
UNIVERSITY OF CALIFORNIA

Los Angeles

Statistical Machine Learning-Based Predictive Control of Nonlinear Processes

A dissertation submitted in partial satisfaction of the

requirement for the degree Doctor of Philosophy

in Electrical and Computer Engineering

by

Aisha Alnajdi

2024

© Copyright by

Aisha Alnajdi

2024

ABSTRACT OF THE DISSERTATION

Statistical Machine Learning-Based Predictive Control of Nonlinear Processes

by

Aisha Alnajdi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Panagiotis D. Christofides, Chair

Data are an essential factor in the fourth industrial revolution, demanding engineers and

scientists to leverage and analyze their potential for significantly improving the efficiency of

industrial processes and their control systems. In classical industrial process control sys-

tems, the models are constructed using linear data-driven approaches, where parameters are

adjusted based on experimental or simulated data. In certain critical control loops focused

on optimizing profits, first-principles models are used to describe the fundamental physico-

chemical phenomena, incorporating a small set of parameters derived from industrial or

simulation data. However, despite the effectiveness of these classical modeling methods in

many studies, there persists a significant challenge when modeling large-scale, complex non-

ii

linear systems within the field of process engineering. Traditional approaches often fall short

of accurately representing the complexities and nonlinear dynamics inherent in large-scale

industrial processes. Therefore, there are continuous efforts to conduct extensive studies

on effective tools for model development and evaluation techniques. This is crucial because

process models play a central role in advanced control strategies, particularly, model-based

control systems such as model predictive control (MPC) and economic MPC (EMPC) frame-

works. Therefore, accurate construction and evaluation of these models will contribute to

achieving the desired performance and ensuring operational efficiency, ultimately leading to

robust and reliable control systems.

Machine learning techniques have proven to be an effective modeling tool in many en-

gineering applications. More specifically, machine learning models have been used to model

large-scale, complex nonlinear systems. These models are then integrated into MPC to

achieve closed-loop stability. Among the many types of machine learning techniques, recur-

rent neural networks (RNNs) are widely used to model nonlinear processes involving time

series data. This is due to their special structure, which allows useful previous information

to be retained.

In addition to complexities arising from nonlinearities and the large-scale nature of

practical industrial processes, and challenges in modeling these systems, time delays pose

significant challenges in nonlinear control systems. These delays can arise due to various

sources such as transportation lags, sensor and actuator response times. Such delays can

lead to instability, oscillations, and overall degradation in the performance of the control

system. Hence, addressing these delays is crucial for maintaining the system’s stability

iii

and optimizing its performance. Besides time-delay systems, there are also systems that

experience different time-scale multiplicity, known as two-time scale systems. These types

of systems require specific techniques to handle and design efficient model-based controllers

to achieve closed-loop stability. Additionally, this dissertation includes an assessment of

generalization error bounds for different types of machine learning models to evaluate their

performance and reliability in various scenarios.

In response to the factors highlighted, this dissertation presents the integration of ma-

chine learning techniques with model predictive control to stabilize the dynamics of nonlinear

chemical processes. The dissertation begins with a comprehensive overview of its motivation,

background, and structure. Then, it discusses the use of machine learning models within a

model predictive control framework to stabilize a nonlinear system with time-delays. Addi-

tionally, the design of a machine learning-based predictor to compensate the effect of inputs

delays is discussed. The closed-loop stability of the system achieved with Lyapunov-based

model predictive controllers is investigated through theoretical analysis. Subsequently, a the-

oretical framework for deriving generalization error bounds for RNNs, partially connected re-

current RNNs, and long short-term memory (LSTM) RNNs are introduced. Next, we study

generalization error bounds for models capturing the dynamics of two-time-scale systems

and present simulation studies to address the modeling criteria of these systems under MPC

frameworks, along with the necessary assumptions to achieve closed-loop stability. Through-

out the dissertation, control methods are validated through their application in numerical

simulations of nonlinear chemical processes, highlighting their effectiveness, performance and

reliability.

iv

The dissertation of Aisha Alnajdi is approved.

Dante Simonetti

Jason Speyer

Lieven Vandenberghe

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2024

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 4

1.3 Dissertation objectives and structure . 7

2 Machine Learning-Based Predictive Control of Nonlinear Time-Delay Sys-

tems: Closed-loop Stability and Input Delay Compensation 12

2.1 Introduction . 12

2.2 Preliminaries . 17

2.2.1 Notation . 17

2.2.2 Class of Systems . 17

2.2.3 Stabilization via control Lyapunov function 19

2.2.4 Long Short-Term Memory Recurrent Neural Networks 20

2.2.5 Data generation and model training process 23

2.3 Robustness of LSTM-based LMPC to Small Time State Delays 25

2.3.1 Stabilization of LSTM models via control Laypunov function 26

vi

2.3.2 Sample-and-hold implementation of Lyapunov-based controller 28

2.4 LSTM-based Model Predictive Control . 35

2.5 Predictor feedback LSTM-based LMPC methodology 37

2.6 Application to a Chemical Process Example 40

2.6.1 LSTM-based LMPC closed-loop simulation results 44

2.6.2 Predictor feedback LSTM-based LMPC closed-loop simulation results 45

3 Statistical Machine-Learning-based Predictive Control of Uncertain Non-

linear Processes 51

3.1 Introduction . 51

3.2 Preliminaries . 53

3.2.1 Notation . 53

3.2.2 Class of Systems . 54

3.2.3 Recurrent Neural Networks . 55

3.3 RNN Generalization Error . 57

3.3.1 Preliminaries . 58

3.3.2 Rademacher Complexity . 59

3.3.3 Generalization Error Bound . 60

3.4 Probabilistic Stability Analysis . 63

3.4.1 Nonlinear systems with bounded disturbances 64

3.4.2 Nonlinear systems with stochastic disturbances 72

3.5 Application to a Chemical Process Example 82

vii

4 On Generalization Error of Neural Network Models and its Application to

Predictive Control of Nonlinear Processes 93

4.1 Introduction . 93

4.2 Preliminaries . 97

4.2.1 Notation . 97

4.2.2 Class of Systems . 98

4.2.3 Stabilizability assumption . 99

4.3 Recurrent neural networks (RNNs) . 100

4.3.1 Physics-informed RNNs . 102

4.3.2 Long short-term memory RNN . 106

4.4 Generalization error . 110

4.4.1 General considerations . 110

4.4.2 Physics-based RNNs generalization bound 114

4.4.3 LSTM Generalization Error . 118

4.5 RNN/LSTM based model predictive control 127

4.6 Application . 129

4.6.1 Data generation and RNN models construction 132

4.6.2 Open-loop simulation . 133

4.6.3 Closed-loop simulation . 136

5 Machine Learning-Based Model Predictive Control of Two-Time-Scale Sys-

tems 140

viii

5.1 Introduction . 140

5.2 Preliminaries . 146

5.2.1 Notation . 146

5.2.2 Class of systems . 147

5.2.3 Stabilizability assumption via control Lyapunov function 152

5.2.4 Recurrent neural networks . 154

5.2.5 Feedforward neural networks . 157

5.3 Generalization error bounds of neural networks modeling two-time-scale systems159

5.3.1 Generalization error bound preliminaries 161

5.3.2 RNN generalization error bound . 163

5.3.3 FNN generalization error bound . 166

5.4 Machine learning-based LMPC using an RNN that approximates the slow

subsystem . 168

5.4.1 Lyapunov-based control using an RNN model 169

5.4.2 Machine learning-based LMPC formulation 180

5.4.3 Closed-loop stability . 181

5.5 Application to a chemical process example 185

5.5.1 Data generation and RNN models development 188

5.5.2 Simulation results . 191

6 Conclusion 204

ix

List of Figures

2.1 LSTM structure . 21

2.2 Time phases of the states and the control action of the predictor-based control

system. 39

2.3 Flow diagram of the closed-loop system with the predictor block. 40

2.4 Process flow diagram of the CSTR with the recycle stream. 41

2.5 Closed-loop state and input trajectories under LSTM-based LMPC with time

delays: d1 = 0.01 h and d2 = 0.01 h. 46

2.6 Closed-loop state and input trajectories under LSTM-based LMPC with time

delays d1 = 0.01 h and d2 = 0.02 h. 47

2.7 The closed-loop trajectories of the CSTR under LSTM-based LMPC with

time delays: d1 = 0.01 h and d2 = 0.03 h. 48

2.8 Closed-loop state and input trajectories under the predictor feedback LSTM-

based LMPC, where the time delays: d1 = 0.01 h and d2 = 0.02 h. 49

2.9 Closed-loop state and input trajectories under the predictor feedback LSTM-

based LMPC, where the time delays: d1 = 0.01 h and d2 = 0.03 h. 50

x

3.1 Recurrent neural network structure. 87

3.2 Generalization performance for the RNN models utilizing various sample sizes. 88

3.3 Probability of closed-loop stability under bounded disturbances (blue circles)

and stochastic, unbounded disturbances (red asterisks), respectively, using the

RNN-MPC trained with various sample sizes. 89

3.4 Bounded, Gaussian disturbance (top figure), and unbounded, Wiener process

disturbance (bottom figure) on temperature T 90

3.5 Closed-loop state trajectories under MPC with bounded disturbances (blue,

solid line) and stochastic, unbounded disturbances (red, dashed line) for the

same initial condition (−1.2, 50). 91

3.6 Closed-loop state profiles for the CSTR with bounded disturbances (blue,

solid line) and stochastic, unbounded disturbances (red, dashed line) under

RNN-MPC for the same initial condition (−1.2, 50). 92

4.1 Structure of (a) standard fully-connected and (b) partially-connected RNN. . 105

4.2 Schematic of an LSTM cell structure. 109

4.3 Weights and connections in (a) standard fully-connected and (b) partially-

connected RNN structures, where zeroed weights for links between units are

represented by dashed lines. 115

4.4 Two continuous-stirred tank reactors in series. 131

4.5 Five different testing data sets, where each marker indicates a single set. . . 134

xi

4.6 Generalization error for five different testing data sets, where PCRNN and

FCRNN stand for partially-connected RNNs (orange bars) and fully-connected

RNNs (blue bars), respectively. 135

4.7 Time-varying profiles of the states and inputs for the second open-loop sim-

ulation under random time-varying inputs using the first-principles process

model (red line), the partially-connected RNN model (blue line), and the

fully-connected RNN model (black line). 136

4.8 Time-varying profiles of the states and inputs for the open-loop simulation

under a step change in u2 using the first-principles process model (red line),

the partially-connected RNN model (blue line), and the fully-connected RNN

model (black line). 137

4.9 State and input profiles of the first closed-loop simulation under the LMPC

using three models: first-principles (red line), partially-connected RNN (blue

line), and fully-connected RNN (black line). 138

4.10 State and input profiles of the second closed-loop simulation under the LMPC

using three models: first-principles (red line), partially-connected RNN (blue

line), and fully-connected RNN (black line). 139

5.1 Recurrent nueral network structure. 155

5.2 Feedforward neural network structure. 158

5.3 The continuous-stirred tank reactor with jacket. 186

xii

5.4 States and input trajectories of the CSTR under the Lyapunov based MPC

using the first-principles model of the full process (FPF -based LMPC, blue

line), and the RNNF (RNNF -based LMPC, red dashed line). 197

5.5 States and input trajectories of the CSTR under the Lyapunov based MPC

using the first-principles model of the slow-subsystem (FPS-based LMPC,

blue line), and the RNNS (RNNS-based LMPC, red dashed line). 198

5.6 Considering the initial condition IC3 = (−3, 30, 5) (a) illustrates the time-

varying profiles of the states and the input under RNNF -based LMPC (solid

line), while (b) shows the time-varying profiles of the states and the input

under RNNS-based LMPC (dashed line). 200

5.7 Considering the initial condition IC4 = (−2,−10, 100) (a) illustrates the time-

varying profiles of the states and the input under RNNF -based LMPC (solid

line), while (b) shows the time-varying profiles of the states and the input

under RNNS-based LMPC (dashed line). 201

5.8 Considering the initial condition IC5 = (1, 90, 10) (a) illustrates the time-

varying profiles of the states and the input under RNNF -based LMPC (solid

line), while (b) shows the time-varying profiles of the states and the input

under RNNS-based LMPC (dashed line). 202

5.9 Considering the initial condition IC10 = (−1, 10, 80) (a) illustrates the time-

varying profiles of the states and the input under RNNF -based LMPC (solid

line), while (b) shows the time-varying profiles of the states and the input

under RNNS-based LMPC (dashed line). 203

xiii

List of Tables

2.1 Notation and parameter values of the CSTR with recycle stream. 44

4.1 Parameter and steady-state values for the CSTR 131

4.2 Open-loop prediction results (MSE) . 135

4.3 Closed-loop prediction results (MSE) . 139

5.1 Notation and parameter values of the CSTR. 188

5.2 Specifications of the constructed recurrent neural network models. 192

5.3 Computational times for theRNNF -based LMPC and theRNNS-based LMPC

over the simulation duration of tf = 3 h starting from various initial conditions

within the operating region. 199

xiv

Acknowledgements

All praise is due to Allah, by whose favor good deeds are accomplished.

I would like to deliver my profound gratitude to my advisor, Professor Panagiotis D.

Christofides, for his support, encouragement, and guidance throughout my academic journey.

Professor Christofides exemplifies excellence as a researcher, mentor, instructor, and role

model. I consider myself fortunate to be his student, as this Ph.D. experience has laid a

strong foundation for my future career. I would also like to extend my sincere gratitude

to my doctoral committee: Professor Dante Simonetti, Professor Lieven Vandenberghe, and

Professor Jason Speyer for their time, insightful comments, and valuable advice.

I am also grateful for my family and friends for their support and encouragement. In

particular, I am deeply grateful to my dear husband, Abdullah, for his prayers, love, and

care, as well as the steadfast support and motivation throughout this journey. Additionally,

I wish to extend my deepest gratitude to my wonderful parents, Maali and Musaad, for

their prayers, unwavering support, encouragement, and unconditional love. My heartfelt

thanks also go to Sultan, Asmaa, Afnan, and Anas for their constant belief in me and their

encouragement to help me achieve my best. I would also like to extend my thanks to my

aunt Kholoud and my friend Maab for their continuous motivation and support.

In addition, I would like to thank all of my colleagues in the Christofides research group,

including: Professor Zhe Wu, Dr. Scarlett Chen, Dr. Fahim Abdullah, Professor Mohammed

Alhajeri, Dr. Yi Ming Ren, Dr. Matthew Tom, Dr. Sungil Yun, Dr. Junwei Luo, Dr. Berkay

Citmaci, Henrik Wang, Feiyang Ou, Dominic Peters, Atharva Suryavanshi, Yash Kadakia,

xv

Xiaodong Cui, Yifei Wang, Parth Jagdish Chheda, Arthur Khodaverdian, Julius Suherman,

and Dhruv Gohil.

Additionally, financial support from Kuwait University is gratefully acknowledged. Their

contribution has been instrumental in the completion of this dissertation, and I am deeply

appreciative of their support.

xvi

Curriculum Vitae

Education

Kuwait University September 2013 - June 2018
B. Sc., Electrical Engineering Al-Asimah, Kuwait

University of California, Los Angeles September 2019 - March 2021
M. Sc., Electrical and Computer Engineering Los Angeles, California

Expereince

Ministry of Education March 2019 - June 2019
Electrical engineer Hawalli, Kuwait

Publications

1. Wu, Z., A. Alnajdi, Q. Gu, and P. D. Christofides, "Statistical machine-learning–based
predictive control of uncertain nonlinear processes," AIChE J., 68, e17642, 2022.

2. Kadakia, Y., A. Alnajdi, F. Abdullah, and P. D. Christofides, “Encrypted Distributed
Model Predictive Control with State Estimation for Nonlinear Processes,” Dig. Chem.
Eng., 9, 100133, 2023.

3. Kadakia, Y., A. Alnajdi, F. Abdullah, and P. D. Christofides, “Encrypted Decentralized
Model Predictive Control of Nonlinear Processes with Delays,” Chem. Eng. Res. & Des.,
200, 312–324, 2023.

4. Kadakia, Y., A. Suryavanshi, A. Alnajdi, F. Abdullah, and P. D. Christofides, “Inte-
grating Machine Learning Detection and Encrypted Control for Enhanced Cybersecurity
of Nonlinear Processes,” Comp. & Chem. Eng., 180, 108498, 2024.

5. Kadakia, Y., A. Suryavanshi, A. Alnajdi, F. Abdullah, and P. D. Christofides, “En-
crypted Model Predictive Control of a Nonlinear Chemical Process Network,” Processes,
11 (8), 2501, 2023.

6. Alnajdi, A., F. Abdullah, A. Suryavanshi and P. D. Christofides, “Machine Learning-
Based Model Predictive Control of Two-Time-Scale Systems,” Mathematics, 11 (18),
3827, 2023.

7. Suryavanshi, A., A. Alnajdi, M. S. Alhajeri, F. Abdullah, and P. D. Christofides, “En-
crypted Model Predictive Control Design for Security to Cyber-Attacks,” AIChE J., 69,
e18104, 2023.

xvii

8. Alnajdi, A., A. Suryavanshi, M. S. Alhajeri, F. Abdullah, and P. D. Christofides, “Ma-
chine Learning-Based Predictive Control of Nonlinear Time-Delay Systems: Closed-loop
Stability and Delay Compensation,” Dig. Chem. Eng., 7, 100084, 2023.

9. Alhajeri, M. S., A. Alnajdi, F. Abdullah, and P. D. Christofides, “On Generalization
Error of Neural Network Models and its Application to Predictive Control of Nonlinear
Processes,” Chem. Eng. Res. & Des., 189, 664–679, 2023.

10. Kadakia, Y. A., F. Abdullah, A. Alnajdi, and P. D. Christofides, "Encrypted distributed
model predictive control of nonlinear processes," Control Eng. Pract., 145, 105874, 2024.

xviii

Chapter 1

Introduction

1.1 Motivation

In the field of process control, understanding the behavior of the process dynamics is es-

sential for developing an efficient control system. Hence, having a reliable model to describe

these dynamics, especially in time-varying operations, is an ongoing challenge for process

control engineers. Early modeling approaches involve using mathematical tools to describe

process dynamics. This requires extensive knowledge of the physicochemical mechanisms

of the system along with well-established scientific principles such as conservation princi-

ples (e.g., mass, energy, momentum, charge) and constitutive relations (e.g., transfer rate

equations, reaction kinetics, thermodynamical and volume balance relations). Such models

are referred to as first-principles models or “white box” models [1]. When accurately con-

structed, first-principles models offer valuable insights into the system’s input/output rela-

tionships. However, in large-scale nonlinear chemical processes, constructing first-principles

is a challenging task. Most industrial processes are extremely sophisticated, characterized

1

by significant nonlinearities, a multitude of variable interactions, scalability issues, and other

barriers. These complexities make it difficult to apply scientific principles and laws to de-

velop accurate and reliable first-principles models. As a result, classical modeling approaches

may struggle to capture the full scope of the system’s behavior, leading to poor performance

when these models are used in control system frameworks. Therefore, employing advanced

modeling techniques is crucial for developing reliable models. These techniques effectively

bridge the gap between theoretical model predictions and practical engineering applications,

resulting in more accurate and efficient control strategies. The widespread deployment of

sensors, the advancements in affordable computing technology, and the growth of wireless

network infrastructures have all been key factors in advancing to the fourth industrial revo-

lution. Over the past few decades, there has been a remarkable increase in data generation

and computational capabilities, enabling the evolution of big data analytics and the devel-

opment of artificial intelligence technologies [2, 3]. This rapid progress has shifted the focus

towards developing data-driven models for complex nonlinear processes rather than relying

on first-principles modeling approaches.

The term “big data” describes exponentially large and complex datasets beyond the

scope of classical data processing tools and methods for effective handling and analysis.

Hence, machine learning techniques, as a branch of artificial intelligence, provide efficient

tools for capturing meaningful insights from big data and facilitating predictive analytics.

These techniques enable the identification of hidden patterns, the generation of data-driven

forecasts, and the automation of decision-making procedures [4]. Machine learning is re-

garded as the cornerstone of artificial intelligence and data science. Advancements in ma-

2

chine learning algorithms, coupled with the availability of affordable yet powerful computing

resources and user-friendly programming environments, have enabled the development of

numerous open-source libraries (e.g., Keras, TensorFlow, etc.) for machine learning appli-

cations [5–7]. Therefore, machine learning has garnered significant interest not only within

engineering, but also across a wide range of scientific disciplines, including health care,

manufacturing, education, and marketing, among others [8]. With the available variety of

machine learning tools, recurrent neural networks (RNNs) and their variants have demon-

strated notable success in modeling large-scale, complex nonlinear processes [e.g., 9–12].

RNNs have proven to be efficient when modeling complex dynamic systems with nonlinear

input-output relations that involve time-series independencies. They have been employed

in many model-based control strategies, demonstrating high accuracy and achieving desired

performance while ensuring closed-loop stability. A prominent application of these strategies

is model predictive control (MPC) systems that employ machine learning techniques to en-

hance predictive capabilities and adapt to complex, nonlinear system behaviors in real-time

[e.g., 13–18]. The incorporation of machine learning enables MPC to effectively optimize

performance and manage system constraints, resulting in improved control and robustness

in dynamic systems.

Among the many challenges associated with implementing machine learning-based MPC

in real-life scenarios, time-delay systems pose a major challenge. Specifically, input delays

in nonlinear systems can often lead to instability and diminished control performance [19].

Therefore, to ensure stability and maintain effective control in closed-loop systems, it is

essential to develop approaches in order to compensate for the effect of these delays. By

3

addressing time delays within machine learning-based MPC frameworks, we can enhance

reliability and performance in control systems. In addition to time-delay systems, there are

other real-life applications that require further study in the context of machine learning-based

MPC. Two-time-scale systems are a type of systems that are characterized by multiple time

scales and require specialized methods for designing efficient MPC to ensure stability [20].

Moreover, studying the generalization error bounds of machine learning models provides a

deep theoretical understanding of how well the model will perform across different scenarios,

providing insights into its potential on new unseen data [21].

1.2 Background

In recent decades, advanced process control strategies have gained considerable popu-

larity in both research and real-life applications. During the 1960s, scientists and control en-

gineers focused on developing advanced control structures beyond conventional proportional-

integral-derivative (PID) controllers [22, 23]. PID controllers are widely used in many real-

world engineering applications. Moreover, a significant amount of research has been ded-

icated to the subject of PID designing and tuning [24]. Despite the widespread usage of

PID controllers in many industrial applications, their performance can fall short for cer-

tain systems, such as those with long dead times. To address this, several methods have

been explored to improve PID control in such scenarios. One notable example is the Smith

Predictor [25]. Although the Smith Predictor is based on a simple theoretical approach to

addressing time-delays, its practical implementation can be complicated [24]. Furthermore,

4

despite the availability of several well-structured methods and guidelines for configuring PID

controllers, determining the optimal settings can be challenging, particularly for systems that

are nonlinear or time-variant [26, 27].

In the late 1970s, the works [28, 29] have gained significant attention, establishing the

groundwork of MPC theory [26]. MPC is an advanced control strategy where the control

problem is formulated as an optimization task. It aims to minimize a defined objective

function subject to a set of constraints. MPC computes optimal control actions by predicting

future system behavior and solving the optimization problem based on these predictions.

MPC offers several key advantages over classical PID control frameworks, including its ability

to deal with non-minimum phase processes. Additionally, MPC can take into account several

constraints based on the desired performance, including those related to the system’s physical

structure as well as constraints ensuring stability, safety, and profitability. By incorporating

the process model within MPC, it becomes a more robust control framework that adapts to

the variations in the system parameters. Moreover, MPC has the ability to handle large-scale,

multi-input multi-output (MIMO) systems and is capable of managing nonlinear dynamics

[23, 30].

Machine learning has achieved resounding success in many areas of chemical engineer-

ing beyond control processes, including the petrochemicals industry, fuel and energy sectors,

health and safety, and pharmacy industry, among others [31]. The integration of machine

learning techniques within the context of MPC has generated significant interset in the

field of process control, leading to the development and application of machine learning

based-MPC. This is largely due to the availability of extensive datasets, advanced computa-

5

tional resources, and enhanced sensing technologies [32]. In particular, neural networks have

demonstrated remarkable success in modeling complex, nonlinear systems. They have been

widely used to construct process models, especially when accurate first-principles models are

difficult to obtain and engineers lack complete knowledge of the theoretical laws governing

the process. This is particularly important, as the availability of an accurate process model is

a crucial requirement for a successful implementation of MPC. The neural network is capable

of capturing the relationship between the process inputs and outputs within its structure

without revealing the precise details on how exactly this relationship is modeled, making it

function as a “black box” [31]. Among different types of neural networks, RNNs and their

variations (e.g., Long-short-term memory recurrent neural network (LSTM RNN), Gated

recurrent unit (GRU)) offer distinct advantages, especially when handling dynamic and se-

quential data. Unlike standard neural networks, RNNs are designed to model processes that

involve time-dependent information. The unique structure of RNNs allows them to utilize

both current and past information to create a form of memory within its internal states

[31, 33, 34]. Hence, RNNs are highly suitable for modeling nonlinear chemical processes,

where capturing temporal dependencies and patterns is essential.

Over the years, many applications of RNNs in modeling chemical processes have been

highlighted in the literature [e.g., 9, 35–40]. Moreover, scientists have successfully addressed

many types of systems and challenges within the realm of machine learning-based MPC,

providing useful theoretical insights and explanations. Several efforts have been done to

study model predictive control of time delay systems, providing both theoretical analysis and

applications [e.g., 41–45]. However, this dissertation focuses on discussing machine learning-

6

based MPC for nonlinear time-delay systems, emphasizing closed-loop stability analysis and

delay compensation. Additionally, with the widespread use of machine learning in numerous

engineering applications, it is essential to evaluate of these models under different scenarios

to achieve the desired closed-loop performance within MPC. Studying the generalization

error bounds for machine learning models has been a focal point for many researchers, as

understanding and analyzing these bounds contribute to constructing a reliable and effective

machine learning-based MPC. Various investigations have been done on generalization error

bounds for different machine learning models [e.g., 21, 46, 47]. This dissertation investigates

the generalization error bounds of partially-connected recurrent neural networks (PCRNNs)

and LSTM RNNs through statistical learning theory. It also explores the generalization error

bounds for RNNs and establishes system stability results for uncertain nonlinear processes.

Furthermore, the dissertation examines the generalization error bound for models of two-

time-scale systems.

1.3 Dissertation objectives and structure

This dissertation presents the integration of machine learning methods with MPC frame-

works to enhance the stability of different types of large-scale, complex nonlinear systems.

It offers a comprehensive overview of theoretical strategies and analyses for control, model-

ing, and evaluation. The proposed theoretical approaches are demonstrated through various

examples of applications to nonlinear chemical processes. The main objectives of this dis-

sertation can be summarized as follows:

7

1. To develop machine learning-based MPC for nonlinear processes with disturbance and

establish closed-loop stability using statistical machine learning theory.

2. To design machine learning-based MPC for nonlinear processes with time delays, pro-

pose a method to compensate the effect of delays, and establish closed-loop stability.

3. To develop generalization error bounds for PCRNNs and LSTMs using statistical ma-

chine learning theory.

4. To study the use of neural networks to model two-time-scale systems, investigate the

generalization error for these models.

5. To evaluate and compare the performance of two neural network models for a two-

time-scale process—one for the full system and one for the slow states only—within

an MPC scheme.

The remainder of this dissertation is organized as follows: The purpose of Chapter 2

is to study machine-learning-based model predictive control of nonlinear systems with time

delays. The proposed approach involves initially building a machine learning model (i.e.,

Long Short Term Memory (LSTM)) to capture the process dynamics in the absence of time

delays. Then, an LSTM-based model predictive controller (MPC) is designed to stabilize

the nonlinear system without time delays. Closed-loop stability results are then presented,

establishing robustness of this LSTM-based MPC towards small time delays in the states.

To handle input delays, we design an LSTM-based MPC with an LSTM-based predictor

that compensates for the effect of input delays. The predictor is used to predict future

8

states using the process measurement, and then the predicted states are used to initialize

the LSTM-based MPC. Stabilization of the time-delay system with both state and input

delays around the steady state is achieved through the featured design. The approach is

applied to a chemical process example, and its performance and robustness properties are

evaluated via simulations.

In Chapter 3, machine-learning-based predictive control schemes for nonlinear pro-

cesses subject to disturbances are presented, and closed-loop system stability properties

are established using statistical machine learning theory. Specifically, a generalization error

bound via the Rademacher complexity method is derived for the recurrent neural networks

(RNN) that are developed to capture the dynamics of the nominal system. Then, the

RNN models are incorporated in Lyapunov-based model predictive controllers, under which

closed-loop stability properties are studied for the nonlinear systems subject to two types of

disturbances: bounded disturbances and stochastic disturbances with unbounded variation.

A chemical reactor example is used to demonstrate the implementation and evaluate the

performance of the proposed approach.

In Chapter 4, recurrent neural networks (RNNs) and long short-term memory (LSTM)

networks have frequently been used to approximate nonlinear dynamic systems utilizing

time-series data. The training error of neural networks may often be made suitably mod-

est; however, the accuracy can be further improved by incorporating prior knowledge in

the construction of machine learning-based models. Specifically, physics-based RNN mod-

eling has yielded more reliable RNN models than traditional RNNs. Yet, a framework for

constructing and assessing the generalization ability of such RNN models as well as LSTM

9

models to be utilized in model predictive control (MPC) systems is lacking. In this work,

a methodological framework to quantify the generalization error bounds is developed for

partially-connected RNNs and LSTM models. The partially-connected RNN model is then

utilized to predict the state evolution in an MPC scheme. It is illustrated through open-loop

and closed-loop simulations of a nonlinear chemical process of two reactors in series that the

proposed approach provides a flexible framework for leveraging both prior knowledge and

data, thereby improving the performance significantly when compared to a fully-connected

modeling approach under Lyapunov-based MPC.

In Chapter 5, A general form of nonlinear two-time-scale systems is presented, where

singular perturbation analysis is used to separate the dynamics of the slow and the fast

subsystems. Machine learning techniques are utilized to approximate the dynamics of both

subsystems. Specifically, a recurrent neural network (RNN) and feed forward neural network

(FNN) are used for predicting the slow and the fast state vectors, respectively. Moreover, we

investigate the generalization error bounds for these machine learning models approximating

the dynamics of two-time-scale systems. Next, under the assumption that the fast states are

asymptotically stable, our focus shifts towards designing a Lyapunov-based model predictive

control (LMPC) scheme that exclusively employs the RNN that predicts the dynamics of the

slow states. Additionally, we derive sufficient conditions to guarantee closed-loop stability of

the system under sample-and-hold implementation of the controller. A nonlinear chemical

process example is used to demonstrate the theory. In particular, two RNN models are

constructed, one to model the full two-time-scale system and the other to predict solely the

slow state vector. Both models are integrated within an LMPC scheme, and we compare

10

their closed-loop performance while assessing the computational time required to execute

the LMPC optimization problem.

Chapter 6 summarizes the main results of this dissertation.

11

Chapter 2

Machine Learning-Based Predictive

Control of Nonlinear Time-Delay

Systems: Closed-loop Stability and

Input Delay Compensation

2.1 Introduction

Machine learning algorithms have generated considerable interest in the field of control of

nonlinear process systems. This is because of their ability to capture the system’s dynamics

and to model large-scale, complex, nonlinear systems. Moreover, the existence of large

data sets, powerful computers, and the variety of machine learning training algorithms have

contributed to the recent surge of machine learning being applied to numerous engineering

applications. Although, historically, first-principles modeling approaches have been widely

12

adapted in modeling chemical processes, they can be difficult and/or time-consuming to

derive when dealing with large-scale, complex, nonlinear processes. In contrast, machine

learning techniques have made a significant impact in the field of nonlinear control systems

and have shown great success in modeling large-scale, complex, nonlinear processes (e.g.,

[21, 48–54]). Researchers in the field have started adapting the science of machine learning

since the 90’s [55, 56], when they started introducing the concept of machine learning to

the field of chemical engineering, and many promising contributions and applications have

been observed since then [57].

A wide variety of machine learning techniques are used for modeling nonlinear systems,

and one of the powerful and efficient tools is the long short-term memory (LSTM) recurrent

neural networks. LSTMs were introduced in [58] and are a type of recurrent neural network

(RNN) with a unique structure that allows it to model dynamical systems and overcome

numerical issues commonly encountered in traditional RNNs. The incorporation of LSTM

models into advanced model-based control strategies such as model predictive control (MPC)

comes with notable success. For example, in [51], a distributed MPC was designed and im-

plemented using an LSTM model. Moreover, LSTMs were also used to design a decentralized

MPC in [50]. LSTMs were proven to be efficient when it comes to dealing with noisy data

and controlling nonlinear processes. For example, in [59], LSTMs were used to model a

large-scale, chemical process using noisy, industrial data from Aspen Plus Dynamics, and its

closed-loop performance under LSTM-based MPC was studied.

The unique structure of LSTM networks enables them to model systems that require

long-time interval dependencies such as nonlinear time-delay systems, which require robust-

13

ness considerations with regards to closed-loop stability and performance criteria. Time

delays are a common phenomenon that occurs naturally in chemical processes. A common

reason for state delays is transportation lag when materials flow through a pipe. These types

of delays are usually reflected as state delays in the first-principles model of the process. Ad-

ditionally, input delays are another common type of delays in chemical processes, typically

caused by control actuator dynamics. Moreover, delays can also arise due to the approxima-

tion of complex reaction mechanisms and/or nonlinear higher-order dynamics. Therefore,

investigating the stability, robustness, and performance properties of closed-loop time-delay

systems is an important topic in the field of control systems.

A nonlinear time-delay system is usually represented by a differential difference equa-

tion (DDE). The behavior of DDEs is different from classical ordinary differential equations

(ODEs) in several manners. One important difference between them is that, when solving an

ODE, an initial condition is required, whereas, for a DDE, the history of states and inputs

has to be stored; in other words, an initial history function has to be specified or computed

for both states and manipulated inputs. As a matter of fact, time-delayed systems, even

if the delay is small, constitute infinite-dimensional systems regardless of the dimension of

the state vector of the system (see [60] for more details on DDEs). Significant efforts have

been undertaken to study nonlinear time-delay systems (DDEs) and investigate their stabil-

ity properties. Most relevant to our present work, in [41], an economic MPC for nonlinear

time-delay systems was designed using a first-principles model, with closed-loop stability

results being derived using input-to-state stability theorems incorporated with Lyapunov-

Razumikhin type arguments. In earlier works, [61, 62] established fundamental results on

14

feedback control and robustness of nonlinear time-delay systems with applications to pro-

cess systems. For the case of controlling nonlinear systems with time-varying measurement

delays, several works in the literature have discussed this case. For example, [63] studied

the stability of differential-functional equations with discrete and distributed delays. Addi-

tionally, [64] provided an overview of the stability of linear systems with time-varying delays

and reviewed recent works that have been conducted in this topic.

Several common approaches to control nonlinear time-delay systems can be found in the

literature. In the case of small time-delay values, earlier approaches include assigning the

values of the time-delays to zero and proceeding with the control design using the resulting

ODE systems. This control technique can be effective with acceptable closed-loop stability

and performance when the nonlinear system suffers from small state delays. Yet, for larger

values of time-delays, and in particular when input delays are present, it is necessary to

utilize other approaches that are more involved and can compensate for the effect of input

delays. Such approaches include using a predictor with the controller design, to predict

future values of the state that can be used in the controller. In 1957, the classical Smith

predictor was proposed, and it has become one of the most popular predictor structures used

for linear time-delay systems [65]. The Smith predictor has proven to be effective in many

theoretical aspects and engineering applications. Moreover, various results are found in the

literature, adapting the design of the Smith predictor to produce more variations of predictor

designs in order to address different types of linear and nonlinear systems with input delay.

For instance, [66, 67] presented designs of predictors that can handle nonlinear systems with

input delay through the use of conceptional insights from the Smith predictor approach.

15

In the context of data-based modeling for feedback controller design, machine learning

techniques have been incorporated in MPC with resounding success due to their notable ac-

curacy, efficiency, and ability to capture complex systems’ dynamics, as successfully demon-

strated via numerous chemical process applications in [68]. Specifically, [48, 49] provide

fundamental theoretical and practical insights of machine learning-based MPC and neces-

sary stability analyses. The first conceptualization of MPC can be dated to 1978 [29],

and, since then, many contributions and applications have been made in both industry and

academia. MPC has proven to be efficient in a diverse array of applications due to its ability

to handle multiple inputs, outputs, and constraints by solving an optimization problem that

minimizes a desired objective function of the inputs and outputs [52, 53] subject to con-

straints while incorporating measurement feedback into the calculations. With a sufficiently

accurate process model, MPC can also handle systems where only noisy data is available

[69]. The control actions of MPC are computed through repeatedly solving an optimization

problem in a finite time horizon, with both state and input constraints. This guarantees the

stability and boundedness of the trajectories of the nonlinear system at all times.

In light of the above considerations, in this chapter, we apply machine learning to

develop a model—specifically an LSTM model—using data from the process model without

the time delays and use this LSTM model to design a model predictive controller that

renders the process model without the time delays stable. Subsequently, we established that

the LSTM-based MPC ensures stability of the closed-loop system under sufficiently small

state delays. Additionally, we design an LSTM-based predictor to compensate for input

delays. Finally, an application of the LSTM-based MPC to a chemical reactor under both

16

state and input delays is presented.

2.2 Preliminaries

2.2.1 Notation

A time-dependent vector is denoted by x(t) ∈ Rn. xT denotes the transpose of vector

x. The Euclidean norm of a vector is denoted by | · |, and the infinity norm of a function

ϕ ∈ C
(
[a, b],Rn

)
is represented by ∥·∥, such that ∥ϕ∥ := maxa≤s≤b |ϕ(s)|, where C

(
[a, b],Rn

)
is the space of continuous functions mapping the interval [a, b] to Rn. Set subtraction is

denoted by ‘\’, such that A\B :=
{
x ∈ Rn|x ∈ A, x /∈ B

}
. S(∆) denotes the family of

piecewise constant, right-continuous functions with period ∆.

2.2.2 Class of Systems

The following family of differential difference equations (DDEs) describes the class of

nonlinear time-delay systems considered in this work:

ẋ(t) = F (x, u) = f
(
x(t), x(t− d1), u(t− d2)

)
(2.1)

x(t) is the n-dimensional state vector, and u(t) is the m-dimensional control input vector

bounded by u ∈ U . The set U , defined as U := {|ui| ≤ umax,i, i = 1, ...,m}. The vector

f(·) is a locally Lipschitz vector function of its arguments. Under the assumption that

f(0, 0, 0) = 0, the origin is a steady state of Eq. (2.1). d1 > 0 is the value of the state

delay and d2 > 0 is the value of the input delay. Moreover, without loss of generality, the

17

initial time is taken to be zero (i.e., t0 = 0), and the initial data is denoted as ϕx, where

ϕx ∈ C([−d1, 0],Rn). Additionally, the symbol ϕu represents the initial input function, where

ϕu ∈ C([−d2, 0],Rm). Hence, ϕu is bounded and is assumed to be piecewise continuous over

its domain. The system of Eq. (2.1) can be expressed as a perturbed form of the system

without delays in the following form:

ẋ(t) = F (x, u, ξ) = f(x(t), x(t) + ξ1(t), u(t) + ξ2(t)) (2.2a)

ξ1(t) = x(t− d1)− x(t) (2.2b)

ξ2(t) = u(t− d2)− u(t) (2.2c)

where ξT := [ξT
1 ξT

2] ∈ D × U ⊂ Rn+m is the bounded perturbation vector, and D is an

open neighborhood around the origin.

Remark 2.1. In this work, differential difference equations (DDEs) are used to describe the

general class of nonlinear time-delay systems. A number of different methods to describe

nonlinear time-delay systems exist in the literature, such as first order plus dead time and

second order plus dead time models, which are specific and assume certain (linear) model

structures. Therefore, nonlinear differential difference equations with constant delays were

chosen as the class of systems in this work to make the analysis more general. However,

other works that describe nonlinear time-delay systems with functional differential equations

can be found, and our results may be extended to such model structures as well. For example,

describing systems with multiple state and input delays and systems with time-varying delays

can be done using functional differential equations.

18

2.2.3 Stabilization via control Lyapunov function

Taking into consideration the ODE system in Eq. (2.2), we assume that there exists a

locally Lipschitz feedback controller Φ(x) ∈ U , such that the origin of the nominal system

of Eq. (2.2) (i.e., with ξ(t) ≡ 0) is exponentially stable. Hence, the system of Eq. (2.2) is

stabilizable, and there exists a continuously differentiable Lyapunov function V : Rn → R≥0

such that the following inequalities hold:

c1|x|2 ≤ V (x) ≤ c2|x|2, (2.3a)

∂V (x)
∂x

F (x,Φ(x), 0) ≤ −c3|x|2, (2.3b)

∣∣∣∣∣∂V (x)
∂x

∣∣∣∣∣ ≤ c4|x| (2.3c)

given that ci are positive constants, where i = 1, 2, 3, 4, for all x ∈ Rn ⊂ D. Since the system

F (x, u, ξ) has a Lipschitz property, together with the bounded behaviour of the input u

and the perturbation ξ, there exist positive constants M , Lx, L′
x, Lξ, and L

′
ξ such that the

following inequalities hold for all x, x′ ∈ D and u ∈ U :

|F (x, u, ξ)| ≤M (2.4a)

|F (x, u, ξ)− F (x′, u, 0)| ≤ Lx|x− x′|+ Lξ|ξ| (2.4b)∣∣∣∣∣∂V (x)
∂x

F (x, u, ξ)− ∂V (x′)
∂x

F (x′, u, 0)
∣∣∣∣∣ ≤ L

′

x|x− x′|+ L
′

ξ|ξ| (2.4c)

Additionally, the closed loop stability region of the nonlinear system of Eq. (2.2) is charac-

terized by the region Ωρ, where Ωρ := {x ∈ D|V (x) ≤ ρ}

19

2.2.4 Long Short-Term Memory Recurrent Neural Networks

An LSTM network is a special type of RNN that is composed of a number of gates

and cells, which gives it a unique structure. LSTMs were introduced to overcome a number

of limitations found in classical RNNs, primarily the vanishing gradient problem. This

phenomenon occurs very often in classical RNNs, where the product of the gradients in

the loss function get smaller in value as we proceed through the layers of the network,

causing the loss function to have a value near zero for older data points. Hence, training the

network becomes harder, and analyzing data over long time periods becomes a challenging

task. Additionally, LSTMs are well known for modeling systems that require long time

dependencies. The LSTM network is designed to predict future states of the process using

the past state measurements and future control actions. Therefore, the input sequence of

the LSTM network is denoted by p ∈ R(n+m)×T , while the output of the LSTM network is

denoted by x̂ ∈ Rn×T , where T is the number of time steps or repeating LSTM modules

within one sampling period. Figure 2.1 illustrates the LSTM structure.

20

Figure 2.1: LSTM structure

The LSTM unit is expressed through the following equations:

g(k) = σ
(
ωp

gp(k) + ωh
gh(k − 1) + bg

)
(2.5a)

i(k) = σ
(
ωp

i p(k) + ωh
i h(k − 1) + bi

)
(2.5b)

c(k) = i(k) tanh
(
ωp

cp(k) + ωh
c h(k − 1) + bc

)
+ g(k)c(k − 1) (2.5c)

o(k) = σ
(
ωp

op(k) + ωh
oh(k − 1) + bo

)
(2.5d)

x̂(k) = ωyh(k) + by (2.5e)

h(k) = o(k) tanh(c(k)) (2.5f)

where the input sequence is denoted by p(k), and the vector x̂(k) ∈ Rn×T represents the

21

LSTM network output, with k = 1, . . . , T . The weight matrix and bias vector for the output

are ωy and by, respectively. Additionally, h(k) is the internal state, while g(k), i(k), and o(k)

represent the outputs from the forget gate, the input gate, and the output gate, respectively.

ωp
g , ω

h
g , ω

p
i , ω

h
i , ω

p
o , and ωh

o are the weight matrices for the input vector p and the hidden state

vector h within the forget gate, the input gate and the output gate, respectively. bg, bi, and

bo are the bias vectors for the forget gate, the input gate, and the output gate, respectively.

Moreover, c(k) represents the cell state, which is in charge of storing and passing the essential

information through successive LSTM units. More precisely, the first term in Eq. (2.5c) is

in charge of storing the new, important information coming from the input gate i(k) in the

cell state c(k) that is to be passed to the next LSTM unit. In contrast, the second term in

Eq. (2.5c) uses the forget gate g(k) to compute the information that should be discarded from

the previous state c(k − 1). Additionally, the weight matrices associated with the cell state

are represented by ωp
c and ωh

c , where ωp
c indicates the weight matrix for the input vector, and

ωh
c is the weight matrix for the hidden state vector. bc represents the bias vector associated

with the cell state. σ and tanh are the nonlinear sigmoid and hyperbolic tangent activation

functions, respectively. The LSTM input sequence is p ∈ R(n+m)×T , which consists of the

past state measurements x and the manipulated inputs u.

In this study, we develop an LSTM network model with the following form as a continuous-

time nonlinear system:

˙̂x = Fnn(x̂, u) := Ax̂+ ΘT z (2.6)

where x̂ ∈ Rn is the LSTM state vector, and u ∈ Rm is the manipulated input. A ∈ Rn×n and

22

Θ ∈ R(n+m+1)×n are the weight matrices, and z = [z1...zn+m+1]T = [σ(x̂1)...σ(x̂n) u1...um 1]T ∈

Rn+m+1 is a vector associated with the network states x̂ and the manipulated input u.

Remark 2.2. Many applications in the control engineering field require machine learning

models that can deal with sequential data. The inputs and outputs of a chemical process are

often considered as time-series data. Sequential neural network models, such as recurrent

neural networks (RNNs), gated recurrent units (GRUs) and long short-term memory net-

works (LSTMs), are types of machine learning models that are well-suited to model nonlinear

dynamical systems (including the nonlinear time-delay systems considered in our work) us-

ing sequential time-series input-output data. The LSTM network is a strong candidate given

its potential to overcome problems that occur in RNNs and its proven ability to model sys-

tems that require long time dependencies such as nonlinear time-delay systems, which require

robustness considerations with regards to closed-loop stability and performance criteria.

2.2.5 Data generation and model training process

The goal is to design a stabilizing control law for the nonlinear time-delayed system

of Eq. (2.1) under small-time delays or, in other words, small and bounded perturbations.

In this work, we will be adapting a machine learning method, specifically LSTM neural

networks. The first step in the development of an LSTM model is to generate data. We

follow the data generation technique described in [48], which is to run extensive open-loop

simulations of the nonlinear system of Eq. (2.2) without the time delays. The aim is to

capture the dynamics of the system for all x ∈ Ωρ and u ∈ U , sweeping over all possible

combinations of initial conditions x0 ∈ Ωρ and inputs u ∈ U . Moreover, we note that, in

23

the data generation process as well as when simulating the system of Eq. (2.2) without time

delays, the input u ∈ U is applied in a sample-and-hold manner, where it is fed to the system

of Eq. (2.2) without time delays as a piecewise constant function u(t) = u(tk),∀t ∈ [tk, tk+1),

where tk+1 := tk + ∆ (∆ is the sampling period). Then, we integrate the system of Eq. (2.2)

without time delays using the explicit Euler method with a sufficiently small integration

time step hc ≪ ∆. Therefore, we are able to create a set of time-series data for the state x

within a chosen level set of the Lyapunov function, denoted as the operating region Ωρ. This

procedure yields a large data set of diverse trajectories to be passed to the model training

phase. Subsequently, we train the LSTM network using the generated data and the neural

network library Keras. The architecture of the LSTM network of Eq. (2.6) is designed to be

such that, given the current state measurement and future manipulated inputs, the LSTM is

able to predict the future states for at least one sampling period ahead, i.e., x(t) ∈ [tk, tk+∆).

As a result, we obtain an LSTM model that has the ability to capture the dynamics of the

system with sufficiently small modeling error. We point out that the gathered data set is

divided into three main sets—the training, validation, and testing sets, each for its own

purpose.

Remark 2.3. The LSTM model can be trained using data from the delayed process. However,

training on the basis of the ODE process model without delays allows us to further evaluate

the robustness of this model with respect to applying it in an MPC that is used to control the

delayed process, despite the training data being from the system without delays.

Remark 2.4. Referring to the nonlinear system of Eq. (2.2), the existence of perturbation or

24

disturbances in the system indicates that we may be dealing with noisy data in the training

phase, which can affect the accuracy of the developed LSTM model. In some cases, the

LSTM model can fail to make the correct predictions due to the existence of perturbation in

the data set. Additionally, some studies indicate that the perturbed data makes the LSTM

model more robust and enhances the performance of the model (see [70] for more details on

this topic). It is important to highlight that, in this chapter, we generated data and trained

the LSTM model based on the nominal system of Eq. (2.2) (i.e., with ξ = 0). Using machine

learning techniques to control perturbed nonlinear systems is a topic that requires further

studies. However, in further sections, we will show that the LSTM model developed based

on the nominal system of Eq. (2.2), when incorporated in a Lyapunov-based model predictive

controller (LMPC), is able to stabilize the perturbed nonlinear system of Eq. (2.2), under the

condition of bounded perturbation, and eventually under sufficiently small state delays.

2.3 Robustness of LSTM-based LMPC to Small Time

State Delays

In this section, we will focus on the closed loop stability analysis of the perturbed

nonlinear system of Eq. (2.2), taking into consideration sufficiently small state delays only

(i.e., d2 = 0 and, hence, ξ2 = 0). However, the stabilization of the perturbed system of

Eq. (2.2) in the presence of both state and input delays will be achieved using a predictor

feedback LSTM-based LMPC methodology in Section 2.5. Additionally, knowing that the

state delays are represented through the perturbation term ξ1(t) = x(t−d1)−x(t), the upper

25

bound of the perturbation can be written as follows:

|ξ(t)| = |ξ1(t)| = |x(t− d1)− x(t)| ≤ d1∥xd(t)∥ (2.7)

where ∥xd(t)∥ is the max-norm of xd(t) ∈ C([−d1, 0],Rn) (i.e., ∥xd(t)∥ = maxθ∈[−d1,0] |x(t−

θ)|).

2.3.1 Stabilization of LSTM models via control Laypunov function

Taking into consideration the LSTM model developed in Eq. (2.6), we assume that there

exists a locally Lipschitz feedback controller Φnn(x) ∈ U such that exponential stability of

the LSTM model is attained at the origin. This implies that there exists a continuously

differentiable Lyapunov function V̂ : Rn → R≥0 such that the following inequalities hold:

ĉ1|x|2 ≤ V̂ (x) ≤ ĉ2|x|2 (2.8a)

∂V̂ (x)
∂x

Fnn(x,Φnn(x)) ≤ −ĉ3|x|2 (2.8b)
∣∣∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣∣∣ ≤ ĉ4|x| (2.8c)

given that ĉi are positive constants, for all x ∈ Rn ⊂ D̂ where, i = 1, 2, 3, 4, and D̂ is an open

neighborhood around the origin. The LSTM model of Eq. (2.6) has a stability region denoted

as Ωρ̂, characterized as a compact set embedded in D̂ as follows: Ωρ̂ := {x ∈ D̂ | V̂ (x) ≤ ρ̂},

where ρ̂ > 0. In addition, there exist positive constants Mnn and Lnn such that the following

26

inequalities hold for all x, x′ ∈ Ωρ̂ and u ∈ U :

|Fnn(x, u)| ≤Mnn (2.9a)

∣∣∣∣∣∣∂V̂ (x)
∂x

Fnn(x, u)− ∂V̂ (x′)
∂x

Fnn(x′, u)

∣∣∣∣∣∣ ≤ Lnn|x− x′| (2.9b)

The proposition shown below illustrates that the feedback control input u = Φnn(x) ∈ U

can stabilize the nominal system of Eq. (2.2), under a sufficiently small modeling error.

Proposition 2.1. (c.f Proposition 2 in [48]) Consider the LSTM model of Eq. (2.6) that

satisfies the stabilizability criteria of Eq. (2.8) and is exponentially stable around the origin

under the control law u = Φnn(x) ∈ U for all x ∈ Ωρ̂. Then, the origin of the perturbed

nonlinear system of Eq. (2.2) is exponentially stable around the origin for all x ∈ Ωρ̂ under

the condition that there exists a positive real number γ, where γ < ĉ3/ĉ4. Additionally, γ is

the upper bound of the modeling error between the nominal system of Eq. (2.2) with ξ = 0

and the LSTM model (i.e., ν = |F (x, u, 0)− Fnn(x, u)| ≤ γ|x| for all x ∈ Ωρ̂).

Proof. We proceed by following the proof of Proposition 2 in [48]. The goal is to prove that

the nominal system of Eq. (2.2) is exponentially stable around the origin for all x ∈ Ωρ̂.

This can be achieved by showing that ˙̂
V (x) is negative for the nominal system of Eq. (2.2)

under the stabilizing control law u = Φnn(x) ∈ U for all x ∈ Ωρ̂. Using the inequalities in

27

Eqs. (2.8b) and (2.8c), ˙̂
V (x) can be computed as follows:

˙̂
V = ∂V̂ (x)

∂x
F (x,Φnn(x), 0)

= ∂V̂

∂x
(Fnn(x,Φnn(x)) + F (x,Φnn(x), 0)− Fnn(x,Φnn(x))

≤ −ĉ3|x|2 + ĉ4|x|(F (x,Φnn(x), 0)− Fnn(x,Φnn(x)))

= −ĉ3|x|2 + γĉ4|x|2

(2.10)

By letting γ < ĉ3
ĉ4

, we achieve ˙̂
V (x) ≤ −c̃3|x|2 ≤ 0 where c̃3 = −ĉ3 + γĉ4 ≥ 0 and, conse-

quently, closed-loop stability of the nominal system of Eq. (2.2) around the origin under the

control law Φnn(x) ∈ U for all x ∈ Ωρ̂.

2.3.2 Sample-and-hold implementation of Lyapunov-based con-

troller

It is important to highlight that the LSTM-based LMPC is designed using the LSTM

model generated in Eq. (2.6), where the control actions are executed in sample-and-hold

fashion. In order to study the robustness of the LSTM-based LMPC to small time-delays in

the states, we note that, in the next two propositions, we will consider state delays only (i.e.,

ξ2 = 0). Given that the state delays are sufficiently small, this implies that the perturbation

ξ1 is bounded. The following proposition shows that the error between the state of the

perturbed nonlinear system of Eq. (2.2) with ξ2 = 0 and the predicted state by the LSTM

model Eq. (2.6) is bounded.

Proposition 2.2. (c.f Proposition 3 in [48]) Consider the perturbed nonlinear system

28

of Eq. (2.2) with ξ2 = 0 in the presence of bounded disturbances (i.e., |ξ(t)| = |ξ1(t)| ≤

d1∥xd(t)∥, ∥xd(t)∥ = maxθ∈[−d1,0] |x(t− θ)|) and the LSTM model of Eq. (2.6) with the same

initial condition x0 = x̂0 ∈ Ωρ̂. There exists a class K function fξ(·) and a positive constant

κ such that the following inequalities hold for all x, x̂ ∈ Ωρ̂ and |ξ(t)| = |ξ1(t)| ∈ D ⊂ Rn:

|x(t)− x̂(t)| ≤ fξ(t) := Lξ d1∥xd(t)∥+ νm

Lx

(
eLxt − 1

)
(2.11a)

V̂ (x) ≤ V̂ (x̂) + ĉ4
√
ρ̂√
ĉ1
|x− x̂|+ κ|x− x̂|2 (2.11b)

Proof. Let e(t) = x(t) − x̂(t) represent the error vector between the state of the perturbed

nonlinear system of Eq. (2.2) with ξ2 = 0 and the state of the LSTM model of Eq. (2.6).

The following bound can be found for the time-derivative of e(t):

|ė(t)| = |F (x, u, ξ)− Fnn(x̂, u)|

≤ |F (x, u, ξ)− F (x̂, u, 0)|+ |F (x̂, u, 0)− Fnn(x̂, u)|
(2.12)

Using Eq. (2.4b), for all x, x̂ ∈ Ωρ̂ and |ξ(t)| = |ξ1(t)| ∈ D ⊂ Rn, we can bound the first

term in Eq. (2.12) as follows:

|F (x, u, ξ)− F (x̂, u, 0)| ≤ Lx|x(t)− x̂(t)|+ Lξ|ξ|

≤ Lx|x(t)− x̂(t)|+ Lξd1∥xd(t)∥
(2.13)

We observe that the second term of Eq. (2.13) is equivalent to the modeling error, which is

upper bounded by νm for all x̂ ∈ Ωρ̂. Therefore, the bound of the modeling error and the

29

bound of Eq. (2.13) can be used to further bound ė(t) as follows:

|ė(t)| ≤ Lx|x(t)− x̂(t)|+ Lξ|d1|∥xd(t)∥+ νm

≤ Lx|e(t)|+ Lξd1∥xd(t)∥+ νm

(2.14)

Integrating the inequality of Eq. (2.14) from zero initial conditions (i.e., e(0) = 0), the

following upper bound for the error vector can be obtained for all x, x̂ ∈ Ωρ̂ and |ξ(t)| =

|ξ1(t)| ∈ D ⊂ Rn:

|e(t)| = |x(t)− x̂(t)| ≤ Lξ1d1∥xd(t)∥+ νm

Lx

(
eLxt − 1

)
(2.15)

Using the Taylor series expansion of V̂ (x) around x̂, we derive Eq. (2.11b) as follows, for all

x, x̂ ∈ Ωρ̂:

V̂ (x) ≤ V̂ (x̂) + ∂V̂ (x̂)
∂x

|x− x̂|+ κ|x− x̂|2 (2.16)

where κ is a positive real number. Additionally, we use Eqs. (2.8a) and (2.8b) to further

upper bound V̂ (x) as follows:

V̂ (x) ≤ V̂ (x̂) + ĉ4
√
ρ̂√
ĉ1
|x− x̂|+ κ|x− x̂|2 (2.17)

The following proposition shows that the closed-loop state trajectory x(t) of the per-

turbed system of Eq. (2.2) with ξ2 = 0 is bounded in Ωρ̂ for all times and can be driven to

30

a small neighborhood around the origin, Ωρmin , under the controller Φnn(x) ∈ U executed in

sample-and-hold fashion.

Proposition 2.3. (c.f Proposition 4 in [48]) Consider the nonlinear system of Eq. (2.2)

with ξ2 = 0 under the controller Φnn(x̂) ∈ U that meets the conditions of Eq. (2.8) and

stabilizes the LSTM model of Eq. (2.6). The controller is executed in sample-and-hold, i.e.,

Φnn(x̂(tk)),∀t ∈ [tk, tk+1), where tk+1 := tk + ∆. Then, there exist ϵw > 0, ∆ > 0 and

ρ̂ > ρmin > ρnn > ρs that satisfy

− ĉ3

ĉ2
ρs + LnnMnn∆ ≤ −ϵs (2.18a)

− c̃3

ĉ2
ρs + L

′

xMF ∆ ≤ −ϵw (2.18b)

and

ρnn := max{V̂
(
x̂(t+ ∆)

)
| x̂(t) ∈ Ωρs , u ∈ U} (2.19a)

ρmin ≥ ρnn + ĉ4
√
ρ̂√
ĉ1
fξ(∆) + κ

(
fξ(∆)

)2
(2.19b)

such that for any x(tk) ∈ Ωρ̂\Ωρs, the following inequality holds:

V̂ (x(t)) ≤ V̂ (x(tk)), ∀t ∈ [tk, tk+1) (2.20)

and the state x(t) of the perturbed nonlinear system of Eq. (2.2) is bounded in Ωρ̂ for all

times and ultimately bounded in Ωρmin.

Proof. First, we need to show that V̂ (x) is decreasing under the controller u(t) = Φnn(x(tk))

31

for t ∈ [tk, tk+1). Consider x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs , where x(tk) is the state of the perturbed

nonlinear system of Eq. (2.2) with ξ2 = 0, and x̂(tk) is the state of the LSTM model in

Eq. (2.6). The time-derivative of V̂ (x) for all t ∈ [tk, tk+1) is computed as follows:

˙̂
V (x̂(t)) = ∂V̂ (x̂(t))

∂x̂
Fnn(x̂(t),Φnn(x̂(tk)))

= ∂V̂ (x̂(tk))
∂x̂

Fnn

(
x̂(tk),Φnn(x̂(tk))

)
+ ∂V̂ (x̂(t))

∂x̂
Fnn

(
x̂(t),Φnn(x̂(tk))

)
− ∂V̂ (x̂(tk))

∂x̂
Fnn

(
x̂(tk),Φnn(x̂(tk))

)
(2.21)

Using the inequalities in Eqs. (2.8a) and (2.8b), we obtain the following:

˙̂
V (x̂(t)) ≤− ĉ3

ĉ2
ρs + ∂V̂ (x̂(t))

∂x̂
Fnn(x̂(t),Φnn(x̂(tk)))

− ∂V̂ (x̂(tk))
∂x̂

Fnn(x̂(tk),Φnn(x̂(tk)))
(2.22)

Using the Lipschitz inequalities in Eq. (2.9), we can further bound ˙̂
V (x̂(t)) by the following:

˙̂
V (x̂(t)) ≤− ĉ3

ĉ2
ρs + Lnn|x̂(t)− x̂(tk)|

≤ − ĉ3

ĉ2
ρs + LnnMnn∆

(2.23)

Hence, if Eq. (2.18a) is satisfied, the following inequality holds for all x̂(tk) ∈ Ωρ̂\Ωρs and

t ∈ [tk, tk+1):

˙̂
V (x(t)) ≤ −ϵs (2.24)

Integrating the above inequality over t ∈ [tk, tk+1) yields the desired result, V̂ (x̂(tk+1)) ≤

V̂ (x̂(tk))−ϵs∆. Hence, we have shown that, if Eq. (2.18a) holds, then ˙̂
V (x(t)) is negative for

32

any x̂(tk) ∈ Ωρ̂\Ωρs . This implies that the closed-loop state of the LSTM model of Eq. (2.6)

under the sample-and-hold implementation of the controller u = Φnn(x̂) is bounded within

the region Ωρ̂ and moves toward the origin. Additionally, the region Ωρnn in Eq. (2.19a)

is introduced for the case where x(tk) = x̂(tk) ∈ Ωρs . In this case, Eq. (2.24) may not

hold, and the state x̂(tk) may leave the region Ωρs within one sampling period. Therefore,

Ωρnn is designed to guarantee that the closed-loop state x̂(tk) of the LSTM model will be

bounded in the region Ωρnn within one sampling period, for all t ∈ [tk, tk+1), u ∈ U and

x̂(tk) ∈ Ωρs , because, if x̂(tk+1) leaves Ωρs , the controller u = Φnn

(
x(tk+1)

)
reactivates, such

that Eq. (2.24) will be satisfied again at t = tk+1, and the state will be driven back toward

Ωρs over the next sampling period. Thus far, we can conclude that the state of the LSTM

system of Eq. (2.6) is ultimately bounded in Ωρnn for all x0 ∈ Ωρ̂.

The next step is to show that the controller u = Φnn(x) ∈ U , applied in sample-and-

hold fashion, is able to bound the states of the perturbed nonlinear system of Eq. (2.2) with

sufficiently small state delays and with ξ2 = 0, in some neighborhood around the origin.

Therefore, we need to show that V̂ (x) for the perturbed nonlinear system of Eq. (2.2)

with ξ2 = 0 is decreasing under the controller u(t) = Φnn(x(tk)) for t ∈ [tk, tk+1) and

x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs . The time-derivative of V̂ (x(t)) is calculated as:

˙̂
V (x(t)) = ∂V̂ (x(t))

∂x
F (x(t),Φnn(x(tk)), ξ)

= ∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)), 0)

+ ∂V̂ (x(t))
∂x

F (x(t),Φnn(x(tk)), ξ)

− ∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)), 0)

(2.25)

33

where the first term can be further bounded using the inequality in Eq. (2.10) as follows:

˙̂
V (x(t)) ≤− c̃3

ĉ2
ρs + ∂V̂ (x(t))

∂x
F (x(t),Φnn(x(tk)), ξ)

− ∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)), 0)
(2.26)

Since f and Φnn in the perturbed nonlinear system, F (x(t),Φnn(x(tk)), ξ), are locally Lips-

chitz vector functions, there exists a γ∗
1 ∈ K such that:

|ξ(t)| = |ξ1(t)| =
∣∣∣∣∣
∫ t

t−d1
f
(
x(s), x(t− s),Φnn(x(s))

)
ds
∣∣∣∣∣

≤ d1γ
∗
1(∥xd(t)∥)

(2.27)

where ∥xd(t)∥ = maxs∈[−2d1,0] |x(t + s)|. Applying the inequality of Eq. (2.27) and the

Lipschitz condition of Eq. (2.4), we obtain the following bound for ˙̂
V (x(t)):

˙̂
V (x(t)) ≤− c̃3

ĉ2
ρs + L

′

x|x(t)− x(tk)|+ L
′

ξ|ξ|

≤ − c̃3

ĉ2
ρs + L

′

xMF ∆ + L
′

ξd1γ
∗
1(∥xd(t)∥)

(2.28)

Hence, if Eq. (2.18b) is satisfied, the following inequality holds for all x(tk) ∈ Ωρ̂\Ωρs and

for all t ∈ [tk, tk+1):

˙̂
V (x(t)) ≤ −ϵw (2.29)

By integrating the above inequality over t ∈ [tk, tk+1), it is shown that Eq. (2.20) holds, and

˙̂
V (x(t)) is negative for all x(tk) ∈ Ωρ̂\Ωρs . Hence, the state of the closed-loop perturbed

nonlinear system of Eq. (2.2) with ξ2 = 0 is bounded within the region Ωρ̂ for all times and

can be driven towards the origin in every sampling period under the control law u = Φnn(x).

34

For the case where x(tk) ∈ Ωρs , we recall Eq. (2.11a), where the error between the state of

the perturbed nonlinear system of Eq. (2.2) with ξ2 = 0 and the state of the LSTM model

of Eq. (2.6) is bounded by the term fξ. We introduce a compact set Ωρmin ⊃ Ωρnn satisfying

Eq. (2.19b). This ensures that, if the state of the LSTM model of Eq. (2.6) is bounded

in Ωρnn , then the state of the perturbed nonlinear system of Eq. (2.2) with ξ2 = 0 will be

bounded within Ωρmin during one sampling period. If the state x(t) enters Ωρmin\Ωρs , it is

shown that Eq. (2.29) is satisfied, which implies that the state will be driven towards the

origin.

Finally, we conclude that the closed loop state of the perturbed nonlinear system of

Eq. (2.2) with ξ2 = 0 is always bounded in Ωρ̂ and ultimately bounded within a small region

around the neighborhood (i.e., Ωρmin) under the control law u = Φnn(x) ∈ U , provided that

the assumptions in Proposition 2.3 are satisfied.

2.4 LSTM-based Model Predictive Control

The trained LSTM model is then incorporated into a Lyapunov-based MPC (LMPC),

where it will be used to evaluate future states in the MPC algorithm. The resulting LSTM-

based LMPC computes the optimal control actions by solving the following optimization

35

problem [48, 49]:

J = min
u∈S(∆)

∫ tk+N

tk

LMP C(x̃(t), u(t))dt (2.30a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (2.30b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (2.30c)

x̃(tk) = x(tk) (2.30d)

˙̂
V (x(tk), u) ≤ ˙̂

V (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ̂\Ωρnn (2.30e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (2.30f)

In the LMPC formulation, x̃(t) is the predicted state trajectory, and the number of sampling

periods in the prediction horizon is denoted by N . The LSTM-based LMPC computes the

optimal control action, u∗(t), over the whole prediction horizon t ∈ [tk, tk+N). The controller

sends the optimal control action u∗(tk) computed for the first sampling period within the

prediction horizon to be applied to the process, after which the resultant real-time state

from the process x(tk) is sent back to the LSTM-based LMPC to resolve the optimal input

trajectory at the next sampling time. The cost function of the optimization problem is shown

in Eq. (2.30a), and it minimizes the time-integral of LMP C(x̃(t), u(t)) over the prediction

horizon. The first constraint of the optimization problem is that of Eq. (2.30b), which uses

the LSTM model to predict the states. The second constraint is Eq. (2.30c), which limits

the inputs that may be applied, over the whole prediction horizon. Equation (2.30d) is

the state measurement at t = tk, which is the initial condition to integrate x̃(t) from when

36

integrating Eq. (2.30b). The closed loop trajectory converges towards the steady state value

if x(tk) ∈ Ωρ̂\Ωρnn due to the constraint of Eq. (2.30e). Otherwise, if x(tk) enters the region

Ωρnn , the constraint in Eq. (2.30f) ensures that the states predicted by the LSTM model

remain trapped inside the region Ωρnn for the whole prediction horizon. Additionally, if the

assumptions in Proposition 2.2 and Proposition 2.3 are satisfied with small time-delays in

the states of the system, stability results derived in [48] show that using the LSTM-based

LMPC of Eq. (2.30) guarantees that the closed-loop state of the perturbed nonlinear system

of Eq. (2.2) with ξ2 = 0, under the control law u = Φnn ∈ U , is bounded within the stability

region Ωρ̂ and ultimately bounded within a small region around the origin, Ωρmin , for all

t ≥ 0 and any initial state x0 ∈ Ωρ̂.

2.5 Predictor feedback LSTM-based LMPC methodol-

ogy

The LSTM-based LMPC is proven to be robust for systems that have sufficiently small

state delays. Robustness can be enhanced by tuning some parameters in the LSTM-based

LMPC controller [41], such as the weights in the cost function of Eq. (2.30a) or the parameter

ρnn. Hence, the parameters can be chosen to ensure a margin of robustness of the closed-loop

system in the presence of state delays. On the other hand, input delays are more challenging,

and require further modifications in the controller structure.

In this section, we will present a predictor feedback LSTM-based LMPC methodology,

and how the predictor is incorporated within the closed-loop system to compensate for the

37

effect of input delays. As the name indicates, it is an LSTM-based predictor, in the sense

that it uses an LSTM model to predict the evolution of the future states of the process up

to a future time equal to the input delay. Specifically, at sampling time tk, the predictor

is used to predict the future state at time tk + d2, utilizing past state values and the input

trajectory that has been calculated previously over tk to tk + d2. Additionally, an LMPC

formulation with the shifted timescale, t̄k = k∆ + d2, is used to calculate the future input

trajectory from t̄k to t̄k+N :

J = min
u∈S(∆)

∫ t̄k+N

t̄k

LMP C(x̃(t), u(t)) dt (2.31a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (2.31b)

u(t) ∈ U, ∀ t ∈ [t̄k, t̄k+N) (2.31c)

x̃(t̄k) = x̄(t̄k) (2.31d)

˙̂
V (x(t̄k), u) ≤ ˙̂

V (x(t̄k),Φnn(x(t̄k))),

if x(t̄k) ∈ Ωρ̂\Ωρnn (2.31e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [t̄k, t̄k+N), if x(t̄k) ∈ Ωρnn (2.31f)

With respect to the LSTM-based predictor initialization, it is important to clarify the

following: specifically, we need to assume initial data for both the states and inputs. For

states, we assume the initial state data, from time −d1 to 0, to be equal to the value of the

states at time tk = 0. The inputs are assumed to be at their steady state values from time

0 to d2.

38

Subsequently, at sampling time tk or, in other words, t̄k − d2, the predictor receives

the state measurement x(t̄k − d2)
(
or x(tk)

)
along with past input measurements from time

t̄k−d2 to t̄k as its inputs. The LSTM-based predictor is then used to predict the future state

value x̄(t̄k). Subsequently, the output of the predictor is sent to the LSTM-based LMPC to

initialize it and compute the optimal input trajectory along the whole prediction horizon.

The computed control action u∗(t̄k|t̄k−d2) is then sent to the process to be applied from time

t̄k to t̄k+1, which yields the output, i.e., the process state x(t̄k+1−d2)
(
or x(tk+1)

)
. Figure 2.2

illustrates the proposed LSTM-based LMPC framework. Additionally, the LSTM-predictor

used in this study is a closed-loop predictor (i.e., at each sampling time, a new measurement

x(tk) is sent to it from the process). Hence, unlike open-loop predictors, closed-loop ones

play an effective role when trying to control processes with open-loop unstable equilibrium

points [41]. Figure 2.3 shows the LSTM-based predictor block in the feedback loop of the

closed-loop system.

Figure 2.2: Time phases of the states and the control action of the predictor-based control
system.

We summarize the implementation of the LSTM based predictor in the following algo-

39

Figure 2.3: Flow diagram of the closed-loop system with the predictor block.

rithm:

Algorithm 2.1. LSTM-based predictor, MPC feedback implementation.

1. At sampling time tk (i.e., t̄k − d2), the predictor receives x(t̄k − d2) and past input

measurements from time t̄k − d2 to t̄k.

2. The predictor predicts the future state x̄(t̄k).

3. The LSTM-based LMPC is then initialized with the predicted state x̄(t̄k), and the optimal

control input trajectory is computed.

4. The computed control action, u∗(t̄k|t̄k− d2), is then applied to the process from t̄k to t̄k+1.

5. Set k ←− k + 1 and go to step 1.

2.6 Application to a Chemical Process Example

To illustrate the use of the LSTM-based LMPC and the LSTM-based predictor for

stabilizing a nonlinear system in the presence of small time-delays, we consider the chemical

40

rector in [41]. In a well-mixed, non-isothermal continuous stirred tank reactor (CSTR), the

irreversible, exothermic, and elementary second order reaction transforming a reactant A to

a desired product B (A→ B) takes place. Figure 2.4 shows the process flow diagram of the

CSTR.

Figure 2.4: Process flow diagram of the CSTR with the recycle stream.

The inlet stream enters the reactor with a flow rate λψ, feed concentration CA0, and a

feed temperature Tf . The outlet stream of the reactor is split into two streams. The first

stream is the product of the reactor, with a volumetric flow rate λψ, concentration CA, and

temperature T . The second stream is a recycle stream with flow rate (1−λ)ψ that is carried

back to the reactor. Specifically, the unprocessed portion of chemical A is reused through

the recycle steam, where it carries a splitting fraction (1 − λ) of the outlet stream back to

41

the reactor. This recycle stream causes a transportation lag. Hence, a time-delay of value d1

appears in the dynamics of the process. CA0 and Q are the feed concentration and the heat

rate, respectively, which are the manipulated inputs of the CSTR. The control actuators’

dynamics and their operation with dead-times cause an input delay of value d2, which appear

in the process dynamics.

The first-principles model of the second-order CSTR with a recycle stream is described

by the following material and energy balance equations:

ĊA(t) = (1− λ)ψ
VR

CA(t− d1) + λψ

VR

CA0(t− d2)

− ψ

VR

CA(t)− k0 exp
(
−E
RT (t)

)
C2

A(t) (2.32a)

Ṫ (t) = (1− λ)ψ
VR

T (t− d1) + λψ

VR

Tf −
ψ

VR

T (t)

− ∆Hk0

ρLCp

exp
(
−E
RT (t)

)
C2

A(t) + Q(t− d2)
VRρLCp

(2.32b)

The vector xT = [CA T] represents the state vector, where CA is the concentration of

reactant A, and T is the temperature of the reactor. The notations and the parameter val-

ues are illustrated in Table 2.1. The inputs of the reactor are bounded as follows: CA0 ∈

[0.5, 7.5] kmol/m3 and Q ∈
[
−8× 104, 8× 104

]
kJ/h. Additionally, the LSTM-based MPC

is designed to drive the system to the steady state, xs = (CAs, Ts) =
(
2.96 kmol/m3, 320 K

)
,

which is open-loop asymptotically stable. This is achieved under the input values CA0s =

4 kmol/m3 and Qs = 12.2 × 103 kJh−1. By converting both the state and input variables

to deviation variables, the steady state of the system is shifted to the origin. For the devel-

opment of the LSTM model, we follow the technique illustrated in Section 2.2.5, where 105

42

data points are generated through extensive open-loop simulations of the nonlinear system

of Eq. (2.32) (without the delays) using the explicit Euler method with a sufficiently small

time step of hc = 10−4 h and sampling period ∆ = 0.01 h. The data set is then split into

80,000 points for training and 20,000 points for validation. Then, using the machine learning

library Keras, we construct the LSTM model of Eq. (2.6), consisting of 600 LSTM units.

The loss function was chosen to be the mean squared error (MSE). Additionally, during each

epoch of the training, both the training and the validation loss were calculated simultane-

ously. Moreover, early stopping was used, in which the stopping criterion was defined on

the basis of the validation data loss and chosen as 2 × 10−6, i.e., training would terminate

once the validation loss was below 2× 10−6. Once the early stopping criterion was satisfied,

the training was stopped and the final values of the training and validation loss were re-

ported to be 5.4×10−5 and 1.4×10−6, respectively; both considered to be sufficiently small.

The trained LSTM model is then incorporated into a Lyapunov-based MPC (LMPC). The

model’s performance is then evaluated not using a test set but rather with respect to its

ability to lead to an LMPC that gives satisfactory closed-loop performance and is capable of

handling the delays in states and inputs, as this is the fundamental criterion when designing

an MPC. The LSTM-based LMPC predicts optimal control laws for a prediction horizon of

N = 3. Moreover, the Lyapunov function of the CSTR system is defined as

V (x) = (x− xs)TP (x− xs) (2.33)

43

where the matrix P is given by

P =

500 20

20 1

In the following subsections, we will show the results of the designed LSTM-based LMPC and

its ability to stabilize the system. Moreover, we will show simulation results to demonstrate

the predictor feedback LSTM-based LMPC methodology and its ability to compensate for

the effect of input time-delays.

Concentration of chemical A CA

Reactor temperature T
Feed concentration CA0

Heat removal rate from the reactor Q
Splitting fraction λ = 0.7

Reaction rate constant k0 = 1× 109 m3kmol−1h−1

Feed temperature Tf = 300 K
Density ρL = 1× 103

Heat capacity Cp = 4.18 kJkg−1K−1

Reactor volume VR = 1 m3

Flow rate ψ = 6 m3h−1

Heat of reaction ∆H = −7.8× 104 kJkmol−1

Activation energy E/R = 5.7× 104/8.314 K

Table 2.1: Notation and parameter values of the CSTR with recycle stream.

2.6.1 LSTM-based LMPC closed-loop simulation results

We first conduct closed-loop simulations for the CSTR under the LSTM-based LMPC

with different values of input time delays as they are known to have a significant impact

on the state trajectories and stability. Hence, in these simulations, the value of the state

delay was fixed at d1 = 0.01 h for all simulations results. Figure 2.5 shows the closed-loop

trajectories of the CSTR under the LSTM-based LMPC with time delays of d1 = 0.01 h

44

and d2 = 0.01 h. We observe that the trajectories converge to the steady-state values

and are stabilized by the controller. This shows that the designed controller is robust to

small time-delays, and that closed-loop stability is achieved. In this particular application,

when the value of the input delay, d2, is higher than 0.01 h, stability is lost, and we notice

oscillations and fluctuations in the closed-loop trajectories as seen in Figs. 2.6 and 2.7, which

correspond to input time-delays of d2 = 0.02 h, and d2 = 0.03 h, respectively. Moreover,

from the trajectories of Figs. 2.6 and 2.7, we observe that increasing the value of the input

delay d2 increases the amplitude of the oscillations around the steady state as well. Hence,

the closed-loop trajectories oscillate around the steady state, causing the system to become

unstable.

2.6.2 Predictor feedback LSTM-based LMPC closed-loop simula-

tion results

In this section, we will demonstrate the results of closed-loop simulations using the

predictor feedback LSTM-based LMPC design. This method was proposed to overcome the

performance deterioration that arises due to larger time delays, particularly to compensate

for the effect of larger input time-delays (i.e., d2 > 0.01 h). The scheme was applied for

the cases in Section 2.6.1 where we found oscillations in the closed loop stability under the

LSTM-based LMPC. Figures 2.8 and 2.9 show the closed-loop trajectories of the CSTR

under the predictor feedback LSTM-based LMPC with input time delays of d2 = 0.02 h

and d2 = 0.03 h, respectively, while maintaining d1 = 0.01 h in all simulations. From the

results, we observe, under larger values of input time-delays, significant improvement in the

45

0 500 1000 1500 2000 2500 3000 3500
−1.0
−0.8
−0.6
−0.4
−0.2
0.0

 C
A
−
C A

s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
0
2
4
6
8

10

 T
−
T s

(K
)

0 500 1000 1500 2000 2500 3000 3500
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

 C
A0
−
C A

0s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
 Time (sec)

−40000
−20000

0
20000
40000
60000

 Q
−
Q
s
(k
Jh
r−

1)

Figure 2.5: Closed-loop state and input trajectories under LSTM-based LMPC with time
delays: d1 = 0.01 h and d2 = 0.01 h.

closed-loop performance under the proposed control system. This is achieved through the

use of an LSTM-based predictor together with the LSTM-based LMPC in the feedback loop.

As the trajectories converge to their steady state values without oscillations, the process is

considered to be stabilized.

46

0 500 1000 1500 2000 2500 3000 3500
−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2

 C
A
−
C A

s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
0
2
4
6
8

10

 T
−
T s

(K
)

0 500 1000 1500 2000 2500 3000 3500
−3
−2
−1
0
1
2
3

 C
A0
−
C A

0s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
 Time (sec)

−40000
−20000

0
20000
40000
60000

 Q
−
Q
s
(k
Jh
r−

1)

Figure 2.6: Closed-loop state and input trajectories under LSTM-based LMPC with time
delays d1 = 0.01 h and d2 = 0.02 h.

47

0 500 1000 1500 2000 2500 3000 3500
−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4

 C
A
−
C A

s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
0
2
4
6
8

10

 T
−
T s

(K
)

0 500 1000 1500 2000 2500 3000 3500
−3
−2
−1
0
1
2
3

 C
A0
−
C A

0s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
 Time (sec)

−40000
−20000

0
20000
40000
60000

 Q
−
Q
s
(k
Jh
r−

1)

Figure 2.7: The closed-loop trajectories of the CSTR under LSTM-based LMPC with time
delays: d1 = 0.01 h and d2 = 0.03 h.

48

0 500 1000 1500 2000 2500 3000 3500
−1.0
−0.8
−0.6
−0.4
−0.2
0.0

 C
A
−
C A

s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
0
2
4
6
8

10

 T
−
T s

(K
)

0 500 1000 1500 2000 2500 3000 3500−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5

 C
A0
−
C A

0s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
 Time (sec)

−25000
−20000
−15000
−10000
−5000

0
5000

10000

 Q
−
Q
s
(k
Jh
r−

1)

Figure 2.8: Closed-loop state and input trajectories under the predictor feedback LSTM-
based LMPC, where the time delays: d1 = 0.01 h and d2 = 0.02 h.

49

0 500 1000 1500 2000 2500 3000 3500
−1.0
−0.8
−0.6
−0.4
−0.2
0.0

 C
A
−
C A

s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
0
2
4
6
8

10

 T
−
T s

(K
)

0 500 1000 1500 2000 2500 3000 3500−0.2
0.0
0.2
0.4
0.6
0.8

 C
A0
−
C A

0s
(k
m
ol
m

−3
)

0 500 1000 1500 2000 2500 3000 3500
 Time (sec)

−35000
−30000
−25000
−20000
−15000
−10000
−5000

0
5000

 Q
−
Q
s
(k
Jh
r−

1)

Figure 2.9: Closed-loop state and input trajectories under the predictor feedback LSTM-
based LMPC, where the time delays: d1 = 0.01 h and d2 = 0.03 h.

50

Chapter 3

Statistical Machine-Learning-based

Predictive Control of Uncertain

Nonlinear Processes

3.1 Introduction
Machine learning has gained increasing attention in modeling nonlinear systems due to

powerful learning strategies, the availability of big data sets, and the development of com-

puting resources. While the training error of machine learning models could be sufficiently

low with good-quality datasets and a careful tuning of model hyper-parameters, identifying

the generalization error for machine learning models on unseen data remains challenging.

Generalization error bound provides an efficient way to measure the effectiveness of training

and accuracy of machine learning models. The generalization error bound relies on various

factors, including data sample size, bounds of weight matrices, and the number of neurons

and layers. Many recent works have been done to obtain the generalization error bounds for

51

the implementation of neural networks in classification problems with single output [46, 71–

73]. Additionally, in [74], a margin-based multi-class generalization bound was derived for

the neural networks based on their margin-normalized spectral complexity. In [21, 47], the

generalization error for RNNs was developed for multiclass classification problems, and re-

gression problems of multi-input and multi-output (MIMO) nonlinear systems, respectively.

Additionally, model predictive controllers (MPC) using machine learning models have

been studied in recent years, with successful applications to a number of chemical engineering

problems [48, 75, 76]. As machine learning models can capture complex process dynamics,

machine-learning-based MPCs have demonstrated their superior closed-loop performance

when compared with the MPCs using (usually linear) data-driven models in traditional

industrial process control systems. However, machine learning models are typically approxi-

mations of the nominal system dynamics, and thus, how to deal with uncertainty in processes

within machine-learning-based MPCs is an important issue that requires further study.

Motivated by the above considerations, we develop RNN-based MPC schemes for nonlin-

ear systems with model uncertainty in this manuscript. While MPC of stochastic nonlinear

systems has been studied in literature, for example [77–81], RNN-based MPC of stochastic

nonlinear systems is still in its infancy. In this work, we perform a probabilistic closed-loop

stability analysis for the nonlinear systems subject to two common types of disturbances

(unknown-but-bounded disturbances and stochastic disturbances with unbounded variation)

under RNN-MPC based on the generalization error bound derived for RNN models. The

theoretical study also provides a guidance showing how to improve machine learning models

in a systematic way in order to achieve desired accuracy in both open-loop and closed-loop

52

simulations. The rest of this chapter is organized as follows: in Section “Preliminaries”,

the notations, the nonlinear systems and the recurrent neural network formulation are pre-

sented. In Section “RNN Generalization Error”, a generalization error bound is derived for

RNNs through Rademacher complexity approach. In Section “Probabilistic stability analy-

sis”, closed-loop stability results are developed for the nonlinear systems subject to bounded,

and unbounded, stochastic disturbances, respectively. Finally, in Section “Application to a

chemical process example”, we use a chemical reactor as an example to illustrate the relation

between training sample size and the RNN generalization error as well as the probability of

closed-loop system stability.

3.2 Preliminaries

3.2.1 Notation

The transpose of x is denoted by xT . The Lie derivative is LfV (x) := ∂V (x)
∂x

f(x). The

operator |·| denotes the Euclidean norm of a vector. |·|Q denotes the weighted Euclidean

norm of a vector, where Q is a positive definite matrix. The Frobenius norm of A is denoted

by ∥A∥F . Set subtraction is denoted by "\", i.e., A\B := {x ∈ Rn | x ∈ A, x /∈ B}. Given

a set D, the boundary of D is denoted by by ∂D, and the interior of D is denoted by Do.

The first hit time (or the hitting time) of a set X is defined as the first time that the state

trajectory hits the boundary of X, and is denoted by τX . Also, we define τX(t) = min{τX , t}

and τX,T (t) = min{τX , T, t}, where T is the operation time.

R+ represents nonnegative real numbers. A function f(x) belongs to class Ck if for all

53

i = 1, 2, ..., k, the ith derivative of f exists and is continuous. A function f : Rn → Rm

is L-Lipschitz continuous, if for all a, b ∈ Rn, |f(a) − f(b)| ≤ L|a − b| holds, L ≥ 0. A

continuous function α : [0, a) → [0,∞) belongs to a class K function if it is zero only when

evaluated at zero, and is strictly increasing. E[X] is the expected value of a random variable

X, and P(A) is the probability of the event A occurring.

3.2.2 Class of Systems

The following state-space model represents the class of continuous-time nonlinear sys-

tems considered in this work:

ẋ = F (x, u) := f(x) + g(x)u, x(t0) = x0 (3.1)

where the n-dimensional state vector is denoted by x ∈ Rn, and u ∈ Rk denotes the k-

dimensional manipulated input vector bounded by u ∈ U . The set U defines the maximum

umax and the minimum value umin for input vectors, i.e., U := {umin ≤ u ≤ umax} ⊂ Rk.

The vector f(·) and the matrix functions g(·) are sufficiently smooth with dimensions n× 1,

and n× k, respectively. We assume that f(0) = 0 without loss of generality, and therefore,

the origin is a steady-state of Eq. 3.1. Additionally, we assume that t0 = 0 (i.e., the initial

time is zero).

We assume that there exists a feedback controller u = Φ(x) ∈ U under which the origin

can be rendered exponentially stable. The stabilizability assumption implies that there is a

54

C1 Lyapunov function V (x) such that for all x in D the following inequalities hold:

c1|x|2 ≤ V (x) ≤ c2|x|2, (3.2a)

∂V (x)
∂x

F (x,Φ(x)) ≤ −c3|x|2, (3.2b)

∣∣∣∣∣∂V (x)
∂x

∣∣∣∣∣ ≤ c4|x| (3.2c)

where D is an open neighborhood around the origin, and ci, i = 1, 2, 3, 4 are positive con-

stants. We follow the method in [48] to generate the data by carrying out extensive open-loop

simulation for the system of Eq. 3.1 with various inputs u ∈ U and initial conditions x0 to

develop a set of time-series data forx ∈ Ωρ, where Ωρ is a level set of Lyapunov function

(i.e., Ωρ := {x ∈ Rn | V (x) ≤ ρ}, ρ > 0) utilized as the operating region. Then, we develop

recurrent neural network (RNN) models for capturing system dynamics and predicting state

evolution. Specifically, the RNN models predict future states x(t), t > tk based on the

current state measurements x(tk) at time t = tk, and the manipulated inputs u(t), t > tk.

3.2.3 Recurrent Neural Networks

In this section, we consider a general RNN model developed with m sequences of data

(xi,t,yi,t), where yi,t ∈ Rdy is the RNN output, and xi,t ∈ Rdx , i = 1, ...,m and t = 1, ..., T

(T is the time length) is the RNN input, to capture the system dynamics of Eq. 3.1. The

RNN input/state/output vectors are written in boldface to differentiate the notations from

those for the nonlinear system of Eq. 3.1. Additionally, to simplify the discussion, we develop

the RNN model of Eqs. 3.3-3.4 to predict future states for one sampling period (denoted by

55

∆) with internal steps T = ∆
hc

, where hc is the integration time step used by the Explicit

Euler method to solve the continuous-time system of Eq. 3.1, and ∆ is the sampling period

within which the control action u(t) remains unchanged (i.e., for all t = 1, ..., T). The RNN

model predicts one sampling period forward, including all the internal states every hc time

step. As a result, for t = 1, ..., T , the predicted states are the RNN output yi,t, and the

inputs and the current state measurements are RNN input xi,t.

The time-series data is generated independently following the data distribution over

Rdx×T ×Rdy×T . Then, we develop the dataset by generating m data sequences of the same

distribution. To simplify the discussion, a one-hidden-layer RNN (Fig. 3.1) is considered.

The RNN states in the hidden layers hi ∈ Rdh are

hi,t = σh(Uhi,t−1 +Wxi,t) (3.3)

where the weight matrices W ∈ Rdh×dx and U ∈ Rdh×dh are associated with the input and

hidden state vectors, respectively. The element-wise nonlinear activation function is denoted

by σh (e.g., ReLU). The output layer yi,t is calculated using the following equation:

yi,t = σy(V hi,t) (3.4)

where the activation function σy and the weight matrix V ∈ Rdy×dh are associated with the

output layer.

We have the following standard assumptions on the RNN model and datasets.

Assumption 3.1. The RNN inputs are bounded, i.e.,
∣∣∣xi,t

∣∣∣ ≤ BX , for all i = 1, ...,m and

56

t = 1, ..., T .

Assumption 3.2. The Frobenius norms of the weight matrices are bounded as follows:

∥W∥F ≤ BW,F , ∥V ∥F ≤ BV,F , ∥U∥F ≤ BU,F (3.5)

Assumption 3.3. All the datasets (i.e., training, validation, and testing) are drawn from

the same distribution.

Assumption 3.4. σh is a 1-Lipschitz continuous activation function, and is positive-homogeneous

in the sense that σh(αz) = ασh(z) holds for all α ≥ 0 and z ∈ R.

Remark 3.1. Assumptions 3.1-3.4 are standard assumptions in machine learning theory.

Specifically, Assumptions 3.1-3.2 assume the boundedness of RNN inputs and weight matri-

ces. This is consistent with the practical implementation of RNN training that only a finite

class of RNN hypotheses are searched for the optimal solution. Assumption 3.3 is also a basic

assumption that is widely adopted in machine learning modeling works. The RNN models

trained from the process operational data will be tested against data that come from the same

target distribution. Assumption 3.4 requires positive-homogeneity of the activation function.

For example, Rectified Linear Unit (ReLu), a popular nonlinear activation function in the

machine learning domain, is a candidate of activation function that meets this assumption.

3.3 RNN Generalization Error

The RNN learning algorithms provide no information on the generalization performance

for unseen testing data since they are evaluated on training data only. Therefore, the gener-

alization error is used to measure the neural network’s predictive capability for any data not

utilized in training. Specifically, an upper bound is developed in this section for the RNN

57

generalization error. Then we demonstrate that with high probability, this error is bounded

if the development of RNN models meets a few requirements.

3.3.1 Preliminaries

Let H be the hypothesis class of RNN functions h(·) that map a dx-dimensional input

x ∈ Rdx to a dy-dimensional output y ∈ Rdy . The predicted output of the RNN model

and the loss function are denoted by yt = h(xt) and L(yt, ȳt), respectively, where L(y, ȳ)

calculates the squared difference between the predicted output y and the true output ȳ. We

have the following error definitions for training RNN models.

Definition 3.1. Given a data distribution D, and a function h that predicts y (output) based

on x (input), the generalization error or expected loss / error is

E[L(h(x), y)] =
∫

X×Y
L(h(x), y)ρ(x, y)dxdy (3.6)

where the joint probability distribution for x and y is represented as ρ(x, y), and the vector

space for all possible outputs and inputs are denoted by Y and X, respectively.

Since in most cases ρ is an unknown distribution, we utilize empirical error as an ap-

proximation measure for the expected error. The empirical error is calculated as follows.

Definition 3.2. Given a dataset S = (s1, ..., sm), si = (xi, yi), with m data samples drawn

from the data distribution D, the empirical risk or error is

ÊS[L(h(x), y)] = 1
m

m∑
i=1

L(h(xi), yi) (3.7)

58

Since the RNN data is generated within a compact set, the RNN predicted outputs yt

and the true outputs ȳt are assumed to be bounded by rt > 0, t = 1, ..., T , i.e., |yt|, |ȳt| ≤ rt.

Thus, the following inequality from local Lipschitz continuity holds for the loss function of

mean squared error (MSE) for all |yt| ≤ rt, and |ȳt| ≤ rt.

|L(y2, ȳ)− L(y1, ȳ)| ≤ Lr |y2 − y1| (3.8)

where the local Lipschitz constant is denoted by Lr.

3.3.2 Rademacher Complexity

Rademacher complexity is used to quantify the richness of a function class in compu-

tational learning theory. The definition of empirical Rademacher Complexity is presented

below.

Definition 3.3. Given a set of data samples S = {s1, ..., sm}, and a hypothesis class F of

real-valued functions, the definition of empirical Rademacher complexity of F is

RS(F) = Eϵ

sup
f∈F

1
m

m∑
i=1

ϵif(si)
 (3.9)

where ϵ = (ϵ1, ..., ϵm)T , and ϵi are Rademacher random variables that are independent and

identically distributed (i.i.d.) and satisfy P(ϵi = −1) = P(ϵi = 1) = 0.5.

The Rademacher complexity is used to derive the generalization error bound in the

following lemma.

59

Lemma 3.1 (c.f. Theorem 3.3 in [82]). Let H be the hypothesis class that maps {x1, ...,xt} ∈

Rdx×t (i.e., the first t-time-step inputs) to yt ∈ Rdy (i.e., the t-th output), and Gt be loss

function set with H.

Gt = {gt : (x, ȳ)→ L(h(x), ȳ), h ∈ H} (3.10)

where ȳ and x are the true output vector and the RNN input vector, respectively. Then,

given a dataset consisting of m i.i.d. data samples, the inequality below holds in probability

for all gt ∈ Gt over the data samples S = (xi,t,yi,t)T
t=1, i = 1, ...,m:

E[gt(x,y)] ≤ 1
m

m∑
i=1

gt(xi,yi) + 2RS(Gt) + 3
√

log(2
δ
)

2m (3.11)

The RHS of Eq. 3.11 represents the upper bound for the generalization error, which

relies on various factors. Specifically, the first term of the RHS in Eq. 3.11 represents the

empirical risk, the second term represents the Rademacher complexity, and an error function

of the samples size m and the confidence δ is represented in the last term. Note that the last

and the first terms can be computed once a set of training data of size m and the confidence

δ are given. Therefore, our goal is to derive the Rademacher complexity bound for RS(Gt).

3.3.3 Generalization Error Bound

We first present a few lemmas to provide preliminary results following the proof tech-

nique in [21].

Lemma 3.2 (c.f. Lemma 4 in [21]). Given a dataset S = (xi,t,yi,t)T
t=1, of m i.i.d. data

samples, i = 1, ...,m, and a real-valued function class Hk that corresponds to the k-th com-

60

ponent of the class H of vector-valued functions, the scaled empirical Rademacher complexity

mRS(Hk) = E[suph∈Hk

∑m
i=1 ϵih(xi)] satisfies the the following inequality:

mRS(Hk) = 1
λ

log exp

λE
 sup

h∈Hk

m∑
i=1

ϵih(xi)

≤ 1
λ

log

E
 sup

h∈Hk

exp(λ
m∑

i=1
ϵih(xi))

(3.12)

where λ is an arbitrary positive real number.

Additionally, since the RNN models of Eqs. 3.3-3.4 are essentially complex nonlinear

functions that are difficult to measure the learning capacity, the following lemma provides a

useful tool to peel off RNN weights and nonlinear activation functions through layers.

Lemma 3.3 (c.f. Lemma 6 in [21]). Given any monotonically increasing and convex function

p : R → R+, and a vector-valued RNN function class H with a positive-homogeneous, 1-

Lipschitz, activation function σh(·), the inequality below holds:

E

 sup
||W ||F ≤BW,F ,||U ||F ≤BU,F ,h∈H

p

∣∣∣∣∣∣

m∑
i=1

ϵihi,t

∣∣∣∣∣∣

≤ 2E

sup
h∈H

p

BW,F

∣∣∣∣∣∣
m∑

i=1
ϵixi,t

∣∣∣∣∣∣+BU,F

∣∣∣∣∣∣
m∑

i=1
ϵihi,t−1

∣∣∣∣∣∣

(3.13)

Based on Lemma 3.3, the following lemma derives a Rademacher complexity bound for

the real-valued RNN function class Hk that corresponds to the k-th output of the class H

of vector-valued functions.

61

Lemma 3.4 (c.f. Lemma 7 in [21]). Given a dataset S = (xi,t,yi,t)T
t=1, of m i.i.d. data

samples, i = 1, ...,m, and a class of real-valued functions, Hk,t, k = 1, ..., dy, that corre-

sponds to the k-th output at t-th time step, and satisfy Assumptions 3.1-3.4, the Rademacher

complexity can be bounded using the following inequality:

RS(Hk,t) ≤
MBX(1 +

√
2 log(2)t)

√
m

(3.14)

where M = 1−(BU,F)t

1−BU,F
BW,FBV,F .

Finally, we consider the class of loss function for the vector-valued RNN models, and use

the contraction inequality in [83] to further bound the RNN generalization error as follows.

Theorem 3.1 (c.f. Theorem 1 in [21]). Given a dataset S = (xi,t,yi,t)T
t=1 with i.i.d. data

samples, i = 1, ...,m, and the loss function class Gt associated with the RNN function class Ht

that predicts outputs at the t-th time step, with probability at least 1− δ over S, the following

inequality holds for the RNN models with the activation functions and weight matrices that

satisfy Assumptions 3.1-3.4.

E[gt(x,y)] ≤ O

Lrdy

MBX(1 +
√

2 log(2)t)
√
m

+ 3
√

log(2
δ
)

2m + 1
m

m∑
i=1

gt(xi,yi) (3.15)

where M is given in Eq. 3.14, BX is the RNN input bound defined in Eq. 3.1, Lr is the local

Lipschitz constant defined in Eq. 3.8, and dy is the RNN output dimension.

62

3.4 Probabilistic Stability Analysis

The RNN models are incorporated within MPC in this section to provide the prediction

of future states. We develop the MPC scheme using RNN models (RNN-MPC), and study

the system stability properties for the nonlinear system of Eq. 3.1 subject to disturbances.

We demonstrate that under RNN-MPC, the state of the closed-loop system remains inside

the stability region in probability for all times in the presence of process disturbances.

The single-hidden-layer RNN model is represented as a continuous-time nonlinear sys-

tem for simplifying the analysis of its stability properties [48]:

˙̂x = Fnn(x̂, u) := Ax̂+ ΘT z (3.16)

where u ∈ Rk is the manipulated input, and x̂ ∈ Rn is the RNN state vector. A and Θ are

the weight matrices, and z is a vector associated with the x̂ and u. The readers are referred

to [21] for the details of Eq. 3.16. In the following sections, the Lyapunov-based MPC schemes

using RNN models are designed to stabilize the nonlinear system in a probabilistic manner

in the presence of process disturbances. Specifically, we consider two types of disturbances:

unknown-but-bounded disturbances and stochastic disturbances with unbounded variation,

and establish the probabilistic closed-loop stability results for the nonlinear systems under

RNN-MPC.

63

3.4.1 Nonlinear systems with bounded disturbances

The class of continuous-time nonlinear systems subject to bounded disturbances is de-

scribed by the following ordinary differential equation:

ẋ = F (x, u, w) := f(x) + g(x)u+ h(x)w, x(t0) = x0 (3.17)

where the notations are the same as those in Eq. 3.1. The disturbance vector w is bounded

by W := {w ∈ Rq | |w| ≤ wm, wm ≥ 0}. h(x) is a sufficiently smooth matrix function of

dimension n × q. Based on the boundedness of x, u and w, and the Lipschitz property of

F (x, u, w), there exist positive constants MF , Lx, L
′
x, Lw, L

′
w such that for all w ∈ W , u ∈ U ,

x, x′ ∈ Ωρ, the following inequalities hold:

|F (x′, u, 0)− F (x, u, w)| ≤ Lw|w|+ Lx|x− x′| (3.18a)∣∣∣∣∣∂V (x′)
∂x

F (x′, u, 0)− ∂V (x)
∂x

F (x, u, w)
∣∣∣∣∣ ≤ L

′

w|w|+ L
′

x|x− x′| (3.18b)

|F (x, u, w)| ≤MF (3.18c)

Under the assumption of exponential stabilization of the origin of the RNN model of

Eq. 3.16 for states in an open set D̂ around the origin by a feedback controller u = Φnn(x) ∈

U , a C1 Lyapunov function V̂ (x) can be found such that for all states x in D̂, the following

inequalities hold: ∣∣∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣∣∣ ≤ ĉ4|x|, (3.19a)

∂V̂ (x)
∂x

Fnn(x,Φnn(x)) ≤ −ĉ3|x|2, (3.19b)

64

ĉ1|x|2 ≤ V̂ (x) ≤ ĉ2|x|2 (3.19c)

where ĉi, i = 1, 2, 3, 4 are positive constants. Similarly, we characterize the stability region

for the RNN model of Eq. 3.16 as a compact set embedded in D̂ as follows: Ωρ̂ := {x ∈

D̂ | V̂ (x) ≤ ρ̂}, where ρ̂ > 0. The following proposition demonstrates that for the RNN

model developed with a sufficiently small modeling error, the nominal system of Eq. 3.17

with w(t) ≡ 0 can be stabilized under u = Φnn(x) ∈ U with high probability.

Proposition 3.1. Consider the nominal system of Eq. 3.17 with w(t) ≡ 0 and an RNN

model that is trained with m i.i.d. data samples and satisfies the conditions in Theorem 3.1.

Under the stabilization assumption of Eq. 3.19, if there exists a positive real number γ that

satisfies γ < ĉ3/ĉ4, and constrains the modeling error, i.e., |Fnn(x, u) − F (x, u, 0)| ≤ γ|x|,

for all u ∈ U and x ∈ Ωρ̂, then for all x ∈ Ωρ̂, the origin of the nominal system is rendered

exponentially stable with probability at least 1− δ under u = Φnn(x) ∈ U .

Proof. Following the proof of Proposition 2 in [48], the time derivative of V̂ is obtained as

follows using Eq. 3.19b and Eq. 3.19a:

˙̂
V =∂V̂ (x)

∂x
F (x,Φnn(x), 0)

≤ĉ4|x| ·
∣∣F (x,Φnn(x), 0)− Fnn(x,Φnn(x))

∣∣− ĉ3|x|2
(3.20)

where the term |F (x,Φnn(x), 0) − Fnn(x,Φnn(x))| is the modeling mismatch between the

nominal system of Eq. 3.17 and the RNN model. Using the generalization error results

65

derived in Theorem 3.1, we have the following bound for the modeling error:

|Fnn(x,Φnn(x))− F (x,Φnn(x), 0)| ≤ EM (3.21)

where EM represents the generalization error that is bounded by the RHS of Eq. 3.15.

Since the generalization error bound of Eq. 3.15 depends on the training sample size,

we can find the minimum data sample size mN(|x|, hc, δ) such that the modeling error is

upper bounded by EM ≤ γ|x|. Therefore, by choosing the sample size m ≥ mN(|x|, hc, δ),

the following equation holds for ˙̂
V , with probability no less than 1− δ.

˙̂
V =∂V̂

∂x
(Fnn(x,Φnn(x)) + F (x,Φnn(x), 0)− Fnn(x,Φnn(x)))

≤− ĉ3|x|2 + |Fnn(x,Φnn(x))− F (x,Φnn(x), 0)| · ĉ4|x|

≤ − ĉ3|x|2 + ĉ3|x|
ĉ4
· ĉ4|x|

=− c̃3|x|2

<0

(3.22)

where c̃3 = −ĉ3 + ĉ4γ < 0 for any γ < ĉ3/ĉ4. This implies that with a certain probability,

˙̂
V can be rendered negative (i.e., P[˙̂

V < 0] ≥ 1− δ), and therefore, the state of the nominal

system of Eq. 3.17 moves towards the origin under u = Φnn(x) ∈ U for all x0 ∈ Ωρ̂.

Remark 3.2. Note that the minimum data sample size mN(|x|, hc, δ) that satisfies EM ≤

γ|x| is a function of |x|, hc and δ. Specifically, by substituting the RHS of Eq. 3.15 into

EM , it is straightforward to show that the solution to EM ≤ γ|x| is a function of the confi-

dence level δ. Additionally, it is observed from EM ≤ γ|x| that the solution depends on the

value of x in the way that a smaller x value (i.e., the states closer to the origin) leads to a

66

tighter generalization error bound EM , which requires more data to be used for training. In

the extreme case where the state x is sufficiently close to the origin, a large number of data

is needed to render EM sufficiently low in order to meet the condition EM ≤ γ|x|, which

is computationally impracticable in general. Therefore, to reduce the computational time

in training RNN models, we do not require this condition to hold in a small neighborhood

around the origin, and we will demonstrate in Theorem 3.2 that closed-loop stability remains

unaffected under RNN-based MPC despite this loose condition. Lastly, mN(·) is also a func-

tion of hc since we calculate the modeling error of Eq. 3.21 by approximating the derivatives

using finite differences with a sufficiently small time step hc.

Proposition 3.2. Consider the RNN model ˙̂x = Fnn(x̂, u) of Eq. 3.16 developed satisfying

Assumptions 3.1-3.4 and the nonlinear system ẋ = F (x, u, w) of Eq. 3.17 with bounded

disturbances |w| ≤ wm. There exists a positive constant κ and a class K function fw(·) such

that for all x, x̂ ∈ Ωρ̂, with probability at least 1 − δ, the following inequalities hold with

x0 = x̂0 ∈ Ωρ̂ (i.e., the same initial condition):

|x(t)− x̂(t)| ≤ fw(t) := Lwwm + EM

Lx

(eLxt − 1) (3.23a)

V̂ (x) ≤ κ|x− x̂|2 + ĉ4
√
ρ̂√
ĉ1
|x− x̂|+ V̂ (x̂) (3.23b)

Proof. The results are derived following the proof technique used in Proposition 3 in [48].

Note that in [48], the modeling error is assumed to be bounded by a constant number almost

surely (i.e., with probability 1). However, the modeling error |F (x̂, u, 0)− Fnn(x, u)| in this

work is bounded by EM with probability at least 1− δ since we use the generalization error

to represent the model mismatch for any states in the stability region including those which

are not used in training. The key steps for the proof are presented below. We first define an

67

error vector e(t) = x(t) − x̂(t) that represents the modeling error between the RNN model

state ˙̂x = Fnn(x̂, u) and the actual nonlinear system state ẋ = F (x, u, w) subject to bounded

disturbances. The time derivative of error vector is bounded for all x̂, x ∈ Ωρ̂, w(t) ∈ W and

u ∈ U as follows.

|ė| = |F (x, u, w)− Fnn(x̂, u)|

≤ |F (x, u, w)− F (x̂, u, 0)|+ |F (x̂, u, 0)− Fnn(x̂, u)|

≤ Lx|e(t)|+ Lwwm + EM

(3.24)

where the last inequality is obtained using Eq. 3.18 and the modeling error constraint of

Eq. 3.21. Since the initial error e(0) is zero for the same initial condition x0 = x̂0, the

evolution of error vector is bounded as follows.

|e(t)| ≤ Lwwm + EM

Lx

(eLxt − 1) (3.25)

Additionally, using Taylor series expansion and ignoring higher-order terms, we have

V̂ (x) ≤ V̂ (x̂) + ∂V̂ (x̂)
∂x

|x− x̂|+ κ|x− x̂|2

≤ V̂ (x̂) + ĉ4
√
ρ̂√
ĉ1
|x− x̂|+ κ|x− x̂|2

(3.26)

where the last inequality is obtained using Eq. 3.19a, Eq. 3.19c, and κ is a positive real

number. This completes the proof of Proposition 3.2.

Subsequently, the RNN models are utilized within MPC to provide the prediction of

future state evolution. The optimization problem of RNN-MPC is presented as follows [48,

68

49]:

J = min
u∈S(∆)

∫ tk+N

tk

LMP C(x̃(t), u(t))dt (3.27a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (3.27b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.27c)

x̃(tk) = x(tk) (3.27d)

˙̂
V (x(tk), u) ≤ ˙̂

V (x(tk),Φnn(x(tk))),

if x(tk) ∈ Ωρ̂\Ωρnn (3.27e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (3.27f)

where LMP C denotes the objective function of MPC that attains its minimum value at the

origin. x̃ is the state predicted by the RNN model Fnn(x, u). The RNN-MPC of Eq. 3.27

is applied in a sample-and-hold fashion in which control actions remain unchanged within

each sampling period, with control actions optimized over the prediction horizon from tk to

tk+N as a piece-wise function in S(∆). The goal of RNN-MPC is to stabilize the nonlinear

system at the steady-state in the way that the state is maintained in the stability region Ωρ̂

at all times, and is driven into a small terminal set around the origin ultimately. Eq. 3.27b

is the prediction model, and Eq. 3.27c is the input constraint. The feedback measurement

of x at each sampling time is utilized as the initial state for solving Eq. 3.27b. The two

Lyapunov-based constraints of Eqs. 3.27e-3.27f ensure stability for the closed-loop system

under RNN-MPC. The following theorem establishes the closed-loop stability properties for

the uncertain system of Eq. 3.17 subject to bounded disturbances w ∈ W under RNN-MPC.

69

Theorem 3.2. Consider the nonlinear system of Eq. 3.17 under the RNN-MPC of Eq. 3.27

with the controller Φnn(x) that meets Eq. 3.19. Let ∆ > 0, ρ̂ > ρmin > ρnn > ρs and ϵw > 0

satisfy Eq. 3.28 and 3.29.

− c̃3

ĉ2
ρs + L

′

xMF ∆ + L′
wwm ≤ −ϵw (3.28)

and

ρnn := max{V̂ (x̂(t+ ∆)) | u ∈ U, x̂(t) ∈ Ωρs} (3.29a)

ρmin ≥ ρnn + ĉ4
√
ρ̂√
ĉ1
fw(∆) + κ(fw(∆))2 (3.29b)

where fw(t) = EM +Lwwm

Lx
(eLxt−1). Then, by choosing the sample size m to be greater than the

minimum sample size mN(|x|, hc, δ) that satisfies EM ≤ γ|x|, for any initial state x0 ∈ Ωρ̂

and for each sampling time step, system stability is achieved for the disturbed system of

Eq. 3.17 with w ∈ W with probability at least 1 − δ, under the RNN-MPC of Eq. 3.27 in

the sense that x(t) ultimately converges to Ωρmin
, and is maintained in Ωρ̂ at all times, i.e.,

x(t) ∈ Ωρ̂, ∀t ≥ 0.

Proof. The proof follows the proofs of Proposition 3 and Theorem 2 in [21] for the nominal

system of Eq. 3.17 with w(t) ≡ 0, and we present a proof sketch here to help readers

understand the key steps. The main difference is that the system of Eq. 3.17 is subject

to sufficiently small bounded disturbances |w(t)| ≤ wm in this work, which needs to be

accounted for in the controller design and stability analysis, while in [21] the results were

developed for the nominal system of Eq. 3.17 with w(t) ≡ 0. We first obtain the time

70

derivative of V̂ for any x(tk) ∈ Ωρ̂\Ωρs under the controller u = Φnn(x) ∈ U :

˙̂
V (x(t)) =∂V̂ (x(t))

∂x
F (x(t),Φnn(x(tk)), w)

=∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)), 0) + ∂V̂ (x(t))
∂x

F (x(t),Φnn(x(tk)), w)

− ∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)), 0)

(3.30)

Using the results in Proposition 3.1 and Eq. 3.18, we can further bound Eq. 3.30 for x(t) ∈

Ωρ̂\Ωρs , u ∈ U , and w ∈ W as follows:

˙̂
V (x(t)) ≤∂V̂ (x(t))

∂x
F (x(t),Φnn(x(tk)), w)− c̃3

ĉ2
ρs −

∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)), 0)

≤− c̃3

ĉ2
ρs + L

′

xMF ∆ + L
′

wwm

(3.31)

Therefore, if Eq. 3.28 is satisfied, with probability at least 1−δ, ˙̂
V (x(t)) is rendered negative

for any x(tk) ∈ Ωρ̂\Ωρs , which implies the convergence of state towards the terminal set, as

well as the boundedness of state within Ωρ̂ in probability. Additionally, Ωρmin
and Ωρnn of

Eq. 3.29 are the two small sets around the origin which contain Ωρs as their subsets (i.e.,

ρmin > ρnn > ρs). Specifically, we do not require the modeling error to be bounded by EM

within Ωρs , and thus, Eq. 3.31 does not hold for the state in Ωρs . This loose condition of

modeling error within Ωρs significantly reduces the computational complexity for training

RNN models with the data sufficiently close to the origin. The set Ωρnn is characterized

to ensure that for any state within Ωρs , the predicted state remains inside Ωρnn under any

control actions within the bounds. As a result, the state of the actual nonlinear system of

71

Eq. 3.17 subject to disturbances w(t) ∈ W is bounded in the set Ωρmin
that is characterized

accounting for the modeling error and disturbances.

3.4.2 Nonlinear systems with stochastic disturbances

In addition to the robustness treatment of the process disturbances as bounded uncer-

tain variables, another approach to dealing with model uncertainty is to develop controllers

that achieve stability in probability for the closed-loop system by modeling the disturbance

terms in a probabilistic manner and taking the distribution information of disturbances into

account. Specifically, we consider the nonlinear system with stochastic disturbances in the

form of the following stochastic differential equation (SDE):

dx(t) = f(x(t))dt+ g(x(t))u(t)dt+ h(x(t))dw(t) (3.32)

where the notations follows those in Eq. 3.1. The disturbance vector w(t) is represented by a

standard Wiener process. The steady-state of the nominal system with w(t) ≡ 0 is assumed

to be at the origin, i.e., (x∗
s, u

∗
s) = (0, 0). In Eq. 3.1, f(x(t))+g(x(t))u(t) and h(x(t)) are the

deterministic drift and the diffusion matrix, respectively. h(0) is assumed to be zero such

that h(x(t))dw(t) (i.e., the disturbance term) vanishes at the origin. Similarly, we assume

that LgV (x), LfV (x), and h(x)T ∂2V (x)
∂x2 h(x) are locally Lipschitz. For the system of Eq. 3.32,

if for any ϵ > 0, the following conditions hold, then the origin is asymptotically stable in

72

probability.
lim

x(0)→0
P(lim

t→∞
|x(t)| = 0) = 1,

lim
x(0)→0

P(sup
t≥0
|x(t)| > ϵ) = 0

(3.33)

It is assumed that a stochastic feedback controller u = Φs(x) ∈ U exists such that

for all x ∈ D2 ⊂ Rn (D2 is an open neighborhood of the origin), exponential stabilization

of the origin of the RNN model of Eq. 3.16 is achieved in probability. The stabilizability

assumption implies that a C2, positive definite stochastic Lyapunov function V exists and

meets the following conditions:

LV (x) = ∂V (x)
∂x

Fnn(x, Φs(x)) + 1
2Tr{hT ∂2V

∂x2 h} ≤ −α1|x|2 (3.34)

h(x)T ∂
2V

∂x2 h(x) ≥ 0 (3.35)

where LV (x) represents the infinitesimal generator of the system of Eq. 3.32, and α1 is a

positive real number. ϕd = {x ∈ Rn | LV + κV (x) ≤ 0, κ > 0, u = Φs(x) ∈ U} is

characterized as a set of initial conditions from which the exponential stabilization of the

origin of the RNN model of Eq. 3.16 can be achieved in probability using the controller

u = Φs(x) ∈ U . Subsequently, a level set of V (x) inside ϕd, i.e., Ωρ := {x ∈ ϕd | V (x) ≤ ρ},

ρ > 0, is chosen as the operating region.

Based on u = Φs(x) ∈ U , the following Lyapunov-based MPC scheme is designed to

stabilize the stochastic nonlinear system of Eq. 3.32, where the notations follow those in

73

Eq. 3.27.

min
u∈S(∆)

∫ tk+N

tk

LMP C(x̃(t), u(t)) dt (3.36a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (3.36b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.36c)

x̃(tk) = x(tk) (3.36d)

LV (x(tk), u(tk)) ≤ LV (x(tk),Φs(x(tk))), if x(tk) ∈ Ωρ\Ωo
ρnn

(3.36e)

V (x̃(t)) < ρnn, ∀t ∈ [tk, tk+N), if x(tk) ∈ Ωo
ρnn

(3.36f)

Theorem 3.3 establishes the probabilistic stability properties for the uncertain system of

Eq. 3.32 under the RNN-MPC of Eq. 3.36.

Theorem 3.3. Consider the system of Eq. 3.32 under the MPC of Eq. 3.36 using RNN

models that meet the Assumptions 3.1-3.4. By letting m ≥ mN(|x|, hc, δ), given any initial

condition x(0) ∈ Ωρ, probability λ ∈ (0, 1], and positive real numbers satisfying ρ > ρmin >

ρnn and ρc ∈ [ρnn, ρ], there exists a sampling period ∆ > 0 and probabilities β, γ ∈ [0, 1] such

that the following inequalities hold for t ∈ [tk, tk+1), tk+1 := tk + ∆.

P(sup
t∈[tk,tk+1)

V (x(t)) < ρmin) ≥ (1− δ)(1− β)(1− λ), ∀x(tk) ∈ Ωρnn (3.37)

P(τRn\Ωo
ρnn

< τΩρ) ≥ (1− δ)(1− γ)(1− λ), ∀x(tk) ∈ Ωρc\Ωo
ρnn

(3.38)

where
supx∈∂Ωρnn

V (x)
infx∈Rn\Ωρmin

V (x) ≤ β (3.39a)

74

sup
x∈Ωρc \Ωo

ρnn

V (x)
ρ
≤ γ (3.39b)

Proof. The two probabilities in Eqs. 3.37-3.38 can be interpreted as follows. Eq. 3.37 gives

the probability that the future state remains inside Ωρmin
(i.e., the terminal set around the

origin) during one sampling period for any initial state inside Ωρnn (Ωρnn is a subset of Ωρmin

as defined in Eq. 3.29). Eq. 3.38 is the probability that the state hits the boundary of

Ωρnn before it leaves the stability region Ωρ for any initial states in Ωρ\Ωρnn . The proof

consists of three parts. In the first part, we demonstrate that the infinitesimal generator

LV for the stochastic system of Eq. 3.32 is rendered negative (Eq. 3.34) under the controller

u = Φs(x) ∈ U for all x ∈ Ωρ with a certain probability, which is a key step in the derivation

of Eqs. 3.37-3.38. Specifically, Eq. 3.34 holds almost surely for the RNN model since the

stability region Ωρ is characterized using the RNN model and the controller u = Φs(x) ∈ U ;

however, due to the existence of generalization error, Eq. 3.34 holds for the nonlinear system

of Eq. 3.32 in a probabilistic manner (i.e., with probability at least 1− δ), which leads to the

probability of 1− δ on the RHS of Eqs. 3.37-3.38. Furthermore, the final probability of LV

being negative also needs to account for the impact of stochastic, unbounded disturbance. In

the second part, we prove the probabilities in Eq. 3.37 and Eq. 3.38, and demonstrate that

the probability terms (i.e., 1− β, 1− γ and 1− λ) depend on the size of the sets Ωρ, Ωρnn ,

Ωρmin
and the sampling period. Finally, in the third part, we prove probabilistic closed-loop

stability for the stochastic nonlinear system of Eq. 3.32 under the RNN-MPC of Eq. 3.36.

Part 1 : We first prove that there exists a sufficiently small sampling period ∆ such that

LV (x(t)) can be rendered negative for all the states x(tk) ∈ Ωρ\Ωo
ρs

in probability. Following

75

the proof of Theorem 1 in [81], we define an event that the disturbance w(t) is bounded within

one sampling period as follows: AB := {w ∈ Rq | supt∈[tk,tk+∆) |w(t)| ≤ B}. Then, there

exists a sufficiently small ball B such that P (AB) = 1−λ holds for any probability λ = (0, 1]

under the disturbance w(t) following standard Brownian motion. As a result, for w ∈ AB, the

probability P(AW) ≥ 1−λ holds for the event AW := {supt∈[tk,tk+∆) |x(t)−x(tk)| ≤ k1(∆)r},

k1 > 0, r < 1
2 , which states that the state evolution is bounded within one sampling period

in the presence of a bounded disturbance [84]. Subsequently, we prove that LV (x(t)) is

negative for any x(tk) ∈ Ωρ\Ωo
ρs

accounting for the modeling error between RNN model

and the nominal system of Eq. 3.32. Specifically, by letting the training sample size m ≥

mN(|x|, hc, δ) such that the modeling error is constrained by γ|x| for any x(tk) ∈ Ωρ\Ωo
ρs

,

the following equation holds under u = Φs(x) ∈ U , with probability no less than 1− δ.

LV (x(t)) =∂V
∂x

(Fnn(x,Φs(x)) + F (x,Φs(x), 0)− Fnn(x,Φs(x))) + 1
2Tr{h(x)T ∂

2V (x)
∂x2 h(x)}

≤ − α1|x|2 + |Fnn(x,Φs(x))− F (x,Φs(x), 0)| · ĉ4|x|

≤ − α1|x|2 + γ|x| · ĉ4|x|

=− α̃1|x|2

<0
(3.40)

where α̃1 = −α1 + ĉ4γ < 0 for any γ < α1/ĉ4. Eq. 3.40 shows that under the stochastic

stabilizing controller u = Φs(x) designed for the RNN model, the infinitesimal generator

LV (x(t)) for the stochastic nonlinear system of Eq. 3.32 is rendered negative for x ∈ Ωρ\Ωo
ρs

with probability at least 1−δ, provided that the training sample size is chosen appropriately

76

to ensure a sufficiently small and bounded modeling error. As a result, we can find a positive

real number κ such that LV (x(t)) ≤ −κV (x) holds for any x ∈ Ωρ\Ωo
ρs

with probability at

least 1− δ.

Subsequently, we prove under sample-and-hold implementation (i.e., u(t) = u(tk), ∀t ∈

[tk, tk+1), where tk+1 := tk + ∆), there exists a sufficiently small sampling period ∆ such

that LV (x(t)) can be rendered negative within one sampling period. Specifically, since

LV (x) = LfV (x) +LgV (x) + 1
2Tr{h(x)T ∂2V (x)

∂x2 h(x)}, and LfV (x), LgV (x), h(x)T ∂2V (x)
∂x2 h(x)

are locally Lipschitz, there exist positive real numbers k3, k4, k5 such that the following

equations hold.

|LfV (x(t))− LfV (x(tk))| ≤ k3|x(t)− x(tk)|

|LgV (x(t))u(tk)− LgV (x(tk))u(tk)| ≤ k4|x(t)− x(tk)|

|12Tr{h(x(t))T ∂
2V (x(t))
∂x2 h(x(t))} − 1

2Tr{h(x(tk))T ∂
2V (x(tk))
∂x2 h(x(tk))}| ≤ k5|x(t)− x(tk)|

(3.41)

Using the results from Eq. 3.40, we obtain the following inequality for LV (x(t)), ∀x ∈ Ωρ\Ωo
ρs

under u(t) = Φs(x(tk)) ∈ U , ∀t ∈ [tk, tk+1):

LV (x(t)) =LV (x(tk)) + (LV (x(t))− LV (x(tk)))

≤− κρs + (k3 + k4 + k5)|x(t)− x(tk)|
(3.42)

Therefore, for any w ∈ AB with P(AW) ≥ 1 − λ, and ∆ < (κρs−ϵ
k1(k3+k4+k5))

(1
r

), we have

LV (x(t)) < −ϵ, for all t ∈ [tk, tk+1). We define the event that LV (x(t)) is rendered negative

within one sampling period as AV := {supt∈[tk,tk+1) LV (x(t)) < −ϵ}, and the final probabil-

77

ity of AV occurring is derived as P(AV) ≥ (1 − λ)(1 − δ), given that the modeling error is

sufficiently small, and the disturbance is bounded. This completes the proof of Part 1.

Part 2 : Subsequently, we prove the main results of the probabilities of Eqs. 3.37-3.38.

We first prove Eq. 3.37 which states that for any initial state inside Ωρnn , the future state

remains inside the terminal set Ωρmin
in one sampling period. To simply the notations, the

conditional expectations and the probabilities given that the event AV occurs are denoted

as E∗(·) and P∗(·), respectively. We consider the extreme scenario where the initial state is

on the boundary of Ωρnn , and show Eq. 3.37 holds in this case. Specifically, using Dynkin’s

formula, we obtain the expected value of V (x) as follows [79, 81, 85]:

E∗(V (x(τT,Z(t)))) = V (x(tk)) + E∗(
∫ tk+τT,Z (t)

tk

LV (x(s))ds) (3.43)

where Z = Ωρmin
\Ωo

ρnn
, t ∈ [tk, tk+1), and T = ∞. As defined in Section “Notations”, we

have τT,Z(t) = min{τZ , T, t}, where τZ is the hitting time of the set Z. Then, for any

x(tk) ∈ ∂Ωρnn , we have the following inequality using the proof technique in [79, 81].

E∗(V (x(τT,Z(t)))) =
∫

V ≥λ̃
V (x(τT,Z(t)))dP∗ +

∫
V <λ̃

V (x(τT,Z(t)))dP∗

≥ λ̃P∗(V (x(τT,Z(t))) ≥ λ̃)
(3.44)

78

Let λ̃ = infx∈Rn\Ωρmin
V (x). We have the following inequality for x(tk) ∈ ∂Ωρnn :

P∗(V (x(t))) ≥ ρmin, for some t ∈ [tk, tk+1)) ≤
E∗(V (x(τT,Z(t))))

λ̃

= V (x(tk)) + E∗(
∫ tk+τT,Z (t)

tk
LV (x(s))ds)

infx∈Rn\Ωρmin
V (x)

≤ V (x(tk))
infx∈Rn\Ωρmin

V (x)
(3.45)

The last inequality is obtained using the fact derived in Part 1 that LV is rendered negative

with probability at least (1 − λ)(1 − δ). By taking the complementary events, we obtain

the probability inf
x(tk)∈∂Ωρnn

P∗(V (x(t)) < ρmin,∀t ∈ [tk, tk+1)) ≥ (1 − β), conditioned on the

occurrence of event AV , where β is defined in Eq. 3.39a. Since we have P(AV) ≥ (1−λ)(1−δ)

from Part 1, the probability of Eq. 3.37 is obtained using the properties of conditional

probability.

Next, we consider the initial state x(tk) ∈ Ωρ\Ωρo
nn

, and prove the probability of Eq. 3.38.

Specifically, we assume the initial state is on the boundary of Ωρc , ρc ∈ [ρnn, ρ], which is a set

between Ωρ and Ωρnn , and show that the state will reach the boundary of Ωρnn before leaving

Ωρ with a certain probability. Let AT := {τRn\Ωo
ρnn

> τΩρ} denotes the complementary event

that the state first hits the boundary of Ωρ instead of Ωρnn . The following inequality is

obtained since the event AT belongs to the event {
V (x(τΩρ\Ωo

ρnn
))

ρ
≥ 1}.

P∗(τRn\Ωo
ρnn

> τΩρ) ≤ P∗(
V (x(τΩρ\Ωo

ρnn
))

ρ
≥ 1) ≤ V (x(tk))

ρ
(3.46)

The last inequality is derived using the results in Eq. 3.45. Therefore, given a positive

real number γ satisfying Eq. 3.39b, we have P∗(τRn\Ωo
ρnn

< τΩρ) ≥ (1 − γ) by taking the

79

complementary event of AT . The final probability of Eq. 3.38 is derived accounting for the

conditional probability of AV .

Part 3 : Finally, consider the stochastic nonlinear system of Eq. 3.32 under the RNN-

MPC of Eq. 3.36. When x(tk) ∈ Ωρ\Ωρo
nn

, the constraint of Eq. 3.36e is activated to optimize

control actions such that LV is no greater than the one using the stabilizing controller

u = Φs(x) ∈ U , and thus, is also rendered negative. Therefore, using the results in Part 2

which prove that with a certain probability the state will reach the boundary of Ωρnn before

leaving Ωρ, it follows that the probability under MPC is no worse than the probability of

Eq. 3.38. Once the state enters Ωρnn , the constraint of Eq. 3.36f is activated to maintain

the predicted states within Ωρnn . In this case, Eq. 3.37 gives the probability that the state

of Eq. 3.32 remains inside Ωρmin
for the next sampling period. Therefore, for the stochastic

nonlinear system of Eq. 3.32 under the RNN-MPC of Eq. 3.36, we derive the probability of

closed-loop stability in the sense that the closed-loop state is bounded in Ωρ, and is ultimately

bounded in Ωρnn . This completes the proof of Theorem 3.3.

Remark 3.3. Eqs. 3.37-3.38 in Theorem 3.3 give the the probabilities of closed-loop stability

for each sampling period. While the RNN predictions are invoked recursively within MPC

to predict for the entire prediction horizon, the probabilities of closed-loop stability remain

unaffected since only the first control action is applied for the next sampling period. The

RNN-MPC is implemented in a receding horizon manner by recursively solving the opti-

mization problem of Eq. 3.36 with new state measurements received at each sampling time.

Therefore, at each time step, Eqs. 3.37-3.38 can be used to estimate the probability of system

being stable under RNN-MPC.

80

Remark 3.4. It should be noted that the probabilities of Eqs. 3.37-3.38 represent only the

lower bounds for closed-loop stability under RNN-MPC. The actual probability of closed-loop

stability could be higher due to a number of reasons: 1) the RNN model is well trained and

the modeling error does not reach the upper bound for every time step, 2) in general, the

stochastic disturbances in industrial chemical plants fall within a bounded region in most of

the time, which can be handled through the robustness of MPC, and 3) the optimality of MPC

improves closed-loop performance in terms of fast convergence to the steady-state under the

constraint of Eq. 3.36f, which leads to better probability results than those derived under the

controller u = Φs(x) in Theorem 3.3.

Remark 3.5. Theorem 3.3 demonstrates that in addition to the RNN structure in terms of

width and depth, and the training sample size that affect the neural network generalization

performance (Theorem 3.1), the closed-loop stability for the stochastic system of Eq. 3.32

under RNN-MPC also depends on the sampling time and the size of multiple sets embedded

in the stability region Ωρ. Therefore, all the factors above should be accounted for to improve

the overall probability of stability for the nonlinear systems subject to stochastic disturbances.

Remark 3.6. In the presence of stochastic disturbances with unbounded variation, one of the

benefits of using the RNN-MPC of Eq. 3.36 is that the operating region can be characterized

less conservatively by utilizing the probability distribution of disturbances. It was demon-

strated in [81] that compared to the RNN-MPC of Eq. 3.36, the closed-loop operating regions

were overly conservative using the robust controller design that handles disturbances in a

bounded manner, which leads to reduced economic benefits in the context of economic MPC.

Therefore, the probabilities in Theorem 3.3 demonstrates the relationship between closed-loop

stability and operating region size, which could provide a guidance to characterize the oper-

ating region when implementing machine learning models in real chemical processes subject

to various process disturbances.

81

3.5 Application to a Chemical Process Example

To demonstrate the efficacy of machine-learning-based MPC and study the impact of

data sample size on RNN generalization performance and system stability in the presence of

bounded disturbances and stochastic disturbances, we present a simulation example using

the chemical process example from [49]. Specifically, we consider a continuous stirred tank

reactor (CSTR) that is non-isothermal and well-mixed with reactant A transformed into

product B (A → B) in an exothermic, irreversible second-order reaction. A heating jacket

is equipped to remove/supply heat at a rate Q. We first consider the case of bounded

disturbances, and present the process dynamical model by the following energy and material

balance equations:

dCA

dt
= F

V
(CA0 − CA)− k0e

−E
RT C2

A + w1 (3.47a)

dT

dt
= F

V
(T0 − T) + −∆H

ρLCp

k0e
−E
RT C2

A + Q

ρLCpV
+ w2 (3.47b)

where T denotes the temperature in the reactor, and CA represents the concentration of

reactant A. F is the volumetric flow rate, T0 is the feed temperature, and CA0 is the feed

concentration of reactant A. V and Q are the volume of the reacting substance in the reactor

and the heat input rate, respectively. wT = [w1 w2] are bounded disturbances of Gaussian

distribution with variance σ1 = 2.5 kmol/m3, σ2 = 70 K, and bounds |w1| ≤ 2.5 kmol/m3,

|w2| ≤ 70 K. The definition of all the other parameters and their values are reported in [49].

In the presence of stochastic disturbances, the nonlinear system can be represented in

82

the following form:

dCA = F

V
(CA0 − CA)dt− k0e

−E
RT C2

Adt+ σ̄1(CA − CAs)dw̄1 (3.48a)

dT = F

V
(T0 − T)dt+ −∆H

ρLCp

k0e
−E
RT C2

Adt+ Q

ρLCpV
dt+ σ̄2(T − Ts)dw̄2 (3.48b)

where w̄1, w̄2 are standard Wiener processes that satisfy w̄(0) = 0 and w̄(t) − w̄(s) ∼
√
t− sN (0, 1) (N (0, 1) is a normal distribution with zero mean and unit variance). To

simulate the Wiener process, we discretize the Wiener process with the integration time

step hc as follows: dw̄i ∼
√
hcN (0, 1), i = 1, 2, and thus, the realization of the Wiener

process can be obtained through w̄i(t+hc) = w̄i(t) + dw̄i, ∀t ≥ 0. The coefficients CA−CAs

and T − Ts are added to ensure that the disturbances vanish at the steady-state. The

variances σ̄1 = 2.5 kmol/m3, σ̄2 = 70 K are used in the simulation of Eq. 3.48. The RNN-

MPC is designed to stabilize the reactor at (Ts, CAs) = (402 K, 1.95 kmol/m3), which is an

unstable steady-state under the given input values (Qs, CA0s) = (0 kJ/hr, 4 kmol/m3). The

heat supply/removal rate and the inlet concentration of species A are the two manipulated

inputs. All the states and inputs of the process are represented in their deviation variable

forms, i.e., ∆T = T − Ts, ∆CA = CA − CAs, ∆CA0 = CA0 − CA0s , and ∆Q = Q − Qs.

Additionally, the upper bounds of the manipulated inputs are |∆Q| ≤ 5 × 105 kJ/hr and

|∆CA0| ≤ 3.5 kmol/m3.

The RNN training process follows the standard training method in [49]. In this study,

the RNN models are trained using different data sample size (while other parameters and

settings remain unchanged), and the generalization performance is evaluated using the test-

83

ing data. The RNN models are built with 50 neurons in a single hidden layer. The mean

squared error (MSE) is used as the loss function. PyIpopt, which is a python connector to

the IPOPT software package, is used to solve the MPC optimization problem [86], and Keras

is used to build and train RNN models [5]. Fig. 3.2 shows the relationship between the RNN

generalization performances and the training sample size, from which it is demonstrated

that with less data used for training, the errors for testing and training both increase [21].

Additionally, we calculate the generalization gap using E[gt(x,y)] − 1
m

∑m
i=1 gt(xi,yi). The

increase of the generalization gap in Fig. 3.2 implies a worse generalization performance for

models with less training data.

Subsequently, we simulate the closed-loop system with bounded disturbances and Wiener

process disturbances with unbounded variation. Fig. 3.3 shows the probability results ob-

tained through the simulation of various initial conditions (48 initial conditions) within Ωρ̂

using the six RNN models trained earlier with different sample sizes. The probabilities in

Fig. 3.3 are calculated using the following rule: given an initial condition, the closed-loop

system under RNN-MPC is unstable if the state trajectory leaves Ωρ̂ at any time step or

escapes from Ωρmin
after it enters Ωρmin

due to disturbances and/or modeling error. It is

shown in Fig. 3.3 that the probability of closed-loop stability increases with more data used

for training, which is consistent with the results shown in the open-loop simulation study

(Fig. 3.2). Additionally, it is observed that the probabilities of closed-loop stability un-

der bounded disturbances reach 0.7 for training sample size greater than 1 × 104, and the

probabilities under unbounded, stochastic disturbances reach 0.6 with the same number of

training sample size. Overall, it is shown that the MPC under bounded disturbances achieves

84

higher probabilistic of closed-loop stability than that under unbounded, stochastic distur-

bances with the same variances. This is consistent with the disturbance realizations shown

in Fig. 3.4, from which it is demonstrated that the Gaussian disturbance on temperature

T is bounded within the ±σ2 region (top figure), while the Wiener process disturbance is

unbounded, and has a greater impact on system stability due to its wider range.

The state-space trajectory and the state profiles for the initial state x0 = (−1.2, 50)

with the model trained with 7000 training data are shown in Fig. 3.5 and Fig. 3.6. In Fig. 3.5,

it is seen that the dynamic trajectory remains inside the stability region Ωρ̂ all the time, and

ultimately converges to the small ball Ωρmin
in the presence of bounded disturbances (blue,

solid line); however, in the presence of stochastic disturbances, the state trajectory leaves

Ωρmin
during its oscillation around the steady-state, and thus is considered unstable in this

case. In Fig. 3.6, it is shown that for this particular initial condition, the closed-loop states

(i.e., reactor temperature T and reactant concentration CA) are stabilized at the origin

after around 0.06 hr for both disturbances, with slight variation around the steady-state

afterwards due to disturbances. The case study demonstrates the relation between RNN

training sample size and its generalization performance as well as the probability of closed-

loop system stability, which supports the results derived in Theorem 3.1 and Theorem 3.2.

Remark 3.7. Note that the RNN generalization performance depends on various factors as

demonstrated in Theorem 3.1. While we only showed the impact of the sample size of train-

ing data on RNN generalization performance in this section due to space limitations, the

generalization error is also affected by RNN width/depth, and input time length. Interested

readers are referred to [21] for the simulation studies of open-loop RNN generalization per-

formance and system stability analysis that account for all the above factors for the nominal

85

system without any disturbances.

86

Figure 3.1: Recurrent neural network structure.

87

0 5000 10000 15000
0

0.05

0.1

0.15
T

ra
in

in
g
 &

 T
e
s
ti
n
g
 E

rr
o
rs

0 5000 10000 15000
0

0.05

0.1

0.15

G
e
n
e
ra

liz
a
ti
o
n
 G

a
p
 (

M
S

E
)

Figure 3.2: Generalization performance for the RNN models utilizing various sample sizes.

88

0 2 4 6 8 10 12 14

10
4

0

0.2

0.4

0.6

0.8

Figure 3.3: Probability of closed-loop stability under bounded disturbances (blue circles)
and stochastic, unbounded disturbances (red asterisks), respectively, using the RNN-MPC
trained with various sample sizes.

89

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-100

-50

0

50

100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-150

-100

-50

0

50

Figure 3.4: Bounded, Gaussian disturbance (top figure), and unbounded, Wiener process
disturbance (bottom figure) on temperature T .

90

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-50

0

50

Figure 3.5: Closed-loop state trajectories under MPC with bounded disturbances (blue, solid
line) and stochastic, unbounded disturbances (red, dashed line) for the same initial condition
(−1.2, 50).

91

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-1

-0.5

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

20

40

Figure 3.6: Closed-loop state profiles for the CSTR with bounded disturbances (blue, solid
line) and stochastic, unbounded disturbances (red, dashed line) under RNN-MPC for the
same initial condition (−1.2, 50).

92

Chapter 4

On Generalization Error of Neural

Network Models and its Application

to Predictive Control of Nonlinear

Processes

4.1 Introduction

An ongoing research issue in process systems engineering is the modeling of large-scale,

complicated nonlinear processes. Traditional methods for modeling nonlinear systems in-

clude first-principles modeling, which is based on a fundamental comprehension of the core

physico-chemical phenomena, and data-driven modeling, which identifies parameters from

simulation or industry data (e.g., [87, 88]). Although the classic first-principles modeling

approach has been widely utilized in the control, monitoring, and optimization of different

93

chemical processes, applying first-principles computational methods to represent complicated

nonlinear systems can be time-consuming and inaccurate. Given their ability to successfully

handle large data sets from processes and to model a diverse range of nonlinear functions,

machine learning techniques are being used more and more to approximate complicated

nonlinear systems (e.g., [89–92]). Among various machine learning modeling tools, when

modeling nonlinear dynamic systems utilizing time-series data, recurrent neural networks

(RNN) are frequently employed [93, 94]. Although machine learning techniques have been

used in chemical process control since the nighties [56], they have recently gained popularity

again due to a variety of factors, including more affordable computation (thanks to mature

and effective libraries and hardware), the accessibility of large data sets, and sophisticated

learning algorithms. The upcoming generation of industrial control systems will certainly

be impacted by the developments of model predictive controllers (MPC) that make use of

machine learning models with well-characterized fidelity.

The traditional choice to analyze time-series data in a black-box fashion is a fully-

connected RNN model, which densely relates all the available inputs to all the outputs.

However, this method may not always be the finest, particularly for intricate chemical pro-

cesses. For instance, in an integrated chemical plant, the downstream units do not have an

impact on the upstream ones. Therefore, in order to further increase a RNN model’s accu-

racy, numerous studies (e.g., [95–97]) have studied gray-box modeling, also referred to in the

literature as hybrid modeling, which involves incorporating prior knowledge into the design of

neural network models of various chemical processes. A strategy for combining data-driven

modeling with first-principles knowledge was recently developed by [98], and it explicitly

94

permits the inclusion of data on known gains among particular inputs and outcomes. With

prior knowledge of relations, this suggested strategy can be used in large-scale processes.

Also, other approaches to improve the RNN model’s prediction accuracy were proposed, for

example a weight-constrained RNN modeling was investigated in [36] with chemical process

example and yield improvements in both open-loop and closed-loop simulations under ML

based MPC.

Another modeling strategy to follow is the recently proposed partially-connected RNN

which, as the name indicates, partially connects layers based on pre-existing knowledge in

terms of physical relations among the underlying system inputs and outputs [36, 99, 100].

Specifically, on a large and complex chemical process modeled in Aspen Plus Dynamics simu-

lator, [100] investigated this approach by carrying out open-loop and closed-loop simulations

using a fully-connected RNN model against a partially-connected RNN model. A partially-

connected RNN model was shown to outperform the fully-connected RNN model when incor-

porated into a MPC, with smoother state trajectories and less computational burden. Fur-

thermore, in [59], they considered the case of industrial noise (i.e., non-Gaussian noise), where

the Monte Carlo dropout and co-teaching strategies were used to train partially-connected

RNN models to overcome the over-fitting issue. Subsequently, open-loop and closed-loop

simulations were performed on an Aspen Plus Dynamics process model to illustrate the su-

periority of partially-connected RNN based MPC over fully-connected RNN models trained

with dropout/co-teaching and standard partially-connected RNN models with regular train-

ing. Additionally, one can consider the Long Short-Term Memory (LSTM), a variant of the

RNN that was introduced three decades ago, to model nonlinear systems. LSTMs have a

95

unique structure, which enables them to enhance the model’s performance when dealing with

data that requires long time dependencies. Such data may occur when modeling nonlinear

time-delay systems or even nonlinear systems with disturbances and noise. For instance,

in [59], a nonlinear system was modeled as an LSTM network using noisy data, and closed

loop stability was achieved. Moreover, LSTMs have been shown to overcome the vanishing

gradient phenomenon that usually occurs when using RNNs (see [50] for further details).

Hence, LSTMs are widely used in many recent chemical engineering applications, and have

proven to be an efficient and powerful machine learning tool.

The adaptation of machine-learning-based MPC to actual chemical processes is still met

with several challenges, despite the effectiveness of machine learning approaches in approxi-

mating nonlinear process dynamics within the context of MPC. Furthermore, characterizing

the generalization capability of machine learning models learned using finite training samples

on new data is a significant challenge. The work of [21] has filled in this gap by computing

an explicit expression for the theoretical upper bound of fully-connected RNN models’ gen-

eralization error. However, the fundamental question regarding the generalization accuracy

of partially-connected RNN models in MPC has not been addressed—specifically, how the

structure of an RNN model affects its generalization accuracy.

Due to the aforementioned considerations, in this work, we develop, from machine learn-

ing theory, a conceptual framework to quantify generalization error bounds for partially-

connected RNN models. Also, we integrate these models into model predictive control

systems to be implemented in nonlinear chemical processes. This manuscript is divided

into 5 sections. Section 4.2 presents the class of nonlinear systems considered and assump-

96

tions regarding system stability. In Section 4.3, the representation and the construction of

RNNs both fully-connected and partially-connected, and LSTMs is presented. Section 4.4

starts with key definitions and lemmas, and then develop probabilistic generalization error

upper bounds for partially-connected RNN models and LSTM networks. The integrating

of a partially-connected RNN model and LSTM model into a MPC while accounting for

Lyapunov stability considerations is proposed and discussed in Section 4.5. Lastly, the im-

provements associated with incorporating prior physical knowledge into RNN modeling is

illustrated in Section 4.6 via both open-loop and closed-loop simulations using a two reactors

in series chemical process under Lyapunov-based MPC.

4.2 Preliminaries

4.2.1 Notation

Given a vector b ∈ Rn, its Euclidean norm is denoted by the operator ∥b∥, and the

weighted Euclidean norm of a vector is denoted by the operator ∥b∥Q where Q is a positive

definite matrix. Moreover, the infinity norm of b is given by ∥b∥∞. Generally, for b ∈ Rn

and γ ≥ 1, ∥b∥γ =
(∑n

i=1 |bi|γ
) 1

γ . Given a matrix W ∈ Rm×n, its Frobenius and spectral

norms are denoted by ∥W∥F and ∥W∥∞, respectively. Given real numbers γ and κ, the

γ-norm ,κ-norms of the columns of W is denoted by ∥W∥γ,κ =
(∑m

i

(∑n
j |Wj,i|γ

)κ
γ

) 1
κ

. R+

denotes non-negative real numbers. xT denotes the transpose of x. The notation LfV (x)

denotes the standard Lie derivative LfV (x) := ∂V (x)
x
f(x). Set subtraction is denoted by ‘−’,

i.e., A − B :=
{
x ∈ Rn|x ∈ A, x /∈ B

}
. A function f(·) is of class C1 if it is continuously

97

differentiable. A continuous function α : [0, a) → [0,∞) belongs to class K if it is strictly

increasing and is zero only when evaluated at zero. A function f : Rn → Rm is said to be

L-Lipschitz, L ⩾ 0, if |f(a)− f(b)| ≤ L|a− b| for all a, b ∈ Rn. P(A) denotes the probability

that the event A will occur. E[X] denotes the expected value of a random variable X. We

note that the infinity norm of a vector and the spectral norm of a matrix both have the

notation ∥.∥∞, by mathematical convention. Therefore, in order to differentiate between

them, it is important to identify the argument of the norm.

4.2.2 Class of Systems

We consider the class of multi-input multi-output (MIMO) nonlinear continuous-time

systems represented by the following state-space form:

ẋ = F(x, u) := F (x) +G(x)u (4.1)

where the state vector of the system is x = [x1, ..., xnx]T ∈ Rnx , y = [y1, ..., yny]T ∈ Rny is

the output vector, and the manipulated input vector is u = [u1, ..., unu]T ∈ Rnu . F(x, u)

represents a nonlinear vector function of x and u. The constraints on control inputs are

given by u ∈ U := {ui
min ≤ ui ≤ ui

max}. F (·) and G(·) denote nonlinear vector and

matrix functions of nx × 1 and nx × nu dimensions, respectively, and both are assumed to

be sufficiently smooth.

98

4.2.3 Stabilizability assumption

We assume that there exists a control law u = Φ(x) ∈ U based on state feedback that

can make the origin of the system of Eq. (4.1) exponentially stable. This stabilizability

assumption implies the existence of a C1 control Lyapunov function denoted as V (x), such

that the following inequalities hold for all x in an open neighborhood D around the origin:

c1∥x∥2 ≤ V (x) ≤ c2∥x∥2 (4.2a)

∂V (x)
∂x

F(x,Φ(x)) ≤ −c3∥x∥2 (4.2b)

∥∥∥∥∥∂V (x)
∂x

∥∥∥∥∥ ≤ c4∥x∥ (4.2c)

where ci, i = 1, 2, 3, 4, are positive constants. A candidate controller Φ(x) may be constructed

via Sontag’s control law ([101]). Then, following [15], we characterize the closed-loop stability

region Ωρ to be a level set of the Lyapunov function in the region D in which the time-

derivative V̇ (x) is negative under the controller u = Φ(x) ∈ U such that Ωρ := {x ∈

D | V (x) ≤ ρ}, where ρ > 0. Furthermore, based on the Lipschitz property of F(x, u)

and the boundedness of u, there exists positive constants M , Lx, L
′
x such that the following

inequalities hold for all x, x′ ∈ D and u ∈ U :

∥∥F(x, u)
∥∥ ≤M (4.3a)

∥∥∥F(x, u)− F(x′, u)
∥∥∥ ≤ Lx∥x− x′∥ (4.3b)∥∥∥∥∥∂V (x)

∂x
F(x, u)− ∂V (x′)

∂x
F(x′, u)

∥∥∥∥∥ ≤ L
′

x∥x− x′∥ (4.3c)

99

4.3 Recurrent neural networks (RNNs)

The prospect of utilizing artificial intelligence (AI) techniques in chemical engineering

has been investigated at length in the recent literature. AI technology has led to the rise of

classical and powerful modeling tools such as fuzzy logic in the 1960s [102], expert systems in

the 1980s [103, 104], and machine learning (ML) in the 1990s [56]. Moreover, the implemen-

tation of ML techniques in the modeling of complex systems comes with a successful history

in different chemical processes applications [91, 105–107]. For example, in [105], an artificial

neural network (ANN) model is developed for a bio-diesel production process. The ANN

model provided an approximation of the percentage of fatty acid methyl ester yield within

±8% deviation from the experimental data. Similarly, recurrent neural networks (RNN) have

been broadly employed for modeling a general class of dynamical systems for control and

state estimation purposes [108]. In [106], a RNN model of a continuous binary distillation

column (BDC) was trained and validated using experimental data, and the study demon-

strated that the predictive ability of the RNN model could outperform the first-principles

model for the large-scale, complex, nonlinear process studied. This was attributed to the

RNN possessing a high degree of freedom to solve the complex non-linear regression problem

with the process data set.

RNN models are a powerful tool for modeling dynamic systems. Consider an RNN model

that resembles the nonlinear dynamics of the system of Eq. (4.1) using m sequences of T -

time-length data points (xi,t, yi,t), with xi,t ∈ Rdx serving as the RNN input and yi,t ∈ Rdy

serving as the RNN output with i = 1, ...,m and t = 1, ..., T . It is important to emphasize

100

that the nonlinear system’s inputs, states, and outputs in Eq. (4.1) are not always represented

by the RNN inputs and outputs. Hence, all the vectors for RNN models are represented in

boldface to distinguish them from those of the nonlinear system of Eq. (4.1).

Moreover, to make the discussion simpler, the RNN model of Eqs. (4.4) and (4.5) is

created to forecast states over a single sampling period with overall time steps T = ∆/hc

(i.e., within one sampling period ∆, the RNN model aims to predict states evolution for each

integration time step hc). Thus, the present manipulated inputs and state measurements

that will be employed over t = 1→ T make up the RNN input xi,t, while the predicted states

over t = 1 → T make up the RNN output yi,t. Owing to the sample-and-hold execution of

manipulated inputs, xi,t does not change over t = 1→ T . The data set is created of m data

sequences that were individually selected from an underlying distribution over Rdx×T×Rdy×T .

To simplify the theoretical development, we consider a single-hidden-layer RNN model with

the following form to approximate the nonlinear dynamics of Eq. (4.1):

ht = σh(Uht−1 +Wxt) (4.4)

yt = σy(V ht) (4.5)

where ht denotes the hidden state, and W , U , and V are the weight matrices connecting

different layers. The possibly nonlinear activation functions used are denoted by σh and σy.

Specifically, σh is often chosen to be a nonlinear activation function that may take different

forms (e.g, tanh or ReLU), while σy typically uses a linear element-wise activation function

for regression problems. Without loss of generality, we have the following assumptions for

101

the development of RNN models:

Assumption 4.1. The input data is bounded, i.e., ∥xi,t∥ ≤ Bx for all i = 1, ...,m and

t = 1, ..., T .

Assumption 4.2. The Frobenius norms of the weight matrices are bounded, i.e., ∥W∥F ≤

BW,F , ∥Q∥F ≤ BV,F , ∥U∥F ≤ BU,F .

Assumption 4.3. The training, validation, and testing data sets are drawn from the same

distribution.

Assumption 4.4. σh is a 1-Lipschitz continuous activation function, where, a function

f : Rn → Rm is said to be L-Lipschitz, L ⩾ 0, if |f(a) − f(b)| ≤ L|a − b| for all a, b ∈ Rn.

Additionally, σh is a positive-homogeneous function in the sense that σh(αz) = ασh(z) holds

for all α ≥ 0 and z ∈ R.

Furthermore, consider a hypothesis classH of RNN models h(·) that map a dx-dimensional

input x ∈ Rdx to a dy-dimensional output y ∈ Rdy . The predicted output of the RNN model

and the loss function are denoted by yt = h(xt) and L(yt, ỹt), respectively, where L(y, ỹ)

calculates the squared difference between the predicted output y and the true output ỹ.

4.3.1 Physics-informed RNNs

From a modeling point of view, even cutting-edge black-box ML models (e.g., dense

fully-connected RNN models) have had only limited success when applied in scientific do-

mains [109] due to such models’ large data size needs, failure to yield physically consistent

102

outputs, and lack of generalizability to unseen samples. Researchers have begun to investi-

gate the continuum between mechanistic and ML models, in which both scientific knowledge

and data are integrated in a synergistic way. This is because neither a pure ML algorithm

nor solely scientific theory may be sufficient for complex scientific and engineering appli-

cations (e.g., [110–112]). A physics-based machine learning paradigm uses domain-specific

knowledge, but in supporting roles such as feature engineering or post-processing, in a way

fundamentally different than dominant approaches in the ML field. On the other hand, the

concept of combining scientific principles and ML in developing models has only recently

gained popularity [109], when there has already been a substantial amount of research done

on the subject. This research direction is being conducted in various disciplines including

earth systems [113], climatology [114, 115], material exploration [116, 117], quantum chem-

istry [118, 119], biological sciences [120], and hydrology [121]. Early findings in isolated

and straightforward scenarios have been encouraging, and expectations are growing that

this paradigm will speed up scientific advancement and aid in resolving some of the global

challenges with regards to the environment [122], healthcare [123], and food and nutrition

security [124].

Similarly, in process systems engineering, the traditional paradigm of developing numer-

ical approaches to approximate solutions is based solely on physics—numerical differentiation

and integration algorithms are used to solve systems of differential equations that reflect es-

tablished physical principles through space and time [125–127]. A different approach is to

look for simplified models that can roughly characterize the dynamics of the underlying

systems, such as the Euler equations for gas dynamics and the Reynolds-averaged Navier-

103

Stokes equations for turbulent flows [128, 129]. However, creating a simplified model that

accurately captures a complex phenomenon is quite difficult. More importantly, only a por-

tion of the dynamics of many complicated real-world processes may be captured by a simple

model. The equations may not accurately reflect the original system’s states. On the other

hand, numerous recent studies, from turbulence to reaction modeling, have demonstrated

that ML-based models can produce realistic predictions and greatly speed up the simulation

of complex dynamics compared to numerical solvers [130–132]. However, ML-based models

are dense and purely data-driven by nature, which has many limitations. Without strict

boundaries, ML-based models are likely to provide predictions that defy the fundamental

principles governing physical systems. Furthermore, machine learning models frequently

experience difficulties with generalization, i.e., models trained on a single data set cannot

adequately adapt to unseen scenarios. Hence, approximating complicated dynamical systems

in scientific applications cannot be considered to be a problem that can be easily solved by

either machine-learning-based models or physics-based theory alone. There is, therefore, a

significant benefit in integrating machine learning models with conventional physics-based

methodologies, through which we can maximize the benefits of both techniques.

The investigation of more structured system modeling is driven by a variety of factors. In

contrast to a system with structured local connectivity, fully-connected systems necessitate

long-range connections, and have slower communication times between neurons. Real-world

problems may have local correlations as well. It would be considerably easier and take up less

memory to construct networks with organized neighborhoods than a fully-connected network

[133]. Typically, when creating a dynamic model for a general nonlinear process, a neural

104

𝑥

RNN

𝑥1

RNN

𝑥2

RNN

𝑢1 𝑢2𝑢

(a) (b)

Figure 4.1: Structure of (a) standard fully-connected and (b) partially-connected RNN.

network model that uses all available process inputs to predict the desired output is preferred.

Creating a fully-connected, black-box dynamic model for these processes is relatively simple

with open-source machine learning tools, and such a model would attempt to capture any

connections that might exist between each input and each output of the underlying process.

As depicted in Fig. 4.1, at least three layers (i.e., an input layer, hidden layers, and an

output layer) make up the general structure of a fully-connected RNN. For such reasons,

fully-connected RNN models are frequently the best option for modeling processes where no

prior knowledge is available.

Although standard RNNs do not consider any domain-specific knowledge in the model

development phase and generally use fully-connected layers to capture input-output rela-

105

tionship using the given training dataset, it has been demonstrated in [36] that a priori

process structural knowledge can be utilized to improve an RNN’s performance by using

a partially-connected architecture. Figure 4.1 shows the difference between fully-connected

and partially-connected RNNs, from which it can be observed that the connection between

some neurons is removed in a partially-connected structure to resemble the underlying input-

output relationship based on a priori process structural knowledge. Partially-connected

RNNs can be used to model a multiple-unit process in which upstream units affect down-

stream units, but not in the opposite direction. For example, consider the nonlinear system

of Eq. (4.1) for which the input vector u1 affects only the state x1, but both u1 and u2 affect

the state x2, where x = [x1 ∈ Rnx1 , x2 ∈ Rnx2] and u = [u1 ∈ Rnu1 , u2 ∈ Rnu2] ∈ Rnu with

nu1 + nu2 = nu and nx1 + nx2 = nx. [36] demonstrates that, by using a partially-connected

architecture, the number of weight parameters can be significantly reduced to achieve the

desired model accuracy compared to a fully-connected RNN model. Additionally, in [100],

an Aspen simulation study of two CSTRs in series was carried out to demonstrate that the

MPC using partially-connected RNN models achieved better closed-loop performances with

a reduced computational time. To better understand the benefits of partially-connected

RNNs in terms of higher modeling accuracy, a theoretical analysis of generalization error

needs to be carried out.

4.3.2 Long short-term memory RNN

In this subsection, we present the long short-term memory (LSTM) network. LSTM

is a variant of RNNs that has been widely used to make predictions based on time series

106

data. Although standard RNNs have proven to be efficient in many engineering applications,

RNNs struggle to deal with long time dependencies. Based on the structure of RNNs, as their

hidden states are only propagated forward in time, they cannot receive future input data to

predict the current state. As a result, the vanishing gradient phenomena is often encountered

when training standard RNNs. As we proceed backwards through the layers of the network,

the vanishing gradient problem occurs due to having exponentially decaying gradients in the

loss function, which makes it harder to train the network and more challenging to retain

information over longer time periods. Given these limitations, LSTM networks, with a well-

known and unique structure, were introduced in 1997 [58]. Furthermore, in LSTMs, the

concept of gates were introduced to keep track of how much useful history should be passed

between the LSTM units. More specifically, the input gate, forget gate, and output gate

control how much memory is to be stored in the cell state and retained throughout the

network [134].

The LSTM is composed of several gates, and is formulated by the following equations:

107

ft = σl(Wfxt + Uf h̄t−1) (4.6a)

rt = σl(Wrxt + Urh̄t−1) (4.6b)

ot = σ(Woxt + Uoh̄t−1) (4.6c)

c̃t = tanh(Wcxt + Uch̄t−1) (4.6d)

ct = ft ⊙ ct−1 + rt ⊙ c̃t (4.6e)

h̄t = ot ⊙ tanh(ct) (4.6f)

whereWf ,Wr,Wo,Wc ∈ Rdh×dx are the weights associated with the inputs, and Uf , Ur, Uo, Uc ∈

Rdh×dh are the weights associated with the hidden states. rt, ft, ot ∈ Rdh represent the input,

forget, and output gates, respectively. ct ∈ Rdh is the cell state, and c̃t is the cell integrated

with the input gate. σl is the nonlinear activation function sigmoid, and tanh is the hyper-

bolic tangent function. The output at time t is ȳt = σȳ(Zh̄t). We note that the memory cell

state ct is one of the most important parts in LSTMs as it is the part that stores and carries

the essential information for long-term and short-term dependencies. This information is

then passed to the subsequent LSTM units, and is recursively updated through the other

remaining gates (i.e., rt, ft, ot). Specifically, the memory cell state, presented in Eq. (4.6e),

consists of two terms: the first term expresses the quantity of old information to be discarded

from the previous ct, while the second term expresses the essential new information that is

introduced to the memory cell state ct [68]. Figure 4.2 shows the schematic of an LSTM cell

with all its gates. In addition to the previous assumption, we also consider the following for

108

LSTM models:

Assumption 4.5. The norms of weight matrices are bounded as follows:

∥Wf∥F ≤ BWf
, ∥Wr∥F ≤ BWr , ∥Wo∥F ≤ BWo , ∥Wc∥F ≤ BWc , ∥Ug∥F ≤ BUg ,

∥Ur∥F ≤ BUr , ∥Uo∥F ≤ BUo , ∥Uh̄∥F ≤ BUh̄
, ∥Z∥1,∞ ≤ BZ

Assumption 4.6. The nonlinear activation functions σ, σȳ are 1-Lipschitz continuous, and

σ(0) = σȳ(0) = 0.

Figure 4.2: Schematic of an LSTM cell structure.

109

4.4 Generalization error

4.4.1 General considerations

Generalizability or generalization error is a metric that measures a machine learning

model’s ability to adapt to new, previously unseen data that is drawn from the same dis-

tribution as the one used to train the model. Several investigations were conducted for

the interpretation and improvement of generalization of different machine learning-based

models (e.g., [135, 136]). Furthermore, a theoretical analysis of the generalization error

is of significant importance as it provides a fundamental understanding on how well the

model performs on unseen data that will be collected in real-world systems. This section

will provide derivations of the generalization error for RNNs using statistical learning theory.

Before we present the results on generalization error bounds, we first introduce the necessary

definitions of generalization error.

Definition 4.1. A centered random variable x ∈ R is said to be sub-Gaussian with variance

proxy σ2 if E[x] = 0 and the moment generating function satisfies:

E[exp(aX)] ≤ exp
(
a2σ2

2

)
,∀a ∈ R (4.7)

Definition 4.2. Given a data distribution, D, and a function, h, that predicts y (output)

based on x (input), the generalization error is given by

E[L(h(x), y)] =
∫

X×Y
L(h(x), y) ρ(x, y) dxdy. (4.8)

110

where ρ(x, y) denotes the joint probability distribution for x and y, and Y and X represent

the vector space for all possible outputs and inputs, respectively.

Definition 4.3. L(·, ·) is the loss function (e.g., mean squared error (MSE) for regression

problems). Since the distribution may be unknown, the following empirical error is often

used as an approximation measure for the generalization error:

ÊS[L(h(x), y)] = 1
m

m∑
i=1

L(h(xi), yi) (4.9)

where S = (s1, ..., sm), si = (xi, yi) includes m data samples drawn from the data distribution

D.

Definition 4.4. Given a set of data samples S = {s1, ..., sm}, and a hypothesis class F of

real-valued functions, the definition of the empirical Rademacher complexity of F is

RS(F) = Eϵ

sup
f∈F

1
m

m∑
i=1

ϵif(si)
 (4.10)

where ϵ = (ϵ1, ..., ϵm)T , and ϵi are Rademacher random variables that are independent and

identically distributed (i.i.d.) and satisfy P(ϵi = −1) = P(ϵi = 1) = 0.5.

The following lemma gives the generalization error bound for a general class of RNN

models.

Lemma 4.1. Consider a hypothesis class H of vector-valued functions h ∈ Rdy and a set of

data samples S = {s1, ..., sm}. Let L(.) be a Lr -Lipschitz function mapping h ∈ Rdy to R.

111

Then,

Eϵ

sup
f∈F

m∑
i=1

ϵiL(h(xi),yi)
 ≤ √2LrEϵ

sup
h∈H

m∑
i=1

dy∑
k=1

ϵikh(xi)
 (4.11)

where hk(.) is the kth component in the vector-valued function h(.), and ϵik is an m×dy matrix

of independent Rademacher variables. In the following text, we will omit the subscript ϵ of

the expectation operator for simplicity.

Since the right-hand side of the previous inequality is generally difficult to compute, we

can reduce it to scalar classes and derive the following bound:

E

sup
h∈H

m∑
i=1

dy∑
k=1

ϵikh(xi)
 ≤ dy∑

k=1
E

sup
h∈H

m∑
i=1

ϵih(xi)
 (4.12)

where Hk, k = 1, ..., dy are classes of scalar-valued functions that correspond to the com-

ponents of vector-valued functions in H. The previous inequality will later be used in the

derivation of the generalization error bound for LSTM models.

Lemma 4.2 (c.f. Theorem 3.3 in [82]). Let H be the hypothesis class of ML models that

map {x1, ...,xt} ∈ Rdx×t (i.e., the first t time step inputs) to yt ∈ Rdy (i.e., the tth output)

and Gt be the loss function set with H,

Gt = {gt : (x, ỹ)→ L(h(x), ỹ), h ∈ H} (4.13)

where ỹ and x are the true output vector and the input vector of the ML model, respectively.

Then, given a data set consisting of m i.i.d. data samples, the inequality below holds in

112

probability for all gt ∈ Gt over the data samples S = (xi,t,yi,t)T
t=1, i = 1, ...,m:

E[gt(x,y)] ≤ 1
m

m∑
i=1

gt(xi,yi) + 2RS(Gt) + 3
√

log(2
δ
)

2m (4.14)

Eq. (4.14) demonstrates that the upper bound for the generalization error depends on

the training error (first term), the Rademacher complexity of Gt (second term), and a function

of the samples size m and the confidence δ. Therefore, to derive a generalization error bound

for RNN models, an upper bound for the Rademacher complexity of RNN hypotheses needs

to be developed.

Lemma 4.3. Given a hypothesis class Hk of real-valued functions corresponding to the kth

component of the vector-valued function class H and a set of m i.i.d. data samples S =

(xi,t,yi,t)T
t=1, i = 1, ...,m, the following inequality holds for the scaled empirical Rademacher

complexity:

mRs(Hk) = E

 sup
h∈Hk

m∑
i=1

ϵih(xi)
 .

= 1
λ

log exp

λE
 sup

h∈Hk

m∑
i=1

ϵih(xi)

≤ 1
λ

log E

 sup
h∈Hk

exp
λ m∑

i=1
ϵih(xi)

(4.15)

where λ > 0 is an arbitrary parameter.

Lemma 4.4. Let Hk,t, k = 1, ..., dy be the class of real-valued functions that corresponds to

the kth component of the RNN output at tth time step, with weight matrices and activation

functions satisfying Assumptions 1–4. Given a set of m i.i.d. data samples S = (xi,t, yi,t)T −

113

t = 1, i = 1, ...,m, the following equation holds for the Rademacher complexity:

RS(Hk,t) ≤
M(

√
2 log(2)t+ 1)BX√

m
(4.16)

where M = BV,FBW,F
Bt

U,F −1
B−1

U,F

, and BX is the upper bound for RNN inputs.

Lemma 4.5 (c.f. Theorem 1 in [21]). Given a dataset S = (xi,t,yi,t)T
t=1 with i.i.d. data

samples, i = 1, ...,m, and the Lr-Lipschitz loss function class Gt associated with the RNN

function class Ht that predicts outputs at the tth time step, with probability at least 1−δ over

S, the following inequality holds for the RNN models:

E[gt(x,y)] ≤ 1
m

m∑
i=1

gt(xi,yi) + 3
√

log(2
δ
)

2m +O

Lrdy

MBX(1 +
√

2 log(2)t)
√
m

 (4.17)

The above equation represents the theoretical generalization error’s upper bound for

RNN models. This theory will be utilized to find a relationship between a RNN model and

its structure in Section 4.4.2.

4.4.2 Physics-based RNNs generalization bound

In a partially-connected structure, the connections between inputs and outputs should

be carefully designed to reflect a priori physical knowledge. In particular, as illustrated in

Fig. 4.3, x2 does not affect y1, so the weights corresponding to the linkages between x2 and

y1 (dashed lines in Fig. 4.3) are assigned a value of zero (i.e., wi,j = vl,j = 0). This structure

superiority in accuracy and model identification to dense fully-connected RNNs has been

demonstrated through several works. Hence, we develop the following theory to interpreter

114

this observation.

⋯
⋯

𝑊

𝑥1

𝑥2

𝑉

ℎ1

ℎ𝑖

ℎ𝑑ℎ

𝑦1

𝑦2

⋯
⋯

𝑊

𝑥1

𝑥2

𝑉

ℎ1

ℎ𝑖

ℎ𝑑ℎ

𝑦1

𝑦2

(a) (b)

𝑤𝑖,𝑗 , 𝑣𝑙,𝑗 ≠ 0

𝑤𝑖,𝑗 , 𝑣𝑙,𝑗 = 0

𝑈 𝑈

Figure 4.3: Weights and connections in (a) standard fully-connected and (b) partially-
connected RNN structures, where zeroed weights for links between units are represented
by dashed lines.

Theorem 4.1. Consider the following inequalities: Eν [gt(x,y)] ≤ ν and Eν̂ [gt(x,y)] ≤ ν̂,

where ν and ν̂ represent the generalization error bound for a fully-connected RNN model

and a partially-connected RNN model, respectively. Given that both models are constructed

with the same hyperparameters and trained over the same i.i.d data set with m samples, the

following inequality holds:

ν̂ < ν (4.18)

Proof. If we let ν denote the right-hand side of Eq. 4.17, ν can be represented as the sum

of the three terms in the right-hand side of Eq. 4.17 i.e., ν = νI + νII + νIII , where the

115

subscripts I, II, and III are the term indices, and the same applies for ν̂ i.e., Eν̂ [gt(x,y)] ≤

ν̂ = ν̂I + ν̂II + ν̂III . Then, with respect to the first terms, ν̂I and νI , they depend on the

sizes of both the training data set and the hypothesis class H. Due to the dense structure

of FCRNN models, the size of the hypothesis class H will be larger, which leads to a higher

probability of convergence to the optimal hypothesis h∗. On the contrary, by incorporating

physical knowledge into the RNN modeling by assigning some weight entries to be zero,

the size of the hypothesis class H is reduced, yet the model can be closer to the optimal

hypothesis h∗ for the data distribution D. Thus, both models will have close values for the

first term (i.e., νI ≈ ν̂I). Additionally, since we are developing the two models using the same

data set with m samples, the second terms for both the PCRNN model and the FCRNN

model are approximately equal (i.e., νII ≈ ν̂II). Therefore, we are left to investigate the

third term, which is given by:

νIII = O

Lrdy

MBX(1 +
√

2 log(2)t)
√
m

 (4.19a)

ν̂III = O

Lrdy

M̂BX(1 +
√

2 log(2)t)
√
m

 (4.19b)

where M = BV,FBW,F , and M̂ = BV̂ ,FBŴ ,F .

Note that M and M̂ are products of the RNN weight matrix bounds in Eq. (4.17),

where the PCRNN model weight matrices are denoted by the symbols V̂ and Ŵ , and their

Frobenius norm bounds are BV̂ ,F and BŴ ,F , respectively. After training both FCRNN and

PCRNN models with the same random initialization and optimization algorithm, the weight

116

matrices in the PCRNN model will have some zero entries, while the other entries (i.e., the

nonzero ones) would be numerically close for both models. Since the Frobenius norm of

matrix A is expressed as the square root of the matrix trace of AA(H), where A(H) is the

conjugate transpose, more zero entries in the weight matrices will yield lower bounds on

their Frobenius norms i.e.,

BŴ ,F < BW,F (4.20a)

BV̂ ,F < BV,F (4.20b)

which yields

ν̂III < νIII (4.20c)

Hence, this proves that the partially-connected RNN modeling approach provides a lower

generalization error bound than the dense fully-connected RNN architecture.

Remark 4.1. By incorporating process structural knowledge into the development of partially-

connected RNN models, the complexity of RNN hypothesis class is reduced compared to fully-

connected RNNs, which leads to a tighter bound on the Rademacher complexity. Additionally,

by revealing the correct direction for RNNs to find the optimal weight parameters, the training

error (the first term in Eq. (4.17)) is more likely to be minimized using the same hyperpa-

rameters (i.e., the number of layers and neurons) and the same training set of m i.i.d. data

samples.

117

4.4.3 LSTM Generalization Error

LSTM networks structure and complexity are different from standard fully-connected

RNN models as well as partially-connected RNNs. Hence, a generalizability theoretical

framework of LSTMs is discussed in this subsection. We recall the fundamental definitions

and lemmas from the Section 4.4.1. In addition we present the following theoretical bases

(i.e., remarks and lemmas) needed for the development of a LSTM network’s generalization

accuracy bound.

Remark 4.2. From the definitions of norms, if given a vector b ∈ Rn, the following inequal-

ities hold:

∥b∥∞ = max{|bi|} ≤

√√√√ n∑
i

|bi|2 = ∥b∥ (4.21)

∥b∥∞ = max{|bi|} ≤
n∑
i

|bi| = ∥b∥1 (4.22)

Lemma 4.6. Given a hypothesis class H of vector-valued functions that map the LSTM

inputs x ∈ Rdx to the hidden states h̄ ∈ Rdh, and any convex and monotonically increasing

function p : R → [0,∞), the following inequality holds for the LSTM model of Eq. 4.6 with

a 1-Lipschitz activation function σy(0) = 0, applied element-wise:

E

 sup
h̄∈H,∥Z∥1,∞≤BZ

p

λ∥ m∑
i=1

ϵiσȳ(Zh̄i)∥∞

 ≤ 2·E

sup
h̄∈H

p

BZ∥
m∑

i=1
ϵih̄i∥∞

 (4.23)

118

where ∥Z∥1,∞ is the maximal 1-norm of its rows.

Proof. Based on the previous works of [21, 46], we proceed with this proof as follows:

E sup
∥Z∥1,∞≤BZ

p

∥ m∑
i=1

ϵiσȳ(Zh̄i)∥∞

= E sup

∥zk∥1≤BZ

max
j

p

∣∣∣∣∣∣

m∑
i=1

ϵiσȳ

(
zT

j h̄i

)∣∣∣∣∣∣

= E sup
∥z∥1≤BZ

p

∣∣∣∣∣∣

m∑
i=1

ϵiσy

(
zT h̄i

)∣∣∣∣∣∣

(4.24)

where zk is the k-th row of the matrix Z. Since p is a convex monotonically increasing

function, p(|x|) ≤ p(x) + p(−x), and hence, Eq. (4.24) can be bounded by:

E sup
∥Z∥1,∞≤BZ

p

∥ m∑
i=1

ϵiσȳ(Zh̄i)∥∞

≤ E sup

∥z∥1≤BZ

p

 m∑
i=1

ϵiσy

(
zT h̄i

)+ E sup
∥z∥1≤BZ

p

− m∑
i=1

ϵiσy

(
zT h̄i

) (4.25)

Note that ϵi follows a symmetric distribution, i.e. P(ϵi = 1) = P(ϵi = −1) = 0.5. Hence,

Eq. (4.25) becomes:

E sup
∥Z∥1,∞≤BZ

p

∥ m∑
i=1

ϵiσȳ(Zh̄i)∥∞

= 2E sup

∥z∥1=BZ

p

 m∑
i=1

ϵiσȳ

(
zT h̄i

)
≤ 2E sup

∥z∥1=BZ

p

 m∑
i=1

(
ϵiz

T h̄i

)
≤ 2E sup

∥z∥1=BZ

p

∥z∥∞∥
m∑

i=1
(ϵih̄i)∥∞

(4.26)

Using Eq. (4.22) in Remark 4.2, the inequality in Eq. (4.26) is bounded as follows:

119

E sup
∥Z∥1,∞≤BZ

p

∥ m∑
i=1

ϵiσȳ(Zh̄i)∥∞

≤ 2E sup

∥z∥1=BZ

p

∥z∥1∥
m∑

i=1
(ϵih̄i)∥∞

≤ 2E sup p

BZ ∥
m∑

i=1
(ϵih̄i)∥∞

(4.27)

This completes the proof of Lemma 4.6, where it ”peels off” the matrix Z between the LSTM

hidden layer and the output layer.

Remark 4.3. It is well established that the activation functions sigmoid and tanh are es-

sential for the development of different types of neural networks, including LSTMs. This is

due to the LSTM network’s special structure and the importance of the gating functionality

performed by sigmoid functions. Therefore, the purpose of utilizing the ℓ∞-norm, which is

based on the peeling strategy as in Lemma 4.6, is to eliminate the requirement of the posi-

tive homogeneity property in activation functions. Hence, this lemma suits neural networks

requiring non-positive and non-homogeneous activation functions.

Remark 4.4. In LSTMs, signals are categorized into two main types. The first type are

propagating signals, which are h̄t and ct. These signals connect the LSTM cells in sequential

time steps with each other. In other words, the LSTM unit at a certain time step t, receives

as an input the hidden state h̄t−1 and the cell state ct−1, both from the previous time step

t − 1, in addition to xt, which is the input vector at time t. The second type of signals are

gating signals, represented by ot, ft, and rt, which are responsible for the flow of information

inside the LSTM unit. Their outputs range from 0 to 1, which means they determine how

120

much of the information is passed. In the extreme cases, if the output is 0, this means no

information is passed, and if the output is 1, this means all the information is passed. Taking

this into consideration, these gating signals can be upper-bounded by 1, for simplicity in the

generalization error bound proof.

Lemma 4.7. Let Hk,t, k = 1, ..., dy be the class of real-valued functions that corresponds

to the kth component of the LSTM output at the tth time step, with weight matrices and

activation functions satisfying Assumptions 4.1–4.6. Given a set of m i.i.d. data samples

S = (xi,t,yi,t)T
t=1, i = 1, . . . ,m, the following equation holds for the Rademacher complexity:

mRs(Hk,t) ≤
√2 +

√
t√

2

 M̄√m (4.28)

where M̄ = BVBWcBx
1−β̄t

1−β̄
and β̄ = 1 +BUc.

Proof. By investigating previous works of [21, 47], we proceed with this proof as following:

Recalling that zk is the kth row of the weight matrix Z and by using Eq. (4.16) in lemma 4.3,

we obtain the following bound for the Rademacher complexity mRs(Hk,t):

mRs(Hk,t) = E

sup
m∑

i=1
ϵiσȳ(zkh̄i,t)

≤ 1
λ

logE

sup exp
λ m∑

i=1
ϵiσȳ(zkh̄i,t)

(4.29)

Now, by applying the peeling strategy of Eq. (4.23), we can further bound the previous

inequality as follows:

121

mRs(Hk,t) ≤
1
λ

logE

sup exp

BZλ

∥∥∥∥∥∥
m∑

i=1
ϵih̄i,t

∥∥∥∥∥∥
∞

≤ 1
λ

logE

sup exp
BZλ

m∑
i=1
∥ϵih̄i,t∥∞

= 1
λ

logE

sup exp
BZλ

m∑
i=1
∥ϵi∥∞∥h̄i,t∥∞

(4.30)

Using Eq. (4.6f) from the LSTM equations and applying Eq. (4.21) from Remark 4.2, we

expand the propagation signal h̄i,t and get the following bound:

mRs(Hk,t) = 1
λ

logE

sup exp
BZλ

m∑
i=1
∥ϵi∥∥oi,t∥∞∥ tanh(ci,t)∥

≤ 1
λ

logE

sup exp
BZλ

m∑
i=1
∥ϵi∥∥oi,t∥∞∥ci,t∥

(4.31)

Following Remark 4.4, we can bound the gating signal oi,t as follows: ∥oi,t∥∞ ≤ 1. Also,

we apply Eq. (4.21) from Remark 4.2 and further expand the propagation signal ci,t using

Eq. (4.6e) based on the LSTM structure, thereby obtaining the following inequality:

mRs(Hk,t) ≤
1
λ

logE

sup exp
BZλ

m∑
i=1
∥ϵi∥

(
∥fi,t∥∞∥ci,t−1∥+ ∥ri,t∥∞∥c̃i,t∥

)
 (4.32)

We further expand c̃i,t using Eq. (4.6d) and Remark 4.2. Subsequently, we expand h̄i,t−1

using Eq. (4.6f). Moreover, using the upper bound of the input data and the upper bounds

of the weight matrices mentioned in assumption 4.1 and assumption 4.5, respectively, the

122

following bound is obtained:

mRs(Hk,t) ≤
1
λ

logE
[

sup exp
(
BZλ

m∑
i=1
∥ϵi∥(∥fi,t∥∞∥ci,t−1∥

+ ∥ri,t∥∞∥ tanh(Wcxi,t + Uch̄i,t−1)∥)
)]

≤ 1
λ

logE
[

sup exp
(
BZλ

m∑
i=1
∥ϵi∥(∥fi,t∥∞∥ci,t−1∥

+ ∥ri,t∥∞∥Wcxi,t + Uch̄i,t−1∥)
)]

≤ 1
λ

logE
[

sup exp
(
BZλ

m∑
i=1
∥ϵi∥(∥fi,t∥∞∥ci,t−1∥

+ ∥ri,t∥∞(BWcBx +BUc∥h̄i,t−1∥))
)]

≤ 1
λ

logE
[

sup exp
(
BZλ

m∑
i=1
∥ϵi∥(∥fi,t∥∞∥ci,t−1∥

+ ∥ri,t∥∞(BWcBx +BUc∥oi,t−1∥∞∥ci,t−1∥))
)]

= 1
λ

logE
[

sup exp
(
BZλ

m∑
i=1
∥ϵi∥((∥fi,t∥∞

+ ∥ri,t∥∞∥oi,t−1∥∞BUc)∥ci,t−1∥+BWcBx∥ri,t∥∞)
)]

(4.33)

From the LSTM formulation, Eq. (4.6), and the fact that the LSTM’s gating signals

can be bounded by 1 (i.e., ∥fi,t∥ ≤ 1, ∥ri,t∥ ≤ 1, and ∥oi,t−1∥ ≤ 1), Eq. (4.33) can be further

bounded as follows:

mRs(Hk,t) ≤
1
λ

logE

exp
BZλ

m∑
i=1
∥ϵi∥((1 +BUc)∥ci,t−1∥+BWcBx)

 (4.34)

123

By expanding the term ∥ci,t−1∥ recursively, the above inequality reaches:

mRs(Hk,t) ≤
1
λ

logE

exp
BZλ

m∑
i=1
∥ϵi∥BWcBx

(
1 + β + β2 + ...

)

= 1
λ

logE

exp
BZλ

m∑
i=1
∥ϵi∥BWcBx

t−1∑
p=0

βp

(4.35)

We apply the formula for the sum of a geometric series, ∑t−1
p=0 β̄

p = 1−β̄t

1−β̄
to obtain the

following:

mRs(Hk,t) = 1
λ

logE

exp
BZλ

m∑
i=1
∥ϵi∥2BWcBx

1− β̄t

1− β̄

 (4.36)

where β̄ = 1 +BUc

Let q = M̄
∑m

i=1 ∥ϵi∥, where M̄ is the product of some weight matrices and contains

a fraction involving β̄, specifically M̄ = BVBWcBx
1−β̄t

1−β̄
. Notice that the Rademacher com-

plexity variables ϵi are the elements giving rise to randomness in the bound. Then, the

Rademacher complexity bound in inequality 4.36 becomes:

mRs(Hk,t) ≤
1
λ

logE[exp(λq)]

= 1
λ

logE[exp(λ(q − E[q]))] + E[q]
(4.37)

Using Jensen’s inequality, E[q] is bounded as follows:

E[q] = E

M̄ m∑
i=1
∥ϵi∥

≤ M̄

√
E
[∑m

i=1 ∥ϵi∥2
]

= M̄

√√√√√√E

 m∑
i=1,i=1

ϵT
i ϵi

 = M̄

√√√√√√E

 m∑
i=1,i=1

(1)

 = M̄
√
m

(4.38)

124

We can show q is sub-Gaussian with the following variance factor v, since q satisfies a

bounded-difference condition with respect to its random variables ϵi , i.e., q(ϵ1, ..., ϵi, ..., ϵm)

− q(ϵ1, ...,−ϵi, ..., ϵm) ≤ 2M̄∥xi,t∥:

v = 1
4

m∑
i=1

(2M̄∥xi,t∥)2 = M̄2
m∑

i=1
∥xi,t∥ (4.39)

According to the property of sub-Gaussian random variables in Definition 4.1, the following

inequality holds for q:

1
λ

logE[exp(λ(q − E[q]))] ≤ λM̄2∑m
i=1 ∥xi,t∥
2 (4.40)

Assuming λ =
√

2t

M̄
√∑m

i=1 ∥xi,t∥2 , the Rademacher complexity can be bounded as the following:

mRs(Hk,t) ≤
λM̄2∑m

i=1 ∥xi,t∥
2 + M̄

√
m

= M̄
√
mt√
2

+ M̄
√
m

=
√

2 +
√
t√

2
M̄
√
m

(4.41)

Theorem 4.2. Let Gt be the family of loss function associated with the hypothesis class Ht

of vector-valued functions that map the LSTM inputs to the LSTM output at tth time step,

with weight matrices and activation functions satisfying Assumptions 4.1–4.6. Given a set

of m i.i.d. data samples S = (xi,t,yi,t)T
t=1, i = 1, ...,m, with probability at least 1− δ over S,

125

we have:

E[gt(x,y)] ≤ 1
m

m∑
i=1

gt(xi,yi) +O

Lrdy

(√
2 +
√
t
)
M̄

√
m

+ 3

√√√√ log
(

2
δ

)
2m (4.42)

where M̄ = BZBWcBx
1−β̄t

1−β̄
and β̄ = 1 +BUc.

Proof.

Using the inequalities obtained in lemma 4.1, we can derive the following upper bound for

the loss function L(h̄(xi),yi), with h̄(xi) being vector-valued functions, as follows:

RS(Gt) = E

sup
h∈H

1
m

m∑
i=1

ϵiL(h̄(xi),yi)
 ≤ √2LrE

sup
h∈H

1
m

m∑
i=1

dy∑
k=1

ϵikh̄k(xi)

≤
√

2Lrdy

(√
2 +
√
t
)
M̄
√
m

√
2m

= Lrdy

(√
2 +
√
t
)
M̄

√
m

(4.43)

Plugging the Rademacher complexity bound that we just obtained, i.e.,RS(Gt) ≤ Lrdy
(√

2+
√

t)M̄
√

m
,

into inequality 4.14 mentioned in lemma 4.2, we get the following inequality of Theorem 4.2:

E[gt(x,y)] ≤ 1
m

m∑
i=1

gt(xi,yi) +O

Lrdy

(√
2 +
√
t
)
M̄

√
m

+ 3

√√√√ log
(

2
δ

)
2m (4.44)

Remark 4.5. By observing the three different terms in the generalization error bound of

Eq. (4.42), it appears that several ways to reduce the generalization error may be considered.

The first approach is to design a LSTM network such that the value of the empirical loss

126

1
m

∑m
i=1 gt(xi,yi) over the training data samples is minimized. Additionally, noticing that

the number of training samples m occurs in the denominator of both the second and third

terms of Eq. (4.42), one can consider increasing the number of training samples m and, as

a result, the value of the generalization error should decrease. Also, it is important to note

that the complexity hypothesis class may affect the value of the generalization error, in the

sense that increasing the complexity hypothesis class results in an increase in the values of the

weight matrices bounds M and, subsequently, an increase in the second term O in Eq. (4.42).

Hence, when designing the LSTM network, we consider starting with a simple design and,

based on the training and testing performance, we can increase the complexity such that it

improves the model performance for a given application without causing overfitting to the

data.

4.5 RNN/LSTM based model predictive control

In this section, we integrate an RNN/LSTM model into a Lyapunov-based model pre-

dictive controller (LMPC) formulation. In particular, the partially-connected modeling of

RNN/LSTM is executed as discussed in [100] and then employed as a predictive model to

provide state estimation to solve the optimization problem of the LMPC, which is expressed

127

in the following form:

J = min
u∈S(∆)

∫ tk+P

tk

L(x̃(t), u(t))dt (4.45a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (4.45b)

u(t) ∈ U, ∀ t ∈ [tk, tk + P) (4.45c)

x̃(tk) = x(tk) (4.45d)

V̇ (x(tk), u) ≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ − Ωρnn (4.45e)

V (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk + P), if x(tk) ∈ Ωρnn (4.45f)

where S(∆) denotes a set of piecewise constant functions with period ∆, x̃ is the state tra-

jectory predicted by the RNN/LSTM model, and P is the prediction horizon expressed as

a multiple of the sampling period (i.e., P = N × ∆, N > 0). The time-derivative of the

Lyapunov function V in Eq. (4.45e) is given as V̇ (x, u), i.e., ∂V (x)
∂x

Fnn(x, u). During the

prediction horizon t ∈ [tk, tk + P), the LMPC computes the optimum input sequence u∗(t)

and delivers the first control signal u∗(tk) to the system to be implemented for the following

sampling period. After that, at the following sampling interval, the LMPC receives new data

and is resolved with updated state estimations. Furthermore, the MPC optimization prob-

lem’s goal is to minimize the integral of L(x̃(t), u(t)), given in Eq. (4.45a), which represents

the cost function over the prediction horizon while satisfying the constraints of Eqs. (4.45b)

to (4.45f). The RNN/LSTM model from Eq. (4.45b) is used to forecast the evolution of

the closed-loop state trajectory x̃(tk) under the MPC, and its initial conditions are updated

128

according to Eq. (4.45d), where x(tk) is the last state measurement. The input constraints

are expressed in Eq. (4.45c), and they are imposed across the prediction horizon.

To ensure the stability of the closed-loop system, when x(tk) ∈ Ωρ−Ωρnn , where Ωρnn is

the target region, the condition of Eq. (4.45e) is triggered. As a result of this constraint, the

Lyapunov function of the closed-loop state declines, and the state approaches the steady-state

within a finite period of time. Eventually, when the state x(tk) arrives to Ωρnn , the predicted

closed-loop state will be kept within this region for the duration of the prediction horizon

via the constraint of Eq. (4.45f). Following section 2.3, the controller Φnn(x) was developed

with the intent of ensuring that the origin of the RNN/LSTM system is exponentially stable.

A well-conditioned RNN or LSTM model with sufficient model accuracy can be readily

produced when utilizing noise-free data for training. Therefore, the closed-loop state is guar-

anteed to be bound inside the predefined stability region Ωρ during the simulation time and

will finally converge to a small region around the origin via application of the RNN/LSTM-

based LMPC of Eq. (4.45) for the regulation of the nonlinear system of Eq. (4.1). This

is true provided that the modeling error, which is given by |υ| = |F (x, u) − Fnn(x, u)|, is

sufficiently small [15, 137].

4.6 Application

A chemical process example is used for demonstrating the anticipated improvements as-

sociated with physics-informed modeling of RNNs. Particularly, two non-isothermal continuous-

stirred tank reactors (CSTR) in sequence with ideal mixing are taken into consideration, as

129

shown in Fig. 4.4, with each reactor containing an irreversible second-order exothermic re-

action, where a raw material A is transformed to a product B (i.e., A → B). The feed flow

rate to each reactor Fio contains only chemical A with initial concentration and temperature

CA,io and Tio , respectively, where i = 1, 2 is the reactor index. Each reactor has a heating

jacket that delivers or removes heat at a rate of Qi. The dynamical model describing the two

CSTRs is derived from material and energy balance equations in the form of the following

ODEs:

dCA,1

dt
=F1o

V1
(CA1o − CA,1)− koe

−E
RT1C2

A,1 (4.46a)

dT1

dt
=F1o

V1
(T1o − T1) + −∆H

ρCp

koe
−E
RT1C2

A,1 + Q1

ρCpV1
(4.46b)

dCA,2

dt
=F1

V2
CA,1 + F2o

V2
CA,2o −

F1 + F2o

V2
CA,2 − koe

−E
RT2C2

A,2 (4.46c)

dT2

dt
=F2o

V2
T2o + F1

V2
T1 −

F1 + F2o

V2
T2 + −∆H

ρCp

koe
−E
RT2C2

A,2 + Q2

ρCpV2
(4.46d)

The notations CA,i, Ti, and Qi represent the reactant A concentration, reactor temperature,

and the heat supply rate, respectively. Vi is the volume of the reacting liquid, which has a

density of ρ and a heat capacity of Cp that are constants for both reactors. ∆H, ko, R, and E

denote the reaction’s enthalpy, pre-exponential constant, ideal gas constant, and activation

energy, in the same order, and these parameters are unchanged for both reactors. Process

parameter values are listed in Table 4.1.

The manipulated inputs for this process are the heat supply rate to both reactors (i.e.,

Q1 and Q2), which are represented in deviation form from their steady-state values as u1 =

Q1 − Q1s and u2 = Q2 − Q2s. The upper and lower physical bounds on the inputs are

130

𝑄1 𝑄2

𝐹1𝐹1𝑜 , 𝐶𝐴,1𝑜 , 𝑇1𝑜

𝐹2𝑜 , 𝐶𝐴,2𝑜 , 𝑇2𝑜

𝐹2

Figure 4.4: Two continuous-stirred tank reactors in series.

Table 4.1: Parameter and steady-state values for the CSTR

CA,1s = 1.95 kmol/m3 T1s = 402 K
CA,1o = 4 kmol/m3 T2s = 402 K
CA,2s = 1.95 kmol/m3 Q1s = 0.0 kJ/h
CA,2o = 4 kmol/m3 Q2s = 0.0 kJ/h

T1o = 300 K T2o = 300 K
F1o = 5 m3/h F2o = 5 m3/h

V1 = 1 m3 V2 = 1 m3

ko = 8.46× 106 m3/kmolh EA = 5× 104 kJ/kmol

R = 8.314 kJ/(kmol K) ∆H = −1.15× 104 kJ/kmol

ρ = 1000 kg/m3 Cp = 0.231 kJ/(kg K)

[Umax, Umin] = [5,−5]× 105 kJ/h, respectively. The states are also represented in deviation

fashion from their steady-state values as [x1, x2, x3, x4] = [CA,1 − CA,1s , T1 − T1s, CA,2 −

CA,2s , T2−T2s], such that the origin is the equilibrium point of the state-space representation

of the underlying system.

131

4.6.1 Data generation and RNN models construction

Large data sets are necessary for the development of machine-learning-based models,

and, generally speaking, the larger the data set size, the more accurate the model can be

[54], provided that the data is independent and identically distributed. Large data sets are

also accessible from a variety of sources, including industries, pilot plants and laboratories,

and computer-based simulations. Industrial data is typically not accessible to the general

public, and collecting data from pilot plants and laboratory studies is both expensive and

time-consuming. Hence, we use extensive open-loop simulations in our work to create our

data set.

For the development of the RNN model, the procedures for data generation, neural net-

work training, and validation are described. The explicit Euler method with an integration

time step of hc = 5×10−4 h is used to numerically simulate the dynamic model of Eq. (4.46)

for one sampling period ∆ under various initial conditions (a total of 3000 different com-

binations of initial conditions). Particularly, MATLAB is used to create a data set of size

mdata. The data set is then split into two matrices: an output matrix with x1, x2, x3, and

x4 as outputs at t = tk + ∆ and an input matrix with u1, u2, x1, x2, x3, and x4 at t = tk.

Subsequently, by using the generated data and the Keras library, two RNN models are

constructed, where each of the models has two hidden layers with 30 neurons in each, and

hyperbolic tangent (i.e., tanh(x) = ex−e−x

ex+e−x) as the activation function for all layers except for

the input and output layers. The activation function in the output layer is set to be linear.

The links between the layers is untouched in the fully-connected RNN modeling, while, on

132

the other hand, the inputs are fed to different layers in the partially connected RNN modeling

in a manner that reflects the physical structure of the underlying process. Specifically, the

partially-connected RNN model is developed following the algorithm discussed in [100].

Using input information from the previous sampling interval, we forecast the evolution

of the states for the subsequent 0.01 hr (the equivalent of one sampling time ∆). We use

the Adam optimizer, a combination of RMSprop and gradient descent with momentum opti-

mization techniques, as opposed to the conventional gradient descent optimization process.

Additionally, we perform five-fold cross-validation on the RNN models in order to produce

more reliable models, and select the models with the lowest validation MSE. In addition,

we use five, different (i.e., no repetition) testing data sets, as shown in Fig. 4.5, to test the

developed models. The generalization error for each testing data set is illustrated in Fig. 4.6,

where the partially-connected RNN model yielded higher generalization accuracy (i.e., less

error). These results aligned with Theorem 1.

4.6.2 Open-loop simulation

Before incorporating the generated models into closed-loop tests, open-loop simulations

are essential to check that the predictive models can estimate the future trajectory ade-

quately. Hence, we carried out open-loop simulations, illustrated in Fig. 4.7, where the

time-varying inputs are randomly chosen. Furthermore, from the figure, it can be noticed

that the state trajectories predicted by the partially-connected RNN model are all closer to

the true state trajectories (denoted by FP) than the states predicted by the fully-connected

RNN model.

133

-5 0 5

10
5

-2

-1

0

1

2

-5 0 5

10
5

-50

0

50

-5 0 5

10
5

-2

-1

0

1

2

-5 0 5

10
5

-100

-50

0

50

100

Figure 4.5: Five different testing data sets, where each marker indicates a single set.

Table 4.2 presents the open loop simulation MSEs between the predicted states from

each RNN model architecture and the corresponding first-principles model outputs as the

ground-truth process output value. From Table 4.2, the ratios of fully-connected RNN MSE

to the partially-connected RNN MSE for x1, x2, x3, and x4 are 6.05, 2.3991, 4.3018, and

10.3013, receptively. All the ratios are greater than one, which implies that the partially-

connected RNN architecture yields a higher accuracy for state estimation. Furthermore,

the open-loop responses initiated close to the steady state and predicted by the partially-

connected and the fully-connected RNN models under a step change only in u2 are depicted

in Fig. 4.8. The figure demonstrates that the partially-connected RNN model captures

the process dynamics better, as the trajectory of the first reactor’s temperature was not

altered by this change. All these results indicate that both RNN models provide reasonable

134

Testin
g set #

1

Testin
g set #

2

Testin
g set #

3

Testin
g set #

4

Testin
g set #

5
0

1

2

3

4

5

6

7
10

-4

FCRNN

PCRNN

Figure 4.6: Generalization error for five different testing data sets, where PCRNN and
FCRNN stand for partially-connected RNNs (orange bars) and fully-connected RNNs (blue
bars), respectively.

prediction, yet, the partially-connected RNN model approximates the underlying process

model more accurately.

Table 4.2: Open-loop prediction results (MSE)

State Modeling architecture
FCRNN PCRNN

x1 0.0065 0.0011
x2 125.4551 52.2929
x3 0.0134 0.0031
x4 156.3076 15.1736

135

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.2

-1

-0.8
FCRNN

PCRNN

FP

0 0.05 0.1 0.15 0.2 0.25 0.3

40

60

80

0 0.05 0.1 0.15 0.2 0.25 0.3
-5

0

5
10

5

0 0.05 0.1 0.15 0.2 0.25 0.3
0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3
-60

-40

-20

0 0.05 0.1 0.15 0.2 0.25 0.3
-5

0

5
10

5

Figure 4.7: Time-varying profiles of the states and inputs for the second open-loop simulation
under random time-varying inputs using the first-principles process model (red line), the
partially-connected RNN model (blue line), and the fully-connected RNN model (black line).

4.6.3 Closed-loop simulation

Next, in order to run closed-loop simulations with the certainty that both RNN models

give high accuracy approximation for the process outputs, we design LMPCs based on the

fully-connected RNN model and the partially-connected RNN model, respectively. For each

sampling period, the nonlinear minimization problem of the LMPC is solved using the Python

front-end of the interior point optimizer (IPOPT) software [138]. For the purpose of solving

complex nonlinear optimization problems, this optimizer is an open source program. It uses

an interior point line search filter technique to try to locate a local solution to a nonlinear

mathematical program. The LMPC objective function is defined as L(x, u) = xT Q x+uT R u,

where Q and R are diagonal penalty matrices for the set-point error and control actions,

136

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.1

0

0.1

0.2
FCRNN

PCRNN

FP

0 0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15

0 0.05 0.1 0.15 0.2 0.25 0.3
-1

0

1

0 0.05 0.1 0.15 0.2 0.25 0.3

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3
10

5

Figure 4.8: Time-varying profiles of the states and inputs for the open-loop simulation under
a step change in u2 using the first-principles process model (red line), the partially-connected
RNN model (blue line), and the fully-connected RNN model (black line).

respectively. The two matrices critically impact the performance of the LMPC and require

proper tuning. MPC tuning guidelines discussed in [139] are followed. Lastly, we choose

V (x) = xTPx as the Lyapunov function, where P is a positive definite matrix obtained by

applying a grid search.

Under the LMPCs, we perform closed-loop simulations initiating from two different

initial conditions, and the results are shown in Figs. 4.9 and 4.10. From the figures, both

LMPCs, each based on its predictive RNN model, were able to drive the states to the

steady-state values and to stabilize the system within a small neighborhood around the

origin. However, the partially-connected RNN-based LMPC yielded better performance in

terms of state trajectories being smoother and not exhibiting fluctuation around the steady

137

state. Moreover, the MSE of each state corresponding to the two RNN architectures are

calculated for the two closed-loop simulations and presented in Table 4.3. As it can be noted

from the table, the partially-connected RNN model yielded a more reliable controller with

smaller MSE values by an order of magnitude compared to the fully-connected RNN model.

Due to the fully-connected RNN’s deterioration in the prediction accuracy caused by the

assumption that every input influences every potential output, these results are expected.

0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

FCRNN

PCRNN

FP

0 0.1 0.2 0.3 0.4 0.5

0

50

100

0 0.1 0.2 0.3 0.4 0.5
-5

0

5
10

5

0 0.1 0.2 0.3 0.4 0.5

0

1

2

0 0.1 0.2 0.3 0.4 0.5
-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5

-2

0

2

4

10
5

Figure 4.9: State and input profiles of the first closed-loop simulation under the LMPC
using three models: first-principles (red line), partially-connected RNN (blue line), and
fully-connected RNN (black line).

138

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1
FCRNN

PCRNN

FP

0 0.1 0.2 0.3 0.4 0.5

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5
-5

0

5
10

5

0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0 0.1 0.2 0.3 0.4 0.5

0

20

40

0 0.1 0.2 0.3 0.4 0.5
-5

0

5
10

5

Figure 4.10: State and input profiles of the second closed-loop simulation under the LMPC
using three models: first-principles (red line), partially-connected RNN (blue line), and fully-
connected RNN (black line).

Table 4.3: Closed-loop prediction results (MSE)

State 1st Closed-loop Simulation 2nd Closed-loop Simulation
FCRNN PCRNN FCRNN PCRNN

x1 0.020705316 0.002051591 0.2411215725 0.025175541
x2 170.280344 39.13188574 596.3087136 88.72292971
x3 0.001812249 0.000111788 0.015817003 0.001061295
x4 3.788903947 0.511854559 20.3473683 0.400205264

139

Chapter 5

Machine Learning-Based Model

Predictive Control of Two-Time-Scale

Systems

5.1 Introduction

Various applications in the field of chemical engineering involve systems that exhibit

different time scales. Instances of such systems include biochemical processes, catalytic reac-

tors and distillation columns. Furthermore, other scientific sectors such as power electronics,

communication networks, and biological systems also feature systems with dynamics evolv-

ing in disparate time scales. Specifically, in the context of chemical engineering, researchers

have utilized the method of singular perturbation to decouple two-time-scale systems into

reduced-order subsystems, each associated with a distinct time-scale [e.g., 140]. This ap-

proach simplifies the analysis of the ordinary differential equations governing the system,

140

allowing for the design of a suitable well-conditioned control law that stabilizes the system.

In the context of control system design, model predictive control (MPC) is widely recog-

nized as one of the leading and convenient approaches employed in stabilizing different types

of nonlinear systems. MPC is essentially an optimization problem formulated with a well-

defined objective function aimed to enhance the performance of the system, while meeting

constraints associated with the system’s physical structure and closed-loop stability. The

fact that MPC accounts for multiple inputs, outputs, and constraints within its framework is

what makes it a suitable choice for designing control systems to stabilize chemical processes.

However, in singularly perturbed systems, the presence of distinct time scales can lead to

challenges when employing MPC without accounting for the state evolution in the different

time scales. Neglecting this aspect can result in degradation of the closed-loop performance,

long time consumption or, in more critical situations, instability and stiffness in the control

system due to issues with the controller’s effectiveness and the presence of ill-conditioning

[20].

However, if the time-scale multiplicity is accounted for, MPC has proven to be an ef-

ficient control strategy when it comes to situations involving time-scale separation. For

instance, the research conducted by [141] presented the design of a composite control system

which included two MPC designs, one for the slow subsystem and one for the fast subsys-

tem. Using stability analysis and the theory of singular perturbations, this work investi-

gated and guaranteed the closed-loop stability for the full, nonlinear two-time-scale system

under Lyapunov-based tracking MPC. To additionally consider process economics, a similar

strategy was then proposed in the work of [142], which focused on designing a composite

141

controller involving two MPC problems. Specifically, for stability of the fast subsystem (and

full two-time-scale system as a result), a Lyapunov-based tracking MPC was used for the

fast states based on the error between the fast states and the slow manifold using a quadratic

cost function, while a Lyapunov-based economic MPC was used for the slow subsystem to

optimize economic considerations and achieve any other desirable closed-loop stability prop-

erties using a non-quadratic, economic cost function. While the work of [141, 142] focused on

first-principles-based controllers, in the work of [143], a two-time-scale system was separated

into the slow and fast subsystems using singular perturbation strategy and then modeled

using only data from the system via the method of sparse identification for nonlinear dy-

namics. Subsequently, an MPC was designed based on the reduced-order slow subsystem

modeled using sparse identification, and closed-loop stability guarantees were derived. Fur-

thermore, numerical simulations were used to demonstrate the reduced computational cost

of the reduced-order sparse-identified model.

Due to the vast advancements in the chemical industry and the multitude of complex

reactions occurring in real-life chemical process applications, engineers encounter challenges

when constructing first-principles models for these chemical processes. As a result, in recent

years, machine learning (ML) models have been utilized to approximate the dynamics of

chemical processes. These models are highly beneficial when designed carefully as they offer

a reliable and efficient alternative to classical first-principles models and can then be incor-

porated into MPC frameworks. Many works have been conducted in this field; for instance,

the work of [49] offered essential insights and fundamental theory regarding the integra-

tion of machine learning techniques into MPC schemes. The work focused on designing a

142

recurrent neural network (RNN) model to approximate the nominal nonlinear system and

integrated the model within an MPC framework to stabilize the system. In [144], polynomial

nonlinear-autoregressive-with-exogenous-inputs (NARX) models are used to build nonlinear

MPC, with the relevant polynomial terms to retain selected via sparse regression. The pro-

posed MPC was applied to a multi-input-multi-output chemical reactor, and an algebraic

modeling language was used to reduce computational times.

Another research direction termed “approximate MPC” involves the replacement of the

MPC optimization problem by a closed-form expression that approximates the MPC con-

trol actions without having to solve an optimization problem. This is meant to address the

computational challenges inherent in classical MPC at the expense of a lower accuracy and

generalizability. In [145], an approximate MPC was designed for heating, ventilation, and

air-conditioning (HVAC) systems due to the stringent computational resources available for

building control systems. Specifically, the MPC optimization problem was imitated by a

recurrent neural network with a structure of nonlinear autoregressive network with exoge-

nous inputs trained with data from 30 days of operation in closed-loop under the MPC.

While both the MPC and approximate MPC greatly reduced the cooling consumption of

the HVAC system when tested, the approximate MPC solved for the control actions over

100 times faster throughout the testing period, with only a 12% degradation in performance

compared to the MPC. An alternate research direction to reduce the computational burden

of MPC is the design of “explicit MPC”, in which the optimal control actions are computed

off-line using multiparametric programming methods, allowing the online component of the

MPC to have to only search a table of linear gains and compute a single function evaluation.

143

A summary of studies investigating explicit MPC is provided in [146]. Machine learning

has also been investigated in the context of explicit MPC. In [147], for example, an explicit

control law was learned for discrete-time linear time-invariant systems using machine learn-

ing. Specifically, the key challenge addressed was that of high dimensionality, which has

been attempted to be solved in the existing literature by identifying suboptimal polytope

partitions of the state space and designing control laws based on such regions. [147] focused

on tackling high-dimensionality in a similar manner but by using reinforcement learning and

additionally investigated constraint satisfaction and feasibility guarantees for the explicit

MPC. Specifically, by using deep neural networks with rectified linear units as the activation

function and a modified policy gradient algorithm based on prior knowledge, the objectives

were met and demonstrated via three numerical examples of varying levels of dimensionality

and complexity. A potential limitation of the approximate and explicit MPC approaches is

that they are practically applicable to only smaller-scale systems or even though they are

applicable to systems with very fast sampling times [146]. However, for general nonlinear

systems and nonlinear MPC, due to the highly nonconvex optimization problem, methods

such as the use of suboptimal polytopes [147] may not be readily extended to the nonlinear

case.

While ML techniques have shown great success when incorporating them into MPC

schemes, practical application of machine learning-based MPC schemes to real-life processes

poses significant challenges. The fact that the ML model is developed using a finite number

of data samples makes it challenging to assess the accuracy of the model when considering

generalized scenarios. Therefore, researchers have developed methods to quantify the error

144

of the process model used in MPC and study their effects on closed-loop performance and

stability. For example, [148] proposed the use of Bayesian neural networks (BNN) to quan-

tify the plant-model mismatch and subsequently create adaptive scenarios in real-time for

scenario-based MPC using the BNN. Based on simulation results from a cold atmospheric

plasma system, the proposed approach outperformed scenario-based MPC without adaptive

scenarios and adaptive-scenario-based MPC with Gaussian process regression. In more theo-

retical fronts, researchers have also studied the concept of generalization error bounds, which

are crucial to study in order to ensure the construction of reliable models that are capable

of performing accurate predictions on unseen or new data. Specifically, a low generaliza-

tion error bound guarantees the effectiveness and high performance of the ML model and,

consequently, the MPC utilizing the designed ML model. To address this, [21] derived a

generalization error bound for a fully-connected RNN (FCRNN) model, discussed the main

factors that affect the bound, and integrated the FCRNN model into an MPC scheme to sta-

bilize a nonlinear process. Moreover, the work by [149] focused on deriving a generalization

error bound for a feed-forward neural network (FNN) that was used to construct a control

Lyapunov-barrier function. The work by [150] studied the generalization error bound for both

a partially-connected RNN (PCRNN) and an LSTM-RNN and subsequently carried out a

comparison study between the generalization performance of an FCRNN versus a PCRNN.

Additionally, all the aforementioned works incorporated the designed machine learning mod-

els into Lyapunov-based MPC schemes to demonstrate the ability of the LMPCs to stabilize

a chemical process. To the best of our knowledge, the application of generalization error

bounds to neural networks modeling two-time-scale systems has not been investigated.

145

In light of the above considerations, in this chapter, we use the theory of statistical

machine learning to construct the generalization error bounds for neural networks modeling

two-time-scale systems. Moreover, the computational time for a neural network-based MPC

is known to be an important practical consideration. However, the computational time for

an RNN-based MPC with and without decomposition into lower-order subsystems has not

been studied. Therefore, we introduce two LMPC frameworks, one designed based on an

RNN model that predicts the slow state vector and the other designed based on an RNN

model that models the full two-time-scale system, and compare the two LMPC schemes in

terms of closed-loop stability and computational time. The rest of the chapter is structured

as follows: Section 5.2 introduces essential preliminaries as well as the general class of two-

time-scale systems considered in this work. Section 5.3 discusses the generalization error

bounds of neural networks modeling two-time-scale systems. In Section 5.4, we present a

machine learning-based Lyapunov-based MPC using an RNN that predicts the slow state

vector, followed by closed-loop stability analysis and results. In Section 5.5, a chemical

process example is used to demonstrate the effectiveness of the designed controller.

5.2 Preliminaries

5.2.1 Notation

The Euclidean norm of a vector is denoted by | · |. The transpose of the vector x is given

by xT . Given a matrix B, its Frobenius norm is denoted as ∥B∥F . Moreover, the infinity

norm of 1-norms of the columns of B is denoted as ∥B∥1,∞ = maxj
∑

i |Bi,j|. The expression

146

LFV (x) denotes the standard Lie derivative LFV (x) := ∂V (x)
x
f(x). Set subtraction is denoted

by ‘\’, i.e., A\B :=
{
x ∈ Rn|x ∈ A, x /∈ B

}
. A function f(x) is of class C1 if it is continuously

differentiable in its domain. A continuous function α : [0, a) → [0,∞) belongs to class K if

it is strictly increasing and is zero only when evaluated at zero. A function f : Rn → Rm is

said to be L-Lipschitz continuous, if there exists L ≥ 0 such that, |f(a) − f(b)| ≤ L|a − b|

for all a, b ∈ Rn. A continuous function β : [0, a) × [0,∞) → [0,∞) belongs to class KL if,

for each constant value of t, the function β(·, t) is of class K, and for each constant value of

s, the function β(s, ·) is decreasing and approaches zero as s→∞. The probability that the

event A will occur is denoted as P(A). Additionally, the expected value of a random variable

X is denoted as E[X].

5.2.2 Class of systems

The following family of ordinary differential equations describes the general class of

two-time-scale continuous-time nonlinear systems with k states considered in this work:

ẋ = f1(x, z, u, ϵ) (5.1a)

ϵż = f2(x, z, ϵ) (5.1b)

where x ∈ Rn is the slow state vector and z ∈ Rp is the fast state vector, with n + p = k.

u ∈ Rq1 is the bounded manipulated input vector. The input vector u is constrained by

u ∈ U := {|ui| ≤ u1max,i
, i = 1, ..., q1}. We assume the vector functions f1(x, z, u, ϵ) and

f2(x, z, ϵ) to be sufficiently smooth vector functions in Rn and Rp, respectively. Moreover,

147

we assume that the closed-loop stability region of the nonlinear system of Eq. (5.1) is defined

by the region Ωρ
F

, where Ωρ
F

:= {x ∈ D|V (x, z) ≤ ρ
F
} where ρ

F
> 0 and D is an open

neighborhood around the origin. The speed ratio of the slow to the fast dynamics of the

system is represented by the small positive parameter ϵ. In Eq. (5.1b), we observe that

the speed ratio ϵ pre-multiplies the derivative of the fast state vector z, which enables us

to utilize a well-known strategy called “reduced-order modeling” via singular perturbations.

In this approach, we will be able to decompose the system of Eq. (5.1) into two different

reduced-order subsystems. We follow the strategy thoroughly illustrated in [20].

The following equations are obtained through setting ϵ = 0 in Eq. (5.1):

˙̄x = f1(x̄, z̄, ū, 0) (5.2a)

0 = f2(x̄, z̄, 0) (5.2b)

where x̄ and z̄ are the slow state vector and the fast state vector associated with the system

of Eq. (5.1) under the case where ϵ = 0, respectively. Additionally, the following assumption

is considered to be fundamental in the theory of singular perturbations.

Assumption 5.1. Eq. (5.2b) has an isolated solution, which is determined by,

z̄ = f̄2(x̄) (5.3)

where z̄ is a quasi-steady state for the fast state z, and the function f̄2 : Rn → Rp is

continuously differentiable.

148

We substitute Eq. (5.3) into Eq. (5.2a) to obtain the reduced-order slow subsystem,

˙̄x = f1(x̄, f̄2(x̄), ū, 0) (5.4)

Furthermore, to obtain the dynamics of the reduced-order fast subsystem, we introduce a

fast timescale τ = t/ϵ and a new coordinate ¯̄z = z − z̄ to re-write Eq. (5.1b) with respect to

the newly introduced variables ¯̄z and τ . Then, the fast subsystem can be expressed as the

derivative of ¯̄z with respect to τ while setting ϵ = 0,

d¯̄z
dτ = f2(x̄, ¯̄z + f̄2(x̄), 0) (5.5)

Starting at t0, the initial conditions of the state vectors x and z are given by the vectors

x0 and z0, respectively. Based on Eq. (5.1) to Eq. (5.5), and through utilizing the basic

theoretical concepts of two-time-scale systems in [20], the following equation will hold for all

t ∈ [tp, T], where tp > t0

z(t) = z̄(t) +O(ϵ). (5.6)

where z̄(t) reflects the slow transient of z, and O(ϵ) is an error of order epsilon. A variable,

z(t), is O(ϵ) where ϵ is a positive constant, if there exists a positive constant k̄ (independent

of ϵ) such that |z(t)| ≤ k̄ϵ. Furthermore, if we were to consider the time interval where

t ∈ [t0, T], Eq. (5.6) would be slightly modified such that the approximation of the state z

is given by the following:

z(t) = z̄(t) + ¯̄z(t) +O(ϵ), (5.7)

149

where z̄(t) and ¯̄z(t) are the slow and fast transients of z, respectively. Additionally, the

approximation of state x by x̄ is given by the following equation, for all t ∈ [t0, T]

x(t) = x̄(t) +O(ϵ). (5.8)

The fast subsystem of Eq. (5.5) needs to satisfy certain stability properties in order for

the above closeness of solutions estimates to hold true, which are described by the following

assumption.

Assumption 5.2. The equilibrium ¯̄z(τ) = 0 of Eq. (5.5) demonstrates uniform asymptotic

stability in x0 and t0. In addition, z0 − z̄(t0) resides within its domain of attraction. As a

result, for all τ ≥ 0, ¯̄z(τ) exists.

If Assumption 5.2 holds true, then

lim
τ→∞

¯̄z(τ) = 0, (5.9)

This implies that, at some time tp > t0, z will approach close to its quasi-steady state z̄.

The local stability of the equilibrium of the fast subsystem holds if the following verifiable

condition holds.

Assumption 5.3. All the eigenvalues of ∂f2
∂z

, computed for ϵ = 0, along x̄(t), z̄(t), exhibit

real parts less than a constant negative value, i.e.

ℜλ
{
∂f2

∂z

}
≤ −c < 0. (5.10)

150

Utilizing the aforementioned assumptions, we establish the well-known “Tikhonov’s

theorem” in the following theorem.

Theorem 5.1. (c.f. Theorem 3.1 in [20]). Consider Assumptions 5.2 and 5.3 hold true.

Then, for all t ∈ [t0, T], Eqs. (5.7) and (5.8) are valid. In addition, there exists a specific

time instant tp ≥ t0 such that Eq. (5.6) is valid for all t ∈ [tp, T].

Several sources such as [151] are useful to analyze slightly varied formulations of the

Theorem 5.1 and to review its proof. At this point, we have investigated several essential

concepts of two-time-scale systems. We will assume that the error between x and x̄ is not

greater than O(ϵ). This assumption allows us to simplify the analysis by approximating x̄

as x. Similarly, the same principle applies to z and z̄, with our focus on capturing the slow

transient of the fast state dynamics z, that is z̄. Therefore, based on this assumption, we will

proceed to express the reduced order slow subsystem of Eq. (5.4) as the following throughout

the manuscript,

ẋ = F (x, u) := f(x) + g(x)u, x(t0) = x0, (5.11)

where f(·) and g(·) are sufficiently smooth vector functions of dimensions n× 1 and n× q1,

respectively. Without loss of generality, we assume the initial time t0 = 0 and that f(0) = 0;

hence, the steady-state of the nonlinear system of Eq. (5.11) is the origin. Finally, we will

assume that the fast subsystem is globally asymptotically stable which is needed in order to

estabilish stability of the closed-loop system under model predictive control using machine

learning models in section 4.

151

Assumption 5.4. The origin of the closed-loop fast subsystem described by Eq. (5.5) exhibits

global asymptotic stability, uniformly in x. This implies that there exists a function β¯̄z of

class KL such that for any ¯̄z(0) ∈ Rp,

|¯̄z(t)| ≤ β¯̄z

(
|¯̄z(0)|, t

ϵ

)
∀t ≥ 0 (5.12)

5.2.3 Stabilizability assumption via control Lyapunov function

Regarding the dynamics of the slow subsystem described in Eq. (5.11), we assume that

there exists a locally Lipschitz feedback controller, Φ(x) ∈ U , that renders the origin of the

slow subsystem of Eq. (5.11) asymptotically stable, i.e., there exists a C1 Lyapunov function

V (x) that is continuously differentiable and meets the following set of inequalities:

a1(|x|) ≤ V (x) ≤ a2(|x|), (5.13a)

∂V (x)
∂x

F (x,Φ(x)) ≤ −a3(|x|), (5.13b)

∣∣∣∣∣∂V (x)
∂x

∣∣∣∣∣ ≤ a4(|x|) (5.13c)

where a1, a2, a3 and a4 are class K functions for all x ∈ Rn ⊂ D. Additionally, given that the

system F (x, u) has a Lipschitz property and the input u is constrained by the set U , then

there exists positive constants M , Lx, and L′
x such that the subsequent inequalities hold for

152

all x, x′ ∈ D and u ∈ U :

|F (x, u)| ≤M (5.14a)

|F (x, u)− F (x′, u)| ≤ Lx|x− x′| (5.14b)∣∣∣∣∣∂V (x)
∂x

F (x, u)− ∂V (x′)
∂x

F (x′, u)
∣∣∣∣∣ ≤ L

′

x|x− x′| (5.14c)

Moreover, the region Ωρ := {x ∈ D|V (x) ≤ ρ}, ρ > 0, is defined as the stability region for

the slow subsystem of Eq. (5.11).

Now we will discuss the incorporation of machine learning models, particularly neural

networks, in process systems engineering. The first step in developing any type of neural

network model is generating a comprehensive data set that effectively captures the input-

output relation. This data set is used to train the network and enables it to learn patterns

present in the data and make accurate predictions. In order to generate a data set that

captures the dynamics of the nonlinear system of Eq. (5.1) within the region Ωρ, we follow the

data generation technique described in [49]. The first step is to carry out various open-loop

simulations of the nonlinear system of Eq. (5.1), covering a wide-range of initial conditions

(i.e., x0 ∈ Ωρ and z0 ∈ Ωρ) and valid input signals under sample-and-hold implementation

(i.e., the input is applied to the system as piecewise constant functions, u = u(tk) ∈ U,∀t ∈

[tk, tk+1), where tk+1 := tk +∆, ∆ is the sampling period). To integrate the nonlinear system

of Eq. (5.1), the well-established forward Euler approach is used with a sufficiently small

integration time step hc ≪ ∆. As a result, an extensive data set containing the dynamics

of the system is generated, which is then utilized to train a neural network employing the

153

Keras library.

5.2.4 Recurrent neural networks

Consider designing a recurrent neural network (RNN) model that predicts only the

slow state vector x of Eq. (5.1), or in other words, to approximate the dynamics of the slow

subsystem of Eq. (5.11). The network is trained using m data points (xi,t,yi,t) of T -time-

length, where i = 1, ...,m and t = 1, ..., T . xi,t ∈ Rdx and yi,t ∈ Rdy are the RNN input

and output, respectively. Additionally, dx and dy are the dimensions of the RNN input and

output, respectively. It is worth mentioning that the notations used for the RNN inputs

and outputs are represented in boldface in order to establish a clear distinction between the

RNN notations and the notations used to describe the nonlinear two-time-scale system of

Eq. (5.1). The RNN input xi,t comprises the current slow state measurements along with the

manipulated inputs applied through the time steps t = 1, ..., T , where the manipulated inputs

are generated randomly within the set U . The RNN output yi,t comprises the predicted

future slow state through the time steps t = 1, ..., T . As a result, the RNN model is designed

to make future predictions of the slow states over one sampling period with T = ∆
hc

time

steps. The data set utilized to develop the RNN model is constructed by generating m

independent data sequences obtained from an underlying distribution over Rdx×T × Rdy×T .

With the aim of simplification, we introduce a single-hidden-layer RNN model, given

that hi ∈ Rdh are the hidden states and can be evaluated as follows:

hi,t = σh(Uhi,t−1 +Wxi,t) (5.15)

154

where the element-wise nonlinear activation function is denoted by σh. U ∈ Rdh×dh is the

weight matrix associated with the hidden states, while W ∈ Rdh×dx is the weight matrix

associated with the input vector. Furthermore, the following equation evaluates the output

layer yi,t of the RNN model:

yi,t = σy(Vhi,t) (5.16)

where element-wise activation function of the output layer is denoted by σy, and V ∈ Rdy×dh

is the weight matrix associated with the output layer. In this particular application, the

input of the RNN model will be the current slow states measurement, x ∈ Rn, as well as

the manipulated input u ∈ Rq1 for the next sampling period. The output of the RNN model

will be the predicted future slow states x for at least one sampling period ahead. The basic

RNN structure is represented in Fig. 5.1.

Figure 5.1: Recurrent nueral network structure.

Let y̆ be the predicted value and y be the actual value. We can then define the loss

155

function L(y, y̆) that computes the squared difference between the actual and the predicted

value. More precisely, we will consider the L2 (i.e., mean squared error) loss function.

Without loss of generality, we establish the following standard assumptions that are required

for the study of generalization error bounds and are reviewed for completeness:

Assumption 5.5. The inputs of the RNN are bounded (i.e., ∥xi,t∥ ≤ BX for all i = 1, ...,m

and t = 1, ..., T).

Assumption 5.6. The Frobenius norms of the weight matrices are bounded (i.e., ∥V∥F ≤

BV,F , ∥W∥F ≤ BW,F , ∥U∥F ≤ BU,F).

Assumption 5.7. σh is a positive homogenous and 1-Lipschitz continuous nonlinear acti-

vation function (i.e., σh(αz) = ασh(z) holds ∀α ≥ 0 and z ∈ R).

Assumption 5.8. The datasets used for training, testing, and validation are drawn from

the same distribution.

Remark 5.1. Although the RNN model is developed to approximate the dynamics of the slow

subsystem described by Eq. (5.11), we emphasize the fact that the data used to train this RNN

model is constructed using the nonlinear two-time-scale system of Eq. (5.1). The reason is

that, in most practical scenarios, engineers are limited to working with data obtained from the

original nonlinear two-time-scale system of Eq. (5.1). Additionally, it is possible to design

an RNN model that predicts the full two-time-scale dynamics of Eq. (5.1) using full state

measurement.

Remark 5.2. Assumption 5.5 takes into account the bounded nature of RNN inputs. This

aligns with the observation that the states x and the inputs u are restricted within certain

156

limits, where x ∈ Ωρ and u ∈ U . Assumption 5.6 requires that the weight matrices of the

RNN are bounded. This requirement can be met while training the RNN, since the search

for the optimal RNN parameters is limited to a finite class of neural network hypotheses.

Assumption 5.8 indicates that the RNN model constructed using data derived from industrial

operations will be utilized on the exact same process, under the condition that the data dis-

tribution remains unchanged. It is important to point out that in the context of assessing the

generalization performance for machine learning models, Assumption 5.8 is regarded as an

essential one. Several well-known activation functions can be used in constructing the RNN

model that satisfy Assumption 5.7; for instance, the rectified linear unit (ReLu) activation

function is one such example.

5.2.5 Feedforward neural networks

Using the RNN model described in Section 5.2.4, we are able to predict the slow state

vector x. However, it is important to devise a methodology to predict the values of the fast

states. In line with the framework proposed in [143], we consider the design of a feedforward

neural network (FNN) that predicts the fast states using the previously predicted slow states

from the RNN model. More precisely, the FNN input will be the slow states x, and its output

will be the fast states z. The FNN model is trained using m independent data points from

an underlying distribution over RdF
x ×RdF

y , where dF
x and dF

y are the dimensions of the FNN

input and output, respectively. In this particular application, given that the FNN input is

the slow state, x ∈ Rn, and its output is the fast state z ∈ Rp, we have dF
x = n and dF

y = p.

157

The general form of an FNN model can be formulated as follows:

yF = σd(Qdσd−1(Qd−1σd−2(...σ1(Q1xF)))) (5.17)

where d is the total number of FNN layers, yF ∈ RdF
y is the predicted output of the FNN,

and xF ∈ RdF
x is the FNN input. For each FNN layer l, where l = 1, . . . , d, the weight

parameter matrix is denoted as Ql, and the activation function is represented as σl. The

depth of the network is represented by the number of layers d. However, the width of the

network is the maximal number of neurons in a hidden layer and is represented by hmax.

Given that hl denotes the number of neurons in the lth layer, the width of the network can

be expressed as hmax = maxl=1,...,d{hl}. The general FNN structure is shown in Fig. 5.2.

Figure 5.2: Feedforward neural network structure.

158

If y̆F is the predicted value and yF is the actual value, we can define the loss function

L(yF , y̆F) that computes the squared difference between the actual and the predicted value.

More precisely, we will consider L2 (i.e., mean squared error) loss function. In a similar

manner to the discussion on RNNs, we establish the following assumptions for the FNN

model developed:

Assumption 5.9. The inputs of the FNN are bounded, (i.e., ∥xF
i ∥ ≤ BX for all i = 1, ...,m).

Assumption 5.10. The norms of the weight matrices are bounded, in the sense that the

maximal 1-norm of the rows of the weight matrices in the hidden layers and output are

bounded, (i.e., ∥Q∥1,∞ ≤ BQ).

Assumption 5.11. The activation function σl is 1-Lipschitz continuous and satisfies σl(0) =

0, where l = 1, ..., d (e.g., tanh(·)).

Assumption 5.9 is an implication of the assumption that the RNN output (slow states)

is bounded. Assumptions 5.9–5.11 follow the same reasoning as Assumptions 5.5–5.7 as

explained in Remark 5.2. Building upon the previous assumptions, it should be noted that

Assumption 5.8 remains applicable for the FNN model.

5.3 Generalization error bounds of neural networks mod-

eling two-time-scale systems

The primary goal of constructing any neural network model is to make accurate pre-

dictions. Therefore, analyzing the generalization error bounds for various types of neural

159

networks modeling different types of nonlinear systems enables us to improve the construc-

tion and design of these network models. Typically, the assessment of neural networks is

conducted using a finite set of training samples. Hence, it is essential to investigate the

generalization error bound for the neural network model, which allows us to evaluate the

performance of the model in accurately predicting outcomes for new, unseen data. In other

words, considering new data from the same distribution, the generalization error bound

quantifies the ability of a neural network model to make accurate predictions for unseen

data, which the neural network has not encountered before.

In this work, we consider an RNN that predicts the dynamics of the slow states. Then,

an FNN is utilized to predict the fast states using the predicted slow states as the input for

the FNN. The generalization error bounds of the neural networks modeling two-time-scale

systems are investigated. Particularly, in this section, we will discuss the generalization

error bounds of both the RNN (which predicts the slow states dynamics) and the FNN

(which predicts the fast states). The generalization error bound is derived utilizing basic

concepts of statistical machine learning theory. Hence, in the upcoming subsection, we

outline fundamental concepts and definitions used to derive generalization error bounds.

Additionally, in the following subsection, it is worth mentioning that the same principles

that apply to x,y and y̆ also extend to xF ,yF and y̆F , respectively. In the same vein,

principles that apply to dx and dy, are also true for dF
x and dF

y , respectively. Let H be the

hypothesis class of RNN functions h(·) that map the dx-dimensional input x ∈ Rdx to the

dy-dimensional output y̆ ∈ Rdy . Similarly, let HF be the hypothesis class of FNN functions

hF (·) that map the dx-dimensional input xF ∈ Rdx to the dy-dimensional output y̆F ∈ Rdy .

160

For the following subsection, we also note that the principles that apply to H and h(·) are

also valid for HF and hF (·), respectively. It should be noted that the dimensions dx and dy

differ based on the network type, whether it is an RNN or an FNN.

5.3.1 Generalization error bound preliminaries

Definition 5.1. Consider a function, h, which makes predictions of the output y correspond-

ing to the input x, along with an underlying distribution D. The generalization error or the

expected loss is formulated as follows,

E[L(h(x),y)] =
∫

X×Y
L(h(x),y) ρ(x,y) dx dy. (5.18)

where ρ(x,y) represents the joint probability distribution for x and y, while X and Y repre-

sent the vector space for all possible inputs and outputs, respectively, and L denotes the loss

function.

We introduce the following definition of the empirical error as an approximation of the

expected loss due to the fact that the joint probability distribution ρ is unknown in many

scenarios.

Definition 5.2. Considering a data set consisting of m data samples S = (s1, ..., sm), with

each si = (xi,yi), the empirical error or risk can be expressed as,

ÊS[L(h(x),y)] = 1
m

m∑
i=1

L(h(xi),yi) (5.19)

We note that the m data samples are gathered from the same data distribution. In this

161

work, the loss function L(y, y̆) is chosen as the mean squared error (i.e., L2 loss function).

Furthermore, the generalization error bounds are derived using “Rademacher complexity”, a

widely recognized concept in the field of machine learning theory that is used to determine

the complexity and richness of a class of functions. The Rademacher complexity is defined

as follows:

Definition 5.3. Given a data set S = {s1, ..., sm} with m samples, and a hypothesis class

F of real-valued functions, then the empirical Rademacher complexity of F can be defined as

follows,

RS(F) = Eϵ

sup
f∈F

1
m

m∑
i=1

ϵif(si)
 (5.20)

where ϵ = (ϵ1, ..., ϵm)T consists of the Rademacher random variables ϵi, these variables are

independent and identically distributed (i.i.d.), satisfying the condition that P(ϵi = −1) =

P(ϵi = 1) = 0.5.

Given that Gt is the class of loss functions associated with the function class H and is

defined as follows:

Gt = {gt : (x,y)→ L(h(x),y), h ∈ H}, (5.21)

where x and h(x) are the model’s input and output, respectively, while y denotes the actual

value of the output, the upper bound of the generalization error can be computed using the

Rademacher complexity RS(Gt) as in the following Lemma.

Lemma 5.1. (c.f. Theorem 3.3 in [82]) Given a data set S = (xi,t,yi,t)T
t=1, i = 1, ...,m, that

consist of m i.i.d. data samples, then with probability 1− δ the following inequality holds for

162

all gt ∈ Gt over the data samples S:

E[gt(x,y)] ≤ 1
m

m∑
i=1

gt(xi,yi) + 2RS(Gt) + 3
√

log(2
δ
)

2m (5.22)

For a comprehensive proof of Lemma 5.1, interested readers can refer to [82] and [21].

By observing Eq. (5.22), clearly, the upper bound of the generalization error relies on three

terms. The first term is the empirical loss (1
m

∑m
i=1 gt(xi,yi)). The second term is the

Rademacher complexity (2RS(Gt)), while the third term depends on the data set size m along

with the confidence level δ. At this stage, the goal is to be able to effectively quantify the

generalization error bound using predefined and measurable values. This can be done through

imposing a further upper bound on the Rademacher complexity term. Having established

the background and basic concepts of the generalization error bound, our next discussion will

focus on examining the generalization error bounds for neural networks modeling two-time

scale systems.

5.3.2 RNN generalization error bound

In this subsection, we will be investigating the generalization error bound for the RNN

model that predicts the slow dynamics of the two-time-scale system defined in Eq. (5.1). We

start by introducing the following Lemma, which upper bounds the Rademacher complexity

in terms of the RNN parameters.

Lemma 5.2. Let Hk,t, k = 1, ..., dy represent the class of real-valued functions that associated

to the kth component of the RNN output at tth time step, with activation functions and

163

weight matrices satisfying Assumptions 5.5—5.8. Given a data set S = (xi,t,yi,t)T
t=1, i =

1, ...,m, consisting of m i.i.d. data samples, the following inequality holds for the Rademacher

complexity:

RS(Hk,t) ≤
M(

√
2 log(2)t+ 1)BX√

m
(5.23)

where M = BV,FBW,F
Bt

U,F −1
B−1

U,F

, and BX is the upper bound for RNN inputs.

For a comprehensive and detailed proof of Lemma 5.2, interested readers may refer

to [21]. Applying the results derived and proven in [21], the following Lemma specifically

addresses the generalization error bound for the RNN model that predicts the slow dynamics

of the two-time-scale system defined in Eq. (5.1).

Lemma 5.3. Consider the general class of two-time-scale continuous-time nonlinear systems

described by Eq. (5.1) under the assumption that the slow and fast states of Eq. (5.1) are

stable, and the perturbation parameter ϵ is sufficiently small. An RNN satisfying Assumptions

5.5—5.8 is constructed to predict the slow states of the system at the tth time step. Given

the Lr–Lipschitz loss function that belongs to the family of loss functions Gt associated with

the RNN function of class Ht and a data set S = (xi,t,yi,t)T
t=1, i = 1, ...,m, with m i.i.d.

data samples, the following inequality holds true with probability at least 1 − δ over S, for

all t ∈ [t0, T]:

E[gRNN
t (x̆, x)] ≤ 1

m

m∑
i=1

gt(x̆i, xi) + 3
√

log(2
δ
)

2m +O

Lrdy

MBX(1 +
√

2 log(2)t)
√
m

 (5.24)

where M = BV,FBW,F
Bt

U,F −1
B−1

U,F

, and BX is the upper bound for RNN inputs.

164

Eq. (5.24) indicates that the generalization error bound of the RNN that predicts the

slow state vector x depends on a number of factors, such as the number of training samples

m, the time length t of the RNN inputs, the upper bound on the input vector BX , the

complexity hypothesis class in terms of weight matrices M , as well as the empirical loss

(1
m

∑m
i=1 gt(x̆i, xi)). We emphasize that the actual slow state is denoted as x and the predicted

slow state by the RNN model is x̆. Additionally, based on Eq. (5.8), the generalization error

bound of Eq. (5.24) holds for all t ∈ [t0, T], under the assumption that the slow and fast

states are stable, and the perturbation parameter ϵ is sufficiently small.

Now we will discuss the implementation of the RNN generalization error bound for a

specific loss function. A locally Lipschitz continuous loss function is used to optimize the

RNN weights and biases. To be more precise, we employ the MSE loss function of the form,

L = 1
m

m∑
i=1

(y̆i,yi)2, (5.25)

where y̆ and y are the predicted and actual values, respectively. Since the loss function L is

locally Lipschitz continuous, it satisfies the following inequality,

|L(y, y̆2)− L(y, y̆1)| ≤ Lr|y̆2 − y̆1| (5.26)

where Lr is the local Lipschitz constant for the loss function L. Since the RNN model predicts

the slow states of Eq. (5.1), the loss function is computed over the actual and predicted slow

states, x and x̆, respectively. Moreover, the expected loss of L is upper bounded by the

165

following inequality with probability at least 1− δ:

E[L(x̆, x)] ≤ 1
m

m∑
i=1

L(x̆i, xi) + 3
√

log(2
δ
)

2m +O

Lrdy

MBX(1 +
√

2 log(2)t)
√
m

 (5.27)

Given that the MSE loss function L computes the error between the RNN output x and

the predicted RNN output x̆, then the upper bound on |x̆− x| can be written as follows:

|x̆− x| ≤

√√√√√√ 1
m

m∑
i=1

L(x̆i, xi) + 3
√

log(2
δ
)

2m +O

Lrdy

MBX(1 +
√

2 log(2)t)
√
m

 (5.28)

5.3.3 FNN generalization error bound

In this subsection, we will be investigating the generalization error bound for the FNN

model that predicts the fast states of the two-time-scale system defined in Eq. (5.1). We

start by introducing the following Lemma, which upper bounds the Rademacher complexity

in terms of the FNN parameters.

Lemma 5.4. (c.f. Theorem 2 in [46]) Given a class of scalar-valued functions HF
k , and

a neural network with depth d where, ∥Q1∥1,∞ ≤ BQ for all l = 1, ..., d and Assumptions

5.8–5.11 are satisfied, the following inequality holds for the Rademacher complexity:

RS(HF
k) ≤

2BX(BQ)d
√
d+ 1 + log (dx)
√
m

(5.29)

For a comprehensive and detailed proof of Lemma 5.4, interested readers may refer to

[46]. Applying the results derived and proven in [149], the following Lemma specifically

addresses the generalization error bound for the FNN model that predicts the fast states

166

using the slow states of the two-time-scale system defined in Eq. (5.1).

Lemma 5.5. Consider the general class of two-time-scale continuous-time nonlinear systems

described in Eq. (5.1) under the assumption that the slow and fast states are stable, and the

perturbation parameter ϵ is sufficiently small. An FNN satisfying Assumptions 5.8–5.11 is

constructed to predict the fast states using the slow states. Given Lr–Lipschitz loss functions

associated with the vector-valued FNN hypothesis class HF and a data set S consisting of m

i.i.d. data samples, the following inequality holds true with probability at least 1− δ over S,

for all t ∈ [tp, T], where tp is as defined in Theorem 5.1:

E[gF NN
t (z̆, z)] ≤ 1

m

m∑
i=1

gL(z̆i, zi) + 3
√

log(2
δ
)

2m +O

Lrdy

BX(BQ)d
√
d+ 1 + log(dx)
√
m

 (5.30)

Eq. (5.30) indicates that the generalization error bound of the FNN modeling the fast

subsystem depends on several factors, such as the number of training samples m, the upper

bound on the input vector BX , the complexity hypothesis class in terms of upper bound of

the weight matrices BQ, number of layers d, as well as the empirical loss (1
m

∑m
i=1 L(z̆i, zi)).

We emphasize that the actual fast state is denoted as z and the predicted fast state by

the FNN model is z̆. Therefore, the generalization error bound of Eq. (5.30) holds for all

t ∈ [tp, T], under the assumption that the slow and fast states are stable, and the perturbation

parameter ϵ is sufficiently small.

Now we will discuss the implementation of the FNN generalization error bound specif-

ically on the MSE loss function as a locally Lipschitz continuous loss function such as the

MSE is used to optimize the FNN weights and biases. The MSE loss function satisfies the

167

inequality of Eq. (5.26). Since the FNN model predicts the fast states of Eq. (5.1), the loss

function is computed over the actual and predicted fast states, z and z̆, respectively. More-

over, the expected loss of L is upper bounded by the following inequality with probability

at least 1− δ:

E[L(z̆, z)] ≤ 1
m

m∑
i=1

L(z̆i, zi) + 3
√

log(2
δ
)

2m +O

Lrdy

BX(BQ)d
√
d+ 1 + log(dx)
√
m

 (5.31)

Given that the MSE loss function L computes the error between the RNN output z and the

predicted RNN output z̆, then the upper bound on |z̆ − z| can be written as follows:

|z̆ − z| ≤

√√√√√√ 1
m

m∑
i=1

L(z̆i, zi) + 3
√

log(2
δ
)

2m +O

Lrdy

BX(BQ)d
√
d+ 1 + log(dx)
√
m

 (5.32)

5.4 Machine learning-based LMPC using an RNN that

approximates the slow subsystem

Having investigated generalization error bounds for neural networks modeling two-time-

scale systems, the rest of the manuscript focuses on the design and performance of LMPC

using RNN models with and without timescale decomposition. Specifically, the objective is

to design an RNN to predict only the slow state vector x, following the approach outlined

in Section 5.2.4, and to then incorporate the designed RNN model within an LMPC scheme

to show that it is sufficient to stabilize the full two-time-scale system of Eq. (5.1). In this

section, we will present a stability analysis for the proposed LMPC framework. For simplicity,

in this section, we will present the RNN model that predicts the slow state vector x, as a

168

continuous-time nonlinear system of the following form:

˙̂x = Fnn(x̂, u) := Ax̂+ ΘT ẑ (5.33)

where x̂ ∈ Rn is the RNN state vector and u ∈ Rq1 is the manipulated input vector.

The weight matrices are denoted as A and Θ. The diagonal coefficient matrix A has

negative diagonal entries. Θ is defined as Θ = [θ1, ..., θn] ∈ R(q1+n)×n with entries θi =

bi[wi1, ..., wi(q1+n)], i = 1, ..., n, given that wij represents the weight associated with the con-

nection between the ith neuron and the jth output, with i ranging from 1 to n and j ranging

from 1 to (q1 +n). The vector ẑ = [ẑ1, ..., ẑn, ẑn+1, ..., ẑn+q1] = [σ(x̂1)...σ(x̂n), u...uq1] ∈ Rn+q1

consists of both network states x̂ and inputs u. Additionally, a nonlinear activation function

σ(·) is applied to the network states x̂ when constructing the vector ẑ. It is worth mentioning

that the weight matrices and activation functions meet the requirements of Assumptions 5.5–

5.8. For simplicity, we assume a single-hidden-layer RNN model represented by Eq. (5.33),

which does not explicitly include bias terms. Nevertheless, it should be emphasized that the

results obtained in this section are not limited to single-hidden-layer RNN models, but can

be generalized to include deep RNN models that consist of multiple hidden layers.

5.4.1 Lyapunov-based control using an RNN model

Taking into account the RNN model designed to predict the values of the slow states,

we assume that there exists a stabilizing control law Φnn(x) ∈ U (e.g., a P-controller, a

Lyapunov-based controller) that can render the origin of the RNN model of Eq. (5.33)

169

asymptotically stable in an open neighborhood around the origin denoted as D̂. Hence,

there exists a continuously differentiable Lyapunov function V̂ : Rn → R≥0 that satisfies the

following inequalities:

â1(|x|) ≤ V̂ (x) ≤ â2(|x|) (5.34a)

∂V̂ (x)
∂x

Fnn(x,Φnn(x)) ≤ −â3(|x|) (5.34b)
∣∣∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣∣∣ ≤ â4(|x|) (5.34c)

where âi are class K functions for all x ∈ Rn ⊂ D̂. The Lyapunov function V̂ can be designed

using a quadratic formulation, which satisfies the required criteria, or, alternately, using

learning-based approaches as conducted using a linear parameter-varying (LPV) framework

in [152]. In the simulation example presented in our work below, a quadratic Lyapunov

function is used, and extensive open-loop and closed-loop simulations were conducted to

verify the asymptotic stability assumption is met. The Lyapunov level set that ensures

stability of the RNN model of is defined as Ωρ̂ := {x ∈ D̂ | V̂ (x) ≤ ρ̂}, where ρ̂ > 0. This

implies that the closed-loop stability region of the RNN model of Eq. (5.33) is denoted as Ωρ̂.

Moreover, there exist positive constants Mnn and Lnn such that the following inequalities

are satisfied for all x, x′ ∈ Ωρ̂ and u ∈ U :

|Fnn(x, u)| ≤Mnn (5.35a)

∣∣∣∣∣∣∂V̂ (x)
∂x

Fnn(x, u)− ∂V̂ (x′)
∂x

Fnn(x′, u)

∣∣∣∣∣∣ ≤ Lnn|x− x′| (5.35b)

170

The feedback controller u = Φnn(x) ∈ U can stabilize the dynamics of the slow subsystem

of Eq. (5.11) under a sufficiently small modeling error between the nominal slow subsystem

and the RNN model. This result is shown in the following proposition.

Proposition 5.1. Consider the RNN model of Eq. (5.33) that satisfies the stabilizability

conditions of Eq. (5.34) and is rendered asymptotically stable around the origin under the

control law u = Φnn(x) ∈ U for all x ∈ Ωρ̂. Then, the origin of the slow subsystem of

Eq. (5.11) is asymptotically stable if there exists a positive real number νm, where νm <

â3(|x|)/â4(|x|), such that the modeling error between the slow subsystem of Eq. (5.11) and

the RNN model of Eq. (5.33) (i.e., ν = |F (x, u)− Fnn(x, u)|) is upper bounded by νm for all

x ∈ Ωρ̂.

Proof. We follow the strategy outlined in [143] to prove Proposition 5.1. The main objective

is to show that, under the control law u = Φnn(x) ∈ U , the slow subsystem of Eq. (5.11) is

asymptotically stable around the origin for all x ∈ Ωρ̂ if Φnn(x) renders the RNN designed to

approximate the slow subsystem also asymptotically stable with a bounded modeling error

between the nominal slow subsystem and the RNN model. In other words, we show that

˙̂
V (x) ≤ 0 for the slow subsystem of Eq. (5.11) under the controller u = Φnn(x) ∈ U based on

the RNN model. We utilize the inequalities in Eqs. (5.34b) and (5.34c) and compute ˙̂
V (x)

171

as follows:
˙̂
V = ∂V̂ (x)

∂x
F (x,Φnn(x))

= ∂V̂

∂x
(Fnn(x,Φnn(x)) + F (x,Φnn(x))− Fnn(x,Φnn(x))

≤ −â3(|x|) + â4(|x|)(F (x,Φnn(x))− Fnn(x,Φnn(x)))

≤ −â3(|x|) + νmâ4(|x|)

(5.36)

By assigning νm < â3(|x|)
â4(|x|) , we get ˙̂

V (x) ≤ −ã3(|x|) ≤ 0 where ã3(|x|) = −â3(|x|)+νmâ4(|x|) >

0. Since â3 and â4 are known functions chosen in such a way as to ensure the above result

holds. To show that, if the general class K functions are chosen as â3 = a3|x| and â4 = a4|x|,

where a3 and a4 are constants, then νm = a3
a4

. Hence, we guarantee closed-loop stability of

the slow subsystem of Eq. (5.11) around the origin under the control law Φnn(x) ∈ U for all

x ∈ Ωρ̂.

The designed RNN model of Eq. (5.33) is incorporated into an LMPC scheme, where

the control actions computed by the LMPC are implemented in a sample-and-hold fashion.

Moreover, this sample-and-hold implementation of the LMPC control law u = Φnn(x) ∈ U

establishes certain properties. These properties will be studied in the following two propo-

sitions. Specifically, the following proposition shows that the error between the state of

the slow subsystem of Eq. (5.11) and the predicted state by the RNN model Eq. (5.33) is

bounded.

Proposition 5.2. Consider the RNN model of Eq. (5.33) and the slow subsystem of Eq. (5.11),

starting with the same initial condition x0 = x̂0 ∈ Ωρ̂. There exists a class K function fw(·)

172

and a positive constant κ such that the following inequalities are satisfied for all x, x̂ ∈ Ωρ̂:

|x(t)− x̂(t)| ≤ fw(t) := νm

Lx

(
eLxt − 1

)
(5.37a)

V̂ (x) ≤ V̂ (x̂) + â4(â−1
1 (ρ̂))|x− x̂|+ κ|x− x̂|2 (5.37b)

Proof. Taking into consideration that e(t) = x(t) − x̂(t) represent the error vector between

the state of the slow subsystem of Eq. (5.11) and the state of the RNN model of Eq. (5.33),

hence, the bound for the time-derivative of e(t) is given as follows:

|ė(t)| = |F (x, u)− Fnn(x̂, u)|

≤ |F (x, u)− F (x̂, u)|+ |F (x̂, u)− Fnn(x̂, u)|
(5.38)

Using Eq. (5.14b), for all x, x̂ ∈ Ωρ̂, the first term in Eq. (5.38) can be bounded as follows:

|F (x, u)− F (x̂, u)| ≤ Lx|x(t)− x̂(t)|

≤ Lx|x(t)− x̂(t)|
(5.39)

The term |F (x̂, u) − Fnn(x̂, u)| in Eq. (5.39) denotes the modeling error, and it is upper

bounded by νm for all x̂ ∈ Ωρ̂. Hence, the term ė(t) can be further bounded utilizing the

bound of the modeling error and the bound of Eq. (5.39), as follows:

|ė(t)| ≤ Lx|x(t)− x̂(t)|+ νm

≤ Lx|e(t)|+ νm

(5.40)

Taking into account the zero initial condition (i.e., e(0) = 0), we integrate the inequality of

173

Eq. (5.40) and obtain the following upper bound for the error vector for all x, x̂ ∈ Ωρ̂:

|e(t)| = |x(t)− x̂(t)| ≤ νm

Lx

(
eLxt − 1

)
(5.41)

Eq. (5.37b) can be derived using the Taylor series expansion of V̂ (x) around x̂ as follows,

for all x, x̂ ∈ Ωρ̂:

V̂ (x) ≤ V̂ (x̂) + ∂V̂ (x̂)
∂x

|x− x̂|+ κ|x− x̂|2 (5.42)

where κ is a positive real number. Furthermore, Eqs. (5.34a) and (5.34b) are used to further

upper bound V̂ (x) as follows:

V̂ (x) ≤ V̂ (x̂) + â4(â−1
1 (ρ̂))|x− x̂|+ κ|x− x̂|2 (5.43)

The following proposition demonstrates that the closed-loop state of the slow subsystem

described in Eq. (5.11) is maintained within the stability region Ωρ̂ at all times. Additionally,

utilizing the Lyapunov-based controller u = Φnn(x) ∈ U through sample-and-hold implemen-

tation, ensures that closed-loop state of the slow subsystem can be ultimately bounded within

a small region around the origin Ωρmin .

Proposition 5.3. (c.f Proposition 3 in [143]) Consider the slow subsystem of Eq. (5.11)

under the controller Φnn(x̂) ∈ U that satisfies the conditions of Eq. (5.34) and is implemented

in sample-and-hold fashion (i.e., Φnn(x̂(tk)),∀t ∈ [tk, tk+1), where tk+1 := tk +∆) to stabilize

the RNN model of Eq. (5.33). Then, there exist ϵw > 0, ∆ > 0 and ρ̂ > ρmin > ρnn > ρs that

174

satisfy

− â3(â−1
2 (ρs)) + LnnMnn∆ ≤ −ϵs (5.44a)

− ã3(â−1
2 (ρs)) + L

′

xMF ∆ ≤ −ϵw (5.44b)

and

ρnn := max{V̂
(
x̂(t+ ∆)

)
| x̂(t) ∈ Ωρs , u ∈ U} (5.45a)

ρmin ≥ ρnn +−â4(â−1
1 (ρ̂))fw(∆) + κ

(
fw(∆)

)2
(5.45b)

such that, for any x(tk) ∈ Ωρ̂\Ωρs, there exists a class KL function βx and a class K function

γ̄ such that the following inequality is satisfied:

|x(t)| ≤ βx(|x(0)|, t) + γ̄(ρmin) (5.46)

and the state x(t) of the nominal slow subsystem of Eq. (5.11) is bounded in Ωρ̂ for all times

and ultimately bounded in Ωρmin.

Proof. Assuming x(tk) = x̂(tk), the first part of establishing this proof involves showing that

V̂ (x̂) is decreasing under the control law u(t) = Φnn(x(tk)) ∈ U for t ∈ [tk, tk+1), where x(tk)

and x̂(tk) are the state of the slow subsystem of Eq. (5.11) and the state of the RNN model

of Eq. (5.33), respectively. The time-derivative of V̂ (x̂) for all t ∈ [tk, tk+1) is calculated as

follows:

175

˙̂
V (x̂(t)) = ∂V̂ (x̂(t))

∂x̂
Fnn(x̂(t),Φnn(x̂(tk)))

= ∂V̂ (x̂(tk))
∂x̂

Fnn

(
x̂(tk),Φnn(x̂(tk))

)
+ ∂V̂ (x̂(t))

∂x̂
Fnn

(
x̂(t),Φnn(x̂(tk))

)
− ∂V̂ (x̂(tk))

∂x̂
Fnn

(
x̂(tk),Φnn(x̂(tk))

)
(5.47)

Utilizing the inequalities in Eqs. (5.34a) and (5.34b), we further bound ˙̂
V (x̂(t)) as follows:

˙̂
V (x̂(t)) ≤− â3(â−1

2 (ρs)) + ∂V̂ (x̂(t))
∂x̂

Fnn(x̂(t),Φnn(x̂(tk)))

− ∂V̂ (x̂(tk))
∂x̂

Fnn(x̂(tk),Φnn(x̂(tk)))
(5.48)

Applying the Lipschitz inequalities in Eq. (5.35), we proceed with bounding ˙̂
V (x̂(t)) as

follows:

˙̂
V (x̂(t)) ≤− â3(â−1

2 (ρs)) + Lnn|x̂(t)− x̂(tk)|

≤ − â3(â−1
2 (ρs)) + LnnMnn∆

(5.49)

Therefore, if Eq. (5.44a) is satisfied, the following inequality holds for all x̂(tk) ∈ Ωρ̂\Ωρs and

t ∈ [tk, tk+1):

˙̂
V (x(t)) ≤ −ϵs (5.50)

Upon integrating the aforementioned differential equation over the time interval t ∈ [tk, tk+1),

it is derived that V̂ (x̂(tk+1)) ≤ V̂ (x̂(tk))− ϵs∆. Therefore, when Eq. (5.44a) is satisfied, this

leads to the fact that ˙̂
V (x(t)) is negative for any x̂(tk) ∈ Ωρ̂\Ωρs . As a result, utilizing the

control law u = Φnn(x̂), under sample-and-hold fashion, ensures that the closed-loop state

176

of the RNN model of Eq. (5.33) is bounded within the region Ωρ̂ and moves toward the

origin. Nevertheless, it should be observed that Eq. (5.50) may not hold true in cases where

x(tk) = x̂(tk) ∈ Ωρs , which indicated that the state x̂(tk) may leave the region Ωρs within

one sampling period. Hence, we introduce the region Ωρnn in Eq. (5.45a) to guarantee that

the closed-loop state x̂(tk) of the RNN model will be bounded in the region Ωρnn within

one sampling period, for all t ∈ [tk, tk+1), u ∈ U and x̂(tk) ∈ Ωρs . Consider the case where

x̂(tk+1) leaves the region Ωρs , then the controller u = Φnn

(
x(tk+1)

)
reactivates to derive the

states into the region Ωρs and Eq. (5.50) will be satisfied again at t = tk+1. Up to this point,

it can be concluded that the state of the RNN system of Eq. (5.33) is ultimately bounded

in Ωρnn for all x0 ∈ Ωρ̂.

The second part of this proof is to demonstrate that the controller u = Φnn(x) ∈ U ,

implemented in sample-and-hold fashion, effectively bounds the states of the slow subsystem

of Eq. (5.11) in Ωρ̂ and can ultimately derive the states to a small region around the origin.

This requires showing that, V̂ (x) for the slow subsystem of Eq. (5.11), is decreasing under the

control law u(t) = Φnn(x(tk)) for t ∈ [tk, tk+1) and x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs . The derivative

of V̂ (x(t)) with respect to time is computed as follows:

˙̂
V (x(t)) = ∂V̂ (x(t))

∂x
F (x(t),Φnn(x(tk)))

= ∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)))

+ ∂V̂ (x(t))
∂x

F (x(t),Φnn(x(tk)))

− ∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)))

(5.51)

177

Using the inequality in Eq. (5.36), which holds for all x ∈ Ωρ̂\Ωρs , the first term in Eq. (5.51)

can be further bounded as follows:

˙̂
V (x(t)) ≤− ã3(â−1

2 (ρs)) + ∂V̂ (x(t))
∂x

F (x(t),Φnn(x(tk)), ξ)

− ∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk)), 0)
(5.52)

where ã3(·) was previously defined in the proof of Proposition 5.1. By using the Lipschitz

condition stated in Eq. (5.14), we derive the following upper bound for ˙̂
V (x(t)):

˙̂
V (x(t)) ≤ã3(â−1

2 (ρs)) + L
′

x|x(t)− x(tk)|

≤ã3(â−1
2 (ρs)) + L

′

xMF ∆
(5.53)

Therefore, if Eq. (5.44b) holds true, the following inequality is satisfied for all x(tk) ∈ Ωρ̂\Ωρs

and for all t ∈ [tk, tk+1):

˙̂
V (x(t)) ≤ −ϵw (5.54)

By integrating the above differential equation over the time interval t ∈ [tk, tk+1) between

any two arbitrary points within the previous time interval, it can be shown that for all

x(tk) ∈ Ωρ̂\ΩρS
, the following results are obtained:

V̂ (x(tk+1)) ≤ V (x(tk))− ϵw∆ (5.55)

V̂ (x(t)) ≤ V̂ (x(tk)),∀t ∈ [tk, tk+1) (5.56)

Based on Eq. (5.54), it can be observed that ˙̂
V (x(t)) is negative for all x(tk) ∈ Ωρ̂\ΩρS

. As

a result, the state of the slow subsystem of Eq. (5.11) remains bounded within the region

178

Ωρ̂ continuously and can be ultimately driven towards the origin in each sampling period

through implementing the control law u = Φnn(x). In addition, if x(tk) ∈ Ωρs , the state of

the RNN model of Eq. (5.33) is bounded within the region Ωρnn for one sampling period,

this outcome has been demonstrated in the first part of the proof. Taking onto account the

bounded modeling error between the state of the RNN, as described in Eq. (5.33), and the

state of the slow subsystem of Eq. (5.11), a compact set Ωρmin ⊃ Ωρnn exists and satisfies

Eq. (5.45b). The set Ωρmin is introduced to ensure that the state of the slow subsystem of

Eq. (5.11) is bounded within the region Ωρmin during one sampling period, provided that the

state of the RNN represented by Eq. (5.33) is bounded within the region Ωρnn . In the case

where the state x(t) enters the set Ωρmin\ΩρS
, it has been shown that Eq. (5.56) is satisfied.

Therefore, under the control law u = Φnn(x), the state x(t) will be driven towards the origin

in the next sampling period, and ultimately bounding the state of the slow subsystem within

a small region around the origin Ωρmin . Hence, considering the continuity property of the

Lyapunov function V̂ , it follows that there exists a class KL function βx and a class K

function γ̄ such that if x0 ∈ Ωρ̂, then x(t) ∈ Ωρ̂, for all t ≤ t0:

|x(t)| ≤ βx(|x(0)|, t) + γ̄(ρmin) (5.57)

179

5.4.2 Machine learning-based LMPC formulation

In this subsection, we introduce the machine-learning based LMPC formulation that

utilizes the designed RNN model of Eq. (5.33) to predict future states over a certain future

horizon. Furthermore, the LMPC is essentially an optimization problem consisting of an

objective function and a number of constraints. This optimization problem is solved repeat-

edly to compute the optimal input trajectory. The following shows the formulation of the

Machine learning-based LMPC optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk

LMP C(x̃(t), u(t))dt (5.58a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (5.58b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (5.58c)

x̃(tk) = x(tk) (5.58d)

˙̂
V (x(tk), u) ≤ ˙̂

V (x(tk),Φnn(x(tk)), if x(tk) ∈ Ωρ̂\Ωρnn (5.58e)

V̂ (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (5.58f)

where the predicted slow state trajectory is denoted as x̃. The set of piece-wise constant

functions with period ∆ is denoted as S(∆), and the number of sampling periods in the

prediction horizon is denoted by N . The optimal control action u∗(t) is calculated by re-

peatedly solving the machine learning-based LMPC optimization problem over the entire

prediction horizon t ∈ [tk, tk+N). Then, the optimal control action u∗(tk) computed at the

first sampling period is transmitted by the controller to be applied to the process. Sub-

180

sequently, the resulting real-time state, x(tk), is fed back to the machine learning-based

LMPC optimization problem to compute the optimal input trajectory for the next sampling

time. The optimization problem aims to minimize the time-integral of LMP C(x̃(t), u(t)) over

the prediction horizon, this is represented in the cost function of Eq. (5.58a). As for the

constraints of the optimization problem, the first constraint demonstrated in Eq. (5.58b) is

essentially the RNN model utilized to approximate the states of the slow subsystem dynam-

ics. Eq. (5.58c) represents the input constraints that may be applied to the process over the

entire prediction horizon. The initial condition needed to solve Eq. (5.58b), is basically the

slow state measurement at t = tk, this is specified in the constraint of Eq. (5.58d). In the

case where, x(tk) ∈ Ωρ̂\Ωρnn , the constraint Eq. (5.58e) ensures that the closed-loop state

converges towards the origin. Furthermore, if the state x(tk) enters the region Ωρnn , then

it is necessary to guarantee that the predicted states by the RNN model remain bounded

within the region Ωρnn throughout the entire prediction horizon. This is accomplished by

employing Eq. (5.58f).

5.4.3 Closed-loop stability

Assuming certain conditions are met, the following theorem establishes the closed-loop

stability of a singularly perturbed system described in Eq. (5.1) when the machine learning-

based LMPC of Eq. (5.58) is implemented.

Theorem 5.2. Consider the singularly perturbed system of Eq. (5.1) in closed loop with

the optimal control action u∗ calculated by the machine learning-based LMPC of Eq. (5.58)

181

based on the controller Φnn(x) that meets the conditions of Eq. (5.34). Additionally, as-

suming that Propositions 5.1–5.3 and Assumptions 5.1 and 5.4 hold true, then there exist

class KL functions βx,βz, a pair of positive real numbers (δ, d) and ϵ∗ > 0 such that, if

max{|x(0), |z(0)|} ≤ δ and ϵ ∈ (0, ϵ∗], then, for all t ≥ 0,

|x(t)| ≤ βx

(
|x(0)|, t

)
+ γ̄(ρmin) + d (5.59)

|z(t)| ≤ βz

(
|z(0)|, t

ϵ

)
+ d (5.60)

Proof. We follow the proof analysis as in [143]. Moreover, we consider that the By substitut-

ing the optimal control action u∗ into Eq. (5.1), the closed-loop system can be represented

as follows:

ẋ = f1(x, z, u∗, ϵ) (5.61a)

ϵż = f2(x, z, ϵ) (5.61b)

We set ϵ = 0 and obtain the following,

ẋ = f1(x, z, u∗, 0) (5.62a)

0 = f2(x, z, 0) (5.62b)

where the assumption that the error between z and z̄ is not greater than O(ϵ) enabled us to

simplify the analysis by approximating z̄ as z. By solving Eq. (5.62b) for z, we get a unique,

isolated root z = f̄(x). We substitute the root into Eq. (5.62a) and we get the following for

182

the reduced order slow subsystem,

ẋ = f1(x, f̄2(x), u∗, 0) (5.63)

By observing the LMPC equation of Eq. (5.58), in the case where x(tk) ∈ Ωρ̂\Ωρnn , Eq. (5.58e)

is activated such that the Lyapunov function V̂ under the calculated control law u is de-

creased. According to the finding in Proposition 5.3 and considering a sufficiently small

modeling error, the state of the slow subsystem of Eq. (5.61a) will gradually converge to the

origin and enter the region Ωρnn within a finite number of sampling time steps. Eq. (5.58f) is

activated once the state x(tk) enters the region Ωρnn , where it ensures that the predicted state

is bounded within Ωρnn through the whole prediction horizon. Additionally, by ensuring that

the modeling error and the sampling time are sufficiently small, Proposition 5.3 establishes

that the actual state of Eq. (5.61a) can be maintained within a slightly expanded set Ωρmin
,

encompassing Ωρnn . Hence, LMPC guarantees that, for any initial state x0 ∈ Ωρ̂, the state

x(t) of the closed-loop slow subsystem described by Eq. (5.61a) is maintained bounded within

the region Ωρ̂ at all times, and fulfills the bound of Eq. (5.57) that has been established in

Proposition 5.3.

Additionally, by introducing a fast timescale τ = t/ϵ, a new coordinate ¯̄z = z − f̄2(x)

and considering ϵ = 0, the closed-loop fast subsystem is given by:

d¯̄z
dτ

= f2(x, ¯̄z + f̄2(x), 0) (5.64)

According to Assumption 5.4, global asymptotic stability is achieved for the origin of the

183

closed-loop fast subsystem of Eq. (5.64), satisfying Eq. (5.12) for any ¯̄z(0) ∈ Rp. As a result,

the closed-loop system of Eq. (5.61) meets all the assumptions required for Theorem 1 in

[153] to hold true. Hence, there exist class KL functions βx,βz, a pair of positive real numbers

(δ, d) and there exists ϵ∗ > 0 such that if max{|x(0), |z(0)|} ≤ δ and ϵ ∈ (0, ϵ∗], such that the

closed-loop states of the slow and fast systems are bounded by Eqs. (5.59) and (5.60).

Remark 5.3. It is possible to define the general class of two-time-scale systems with an

additional input associated to the fast subsystem as follows:

ẋ = f1(x, z, u, ϵ) (5.65a)

ϵż = f2(x, z, u2, ϵ) (5.65b)

where u2 ∈ Rq2 is the bounded manipulated input vector associated with the fast subsystem.

The input vector u2 is constrained by u2 ∈ U2 := {|ui| ≤ u2max,i
, i = 1, ..., q2}. However,

if there exists a stabilizing control law u2 = hstable(x, z) that stabilizes the dynamics of the

fast subsystem, then the general class of two-time-scale systems defined by Eq. (5.65) can

be reduced to the class of systems presented in Eq. (5.1), which is the primary focus of this

work. Furthermore, there are relevant works that have addressed the stability analysis of

classes of systems defined as Eq. (5.65), they share similar concepts but incorporate certain

modifications, interested readers my refer to [141] to further explore this subject.

184

5.5 Application to a chemical process example

In this section, we will apply the proposed reduced-order machine learning strategy to a

chemical process example. Specifically, we will build two ML models—a reduced-order ML

model to approximate the slow subsystem, and another ML model to capture the dynamics

of the full two-time-scale system. Subsequently, each ML model will be incorporated into

an LMPC scheme, and the performance of the controllers will be compared in terms of

closed-loop properties and computational efficiencies.

We consider a perfectly-mixed, non-isothermal CSTR in which an irreversible and en-

dothermic reaction that transforms chemical A to product B (A → B) occurs. Fig. 5.3

depicts the CSTR, where CA represents the concentration of chemical A, and Tr represents

the temperature of the reactor contents. CA0 denotes the inlet molar concentration of chem-

ical A, which is fed into the reactor at flow rate F and temperature TA0. Assuming that the

vessel maintains a constant holdup, Vr denotes the volume of liquid present in the reactor.

Due to the occurrence of an endothermic reaction within the reactor, a heating jacket with

volume Vj is used to provide the energy as required. Tj0 is the inlet temperature of the heat

transfer fluid provided to the jacket with a flow rate Fj. The reactor contents and the heat

transfer fluid maintain constant densities, denoted as ρm and ρj, respectively. In addition,

they both have constant heat capacities, denoted as cp,m and cp,j, respectively. The enthalpy

of the reaction is ∆Hr, the heat transfer coefficient is U , and the heat transfer contact area

between the reactor and the jacket is Ar. Given that k0 is the pre-exponential constant, R is

the ideal gas constant, and E is the activation energy of the reaction, the time-varying rate

185

constant of the reaction is denoted by k and is given by the following equation:

k = k0 exp
(
−E
RTr

)
(5.66)

Figure 5.3: The continuous-stirred tank reactor with jacket.

The first-principles equations of the CSTR are described by the following dynamic

material and energy balance equations:

Vr
dCA

dt = Fr(CA0 − CA)− k0 exp
(
−E
RTr

)
CAVr (5.67a)

Vr
dTr

dt = Fr(TA0 − Tr) + −∆Hr

ρmCp,m

k0 exp
(
−E
RTr

)
CAVr + UAr

ρmCp,m

(Tj − Tr) (5.67b)

Vj
dTj

dt = Fj(Tj0 − Tj)−
UAr

ρjCp,j

(Tj − Tr) (5.67c)

where the values of the process parameters are enlisted in Table 5.1. Additionally, we

consider the constant ϵ = Vj

Vr
to be the singular perturbation parameter. Hence, the sys-

186

tem of Eq. (5.67) can be written in the standard singularly perturbed form of Eq. (5.1),

which implies that the concentration of chemical A (CA) and the temperature of the reactor

(Tr) are the slow states, whereas the temperature of the heating jacket (Tj) can be consid-

ered as the fast state. The input of the system of Eq. (5.67) is the feed concentration of

chemical A (CA0). The control objective is to drive the system to its stable steady state

(CAs, Trs, Tjs) = (2.54 kmol m−3, 274.4 K, 303.3 K), corresponding to the steady-state

input value of CA0s = 3.75 kmol m−3, while the input is permitted to vary within the range

∆CA0 = [−3.5, 3.5] kmol m−3. In order to shift the steady state of the system of Eq. (5.67)

to the origin, we express the states and the input in terms of deviation variables and rewrite

the system of Eq. (5.67). Specifically, the deviation variables are defined as follows:

∆CA = CA − CAs (5.68a)

∆Tr = Tr − Trs (5.68b)

∆Tj = Tj − Tjs (5.68c)

∆CA0 = CA0 − CA0s (5.68d)

Therefore, to write the CSTR system of Eq. (5.67) in the standard form of Eq. (5.1), we

define xT = [∆CA ∆Tr], z = ∆Tj and the input u = ∆CA0. The explicit Euler method

is utilized to simulate the CSTR system, i.e., Eq. (5.67) is numerically integrated with a

sufficiently small time step hc = 10−4 h. The open-source software package IPOPT [86] is

employed to solve the ML-based LMPC optimization problem of Eq. (5.58), with a sampling

time ∆ = 0.03 h.

187

Table 5.1: Notation and parameter values of the CSTR.

Vr = 1.0 m3 E = 8.0× 103 kcal kg−1

Vj = 0.08 m3 U = 1000.0 kcalh−1m−2K−1

Ar = 6.0 m3 k0 = 3.36× 106h−1

CA0s = 3.75 kmol m−3 ρm = 900.0 kg m−3

CAs = 2.54 kmol m−3 ρj = 800.0 kg m−3

R = 1.987 kcal kmol−1K−1 cp,m = 0.231 kcal kg−1K−1

Fr = 3.0 m3h−1 cp,j = 0.200 kcal kg−1K−1

Fj = 20.0 m3h−1 ∆Hr = 5.4× 104 kcal mol−1

Trs = 274.4 K Tj0 = 357.5 K
Tjs = 303.3 K TA0 = 310.0 K

5.5.1 Data generation and RNN models development

The first step in building the RNN models is to generate a comprehensive data set

that captures the dynamics of the system of Eq. (5.67). In order to implement the ex-

plicit Euler algorithm, we first need to initialize the process model using a set of initial

conditions (CA(0), Tr(0), Tj(0)), where CA(0) ∈ [0, 9] mol/m3, Tr(0) ∈ [280, 370] K and

Tj(0) ∈ [300, 390] K. We conduct open-loop simulations by integrating the CSTR system

defined by Eq. (5.67) using a sufficiently small time step hc form 106 random initial condi-

tions within the specified ranges and applying random input signals CA0 ∈ [0.5, 7.5] mol/m3

over a period of one sampling period ∆, which yields a data set of 106 trajectories of length

equal to ∆. The data set is then divided into three sets—training, validation and testing.

The training of the models is performed using the open-source library Keras [5]. The first

RNN model is designed such that it predicts the dynamics of the full two-time-scale system

of Eq. (5.67) (i.e, it predicts the dynamics of the slow and fast states). In other words,

it utilizes the current state measurements x(tk), z(tk), and the manipulated input for the

subsequent sampling period u(t) ∈ [tk, tk+1) to predict the future slow and fast state mea-

188

surements of x(t) and z(t) ∀t ∈ [tk, tk+1]. For simplicity, we will denote the model that

predicts the dynamics of the full two-time-scale system of Eq. (5.67) as RNNF , where the

subscript “F” denotes “full” and not “fast”. This model is designed using a single layer of 20

long short-term memory recurrent neural network (LSTM-RNN) units, and the validation

and testing errors achieved were 1.434 × 10−6 and 1.432 × 10−6, respectively. In addition,

the total number of learning parameters for training this model is 2063. We note that the

network was designed in a step-wise manner. Initially, we started with a simple structure,

consisting of a single layer network with one LSTM-RNN unit, but the validation error was

high. Gradually, we increased the network’s complexity by adding more LSTM-RNN units.

This progression was continued until we achieved a satisfactory level of the validation loss. In

this particular case, the optimal outcome was achieved using a single layer network with 20

LSTM-RNN units. Further increasing the number of LSTM-RNN units beyond 20 resulted

in an increase in the validation loss. Therefore, RNNF is constructed using 20 LSTM-RNN

units. On the other hand, the second RNN, denoted as RNNS, is designed such that it pre-

dicts the dynamics of only the slow states of Eq. (5.67). Specifically, this RNN utilizes the

current slow state measurement x(tk) and the manipulated input for the subsequent sampling

period u(t) ∈ [tk, tk+1) to predict the future slow state measurements of x(t) ∀t ∈ [tk, tk+1].

This model is designed using a single layer of 5 LSTM-RNN units corresponding to a total

of 192 learning parameters following the same step-wise manner strategy used to design the

RNNF , with a validation error of 2.67× 10−4 and a testing error of 2.68× 10−4. The results

of both models are summarized in Table 5.2. The low testing error for both models indicates

that the modeling error, as defined in Proposition 5.1, is sufficiently small over a wide range

189

of open-loop trajectories. Due to having fewer learning parameters, the RNNS model is

significantly less complex compared to the RNNF model, possibly leading to a lower com-

putational cost and making it a more practical choice for control applications. Therefore,

our aim is to investigate whether the LMPC scheme utilizing RNNS can meet the desired

control objective sufficiently more efficiently compared to an LMPC scheme using RNNF ,

which will be demonstrated via closed-loop simulations of the CSTR of Eq. (5.67) under

both LMPC designs. However, before proceeding, it is essential to define the Lyapunov and

objective functions used in both LMPC schemes. For the RNNF -based LMPC, since the

controller design is based on the dynamics of the full two-time-scale system of Eq. (5.67),

the Lyapunov function is defined as:

VF (x, z) =

x− xs

z − zs

T

PF

x− xs

z − zs

 (5.69)

where the matrix PF is given by

PF =

91.6 2.9 4.3

2.9 0.8 0.2

4.3 0.2 0.7

The objective function for the RNNF -based LMPC is given by LF (x, z, u) =
∣∣∣x∣∣∣2

Q1F

+
∣∣∣z∣∣∣2

Q2F

+

∣∣∣u∣∣∣2
Q3F

, where Q1F =

20 0

0 0.05

, Q2F = 6 and Q3F = 0.1. On the other hand, the RNNS-

based LMPC is designed based on the dynamics of the slow subsystem of the CSTR, specif-

ically Eqs. (5.67a) and (5.67b) expressed in the standard form. Therefore, the Lyapunov

190

function of the slow-subsystem used in the RNNS-based LMPC is given by:

V (x) = (x− xs)TP (x− xs) (5.70)

where the matrix P is defined as

P =

84.9 1.2

1.2 0.4

The objective function is given by L(x, u) =
∣∣∣x∣∣∣2

Q1
+
∣∣∣u∣∣∣2

Q2
where, Q1 =

20 0

0 0.05

 and

Q2 = 0.05.

Remark 5.4. In this particular application, we used long short-term memory recurrent

neural network (LSTM-RNN) units to construct the models. LSTM-RNNs are a special type

of RNNs known for their ability to overcome the common problem of vanishing/exploding

gradients in RNNs, resulting in generally better performance. For more information about

LSTM-RNNs, interested readers may refer to [58]. However, we can always utilize classical

RNNs that are well-suited for this particular application by choosing appropriate structures

and carefully tuning hyperparameters to obtain the desired objective as well as an acceptable

level of performance.

5.5.2 Simulation results

In this subsection, we will carry out closed-loop simulations of the CSTR system de-

scribed by Eq. (5.67) under the two LMPC schemes, one with each RNN model. We first

establish the ability of both LMPCs to achieve the control objective adequately compared

191

Table 5.2: Specifications of the constructed recurrent neural network models.

RNN model RNNF RNNS

Number of units used 20 5

Testing error 1.432× 10−6 2.68× 10−4

Validation error 1.434× 10−6 2.67× 10−4

Number of learning parameters 2063 192

to LMPCs that utilize the respective first-principles systems as their process models. Sub-

sequently, we compare the RNN-based LMPCs to each other in terms of closed-loop perfor-

mance and also the computational time required for the simulations.

To establish the satisfactory performance of both RNN-based LMPCs, we compare their

closed-loop performance to first-principles-based LMPCs, with the latter being the baseline

for the best possible performance that can be achieved under LMPC. Specifically, the LMPC

of Eq. (5.58) is considered in two scenarios, with the process model of Eq. (5.58e) being

different between each scenario:

• Scenario 1: The LMPC utilizing RNNF as the process model is compared to an LMPC

employing the first-principles model of Eq. (5.67), denoted as FPF , as its process model.

• Scenario 2: The LMPC utilizing RNNS as the process model is compared to an LMPC

employing the first-principles slow-subsystem of Eqs. (5.67a) and (5.67b), denoted as

FPS, as its process model. In this case, for the first-principles-based LMPC, we note

that the full CSTR system of Eq. (5.67) is integrated but only the slow states CA and

Tr from Eqs. (5.67a) and (5.67b) are used in calculating the LMPC cost function of

192

Eq. (5.58a) and the Lyapunov function V .

For both scenarios, we start the simulations from the initial condition ICmain = (∆CA(0),

∆Tr(0),∆Tj(0)) = (1, 30, 40). The LMPC prediction horizon is set to N = 3, while the

remaining controller parameters were described in Section 5.5.1. The state and input trajec-

tories under the LMPCs of scenario 1 and 2 are shown in Fig. 5.4 and Fig. 5.5, respectively.

To compare the performance of the different LMPCs quantitatively, the time-integral of the

cost function of the LMPC,
∫ tf

t=0 L(x(τ), u(τ)) dτ , is calculated over the entire simulation

duration, tf = 3 h. For scenario 1, the cost function values are 3458 and 3485 for the FPF -

based LMPC and the RNNF -based LMPC, respectively, while, for scenario 2, the values of

the cost function are 176 and 179 for the FPS-based LMPC and the RNNS-based LMPC,

respectively. For both scenarios, we notice that the value of the cost function when utilizing

the corresponding RNN model closely aligns with that achieved when employing the respec-

tive first-principles model, demonstrating the reliable predictive performance of the designed

RNN models and their ability to drive the system to the steady-state when incorporated

into an LMPC.

Next, we demonstrate the computational efficiency of the RNNS-based LMPC due to

its lower complexity while still achieving the desired controller performance. For ICmain, the

computational time for the RNNF -based LMPC shown in Fig. 5.4 is 5578 sec, whereas, for

the RNNS-based LMPC shown in Fig. 5.5, it is significantly lower at 2170 sec, which is

61% lower. This substantial difference in computational time can make the RNNS a more

practical choice for real-time application of MPC, where computations must be completed

193

within a sampling period to be sent to the actuator. Hence, to rigorously investigate the

impact of integrating each of RNNF and RNNS with an LMPC framework in terms of sta-

bility and computational demand, we conduct closed-loop simulations from several different

initial conditions in addition to ICmain.

The initial conditions chosen for further investigation are outlined in Table 5.3. Ten

different initial conditions (ICi where i = 1, ..., 10) within the operating region are selected,

along with ICmain. For each initial condition, we simulate the CSTR system described in

Eq. (5.67) under the RNNF -based LMPC as well as the RNNS-based LMPC. The state

and input profiles under each LMPC for 4 representative initial conditions are depicted in

Figs. 5.6 to 5.9, which indicate that both LMPC schemes successfully drive the process

of Eq. (5.67) to its steady state. The closed-loop behavior were similar for the remaining 6

initial conditions in terms of convergence to the steady state. Additionally, Table 5.3 provides

the computational times required, in terms of CPU time, for the entire simulation duration

of tf = 3 h when applying either LMPC scheme for the 11 different initial conditions. For

all the tested initial conditions, the computational time required to execute the RNNS-

based LMPC is less than that required for the RNNF -based LMPC. Among all the initial

conditions in Table 5.3, the largest relative difference in computational time is observed

for IC3, with a percentage difference of 92% between the two LMPC schemes. Hence,

the incorporation of the RNNS in the LMPC framework has been demonstrated to be

more practical and computationally efficient compared to employing the RNNF , without

compromising on stability and closed-loop performance.

The computational time of an MPC optimization problem can be influenced by several

194

factors. As mentioned in [154], MPC computational times are generally affected by the hori-

zon length N , the number of the constraints in the MPC optimization problem, as well as the

number of states and control actions of the system. The computational time is also directly

related to the complexity of the process model. Hence, given the lower computational times

across all 11 initial conditions tested, incorporating RNNS into an LMPC framework is a

more practical approach compared to the use of RNNF . In the study of [155], it is observed

that the CPU time of the IPOPT optimization problem increases as the complexity of the

problem increases. Additionally, several works have discussed the computational complexity

evaluation of neural networks. For instance, the work of [156] offers a comprehensive and

systematic analysis for quantifying and comparing the computational complexity of neural

network layers. The work proposes and computes three computational metrics per layer

for different types of neural networks and presents the exact mathematical expressions and

derivations, providing a deep understanding of various networks’ complexities. Upon ana-

lyzing the results derived by [156], it becomes apparent that a neural network’s complexity

is proportional to its hyperparameters, for example, factors like the number of neurons, the

number of hidden units, the input time sequence size, the number of output neurons and

other parameters associated to the structure, size and design of the network, all of which

affect the complexity and performance of a network, as well as the time required to solve

the ML-based MPC optimization problem. As RNNS consisted of only 5 LSTM-RNN units,

while RNNF consisted of 20 LSTM-RNN units, the complexity of RNNF is much higher than

that of RNNS, leading to a correspondingly complex MPC optimization problem. Hence,

over the entire simulation duration of tf = 3 h, the total CPU time required to solve all

195

100 MPC optimization problems over the 100 sampling periods is significantly less for the

RNNS-based LMPC than the RNNF -based LMPC.

Remark 5.5. Although the state and input trajectories of Fig. 5.6 have not completely settled,

the process is stabilized under both the RNNF -based LMPC and the RNNS-based LMPC.

However, the process requires to be simulated for a longer duration, exceeding 3 h, for the

states and input to ultimately converge to their steady state values and remain close to the

origin. The reason for limiting the simulation time is to ensure fair and clear comparisons

between the computational times for both controllers from various initial conditions as listed

in Table 5.3.

Remark 5.6. In this particular application, RNNS is designed such that it utilizes the

current slow state measurement and the manipulated input for the next sampling period. As

a result, the output of RNNS will be the predicted future slow states x for only one sampling

period ahead (1∆). Consequently, in this application, since the prediction horizon is chosen

to be an integer multiple of the sampling time ∆ (i.e., N = 3 implies that tk+N = tk + 3∆

in Eq. (5.58a)), based on the design of RNNS, RNNS is required to be invoked at least

three times to be able to make predictions for the entire prediction horizon. Additionally, an

alternative method involves designing an RNN model, denoted as RNNnew, with the same

goal of predicting the slow states. However, RNNnew utilizes not only the current slow state

measurement and the manipulated input for the next sampling period, but also the current

fast state measurement to predict the future slow states one sampling period ∆ ahead, i.e.,

x(tk+1). To obtain predictions for the entire prediction horizon (N = 3), an FNN takes as

196

its input the output of RNNnew and predicts the fast state z at the next sampling period,

i.e., the FNN predicts z(tk+1) from x(tk+1), following the design described in Section 5.2.5.

Subsequently, for the next sampling period, the outputs of both RNNnew and the FNN are

given as inputs to RNNnew, enabling it to predict the slow states x(tk+2) for the next sampling

period in the prediction horizon.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0

C A
−
C A

s(k
m
ol
/m

3)

FPF− based LMPC
RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
8

16
24
32
40

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

−3
−2
−1
0
1

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 5.4: States and input trajectories of the CSTR under the Lyapunov based MPC using
the first-principles model of the full process (FPF -based LMPC, blue line), and the RNNF

(RNNF -based LMPC, red dashed line).

197

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0

C A
−
C A

s(k
m
ol
/m

3)

FPS− based LMPC
RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
8

16
24
32
40

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

−3.2
−2.4
−1.6
−0.8
0.0

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 5.5: States and input trajectories of the CSTR under the Lyapunov based MPC
using the first-principles model of the slow-subsystem (FPS-based LMPC, blue line), and
the RNNS (RNNS-based LMPC, red dashed line).

198

Table 5.3: Computational times for the RNNF -based LMPC and the RNNS-based LMPC
over the simulation duration of tf = 3 h starting from various initial conditions within the
operating region.

Index Initial condition Computational time (sec)

(∆CA(0),∆Tr(0),∆Tj(0)) RNNF -based LMPC RNNS-based LMPC

ICmain (1, 30, 40) 5578 2170

IC1 (–1, 50, 40) 16,059 1807

IC2 (–1, -10, –3) 4801 2667

IC3 (–3, 30, 5) 31,884 2417

IC4 (–2, –10, 100) 17,896 1921

IC5 (1, 90, 10) 6078 1990

IC6 (1, 20, 60) 5795 2404

IC7 (3, –6, 20) 21,231 2411

IC8 (1, 50, 50) 5161 2225

IC9 (–2, 30, 60) 10,275 2194

IC10 (–1, 10, 80) 18,146 2106

199

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−3.0
−2.4
−1.8
−1.2
−0.6
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−3.0
−2.4
−1.8
−1.2
−0.6
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

10
20
30
40

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

10
20
30
40

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (a)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (b)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 5.6: Considering the initial condition IC3 = (−3, 30, 5) (a) illustrates the time-varying
profiles of the states and the input under RNNF -based LMPC (solid line), while (b) shows
the time-varying profiles of the states and the input under RNNS-based LMPC (dashed
line).

200

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2.0
−1.6
−1.2
−0.8
−0.4
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2.0
−1.6
−1.2
−0.8
−0.4
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−8
−4
0
4
8

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−8
−4
0
4
8

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20
40
60
80

100

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20
40
60
80

100

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (a)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (b)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 5.7: Considering the initial condition IC4 = (−2,−10, 100) (a) illustrates the time-
varying profiles of the states and the input under RNNF -based LMPC (solid line), while
(b) shows the time-varying profiles of the states and the input under RNNS-based LMPC
(dashed line).

201

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0

C A
−
C A

s(k
m
ol
/m

3)

RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0

C A
−
C A

s(k
m
ol
/m

3)

RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20
40
60
80

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20
40
60
80

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (a)

−3.0
−1.5
0.0
1.5
3.0

C A
0
−
C A

0s
(k
m
ol
/m

3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (b)

−3.2
−2.4
−1.6
−0.8
0.0

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 5.8: Considering the initial condition IC5 = (1, 90, 10) (a) illustrates the time-varying
profiles of the states and the input under RNNF -based LMPC (solid line), while (b) shows
the time-varying profiles of the states and the input under RNNS-based LMPC (dashed
line).

202

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0
−0.8
−0.6
−0.4
−0.2
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0
−0.8
−0.6
−0.4
−0.2
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
2.5
5.0
7.5

10.0

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
2.5
5.0
7.5

10.0

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

15
30
45
60
75

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

15
30
45
60
75

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (a)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (b)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 5.9: Considering the initial condition IC10 = (−1, 10, 80) (a) illustrates the time-
varying profiles of the states and the input under RNNF -based LMPC (solid line), while
(b) shows the time-varying profiles of the states and the input under RNNS-based LMPC
(dashed line).

203

Chapter 6

Conclusion

This dissertation discusses many advancements within the development of machine

learning-based MPC frameworks to achieve closed-loop stability, enhance the process perfor-

mance, and tackle challenges associated with complex nonlinear systems. First, the disser-

tation investigated machine learning-based model predictive control of time-delay systems,

proposing a predictor methodology to compensate the effect of input delays, Next general-

ization error bounds were derived for different types of machine learning models using the

theory of statistical machine learning. Moreover, a comprehensive study was conducted on

neural network models to model two-time-scale systems, including an investigation of the

generalization error bounds for these models.

In Chapter 2, we considered a nonlinear time-delay system expressed using nonlinear

differential difference equations, and we approximated it with a perturbed nonlinear system

with bounded perturbations. First, we introduced Long Short Term Memory Recurrent

Neural Networks (LSTMs) to model the system dynamics in the absence of time delays and

204

used this LSTM model to construct an LSTM-based MPC. In the presence of small state

delays, we established closed-loop stability under the LSTM-based MPC. Subsequently, the

LSTM network was used to develop a closed-loop LSTM-based predictor, that compensated

for the effect of input time-delays. Finally, we applied the proposed control schemes to a

chemical reactor example with time-delays and demonstrated their ability to stabilize the

closed-loop system under small and large state and input time-delays.

In Chapter 3, we developed machine-learning-based predictive control schemes for

nonlinear systems subject to stochastic disturbances with unbounded variation and bounded

disturbances, respectively. We first derived a generalization error bound for the RNN models

developed for the nominal system using the Rademacher complexity method from statistical

learning theory. Then, we established system stability results for the uncertain system with

unknown disturbances in a bounded manner. With regards to the uncertain system with

stochastic disturbances under RNN-MPC, we accounted for the distribution information of

disturbances, and derived the probabilistic closed-loop stability properties. Through the

simulation of a chemical reactor example, we demonstrated that the training data sample

size affects the RNN generalization performance, and closed-loop stability for the MPC using

RNN models.

In Chapter 4, we used the Rademacher complexity approach for vector-valued func-

tions to create an upper bound for the generalization error of two classes of RNN models—

partially-connected and fully-connected—and LSTM networks. For the partially-connected

RNN, theoretical results connecting a RNN model’s accuracy to its architecture were es-

tablished and proved, as for the latter a generalizability bound for this specific structure of

205

RNNs. Open-loop simulations utilizing a complex, nonlinear chemical process was performed

to demonstrate the superior model accuracy of the partially-connected RNN when compared

to the fully-connected RNN across various testing data sets. Additionally, the developed

partially-connected RNN model was then utilized in the design of a Lyapunov-based MPC.

Through several closed-loop simulations, it was shown that adopting the partially-connected

RNN model yielded smoother state trajectories with lower loss function values (i.e., smaller

mean squared errors), and the applied inputs suffered less from oscillatory behavior.

In Chapter 5, we introduced a general class of nonlinear two-time-scale systems where

the two distinct time scales can be decoupled into the slow subsystem and the fast sub-

system dynamics using singular perturbation analysis. Machine learning was employed to

approximate the dynamics of both subsystems. In particular, an RNN was used to predict

the slow state vector or, in other words, to approximate the dynamics of the slow subsys-

tem, while an FNN was used to approximate the dynamics of the fast subsystem. To draw

inferences on the performance of the neural network models on unseen data, generalization

error bounds for both neural networks when modeling two-time-scale systems were derived.

Subsequently, the RNN modeling the slow states (RNNS) was incorporated into an LMPC

framework, and sufficient conditions to guarantee closed-loop stability were derived under

the sample-and-hold implementation of the LMPC. Finally, a chemical process example was

used to demonstrate the adequacy of the LMPC using an RNN to predict the slow states

when compared to first-principles-based LMPC and also an LMPC using an RNN to model

the full two-time-scale system. Through closed-loop simulations, while both RNN-based LM-

PCs were able to achieve the desired control objective of driving the system to the steady

206

state, due to the significantly lower complexity of the RNN approximating only the slow

subsystem, the LMPC based on RNNS required significantly less computational time in all

simulations than the LMPC using the RNN modeling the full singularly perturbed system,

which supported the use of RNNS in real-time MPC applications.

207

Bibliography

[1] I. T. Cameron and K. Hangos. Process modelling and model analysis. Elsevier, 2001.

[2] R. Davies. Industry 4.0: Digitalisation for productivity and growth. Technical Report

PE 568.337, European Parliamentary Research Service, 2015.

[3] S. Yin and O. Kaynak. Big data for modern industry: challenges and trends [point of

view]. Proceedings of the IEEE, 103:143–146, 2015.

[4] F. Tahir and M. Khan. Big Data: the Fuel for Machine Learning and AI Advancement.

Technical report, EasyChair, 2023.

[5] F. Chollet et al. Keras. https://keras.io, 2015.

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[7] A. M. Schweidtmann, E. Esche, A. Fischer, M. Kloft, J.-U. Repke, S. Sager, and A.

Mitsos. Machine learning in chemical engineering: A perspective. Chemie Ingenieur

Technik, 93(12):2029–2039, 2021.

208

[8] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and

prospects. Science, 349(6245):255–260, 2015.

[9] K. Zarzycki and M. Ławryńczuk. LSTM and GRU neural networks as models of

dynamical processes used in predictive control: A comparison of models developed for

two chemical reactors. Sensors, 21(16):5625, 2021.

[10] F. Bonassi, M. Farina, J. Xie, and R. Scattolini. On recurrent neural networks for

learning-based control: recent results and ideas for future developments. Journal of

Process Control, 114:92–104, 2022.

[11] Y. Zheng, C. Hu, X. Wang, and Z. Wu. Physics-informed recurrent neural network

modeling for predictive control of nonlinear processes. Journal of Process Control,

128:103005, 2023.

[12] T. Asrav and E. Aydin. Physics-informed recurrent neural networks and hyper-

parameter optimization for dynamic process systems. Computers & Chemical En-

gineering, 173:108195, 2023.

[13] T. Xiao, Z. Wu, P. D. Christofides, A. Armaou, and D. Ni. Recurrent neural-network-

based model predictive control of a plasma etch process. Industrial & Engineering

Chemistry Research, 61(1):638–652, 2021.

[14] J. Meng, C. Li, J. Tao, Y. Li, Y. Tong, Y. Wang, L. Zhang, Y. Dong, and J. Du. Rnn-

lstm-based model predictive control for a corn-to-sugar process. Processes, 11(4):1080,

2023.

209

[15] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine-learning-based predic-

tive control of nonlinear processes. Part II: Computational implementation. AIChE

Journal, 65(11):e16734, 2019.

[16] K. Huang, K. Wei, F. Li, C. Yang, and W. Gui. LSTM-MPC: A deep learning based

predictive control method for multimode process control. IEEE Transactions on In-

dustrial Electronics, 2022.

[17] M. Jung, P. R. da Costa Mendes, M. Önnheim, and E. Gustavsson. Model Predictive

Control when utilizing LSTM as dynamic models. Engineering Applications of Artificial

Intelligence, 123:106226, 2023.

[18] N. L. Jian, H. Zabiri, and M. Ramasamy. Control of the multi-timescale process using

multiple timescale recurrent neural network-based model predictive control. Industrial

& Engineering Chemistry Research, 62(15):6176–6195, 2023.

[19] Q.-C. Zhong. Robust control of time-delay systems. Springer Science & Business Media,

2006.

[20] P. Kokotović, H. K. Khalil, and J. O’reilly. Singular perturbation methods in control:

analysis and design. SIAM, 1999.

[21] Z. Wu, D. Rincon, Q. Gu, and P. D. Christofides. Statistical machine learning in model

predictive control of nonlinear processes. Mathematics, 9:1912, 2021.

[22] K. Holkar and L. M. Waghmare. An overview of model predictive control. International

Journal of control and automation, 3(4):47–63, 2010.

210

[23] M. Abu-Ayyad and R. Dubay. Real-time comparison of a number of predictive con-

trollers. ISA transactions, 46(3):411–418, 2007.

[24] J. E. Normey-Rico and E. F. Camacho. Model predictive control of dead-time processes.

Springer, 2007.

[25] O. J. Smith. Closer control of loops with dead time. Chemical engineering progress,

53:217–219, 1957.

[26] M. Schwenzer, M. Ay, T. Bergs, and D. Abel. Review on model predictive control:

An engineering perspective. The International Journal of Advanced Manufacturing

Technology, 117(5):1327–1349, 2021.

[27] A. Visioli. Practical PID control. Springer Science & Business Media, 2006.

[28] C. R. Cutler and B. L. Ramaker. Dynamic matrix control—A computer control al-

gorithm. In joint automatic control conference, page 72, San Francisco, CA, USA,

1980.

[29] J. Richalet, A. Rault, J. Testud, and J. Papon. Model predictive heuristic control:

Applications to industrial processes. Automatica, 14:413–428, 1978.

[30] J. Richalet. Industrial applications of model based predictive control. Automatica,

29(5):1251–1274, 1993.

[31] M. Pirdashti, S. Curteanu, M. H. Kamangar, M. H. Hassim, and M. A. Khatami.

211

Artificial neural networks: applications in chemical engineering. Reviews in Chemical

Engineering, 29(4):205–239, 2013.

[32] L. Hewing, K. Wabersich, M. Menner, and M. Zeilinger. Learning-based model pre-

dictive control: Toward safe learning in control. Annual Review of Control, Robotics,

and Autonomous Systems, 3:269–296, 2020.

[33] Y. Yu, X. Si, C. Hu, and J. Zhang. A review of recurrent neural networks: LSTM cells

and network architectures. Neural computation, 31(7):1235–1270, 2019.

[34] Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural networks

for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[35] S. Chen, Z. Wu, D. Rincon, and P. D. Christofides. Machine learning-based distributed

model predictive control of nonlinear processes. AIChE Journal, 66:e17013, 2020.

[36] Z. Wu, D. Rincon, and P. D. Christofides. Process structure-based recurrent neu-

ral network modeling for model predictive control of nonlinear processes. Journal of

Process Control, 89:74–84, 2020.

[37] J. Luo, B. Çıtmacı, J. B. Jang, F. Abdullah, C. G. Morales-Guio, and P. D.

Christofides. Machine learning-based predictive control using on-line model lineariza-

tion: Application to an experimental electrochemical reactor. Chemical Engineering

Research and Design, 197:721–737, 2023.

[38] O. Santander, V. Kuppuraj, C. A. Harrison, and M. Baldea. Deep learning model

212

predictive control frameworks: Application to a fluid catalytic cracker–fractionator

process. Industrial & Engineering Chemistry Research, 62(27):10587–10600, 2023.

[39] R. K. Al Seyab and Y. Cao. Differential recurrent neural network based predictive

control. Computers & Chemical Engineering, 32(7):1533–1545, 2008.

[40] P. Kittisupakorn, P. Thitiyasook, M. A. Hussain, and W. Daosud. Neural network

based model predictive control for a steel pickling process. Journal of process control,

19(4):579–590, 2009.

[41] M. Ellis and P. D. Christofides. Economic model predictive control of nonlinear

time-delay systems: Closed-loop stability and delay compensation. AIChE Journal,

61(12):4152–4165, 2015.

[42] R. M. Esfanjani, M. Reble, U. Münz, S. K. Y. Nikravesh, and F. Allgöwer. Model

predictive control of constrained nonlinear time-delay systems. In Proceedings of the

48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th

Chinese Control Conference, pages 1324–1329. IEEE, 2009.

[43] M. Reble, R. M. Esfanjani, S. K. Y. Nikravesh, and F. Allgöwer. Model predictive

control of constrained non-linear time-delay systems. IMA journal of mathematical

control and information, 28(2):183–201, 2011.

[44] M. Reble and F. Allgöwer. General design parameters of model predictive control

for nonlinear time-delay systems. In 49th IEEE Conference on Decision and Control

(CDC), pages 176–181. IEEE, 2010.

213

[45] M. Reble, F. D. Brunner, and F. Allgöwer. Model predictive control for nonlinear time-

delay systems without terminal constraint. IFAC Proceedings Volumes, 44(1):9254–

9259, 2011.

[46] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural

networks. In Conference on Learning Theory, pages 297–299. PMLR, 2018.

[47] M. Chen, X. Li, and T. Zhao. On generalization bounds of a family of recurrent neural

networks. arXiv preprint arXiv:1910.12947, 2019.

[48] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine Learning-Based Predictive

Control of Nonlinear Processes. Part I: Theory. AIChE Journal, 65:e16729, 2019.

[49] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine Learning-Based Predic-

tive Control of Nonlinear Processes. Part II: Computational Implementation. AIChE

Journal, 65:e16734, 2019.

[50] S. Chen, Z. Wu, and P. D. Christofides. Decentralized machine-learning-based pre-

dictive control of nonlinear processes. Chemical Engineering Research and Design,

162:45–60, 2020.

[51] X. Chen, M. Heidarinejad, J. Liu, and P. D. Christofides. Distributed economic MPC:

Application to a nonlinear chemical process network. Journal of Process Control,

22:689–699, 2012.

[52] M. S. Alhajeri, Z. Wu, D. Rincon, F. Albalawi, and P. D. Christofides. Machine-

214

learning-based state estimation and predictive control of nonlinear processes. Chemical

Engineering Research and Design, 167:268–280, 2021.

[53] Z. Wu, J. Luo, D. Rincon, and P. D. Christofides. Machine learning-based predictive

control using noisy data: evaluating performance and robustness via a large-scale

process simulator. Chemical Engineering Research and Design, 168:275–287, 2021.

[54] Z. Wu, A. Alnajdi, Q. Gu, and P. D. Christofides. Statistical machine-learning–based

predictive control of uncertain nonlinear processes. AIChE Journal, 68:e17642, 2022.

[55] J. Hoskins and D. Himmelblau. Process control via artificial neural networks and

reinforcement learning. Computers & Chemical Engineering, 16:241–251, 1992.

[56] R. Vepa. A review of techniques for machine learning of real-time control strategies.

Intelligent Systems Engineering, 2:77–90, 1993.

[57] V. Venkatasubramanian. The promise of artificial intelligence in chemical engineering:

Is it here, finally? AIChE Journal, 65:466–478, 2019.

[58] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,

9:1735–1780, 1997.

[59] M. S. Alhajeri, F. Abdullah, Z. Wu, and P. D. Christofides. Physics-informed ma-

chine learning modeling for predictive control using noisy data. Chemical Engineering

Research and Design, 186:34–49, 2022.

215

[60] J. K. Hale and S. M. V. Lunel. Introduction to functional differential equations, vol-

ume 99. Springer Science & Business Media, 2013.

[61] C. Antoniades and P. D. Christofides. Feedback control of nonlinear differential differ-

ence equation systems. Chemical Engineering Science, 54:5677–5709, 1999.

[62] C. Antoniades and P. D. Christofides. Robust control of nonlinear time-delay systems.

International Journal of Applied Mathematics and Computational Science, 9:811–837,

1999.

[63] J. Liu, D. Munoz de la Pena, P. D. Christofides, and J. F. Davis. Lyapunov-based

model predictive control of nonlinear systems subject to time-varying measurement

delays. International Journal of Adaptive Control and Signal Processing, 23:788–807,

2009.

[64] X.-M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, and Y. He. Overview of recent

advances in stability of linear systems with time-varying delays. IET Control Theory

& Applications, 13:1–16, 2019.

[65] O. J. Smith. Closed control of loop with dead time. Chemical Engineering Progress,

53:217–219, 1957.

[66] C. Kravaris and R. A. Wright. Deadtime compensation for nonlinear processes. AIChE

Journal, 35:1535–1542, 1989.

[67] M. A. Henson and D. E. Seborg. Time delay compensation for nonlinear processes.

Industrial & Engineering Chemistry Research, 33:1493–1500, 1994.

216

[68] Y. M. Ren, M. S. Alhajeri, J. Luo, S. Chen, F. Abdullah, Z. Wu, and P. D. Christofides.

A tutorial review of neural network modeling approaches for model predictive control.

Computers & Chemical Engineering, 165:107956, 2022.

[69] F. Abdullah, Z. Wu, and P. D. Christofides. Handling noisy data in sparse model

identification using subsampling and co-teaching. Computers & Chemical Engineering,

157:107628, 2022.

[70] C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural

Computation, 7:108–116, 1995.

[71] Y. Cao and Q. Gu. Generalization bounds of stochastic gradient descent for wide and

deep neural networks. arXiv preprint arXiv:1905.13210, 2019.

[72] D. Zou and Q. Gu. An improved analysis of training over-parameterized deep neural

networks. arXiv preprint arXiv:1906.04688, 2019.

[73] J. Hanson, M. Raginsky, and E. Sontag. Learning Recurrent Neural Net Models of

Nonlinear Systems. arXiv preprint arXiv:2011.09573, 2020.

[74] P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for

neural networks. arXiv preprint arXiv:1706.08498, 2017.

[75] M. Mittal, M. Gallieri, A. Quaglino, S. Salehian, and J. Koutník. Neural Lyapunov

model predictive control. arXiv preprint arXiv:2002.10451, 2020.

217

[76] D. Limon, J. Calliess, and J. Maciejowski. Learning-based nonlinear model predictive

control. IFAC-PapersOnLine, 50:7769–7776, 2017.

[77] H. Deng and M. Krstić. Output-feedback stabilization of stochastic nonlinear systems

driven by noise of unknown covariance. Systems & Control Letters, 39:173–182, 2000.

[78] H. Deng, M. Krstic, and R. J. Williams. Stabilization of stochastic nonlinear systems

driven by noise of unknown covariance. IEEE Transactions on automatic control,

46:1237–1253, 2001.

[79] M. Mahmood and P. Mhaskar. Lyapunov-based model predictive control of stochastic

nonlinear systems. Automatica, 48:2271–2276, 2012.

[80] T. Homer and P. Mhaskar. Output-feedback Lyapunov-based predictive control of

stochastic nonlinear systems. IEEE Transactions on Automatic Control, 63:571–577,

2017.

[81] Z. Wu, J. Zhang, Z. Zhang, F. Albalawi, H. Durand, M. Mahmood, P. Mhaskar, and

P. D. Christofides. Economic model predictive control of stochastic nonlinear systems.

AIChE Journal, 64:3312–3322, 2018.

[82] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT

press, 2018.

[83] A. Maurer. A vector-contraction inequality for rademacher complexities. In Proceedings

of the International Conference on Algorithmic Learning Theory, pages 3–17. Springer,

2016.

218

[84] R. Khasminskii. Stochastic stability of differential equations, volume 66. Springer

Science & Business Media, 2011.

[85] B. Øksendal. Stochastic differential equations. In Stochastic differential equations,

pages 65–84. Springer, 2003.

[86] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming. Mathematical programming,

106:25–57, 2006.

[87] A. Cozad, N. V. Sahinidis, and D. C. Miller. A combined first-principles and data-

driven approach to model building. Computers & Chemical Engineering, 73:116–127,

2015.

[88] Z. T. Wilson and N. V. Sahinidis. The ALAMO approach to machine learning. Com-

puters & Chemical Engineering, 106:785–795, 2017.

[89] H. Han, X. Wu, and J. Qiao. Real-time model predictive control using a self-

organizing neural network. IEEE Transactions on Neural Networks and Learning

Systems, 24:1425–1436, 2013.

[90] J. M. Ali, M. A. Hussain, M. O. Tade, and J. Zhang. Artificial Intelligence techniques

applied as estimator in chemical process systems–A literature survey. Expert Systems

with Applications, 42:5915–5931, 2015.

[91] W. C. Wong, E. Chee, J. Li, and X. Wang. Recurrent neural network-based model

219

predictive control for continuous pharmaceutical manufacturing. Mathematics, 6:242,

2018.

[92] H. Shahnazari, P. Mhaskar, J. M. House, and T. I. Salsbury. Modeling and fault

diagnosis design for HVAC systems using recurrent neural networks. Computers &

Chemical Engineering, 126:189–203, 2019.

[93] J. Fan and M. Han. Nonliear model predictive control of ball-plate system based

on gaussian particle swarm optimization. In 2012 IEEE Congress on Evolutionary

Computation, pages 1–6. Birsbane, Australia, 2012.

[94] J. Xu, C. Li, X. He, and T. Huang. Recurrent neural network for solving model

predictive control problem in application of four-tank benchmark. Neurocomputing,

190:172–178, 2016.

[95] G. Stephanopoulos and C. Han. Intelligent systems in process engineering: A review.

Computers & Chemical Engineering, 20:743–791, 1996.

[96] S. F. De Azevedo, B. Dahm, and F. Oliveira. Hybrid modelling of biochemical pro-

cesses: A comparison with the conventional approach. Computers & Chemical Engi-

neering, 21:S751–S756, 1997.

[97] O. Kahrs and W. Marquardt. The validity domain of hybrid models and its application

in process optimization. Chemical Engineering and Processing: Process Intensification,

46:1054–1066, 2007.

220

[98] N. Patel, J. Nease, S. Aumi, C. Ewaschuk, J. Luo, and P. Mhaskar. Integrating Data-

Driven Modeling with First-Principles Knowledge. Industrial & Engineering Chemistry

Research, 59:5103–5113, 2020.

[99] Y. Lu, M. Rajora, P. Zou, and S. Liang. Physics-embedded machine learning: case

study with electrochemical micro-machining. Machines, 5:4, 2017.

[100] M. S. Alhajeri, J. Luo, Z. Wu, F. Albalawi, and P. D. Christofides. Process structure-

based recurrent neural network modeling for predictive control: A comparative study.

Chemical Engineering Research and Design, 179:77–89, 2022.

[101] Y. Lin and E. D. Sontag. A universal formula for stabilization with bounded controls.

Systems & Control Letters, 16:393–397, 1991.

[102] L. A. Zadeh. Probability measures of fuzzy events. Journal of Mathematical Analysis

and Applications, 23:421–427, 1968.

[103] S. Liao. Expert system methodologies and applications—a decade review from 1995

to 2004. Expert Systems with Applications, 28:93–103, 2005.

[104] C. Lee. Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions

on Systems, Man, and Cybernetics, 20:404–418, 1990.

[105] A. Banerjee, D. Varshney, S. Kumar, P. Chaudhary, and V. K. Gupta. Biodiesel

production from castor oil: ANN modeling and kinetic parameter estimation. Inter-

national Journal of Industrial Chemistry, 8:253–262, 2017.

221

[106] A. Singh, H. P. Singh, and S. Mishra. Validation of ANN-based model for binary

distillation column. In Proceeding of International Conference on Intelligent Commu-

nication, Control and Devices, pages 235–242. Springer, Singapore, 2017.

[107] A. C. S. R. Dias, W. B. da Silva, and J. C. S. Dutra. Propylene polymerization reactor

control and estimation using a particle filter and neural network. Macromolecular

Reaction Engineering, 11:1700010, 2017.

[108] Y. Pan and J. Wang. Model predictive control of unknown nonlinear dynamical systems

based on recurrent neural networks. IEEE Transactions on Industrial Electronics,

59:3089–3101, 2011.

[109] A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly, S.

Shekhar, N. Samatova, and V. Kumar. Theory-guided data science: A new paradigm

for scientific discovery from data. IEEE Transactions on Knowledge and Data Engi-

neering, 29:2318–2331, 2017.

[110] M. Alber, A. Buganza Tepole, W. R. Cannon, S. De, S. Dura-Bernal, K. Garikipati,

G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold, et al. Integrating machine

learning and multiscale modeling—perspectives, challenges, and opportunities in the

biological, biomedical, and behavioral sciences. NPJ Digital Medicine, 2:1–11, 2019.

[111] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar,

A. Patra, J. Sethian, S. Wild, et al. Workshop report on basic research needs for sci-

222

entific machine learning: Core technologies for artificial intelligence. Technical report,

USDOE Office of Science (SC), Washington, DC (United States), 2019.

[112] R. Rai and C. K. Sahu. Driven by data or derived through physics? a review of hybrid

physics guided machine learning techniques with cyber-physical system (cps) focus.

IEEE Access, 8:71050–71073, 2020.

[113] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, et al.

Deep learning and process understanding for data-driven Earth system science. Nature,

566:195–204, 2019.

[114] V. M. Krasnopolsky and M. S. Fox-Rabinovitz. Complex hybrid models combining

deterministic and machine learning components for numerical climate modeling and

weather prediction. Neural Networks, 19:122–134, 2006.

[115] P. A. O’Gorman and J. G. Dwyer. Using machine learning to parameterize moist

convection: Potential for modeling of climate, climate change, and extreme events.

Journal of Advances in Modeling Earth Systems, 10:2548–2563, 2018.

[116] R. Cang, H. Li, H. Yao, Y. Jiao, and Y. Ren. Improving direct physical properties

prediction of heterogeneous materials from imaging data via convolutional neural net-

work and a morphology-aware generative model. Computational Materials Science,

150:212–221, 2018.

[117] G. R. Schleder, A. C. Padilha, C. M. Acosta, M. Costa, and A. Fazzio. From DFT to

223

machine learning: recent approaches to materials science–a review. Journal of Physics:

Materials, 2:032001, 2019.

[118] K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko, and

K.-R. Müller. Schnet: A continuous-filter convolutional neural network for modeling

quantum interactions. Advances in Neural Information Processing Systems, 30, 2017.

[119] I. Chakraborty, K. J. Bodurtha, N. J. Heeder, M. P. Godfrin, A. Tripathi, R. H. Hurt,

A. Shukla, and A. Bose. Massive electrical conductivity enhancement of multilayer

graphene/polystyrene composites using a nonconductive filler. ACS Applied Materials

& Interfaces, 6:16472–16475, 2014.

[120] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis. Systems biology informed deep

learning for inferring parameters and hidden dynamics. PLoS Computational Biology,

16:e1007575, 2020.

[121] T. Xu and A. J. Valocchi. Data-driven methods to improve baseflow prediction of a

regional groundwater model. Computers & Geosciences, 85:124–136, 2015.

[122] J. H. Faghmous and V. Kumar. A big data guide to understanding climate change:

The case for theory-guided data science. Big Data, 2:155–163, 2014.

[123] L. Wang, J. Chen, and M. Marathe. Tdefsi: Theory-guided deep learning-based epi-

demic forecasting with synthetic information. ACM Transactions on Spatial Algorithms

and Systems (TSAS), 6:1–39, 2020.

224

[124] X. Jia, A. Khandelwal, D. J. Mulla, P. G. Pardey, and V. Kumar. Bringing auto-

mated, remote-sensed, machine learning methods to monitoring crop landscapes at

scale. Agricultural Economics, 50:41–50, 2019.

[125] J. C. Butcher. A history of Runge-Kutta methods. Applied Numerical Mathematics,

20:247–260, 1996.

[126] P. Sagaut, M. Terracol, and S. Deck. Multiscale and multiresolution approaches in

turbulence-LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines.

World Scientific, 2013.

[127] B. Houska, F. Logist, M. Diehl, and J. V. Impe. A tutorial on numerical methods

for state and parameter estimation in nonlinear dynamic systems. Identification for

Automotive Systems, pages 67–88, 2012.

[128] B. Chaouat. The state of the art of hybrid RANS/LES modeling for the simulation of

turbulent flows. Flow, turbulence and combustion, 99:279–327, 2017.

[129] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating eulerian

fluid simulation with convolutional networks. In International Conference on Machine

Learning, pages 3424–3433, Sydney, Australia, 2017.

[130] R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu. Towards physics-informed

deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 1457–1466,

2020.

225

[131] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer. Ma-

chine learning–accelerated computational fluid dynamics. Proceedings of the National

Academy of Sciences, 118:e2101784118, 2021.

[132] J. Luo, V. Canuso, J. B. Jang, Z. Wu, C. G. Morales-Guio, and P. D. Christofides.

Machine learning-based operational modeling of an electrochemical reactor: Handling

data variability and improving empirical models. Industrial & Engineering Chemistry

Research, 61:8399–8410, 2022.

[133] A. Canning and E. Gardner. Partially connected models of neural networks. Journal

of Physics A: Mathematical and General, 21:3275, 1988.

[134] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,

61:85–117, 2015.

[135] R. Roelofs. Measuring Generalization and Overfitting in Machine learning. Doctoral

Dissertation, University of California, Berkeley, 2019.

[136] F. Emmert-Streib and M. Dehmer. Evaluation of regression models: Model assessment,

model selection and generalization error. Machine Learning and Knowledge Extraction,

1:521–551, 2019.

[137] M. S. Alhajeri, Z. Wu, D. Rincon, F. Albalawi, and P. D. Christofides. Machine-

learning-based state estimation and predictive control of nonlinear processes. Chemical

Engineering Research and Design, 167:268–280, 2021.

226

[138] L. T. Biegler and V. M. Zavala. Large-scale nonlinear programming using IPOPT:

An integrating framework for enterprise-wide dynamic optimization. Computers &

Chemical Engineering, 33:575–582, 2009.

[139] M. S. Alhajeri and M. Soroush. Tuning guidelines for model-predictive control. Indus-

trial & Engineering Chemistry Research, 59:4177–4191, 2020.

[140] P. D. Christofides and P. Daoutidis. Feedback control of two-time-scale nonlinear

systems. International Journal of Control, 63:965–994, 1996.

[141] X. Chen, M. Heidarinejad, J. Liu, and P. D. Christofides. Composite fast-slow MPC

design for nonlinear singularly perturbed systems. AIChE Journal, 58:1802–1811, 2012.

[142] M. Ellis, M. Heidarinejad, and P. D. Christofides. Economic model predictive control

of nonlinear singularly perturbed systems. Journal of Process Control, 23:743–754,

2013.

[143] F. Abdullah, Z. Wu, and P. D. Christofides. Sparse-identification-based model predic-

tive control of nonlinear two-time-scale processes. Computers & Chemical Engineering,

153:107411, 2021.

[144] A. Nikolakopoulou and R. D. Braatz. Polynomial NARX-based nonlinear model pre-

dictive control of modular chemical systems. Computers & Chemical Engineering, page

108272, 2023.

[145] S. Yang, M. P. Wan, W. Chen, B. F. Ng, and S. Dubey. Experiment study of machine-

227

learning-based approximate model predictive control for energy-efficient building con-

trol. Applied Energy, 288:116648, 2021.

[146] A. Alessio and A. Bemporad. A survey on explicit model predictive control. Nonlin-

ear Model Predictive Control: Towards New Challenging Applications, pages 345–369,

2009.

[147] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M. Morari.

Approximating explicit model predictive control using constrained neural networks. In

2018 Annual American control conference (ACC), pages 1520–1527. IEEE, 2018.

[148] Y. Bao, K. J. Chan, A. Mesbah, and J. M. Velni. Learning-based adaptive-scenario-

tree model predictive control with improved probabilistic safety using robust Bayesian

neural networks. International Journal of Robust and Nonlinear Control, 33(5):3312–

3333, 2023.

[149] S. Chen, Z. Wu, and P. D. Christofides. Statistical Machine-Learning-based Predic-

tive Control Using Barrier Functions for Process Operational Safety. Computers &

Chemical Engineering, 163:107860, 2022.

[150] M. S. Alhajeri, A. Alnajdi, F. Abdullah, and P. D. Christofides. On generalization

error of neural network models and its application to predictive control of nonlinear

processes. Chemical Engineering Research and Design, 189:664–679, 2023.

[151] F. Hoppensteadt. Properties of solutions of ordinary differential equations with small

parameters. Communications on Pure and Applied Mathematics, 24:807–840, 1971.

228

[152] Y. Bao, H. S. Abbas, and J. M. Velni. A learning- and scenario-based MPC design

for nonlinear systems in LPV framework with safety and stability guarantees. Inter-

national Journal of Control, 0(0):1–20, 2023.

[153] P. D. Christofides and A. R. Teel. Singular perturbations and input-to-state stability.

IEEE Transactions on Automatic Control, 41:1645–1650, 1996.

[154] J. B. Rawlings, D. Q. Mayne, and M. Diehl. Model predictive control: theory, compu-

tation, and design, volume 2. Nob Hill Publishing Madison, WI, 2017.

[155] L. Pöri. Comparison of two interior point solvers in model predictive control optimiza-

tion. Master’s thesis, Aalto University, 2016.

[156] P. J. Freire, S. Srivallapanondh, A. Napoli, J. E. Prilepsky, and S. K. Turitsyn. Com-

putational complexity evaluation of neural network applications in signal processing.

arXiv preprint arXiv:2206.12191, 2022.

229

	Introduction
	Motivation
	Background
	Dissertation objectives and structure

	Machine Learning-Based Predictive Control of Nonlinear Time-Delay Systems: Closed-loop Stability and Input Delay Compensation
	Introduction
	Preliminaries
	Notation
	Class of Systems
	Stabilization via control Lyapunov function
	Long Short-Term Memory Recurrent Neural Networks
	Data generation and model training process

	Robustness of LSTM-based LMPC to Small Time State Delays
	Stabilization of LSTM models via control Laypunov function
	Sample-and-hold implementation of Lyapunov-based controller

	LSTM-based Model Predictive Control
	Predictor feedback LSTM-based LMPC methodology
	Application to a Chemical Process Example
	LSTM-based LMPC closed-loop simulation results
	Predictor feedback LSTM-based LMPC closed-loop simulation results

	Statistical Machine-Learning-based Predictive Control of Uncertain Nonlinear Processes
	Introduction
	Preliminaries
	Notation
	Class of Systems
	Recurrent Neural Networks

	RNN Generalization Error
	Preliminaries
	Rademacher Complexity
	Generalization Error Bound

	Probabilistic Stability Analysis
	Nonlinear systems with bounded disturbances
	Nonlinear systems with stochastic disturbances

	Application to a Chemical Process Example

	On Generalization Error of Neural Network Models and its Application to Predictive Control of Nonlinear Processes
	Introduction
	Preliminaries
	Notation
	Class of Systems
	Stabilizability assumption

	Recurrent neural networks (RNNs)
	Physics-informed RNNs
	Long short-term memory RNN

	Generalization error
	General considerations
	Physics-based RNNs generalization bound
	LSTM Generalization Error

	RNN/LSTM based model predictive control
	Application
	Data generation and RNN models construction
	Open-loop simulation
	Closed-loop simulation

	Machine Learning-Based Model Predictive Control of Two-Time-Scale Systems
	Introduction
	Preliminaries
	Notation
	Class of systems
	Stabilizability assumption via control Lyapunov function
	Recurrent neural networks
	Feedforward neural networks

	Generalization error bounds of neural networks modeling two-time-scale systems
	Generalization error bound preliminaries
	RNN generalization error bound
	FNN generalization error bound

	Machine learning-based LMPC using an RNN that approximates the slow subsystem
	Lyapunov-based control using an RNN model
	Machine learning-based LMPC formulation
	Closed-loop stability

	Application to a chemical process example
	Data generation and RNN models development
	Simulation results

	Conclusion

