ duration within T ∗ (and across two time intervals),

at least one measurement is received. In summary, ∆∗ is fixed by the given size of the

neighborhood to the origin where convergence is desired (δ
′
); a given a T ∗ over which

the data loss rate is defined, r∗ can then in turn be picked such that the maximum

duration of open-loop behavior across intervals stays less than ∆∗.

Following the proposed methodology, we first use the reduced moments model

of Equation 7.5 to design the controllers. The control objective is to suppress the

oscillatory behavior of the crystallizer and stabilize it at an unstable steady-state that

corresponds to a desired PSD by manipulating the solute feed concentration. The

values of the dimensionless model parameters in Equation 7.5 can be found in Table

7.2. The dimensionless solute feed concentration, u, is subject to the constraints:

−umax ≤ u ≤ umax. For umax = 2, the constraint on the inlet solute concentration

corresponds to 960 kg/m3 ≤ c0 ≤ 1040 kg/m3 and for umax = 4, the constraint on the

inlet solute concentration corresponds to 920 kg/m3 ≤ c0 ≤ 1080 kg/m3. The desired

steady-state is x̃s = [x̃s
0 x̃s

1 x̃s
2 x̃s

3 ỹs]′ = [0.0652 0.0399 0.0244 0.0149 0.6118]′,

and us = 0.2.

To facilitate the design of the bounded controller and construction of the CLF,

we initially re-write the moments model of Equation 7.5 in deviation variable form

– thus translating the steady-state to the origin – to obtain the system of Equation

7.6 which we transform into the normal form. We introduce the invertible coordinate
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Table 7.2: Dimensionless parameter values of the continuous crystallizer.

σ = k1τ(c0s − cs) = 1.0 mm
Da = 8πσ3k2τ = 200.0
F = k3c

2
s/(c0s − cs)

2 = 3.0
α = (ρ− cs)/(c0s − cs) = 40.0

transformation: [ξ′ η′]′ = Π(x) = [x̃0 f1(x̃) x̃1 x̃2 x̃3]
′, where ξ = [ξ1 ξ2]

′ = [x̃0 f1(x̃)]′,

ȳ = ξ1, f1(x̃) = −x̃0 + (1− x̃3)Da exp(−F/ỹ2), and η = [η1 η2 η3]
′ = [x̃1 x̃2 x̃3]

′. The

state-space description of the system in the transformed coordinates takes the form:

ξ̇ = Aξ + bl(ξ, η) + bα(ξ, η)u

η̇ = Ψ(η, ξ)
(7.13)

where A =

[
0 1
0 0

]
, b =

[
0
1

]
, l(ξ, η) = L2

fh(Π−1(ξ, η)) is the second-order Lie

derivative of the scalar function, h(·), along the vector field f(·), and α(ξ, η) =

LgLfh(Π−1(ξ, η)) is the mixed Lie derivative. The forms of f(·) and g(·) can be

obtained by re-writing the system of Equation 7.5 in the form of Equation 7.6, and

are omitted for brevity.

The partially-linear ξ-subsystem in Equation 7.13 is used to design a bounded

controller that stabilizes the full interconnected system of Equation 7.13 and, conse-

quently, the original system of Equation 7.5. For this purpose, a quadratic function

of the form, Vξ = ξ′Pξ, is used as a CLF in the controller synthesis formula of Equa-

tions 7.7-7.8, where the positive-definite matrix, P =

[
1.7321 1.0000
1.0000 1.7321

]
, is chosen

to satisfy the Riccati matrix equality: A′P +PA−Pbb′P = −Q̄ where Q̄ =

[
1 0
0 1

]

is a positive-definite matrix. The stability region estimate for the system is obtained

as a level set of the Lyapunov function. For details on how to construct estimate of

the stability regions for this system, see [151]. We initialize the crystallizer model at

the following initial conditions:
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[x̃0(0) x̃1(0) x̃2(0) x̃3(0) ỹ(0)]′ = [0.066 0.041 0.025 0.015 0.560]′

and initialize the observer at:

[ω0(0) ω1(0) ω2(0) ω3(0) ω4(0)]′ = [0.047 0.028 0.017 0.010 0.5996]′.

The matrix L was chosen as L = [L0 L1 L2 L3 L4]
′ = [1 0 0 0 0]′ to satisfy the

requirement that the eigenvalues of the matrix CL =
∂f

∂ω
|
(ω=ωs)

− L
∂h

∂ω
|
(ω=ωs)

, where

ωs is the operating steady-state, lie in the open left-half of the complex plane.

We pick the value of number of events to be W = 400 events per hour. Figure

7.2 shows the evolution of the closed-loop state and input profiles with umax = 2 and

no sensor losses under both state feedback control (solid lines) and output feedback

control (dashed lines). In both cases, we observe that the states of the closed-loop

system converge to the desired steady-state. Figure 7.3 shows the evolution of the

closed-loop state and input profiles with umax = 2 and 90% probability of sensor losses.

Even though the amount of losses is very significant, both the state feedback controller

(solid lines) and the output feedback controller (dashed lines) achieve stabilization

of the process at the desired steady-state. However, if the sensor data loss rate is

95% closed-loop stability under both state feedback (solid lines) and output feedback

control cannot be achieved (dashed lines), see Figure 7.4. We did not observe a

significant difference between state feedback control and output feedback control in

the sensor data loss rate for which closed-loop stability is preserved. This is expected

due to the nature of the system dynamics. Specifically, we observed that even with

continued open-loop operation, the process stays in a region such that if continuous

measurements are received from a certain point in time onwards, closed-loop stability

is achieved. The output feedback problem, up until the time that the state has not

converged to the true values can be thought of as open-loop operation, however once
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the state estimates converge then the problem ‘reverts’ to the state feedback problem

and the preservation of closed-loop stability depends only on the data loss rate.

We also investigated the effect of different magnitude of manipulated input con-

straints on the sensor data loss rate that ensures closed-loop stability. Figure 7.5

shows the evolution of the state and input profiles with umax = 4 and no sensor data

losses. The states of the closed-loop system under both state feedback control (solid

lines) and output feedback control (dashed lines) converge to the steady-state. Figure

7.6 shows the evolution of the state and input profiles with umax = 4 and 70% proba-

bility of sensor data losses. In this case, closed-loop stability is maintained. However,

when the data loss rate increases to 75% closed-loop stability is not achieved under

both state feedback control (solid lines) and output feedback control (dashed lines),

see Figure 7.7.

The reduced data loss rate under larger input constraints is expected because

larger input constraints means that the input has a stronger effect on the process

which implies that large time intervals of open-loop behavior of the manipulated in-

put (when data losses occur) have an increased destabilizing effect on the closed-loop

system. Table 7.3 summarizes r∗ values for different umax; the larger the manipulated

input constraint, the more sensitive the system toward sensor data loss. This obser-

vation also suggests that if excessive data loss rate occurs, the value of umax can be

artificially reduced to accommodate the data loss and if the current state resides in

the stability region with the reduced umax, closed-loop stability can be preserved.

7.3 Handling Sensor Malfunctions: Batch Crystallizer

In this section, we consider a batch particulate process and address the problem

of producing PSD at the end of the batch that has a desired characteristics while
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Table 7.3: Summary of r∗ values for different umax for the continuous crystallizer example.

umax r∗

1 0.05 (95% sensor data loss)
2 0.10 (90% sensor data loss)
3 0.20 (80% sensor data loss)
4 0.30 (70% sensor data loss)
6 0.35 (65% sensor data loss)
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Figure 7.2: Evolution of the closed-loop state and input profiles under state feedback control

(solid lines) and output feedback control (dashed lines) for umax = 2 and no sensor data

losses.
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Figure 7.3: Evolution of the closed-loop state and input profiles under state feedback control

(solid lines) and output feedback control (dashed lines) for umax = 2 and 90% probability

of sensor data losses.
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Figure 7.4: Evolution of the closed-loop state and input profiles under state feedback control

(solid lines) and output feedback control (dashed lines) for umax = 2 and 95% probability

of sensor data losses.
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Figure 7.5: Evolution of the closed-loop state and input profiles under state feedback control

(solid lines) and output feedback control (dashed lines) for umax = 4 and no sensor data

losses.
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Figure 7.6: Evolution of the closed-loop state and input profiles under state feedback control

(solid lines) and output feedback control (dashed lines) for umax = 4 and 70% probability

of sensor data losses.
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Figure 7.7: Evolution of the closed-loop state and input profiles under state feedback control

(solid lines) and output feedback control (dashed lines) for umax = 4 and 75% probability

of sensor data losses.
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satisfying state and control constraints during the batch and handling sensor data

losses.

7.3.1 Population Balance Model of a Protein Batch Crystallizer

The batch crystallizer considered in this chapter is taken from [152]. A population

balance model is used to describe the evolution of the crystal size distribution (CSD),

n(r, t). The evolution of the solute concentration, C, and crystallizer temperature,

T , are described by two ODEs. The process model has the following form:

∂n(r, t)

∂t
+ G(t)

∂n(r, t)

∂r
= 0, n(0, t) =

B(t)

G(t)

dC

dt
= −24ρkvG(t)µ2(t)

dT

dt
= − UA

MCp

(T − Tj)

(7.14)

where G(t) is the growth rate, B(t) is the nucleation rate, ρ is the density of crystals,

kv is the volumetric shape factor, U is the overall heat-transfer coefficient, A is the

total heat-transfer surface area, M is the mass of solvent in the crystallizer, Cp is the

heat capacity of the solution, Tj is the jacket temperature and µ2 =
∫ ∞

0
r2n(r, t)dr is

the second moment of the CSD. The crystal nucleation rate B(t) [63, 16] is given by

an equation of the following form:

B(t) = kaCexp

(
− kb

σ2

)
(7.15)

where ka and kb are parameters that are obtained using experimental results. The

supersaturation, σ, is the concentration of the solution in excess of the saturation

concentration (solubility) and is understood to be the driving force for the crystal

nucleation and growth. The supersaturation is defined as:

σ = ln(C/Cs) (7.16)
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where C is the solute concentration and Cs is the solubility and expressed as follows:

Cs(T ) = 1.0036× 10−3T 3 + 1.4059× 10−2T 2 − 0.12835T + 3.4613 (7.17)

as a result of third-order polynomial data fitting based on solubility data in [148].

Equation 7.17 exhibits trends similar to the experimental solubility data of being low

at low temperature and increasing significantly with increasing temperature. The

crystal growth rate G(t) is derived based on an empirical model to describe the growth

rate of the tetragonal HEW lysozyme crystals as a function of supersaturation in the

following form:

G(t) = kgσ
g (7.18)

where kg is the pre-exponential factor of the growth rate. Parameter values for this

model are given in Table 7.4. Note that because of the tetragonal form of the crystals

and the existence of about 46% of solvent in each crystal [99], the volumetric shape

factor, kv, is set equal to 0.54.

Table 7.4: Parameter values for the batch crystallizer model of Equations 7.14-7.18.

ka 1044.4/(min cm3) kg 3.1451× 10−9 cm/min
kb 51.33 g 5.169
kv 0.54 ρ 1.40× 103 mg/cm3

U 1800 kJ/m2 · hr ·K A 0.25 m2

M 10 kg Cp 4.13 kJ/K · kg

The fact that the dominant dynamics of the crystallizer are characterized by a

small number of degrees of freedom [24], method of moments [81] (see also [28, 151,

107]) is applied to the system of Equation 7.14 to derive an approximate ODE model.

Defining the ith moment of n(r, t) as:

µi =
∫ ∞

0
rin(r, t)dr, i = 0, 1, ...,∞ (7.19)
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multiplying the population balance in Equation 7.14 by ri, and integrating over all

crystal sizes, the following infinite set of ordinary differential equations, which de-

scribes the rate of change of the moments of the crystal size distribution, solute

concentration and temperature, is obtained:

dµ0

dt
= B(t)

dµi

dt
= iG(t)µi−1(t), i = 1, 2, ...,∞

dC

dt
= −24ρkvG(t)µ2(t)

dT

dt
= − UA

MCp

(T − Tj)

(7.20)

Note that in Equation 7.20, the ODEs describing the dynamics of the first N moments,

where N is any positive integer greater than or equal to 3, the solute concentration

and the crystallizer temperature are independent of the moments of order N + 1

and higher. This implies that a set of ordinary differential equations, which include

the first N moments and the evolution of the solute concentration and crystallizer

temperature, would provide an accurate description of the evolution of the first N

moments, the solute concentration and the crystallizer temperature.

As will be seen in section 7.3.3, the control objective will require computation of

µ3 and µ4, hence N is chosen as 4 and the following reduced-order model is used for

the purpose of controller design:

dµ0

dt
= B(t)

dµi

dt
= iG(t)µi−1(t), i = 1, 2, 3, 4

dC

dt
= −24ρkvG(t)µ2(t)

dT

dt
= − UA

MCp

(T − Tj)

(7.21)
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7.3.2 State Estimator Design

In this section, we present an observer design that uses measurements of the solute

concentration, C, and temperature T and the reduced order moments model, to

generate estimates of the moments. Similar to the continuous crystallizer example,

an extended Luenberger-type observer is used to estimate the values of the moments

of the CSD and takes the following form:

dµ̂0

dt
= B̂(t) + L0(Cm − Ĉ)

dµ̂i

dt
= iĜ(t)µ̂i−1(t) + Li(Cm − Ĉ), i = 1, ..., 4

dĈ

dt
= −24ρkvĜ(t)µ̂2(t) + L5(Cm − Ĉ)

(7.22)

where Cm is the online measurement of the solute concentration, B̂(t) and Ĝ(t) are the

nucleation and growth rates computed using the online measurement of T and values

of the estimates of µ̂i and Ĉ, and Li, i = 0, ..., 5 are the observer gains (these values

were obtained via running open-loop simulations and comparing the evolution of the

state with the state estimates for different choices of the observer gains), reported in

Table 7.5.

Table 7.5: Parameter values for the Luenberger-type observer of Equation 7.22.

L0 −0.4 L1 0.05
L2 0.001 L3 1.7× 10−5

L4 3× 10−7 L5 −0.1

Note that since the states µ3 and µ4 do not effect the evolution of the concentra-

tion, these states are therefore not observable from the concentration measurements.

For the batch crystallization considered in this chapter, the initial values of the mo-

ments at the beginning of the batch run are identically equal to zero, because there are
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no crystals initially inside the crystallizer. In the case of a perfect model, therefore,

the state estimates are naturally initialized at the true values and would continue to

track the true values. In the case of plant-model mismatch, the observer continues to

generates satisfactory estimates of the observable states.

7.3.3 Predictive Controller Formulation and Closed-Loop Results

In the case of continuous crystallizer operation, the overriding objective is often sta-

bilization, and the presence of constraints on the manipulated input limits the set

of initial conditions starting from where stabilization can be achieved. For batch

processes, in contrast, the expression of performance considerations in the form of

appropriate constraints or through the objective function, and the achievement of a

desired particle size distribution, is an important issue. Based on these considerations,

we present in the remainder of this section a predictive controller formulation where,

at time ti, the control trajectory is computed by solving an optimization problem of
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the form:

min −µ4(tf )

µ3(tf )

s.t.
dµ0

dt
= kaCexp

(
− kb

σ2

)

dµi

dt
= ikgσ

gµi−1(t), i = 1, ..., 4

dC

dt
= −24ρkvkgσ

gµ2(t)

dT

dt
= − UA

MCp

(T − Tj)

µi(ti) = µ̂i(ti)

C(ti) = Ĉ(ti)

ti ≤ t ≤ tf

Tmin ≤ T ≤ Tmax

Tj min ≤ Tj ≤ Tj max

σmin + ε ≤ σ ≤ σmax − ε
∣∣∣∣∣
dCs

dt

∣∣∣∣∣ ≤ k1

(7.23)

B(t)

G(t)
≤ nfine, ∀ t ≥ tf/2 (7.24)

where µ4/µ3 is the volume-averaged crystal size, Tmin and Tmax are the constraints on

the crystallizer temperature, T , and are specified as 4◦C and 22◦C, respectively. Tj min

and Tj max are the constraints on the manipulated variable, Tj, and are specified as

3◦C and 22◦C, respectively. The constraints on the supersaturation σ are σmin = 1.72

and σmax = 2.89. The constant, k1 (chosen to be 0.065 mg/ml·min), specifies the

maximum rate of change of the saturation concentration Cs. nfine is the largest

allowable number of nuclei at any time instant during the second half of the batch

run, and is set to 5/µm.ml. The parameter ε is used to allow for tightening of the

constraints in the controller to enable constraint satisfaction for the system in the

presence of sensor data losses and plant model mismatch. In the context of batch
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crystallizer control, previous work has shown that the objective of maximizing the

volume-averaged crystal size can result in a large number of fines in the final product

[104]. Therefore, the constraint of Equation 7.24 restricts the number of nuclei formed

at any time instant during the second half of the batch run in order to limit the fines

in the final product. Measurements of the solute concentration and the crystallizer

temperature are assumed to be available; ∆m, the maximum possible delay between

two successive measurements, is taken as five minutes. The measurements are used

by the Luenberger-type observer to generate estimates of the moments, which are

used as initial conditions of the states in the moments model. tf , the total batch

time, is chosen as 24 hours. The optimization problem is solved using sequential

quadratic programming (SQP). A second-order accurate finite difference scheme with

3000 discretization points is used to obtain the solution of the population balance

model of Equation 7.14.

We apply the control action computed by the low-order predictive controller of

Equation 7.23 on the population balance model and study the problem of constraint

satisfaction in the presence of sensor data losses and model uncertainty. Specifically,

we consider a case of process-model mismatch by changing the value of the parameter

g (the exponent relating growth rate to supersaturation) from its nominal value of

5.169 to 4.652 (a 10% change) in the predictive controller. We first show simulation

results with maximum duration between successive measurement of ∆m = 5 minutes

and ε in Equation 7.23 is 0. Solid lines in Figure 7.8 depict the implementation of the

predictive controller where the state constraints are satisfied for the entire batch run

and the performance objective is achieved (the supersaturation is within the lower

and upper bound, 1.72 ≤ σ ≤ 2.89). Note that the possible errors in the values of

the unobservable states has an impact on the achievement of the product properties
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as described by the objective function. However, the satisfactory estimation of the

observable states and the expression of the performance considerations as constraints

on the observable states allows the achievement of most of the desired properties at

the end of the batch run. Consider now the case where, due to sensor data losses, the

maximum duration between successive measurement increases from ∆m = 5 minutes

to ∆m = 10 minutes. Implementation of the predictive controller of Equation 7.23,

with the same values of controller parameters as before (1.72 ≤ σ ≤ 2.89), leads

to violation of the state constraints (see dashed lines in Figure 7.8). To alleviate

the problem of state constraint violation in the presence of sensor data losses, we

implement the controller of Equation 7.23 with a tightened constraint on the super-

saturation ε = 0.24 (1.96 ≤ σ ≤ 2.65). As can be seen by the dotted lines in Figure

7.8, the predictive controller is able to successfully achieve the performance objective

(the supersaturation is within the lower and upper bound, 1.72 ≤ σ ≤ 2.89), while

at the same time respecting the state and input constraints in the presence of sensor

data losses.

7.4 Conclusions

In this chapter, we investigated the problem of preserving closed-loop stability and

performance of feedback control of particulate processes in the presence of sensor data

losses. To demonstrate the issue of sensor data losses in the context of specific process

applications, two typical particulate process examples, a continuous crystallizer and

a batch protein crystallizer, were considered and modeled by population balance

models. In both examples, feedback control systems was first designed on the basis

of low-order models and applied to the population balance models to enforce closed-

loop stability and constraint satisfaction. Subsequently, the robustness of the control
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Figure 7.8: (a) Jacket temperature and (b) supersaturation profiles under output feedback

control; sampling time of 5 minutes (solid lines), sampling time of 10 minutes without

constraint modification (dashed lines) and sampling time of 10 minutes under the predictive

controller with tightened constraints (dash-dotted lines).
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systems in the presence of sensor data losses was investigated. Specifically, in the case

of the continuous crystallizer, a Lyapunov-based nonlinear output feedback controller

was designed and was shown to stabilize an open-loop unstable steady state of the

population balance model in the presence of input constraints. It was demonstrated

that this controller is robust with respect to significant sensor data losses but, as

expected, it cannot maintain closed-loop stability when the sensor data losses exceed

a certain threshold. In the case of the batch crystallizer, a predictive controller was

first designed to obtain a desired crystal size distribution at the end of the batch

while satisfying state and input constraints. In the presence of sensor data losses,

we pointed out how the constraints in the predictive controller can be modified as a

means of achieving constraint satisfaction in the closed-loop system in the presence

of data losses.
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Chapter 8

Analysis and Control of Mode

Transitions in Biological Networks

8.1 Introduction

In a biological cell, cellular functions, such as metabolism, DNA synthesis, movement

and information processing, are implemented and controlled by vast arrays of com-

plex networks of biochemical interactions. Understanding how these networks are

integrated and regulated, and how the regulation may be influenced – possibly for

therapeutic purposes – is a major goal of molecular cell biologists and bioengineers.

While experimental techniques have been, and will continue to be, an indispensable

tool in the quest for such an understanding, it is now clear that the sheer complex-

ity of biological networks is such that informal biochemical intuition alone cannot

reliably deduce the underlying logic of these networks. This intuition must be sup-

plemented by precise mathematical and computational tools that can provide both

qualitative and quantitative insights into the description, analysis and manipulation

of biological networks underlying basic cellular function. From a practical point of

view, such techniques could potentially reduce the degree of trial-and-error exper-
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imentation. More importantly, computational and theoretical approaches can lead

to testable predictions regarding the current understanding of biological networks,

which can serve as the basis for revising existing hypotheses. These realizations, to-

gether with recent technological advances that are increasingly enabling experimental

validation of theoretical predictions, have been major driving forces behind a large

and growing body of research work, in recent years, on the development and appli-

cation of analytical and computational tools for the modeling and simulation (for

example, [171, 110, 153, 36, 8, 70, 57]), optimization (for example, [34, 113]) and

identification (for example, [58]) of biological networks. The reader may also refer

to the review papers [77, 161, 8, 1] and the references therein for further results on

biological networks.

Biological networks are intrinsically dynamical systems, driving the adaptive re-

sponses of a cell in space and time. The behavior of these dynamical systems is

determined by “biochemical kinetics,” or rate equations, in which the variables of in-

terest are the concentrations of individual network components (proteins, metabolites,

etc.) within the cell, and the dynamics describe the rates of production and decay

of these components. The dynamic models of biological networks typically consist of

systems of nonlinear ordinary differential equations, permitting the modeler to apply

the analytical techniques of nonlinear dynamics. These techniques have been devel-

oped considerably in recent decades, making the rate-equation approach a promising

avenue for combining mathematical analysis and computational simulation.

While the resulting models are typically based on purely continuous dynamics, the

dynamics of biological networks often involve switching between many qualitatively

different modes of behavior. At the molecular level, for example, the fundamental

process of inhibitor proteins turning off the transcription of genes by RNA polymerase
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reflects a switch between two continuous processes. An example of this is the classic

genetic switch observed in the bacteriophage λ (for example, see [138, 76, 147]), where

two distinct behaviors, lysis and lysogeny, each with different mathematical models,

are seen. Also, at the cellular level, the cell growth and division in a eukaryotic cell

is usually described as a sequence of four processes, each being a continuous process

that is triggered by a set of conditions or events (for example, see [78, 100, 162]). At

the inter-cellular level, cell differentiation can also be viewed as a switched system

[69]. In addition to naturally occurring switches, switched dynamics can be the result

of external intervention that attempts to re-engineer a given network by turning on

or off, for example, certain pathways. In all of these examples, the overall behavior

of the network is more appropriately viewed as a switched system, i.e., intervals of

continuous dynamics interspersed by discrete transitions, and, therefore, a hybrid

approach that combines elements of discrete and continuous dynamics is necessary,

not only for the modeling, simulation and analysis (for example, see [3, 2]), but also

for controlling and modifying the network behavior.

Hybrid system models are increasingly being used for modeling a diverse array of

engineering systems, such as automotive and chemical process control systems. A hy-

brid system consists of a finite family of continuous dynamical subsystems (or modes),

each of which is governed by a different set of differential equations, together with a

set of discrete events (or logic-based switching rules) that orchestrate the transition

between the constituent modes. Research on hybrid systems, both within control

systems theory and computer science, has led to the development of systematic tools

for the modeling (for example, [177, 12]), simulation (for example, [12]), optimization

(for example, [160, 165, 72]), stability analysis (for example, [80, 102, 39]), and con-

trol (for example, [21, 13, 94, 184, 49]) of several classes of hybrid systems. Given the
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similarity that many biological networks exhibit to switched systems encountered in

engineering (for example, involving feedback mechanisms and switching), it is instruc-

tive to investigate how all these tools can be applied to model, analyze and possibly

modify the dynamics of biological networks.

Changes in network dynamics can result from alterations in local conditions (for

example, temperature, nutrient and energy source, light, cell density) and/or changes

in the molecular environment of individual regulatory components (for example, intra-

cellular concentrations of transcription factors). Often, the network can be switched

between different modes by changes in parameter values. These parameters typi-

cally include rate constants and total enzyme concentrations that are under genetic

control. Changing the expression of certain genes will change the parameter val-

ues of the model and move the network across bifurcation boundaries into regions

of qualitatively different behavior (for example, transitions from limit cycles to sin-

gle and multiple steady-states). Understanding and analyzing the nature of these

qualitatively different modes of behavior typically involves bifurcation analysis which

determines how the attractors of the vector field depend on parameter values, leading

to a characterization of the regions in parameter space where the different behaviors

are observed. The boundaries of these regions represent the bifurcation boundaries.

An important question, however, that is not addressed by bifurcation analysis is

that of when, or where in the state-space, is a transition from one mode to another

feasible. For example, bifurcations can predict that a change in a certain parameter

is required for the network to move from an oscillatory mode (stable limit cycle) to a

multi-stable mode (multiple stable steady-states) but cannot tell us when, or which,

of the new steady-states will be observed upon switching. This is an important

consideration when one tries to manipulate the network behavior to achieve a certain
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desirable behavior or steady-state. To address this question, bifurcations must be

complemented by a dynamical analysis of the transient behavior of the constituent

modes of the overall network. Intuitively, one expects that the newly switched mode

will exhibit the desired steady-state if, at the time of switching, the network state

is in the vicinity of that steady-state. A precise concept from nonlinear dynamical

systems theory that quantifies this closeness is that of the domain of attraction, which

is the set of all points in the state-space, starting from where the trajectories of the

dynamical system converge to a given equilibrium state.

In this chapter, we present a methodology for the dynamic analysis of mode tran-

sitions in biological networks [51]. The proposed approach is based on the notion –

introduced in [49, 47] – of coupling the switching logic to the domains of attraction

of the constituent modes. To this end, we initially model the overall network as a

switched nonlinear system that dwells in multiple modes, each governed by a set of

continuous-time differential equations. The transition between the continuous modes

are triggered by discrete events (changes in model parameters that correspond to

alterations in physiological conditions). Then, following the characterization of the

steady-state behavior of each mode, Lyapunov techniques are used to characterize the

domains of attraction of the steady-states. Finally, by analyzing how the domains

of attraction of the various modes overlap with one other, it is possible to determine

when, and if, a given steady-state behavior, for a given mode transition, is feasible or

not. The proposed method is demonstrated using models of biological networks that

arise in cell cycle regulation and the bacteriophage λ-switch system.
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8.2 A Switched System Representation of Biological Net-

works

We consider biological networks modeled by systems of nonlinear ordinary differential

equations of the general form:

dx(t)

dt
= fi(t)(x(t), pi(t))

i(t) ∈ I = {1, · · · , N}
(8.1)

where x = [x1 x2 · · · xn]T ∈ IRn is the vector of continuous state variables (for

example, concentrations of the various network components such as proteins, genes,

metabolites, etc.), fi(·) is a smooth nonlinear function, pi is a vector of network

parameters (for example, kinetic constants, total enzyme concentrations) that are

typically under genetic control, i : [0,∞) → I is the switching signal which is assumed

to be a piecewise continuous (from the right) function of time, i.e., i(tk) = lim
t→t+

k

i(t)

for all tk ≥ 0, k ∈ Z+, where Z+ is the set of positive integers and tk is the k-th

switching time, implying that only a finite number of switches occurs on any finite

interval of time. N is the number of modes of the switched system, i(t), which takes

different values in the finite index set, I, represents a discrete state that indexes

the vector field fi(·) which determines ẋ. For each value that i takes in I, the

temporal evolution of the continuous state is governed by a different set of differential

equations. The system of Equation 8.1 is therefore a switched (multi-modal) system

that consists of a finite family of continuous nonlinear subsystems (modes) and a

switching rule that orchestrates the transitions between them. In biological networks,

mode transitions can be the result of a fundamental change in the vector field itself

(for example, different modes having different fi’s) or, more commonly, a change in

network parameter values due to changes in levels of gene expression and enzyme

activities (which can occur spontaneously or be induced externally).
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The basic problem that we address in this chapter is that of determining when

(or where in the state-space) can a transition from one mode to another produce a

certain desired behavior that exists in the target mode (for example, a desired steady-

state). From an analysis point of view, the answer to this question sheds light on why

certain naturally-occurring mode transitions seem to always favor a certain steady-

state behavior. From a control point of view, on the other hand, the answer provides

insight into how and when the designer should enforce the transition in order to bring

about a desired steady-state behavior. In the next section, we outline a methodology

that addresses these questions.

8.3 Methodology for Analysis of Mode Transitions

The methodology proposed here is based on the idea of designing the switching logic

on the basis of the domains of attraction of the constituent modes, which was in-

troduced in [49] in the context of constrained control of switched nonlinear systems.

However, unlike the results in [49] where the restrictions on the size of the domains of

attraction were a consequence of the constraints imposed on the manipulated input

of each mode, the domains of attraction considered here are directly linked to the

intrinsic dynamic behavior of the constituent modes, which is dictated by the depen-

dence of the attractors of the vector field on the network parameters. For example,

the presence of multiple equilibrium points in a given mode gives rise to multiple

stability regions, or domains of attraction, whose union covers the entire state-space.

Clearly, which equilibrium state is attained depends on which region contains the

system state at the switching time. Below is the proposed methodology:

1. Identify the different modes of the network, where each mode is characterized

either by a different set of differential equations or by the same set of equations
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but with different parameters.

2. Compute the steady-state(s) of each mode by solving:

0 = fi(xs, pi) (8.2)

where xs is an admissible steady-state solution. Depending on the values of p,

each mode might possess a limit cycle, a single steady-state, or multiple steady-

states.

3. Characterize the domain of attraction (stability region) of each steady-state in

each mode. For a given steady-state, xs, the domain of attraction, Ω(xs), con-

sists of the set of all states starting from where the system trajectories converge

to that steady-state. Estimates of the domain of attraction can be obtained

using Lyapunov techniques [91]. For example, consider the case of isolated equi-

librium points and let Vi be a Lyapunov function candidate, i.e., Vi(xs) = 0 and

Vi(x) > 0 for all x 6= xs. Consider also the set Π(xs) = {x ∈ IRn : V̇i(x) < 0}.
Then the level set, Ω(xs) = {x ∈ IRn : Vi(x) ≤ cmax

i }, where cmax
i > 0 is the

largest constant for which Ω is fully contained in Π, provides an estimate of

the domain of attraction of xs (see [48, 46] for more details on this issue). Due

to the possible conservatism of the resulting estimates, Lyapunov techniques

are usually coupled with other methods in order to obtain larger estimates (for

example, multiple Lyapunov functions; see chapter 4 in [91] for details).

4. Analyze how the domains of attraction of a given mode overlap with those of

another mode. Suppose, for example, that the network is initialized within mode

k and let T be the transition time from mode k to mode j. Also, let xs be an

admissible steady-state (among several others) of the j-th mode. Then, if

x(T ) ∈ Ωj(xs) (8.3)
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and i(t) = j ∀ t ≥ T+ (i.e., no further switches take place), then we will have

lim
t→∞x(t) = xs, i.e., the xs steady-state will be observed following switching. The

switching rule of Equation 8.3 requires monitoring the temporal evolution of the

state evolution in order to locate where the state is at the switching time, with

respect to the domains of attraction of the mode to be activated.

Remark 8.1 Referring to the computation of the steady-states of a biological net-

work, we note that it is, in general, difficult to compute all the steady-state solutions

of a system of nonlinear ordinary differential equations (ODEs). For an arbitrary

system of nonlinear ODEs, where the right-hand side does not possess any kind of

structure, one can resort to general search algorithms, such as Newton-type methods,

to solve Equation 8.2. These methods are usually local in character and thus may

require an extensive search over all possible initial guesses in order to find all possible

solutions. For biological systems, the search complexity can be reduced somewhat by

taking advantage of the natural limits on the values of the state variables in order

to bracket the region in the state-space where the system is expected to operate and

where the search needs to be carried out. More importantly, the dynamic models of

biological systems often exhibit specific types of structure that arise from physical

considerations and can thus be exploited in the computation of all the steady-states

using computational algorithms that have been developed in the literature. For ex-

ample, if each component on the right-hand side of the system of ODEs in Equation

8.1, fi, involves linear combinations of rational functions of variables and parameters,

then the algorithm developed in [188] can be used to find all the steady-states (the

algorithm converts the steady-state equations into a system of polynomial equations

and uses a globally convergent homotopy method to find all the roots of the system

of polynomials). Most biological models of molecular networks have linear combina-

tions of rational functions for the right-hand side of their system of ODEs (see the

cell-cycle and λ-switch models studied in the next two sections for examples). In fact,

the right-hand sides are usually even more restricted to mass action and Michaelis-
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Menten type kinetics. Mass action kinetics have the form k ∗ S1 ∗ S2 ∗ · · · ∗ Sn; where

k is a rate constant (parameter) and Si represents the concentration of a protein

(variable). Michaelis- Menten kinetics have the form k ∗S ∗E/(Km +S); where k is a

rate constant (parameter), Km is a Michaelis constant (parameter), S is the substrate

concentration (variable), and E is the enzyme concentration (variable). Clearly, these

kinetics are rational functions. Once the target steady-states are identified, the do-

mains of attraction for each steady-state can be computed. Then, the switching rule

of Equation 8.3 ensures a priori where the system will end up upon switching at a

given point in the state-space, provided that this point is within the domain of at-

traction of a stable steady-state. Finally, it should be noted that even in the rare case

that a structure cannot be identified – and subsequently not all of the steady-states

can be found – the proposed method still provides useful information regarding the

feasibility of switching into any of the known steady-states by verifying whether the

state at any given given time is contained within its domain of attraction.

Remark 8.2 The issue of robustness of the proposed approach with respect to model

uncertainty can be explicitly handled by modifying the computation of the domains

of attraction following the methodology proposed in [46] to account for the presence

of parametric model uncertainty in the computation of the domain of attraction using

bounds on the variation of the model parameters.

Remark 8.3 The Lyapunov function-based approach that we follow for the con-

struction of the domains of attraction for the individual stable steady-states yields a

domain of attraction estimate that is dependent upon the specific Lyapunov function

used. To improve upon the obtained estimate, one can use a group of different Lya-

punov functions to come up with a larger estimate of the domain of attraction. Other

methods for the construction of the Lyapunov function, such as Zubov’s method (for

example, [42]) and the sum of squares decomposition approach [134], can also be used.

Acceptability of the computed estimates should ultimately be judged with respect to

the size of the expected operating regime. Once the domain of attraction estimates

246



are obtained, the switching rule of Equation 8.3 ensures that the system will go to

a certain stable steady-state if the switching occurs at a point which is within the

domain of attraction of this steady-state. Finally, we note that the case of multiple

mode switchings can be handled in a sequential fashion – the same way that the first

mode switch is handled – by tracking where the state is at the time of each switch.

Remark 8.4 It should be noted that the proposed approach is not limited by the

dimensionality of the system under consideration but applies to systems of any dimen-

sionality. The estimation of the domain of attraction utilizes only simple algebraic

computations and does not incur prohibitive computational costs with increasing di-

mensionality. In the simulation studies presented below, the domains of attraction

are plotted for the sake of a visual demonstration. However, a plot of the domain of

attraction is not required for the implementation of the switching rule, and, therefore,

poses no limitation when considering systems of higher dimensions. The knowledge

of the domain of attraction is contained completely in the value of the level set, ci,

obtained when computing the estimate of the domain of attraction. At the time of

implementation, to ascertain whether the state is within the domain of attraction

requires only evaluating the Lyapunov function and verifying if Vi(x(T )) ≤ ci. To

reduce the possible conservatism of the resulting estimate, it is often desirable to

find the largest value of ci for which the estimate Ωci
= {x : Vi(x) ≤ ci} is fully

contained within Πi. For this purpose, an iterative procedure to recompute (and en-

large) the estimate of the domain of attraction can be employed whereby the value

of ci is increased gradually in each iteration until a value, cmax
i , is reached where

for any ci > cmax
i , Ωci

is no longer fully contained in Πi. The level set Ωcmax
i

then

is the largest estimate of the domain of attraction that can be obtained using the

level sets of the given Lyapunov function. Note that, for a given value of ci in each

iteration, the determination of whether Ωci
is fully contained in Πi involves only in-

expensive algebraic computations and thus this iterative procedure does not incur

prohibitive computational costs as the dimensionality of the system increases. The

same procedure also applies when a family of Lyapunov functions is used to estimate
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the domain of attraction of a given steady-state. Finally, it should be noted that

how close the obtained estimate is to the actual domain of attraction depends on the

particular system structure as well as the method used to compute this estimate (in

this case the particular Lyapunov functions chosen). In general, it is expected that

the estimate will not capture the entire domain of attraction which implies that the

union of all the estimates of the domains of attraction of all the steady-states will not

cover the entire state-space. An implication of this, for the case when switching of the

network is controlled externally and a priori stability guarantees are sought, is that

switching should be delayed until the state trajectory enters the computed estimate

of the domain of attraction of the desired target steady-state. The “gaps” in between

the different estimates (and hence the conservatism of the switching policy) can be

reduced either with the help of dynamic simulations or by augmenting the individual

estimates using any of the methods cited in Remark 8.3.

Remark 8.5 The proposed approach models biological networks using deterministic

differential equations and does not account for possible network stochastic behavior.

Such stochasticity can be modeled as uncertainty in the model parameters, and there-

fore be handled directly by modifying the computation of the domains of attraction in

a way that accounts explicitly for the effect of parameter model uncertainty following

the methodology proposed in [46].

In the next two sections, we demonstrate, through computer simulations, the ap-

plication of this methodology to the analysis of mode transitions in two biological

networks, one arising in eukaryotic cell cycle regulation and the other in the bacterio-

phage λ-switch system. We note here that the focus in both examples is not on the

modeling aspect, but rather on illustrating how the proposed analysis method can

be applied given some available model of the network (which could come either from

first-principles or from data).
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8.4 Application to Eukaryotic Cell Cycle Regulation

We consider here an example network of biochemical reactions, based on cyclin-

dependent kinases and their associated proteins, which are involved in cell cycle

control in frog egg development. A detailed description of this network is given

in [133] where the authors use standard principles of biochemical kinetics and rate

equations to construct a nonlinear dynamic model of the network that describes the

time evolution of the key species including free cyclin, the M-phase promoting factor

(MPF), and other regulatory enzymes. The model parameters have either been esti-

mated from kinetic experiments in frog egg extracts or assigned values consistent with

experimental observations. For illustration purposes, we will consider below the sim-

plified network model derived by the authors (focusing only on the positive-feedback

loops in the network) which captures the basic stages of frog egg development. The

model is given by:

du

dt
=

k′1
G
−

(
k′2 + k′′2u

2 + kwee

)
u + (k′25 + k′′25u

2)
(

v

G
− u

)

dv

dt
= k′1 − (k′2 + k′′2u

2)v

(8.4)

where G = 1 + kINH

kCAK
, kINH is the rate constant for inhibition of INH, a protein

that negatively regulates MPF, kCAK is the rate constant for activation of CAK,

a cdc2-activating kinase, u is a dimensionless concentration of active MPF and v

is a dimensionless concentration of total cyclin, k′2 and k′′2 are rate constants for

the low-activity and high activity forms, respectively, of cyclin degradation, k′25 and

k′′25 are rate constants for the low-activity and high activity forms, respectively, of

tyrosine dephosphorylation of MPF, k′1 is a rate constant for cyclin synthesis, kwee

is the rate constant for inhibition of Wee1, an enzyme responsible for the tyrosine

phosphorylation of MPF (which inhibits MPF activity) (see [133] for model derivation

from the molecular mechanism and Table 8.1 for the parameter values). Bifurcation
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and phase-plane analysis of the above model [133] shows that, by changing the values

of k′2, k′′2 and kwee, the following four modes of behavior are predicted (see Table 8.2):

• A G2-arrested state (blocked before the G2-M transition) characterized by high

cyclin concentration and little MPF activity. This corresponds to a unique,

asymptotically stable steady-state (k′2 = 0.01, k′′2 = 10, kwee = 3.5; see Figure

8.1(a)).

• An M-arrested state (blocked before the meta- to anaphase transition) state

with lots of active MPF. This corresponds to a unique, asymptotically stable

steady-state (k′2 = 0.01, k′′2 = 0.5, kwee = 2.0; see Figure 8.1(b)).

• An oscillatory state (alternating phases of DNA synthesis and mitosis) exhibiting

sustained, periodic fluctuation of MPF activity and total cyclin protein. This

corresponds to a stable limit cycle surrounding an unstable equilibrium point

(k′2 = 0.01, k′′2 = 10, kwee = 2.0; see Figure 8.1(c)).

• Co-existing stable steady-states of G2-arrest and M-arrest. This corresponds to

three steady-states; one unstable and two locally asymptotically stable (k′2 =

0.015, k′′2 = 0.1, kwee = 3.5; see Figure 8.1(d)).

Table 8.1: Parameter values for the cell cycle model in Equation 8.4 [133].

k′1 = 0.01
k′25 = 0.04
k′′25 = 100

kINH = 0.1
kCAK = 1

The above analysis predicts that slight increases in k′2 and kwee, accompanied by

a significant drop in k′′2 (which could be driven, for example, by down-regulation of
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Figure 8.1: Phase-plane portraits of the system of Equation 8.4, for different values of k′2,

k′′2 , and kwee, showing: (a) Stable steady-state with most MPF inactive, (b) Stable steady-

state with most MPF active, (c) Unstable steady-state surrounded by a limit cycle, and (d)

Bi-stability: two stable steady-states separated by an unstable saddle point.
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Table 8.2: Steady-state values (us, vs) for the cell cycle model for different values of k′2, k′′2

and kwee.

k′2 k′′2 kwee Mode M -arrest state G2-arrest state Reference
0.01 10 3.5 G2-arrest n/a (0.016, 0.802)
0.01 0.5 2.0 M-arrest (0.202, 0.329) n/a
0.015 0.1 3.5 Bi-stable (0.276, 0.442) (0.012, 0.666)
0.01 10 2.0 Oscillatory n/a n/a Figure 8.2(b)
0.01 10 2.5 Oscillatory n/a n/a Figure 8.4

cyclin degradation) can induce a transition from the oscillatory mode of MPF activity

(early embryo stage) to the bi-stable mode. However, it is not clear from this analysis

alone whether the cell will end up in a G2- or an M-arrested state upon switching. To

address this question, we initially compute the domains of attraction of both steady-

states in the bi-stable mode. This is done using a Lyapunov function of the form

V = (u− us)
4 + 10(v − vs)

2, where us and vs are the steady-state values. The basic

idea here is to compute, for each steady-state, the region in the (u, v) space where

the time-derivative of V is negative-definite along the trajectories of the dynamical

system of Equation 8.4, and then use this region to obtain an estimate of the domain of

attraction. While several candidate functions could be used, this particular function

was found to yield acceptable estimates of the domains of attraction in the sense

that the region obtained for each steady-state covered a distinct and large part of the

operating range considered (the two regions were mostly separated from one another

along the separatrix running through the three steady-states, and their union covered

the entire range) with little overlapping between the two regions occurring only in

the vicinity of the two steady-states. Computer simulations were then used to check

the regions of overlap and determine which domain of attraction they were contained

in.
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Figure 8.2: (a) A plot showing the overlap of the limit cycle of the oscillatory mode with the

domains of attraction for the M-arrested steady-state (entire area above dashed curve) and

for the G2-arrested steady-state (entire area below the dashed curve), (b) A plot showing

that switching from the oscillatory to the bi-stable mode moves the system to different

steady-states depending on where switching takes place. In both cases, the oscillatory

mode is fixed at k′2 = 0.01, k′′2 = 10, kwee = 2.0.
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The domains of attraction for both steady-states are depicted in Figure 8.2(a).

The entire area above the dashed curve (the separatrix) is the domain of attraction

of the M-arrested state while the area below is the domain of attraction of the G2-

arrested state. Both stable steady-states are denoted by asterisks on the plot and the

unstable steady-state is denoted by a circle on the separatrix. By plotting the limit

cycle (obtained from the oscillatory mode) on the same plot, we see that a portion

of the limit cycle lies within the domain of attraction of the M-arrested steady-

state (segment A in Figure 8.2(a)) while the rest is completely within the domain

of attraction of the G2-arrested steady-state. Based on this analysis, we conclude

that switching from the oscillatory mode to the bi-stable mode would move the cell

to the G2-arrested state only if the transition occurs at times when the state is not

on segment A, while it would end up in the M-arrested state if switching were to

occur on segment A. This conclusion is verified by the dotted and dash-dotted state

trajectories, respectively, shown in Figure 8.2(b). The corresponding plots of the

time-evolution of the states in both switching scenarios are given in Figure 8.3 for

two representative switching times. Note that because of the periodic nature of the

solution in the oscillatory mode, there are many time-intervals, between t = 0 and

t = 333.5 min, when the limit cycle trajectory is on segment A. These intervals are

separated by one period of the limit cycle. Switching during any of these intervals

to the bi-stable mode moves the system to the M-arrested state. Similarly, there are

many time-intervals when the trajectory is not on segment A. Switching during any

of those intervals will land the system at the G2-arrested state.

Figure 8.4 shows the limit cycle resulting when the rate of inhibition of Wee1 is

increased to kwee = 2.5 (with k′2 and k′′2 remaining fixed at 0.01 and 10, respectively).

Comparing with Figure 8.2(a), we observe that a larger portion of the limit cycle
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Figure 8.3: The time evolution plots of (a) active MPF, and (b) total cyclin upon switching

from the oscillatory to the bi-stable mode at two representative switching times. At t =

333.5 min, the state trajectory lies on segment A (see Figure 8.2(a)) and therefore switching

lands the state in the M-arrested steady-state (dash-dotted line), while at t = 334 min,

switching lands the state in the G2-arrested steady-state (dotted line). In both cases, the

oscillatory mode is fixed at k′2 = 0.01, k′′2 = 10, kwee = 2.0.
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Figure 8.4: A plot showing that switching from the oscillatory mode (of the following

parameter values: k′2 = 0.01, k′′2 = 10, kwee = 2.5) to the bi-stable mode at same time as

in Figure 8.2(b) (t = 333.5 min) moves the system to G2-arrest steady-state (instead of M-

arrest steady-state) because switching does not occur on segment B. Note that the portion of

the limit cycle overlapping the domain of attraction of the M-arrested steady-state (segment

B) is larger than the one in Figure 8.2(a) (segment A).
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(segment B in Figure 8.4) lies within the domain of attraction of the M-arrested

steady-state. Therefore, unlike the case of Figure 8.2(a), when switching from the

oscillatory mode to the bi-stable mode takes place at t = 333.5 min, the state is not

within the domain of attraction of the M-arrested steady-state. Switching in this case

lands the system at the G2-arrested steady-state. The corresponding time-evolution

plots are given in Figure 8.5.
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Figure 8.5: The time evolution plots of (a) active MPF, and (b) total cyclin upon switching

from the oscillatory to the bi-stable mode at t = 333.5 min. In both cases, the oscillatory

mode is fixed at k′2 = 0.01, k′′2 = 10, kwee = 2.5
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8.5 Application to the Bacteriophage λ-Switch System

We consider an example of a biological switch observed in the bacteriophage λ. An

excellent review and detailed description of the molecular regulatory mechanisms in

the bacteriophage λ-switch can be found in [138]. Bacteriophage λ is a virus capable

of infecting Escherichia coli bacteria. The virus attaches its tail to the surface of

host bacterium cell, drills a hole in the cell wall, and squirts its chromosome into

the bacterium, leaving its coat behind. λ is an obligate parasite – it must inject its

DNA into the bacterium to multiply. Upon infection, it can follow either one of two

different pathways. First, the injected phage chromosome lysogenizes its host: all but

one of the phage genes are turned off, and one phage chromosome, called prophage,

becomes part of the host chromosome. As the lysogen (the bacterium bearing the

prophage) grows and divides, the prophage is passively replicated and quiescently

distributed to the progeny bacteria. Second, the phage chromosome enters the lytic

mode: various sets of phage genes are turned on and off according to a precisely

regulated program, the λ chromosome is extensively replicated, new head and tail

proteins are synthesized, new phage particles are formed within bacterium, and some

45 minutes following the infection the bacterium lyses and releases about 100 progeny

phage. Once the virus is in the lysogenic state, it can shift to the lysis state under

certain conditions, for example, if the bacterial culture is irradiated with ultraviolet

(UV) light.

The molecular regulatory mechanism responsible for the lysogeny/lysis decision

is known as the phage λ-switch. The switch to lytic growth is called induction.

A schematic representation of the λ-switch performance in the lysogenic and lytic

steady-states is shown in Figure 8.6.

To understand how the switch works, we need to consider two regulatory genes
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Figure 8.6: A schematic representation of the molecular mechanism responsible for the

lysogenic to lytic mode transition in the bacteriophage λ.

(cI and cro) and the regulatory region called OR (right operator). In a lysogen, cI is

on and cro is off, and vice versa when lytic growth ensues. The operator comprises

three binding sites (OR1, OR2, and OR3) that overlap two opposing promoters. One of

these, PR, directs transcription of lytic genes and the other, PRM , directs transcription

of the cI gene. In a lysogen, the λ repressor (the product of cI gene), at OR, is

bound at the two adjacent sites OR1 and OR2. At these positions, it performs two

functions: it represses rightward transcription from the promoter PR, thereby turning

off expression of cro and other lytic genes; simultaneously it activates transcription of

its own gene from the promoter PRM . Upon induction, repressor vacates the operator

and transcription from PR commences spontaneously. The first newly made protein is

Cro. This protein binds first to OR3, apparently helping to abolish repressor synthesis.

To illustrate the application of our methodology, we consider the following bac-

teriophage λ synthetic network model described in [76] (other more detailed models
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can also be used):
dx

dt
=

mx(1 + x2 + ασ1x
4)

Q(x, y)
− γxx

dy

dt
=

myρy(1 + y2)

Q(x, y)
− γyy

(8.5)

where

Q(x, y) = 1 + x2 + σ1x
4 + σ1σ2x

6 + y2 + (β1 + β2)y
4 + β1β3y

6 + σ1β4x
4y2 + β5x

2y2

(8.6)

x and y represent dimensionless concentrations of the CI and Cro proteins, respec-

tively; t represents dimensionless time; σ1 and σ2 are prefactors denoting the relative

affinities for dimer binding to OR1 versus that of binding to OR2 and OR3, respectively;

α > 1 represents degree to which transcription is enhanced by dimer occupation of

OR2; β1–β5 represent prefactors denoting binding strengths on reactions entailing the

binding of Cro to different operator sites (see Equation 17 in [76]); the integers mx and

my represent the plasmid copy numbers for the two species; ρy represents a constant

related to the scaling of y relative to x ; γx and γy are directly proportional to the

decay rates of CI and Cro proteins, respectively. The even polynomials in x occur

due to dimerization and subsequent binding to the promoter region. The x4 term

represents the transcription when the two operator sites OR1 and OR2 are occupied

(x2x2). The x6 term represents the occupation of all three operator sites and arises in

the denominator because dimer occupation of OR3 inhibits polymerase binding and

shuts off transcription. The values of the model parameters in Equations 8.5-8.6 are

given in Table 8.3. The steady-state values for different CI and Cro degradation rates

are given in Table 8.4.

Bifurcation and phase-plane analysis of the above model show that, by changing

the values of γx and γy, the system of Equation 8.5 can exhibit one of the following

modes of behavior:
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Table 8.3: Parameter values for the bacteriophage λ model in Equation 8.5 [76].

ρy = 62.92
α = 11

mx = 1
my = 1
σ1 = 2
σ2 = 0.08
β1 = 0.08
β2 = 0.08
β3 = 0.08
β4 = 1
β5 = 1

Table 8.4: Steady-state values (xs,ys) for the lysogenic, lytic, and unstable steady-states

for different values of γx and γy.

γx γy Lysogenic Lytic Unstable Domain of
state state state attraction

0.004 0.008 (32.39,0) (0,16.22) (2.79,15.27) Figure 8.8(a)
0.05 0.008 (13.71,0.01) (0,16.22) (4.89,6.38) Figure 8.7
0.1 0.008 (10.75,0.03) (0,16.22) (5.37,4.10) Figure 8.8(b)
1 0.008 n/a (0,16.22) n/a
0.004 1 (32.39,0) n/a n/a
0.05 0.0005 (13.71,0.11) (0,28.59) (10.24,3.47) Figure 8.11(a)
0.05 0.06 (13.71,0) (0,10.60) (2.64,7.65) Figure 8.11(b)
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• A mode with a single globally asymptotically stable equilibrium point corre-

sponding to the lysogenic steady-state (low γx and high γy).

• A mode with a single globally asymptotically stable equilibrium point corre-

sponding to the lytic steady-state (high γx and low γy).

• A bi-stable mode where the stable lysogenic and lytic steady-states coexist to-

gether with a third unstable steady-state.

Note from Table 8.4 that for a fixed γy, as the degradation rate of protein CI

is increased (larger γx value), the lysogenic steady-state keeps shifting to smaller

concentrations until the system exhibits only the lytic steady-state (the lysogenic

steady-state vanishes). By contrast, for a fixed γx, when the degradation rate of

protein Cro is increased (larger γy value), the lytic steady-state keeps shifting to

smaller concentrations until the system exhibits only the lysogenic steady-state (the

lytic steady-state vanishes).

Table 8.5: Lyapunov functions used in estimating the invariant set Ωlysogenic for the lyso-

genic state and the invariant set Ωlytic for the lytic state.

γx γy Lyapunov Function for Ωlysogenic cmax

0.004 0.008 V = (x− xs)
2 + (y − ys)

2 800
0.1 0.008 V = (x− xs)

2 + 0.6(y − ys)
4 100

0.05 0.0005 V = (x− xs)
2 + (y − ys)

6 150
0.05 0.06 V = (x− xs)

2 + 0.5(y − ys)
2 150

γx γy Lyapunov Function for Ωlytic cmax

0.004 0.008 V = 20(x− xs)
2 + (y − ys)

2 100
0.1 0.008 V = 0.5(x− xs)

2 + (y − ys)
2 150

0.05 0.0005 V = (x− xs)
2 + 0.01(y − ys)

4 700
0.05 0.06 V = 20(x− xs)

2 + (y − ys)
2 100

Focusing on the bi-stable mode, we initially compute estimates of the domains

of attraction of both steady-states for different values of the CI and Cro protein
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Figure 8.7: A phase plot for the moderate CI degradation mode showing that an initial

condition within the lysogenic domain of attraction (entire area below the dotted curve)

will converge to the lysogenic steady-state (dashed trajectory) and that an initial condition

within the lytic domain of attraction (entire area above the dotted curve) will converge to the

lytic steady-state (solid trajectory). Here, the Cro degradation rate is fixed at γy = 0.008.

degradation rate. Due to the complex nonlinearity of the system – relative to that of

the cell cycle model – the Lyapunov function used in the cell cycle example did not

yield good estimates of the domain of attraction for the λ-switch system. However, we

were able to get “conservative” estimates of the domains of attraction using several

other polynomial Lyapunov functions which are listed in Table 8.5. For each steady-

state, we initially used the corresponding V to determine the region, Π, where V̇ < 0

and then constructed an invariant set (a level set) within this region, Ω = {x : V (x) ≤
cmax}, where cmax is a positive constant for which Ω is contained in Π. The boundaries

of the invariant sets, Ωlysogenic and Ωlytic, are depicted by the dotted lines in Figures

8.8, 8.11, 8.14, and 8.16) for the lysogenic state and lytic state (note that, for each

level set, only the part that is contained within the given x-y range is shown). To

get an idea of the possible conservatism of these estimates, we also used computer
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Figure 8.8: A phase plot showing the system of Equation 8.5 being initialized using γx = 0.05

(dashed trajectory) and undergoing: (a) a decrease in the degradation rate of CI protein

(to γx = 0.004) at t = 20, leading the state to converge to the lysogenic steady-state, and

(b) an increase in the degradation rate of CI protein (to γx = 0.1) at t = 20, leading the

state to converge to the lytic steady-state. In both cases, the Cro degradation rate is fixed

at γy = 0.008.

264



0 200 400 600 800 1000
10

15

20

25

30

35

Time

[x
]

Switching at t=20 

(a)

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18

Time

[y
]

Switching at t=20 

(b)

Figure 8.9: The time evolution plots of the CI (left) and Cro (right) protein concentrations

when the system undergoes a transition from the γx = 0.05 mode (dashed lines) to the

γx = 0.004 mode at t = 20 and converges (solid lines) to the lysogenic steady-state. The

Cro degradation rate is fixed at γy = 0.008.
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Figure 8.10: The time evolution plots of the CI (left) and Cro (right) protein concentrations

when the system undergoes a transition from the γx = 0.05 mode (dashed lines) to the

γx = 0.1 mode at t = 20 and converges (solid lines) to the lytic steady-state. The Cro

degradation rate is fixed at γy = 0.008.
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simulations to compare, for each steady-state, the entire domain of attraction (shaded

regions) with the estimate provided by the corresponding level set.

Figures 8.7, 8.8(a), and 8.8(b) show the domains of attraction for the lysogenic

and lytic steady-states for: (1) a moderate CI degradation rate (γx = 0.05, γy =

0.008), (2) a relatively low CI degradation rate (γx = 0.004, γy = 0.008), and (3)

a relatively high CI degradation rate (γx = 0.1, γy = 0.008), respectively, keeping

the Cro protein degradation rate constant. Figures 8.7, 8.11(a), and 8.11(b) show the

domains of attraction for the lysogenic and lytic steady-states for: (1) a moderate Cro

degradation rate (γx = 0.05, γy = 0.008), (2) a relatively low Cro degradation rate

(γx = 0.05, γy = 0.0005), and (3) a relatively high Cro degradation rate (γx = 0.05,

γy = 0.06), respectively, keeping the CI protein degradation rate constant. The entire

area below (or to the right of) the separatrix is the entire domain of attraction for

the lysogenic steady-state, while the area above (or to the left of) the separatrix is

the entire domain of attraction for the lytic steady-state. Both stable steady-states

are denoted by asterisks on each plot.

It is clear from the plots that an increase in the CI degradation rate results in

a smaller domain of attraction for the lysogenic state (and a larger one for the lytic

state) and vice versa. In the limiting case of very high degradation rates, the lysogenic

state vanishes and the domain of attraction of the lytic state occupies the entire state-

space (single globally asymptotically stable equilibrium point). The opposite trend is

observed when the Cro protein degradation rate is increased. In particular, increasing

γy leads to a smaller domain of attraction for the lytic state and a larger one for the

lysogenic state. For very high Cro degradation rates, the lytic steady-state vanishes

and the domain of attraction for the lysogenic state turns into the entire state-space.

Therefore, in the bi-stable mode, the initial condition plays a critical role in decid-
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Figure 8.11: A phase plot showing the system of Equation 8.5 being initialized using γy =

0.008 (dashed trajectory) and undergoing: (a) a decrease in the degradation rate of Cro

protein (to γy = 0.0005) at t = 20, leading the state to converge to the lytic steady-state,

and (b) an increase in the degradation rate of Cro protein (to γy = 0.06) at t = 20, leading

the state to converge to the lysogenic steady-state. In both cases, the CI degradation rate

is fixed at γx = 0.05.
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Figure 8.12: The time evolution plots of the CI (left) and Cro (right) protein concentrations

when the system initialized at (x(0), y(0)) = (35, 18) undergoes a transition from the γy =

0.008 mode (dashed lines) to the γy = 0.0005 mode at t = 20 and converges (solid lines) to

the lytic steady-state. The CI degradation rate is fixed at γx = 0.05.
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Figure 8.13: The time evolution plots of the CI (left) and Cro (right) protein concentrations

when the system initialized at (x(0), y(0)) = (35, 18) undergoes a transition from the γy =

0.008 mode (dashed lines) to the γy = 0.06 mode at t = 20 and converges (solid lines) to

the lysogenic steady-state. The CI degradation rate is fixed at γx = 0.05.
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ing which steady-state the bacteriophage λ will attain. Also, the size of the domain

of attraction for each state helps explain why the lysogenic state is more likely to be

observed under a given set of conditions (for example, [147]), while the lytic state

is more likely to be seen under a different set of conditions. Figure 8.7 shows that

starting from an initial condition of high CI and Cro concentrations, the phage ends

up in the lytic state since the initial condition is within its domain of attraction (solid

trajectory). Initializing the system, however, at high CI but low Cro concentrations

drives the phage to the lysogenic state (dashed trajectory).

We now demonstrate the effect of switching in the CI protein degradation rate

on whether the bacteriophage will exhibit the lytic or lysogenic steady-state. To

this end, we initialize the system within the moderate CI degradation mode (γx =

0.05, γy = 0.008) at the initial condition (x(0), y(0)) = (35, 18) and allow it to evolve

in this mode until, at t = 20, a mode transition is enforced (see dashed trajectories

in Figures 8.8(a-b)). The results show that, for a fixed transition time, depending on

which mode is being switched in, the phage takes a different path. For example, Figure

8.8(a) shows that when the system switches to the relatively low CI degradation mode

(γx = 0.004, γy = 0.008) at t = 20, the system state is within the invariant set of the

lysogenic steady-state (Ωlysogenic) and, therefore, the phage ends up with lysogeny.

Figure 8.8(b), on the other hand, shows that when the relatively high CI degradation

mode (γx = 0.1, γy = 0.008) is switched in at t = 20, the system state is within

the invariant set of the lytic steady-state (Ωlytic) and, therefore, the phage ends up

with lysis instead. The time evolution plots for both scenarios are depicted in Figures

8.9-8.10, respectively.

Figure 8.8(b) gives some insight into the implications of using a conservative esti-

mate of the domain of attraction as the basis for switching, in lieu of the true domain
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of attraction (which could be more computationally expensive to obtain). In partic-

ular, if the relatively high CI degradation mode (γx = 0.1, γy = 0.008) is switched

in before the states enter the invariant set of the lytic state Ωlytic, then, having no

knowledge about what the actual domain of attraction looks like, the only conclusion

we would be able to make is that there is no guarantee that the phage would end up

in the lytic state if switching were to take place at such a time. Switching has to be

“delayed” until the state enters Ωlytic in order to guarantee that the phage would end

up with lysis.

To demonstrate the effect of switching in the Cro protein degradation rate, the

system is initialized within the moderate Cro degradation mode (γx = 0.05, γy =

0.008) at the same initial condition (x(0), y(0)) = (35, 18) and allowed to evolve in this

mode until, at t = 20, a mode transition is enforced (see dashed trajectories in Figures

8.11(a-b)). The results show that, for a fixed transition time, depending on which

mode is being switched in, the phage takes a different path. For example, Figure

8.11(a) shows that when the system switches to the relatively low Cro degradation

mode (γx = 0.05, γy = 0.0005) at t = 20, the system state is within Ωlytic and,

therefore, the phage ends up with lysis. Figure 8.11(b), on the other hand, shows that

when the relatively high Cro degradation mode (γx = 0.05, γy = 0.06) is switched in

at t = 20, the system state is within Ωlysogenic and, therefore, the phage ends up with

lysogeny instead. The time evolution plots for both scenarios are depicted in Figures

8.12-8.13, respectively.

So far in our analysis, we have fixed the transition time and showed that which

mode is activated at that time determines the final state of the phage. Here, we

demonstrate the effect of varying the transition time, for a given mode transition,

on the steady-state behavior of the phage. To this end, we reconsider the switching
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scenario presented in Figure 8.8(a), where the system switches from the moderate

(γx = 0.05) to the relatively low (γx = 0.004) CI degradation mode and the Cro

degradation rate is fixed at γy = 0.008. However, instead of carrying out the transition

at t = 20 as in Figure 8.8(a), the switch is delayed until t = 70. The result is

depicted in Figure 8.14 which shows that at t = 70, the system state is within the

invariant set of the lytic steady-state (Ωlytic) and, therefore, the phage ends up with

lysis. The corresponding time evolution plots are given in Figure 8.15. By comparing

Figure 8.8(a) with Figure 8.14, we conclude that an early transition from moderate

to relatively low CI degradation rate favors lysogeny, while a late transition favors

lysis.
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Figure 8.14: A phase plot showing the system undergoing a transition from the γx = 0.05

mode (dashed trajectory) to the γx = 0.004 at t = 70 and converging (solid trajectory) to

the lytic steady-state. The Cro degradation rate is fixed at γy = 0.008.

In the last simulation run, we demonstrate the effect of the initial condition on

the outcome of switching for a given transition time. To this end, we initialize the

system within the moderate CI degradation mode (γx = 0.05, γy = 0.008) at an

initial condition different from the one considered in Figure 8.8 and characterized
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Figure 8.15: The time evolution plots of the CI (left) and Cro (right) protein concentrations

when the system undergoes a transition from the γx = 0.05 mode (dashed lines) to the

γx = 0.004 mode at t = 70 and converges (solid lines) to the lytic steady-state. The Cro

degradation rate is fixed at γy = 0.008.
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Figure 8.16: A phase plot showing the system of Equation 8.5 being initialized using γx =

0.05 (dashed trajectory) and undergoing: (a) a decrease in the degradation rate of CI

protein (to γx = 0.004) at t = 40 and (b) an increase in the degradation rate of CI protein

(to γx = 0.1) at t = 40, both leading the state to converge to the lysogenic steady-state. In

both cases, the Cro degradation rate is fixed at γy = 0.008.
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Figure 8.17: The time evolution plots of the CI (left) and Cro (right) protein concentrations

when the system initialized at (x(0), y(0)) = (35, 2) undergoes a transition from the γx =

0.05 mode (dashed lines) to the γx = 0.004 mode at t = 40 and converges (solid lines) to

the lytic steady-state. The Cro degradation rate is fixed at γy = 0.008.

276



0 200 400 600 800 1000
10

15

20

25

30

35

Time

[x
]

Switching at t=40 

(a)

0 200 400 600 800 1000
0  

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Time

[y
]

Switching at t=40 

(b)

Figure 8.18: The time evolution plots of the CI (left) and Cro (right) protein concentrations

when the system initialized at (x(0), y(0)) = (35, 2) undergoes a transition from the γx =

0.05 mode (dashed lines) to the γx = 0.1 mode at t = 40 and converges (solid lines) to the

lytic steady-state. The Cro degradation rate is fixed at γy = 0.008.
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by high concentration of CI and low concentration of Cro (x(0) = 35, y(0) = 2).

We allow the system to evolve in this mode until, at t = 40, a mode transition is

enforced (see dashed trajectories in Figures 8.16(a-b)). The results show that, for

a fixed transition time, switching close to a particular steady-state will converge to

that particular steady-state, independently of which mode is being switched in. For

example, Figure 8.16(a) shows that when the system switches to the relatively low

CI degradation mode (γx = 0.004, γy = 0.008) at t = 40, the state is within the

invariant set of the lysogenic steady-state (Ωlysogenic) and, therefore, the phage ends

up with lysogeny. Similarly, Figure 8.16(b) shows that when the relatively high CI

degradation mode (γx = 0.1, γy = 0.008) is switched in at t = 40, the state is

again within the invariant set of the lysogenic steady-state (Ωlysogenic) and, therefore,

the phage ends up with lysogeny (albeit with a smaller steady-state concentration

of CI protein). The time evolution plots for both scenarios are depicted in Figures

8.17-8.18, respectively. Note that this result is different from the one obtained in

Figure 8.8 where the final steady-state behavior is dependent on which mode is being

switched in. The difference lies in the fact that the system state at the switching time

considered in Figure 8.16 is contained within the invariant set of the lysogenic steady-

state (Ωlysogenic) for both the low and high CI degradation modes, and therefore only

the lysogenic steady-state can be observed regardless of whether the low or high CI

degradation mode is activated.

8.6 Conclusions

In this chapter, a methodology for the analysis of mode transitions in biological

networks was presented. The proposed approach was predicated upon the notion

of orchestrating switching between the domains of attraction of the steady-states

278



of the constituent modes. The proposed method was demonstrated using models

of biological networks that arise in cell cycle regulation and the bacteriophage λ-

switch system. The proposed approach has implications both for understanding the

outcome of naturally-occurring mode transitions and for the ability to manipulate

network behavior by enforcing mode transitions.
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Chapter 9

Conclusions

This work proposed a methodology for design of fault-tolerant control systems for

nonlinear processes with actuator constraints and measurement data loss in presence

of uncertainties and disturbances for handling actuator and sensor faults, incorporat-

ing performance and robustness considerations. The proposed approach was predi-

cated upon the idea of integrating fault-detection, feedback control, supervisory over

networks, and hybrid systems.

Initially, a family of candidate control configurations, characterized by different

manipulated inputs, were identified. For each control configuration, a Lyapunov-

based nonlinear feedback controller, that enforced asymptotic closed-loop stability in

the presence of constraints, was designed. For each control configuration, the stability

region (i.e., the set of initial conditions starting from where closed-loop stabilization

under continuous availability of measurements is guaranteed) as well as the maximum

allowable data loss rate which preserved closed-loop stability was computed. A fault-

detection filter was used to compute the expected closed-loop behavior in the absence

of faults. Deviations of the process states from the expected closed-loop behavior were

used to detect faults. To deal with the problem of lack of process state measurements,
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a nonlinear observer was designed to generate estimates of the states, which were then

used to implement the state feedback controller and the fault-detection filter.

A switching policy was then derived, on the basis of the stability regions, to or-

chestrate the activation/deactivation of the constituent control configurations in a

way that guarantees closed-loop stability in the event that a failure was detected.

The switching laws were implemented by a higher-level supervisor that constantly

monitors the process and communicates with the various control configurations over

a network. The effects of delays in fault-detection, network communication and ac-

tuator activation were taken explicitly into account in executing the switching logic.

Reducing network usage using knowledge of the plant dynamics was considered due

to limited network bandwidth. Specifically, the controller used the explicit model of

the plant and made possible stabilization of the plant even under the presence of de-

lays. The efficacy and implementation of the proposed approach were demonstrated

through a single unit chemical reactor, a cascading multi-unit chemical process ex-

ample, a polyethylene reactor, batch and continuous crystallizers.

We also extended Lyapunov-based tools, hybrid systems theory, and concept of

stability regions to biological networks. We presented a methodology for the analy-

sis and control of mode transitions in biological networks. The proposed approach

was predicated upon the notion of orchestrating switching between the domains of

attraction of the steady-states of the constituent modes. Initially, the overall network

was modeled as a switched nonlinear system that consisted of multiple modes, each

governed by a set of continuous-time differential equations. The transitions between

the continuous modes were triggered by discrete events (changes in model parame-

ters that corresponded to alterations in physiological conditions). Then, following

the characterization of the steady-state behavior of each mode, Lyapunov techniques
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were used to characterize the domains of attraction of the steady-states. Finally, by

analyzing how the domains of attraction of the various modes overlap with one other,

a switching rule was derived to determine when, and if, a given mode transition at

a given time results in the desired steady-state behavior. The proposed method was

demonstrated using models of biological networks that arise in cell cycle regulation

and the bacteriophage λ-switch system.
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