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The increasingly competitive and continuously changing world economy has made it necessary

to exploit the economic potential of chemical processes which has led engineers to economically

optimize process operation to provide long-term economic growth. Approaches for increasing the

profitability of industrial processes include directly incorporating process economic considerations

into the system’s operation and control policy. A fairly recent control strategy, termed economic

model predictive control (EMPC), is capable of coordinating dynamic economic plant optimiza-

tion with a feedback control policy to allow real-time energy management. The key underlying

assumption to design and apply an EMPC is that a process/system dynamic model is available to

predict the future process state evolution. Constructing models of dynamical systems is done either

through first-principles and/or from process input/output data. First-principle models attempt to ac-

count for the essential mechanisms behind the observed physico-chemical phenomena. However,

arriving at a first-principles model may be a challenging task for complex and/or poorly understood

processes in which system identification serves as a suitable alternative. Motivated by this, the first

part of my doctoral research has focused on introducing novel economic model predictive control

schemes that are designed utilizing models obtained from advanced system identification methods.

Various system identification schemes were investigated in the EMPC designs including linear

ii



modeling, multiple models, and on-line model identification. On-line model identification is used

to obtain more accurate models when the linear empirical models are not capable of capturing the

nonlinear dynamics as a result of significant plant disturbances and variations, actuator faults, or

when it is desired to change the region of operation. An error-triggered on-line model identification

approach is introduced where a moving horizon error detector is used to quantify prediction error

and trigger model re-identification when necessary. The proposed EMPC schemes presented great

economic benefit, precise predictions, and significant computational time reduction. These bene-

fits indicate the effectiveness of the proposed EMPC schemes in practical industrial applications.

The second part of the dissertation focuses on EMPC that utilizes well-conditioned polynomial

nonlinear state-space (PNLSS) models for processes with nonlinear dynamics. A nonlinear system

identification technique is introduced for a broad class of nonlinear processes which leads to the

construction of polynomial nonlinear state-space dynamic models which are well-conditioned with

respect to explicit numerical integration methods. This development allows using time steps that

are significantly larger than the ones required by nonlinear state-space models identified via exist-

ing techniques. Finally, the dissertation concludes by investigating the use of EMPC in tracking a

production schedule. Specifically, given that only a small subset of the total process state vector

is typically required to track certain production schedules, a novel EMPC is introduced scheme

that forces specific process states to meet the production schedule and varies the rest of the process

states in a way that optimizes process economic performance.
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Chapter 1

Introduction

1.1 Development of Economic Model Predictive Control

The chemical industry plays a vital role in the US economy. The competitive market and contin-

uously changing consumer demand have made it necessary to find reliable and flexible operation

strategies to meet the consumer demand while maximizing economics. The traditional paradigm in

achieving optimal operations is done through two layers. In the upper layer, real-time optimization

(RTO) is carried out in order to find optimal process set-points utilizing the steady-state models

of the plant. These set-points are then sent to the lower layer which forces the plant to operate at

these steady states. Increasing operational efficiency is one of the most important determinants of

success of the chemical and petrochemical industry, which has led engineers to develop cost effec-

tive operational strategies to optimize plant management. Integration of economic considerations

and process control serves as one approach for optimizing process operation. A fairly recent con-

trol strategy that coordinates dynamic economic plant optimization with a feedback control policy,

termed economic model predictive control (EMPC), has gained attention due to its ability to pro-

mote optimal time-varying operation while accounting for constraints and ensuring closed-loop

stability.

The EMPC structure shares many of its characteristics with the traditional tracking model
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predictive control (MPC). Both control strategies utilize the process model to predict the future

evolution of the process state over a certain horizon. Then, dynamic optimization problems are

solved on-line in order to calculate optimal control actions that achieve the desired objective of

the controller. In MPC, the objective is to track certain operating set-points (steady-states) that

are determined by the RTO layer. MPC is typically formulated with a quadratic cost function that

penalizes both: 1) Deviations of the process state from the desired steady-state, and 2) The en-

ergy utilized in order to drive the system into this desired steady-state. On the other hand, EMPC

framework deals with a reformulation of the conventional MPC quadratic cost function in which

an economic (not necessarily quadratic) cost function is used directly as the cost in MPC, and

thus, it may, in general, lead to time-varying process operation policies (instead of steady-state

operation), which directly optimizes process economics on-line. This allows for real-time energy

management and avoids delays in optimization that occur in the two layer RTO-MPC structure.

Several EMPC formulations have been proposed in recenrt years in order to guarantee closed-loop

stability including EMPC with terminal constrains, EMPC with terminal regions and EMPC with

Lyapunov-based constraints.

1.2 MPC and EMPC in Industrial Process Systems Using Em-

pirical Models

As mentioned in the previous section, economic model predictive control (EMPC) is a feedback

control technique that attempts to tightly integrate economic optimization and feedback control

since it is a predictive control scheme that is formulated with an objective function representing

the process economics. Numerous research works have considered applying EMPC to realistic

chemical engineering examples including large-scale chemical process networks and catalytic re-

actors. As its name implies, EMPC requires the availability of a dynamic model to compute its

control actions. Most applications assumed the availability of a first-principles process model that

accurately describes the plant dynamics. However, in industrial practice, obtaining accurate first-
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principles models is a challenging task for complex and/or poorly understood processes in which

case empirical models constructed using process data may be used in the design of the feedback

controller.

In the past ten years, significant work has been done on the application of MPC using empirical

models. To enable the application of EMPC to complex industrial processes, EMPC designed with

empirical modeling must be introduced. Recent research in the area of system identification has

led to the development of various advanced linear and nonlinear model identification techniques

that are able to capture process dynamics within large regions of operation. Having such advanced

model identification methods facilitates the application of EMPC in industrial practice. The effec-

tiveness of applying empirical model-based EMPC schemes in practical industrial applications can

present great economic benefit, precise predictions, and significant computational time reduction

when the empirical model that captures the important process dynamics is significantly simpler

than the first principles model.

A variety of input/output system identification methods (e.g., (nonlinear) autoregressive mov-

ing average with exogenous input ((N)ARMAX) methods, or methods that identify polynomial and

neural-network models7, 51, 69) have been developed. Input/output models, such as Hammerstein

models,17 Wiener models,70 Hammerstein-Wiener models,8, 34 polynomial ARX models,6, 74 and

neural Wiener models47, 60, 61 have been used in tracking model predictive control (MPC) applica-

tions

Another type of empirical modeling that is also widely used is empirical state-space modeling.

System identification techniques have been developed to identify linear and nonlinear state-space

models. Several linear state-space system identification methods based on input/output data, such

as optimization-based methods and subspace model identification, have been developed that can

be used for multiple-input/multiple-output (MIMO) systems because of their ability to model in-

teractions among process states.4, 5, 9, 37, 56, 71, 73, 76 Subspace model identification has been investi-

gated for use in model predictive control65 and can be carried out through a variety of techniques

such as the canonical variate algorithm (CVA),59 the multivariable output error state-space algo-
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rithm (MOESP),16, 42–44 and numerical algorithms for subspace state-space system identification

(N4SID).39 Using subspace model identification within the context of EMPC is expected to be

beneficial since the EMPC requires the use of a state-space model, and the EMPC cost function

depends on most of the states (if not all).

In both input/output and state-space empirical modeling, a wide variety of polynomial func-

tions have been used to identify nonlinear models. Polynomial functions used in input/output sys-

tem identification include Chebyshev polynomials,58 Volterra polynomials,62, 69 polynomial ARX

models,74 Laguerre polynomials,63 and polynomial neural networks.69 Traditional empirical mod-

eling approaches focus on a certain class of nonlinear systems like Wiener-Hammerstein or neural

networks but nonlinear state-space models cover a much larger class of systems. The need for

a general nonlinear system identification technique that can represent many classes of nonlinear

systems led to the development of state-space nonlinear system identification techniques based on

input/output data. The polynomial nonlinear state-space (PNLSS) approach is a system identifica-

tion method for MIMO systems that leads to a model of a multivariable nonlinear system based

purely on input/output data.52, 64, 67, 68, 75, 77 PNLSS is a promising all-purpose nonlinear system

identification method that can be used for many different types of systems, including those that

are described by bilinear models, Wiener-Hammerstein models, and models with nonlinearities

appearing in the states or inputs, or appearing in both.64, 67, 68, 75 Therefore, using PNLSS models

in the EMPC design can result in improved economic performance since PNLSS models allow

operation over a wider region in state-space.

In the case that the process is subject to significant plant disturbances and variations, actuator

faults, or when it is desired to change the region of operation, the empirical models may not be

able to capture the resulting dynamics in the new conditions. Therefore, re-identified of the process

model on-line, when significant prediction errors occur, is necessary in order to compensate for the

changes in the plant. Thus, when operating conditions change, on-line model re-identification may

be used within the EMPC design in order to compensate for changes in the plant model which

would result in better economic performance.
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1.3 Production Management in the Chemical Industry

Managing production schedules and tracking time-varying demand of certain products while op-

timizing process economics are subjects of central importance in industrial applications.90–93 The

rapidly changing demand of chemical products has made it necessary to exploit dynamic opti-

mization methods in order to cope the changing markets. Shifts in demand and supply of certain

products occur constantly and finding reliable methods to achieve the desired production has be-

come necessary.94, 95 In the chemical industry, it has become common to produce multiple products

from the same plant in both batch and continuous processes.91, 93 Several frameworks that use op-

timization strategies have been proposed for scheduling in order to optimize the decision-making

process while accounting for practical constraints and limitations.93, 94 Scheduling and control

are two crucial elements that serve the same overall goal of maximizing plant economics while

meeting the customer demand. After solving the scheduling problem, process control strategies

are used to drive the plant to follow the desired production schedule. Extensive research efforts

have been dedicated recently to develop reliable methods that could track desired production set-

points corresponding to different operating conditions.91, 105, 106 The use of MPC in tracking the

desired production schedule while accounting for input/output constraints has also been consid-

ered.90, 91, 105

Generally, only a subset of the total process state vector is requested to follow production

schedules. Therefore, there is a potential in many processes to meet the desired schedule while

achieving economically optimal process operation. Thus, it is expected that introducing a novel

EMPC framework can lead a control strategy that meets the production schedule for the desired

states while maximizing economics with respect to the rest of the states.

1.4 Dissertation Objectives and Structure

Motivated by the above considerations, this dissertation focuses on the development of novel

EMPC designs that utilize empirical models and the application of EMPC in production man-
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agement. Various system identification schemes were investigated in the EMPC designs including

linear modeling, non-linear modeling, multiple models, and on-line model identification. On-line

model identification is used to obtain more accurate models when the linear empirical models are

not capable of capturing the nonlinear dynamics as a result of significant plant disturbances and

variations, actuator faults, or when it is desired to change the region of operation. Finally, the use

of EMPC in tracking a production schedule is investigated. Conditions to guarantee feasibility and

closed stability of the proposed schemes are derived. The dissertation has the following structure:

Chapter 2 focuses on the development of a Lyapunov-based economic model predictive control

(LEMPC) designed with an empirical model that allows for closed-loop stability guarantees in the

context of nonlinear chemical processes. Specifically, when the linear model provides a sufficient

degree of accuracy in the region where time-varying economically optimal operation is considered,

conditions for closed-loop stability under the LEMPC scheme based on the empirical model are

derived. The LEMPC scheme is applied to a chemical process example to demonstrate its closed-

loop stability and performance properties as well as significant computational advantages.

Chapter 3 focuses on the development of EMPC that utilizes well-conditioned polynomial non-

linear state-space models for processes with nonlinear dynamics. Specifically, the chapter initially

addresses the development of a nonlinear system identification technique for a broad class of non-

linear processes which leads to the construction of polynomial nonlinear state-space dynamic mod-

els which are well-conditioned over a broad region of process operation in the sense that they can be

correctly integrated in real-time using explicit numerical integration methods via time steps that are

significantly larger than the ones required by nonlinear state-space models identified via existing

techniques. Working within the framework of polynomial nonlinear state-space (PNLSS) models,

additional constraints are imposed in the identification procedure to ensure well-conditioning of

the identified nonlinear dynamic models. This development is key because it enables the design

of Lyapunov-based EMPC (LEMPC) systems for nonlinear processes using the well-conditioned

nonlinear models that can be readily implemented in real-time since the computational burden re-

quired to compute the control actions within the process sampling period is reduced. A stability
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analysis for this LEMPC design is provided that guarantees closed-loop stability of a process un-

der certain conditions when an LEMPC based on a nonlinear empirical model is used. Finally,

a classical chemical engineering reactor example demonstrates both the system identification and

LEMPC design techniques, and the significant advantages in terms of computation time reduction

in LEMPC calculations when using the nonlinear empirical model.

Chapter 4 addresses the fact that linear empirical models may not capture the nonlinear dy-

namics over a wide region of state-space and may also perform poorly when significant plant vari-

ations and disturbances occur. Therefore, an error-triggered on-line model identification approach

is introduced for closed-loop systems under model-based feedback control strategies. The linear

models are re-identified on-line when significant prediction errors occur. A moving horizon error

detector is used to quantify the model accuracy and to trigger the model re-identification on-line

when necessary. The proposed approach is demonstrated through two chemical process exam-

ples using a Lyapunov-based economic model predictive control (LEMPC). The chemical process

examples illustrate that the proposed error-triggered on-line model identification strategy can be

used to obtain more accurate state predictions to improve process economics while maintaining

closed-loop stability of the process.

Chapter 5 presents a data-driven methodology to overcome actuator faults in empirical model-

based feedback control. More specifically, the chapter introduces the use of a moving horizon error

detector that quantifies prediction errors and triggers updating of the model used in the controller

on-line when significant prediction errors occur due to the loss of one of the actuators. Model re-

identification is conducted on-line using the most recent input/output data collected after the fault

occurrence. The error-triggered on-line model identification approach can be applied to overcome

various types of actuator faults, including the case where the value at which the actuator is stuck

is known and the case where the value at which the actuator is stuck is unknown. The proposed

methodology is applied in economic model predictive control (EMPC). Two different chemical

process examples are considered in order to demonstrate the application of the proposed strategy.

In the first example, application of the proposed scheme for the case where the value at which
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the actuator is stuck is known is demonstrated through a benchmark catalytic chemical reactor

example where the actuator faults occur in the heat input causing shifts and variations in plant

operating conditions. The second example demonstrates the case where the value at which the

actuator is stuck is unknown through a typical chemical reactor example. The proposed scheme

was able to compensate for the variations in the plant caused by the actuator loss by obtaining

more accurate models that are suitable for the new conditions and updating them in the EMPC

architecture. Improved economic performance was obtained as the updated models were able to

capture process dynamics under the new conditions and provide better state predictions.

Chapter 6 investigates the use of economic model predictive control (EMPC) in tracking a

production schedule. Specifically, given that only a small subset of the total process state vector

is typically required to track certain scheduled values, a novel EMPC scheme is designed, through

proper construction of the objective function and constraints, that forces specific process states

to meet the production schedule and varies the rest of the process states in a way that optimizes

process economic performance. Conditions under which feasibility and closed-loop stability of a

nonlinear process under such an EMPC for schedule management can be guaranteed are developed.

The proposed EMPC scheme is demonstrated through a chemical process example in which the

product concentration is requested to follow a certain production schedule.

Finally, Chapter 7 summarizes the contributions of this dissertation.
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Chapter 2

Economic Model Predictive Control of

Nonlinear Process Systems Using Empirical

Models

2.1 Introduction

The economic success of chemical and petrochemical industry relies heavily on optimal process

operation which has led to the emergence of an overall process control goal to translating pro-

cess/system economic considerations into feedback control objectives.15 One key development

towards achieving this goal is economic model predictive control (EMPC). EMPC is a feedback

control technique that attempts to tightly integrate economic optimization and feedback control

since it is a predictive control scheme that is formulated with an objective function representing

the process/system economics2, 20, 22 (see, also,14 for an overview of recent results on EMPC).

While initial efforts on EMPC have focused on closed-loop stability considerations recent devel-

opments have addressed economic performance improvement over conventional (tracking) model

predictive control (MPC) including: formulating a Lyapunov-based EMPC with closed-loop per-

formance guarantees over finite-time and infinite-time operating intervals,13 investigating the tran-
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sient performance and closed-loop stability of EMPC formulated without terminal constraints,18

and studying the closed-loop performance of EMPC formulated with a self-tuning terminal cost

and generalized terminal constraint.32

The key underlying assumption to design and apply an EMPC is that a process/system dy-

namic model is available to predict the future process state evolution. Constructing models of

dynamical systems is done either through first principles and/or from process input/output data.79

First-principle models are developed from conservation equations and attempt to account for the

essential mechanisms behind the observed physico-chemical phenomena. However, arriving at

a first principles model requires sufficient process knowledge which maybe a challenging task

for complex industrial processes. On the other hand, system identification serves as an alterna-

tive to first principles models when first-principles models are unavailable and/or too complex to

use on-line in model predictive control. Over the past thirty years, numerous methods have been

developed to construct linear or nonlinear empirical models from input/output data (see, for exam-

ple,3, 7, 28, 36, 51 and the references contained therein for an overview of these methods). Perhaps,

the most common type of empirical model is a linear model. When a process system exhibits sig-

nificant nonlinearities as is the case in most chemical processes, the use of multiple linear models

has been employed to improve the accuracy of prediction over a larger operating region.19, 23, 33

One potential grouping of the various methods of system identification is to group the methods

on the basis of the type of empirical model derived which may be either an input-output model or

a state-space model. It is important to note that when the output vector is the entire state vector,

input-output modeling methods may be used to construct a state-space model.

Within the context of input-output models, (nonlinear) autoregressive moving average with ex-

ogenous input models ((N)ARMAX), Volterra models, and neural-network models are some of

the types of input-output models commonly used (see, for instance,7, 51 and the references therein

for more details on input-output modeling). Numerous works on integrating input-output mod-

els within the context of tracking MPC, which is formulated with a cost function that is positive

definite with respect to a set-point or steady-state, have been investigated. For instance, the use
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of Hammerstein, Wiener, and Hammerstein-Wiener models within MPC8, 17, 34 has been consid-

ered, the use of multiple-models within MPC constructed from autoregressive with exogenous

input (ARX) models has been investigated for batch processes (e.g.,6), and multiple-model adap-

tive predictive control has been formulated for mean arterial pressure and cardiac output regulation

(e.g.,46).

On the other hand, empirical state-space modeling methods are another type of empirical mod-

eling techniques. Within this context, linear subspace system identification is a very widely known

and used empirical modeling method that is based on input/output data.37, 39, 42–44, 56, 76 In partic-

ular, subspace model identification (SMI) are non-iterative methods that take into account multi-

variable interactions and result in models that have great numerical stability for multiple-input

multiple-output (MIMO) systems.9, 39, 76 Some of the various subspace system identification algo-

rithms in the literature include multi-variable output error state-space algorithm (MOESP),16, 42–44

the Canonical Variate Algorithm (CVA),59 and numerical algorithms for subspace state-space sys-

tem identification (N4SID).39 Identifying the deterministic part of a MIMO state-space model

using SMI methods has proven to be successful in the context of industrial settings.1, 16, 29, 41, 43

Combining subspace methods with MPC has also been considered (see, for instance,56 and the

references contained therein).

To date, no work on formulating an EMPC scheme using an empirical model with guaran-

teed closed-loop stability properties has been completed. In this chapter, an integrated view of

system modeling, feedback control, and process/system economics is undertaken. Specifically,

an LEMPC formulated with an empirical model is considered. The type of empirical model is

restricted to state-space models given the fact that the economic cost function typically depends

on at least some (if not all) of the state variables. While the linear model may be derived from

any system identification technique, it must be sufficiently close (in a sense to be made precise

below) to the linearization of the nonlinear process model at the steady-state around which time-

varying operation is considered. Under this assumption, sufficient conditions for closed-loop sta-

bility (boundedness of the closed-loop state in a compact state-space set) under the LEMPC with
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the empirical linear model applied to the nonlinear chemical process are derived. The LEMPC

with empirical model method is applied to a chemical process example and extensive closed-loop

simulations are performed that demonstrate the closed-loop stability and performance properties.

Furthermore, a significant reduction in the on-line computation time with LEMPC formulated with

an empirical model is realized over LEMPC formulated with a nonlinear first-principles model.

2.2 Preliminaries

2.2.1 Notation

The Euclidean norm of a vector is denoted by the operator | · | and the (any) norm of a matrix

is denoted as ‖ · ‖. A continuous function α : [0,a)→ [0,∞) is said to belong to class K if it

is strictly increasing and is zero when evaluated at zero. The symbol Ωρ is used to denote the

set Ωρ := {x ∈ Rnx : V (x) ≤ ρ} where V is a continuously differentiable positive definite scalar

function and ρ > 0. The symbol xT denotes the transpose of the vector x.

2.2.2 Class of Systems

The class of nonlinear process systems considered can be written in the following continuous-time

state-space form:

ẋ(t) = f (x(t),u(t),w(t)) (2.1)

where x ∈ Rn is the state vector of the system, u ∈ Rm is the control (manipulated) input vector,

and w ∈ Rl is the disturbance vector. The vector function f is assumed to be locally Lipschitz on

Rn×Rm×Rl . The control actions are bounded by the physical constraints on the control actuators

and thus, are restricted to belong to a nonempty convex set U := {u ∈ Rm : umin
i ≤ ui ≤ umax

i , i =

1, . . . , m}. The norm of the disturbance vector is bounded (i.e., |w(t)| ≤ θ for all t where θ > 0

bounds the norm). The equilibrium of the system of Eq. 2.1 is considered to be the origin, i.e.,

f (0,0,0) = 0. The state of the system of Eq. 2.1 is assumed to be synchronously sampled and
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available at sampling time instances tk = k∆, k = 0, 1, . . . where ∆ > 0 is the sampling period.

We restrict the class of nonlinear systems of Eq. 2.1 considered to a class of stabilizable non-

linear systems. Specifically, we assume the existence of a Lyapunov-based controller h(x)∈U that

renders the origin of the closed-loop nominal system (w(t) ≡ 0) of Eq. 2.1 asymptotically stable

for all x in an open neighborhood of the origin. This assumption implies the existence of a contin-

uously differentiable Lyapunov function, V : Rn→ R+, for the closed-loop system of Eq. 2.1 under

u(t) = h(x(t)) that satisfies:30, 111

α1(|x|)≤V (x)≤ α2(|x|), (2.2a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|), (2.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (2.2c)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of the origin and αi(·), i = 1, 2, 3, 4 are

functions of class K . For various classes of nonlinear systems, several stabilizing control laws that

explicitly account for input constraints have been developed (see, for example,10, 12, 27, 83 for results

in this direction). The stability region (i.e., the set of points in state-space where convergence to

the origin under the Lyapunov-based controller is guaranteed) may be estimated as the level set

of the Lyapunov function where the time-derivative of the Lyapunov function is negative, and is

denoted as Ωρ ⊂ D. Moreover, the origin of the sampled-data system resulting from the system

of Eq. 2.1 under the Lyapunov-based controller when implemented in a sample-and-hold fashion

is practically stable (i.e., the closed-loop state will converge to a small compact, forward invariant

set containing the origin in its interior) when a sufficiently small sampling period is used and the

disturbance vector is sufficiently small.31

In this chapter, empirical models will be constructed to predict the evolution of the state of the

system of Eq. 2.1 using data-based modeling techniques. Specifically, the type of empirical models

constructed for the system of Eq. 2.1 are linear time-invariant (LTI) state-space models which have
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the following form:

ẋ(t) = Ax(t)+Bu(t) (2.3)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and A and B are constant matri-

ces of appropriate dimensions. When the nominal nonlinear model of Eq. 2.1 is unavailable, the

Lyapunov-based controller needs to be designed on the basis of the empirical model of Eq. 2.3.

We assume that the pair (A,B) is stabilizable in the sense that there exists a state feedback con-

troller hL(x) ∈U that renders the origin of the closed-loop system of Eq. 2.3 exponentially stable

for all initial conditions x ∈ DL where DL is some open neighborhood of the origin. Furthermore,

the controller hL(x) ∈U is assumed to be locally Lipschitz on Rn in the sense that there exists a

K > 0 such that |hL(x)| can be bounded by K|x| for all x in a compact set containing the origin

in its interior. When the controller hL(x) is applied to the nominal nonlinear system of Eq. 2.1,

there are two factors that affect closed-loop stability: the closeness of the model of Eq. 2.3 to the

linearization of the nominal model of Eq. 2.1 at the origin and the effect of the nonlinearities of the

system of Eq. 2.1. Locally, we can show that the controller hL(x) possesses a robustness margin

to overcome these two effects and render the origin of the nominal closed-loop nonlinear system

asymptotically stable. This is stated in the following proposition.

Proposition 1 If the origin of closed-loop system of Eq. 2.3 under the controller hL(x) is exponen-

tially stable and there exist ρ̂ > 0 and δ > 0 such that:

‖Ā−A‖+‖B̄−B‖K ≤ δ (2.4)

where the matrices Ā and B̄ denote the linearization of f (x,u,0) at the origin:

Ā :=
∂ f
∂x

(0,0,0), B̄ :=
∂ f
∂u

(0,0,0) . (2.5)

then the origin of the nominal closed-loop system of Eq. 2.1 is exponentially stable for all x∈Ωρ̂ ⊂

DL.
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Proof 2.1 To prove the result of Proposition 1, we will show that there exists a Lyapunov func-

tion for the closed-loop system of Eq. 2.1 under the controller hL(x) when ρ̂ > 0 and δ > 0 are

sufficiently small. Owing to the fact that the origin of closed-loop system of Eq. 2.3 under the con-

troller hL(x) is exponentially stable, there exists a continuously differentiable Lyapunov function

V̂ : Rn→ R+ such that:111

c1|x|2 ≤ V̂ (x)≤ c2|x|2, (2.6a)

∂V̂ (x)
∂x

(Ax+BhL(x))≤−c3|x|2, (2.6b)∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣≤ c4|x| (2.6c)

for all x ∈ DL where ci, i = 1, 2, 3, 4 are positive constants. Define

g(x) := f (x,hL(x),0)− Āx− B̄hL(x) (2.7)

which contains terms of second-order and higher in x. Consider the following closed-loop system:

ẋ = Ax+BhL(x)+ f (x,hL(x))−Ax−BhL(x) . (2.8)

and the time-derivative of V̂ along the trajectory of the closed-loop system of Eq. 2.8:

˙̂V =
∂V̂ (x)

∂x
(Ax+BhL(x))+

∂V̂ (x)
∂x

( f (x,hL(x),0)−Ax−BhL(x))

(5.4b)
≤ −c3|x|2 +

∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣ ∣∣(Ā−A
)

x+(B̄−B)hL(x)+g(x)
∣∣

(5.4c)
≤ −c3|x|2 + c4|x|

(∣∣(Ā−A
)

x+(B̄−B)hL(x)
∣∣+ |g(x)|) (2.9)

for all x ∈ DL. Since the controller hL(x) is locally Lipschitz, there exists a K > 0 such that:

˙̂V ≤−c3|x|2 + c4|x|
((∥∥Ā−A

∥∥ |x|+‖B̄−B‖|hL(x)|
)
+ |g(x)|

)
≤−c3|x|2 + c4|x|

((∥∥Ā−A
∥∥+‖B̄−B‖K

)
|x|+ |g(x)|

)
(2.10)
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for all x ∈ BR = {x ∈ Rn : |x| ≤ R} where R is any R > 0 such that BR ⊂ DL. If the condition of

Eq. 2.4 is satisfied, there exits a δ > 0 such that:

˙̂V ≤−c3|x|2 + c4δ |x|2 + c4|x||g(x)| (2.11)

for all x ∈ BR. Since g(x) contains terms of second-order and higher in x and vanishes at the

origin, there exists a γ > 0 such that:

|g(x)|< γ|x|2 (2.12)

for all x ∈ BR. Thus,

˙̂V ≤−c3|x|2 + c4δ |x|2 + c4γ|x|3 (2.13)

for all x ∈ BR. For any Br ⊂ BR, the time-derivative of V̂ can be bounded by the following:

˙̂V ≤−c3|x|2 + c4(δ + γr)|x|2 (2.14)

for all x ∈ Br where r < R. If δ > 0 and r > 0 are chosen to satisfy c3/c4 > (δ + γr), then there

exists a ĉ3 > 0 such that:

˙̂V =
∂V̂ (x)

∂x
( f (x,hL(x),0))≤−ĉ3|x|2 (2.15)

for all |x|< r. Let ρ̂ > 0 be such that ρ̂ ≤min{V̂ (x) : |x|< r} which completes the proof.

We will make use of the following properties in the “Stability Analysis” subsection. Owing to

the locally Lipschitz property assumed for the vector function f (·, ·, ·) as well as the fact that the

Lyapunov function V (·) is a continuously differentiable function, the following inequalities hold:

| f (x1,u,w)− f (x2,u,0)| ≤ Lx |x1− x2|+Lw |w| , (2.16)∣∣∣∣∂V (x1)

∂x
f (x1,u,w)−

∂V (x2)

∂x
f (x2,u,0)

∣∣∣∣≤ L′x |x1− x2|+L′w |w| (2.17)

for all x1, x2 ∈Ωρ̂ , u∈U and |w| ≤ θ where Lx, Lw, L′x, and L′w are positive constants. Additionally,
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there exists M > 0 that bounds the vector field:

| f (x,u,w)| ≤M (2.18)

for all x ∈ Ωρ̂ , u ∈ U and |w| ≤ θ because f (·, ·, ·) is a locally Lipschitz vector function of its

arguments and Ωρ and U are compact sets. For the linear model of Eq. 2.3, there exist ML > 0 and

LL > 0 such that:

|Ax1 +Bu| ≤ML (2.19)∣∣∣∣∂V (x1)

∂x
(Ax1 +Bu)− ∂V (x2)

∂x
(Ax2 +Bu)

∣∣∣∣≤ LL |x1− x2| (2.20)

for all x1, x2 ∈Ωρ̂ and u ∈U .

2.2.3 Lyapunov-based EMPC

A specific type of EMPC will be considered in this chapter. Specifically, we consider Lyapunov-

based EMPC (LEMPC)20 which utilizes the Lyapunov-based controller h(x) in the design of two

constraints. The two constraints allow for provable guarantees on closed-loop stability (the closed-

loop state is always bounded in Ωρ ). Each constraint defines an operating mode of the LEMPC.
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The formulation of LEMPC is given by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (2.21a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.21b)

x̃(tk) = x(tk) (2.21c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (2.21d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N) if x(tk) ∈Ωρe (2.21e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)

≤ ∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0) if x(tk) /∈Ωρe (2.21f)

where the input trajectory over the prediction horizon N∆ is the decision variable in the optimiza-

tion problem. The notation x̃(t) denotes the predicted behavior of the state trajectory under the

input trajectory computed by the LEMPC. The region Ωρe is a subset of the stability region Ωρ

where time-varying operation is allowed (ρe which defines a level set of the Lyapunov function is

chosen to make Ωρ invariant; see20 for details regarding this point).

The objective function of the optimization problem of Eq. 2.21a is formulated with a stage

cost derived from the economics of the system of Eq. 2.1 (e.g., the operating cost, energy cost, the

negative of the operating profit, the negative of the production rate). The initial value problem em-

bedded in the optimization problem (Eq. 2.21b-2.21c) is used to predict the evolution of the system

over the prediction horizon where the initial condition is obtained through a state measurement at

the current time step. The input constraint of Eq. 2.21d bounds the computed input trajectory to

be within the admissible input set. Depending on where the current state is in state-space, mode

1, which is defined by the constraint of Eq. 2.21e, or mode 2, which is defined by the constraint

of Eq. 2.21f, are active. Under mode 1 operation of the LEMPC, the computed input trajectory is

allowed to force a potentially transient (time-varying) state trajectory while maintaining the pre-

dicted state in a subset of the stability region. The region Ωρe ⊂ Ωρ is chosen on the basis of
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closed-loop stability in the presence of uncertainty, i.e., w(t) 6≡ 0. Under mode 2 operation of the

LEMPC, the constraint of Eq. 2.21f forces the control action for the first sampling period in the

prediction horizon to decrease the Lyapunov function by at least as much as the decrease forced

by the control action computed by the Lyapunov-based controller. This contractive constraint will

guarantee that any state starting in Ωρ \Ωρe will be eventually forced back to Ωρe . For more de-

tails and discussion of LEMPC along with a complete closed-loop stability analysis, the interested

reader may refer to.20

2.3 Economic Model Predictive Control using Empirical Mod-

els

In this section, we summarize the formulation and implementation of an LEMPC formulated with

an empirical model as well as derive sufficient conditions such that the closed-loop nonlinear sys-

tem under the LEMPC formulated with an empirical model will be stable in a sense to be made

precise below.

2.3.1 Formulation with Empirical Models and Implementation

The formulation of the LEMPC with the empirical model is similar to the LEMPC of Eq. 2.21

except it is formulated with the empirical model of Eq. 2.3, the stabilizing controller hL(x), and the
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Lyapunov function V̂ (x). The formulation of the LEMPC using an empirical model is given by:

min
u∈S(∆)

∫ tk+N

tk
Le(x̂(τ),u(τ)) dτ (2.22a)

s.t. ˙̂x(t) = Ax̂(t)+Bu(t) (2.22b)

x̂(tk) = x(tk) (2.22c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (2.22d)

V̂ (x̂(t))≤ ρ̂e, ∀ t ∈ [tk, tk+N) if x(tk) ∈Ωρ̂e (2.22e)

∂V̂ (x(tk))
∂x

(Ax(tk)+Bu(tk))

≤ ∂V̂ (x(tk))
∂x

(Ax(tk)+BhL(x(tk))) if x(tk) /∈Ωρ̂e (2.22f)

where the notation x̂(t) is used to distinguish that the LEMPC predicts the evolution of the system

of Eq. 2.1 with the empirical model of Eq. 2.3 and Ωρ̂e ⊂ Ωρ̂ is the subset where time-varying

operation under the LEMPC may dictate a time-varying operating policy (the other constraints are

similar to that used in Eq. 2.21). The optimal solution of the optimization problem of Eq. 2.22 is

denoted as u∗(t|tk) defined for t ∈ [tk, tk+N).

The LEMPC of Eq. 2.22 is implemented in a receding horizon fashion. At a sampling instance,

the LEMPC is solved for an input trajectory u∗(t|tk) for t ∈ [tk, tk+N), but only applies the control

action for the first sampling period of the prediction horizon to the system. The control action to

be applied over the first sampling period is denoted as u∗(tk|tk). The implementation strategy of

the LEMPC is summarized in the following algorithm:

1. Receive a state measurement x(tk). Go to Step 2.

2. If x(tk) ∈Ωρ̂e , go to Step 2.1. Else, go to Step 2.2.

2.1 The mode 1 constraint of Eq. 2.22e is active and the mode 2 constraint of Eq. 2.22f is

inactive. Go to Step 3.

2.2 The mode 2 constraint of Eq. 2.22f is active and the mode 1 constraint of Eq. 2.22e is
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inactive. Go to Step 3.

3. The optimization problem of Eq. 2.22 solves for its optimal input trajectory defined for

t ∈ [tk, tk+N). Go to Step 4.

4. The first control action of the input trajectory u∗(tk|tk) is applied to the system of Eq. 2.1.

Go to Step 5.

5. k := k+1 and go to Step 1.

2.3.2 Stability Analysis

In this subsection, the stability properties of the LEMPC formulated with the empirical model are

analyzed. The following proposition bounds the difference between the actual state trajectory of

the system of Eq. 2.1 in the presence of uncertainty (w(t) 6≡ 0) and the predicted state trajectory

from the model of Eq. 2.3 over a time period from t = 0 to t = T .

Proposition 2 Consider the solutions, denoted as x(t) and x̂(t), respectively, of the following dy-

namic equations:

ẋ(t) = f (x(t),u(t),w(t)), x(0) = x0, (2.23)

˙̂x(t) = Ax̂(t)+Bu(t), x̂(0) = x0, (2.24)

where u(t) ∈U and |w(t)| ≤ θ for all t ∈ [0,T ] and initial condition x(0) = x̂(0) = x0 ∈ Ωρ̂ . If

x(t), x̂(t) ∈ Ωρ̂ for all t ∈ [0,T ], then the difference between x(T ) and x̂(T ) is bounded by the

function fw(·):

|x(T )− x̂(T )| ≤ fw(T ) :=
Lwθ +Merr

Lx

(
eLxT −1

)
. (2.25)

where Merr bounds the difference between right-hand sides of Eqs. 2.23-2.24 (with w(t)≡ 0):

| f (x,u,0)− (Ax+Bu)| ≤Merr (2.26)
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for all x ∈Ωρ̂ and u ∈U.

Proof 2.2 Let e(t) be the difference between the state trajectory of Eq. 2.23 and the state trajectory

of Eq. 2.24 (i.e., e(t) := x(t)− x̂(t)) with dynamics ė(t) = ẋ(t)− ˙̂x(t) and initial condition e(0) = 0).

The error dynamics can be bounded by:

|ė(t)|= | f (x(t),u(t),w(t))− (Ax̂(t)+Bu(t))|

≤ | f (x(t),u(t),w(t))− f (x̂(t),u(t),0)|

+ | f (x̂(t),u(t),0)− (Ax̂(t)+Bu(t))| . (2.27)

For a given Ωρ̂ , there exists a Merr > 0 such that:

| f (x,u,0)− (Ax+Bu)| ≤Merr (2.28)

for all x ∈ Ωρ̂ and u ∈U owing to the Lipschitz property assumed for the vector function f (·, ·, ·)

and the fact that x and u are bounded in compact sets. From Eq. 2.27 and Eq. 2.28 and the locally

Lipschitz property for f (·, ·, ·) (Eq. 2.16), we have the following bound:

|ė(t)| ≤ Lx |x(t)− x̂(t)|+Lw |w(t)|+Merr

≤ Lx |e(t)|+Lwθ +Merr (2.29)

for all t ∈ [0,T ] where the last inequality follows from the fact that |w(t)| ≤ θ . Integrating the

bound of Eq. 2.29 from t = 0 to t = T gives:

∫ T

0

|ė(t)|
Lx|e(t)|+Lwθ +Merr

dt ≤ T (2.30)

and solving for |e(T )|:

|e(T )|= |x(T )− x̂(T )| ≤ Lwθ +Merr

Lx

(
eLxT −1

)
(2.31)
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with x(T ), x̂(T ) ∈Ωρ̂ .

The next proposition bounds the difference of Lyapunov function values between any two

points in Ωρ̂ . The proof may be found in.31

Proposition 3 (c.f.31) Consider the continuous differentiable Lyapunov function V (x) that satisfies

the inequalities of Eq. 2.2. There exists a quadratic function fV (·) such that

V̂ (x1)≤ V̂ (x2)+ fV (|x1− x2|) (2.32)

for all x1, x2 ∈Ωρ̂ where

fV (s) :=
c4

c1
ρ̂s+β s2 (2.33)

and β is a positive constant.

The state feedback controller hL(x) renders the origin of Eq. 2.3 asymptotically stable under

continuous implementation. In general, the controller hL(x) implemented in a sample-and-hold

fashion may only render the origin of the closed-loop system of Eq. 2.3 practically stable, that

is the closed-loop state of Eq. 2.3 under the controller hL(x) implemented in a sample-and-hold

is ultimately bounded in a small invariant set containing the origin in its interior. To guarantee a

feasible solution to the optimization problem of Eq. 2.22 under mode 1 operation, the set Ωρ̂e must

be larger than the set that closed-loop state is ultimately bounded in under the controller hL(x)

implemented in a sample-and-hold fashion for a given sampling period ∆ > 0. The following

proposition states sufficient conditions for that governs the minimum size of ρ̂e for a given ∆

needed to guarantee a feasible solution of Eq. 2.22e under mode 1 operation. To this end, let x̂(t)

denote the solution of sampled-data system resulting from the system of Eq. 2.3 with the initial

condition x̂(0) ∈Ωρ̂ and with the input trajectory obtained from the controller hL(x) implemented

in a sample-and-hold fashion:

u(t) = hL(x̂(tk)) (2.34)

for t ∈ [tk, tk+1), k = 0, 1, . . . with t0 = 0.
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Proposition 4 Consider the sampled-data system resulting from the system of Eq. 2.3 under the

controller hL(x) that satisfies the inequalities of Eq. 2.6 implemented in a sample-and-hold fashion.

Let ∆ > 0, ε̂s > 0, ρ̂s > 0, and ρ̂e ≥ ρ̂min > 0 satisfy:

−c3

c2
ρ̂s +LLML∆≤−ε̂s/∆ (2.35)

and

ρ̂min := max
{

V̂ (x̂(t +∆)) : V̂ (x̂(t))≤ ρ̂s
}
. (2.36)

If x̂(0) ∈Ωρ̂e , then x̂(t) ∈Ωρ̂e for all t ≥ 0 and

V̂ (x̂(tk+1))−V̂ (x̂(tk))≤−ε̂s (2.37)

for x(tk) ∈Ωρ̂e and x̂(t) is ultimately bounded in Ωρ̂min .

Proof 2.3 Consider the sampled-data system resulting from the system of Eq. 2.3 under the con-

troller hL(x) applied in a sample-and-hold fashion. At each sampling period tk, the input trajectory

obtained from the controller hL(x) applied in a sample-and-hold fashion has the following prop-

erty:
∂V̂ (x̂(tk))

∂x
(Ax̂(tk)+BhL(x̂(tk)))≤−c3|x̂(tk)|2 (2.38)

from Eq. 2.6b. For simplicity of notation, let û(tk) := hL(x̂(tk)). Consider the time-derivative of the

Lyapunov function for the empirical model for τ ∈ [tk, tk+1):

∂V̂ (x̂(τ))
∂x

(Ax̂(τ)+Bû(tk)) =
∂V̂ (x̂(τ))

∂x
(Ax̂(τ)+Bû(tk))−

∂V̂ (x̂(tk))
∂x

(Ax̂(tk)+Bû(tk))

+
∂V̂ (x̂(tk))

∂x
(Ax̂(tk)+Bû(tk))

≤ LL |x̂(τ)− x̂(tk)|− c3|x̂(tk)|2 (2.39)

where the last inequality follows from Eq. 2.38 and Eq. 2.20. Owing to continuity of solutions in a
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compact set and the bound of Eq. 2.19, the following bound holds:

|x̂(τ)− x̂(tk)| ≤ML∆ (2.40)

for τ ∈ [tk, tk+1]. From Eq. 2.39 and Eq. 2.40, the time-derivative of the Lyapunov function is

bounded by:
∂V̂ (x̂(τ))

∂x
(Ax̂(τ)+Bû(tk))≤−c3|x̂(tk)|2 +LLML∆ (2.41)

for τ ∈ [tk, tk+1).

If ∆ > 0 is sufficiently small such that there exist ρ̂s > 0, ρ̂min > 0, and ε̂s > 0 with ρ̂e ≥ ρ̂min

defined according to Eqs. 2.35-2.36, the state x̂(t) remains bounded in Ωρ̂e for t ≥ 0 when x̂(0) ∈

Ωρ̂e . To show this, we need to consider two cases: x̂(tk) ∈ Ωρ̂e \Ωρ̂s and x̂(tk) ∈ Ωρ̂s . When

x̂(tk) ∈ Ωρ̂e \Ωρ̂s and x̂(τ) ∈ Ωρ̂e for τ ∈ [tk, tk+1), the following bound on the time-derivative of

the Lyapunov function can be written from the inequalities of Eq. 2.41 and Eq. 2.6a:

∂V̂ (x̂(τ)))
∂x

(Ax̂(τ)+Bû(tk))≤−
c3

c2
ρ̂s +LLML∆ (2.42)

for τ ∈ [tk, tk+1). If the condition of Eq. 2.35 holds, there exists a ε̂s > 0 such that:

∂V̂ (x̂(τ)))
∂x

(Ax̂(τ)+Bû(tk))≤−ε̂s/∆ (2.43)

for τ ∈ [tk, tk+1). Integrating the bound for τ ∈ [tk, tk+1], we have:

V̂ (x̂(tk+1)) ≤ V̂ (x̂(tk))− ε̂s,

V̂ (x̂(τ)) ≤ V̂ (x̂(tk)), ∀ τ ∈ [tk, tk+1]

(2.44)

for all x̂(tk) ∈Ωρ̂e \Ωρ̂s which shows the result of Eq. 2.37 and x(t) ∈Ωρ̂e for all t ∈ [tk, tk+1].

For any x̂(tk) ∈ Ωρ̂e \Ωρ̂s , we showed that the Lyapunov function under the controller hL(x)

applied in a sample-and-hold fashion will decrease at the next sampling period. When x̂(tk) ∈Ωρ̂s
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and there exists a ρ̂min ≤ ρ̂e defined according to Eq. 2.36, the state is ultimately bounded in Ωρ̂min

under the Lyapunov-based controller applied in a sample-and-hold fashion owing to the definition

of ρ̂min. Thus, Ωρ̂e is forward invariant for the sampled-data system resulting from the system of

Eq. 2.3 under the Lyapunov-based controller implemented in a sample-and-hold fashion (i.e., there

exists a sample-and-hold trajectory with sampling period ∆ that maintains x̂(t) in Ωρ̂e).

The purpose of Ωρ̂e is to make Ωρ̂ invariant for the closed-loop system of Eq. 2.1 under the

LEMPC of Eq. 2.22. The condition on ρ̂e along with other sufficient conditions such that the

closed-loop state trajectory of Eq. 2.1 under the LEMPC of Eq. 2.22 is always maintained in Ωρ̂

are given in the following theorem.

Theorem 1 Consider the closed-loop system of Eq. 2.1 under the LEMPC of Eq. 2.22 based on the

controller hL(x) that satisfies the inequalities of Eq. 2.6. Let εw > 0, ∆ > 0, N ≥ 1, and ρ̂ > ρ̂e > 0

satisfy

− ĉ3

c2
ρ̂e +L′xM∆+L′wθ ≤−εw/∆ , (2.45)

ρ̂e ≤ ρ̂− fV ( fw(∆)) . (2.46)

If x(0) ∈ Ωρ̂ and the conditions of Proposition 1 and Proposition 4 are satisfied, then the state

trajectory x(t) of the closed-loop system is always bounded in Ωρ̂ for t ≥ 0.

Proof 2.4 The proof is divide into two parts. In Part 1, feasibility of the LEMPC optimization

problem is proved when the state is maintained in Ωρ̂ . Subsequently, the closed-loop state under

the LEMPC of Eq. 2.22 is shown to always bounded in Ωρ̂ in Part 2.

Part 1: If mode 1 operation of the LEMPC of Eq. 2.22 is active (x(tk)∈Ωρ̂e) and the conditions

of Proposition 4 are satisfied (i.e., there exist positive constants ρ̂s, ρ̂min, and ε̂s that satisfies

Eqs. 2.35-2.35 for a given ρ̂e, ∆ pair), the LEMPC (under mode 1 operation) is feasible because the

sample-and-hold trajectory obtained from the controller hL(x) is a feasible solution to the LEMPC

optimization problem which follows from Proposition 4. When the current state x(tk) ∈ Ωρ̂ \Ωρ̂e

and the LEMPC of Eq. 2.22e operates in mode 2 operation, the optimization problem is feasible
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because the input trajectory u(t) = hL(x(tk)) for t ∈ [tk, tk+1) and any piecewise constant trajectory

u(t) ∈U for t ∈ [tk+1, tk+N) will satisfy the input constraint of Eq. 2.22d and the mode 2 constraint

of Eq. 2.22f. Thus, the LEMPC is recursively feasible if the closed-loop state is maintain in Ωρ̂ .

Part 2: Consider the closed-loop state trajectory under the LEMPC of Eq. 2.22. If x(tk) ∈

Ωρ̂ \Ωρ̂e , the LEMPC operates in mode 2 (the constraint of Eq. 2.22f is active) and the computed

input satisfies:

∂V̂ (x(tk))
∂x

(Ax(tk)+Bu(tk))≤
∂V̂ (x(tk))

∂x
(Ax(tk)+BhL(x(tk))) (2.47)

for all x(tk) ∈Ωρ̂ \Ωρ̂e . From Proposition 1 (Eq. 2.15), for δ and ρ̂ sufficiently small, there exists

a ĉ3 > 0 such that:
∂V̂ (x(tk))

∂x
f (x(tk),hL(x(tk)),0)≤−ĉ3|x(tk)|2 . (2.48)

The time-derivative of the Lyapunov function (of the closed-loop nonlinear system) over the sam-

pling period is

˙̂V (x(τ)) =
∂V̂ (x(τ))

∂x
f (x(τ),hL(x(τ)),w(τ))−

∂V̂ (x(tk))
∂x

f (x(tk),hL(x(tk)),0)

+
∂V̂ (x(tk))

∂x
f (x(tk),hL(x(tk)),0)

(2.17),(2.47)
≤ L′x|x(τ)− x(tk)|+L′w|w(τ)|− ĉ3|x(tk)|2

≤− ĉ3

c2
ρ̂e +L′x|x(τ)− x(tk)|+L′w|w(τ)| (2.49)

for τ ∈ [tk, tk+1) where the last inequality follows from the fact that x(tk)∈Ωρ̂ \Ωρ̂e . From Eq. 2.18

and the continuity of solutions, the difference between x(τ) and x(tk) is bounded:

|x(τ)− x(tk)| ≤M∆ (2.50)

for all τ ∈ [tk, tk+1). From Eqs. 2.49-2.50 and the fact that the disturbance vector is bounded
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(|w(τ)| ≤ θ ), we have:

∂V̂ (x(τ))
∂x

f (x(τ),u(tk),0)≤−
ĉ3

c2
ρ̂e +L′xM∆+L′wθ (2.51)

for all τ ∈ [tk, tk+1). If the condition of Eq. 2.45 is satisfied, then the following can be derived:

V̂ (x(tk+1)) ≤ V̂ (x(tk))− εw,

V̂ (x(τ)) ≤ V̂ (x(tk)), ∀ τ ∈ [tk, tk+1]

(2.52)

for all x(tk) ∈ Ωρ̂ \Ωρ̂e by employing the same steps used to derive the equations of Eq. 2.44.

Thus, when the LEMPC operates in mode 2, the Lyapunov function value will decrease at the next

sampling period and converge to the set Ωρ̂e in a finite number of sampling periods.

If x(tk) ∈ Ωρ̂e , the LEMPC will operate in mode 1. The predicted state at the next sampling

period must be in Ωρ̂e (x̂(tk+1) ∈Ωρ̂e) which is enforced by the constraint of Eq. 2.22e. By Propo-

sitions 2 and 3, we have:

V̂ (x(tk+1))≤ V̂ (x̂(tk+1))+ fV (|x(tk+1)− x̂(tk+1)|)

≤ ρ̂e + fV ( fw(∆)) (2.53)

If the condition of Eq. 2.46 is satisfied, x(tk+1) ∈ Ωρ̂ . Thus, under mode 1 and mode 2 operation

of the LEMPC, the closed-loop state is maintained in Ωρ̂ which completes the proof.

Remark 1 Since the empirical model of Eq. 2.3 can only accurately predict the behavior of the

system of Eq. 2.1 within a limited region in state-space, it may be difficult to find an empirical

model that can adequately capture the dynamics of the system of Eq. 2.1 for use in EMPC. The

accuracy of the model used in EMPC is critical because it affects both the closed-loop performance

and stability. A strategy to improve the accuracy of the model of Eq. 2.3 is to use multiple empirical

models for different regions of state-space to better capture the nonlinear dynamics of Eq. 2.1 and

as a result of the increased accuracy, use a larger Ωρ̂ than what is possible (from a closed-loop

28



stability perspective) with a single empirical model.

Remark 2 The general heuristic is that the closed-loop economic performance improves with

increasing prediction horizon when applying nonlinear EMPC (i.e., EMPC formulated with a non-

linear model). However, when using EMPC with an empirical model, the predicted behavior of the

system obtained from the empirical model over a long horizon may be significantly different than

the actual nonlinear behavior. Thus, increasing the prediction horizon of EMPC with an empir-

ical model may not increase the performance. In other words, the accuracy of the prediction by

the empirical model may affect the closed-loop performance and it be better from a closed-loop

performance standpoint to restrict operation to a smaller region state-space where the empirical

model can provide a sufficient degree of accuracy.

Remark 3 As a by-product of using an empirical model in LEMPC, the computational efficiency

of LEMPC is improved in general compared to using a nonlinear model in LEMPC since the

resulting the optimization problem has less nonlinearities and the empirical model of Eq. 2.3 can

be converted to an exact discrete-time model with zeroth-order sample-and-hold inputs (i.e., no

need to embed a numerical ordinary differential equation solver to solve the dynamic optimization

problem of the LEMPC). Thus, one may consider to use an empirical model even when a nonlinear

model is available owing to the improved computational efficiency. This point will be demonstrated

in the “Application to a Chemical Process Example” section.

Remark 4 It is important to emphasize that at each sampling time the LEMPC of Eq. 2.22 is

re-initialized with a state measurement. This incorporation of feedback allows for the LEMPC of

Eq. 2.22 to maintain robustness to disturbances.

2.4 Application to a Chemical Process Example

Consider a non-isothermal, well-mixed continuous stirred tank reactor (CSTR) where an irre-

versible, second-order, exothermic reaction occurs. The reaction converts the reactant A to the
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Table 2.1: Parameter values of the CSTR.

F = 5.0 m3

hr k0 = 8.46×106 m3

kmol hr

T0 = 300 K ∆H =−1.15×104 kJ
kmol

V = 1.0 m3 E = 5.0×104 kJ
kmol

Cp = 0.231 kJ
kg K ρL = 1000 kg

m3

R = 8.314 kJ
kmol K

product B and is of the form A→ B. The feedstock of the reactor contains A in an inert solvent

and the inlet concentration of A is CA0, inlet temperature is T0, and feed volumetric flow rate is F .

A jacket is used to heat/cool the reactor at heat rate Q. The liquid density ρL, heat capacity Cp,

and liquid hold-up V are assumed to be constant. The dynamic model equations describing the

evolution of the CSTR, obtained by applying standard modeling assumptions and mass and energy

balances to the reactor, are presented below:

dCA

dt
=

F
V
(CA0−CA)− k0e−E/RTC2

A (2.54a)

dT
dt

=
F
V
(T0−T )− ∆Hk0

ρLCp
e−E/RTC2

A +
Q

ρLCpV
(2.54b)

where CA and T are the reactant A concentration in the reactor and reactor temperature, respec-

tively. The notation k0, E, ∆H denotes the pre-exponential factor, activation energy of the reaction,

and the enthalpy of the reaction, respectively. The values of the process parameters are given in

Table 2.1. In the simulations below, the explicit Euler method with an integration time step of

hc = 10−4 hr was used to integrate the dynamic model of Eq. 2.54.

The inlet concentration CA0 and the heat supply/removal Q are the two manipulated inputs

of the CSTR. The manipulated inputs are bounded as follows: 0.5 ≤ CA0 ≤ 7.5 kmol/m3 and

−5.0× 105 ≤ Q ≤ 5.0× 105 kJ/hr. The control objective is to maximize the time-averaged

production rate of the product B by operating the CSTR in a compact state-space set around

the operating steady-state of the CSTR. To this end, the operating steady-state vector of the

CSTR is [CAs Ts] = [1.2 kmol/m3 438.0 K] and the corresponding steady-state input vector is
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[CA0s Qs] = [4.0 kmol/m3 0.0 kJ/hr]. The steady-state is open-loop asymptotically stable. The

state and input vector of the CSTR are defined using deviation variables: xT = [CA−CAs T −Ts]

is the state vector and uT = [CA0−CA0s Q−Qs] is the manipulated input vector. Given the control

objective is to maximize the time-averaged production rate of B, the average production rate of B

will be used in the LEMPC as the cost function and is given by:

Le(x,u) =
1

(tk+N− tk)

∫ tk+N

tk
k0e−E/RT (τ)C2

A(τ) dτ . (2.55)

In addition, we consider that there is a limitation on the amount of reactant material that may be

fed to the CSTR during a given period of operation tp. Therefore, the control input trajectory of u1

should satisfy the following material constraint:

1
tp

∫ tp

0
u1(τ) dτ = 0.0 kmol/m3. (2.56)

where tp = 1.0 hr is the operating period length to enforce the material constraint.

2.4.1 Model Identification and Validation

We assume that for the CSTR, the nonlinear model of Eq. 2.54 is not available and a model needs

to be identified and validated. The model will be fit using standard input/output data-based tech-

niques (recall that state feedback is assumed, so the output is the state) to identify a linear time

invariant state-space model. A series of step inputs were used to generate the input/output data.

An iterative process was employed to identify and validate the model. First, a step input sequence

was generated and applied to the CSTR. From the input/output data, the ordinary multivariable

output error state space (MOESP)43 algorithm was used to regress a linear model of the CSTR of

Eq. 2.54. Step, impulse, and sinusoidal input responses were used to validate the model. Addi-

tionally, a LEMPC scheme of the form described below in the subsequent subsection was designed

using the empirical model. The LEMPC with the identified model was applied to the CSTR of

Eq. 2.54. Extensive closed-loop simulations with the LEMPC were performed. From these vali-

31



0 1 2 3 4 5 6 7 8
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

t (hr)

C
A
−
C

A
s
(k
m
ol
/m

3
)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

t (hr)

T
−

T
s
(K

)

Figure 2.1: Response of the CSTR of Eq. 2.54 (black line) to a step input compared to the response
predicted by the identified linear model of Eq. 2.57 (gray line). The step is in the heat rate input
(u2) starting at 1 hr with a magnitude of 5000 kJ/hr.

dation experiments (input response tests and the closed-loop simulations), a model was identified

and validated.

The identified matrices for the linear model of the CSTR (in continuous-time) are:

A =

−34.5 −0.473

1430 18.1

 , B =

 5.24 −8.09×10−6

−11.6 4.57×10−3

 (2.57)

where the state-space coordinates correspond to the coordinates used in the nonlinear model of

Eq. 2.54. The step, impulse, and sinusoidal input responses are shown in Figs. 2.1-2.3. From

Figs. 2.1-2.3, the predicted response of the CSTR using the identified linear model is close to the

response of the actual nonlinear system of Eq. 2.54.

2.4.2 Application of LEMPC based on an Empirical Model

Before an LEMPC may be designed, a Lyapunov-based controller is designed, a Lyapunov func-

tion under the Lyapunov-based controller is constructed, and the stability region of the CSTR

under the Lyapunov-based controller is estimated. Since we assume that only the empirical model

is available, we work with the empirical model to design the Lyapunov-based controller. The

Lyapunov-based controller consists of two elements for each input: hT (x) = [h1(x) h2(x)], and
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Figure 2.2: Response of the CSTR of Eq. 2.54 (black line) to an impulse input compared to the
response predicted by the identified linear model of Eq. 2.57 (gray line) which are nearly overlap-
ping. To numerically simulate the impulse, a rectangular pulse of magnitude 1,500 kJ/hr in the
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Figure 2.3: Response of the CSTR of Eq. 2.54 (black line) to a sinusoidal input response compared
to the response predicted by the identified linear model of Eq. 2.57 (gray line). The amplitude of
the heat rate input sinusoid is 30,000 kJ/hr with a frequency of 8.72 rad/hr.
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the inlet concentration input is fixed to 0.0 kmol/m3 to satisfy the material constraint of Eq. 2.56

(h1(x) = 0). Defining the vector and matrix functions f : Rn→ Rn and g : Rn→ Rn×Rm as fol-

lowed:

ẋ = Ax︸︷︷︸
=: f (x)

+ B︸︷︷︸
=:g(x)

u , (2.58)

the following control law is used for the heat rate input in the Lyapunov-based controller:38

h2(x) =


−

L fV +
√

L fV 2 +Lg2V 4

Lg2V
, if Lg2V 6= 0

0, if Lg2V = 0

(2.59)

where L fV is the Lie derivative of the Lyapunov function V (x) with respect to the vector field f (x)

and the notation g2(x) denotes the second column of B. A quadratic Lyapunov function of the

form: V (x) = xT Px where P is the following positive definite matrix:

P =

 1060 22

22 0.52

 (2.60)

was used. After extensive closed-loop simulations under the Lyapunov-based controller and under

the LEMPC designed on the basis of the Lyapunov-based controller h(x) and with the model of

Eq. 2.57, the level sets Ωρ̂ and Ωρ̂e , which will be used in the LEMPC, were estimated to be

ρ̂ = 64.3 (i.e., Ωρ̂ = {x ∈ Rn : V (x) ≤ ρ̂}), and ρ̂e = 55.0, respectively. The sampling period and

prediction horizon of the LEMPC are ∆ = 0.01 hr and N = 10, respectively.

An LEMPC scheme of the form of Eq. 2.22 was designed utilizing the model of Eq. 2.57 for

the CSTR with the cost function of Eq. 2.55 and the material constraint of Eq. 2.56. The material

constraint of Eq. 2.56 is enforced over each 1.0 hr operating period using the strategy described

in.14 To solve the LEMPC optimization problem at each sampling period, the interior point solver

IPOPT was employed.45 To make the simulations more realistic, the solver was forced to terminate

solving and return a solution by the end of the sampling period although instantaneous availability
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Figure 2.4: The state and input profiles of the closed-loop CSTR under the nonlinear LEMPC
(black line) and under the linear LEMPC (gray line) for the initial condition: CA(0) = 1.2 kmol/m3

and T (0) = 438 K.

of the control action at the current sampling time is assumed in the closed-loop simulations. For

the remainder, nonlinear LEMPC will refer to an LEMPC scheme formulated with the nonlinear

dynamic model of Eq. 2.54, while linear LEMPC will refer to an LEMPC scheme formulated with

the linear model of Eq. 2.57. In the following simulations, both nonlinear LEMPC and linear

LEMPC were considered as a baseline comparison. While this comparison may be done through

simulations, a nonlinear model may not be available and thus, this type of comparison may not be

able to be completed in practice. For the nonlinear LEMPC simulations, only mode 1 operation of

the controller was considered since the nonlinear LEMPC is able to maintain operation within Ωρ̂e

under nominal operation. To solve the initial value problem embedded in the optimization problem,

the explicit Euler method was used for the nonlinear LEMPC, and the discrete-time version of the

model of Eq. 2.57 with a zero-order hold of the inputs with sampling period ∆ = 0.01 hr was used

in the linear LEMPC.
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Figure 2.5: The state trajectories of the CSTR under: nonlinear LEMPC (solid line) and linear
LEMPC (dashed-dotted line).

2.4.3 Linear LEMPC Compared with Nonlinear LEMPC

Both the nonlinear and linear LEMPC were applied to the CSTR of Eq. 2.54, and a closed-loop

simulation over one operating period (1 hr) was completed for each case. The CSTR was initial-

ized at the steady-state: CA(0) = 1.2 kmol/m3 and T (0) = 438.0 K. The closed-loop trajectories

for the CSTR under both LEMPC schemes are shown in Fig. 2.4. The trajectories of the two cases

demonstrate a similar behavior with three distinct phases. In the first phase, the LEMPC forces

the CSTR from the initial condition to a greater temperature to increase the production rate of B.

In the second phase, the trajectories settle on an equilibrium point located at the boundary of Ωρ̂e

from approximately 0.2 hr to 0.8 hr. This steady-state has a greater temperature than the operat-

ing steady-state (CAs = 1.2 kmol/m3 and Ts = 438.0 K). Finally, to achieve additional economic

performance benefit at the end of the operating period and to satisfy the material constraint, the

LEMPC forces the state away from the steady-state to a greater temperature. Perhaps, the two most

noticeable differences in the closed-loop trajectories of Fig. 2.4, are the oscillations or chattering

observed in the u1 trajectory computed by the linear LEMPC and the differences in the trajectories
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at the end of the operating period. The oscillations are caused by the linear LEMPC switching

between mode 1 and mode 2 operations of the controller. Given the fact that the linear LEMPC

uses an inexact model, it cannot compute a control action that exactly maintains the actual state at

the boundary of Ωρ̂e . A state starting in Ωρ̂e may leave Ωρ̂e under the linear LEMPC. However,

it will still be contained in Ωρ̂ at the next sampling period by design of Ωρ̂e . Once the state is in

Ωρ̂ \Ωρ̂e , the linear LEMPC switches to mode 2 operation to force the state back into Ωρ̂e . The

linear LEMPC operates in mode 1 operation after the state converges back to Ωρ̂e . On the other

hand, the nonlinear LEMPC is able to maintain the LEMPC at the boundary of Ωρ̂e since we are

considering nominal operation (i.e., the LEMPC uses an exact model of the CSTR to compute its

control action). Thus, the nonlinear LEMPC is able to maintain operation in Ωρ̂e , so the controller

always operates in mode 1 operation. To better observe the differences between the closed-loop

state trajectories, the closed-loop trajectories for each of the two previous simulations are shown in

state-space (Fig. 2.5). From Fig. 2.5, noticeable differences between the evolution of the two cases

at the end of the operating period is observed. In the region of operation at the end of the operating

period, the linear model is less accurate and hence, the linear LEMPC computes a different input

trajectory than the nonlinear LEMPC.

The fact that a similar trend was observed between the closed-loop CSTR under the nonlinear

LEMPC, which uses the exact dynamic model, and the linear LEMPC, which uses a linear model

identified through input/output data, speaks positively on EMPC using an empirical model. It

indicates that one may be able to use standard identification techniques to identify an empirical

model for use within the context of EMPC when a nonlinear model is not available. However, it

is also important to investigate the advantages and disadvantages and possible trade-offs of using

nonlinear LEMPC (when a nonlinear model is available) and using linear LEMPC. To quantify the

closed-loop performance of each case, we define the average economic cost index as:

Je =
1
t f

∫ t f

0
k0e−E/RT (t)C2

A(t) dt (2.61)

37



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

sampling time (hr)

t
(s
ec
)

 

 

0.46 0.47 0.48
0

0.1

0.2

0.3

sampling time (hr)

t
(s
ec
)

Nonlinear LEMPC
Linear LEMPC

Figure 2.6: The computation time in seconds required to solve the nonlinear LEMPC (triangle
markers) and the linear LEMPC (circle markers) optimization problem at each sampling period.

where t f is the length of simulated closed-loop operation. For simplicity of presentation, the units

on the average economic cost index, which are kmol/m3, are omitted. For the linear LEMPC, the

economic cost index is 15.70, while the economic cost index of the closed-loop CSTR under the

nonlinear LEMPC is 15.77. For an 1 hr operating period, applying nonlinear LEMPC achieves

less than a 0.5% improvement of the economic cost index compared to the economic cost under

the linear LEMPC.

The computation time required to solve the LEMPC optimization problem at each sampling

period was also considered for the nonlinear and linear LEMPCs. Fig. 2.6 shows the computation

time required to solve the nonlinear and linear LEMPC at each sampling period, respectively.

The higher computation time observed at the end of the operating period in each of the cases

is associated with the fact that the constraints are active (the constraint to maintain operation in

Ωρ̂e and the average input constraint). From Fig. 2.6, the optimization solver terminated early

four times (recall that the solver was constrained to return a solution by the end of the current

sampling period). For this case, the total amount of computation time required to solve the LEMPC

optimization problem over all the sampling periods was 193 sec. For the linear LEMPC, early
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Figure 2.7: Closed-loop state trajectory (x1 =CA−CAs) of the CSTR under the linear LEMPC over
ten hours.
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Figure 2.8: Input trajectory (u1 =CA0−CA0s) under the linear LEMPC over ten hours.

termination of the optimization solver was never experienced and for most of the sampling periods,

the solver converged in less than 0.1 sec (Fig. 2.6). The total computation time required to solve

the LEMPC at each sampling period in the simulation was 22 seconds; the total time required to

solve the nonlinear LEMPC at each sampling period is 777% greater than the computation time

required to solve the linear LEMPC.

To demonstrate the application of the linear LEMPC to the CSTR of Eq. 2.54, a closed-loop

simulation of ten hours was completed. The closed-loop trajectories are shown in Figs. 2.7-2.10.

The closed-loop economic performance as measured by the average economic cost of Eq. 2.61
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Figure 2.9: Closed-loop state trajectory (x2 = T −Ts) of the CSTR under the linear LEMPC over
ten hours.
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Figure 2.10: Input trajectory (u2 = Q−Qs) under the linear LEMPC over ten hours.

Table 2.2: Average economic cost (Je) for one period of operation (1 hr) using various modeling
methods.

Model Je
Nonlinear Model 15.77
Linear Model of Eq. 2.57 15.70
Least Squares Model 15.48
Jacobian Linearization of Nonlinear Model 15.39
Sinusoidal System ID 15.39
Impulse System ID 15.51

was 15.29. Maintaining the CSTR at the initial condition, which is the steady-state, has an average

economic cost of 13.88 (the linear LEMPC dictates an operating policy that is 10% better than

operating the CSTR at the operating steady-state). Another simulation was performed with the

nonlinear LEMPC. The closed-loop trajectories of the CSTR under the nonlinear LEMPC were

similar to that under the linear LEMPC except from a few differences: the closed-loop u1 trajec-

tory computed by the nonlinear LEMPC did not have chattering like the closed-loop u1 trajectory

computed by the linear LEMPC (Fig. 2.8) for reasons stated above and the other differences in

the closed-loop trajectories noted above for the 1 hr simulations were also observed. The average

economic cost of the closed-loop CSTR under the nonlinear LEMPC was 15.40. The closed-loop

performance under the nonlinear LEMPC is 0.7% better than that achieved under linear LEMPC.

However, the average total computation time required to solve the nonlinear LEMPC optimization

problem over each operating period is 159 sec, while the average total computation time required

to solve the linear LEMPC optimization problem is 23.6 sec (the nonlinear LEMPC average com-

putation time is 560% more).
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Other approaches to identify the empirical model could be used. To demonstrate this, sev-

eral other methods were used to obtain a linear model of Eq. 2.54 and similar one operating pe-

riod (1 hr) simulations were performed. Specifically, a model was obtained through the follow-

ing methods: least squares parameter fit using the input/output data obtained through step tests,

Jacobian linearization of the nonlinear model of Eq. 2.54 around the steady-state, applying the

MOESP algorithm to input/output data generated from sinusoidal input response, and applying the

MOESP algorithm to input/output data generated from impulse input response. The closed-loop

average economic performance of these simulations are reported in Table 2.2. From Table 2.2,

similar closed-loop performance was achieved in each case. The linear LEMPC using the model

of Eq. 2.57 achieved the best performance by design (extensive closed-loop simulations under the

LEMPC were employed to construct and validate the model of Eq. 2.57). In all cases, closed-loop

stability (boundedness of the closed-loop state in Ωρ̂ ) was achieved.

2.4.4 Improved Accuracy with Empirical Models

Given that the CSTR exhibits nonlinear dynamic behavior (Eq. 2.54), the empirical model can only

accurately predict the behavior within a limited region of state-space. In the previous simulations,

the linear LEMPC computed a much different input trajectory compared to the nonlinear LEMPC

at the end of each operating period owing to the fact that the linear model did not accurately predict

the evolution within this region of operation. In this section, we consider two methods that improve

the accuracy of the empirical model used in the LEMPC: employing on-line system identification

and using multiple linear models to describe the process within different regions of operation.

The first method that is investigated is on-line system identification. In on-line system identifi-

cation, the first model used in the linear LEMPC is the model of Eq. 2.57. The model is used for

only one operating period. At the end of the operating period, the closed-loop input/output data of

the first operating period is used to compute a new model from the MOESP algorithm. At the end

of each subsequent operating period, a new model is generated via the input/output data of the pre-

vious operating period. Over the course of a ten hour simulation, the average economic cost with
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on-line system identification was 15.41. Recall, for the ten hour simulation under linear LEMPC

without on-line system identification (Figs. 2.7-2.10), the average economic cost was 15.29 and

a less than 0.7% improvement in the closed-loop performance was realized with the on-line sys-

tem identification. For this particular example, little benefit may be achieved when using on-line

system identification.

The second method that was investigated is formulating and applying linear LEMPC with

multiple linear models. In this method, multiple linear models are regressed off-line for different

regions of operation. Given that employing multiple linear models can more accurately predict the

behavior of the nonlinear CSTR, a larger estimate of the level sets used in the linear LEMPC can

be used. For this set of simulations, the level sets used in the LEMPC design where ρ̂ = 368.0 and

ρ̂e = 340.0. Operating the CSTR over a larger region in state-space is desirable from a process

economics standpoint given that the (instantaneous) production rate scales with the exponential of

−1/T (i.e., the production rate is larger at higher temperatures). When multiple linear models were

used within the linear LEMPC, the model used in the LEMPC optimization problem was selected

on the basis of which region the initial condition was in. After extensive simulations, three models

were identified for three regions in state-space. The first model is:

A =

−34.5 −0.473

1430 18.1

 , B =

 5.24 −8.09×10−6

−11.6 4.57×10−3

 (2.62)

and is most accurate for deviation temperatures less than 35.0 K (i.e., x2 ≤ 35.0). The second

model is:

A =

−48.6 −0.657

1960 23.2

 , B =

6.22 −1.13×10−5

189 8.98×10−3

 . (2.63)

and is most accurate for deviation temperatures between 35.0 K to 43.0 K. The third model is:

A =

 1.38 0.0894

−476 −10.7

 ,B =

0.901 −1.24×10−4

504 9.98×10−3

 (2.64)
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Figure 2.11: The closed-loop trajectories of the CSTR under the linear LEMPC (linear model of
Eq. 2.62).

Table 2.3: Average economic cost for the CSTR under LEMPC formulated with multiple empirical
models as well as with the nonlinear model for one period of operation (1 hr).

Method Je
One linear model 16.61
Two linear models 16.80
Three linear models 17.14
Nonlinear Model 17.22

and is most accurate for deviation temperatures greater than 43.0 K. The use of one, two, and

three linear empirical models in the linear LEMPC was considered. Also, the nonlinear LEMPC

was also considered for comparison purposes. The linear LEMPC based on one model uses the

model of Eq. 2.62, the linear multiple-model LEMPC based on two models uses the models of

Eqs. 2.62-2.63, and the linear multiple-model LEMPC based on three models uses the models of

Eqs. 2.62-2.64.

One operating period simulations were completed with each LEMPC. The closed-loop trajec-

tories for the CSTR: under the linear LEMPC with one model, under the linear multiple-model

LEMPC with two models, and under the linear multiple-model LEMPC with three models and un-

der the nonlinear LEMPC are shown in Fig. 2.11, Fig. 2.12, and Fig. 2.13, respectively. From these
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Figure 2.12: The closed-loop trajectories of the CSTR under the linear multiple-model LEMPC
with two linear models.
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Figure 2.13: The closed-loop trajectories of the CSTR under the linear multiple-model LEMPC
with three linear models (gray line) and under the nonlinear LEMPC (black line).
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Figure 2.14: The closed-loop state trajectories of the CSTR under the linear multiple-model
LEMPC with three linear models (dashed-dotted line) and under the nonlinear LEMPC (solid
line).

figures, the closed-loop evolution of the CSTR under the linear LEMPC with one and two models

is much different than that under the linear multiple-model LEMPC with three models and the non-

linear LEMPC because the CSTR under LEMPC is initially driven to and maintained in a region

where the first and second models are not accurate. The closed-loop behavior of the CSTR under

the linear multiple-model LEMPC with three models and the nonlinear LEMPC is similar with the

most significant deviation being observed towards the end of the operation period (Fig. 2.14). The

closed-loop average economic costs for these simulations are given in Table 2.3 and demonstrate

that increasing the number of linear models used in the LEMPC improves the closed-loop perfor-

mance and extends the region of time-varying operation (c.f., in Fig. 2.4 and Fig. 2.14). Over the

one hour length of operation, the total computation time under the nonlinear LEMPC is 205.2 sec

and under the linear LEMPC with three empirical models is 20.4 sec (the computation time for

the nonlinear LEMPC is 906% greater than the computation time for the linear LEMPC with three

empirical models).
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2.5 Conclusions

In this chapter, an LEMPC method formulated with empirical models was considered for nonlinear

process systems. Under the assumption that the error between the empirical linear model and the

one of the linearization of the nonlinear model at the steady-state around which time-varying oper-

ation is considered, sufficient conditions such that the LEMPC formulated with the empirical linear

model will guarantee closed-loop stability of the nonlinear system in the sense of boundedness of

the closed-loop state in a compact set were derived. A chemical process example demonstrated

the application of the proposed method and extensive simulation results were given. From these

results, a similar closed-loop behavior between the chemical process under the LEMPC with the

nonlinear model and under the LEMPC with an empirical model was observed with comparable

closed-loop economic performance. However, a significant decrease in the computation time re-

quired to solve the LEMPC with a linear model compared to LEMPC with a nonlinear model was

observed. In all of the simulations, the LEMPC with the linear model maintained closed-loop

stability and obtained better closed-loop economic performance than that obtained at steady-state.
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Chapter 3

On Identification of Well-Conditioned

Nonlinear Systems: Application to

Economic Model Predictive Control of

Nonlinear Processes

3.1 Introduction

In the PNLSS approach, a linear state-space model is first obtained and it is then extended with

polynomial nonlinear terms that are optimized to capture the system’s nonlinear behavior.52, 64, 67, 77

The linear part can be obtained using the best linear fit or least-squares, or using subspace system

identification.64, 67, 68, 75 This assures that the nonlinear model performs at least as well as the

linear model locally.68 PNLSS has shown superior results over linear models in various applica-

tions including control and modeling applications67, 77 and identifying the dynamics of electrical

circuits.55 The use of PNLSS in nonlinear model predictive control (NMPC) for an automotive

clutch system has also been presented.52 A crucial advantage of PNLSS is that it is very straight-

forward to apply for multivariable systems and has a very significant computation time benefit for
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low-order polynomials (e.g., polynomial models with orders two or three).68, 75 A potential disad-

vantage of PNLSS is that it may lead to ill-conditioned models which may need a very small time

step to be solved correctly with explicit numerical integration methods.

Motivated by the above, this chapter initially develops a nonlinear system identification tech-

nique for a broad class of nonlinear processes which leads to the construction of polynomial non-

linear state-space dynamic models which are well-conditioned over a broad region of process op-

eration. This technique takes advantage of the framework of PNLSS models and utilizes additional

constraints on the stiffness ratio of the Jacobian of the nonlinear identified models at various points

in the region of process operation to ensure that the resulting models can be solved without us-

ing an unnecessarily small time step of integration when explicit temporal-integration methods

are used. Subsequently, the design of LEMPC systems for nonlinear processes using the well-

conditioned nonlinear models is addressed and sufficient conditions are derived for closed-loop

stability. A classical chemical process example is used to illustrate the application and point out

the advantages of the proposed system identification and LEMPC design techniques.

3.2 Class of systems

In this chapter, the class of systems to be considered are nonlinear, continuous-time systems with

affine inputs, with dynamics described according to the system of differential equations:

ẋ(t) = fp(x(t),w(t))+ G̃(x(t),w(t))u(t) (3.1)

where the state vector is x ∈ Rn, the input vector is u ∈ Rm, the disturbance vector is w ∈ Rl ,

fp(x(t),w(t)) : Rn×Rl→ Rn is a vector function, and G̃(x(t),w(t)) : Rn×Rl→ Rn×Rm is a matrix

of functions of x and w. It is assumed that the component functions of fp and G̃ are analytic on

Rn×Rl such that they are infinitely differentiable and locally expressed with a convergent power

series.

We also assume that since all control actuators u have physical limits, the control actions are
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bounded within a convex set U := {u ∈ Rm : umin
i ≤ ui ≤ umax

i , i = 1, . . . , m}. In addition, all

disturbances to the system are assumed to have a known bound of θ > 0 (for all t, |w(t)| ≤ θ ). The

origin is assumed to be an equilibrium point of Eq. 3.1 ( fp(0,0) = 0 when u = 0).

Only nonlinear systems for which an explicit controller exists that can make the origin of

Eq. 3.1 locally exponentially stable in the absence of disturbances (w(t) ≡ 0), while meeting the

constraints on the control actions, will be considered. When such an explicit controller h(x) ∈

U exists, converse Lyapunov theorems state that a positive definite, continuously differentiable,

scalar-valued function V (x) and positive constants c1, c2, c3, and c4 exist that result in the following

inequalities:30, 111

c1|x|2 ≤V (x)≤ c2|x|2, (3.2a)

∂V (x)
∂x

( fp(x,0)+ G̃(x,0)h(x))≤−c3|x|2, (3.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (3.2c)

for any x within the open connected set D ⊆ Rn that includes the origin. Methods for developing

h(x) are available for various classes of systems (see, for example,10, 12, 27, 83). The stability region

Ωρ for the closed-loop system of Eq. 3.1 under the controller h(x) is defined as a level set of V (a

set within which V (x)≤ ρ) within D where V̇ is negative.

3.3 System Identification

In this chapter, we use the PNLSS approach to obtain a model that is nonlinear in the states and

affine in the inputs, with the following form:

dx
dt

= Ax+Pz(x)︸ ︷︷ ︸
=: f (x)

+Bu (3.3)

where x∈Rn and u∈Rm are the state vector and the input vector respectively, A is a constant square

matrix of dimension n, and B ∈ Rn×m is a constant matrix. The notation Pz(x) denotes a nonlinear
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vector function that includes polynomial terms of order two and higher, with the subscript z used to

indicate that the polynomial is a zth-order polynomial. Pz(x) is defined by the following equations:

Pz(x) = Eξ (x) (3.4a)

ξ (x) = [x2
1 x1x2 ... xz

n]
T (3.4b)

where the vector ξ (x) contains nonlinear monomials in x of order two and higher up to a chosen

order z, and the constant matrix E contains the coefficients multiplying the nonlinear monomials

in ξ (x). The order z of the polynomial is chosen before data are fit to the model of Eq. 3.3. As an

example, when n = 2 and z = 3, ξ (x) has the following form:

ξ (x) = [x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2]
T (3.5)

3.3.1 PNLSS system identification methodology

The PNLSS identification problem is to find the terms A, B, and E in Eqs. 3.3-3.4 when the only

available information is process input/output data. For the case when all states are available as

measured outputs (full state feedback), an optimization problem can be used to find these terms

that involves the following two steps:

1. A linear state-space model is obtained using a frequency domain subspace identification

algorithm.

2. The linear model is used as an initial guess for a nonlinear optimization problem to identify

a nonlinear model that captures the nonlinear behavior of the system.

To simplify the presentation in this chapter, we will consider that full state feedback is available

and thus the measurements of the states can be used directly in order to obtain the PNLSS model.

To implement the PNLSS method, one obtains Z + 1 state measurements of the system (xm(v),
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v = 0, ...,Z, where xm(v) is the vector of measured states in deviation variable form at time t̃v = v∆̃

and ∆̃ is the time between measurements) with a known sequence of inputs. Then, using the same

initial state xm(0) and the same sequence of inputs, Z modeled states (denoted as x(v), v = 1, ...,Z,

where x(v) is the vector of modeled states in deviation variable form at time t̃v = v∆̃) are obtained

via numerical integration of the model to be identified (Eq. 3.3). The goal is then to minimize

the difference between the measured and modeled states that correspond to the same times in the

simulation by adjusting the model parameters A, B, and E in Eq. 3.3.

We denote the vector of measured states (in deviation form) that will be used in the PNLSS

objective function in a vector form (the problem could be reformulated with the states in a matrix

form if desired) as:

xm = [xT
m(1) xT

m(2) ... xT
m(Z)]

T (3.6)

and the modeled states as:

xp = [xT (1) xT (2) ... xT (Z)]T (3.7)

where xm(0) = x(0) is the initial state (xm(0) = x(0) = 0 if we start from the steady-state). Using

this notation, the polynomial nonlinear state-space model is identified via a nonlinear optimization

problem formulated as:

min
η

Φ(xm− xp) (3.8a)

s.t. ẋ = Ax+Pz(x)+Bu (3.8b)

where η signifies the optimization variables A, B, and E and Φ is a positive definite cost function

to be minimized. Examples of commonly used functions include the vector 1-norm, vector 2-norm

(also called least-squares), weighted least-squares, and a linear combination and/or a product of

such functions (the induced matrix 1-norm, induced matrix 2-norm, or combinations/products of

these norms are possible cost functions if this is reformulated for the matrix case).
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If it is desired to identify a nonlinear model that minimizes the vector p-norm, the optimization

problem is reduced to the following nonlinear optimization problem:

min
η

| (xm− xp) |p (3.9a)

s.t. ẋ = Ax+Pz(x)+Bu (3.9b)

After obtaining the model, this model is validated over a wide range of input/state data. However,

the usefulness of the model depends on the purpose it serves. From a nonlinear model predictive

control point of view, empirical models need to be well-conditioned so that they can be accurately

solved with explicit integration schemes without employing very small time steps to predict the

behavior of the nonlinear system in real-time. Numerical stability of an empirical model is not a

central issue when performing linear system identification since the analytic solution of a linear

system can be obtained. On the other hand, there is no general method for obtaining the analytic

solution of highly coupled nonlinear ordinary differential equations and the numerical integration

accuracy is sensitive to the numerical stability of the identified nonlinear model. The system

identification procedure does not guarantee that a well-conditioned model will be obtained, so

the identified model may be ill-conditioned requiring a very small numerical integration step size

to be used.

Remark 1 The existence of a numerical solution within the accuracy of the numerical integration

method used is of concern when using explicit numerical integration methods (e.g., Explicit Euler

or Runge-Kutta) as opposed to implicit numerical methods, especially for ill-conditioned nonlinear

differential equations. This is because implicit methods are numerically stable for any integration

step size, such that only the accuracy of the solution obtained depends on the step size, whereas

explicit numerical methods are numerically stable only if the integration step size is sufficiently

small, and the threshold at which a step size is sufficiently small is not generally possible to predict

for a given system. Despite the relative time step advantage of using implicit methods for numerical

integration over explicit ones, implicit methods are very complex to include in system identification
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and when modeling the outputs and states. Also, implicit methods are computationally expensive

and from a predictive control point of view, it is preferred to use explicit methods with a suitable

integration step size.

Remark 2 It was noted that the modeled states x(v), v = 1, ...,Z come from the numerical inte-

gration of Eq. 3.3. The numerical integration can be performed several different ways in system

identification. One method is to perform numerical integration of the model of Eq. 3.3 as is typi-

cally done when integrating a differential equation with a given initial condition, and integrating

the model between t̃0 and t̃Z using only the initial state xm(0) and the known input sequence. This

complete integration between the initial and final times makes the optimization substantially more

burdensome and involved. Another numerical integration method used in practical implementa-

tion of system identification methods that is less computationally intensive involves using all of the

measured states in the numerical integration used in modeling the states.76 In this method, each

measurement is used as an initial condition for numerical integration of Eq. 3.3 to obtain only

the following modeled state (i.e., to obtain the value of x(v), v = 1, ...,Z, numerical integration

over only one time interval ∆̃ is performed with the initial condition for each x(v) as xm(v− 1),

v = 1, ...,Z). As the number of measured states increases, the number of numerical integration

steps between xm(v− 1) and x(v) decreases. When the same number of measurements are used

as the number of modeled states such that only one integration step is needed for each x(v), the

optimization problem is much easier to solve as will be demonstrated in the example.

3.3.2 Motivating example: PNLSS application to a chemical process exam-

ple

To illustrate the importance of considering model well-conditioning when deriving an empirical

model for a process, a chemical process example is presented in this section.

Specifically, a second-order irreversible reaction that forms the product B from the reactant

A occurs in a non-isothermal, well-mixed continuously stirred tank reactor (CSTR). The CSTR
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is fed by an inlet stream containing A with molar concentration CA0 in an inert solvent at a feed

volumetric flow rate F and feed temperature T0. The reaction is exothermic, and the CSTR is

operated non-isothermally with heat supplied/removed at heat rate Q. The liquid in the CSTR is

assumed to have constant heat capacity Cp and constant liquid density ρL, and to be maintained at

a constant volume V . The dynamic model equations for the CSTR are developed from standard

mass and energy balances and have the form:

dCA

dt
=

F
V
(CA0−CA)− k0e−E/RTC2

A (3.10a)

dT
dt

=
F
V
(T0−T )− ∆Hk0

ρLCp
e−E/RTC2

A +
Q

ρLCpV
(3.10b)

where CA is the concentration of the reactant A inside the reactor and T is the reactor tempera-

ture. The reaction kinetics are modeled using the Arrhenius equation, with pre-exponential factor

k0, activation energy E, and enthalpy of reaction ∆H (see Table 3.1 for the values of the reac-

tor parameters). The CSTR is operated at the steady-state [CAs Ts] = [1.2 kmol/m3 438.0 K],

which is open-loop asymptotically stable and corresponds to a steady-state inlet concentration of

CA0s = 4.0 kmol/m3 and a heat rate of Qs = 0.0 kJ/hr.

Table 3.1: CSTR Parameters

F = 5.0 m3

hr k0 = 8.46×106 m3

kmol hr

T0 = 300 K ∆H =−1.15×104 kJ
kmol

V = 1.0 m3 E = 5.0×104 kJ
kmol

Cp = 0.231 kJ
kg K ρL = 1000 kg

m3

R = 8.314 kJ
kmol K

The dynamic model of Eq. 3.10 is of the following form (using the notation of Eq. 3.1):

ẋ(t) = fp(x(t),0)+ G̃(x(t),0)u(t) (3.11)
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where the vectors of states and inputs in Eq. 3.11 are defined in deviation form as

x = [x1 x2]
T = [CA−CAs T −Ts]

T (3.12)

u = [u1 u2]
T = [CA0−CA0s Q−Qs]

T (3.13)

The inlet concentration CA0 and the rate Q at which heat is supplied to or removed from the

CSTR can be manipulated to affect the reactor state variables. These manipulated inputs are subject

to the constraints:

0.5≤CA0 ≤ 7.5 kmol/m3 (3.14a)

−5.0×105 ≤ Q≤ 5.0×105 kJ/hr (3.14b)

To show the influence of step size on the integration of an empirical model resulting from sys-

tem identification of a process with the dynamics of Eq. 3.10, the PNLSS approach of Eq. 3.9

with p = 2 was applied to this chemical process. To generate the input/state data necessary to

implement the PNLSS method, several steps in the inputs to the CSTR were simulated, and the

input/state data was obtained from the integration of the dynamic model of Eq. 3.10 subject to

the input changes. It was determined that the accuracy of the numerical integration of the CSTR

model of Eq. 3.10 was sufficient with the Explicit Euler method using an integration step size of

hc = 10−4 hr, so this numerical integration procedure and step size were used for the first-principles

process model of Eq. 3.10 throughout this chapter. From the input/state data, a polynomial non-

linear state-space model of the form of Eq. 3.3, where the vectors of states x and inputs u are as

defined in Eqs. 3.12-3.13, was obtained. All PNLSS optimization problems in this chapter were

solved using the open-source nonlinear interior point optimization solver Ipopt.45 The states were

modeled using both numerical integration methods discussed in Remark 2 (the states were mod-

eled using only the initial state with the sequence of inputs, and also by using all of the measured

states and the input sequence) and the resulting empirical models were almost identical. However,
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solving the system identification optimization problem of Eq. 3.9 using the second method (using

all measured states) was much less computationally intensive than using the first method (using

only the initial measured state), so the second method will be used for all PNLSS optimization

problems for this chemical process example throughout the rest of the chapter. The term Pz(x) in

Eq. 3.3 was chosen to be a second-order polynomial so z = 2 and n = 2. The identified nonlinear

continuous-time model of the CSTR is:

dx1

dt
=−32.64x1−0.479x2−31.2x2

1−1.0016x1x2−0.0075x2
2 +5.53u1−0.000008u2 (3.15a)

dx2

dt
= 1398x1 +17.79x2−30x2

1 +24.94x1x2 +0.381x2
2−1076u1 +0.00476u2 (3.15b)

This model is very sensitive to the numerical integration step. When the inputs are modeled

as sinusoids and the process model is integrated with an integration step of hc = 10−4 hr with the

Explicit Euler method and the resulting trajectories are compared to those of the first-principles

CSTR process model of Eq. 3.10 using the same input and same step size, there are significant

differences in the values of the states x1 and x2 between the two models, as shown in Fig. 3.1.

However, when those same first-principles CSTR trajectories are compared with the trajectories

resulting from using an integration step of hc = 10−6 hr in the model of Eq. 3.15 with the same

sinusoidal input, the first-principles and PNLSS trajectories are very close, as shown in Fig 3.2.

Fig. 3.2 shows good agreement between the state trajectories using the first-principles CSTR

model of Eq. 3.10 and the empirical nonlinear model of Eq. 3.15 when using the smaller step size.

In order to quantify the difference between the two behaviors, the average squared error in the

concentration and temperature over eight hours of operation, when a step size hc = 10−6 hr is used

to integrate the empirical model, is calculated as follows:

1
8

∫ 8

0
(x1p(t)− x1m(t))2 dt = 1.6821×10−4 (3.16)
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Figure 3.1: State trajectories of the first-principles CSTR model of Eq. 3.10 (black trajectory)
and the identified PNLSS model of Eq. 3.15, hc = 10−4 hr (gray trajectory) when the heat rate
and concentration inputs are varied sinusoidally with amplitudes 55,000 kJ/hr and 0.25 kmol/m3,
respectively, and both with frequency 8.72 rad/hr.
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Figure 3.2: State trajectories of the first-principles CSTR model of Eq. 3.10 (black trajectory)
and the identified PNLSS model of Eq. 3.15, hc = 10−6 hr (gray trajectory) when the heat rate
and concentration inputs are varied sinusoidally with amplitudes 55,000 kJ/hr and 0.25 kmol/m3,
respectively, and both with frequency 8.72 rad/hr.

1
8

∫ 8

0
(x2p(t)− x2m(t))2 dt = 1.3059 (3.17)

where x1p and x1m are the modeled and measured concentrations respectively, and x2p and x2m are

the modeled and measured temperatures respectively.
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3.3.3 Proposed approach for PNLSS system identification

Motivated by the effect of integration step size on the accuracy of the empirical model from the

previous example, additional constraints on the PNLSS optimization are proposed. Adding extra

constraints that assure well-conditioning of the nonlinear model is essential for effective control.

The modified PNLSS optimization problem with the numerical stability constraints has the general

form:

min
η∈C

Φ(xm− xp) (3.18a)

s.t. F(η) = 0 (3.18b)

R(η) ≤ 0 (3.18c)

The optimization variable η represents the parameters A, B, and E of the polynomial nonlinear

model of Eqs. 3.3-3.4. We allow that the values of these parameters belong to the bounded convex

set C. F(η) and R(η) represent equality and inequality constraints that can be used to ensure

well-conditioning of the nonlinear identified model. A major cause of ill-conditioning of a system

of differential equations is system stiffness, meaning that the dynamics of some states are much

faster than the dynamics of others with which they are coupled. As a result, though other numerical

stability constraints could be conceived, we will explicitly derive numerical constraints based on

stiffness for use in the PNLSS optimization problem.

The stiffness of a system can often be evaluated based on derivative information for the model

in the region of operation. For example, the Jacobian of f (x) in Eq. 3.3 evaluated at s points in the

region of operation reveals information about the stiffness of the nonlinear model and its sensitivity

to explicit forward numerical integration step sizes. The Jacobian of f (x) evaluated at state-space

point j is defined as the matrix of partial derivatives of the component functions fi with respect to
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the independent variables xi, i = 1, ...,n:

J j =



∂ f1
∂x1
| j ∂ f1

∂x2
| j ∂ f1

∂x3
| j ... ∂ f1

∂xn
| j

∂ f2
∂x1
| j ∂ f2

∂x2
| j ∂ f2

∂x3
| j ... ∂ f2

∂xn
| j

. . . . .

. . . . .

. . . . .

∂ fn
∂x1
| j ∂ fn

∂x2
| j ∂ fn

∂x3
| j ... ∂ fn

∂xn
| j


where j = 1, ...,s (3.19)

where j denotes the jth state-space point.

The stiffness of the nonlinear model is often evaluated from its Jacobian using a measure such

as the maximum singular value, maximum eigenvalue, condition number, or ratio of the absolute

value of the eigenvalue with the greatest magnitude to the eigenvalue with the smallest magnitude

(stiffness ratio) of the Jacobian. Therefore, the system identification problem can be improved

to account for numerical stability of the model by adding constraints on the Jacobian of f (x) in

Eq. 3.3 evaluated at several points in the region of operation. As an example, for a system of n

states, a constraint can be added on the maximum value of the stiffness ratio of the Jacobian of f (x)

evaluated at s points of interest in the region of operation, where the stiffness ratios are denoted as:

S j =
λmax j

λmin j

, j = 1, ...,s (3.20)

with

λmax j = max{|λ1 j|, |λ2 j|, ...., |λn j|}, j = 1, ...,s (3.21a)

λmin j = min{|λ1 j|, |λ2 j|, ...., |λn j|}, j = 1, ...,s (3.21b)

where the notation λi j signifies the ith (i = 1, ...,n) eigenvalue of the Jacobian matrix J j, and λmax j

and λmin j signify the maximum and minimum values of the magnitudes of the eigenvalues of J j.
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The numerical stability constraint to be incorporated in the PNLSS optimization problem of

Eq. 3.18 is a bound on the maximum value of the stiffness ratio at all s points at which the Jacobian

is evaluated, written as:

R(η) = max{S1,S2, ....,Ss} ≤ M̂ (3.22)

where M̂ is a number chosen to constrain the solutions to Eq. 3.18 to be models that are well-

conditioned with respect to forward numerical integration in the region of interest.

The eigenvalues of the Jacobian matrices have to be evaluated numerically for an n× n Jaco-

bian. To illustrate this point, we consider a two-input/two-output system with full state feedback.

We define J1, J2,..., Js as the Jacobians of the identified polynomial nonlinear model, evaluated at

several points j = 1, ...,s in the state-space region of interest. J1 is the Jacobian evaluated at the

steady-state and J j is the Jacobian evaluated at the state-space point j where

J j =

 a j b j

c j d j

 (3.23)

Thus, for a system with two inputs and two states, we can incorporate numerical stability

constraints in the PNLSS optimization problem as follows:

min
η∈C

| xm− xp |2 (3.24a)

s.t. ẋ = Ax+Pz(x)+Bu (3.24b)

λmax j

λmin j

≤ M̂, j = 1, ...,s (3.24c)

λmax j = max{|λ1 j|, |λ2 j|}, j = 1, ...,s (3.24d)

λmin j = min{|λ1 j|, |λ2 j|}, j = 1, ...,s (3.24e)

λ1 j =
(a j +d j)

2
+

(
(a j +d j)

2

4
− (a jd j−b jc j)

)1/2

, j = 1, ...,s (3.24f)

λ2 j =
(a j +d j)

2
−
(
(a j +d j)

2

4
− (a jd j−b jc j)

)1/2

, j = 1, ...,s (3.24g)
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In this optimization problem, the cost function Φ(xm− xp) is taken to be the Euclidean norm

of the difference between the vectors xm and xp.

For a 2×2 matrix, it is easy to obtain an explicit expression for the eigenvalues (e.g., Eqs. 3.24f-

3.24g). However, for an n×n matrix, the calculation of eigenvalues is not as straightforward. The

characteristic polynomial could be used as an equality constraint and solved by adding additional

constraints that find the roots of the characteristic polynomial numerically through a method such

as Newton’s Method. For certain special classes of matrices, formulas are available that allow for

the explicit solution of the eigenvalues, and these could be added as constraints if the Jacobians

at the evaluated points have these special forms. For example, the eigenvalues of a 3× 3 matrix

or of a triangular matrix of any dimension can be written explicitly. For the general case when

explicit expressions for the eigenvalues may not be available, the PNLSS optimization problem for

a system with n states becomes:

min
η∈C

| xm− xp |2 (3.25a)

s.t. ẋ = Ax+Pz(x)+Bu (3.25b)

λmax j

λmin j

≤ M̂, j = 1, ...,s (3.25c)

F(η) = 0 (3.25d)

R(η)≤ 0 (3.25e)

where F(η) and R(η) represent all constraints necessary to obtain the eigenvalues of the Jaco-

bians J j, j = 1, ...,s, and to assure numerical stability if additional constraints are desired beyond

those of Eq. 3.25c.

3.3.4 Application of proposed method to the chemical process example

We now revisit the CSTR example described by Eq. 3.10 and apply the PNLSS model identifica-

tion procedure once more, this time using the PNLSS approach accounting for numerical stability
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(Eq. 3.24). The previously identified ill-conditioned model of Eq. 3.15 is used as an initial guess

for the following nonlinear optimization problem:

min
η∈C

| xm− xp |2 (3.26a)

s.t. ẋ = Ax+Pz(x)+Bu (3.26b)

λmax j

λmin j

≤ 1000 j = 1, ...,s (3.26c)

λmax j = max{|λ1 j|, |λ2 j|}, j = 1, ...,s (3.26d)

λmin j = min{|λ1 j|, |λ2 j|}, j = 1, ...,s (3.26e)

λ1 j =
(a j +d j)

2
+

(
(a j +d j)

2

4
− (a jd j−b jc j)

)1/2

j = 1, ...,s (3.26f)

λ2 j =
(a j +d j)

2
−
(
(a j +d j)

2

4
− (a jd j−b jc j)

)1/2

j = 1, ...,s (3.26g)

where the modeled states in the vector xp were determined by numerically integrating the

model of Eq. 3.26b using Explicit Euler with a time step of hc = 10−4 hr. For this example,

the ratios of the absolute value of the eigenvalue with the greatest magnitude to the eigenvalue

with the smallest magnitude of the Jacobian were evaluated at ten different points (i.e., s = 10)

in the region of interest and were constrained to be less than 1000 to obtain a well-conditioned

model with respect to the integration step of hc = 10−4 hr. The nonlinear model of the CSTR (in

continuous-time) that is identified by the optimization problem of Eq. 3.26 is:

dx1

dt
=−34.00x1−0.495x2−5.22x2

1−0.902x1x2−0.0078x2
2−4.6u1−0.000008u2 (3.27a)

dx2

dt
= 1436x1 +18x2 +432x2

1 +43.6x1x2 +0.376x2
2−11u1 +0.00567u2 (3.27b)

We now compare the numerical stability of the model of Eq. 3.27 with that of the model of

Eq. 3.15. We recall the results of Figs. 3.1-3.2, which showed that a step size of 10−4 hr was

inadequate for sufficient model accuracy so that decreasing the step size was necessary to obtain a

62



more accurate integration. For the model of Eq. 3.27, however, a step size of 10−4 hr is sufficient.

This is shown in Fig. 3.3, a plot of the state trajectories when the Explicit Euler method is use to

numerically integrate the model of Eq. 3.27 with step size hc = 10−4 hr and a sinusoidal input to

the system. Fig. 3.3 shows that the empirical model of Eq. 3.27 resulting from the PNLSS iden-

tification approach with numerical stability constraints is able to predict the nonlinear dynamics

of the CSTR system of Eq. 3.10 accurately with a larger step size than was needed when using

the model of Eq. 3.15. Examining the error in concentration and temperature defined according to

Eqs. 3.16-3.17 for the model of Eq. 3.27 further illustrates this point. The average error in con-

centration for the model of Eq. 3.27 over eight hours of operation with an integration step size of

10−4 hr is 2.0276× 10−4, and the average error in the temperature is 0.2342. The concentration

error with this larger step size for Eq. 3.27 is on the same order of magnitude as the concentration

error using Eq. 3.15 with a step size of 10−6 hr, and the temperature error is almost an order of

magnitude smaller.
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Figure 3.3: State trajectories of the first-principles CSTR model of Eq. 3.10 (black trajectory)
and the identified PNLSS model of Eq. 3.27, hc = 10−4 hr (gray trajectory) when the heat rate
and concentration inputs are varied sinusoidally with amplitudes 55,000 kJ/hr and 0.25 kmol/m3,
respectively, and both with frequency 8.72 rad/hr.

The average computation time for each hour of simulation of the model of Eq. 3.27 with the

10−4 hr integration step is 0.986 CPU seconds which is more than 21 times faster than using

Eq. 3.15 with the step size of hc = 10−6 hr for which each hour of simulation required 21.58 CPU
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seconds. This shows that with a much larger integration time step, the model of Eq. 3.27 was able

to accurately predict the nonlinear CSTR behavior.

A step input and impulse input were used to further validate the model of Eq. 3.27. The

responses for the polynomial model of Eq. 3.27 and the first-principles model of Eq. 3.10 to a step

change in u2 and an impulse input of u1 are very close, as is shown in Figs. 3.4-3.5.
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Figure 3.4: Step responses of the first-principles CSTR model of Eq. 3.10 (black trajectory) and
of the identified PNLSS model of Eq. 3.27 (gray trajectory) when, after 1 hr of operation at the
process steady-state, the heat rate (u2) is suddenly increased by 20,000 kJ/hr.

3.4 Economic Model Predictive Control Using Nonlinear Em-

pirical Models

In this section, we first address the stability of the nonlinear process of Eq. 3.1 when a Lyapunov-

based controller derived from the empirical PNLSS model of Eq. 3.3 is applied to it. We then

develop the formulation of Lyapunov-based economic model predictive control (LEMPC) incor-

porating the PNLSS model and present a stability analysis for the nonlinear process in closed-loop

with this LEMPC.
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Figure 3.5: Impulse responses of the first-principles CSTR model of Eq. 3.10 (black trajectory)
and of the identified PNLSS model of Eq. 3.27 (gray trajectory). The impulse was applied to
the systems after 1 hr of operation at the process steady-state, and the impulse was numerically
simulated as a rectangular pulse input in u1 of magnitude 1 kmol/m3 that was applied for 72 sec.

3.4.1 Lyapunov-based control using empirical models

The empirical nonlinear model of Eq. 3.3 is assumed to be stabilizable, which means that a state

feedback controller hNL(x) exists that makes the closed-loop of the empirical nonlinear system of

Eq. 3.3 exponentially stable for all x ∈ DNL where DNL is an open connected region of state-space

containing the origin. We will further assume that hNL is locally Lipschitz on Rn such that one

can find a constant K > 0 to bound the value of hNL (|hNL(x)| < K|x| for all x ∈ Rn). When the

controller hNL(x) that is designed based on the empirical model of Eq. 3.3 is applied to the nominal

system of Eq. 3.1, closed-loop stability depends on whether the zth order Taylor series expansion

of the nominal model is sufficiently close to the polynomial empirical model expanded to the same

order z. It also depends on the effect of the higher order terms (nonlinear terms of order z+1) on

the trajectories of the system of Eq. 3.1. In the following, we introduce the Taylor series of the

right-hand side of Eq. 3.1 in a compact form. To simplify the notation throughout this section, the

right-hand side of Eq. 3.1 is denoted as follows:

f̃ (x(t),w(t),u(t)) := fp(x(t),w(t))+ G̃(x(t),w(t))u(t) (3.28)
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To obtain the Taylor series of the entire vector function f̃ (x(t),w(t),u(t)) : Rn×Rl×Rm→ Rn,

the Taylor series expansion of each function f̃i, i = 1, ...,n is taken individually. The Taylor series

expansion of the function f̃i of the nominal model (w(t) = 0) of Eq. 3.28 around an equilibrium

point x = 0 with u = 0 is:

f̃i(x,0,u) = āix+
1
2!

n

∑
i=1

n

∑
q=1

∂ 2 f̃i

∂xi∂xq
(0,0,0)xixq + ...+ b̄iu+

1
2!

m

∑
Γ=1

m

∑
v=1

∂ 2 f̃i

∂uΓ∂uv
(0,0,0)uΓuv + ...

(3.29)

where

āi = [
∂ f̃i

∂x1
(0,0,0)

∂ f̃i

∂x2
(0,0,0)

∂ f̃i

∂x3
(0,0,0) ...

∂ f̃i

∂xn
(0,0,0)] (3.30)

b̄i = [
∂ f̃i

∂u1
(0,0,0)

∂ f̃i

∂u2
(0,0,0)

∂ f̃i

∂u3
(0,0,0) ...

∂ f̃i

∂um
(0,0,0)] (3.31)

Now, all terms in the Taylor series polynomial containing derivatives of f̃i of order z+ 1 and

higher with respect to x are disregarded and only the linear terms with respect to the input u are

kept because the model Eq. 3.28 is affine in u. In order to simplify notation of the remaining

polynomial, we define g̃i(x) as:

g̃i(x) = ĝiΛ(x) (3.32a)

Λ(x) = [x2
1 x1x2 ... xz

n]
T (3.32b)

where the vector Λ(x) contains nonlinear monomials in x of order two and higher up to a chosen

order z. The coefficients of these nonlinear terms in x are placed in the vector ĝi. As an example,

when n = 2 and z = 3, Λ(x) and ĝ1 have the following form:

ĝ1 = [
1
2

∂ 2 f̃1

∂x2
1

∂ 2 f̃1

∂x1∂x2

1
2

∂ f̃1

∂x2
2

1
6

∂ 3 f̃1

∂x3
1

1
2

∂ 3 f̃1

∂x2
1∂x2

1
2

∂ 3 f̃1

∂x1∂x2
2

1
6

∂ 3 f̃1

∂x3
1
](0,0,0) (3.33)
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Λ(x) = [x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2]
T (3.34)

Repeating the same procedure to take the Taylor series for all f̃i, i = 1, ...,n functions, and

defining the matrices Ā, Ḡz(x), and B̄ as matrices with row vectors āi, g̃i(x), and b̄i, i = 1, ...,n,

respectively, the Taylor series approximation of the vector function f̃ can be represented in the

following compact notation:

f̃ (x,0,u)≈ Āx+ Ḡz(x)+ B̄u (3.35)

where Ā and B̄ represent the coefficients of the linear terms in x and u respectively and Ḡz(x) is a

nonlinear vector function that includes terms of order two and higher. The subscript z is to indicate

that Ḡz(x) is a zth order polynomial vector function. We will now develop a proposition that shows

that the state feedback controller hNL(x) is locally robust to the plant-model mismatch and the

effect of nonlinearities (of order z+ 1 and higher) when the process model is close to the Taylor

series expansion of the actual nonlinear model. To facilitate this development, we define the matrix

of coefficients of the nonlinear terms in Ḡz(x) as Ĝz (the row vectors of Ĝz are ĝi, i = 1, ...,n).

Proposition 5 If the origin of the closed-loop system of Eq. 3.3 under the controller hNL(x) is

exponentially stable and there exist ρ̂ > 0, W > 0, and δ > 0 such that:

‖(Ā−A)+(Ĝz−E)‖W +‖B̄−B‖K ≤ δ (3.36)

then the origin of the nominal closed-loop system of Eq. 3.1 under hNL(x) is exponentially stable

for all x ∈Ωρ̂ ⊂ DNL.

Proof 3.1 To prove exponential stability of the origin of Eq. 3.1 for a sufficiently small ρ̂ and δ , it is

necessary to show that a Lyapunov function exists for that system in closed-loop with the controller

hNL. To derive the existence of such a function, we first note that the exponential stability of the

origin of Eq. 3.3 under the controller hNL guarantees that there is a continuously differentiable
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Lyapunov function V̂ : Rn→ R+ that meets the following inequalities:111

c1|x|2 ≤ V̂ (x)≤ c2|x|2, (3.37a)

∂V̂ (x)
∂x

(Ax+Pz(x)+BhNL(x))≤−c3|x|2, (3.37b)∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣≤ c4|x| (3.37c)

for all x ∈ DNL where ci, i = 1, 2, 3, 4 are positive constants.

We next define

q(x) := f̃ (x,hNL(x),0)− Āx− Ḡz(x)− B̄hNL(x) (3.38)

which contains terms of order z+1 and higher in x. Consider the following closed-loop system:

ẋ = Ax+Pz(x)+BhNL(x)+ f̃ (x,hNL(x),0)−Ax−Pz(x)−BhNL(x) . (3.39)

The time-derivative of V̂ along the trajectory of the closed-loop system of Eq. 3.39 is:

˙̂V =
∂V̂ (x)

∂x
(Ax+Pz(x)+BhNL(x))+

∂V̂ (x)
∂x

(
f̃ (x,hNL(x),0)−Ax−Pz(x)−BhNL(x)

)
(3.37b)
≤ −c3|x|2 +

∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣ ∣∣(Ā−A
)

x+(Ḡz(x)−Pz(x))+(B̄−B)hNL(x)+q(x)
∣∣

(3.37c)
≤ −c3|x|2 + c4|x|

(∣∣(Ā−A
)

x+(Ḡz(x)−Pz(x))+(B̄−B)hNL(x)
∣∣+ |q(x)|) (3.40)

for all x∈DNL. Using boundedness of vector fields and the fact that the hNL(x) controller is locally

Lipschitz, there exist constants W > 0 and K > 0 such that:

˙̂V ≤−c3|x|2 + c4|x|
((∥∥(Ā−A)+(Ĝz−E)

∥∥W |x|+‖B̄−B‖|hNL(x)|
)
+ |q(x)|

)
≤−c3|x|2 + c4|x|

((∥∥(Ā−A)+(Ĝz−E)
∥∥W +‖B̄−B‖K

)
|x|+ |q(x)|

)
(3.41)

for all x ∈ Br′ = {x ∈ Rn : |x| ≤ r′} where r′ is any r′ > 0 such that Br′ ⊂ DNL. If the condition of
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Eq. 3.36 is satisfied, there exits a δ > 0 such that:

˙̂V ≤−c3|x|2 + c4δ |x|2 + c4|x||q(x)| (3.42)

for all x ∈ Br′ . Since q(x) contains terms of order z+ 1 and higher in x and vanishes near the

origin, there exists a γ > 0 such that:

|q(x)|< γ|x|z+1 (3.43)

for all x ∈ Br′ . Thus,

˙̂V ≤−c3|x|2 + c4δ |x|2 + c4γ|x|z+2 (3.44)

for all x ∈ Br′ . For any Br ⊂ Br′ , the time-derivative of V̂ can be bounded by:

˙̂V ≤−c3|x|2 + c4(δ + γrz)|x|2 (3.45)

for all x ∈ Br where r < r′. If δ > 0 and r > 0 are chosen to satisfy c3/c4 > (δ + γrz), then there

exists a ĉ3 > 0 such that:

˙̂V =
∂V̂ (x)

∂x

(
f̃ (x,hNL(x),0)

)
≤−ĉ3|x|2 (3.46)

for all |x| ≤ r. Let ρ̂ > 0 be the forward invariant set such that ρ̂ ≤ min{V̂ (x) : |x| = r} and this

ends the proof.

Remark 3 Even though this conservative result holds locally, when higher order terms are used

to better capture the nonlinear behavior in a practical setting, the region Ωρ̂ could be expanded as

will be demonstrated in the example.
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3.4.2 Lyapunov-based EMPC formulation with empirical models

The formulation of EMPC to be used in this chapter is Lyapunov-based EMPC (LEMPC),20 a

receding horizon EMPC strategy that includes constraints based on the stability region of the sta-

bilizing controller hNL(x) and the Lyapunov function V̂ (x) for the closed-loop system of Eq. 3.3

under this controller. LEMPC uses a model of the process dynamics to predict the evolution of

the process states with time. In this chapter, We incorporate the nonlinear PNLSS empirical model

in LEMPC, and the LEMPC formulation is similar to that derived in chapter 2 using an empirical

model. The LEMPC optimization problem incorporating the PNLSS empirical model is

min
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (3.47a)

s.t. ˙̃x(t) = Ax̃+Pz(x̃)+Bu (3.47b)

x̃(tk) = x(tk) (3.47c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.47d)

V̂ (x̃(t))≤ ρ̂e, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρ̂e (3.47e)

∂V̂ (x(tk))
∂x

(Ax(tk)+Pz(x(tk))+Bu)

≤ ∂V̂ (x(tk))
∂x

(Ax(tk)+Pz(x(tk))+BhNL(x(tk))) , if x(tk) /∈Ωρ̂e (3.47f)

where the optimization variable is the process input vector u for every sampling period of length

∆ in the prediction horizon (denoted by u ∈ S(∆) where S(∆) represents the family of piecewise

constant functions with period ∆). To solve for this optimization variable, the LEMPC minimizes

a cost function representing the process economics (Eq. 3.47a, where Le(x,u) is the stage cost) and

ensures that the calculated values of u are maintained within the specified limits on the available

control action (Eq. 3.47d). The LEMPC receives a measurement of the process states at time tk

(the time at the beginning of a sampling period) and incorporates this through Eq. 3.47c as the

initial condition in the PNLSS process model of Eq. 3.47b. The prediction of the process state

from Eq. 3.47b is denoted as x̃. The PNLSS process model is used to predict future states of the
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process system to ensure that they are constrained by the mode 1 and mode 2 Lyapunov-based

constraints of Eqs. 3.47e and 3.47f respectively.

The mode 1 constraint is used to promote dynamic off-steady-state operation of the process to

achieve the greatest profit possible, and is active when the states are maintained within a subset

of the stability region Ωρ̂ that is referred to as Ωρ̂e for which states starting within this subset are

guaranteed to be maintained in the stability region Ωρ̂ for all time. Process disturbances or plant-

model mismatch may cause the actual process trajectories to enter the region Ωρ̂ \Ωρ̂e , in which

case the mode 2 LEMPC constraint becomes active to drive the process states back into Ωρ̂e within

a finite number of sampling periods. LEMPC is implemented as a receding horizon strategy with

sampling period ∆ and prediction horizon N.

3.4.3 Stability analysis

In this section, we examine stability of the closed-loop process of Eq. 3.1 under LEMPC incorpo-

rating the empirical model derived from PNLSS with numerical stability constraints. We begin by

noting several bounds on the process models of Eqs. 3.1 and 3.3 and of the derivatives of Lyapunov

functions along the closed-loop trajectories of these systems. Because it is assumed that f̃ (·, ·, ·)

in Eq. 3.1 is locally Lipschitz and that the Lyapunov function V̂ is continuously differentiable, the

following inequalities hold for all x1, x2 ∈Ωρ̂ , u ∈U and |w| ≤ θ :

∣∣ f̃ (x1,u,w)− f̃ (x2,u,0)
∣∣≤ Lx |x1− x2|+Lw |w| , (3.48)∣∣∣∣∂V̂ (x1)

∂x
f̃ (x1,u,w)−

∂V̂ (x2)

∂x
f̃ (x2,u,0)

∣∣∣∣≤ L′x |x1− x2|+L′w |w| (3.49)

where Lx, Lw, L′x, and L′w are positive constants. The Lipschitz property of f̃ , combined with the

bounds on u and w, establishes the existence of a constant M > 0 such that:

∣∣ f̃ (x,u,w)∣∣≤M (3.50)
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for all x ∈Ωρ̂ , u ∈U and |w| ≤ θ since Ωρ̂ and U are compact sets.

The polynomial model of Eq. 3.3 and its Lyapunov function are similarly bounded by MNL > 0

and LNL > 0:

|Ax1 +Pz(x1)+Bu| ≤MNL (3.51)∣∣∣∣∂V̂ (x1)

∂x
(Ax1 +Pz(x1)+Bu)− ∂V̂ (x2)

∂x
(Ax2 +Pz(x2)+Bu)

∣∣∣∣≤ LNL |x1− x2| (3.52)

for all x1, x2 ∈Ωρ̂ and u ∈U .

The following proposition and its proof closely follow that for Proposition 2 from chapter 2.

This proposition bounds the difference between the actual process state trajectory of Eq. 3.1 in

the presence of disturbances w(t) and the process state trajectory predicted from the empirically

derived PNLSS model of Eq. 3.3 over a time interval of length T .

Proposition 6 Consider the solutions, denoted as x(t) and x̂(t), respectively, of the following dy-

namic equations:

ẋ(t) = f̃ (x(t),u(t),w(t)), x(0) = x0, (3.53)

˙̂x(t) = Ax̂(t)+Pz(x̂(t))+Bu(t), x̂(0) = x0, (3.54)

where u(t) ∈U and |w(t)| ≤ θ for all t ∈ [0,T ] and initial condition x(0) = x̂(0) = x0 ∈ Ωρ̂ . If

x(t), x̂(t) ∈ Ωρ̂ for all t ∈ [0,T ], then the difference between x(T ) and x̂(T ) is bounded by the

function fw(·):

|x(T )− x̂(T )| ≤ fw(T ) :=
Lwθ +Merr

Lx

(
eLxT −1

)
(3.55)

where Merr bounds the difference between right-hand sides of Eqs. 3.53-3.54 (with w(t)≡ 0):

∣∣ f̃ (x̂,u,0)− (Ax̂+Pz(x̂)+Bu)
∣∣≤Merr (3.56)

for all x̂ ∈Ωρ̂ and u ∈U.
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Proof 3.2 We will first define e(t) to be the difference x(t)− x̂(t), such that its time derivative is

ė(t) = ẋ(t)− ˙̂x(t). Per Eqs. 3.53 and 3.54, the initial condition for this differential equation is

e(0) = 0. Substituting the definitions of ẋ(t) and ˙̂x(t) from Eqs. 3.53 and 3.54 and adding and

subtracting f̃ (x̂(t),u(t),0) in the definition of ė(t) produces the following inequality:

|ė(t)|=
∣∣ f̃ (x(t),u(t),w(t))− (Ax̂(t)+Pz(x̂(t))+Bu(t))

∣∣
≤ | f̃ (x(t),u(t),w(t))− f̃ (x̂(t),u(t),0)|

+ | f̃ (x̂(t),u(t),0)− (Ax̂(t)+Pz(x̂(t))+Bu(t))| (3.57)

for all x, x̂ contained in Ωρ̂ . From the bounds in Eqs. 3.50 and 3.51 above and the fact that x and

u are in compact sets, a constant Merr > 0 exists such that:

∣∣ f̃ (x̂,u,0)− (Ax̂+Pz(x̂)+Bu)
∣∣≤Merr (3.58)

for all x̂ ∈Ωρ̂ and all u ∈U. Using this bound in Eq. 3.57 along with the bound from Eq. 3.48 and

|w(t)| ≤ θ , the following is derived for all t ∈ [0,T ]:

|ė(t)| ≤ Lx |x(t)− x̂(t)|+Lw |w(t)|+Merr

≤ Lx |e(t)|+Lwθ +Merr (3.59)

Integration is then performed on the differential equation in Eq. 3.59 between t = 0 and t = T :

∫ T

0

|ė(t)|
Lx|e(t)|+Lwθ +Merr

dt ≤ T (3.60)

which gives the following equation for |e(T )|, with x(T ), x̂(T ) ∈Ωρ̂ :

|e(T )|= |x(T )− x̂(T )| ≤ Lwθ +Merr

Lx

(
eLxT −1

)
(3.61)
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This completes the proof of Proposition 6.

The following proposition is proved in31 and states that the difference between the values of a

Lyapunov function evaluated at any two different points in Ωρ̂ is bounded.

Proposition 7 (c.f.31) Consider the continuously differentiable Lyapunov function V̂ (x) that satis-

fies the inequalities of Eq. 3.37. There exists a quadratic function fV (·) such that

V̂ (x1)≤ V̂ (x2)+ fV (|x1− x2|) (3.62)

for all x1, x2 ∈Ωρ̂ where

fV (s) :=
c4
√

ρ̂
√

c1
s+β s2 (3.63)

and β is a positive constant.

The above propositions will now be used to show that firstly, there exists a feedback control law

hNL that meets the requirements of Eq. 3.37 that can stabilize the closed-loop system of Eq. 3.1,

and secondly, that this has implications for the stability properties of an LEMPC based on the

stability region derived from the use of this feedback control law. To develop the type of stability

that the feedback control law can provide, we first note that when hNL meeting Eq. 3.37 is applied

continuously to the system of Eq. 3.3, it exponentially stabilizes the origin of the closed-loop

system. However, for the LEMPC control problem at hand, the control laws will be implemented

in sample-and-hold. When using a sufficiently small sampling period ∆ > 0, the control law hNL

implemented in sample-and-hold can practically stabilize the origin, meaning that it can drive the

state trajectories to a small neighborhood of the origin Ωρ̂min and maintain them there.31 It has

previously been stated that the Lyapunov-based constraints in LEMPC are able to ensure that the

closed-loop state trajectories using mode 1 operation are maintained in the stability region Ωρ̂

and that the origin is practically stable in mode 2; this, however, implies that feasible solutions to

the LEMPC exist, which is only the case for mode 1 operation when ρ̂e ≥ ρ̂min. The following

proposition states that when ρ̂e is restricted in this manner, the state trajectories x̂(t) for the closed-
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loop system of Eq. 3.54 under the control law hNL in sample-and-hold are always bounded in Ωρ̂e ,

which is necessary for feasibility of mode 1 operation of LEMPC, and are ultimately bounded in

Ωρ̂min . It closely follows Proposition 4 in chapter 2.

Proposition 8 Consider the sampled-data system resulting from the system of Eq. 3.54 under the

controller hNL(x̂) that satisfies the inequalities of Eq. 3.37 implemented in a sample-and-hold

fashion. Let ∆ > 0, ε̂s > 0, ρ̂s > 0, and ρ̂e ≥ ρ̂min > 0 satisfy:

−c3

c2
ρ̂s +LNLMNL∆≤−ε̂s/∆ (3.64)

and

ρ̂min := max
{

V̂ (x̂(t +∆)) : V̂ (x̂(t))≤ ρ̂s
}
. (3.65)

If x̂(0) ∈Ωρ̂e , then x̂(t) ∈Ωρ̂e for all t ≥ 0 and

V̂ (x̂(tk+1))−V̂ (x̂(tk))≤−ε̂s (3.66)

for x̂(tk) ∈Ωρ̂e \Ωρ̂s and x̂(t) is ultimately bounded in Ωρ̂min .

Proof 3.3 The proposition considers the state trajectories of the system of Eq. 3.54, starting from

x̂(0) ∈ Ωρ̂ , when the control law hNL(x̂) is implemented in sample-and-hold. This sample-and-

hold implementation will be denoted as hNL(x̂(tk)), with t ∈ [tk, tk+1), k = 0, 1, . . . with t0 = 0, to

represent the value of hNL held for a time period of length ∆ based on a measurement of the state

x̂ at time tk. Using this notation and the inequality of Eq. 3.37b that holds at each sampling time,

the following holds:

∂V̂ (x̂(tk))
∂ x̂

(Ax̂(tk)+Pz(x̂(tk))+BhNL(x̂(tk)))≤−c3|x̂(tk)|2 (3.67)

The inequality of Eq. 3.67 can be used with the inequality of Eq. 3.52 to bound the time-derivative

of the Lypaunov function for all τ ∈ [tk, tk+1) as follows (the notation for the input is abbreviated
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as û(tk) := hNL(x̂(tk))):

∂V̂ (x̂(τ))
∂ x̂

(Ax̂(τ)+Pz(x̂(τ))+Bû(tk)) =
∂V̂ (x̂(τ))

∂ x̂
(Ax̂(τ)+Pz(x̂(τ))+Bû(tk))

− ∂V̂ (x̂(tk))
∂ x̂

(Ax̂(tk)+Pz(x̂(tk))+Bû(tk))

+
∂V̂ (x̂(tk))

∂ x̂
(Ax̂(tk)+Pz(x̂(tk))+Bû(tk))

≤ LNL |x̂(τ)− x̂(tk)|− c3|x̂(tk)|2 (3.68)

Because the solutions of Eq. 3.54 are continuous in the compact set Ωρ̂e , a discretization of the

time-derivative of x̂ defined according to Eq. 3.54 for a sufficiently small time ∆, combined with

the inequality in Eq. 3.51, yields the following bound for τ ∈ [tk, tk+1):

|x̂(τ)− x̂(tk)| ≤MNL∆ (3.69)

Substituting Eq. 3.69 into Eq. 3.68 gives for τ ∈ [tk, tk+1):

∂V̂ (x̂(τ))
∂ x̂

(Ax̂(τ)+Pz(x̂(τ))+Bû(tk))≤−c3|x̂(tk)|2 +LNLMNL∆ (3.70)

We now use these results to show that x̂(t)∈Ωρ̂e for all t ≥ 0 when x̂(0)∈Ωρ̂e , ρ̂s > 0, ρ̂min > 0,

ε̂s > 0, and ρ̂e ≥ ρ̂min satisfy Eqs. 3.64-3.65 with a sufficiently small ∆ > 0. We first examine the

case when x̂(tk) ∈ Ωρ̂e \Ωρ̂s (and x̂(τ) ∈ Ωρ̂e for τ ∈ [tk, tk+1)). In this case, Eq. 3.70, Eq. 3.37b,

and Eq. 3.65 are combined to give:

∂V̂ (x̂(τ))
∂ x̂

(Ax̂(τ)+Pz(x̂(τ))+Bû(tk))≤−
c3

c2
ρ̂s +LNLMNL∆ (3.71)

for τ ∈ [tk, tk+1). Since we assume that Eq. 3.64 is met:

∂V̂ (x̂(τ))
∂ x̂

(Ax̂(τ)+Pz(x̂(τ))+Bû(tk))≤−ε̂s/∆ (3.72)
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for τ ∈ [tk, tk+1). Integration of this equation proves that the bound of Eq. 3.66 holds and fur-

ther shows that the Lyapunov function is decreasing for τ ∈ [tk, tk+1), which proves that x̂(t) is

maintained in Ωρ̂e during this time period as guaranteed by the proposition:

V̂ (x̂(tk+1)) ≤ V̂ (x̂(tk))− ε̂s,

V̂ (x̂(τ)) ≤ V̂ (x̂(tk)), ∀ τ ∈ [tk, tk+1)

(3.73)

We now prove ultimate boundedness of the state trajectories in Ωρ̂min by considering x̂(tk) ∈

Ωρ̂s . Because the proof for x̂(tk) ∈ Ωρ̂e \Ωρ̂s shows that the Lyapunov function continues to de-

crease with time in that set, the trajectories eventually enter Ωρ̂s . From the definition of Ωρ̂min in

Eq. 3.65, once the state trajectories enter Ωρ̂min , they are ultimately bounded in this set. This com-

pletes the proof of Proposition 8 and shows that for appropriately chosen parameters ρ̂s, ε̂s, ρ̂e,

and ∆, an explicit stabilizing controller exists for the system of Eq. 3.54 that, when implemented in

sample-and-hold, can render the set Ωρ̂e forward invariant for any initial state in Ωρ̂e .

Propositions 6-8 are now combined to give a theorem that shows that the LEMPC applied

to the system of Eq. 3.1 using the empirical PNLSS model of Eq. 3.3 requests control actions

that maintain boundedness of the closed-loop state within Ωρ̂ under appropriate conditions. This

theorem and its proof follow that of Theorem 1 in chapter 2.

Theorem 2 Consider the closed-loop system of Eq. 3.1 under the LEMPC of Eq. 3.47 based on

the controller hNL(x) that satisfies the inequalities of Eq. 3.37. Let εw > 0, ∆ > 0, N ≥ 1, and

ρ̂ > ρ̂e > 0 satisfy

− ĉ3

c2
ρ̂e +L′xM∆+L′wθ ≤−εw/∆ , (3.74)

ρ̂e ≤ ρ̂− fV ( fw(∆)) . (3.75)

If x(0) ∈ Ωρ̂ and the conditions of Proposition 5 and Proposition 8 are satisfied, then the state

trajectory x(t) of the closed-loop system is always bounded in Ωρ̂ for t ≥ 0.

Proof 3.4 In Part 1 of this proof, we show that the LEMPC optimization problem is recursively
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feasible for any initial state within Ωρ̂ , and in Part 2, we prove boundedness of the states of the

closed-loop system in Ωρ̂ .

Part 1: For all x(tk) ∈ Ωρ̂e when all conditions in Proposition 8 are met, the optimization

problem is feasible since the control action hNL(x(tk)) that maintains the process states within

Ωρ̂e meets the input constraints and Lyapunov-based constraints of Eqs. 3.47d-3.47e. For all

x(tk) ∈ Ωρ̂ \Ωρ̂e , the controller hNL(x(tk)) is feasible by design since it is stabilizing in sample-

and-hold with a sufficiently small sampling period and meets the constraints of Eqs. 3.47d and

3.47f. This shows that for all x(0) ∈ Ωρ̂ , the LEMPC optimization problem of Eq. 3.47 will be

recursively feasible.

Part 2: If x(tk) ∈ Ωρ̂ \Ωρ̂e , the LEMPC requires that the mode 2 constraint of Eq. 3.47f be

satisfied, which leads to the following requirement for any solution requested by the LEMPC at

time tk:

∂V̂ (x(tk))
∂x

(Ax(tk)+Pz(x(tk))+Bu(tk))≤
∂V̂ (x(tk))

∂x
(Ax(tk)+Pz(x(tk))+BhNL(x(tk))) (3.76)

Since Theorem 2 requires that Proposition 5 be met, Eq. 3.46 holds and:

∂V̂ (x(tk))
∂x

f̃ (x(tk),hNL(x(tk)),0)≤−ĉ3|x(tk)|2 . (3.77)

Eq. 3.77 can be used to bound the time-derivative of the Lyapunov function of the closed-loop

system using the empirical model for all τ ∈ [tk, tk+1):

˙̂V (x(τ)) =
∂V̂ (x(τ))

∂x
f̃ (x(τ),hNL(x(tk)),w(τ))−

∂V̂ (x(tk))
∂x

f̃ (x(tk),hNL(x(tk)),0)

+
∂V̂ (x(tk))

∂x
f̃ (x(tk),hNL(x(tk)),0)

(3.49),(3.77)
≤ L′x|x(τ)− x(tk)|+L′w|w(τ)|− ĉ3|x(tk)|2

≤− ĉ3

c2
ρ̂e +L′x|x(τ)− x(tk)|+L′w|w(τ)| (3.78)
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where the final inequality results from the definition of the value of V̂ (x) when x(tk) ∈ Ωρ̂ \Ωρ̂e .

Using Eq. 3.50 and a derivation similar to that used to arrive at Eq. 3.69:

|x(τ)− x(tk)| ≤M∆ (3.79)

for all τ ∈ [tk, tk+1). Substituting this inequality and the bound θ on w into Eq. 3.78:

∂V̂ (x(τ))
∂x

f̃ (x(τ),u(tk),0)≤−
ĉ3

c2
ρ̂e +L′xM∆+L′wθ (3.80)

for all τ ∈ [tk, tk+1). Substituting Eq. 3.74 and integrating as was performed to arrive at Eq. 3.73:

V̂ (x(tk+1)) ≤ V̂ (x(tk))− εw,

V̂ (x(τ)) ≤ V̂ (x(tk)), ∀ τ ∈ [tk, tk+1)

(3.81)

This result shows that for all x(tk) ∈ Ωρ̂ \Ωρ̂e , the Lyapunov function of the closed-loop system

decreases throughout a sampling period, which means that the state will be driven back into Ωρ̂e

in finite time.

When x(tk) ∈ Ωρ̂e , the predicted trajectory x̃(tk+1) ∈ Ωρ̂e by Eq. 3.47e. By Propositions 6 and

7, the actual state x(tk+1) is within a bound of the predicted state and the following hold:

V̂ (x(tk+1))≤ V̂ (x̃(tk+1))+ fV (|x(tk+1)− x̃(tk+1)|)

≤ ρ̂e + fV ( fw(∆)) (3.82)

Since Eq. 3.75 holds, x(tk+1) ∈Ωρ̂ . This completes the proof of Theorem 2 by showing that for any

x(0) ∈ Ωρ̂ , the closed-loop state trajectories of the actual process are maintained in Ωρ̂ provided

that the assumptions of Theorem 2 are met.

Remark 4 The stability discussion above shows that disturbances, which include plant-model

mismatch, are required to be sufficiently small if closed-loop stability is to be maintained under
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LEMPC. It may in general be difficult to find an empirical model for use in LEMPC for which

the plant-model mismatch is low over a large enough operating range that the stability region for

use in LEMPC is not restrictively small, since a small stability region would likely not perform

much differently than steady-state operation. One method for improving the range over which an

empirical model is applicable (and thus possibly increasing the size of Ωρ̂ ) is to use higher-order

polynomials in the PNLSS identification. This concept is demonstrated in the chemical process

example of this chapter.

Remark 5 For the reasons noted in Remark 3 of chapter 2, a longer prediction horizon may

not be able to improve the closed-loop performance of an EMPC formulated with an empirical

model, especially if there are significant differences between the actual process behavior and that

predicted by the model.

Remark 6 For systems that can be approximated over the region of interest with low-order poly-

nomials (e.g., second or third order), a significant benefit in terms of computation time may be

observed when using the low-order empirical model as compared to using the full nonlinear first-

principles process model. An example is given for which this is the case in the “Application of

LEMPC Based on the Well-Conditioned PNLSS Model to the Chemical Process” section of this

chapter. If computation time is a significant consideration for an actual process control system,

an empirical model may be considered even if a first-principles model can be derived for a given

process.

Remark 7 One major factor in the stability of the LEMPC of Eq. 3.47 is that it is a feedback

control strategy, incorporating a measurement of the actual process state at every sampling period

so that it is able to tolerate some level of process disturbances and plant-model mismatch.

3.5 LEMPC Application of to the Chemical Process Example

In the following sections, we return to the CSTR example described above and compare the closed-

loop state and input trajectories for the CSTR under the LEMPC utilizing the first-principles model
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of Eq. 3.10 and the LEMPC utilizing the empirical model of Eq. 3.27 developed using PNLSS with

numerical stability constraints. In addition, comparisons will be made between the results of using

the nonlinear empirical model of Eq. 3.27 in LEMPC with the results of using the linear empirical

models described in chapter 2 with LEMPC. The process model used here is the same as that in

chapter 2 to facilitate direct comparison.

As noted previously, it is assumed that the dynamics of the CSTR are perfectly modeled by

Eq. 3.10, and that the available control actions are constrained by the actuators to the sets in

Eq. 3.14. Simulations assuming full state feedback were used to perform system identification

using PNLSS per the optimization problem of Eq. 3.26 to develop the nonlinear empirical model

of Eq. 3.27, where u and x are written in terms of deviation variables as defined in Eqs. 3.12-3.13.

It is desired to maximize the time-average production rate of B while maintaining the states within

a compact state-space set around the steady-state [CAs Ts] = [1.2 kmol/m3 438.0 K]. Thus, the cost

function to be used in the LEMPC of Eq. 3.47a is the negative of the time-average of the total

amount of B produced per the Arrhenius rate law throughout a time period (it is the negative since

Eq. 3.47 is a minimization problem and our goal is to maximize the production of B):

Le(x,u) =−
1

(tk+N− tk)

∫ tk+N

tk
k0e−E/RT (τ)C2

A(τ) dτ . (3.83)

In addition to the bounds on the control actions caused by the actuators, we assume that the

amount of reactant that is available to be fed to the reactor is limited in a given time period tp =

1.0 hr by the following constraint:

1
tp

∫ tp

0
u1(τ) dτ = 0.0 kmol/m3. (3.84)

To maintain process stability when the empirical process model of Eq. 3.27 is used, the Lya-

punov stability region constraints for LEMPC must be defined. The stability region is defined

using a Lyapunov-based controller h(x) = [h1(x) h2(x)]
T for the process that meets the require-

ments of Eq. 3.2. The Lyapunov-based controller is developed here by considering h1 and h2
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separately. To ensure that the material constraint of Eq. 3.84 is satisfied by the closed-loop process

under controller h(x), the value of h1 is set to 0.0 kmol/m3. The value of h2 is determined using a

Lyapunov-based control law calculated based on the process model. It is assumed here, as would

be the case in practice, that the only process model available from which to determine h2(x) is the

empirical model of Eq. 3.27. To develop the control law, terms in the empirical model of Eq. 3.3

are denoted as functions f : Rn→ Rn and g : Rn→ Rn×Rm as follows:

ẋ = Ax+Pz(x)︸ ︷︷ ︸
=: f (x)

+ B︸︷︷︸
=:g(x)

u , (3.85)

Since there are two inputs for this chemical process example, g(x) = [g1 g2] where g1,g2 ∈ Rn.

The control law for h2 is then determined from the Lyapunov-based control law in:38

h2(x) =


−

L f V̂ +
√

L f V̂ 2 +Lg2V̂ 4

Lg2V̂
, if Lg2V̂ 6= 0

0, if Lg2V̂ = 0

(3.86)

where L f V̂ and Lg2V̂ denote the Lie derivatives of the Lyapunov function V̂ (x) with respect to the

vector fields f (x) and g2(x). The Lyapunov function V̂ was chosen as V̂ (x) = xT Px with P being

the following positive definite matrix:

P =

 1030 20

20 0.6

 (3.87)

Extensive simulations were performed using the controller h(x) in closed-loop with the empir-

ical model of Eq. 3.27 to obtain an estimate of the stability region of the actual process. Because

an estimate of the process model was used to determine the stability region, a conservative subset

of this stability region was chosen for the LEMPC design. This subset was chosen based on sim-

ulations that showed it was a region within which the first-principles and empirical models show

good agreement of the state trajectories, but was large enough that there was a significant benefit
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with LEMPC operation compared with steady-state operation. The stability regions for use in the

Lyapunov-based constraints of Eqs. 3.47e-3.47f were taken to be Ωρ̂ with ρ̂ = 370 and Ωρ̂e with

ρ̂e = 350.

Using the above constraints, two different LEMPCs will be compared, each with the general

form of Eq. 3.47 and formulated for use in closed-loop with the process model of Eq. 3.10. Both

LEMPCs use the cost function of Eq. 3.83, the input constraints of Eq. 3.14 and Eq. 3.84, ρ̂e =

350, an integration step size of 10−4 hr with the Explicit Euler numerical integration method, a

sampling period ∆= 0.01 hr, and a prediction horizon N = 10. The first of the LEMPCs, which will

henceforth be designated as the second-order empirical LEMPC, uses the PNLSS dynamic model

of Eq. 3.27. The second of the LEMPCs, which will henceforth be designated as the first-principles

LEMPC, uses the nonlinear dynamic model of Eq. 3.10. Because it is assumed that the nominal

model of Eq. 3.10 perfectly represents the process dynamics, the mode 2 constraint of Eq. 3.47f

was not used in this first-principles LEMPC since there is no measurement noise or plant-model

mismatch to drive the state outside of Ωρ̂e . For both LEMPCs, the material constraint of Eq. 3.84

is applied in the manner outlined in.14 The first-principles and second-order empirical LEMPC

optimization problems were solved at each sampling time using Ipopt. To account for practical

implementation considerations, the optimizations were terminated and the current estimate of the

optimization variable u was returned if they were not complete at the end of a sampling period.

The actuator dynamics were considered to be sufficiently fast such that the returned solutions were

directly implemented on the process of Eq. 3.10 with a zero-order hold of length ∆.

3.5.1 Empirical LEMPC compared with first-principles LEMPC

The process of Eq. 3.10 was simulated in closed-loop with both the second-order empirical and

the first-principles LEMPCs for one operating period of length tp = 1 hr. The resulting state

and input trajectories are shown in Fig. 3.6. These trajectories exhibit behavior similar to that

reported in chapter 2. The state trajectories are initiated from the steady-state [CA(0) T (0)] =

[1.2 kmol/m3 438.0 K], and they subsequently level off at a new steady-state with a temperature
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greater than that at the initial steady-state to maximize the reaction rate of B within the stability

region. At the end of the operating period, the concentration of A in the reactor decreases as the

inlet concentration of A is reduced to meet the material constraint of Eq. 3.84. The decrease in

CA allows the reactor temperature to increase to improve the production rate of B without leaving

the stability region. Fig. 3.6 shows that the state and input trajectories using the second-order

empirical LEMPC closely track those of the first-principles LEMPC until approximately 0.8 hr, at

which time the first-principles and second-order empirical LEMPCs request significantly different

control actions because they require that the material constraint be met in the short remainder of

the simulation interval though different process models are being used in the LEMPCs to ensure

that the predicted trajectories meet this constraint. The differences in the requested control actions

cause the process states under the second-order empirical LEMPC to leave Ωρ̂e six times at the

end of the operating period, starting at approximately 0.85 hr, while the first-principles LEMPC

never leaves Ωρ̂e . This means that in addition to the differences in the process state trajectories

that result from using different model equations to satisfy constraints, there are added differences

that result because the second-order empirical LEMPC switches to mode 2 operation though the

first-principles LEMPC remains operating in mode 1. Fig. 3.7 illustrates the state-space behavior

of the first-principles and second-order empirical LEMPCs, including their initial close agreement,

their evolution along the edge of the stability region between approximately t = 0.1 and 0.8 hr,

and their subsequent deviation from one another. Despite the differences at the end of the interval,

the overall closeness of the state and input trajectories using both the second-order empirical and

first-principles LEMPCs shows that the second-order empirical LEMPC using the model derived

from PNLSS with numerical stability constraints may be suitable for the process in this example

and has the potential to produce similarly good results for other processes.

The main reason for considering the first-principles LEMPC over the second-order empirical

LEMPC, since both maintain process stability within the stability region, would be related to the

economic benefit of using the first-principles LEMPC. Since the first-principles LEMPC represents

the ideal case in which the full nonlinear process model is known so that the profit of the actual
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Figure 3.6: Closed-loop state and input trajectories for one operating period tp = 1 hr for the CSTR
model of Eq. 3.10 under the first-principles LEMPC (black line) and the second-order empirical
LEMPC (gray line) starting from CA(0) = 1.2 kmol/m3, T (0) = 438 K.
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Figure 3.7: Closed-loop state trajectories in state-space for one operating period tp = 1 hr for
the CSTR model of Eq. 3.10 under the first-principles LEMPC (solid line) and the second-order
empirical LEMPC (dashed-dotted line) starting from CA(0) = 1.2 kmol/m3, T (0) = 438 K.

process is being maximized, it would be expected to have a higher profit than any variants of

that LEMPC. In order to quantify the closed-loop performance of the first-principles LEMPC and
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compare it with that of the second-order empirical LEMPC, the following average economic cost

index is used (which has units kmol/m3):

Je =
1
t f

∫ t f

0
k0e−E/RT (t)C2

A(t) dt (3.88)

where t f is the length of time for which the closed-loop process is simulated. The value of the eco-

nomic cost index for the closed-loop CSTR under the second-order empirical LEMPC is 16.1227

and for the first-principles LEMPC it is 16.1626. This shows that for an operating period of 1 hr,

an improvement of less than 0.3% is achieved when using the first-principles LEMPC instead of

the second-order empirical LEMPC.

One major benefit of using the second-order empirical state-space model of Eq. 3.27 compared

to the full process model of Eq. 3.10 is the reduction in computation time required by the LEMPC

with the simpler empirical model. Fig. 3.8 shows the amount of time in CPU seconds to find a solu-

tion to the first-principles and second-order empirical LEMPCs for each sampling period. The time

required to solve the optimization problems is greatest for both LEMPCs at the end of the operat-

ing period due to the increased number of function evaluations required to ensure that the material

constraint is satisfied in the small remaining period of operation while the other input and stability

region constraints remain satisfied (the computation time is increased as there are less degrees of

freedom when finding a solution). As demonstrated in Fig. 3.8, the first-principles LEMPC opti-

mization problem terminated early two times in the operating period because it reached the end of

the 0.01 hr (36 sec) sampling period before finding a solution (and thus returned a sub-optimal so-

lution). The second-order empirical LEMPC, however, never came close to the 36 sec computation

time constraint, and the optimal solutions were obtained in less than 0.15 sec in most of the sam-

pling periods. The sum of the computation times for all sampling periods in the operating window

(total computation time) was 206.317 sec for the first-principles LEMPC, but only 30.108 sec for

the second-order empirical LEMPC. The first-principles LEMPC is much more computationally

expensive than the second-order empirical LEMPC, with a total computation time that is 580%
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Figure 3.8: Computation time in seconds used in each sampling period to solve the optimization
problems of the first-principles LEMPC (triangle markers) and the second-order empirical LEMPC
(circle markers) during one operating period.

higher than for the second-order empirical LEMPC.

To investigate the long-term performance and computation time differences between the first-

principles and second-order empirical LEMPCs, a ten-hour simulation was conducted for the

CSTR of Eq. 3.10, and the results are shown in Figs. 3.9-3.12. The average economic cost per

Eq. 3.88 was 15.91 for the second-order empirical LEMPC and 15.96 for the first-principles

LEMPC; less than 0.4% performance improvement is observed when using the first-principles

LEMPC. Both the first-principles and the second-order empirical LEMPCs significantly out-perform

steady-state operation; the average economic cost at the end of the ten hours is 13.88 for steady-

state operation at [CAs Ts CA0s Qs] = [1.2 kmol/m3 438.0 K 4.0 kmol/m3 0.0 kJ/hr]. Thus, the av-

erage economic cost for the second-order empirical LEMPC is 14.6% greater than that for steady-

state operation.

The computation times for the first-principles and second-order empirical LEMPCs were also

compared for the ten-hour simulation. The average total computation time for each 1 hr operating

period of the ten-hour simulation is 197.682 sec for the first-principles LEMPC and 26.229 sec

for the second-order empirical LEMPC. The first-principles LEMPC average computation time is
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Figure 3.9: Trajectory of the CSTR concentration over ten hours for the CSTR model of Eq. 3.10
under the second-order empirical LEMPC.
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Figure 3.10: Trajectory of the CSTR temperature over ten hours for the CSTR model of Eq. 3.10
under the second-order empirical LEMPC.

650% higher than that of the second-order empirical LEMPC.

The results using the second-order empirical LEMPC above can be compared to the results

presented for the linear empirical model in the chemical process example in chapter 2. The linear

empirical model of Eqs. 57-58 in chapter 2 is henceforth referred to as the linear model. Because

the second-order empirical model of Eq. 3.27 is a better approximation of the actual system than

a linear model, the LEMPC using the second-order empirical model calculates inputs that do not

cause the closed-loop state trajectories to leave the set Ωρ̂e as often as do the trajectories from

using the linear model. A comparison of Fig. 4 of chapter 2 for the linear model with Fig. 3.6 for

the second-order empirical model demonstrates this. From these figures, it is seen that the u1 and

hence CA trajectories for the linear model exhibit extensive chattering caused by frequent switching
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Figure 3.11: Trajectory of the feed concentration input to the CSTR over ten hours for the CSTR
model of Eq. 3.10 under the second-order empirical LEMPC.
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Figure 3.12: Trajectory of the heat input to the CSTR over ten hours for the CSTR model of
Eq. 3.10 under the second-order empirical LEMPC.

of the LEMPC between mode 1 and 2 operation; this chattering is not exhibited in the trajectories

resulting from the use of the second-order empirical model, and as previously noted, the second-

order empirical model only switched between mode 1 and mode 2 operation six times. Another

result of using the second-order empirical model as a better approximation of the actual process

system is that the stability region used with the second-order empirical model is significantly larger

than with the linear empirical model (for the linear model, ρ̂e is 55.0, while for the second-order

empirical model, it is 350). The more restricted stability region results in a lesser value of the

average economic cost index at the end of an operating period for the linear model than for the

second-order empirical model, since the state variables cannot extend as far to maximize the profit

during the part of the trajectory when they remain on the edge of the stability region (compare,
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for example, the temperature of approximately 20 K in the time period from 0.2 to 0.8 hr in

Fig. 4 of chapter 2 with the temperature of approximately 35 K in Fig. 3.6 above). Over one

operating period of 1 hr, the average economic cost index of the second-order empirical LEMPC is

approximately 2.7% greater using the second-order empirical model than the linear model, and for

the ten-hour simulation, the average economic cost index for one operating period is approximately

4.1% greater using the second-order empirical model than the linear model. The computation time

for the linear LEMPC is less than that for the second-order empirical LEMPC, however. The total

computation time for one operating period is 36.9% greater for the second-order empirical LEMPC

than for the linear LEMPC, and the average total computation time for a one-hour operating period

from the ten-hour simulation is 11.1% greater for the second-order empirical LEMPC than for the

linear LEMPC. Both the second-order empirical and linear LEMPCs have profits close to those

of the LEMPCs for the actual process with the corresponding stability region (the profit from the

second-order empirical LEMPC is close to that of the first-principles LEMPC, and the profit from

the linear LEMPC is close to that of the actual process with which it is compared in chapter 2), and

both have computation times much lower than those for the actual process with the corresponding

stability region. Thus, the decision to use the linear, second-order empirical, or first-principles

LEMPC for this process would depend on the practical significance of a percentage change in

profit compared to a percentage change in computation time.

3.5.2 Improved accuracy with higher-order empirical models

In the comparison between the second-order empirical and first-principles LEMPCs above, it was

noted that the first-principles LEMPC had a greater profit than the second-order empirical LEMPC,

since the first-principles LEMPC was taken to represent the actual process and the second-order

empirical LEMPC was only an approximation. It would thus be expected that as the accuracy of the

model derived from the PNLSS model identification procedure is increased (additional nonlinear

terms are kept in the function Pz(x) of Eq. 3.3) that the resulting model would more accurately

represent the actual process dynamics over a larger region and thus allow a greater profit for the
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process, closer to that which could be achieved with the LEMPC using the actual first-principles

process model of Eq. 3.10. This motivated the identification of an empirical model using higher-

order terms for use in LEMPC, which will be described in this section.

To determine the effect of using an empirical model using higher-order nonlinear terms on the

performance and computation time of an LEMPC, the PNLSS model identification procedure of

Eq. 3.26 was used to find empirical process models with both a third-order polynomial and a fourth-

order polynomial for Pz(x) that satisfy the numerical stability constraints. Extensive simulations

were used to validate the third and fourth-order models obtained. Because all coefficients of the

fourth-order terms from the verified fourth-order model were very small (on the order of 10−13),

the third-order model was considered to be sufficient to demonstrate the impact of the higher-order

terms on the LEMPC output, so that was the only model for which closed-loop LEMPC simulations

were conducted. The validated third-order model is:

dx1

dt
=−34x1−0.495x2 +48x2

1 +1.95x1x2 +18x2
2 −92x3

1− 0.000707x2
1x2 (3.89a)

−0.000016x1x2
2−0.0005x3

2−4.6u1−0.000008u2

dx2

dt
= 1436x1 +18x2T −1475x2

1−51x1x2−0.00509x2
2−0.0005x3

1−0.0233x2
1x2 (3.89b)

−0.000526x1x2
2−0.000024x3

2−11u1 +0.00567u2

To use this third-order model in the LEMPC of Eq. 3.47, it is necessary to first specify the

stability region for the Lyapunov-based constraints of Eqs. 3.47e-3.47f. The Lyapunov function

for this third-order process model, in closed-loop with a Lyapunov-based controller h(x) designed

similarly to that used for the second-order empirical LEMPC (h(x) = [0 h2(x)]T where h2(x) is

designed using Eq. 3.86 with the third-order model), was again taken to have the form V̂ (x)= xT Px,

but with P as:

P =

 1170 24

24 0.56

 (3.90)

After extensive closed-loop simulations, the stability region for LEMPC including the third-
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order empirical model was taken to be Ωρ̂ with ρ̂ = 485 and Ωρ̂e with ρ̂e = 285.

As was done for the second-order empirical LEMPC, two different LEMPCs will now be com-

pared. Each has the general form of Eq. 3.47 and is formulated for use in closed-loop with the

process of Eq. 3.10; however, the first LEMPC (which will be referred to as the third-order em-

pirical LEMPC) uses the third-order PNLSS model of Eq. 3.89 while the second LEMPC (which

will be referred to as the first-principles LEMPC) uses the dynamic model of Eq. 3.10. Both LEM-

PCs define the stability region using ρ̂e = 285; the first-principles LEMPC does not require mode

2 operation, though the third-order empirical LEMPC requires both mode 1 and mode 2 opera-

tion. As in the example presented above, these LEMPCs use the cost function of Eq. 3.83, the

input constraints of Eq. 3.14 and Eq. 3.84, an Explicit Euler integration step size of hc = 10−4 hr,

∆ = 0.01 hr, tp = 1 hr, and N = 10, and also terminate the optimization problem after 0.01 hr has

elapsed. The closed-loop state and input trajectories for one hour of operation for these two LEM-

PCs are presented in Fig. 3.13, with the state-space representation of these trajectories in Fig. 3.14.
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Figure 3.13: Closed-loop state and input trajectories for one operating period tp = 1 hr for the
CSTR model of Eq. 3.10 under the first-principles LEMPC (black line) and the third-order empir-
ical LEMPC (gray line) starting from CA(0) = 1.2 kmol/m3, T (0) = 438 K.

The trajectories in Fig. 3.13 show similar behavior to those in Fig. 3.6, with a notable dif-
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Figure 3.14: Closed-loop state trajectories in state-space for one operating period tp = 1 hr for
the CSTR model of Eq. 3.10 under the first-principles LEMPC (solid line) and the third-order
empirical LEMPC (dashed-dotted line) starting from CA(0) = 1.2 kmol/m3, T (0) = 438 K.

ference being that the temperature is able to reach a higher value during the period of time from

approximately t = 0.1 to 0.8 hr in the third-order case of Fig. 3.13 due to the different stability re-

gion calculated for the more accurate third-order model. In addition, the stability region difference

causes both the third-order empirical and first-principles LEMPCs to produce a drop in reactor

temperature at the end of the one hour operating period where the material constraints come in to

play, whereas the temperatures increase at the end of this period for the second-order case.

A ten-hour simulation was also conducted for the third-order empirical LEMPC, and the result-

ing state and input trajectories are shown in Figs. 3.15-3.18. The average value of the economic

cost index in one operating period throughout this ten-hour simulation was 16.26, which is 17%

greater than steady-state operation (for which the average economic cost index for one operating

period is 13.88). This is a greater performance enhancement over steady-state operation than was

attained with the second-order empirical LEMPC of the previous section.

To facilitate a comparison between the third-order empirical and first-principles LEMPCs from

this section with the second-order empirical and first-principles LEMPCs from the previous sec-

tion, we will identify the first-principles LEMPC from the previous section as the “First-Principles
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Figure 3.15: Trajectory of the CSTR concentration over ten hours for the CSTR model of Eq. 3.10
under the third-order empirical LEMPC.
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Figure 3.16: Trajectory of the CSTR temperature over ten hours for the CSTR model of Eq. 3.10
under the third-order empirical LEMPC.
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Figure 3.17: Trajectory of the feed concentration input to the CSTR over ten hours for the CSTR
model of Eq. 3.10 under the third-order empirical LEMPC.
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Figure 3.18: Trajectory of the heat input to the CSTR over ten hours for the CSTR model of
Eq. 3.10 under the third-order empirical LEMPC.

1” LEMPC and the first-principles LEMPC from this section as the “First-Principles 2” LEMPC.

The average economic cost index of Eq. 3.88 over one hour of operation and the total computa-

tion time for one hour of operation are shown in Table 3.2 for the empirical and first-principles

models of this section and of the previous section. It is notable that the average economic cost

index for the third-order empirical LEMPC and the First-Principles 2 LEMPC are higher than

for the two LEMPCs of the previous section due to the different stability region chosen for the

more accurate third-order empirical model. It is also notable that the performance gap between

the third-order empirical LEMPC and the First-Principles 2 LEMPC is less than that between the

second-order empirical LEMPC and the First-Principles 1 LEMPC since the third-order empirical

model more accurately captures the dynamics of the first-principles model (the performance of the

First-Principles 2 LEMPC is only 0.09% higher than that of the third-order empirical LEMPC,

while the performance of the First-Principles 1 LEMPC was 0.3% higher). It would be expected,

however, that the computation time would increase as the polynomial approximation of the process

dynamics contains more terms to evaluate; Table 3.2 that the total computation time for the third-

order empirical LEMPC for one operating period is 116% greater than that of the second-order

empirical LEMPC.
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Table 3.2: Comparison of average economic cost (Je) and total computation time for one period of
operation (1 hr) using various LEMPCs.

Model Je Computation Time (sec)
Second-Order Empirical 16.1227 30.108
Third-Order Empirical 16.7569 65.156
First-Principles 1 16.1626 206.317
First-Principles 2 16.7712 201.428

3.6 Conclusions

In this chapter, a nonlinear system identification technique was developed for general nonlinear

systems with affine inputs using a polynomial nonlinear state-space (PNLSS) model with addi-

tional constraints on the numerical stability of the identified model so that the identification pro-

cess would produce empirical models that could be numerically integrated with explicit methods

without using a very small integration step size. The motivation for this is that such models have

an advantage in model predictive control applications, in contrast to the models identified with

standard techniques that may require a step size too small for real-time use. This chapter demon-

strates the benefits of the proposed system identification method in model predictive control by

developing the formulation of an LEMPC scheme that uses an empirical model derived from the

PNLSS method accounting for model well-conditioning to predict the process dynamics. A sta-

bility analysis of the closed-loop system under this controller provided sufficient conditions such

that closed-loop stability in the sense of boundedness of the closed-loop state in a compact set

is established. A chemical process example demonstrated that incorporating the well-conditioned

empirical model in place of a first-principles model in LEMPC has significant computational ad-

vantages such that the LEMPC with the empirical model can be used for real-time control, with

minimal reduction in profit compared to using the first-principles model.
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Chapter 4

Error-Triggered On-line Model

Identification for Model-Based Feedback

Control

4.1 Introduction

The operational excellence and energy management of chemical and petrochemical processes rely

on finding industrial solutions for the global energy demand, which led engineers to develop

technologies that promote optimal process operation. To achieve improvements in process con-

trol, model-based control strategies, such as Lyapunov-based control and model predictive con-

trol (MPC), have been introduced. These types of controllers can improve process operation and

thus may increase profit. A fairly recent model-based control strategy termed economic model

predictive control (EMPC), for example, performs dynamic economic optimization incorporating

predictions of future process states and state or output feedback to establish optimal time-varying

operation under constraints.14, 20, 22, 49 The potential of model-based control strategies to improve

process efficiency and to obtain desired closed-loop response characteristics makes these strategies

desirable for use in industry.
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A dynamic process model is required for any process for which model-based control is pro-

posed and such models can be established through first-principles or empirical modeling.79 First-

principles models mathematically describe observed phenomena; the development of such models

is difficult for processes that are complex and/or poorly understood. Numerous research efforts

have been dedicated to the development of highly reliable model identification methods that re-

quire only input and output data to develop linear and nonlinear empirical models that can be used

when first-principles models are undeveloped or impractical for on-line process control computa-

tions.1, 76, 79

A well-known class of empirical models are those designed using subspace model identification

(SMI) methods, which are state-space model identification techniques for multiple-input multiple-

output (MIMO) systems.16, 43, 44, 56, 76 SMI methods are non-iterative robust methods that take into

account multivariable interactions and result in highly reliable models.39, 76 Linear subspace iden-

tification algorithms include the Canonical Variate Algorithm (CVA),59 the multivariable output

error state-space (MOESP) algorithm,43, 44 and numerical algorithms for subspace state-space sys-

tem identification (N4SID).39 These methods have been successful in industrial applications and

they result in numerically stable models.1, 16, 29, 43 SMI methods have also been considered for use

in model predictive control (MPC) and EMPC.48, 56, 89 Recursive subspace identification, in which

the identified model is updated in order to correct for disturbances and nonlinearities, has also

been an active area of research.80 Most of this research has focused on the mathematical analysis

of the methods used to update the identified models, including recursive least-squares, least mean

squares, and recursively updating the singular value decomposition.80–82 However, such methods

have not focused on determining an approach for triggering the re-identification of a model when

necessary.

In this chapter, an error-triggered on-line model identification approach is introduced for model-

based control strategies. The re-identification of the model is conducted on-line to reduce plant-

model mismatch that occurs very often in the chemical industry due to various reasons such as

significant disturbances, catalyst deactivation in reactors, and upsets in feed streams, to name a
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few. Also, the on-line model identification method can be used to update an empirical model when

significant plant-model mismatch is detected because the region of operation shifts and the current

model no longer captures the nonlinear dynamics. A moving horizon error detector monitors the

prediction error between the states predicted by the empirical model and the measured states of the

process. When the error exceeds a pre-specified threshold, the detector triggers an on-line model

re-identification which is performed using the most recently generated input/output data. The ap-

proach is applied in the context of Lyapunov-based economic model predictive control (LEMPC)

for nonlinear process systems through two chemical process examples. The first example demon-

strates the ability of the proposed approach to improve the accuracy of the predicted states when

significant plant-model mismatch occurs due to variations in the plant (catalyst deactivation). In

the second example, the operating region is expanded gradually to allow the process to operate

in a larger region for improved profit, and the proposed approach improves the accuracy of states

predicted by the LEMPC over a larger region of state-space.

4.2 Preliminaries

4.2.1 Notation

The symbol xT is used to denote the transpose of the vector x. The operator | · | designates the

2-norm of a vector. A continuous function α : [0,a)→ [0,∞) is said to belong to class K if it is

strictly increasing and equal to zero only when evaluated at zero. The symbol Ωρ is used to denote

a level set of a sufficiently smooth scalar function V (x) (Ωρ := {x ∈ Rn : V (x) ≤ ρ}). A square

diagonal matrix is designated as diag(v) where the diagonal elements equal the components of the

vector v. The symbol ∆ > 0 denotes the sampling period. The notation S(∆) signifies the set of

piecewise-constant vector functions with period ∆.
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4.2.2 Class of Systems

The class of nonlinear systems considered in this chapter is of the following form:

dx(t)
dt

= f (x(t),u(t),w(t)) (4.1)

where x ∈ Rn, u ∈ Rm, and w ∈ Rl are the system state vector, the manipulated input vector, and

the disturbance vector respectively. Physical limitations on the available control energy set by

actuator constraints are considered by restricting the control actions to the convex set U := {u ∈

Rm : umin
i ≤ ui ≤ umax

i , i = 1, . . . ,m}. We consider a bounded disturbance vector in this chapter

(i.e., w ∈W := {w : |w(t)| ≤ θ ∀ t}). Measurements of the entire state vector x(tk) are assumed

to be available at each sampling time tk = k∆, k = 0,1, . . ..

We restrict our discussion to the class of stabilizable nonlinear systems for which there exists

a controller h(x) ∈U that can render the origin of the nominal (w(t) ≡ 0) closed-loop system of

Eq. 4.1 asymptotically stable in the sense that there exists a sufficiently smooth Lyapunov function

V : Rn→ R+ that satisfies the following inequalities:30, 111

α1(|x|)≤V (x)≤ α2(|x|), (4.2a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|), (4.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (4.2c)

for all x in an open neighborhood D ⊆ Rn that includes the origin and α j(·), j = 1, 2, 3, 4,

are class K functions. Various stabilizing controllers that take into account input constraints

have been developed for several classes of nonlinear systems.10, 12, 27 The stability region of the

closed-loop system is taken to be a level set Ωρ ⊂ D where the time derivative of the Lyapunov

function is strictly negative ((dV/dt) < 0). In addition, the origin of the system of Eq. 4.1 is

rendered practically stable31 when the controller h(x) is applied in a sample-and-hold fashion for a
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sufficiently small sampling period. The function f is assumed to be locally Lipschitz on Ωρ×U×

W and the origin is taken to be an equilibrium of the unforced system of Eq. 4.1 (i.e., f (0,0,0)= 0).

The proposed on-line model identification approach develops linear empirical models to predict

the evolution of the state of the system of Eq. 4.1. Although the method discussed in this chapter

extends to a wide range of linear empirical models such as input/output models, we will demon-

strate the scheme where the empirical models obtained on-line are state-space linear time-invariant

(LTI) models of the form:
dx(t)

dt
= Aix(t)+Biu(t) (4.3)

where Ai and Bi are constant matrices of appropriate dimensions corresponding to the i− th model

identification performed (i = 1, . . . , M̃).

We assume that a set of stabilizing controllers hL1(x), hL2(x), . . ., hLM̃(x) designed based on

the empirical models exists such that each controller renders the origin of the closed-loop system

of Eq. 4.1 asymptotically stable and yields a sufficiently smooth Lyapunov function V̂ : Rn→ R+

with the following properties:111

α̂1(|x|)≤ V̂ (x)≤ α̂2(|x|), (4.4a)

∂V̂ (x)
∂x

f (x,hLi(x),0)≤−α̂3i(|x|), i = 1, . . . , M̃ (4.4b)∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣≤ α̂4(|x|) (4.4c)

for all x ∈ DLi ⊆ Rn where DLi is an open neighborhood that includes the origin and the functions

α̂ j(·), j = 1, 2, 4, and α̂3i , i = 1, . . . , M̃, are class K functions. The system of Eq. 4.1 under the

controller hLi(x) has the stability region Ωρ̂i ⊂ DLi, i = 1, . . . , M̃.

4.2.3 Lyapunov-Based Economic Model Predictive Control

The model-based controller that will be used in the chemical process examples presented in this

chapter is Lyapunov-based economic model predictive control (LEMPC).20 LEMPC uses a reced-
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ing horizon control strategy that minimizes a cost function while incorporating stability constraints

based on the explicit stabilizing controller h(x) in its design. The formulation of LEMPC is:

min
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (4.5a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (4.5b)

x̃(tk) = x(tk) (4.5c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (4.5d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρe (4.5e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)

≤ ∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0)

if x(tk) /∈Ωρe (4.5f)

where the optimization variable is the control input trajectory over the prediction horizon N∆.

LEMPC uses the process dynamic model (Eq. 4.5b) to predict the state trajectory x̃(t) over time

starting from the initial condition in Eq. 4.5c which is obtained from the state measurement at time

tk. The LEMPC design takes into account constraints on the manipulated inputs in Eq. 4.5d. The

stage cost Le (Eq. 4.5a) is formulated to represent the process economics.

Based on the state measurement of Eq. 4.5c, either the Mode 1 (Eq. 4.5e) or the Mode 2

(Eq. 4.5f) stability constraint is active. In Mode 1, time-varying operation is promoted to maximize

profit while maintaining the state in a region Ωρe ⊂Ωρ chosen to make Ωρ invariant in the presence

of disturbances. If the measured process state is outside of Ωρe , Mode 2 is activated to compute

control actions that decrease the Lyapunov function value and force the state back into Ωρe . The

solution of the LEMPC optimization problem is denoted as u∗(t|tk), t ∈ [tk, tk+N), but only u∗(tk|tk)

is implemented at each sampling time.
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4.2.4 Lyapunov-Based Economic Model Predictive Control with Empirical

Models

The plant model of Eq. 4.5b may be unavailable, in which case it can be replaced by an empirical

model. In this chapter, we will replace the nonlinear plant model of Eq. 4.5b with the i− th linear

empirical model, i = 1, . . . , M̃ (which is the model last identified by the error-triggered on-line

model identification procedure prior to the sampling time tk). The empirical model is also used

to design hLi(x) and V̂ (x) for the Lyapunov-based constraints in Eq. 4.5. The level set Ωρ̂ei ⊂ Ωρ̂i

that prompts the switch between Mode 1 and Mode 2 is chosen such that the controller maintains

operation of the process of Eq. 4.1 within Ωρ̂i in the presence of bounded disturbances. The

formulation of LEMPC using the i− th linear empirical model is:48

min
u∈S(∆)

∫ tk+N

tk
Le(x̂(τ),u(τ)) dτ (4.6a)

s.t. ˙̂x(t) = Aix̂(t)+Biu(t) (4.6b)

x̂(tk) = x(tk) (4.6c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (4.6d)

V̂ (x̂(t))≤ ρ̂ei, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρ̂ei, (4.6e)

∂V̂ (x(tk))
∂x

(Aix(tk)+Biu(tk))

≤ ∂V̂ (x(tk))
∂x

(Aix(tk)+BihLi(x(tk)))

if x(tk) /∈Ωρ̂ei (4.6f)

where the notation follows that in Eq. 4.5 except that x̂(t) is the predicted state of the system using

the linear empirical model (Eq. 4.6b), starting from a measurement of the actual process state

(Eq. 4.6c) to predict the evolution of the system of Eq. 4.1.

Remark 5 In the formulation of Eq. 4.6, V̂ is not updated when the model of Eq. 4.6b is updated.

103



Though it may be replaced with V̂i, this is not required if the stability region of an updated model

can be found to be a level set of the same Lyapunov function as was used for the prior model.

Remark 6 A key feature of the LEMPCs in Eqs. 4.5 and 4.6 is that they may not drive the process

to a steady-state, but rather operate it in a time-varying fashion within a stability region, when

the cost function does not have its minimum at a steady-state. When such dynamic operation is

achieved, the time-varying nature of the input trajectories generated using LEMPC can result in

persistent excitation of the process states, which makes the inputs ideal for on-line model identi-

fication. The chemical process examples in this chapter demonstrate the time-varying nature of

inputs that may be calculated by an LEMPC.

4.3 Error-Triggered On-Line Model Identification

This section discusses the proposed error-triggered on-line model identification method.

4.3.1 Error-Triggering Mechanism for On-Line Model Identification

In this section, we describe an error-triggering mechanism that can trigger on-line updates of the

model utilized in the design and implementation of a model-based controller. A major advantage

of this mechanism is that it can prevent constant updating of the process model, which may be

computationally expensive and result in frequent changes to the control law that are undesirable.

It also prevents the use of an inaccurate model when there is significant plant-model mismatch.

In the proposed method, a moving horizon error detector quantifies the accuracy of an empirical

model by calculating the following moving horizon error metric ed at times tk:

ed(tk) =
M

∑
r=0

n

∑
j=1

|xp, j(tk−r)− x j(tk−r)|
|x j(tk−r)|

(4.7)

where M is the number of sampling periods before tk that contribute to the quantification of the

prediction error, x j(tk−r), r = 0, . . . , M, are the past measurements of the process states at sampling
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periods between tk−M and tk, and xp, j(tk−r), r = 0, . . . , M, are the predictions of the past states

of the system from a linear empirical model. A threshold value ed,T is set for the error metric,

and when the moving horizon error detector determines that this threshold has been exceeded,

it triggers model re-identification. There are several parameters that need to be defined to carry

out this error-triggered approach: the number of input and output data points Nd that must be

kept for model identification when it is triggered, the length M of the moving horizon used in

the calculation of ed , and the threshold ed,T of the error above which model re-identification is

triggered. To determine these parameters initially, the following strategy is proposed:

Step 1. When no initial linear model is available (e.g., through the linearization of a first-

principles model), the process is initially excited off-line in open-loop using long sequences of

standard input types (e.g., impulse or step inputs) to excite the important dynamics. The cor-

responding output data is collected. System identification is carried out on the (open-loop) in-

put/output data using standard techniques (e.g., determination of a large order model followed by

model order reduction76) to determine an i = 1 empirical model that captures the dominant process

dynamics. The number of input/output data points Nd that need to be stored for a possible future

system identification can be set to the number of input/output data points required to identify the

i = 1 empirical model.39, 76

Step 2. The value of M to be used in the calculation of ed must be long enough such that

disturbances common during normal operation do not significantly affect ed (which could lead to

unnecessary error-triggering) but are smoothed out. However, M also should not be longer than

necessary because this would require unnecessary data storage and processing. One method for

determining M is by calculating the value of ed(tk), tk > tM, at every sampling period for a set

of input/output data collected during normal process operation (in closed-loop under the model-

based controller) in the region of operation for which the i = 1 empirical model was developed and

validated. This calculation is then repeated for various values of M. The minimum and maximum

values of ed for a given value of M may be significantly different if M is small, since then any

disturbance or measurement noise within the moving horizon contributes significantly to the value

105



of ed . As M is increased, however, the effect of disturbances and measurement noise will become

less significant. At some point, it would be expected that the minimum and maximum values of ed

will not change much when M is further increased; in this case, the smallest value of M for which

the minimum and maximum values of ed seem to have reached their approximate final value could

be chosen to be used in Eq. 4.7. From this, it is seen that the statistical properties of w(t) will affect

the value of M for a given process.

Step 3. The value of ed,T is determined off-line, based on the chosen value of M, such that mea-

surement noise, small constant disturbances, and time-varying disturbances that cause reasonably

accurate predictions with the current model do not trigger model re-identification. One method for

achieving this is by analyzing the statistical properties of ed for a set of closed-loop input/output

data corresponding to normal process operation in the region within which the linear empirical

model was developed and validated. For example, the maximum value of ed for such data could be

determined with the selected value of M, and then the threshold could be chosen to be a reasonable

percentage greater than the maximum value of ed observed for this normal operating data (which

should include the disturbances and measurement noise that regularly affect the system). Other

statistical measures (e.g., choosing the value of ed,T to be several standard deviations above its

mean value from the normal operating data) could also be used, and the appropriate measure to use

will depend on the system analyzed. It is noted that even if there were no disturbances or measure-

ment noise, ed would be expected to have a value because the linear empirical model identified is

unlikely to fully capture the nonlinear dynamics of a given process.

The lack of a formula for obtaining Nd , M, and ed,T does not pose practical limitations because,

as will be discussed further in later sections, the on-line, data-based methodology employed allows

for constant monitoring of the process performance under a controller based on the current linear

empirical model such that “poor” choices of the parameters can be detected and the parameters

adjusted.

Remark 7 For consistency with Step 1 as presented above, in the remainder of the manuscript we

will assume that no first-principles process model is available and we will call the linear models
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developed before the initiation of error-triggered on-line model identification the initial linear em-

pirical models. However, it is not required that these models be empirical. The initial linear model

obtained in Step 1 of the above procedure may be obtained using a linearization of a nonlinear

first-principles model if such a model is available. In this case, the utility of on-line updating

of the linear model using the error-triggered model identification method is that it prevents the

need for using a nonlinear model and may aid in capturing the process dynamics better than a

first-principles model as the process dynamics change in time.

Remark 8 The value of xp, j(tk−r) may be calculated in multiple ways. For example, one method

is to calculate each value of xp, j(tk−r) by numerically integrating the linear empirical model of

Eq. 4.3, starting from the measured state x(tk−r−1) at the previous sampling time, and using the

input applied for t ∈ [tk−r−1, tk−r) in the integration. Another method is to determine the value

of each xp, j(tk−r) by integrating the linear model, starting from the measurement of the state

x(tk−M−1) and applying the sequence of control actions implemented on the process throughout

time. If more than one model has been used between tk−M−1 and tk, the applicable model should

be used for the integration corresponding to its period of use.

Remark 9 Practically, when the model-based controller is updated due to the identification of a

new model, it may be necessary to include additional precautions in the control system design. For

example, a constraint or saturation could be imposed when the controller is initially updated that

prevents the inputs calculated from the new controller from differing more than a certain amount

from the control actions calculated most recently by the prior controller. If this is used, the closed-

loop stability properties of the resulting controller should be considered.

Remark 10 In model-based controllers such as standard tracking model predictive control (MPC),

the replacement of a prior linear empirical model in the MPC with a newer model obtained from

the error-triggered on-line model identification strategy may be sufficient for keeping the control

law up-to-date. Some model-based control laws may require further computation to determine the

new control law after an updated linear empirical model is developed (e.g., Sontag’s control law
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will need to be re-calculated based on the new model27). Other control laws may have additional

aspects that require them to be further adjusted as the linear empirical models are updated. For

example, LEMPC may require that the process model be updated and also that other components

of the control law in Eq. 4.6 be updated (e.g., hLi).

4.3.2 Implementation Strategy for Error-Triggered On-Line Model Identi-

fication

Once the values of Nd , M and ed,T are set according to the methodology of the prior section, the

proposed error-triggered on-line model identification strategy can be executed with the following

implementation strategy:

Step 1. An initial linear empirical model of the plant (A1 and B1) is developed (this becomes

the “current model” for the process). This model is used to design the model-based controller.

Step 2. The process is operated under the model-based controller designed based on the current

linear empirical model, and input/output data (up to Nd values of each) are collected and stored

for possible future model identification. The moving horizon error detector is initiated at tM to

calculate ed(tk).

Step 3. As the current linear model begins to fail to describe the process dynamics (due to,

for example, variations in the plant or changes in the region of operation), ed(tk) will increase and

when ed(tk) exceeds ed,T , the most recent set of Nd values of input and output data (collected up to

time tk) are used to identify a new model on-line to become the current model for use in updating

the model-based controller formulation.

Step 4. Steps 2-3 are repeated as process operation continues.
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4.4 Applications of Error-Triggered On-Line Model Identifica-

tion

In this section, we present two applications of the error-triggered on-line model identification

methodology (Steps 1-4 of the prior section) to demonstrate the flexibility of the approach and

its utility in a variety of circumstances.

4.4.1 Application of Error-Triggered On-Line Model Identification to Plant

Variations

The first application to be discussed is that in which the plant model changes in time. This may

occur, for example, due to catalyst deactivation that affects the reaction rates in the process, due to

heat exchanger fouling that affects the rate of heat transfer, or due to changes in the valve dynamics

with time as dynamic valve nonlinearities such as stiction worsen in time due to valve degradation.

For this application, it is possible that as the plant model changes in time, the values of Nd , M, and

ed,T originally determined may no longer be the appropriate values. For example, Nd may need to

be increased to obtain a more accurate model, and the combination of M and ed,T may cause the

linear empirical model to be updated more or less frequently than necessary. This can be handled

on-line by varying the parameters in small increments until better performance is obtained. For

example, Nd may be lengthened until the linear empirical models are shown to better capture the

nonlinear dynamics in the current region of state-space. M and ed,T may be increased if the on-line

model updates are triggered too frequently even when the linear empirical models being identified

do not result in poor closed-loop performance, or they may be decreased if the model updates are

not triggered frequently enough and process and controller performance degrades. Alternatively,

experiments can be performed to determine new values of these parameters.

Remark 11 If the values of Nd , M, and ed,T are picked appropriately such that the model-based

controller used at any given time is based on a reasonably accurate empirical model, this controller
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may often be stabilizing if the computation time required by the moving horizon error detector and

for model updates is short compared to the process dynamics (this prevents the process state from

changing significantly before errors are detected and the model is updated). To develop a rigorous

proof of closed-loop stability of a process under the error-triggered on-line model identification

procedure as plant variations occur in time, however, a number of mathematical assumptions

would need to be made that are specific to each model-based controller type. Proofs of closed-loop

stability of processes under various model-based controllers and feasibility of such controllers as

applicable are addressed in many works (e.g.,20, 48, 83, 84, 111 and the references therein), and similar

methods could be investigated for nonlinear processes under model-based controllers designed

based on linear empirical models developed from the error-based triggering approach. An example

of an assumption that may be considered in the proofs of feasibility and closed-loop stability of

a process under the LEMPC of Eq. 4.6 is that the closed-loop state is within both Ωρ̂i−1 and

Ωρ̂i at the time that the model used in the design of the LEMPC of Eq. 4.6 changes from the

(i−1)− th to the i− th linear empirical model. The primary purpose of the present chapter is not

for providing rigorous closed-loop stability proofs (though the more accurate empirical models

may aid closed-loop system stabilizability), but is for providing more accurate models for model-

based control strategies so that more desirable control actions (e.g., more economically beneficial

or more capable of meeting process constraints) can be calculated.

Application of Error-Triggered On-Line Model Identification to Plant Variations: Applica-

tion to a Chemical Process Example

In this section, we demonstrate the proposed error-triggered on-line model identification procedure

for the control of a benchmark chemical reactor for which plant model changes occur, specifically

catalyst deactivation. The catalytic oxidation of ethylene (C2H4) in a non-isothermal continuous

stirred tank reactor (CSTR) is considered. The ethylene is oxidized with air to produce the desired

ethylene oxide (C2H4O) product. Two combustion reactions that consume ethylene oxide and
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ethylene occur concurrently in the reactor as presented in the following chemical reactions:

C2H4 +
1
2

O2
R1→ C2H4O (R1)

C2H4 +3O2
R2→ 2CO2 +2H2O (R2)

C2H4O+
5
2

O2
R3→ 2CO2 +2H2O (R3)

The rates of the reactions R1, R2, and R3 are given by the following rate laws:85

R1 = k1 exp
(
−E1

RT

)
P0.5

E (4.8a)

R2 = k2 exp
(
−E2

RT

)
P0.25

E (4.8b)

R3 = k3 exp
(
−E3

RT

)
P0.5

EO (4.8c)

where the pre-exponential factors are k1, k2, and k3 and the activation energies are E1, E2, and E3.

T is the temperature and R is the gas constant. PE and PEO are the partial pressures of ethylene (PE)

and of ethylene oxide (PEO) and it is assumed that the gas mixture in the reactor is an ideal gas, and

thus, the partial pressures can be written in terms of the molar concentrations. The dimensionless

first-principles dynamic model which is derived from mass and energy balances for this process

from86 is of the following form:

dx1(t)
dt

= u1(1− x1x4) (4.9a)

dx2(t)
dt

= u1(u2− x2x4)−A1e
γ1
x4 (x2x4)

0.5−A2e
γ2
x4 (x2x4)

0.25 (4.9b)

dx3(t)
dt

=−u1x3x4 +A1e
γ1
x4 (x2x4)

0.5−A3e
γ3
x4 (x3x4)

0.5 (4.9c)

dx4(t)
dt

=
u1

x1
(1− x4)+

B1

x1
e

γ1
x4 (x2x4)

0.5 +
B2

x1
e

γ2
x4 (x2x4)

0.25 +
B3

x1
e

γ3
x4 (x3x4)

0.5− B4

x1
(x4−u3)

where the dimensionless variables x1, x2, x3, and x4 correspond to the gas density in the reactor,

ethylene concentration, ethylene oxide concentration, and reactor temperature, respectively. The
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manipulated inputs u1 u2, and u3 are the dimensionless feed volumetric flow rate, ethylene con-

centration of the reactor feed, and coolant temperature, respectively. The manipulated inputs are

bounded by physical limitations on actuators and hence, the inputs are constrained to belong to

the following convex sets: 0.0704 ≤ u1 ≤ 0.7042, 0.2465 ≤ u2 ≤ 2.4648, 0.6 ≤ u3 ≤ 1.1. The

values of the parameters of this model are presented in Table 4.1. The CSTR has an asymptot-

ically stable steady-state that occurs at xT
s = [x1s x2s x3s x4s] = [0.998 0.424 0.032 1.002] when

[u1s u2s u3s] = [0.35 0.5 1.0].

Table 4.1: Dimensionless Parameters of the Ethylene Oxidation CSTR.

A1 = 92.8 B2 = 10.39 γ2 =−7.12

A2 = 12.66 B3 = 2170.57 γ3 =−11.07

A3 = 2412.71 B4 = 7.02

B1 = 7.32 γ1 =−8.13

The CSTR is controlled by an LEMPC with the goal of feeding the ethylene to the reactor in a

manner that maximizes the average yield of ethylene oxide. The average yield of ethylene oxide,

which quantifies the amount of ethylene oxide produced compared to the amount of ethylene fed

to the reactor, over a time period from t0 to te, is given by:

Y (te) =

∫ te

t0
u1(τ)x3(τ)x4(τ) dτ∫ te

t0
u1(τ)u2(τ) dτ

(4.10)

where te is an integer multiple of the length t f of an operating period. Because the amount of

reactant material available is fixed, the time-averaged molar flow rate of ethylene that can be fed

to the reactor in an operating period is limited by the following constraint:

1
t f

∫ jt f

( j−1)t f

u1(τ)u2(τ) dτ = u1su2s = 0.175 (4.11)

where j is the operating period number ( j = 1,2, . . .). This constraint ensures that in each operating

period, the amount of ethylene fed to the reactor is the same as that which would have been fed
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under steady-state operation. Because the integral input constraint of Eq. 4.11 fixes the value of

the denominator in Eq. 4.10, the LEMPC seeks to maximize the following function:

∫ te

t0
Le(x,u) =

∫ te

t0
u1(τ)x3(τ)x4(τ)dτ (4.12)

By maximizing this objective, the ethylene oxide yield is maximized subject to the integral material

constraint that is enforced due to restrictions on the available feedstock.

The first-principles nonlinear process model in Eq. 4.9 is assumed to be unavailable from a con-

troller design point of view such that an empirical model must be obtained to formulate an LEMPC

that meets the above objective and constraints. To construct such an empirical model that captures

the dynamics within a region around the CSTR steady-state, a large number of input step changes

of varying magnitudes were applied to the CSTR from the steady-state and the corresponding out-

put data was collected. The ordinary multivariable output error state-space (MOESP)43 algorithm

was applied to this data to obtain the initial (i = 1) linear state-space empirical model for the

CSTR of Eq. 4.9. This model was validated using a wide range of step, impulse, and sinusoidal

input responses and is expressed by the following matrices:

A1 =



−0.349 0.00051 0.00825 −0.349

−0.00488 −0.374 0.0374 −0.369

0.00109 0.0213 −0.452 0.0653

−0.0078 0.0259 0.0204 −7.24



B1 =



−0.00011 −0.000149 −0.0239

0.0757 0.349 −0.0194

−0.0315 0.000208 0.00426

−0.0173 −0.00264 6.529



(4.13)

Since it is assumed that the only model available for controller design is the empirical model,

the model of Eq. 4.13 is used to design the Lyapunov-based controller used in LEMPC. The con-
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troller can be represented as a vector with three components: hT
L1(x) = [hL1,1(x) hL1,2(x) hL1,3(x)],

where hL1(xs) = 0. The control laws hL1,1(x) and hL1,2(x) were set to the steady-state values of

u1 and u2 to meet the material constraint of Eq. 4.11. The control law hL1,3(x) was designed us-

ing the standard linear quadratic regulator (LQR) with a quadratic objective defined using the A1

matrix and the third column of the B1 matrix (Eq. 4.13) and taking both the Q and R weighting

matrices to be the identity matrix. This results in the control law u3 = hL1,3(x) =−K(x−xs)+u3s,

with K equal to [-0.287 -0.276 0.023 0.405]. A quadratic Lyapunov function of the form V̂ (x) =

(x− xs)
T P(x− xs) was utilized to characterize the stability region of the closed-loop system of

Eq. 4.9 under the stabilizing controller hL1 with the positive definite matrix P defined as P=diag[20

30 40 10]. Extensive simulations of the closed-loop system under the Lyapunov-based controller

hL1(x) were conducted to define the level set Ωρ̂e1 with ρ̂e1 = 87.4. This is a region within which

the nonlinear dynamics of Eq. 4.9 are well-captured by the linear model of Eq. 4.13.

Though this chemical process example will be used to illustrate the error-triggered on-line

model identification procedure in the presence of plant variations, we will first demonstrate that

the initial linear empirical model performs well in the time period before any catalyst deactivation

(plant variation) occurs. To demonstrate this, two LEMPC schemes, one of the form of Eq. 4.6

and the other of the form of Eq. 4.5, both with the additional material constraint of Eq. 4.11, were

designed to compare closed-loop behavior. Both used the cost function of Eq. 4.12, the upper and

lower bounds on u1, u2, and u3 described above, and the same Lyapunov-based controller and sta-

bility region. The process model utilized in the first LEMPC was the empirical model of Eq. 4.13,

while the second LEMPC utilized the first-principles model of Eq. 4.9. In all simulations for this

example, the LEMPC designs had prediction horizons of N = 10, sampling periods of ∆ = 0.1,

and operating periods of 100 sampling periods (t f = 10). The interior point solver IPOPT119 was

used to solve the LEMPC optimization problems. The empirical LEMPC and the first-principles

LEMPC were both applied to the CSTR model of Eq. 4.9. The reactor was initialized off steady-

state at xT
I = [x1I x2I x3I x4I] = [0.997 1.264 0.209 1.004] and closed-loop simulations over ten op-

erating periods for each case were completed. The explicit Euler numerical integration method was
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used in all simulations for this example with an integration step size of h = 10−4. The closed-loop

trajectories for the CSTR under both LEMPC schemes are shown in Figs. 4.1-4.2 which demon-

strate very similar behavior. The average yield of the first-principles LEMPC over ten operating

periods was 8.98, compared to 8.93 for the empirical LEMPC. The agreement between the tra-

jectories and yields of the process under the first-principles and empirical LEMPCs demonstrates

that the initial linear empirical model is capable of adequately describing the process behavior be-

fore plant variation occurs. It is noted that the periodic nature of the trajectories is consistent with

prior literature for this example (e.g.,86 and53) which demonstrated that time-varying operation can

be economically beneficial for the ethylene oxide production process, and also other literature on

optimal periodic operation (e.g.,87 and88).
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Figure 4.1: Input profiles of the closed-loop CSTR under the LEMPC using the first-
principles model (solid black trajectories) and the LEMPC using the empirical model in
Eq. 4.13 (dotted gray trajectories) for 10 operating periods starting from xT

I = [x1I x2I x3I x4I] =
[0.997 1.264 0.209 1.004].

After the 10 operating periods, plant variations begin to occur (a reduction in the reaction

pre-exponential factor is assumed to occur due to catalyst deactivation). Specifically, the pre-

exponential factor values for reactions R1, R2, and R3 are decreased by 40 percent gradually
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Figure 4.2: State profiles of the closed-loop CSTR under the LEMPC using the first-
principles model (solid black trajectories) and the LEMPC using the empirical model in
Eq. 4.13 (dotted gray trajectories) for 10 operating periods starting from xT

I = [x1I x2I x3I x4I] =
[0.997 1.264 0.209 1.004].

throughout 9 operating periods. The pre-exponential factors are decreased by 10 percent of their

original values at the beginning of the eleventh and twelfth operating periods, reaching the values

0.8k1,0.8k2, and 0.8k3. The pre-exponential factors then stay at those values for three operating

periods and are subsequently decreased by 5 percent of their original values at the beginning of the

fifteenth and sixteenth operating periods to 0.7k1,0.7k2, and 0.7k3. After that, the pre-exponential

factor values stay at 0.7k1,0.7k2, and 0.7k3 for three operating periods and then are decreased by 5

percent of their original values at the beginning of the nineteenth and twentieth operating periods,

reaching the final values 0.6k1,0.6k2, and 0.6k3.

To monitor the prediction error for the linear empirical model when catalyst deactivation oc-

curs, a moving horizon error detector was initiated early in process operation (after M prior in-

put/output data points were available) to calculate the value of ed at each sampling time to deter-

mine when it is necessary to trigger re-identification of the empirical process model. Simulations of

the CSTR before catalyst deactivation occurs suggest that significant plant-model mismatch under

the original linear empirical model is indicated when the value of ed exceeds 2.5 (i.e., ed,T = 2.5)

and thus, this value was chosen as the threshold to trigger model re-identification. When on-line
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model identification is triggered, input/output data from the previous 200 sampling times (i.e.,

Nd = 200) is used to identify a new model. The moving horizon error detector calculates the

relative prediction error in the gas density in the reactor, ethylene concentration, ethylene oxide

concentration, and the reactor temperature throughout the past 40 sampling periods (i.e., M = 40)

and the current sampling time as follows:

ed(tk) =
40

∑
r=0

|xp,1(tk−r)− x1(tk−r)|
|x1(tk−r)|

+

|xp,2(tk−r)− x2(tk−r)|
|x2(tk−r)|

+
|xp,3(tk−r)− x3(tk−r)|

|x3(tk−r)|

+
|xp,4(tk−r)− x4(tk−r)|

|x4(tk−r)|

(4.14)

The first approach from Remark 8 was used to calculate each xp,i, i = 1,2,3,4, in Eq. 4.14 above.

Model re-identification was triggered four times by the moving horizon error detector through-

out the gradual decrease in the pre-exponential factors from k1,k2,k3 to 0.6k1,0.6k2,0.6k3, result-

ing in the identification of four models as follows:

A2 =



−0.341 −0.00281 0.00482 −0.347

−0.00481 −0.403 −0.223 −0.235

−0.00431 0.0265 −0.314 0.0220

0.111 −0.0137 0.424 −7.31



B2 =



−0.00073 −0.000851 −0.0243

0.0891 0.381 −0.0426

−0.0358 0.00983 0.0131

−0.00043 −0.00758 6.56



(4.15)
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A3 =



−0.369 0.00284 0.0665 −0.350

−0.174 −0.367 0.590 −0.383

−0.125 0.0212 −0.888 0.0774

−0.443 0.0613 −1.614 −7.27



B3 =



−0.00166 −0.000408 −0.0240

0.0378 0.318 −0.00252

−0.0205 0.00908 −0.00474

−0.0172 0.0126 6.517



(4.16)

A4 =



−0.354 0.00238 0.00646 −0.346

−0.191 −0.263 −0.812 −0.226

0.0737 0.0223 −0.0639 0.0202

−0.0539 −0.0172 0.616 −7.25



B4 =



−0.00762 −0.00367 −0.0272

−0.203 0.238 −0.118

0.0599 0.00373 0.00372

−0.00439 0.00381 6.516



(4.17)

A5 =



−0.345 0.0045 0.0147 −0.343

0.0416 −0.271 −0.830 −0.0905

−0.00380 −0.0106 −0.0335 −0.0239

0.0515 0.00891 0.683 −7.34



B5 =



0.00172 0.00154 −0.0333

0.1025 0.388 −0.377

−0.0346 −0.0194 0.124

−0.00951 −0.00052 6.548



(4.18)

All linear empirical models used in this example had their origin at xs. As the models were updated,

118



hLi,3, i = 2,3,4,5, was updated to be a new linear quadratic regulator, but V̂ was not changed in

the LEMPC because it was sufficient for identifying the stability region of the nonlinear process

under hLi. The same stability region was used for the nonlinear process under all hLi because for

the simulations performed, these controllers were stabilizing within this region.

Fig. 4.3 presents the decrease of the pre-exponential factor values with time and indicates the

four times at which the model re-identification was triggered (in all figures throughout the rest of

this example, the zero on the time axis corresponds to the time at which the pre-exponential factor

values first began to decrease). After the pre-exponential factor values reached their final values

at the beginning of the twentieth operating period, the process was simulated for three additional

operating periods, and no further model identification was triggered after the model update at the

end of the twentieth operating period. This indicates that the proposed approach was effective

at updating the empirical model of the process to account for variations in the plant, with each

empirical model giving low plant-model mismatch during the duration of its use. The figure also

shows that the error-triggering is successful at deciding the necessity of model updates, because

even though the pre-exponential factors did decrease at the beginning of the eleventh, fifteenth,

and nineteenth operating periods, no re-identification was required since the error did not exceed

the pre-specified threshold. In addition, Fig. 4.4 presents the values of ed with respect to time and

shows the rise of the ed values that triggered the model re-identification. At each time that ed(tk)

exceeded the value of 2.5 and the model was re-identified using the most recent input/output data,

the value of ed(tk) rapidly decreased. The input and state trajectories of the reactor process under

the LEMPC of Eq. 4.6 with the empirical models of Eq. 4.13 and Eqs. 4.15-4.18 throughout the

12 operating periods after the pre-exponential factor values first began to decrease are presented in

Figs. 4.5-4.6.

The on-line model identification not only decreases the plant-model mismatch, but also has

a significant impact on the process economic performance. This is shown in Table 4.2, which

presents the average yield and the maximum value of ed(tk) for the two operating periods after the

first on-line model re-identification (when the pre-exponential factors have the values 0.8k1,0.8k2,

119



0 20 40 60 80 100 120
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dimensionless Time

k
i(
t)
/
k
i(
0
)

Initial
model

Updating
model
due to
error

Updating
model
due to
error

Updating
model
due to
error

Updating
model
due to
error

Figure 4.3: Plot presenting the decrease in the pre-exponential factor values and the times at which
the model re-identification procedure was conducted over 12 operating periods (the zero on the
time axis corresponds to the time at which the pre-exponential factor values first began to decrease).
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Figure 4.4: Value of error metric ed using the detector of Eq. 4.14 and the integrated LEMPC design
with error-triggered on-line model identification at each sampling time (the zero on the time axis
corresponds to the time at which the pre-exponential factor values first began to decrease).

and 0.8k3) and also for the two operating periods after the final model identification (when the

pre-exponential factors have the values 0.6k1,0.6k2, and 0.6k3). The data is presented for three

approaches: the “1 Empirical Model” approach, in which the model is not re-identified and the

initial empirical model (A1 and B1) is used throughout the entirety of process operation, the “On-

line Model ID” approach, in which the proposed on-line model re-identification methodology is

applied, and the “Nonlinear Model” approach, in which the nonlinear model of Eq. 4.9 is used in

the LEMPC including the changes in the pre-exponential factor. This table shows that the use of on-

line model identification significantly improves the process yield compared to using one empirical

model throughout process operation, both when the pre-exponential factor changes slightly and,

even more, when it changes significantly. In addition, it shows that though no study was performed

to determine whether Nd , M, or ed,T should be updated as the process model changed in time due to

the catalyst deactivation, the use of the on-line model updates still provided meaningful economic
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Figure 4.5: Input profiles of the closed-loop CSTR under the LEMPC using the error-triggered
on-line model identification scheme starting from the final state reached in Fig. 4.2 (the zero on
the time axis corresponds to the time at which the pre-exponential factor values first began to
decrease).
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Figure 4.6: State profiles of the closed-loop CSTR under the LEMPC using the error-triggered
on-line model identification scheme starting from the final state reached in Fig. 4.2 (the zero on
the time axis corresponds to the time at which the pre-exponential factor values first began to
decrease).
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benefit.

Table 4.2: Relative prediction error and average yield for the CSTR under LEMPC.

After 1st on-line model ID At final conditions
Approach Y Max ed(tk) Y Max ed(tk)
1 Empirical Model 8.46 3.41 6.89 9.75
On-line Model ID 8.71 1.65 7.91 1.86
Nonlinear Model 8.80 - 8.02 -

4.4.2 Application of Error-Triggered On-Line Model Identification to Op-

erating Region Changes

A second application of the error-triggered on-line model identification strategy is for shifts in

the region of process operation such that the initial linear model does not capture the nonlinear

process dynamics as well as desirable after the shift. This may occur, for example, if the model

identified around a desired steady-state does not capture the nonlinear dynamics in the entire region

of state-space around this steady-state that is accessed by the process states in the presence of

disturbances. It may also occur if the initial linear model is identified for a certain steady-state

but it is desirable to switch the steady-state of process operation at a time t ′. In addition, it may

occur if a control strategy that promotes time-varying operation within a region of state-space for

economic reasons, such as LEMPC, is used and it is desirable to expand, shrink, or otherwise

adjust the operating region in time for economic or safety reasons. In each case, the steps of

the implementation strategy discussed in the section “Implementation Strategy for Error-Triggered

On-Line Model Identification” are followed, but the procedure may be re-initialized at Step 1 at

certain points during process operation or the operating region may be adjusted independently of

the linear empirical model during Step 2 (which will be discussed further below).

We will first address the case (Case 1) that the initial linear empirical model does not capture the

nonlinear process dynamics in the full region of state-space that is accessed by the process when

disturbances occur, and it is desired to track a given steady-state. Consider the case that the process
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is originally operated in a region of state-space around the initial steady-state, and the initial linear

empirical model captures the nonlinear process dynamics well in this region. Then, a disturbance

moves the process state away from the steady-state to a new region where the initial linear empirical

model does not capture the nonlinear process dynamics well. If the process is operated under the

error-triggered on-line model identification procedure, the increase in prediction error would be

expected to eventually trigger model re-identification. However, it may take some time for the

triggering to occur, or if it is triggered quickly, the model identified may not capture the nonlinear

dynamics as well as desirable if there is not yet sufficient input/output data in the new region of

operation (particularly if the disturbance moves the state away from its original operating region

quickly). To overcome such issues, multiple linear empirical models may be identified at a number

of locations throughout the region of state-space which the process states are expected to access

before initiating the error-triggered on-line model identification process. Then, when the error-

triggered on-line model identification process is initiated, the initial empirical model used in Step

1 of the implementation strategy can be taken to be that which was developed using process data

from the state-space region closest to the initial state-space point. This may lead to an initial linear

empirical model that better captures the nonlinear dynamics at the initial state-space location and

may lead to better model-based controller design. The monitoring and control system could also

re-initialize the implementation strategy at Step 1 when the process state moves away significantly

from the region where Step 1 was last implemented, with the initial linear empirical model used

in Step 1 as that developed from data in state-space closest to the current state-space point. As

the controller then drives the process state toward the desired steady-state, the error-triggering

procedure would allow more accurate models to be determined.

A second case (Case 2) in which error-triggered on-line model identification may be applied

to changes in the region of process operation is the case that it is desired to change the operating

steady-state. In this case, before initializing the error-triggered on-line model identification strat-

egy, it may be desirable to obtain initial linear empirical models with respect to both steady-states.

The error-triggered on-line model identification implementation strategy would be started from
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Step 1 at t = 0 with the linear empirical model around the first steady-state and would be re-started

from Step 1 at t ′ with the linear empirical model around the second steady-state.

The final case (Case 3) mentioned above for the application of error-triggered on-line model

identification to changes in the operating region is the case that the region of operation is adjusted

on-line for the process under LEMPC. As shown in Eq. 4.6, LEMPC searches for economically

optimal control actions that maintain the predicted state within the level set Ωρ̂ei , subject to the

other constraints. It may be desirable to expand, shrink, or change the size or orientation of the

level set on-line for a variety of reasons. It may be desirable to expand the level set because

the expansion of the level sets can allow the LEMPC to search for economically optimal control

actions throughout a larger region of state-space, and thus the controller may find a more profitable

manner of operating the process than if it could only search in a smaller region. Alternatively, it

may be desirable to shrink the level set to prevent the process from operating in as large a region

of state-space for safety reasons. It may also be desirable to adjust the size or orientation of the

level set on-line if the state of the closed-loop system under EMPC moves toward a boundary of

the initial level set to increase profit. Then, the adjustment of the size or orientation of the level

set may allow the state to move into areas beyond this boundary in which the profit can be further

increased for the closed-loop system.

The aforementioned level set adjustments can be implemented in Step 2 of the error-triggered

on-line model identification procedure by changing the level set of the linear empirical model used

in the LEMPC of Eq. 4.6 at a desired rate while the process is operated under the LEMPC with

an empirical model. These level set changes (accompanied by changes to the Lyapunov function

and Lyapunov-based controller when necessary, e.g., when the level set orientation is adjusted)

occur at the determined rate independently of model re-identifications, which occur only when

ed exceeds ed,T . The rate at which the level sets are changed should allow for the collection of

a sufficient amount of input/output data in the new state-space regions accessed during the level

set adjustment for the calculation of ed(tk) and for future possible model re-identification. This

rate can be set before initiation of the error-triggered on-line model identification procedure, or
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can be deduced on-line by trying different rates and seeing whether the process state begins to

traverse the new regions of state-space too quickly for collection of sufficient input/output data, or

too slowly for the desired economic or safety considerations. The level set changes continue until

the final desired level set is reached. The final desired level set should be one in which process

closed-loop stability can be maintained (e.g., for the case of expanding level sets, it cannot be

larger than the region within which closed-loop stability of the system of Eq. 4.1 is maintained

under the LEMPC with an empirical model) and which is feasible (i.e., a solution exists in this

region in which all process constraints can be met), but it also should be a level set that allows

profit to be appropriately maximized (e.g., for the case of expanding level sets, it should be as

large as possible since restrictions to the region of operation may reduce process profit compared

to that which could be obtained if there were less restrictions). Fig. 4.7 illustrates the concepts

presented specifically for the expansion of level sets. Because for this changing level set case, the

level set in Eqs. 4.6e-4.6f can change even when the i− th model is retained, the level set in these

equations will be denoted by Ωρ̂e,q in the remainder of the discussion of LEMPC with changing

level sets.
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Figure 4.7: Example of level set expansion from Ωρ̂e1 to Ωρ̂e2 and to Ωρ̂e3 .

It is notable that the use of the error-triggered on-line model identification procedure for model-

based control design with operating region changes provides significant practical advantages com-

pared to using multiple linear models identified a priori. The a priori models may indeed be used

for low-dimensional systems (i.e., processes whose state-space is of dimension two or three) for
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which assessing all areas throughout the region of operation in which new linear empirical models

should be identified a priori is computationally attractive (e.g., multiple linear empirical models

in the context of LEMPC has been investigated in89). However, as the dimension of the system

increases, it is very time-consuming computationally to search the region of operation to determine

all possible areas in which a new linear empirical model should be identified a priori. A benefit of

the proposed error-triggered approach is that it identifies models only in the regions of state-space

that are accessed by the process and there is no need to obtain large amounts of input-output data

in regions that the states do not actually access. This is a significant practical advantage of the pro-

posed method, particularly since many models used in the chemical industry have tens or hundreds

of states for which it would not be possible to a priori investigate the entire state-space to develop

multiple linear models. In addition, the multiple linear empirical models approach implicitly as-

sumes that the plant dynamics do not change in time so that any models identified a priori remain

valid throughout time. The error-triggered on-line model identification approach, however, can

handle changes in the plant dynamics in time (even concurrently with operating region changes).

However, part of the theoretical challenge of proving closed-loop stability of a nonlinear process

under the error-triggered on-line model identification method is that it is not known a priori when

the moving horizon error detector will trigger an on-line model identification or what new model

will be obtained in this case, though all models are known a priori in the multiple linear empirical

models case.

Remark 12 In Case 1, multiple initial empirical models were developed before initiating the on-

line model identification strategy, but all with their origin at the desired steady-state. However, it

is possible that if the state moves far from the desired steady-state, it may be difficult to identify an

empirical model with the origin at the desired steady-state that will be sufficiently accurate for use

in model-based control design. Thus, an alternative to developing multiple initial empirical models

with origins at the desired steady-state before initiating the on-line model identification strategy

is to develop multiple initial linear empirical models with their origins at state-space points that

are not the desired steady-state. Then, when the state is driven far from the operating steady-
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state, a path can be designed to drive the process state through a number of these intermediate

state-space points to the origin. Whenever one of the selected points in the path to the steady-

state is approached sufficiently closely, the error-triggered on-line model identification strategy

can be re-initiated at Step 1 using the initial linear empirical model corresponding to the next

desired steady-state in the path. Error-triggering is used to improve the models as the process

state transitions between the selected steady-states on its way to the desired operating steady-

state. A similar method could be used in Case 2 of this section to guide the state between two

steady-states if desired.

Remark 13 For the LEMPC with expanding level sets, or with level sets that change orientation

or size in time, it may be possible to set Ωρ̂e,1 to the desired final level set of operation and to use

the error-triggered on-line model identification procedure to change the linear empirical model

as the process state moves throughout Ωρ̂e,1 instead of following a level set adjustment procedure.

However, the region Ωρ̂e,1 may be large enough such that the linear empirical model developed

for the initial state-space point cannot capture the nonlinear dynamics of the process as well as

desired in the most economically optimal location of state-space. If the LEMPC calculates control

actions that cause the state to quickly move toward the economically optimal location and leave

the state-space region where the initial linear empirical model captures the nonlinear process

dynamics well, the moving horizon error detector may trigger model re-identification, but there

may be insufficient input/output data stored in the new region of operation for an appropriate

linear empirical model to be identified when the error-triggering occurs. This shows that one

advantage of the level set adjustment procedure described is that it can allow the rate at which

level sets are changed to be slow enough for sufficient input/output data to be collected in the new

regions of operation that are accessed as the level sets change. The effect of the rate at which the

level sets are adjusted is illustrated in the chemical process example of the following section. In

addition, when the level set orientation or size is adjusted on-line (instead of only expanded), the

opportunity is available to move the state throughout regions which cannot be captured within one

level set alone. If Ωρ̂e,1 is set to the final level set of operation, several initial linear empirical
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models within Ωρ̂e,1 may be developed and used to re-initiate Step 1 of the error-triggered on-

line model identification procedure, as discussed in Remark 12, to improve the model predictions

throughout Ωρ̂e,1 .

Remark 14 Feasibility and closed-loop stability of model-based controllers under the on-line

model identification strategy when changes in the region of operation occur will depend on many

factors including the type of controller, the extent of the change in the operating region, and the

manner in which the change occurs (e.g., whether several pre-identified linear empirical models

are used to define a path to a steady-state as described above). As noted in Remark 11, con-

troller feasibility and closed-loop stability of a process under a model-based controller based on

the linear empirical models with operating region changes is outside the scope of this chapter,

but the factors mentioned in that remark (e.g., the values of Nd , M, and ed,T , computation time,

and assumptions on the process and controller) could be considered for such proofs. For the

LEMPC with expanding level sets, for example, the assumption that DL1 ⊂ DL2 ⊂ ·· · ⊂ DLM̃ and

Ωρ̂1 ⊂ Ωρ̂2 ⊂ ·· · ⊂ Ωρ̂M̃
, where Ωρ̂M̃

is the final desired level set, may be useful. Even when it is

difficult to find controllers that would meet the assumptions required by the proofs, there are many

practical applications in which the approach proposed in this chapter would be stabilizing when

the empirical models of Eq. 4.3 can sufficiently capture the nonlinear behavior of the system of

Eq. 4.1. In addition, the values of Nd , M, and ed,T can be updated on-line or through experiments

as described in the section “Application of Error-Triggered On-Line Model Identification to Plant

Variations.”

Application of Error-Triggered On-Line Model Identification to Operating Region Changes:

Application to a Chemical Process Example

This section uses a chemical process example to illustrate the application of error-triggered on-line

model identification to LEMPC with expanding level sets (though this example only demonstrates

Case 3 from the prior section, all three cases are conceptually similar in the sense that the pro-

cess states vary throughout different regions of state-space under a controller developed from the

128



error-triggered on-line model identification strategy, so this example demonstrates the concept of

operating region changes in general). The chemical process considered is the irreversible second-

order exothermic reaction of A to B in a well-mixed, non-isothermal continuous stirred tank reactor

(CSTR). The reactor feed enters with a volumetric flow rate F and consists of an inert solvent con-

taining the reactant A with a concentration CA0 and a temperature T0. The CSTR is heated and

cooled at a heat rate Q through a jacket. The volume, density, and heat capacity of the liquid in

the CSTR are assumed constant at V , ρL, and Cp, respectively. The dynamic equations describing

the time evolution of the reactant concentration CA and temperature T in the reactor have the form

presented below:

dCA

dt
=

F
V
(CA0−CA)− k0e−E/RTC2

A (4.19a)

dT
dt

=
F
V
(T0−T )− ∆Hk0

ρLCp
e−E/RTC2

A +
Q

ρLCpV
(4.19b)

where k0 denotes the reaction pre-exponential factor, and E and ∆H denote the activation en-

ergy and the enthalpy of the reaction, respectively (see Table 4.3 for the process parameter val-

ues). The CSTR is controlled by an LEMPC that adjusts the values of the inlet concentration

CA0 and the heat supply/removal rate Q. These manipulated inputs are bounded above and be-

low as follows: 0.5 ≤ CA0 ≤ 7.5 kmol/m3 and −5.0× 105 ≤ Q ≤ 5.0× 105 kJ/hr. The CSTR

is operated within a state-space region around the open-loop asymptotically stable steady-state

[CAs Ts] = [1.2 kmol/m3 438.0 K] which corresponds to the steady-state input vector [CA0s Qs] =

[4.0 kmol/m3 0.0 kJ/hr]. The reactor states and inputs will be written in deviation variable form

with respect to this steady-state as xT = [CA−CAs T − Ts] and uT = [CA0−CA0s Q−Qs]. The

explicit Euler method was used to numerically integrate the dynamic model of Eq. 4.19 and all

empirical models used in this example with an integration time step of hc = 10−4 hr.

The LEMPC objective is to maximize the production rate of the desired product B (the process

profit). Thus, the cost function L(x,u) in the LEMPC design is the average production rate of B,

129



Table 4.3: Parameter values of the CSTR.

F = 5.0 m3

hr k0 = 8.46×106 m3

kmol hr

T0 = 300 K ∆H =−1.15×104 kJ
kmol

V = 1.0 m3 E = 5.0×104 kJ
kmol

Cp = 0.231 kJ
kg K ρL = 1000 kg

m3

R = 8.314 kJ
kmol K

which is given by:

L(x,u) =
1

(tk+N− tk)

∫ tk+N

tk
k0e−E/RT (τ)C2

A(τ) dτ . (4.20)

We also consider that the amount of reactant material available in a given period of operation of

length tp = 1 hr is limited by the following material constraint:

1
tp

∫ tp

0
u1(τ) dτ = 0.0 kmol/m3. (4.21)

Because the feed flow rate is fixed, this constraint requires that the amount of reactant fed to the

reactor throughout one operating period be the same as the amount that would be fed for steady-

state operation.

We assume that the nonlinear process model in Eq. 4.19 is unavailable and that to develop an

LEMPC to meet the above objective and constraints, we must identify an empirical model. To

construct an empirical state-space model that accurately predicts the process states within a region

local to the initial state (the steady-state) of the CSTR, a sequence of step inputs was generated and

applied to the CSTR and the resulting output sequence was collected. The ordinary multivariable

output error state-space (MOESP)43 algorithm using input and output data sequences was carried

out to obtain a linear empirical model for the CSTR of Eq. 4.19. This initial (i = 1) model was vali-

dated using various step, impulse, and sinusoidal input responses and is described by the following

matrices:

A1 =

−34.5 −0.473

1430 18.1

 , B1 =

 5.24 −8.1×10−6

−11.6 0.457

 (4.22)
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Because it is assumed that only the empirical model is available, the Lyapunov-based controller

designed for use in LEMPC is based on the empirical model of Eq. 4.22. The quadratic Lyapunov

function V̂ (x) = xT Px, where P is the following positive definite matrix:

P =

 1060 22

22 0.52

 (4.23)

was used to design a Lyapunov-based controller hT
L1(x) = [hL1,1(x) hL1,2(x)] for use in the LEMPC.

To meet the material constraint of Eq. 4.21, the control law hL1,1(x) for the inlet reactant concen-

tration was fixed to 0.0 kmol/m3. The control law hL1,2(x) for the rate of heat input was developed

using the following control law from:27

hL1,2(x) =


−

L f̃ V̂ +
√

L f̃ V̂ 2 +Lg2V̂ 4

Lg2V̂
, if Lg2V̂ 6= 0

0, if Lg2V̂ = 0

(4.24)

where f̃ : Rn→ Rn and g : Rn→ Rn×Rm are defined based on the empirical model of Eq. 4.3 as

follows:
dx(t)

dt
= Ax︸︷︷︸

=: f̃ (x)

+ B︸︷︷︸
=:g(x)

u , (4.25)

and g2(x) is the second column of the B matrix. L f̃ V̂ and Lg2V̂ denote the Lie derivatives of the

Lyapunov function V̂ (x) with respect to f̃ (x) and g2(x), respectively. We assume that the stability

region Ωρ̂1 is not known a priori (this is the typical case in practice if the nonlinear process model

is not known, because Ωρ1 is defined in the section “Lyapunov-Based Economic Model Predictive

Control with Empirical Models” to be a region within which the controller hL1 designed based on

the linear empirical models stabilizes the nonlinear system), so we initiate process operation within

a level set denoted Ωρ̂e,1 ⊆ Ωρ̂e1 within which the model prediction error is low. Extensive simu-

lations were performed for the closed-loop system under the Lyapunov-based controller hL1(x) to

define the level set Ωρ̂e,1 with ρ̂e,1 = 55. This is a region within which the linear model of Eq. 4.22
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captures the nonlinear dynamics of Eq. 4.19 well. In all simulations below, we apply the LEMPC

design in Eq. 4.6 but with the added material constraint of Eq. 4.21 to the process in Eq. 4.19 using

a prediction horizon of N = 10 and a sampling period of ∆ = 0.01 hr (the objective function is

defined by Eq. 4.20, with the bounds on CA0 and Q and the Lyapunov function noted above). The

LEMPC optimization problem is solved at each sampling period using the interior point solver

IPOPT.119

Though there is low prediction error in Ωρ̂e,1 when the model of Eq. 4.22 is used, we would

like to expand the level set of operation to improve the process profit. To do this, we note that if

Ωρ̂e,1 is not equal to Ωρ̂e1 , we can use a larger level set Ωρ̂e,2 ⊆ Ωρ̂e1 in the LEMPC based on an

empirical model while continuing to use the empirical model with i = 1. We denote the q− th level

set used from the start of process operation as Ωρ̂e,q (the final desired level set is Ωρ̂e, f ). Each time

that the level set is expanded, we will calculate control actions based on the LEMPC of Eq. 4.6,

but with the level set used in Eqs. 4.6e-4.6f as Ωρ̂e,q . The values of ρ̂e,q and the time intervals over

which they will be applied are pre-determined, but the empirical model used with a given Ωρ̂e,q

is not known a priori, but is determined during process operation using the moving horizon error

detector to trigger model re-identification.

To demonstrate the need for re-identification of the empirical model as the region of process

operation is expanded, the CSTR was operated in closed-loop under the LEMPC controller de-

signed with the linear model of Eq. 4.22 within the region Ωρ̂e,1 with ρ̂e,1 = 55 for one hour of

operation. Throughout this operating period, there was very low prediction error between the lin-

ear empirical model and the nonlinear CSTR model because this stability region had been chosen

as one within which the plant-model mismatch was low. We subsequently increased the value of

ρ̂e,1 used to define the Lyapunov-based constraints by 1 every ∆ for the first 20 sampling periods of

the second hour of operation (i.e., ρ̂e,1 was incrementally increased from ρ̂e,1 = 55 to ρ̂e,21 = 75 in

0.2 hr, where ρ̂e,2 = 56 in the LEMPC of Eq. 4.6 at tk = 1 hr, ρ̂e,3 = 57 in the LEMPC of Eq. 4.6

at tk = 1.01 hr, etc.) to optimize the process economics within a larger region of state-space. After

reaching the level set with ρ̂e,21 = 75, the system was maintained at that level set for the rest of
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the second hour and throughout the third hour of operation as presented in Fig. 4.8. As the states

moved out of the initial level set with ρ̂e,1 = 55, the prediction error between the predicted states

from Eq. 4.22 and the measured states of the CSTR increased and reached a value:

|Tp(3tp)−T (3tp)|
|T (3tp)|

+
|CAp(3tp)−CA(3tp)|

|CA(3tp)|
= 0.3

at the end of the third hour. Because there are no disturbances or measurement noise in this

simulation, the prediction error noted indicates that the total relative error in the two states is about

30% at the end of the third operating period, which shows that model re-identification should be

used to better capture the nonlinear system dynamics in that region of state-space.
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Figure 4.8: State and input trajectories of the CSTR controlled using the LEMPC with the empirical
model of Eq. 4.22 starting at (CAs,Ts). The level set was changed from ρ̂e,1 = 55 to ρ̂e,21 = 75
gradually in the second hour.

After establishing the need for re-identification of a linear model as the allowable region of

operation is expanded to increase profit, we now present three approaches for expanding the level

sets from the level set with ρ̂e,1 = 55 to a final desired level set with ρ̂e, f = 155 while gathering

process input/output data and updating the model on-line. In the first approach, the level set is

expanded suddenly to Ωρ̂e, f . In the second approach, the level set is expanded incrementally to

133



Ωρ̂e, f . In the third approach, the level set is incrementally expanded to Ωρ̂e, f , with the expansion

paused at intermediate level sets to allow sufficient input/output data to be collected throughout

time in new regions of operation. The model identification process is triggered in the third approach

by a moving horizon error detector. The collection of large amounts of input/output data in each

region of operation allows the empirical models identified using the third approach to better capture

the nonlinear process dynamics than the empirical models identified using the other approaches.

As mentioned above, the first approach investigated the sudden expansion of the level set Ωρ̂e,1

with ρ̂e,1 = 55 to Ωρ̂e, f with ρ̂e, f = ρ̂e,2 = 155, after operating with ρ̂e,1 = 55 for one hour. To

maximize the profit in the new level set, the LEMPC of Eq. 4.6 predicted control actions that

drove the state to regions of state-space where there was significant prediction error throughout the

second hour of operation. At the end of this second hour, input/output data from the first two hours

of operation was used to identify a new model and update the LEMPC with this new empirical

model for the third hour of operation. The model obtained was:

A2 =

 −46 −0.610

2025 25.7

 , B2 =

 2.585 −67×10−6

65.36 0.639

 (4.26)

Though all LEMPC optimization problems for the first approach were feasible and the closed-

loop system was stable as shown in Fig. 4.9, the large prediction error throughout the second

operating period resulting from the sudden expansion of the level set is undesirable. Therefore, the

second approach that gradually increments the level sets was investigated. In this approach, after an

hour of operation with ρ̂e,1 = 55, the value of ρ̂e,1 was incrementally increased by 1 every sampling

period for an hour to ρ̂e, f = ρ̂e,101 = 155, while collecting input/output data. The prediction error

during the second hour of operation was much less using this second approach than using the first

approach. At the end of the second hour of operation, the input/output data from the first two hours

of operation was used to identify the following empirical model that was used for the third hour of
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operation:

A2 =

 −47 −0.643

1868 24.6

 , B2 =

 4.273 −63×10−6

16.65 0.632

 (4.27)
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Figure 4.9: State and input trajectories of the CSTR controlled using the LEMPC with the empirical
models in Eqs. 4.22 and 4.26. The level set was changed from ρ̂e,1 = 55 to ρ̂e,2 = 155 suddenly at
the beginning of the second hour of operation (Approach 1).

Fig. 4.10 shows the state and input trajectories of the CSTR under the LEMPC of Eq. 4.6

using the second approach. The state and input trajectories for the first and second approaches are

different, which shows that the empirical model used in the LEMPC and the way in which the level

sets are expanded significantly affects the closed-loop process dynamics.

The third approach investigated is the gradual increase of the level set from ρ̂e,1 = 55 to ρ̂e, f =

ρ̂e,101 = 155 throughout 10 hours of operation with error-triggered on-line model identification.

First, the CSTR is operated at the level set with ρ̂e,1 = 55 for one hour. Subsequently, the value

of ρ̂e,1 is incrementally increased by 1 every sampling period for 20 sampling periods and then

held at its new value for 1.8 hours (i.e., ρ̂e,21 = 75 from tk = 1.19 hr to 3 hr, ρ̂e,41 = 95 from

tk = 3.19 hr to 5 hr, etc.). This increase and hold strategy is repeated until the final level set with

ρ̂e,101 = 155 is reached, and then the process is operated at the final level set for 2.8 hours. At the

beginning of the third operating period, a moving horizon error detector is initiated to determine
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Figure 4.10: State and input trajectories of the CSTR controlled using the LEMPC with the em-
pirical models in Eqs. 4.22 and 4.27. The level set was changed from ρ̂e,1 = 55 to ρ̂e,101 = 155
incrementally throughout the second hour of operation (Approach 2).

ed at each sampling period, and to trigger re-identification of the process model when the value

of ed exceeds the threshold value of 3, which was chosen based on simulations that suggested

that it was a reasonable indicator of significant plant-model mismatch. Each time that the on-line

model identification is triggered, the previous two hours of input/output data is used to identify

a new model. The moving horizon error detector calculates the relative prediction error in the

concentration and temperature throughout the past 50 sampling periods and current sampling time

as follows:

ed(tk) =
50

∑
r=0

|Tp(tk−r)−T (tk−r)|
|T (tk−r)|

+

|CAp(tk−r)−CA(tk−r)|
|CA(tk−r)|

(4.28)

The predicted values of T and CA were calculated using the first approach from Remark 8.

The moving horizon error detector triggered model re-identification four times throughout the

gradual increase of the level set from ρ̂e,1 = 55 to ρ̂e,101 = 155 in the third approach, with the four
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identified models as follows:

A2 =

 −41 −0.559

1424 18.149

 , B2 =

 4.92 −7×10−6

−28 0.003

 (4.29)

A3 =

 −43 −0.584

1658 20.997

 , B3 =

 3.64 −49×10−6

29.1 0.525

 (4.30)

A4 =

 −41 −0.476

1691 18.0

 , B4 =

 3.53 −53×10−6

56.8 0.594

 (4.31)

A5 =

 −29 −0.403

820 9.63

 , B5 =

 4.22 −29×10−6

57.9 0.443

 (4.32)

When the empirical models were re-identified, the controller of Eq. 4.24 was updated based on the

new empirical model. The same value of V̂ was used for all simulations.

Fig. 4.11 shows the update scheme used in the third approach and indicates the four times at

which the error-triggered model re-identification occurred. Once the model was updated at the

end of the tenth operating period, no further model identification was triggered in the last two

operating periods, indicating that the third approach was able to successfully expand the level sets

while updating the model so that process operation could be moved to a new region of state-space

where the corresponding empirical model locally had low plant-model mismatch. The figure also

shows that the error-triggering is effective at determining the necessity of model updates, because

the model identified at the end of the second period of operation was able to be used for four

hours of operation and two sets of level set expansions since the prediction error was low and thus

no model identification was needed. Fig. 4.12 shows the value of ed throughout time under the

third approach, which shows the growth of ed when the model re-identification was triggered and

provides further evidence that the prediction error was low at the end of the 12 hours of operation.

In addition, Fig. 4.13 shows the evolution of the state-space trajectories within the initial level set
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and into the expanded level sets during process operation.
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Figure 4.11: Plot showing the gradual expansion of the Lyapunov level set in Approach 3 and the
times at which the model identification procedure was conducted over 12 hours of operation.
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Figure 4.12: Value of ed at each sampling time using Eq. 4.28 and the LEMPC design with error-
triggered on-line model identification (Approach 3).

Fig. 4.14 shows the state and input trajectories of the CSTR using the LEMPC of Eq. 4.6 with

the empirical models of Eq. 4.22 and Eqs. 4.29-4.32 for the third approach throughout the 12-hour

simulation. Fig. 4.15 shows that the state and input trajectories of the CSTR under the LEMPC

designed based on the first-principles model are similar to those under the LEMPC using the final

empirical model of Eq. 4.32, when both use ρ̂e, f = 155 throughout the entire simulation (i.e., no

level set expansion), and start from the same initial condition.

The three approaches presented above are compared in Table 4.4, which shows the time-

averaged profit (Je) and the maximum ed throughout one hour of operation using the final identified
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3).
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Figure 4.14: State and input trajectories of the CSTR controlled by the LEMPC with error-triggered
on-line model identification over 12 hr operation (Approach 3).
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Figure 4.15: State and input trajectories of the CSTR controlled by the LEMPC using the first-
principles model (black trajectories) and the LEMPC using the final identified model in Eq. 4.32
(gray trajectories) starting from CA−CAs =−0.8,T −Ts = 28.

model for each approach and the level set with ρ̂e, f = 155 (Je and ed are calculated for the third

hour of operation for the first two approaches, and for the twelfth hour of operation in the third

approach). In addition, the profit resulting from using the nonlinear model of Eq. 4.19 is presented

for comparison, initiated from the origin. Table 4.4 shows that the profit was greatest using the

third approach, and was very close to that of the nonlinear system of Eq. 4.19 (the profit using the

nonlinear model is only 0.7% greater than that using the third approach). In addition, Table 4.4

shows that the maximum value of ed during process operation was greatest under the first approach

and least under the third. The maximum value of ed in the third approach is significantly lower

than the threshold value of 3, further showing that the proposed approach was able to reduce the

prediction error while maximizing profit.

Table 4.4: Average economic cost for the CSTR under LEMPC.

Approach Je Max ed(tk)
1 15.621 11.7
2 15.70 5.98
3 16.49 1.73
Nonlinear Model 16.61 -
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Remark 15 In this example, the value of ρ̂e, f was chosen because it allowed for a significant

increase from ρ̂e,1 and thus was effective for illustrative purposes in this example at demonstrating

the level set expansion procedure and the effect of the rate of expansion on the models identified.

From the simulations, it can be seen that the nonlinear process was stabilized by the LEMPC with

an empirical model within Ωρ̂e, f based on the various empirical models; however, choosing the

value of ρ̂e, f in general requires great care to prevent losing process closed-loop stability.

Remark 16 The time-varying nature of the trajectories calculated by the LEMPC in this exam-

ple for the various level set expansion rates (Figs. 4.8-4.10 and 4.14-4.15) is due to economic

considerations, as for the example in the section “Application of Error-Triggered On-Line Model

Identification to Plant Variations: Application to a Chemical Process Example.” As shown in

these figures, closed-loop stability was maintained in all simulations, regardless of whether the

empirical model was updated, but the error-triggered updating of the empirical models improves

the predictions from the linear empirical model and can improve the process profit as shown in

Table 4.4.

4.5 Conclusion

In this chapter, a methodology for error-triggered on-line model identification for nonlinear pro-

cess systems was proposed for use in model-based controller design based on linear empirical

models. The error-triggering was conducted by a moving horizon error detector that quantifies

the relative prediction error within its horizon and triggers model re-identification based on recent

input/output data when the prediction error exceeds a threshold. The error-triggered on-line model

identification procedure was shown to have many applications, including the improvement of state

predictions for use in model-based control when plant variations occur and when the operating

region changes. Both of these applications were demonstrated using a chemical process example

under LEMPC. In the first example, it was shown that the error-triggering strategy was successful

in indicating the need to re-identify the empirical model using the most recent input/output data as
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the plant dynamics changed, which can also result in greater economic profit. The second example

demonstrated that the proposed approach is able to maintain closed-loop stability while expanding

the region of operation to improve profit, and also indicated that the rate at which the operating

region is expanded can have a significant effect on the process performance and the accuracy of

the identified empirical model.
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Chapter 5

Fault-Tolerant Economic Model Predictive

Control Using Error-Triggered On-line

Model Identification

5.1 Introduction

Recent technological developments in the chemical and petrochemical industries have led to the

creation of complex process networks to increase operational efficiency and meet the increasing

energy demand. One approach for maximizing the efficiency of process operation is by integrating

process control and process economic optimization. Economic model predictive control (EMPC)

is a recent model-based feedback control strategy that integrates process control with dynamic

economic optimization of the plant. EMPC promotes optimal time-varying operation of the plant

and can incorporate constraints that ensure closed-loop stability (e.g.,14, 20, 22, 49).

The first step in developing model-based feedback controllers is to establish a dynamic model

representing the process dynamics, which can be done either from first principles or through sys-

tem identification.79 While first-principles models describe the underlying physico-chemical phe-

nomena and develop detailed mathematical expressions for the observed process mechanisms, ob-
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taining such models is a challenging task for complex and poorly understood processes. Instead,

model identification provides suitable alternative models to be used for model-based feedback

control when first-principles models are too complex or unavailable. Over the past four decades,

various model identification methods have been developed to identify linear and nonlinear models

from process data alone (e.g.,1, 76, 79).

Subspace model identification (SMI) refers to a class of system identification methods that

are capable of identifying multiple-input multiple-output (MIMO) models based purely on in-

put/output data.16, 43, 44, 56, 76 SMI methods are non-iterative and account for multi-variable inter-

actions.39, 76 Well-recognized SMI methods include numerical algorithms for subspace state-space

system identification (N4SID),39 the Canonical Variate Algorithm (CVA),59 and the multi-variable

output error state-space (MOESP) algorithm.43, 44 SMI methods have been widely used for indus-

trial applications due to their reliability and numerical stability.1, 16, 29, 43 SMI methods have been

used to provide models for various model-based feedback control systems such as model predictive

control (MPC) and EMPC.48, 56

A major problem that arises frequently in the chemical industry is actuator faults, in which au-

thority over one or more actuators is lost. Detecting actuator faults and developing advanced fault-

tolerant controllers for chemical process systems has been previously considered (e.g., in120, 121).

However, the existing works have assumed the availability of a first-principles model to develop

fault-tolerant control methodologies. To date, no work on formulating fault-tolerant control strate-

gies using empirical models has been considered. In the present chapter, we introduce a data-

driven approach to overcome actuator faults in Lyapunov-based economic model predictive control

(LEMPC) based on linear empirical models, which can be extended to other model-based feedback

control designs. When actuator faults cause the prediction errors between the predicted states from

the linear empirical model and the measured states to increase, model re-identification is triggered

on-line by a moving horizon error detector if an error metric exceeds a pre-specified threshold.

The proposed methodology is applied to two different chemical process examples to demonstrate

the ability of the detector to indicate significant prediction errors when actuator faults occur and
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update the model on-line in order to obtain more accurate predictions. The first example considers

the application of the proposed scheme for the case where the value at which the actuator is stuck

is known in a benchmark catalytic chemical reactor example where the actuator faults occur in the

heat input causing shifts and variations in plant operating conditions. The second example demon-

strates the application of the proposed scheme for the case where the value at which the actuator

is stuck is unknown. Improved state predictions and economic performance were obtained by the

proposed scheme as the updated models were able to capture process dynamics and compensate

for the variations in the plant caused by the actuator loss.

5.2 Preliminaries

5.2.1 Notation

The operator | · | is used to denote the Euclidean norm of a vector. The transpose of a vector x is

denoted by the symbol xT . The symbol Ωρ represents a level set of a positive definite continuously

differentiable scalar-valued function V (x) (Ωρ := {x ∈ Rn : V (x)≤ ρ}). A continuous function α :

[0,a)→ [0,∞) is said to belong to class K if it is strictly increasing and is zero only when evaluated

at zero. The symbol diag(a) denotes a square diagonal matrix where the diagonal elements are the

components of the vector a. The sampling period is denoted as ∆ > 0.

5.2.2 Class of Systems

This chapter considers a broad class of process systems described by first-order nonlinear ordinary

differential equations of the following form:

ẋ(t) = f (x(t),u(t),w(t)) (5.1)

where x ∈ Rn, u ∈ Rm, and w ∈ Rl are the state vector of the system, manipulated input vector,

and the disturbance vector, respectively. The disturbance vector is assumed to be bounded (i.e.,
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|w(t)| ≤ θ for all t). Physical limitations on actuation energy restrict the manipulated inputs to

belong to the convex set U := {u ∈ Rm : umin
i ≤ ui ≤ umax

i , i = 1, . . . , m}. The function f is

assumed to be locally Lipschitz and the origin is taken to be an equilibrium of the nominal unforced

system of Eq. 5.1 (i.e., f (0,0,0) = 0). We assume that measurements of the full state vector x(tk)

are available at each sampling time tk = k∆, k = 0,1, . . ..

This chapter is restricted to the class of stabilizable nonlinear systems. Specifically, we assume

the existence of a locally Lipschitz feedback control law h(x) ∈ U that can render the origin of

the nominal (w(t) ≡ 0) closed-loop system of Eq. 5.1 locally asymptotically stable in the sense

that there exists a continuously differentiable Lyapunov function V : Rn→ R+ where the following

inequalities hold:30, 111

α1(|x|)≤V (x)≤ α2(|x|), (5.2a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|), (5.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (5.2c)

for all x in an open neighborhood D that includes the origin in its interior and α j(·), j = 1,2,3,4,

are class K functions. For various classes of nonlinear systems, several stabilizing control laws

have been developed that take input constraints into consideration.10, 12, 27 The stability region of

the closed-loop system is defined to be a level set Ωρ ⊂ D where V̇ < 0. The origin of the closed-

loop system is rendered practically stable when the control law h(x) is applied in a sample-and-hold

fashion for a sufficiently small sampling period.31

In this chapter, we apply an on-line model identification scheme to obtain empirical models

that capture the evolution of the system of Eq. 5.1. The empirical models obtained are linear

time-invariant (LTI) state-space models of the form:

ẋ(t) = Aix(t)+Biu(t) (5.3)

where the constant matrices Ai ∈ Rn×n and Bi ∈ Rn×m correspond to the i− th model identifi-
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cation performed (i = 1, . . . ,M̃). We assume the existence of a set of stabilizing control laws

hL1(x),hL2(x),. . .,hLM̃(x) designed based on the empirical models that can make the origin of the

closed-loop system of Eq. 5.1 asymptotically stable and generate a continuously differentiable

Lyapunov function V̂ : Rn→ R+ where the following inequalities hold:111

α̂1(|x|)≤ V̂ (x)≤ α̂2(|x|), (5.4a)

∂V̂ (x)
∂x

f (x,hLi(x),0)≤−α̂3i(|x|), i = 1, . . . ,M̃ (5.4b)∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣≤ α̂4(|x|) (5.4c)

for all x in an open neighborhood DLi that includes the origin in its interior. The functions α̂ j(·),

j = 1,2,4, and α̂3i , i = 1, . . . ,M̃, are class K functions and the stability region of the system of

Eq. 5.1 under the controller hLi(x) is defined as the level set Ωρ̂i ⊂ DLi, i = 1, . . . ,M̃.

5.2.3 Lyapunov-based EMPC

The formulation of EMPC to be used in this chapter incorporates Lyapunov-based stability con-

straints based on the explicit stabilizing controller h(x). The resulting Lyapunov-based EMPC

(LEMPC)20 maximizes an economics-based cost function representing the plant economics and is
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given by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (5.5a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (5.5b)

x̃(tk) = x(tk) (5.5c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (5.5d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρe (5.5e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)

≤ ∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0)

if x(tk) /∈Ωρe (5.5f)

where the decision variables are the input trajectories over the prediction horizon N∆ (i.e., u∈ S(∆)

where S(∆) signifies the class of piecewise-constant functions with period ∆). Control actions

are implemented in a receding horizon fashion using process state predictions x̃(t) from the dy-

namic model of the process (Eq. 5.5b) initiated from the state feedback measurement at each sam-

pling time (Eq. 5.5c). Input constraints are taken into consideration in the LEMPC formulation in

Eq. 5.5d.

The Mode 1 constraint (Eq. 5.5e) is activated when the state measurement is maintained within

a subset of the stability region Ωρ that is referred to as Ωρe , and promotes time-varying process

operation to maximize economics. When the closed-loop state exits Ωρe , the Mode 2 constraint

(Eq. 5.5f) is activated to force the state back into Ωρe by computing control actions that decrease the

Lyapunov function value. The stability region subset Ωρe is chosen to make Ωρ forward invariant

in the presence of process disturbances.
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5.3 EMPC Using Error-Triggered On-line Model Identification

The potential of EMPC for improving profits in the chemical process industries has motivated re-

search in practical aspects of EMPC implementation, including the use of linear empirical models

in EMPC.48, 118 However, all work on improving the practicality of EMPC with empirical models

has assumed that no actuator faults occur, though the development of actuator faults poses unique

challenges for linear empirical models utilized to obtain state predictions within EMPC. Because

the models are developed with all actuators on-line based on process data only, there is no guaran-

tee that when the underlying process dynamics change (i.e., an actuator output becomes fixed when

it was previously varying) that the model developed based on data for the case that all actuators

were varying will remain valid with the value of the faulty actuator fixed for all time, since this

condition was not included in the original process data used to identify the model and the under-

lying process model is typically nonlinear such that nonlinear and coupled interactions between

states and inputs exist. This can impact the accuracy of state predictions utilized within the EMPC

after the fault occurs, which can negatively impact process profits as well as satisfaction of other

constraints (including stability or state constraints). Though re-identification of the model when

the fault is detected may appear to be a solution to the potential problems caused by the fault for

the accuracy of the linear empirical models, re-identification would require the availability of a

sufficient number of input/output data points corresponding to the new (after fault) operating con-

ditions. Since sufficient after-fault data for model re-identification is not available until after the

fault, there will be some time period during which the empirical model developed from data cor-

responding to the case that all actuators are on-line must continue to be utilized within the EMPC.

Furthermore, depending on the severity of the fault and the empirical model in use at the time of

the fault, the original empirical model may provide sufficiently accurate state predictions such that

it is not necessary to interrupt the continuity of the control strategy by updating the model used

within the controller. Therefore, a method for determining when the model should be updated

as a result of the fault is necessary. In this chapter, we propose the use of the moving horizon

error detector developed in118 for this task; however, important changes to the implementation
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strategy of the LEMPC with error-triggered on-line model identification must be made to address

the issues specific to faults discussed above. In this development, we assume that a fault has oc-

curred in an actuator that causes the actuator output to take some value, where it is known which

actuator has experienced a fault. The proposed approach to develop fault-tolerant control for em-

pirical model-based LEMPC may be applied in the case where the value of the faulty actuator’s

output is known and in the case where the value of the faulty actuator’s output is unknown. We

make no requirement on the number of faults that can occur at one time, as long as the number

of on-line actuators allows sufficiently accurate linear empirical models to continue to be iden-

tified (observability assumption). Therefore, this method is flexible to handle multiple actuators

experiencing faults simultaneously (and can also be extended to include re-commissioning of ac-

tuators that experienced faults and have been repaired) throughout time. The following section

presents the LEMPC formulation using linear empirical models. After that, the formulation of the

moving horizon error detector and the implementation strategy for on-line model identification to

compensate for changes in the model due to actuator faults are introduced.

5.3.1 LEMPC Formulation Using Empirical Models

In this chapter, it is assumed that the plant model of Eq. 5.1 is unavailable and the process model

to be incorporated in the LEMPC design is the i− th empirical model (i = 1, . . . ,M̃). The empir-

ical models and their corresponding hLi(x) and V̂ (x) are used in the development of the stability

constraints. The LEMPC design using the i− th empirical model is presented by the following
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optimization problem:48

min
u∈S(∆)

∫ tk+N

tk
Le(x̂(τ),u(τ)) dτ (5.6a)

s.t. ˙̂x(t) = Aix̂(t)+Biu(t) (5.6b)

x̂(tk) = x(tk) (5.6c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (5.6d)

V̂ (x̂(t))≤ ρ̂ei, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρ̂ei (5.6e)

∂V̂ (x(tk))
∂x

(Aix(tk)+Biu(tk))

≤ ∂V̂ (x(tk))
∂x

(Aix(tk)+BihLi(x(tk)))

if x(tk) /∈Ωρ̂ei (5.6f)

where the notation follows that in Eq. 5.5, and x̂(t) denotes the state prediction using the linear

empirical model (Eq. 5.6b), starting from the state feedback measurement (Eq. 5.6c). The subsets

of the stability regions for the Mode 1 constraints Ωρ̂ei ⊂ Ωρ̂i are chosen to make the stability

region Ωρ̂i forward invariant in the presence of bounded process disturbances. Both Ωρ̂i and Ωρ̂ei

that makes Ωρ̂i forward invariant can be difficult to determine in practice. Therefore, a conservative

estimate of each can be chosen, or they can be adjusted on-line based on analyzing the process data

to determine whether the LEMPC of Eq. 5.6 is able to maintain the state within an expected region

of state-space.

5.3.2 Moving Horizon Error Detector

In this section, we describe the moving horizon error detector that quantifies prediction errors

and triggers on-line model identification when necessary. Specifically, the moving horizon error

detector tracks an error metric throughout the duration of process operation that is based on the

difference between the predicted states using a linear empirical model and the measured states from
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the process (relative prediction error). When this error exceeds an engineer-specified threshold

ed,T (indicating significant plant/model mismatch), on-line model re-identification is triggered and

performed using the most recent input/output data points, and the updated model is used in the

LEMPC of Eq. 5.6. The error metric ed calculated by the moving horizon error detector at each

sampling period tk using the most recent past state predictions and measurements in a moving

horizon fashion is presented in the following equation:

ed(tk) =
M

∑
r=0

n

∑
j=1

|xp, j(tk−r)− x j(tk−r)|
|x j(tk−r)|

(5.7)

where the horizon M is the number of sampling periods included in assessing the prediction error.

x j(tk−r) and xp, j(tk−r), r = 0, . . . ,M, j = 1, . . . ,n, are the past process state measurements and the

past state predictions from an empirical model between the sampling times tk−M and tk. Due to the

fact that process states may vary in their orders of magnitude, the difference between the predicted

states and the measured states is normalized by the magnitude of the measured state |x j(tk−r)|.

The purpose of summing over the horizon M is to average out the effect of small time-varying

disturbances that may occur in practice and cause prediction errors to increase. For the detailed

guidelines and the step-by-step procedure for determining the values of the horizon M and the error

metric threshold ed,T for a given process, the reader may refer to.118

5.3.3 Implementation Strategy

In this section, we present the steps taken in the proposed on-line model identification scheme to

overcome actuator faults in empirical model-based LEMPC as follows:

Step 1. Before an actuator fault occurs, an initial linear empirical model (A1 and B1) accounting

for all actuators is obtained by exciting the system with a large number of inputs that have varying

magnitudes and collecting the corresponding output data. This model is used to predict the process

evolution within the LEMPC and to design the stabilizing controller hL1 and the corresponding

V̂ for the Lyapunov-based constraints of the LEMPC. The region Ωρ̂ei is chosen such that in this
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region, plant-model mismatch is minimal.

Step 2. The process is operated under the LEMPC design using an empirical model and the

moving horizon error detector is used to detect prediction errors.

Step 3. When an actuator fault occurs, the LEMPC receives information on which actuator is

stuck. If the value at which the actuator is stuck is known, the corresponding input value in the

LEMPC optimization problem is fixed to the fault value and the decision variables for this input

are removed from the LEMPC optimization problem (i.e., the LEMPC no longer solves for the

input corresponding to the faulty actuator). If the value at which the actuator is stuck is unknown,

the LEMPC optimization problem continues to compute optimal control actions for all actuators

(assuming that all actuators are active on-line) despite the fact that a fault has occurred in one of

them (i.e., the LEMPC solves for all the inputs including the input corresponding to the faulty

actuator despite the fact that it will not be implemented since this actuator is not under control).

Step 4. If ed(tk) exceeds ed,T , input and output data collected since the fault occurrence are

used to identify a new model on-line for use in the LEMPC formulation and the design of the

corresponding stabilizing controller hLi. The new Bi matrix obtained will contain one less column

since the number of manipulated inputs is reduced by one.

Step 5. Process operation under the LEMPC and the moving horizon error detector continues

(i.e., return to Step 2 and proceed to Steps 3 through 5 if another actuator fault occurs).

Remark 17 LEMPC may calculate time-varying input trajectories since the cost function of EMPC

does not have its minimum at a steady-state of a process.14 The persistent process state excitations

caused by such time-varying input trajectories that may be generated under EMPC may make the

input/output data convenient for use in on-line model identification.

Remark 18 Conditions guaranteeing feasibility and closed-loop stability of an LEMPC based on

a linear empirical model that is not updated in time have been developed in.48 These conditions

include requirements that the empirical model must be sufficiently close to the linearization of the

underlying nonlinear model. In the proposed methodology, when an actuator fault occurs, the un-

derlying nonlinear model changes, but the process model cannot be immediately updated because
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no post-fault process input/output data is available. Therefore, it is not possible to assess if the

previous linear empirical model is close to the linearization of the underlying nonlinear model

after the fault has occurred, regardless of whether the value of the fault is known and it is fixed in

the empirical model or the value of the fault is unknown and the empirical model is used assuming

all inputs are active on-line. Due to this practical difficulty, proving guaranteed feasibility and

closed-loop stability of the error-triggered on-line model identification for the LEMPC scheme has

not been pursued. As a result, selecting V̂ , Ωρ̂i , Ωρ̂ei , and hLi to provide guaranteed closed-loop sta-

bility of the nonlinear process when used in the LEMPC can be challenging. However, appropriate

parameters can be determined practically using closed-loop simulations with the linear empirical

model in the LEMPC when a first-principles model is available for analyzing the accuracy of the

state predictions and the ability of the LEMPC with an empirical model to maintain closed-loop

stability of the nonlinear process, and then some conservatism can be added to the estimates of the

parameters. Alternatively, a conservative estimate of Ωρ̂i and Ωρ̂ei can be utilized initially when a

first-principles model is not available, and updated on-line if desired to reduce the conservatism

after process operating data is available. In general, because process data is monitored frequently,

the parameters can be tuned on-line if the closed-loop performance does not meet an engineer’s

expectations. Therefore, the lack of a rigorous closed-loop stability and feasibility proof for this

LEMPC design does not pose practical limitations and would be expected to be effective in many

practical applications.

Remark 19 The moving horizon error detector is also capable of initiating empirical model up-

dates when significant plant variations, operating region changes, or disturbances that are not

caused by actuator faults occur,118 and it may also trigger model re-identification multiple times

after a fault if the re-identified models were developed without sufficient post-fault input/output

data to allow the model to adequately capture the post-fault process dynamics. When significant

plant variations or disturbances or poorly identified post-fault models cause the prediction error

to exceed the pre-defined threshold for the error metric ed(tk), the same steps mentioned above

are taken excluding Step 3 and the dimension of the updated Bi matrix remains the same as the
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Bi from the previous linear empirical model. Furthermore, any known and sudden disturbance

that does not correspond to loss of a new actuator but which may change the underlying process

dynamics (e.g., an actuator that has already become stuck at one value becomes stuck at another

value due to a disturbance that affects the actuator position, or an on-off aspect of the process such

as a pump or valve that is not manipulated by the control system has been changed) can also be

handled with the implementation strategy detailed in this section (e.g., only data corresponding to

the time after the known disturbance may be used in the model re-identification due to the change

in the underlying process dynamics), except that the number of columns in the Bi matrix would not

change if the disturbance did not affect the number of on-line actuators compared to the previous

model re-identification. In practice, when an unknown disturbance or plant variation occurs and

causes the prediction error to exceed the pre-defined threshold for the error metric ed(tk), the time

at which this unknown disturbance or plant variation started may also be unknown. Therefore, the

number of input/output data points Nd utilized in each model identification after the threshold for

the error metric ed(tk) has been exceeded remains the same as the number utilized for obtaining

the initial model (A1 and B1) since no extra information is available. If the re-identified model was

developed without sufficient input/output data collected after the occurrence of the disturbance

or plant variation, the threshold for the error metric ed(tk) may be exceeded multiple times until

enough input/output data collected after the occurrence of the disturbance or plant variation are

available and the resulting identified model adequately captures the process dynamics. The ability

of the moving horizon error detector to handle the many scenaria discussed in this remark, even

simultaneously, makes it an integrated approach to handling a variety of practical considerations.

Remark 20 In,118 guidelines for determining M, ed,T , and the number of input/output data points

to utilize in model re-identification were presented assuming that the causes of plant/model mis-

match are gradual changes such as plant variations, disturbances, or movement of the process state

into new regions not captured by the original linear empirical model throughout time. However,

actuator faults occur suddenly, which may cause an identified empirical model to rapidly become

inadequate for representing the process dynamics. Therefore, process data and controller perfor-
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mance should be monitored after the fault to ensure that M, ed,T , and the number of process data

points chosen for model re-identification, determined using the non-faulty plant operating data and

methods like those in,118 remain valid for assessing the prediction error and obtaining sufficiently

accurate models upon re-identification after the fault. If they do not, as in,118 the values of M and

ed,T can be increased or decreased on-line and the effect of this on the controller performance can

be examined to arrive at updated values of M and ed,T when required. Furthermore, the last M

data points including non-faulty data may continue to be used in evaluating the prediction error

after the fault (due to the inability to set an error threshold on less than M post-fault data points

alone after the fault since there would be no basis for the alternative error threshold, and the fact

that very large prediction errors in the post-fault data will still trigger model re-identification if

necessary before M post-fault data points are available even if pre-fault data is also included in the

calculation of ed). Similarly, when sufficient input/output data points are available after the fault

for use for model re-identification, this number can be increased or decreased based on controller

performance to ensure that it is still satisfactory after the fault. If the number of input/output data

points Nd used for model re-identification before the fault is greater than the number of post-fault

input/output data points available after the fault when model re-identification is first triggered by

the moving horizon error detector, then only the post-fault data (i.e., less than the desired Nd)

should be used for the re-identification. This is because the input/output model structure changes

after the fault (i.e., there is one less input), with the result that the data corresponding to having

one additional input from before the fault cannot be used in identifying a model corresponding to

having one less input from after the fault. If a sufficiently accurate model is not identified due to

the lack of sufficient post-fault data when the moving horizon error detector is triggered, it would

be expected that the prediction error will eventually increase once again above ed,T , triggering

another model re-identification with additional post-fault data, so that eventually the linear empir-

ical model used after the fault will have been developed with sufficient post-fault input/output data

to allow for sufficiently accurate state predictions that no longer trigger model re-identification.

Remark 21 Though the error-triggered model update strategy for actuator fault compensation
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is discussed in the context of LEMPC, it can be extended to other model-based control designs,

including tracking MPC (MPC with a quadratic objective function), as well, as long as the process

data available for updating the models when these other control designs are used contains enough

information regarding the important process dynamics for use in identifying sufficiently accurate

process models.

Remark 22 It was previously noted that multiple simultaneous faults as well as actuator re-

commissioning can be handled utilizing this strategy. The simultaneous faults may include those

for which the value of the faulty actuator output is known, those for which it is unknown, or even

a combination. For multiple simultaneous faults, Step 3 is applied to the various faulty actuators,

and in Step 4, the number of columns in the Bi matrix is reduced by the number of faulty actua-

tors. For actuator re-commissioning, model re-identification using the most recent Nd input/output

data points since the last actuator fault (or the total number available since the last fault if the

available number is less than Nd) can be performed, allowing the Bi matrix to include columns

for all actuators that are now non-faulty. This model can then be utilized in the LEMPC, and the

error-triggering procedure will update the model if the state predictions contain significant error

due to the fact that the input/output data on which the model was based did not include the effects

of the re-commissioned actuators taking output values different from the value at which they were

stuck.

Remark 23 When the value at which a faulty actuator is stuck is unknown, other methods of

accounting for this faulty actuator in the empirical model immediately after the fault could be

utilized instead of continuing to solve for all actuator outputs as suggested in Step 3. The goal of

Step 3 when the actuator output is unknown is to allow the LEMPC to continue computing control

actions for the non-faulty actuators while generating input/output data that can be used to identify

a model corresponding to the process dynamics subject to the fault, and this can be done with any

reasonable assumption on the value of the faulty actuator outputs in the LEMPC.
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5.4 Application of Error-Triggered On-Line Model Identifica-

tion when the Fault Value is Known: Catalytic Process Ex-

ample

This section demonstrates the application of the proposed error-triggered on-line model identifica-

tion for fault-tolerant LEMPC when the value at which the actuator is stuck is known. We consider

the control of catalytic oxidation of ethylene (C2H4) in a continuous stirred tank reactor (CSTR).

Ethylene is oxidized with air to produce the desired ethylene oxide (C2H4O) product as presented

in the following chemical reactions:

C2H4 +
1
2

O2
R1→ C2H4O (R1)

C2H4 +3O2
R2→ 2CO2 +2H2O (R2)

C2H4O+
5
2

O2
R3→ 2CO2 +2H2O (R3)

The reaction rates R1, R2, and R3 are given by the following Arrhenius relationships:85

R1 = k1 exp
(
−E1

RgT

)
P0.5

E (5.8a)

R2 = k2 exp
(
−E2

RgT

)
P0.25

E (5.8b)

R3 = k3 exp
(
−E3

RgT

)
P0.5

EO (5.8c)

where k1, k2, and k3 are pre-exponential factors, E1, E2, and E3 are activation energies for each re-

action, Rg is the gas constant, and T is the absolute temperature. The reaction rates are presented in

terms of partial pressures of ethylene (PE) and of ethylene oxide (PEO). The gas mixture inside the

reactor is assumed to be ideal, and thus, the partial pressures in the reaction rates can be converted

to molar concentrations using the ideal gas law. The dimensionless mass and energy balances for
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this process are described by the following first-order ordinary differential equations:86

dx1(t)
dt

= u1(1− x1x4) (5.9a)

dx2(t)
dt

= u1(u2− x2x4)−A1e
γ1
x4 (x2x4)

0.5−A2e
γ2
x4 (x2x4)

0.25 (5.9b)

dx3(t)
dt

=−u1x3x4 +A1e
γ1
x4 (x2x4)

0.5−A3e
γ3
x4 (x3x4)

0.5 (5.9c)

dx4(t)
dt

=
u1

x1
(1− x4)+

B1

x1
e

γ1
x4 (x2x4)

0.5+ (5.9d)

B2

x1
e

γ2
x4 (x2x4)

0.25 +
B3

x1
e

γ3
x4 (x3x4)

0.5− B4

x1
(x4−u3)

where x1, x2, x3, and x4 are the dimensionless gas density, ethylene concentration, ethylene oxide

concentration, and temperature inside the reactor, respectively. The reactor manipulated inputs are

the dimensionless volumetric flow rate of the inlet stream u1, the dimensionless concentration of

ethylene in the inlet stream u2, and the dimensionless coolant temperature u3. The manipulated

inputs are constrained to belong to the following sets: 0.0704 ≤ u1 ≤ 0.7042, 0.2465 ≤ u2 ≤

2.4648, 0.6 ≤ u3 ≤ 1.1. Table 5.1 lists the values of the process parameters. The reactor has an

asymptotically stable steady-state at [x1s x2s x3s x4s] = [0.998 0.424 0.032 1.002] corresponding to

the manipulated input values of [u1s u2s u3s] = [0.35 0.5 1.0].

Table 5.1: Dimensionless Parameters of the Ethylene Oxidation CSTR.

A1 = 92.8 B2 = 10.39 γ2 =−7.12

A2 = 12.66 B3 = 2170.57 γ3 =−11.07

A3 = 2412.71 B4 = 7.02

B1 = 7.32 γ1 =−8.13

The control objective is to maximize the average yield of ethylene oxide by operating the

reactor in a time-varying manner around the open-loop stable steady-state. Over a time period

from t0 to te, this average yield is given by:
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Y (te) =

∫ te

t0
u1(τ)x3(τ)x4(τ) dτ∫ te

t0
u1(τ)u2(τ) dτ

(5.10)

te is an integer multiple of t f which is the length of an operating period. In addition, we consider

that there is a limitation on the amount of ethylene that may be fed to the rector during the length

of an operating period t f . Therefore, the time-averaged molar flow rate of ethylene that can be fed

to the reactor should satisfy the following material constraint:

1
t f

∫ jt f

( j−1)t f

u1(τ)u2(τ) dτ = u1su2s = 0.175 (5.11)

where j is the operating period number ( j = 1,2, . . .). Since the material constraint of Eq. 5.11 fixes

the average amount of ethylene fed to the reactor over the operating period t f , the economic cost

that the LEMPC attempts to maximize such that the ethylene oxide yield is maximized becomes:

∫ te

t0
Le(x,u) =

∫ te

t0
u1(τ)x3(τ)x4(τ)dτ (5.12)

We assume that the reactor first-principles model in Eq. 5.9 is unavailable for control design.

Therefore, the empirical model is used to design the LEMPC with the objective function and

constraints mentioned above. To construct an empirical model that captures the process dynamics

accurately in a region local to the stable steady-state, a large sequence of step inputs with varying

magnitudes was applied to the reactor in order to excite the important dynamics and capture them

in the empirical model. After collecting the input/output data points, the initial (i = 1) state-

space linear empirical model of the reactor was obtained using the ordinary multivariable output

error state-space (MOESP)43 algorithm. Model validation was then conducted using various step,

impulse, and sinusoidal input responses. The initial empirical model obtained is given by the
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following constant matrices:

A1 =



−0.349 0.00051 0.00825 −0.349

−0.00488 −0.374 0.0374 −0.369

0.00109 0.0213 −0.452 0.0653

−0.0078 0.0259 0.0204 −7.24



B1 =



−0.00011 −0.000149 −0.0239

0.0757 0.349 −0.0194

−0.0315 0.000208 0.00426

−0.0173 −0.00264 6.529



(5.13)

The stabilizing control law used in the LEMPC is designed based on the empirical model of

Eq. 5.13 since we assumed that the reactor first-principles model of Eq. 5.9 is unavailable. The

stabilizing control law is represented by the vector hT
L1(x) = [hL1,1(x) hL1,2(x) hL1,3(x)]. In order

to meet the material constraint of Eq. 5.11 on the available feedstock, both hL1,1(x) and hL1,2(x)

were set to their steady-state values. The linear quadratic regulator (LQR) was used in designing

the third control law hL1,3(x) using the A1 matrix and the third column of the B1 matrix as the

system matrices. Both LQR weighting matrices Q and R were taken to be the identity matrix.

The resulting control law for the heat input is: u3 = hL1,3(x) = −K(x− xs)+u3s, with K equal to

[-0.287 -0.276 0.023 0.405]. The closed-loop stability region is characterized using the quadratic

Lyapunov function V̂ (x) = (x− xs)
T P(x− xs) where the positive definite matrix P is P=diag[20

30 40 10]. Through extensive closed-loop simulations of the reactor system under the stabilizing

control law hL1(x), the level sets Ωρ̂1 and Ωρ̂e1 were chosen to have ρ̂1 = 96.1 and ρ̂e1 = 87.4. In

these regions, the reactor first-principles nonlinear dynamics of Eq. 5.9 are well-captured by the

linear empirical model of Eq. 5.13.

To compare the closed-loop performance of the process even in the presence of actuator faults

when an LEMPC based on a linear empirical model is used instead of an LEMPC based on the

first-principles model, two LEMPC schemes, one of the form of Eq. 5.6 and the other of the
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form of Eq. 5.5, were designed for the CSTR with the cost function of Eq. 5.12 and the material

constraint of Eq. 5.11 to compare closed-loop behavior. The first LEMPC initially utilized the

model of Eq. 5.13 to predict the values of the process states throughout the prediction horizon,

while the second LEMPC utilized the first-principles model of Eq. 5.9 (though both used the same

Lyapunov-based controller and stability region). All LEMPC designs presented in this chemical

process example use a prediction horizon of N = 10, a sampling period of ∆= 0.1, and an operating

period of 100 sampling periods (t f = 10). The open-source optimization solver IPOPT119 was

used in solving the LEMPC optimization problems at each sampling time. The empirical LEMPC

and the first-principles LEMPC were both applied to the CSTR model of Eq. 5.9. Closed-loop

simulations of the reactor under each LEMPC design were performed starting from the open-loop

stable steady-state xT
I = [x1I x2I x3I x4I] = [0.997 1.264 0.209 1.004]. Simulations were performed

using the Explicit Euler numerical integration method with an integration step size of h = 10−4.

In order to demonstrate the effect of actuator faults on controlling the process using empirical

models and the need to re-identify a new model on-line after a fault occurs, the reactor was simu-

lated for four operating periods under the empirical LEMPC design. After three operating periods,

an actuator fault is assumed to occur causing the heat input to stay at the steady-state value (i.e.,

u3 = 1). After that, the reactor was operated in closed-loop using the empirical LEMPC design with

u3 set to its steady-state value in the empirical model defined by A1 and B1 (Eq. 5.13). For com-

parison, the closed-loop state and input trajectories were simulated for the first-principles LEMPC,

including u3 set to its steady-state value after three operating periods in the first-principles model

for the LEMPC. For the first three operating periods (i.e., before the fault), the empirical and first-

principles LEMPC’s compute very similar input trajectories resulting in similar closed-loop state

trajectories under both controllers, as shown in Figs. 5.1-5.2. This indicates that before the fault,

the LEMPC with an empirical model is an effective control design for the reactor process. The

reactor input and state trajectories under both the empirical and first-principles LEMPC’s when

u3 = u3s after the first three operating periods are also depicted in Figs. 5.1-5.2, and they exhibit

significant differences, indicating significant plant-model mismatch and resulting in less yield of
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the final desired product under the empirical LEMPC. This demonstrates the need to re-identify

the model on-line.

Based on the above simulations, it is expected that the closed-loop performance of the ethylene

oxide production process under LEMPC with an empirical model would benefit from the use of the

error-triggered on-line model identification procedure after a process fault. Therefore, simulations

of the ethylene oxide process under the implementation strategy presented in this chapter were

performed. Specifically, a moving horizon error detector was designed and initiated after M = 40

input/output data points were available to calculate the value of ed at each sampling period to deter-

mine when it is necessary to trigger re-identification of the empirical process model. Simulations

of the reactor suggested that significant plant-model mismatch was indicated when the value of

ed exceeded 3 and thus, this value was chosen as the threshold to trigger model re-identification.

When on-line model identification was triggered, input/output data collected after the occurrence

of the fault were used to identify a new model. The moving horizon error detector calculates the

relative prediction error in the gas density in the reactor, ethylene concentration, ethylene oxide

concentration, and the reactor temperature throughout the current and past 40 sampling periods as

follows:

ed(tk) =
40

∑
r=0

[ |x1p(tk−r)− x1(tk−r)|
|x1(tk−r)|

+
|x2p(tk−r)− x2(tk−r)|

|x2(tk−r)|

+
|x3p(tk−r)− x3(tk−r)|

|x3(tk−r)|
+
|x4p(tk−r)− x4(tk−r)|

|x4(tk−r)|
]

(5.14)

The initial empirical model utilized within the LEMPC coupled with the moving horizon error

detector/on-line model re-identification strategy was again A1 and B1, and the reactor was again

initiated from xI . As in the above simulation, after three operating periods (i.e., at the beginning

of the 4th operating period), an actuator fault occurs, causing the heat input to stay at the steady-

state value (i.e., u3 = 1) for three operating periods. The LEMPC was apprised of the fault in

the actuator corresponding to u3 and the value of u3 in the linear empirical model utilizing the

A1 and and B1 matrices was subsequently set to the value u3s at which it was stuck. The first six
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operating periods depicted in Fig. 5.3 show the increase in ed after the fault occurrence, leading it

to eventually exceed its threshold and trigger on-line model re-identification that resulted in a sharp

drop in the prediction error. The following model was identified using the post-fault input/output

data:

A2 =



−149.8 −1.30 −6.71 −0.347

−2276 20.3 72.9 −0.235

1469 −13.4 −59.8 0.0220

−120.3 −1.10 14.2 −7.31


, B2 =



−0.0021 −0.004

0.0454 0.202

0.0018 0.062

0.0188 0.008


(5.15)

Notably, in accordance with Step 4 of the implementation strategy presented in this chapter, the B2

matrix has one less column than the B1 matrix due to the loss of availability of u3 as a manipulated

input.

It was noted in Remark 19 that the error-triggered on-line model re-identification procedure

can be used not only for handling actuator faults, but also for handling other disturbances and

plant variations, even sudden changes in the process dynamics that do not affect the number of on-

line actuators. Therefore, the error-triggered on-line model re-identification procedure for use in

LEMPC provides a unified framework for dealing with many different root causes of reduced accu-

racy of state predictions from linear empirical models. To demonstrate how this unified framework

can be implemented, we followed the six operating periods related to the process fault discussed

above with six more operating periods (for a total simulation length of 12 operating periods) in

which the actuator u3 remained stuck (i.e., unavailable as a manipulated input by the LEMPC),

but we assumed that it was subjected to disturbances that caused it to take two other known values

throughout these six operating periods (e.g., a valve utilized in setting u3 experienced a large degree

of stiction but slipped to two new values due to changes in the forces applied to it twice throughout

the six operating periods). Specifically, the value of u3 changed to its maximum value of 1.1 at the

beginning of the 7th operating period and remained stuck at this value for three operating periods,

and then it changed to the value of 0.75 at the beginning of the 10th operating period and remained
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stuck at this value for another three operating periods. Throughout the six operating periods dur-

ing which the value of u3 experienced these disturbances, only one model re-identification was

triggered by the moving horizon error detector, leading to a drop in the prediction error around

the beginning of the 11th operating period as shown in Fig. 5.3 when the following model was

identified:

A3 =



−27.39 15.4 7.29 −25.8

33.39 −18.2 12.3 30.14

−16.95 −4.20 −201 2.004

−168.1 87.1 −26.4 −155.9


, B3 =



0.1771 −0.541

0.2206 −0.260

−0.018 0.0397

−0.203 0.8383


(5.16)

This model re-identification was triggered when u3 = 0.75 (i.e., no model re-identification was

triggered when u3 = 1.1), showing that the error-triggering was successful at deciding the necessity

of model updates, because even though u3 changed its value at the beginning of the 7th operating

period, no re-identification was required since the error did not exceed the threshold of ed = 3.

Because this model re-identification was not related to loss of a new actuator, B3 has the same

dimension as B2.

The input and state trajectories for the entire 12 operating periods of the reactor process of

Eq. 5.9 under the LEMPC of Eq. 5.6 with the empirical models of Eqs. 5.13, 5.15, and 5.16 subject

to the actuator fault and disturbances in the value at which u3 was stuck are presented in Figs. 5.4-

5.5. The values of ed throughout the 12 operating periods is presented in Fig. 5.3, showing the rises

of the ed values that triggered the model re-identifications and the rapid decreases of the values of

ed(tk) after each on-line model re-identification. These figures show the successful implementation

of a unified framework using the moving horizon error detector and error-triggered model updates

within LEMPC for handling both faults and other disturbances throughout time.

In addition to decreasing the plant-model mismatch due to faults and disturbances, the on-line

model identification improved the process economic performance compared to not updating the

model as presented in Table 5.2. The table lists the average yield and the maximum value of ed(tk)
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Figure 5.1: Closed-loop input trajectories for four operating periods of the reactor of Eq. 5.9 ini-
tiated from xI under the LEMPC designed with the first-principles model (solid black trajectories)
and the LEMPC designed with the empirical model in Eq. 5.13 (solid gray trajectories) where an
actuator fault occurs at the end of the 3rd operating period.
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Figure 5.2: Closed-loop state trajectories for four operating periods of the reactor of Eq. 5.9 initi-
ated from xI under the LEMPC designed with the first-principles model (solid black trajectories)
and the LEMPC designed with the empirical model in Eq. 5.13 (solid gray trajectories) where an
actuator fault occurs at the end of the 3rd operating period.
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Figure 5.3: Value of error metric ed at each sampling using the detector of Eq. 5.14 for the LEMPC
integrated with the error-triggered on-line model identification.

for the two operating periods after the first on-line model re-identification (when u3 is stuck at the

value of 1) and after the second model identification (when u3 is stuck at the value of 0.75). The

results listed are for three approaches: the “One Empirical Model” approach, in which no model

re-identification is conducted and the initial empirical model (A1 and B1) is used throughout the

12 operating periods despite the faults, the “On-line Model ID” approach, in which the proposed

on-line model re-identification approach is conducted, and the “Nonlinear Model” approach, in

which the first-principles model of Eq. 5.9 is used in the LEMPC including the changes in the

u3. These results show the significant improvement in process yield resulting from updating the

empirical model on-line compared to using the same initial empirical model throughout process

operation despite the faults.

Table 5.2: Relative prediction error and average yield for the CSTR under LEMPC.

After 1st on-line ID After 2nd on-line ID
Approach Y Max ed(tk) Y Max ed(tk)
One Empirical Model 7.16 4.76 7.23 5.03
On-line Model ID 8.31 1.98 8.21 1.82
Nonlinear Model 8.43 - 8.39 -

Remark 24 In this example, the controller hL1 was not redesigned after the actuator fault as noted

in Step 4 of the on-line model identification scheme because the closed-loop state never left Ωρ̂e1

during the simulation. The example in the next section exemplified the change in the Lyapunov-

based control law when the fault occurs.

167



0 20 40 60 80 100 120
0

0.5

1

u
1

0 20 40 60 80 100 120
0

1

2

u
2

0 20 40 60 80 100 120

0.8

1

Dimensionless Time

u
3

Figure 5.4: Closed-loop input trajectories of the reactor of Eq. 5.9 under the LEMPC us-
ing the error-triggered on-line model identification starting from xT

I = [x1I x2I x3I x4I] =
[0.997 1.264 0.209 1.004].
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Figure 5.5: Closed-loop state trajectories of the reactor of Eq. 5.9 under the LEMPC us-
ing the error-triggered on-line model identification starting from xT

I = [x1I x2I x3I x4I] =
[0.997 1.264 0.209 1.004].
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5.5 Application of Error-Triggered On-Line Model Identifica-

tion when the Fault Value is Unknown: CSTR Example

In this section, we use a chemical process example to demonstrate the application of the proposed

error-triggered on-line model identification for fault-tolerant LEMPC when the value at which the

actuator is stuck is unknown. The example is a non-isothermal, well-mixed continuous stirred tank

reactor (CSTR) in which an irreversible second-order exothermic reaction takes place converting

the reactant A to the desired product B. An inert solvent containing the reactant A with a concen-

tration CA0 is fed to the reactor at a feed volumetric flow rate F and a temperature T0. The CSTR

is heated/cooled by a heating jacket that supplies/removes heat at a heat rate Q. The liquid inside

the CSTR is assumed to have constant heat capacity Cp, volume V , and density ρL. The CSTR

dynamic model, derived from mass and energy balances, that describes the reactant concentration

CA and temperature T evolution with time is presented below:

dCA

dt
=

F
V
(CA0−CA)− k0e−E/RgTC2

A (5.17a)

dT
dt

=
F
V
(T0−T )− ∆Hk0

ρLCp
e−E/RgTC2

A +
Q

ρLCpV
(5.17b)

where the parameters k0, E and ∆H denote the reaction pre-exponential factor, activation energy

and the enthalpy of the reaction, respectively. The values of the process parameters are listed in

Table 5.3. The reactor inlet concentration CA0 and heat supply/removal rate Q are the manipu-

lated inputs, which are constrained by the following maximum and minimum values: 0.5≤CA0 ≤

7.5 kmol/m3 and −5.0× 105 ≤ Q ≤ 5.0× 105 kJ/hr. The reactor is operated around the open-

loop asymptotically stable steady-state [CAs Ts] = [1.2 kmol/m3 438.0 K] which corresponds to the

input values [CA0s Qs] = [4.0 kmol/m3 0.0 kJ/hr]. We rewrite the CSTR state and input vectors in

deviation from this steady-state as xT = [CA−CAs T −Ts] and uT = [CA0−CA0s Q−Qs], in order

to translate the origin to be the equilibrium of the unforced system. The process dynamic model

of Eq. 5.17 and all empirical models in this example are numerically integrated using the explicit
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Euler method with an integration time step of hc = 10−4 hr.

Table 5.3: Parameter values of the CSTR.

F = 5.0 m3

hr k0 = 8.46×106 m3

kmol hr

T0 = 300 K ∆H =−1.15×104 kJ
kmol

V = 1.0 m3 E = 5.0×104 kJ
kmol

Cp = 0.231 kJ
kg K ρL = 1000 kg

m3

R = 8.314 kJ
kmol K

The control objective is to maximize the time-averaged production rate of the desired product

B (the process profit). Therefore, the production rate of B is used to design the cost function of the

LEMPC and is given by:

∫ tk+N

tk
Le(x,u) dτ =

1
(tk+N− tk)

∫ tk+N

tk
k0e−E/RgT (τ)C2

A(τ) dτ . (5.18)

We also consider that there is a limitation on the amount of reactant material that may be fed to the

reactor in a given period of operation of length tp = 1 hr. Therefore, the inlet concentration input

trajectory is restricted by the following material constraint:

1
tp

∫ tp

0
u1(τ) dτ = 0.0 kmol/m3. (5.19)

The purpose of this constraint is to limit the amount of reactant material fed to the reactor over each

operating period tp = 1 hr to be equal to the amount that would be fed for steady-state operation.

The reactor first-principles model in Eq. 5.17 is assumed to be unavailable, with the result

that an empirical model for the system must be identified to develop an LEMPC with the above

objective and constraints. Therefore, a series of step inputs were generated and applied to the

CSTR and the corresponding outputs were collected in order to identify a linear time-invariant

state-space model that captures the process dynamics in a state-space region around the steady-

state. Using these input and output data points, the ordinary multivariable output error state-space
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(MOESP)43 algorithm was implemented to produce a linear empirical model for the reactor of

Eq. 5.17. This initial (i = 1) model of the reactor is described by the following matrices:

A1 =

−34.5 −0.473

1430 18.1

 , B1 =

 5.24 −8.1×10−6

−11.6 0.457

 (5.20)

Model validation was conducted using step, impulse, and sinusoidal inputs. This empirical

model is used to design the Lyapunov-based controller for the LEMPC design since it is assumed

that the reactor first-principles model of Eq. 5.17 is unavailable. The Lyapunov-based controller

consisted of both inputs following the control law hT
L1(x) = [hL1,1(x) hL1,2(x)], where the reactant

inlet concentration hL1,1(x) was fixed at 0.0 kmol/m3 to meet the material constraint of Eq. 5.19.

For the heat rate supply/removal rate, the following control law was used:27

hL1,2(x) =


−

L f̃ V̂ +
√

L f̃ V̂ 2 +Lg2V̂ 4

Lg2V̂
, if Lg2V̂ 6= 0

0, if Lg2V̂ = 0

(5.21)

where the vector function f̃ : Rn→Rn and the matrix function g : Rn→Rn×m are defined as follows:

dx(t)
dt

= Ax︸︷︷︸
=: f̃ (x)

+ B︸︷︷︸
=:g(x)

u , (5.22)

and g2(x) is the second column of the B matrix. L f̃ V̂ and Lg2V̂ are the Lie derivatives of the Lya-

punov function V̂ (x) with respect to f̃ (x) and g2(x), respectively. A quadratic Lyapunov function

of the form V̂ (x) = xT Px is used, where P is the following positive definite matrix:

P =

 1060 22

22 0.52

 (5.23)

Through extensive closed-loop simulations of the reactor system under the control law hL1(x),
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the level sets Ωρ̂e1 and Ωρ̂1 of the Lyapunov function V̂ were chosen to have ρ̂e1 = 55 and ρ̂1 =

64.32. In this region, the nonlinear dynamics of Eq. 5.17 are well-captured by the linear empirical

model of Eq. 5.20.

In this example, the LEMPC design in Eq. 5.6 that also incorporates the material constraint of

Eq. 5.19 is applied to the process in Eq. 5.17. We will demonstrate the case where a fault occurs

in u2. When such a fault occurs, another stabilizing control law that is based on u1 needs to be

designed to implement Mode 2 of the LEMPC if the closed-loop state exits Ωρ̂e1 . The stabilizing

control law is of the following form:

hL1,1(x) =


−

L f̃ V̂ +
√

L f̃ V̂ 2 +Lg1V̂ 4

Lg1V̂
, if Lg1V̂ 6= 0

0, if Lg1V̂ = 0

(5.24)

where g1(x) is the first column of the B matrix and V̂ , Ωρ̂e1 and Ωρ̂1 are the same as mentioned

above. After the fault occurs, u1 is the only manipulated input that is available both to maximize

the profit and also to keep the state inside the stability region Ωρ̂1 , and therefore, the manipulated

input trajectories calculated by the LEMPC with an empirical model may require u1 to utilize

more material than it is constrained to use by the material constraint of Eq. 5.19 (i.e., the LEMPC

optimization problem may become infeasible in the second half of the operating periods after the

occurrence of the fault in u2). When the optimization problem becomes infeasible, a different

optimization problem is solved to determine the value of u1 to apply to the process, with the form

of Eq. 5.6, without the material constraint of Eq. 5.19, and with the stage cost Le(x,u) = u2
1(τ)

instead of the stage cost in Eq. 5.18. Mode 2 is continuously implemented so that this control

design minimizes the amount of feedstock material utilized while seeking to stabilize the closed-

loop system. For all of the simulations presented below, the LEMPC is designed using a prediction

horizon of N = 10 and a sampling period of ∆ = 0.01 hr. The open-source optimization solver

IPOPT119 was used in solving the LEMPC optimization problems at each sampling time.

The CSTR was initialized from the open-loop stable steady-state and was controlled using the
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LEMPC designed with the cost function of Eq. 5.18 and the material constraint of Eq. 5.19. The

LEMPC utilizes the model of Eq. 5.20 to predict the values of the process states throughout the

prediction horizon. A moving horizon error detector that calculates ed at each sampling time to

determine when it is necessary to trigger re-identification of the empirical process model was de-

signed and initiated after M = 50 input/output data points were available. Simulations of the CSTR

suggested that significant plant-model mismatch was indicated when the value of ed exceeded 3

and thus, this value was chosen as the threshold to trigger model re-identification. The moving

horizon error detector calculates the relative prediction error in the concentration and temperature

throughout the past 50 sampling periods and current sampling time as follows:

ed(tk) =
50

∑
r=0

[ |Tp(tk−r)−T (tk−r)|
|T (tk−r)|

+
|CAp(tk−r)−CA(tk−r)|

|CA(tk−r)|
] (5.25)

The initial empirical model utilized within the LEMPC coupled with the moving horizon error

detector/on-line model re-identification strategy was A1 and B1. After two operating periods (i.e.,

at the beginning of the 3rd operating period), an actuator fault occurs, causing the heat input to

stay at the value of Q = 4.0×104 kJ/hr for the next two operating periods. As mentioned above,

this example assumes that the value at which Q became stuck is unknown, and therefore, the

LEMPC continues to solve for both u1 and u2 after the fault, but only u1 is implemented since a

fault has occurred in u2. Fig. 5.10 shows the increase in ed after the fault occurrence, leading it to

eventually exceed its threshold and trigger on-line model re-identification, using input/output data

collected after the occurrence of the fault, which resulted in a sharp drop in the prediction error.

The following model was identified using the post-fault input/output data:

A2 =

 678.6×10−3 12.89

−4.378×10−3 1.168

 , B2 =

 26.35×10−3

−1.700×10−7

 (5.26)

Notably, in accordance with Step 4 of the implementation strategy presented in this chapter,

the B2 matrix has one less column than the B1 matrix due to the loss of availability of u2 as

a manipulated input. When the empirical models were re-identified, the controller of Eq. 5.21
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was replaced with that of Eq. 5.24 based on the new empirical model. The same value of V̂

was used for all simulations. The input and state trajectories for the reactor process under the

LEMPC of Eq. 5.6 with the empirical models of Eqs. 5.20 and 5.26 (with the changes in the

LEMPC when infeasibility occurs as noted above) subject to the actuator fault in u2 are presented

in Figs. 5.6-5.9. Fig. 5.10 shows the value of ed throughout time under the proposed approach,

which shows the growth of ed that triggered the model re-identification. The new model (A2 and

B2) that was obtained from input and output data collected after the fault occurrence was able

to capture the process dynamics corresponding to the new conditions and caused the values of

ed(tk) to decrease rapidly afterwards. In addition, Fig. 5.11 shows the evolution of the state-space

trajectories within the level sets Ωρ̂1 and Ωρ̂e1 during process operation. This figure shows that the

state was maintained within the stability region Ωρ̂1 under the proposed scheme. Infeasibility of

the LEMPC with the material constraint occurred in the third and fourth hours of operation, during

which the material constraint of Eq. 5.19 was violated by 0.08 kmol/m3 and 0.047 kmol/m3,

respectively (i.e., 1
1 hr

∫ 3 hr
2 hr u1(τ) dτ = 0.08 kmol/m3 for the third hour and 1

1 hr
∫ 4 hr

3 hr u1(τ) dτ =

0.047 kmol/m3 for the fourth hour), resulting in use of the modified LEMPC design discussed

above.

In addition to decreasing the plant-model mismatch due to faults, the on-line model identifica-

tion procedure improved the process economic performance compared to not updating the model

as presented in Table 5.4. The results listed are for two approaches: the “One Empirical Model”

approach, in which no model re-identification is conducted and the initial empirical model (A1

and B1) is used throughout the operating periods, despite the fault (i.e., the LEMPC calculates

both u1 and u2 despite the fault) and the “On-line Model ID” approach, in which the proposed

on-line model re-identification approach is employed. These results show the significant improve-

ment in the profit resulting from updating the empirical model on-line compared to using the

same initial empirical model throughout process operation despite the faults. Table 5.4 shows the

time-averaged profit (denoted by Je), the maximum value of ed and the amount of material used

( 1
1 hr

∫ 4 hr
3 hr u1(τ) dτ) for each approach throughout the last hour of operation, where Je in this table
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is given by:

Je =
1

1 hr

∫ 4 hr

3 hr
k0e−E/RgT (τ)C2

A(τ)dτ. (5.27)
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Figure 5.6: Closed-loop input trajectory (u1 = CA0 −CA0s) of the reactor of Eq. 5.17 un-
der the LEMPC using the error-triggered on-line model identification starting from [CAs Ts] =
[1.2 kmol/m3 438.0 K] with Q = 4.0×104 kJ/hr after the fault.
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Figure 5.7: Closed-loop input trajectory (u2 = Q − Qs) of the reactor of Eq. 5.17 under
the LEMPC using the error-triggered on-line model identification starting from [CAs Ts] =
[1.2 kmol/m3 438.0 K] with Q = 4.0×104 kJ/hr after the fault.
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Figure 5.8: Closed-loop state trajectory (x1 = CA −CAs) of the reactor of Eq. 5.17 under
the LEMPC using the error-triggered on-line model identification starting from [CAs Ts] =
[1.2 kmol/m3 438.0 K] with Q = 4.0×104 kJ/hr after the fault.

To demonstrate the ability of the moving horizon error detector to indicate significant prediction

errors and determine when it is necessary to update the model on-line, another simulation of the
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Figure 5.9: Closed-loop state trajectory (x2 = T − Ts) of the reactor of Eq. 5.17 under
the LEMPC using the error-triggered on-line model identification starting from [CAs Ts] =
[1.2 kmol/m3 438.0 K] with Q = 4.0×104 kJ/hr after the fault.
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Figure 5.10: Value of error metric ed at each sampling using the detector of Eq. 5.25 for the
LEMPC integrated with the error-triggered on-line model identification with Q = 4.0×104 kJ/hr
after the fault.

Table 5.4: Relative prediction error, average profit and amount of material used for the CSTR under
LEMPC during the 4th hour of operation.

Approach Je Max ed(tk) 1
1 hr

∫ 4 hr
3 hr u1(τ) dτ

One Empirical Model 14.94 3.92 0.089
On-line Model ID 15.49 3.01 0.047

CSTR of Eq. 5.17 is considered. The CSTR was initialized from the same open-loop stable steady-

state and was controlled using the same LEMPC architecture mentioned above with the same initial

model (A1 and B1). The moving horizon error detector was initiated after M = 50 input/output data

points were available to calculate the values of ed . After two operating periods, an actuator fault

is assumed to occur causing the heat input to remain at Q = 1.0× 104 kJ/hr for the next two

operating periods. The LEMPC continued to compute optimal control actions for both u1 and u2.
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Figure 5.11: State trajectories in the state-space coordinates of the closed-loop CSTR of Eq. 5.17
under the LEMPC with error-triggered on-line model identification starting from [CAs Ts] =
[1.2 kmol/m3 438.0 K] with Q = 4.0×104 kJ/hr after the fault.

This caused values of ed to increase as can be seen in Fig. 5.12. However, no re-identification was

required since the error did not exceed the threshold of ed = 3 showing that the error-triggering was

successful at deciding the necessity of model updates. The state-space trajectories of the reactor

process under the LEMPC subject to the actuator fault in the value of u2 are presented in Fig. 5.13.

The figure shows that the state was maintained within the stability region even after the fault

occurrence. In this simulation, the material constraint was not violated after the fault occurrence

(i.e., 1
1 hr

∫ 3 hr
2 hr u1(τ) dτ = 0.0 kmol/m3 for the third hour and 1

1 hr
∫ 4 hr

3 hr u1(τ) dτ = 0.0 kmol/m3

for the fourth hour).

5.6 Conclusion

In this chapter, we proposed an on-line model identification methodology that updates the empirical

models used in LEMPC on-line to overcome actuator faults. Empirical models were updated on-

line based on significant prediction errors indicated by a moving horizon error detector. The error-
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Figure 5.12: Value of error metric ed at each sampling using the detector of Eq. 5.25 for the
LEMPC integrated with the error-triggered on-line model identification with Q = 1.0×104 kJ/hr
after the fault.
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Figure 5.13: State trajectories in the state-space coordinates of the closed-loop CSTR of Eq. 5.17
under the LEMPC with error-triggered on-line model identification starting from [CAs Ts] =
[1.2 kmol/m3 438.0 K] with Q = 1.0×104 kJ/hr after the fault.

triggered on-line model identification methodology can be applied to overcome different actuator

fault scenaria that occur in practice, including the case where the value at which the actuator is

stuck is known and the case where the value at which the actuator is stuck is unknown. Applications

were demonstrated for both cases using two chemical process examples under LEMPC. In the first

example, a benchmark chemical process was used to demonstrate the application of the proposed
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scheme in the case where the value at which the actuator is stuck is known. In the second example,

another chemical process was used to demonstrate the application of the proposed scheme in the

case where the value at which the actuator is stuck is unknown. The chemical process examples

presented the ability of the proposed scheme to detect when it is necessary to update the empirical

model on-line in response to operational variations caused by actuator faults and/or disturbances.

Improved state predictions and economic performance were obtained under the proposed scheme

compared to using one empirical model throughout operation despite the actuator faults. The

examples show the successful implementation of a unified framework using the moving horizon

error detector and error-triggered model updates within LEMPC for handling faults.
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Chapter 6

Integrating Production Scheduling and

Process Operation via Economic Model

Predictive Control

6.1 Introduction

Dynamic product demand changes have made it necessary to increase the operational management

efficiency and plant economic performance in the chemical and petrochemical industry. This has

led process systems engineers in both academia and industry to develop technologies that aim to

economically optimize process operation and allow for real-time energy management. Integrating

feedback process control strategies with plant economic optimization serves as one approach for

achieving optimal process operation. Economic model predictive control (EMPC) is a fairly recent

control strategy that integrates dynamic economic plant optimization and a feedback control policy

by utilizing an economics-based cost and the process dynamic model to predict the plant evolu-

tion. EMPC has gained attention due to its ability to yield optimal time-varying operation while

accounting for operational constraints and ensuring closed-loop stability (e.g.,14, 22, 49, 122–127).

Production management subject to demand changes plays a crucial role in industry.90–93 Shifts
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in demand and supply of certain products occur constantly and finding reliable methods to achieve

the desired production has become necessary.94, 95 It has become common in the chemical indus-

try to produce multiple products from the same plant in both batch and continuous processes91, 93

such as the production of multiple grades of polyethylene.96 Various studies have considered the

integration of planning and scheduling in supply chain optimization to achieve economically opti-

mal operational management in response to the desired demand.90, 93–95 Some methods proposed

in this context have been inspired by process control design methodologies, such as modeling the

dynamic production in supply chains and using classical process control strategies to manage and

control the supply chain.97 In addition, several frameworks that use advanced control and optimiza-

tion strategies have been proposed for scheduling in order to optimize the decision-making process

while accounting for practical constraints and limitations.93, 94 Furthermore, a rolling horizon ap-

proach solved using multiparametric programming with uncertainties in both the disturbances and

initial states was investigated for reactive scheduling.98 Scheduling of industrial electricity use,

with a case study for the energy-intensive chlor-alkali process, was also investigated in99 by con-

sidering contracts between industrial consumers and electricity producers with price penalties in

use over the contract in the scheduling problem.

After solving the planning and scheduling problem, process control strategies are used to drive

the plant to follow the desired production schedule. Scheduling and control are two crucial ele-

ments that serve the same overall goal of maximizing plant economics while meeting the customer

demand. Linking the control problem with the scheduling problem by accounting for the control

layer in the scheduling layer to improve economics has been considered.100 Solving the control

and scheduling problems simultaneously while accounting for the nonlinear dynamics of processes

in order to find optimal steady-states and optimal product and states transitions has been consid-

ered.101, 102 Integrating process design with control and scheduling has also been investigated.103

Extensive research efforts have been dedicated recently to developing reliable methods that could

track desired production set-points that correspond to different operating conditions.91, 105, 106 The

use of multiple Lyapunov-based nonlinear controllers to achieve the desired schedule where each
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nonlinear controller is equipped with a Lyapunov function corresponding to the region of operation

has been studied in.107 Demand management through production scheduling and closed-loop pro-

cess control while accounting for the cost of transition between different production levels has also

been proposed in.106 This concept can be used for demand response of industrial electricity cus-

tomers.108 In addition, several studies have considered the use of model predictive control (MPC)

in tracking the desired production schedule while accounting for input/output constraints.90, 91, 105

The use of a low-dimensional time scale-bridging model (SBM) in a scheduling-oriented MPC in

order to link control with scheduling and capture the closed-loop dynamics over the longer time

scales of the scheduling problem has been considered in.90 Integrating scheduling and control

for continuous processes under dynamic product demand changes was proposed where a model

predictive control was used to track the schedule set-points.91 Another application of combining

scheduling with control is for a post-combustion CO2 capture process.110

Typically, only a subset of the components of the total process state vector is required to fol-

low a production schedule. Therefore, there is a potential in many processes to meet the desired

schedule while achieving economically optimal process operation. In this chapter, we propose an

approach that achieves maximizing plant economics while meeting the desired production sched-

ule using economic model predictive control (EMPC). The EMPC framework tracks production

schedules for the desired states while maximizing economics with respect to the rest of the states

within manifolds in the process state-space that maintain the requested schedule. Practical consid-

erations that should be introduced at the operating or scheduling level when the EMPC for schedule

management is used are discussed. Sufficient conditions for feasibility and closed-loop stability

of a nonlinear process under the proposed LEMPC formulation are derived for the case that the

times at which the schedule switches occur are known a priori and the case that they are not. The

LEMPC with production schedule management method is applied to a chemical process example

and closed-loop simulations demonstrate closed-loop stability of the process while following the

desired production schedule and maximizing economics.

182



6.2 Preliminaries

6.2.1 Notation

The symbol xT is used to denote the transpose of the vector x. The 2-norm of a vector is denoted

by the operator | · |. A continuous function α : [0,a)→ [0,∞) is called a class K function if it

is strictly increasing and α(0) = 0. The symbol Ωρ is used to denote a level set of a sufficiently

smooth scalar function V (x) (Ωρ := {x ∈ Rn : V (x)≤ ρ}). The symbol ∆ > 0 denotes the sampling

period.

6.2.2 Class of Systems

The class of nonlinear systems considered in this chapter is described by nonlinear ordinary differ-

ential equations of the following form:

dx
dt

= f (x,u,w) (6.1)

where x ∈ Rn and u ∈ Rm are the system state and manipulated input vectors respectively. The

vector w ∈ Rl denotes the disturbance vector. Actuator constraints on the control energy available

are considered by restricting the control actions to belong to the convex set U := {u ∈ Rm : umin
i ≤

ui ≤ umax
i , i = 1, . . . ,m}. The disturbance vector is assumed to be bounded (i.e., w ∈W := {w ∈

Rl : |w(t)| ≤ θ ∀ t}). The origin is taken to be an equilibrium of the unforced system of Eq. 6.1

(i.e., f (0,0,0) = 0). At each sampling time tk = k∆, k = 0,1, . . ., measurements of the state vector

x(tk) are assumed to be available.

The class of nonlinear systems studied is restricted to stabilizable nonlinear systems for which

there exists a controller h(x) ∈U that can render the origin of the nominal (w(t)≡ 0) closed-loop

system of Eq. 6.1 asymptotically stable in the sense that there exists a sufficiently smooth Lyapunov
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function V : Rn→ R+ that satisfies the following inequalities:30, 111

α1(|x|)≤V (x)≤ α2(|x|), (6.2a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|), (6.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (6.2c)

for all x in an open neighborhood D ⊆ Rn that includes the origin and α j(·), j = 1, 2, 3, 4, are

class K functions. Various stabilizing controllers that take into account input constraints have

been developed for several classes of nonlinear systems.10, 12, 27 The stability region of the closed-

loop system is taken to be the level set Ωρ ⊂ D where V̇ < 0. The origin of the system of Eq. 6.1

is rendered practically stable31 when the controller h(x) is applied in a sample-and-hold fashion

for a sufficiently small sampling period. The function f is assumed to be locally Lipschitz on

Ωρ ×U×W .

In this chapter, it is assumed that the values of the first ns states of the state vector x (i.e.,

xi, i = 1, . . . ,ns) are required to be maintained at certain values xidesired , i = 1, . . . ,ns, which change

at specific points in time corresponding to a production schedule. For every set of values xidesired , i=

1, . . . ,ns, within the schedule, we assume that a steady-state of the nominal system of Eq. 6.1 exists

at which the states xi, i= 1, . . . ,ns, have the required values. The origin of the system of Eq. 6.1 can

be translated to have its equilibrium at each of these steady-states corresponding to the schedule.

We assume that for each steady-state, there exists a stabilizing controller that can make that steady-

state asymptotically stable, with a corresponding Lyapunov function. With some abuse of notation,

we will denote in this chapter the deviation of the state from the currently desired steady-state by

x and will use the notation (e.g., f , V , h, D, Ωρ , and α j, j = 1, 2, 3, 4) developed in the above

discussion for the case that the equilibrium was at the origin of the original system to denote

analogous regions or functions for each deviation variable x. With this convention, it is assumed

that the Lyapunov function and stabilizing controller for each steady-state satisfy Eq. 6.2.
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Because f is Lipschitz continuous, V is sufficiently smooth, and x, u, and w are bounded within

compact sets, there exist M > 0, Lx > 0, Lw > 0, L′x > 0 and L′w > 0 such that:

| f (x,u,w)| ≤M (6.3)

| f (x1,u,w)− f (x2,u,0)| ≤ Lx|x1− x2|+Lw|w| (6.4)∣∣∣∣∂V (x1)

∂x
f (x1,u,w)−

∂V (x2)

∂x
f (x2,u,0)

∣∣∣∣
≤ L′x|x1− x2|+L′w|w|

(6.5)

for all x,x1,x2 ∈Ωρ , u ∈U , and |w| ≤ θ .

6.2.3 Economic Model Predictive Control

Economic model predictive control (EMPC) is a model predictive control (MPC) strategy for

which the objective function is based on economics and does not have its minimum at the eco-

nomically optimal steady-state of the process. To address feasibility and closed-loop stability of

a process under such a controller, a variety of constraints have been investigated, but a general

formulation of EMPC is as follows:114

min
u∈S(∆)

∫ tk+N

tk
−Le(x̃(τ),u(τ)) dτ +Vf (x̃(tk+N)) (6.6a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (6.6b)

x̃(tk) = x(tk) (6.6c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (6.6d)

g(x̃(t),u(t))≤ 0, ∀ t ∈ [tk, tk+N ] (6.6e)

where the stage cost Le(x̃(τ),u(τ)) (Eq. 6.6a) represents the process profit, and Vf (x̃(tk+N)) is a

terminal penalty evaluated at the predicted state x̃ at the end of the prediction horizon of length N

(where the prediction x̃(t) is the solution of the nominal process model of Eq. 6.6b at time t given
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the initial condition of Eq. 6.6c obtained from a state measurement at time tk). The constraint of

Eq. 6.6d ensures that the process inputs, which are the decision variables u (u(·) ∈ S(∆) signi-

fies that the decision variables are piecewise constant vectors with period ∆) of the EMPC meet

the input constraints. The function g(x,u) represents any additional constraints that may be in-

cluded within the EMPC. Three constraints that are often used within EMPC for stability purposes

and can be represented by g are a terminal equality constraint,50 a terminal region constraint,49

and Lyapunov-based constraints20 (for the terminal equality constraint and Lyapunov-based con-

straints, Vf is not usually included114). Other types of constraints or considerations for EMPC are

addressed in.14, 114

6.2.4 Lyapunov-based EMPC

Though this chapter will address scheduling management in the context of EMPC in general, the

formulation of EMPC with Lyapunov-based stability constraints (termed Lyapunov-based EMPC

(LEMPC)20) will receive special focus because it is straightforward for this method to prove fea-

sibility and closed-loop stability of a process under this EMPC formulation in the presence of

disturbances with an a priori characterization of the set of initial conditions for which recursive

feasibility is guaranteed. The formulation of LEMPC, incorporating Lyapunov-based stability con-
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straints based on the explicit controller h(x), is as follows:

min
u∈S(∆)

∫ tk+N

tk
−Le(x̃(τ),u(τ)) dτ (6.7a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (6.7b)

x̃(tk) = x(tk) (6.7c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (6.7d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρe (6.7e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)

≤ ∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0)

if x(tk) /∈Ωρe (6.7f)

where the notation follows that in Eq. 6.6. When a state measurement is received, either the Mode

1 (Eq. 6.7e) or the Mode 2 (Eq. 6.7f) constraint is activated based on the state location in the

state-space. Mode 1 promotes time-varying operation to maximize profit while maintaining the

state within the region Ωρe ⊂Ωρ . Mode 2 is activated when the closed-loop state escapes the Ωρe

region to force the state back into Ωρe by computing control actions that decrease the Lyapunov

function value. Ωρe is chosen to make Ωρ forward invariant in the presence of disturbances. For

additional discussion of LEMPC and a more rigorous closed-loop stability analysis, the reader can

refer to.20 The control actions calculated from the LEMPC design are applied in sample-and-hold

in a receding horizon fashion.

6.3 Schedule Management Using EMPC

In this section, we discuss the formulation of the proposed EMPC for schedule management, along

with practical and theoretical considerations. We will refer to the states that are required to follow
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a certain schedule as the scheduled states, and to those that do not have this requirement as the free

states.

6.3.1 Formulation of EMPC for Schedule Management

In this section, we present several ideas for formulating an EMPC for schedule management, all

of which are designed to meet the constraint of the scheduling problem (i.e., the first ns states

xi, i = 1, . . . ,ns, of the state vector are required to be maintained at desired values xidesired , i =

1, . . . ,ns), while simultaneously varying the remaining n−ns free states in a manner that optimizes

the process economics and ensures satisfaction of all process constraints. Using the EMPC frame-

work, meeting the schedule is thus considered to be a constraint on some states, rather than the

goal of process operation. As noted in the section “Class of Systems,” we assume that the origin

of the system of Eq. 6.1 is translated to be at a steady-state where the schedule is met so that

xidesired = 0, i = 1, . . . ,ns.

To illustrate the manner in which the free states may vary to maximize process economics

while the scheduled states satisfy the requested schedule, Fig. 6.1 presents an example with three

states (x1,x2,x3), in which the state x1 must follow a certain schedule. The original steady-state

is at the origin, and x1desired = 0. The process is initially operated in a manner that keeps x1 small

while allowing x2 and x3 to vary to maximize the process economics. At t1, the state is at the dot

on the x3 axis, and the schedule for x1 changes from x1 = 0 to a new value of x1 that corresponds

to the x1 value of the plane to the right of the origin in Fig. 6.1. As illustrated in this figure, the

state is driven to this plane to meet the required schedule, and then moves around within the plane

to optimize the process economics while continuing to meet the schedule.

Perhaps the most intuitive EMPC formulation for schedule management is one that uses a hard

constraint for the scheduled states to enforce that they must meet the schedule at all times (except

for a time during the transient between two steady-states), with either a terminal equality constraint

or terminal region constraint around the steady-state corresponding to the scheduled values for

stability purposes. This allows the free states to maximize process economics as long as they reach
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Figure 6.1: Illustration of a possible state trajectory for the closed-loop process under the EMPC
for schedule management. The process is initiated from the dot on the x3 axis and subsequently
travels along the dotted line to the plane on the right of the figure in which x1 is fixed, driving
x1 to the value required by the schedule. The state subsequently moves within the plane of fixed
x1 (solid line in the figure) to maximize the process economics with the remaining states while
continuing to meet the schedule.

the steady-state values at the end of the prediction horizon. Though this method of enforcing the

schedule as a hard constraint is intuitively appealing because it ensures that the schedule can be

met for a system without disturbances when the problem is feasible, it may result in feasibility

issues at a plant where plant-model mismatch, measurement noise, and process disturbances are

unavoidable. To avoid this, the schedule constraints and terminal equality and region constraints

discussed above could be implemented as soft constraints using the standard EMPC formulation of

Eq. 6.6. In such a case, however, the set of initial conditions from which feasibility and closed-loop

stability of a process under the EMPC could be proven would not be as straightforward to obtain

as when the soft constraints are utilized in the context of LEMPC (Eq. 6.7), so the details of an

LEMPC formulation for schedule management will be the subject of the rest of this section.

The formulation of an LEMPC that achieves the scheduling objective using a soft constraint

on the schedule (i.e., the LEMPC seeks to drive the ns states xi, i = 1, . . . ,ns, quickly to the val-

ues required by the production schedule and to maintain the states close to xidesired , i = 1, . . . ,ns,
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thereafter) is as follows:

min
u∈S(∆)

∫ tk+N

tk
−Le(x̃(τ),u(τ))+

ns

∑
i=1

αWi(x̃i(τ))
2 dτ (6.8a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (6.8b)

x̃(tk) = x(tk) (6.8c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (6.8d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρe (6.8e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)

≤ ∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0)

if x(tk) /∈Ωρe or |xi(tk)| ≥ γi, i = 1, . . . ,ns

or tk ≥ t ′ (6.8f)

where the notation follows that in Eq. 6.7. The LEMPC cost function consists of two components:

the first component Le(x̃(τ),u(τ)) represents the process profit, and the second component penal-

izes deviations of the states xi, i = 1, . . . ,ns, from the desired values xidesired = 0, i = 1, . . . ,ns. To

achieve a quick approach of the states xi, i = 1, . . . ,ns, to the required values, subject to the pro-

cess dynamics, the weighting coefficients αWi, i = 1, . . . ,ns, can be chosen such that following the

schedule (i.e., xi = xidesired , i = 1, . . . ,ns) is prioritized more than optimizing the process economics

through the cost function Le. The time t ′ in the constraint of Eq. 6.8f will be discussed in later

sections.

The states of a process operated under the LEMPC of Eq. 6.8 that are required to meet a

schedule must be maintained sufficiently close to the desired values to meet the schedule, and also

must never leave the stability region Ωρ to ensure closed-loop stability. The Mode 1 and Mode

2 constraints in Eqs. 6.8e and 6.8f ensure that both of these requirements are met. As in Eq. 6.7,

the Mode 1 and Mode 2 constraints are activated based on whether the measurement of the closed-
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loop state at tk is within Ωρe , which ensures that the state never leaves Ωρ . In addition, because the

first ns states meet their production schedule at the origin, and repeated application of the Mode

2 constraint drives the state to a small neighborhood Ωρmin of the origin,20 the Mode 2 constraint

is also activated whenever the measured value of any state that is required to meet a schedule

deviates from this schedule by more than an allowable amount γi, i = 1, . . . ,ns. This ensures that

any deviation from the schedule causes the state to be driven back toward the origin, where all

required states are within γi, i = 1, . . . ,ns, and the schedule is thus sufficiently followed (this is

guaranteed only if each γi is greater than or equal to the maximum magnitude of the corresponding

state xi in Ωρmin).

When the state measurements at tk of the first ns states are within γi, i= 1, . . . ,ns, of their sched-

uled values and the full process state is within Ωρe , the Mode 1 constraint is active, and the Mode 2

constraint is not applied. This allows control actions to be computed that vary the states to achieve

economic optimality while meeting the schedule. If the weights αWi, i = 1, . . . ,ns, are appropri-

ately chosen, the LEMPC will choose control actions that prevent the values of xi, i = 1, . . . ,ns,

from becoming large, which means that the economic optimization will primarily adjust the n−ns

states that do not need to follow a schedule to attain economic optimality while continuing to keep

the xi, i = 1, . . . ,ns, close to their scheduled values.

6.3.2 Schedule Changes Under EMPC for Schedule Management

Regardless of the formulation chosen for the EMPC for schedule management (Eq. 6.6 incorpo-

rating a terminal equality constraint or terminal region constraint with a hard constraint for the

scheduled states, or a soft constraint formulation in the form of Eq. 6.6 or Eq. 6.8), a key feature

of the EMPC is that it must be capable of handling changes in xi,desired , i = 1, . . . ,ns, according

to the schedule to meet changes in demand or product or resource pricing. For all of the EMPC

formulations, this requires a change in the objective function and/or constraints of the problem.

Specifically, the terminal region or equality constraints and schedule constraint will be updated if

a hard constraint formulation is used, penalties on deviations from the terminal conditions will be
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updated in the objective function if a soft constraint is used, or the Lyapunov-based constraints

will be reformulated with respect to the Lyapunov-based controller for the new steady-state if the

LEMPC of Eq. 6.8 is used. The time at which this change is required may or may not be known

by the controller a priori. Thus, some consideration must be made for the EMPC for schedule

management to determine the manner in which the switching of the control problem should occur

to avoid feasibility issues, both when the controller has prior knowledge of the switching time and

when it does not.

As mentioned previously, an EMPC formulation for schedule management of the form of

Eq. 6.6 but with either soft or hard constraints on the schedule and terminal equality or region

constraints is difficult to evaluate for feasibility considerations when operated for a process with-

out a schedule change. This is a limitation once again when the schedule changes because the set

of points for which recursive feasibility is guaranteed in the presence of process disturbances is

difficult to characterize. In addition, the set of initial conditions from which the EMPC to be im-

plemented after the schedule change will be feasible is also difficult to characterize, so the question

of when it is possible to change the schedule while maintaining feasibility of the control problem

is difficult to answer even for nominal operation. However, for the LEMPC of Eq. 6.8, the condi-

tions under which closed-loop feasibility can be maintained when the time at which it is desired to

change xi,desired is known in advance by the controller and when it is not can be explicitly derived.

When the LEMPC begins to drive the closed-loop state to a steady-state at which new values of

the scheduled states are met, the LEMPC of Eq. 6.8 is updated so that it is written with respect to

the Lyapunov-based controller and process model with the origin at the steady-state corresponding

to the new desired values of the scheduled states. For a feasible solution to the LEMPC for schedule

management to be guaranteed when this updated LEMPC begins to be used, the closed-loop state

must be contained within the stability region of the new steady-state when the LEMPC being

utilized is updated. To see this, suppose that the LEMPC of Eq. 6.8 is designed with respect

to a certain steady-state and is denoted as LEMPC1, and has stability region Ωρ1 . At time t1, the

LEMPC will be updated so that it maintains the closed-loop state within the stability region around
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a new steady-state for which the corresponding LEMPC is denoted LEMPC2 and is the LEMPC of

Eq. 6.8 but with the parameters updated for the new steady-state (e.g., the stability region is Ωρ2).

To ensure that x(t1) ∈ Ωρ1 and Ωρ2 to guarantee that there is a feasible solution to LEMPC2 at t1,

the stability regions for LEMPC1 and LEMPC2 must intersect at x(t1) to ensure that closed-loop

stability is maintained at this state under both LEMPC1 and LEMPC2.

Fig. 6.2 illustrates the overlapping of the level sets just described for the case that three schedule

changes occur. The steady-states are denoted as Xs1, Xs2, and Xs3, with corresponding stability

regions Ωρ1 , Ωρ2 , and Ωρ3 . In the figure, it is assumed that the process is driven to each steady-

state and then operated very close to that steady-state for some period of time. This means that at t1,

the state at t1 (which is the steady-state corresponding to the prior desired value of the scheduled

states) must be within the stability region of the new steady-state (e.g., Xs2 ∈ Ωρ1 and Ωρ2 , and

Xs3 ∈Ωρ2 and Ωρ3) to ensure feasibility and closed-loop stability of the process.

Figure 6.2: Illustration of intersection of level sets corresponding to each steady-state where the
process schedule is met.

Ideally, the LEMPC would be updated to start driving the process state toward the next steady-
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state in the schedule at the switching time ts at which it is desired to start producing xi,desired ,

i = 1, . . . ,ns, at the values corresponding to this new steady-state (i.e., ideally, t1 = ts). However,

because feasibility of the optimization problem at t1 is ensured only if x(t1) ∈ Ωρ1 and Ωρ2 , it is

only possible for t1 = ts when the LEMPC knows ts far enough in advance to be able to drive the

state into Ωρ1 ∩Ωρ2 before ts. If, for example, the LEMPC has no knowledge of ts until ts, the

LEMPC may need to drive the state into Ωρ1 ∩Ωρ2 after ts, so that t1 may be greater than ts and

thus there may be periods of time during which it is desired to start operating the process at the next

xi,desired , i = 1, . . . ,ns, but this cannot yet occur while maintaining controller feasibility. More will

be said regarding a method for choosing Ωρ2 to ensure that a region Ωρ1 ∩Ωρ2 exists into which

the LEMPC can be guaranteed to drive the process state in finite time in the section “Feasibility

and Stability Analysis.”

6.3.3 Scheduling and Operations Considerations with EMPC for Schedule

Management

Several practical considerations for EMPC for schedule management that must be accounted for

either at the scheduling level or at the operations level when developing the set of steady-states,

Lyapunov-based control laws, and level sets to send to the controller are as follows:

• The EMPC for schedule management requires that a region exists in which the EMPCs

designed for both the current and next steady-states are both feasible, and that the state

can be driven by the EMPC for schedule management into this region.

Notwithstanding that it may be possible for a variety of EMPC formulations to meet this

criteria in practice even if it is not easily provable theoretically, for provable feasibility of

the EMPC scheduling problem, the LEMPC formulation should be used and the feasibility

issue should be addressed at the scheduling or operations level, depending on the differ-

ence between the timescale on which the schedule changes and the timescale of the process

dynamics, and depending on the impact of the transient on the profit of the process.
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When the process dynamics are determined to be on a timescale comparable to the timescale

of schedule changes, or the manner in which transitions between regions of state-space oc-

cur is determined to significantly affect the process economics in a manner that would alter

the schedule chosen if it were taken into account, it may be desirable to include considera-

tions related to the process dynamics and level set intersections in the scheduling problem.

The scheduling problem is often formulated as a mixed-integer linear program, but could be

modified to include some representation of level set intersection (e.g., if the level sets are

determined a priori, then constraints could be devised that permit the next steady-state in

the schedule to only be one for which the level sets intersect; this ensures that, for example,

a schedule developed for the steady-states in Fig. 6.2 does not request the production of Xs1

followed immediately by the production of Xs3 because Ωρ3 does not contain Xs1). It may

be that one or more of the level sets that are found for the steady-states corresponding to

demanded products do not intersect any of the other level sets corresponding to demanded

products. In this case, it may be necessary to develop additional state-space points which

do not correspond to any marketable product but which have level sets that allow for any

gaps in state-space where the level sets of the demanded products do not intersect to be

bridged. If this is required, such intermediate points can also be considered for inclusion in

the scheduling problem, possibly with constraints that try to limit the time spent approaching

these intermediate points or the number of the intermediate points approached in the sched-

ule. For example, if a schedule requires production only of Xs1 and Xs3 in Fig. 6.2 without the

production of Xs2, then it is not necessary to use the LEMPC for schedule management with

the desired steady-state at Xs2 all the way until the state reaches Xs2. Rather, the LEMPC

with the desired steady-state at Xs2 can be applied for an amount of time that ensures that the

closed-loop state enters Ωρ3 , and then the LEMPC with the desired steady-state at Xs3 can be

applied. Because it may be necessary, for example, to produce a product that is not in imme-

diate demand in order to transition between the production of two more heavily demanded

products, accurate forecasting of data used to set the schedule (e.g., demand and pricing)
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sufficiently long in advance are essential for determining an appropriate schedule for this

LEMPC strategy, so that frequent changes to the schedule can be avoided, particularly if the

changes require intermediate products to be produced. The scheduling problem may also

include a representation of the process dynamics if it is on a timescale comparable to that

on which the schedule is changed, to choose the best schedule accounting for the time spent

with off-specification production due to the process dynamics.

If the process dynamics are much faster than the timescale on which scheduling changes

occur, it may be decided to relegate the issue of moving between level sets to an operational

issue after the schedule is determined. Thus, a standard scheduling problem can be solved

without knowledge of the process dynamics or intersecting level sets, but then before sending

the steady-states corresponding to the various desired production levels to the controller, the

set of steady-states can be evaluated to determine whether their level sets intersect or whether

it is necessary to add additional intermediate steady-states to the operating procedure as

noted in the prior paragraph to drive the state through state-space without losing controller

feasibility. If the time of switching from each production level to the next is known, this

can also be considered in the development of the set of steady-states used in the operating

procedure so that the production stays as close to the target values that were determined by

the scheduling problem for the lengths of time determined by this problem as possible.

• EMPC for schedule management in general cannot guarantee that scheduled states are

at their values for all time.

Though this may at first seem to be a limitation of the method, when the schedule is changed

under any controller, there will be some length of time in which the process state is transi-

tioning to its new value at a speed determined by the process dynamics. In addition, if it is

required to drive the state into the intersection of the level sets for the prior and new steady-

states (e.g., ts is not known a priori), there will be some time required after the new schedule

is requested not only to move to the new schedule, but also to move toward the region of
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intersection, and this time cannot be known a priori without closed-loop simulations. In

general, the soft constraint formulation offers the flexibility to highly penalize the deviation

of the states from the scheduled values so that the EMPC will calculate control actions that

attempt to move the process state as quickly as possible to the new steady-state, given the

process dynamics. In the presence of disturbances, there is no controller that can keep the

values of some or all states at precise values for all times, but high penalties would again

cause an EMPC for schedule management to drive the predicted state (and ideally the actual

closed-loop state) toward a region where the schedule is met as quickly as possible. For the

LEMPC for schedule management, because the feasible region is characterizable a priori,

closed-loop off-line simulations can be used to determine a worst-case rate of approach to the

next scheduled steady-state. If there are concerns regarding the time that the process is not

operating with the states at the schedule due to disturbances, simulations can be performed to

evaluate the effect of the choice of γi on product quality. In general, the magnitude of γi may

be evaluated considering regular deviations of the scheduled states from their scheduled val-

ues due to process disturbances. If γi is very small relative to the state deviations, the Mode 2

constraint may be triggered almost constantly because of process disturbances, which would

enforce steady-state operation and not allow for the possible economic benefits of EMPC for

schedule management. It may be desirable to choose γi in a manner that prevents Mode 2

from activating regularly due to common disturbances if this does not significantly affect the

product quality.

• EMPC for schedule management requires a steady-state to be chosen for the process

among many where the values of only the first ns states are specified.

The steady-state to operate around may be chosen as the economically optimal steady-state

at which the schedule is met, subject to practical constraints (e.g., limitations on the temper-

ature for safety reasons).
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6.3.4 Feasibility and Stability Analysis

In this section, we prove feasibility and closed-loop stability of a process under the proposed

LEMPC for schedule management. We first present two propositions required for the feasibility

and stability proofs, and then present a theorem on the feasibility and stability results.

Proposition 9 (c.f.20, 117). Consider the systems

ẋa(t) = f (xa(t),u(t),w(t)) (6.9a)

ẋb(t) = f (xb(t),u(t),0) (6.9b)

with initial states xa(t0) = xb(t0) ∈Ωρ . There exists a K function fW (·) such that

|xa(t)− xb(t)| ≤ fW (t− t0) (6.10)

for all xa(t),xb(t) ∈Ωρ and all w(t) ∈W with

fW (τ) =
Lwθ

Lx
(eLxτ −1) (6.11)

Proposition 10 (c.f.20, 117) Consider the Lyapunov function V (·) of the nominal system of Eq. 6.1

under the controller h(x). There exists a quadratic function fV (·) such that

V (x)≤V (x̂)+ fV (|x− x̂|) (6.12)

for all x, x̂ ∈Ωρ with

fV (s) = α4(α
−1
1 (ρ))s+Mvs2 (6.13)

where Mv is a positive constant.

Theorem 3 (c.f.20) Consider the system of Eq. 6.1 in closed-loop under the LEMPC design of

Eq. 6.8 based on a controller h(x) that satisfies the conditions of Eq. 6.2. Let εw > 0, ∆ > 0,
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ρ > ρe ≥ ρmin ≥ ρs > 0 satisfy

ρe ≤ ρ− fV ( fW (∆)) (6.14)

and

−α3(α
−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆ (6.15)

If x(t0) ∈Ωρ and N ≥ 1 where

ρmin = max{V (x(t +∆)) : V (x(t))≤ ρs} (6.16)

then the state x(t) of the closed-loop system is always bounded in Ωρ and is ultimately bounded in

Ωρmin .

Proof 6.1 In this proof, we examine feasibility and closed-loop stability of the LEMPC of Eq. 6.8

for operation around one steady-state corresponding to one set of desired values of the scheduled

states.

We first discuss the feasibility of the LEMPC of Eq. 6.8. This LEMPC is guaranteed to be

feasible at all times if the state is maintained in Ωρ , as will be subsequently shown, because

the Lyapunov-based control law implemented in sample-and-hold is a feasible solution (i.e., u =

h(x(tk)), t ∈ [tk, tk+1) and u = h(x̃(t j)), t ∈ [t j, t j+1), j = k+1, . . . ,k+N−1, is always a feasible

solution). This feasibility, however, is only ensured when the initial value of the state at the time

t0 at which the LEMPC of Eq. 6.8 first begins to be used is within Ωρ because the Lyapunov-

based controller h(x) implemented in sample-and-hold is only guaranteed to maintain closed-loop

stability of states within Ωρ .

Closed-loop stability is guaranteed at all times by the LEMPC formulation of Eq. 6.8. Before t ′,

the state is always guaranteed to be within Ωρ from the use of the Mode 1 and Mode 2 constraints

when the state leaves Ωρe using the same proof as in.20 The requirement that the contractive

constraint be enforced whenever |xi(tk)| ≥ γi ensures that the Lyapunov function of the closed-loop

state decreases whenever the state leaves this bound, which ensures that the state can always be
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driven back into a region where this bound is met in finite time. Furthermore, the contractive

constraint always forces the state to Ωρmin , so after t ′, it is guaranteed to be driven into this small

region containing the origin.

The fact that feasibility of the LEMPC design of Eq. 6.8 hinges on whether x(t0) ∈ Ωρ shows

that when there is a plan to switch the schedule and thus to adjust the V , Ωρe , Ωρ , h(x), f , and

origin used in Eq. 6.8, the state at the switching time must be within the stability region of the

new steady-state. In general, it is difficult to characterize the points that may be accessed by the

LEMPC within Ωρ without extensive closed-loop simulations from various initial conditions. The

only region within the stability region of the first steady-state in which it is guaranteed that a

process can be forced to operate is Ωρmin , such that if the state is always driven into this region first

and the new stability region overlaps this region, it can be guaranteed that a feasible solution to the

new problem will exist. Another advantage of including Ωρmin within the overlap of the level sets is

that any prior scheduled value of the state can be requested in the future and can be reached, since

each stability region includes both Ωρmin of the set-point that it is designed with respect to, and

also that of at least one other schedule. This motivates the following theorem, which characterizes

the conditions under which the LEMPC formulation of Eq. 6.8 can be updated to drive the state

to new values of the scheduled states without losing controller feasibility at t1, both when ts is

known a priori and when it is not. In this theorem, the time length th is defined as the worst-case

time for a Lyapunov-based controller implemented in sample-and-hold with sampling period ∆ to

drive the state from any initial condition in the stability region into Ωρmin , and it can be assessed

with closed-loop simulations using initial conditions throughout the stability (feasible) region of

the LEMPC for schedule management.

Theorem 4 Consider the process of Eq. 6.1 operated under the LEMPC of Eq. 6.8 formulated with

respect to a steady-state having stability region Ωρ1 with Ωρmin ⊆Ωρ1 where Ωρmin is defined as in

Eq. 6.16 for the steady-state with stability region Ωρ1 . If also Ωρmin ⊆Ωρ2 and ts is known a priori

such that t ′ can be chosen as t ′ = ts− th, then x(ts) ∈Ωρmin and the LEMPC of Eq. 6.8 formulated

with respect to a steady-state having stability region Ωρ2 is feasible at t1 = ts. If ts is not known a
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priori, then if t ′ = ts and t1 = ts + th and Ωρmin ⊆Ωρ1 and also Ωρmin ⊆Ωρ2 , x(t1) ∈Ωρmin and the

LEMPC of Eq. 6.8 formulated with respect to a steady-state having stability region Ωρ2 is feasible

at t1.

Proof 6.2 The proof of this theorem relies on many concepts from the proof of Theorem 3. Specif-

ically, if ts is known a priori and t ′ = ts− th, then if the Lyapunov-based controller were applied

in sample-and-hold with sampling period ∆, the process state would be within Ωρmin ⊆ Ωρ1 ∩Ωρ2

by ts, regardless of the location of the initial state in Ωρ1 from the definition of th. The Mode 2

constraint of Eq. 6.8f, when implemented repeatedly, ensures that the applied control action drives

the closed-loop state into Ωρmin in a finite time at a rate no less than the rate at which a Lyapunov-

based controller implemented in sample-and-hold would drive the state to this region. Thus, if

the Mode 2 constraint begins to be implemented repeatedly at t ′, the closed-loop state under the

LEMPC of Eq. 6.8 will enter Ωρmin by ts and then since x(ts) ∈ Ωρ2 , from Theorem 3, the LEMPC

for the next steady-state will be feasible at ts. Using similar logic, if ts is not known a priori but the

Mode 2 constraint is applied repeatedly starting at t ′ = ts, then by t1 = ts+ th, the closed-loop state

has entered Ωρmin ⊆Ωρ2 , and the LEMPC for the next steady-state is then feasible by Theorem 3.

6.4 Application to a Chemical Process Example

In this section, we provide a chemical engineering example to illustrate the application of the pro-

posed EMPC with production schedule management. Specifically, a non-isothermal continuously

stirred tank reactor (CSTR) where an irreversible second-order exothermic reaction takes place is

considered. The reactor converts the reactant A to the product B (A→ B). An inert solvent con-

taining the reactant A with a concentration of CA0 is fed to the reactor at a feed temperature of T0.

The CSTR is coated with a heating jacket that supplies or removes heat from the reactor at a heat

rate Q. The reactor has a constant volume of V , and the volumetric flow rate of the entering and

exiting streams is F . The liquid has a constant density of ρL and a heat capacity of Cp. The CSTR

first-principles dynamic model derived from mass and energy balances for this process is of the
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following form:

dCA

dt
=

F
V
(CA0−CA)− k0e−E/RTC2

A (6.17a)

dCB

dt
= k0e−E/RTC2

A−
F
V

CB (6.17b)

dT
dt

=
F
V
(T0−T )− ∆Hk0

ρLCp
e−E/RTC2

A +
Q

ρLCpV
(6.17c)

where CA and CB are the reactant and product concentrations. The temperature in the reactor is

T and the reaction pre-exponential factor is k0. E and ∆H are the activation energy and the en-

thalpy of the reaction, respectively (process parameter values are listed in Table 6.1). The CSTR

is operated around an open-loop asymptotically stable steady-state that occurs at [CAs CBs Ts] =

[1.22 kmol/m3 2.78 kmol/m3 438.0 K] which corresponds to an input vector of [CA0s Qs] =

[4.0 kmol/m3 0.0 kJ/hr].

Table 6.1: Parameter values of the CSTR.

F = 5.0 m3

hr k0 = 8.46×106 m3

kmol hr

T0 = 300 K ∆H =−1.15×104 kJ
kmol

V = 1.0 m3 E = 5.0×104 kJ
kmol

Cp = 0.231 kJ
kg K ρL = 1000 kg

m3

R = 8.314 kJ
kmol K

The inlet concentration CA0 and the heat supply/removal rate Q are the manipulated inputs

which are upper and lower bounded by physical limitations on actuators as follows: 0.5 ≤CA0 ≤

7.5 kmol/m3 and−5.0×105≤Q≤ 5.0×105 kJ/hr. The CSTR state and input vectors in deviation

variable form are defined as follows: xT = [CA−CAs CB−CBs T−Ts] and uT = [CA0−CA0s Q−Qs].

In the simulations below, the process model of Eq. 6.17 was integrated numerically using the

explicit Euler method with an integration time step of hc = 10−4 hr. The control objective of

the LEMPC is to minimize the heat supply and removal rate while meeting a desired production

schedule of the desired product B. Therefore, the economic measure used as the LEMPC cost
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function is given by:

1
(tk+N− tk)

∫ tk+N

tk
[αQ(τ)2 +β (CB(τ)−CBdesired)

2]dτ (6.18)

where α and β are weighting constants. Owing to practical considerations, we consider that a

limited amount of reactant material is available for a given operating period of tp = 1 hr. Therefore,

the time-averaged concentration of reactant fed to the reactor over the operating period should

satisfy the following material constraint:

1
tp

∫ tp

0
u1(τ) dτ = 0.0 kmol/m3. (6.19)

To ensure closed-loop stability of the process considered, a Lyapunov-based controller is designed.

In this example, only one stability region and Lyapunov-based controller, designed with respect

to the open-loop asymptotically stable steady-state described above, was used, even when the

schedule was switched. As will be shown below, there were no feasibility or closed-loop stability

issues for the simulations performed, illustrating that the requirement that there be different but

overlapping level sets for each schedule change for closed-loop stability and feasibility of the

controller is met. An estimate of the closed-loop system stability region can be obtained utilizing

the Lyapunov function established under the Lyapunov-based controller. In this example, Eq. 6.17b

indicates that the concentration of the desired product CB is affected by the concentration of the

reactant CA and the temperature T but not vice versa. Since the inputs of the system affect the

reactant concentration and temperature differential equations directly in Eq. 6.17a and Eq. 6.17c,

the stability analysis of the closed-loop system can be established on the basis of the (CA,T )

subsystem. Therefore we define a reduced state vector as x̂T = [CA−CAs T −Ts]. The Lyapunov-

based controller design can be represented as a vector with two components: hT (x̂) = [h1(x̂) h2(x̂)].

The inlet concentration control law h1(x̂) was set to its steady-state value (h1(x̂) = 0.0 kmol/m3)

in order to meet the material constraint of Eq. 6.19. The stabilizing Lyapunov-based control law

for the rate of heat input h2(x̂) is the following:38
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h2(x̂) =


−

L fV +
√

L fV 2 +LgV 4

LgV
, if LgV 6= 0

0, if LgV = 0

(6.20)

L fV and LgV denote the Lie derivatives of the Lyapunov function V (x̂) with respect to f (x̂) and

g(x̂) respectively, where f (x̂) signifies the terms in Eqs. 6.17a and 6.17c (in deviation form) not

including the inputs, and g(x̂) signifies the terms multiplying the inputs in those equations. A

quadratic Lyapunov function of the form V (x̂) = x̂T Px̂ was used to characterize the stability region

of the closed-loop system with the following positive definite P matrix:

P =

 1060 22

22 0.52

 (6.21)

Extensive closed-loop simulations were conducted under the Lyapunov-based controller h(x̂). The

regions needed in designing stability constraints in the LEMPC controller were Ωρ with ρ = 368

and Ωρe with ρe = 340. In the simulation below, the LEMPC design had a sampling period of

∆ = 0.1 hr and a prediction horizon of N = 10.

It is assumed that the production schedule requires a change in the concentration of the de-

sired product CB every two hours (i.e., CBdesired = 3 kmol/m3 for the first two hours of operation,

1.5 kmol/m3 for the next two, then 2.5 kmol/m3, 2.7 kmol/m3, and 2 kmol/m3 for times between

4 and 6 hr, 6 and 8 hr, and 8 and 10 hr, respectively). The proposed LEMPC scheme was applied

to the CSTR of Eq. 6.17 in order to produce CB concentrations that meet the desired schedule.

The CSTR was initiated from the steady-state and the LEMPC optimization problem at each sam-

pling time was solved using the interior-point solver IPOPT.119 The weighting coefficients in the

objective function were chosen to be α = 1 and β = 10,000 in order to balance the difference

in magnitude between Q and CB−CBdesired . The resulting concentration of the output (CB) is pre-

sented in Fig. 6.3, which demonstrates the ability of the proposed scheme to achieve the desired

production schedule while taking into account allowable trajectories from the process dynamics.
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Figure 6.3: Concentration of product B in time for the CSTR of Eq. 6.17 under the LEMPC of
Eq. 6.8 with the material constraint of Eq. 6.19, following the production schedule with changes
in the required value of CB every two hours.

The closed-loop input trajectories for the CSTR under the LEMPC throughout the ten hours

of operation are presented in Fig. 6.4. The trajectories show that the inputs were able to meet

the material constraint while driving the value of CB to CBdesired . They also show that the use of

heating (Q) was effectively minimized as required by Eq. 6.18, with u2 remaining at low values

for the majority of the time of operation. The trajectories of the reactant concentration and reactor

temperature in deviations from the steady-state values (CA−CAs,T −Ts) are presented in Fig. 6.5.

This figure shows that T and CA evolved in a time-varying fashion, even after CB reached CBdesired ,

to maintain CB at its required value while meeting the material constraint and minimizing the

objective function.

To present the ability of this scheme to maintain the process within the stability region, the

state-space trajectories of the reactant concentration and reactor temperature in deviations from

the steady-state values (CA−CAs,T −Ts) are presented in Fig. 6.6. The Lyapunov function values

throughout the ten hours of operation are presented in Fig. 6.7.

The simulations discussed above manipulated two inputs while maintaining the time-averaged

inlet concentration at its steady-state value. The traditional approach for achieving the desired pro-

duction schedule, when the time-averaged inlet concentration is constrained to equal the steady-
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Figure 6.4: Input trajectories for the CSTR of Eq. 6.17 under the LEMPC of Eq. 6.8 with the
material constraint of Eq. 6.19, following the production schedule with changes in the required
value of CB every two hours.

Figure 6.5: State trajectories for the CSTR of Eq. 6.17 under the LEMPC of Eq. 6.8 with the
material constraint of Eq. 6.19, following the production schedule with changes in the required
value of CB every two hours.

state value, is to fix the inlet concentration to its steady-state value CA0s and manipulate the heat

input to achieve the desired schedule. This can lead to using more heat to achieve the same desired

schedule since the problem involves only one manipulated input. Using the same optimization

206



Figure 6.6: The state-space profile for the closed-loop CSTR of Eq. 6.17 under the LEMPC of
Eq. 6.8 with the material constraint of Eq. 6.19 following the production schedule for the 10 hr
operating period starting at [CA(0),T (0)] = [1.2 kmol/m3,438 K].

Figure 6.7: The Lyapunov function value as a function of time for the closed-loop CSTR of
Eq. 6.17 under the LEMPC of Eq. 6.8 with the material constraint of Eq. 6.19 starting at
[CA(0),T (0)] = [1.2 kmol/m3,438 K] following the production schedule with changes in the re-
quired value of CB every two hours.

problem formulation as in the simulations above (with the same objective function and starting

conditions) except with u1 set to CA0s, the total heat used in producing the first schedule for the
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first two hours was 1.1378× 106 kJ. However, when both inputs are manipulated to achieve the

desired schedule, as demonstrated in the simulations above, the total heat used for producing the

first schedule for the first two hours was 1.1176× 106 kJ which requested 2% less heat usage.

Even though the total amount of reactant fed to the reactor throughout the two hours of operation

was the same in both cases, allowing the inlet concentration to be manipulated in a time-varying

manner introduces extra flexibility that was utilized by the EMPC to minimize the objective func-

tion even further. Introducing more flexibility by allowing more inputs to be manipulated in a

time-varying manner and also optimizing economics with respect to a subset of the state vector

can in general enhance the economic performance. Although for this example the increase in the

number of manipulated inputs resulted in only 2% economic benefit, using an EMPC for schedule

management with multiple manipulated inputs can present higher economic performance in plants

involving many more states where the desired production schedule is requested only over a subset

of the entire state vector.

In the simulation presented above, we only imposed the Mode 2 constraint if the closed-loop

state exited Ωρe because, as demonstrated through the results in Fig. 6.3, the high penalty on the

deviation of the value of CB from its steady-state value in the objective function (Eq. 5.18) was ef-

fective at driving the concentration of the product B to its scheduled value and maintaining it there

with every change in the production level required by the schedule, without the need to utilize the

Mode 2 constraint to enforce this tracking capability. In addition, there were no disturbances in

this simulation to move the closed-loop state away from the schedule or out of Ωρe , so the Mode 2

constraint was never activated. In order to demonstrate the application of the Mode 2 constraints,

another simulation that involved significant plant disturbances was considered. Specifically, we

considered the case where the production schedule required a change in the concentration of the

desired product CB from CBdesired = 3 kmol/m3 to 2.78 kmol/m3 for the next three hours. The CSTR

was initiated from [CAs CBs Ts] = [1 kmol/m3 3 kmol/m3 468.37 K] and no disturbances were im-

posed in the first hour of operation. After that, we implemented a constraint of the form of Eq. 6.8f

requiring that the closed-loop state stay at the scheduled value of CB = 2.78 kmol/m3, and that if
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it deviates from this value by more than 0.01 kmol/m3 (i.e., γ = 0.01), that the Mode 2 constraint

should be activated to drive the closed-loop state back toward the schedule. A bounded disturbance

vector wT = [w1 w2 w3] was added to the right-hand side of Eq. 6.17 (stationary bounded Gaus-

sian white noise with variances σ1 = 1 kmol/m3, σ2 = 1 kmol/m3, and σ3 = 40 K with bounds

|w1| ≤ 1, |w2| ≤ 1, and |w3| ≤ 40). Disturbances were added for the first 40 sampling periods of

the second and third hours of operation which caused the concentration of CB to be driven outside

of the desired product quality in which case Mode 2 was activated to drive the concentration of CB

back inside γ = 0.01. The LEMPC was effective at maintaining CB near the scheduled value of the

state at all times as presented in Fig. 6.8.
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Figure 6.8: Concentration of product B in time for the CSTR of Eq. 6.17 under the LEMPC of
Eq. 6.8 with the material constraint of Eq. 5.19, following the desired production schedule of
CB = 2.78 kmol/m3 with γ = 0.01 subject to plant disturbances starting at t = 1 hr.

Remark 25 The LEMPC for schedule management is particularly beneficial when the economics-

based term in the cost function does not have its minimum at a steady-state of the process (i.e.,

time-varying operation is more profitable than steady-state operation). In traditional tracking

MPC’s that are designed to drive the closed-loop state to a steady-state, a quadratic cost function

is used. In this chemical process example, the cost function has a quadratic form, but the process

is not operated at steady-state (Fig. 6.5 shows that the unscheduled states evolve dynamically after

CB reaches the schedule), but in general non-quadratic stage costs can be utilized within EMPC,
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which distinguishes it from tracking MPC (see, e.g.,48, 112, 118 for examples of the implementation

of EMPC’s for the same chemical process utilized in the example in the present manuscript but for

which the objective function is a non-quadratic function to be maximized).

6.5 Conclusion

In this chapter, the concept of improving process profit while meeting a schedule with EMPC for

production schedule management was proposed for nonlinear systems in which some of the states

are constrained to follow a certain desired production schedule. Several formulations of EMPC for

schedule management, with practical considerations, were discussed with a focus on LEMPC with

a soft constraint for the schedule because for this formulation, sufficient conditions to guarantee

closed-loop stability of a process and feasibility of the controller could be derived. A chemical

process example demonstrated that the proposed approach can handle significant changes in the

desired values of the scheduled states throughout time to achieve the requested production schedule

while maintaining closed-loop stability.
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Chapter 7

Conclusions

Motivated by the potential benefits of applying EMPC in industrial practice, this dissertation de-

veloped novel EMPC designs that utilized advanced data-driven linear and nonlinear system iden-

tification methods to obtain the process model needed for the EMPC feedback control strategy.

On-line model identification was used to obtain more accurate models when the linear empiri-

cal models were not capable of capturing the nonlinear dynamics as a result of significant plant

disturbances and variations, actuator faults, or changing the region of operation. In addition, we

developed an EMPC framework that tracks production schedule for the desired states while maxi-

mizing economics with respect to the rest of the states.

Specifically, in Chapter 2, an LEMPC method formulated with empirical models was consid-

ered for nonlinear process systems. Under the assumption that the error between the empirical

linear model and the one of the linearization of the nonlinear model at the steady-state around

which time-varying operation is considered, sufficient conditions such that the LEMPC formu-

lated with the empirical linear model will guarantee closed-loop stability of the nonlinear system

in the sense of boundedness of the closed-loop state in a compact set were derived. A chemical

process example demonstrated the application of the proposed method and extensive simulation re-

sults were given. From these results, a similar closed-loop behavior between the chemical process

under the LEMPC with the nonlinear model and under the LEMPC with an empirical model was
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observed with comparable closed-loop economic performance. However, a significant decrease

in the computation time required to solve the LEMPC with a linear model compared to LEMPC

with a nonlinear model was observed. In all of the simulations, the LEMPC with the linear model

maintained closed-loop stability and obtained better closed-loop economic performance than that

obtained at steady-state.

Subsequently, in Chapter 3, a nonlinear system identification technique was developed for gen-

eral nonlinear systems with affine inputs using a polynomial nonlinear state-space (PNLSS) model

with additional constraints on the numerical stability of the identified model so that the identifi-

cation process would produce empirical models that could be numerically integrated with explicit

methods without using a very small integration step size. The motivation for this is that such mod-

els have an advantage in model predictive control applications, in contrast to the models identified

with standard techniques that may require a step size too small for real-time use. This chapter

demonstrates the benefits of the proposed system identification method in model predictive con-

trol by developing the formulation of an LEMPC scheme that uses an empirical model derived

from the PNLSS method accounting for model well-conditioning to predict the process dynamics.

A stability analysis of the closed-loop system under this controller provided sufficient conditions

such that closed-loop stability in the sense of boundedness of the closed-loop state in a compact set

is established. A chemical process example demonstrated that incorporating the well-conditioned

empirical model in place of a first-principles model in LEMPC has significant computational ad-

vantages such that the LEMPC with the empirical model can be used for real-time control, with

minimal reduction in profit compared to using the first-principles model.

In Chapter 4, a methodology for error-triggered on-line model identification for nonlinear pro-

cess systems was proposed for use in model-based controller design based on linear empirical

models. The error-triggering was conducted by a moving horizon error detector that quantifies

the relative prediction error within its horizon and triggers model re-identification based on recent

input/output data when the prediction error exceeds a threshold. The error-triggered on-line model

identification procedure was shown to have many applications, including the improvement of state
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predictions for use in model-based control when plant variations occur and when the operating

region changes. Both of these applications were demonstrated using a chemical process example

under LEMPC. In the first example, it was shown that the error-triggering strategy was successful

in indicating the need to re-identify the empirical model using the most recent input/output data as

the plant dynamics changed, which can also result in greater economic profit. The second example

demonstrated that the proposed approach is able to maintain closed-loop stability while expanding

the region of operation to improve profit, and also indicated that the rate at which the operating

region is expanded can have a significant effect on the process performance and the accuracy of

the identified empirical model.

Subsequently, Chapter 5 proposed an on-line model identification methodology that updates

the empirical models used in LEMPC on-line in order to overcome actuator faults. Empirical mod-

els were updated on-line based on significant prediction errors indicated by a moving horizon error

detector. The error-triggered on-line model identification methodology can be applied to over-

come different actuator faults scenaria that occur in practice, including the case where the value at

which the actuator is stuck is known and the case where the value at which the actuator is stuck is

unknown. Applications of each of such cases was demonstrated using two chemical process exam-

ples under LEMPC. In the first example, a benchmark chemical process was used to demonstrate

the application of the proposed scheme in the case where the value at which the actuator is stuck is

known. In the second example, another chemical process was used to demonstrate the application

of the proposed scheme in the case where the value at which the actuator is stuck is unknown.

The chemical process examples presented the ability of the proposed scheme to detect when it is

necessary to update the empirical model on-line in response to operational variations caused by

actuator faults and/or disturbances. Improved state predictions and economic performance were

obtained under the proposed scheme compared to using one empirical model throughout operation

despite the actuator faults. The examples show the successful implementation of a unified frame-

work using the moving horizon error detector and error-triggered model updates within LEMPC

for handling faults.
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Finally, in Chapter 6, the concept of improving process profit while meeting a schedule with

EMPC for production schedule management was proposed for nonlinear systems in which some

of the states are constrained to follow a certain desired production schedule. Several formulations

of EMPC for schedule management, with practical considerations, were discussed with a focus on

LEMPC with a soft constraint for the schedule because for this formulation, sufficient conditions

to guarantee closed-loop stability of a process and feasibility of the controller could be derived. A

chemical process example demonstrated that the proposed approach can handle significant changes

in the desired values of the scheduled states throughout time to achieve the requested production

schedule while maintaining closed-loop stability.
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[60] M. Ławryńczuk. Computationally efficient nonlinear predictive control based on neural
Wiener models. Neurocomputing, 74:401–417, 2010.

218
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[64] A. Marconato, J. Sjöberg, and J. Schoukens. Initialization of nonlinear state-space models
applied to the Wiener–Hammerstein benchmark. Control Engineering Practice, 20:1126–
1132, 2012.

[65] N. A. Mardi and L. Wang. Subspace-based model predictive control of time-varying systems.
In Proceedings of the 48th IEEE Conference on Decision and Control, held jointly with the
28th Chinese Control Conference, pages 4005–4010, Shanghai, China, 2009.
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