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Model predictive control (MPC) is an advanced control strategy widely used in the process

industries and beyond. Therefore, industry is interested in the development of MPC formulations

that can enhance safety, reliability, and economic profitability of chemical processes. Motivated

by these considerations, this dissertation focuses on the development of methods for integrating

process operational safety and process economics within model predictive control system designs.

To accomplish these critical control objectives, various economic model predictive control (EMPC)

schemes that maintain the process state within a safety region in state-space while optimizing

process economics are considered for the first time. The safety region is assumed in the first part of

the dissertation to be a level set of a Lyapunov function which is made forward invariant through

appropriate MPC design. However, safety-based constraints may define a safety region that is

irregularly shaped, and therefore, the safety region may not be taken to be a level set of a Lyapunov

function in general. Hence, the second part of this thesis proposes an economic model predictive

control (EMPC) formulation that utilizes a Safeness Index function (a function that measures the

safeness of points in state-space) as a hard constraint to define a safe region of operation termed

the safety zone. Such a safety zone is not restricted to be a level set of a Lyapunov function

and may be irregularly shaped. While the two initial safety-based EMPC formulations explicitly

ii



handle process safety and economic considerations, they are centralized in nature and may lead

to control action calculations that exceed the allowable sampling period. To address this potential

practical limitation of the centralized safety-based EMPCdesigns, the third part of this dissertation

addresses the development of distributed EMPC architectures with safety-based constraints. Both

sequential and iterative distributed control architectures, and the partitioning of inputs between

the various optimization problems in the distributed structure based on their impact on process

operational safety, are investigated. Chemical process examples will be used throughout the thesis

to demonstrate the applicability and effectiveness of the proposed control methods.
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Chapter 1

Introduction

1.1 Economic Model Predictive Control

Model predictive control (MPC) is an optimization-based control strategy that can optimally con-

trol multiple-input multiple-output nonlinear systems bysolving an on-line optimization problem

subject to input and state constraints. The conventional formulations of MPC use a quadratic per-

formance index along a finite prediction horizon to steer thesystem to the optimal (economically)

steady-state. While this strategy (steady-state optimization and operation) has been traditionally

used in chemical process industries, steady-state operation may not necessarily be the economically

best operation strategy especially considering the volatility of economic considerations. Recently,

economic model predictive control (EMPC) has been introduced as an alternative approach to the

traditional approach to economic process optimization andcontrol.15,18,36,41,45,46,70,82Using an

(non-quadratic) objective function that directly reflectsthe process economics, EMPC may oper-

ate a system in a potentially time-varying fashion to optimize the process economics, beyond what

can be achieved with steady-state operation. Unlike traditional control techniques, EMPC is able

to maximize operating profit through adapting process operating conditions in real-time to account

for feedstock variability, feedstock availability, or product demand and/or to minimize operating

cost through real-time energy management and accounting for raw material prices since EMPC
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accounts directly for the process economics.

Due to the flexibility and profitability of the EMPC, many recent research works have integrated

EMPC with different control objectives including: incorporating Lyapunov-based constraints into

EMPC to achieve two switching operation modes,43 incorporating production management into

EMPC,4,5 proof of asymptotic stability of EMPC formulated without terminal constraints,41 propo-

sition of an EMPC scheme with a self-tuning terminal cost,70 and asymptotic average performance

bounds for EMPC using a generalized terminal region constraint71 (see, also, the review37 for more

recent results on EMPC).

1.2 Process Operational Safety in the Chemical Process Indus-

tries

The environmental damage and loss of life caused by catastrophic accidents in the chemical process

industries motivate the development of new methods that canimprove operational safety of chem-

ical plants. The two traditional methods for protecting against unsafe scenarios in these industries

are improving process inherent safety (i.e., the innate safeness of the process based on its chem-

istry and physics) and designing effective control systems.32 Despite the protection and operation

procedures that these methods offer to keep running chemical plants safely, catastrophic incidents

and disasters continue to happen causing human loss and environmental damages.2,3 Since it is

not possible to eliminate all hazards at a plant, a safety system, comprised of several independent

layers, should be added (Figure 1.1). Ideally, the layers ofthe safety system should not be acti-

vated regularly because a basic process control system (BPCS) regulates process variables to their

set-points. When the BPCS fails to keep the process variables within acceptable ranges due to, for

example, equipment faults or unusually large process disturbances, alarms are triggered that alert

operators so that actions can be taken to prevent further unsafe deviations. If the process variables

subsequently further exceed allowable values, the emergency shutdown system (ESS) is triggered,

which takes automatic and extreme actions such as forcing a valve to its fully open position to
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bring the process to a safer state of operation. Safety relief devices such as relief valves are used

on vessels that can become highly pressurized quickly, suchthat the control system, alarms, and

ESS alone may not prevent an explosion. Over the past decades, many research works have been

conducted to analyze the root causes of why the safety system(Figure 1.1) used in industry failed

to prevent these accidents.51,52 The consistency of these accidents throughout chemical process

plant history61 has led some researchers to observe that the philosophy usedin the design of the

control and safety system layers (i.e., designing barriersagainst specific unsafe scenarios using

the safety system) is quite limited, particularly as economic considerations drive more optimized

and integrated system designs,40,42,60,74and that a systems approach to analyzing process safety

should instead be used. One step toward this systems approach is by incorporating safety con-

siderations within the BPCS. The single-input/single-output controllers traditionally used within

the BPCS cannot account for factors that are important to process safety such as multivariable in-

teractions and state/input constraints. Alternatively, advanced model-based control methodologies

that utilize constrained optimization such as model predictive control (MPC) can account for these

factors and thus can be integrated with safety considerations.58,64,66,80A large number of works

in the MPC literature (including works related to economic MPC (EMPC)15,16,33,37,65,76,82,95

which is an important emerging MPC formulation with a non-quadratic objective function) have

addressed the robustness and closed-loop stability of MPC (e.g.,18,24,37,43,44,64,68and the refer-

ences therein); however, standard control analysis tools that can be used to establish such proper-

ties (e.g., regions of attraction, feasible regions, and conservative state constraints to account for

disturbances/uncertainty) do not account for safe processoperation.

For example, regions where feasibility and closed-loop stability of a controller are ensured

based on mathematical analysis of first-principles models may include regions where certain states

exceed allowable ranges (e.g., the temperature or pressuremay damage the process equipment).

Safety in the sense of fault/abnormality diagnosis and monitoring has been addressed (e.g.,,89,94

31,38), as well as integrating fault-tolerance within process control.13,20,48,54,67,79,92However,

these methods do not address system-wide safety considerations in control for non-faulty oper-
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Figure 1.1: Control/safety system layers.62

ation. Furthermore, the integration of control and safety systems through a system-wide safety

metric (while operating the systems independently) has notbeen performed, though this has the

potential to significantly reduce unnecessary triggering of the safety system and to help in the de-

sign of triggers and appropriate actions for automated elements of the ESS and relief systems. This

can be particularly beneficial for mitigating alarm overloading,22,23,39,91which is the triggering of

too many alarms at once, either because of poor alarm design creating frequent alarms that require

no operator actions, or too many correct alarms sounding at once triggered by the same root cause.

The number of alarms that sound at a chemical process plant each day can be over seven times

the recommended number,34,83 making it difficult for operators to adequately address the alarms,

which can lead to environment and plant damage, danger to lives,85 and reduced operator confi-

dence in the alarm system.91 Industry83 and academia14,19,21,25,69,73,75,93have addressed alarm

issues with techniques based on, for example, models, statistical analysis, and metrics.1 How-

ever, none of these methods integrates safety considerations within the control system to prevent

the closed-loop system from reaching conditions where the alarms need to be activated. A broad

conclusion of the above literature review is that a systematic methodology for constructing the

form of an index that can incorporate control and safety system considerations to aid in improving

these system designs while keeping them independent, and designing control systems with prov-

able closed-loop stability and feasibility properties fornonlinear systems and including such an

index remain open areas of research.

To tackle this process safety objective, one needs to account for process operational safety
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explicitly within the process control design layer (i.e., BPCS), and this only can be done using ad-

vanced control techniques such as MPC. Specifically, to enhance both safety and economic tasks

of chemical processes in real-time, it is necessary to design a control system that can simultane-

ously compute safe and economically optimal control actions for nonlinear processes and maintain

process closed-loop stability even in the presence of uncertainty. Given all of the above require-

ments and objectives, EMPC is one natural control methodology to accomplish these tasks. This

thesis focuses on incorporating explicit safety-based constraints and Lyapunov-based constraints

into EMPC to guarantee process operational safety, in accordance with recent calls for moving into

this direction.37,58

1.3 Centralized versus Distributed Model Predictive Control

for Process Operational Safety

Motivated by a systems-based, control-inspired approach to thinking about safety where a rela-

tionship exists between safety and model-based control,58 an EMPC design that includes explicit

constraints on process safety was first proposed in6 (a description of this scheme will be given

in a later chapter). The proposed safety-based controller reduces the region of process operation

when required to a smaller region (safety region) when process monitoring logic (referred to as

a safety logic unit) indicates that certain regions of state-space away from the steady-state may

lead to process safety concerns due to process disturbances. The safety-based controller design

was developed with a centralized model predictive control (MPC) structure. For a relatively small

process (e.g., one unit), the centralized safety-based EMPC formulation in6 may be capable of

computing an optimal solution that meets the safety-based constraints within a reasonable time

frame. However, for large-scale nonlinear process systems, which are the common case in in-

dustry, the computational burden of solving a centralized EMPC design with potentially tens or

hundreds of optimization variables increases. Therefore,computation time limitations within a

sampling period when solving these large-scale nonlinear process systems may reduce the effec-
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tiveness of such a controller design for promoting process safety. In addition, the proposed control

design in6 cannot coordinate the control system with the safety systemto ensure that both systems

account for the limitations of the other, and it also cannot apprise the safety system of the impacts

of multivariable interactions on process safety.

To coordinate the control and the safety systems while maintaining their independence for re-

dundancy purposes, a metric termed the Safeness Index that indicates the relative safeness of the

process state in state-space (and therefore accounts for interactions between states) was developed

in11 (a description of this framework will be given in a later chapter). The safety system, as well

as the control system, can incorporate triggers based on this index by setting thresholds on the

value of this index. Similar to the control architecture proposed in,6 a centralized Lyapunov-based

EMPC (LEMPC) scheme with constraints related to thresholdson the Safeness Index was devel-

oped in.11 For many industrial processes (e.g., large-scale nonlinear process systems with tens or

hundreds of inputs to be determined by an optimization-based controller like EMPC), the com-

putation time of the centralized design may be significant compared to the length of a sampling

period, which reduces the effectiveness of the centralizeddesign for enhancing process safety for

such processes. In addition, the safety region is not necessarily an invariant set under the Safeness

Index-based MPC design proposed in;11 as a result, frequent re-optimization (for frequent feed-

back) may be beneficial for detecting that the closed-loop state has exited the safety zone during

a sampling period to cause the controller to drive it back into the safety zone. This computation

time issue cannot be handled with decentralized control designs (i.e., multiple controllers utilize

the same process model to compute subsets of the entire set ofavailable control actions but without

communication between the controllers), because such designs may pose safety concerns since the

controllers do not coordinate their actions.56

An alternative EMPC architecture that is intended to improve the computation time of the cen-

tralized EMPC algorithm is a distributed economic model predictive control (DEMPC) architec-

ture.28,84,88Distributed EMPC is a control paradigm in which subsets of the entire set of available

control actions are computed by controllers that utilize the same process model, but which com-
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municate.28,88 This EMPC architecture has been investigated for computation time benefits since

it can reduce the number of decision variables in each of the distributed optimization problems

and may be able to terminate the optimization problems before the optimal solution is found while

maintaining feasibility and closed-loop stability of the controller.26 Distributed designs also can

be beneficial from the perspective of fault-tolerance,28 which is another safety consideration.

A recent research work developed two different DEMPC schemes that reduce the computation

time of a centralized EMPC scheme while maintaining similarclosed-loop performance.17 Never-

theless, these two control schemes lack the ability to drivethe state of the closed-loop system to

a safe region of operation because their formulations do notinclude safety-based constraints. In

addition, the partitioning of inputs between distributed EMPC controllers based on safety consid-

erations and the conditions in which closed-loop stabilityand recursive feasibility of a nonlinear

process are guaranteed under a distributed Safeness Index-based EMPC design and distributed

safety-based LEMPC design have not been considered. To date, no work on incorporating safety-

based constraints within a distributed economic model predictive controller has been completed.

1.4 Dissertation Objectives and Structure

Motivated by the above considerations, this dissertation focuses on the development of methods for

integrating process operational safety and process economics with EMPC design. Various LEMPC

formulations that can guarantee process operational safety while also dictating an economically

optimal dynamic operating policy and maintaining closed-loop stability and recursive feasibility

are proposed. In addition, this work includes a Safeness Index-based LEMPC that can indicate

the relative safeness of the process state in state-space (and therefore accounts for interactions

between states). To overcome the computation time burden associated with the centralized safety-

based LEMPC designs, various distributed safety-based LEMPC paradigms that can have less

computation time than the centralized safety-based LEMPC are developed. The dissertation has

the following structure:
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Chapter 2 presents three safety-based LEMPC schemes that can combine feedback control,

process economics and safety considerations. The first scheme utilizes a contractive constraint to

compute control actions that can drive the closed-loop state to a safe region of operation at least as

quickly as a stabilizing Lyapunov-based controller would in a worst case while the second scheme

utilizes a sufficiently long prediction horizon and a regionconstraint to ensure that the state is

within the safety region by a specific time. The third scheme includes two EMPC formulations

where the first one incorporates a slack variable to achieve asmooth transition between the regular

region of operation and the safety region. The second formulation dynamically controls the upper

bound on the Lyapunov function directly. For a sufficiently small sampling period, recursive fea-

sibility and closed-loop stability of a class of nonlinear systems under the safety-LEMPC schemes

for nominal operation and in the presence of uncertainty arerigorously analyzed.

For the specific case in which the EMPC objective function is quadratic, chapter 3 presents

two LMPC designs with safety-based constraints that can integrate feedback control and process

operational (functional) safety within a unified framework. The motivation for the proposed safety-

LMPC designs is to drive the closed-loop state to a safe region of operation at a desired rate,

which cannot easily be accomplished by tuning the weightingmatrices in the quadratic objective

function. The safety-LMPC’s vary the upper bound on the level set of the Lyapunov function

to achieve the improved rate of approach to the safety region, and they can also be modified to

shift the region of operation from a level set around one steady-state to a level set around another.

For a sufficiently small sampling period, a proof of recursive feasibility and closed-loop stability

of a class of nonlinear systems under one of the safety-LMPC formulations in the presence of

uncertainty is given.

Chapter 4 develops two distributed (sequential and iterative) Safety-DLEMPC schemes that

may have significantly less on-line computation time than the centralized safety-based LEMPC

while achieving similar closed-loop performance and safety constraints satisfaction. An imple-

mentation strategy and mathematical formulation for the Safety-Sequential-DLEMPC design and

the Safety-Iterative-DLEMPC design are developed. For a sufficiently small sampling period,
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proofs of recursive feasibility and closed-loop stabilityof a class of nonlinear systems under the

Safety-S-DLEMPC and Safety-I-DLEMPC formulations in the presence of uncertainty are given.

A catalytic reactor example is utilized to illustrate the computation time advantages of the proposed

iterative and sequential Safety-DLEMPC strategies with respect to the centralized Safety-LEMPC.

Chapter 5 develops a Safeness Index-based LEMPC paradigm that can coordinate, for the first

time, the control and safety systems within a chemical process plant. Specifically, an approach for

defining the functional form of the Safeness Index is presented, and a methodology of choosing

the threshold of the Safeness Index is given. To demonstratethe use of this Safeness Index within

a control system, an LEMPC scheme with a hard Safeness Index-based constraint is presented to

integrate feedback control, process safety and process economics within a unified framework. An

implementation strategy is developed that is guaranteed, under sufficient conditions, to drive the

closed-loop state into the region where the Safeness Index is less than a desired threshold when

initiated from any state within the stability region.

Chapter 6 develops sequential and iterative distributed economic model predictive control

(DEMPC) architectures with constraints based on the Safeness Index. The DEMPC’s may have

lower computation time than a centralized economic model predictive control (EMPC) design

with Safeness Index-based constraints, without significantly limiting closed-loop economic perfor-

mance, which enhances their practicality and ability to improve process operational safety. Suffi-

cient conditions are derived under which the implementation strategies for the DEMPC’s guarantee

closed-loop stability.

Finally, Chapter 7 summarizes the contributions of this dissertation.
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Chapter 2

A Feedback Control Framework for Safe

and Economically-Optimal Operation of

Nonlinear Processes

2.1 Introduction

This chapter addresses the task of developing three EMPC schemes that adjust in real-time the size

of the safety sets in which the process state should reside inorder to ensure safe process operation

and feedback control of the process state while optimizing economics via time-varying process

operation. Recursive feasibility and closed-loop stability are established for a sufficiently small

EMPC sampling period. The proposed schemes, which effectively integrate feedback control,

process economics and safety considerations, are demonstrated with a chemical process example.

The results of this chapter originally appeared in.6,7
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2.2 Preliminaries

2.2.1 Notation

In this chapter,tk = k∆, k= 0,1,2, ... refers to synchronous time instants separated by a sampling

period∆. The Euclidean norm of a vector is denoted by| · |. A function α : [0,a)→ [0,∞) with

α(0)=0 belongs to classK if it is continuous and strictly increasing. A level set of a scalar-valued

positive definite functionV(x) is defined to be the setΩρ := {x∈Rn |V(x)≤ ρ}. Set subtraction is

denoted using ‘/’ (i.e.,x∈ A/B := {x∈ Rn | x∈ A, x /∈ B}). The notationdiag(a1, ...,am) signifies

a diagonalm×m matrix with diagonal elementsa1, ...,am.

2.2.2 Class of Nonlinear Process Systems

The class of nonlinear process systems considered is as follows:

ẋ(t) = f (x(t),u(t),w(t)) (2.1)

wherex(t) ∈ R
n is the state vector of the system, andu(t) ∈ R

m andw(t) ∈ R
l are the control

(manipulated) input vector and the disturbance vector, respectively. The admissible input values are

restricted tomnonempty convex setsUi ⊆R, i = 1, . . . ,m, whereUi := {ui ∈R : umin
i ≤ ui ≤ umax

i },

and umax
i and umin

i , i = 1, . . . ,m, are the magnitudes of the input constraints which result from

the physical constraints on the control actuators. We assume that f is a locally Lipschitz vector

function of its arguments and that the state of the system of Eq. 2.1 is synchronously sampled at

time instancestk = t0+k∆, k = 0,1, . . ., where∆ is the sampling period andt0 is the initial time.

The disturbancew(t) is bounded within the setW := {w∈ R
l : |w| ≤ θ ,θ > 0} (i.e., w(t) ∈W).

We assume that the origin is an equilibrium point of the unforced nominal system which implies

that f (0,0,0) = 0.
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2.2.3 Lyapunov-Based Controller Assumption

We consider nonlinear systems that are stabilizable in the sense that there exists a Lyapunov-based

controllerh(x) = [h1(x) · · · hm(x)]T which renders the origin of Eq. 2.1 withw(t)≡ 0 (the nominal

closed-loop system) asymptotically stable withhi(x) ∈Ui , i = 1, . . . ,m, inside a given stability re-

gionΩρ . We further assume the existence49,63of a sufficiently smooth Lyapunov functionV(x) for

the nominal closed-loop system and classK functionsαi(·), i = 1,2,3,4 such that the following

inequalities hold:

α1(|x|)≤V(x)≤ α2(|x|)

∂V(x)
∂x

f (x,h1(x), . . . ,hm(x),0)≤−α3(|x|)
∣

∣

∣

∣

∂V(x)
∂x

∣

∣

∣

∣

≤ α4(|x|)

hi(x) ∈Ui , i = 1, . . . ,m

(2.2)

for all x ∈ D ⊆ Rn whereD is an open neighborhood of the origin. We define a level set of the

Lyapunov function within whichV̇ is negative as the stability regionΩρ of the process of Eq.

2.1 underh(x) (whereΩρ ⊆ D; see, for example,27,35,53,59for results on the design of stabilizing

control laws).

Whenx is maintained within the compact setΩρ , ui ∈ Ui, i = 1, ...,m, andw ∈W, we have

from the continuity ofx, the local Lipschitz property off , and the smoothness ofV(x) that there

exist positive constantsM, Lx, Lw, L∗x andL∗w such that the following inequalities hold:

| f (x(t),u(t),w(t))| ≤M (2.3)

| f (x,u,w)− f (x∗,u,0)| ≤ Lx |x−x∗|+Lw |w| (2.4)

∣

∣

∣

∣

∂V(x)
∂x

f (x,u,w)−
∂V(x∗)

∂x
f (x∗,u,0)

∣

∣

∣

∣

≤ L∗x |x−x∗|+L∗w |w| (2.5)

for all x,x∗ ∈Ωρ , ui ∈Ui, i = 1, . . . ,m, andw∈W.
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2.2.4 Lyapunov-Based Economic Model Predictive Control (EMPC)

Lyapunov-based economic model predictive control (LEMPC)is an optimization-based control

strategy implemented in a receding horizon fashion that utilizes the Lyapunov-based controller

h(x) as follows:43

min
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (2.6a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.6b)

x̃(tk) = x(tk) (2.6c)

ui(t) ∈Ui , i = 1, . . . ,m, ∀ t ∈ [tk, tk+N) (2.6d)

V(x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρe (2.6e)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0)

if x(tk) /∈Ωρe (2.6f)

where the piecewise constant input trajectoryu(t) is the decision variable of the optimization prob-

lem defined over the prediction horizon withN sampling periods of length∆, and the predicted state

trajectory is denoted by ˜x(t). The nominal model of Eq. 2.1 is used to predict the evolutionof the

system over the prediction horizon (Eq. 2.6b) where the initial condition of the dynamic system is

obtained through a state measurement at the current sampling timetk (Eq. 2.6c). Eq. 2.6a is the ob-

jective function of the LEMPC design, where the stage costLe(x̃,u) reflects the process economics

of the class of nonlinear systems of Eq. 2.1. The constraint of Eq. 2.6d restricts the control actions

u(t) to be within the admissible set over the prediction horizon.

In Mode 1 (Eq. 2.6e), the LEMPC optimizes the economic cost function of Eq. 2.6a in a

time-varying fashion when the state measurement of Eq. 2.6cis within the regionΩρe, which is

a subset ofΩρ . This subsetΩρe is selected to make the stability regionΩρ a forward invariant
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set for the closed-loop process under LEMPC in the presence of disturbances (i.e., if the process

is initialized within Ωρ , the closed-loop state is maintained withinΩρ for all time). In Mode 2

(Eq. 2.6f), which is activated whenx(tk) ∈Ωρ/Ωρe, the contractive constraint utilizes the explicit

stabilizing controllerh(x) to drive the closed-loop state back intoΩρe by computing control actions

that decrease the value of the Lyapunov function at least as much as the decrease given by the

stabilizing controller.

2.3 Safety-LEMPC Structure

The major contribution of this dissertation is the development of control schemes that address

safety in a control design framework through the incorporation of constraints based on safety con-

siderations. In this chapter, three LEMPC schemes (termed safety-LEMPC schemes) are presented

that couple the ability of LEMPC to optimize profit with its ability to handle safety considera-

tions by accounting for multivariable interactions, constraints, and a general objective function.

These safety-LEMPC schemes add various safety-based constraints to the standard formulation of

LEMPC in Eq. 2.6 so that safety is enforced as a constraint of operation, which allows for eco-

nomic optimization to be pursued among all solutions to the optimization problem that satisfy the

safety criteria.

In this chapter, we provide descriptions of the three proposed safety-LEMPC schemes with

safety-based constraints. Specifically, a detailed description of the implementation strategy for the

safety-LEMPC schemes, the formulations of the schemes, anda chemical process example for

each scheme are presented. Moreover, provable stability and feasibility properties of the safety-

LEMPC’s are given.

2.3.1 Implementation Strategy

The classical LEMPC design43 dictates time-varying operation to maximize the profit while main-

taining the closed-loop state of the process in the stability regionΩρ . The stability regionΩρ
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may be estimated as the largest level set of the Lyapunov function where the time-derivative of

the Lyapunov function is negative along the closed-loop state trajectories of the nominal system

of Eq. 2.1 underh(x) for all points in the level set. However, there may be regionsin Ωρ within

which it becomes unsafe to operate the process for some period of time due to disturbances (e.g.,

significant disturbances in the concentration of the feed stream, disturbances in ambient tempera-

ture, actuator problems such as a sticking valve). In such scenarios, it is necessary to change the

allowable region of operation in real-time fromΩρ to a smaller level set of the Lyapunov function

where safe process operation is achieved to maintain the closed-loop state within a safe region of

operation. In this chapter, we present three LEMPC schemes with safety-based constraints called

safety-LEMPC that can update the level set of the Lyapunov function online to tackle the following

two tasks:

Task 1:Driving the closed-loop state of the process of Eq. 2.1 underthe safety-LEMPC into a safe

region of operation.

Task 2: Maintaining the closed-loop state of the process of Eq. 2.1 under the safety-LEMPC in

this safe region of operation.

Figure 2.1 depicts the implementation strategy of the safety-LEMPC paradigm. As shown in

Figure 2.1, a safety logic unit determines an appropriate level set for safe process operation by

using data on the probability of potential failures of process equipment or software components,

measurement feedback of the process state and the estimatedfuture process state trajectory. If it

is determined that an equipment or software failure or otherunsafe scenario is likely, the safety

logic unit communicates the most profitable safety set-point ρsp to the safety-LEMPC to cause

it to drive the closed-loop state to a safe region of operation termed the safety regionΩρsp and

maintain the process operation there. The control actions computed by the safety-LEMPC will be

applied to the plant in a sample-and-hold fashion, and the measured state will be fed back to both

the safety-LEMPC for controller robustness and the safety logic unit so that the safety level set

will be re-evaluated if necessary.

Remark 2.1 If no process faults or unsafe conditions are predicted by the safety logic unit,ρspwill
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Figure 2.1: The implementation strategy of the safety-LEMPC paradigm

be chosen as the largest level set in the stability region where closed-loop stability in the presence

of uncertainty is guaranteed in order to maximize the economic measure of the safety-LEMPC.

Remark 2.2 In Figure 2.1, the safety logic unit receives the state measurement from the plant

regularly; however, the safety logic unit may communicate anew value ofρsp to the safety-LEMPC

less frequently.

Remark 2.3 The safety-LEMPC schemes that will be presented are not intended to sacrifice pro-

cess safety for economic performance. Rather, the three schemes to be presented are intended for

different purposes (e.g., one scheme may be better suited for processes where rapid and safety-

critical switches of the region of operation are necessary,while another may be better suited for

processes where the transition to a new region of operation can be slower without immediate neg-

ative consequences, such as a process for which high temperature operation is acceptable for a

small period of time though it is safer to move it to a region where the temperature is lower after

this time to avoid, for example, material weakening). A control engineer would choose the desired

scheme and tune any parameters of the desired scheme in a manner that provides acceptable con-
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trol and safety for a given process. Advantages and disadvantages of the three safety-LEMPC’s

will be presented in the discussion of each below to elucidate some of the factors that should be

considered when selecting a safety-LEMPC scheme. The safety-LEMPC system is not intended to

replace traditional process safety systems. It is, however, intended to be used in place of other

EMPC schemes that may be used to control a process to augment the traditional safety systems

that would also be used to provide an additional means of increasing process safety.

2.4 Scheme 1: LEMPC Using Level-Set Switching

As noted in the “Implementation Strategy” section, the two tasks of the safety-LEMPC are to

shift the region of operation to a safer zone and to maintain the closed-loop states within this

safer zone. The first considered scheme tackles these tasks by applying the standard LEMPC

scheme of Eq. 2.6 (with the Mode 1 and Mode 2 constraints defined with respect toΩρe) until

a switching timet1 at which time it is desired that the closed-loop state moves toward a lower

level setΩρsp (the safety region) that is within the stability region. At this time, the level set that

determines whether the Mode 1 or Mode 2 constraint should be used is re-defined in terms of

Ωρ̄sp, which is a subset ofΩρsp defined to makeΩρsp an invariant set under the safety-LEMPC in

the presence of disturbances/uncertainty once the state entersΩρsp (i.e., the relationship between

Ωρ̄sp and Ωρsp is similar to that betweenΩρe and Ωρ ). Thus, the effect of this safety-LEMPC

scheme is to enforce the Mode 2 contractive constraint starting from the statex(t1) ∈Ωρ until the

closed-loop state entersΩρ̄sp, so that the rate at which the state approaches the safety region is no

worse than the worst-case rate at which the state would approachΩρ̄sp under the Lyapunov-based

controllerh(x). Due to the closed-loop stability property of the explicit stabilizing controllerh(x),

this scheme is guaranteed to drive the closed-loop state to the lower level setΩρ̄sp in the presence

of uncertainty.72 Once the state entersΩρ̄sp, the safety-LEMPC dictates time-varying operation

to maximize the profit while the measured state remains within Ωρ̄sp, but uses the contractive

constraint whenx(tk) ∈ Ωρsp/Ωρ̄sp to ensure process operation is maintained within the safety
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regionΩρsp in the presence of disturbances/uncertainty (the proof of this will be clarified in the

section “Feasibility and stability analysis”).

The formulation of this control strategy is presented in thefollowing optimization problem:

max
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (2.7a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0)

x̃(tk) = x(tk) (2.7b)

ui(t) ∈Ui, i = 1, . . . ,m, ∀ t ∈ [tk, tk+N) (2.7c)

V(x̃(t))≤ ρ̂ , ∀ t ∈ [tk, tk+N) (2.7d)

ρ̂ = ρe, if x(tk) ∈Ωρe andtk < t1

ρ̂ = ρ̄sp, if x(tk) ∈Ωρ̄sp andtk≥ t1

∂V(x(tk))
∂x

f (x(tk),u(tk),0) (2.7e)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0)

if x(tk) /∈Ωρe andtk < t1 or if x(tk) /∈Ωρ̄sp andtk≥ t1

Remark 2.4 Although this scheme is guaranteed to drive the closed-loopstate of Eq. 2.1 to the

desired safety region, it is not guaranteed to do so in a fast or proactive fashion (i.e., there is no

adjustable parameter in this scheme that can be changed to modify the time that it takes to drive

the closed-loop state intoΩρsp after t1). Often, safety constraints are required to be satisfied in a

measurable amount of time; as a result, this scheme may present an issue for practical implementa-

tion in certain scenarios. However, it is also possible to perform extensive closed-loop simulations

of the process under h(x) in the presence of bounded disturbances/uncertainty for initial values

x(t1) ∈ Ωρ throughout the stability region before implementing this safety-LEMPC scheme. From

these simulations, it is possible to estimate the worst-case rate of approach to a variety of possible

safety level sets to determine whether the rate of transition fromΩρ to Ωρsp would be expected to
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be acceptable for a given process.

Remark 2.5 The economic optimality of a feasible control action plays asignificant role in the

safety-LEMPC’s selection of control actions in this scheme. Because the constraint of Eq. 2.7e only

requires that the state move towardΩρsp at least as quickly as it would under h(x) in a worst case,

the LEMPC will choose a control action that maximizes profit during this approach since that is the

required objective in this case, and thus it will not choose adifferent control action that may cause

the closed-loop state to more quickly approach the safety region but with less economic benefit

during this approach. However, the emphasis of this scheme on economics during the approach

to the safety region as opposed to the speed with which the approach to the safety region occurs

is an important consideration when determining whether this controller is the best safety-LEMPC

to apply for a given process. In circumstances where the known Lyapunov-based controller does

not provide a satisfactory worst-case rate of approach of the process state to the safety region,

this more economically-focused safety-LEMPC may be inadequate for ensuring that the safety

region is approached in the timeframes that may be desired. However, for processes for which

the worst-case rate of approach to a safety region under h(x) is considered to be acceptable, the

economic focus of the LEMPC during the transition to the safety region (the transition period) may

be economically beneficial while still ensuring that all safety requirements are met.

2.4.1 Scheme 1: Application to A Chemical Process Example

In this section, we demonstrate scheme 1 of the safety-LEMPCusing a chemical process example.

Because this chemical process example will also be used for the demonstration of the other safety-

LEMPC schemes developed in this chapter, we will begin with ageneral statement of the control

problem that will be used in the demonstration of all three schemes, and will then focus on the

parameters chosen specifically to demonstrate scheme 1, andthe closed-loop results for the process

under scheme 1.

The chemical process considered is a well-mixed, non-isothermal continuously stirred tank re-

actor (CSTR) within which a reactantA is transformed to a productB through the exothermic, irre-
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Table 2.1: Parameter values

T0 = 300 K F = 5 m3

hr

V = 1.0 m3 E = 5×104 kJ
kmol

k0 = 8.46×106 m3

kmolhr ∆H =−1.15×104 kJ
kmol

Cp = 0.231 kJ
kgK Rg = 8.314 kJ

kmolK

ρL = 1000 kg
m3 CAs1 = 1.2 kmol

m3

Ts1 = 438 K CAs2 = 2 kmol
m3

Ts2 = 400 K CA0s= 4 kmol
m3

Qs= 0 kJ
hr

versible second-order reactionA→ B.81 The CSTR is fed with pureA at flowrateF, concentration

CA0, and temperatureT0, and it is cooled and heated at heat rateQ by a jacket. The concentration of

A (CA) and temperatureT in the reactor are modeled using mass and energy balances with standard

modeling assumptions as follows:

dCA

dt
=

F
V
(CA0−CA)−k0e

−E
RgT C2

A (2.8a)

dT
dt

=
F
V
(T0−T)+

−∆H
ρLCp

k0e
−E
RgT C2

A+
Q

ρLCpV
(2.8b)

where∆H, k0, E, andRg are the enthalpy of reaction, pre-exponential constant, activation energy,

and ideal gas constant. The reactor volumeV, heat capacityCp, and fluid densityρL within the

reactor are assumed constant. The values of these parameters are given in Table 2.1.

The two manipulated inputs of the CSTR are the inlet concentration CA0 and the heat in-

put/removal rateQ. These manipulated inputs are bounded as follows: 0.5≤CA0≤ 7.5 kmol/m3

and|Q| ≤ 5×105 kJ/hr.

In the operating region of interest, the process model of Eq.2.1 has one stable steady-state

([CAs1 Ts1]=[1.2 kmol
m3 438 K]) and one unstable steady-state ([CAs2 Ts2]=[2 kmol

m3 400 K]) corre-

sponding to the steady-state input[CA0s Qs] given in Table 2.1 (steady-states outside the operating

region of interest are not considered). The dynamic model ofEq. 2.8 is a member of the class of

nonlinear systems of Eq. 2.1 withw(t) ≡ 0, wherex= [CA−CAs T−Ts]
T is the state vector (CAs
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= CAs1 or CAs2, andTs = Ts1 or Ts2) andu= [CA0−CA0s Q−Qs]
T is the input vector. In particular,

it is an input-affine nonlinear system with the form:

ẋ(t) = f̃ (x(t))+g(x(t))u(t) (2.9)

The explicit Euler method with an integration time step ofhc = 10−5 hr was applied to numerically

simulate the dynamic model of Eq. 2.8.

The control objective is to maximize the profit of the CSTR process of Eq. 2.8 while driving

the closed-loop state trajectories to a safe region of operation when required by controlling the

process using a safety-LEMPC scheme. To maximize the profit,the objective function of the

safety-LEMPC optimizes the following stage cost, which represents the production rate ofB:

Le(x,u) = k0e
− E

RgT C2
A (2.10)

The process and basic design parameters of the safety-LEMPCpresented above are now used

in the demonstration of scheme 1 (and, as noted, that same problem formulation will be used in the

demonstration of the other safety-LEMPC schemes developedin this chapter). In the demonstra-

tion of scheme 1 using this chemical process example, the process is operated around the stable

steady-state of the CSTR with steady-state input values [CA0s Qs]=[4 kmol
m3 0 kJ

hr ]. In addition, we

consider a limitation on the amount of reactant material available over a given operating period

tp = 1.0 hr (i.e., the amount of reactant material used in each operating period must average to that

which would be used under steady-state operation) which is described by the following constraint:

1
tp

∫ tp

0
u1(τ) dτ = 0.0 kmol/m3. (2.11)

The stabilizing controller designed for use in scheme 1 of the safety-LEMPC is a Lyapunov-

based controller of the formh(x) = [h1(x) h2(x)]
T . The inlet concentration is set to its steady-state

value in order to meet the material constraint of Eq. 2.11 (i.e.,h1(x) = 0). The rate of heat input is
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determined by the following Sontag control law:86

h2(x) =



















−
L f̃V +

√

L f̃V
2+Lg2V

4

Lg2V
, if Lg2V 6= 0

0, if Lg2V = 0

(2.12)

whereL f̃V andLg2V are the Lie derivatives of the Lyapunov functionV(x) with respect to the

vector fields f̃ (x) andg2(x) respectively. Extensive closed-loop simulations of the CSTR under

the Lyapunov-based controller were performed to determinethe stability region of the process

underh(x) and the corresponding Lyapunov function. A quadratic Lyapunov function of the form

V(x) = xTPxwas chosen withP being the following positive definite matrix:

P=







1060 22

22 0.52






(2.13)

The stability region was estimated to be the largest level set where the time derivative of the Lya-

punov function of the closed-loop system was negative. The stability region of the CSTR under

the Lyapunov-based controller, which is used in the Lyapunov-based constraint of Eqs. 2.7d-2.7e,

was estimated to beρ = 368 (note that because nominal operation was considered,ρe = ρ). A

sampling period∆ = 0.01hr and an operating period of lengtht f = 1 hr were used to simulate the

safety-LEMPC using the interior point solver Ipopt.90 In addition, for this example, the prediction

horizon was chosen to beN = 10.

The scheme 1 safety-LEMPC design (Eq. 2.7 with the additional material constraint of Eq. 2.11)

was applied to the CSTR, with the process states initializedat the stable steady-state, and the pro-

cess originally operating inΩρ . After half an hour of operation withinΩρ , we assume that the

safety logic unit determines that it is necessary to reduce the maximum allowable temperature of

operation, so it requests a switch of the region of operationfrom Ωρ to Ωρsp whereρsp = 294

(because nominal operation is considered,ρ̄sp= ρsp). Thus, beginning att1 = 0.5 hr, the Mode

2 constraint was applied until the closed-loop state was driven into the safety regionΩρsp by de-
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creasing the time derivative of the Lyapunov function by at least as much as the decrease given by

the stabilizing control law of Eq. 2.12. Once the state enteredΩρsp, the process was dynamically

operated within the safety region to maximize the process profit in this safe region of operation.

The state-space trajectories of the CSTR are presented in Figure 2.2 and the state and input

trajectories are presented in Figure 2.3. In addition, a plot of the Lyapunov function value of the

closed-loop system with respect to time is presented in Figure 2.4. As can be seen, the scheme

1 safety-LEMPC design maximized the profit beforet1 by driving the state from the steady-state

to the boundary ofΩρ . At t1, the level set that defines the Mode 1 and Mode 2 constraints was

updated online, and scheme 1 was successfully able to drive the closed-loop state fromΩρ to Ωρsp

in 19 sampling periods and to optimize the profit withinΩρsp, subject to the constraints, thereafter.

The drop in the Lyapunov function value at the end of the operating period occurs to satisfy the

material constraint (Eq. 2.11). Although this safety-LEMPC scheme was able to drive the closed-

loop state to the safety regionΩρsp in a finite number of sampling periods, the rate of decrease of

the Lyapunov function aftert1 was slow, which may not be desirable for safety-critical processes.

2.5 Scheme 2: LEMPC with A Sufficiently Long Prediction

Horizon

As demonstrated by the trajectories of the closed-loop CSTRexample under scheme 1, the control

actions calculated by scheme 1 are chosen to decrease the Lyapunov function of the closed-loop

state but to do so in a manner that optimizes the process economics (rather than optimizing the

speed with which the control actions drive the closed-loop state into the safety region), which

may cause the time betweent1 and the time at which the state entersΩρsp to be longer than is

practically acceptable. Hence, a scheme that can drive the closed-loop state intoΩρsp by t1 was

developed. This second scheme is an LEMPC design with a sufficiently long prediction horizon,

a region constraint,15 and an estimate of the switching timet1 to drive the closed-loop state into

the safety region byt1 under certain conditions. One of these conditions is that there are no distur-
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bances/uncertainties (i.e., nominal process operation isconsidered), so the formulation for scheme

2 is presented for the case of nominal operation (i.e., for nominal operation,ρe= ρ and no contrac-

tive constraint is needed to ensure that the state remains inΩρ since we also assumex(t0) ∈ Ωρ ).

The second condition required to prove that scheme 2 can drive the closed-loop state fromΩρ into

Ωρsp by t1 is that the switching time is known in advance. The third required condition is that the

time interval between the current time andt1 is long enough in the sense that there exists an explicit

stabilizing controller that can in a worst case drive the closed-loop state intoΩρsp in no more time

than this time intervalt1− tk (the remarks at the end of this section will address the use ofscheme

2 when these conditions are not met). Under the assumption that these three conditions are met,

the formulation of scheme 2 is as follows:
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max
u∈S(∆)

∫ tk+N̂1+N̂2

tk
Le(x̃(τ),u(τ)) dτ (2.14a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.14b)

x̃(tk) = x(tk) (2.14c)

ui(t) ∈Ui , i = 1, . . . ,m, ∀ t ∈ [tk, tk+N̂1+N̂2
) (2.14d)

V(x̃(t))≤ ρ̂ , ∀ t ∈ [tk, tk+N̂1+N̂2
) (2.14e)

ρ̂ = ρ , ∀ t ∈ [tk, t1)

ρ̂ = ρsp, ∀ t ∈ [t1, tk+N̂1+N̂2
)

where the prediction horizonN is the summation of two horizonŝN1 andN̂2. N̂1 is initially set to

be the number of sampling periods required to drive the closed-loop state into the safety region and

it must thus initially be equal to or less than(t1− t0)/∆. N̂2 is an additional number of sampling

periods added to the prediction horizon when desired to moreclosely approximate the infinite-

horizon case and thus, for many cases, increase the process profit by choosing control actions that

optimize the cost function over a longer period of time.

In the scheme 2 safety-LEMPC formulation presented in Eq. 2.14, the long prediction horizon,

region constraint, and known value oft1 combine to drive the process state fromΩρ into Ωρsp by

t1. Specifically, the region constraint of Eq. 2.14 allows the nominal process to operate in a time-

varying manner within the stability regionΩρ at the beginning of process operation. When the

process has operated for a sufficient period of time (which depends on the length of the prediction

horizon, including whether the initial value ofN̂1 is equal to(t1− t0)/∆ or less than it) such thatt1

is within [tk, tk+N̂1+N̂2
) (i.e., t1 is within the prediction horizon), the region constraint ofEq. 2.14e

requires that the process state be withinΩρsp by t1 and that it remains there afterward. Thus, when

the optimization problem of Eq. 2.14 is feasible, the closed-loop state is driven intoΩρsp by t1. For

nominal operation, the closed-loop process state is drivenintoΩρsp and maintained there afterward,
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thus accomplishing Tasks 1 and 2 of the safety-LEMPC design noted in the “Implementation strat-

egy” section. In addition to satisfying safety constraints, all control actions calculated by scheme

2 optimize the process profit subject to the constraints.

The feasibility of the optimization problem in Eq. 2.14 can be guaranteed when the three con-

ditions previously mentioned, which are the assumptions ofnominal operation, the knowledge of

t1 in advance, and that the time interval is longer than the timethat it takes a feasible (stabiliz-

ing) controller to drive the state intoΩρsp in a worst case, are met. The third requirement can be

proven to hold when the initial value of̂N1 is equal to the number of sampling periods required in

a worst-case by an explicit stabilizing controller implemented in sample-and-hold that meets the

input constraints in Eq. 2.14d to drive the closed-loop state from any initial state withinΩρ to the

safety region. However, this number of sampling periods maybe large, so that a long prediction

horizon may be required, even if the prediction horizon length N is set to its minimum value of

N̂1 (i.e., N̂2 = 0). When the prediction horizon is long, the computation time required to solve the

safety-LEMPC dynamic optimization problem may be substantially long and the controller may

not be practical to implement.

Remark 2.6 N̂1 is taken to be the minimum number of sampling periods required to drive the

closed-loop state from any initial state inΩρ into Ωρsp, though it is only necessary that it is equal

to the number of sampling periods required to drive the statefrom x(t1− N̂1∆) ∈Ωρ to Ωρsp by t1.

However, because x(t1− N̂1∆) may not be known before the controller is designed and applied, N̂1

should be chosen to be sufficiently large such that x(t1− N̂1∆) could be any state inΩρ and the

process could still be driven to the safety region by t1.

Remark 2.7 Because restrictive conditions are required to hold for this scheme to guarantee that

the optimization problem is feasible and that the closed-loop state entersΩρsp by t1, this scheme

may be more difficult to apply practically. However, unlike scheme 1, it has the potential to drive

the closed-loop state intoΩρsp by t1 (rather than starting to move towardΩρsp after t1), which may

be a desirable property for processes for which changes fromone region to another may need to

occur by a certain time in order to ensure process safety. Thus, it may be desirable to use scheme
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2 even when the restrictive conditions (nominal operation,t1 is known, and t1− tk is sufficiently

long) are not known to hold. When there are disturbances, closed-loop stability and feasibility of

scheme 2 cannot be proven, but they may hold. In addition, a contractive constraint like the one

used in scheme 1 may be added and applied when no feasible solution is found (though this would

not guarantee that the state can still be driven intoΩρsp by t1). If t1 is not known and thus it cannot

be verified whether t1− tk is sufficiently long, a conservative estimate may be made of t1, or scheme

2 may be applied long before it is expected that safety concerns may arise.

Remark 2.8 The time that an explicit stabilizing controller h(x) may take to drive the closed-loop

state intoΩρsp can be estimated for a specific h(x) (e.g., Sontag’s controller). Specifically, the

nonlinear process of Eq. 2.1 can be simulated off-line, applying h(x) in a sample-and-hold fashion

to measure the length of time that h(x) requires to move any initial state within the stability region

(i.e., x(t0) ∈Ωρ ) to the safety region.

2.5.1 Scheme 2: Application to A Chemical Process Example

The same CSTR example that was utilized to demonstrate scheme 1 will now be used to demon-

strate scheme 2 (in particular, the same steady-state, initial condition, Lyapunov functionV(x),

Lyapunov-based controllerh(x), input constraints, stability regionΩρ , safety level setΩρsp, sam-

pling period, and operating period were used for the processof Eq. 2.8 with the objective function

of Eq. 2.10 and the material constraint of Eq. 2.11). For the demonstration of scheme 2 using this

example, it is assumed that the safety logic unit indicated at the beginning of the operating period

(at t0) that it is necessary to switch the region of operation toΩρsp whereρsp= 294 after half an

hour (i.e.,t1 = 0.5 hr, which corresponds to 50 sampling periods). As mentioned, this scheme is

guaranteed to be feasible as long as the intervalt1−t0 is long enough in the sense that it is no shorter

than the worst-case minimum number of sampling periods needed for a stabilizing controller that

meets the input constraints and is implemented in sample-and-hold to drive the closed-loop state

from the initial state withinΩρ to Ωρsp within t1− t0. Because the length required for this interval

is unknown without performing extensive off-line simulations as noted in Remark 2.8, the predic-
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tion horizonN = N̂1+ N̂2 was set to 100. This ensures that if the worst-case number of sampling

periods required by an explicit stabilizing controller to drive the closed-loop state intoΩρsp in the

intervalt1− t0 is no more than 50 (because(t1− t0)/∆ = 50), the optimization problem is feasible,

and the prediction horizon includes a significant number of additional sampling periods for more

economically optimal process performance. The simulations demonstrated that this horizon length

was sufficient, because the optimization problem was feasible. Scheme 2 was implemented with a

shrinking horizon in this example (the horizon length decreases by 1 at each sampling timetk until

it becomes 0 att f ).

The closed-loop state-space trajectories of the CSTR temperature and concentration under the

scheme 2 safety-LEMPC are presented in Figure 2.5. In addition, the closed-loop trajectories

of the inputs and states under scheme 2 and the correspondingvalues of the Lyapunov function

throughout the operating windowt f = 1 hr are shown in Figure 2.6 and in Figure 2.7, respectively.

The oscillatory behavior of the states and inputs observed in these figures results because scheme 2

seeks to maximize the process profit using a sufficiently longprediction horizon while still meeting

process and safety constraints, and the safety-LEMPC determined that the oscillatory trajectories

achieved this in the most economically optimal manner. In addition, Figure 2.5 shows the move-

ment of the trajectories fromΩρ into Ωρsp, and Figure 2.7 shows that the closed-loop state moved

into Ωρsp by t1 and was maintained within the safety region thereafter. Thus, scheme 2 was able

to achieve economically optimal process operation while driving the closed-loop state intoΩρsp

by t1. However, despite these successes, it required a significant computation time and advance

knowledge oft1, which may not be practical in engineering applications.

2.6 Scheme 3: Simultaneous Control of Safety Constraint Sets

and Process Economic Optimization

Given the drawbacks of schemes 1 and 2 of the safety-LEMPC (scheme 1 does not guarantee a fast

rate of transition of the closed-loop state to the safety region, and scheme 2 requires knowledge of
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the time that the closed-loop state should be within the safety region in advance and may require a

long computation time), a scheme that is able to accomplish the transition of the closed-loop state

between the level sets efficiently without requiring prior knowledge of the switching time was

developed. This third scheme of the safety-LEMPC incorporates time-varying safety constraints

(it adds auxiliary optimization variables that allow the upper bound on the Lyapunov function in the

Mode 1 constraint to vary in time) and also adds a penalty in the objective with parameters that can

be tuned to achieve a desired rate of transition of the closed-loop state to the safety region without

the need for a long prediction horizon to ensure feasibility/stability and without requiring prior

knowledge of the switching time. In this section, two formulations of scheme 3 are presented with

different time-varying constraints: one that utilizes slack variables to adjust the Lyapunov function

bound, and a second that decreases the upper bound on the Lyapunov function dynamically.

2.6.1 Scheme 3-1: Slack Variable Safety Level Set Constraint

In the first formulation of scheme 3, a slack variable is incorporated in the Mode 1 constraint of the

LEMPC, and a penalty on the magnitude of the slack variable isimposed in the objective function
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to drive the closed-loop state to the safety region at a desired rate. The scheme 3 formulation which

incorporates this slack variable is presented as follows:

max
u,s∈S(∆)

∫ tk+N

tk
[Le(x̃(τ),u(τ))−aLs(τ)2] dτ (2.15a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.15b)

x̃(tk) = x(tk) (2.15c)

ui(t) ∈Ui , i = 1, . . . ,m, ∀ t ∈ [tk, tk+N) (2.15d)

s(t)≤ 0, ∀ t ∈ [tk, tk+N) if tk≥ t1 andx(tk) /∈Ωρsp (2.15e)

s(t) = 0, ∀ t ∈ [tk, tk+N) if tk < t1, or if tk≥ t1 andx(tk) ∈Ωρsp (2.15f)

V(x̃(t))+s(t)≤ ρ̂ , ∀ t ∈ [tk, tk+N) (2.15g)

ρ̂ = ρ , ∀ t ∈ [tk, tk+N) if tk < t1

ρ̂ = ρsp, ∀ t ∈ [tk, tk+N) if tk≥ t1

∂V(x(tk))
∂x

f (x(tk),u(tk),0) (2.15h)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0)

if x(tk) /∈Ωρe andtk < t1 or x(tk) /∈Ωρ̄sp andtk≥ t1

wheresdenotes the piecewise constant slack variable of the optimization problem over the predic-

tion horizonN∆, andaL is a weighting constant.

From the formulation of scheme 3 in Eq. 2.15, it can be seen that like scheme 1, scheme

3 optimizes the process economics withinΩρ until t1. The slack variable is set tos(t) = 0 in

Eq. 2.15f beforet1, so the safety-LEMPC reduces to the standard formulation ofLEMPC in Eq. 2.6

with an additional modification (not noted in Eq. 2.15 to avoid complicating the notation that̂ρ

is set toρe beforet1). At t1, the safety constraints of Eqs. 2.15e, 2.15g, and 2.15h are activated.

Thus, att1, the contractive constraint of Eq. 2.15h begins to be enforced, and it is enforced until

the closed-loop state entersΩρ̄sp to ensure that the Lyapunov function always decreases between
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two sampling periods when the closed-loop state is outsideΩρ̄sp (this ensures that Tasks 1 and 2

of the safety-LEMPC strategy from the “Implementation strategy” section are accomplished). In

addition, the upper bound̂ρ in Eq. 2.15g is changed toρsp at t1, and the slack variable is allowed

to take negative values. The role of the slack variable in this constraint is to ensure feasibility of

the optimization problem. If the slack variable was not included in Eq. 2.15g, the optimization

problem may be infeasible att1 because the closed-loop state was allowed to vary throughout all

of Ωρ beforet1, and thus it would not in general be expected thatx(t1) ∈ Ωρsp. Because of this,

the slack variable, which takes a negative value per Eq. 2.15e, is added to the value ofV(x̃(t)),

t ∈ [tk, tk+N) to decrease the left-hand side of Eq. 2.15g so that the upper boundρsp can be met.

Thus, this scheme enforces the decrease of the Lyapunov function level set as a soft constraint.

An important role of the slack variable is to ensure feasibility of the optimization problem

when the safety logic unit requires the region of operation to change. The second role of the slack

variable is to cause the safety-LEMPC to compute control actions that drive the closed-loop state

into Ωρsp as quickly as possible when desired. This is a result of its appearance in the objective

of Eq. 2.15a as a term that decreases the value of the objective function and thus it causes the

safety-LEMPC to seek control actions that make the magnitude of s(t) as small as possible to

maximize the objective function value when the weighting constantaL is sufficiently large. From

Eq. 2.15g, the magnitude ofs(t) will be smaller asV(x̃(t)) becomes closer toρsp, and finally takes

its minimum magnitude of zero whenV(x(tk)) = ρsp. Thus, for a sufficiently largeaL, the use of

the slack variable dictates scheme 3-1 to choose control actions that improve the rate of transition

to Ωρsp compared to the rate which would be obtained if only the contractive constraint of Eq. 2.15h

were used. The rate of decrease of the level set value is adjusted by varying the weighting constant

aL.

Remark 2.9 aL is a weighting constant that determines the rate at which theclosed-loop state

goes toΩρsp by penalizing the magnitude of the slack variable in the objective. Due to the penalty

in the objective function and the constraint of Eq. 2.15g, the optimal value of the slack variable

at each sampling time when tk ≥ t1 and x(tk) /∈ Ωρsp will be equal toρsp−V(x̃(t j)), wherex̃(t j)
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is the predicted state that gives the maximum value of the Lyapunov function in a given sampling

period. If it is desired to move quickly toward the safety region regardless of whether or not this

decreases the process profit, then aL must be sufficiently large in the sense that it must dominate

the economics-based component Le(x̃,u) of the objective function.

Remark 2.10 The formulation of Eq. 2.15 implements the slack variable carefully so that issues

with closed-loop stability cannot occur due to the slack variable. In this remark, we clarify some

of the important aspects of the formulation in Eq. 2.15. Firstly, the reason that s(t) = 0 when the

state is not transitioning betweenΩρ and Ωρsp is that if aL is small, there is a potential that the

economic benefit of increasing the magnitude of s(t) to operate the process in a larger region of

operation may outweigh the loss in the objective function from the addition of the term containing

the slack variable (as an extreme case, aL may be set to 0 if it is desired to only optimize the process

economics, and then the slack variable magnitude may becomearbitrarily large to maximize the

economics). By setting s(t) = 0 when the state is within the safety region, such issues cannot occur

during operation within the safety region. When the state istransitioning to the safety region,

the use of the contractive constraint throughout the transition period ensures that none of the

implemented control actions (i.e., the control actions corresponding to the first sampling period

in the prediction horizon) will cause the closed-loop stateto leaveΩρ or to move away from

the safety level set, regardless of the values of aL and of s(t), t ∈ [tk, tk+N); however, it cannot be

guaranteed that control actions for the remaining N−1 sampling periods of the prediction horizon

(for which the contractive constraint is not imposed) will not cause undesirable behavior for s(t),

t ∈ [tk+1, tk+N) if aL is small. Because these N−1 control actions are never implemented, their

behavior cannot affect whether the implemented control actions move the state to a lower level set,

but it may affect the economic optimality or constraint satisfaction of the process if, for example,

constraints that depend on past control actions are included (and if infeasibility occurs, such that

even the contractive constraint is not satisfied by the LEMPCsolution, it may be necessary to use

a different controller such as the Lyapunov-based controller to ensure that the state can be driven

to lower level sets, though this may not satisfy process constraints). Therefore, it is necessary to
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tune aL carefully or, if there are concerns that it cannot be tuned insuch a way to guarantee that

the slack variables do not pose an issue for the process, the contractive constraint of Eq. 2.15h can

be enforced at each sampling period of the prediction horizon, which will ensure that all predicted

control actions decrease the value of the Lyapunov functionand can prevent infeasibility in later

sampling periods if the optimization problem is properly formulated. If this issue is accounted for,

aL can be tuned to achieve the desired rate of approach to the safety region. If aL = 0, the slack

variable formulation puts more emphasis on the optimization of economics during the approach

to the safety region than the speed of approach to the safety region; as aL is increased, the slack

variable formulation will drive the state more quickly to the safety region, within the possible speed

of the dynamics of the process and any state/input constraints. An advantage of this slack variable

formulation over scheme 1 is that it has greater flexibility because it can be used to maximize

profit during the approach to the safety region or used for thealternate purpose of improving the

speed of approach to the safety region; a disadvantage, however, is that it requires the addition of

additional optimization variables to do so, which may increase the computation time.

Remark 2.11 In the formulation in Eq. 2.15, the slack variable is shown asa negative number

added to the left-hand side of Eq. 2.15g to decrease the left-hand side to be belowρsp after t1. An

alternative way to consider this constraint is to instead require that the slack variables be positive,

and to add them to the right-hand side of Eq. 2.15g, instead ofto the left. This increases the bound

on the right-hand side so that the value of the Lyapunov function at x̃(t) is within this upper bound.

Remark 2.12 In the formulation of Eq. 2.15, the slack variable s(t) is calculated at every sampling

period in the prediction horizon. However, one may considerupdating s(t) less often than once

per sampling period (e.g., having one slack variable for theentire prediction horizon) to reduce

the number of optimization variables, since only the first control action of the prediction horizon

is applied. However, a careful analysis should be performedwhen one slack variable is used over

the prediction horizon due to the boundρsp−V(x̃(t j)) on the slack variable that was mentioned in

Remark 2.9. To further clarify, this bound implies that if one slack variable is used for the entire

prediction horizon and it is desired to move the closed-loopstate to the safety region quickly (i.e.,
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aL is large), then depending on how this constraint is imposed in the controller, the slack variable

s(t) may be ineffective at accomplishing its purpose of causing the implemented control action to

move the closed-loop state fromΩρ to Ωρsp at a rate faster than that given by the Lyapunov-based

controller.

To see this, consider first the extreme case in which the constraint of Eq. 2.15g is enforced at

every time instance in the prediction horizon, including the sampling time tk at the beginning of

the prediction horizon, when the state is transitioning from Ωρ to Ωρsp. However, s(t) takes only

one value for t∈ [tk, tk+N) since we are considering the case that one slack variable is used for the

whole prediction horizon. In a best case, the value of the Lyapunov function will never become

greater than its initial value V(x(tk)) throughout the prediction horizon because it is desired to

move all predicted control actions toward the safety level set. Then, because the constraint of

Eq. 2.15g must be satisfied at tk since it is enforced at that time, and the value of V(x(tk)) is the

maximum value of V(x̃(t)) throughout the prediction horizon, the controller will choose s(t) =

ρsp−V(x(tk)), t ∈ [tk, tk+N) to make the bound of Eq. 2.15g as tight as possible to minimizethe

value of s(t) and maximize the objective (since aL is large). This means that the value of the slack

variable is set by the measured state x(tk), which is not able to be adjusted by the controller, so the

penalty term in the objective becomes a constant depending on a measured value of the closed-loop

state and thus is ineffective at driving the state intoΩρsp as quickly as possible (the objective in this

case is equivalent to using only Le(x̃,u), so as for scheme 1, the maximization of economics during

the approach to the safety region will slow the approach). Since the Lyapunov function decreases

throughout the first sampling period due to the contractive constraint of Eq. 2.15h and only the

first sampling period of the prediction horizon is implemented on the process, it is desirable to

make the value of the Lyapunov function at the end of the first sampling period as small as possible

to move the closed-loop state as quickly as possible to the safety region, which can be obtained

by enforcing the constraint of Eq. 2.15g at the end of the firstsampling period, rather than at any

other point during that sampling period.
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Scheme 3-1: Application to A Chemical Process Example

To demonstrate scheme 3-1, the formulation of Eq. 2.15 (withthe added material constraint) was

applied to the same CSTR example that was utilized previously to demonstrate schemes 1 and 2.

The optimization variables were the manipulated inputs as well as one slack variable that was held

constant throughout the prediction horizonN = 10 (one slack variable was used to avoid having a

large number of optimization variables that might increasethe computation time as in scheme 2).

The weighting coefficient was chosen to beaL = 80 to severely penalize the slack variable term

in the objective function when the closed-loop state is transitioning betweenΩρ andΩρsp. Due to

this significant weight, the constraint of Eq. 2.15e was enforced for all times (Eq. 2.15f was not

used).

In this demonstration of scheme 3-1, the process is initially operated inΩρ . After half an hour

of operation inΩρ , it is assumed that the safety logic unit determines that it is necessary to switch

to the safety regionΩρsp (t1 = 0.5 hr). After t1, the safety-LEMPC calculates control actions that

quickly drive the closed-loop state intoΩρsp due to the significant penalty term on the magnitude

of the slack variable in the objective function. Figures 2.8, 2.9, and 2.10 depict the state-space

trajectories, state and input trajectories, and Lyapunov function value, respectively, for the CSTR

operated under scheme 3-1. Figure 2.8 shows the transition of the closed-loop state fromΩρ into

Ωρsp, and Figure 2.10 shows that the controller was able to drive the closed-loop state into the

safety region in 2 sampling periods aftert1 and maintain it within the safety region thereafter.

From these figures, it is observed that scheme 3-1 effectively drove the state to the desired safety

region rapidly. In addition, this scheme was not computationally expensive and did not require

prior knowledge of the switching time.

Remark 2.13 Based on the discussion in Remark 2.12, it should be noted that the one slack vari-

able in this example was implemented by enforcing the Mode 1 constraint at the end of each

sampling period of the prediction horizon to avoid the issues noted in that remark.
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2.6.2 Scheme 3-2: Dynamic Safety Level Set (DSLS)

The motivation of the second formulation of scheme 3, termeddynamic safety level set-LEMPC

(DSLS-LEMPC), is to design a controller that explicitly controls the rate at which the closed-loop

state goes to the safety regionΩρsp while maximizing the process economics. The DSLS-LEMPC

design utilizes the explicit stabilizing controllerh(x) and dynamic safety-based constraints that

decrease the upper bound on the Lyapunov function through anordinary differential equation to

drive the closed-loop state into the safety region at a desired rate while maintaining closed-loop

stability and recursive feasibility of the system of Eq. 2.1under the DSLS-LEMPC design in the

presence of uncertainty. In addition to optimizing the process economic performance, the DSLS-

LEMPC paradigm, like the other schemes presented, performsTasks 1 and 2 of the safety-LEMPC

noted in the “Implementation Strategy” section.

The optimization problem of the proposed DSLS-LEMPC for theprocess of Eq. 2.1 is pre-
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sented for the case thatt1 has been reached, and is as follows:

max
u(t),Kc(t)∈S(∆)

∫ tk+N

tk
[Le(x̃(τ),u(τ))−φ(ρsp− ρ̃(τ))]dτ (2.16a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.16b)

ui(t) ∈Ui, i = 1, . . . ,m, ∀ t ∈ [tk, tk+N) (2.16c)

x̃(tk) = x(tk) (2.16d)

Kc(t)≥ 0 ,∀ t ∈ [tk, tk+N) (2.16e)

V(x̃(t))≤ ρ̃(t), ∀ t ∈ [tk, tk+N) (2.16f)

dρ̃
dt

= Kc(t)(ρsp− ρ̃(t)) (2.16g)

ρ̃(tk) =V(x(tk)), if x(tk) /∈Ωρsp

ρ̃(tk) = ρsp, if x(tk) ∈Ωρsp (2.16h)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0),

if x(tk) ∈Ωρ/Ωρ̄sp or tk > ts (2.16i)

wherets is the time after which the DSLS-LEMPC starts to drive the closed-loop state into a small

neighborhood of the origin in the presence of disturbances,which will be elaborated upon in the

“Feasibility and stability analysis” section (in the previous safety-LEMPC schemes,ts was not

included for simplicity of presentation and thus was assumed to be infinity; it has been included

here to simplify the discussion of the feasibility and closed-loop stability properties of the safety-

LEMPC’s that will be given in the “Feasibility and stabilityanalysis” section based on this scheme

3-2 formulation). In addition to the manipulated inputu(t), the piecewise constant gainKc(t)

is a decision variable of the optimization problem defined over the prediction horizonN∆. The

functionφ(·) is appropriately chosen to give a desired rate of approach ofthe closed-loop state to

Ωρsp (it may be, for example, the squared absolute value of its arguments). The constraint of Eq.
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2.16e restricts the gainKc(t) to take nonnegative values over the prediction horizon. TheDSLS-

LEMPC optimization problem minimizes the stage costLe(x̃(τ),u(τ)), derived from the system

economics, and the penaltyφ(ρsp− ρ̃(t)) that penalizes the deviation of the upper bound of the

Lyapunov function valuẽρ(t) from the safety set-pointρsp over the prediction horizon.

The dynamic safety-based constraints in Eqs. 2.16e-2.16h control the rate of variation of the

level set of the predicted Lyapunov function valueV(x̃(t)) over the prediction horizon to shrink the

region of operation toΩρsp. Specifically, the constraint of Eq. 2.16f maintains the predicted state

trajectoryx̃(t) in the regionΩρ̃(t) over the prediction horizon. The level setΩρ̃(t) of the predicted

Lyapunov function changes with time through the first order differential equation of Eq. 2.16g.

The gainKc(t) adjusts the rate of decrease of the level setΩρ̃(t) over the prediction horizon. The

initial condition of Eq. 2.16g is obtained from the value of the Lyapunov function at the current

state if the current state is outside the safety regionΩρsp; however, if the current state enters the

safety region (i.e.,x(tk) ∈Ωρsp) then the initial condition will be set to the safety set-point ρsp (Eq.

2.16h). The contractive constraint (Eq. 2.16i) forces the control actions computed by the DSLS-

LEMPC to decrease the Lyapunov function for the first sampling period in the prediction horizon

by at least as much as the decrease given by the explicit stabilizing controllerh(x). Because of the

safety-based constraints and the contractive constraint,it is guaranteed that the Lyapunov function

value will decrease for the first sampling period (i.e.,V(x(tk+1)) ≤ V(x(tk))). This continuous

decreasing of the Lyapunov function value guarantees that the closed-loop state will be driven

into the safety region in finite time, which accomplishes Task 1 of the safety-LEMPC. Moreover,

to achieve boundedness of the closed-loop state within the safety regionΩρsp and thus, meet the

requirement of Task 2, the contractive constraint of Eq. 2.16i will force the closed-loop state into

the subset of the safety regionΩρ̄sp⊂Ωρsp which makes the regionΩρsp a forward invariant set.

Remark 2.14 The contractive constraint of Eq. 2.16i is imposed in the optimization problem

to ensure that̃ρ(t) is decreasing at the beginning of each sampling period tk in the presence of

disturbances, and the role of the constraints in Eqs. 2.16e-2.16h in this case is to enhance the rate

of decrease of̃ρ(t) over the prediction horizon. However, the constraints of Eqs. 2.16e-2.16h will
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decreaseρ̃(t) without the need to impose the contractive constraint (Eq. 2.16i) for the nominal

system of Eq. 2.1 (i.e., w(t)≡ 0) under the DSLS-LEMPC design when the gain Kc(t) is sufficiently

large over the prediction horizon.

Remark 2.15 Owing to the constraint of Eq. 2.16h, the penalty termφ(ρsp− ρ̃(t)) in the objective

function of the optimization problem of Eq. 2.16 will be equal to zero and the upper bound of the

predicted Lyapunov function value in Eq. 2.16f will be set tothe safety set-pointρsp once x(tk)

enters the safety regionΩρsp. From that point on, due to the contractive constraint of Eq.2.16i,

Ωρsp will be a forward invariant set ifΩρ̄sp is defined such that no state starting withinΩρ̄sp can

leaveΩρsp in a sampling period (which will be proven in the “Feasibility and stability analysis”

section).

Remark 2.16 If the penalty termφ(ρsp− ρ̃(t)) is large relative to the process economic cost, it

will be desirable that̃ρ(t) = ρsp, which means that it is preferable to go as quickly as possible to

Ωρsp and then optimize the profit after the closed-loop state enters the safety region, rather than

optimizing it along the way. Thus, the weighting on the economics-based part of the objective

function compared to that of the safety-based penalty may depend on the process and how long

in advance of a fault or change in the process conditions the controller is notified that it needs to

change the region of operation toΩρsp.

Remark 2.17 Note that the decrease ofρ̃(t) through Eq. 2.16g does not mean that the value of the

Lyapunov function of the actual state V(x(t)) has decreased according to Eq. 2.16g. This is due

to process disturbances and also the fact that V(x) is a separate function for which the dynamics

are not those in Eq. 2.16g. However, if Kc(t) and u(t) can be found that can decreaseρ̃(t) in Eq.

2.16f, the predicted state is guaranteed to be within smaller level sets. Ifρ̃(t) decreases quickly,

this means that there is a value of u(t) that can quickly decrease V(x̃(t)) and thus may decrease

V(x(t)) significantly, even if it is not able to decrease it by as much as is indicated by Eq. 2.16f

due to disturbances in the actual process.
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Remark 2.18 Unlike the piecewise constant input u(t) which is, for practical implementation rea-

sons, implemented in a sample-and-hold fashion, Kc(t) can be updated as often as desired because

it is an auxiliary variable for optimization purposes and not a control action that is implemented by

the actuator, and thus there is no limit on how often it can be updated; however, constant updating

(e.g., every integration step) in general is not computationally practical.

Remark 2.19 It was noted that the DSLS-LEMPC formulation was presented for the case that t1

had already been reached, and it is desired to move the state intoΩρsp, to provide better clarity to

the discussion of the scheme by explicitly includingρsp in the formulation of Eq. 2.16. In the time

before t1, the value ofρ̄sp in Eq. 2.16i would be replaced byρe, and the upper bound on V(x̃(t))

would be set toρe instead ofρ̃ in Eq. 2.16f. At t1, the EMPC of Eq. 2.16 would then be used as

written, which would require only an update of the values ofρsp andρ̄sp from the safety logic unit.

Remark 2.20 Scheme 3-1 and scheme 3-2 have many similarities and can be used to accomplish

similar goals, though they are not equivalent. They both have the benefit of flexibility compared

to schemes 1 and 2 because of the tuning parameters that they incorporate, as noted for scheme

3-1 in Remark 2.10. Like scheme 3-1, a disadvantage of scheme3-2 compared to schemes 1 and

2 is that it requires the addition of auxiliary decision variables that may increase the computation

time.

There are several differences in the manner in which schemes3-1 and 3-2 handle the dynamic

variation of the upper bound on the Lyapunov function throughout time. For example, the auxiliary

optimization variable Kc(t) used in scheme 3-2 is not included in any equation that includes the

values of the closed-loop states themselves, but is only used to modify the bound on the Lyapunov

function. In addition, it is not utilized in the objective function, so there are no possible negative

interactions between Kc(t) and the values of the closed-loop states that would require Kc(t) to

be set to a specific value once the state enters the safety region. This is in contrast to scheme

3-1, where the slack variable s(t) is used in the Mode 1 constraint that is also a function of the

states and thus can directly affect their values, in addition to being in the objective. This can

cause the competing effects noted in Remark 2.10 that require s(t) to be set to 0 after the state

43



enters the safety region. Another significant difference between the two schemes is that scheme

3-2 controls the upper bound on the Lyapunov function value through the first-order ordinary

differential equation that adjusts the bound on the Lyapunov function valueρ̃(t) in time. Though

this differential equation requires a value of the decisionvariable Kc(t) to modify the Lyapunov

function bound, the bound on the Lyapunov function value is not directly calculated by the safety-

LEMPC. Thus, scheme 3-2 can be described as adjusting the bound on the level set by using a

controller (Eq. 2.16g) within the safety-LEMPC controller. In contrast, scheme 3-1 modifies the

upper bound on the Lyapunov function by adjusting s(t), which is an optimization variable of the

safety-LEMPC.

Another difference between the two formulations is that if it is desired to reduce the computation

time by applying only one value of the auxiliary variable (s(t) in scheme 3-1 and Kc(t) in scheme

3-2) throughout the prediction horizon, the manner in whichs(t) is implemented in such a case

is an important consideration in scheme 3-1, as noted in Remark 2.12, due to the structure of

that optimization problem, but no special considerations need to be made for scheme 3-2. On

the other hand, there may be some benefit with respect to the rate of approach of the closed-

loop state to the safety region when the number of optimization variables Kc(t) in scheme 3-2 is

increased (i.e., there are more decision variables Kc(t) than the number of sampling periods in the

prediction horizon) due to the increase in flexibility that this may give to adjust the upper bound

on the Lyapunov functioñρ(t) (and thus the greater possibility of finding control actionsthat move

the state to the safety region more quickly). For scheme 3-1,in contrast, there is no benefit to

increasing the number of slack variables s(t) because the slack variables set the upper bound on

the Lyapunov function directly and when the input is piecewise constant as in the safety-LEMPC

schemes, changing the upper bound on the Lyapunov function often throughout a sampling period

will not affect the values of the control actions chosen since they are fixed throughout the sampling

period.

Remark 2.21 Unlike scheme 2, schemes 3-1 and 3-2 do not guarantee that theclosed-loop state

will be within Ωρsp by any specific time. They can be tuned to drive the state intoΩρsp quickly in
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the sense that they may take the minimum or close to the minimum number of sampling periods

possible to drive the closed-loop state intoΩρsp from x(t1); however, the actual speed of this

transition will depend on the process dynamics and state/input constraints, and thus may not, in

practice, occur on a short timescale. Scheme 2 had the benefitthen that regardless of the speed of

the process dynamics and constraints, it can drive the stateinto Ωρsp by a required time; however,

it is not in general possible to prove that it can do this in thepresence of disturbances or if t1 is not

known, whereas schemes 3-1 and 3-2 are robust to disturbances and require no prior knowledge

of the switching time.

Remark 2.22 There are no restrictions on the objective functions that can be used with the safety-

LEMPC schemes. This means that they hold not only for an economics-based objective, but can

also hold for traditional quadratic objectives utilized intracking MPC in industry. An elaboration

of this will be the subject of the next chapter.

Scheme 3-2: Application to A Chemical Process Example

The DSLS-LEMPC design is demonstrated using the same CSTR example that was used for

scheme 1, scheme 2 and scheme 3-1, but with different problemsettings. Specifically, the pro-

cess of Eq. 2.8 was operated with the same objective functionin Eq. 2.10, the same constraints on

the inputs, fort f = 1 hr, using a prediction horizonN = 10 and a sampling period∆ = 0.01 hr.

However, the material constraint of Eq. 2.11 was not used. The process of Eq. 2.8 was operated

around the unstable steady-state point [CAs2 Ts2]=[2 kmol
m3 400K]. Moreover, a quadratic Lyapunov

functionV(x) = xTPx was constructed withP = diag([636.94 0.5]) to determine the stability re-

gion Ωρ for the DSLS-LEMPC design. The weights of theP matrix were chosen so that each

state contributed to the Lyapunov function value approximately equally. The stability region was

chosen to be the largest level set where the time-derivativeof the Lyapunov function,̇V, along the

closed-loop state trajectories is negative under the Lyapunov-based controllerh(x) = [h1(x) h2(x)]T
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defined by feedback linearization as follows:

h1(x) =
V
F
[−γx1+

−F
V

(CA0s− (x1+CAs2))+

k0e
−E

R(x2+Ts2) (x1+CAs2)
2]

h2(x) = ρLCpV[−γx2+
−F
V

(T0− (x2+Ts2))+

∆H
ρLCp

k0e
−E

R(x2+Ts2) (CAs2+x1)
2]

whereγ = 25 was chosen to make the process model of Eq. 2.8 globally exponentially stable under

h(x) in the absence of input constraints. Both control laws are subject to the input constraints and

by using this strategy,ρ was chosen to be 2002.3.

The change in the example specifications in this section is made to show that the safety-LEMPC

schemes have the potential not only to ensure safe operationaround a stable steady-state, but

also around an unstable steady-state. The examples presented in this chapter are not intended to

be used to directly compare the performance of the schemes for the particular system used, but

rather to demonstrate the properties of the individual schemes, since the objective of this chapter

is to develop several safety-LEMPC schemes and to present their differences and similarities so

that a control engineer can have an understanding of which scheme may be best for a particular

application due to its properties as a formulation.

We assume that at the beginning of operation the safety logicunit determines that it is necessary

to shift the region of operationΩρ to the safety regionΩρsp whereρsp= 500 (i.e.,t1 = t0), again

to reduce the maximum allowable temperature of operation. The process of Eq. 2.8 is controlled

by the DSLS-LEMPC design given by the following optimization problem:
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min
u∈S(∆),Kc

∫ tk+N

tk

[

−Le(x̃(τ),u(τ))
N∆

+
|ρsp− ρ̃(τ)|2

hc

]

dτ (2.18a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.18b)

ui(t) ∈Ui, i = 1, . . . ,m, ∀ t ∈ [tk, tk+N) (2.18c)

x̃(tk) = x(tk) (2.18d)

Kc≥ 0, ∀ t ∈ [tk, tk+N) (2.18e)

V(x̃(t))≤ ρ̃(t), ∀ t ∈ [tk, tk+N), (2.18f)

dρ̃
dt

= Kc(ρsp− ρ̃(t)) (2.18g)

ρ̃(tk) =V(x(tk)), if x(tk) /∈Ωρsp

ρ̃(tk) = ρsp, if x(tk) ∈Ωρsp (2.18h)

where the optimization variables are the piecewise-constant trajectory foru(t) and the auxiliary op-

timization variableKc (only one value ofKc is found for the entire prediction horizon to minimize

the number of auxiliary optimization variables used), andhc is the integration time step 10−5 hr.

The DSLS-LEMPC formulation considered is implemented witha prediction horizonN = 10.

The objective function of the optimization problem includes two terms; the first term is the negative

of the time-average production rate of Eq. 2.10 (to maximizethe production rate since Eq. 2.18 is a

minimization problem), and the second term is theL2 norm of the difference betweeñρ(t) and the

safety set-pointρsp. We penalize the second term significantly more than the average production

rate using a large weight 1/hc so that the highest priority of the DSLS-LEMPC is to drive the

closed-loop state into the safety regionΩρsp in a short time.

In the following simulation, we demonstrate the application of the proposed DSLS-LEMPC by

starting the optimization problem from an initial condition that is at the boundary of stability region

Ωρ (significantly far from the safety region) to assess the quality of the DSLS-LEMPC controller.

Figures 2.11-2.12 show the closed-loop state trajectoriesand the manipulated input trajectories of
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Figure 2.11: The state profiles for the closed-loop CSTR under the DSLS-LEMPC design of
Eq. 2.18 for the initial condition [CA(0),T(0)] = [1.606 kmol

m3 ,461.7 K]

the dynamic model of Eq. 2.8 under the DSLS-LEMPC design of Eq. 2.18. Due to the high penalty

in the objective function on the deviation of the predicted states from the safety regionΩρsp, the

manipulated heat rateu2 drops to its minimum allowable value at the beginning of the operating

period to decrease the temperature of the reactorx2 as quickly as possible so that the closed-loop

trajectories enter the safety region in a short time. Once the closed-loop state trajectories are

inside the safety regionΩρsp, the objective function reduces to only the average production rate,

so the inlet concentrationu1 saturates at its maximum allowable value to increase the reactant

concentrationx1, and thus the profit is maximized. The DSLS-LEMPC controllerwas able to

drive the closed-loop state trajectories into the safety region Ωρsp within three sampling periods

(i.e., 3∆). Another simulation was performed to demonstrate that theDSLS-LEMPC is efficient at

adapting to sudden changes of the safety set-point. In this simulation, the safety logic unit required
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Figure 2.12: Manipulated input profiles for the closed-loopCSTR under the DSLS-LEMPC design
of Eq. 2.18 for the initial condition [CA(0),T(0)] = [1.606 kmol

m3 ,461.7 K]

the process state to move to two different safety level sets at two different time instants, where

t1 = t0 andt2 = 0.5 hr, with the corresponding safety set-points beingρsp1 = 500 andρsp2 = 300.

Figure 2.13 represents the state trajectory in this case; clearly the DSLS-LEMPC was successfully

able to drive the closed-loop state into the boundary ofΩρsp2
within one sampling period aftert2

where the process state settled to maximize the profit.

Figure 2.14 depicts the closed-loop state-space trajectories forx1 andx2 starting from an initial

level setΩρint that is equal to the level setΩρ (i.e.,ρ = ρint =V(x(t0)), wheret0 is the initial time).

As shown in Figure 2.14, shortly after the closed-loop statetrajectories enter the safety region,

they start to approach the boundary of the safety region to maximize the production rate. Also, the

state trajectories settle at the point[x1(0),x2(0)] = [0.07 kmol
m3 ,31.53 K] where the production rate

attains a local maximum within the specified safety regionΩρsp.
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Figure 2.13: The state-space profile for the closed-loop CSTR under the DSLS-LEMPC design of
Eq. 2.18 for the initial condition [CA(0),T(0)] = [1.606 kmol

m3 ,461.7 K] andρint = 2002.3 for two
different safety set-pointsρsp1 = 500 att1 = 0 hr, ρsp2 = 300 att2 = 0.5 hr

Figure 2.15 shows the inverse relationship between the gainKc(t) and the initial value of̃ρ(t)

of Eq. 2.18g at the beginning of each sampling periodtk under the DSLS-LEMPC design of Eq.

2.18. The gainKc(t) levels off at a constant value after the initial value ofρ̃(t) of Eq. 2.18g under

the DSLS-LEMPC is equal to the safety set-point valueρsp= 500.

Remark 2.23 The formulation of the DSLS-LEMPC used for this example, shown in Eq. 2.18,

is not guaranteed to be stabilizing in the sense of convergence to a small neighborhood of the

steady-state, particularly around the unstable steady-state, since it does not include the contractive

constraint for simplicity. It was able to maintain the closed-loop state within the stability region in

the simulations discussed above; to guarantee convergenceto a small neighborhood of the steady-

state or robustness to disturbances in this example, the contractive constraint should be added.
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Figure 2.14: The state-space profile for the closed-loop CSTR under the DSLS-LEMPC design of
Eq. 2.18 for the initial condition [CA(0),T(0)] = [1.606 kmol

m3 ,461.7 K] andρint = 2002.3

2.6.3 Feasibility and Stability Analysis

In this section, we present sufficient conditions such that the state of the closed-loop system of Eq.

2.1 under the three safety-LEMPC schemes is always bounded in Ωρsp and is ultimately bounded

in a compact set containing the origin. We present these results in detail for the DSLS-LEMPC

design, and then describe how they can be generalized to the other safety-LEMPC schemes through

several remarks. Since the DSLS-LEMPC design is a modified formulation of the classical LEMPC

design of,43 the proofs of stability and feasibility utilize the approach in.43 We begin the proof for

the DSLS-LEMPC by re-stating the two propositions requiredfor stability and feasibility from43

to define functions and parameters needed for the proof of feasibility and closed-loop stability of

the DSLS-LEMPC formulation.
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Figure 2.15: The gainKc and the initial value ofρ̃(t) of Eq. 2.18g at the beginning of each
sampling periodtk for the closed-loop CSTR under the DSLS-LEMPC design of Eq. 2.18 for the
initial condition [CA(0),T(0)] = [1.606 kmol
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Proposition 2.1 (c.f.43,67) Consider the systems

ẋa(t) = f (xa(t),u1(t), . . . ,um(t),w(t))

ẋb(t) = f (xb(t),u1(t), . . . ,um(t),0)
(2.19)

with initial states xa(t0) = xb(t0) ∈Ωρ . There exists aK function fW(·) such that

|xa(t)−xb(t)| ≤ fW(t− t0), (2.20)

for all xa(t),xb(t) ∈Ωρ and all w(t) ∈W with

fW(τ) =
Lwθ
Lx

(eLxτ −1). (2.21)
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Proposition 2.2 (c.f.43,67) Consider the Lyapunov function V(·) of the system of Eq. 2.1. There

exists a quadratic function fV(·) such that

V(x)≤V(x̂)+ fV(|x− x̂|) (2.22)

for all x, x̂∈Ωρ with

fV(s) = α4(α−1
1 (ρ))s+Mvs

2 (2.23)

where Mv is a positive constant.

In the following theorem, we establish feasibility and stability of DSLS-LEMPC by introducing

conditions onρsp andρ̄sp.

Theorem 2.1 Consider the system of Eq. 2.1 in closed-loop under the DSLS-LEMPC design of

Eq. 2.16 based on a controller h(x) that satisfies the conditions of Eq. 2.2. Letεw > 0, ∆ > 0,

ρ > ρsp> ρ̄sp> ρs> 0 satisfy

ρ̄sp≤ ρsp− fV( fW(∆)) (2.24)

and

−α3(α−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆. (2.25)

If x(t0) ∈Ωρ , ρmin≤ ρ̄sp and N≥ 1 where

ρmin = max{V(x(t +∆)) : V(x(t))≤ ρs}, (2.26)

then the state x(t) of the closed-loop system can be driven in a finite time toΩρsp and then be

bounded there, and also the state x(t) of the closed-loop system is ultimately bounded inΩρmin.

Proof 2.1 The proof will be given in two parts. In Part 1, we prove the feasibility of the optimiza-

tion problem of Eq. 2.16 for all initial states starting within the regionΩρ . In Part 2, we prove the

two results of Theorem 2.1 (which are that the state x(t) of the closed-loop system can be driven in

a finite time toΩρsp and then be bounded there, and also is ultimately bounded inΩρmin).
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Part 1: The solution Kc(t)=0,∀ t ∈ [tk, tk+N), u(t)=h(x̃(tn)),∀ t ∈ [tn, tn+1)with n= k, . . . ,N+

k−1 is a feasible solution wheñx(t) is maintained withinΩρ . The gain Kc(t) = 0,∀ t ∈ [tk, tk+N)

is feasible since it satisfies Eq. 2.16e over the prediction horizon. When Kc(t) = 0, then by Eq.

2.16g,ρ̃(t) will be equal to its initial value from Eq. 2.16h throughout the prediction horizon,

and thus the upper bound on the Lyapunov function in Eq. 2.16fwill be fixed (i.e., either̃ρ(tk) =

V(x(tk))⇒V(x̃(t))≤V(x(tk)),∀ t ∈ [tk, tk+N), if x(tk) /∈Ωρsp or ρ̃(tk) = ρsp⇒V(x̃(t))≤ ρsp,∀ t ∈

[tk, tk+N), if x(tk) ∈ Ωρsp). In such a case, the feasibility of u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1) with

n= k, . . . ,N+k−1 is guaranteed because it satisfies the input constraint of Eq. 2.16c and also,

because of the closed-loop stability property of the Lyapunov-based controller h(x)72 (when Eqs.

2.25-2.26 are met for the process under both h(x) and under the LEMPC of Eq. 2.16), it satisfies

the constraint of Eq. 2.16f. Trivially, u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1) with n= k, . . . ,N+ k− 1

satisfies the contractive constraint of Eq. 2.16i, making ita feasible input trajectory for the DSLS-

LEMPC design of Eq. 2.16. Therefore, Kc(t) = 0,∀ t ∈ [tk, tk+N), u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1)

with n= k, . . . ,N+ k− 1 is a feasible solution, and recursive feasibility of the DSLS-LEMPC

follows if the closed-loop state trajectory is maintained within Ωρ (which will be proven in Part 2).

Part 2: We now show that if the closed-loop state x(tk) is initialized outside the safety region

(i.e., x(tk) /∈ Ωρsp and tk ≤ ts), then within finite time the closed-loop state will be maintained in

Ωρsp. We also show that if tk > ts, then the closed-loop state will be ultimately bounded in a small

region containing the origin.

If x(tk) ∈ Ωρ/Ωρ̄sp, then due to the contractive constraint of Eq. 2.16i in the DSLS-LEMPC

formulation of Eq. 2.16, the Lyapunov function of the closed-loop state will decrease for the first

sampling period in the prediction horizon by at least the rate given by the explicit stabilizing

controller h(x). Owing to the closed-loop stability property of the explicit controller h(x),72 the

Lyapunov function value of the closed-loop state under the DSLS-LEMPC design will decrease in

the next sampling period (i.e., V(x(t)) ≤V(x(tk)),∀ t ∈ [tk, tk+1], which is derived in43). Thus, if

x(tk) ∈ Ωρ/Ωρ̄sp then V(x(tk+1)) <V(x(tk)) and in finite time, the closed-loop state converges to

Ωρ̄sp (i.e., x(tk+ j) ∈Ωρ̄sp where j is a finite positive integer).
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When the closed-loop state entersΩρsp, the upper bound of the constraint in Eq. 2.16f is

replaced byρ̄sp, then for x(tk) ∈ Ωρ̄sp and tk ≤ ts, thenx̃(tk+1) ∈ Ωρ̄sp by the constraints of Eq.

2.16f and x(tk+1) ∈ Ωρsp (also, x(t) ∈ Ωρsp for t ∈ [tk, tk+1)) because the contractive constraint

will only not be applied to decrease the Lyapunov function value if x(tk) /∈Ωρ̄sp, it is also possible

to execute the EMPC formulation of Eq. 2.16 as written and to guarantee that x(tk+1) ∈ Ωρsp

for all times if Ωρ̄sp is defined as a region chosen such that if x(tk) ∈ Ωρ̄sp, then x(t) ∈ Ωρsp) for

t ∈ [tk, tk+1)). If x(tk) ∈ Ωρsp/Ωρ̄sp, then the contractive constraint will continue to be enforced,

decreasing the Lyapunov function value until x(tk+l ) ∈ Ωρ̄sp where l is a finite positive integer.

Therefore,Ωρsp is a forward invariant set.

If tk > ts, then the contractive constraint of Eq. 2.16i will continueto decrease the Lyapunov

function value until the closed-loop state enters the compact setΩρmin in which it is ultimately

bounded. The proof of this is analogous to the proof of ultimate boundedness in.43

Remark 2.24 As noted in Remark 2.19, before t1, the safety-LEMPC operates withρ and ρe

replacingρsp and ρ̄sp in the formulation of Eq. 2.16, so scheme 3-2 is also stable before t1 and

ensures closed-loop stability for the same reasons as mentioned in the proof of Theorem 2.1.

Remark 2.25 The proofs of feasibility and closed-loop stability of schemes 1, 2, and 3-1, under

the assumptions of Theorem 2.1 thatΩρmin ⊆ Ωρ̄sp and that x(t0) ∈ Ωρ , have many similarities

to the proof presented for the DSLS-LEMPC and will be outlined in several following remarks.

These remarks will show that schemes 1 and 3-1, like scheme 3-2, have robustness properties that

guarantee that they can maintain closed-loop stability of the process state within a given safety

region in the presence of sufficiently small disturbances (i.e., disturbances small enough that the

Lyapunov-based controller implemented in sample-and-hold is robust to these disturbances) after

the state has entered this safety region, and will show that scheme 2 can guarantee that the closed-

loop state can be maintained within a given safety region fornominal operation.

Remark 2.26 For scheme 1, u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1) with n= k, . . . ,N+k−1, is a feasible

solution when tk < t1 and when tk≥ t1 because it satisfies the input constraints and the Mode 1 and
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Mode 2 constraints in Eqs. 2.7c, 2.7d, and 2.7e. This scheme is also guaranteed to maintain closed-

loop stability of the state before and after t1. Before t1, ρ̂ = ρe, and the safety-LEMPC operates as

the standard LEMPC in Eq. 2.6, which is guaranteed to maintain closed-loop stability according to

the proof presented in.43 From t1 until the state first entersΩρ̄sp, the Mode 2 constraint of Eq. 2.7e

is able to drive the closed-loop state from any state inΩρ into Ωρ̄sp because of the robustness

property of the explicit stabilizing controller, as mentioned in the proof of Theorem 2.1 for the

DSLS-LEMPC. Finally, after the state has reachedΩρ̄sp, it is maintained within this final level set

by the combination of the Mode 1 and Mode 2 constraints in the same manner as was detailed for

the DSLS-LEMPC in the proof of Theorem 2.1.

Remark 2.27 Feasibility and closed-loop stability for scheme 2 can be proven when the three con-

ditions mentioned in the section “Scheme 2: LEMPC with sufficiently long prediction horizon” are

met (nominal process operation, t1 is known, and the time interval t1− tk is longer than t1− N̂1∆,

whereN̂1 is defined based on an explicit stabilizing controller h(x)). When these conditions are met,

u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1) with n= k, . . . ,N+k−1 is a feasible solution because it is guaran-

teed to drive the closed-loop state from x(t0) ∈Ωρ to Ωρmin in finite time if implemented repeatedly

due to the stability properties of the Lyapunov-based controller.72 Thus, before t1 is within the

prediction horizon,̂ρ = ρ in Eq. 2.14e and u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1) with n= k, . . . ,N+k−1

is a feasible solution because it decreases the value of V(x(t))with time which ensures that V(x̃(t))

is maintained withinΩρ . When t1 is within the prediction horizon (and thuŝρ = ρ before t1 and

ρsp starting at t1 in Eq. 2.14e), u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1) with n= k, . . . ,N+ k−1 is feasi-

ble because the prediction horizon was designed with respect to h(x) to be at least as long as the

time needed for an explicit stabilizing controller h(x) implemented in sample-and-hold to drive

the closed-loop state intoΩρsp in a worst case from any point withinΩρ while meeting the input

constraints of Eq. 2.14d. Closed-loop stability in the sense of boundedness of the closed-loop state

within Ωρ before it entersΩρsp and withinΩρsp after it first enters the safety region is guaranteed

for a nominal process operated under scheme 2 when a feasiblesolution exists because then the

constraints of Eq. 2.14e hold not only in the optimization problem but also for the actual process.
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Remark 2.28 For scheme 3-1, u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1), n= k, . . . ,N+ k− 1, with s(t) =

0 ∀ t ∈ [tk, tk+N) is a feasible solution before t1 because it trivially satisfies the contractive con-

straint and Eq. 2.15f and also satisfies the constraint of Eq.2.15g becausêρ = ρ . When tk ≥ t1

and x(tk) /∈ Ωρsp, u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1), n= k, . . . ,N+ k−1, with a negative s(t) of ar-

bitrarily large magnitude allows for Eqs. 2.15e and 2.15g tobe satisfied and also satisfies the

contractive constraint and the input constraints by designof h(x). When tk ≥ t1 and x(tk) ∈ Ωρsp,

ρ̂ = ρsp, and u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1), n= k, . . . ,N+ k−1, with s(t) = 0 ∀ t ∈ [tk, tk+N) is

a feasible solution because it again satisfies both the contractive constraint and the constraints

of Eqs. 2.15g and 2.15f. The proof of the closed-loop stability of this method follows that of the

standard LEMPC of Eq. 2.6 presented in43 before t1. Scheme 3-1 decreases the state toΩρ̄sp in

finite time due to the contractive constraint and then maintains the state withinΩρsp after it enters

this set for the reasons described for the DSLS-LEMPC in the proof of Theorem 2.1.

Remark 2.29 To prove ultimate boundedness of the closed-loop state under schemes 1 and 3-1,

the contractive constraint in each scheme could be enforcedfor all times after a pre-specified

time ts. To prove ultimate boundedness of the closed-loop state under scheme 2, this contractive

constraint could be added to scheme 2 at ts and enforced for all times after ts. In all three cases,

the proof of ultimate boundedness would follow that presented for the DSLS-LEMPC in Part 2 of

the proof of Theorem 2.1.

2.7 Conclusion

In this chapter, safety-LEMPC schemes were introduced to combine feedback control, process

economics and safety considerations. Three different safety-LEMPC schemes that maintain safe

operation while maximizing the profit were developed. The first scheme used a contractive con-

straint to compute control actions that drive the closed-loop state to a safe region of operation at

least as quickly as a stabilizing Lyapunov-based controller would in a worst-case. However, un-

der this scheme, the rate of the transition between the regions of operation may be slow. Though
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the second scheme utilized a sufficiently long prediction horizon and a region constraint to ensure

that the state was within the safety region by a specific time,it may require a long computation

time associated with the larger number of decision variables required to simulate a process over

a long prediction horizon. The third scheme tackled the drawbacks of the first two schemes by

giving two formulations that incorporate time-varying safety-based constraints to transition the

closed-loop state between the regions of operation efficiently. The first formulation incorporated

a slack variable to achieve this while the second formulation (DSLS-LEMPC) dynamically con-

trolled the upper bound on the Lyapunov function directly. For a sufficiently small sampling period,

we proved recursive feasibility and closed-loop stabilityof a class of nonlinear systems under the

safety-LEMPC schemes for nominal operation and, for schemes 1 and 3, in the presence of un-

certainty. A chemical process example under each of the safety-LEMPC schemes was presented

to demonstrate the ability of the proposed controllers to drive the closed-loop state into a safe re-

gion of operation and then maintain it within the safety region while maximizing the profit of the

process. Closed-loop stability was maintained in all simulations and the safety-LEMPC schemes

demonstrated an effective economic performance and safetyconstraints satisfaction.
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Chapter 3

Achieving Operational Process Safety via

Model Predictive Control

3.1 Introduction

An MPC formulation (which can be considered to be an EMPC formulation with, specifically, a

quadratic objective function) that can guarantee closed-loop stability in the presence of uncertainty

is Lyapunov-based model predictive control (LMPC) which incorporates stability constraints based

on a stabilizing Lyapunov-based controller. Though LMPC drives the closed-loop state trajectory

to a steady-state, it lacks the ability to adjust the rate at which the closed-loop state approaches

the steady-state in an explicit manner. However, there may be circumstances in which it would be

desirable, for safety reasons, to be able to adjust this rateto avoid triggering of safety alarms or

process shut-down. In addition, there maybe scenarios in which the current region of operation

is no longer safe to operate within, and another region of operation (i.e., a region around another

steady-state) is appropriate. Motivated by these considerations, this chapter develops two novel

LMPC schemes by extending the results from the prior chapterthat can drive the closed-loop state

to a safety region (a level set within the stability region where process functional safety is ensured)

at a prescribed rate or can drive the closed-loop state to a safe level set within the stability re-
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gion of another steady-state. Recursive feasibility and closed-loop stability are established for a

sufficiently small LMPC sampling period. A comparison between the proposed method, which

effectively integrates feedback control and safety considerations, and the classical LMPC method

is demonstrated with a chemical process example. The chemical process example demonstrates

that the safety-LMPC drives the closed-loop state into a safe level set of the stability region two

sampling times faster than under the classical LMPC in the presence and absence of process un-

certainty. The results of this chapter originally appearedin.8

3.2 Preliminaries

3.2.1 Notation

The transpose of a vectorx is represented by the symbolxT . The Euclidean norm of a vector is

denoted by the operator| · |. A level set of a sufficiently smooth, positive definite scalar-valued

functionV(x) is represented by the symbolΩρ (Ωρ := {x ∈ Rn : V(x) ≤ ρ}). The symbolS(∆)

denotes the family of piecewise constant, right-continuous functions with period∆ ≥ 0. Set sub-

traction is denoted by the operator ‘/’, that is,A/B := {x∈ Rn : x∈ A,x /∈ B}.

3.2.2 Class of Systems

Nonlinear process systems are considered with the following state-space description:

ẋ= f (x,u,w) (3.1)

wherex∈Rn is the state of the system, andu∈Rm andw∈Rl are the control (manipulated) input

vector and the disturbance vector, respectively. The admissible input values are restricted to be in

m nonempty convex setsUi ⊆ R, i = 1, . . . ,m, defined asUi := {ui ∈ R : umin
i ≤ ui ≤ umax

i }, where

umax
i andumin

i , i = 1, . . . ,m, are the magnitudes of the input constraints. The vector function f is

assumed to be a locally Lipschitz vector function of its arguments withf (0,0,0) = 0. Further, the
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disturbance vectorw is assumed to bounded within the setW := {w ∈ R
l : |w| ≤ θ ,θ > 0} (i.e.,

w∈W).

3.2.3 Lyapunov-Based Controller Assumption

The class of nonlinear systems of Eq. 3.1 is constrained to a class of stabilizable nonlinear systems.

Particularly, the existence of a Lyapunov-based controller h(x) = [h1(x) · · · hm(x)]T which renders

the origin of Eq. 3.1 withw(t) ≡ 0 (the nominal closed-loop system) asymptotically stable with

hi(x) ∈Ui , i = 1, . . . ,m, inside a given stability regionΩρ is assumed. Further, it is assumed that

there exist49,63a sufficiently smooth Lyapunov functionV(x) for the nominal closed-loop system

and classK functionsαi(·), i = 1,2,3,4, such that the following inequalities hold:

α1(|x|)≤V(x)≤ α2(|x|)

∂V(x)
∂x

f (x,h1(x), . . . ,hm(x),0)≤−α3(|x|)
∣

∣

∣

∣

∂V(x)
∂x

∣

∣

∣

∣

≤ α4(|x|)

hi(x) ∈Ui , i = 1, . . . ,m

(3.2)

for all x∈ D ⊆ Rn whereD is an open neighborhood of the origin. The stability regionΩρ of the

process of Eq. 3.1 underh(x) (whereΩρ ⊆ D) is defined as a level set of the Lyapunov function

within whichV̇ is negative. Designs for stabilizing control laws that account for input constraints

for different classes of nonlinear systems have been developed (see, for instance,27,35,53,59).

Whenx is maintained within the compact setΩρ , ui ∈Ui, i = 1, . . . ,m, andw ∈W, we have

from the continuity ofx, the local Lipschitz property off , and the smoothness ofV(x) that there

exist positive constantsM, Lx, Lw, L′x andL′w such that the following inequalities hold:

| f (x(t),u(t),w(t))| ≤M (3.3)

| f (x,u,w)− f (x∗,u,0)| ≤ Lx |x−x∗|+Lw |w| (3.4)
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∣

∣

∣

∣

∂V(x)
∂x

f (x,u,w)−
∂V(x∗)

∂x
f (x∗,u,0)

∣

∣

∣

∣

≤ L′x |x−x∗|+L′w |w| (3.5)

for all x,x∗ ∈Ωρ , ui ∈Ui, i = 1, . . . ,m, andw∈W.

3.2.4 Lyapunov-Based Model Predictive Control

Lyapunov-based model predictive control (LMPC)66 is a model predictive control (MPC) strategy

that incorporates Lyapunov-based constraints to ensure closed-loop stability of the optimization-

based controller. The formulation of the classical LMPC optimization problem is as follows:

min
u(t)∈S(∆)

∫ tk+N

tk
[x̃(τ)TQx̃(τ)+u(τ)TRu(τ)]dτ (3.6a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.6b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.6c)

x̃(tk) = x(tk) (3.6d)

V(x̃(t))≤ ρ , ∀ t ∈ [tk, tk+N) (3.6e)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0) (3.6f)

where the decision variable of the optimization problem is the piecewise constant input trajectory

u(t). The input constraint of Eq. 3.6c restricts the computed input trajectories to be within the

admissible set over the prediction horizon. The nominal model of Eq. 3.1 is incorporated to

predict the evolution of the system over the prediction horizonN∆ (Eq. 3.6b). The notation ˜x(t)

andx(tk) denotes the predicted state trajectory and the state measurement obtained at the sampling

time tk, respectively. The stage cost of the LMPC of Eq. 3.6 is a quadratic function that penalizes

the deviations of the state and inputs from their corresponding steady-state values (Eq. 3.6a). The

weighting matricesQ and R are tuned to manage the trade-off between the amount of control

energy required to move the state to the steady-state and thespeed of approach to this steady-
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state (even though this trade-off is not transparent). Eqs.3.6e-3.6f represent the Lyapunov-based

constraints where the constraint of Eq. 3.6e maintains the closed-loop state of the process of Eq.

3.1 within the stability regionΩρ over the prediction horizon. Finally, the constraint of Eq.3.6f

(contractive constraint) forces the time derivative of theLyapunov function under the classical

LMPC to be less than the time derivative of the Lyapunov function under the explicit stabilizing

controllerh(x).

3.3 Safety-Based LMPC Design

In this section, an LMPC design is developed that incorporates safety-based constraints (termed

safety-LMPC). In the first subsection, the motivation for adding safety-based constraints to the

classical LMPC scheme of Eq. 3.6 is provided to form safety-LMPC. In the second and third

subsections, the formulations of two proposed safety-LMPCoptimization problems are given and

the proofs of recursive feasibility and closed-loop stability of one of the safety-LMPC schemes

are presented, with discussion of such properties for the other safety-LMPC scheme. In the fourth

subsection, the changes required to the proposed safety-LMPC formulations to change the current

region of operation to another one around a different steady-state are presented.

3.3.1 Motivation for Safety-Based Constraints

Tracking MPC is widely used in the chemical process industries. The main purpose of tracking

MPC is to steer the process to the operating steady-state andmaintain process operation at this

steady-state. However, in the presence of disturbances, tracking MPC does not guarantee closed-

loop stability. Alternatively, the LMPC design of Eq. 3.6 uses the explicit stabilizing controller

h(x) to ensure closed-loop stability by decreasing the Lyapunovfunction value at the beginning of

each sampling time. Though LMPC is thus able to guarantee closed-loop stability of the process,

always maintaining process operation withinΩρ and decreasing the state to a neighborhood of the

steady-state, there may be scenarios in which a region within Ωρ becomes unsafe to operate within.
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In this case, the closed-loop stability properties of LMPC,and the rate at which it drives the state

to a neighborhood of the origin through the combination of the contractive constraint and tracking

objective function, may not be enough to ensure safe processoperation. The rate of approach to the

steady-state is lower bounded by the worst-case rate at which h(x) would drive the system to the

steady-state when implemented in sample-and-hold, but otherwise is determined by the weighting

matricesQ andR and the penalties they place on deviations of the states and inputs from their

steady-state values. The only flexibility this classical LMPC formulation offers for changing the

rate of approach to the steady-state when process monitoring logic determines that the state needs

to move to a smaller level set within the stability region quickly to avoid safety alarms or process

shut-down is to adjustQ andR on-line. However, determining appropriate values ofQ andR for

a desired rate of approach to the safe region of operation is difficult. A method for enhancing the

rate of approach to the steady-state when an unsafe situation is detected would allow the process

control system to enhance process functional safety.

One method for improving the rate at which the closed-loop state approaches the steady-state

is by shrinking the level set used within the LMPC formulation on-line when an unsafe situation

is detected. A safe level set of the stability regionΩρsp ⊂ Ωρ , termed the safety region, could

be identified, outside of which the enhanced rate of decreasewould be imposed by shrinking the

upper bound onV(x) to force the state to enter smaller level sets at a desired rate. This would have

the effect of forcing the state to move toward the origin at a rate potentially faster than that which

would be achieved using the quadratic objective and contractive constraint alone. In this chapter,

two LMPC schemes are developed termed safety-LMPC 1 and safety-LMPC 2 that can enhance

the rate at which the closed-loop state approachesΩρsp.

3.3.2 Safety-LMPC 1 Formulation

Safety-LMPC 1 decreases the upper bound on the Lyapunov function with time to enhance the rate

of approach of the closed-loop trajectories to the safety region by imposing a hard constraint within

the LMPC scheme that decreases the upper bound onV(x) at a fixed rate. The hard constraint,
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which can be utilized in place of Eq. 3.6e, is as follows:

V(x̃(t))≤ ρsp+(V(x(tk))−ρsp)e
−a(t−tk) ∀ t ∈ [tk, tk+N) (3.7)

whereρsp represents the safety set-point. The constanta represents the convergence rate, which

can be assigned a value consistent with the rate of approach required to enter the safety region

before safety issues occur (which may be a very large value ifthe required rate of approach is very

fast). Based on the value ofa, the closed-loop state is required to be within the safety region Ωρsp

after a certain number of sampling times to satisfy the constraint. As a result of this constraint, the

closed-loop state may enter the safety region more rapidly than under the classical LMPC design

of Eq. 3.6. The proposed safety-LMPC 1 guarantees closed-loop stability of the system of Eq. 3.1

in the presence of uncertainty when the safety-LMPC 1 optimization problem is feasible; however,

recursive feasibility is not guaranteed because the safety-based constraints may not satisfy the rate

that the hard constraint of Eq. 3.7 requires (i.e., the parametera is significantly large). When the

closed-loop state entersρsp, the constraint of Eq. 3.7 can be replaced with the constraint of Eq. 3.6e

with ρ = ρsp.

Another idea for formulating safety-LMPC 1 with a hard upperbound on the rate of decrease

of the Lyapunov function is to utilize a dynamic upper boundρ̃ on V(x̃(tk)) that also must meet
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Eq. 3.7 as follows:

min
u(t),Kc(t)∈S(∆)

∫ tk+N

tk
[x̃(τ)TQx̃(τ)+u(τ)TRu(τ)]dτ (3.8a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.8b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.8c)

x̃(tk) = x(tk) (3.8d)

Kc(t)≥ 0, ∀ t ∈ [tk, tk+N) (3.8e)

V(x̃(t))≤ ρ̃(t)≤ ρsp+(V(x(tk))−ρsp)e
−a(t−tk), ∀t ∈ [tk, tk+N) (3.8f)

dρ̃
dt

= Kc(t)(ρsp− ρ̃(t)) (3.8g)

ρ̃(tk) =V(x(tk)), if x(tk) /∈Ωρsp

ρ̃(tk) = ρsp, if x(tk) ∈Ωρsp (3.8h)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0) (3.8i)

where the notation follows that in Eq. 3.6. In addition to themanipulated input trajectoryu(t),

the gainKc(t) is another decision variable that is restricted to take nonnegative values over the

prediction horizonN∆ (Eq. 3.8e). The performance index of the safety-LMPC 1 is theobjective

function of the classical LMPC of Eq. 3.6.

Eqs. 3.8e-3.8h represent the safety-based constraints. The contractive constraint (Eq. 3.8i)

ensures that the closed-loop state entersΩρsp in finite time by utilizing the explicit stabilizing

controllerh(x) to compute control actions that decrease the value of the Lyapunov function at least

as much as the decrease given byh(x). Though the constraint of Eq. 3.8i ensures that the closed-

loop state of the process of Eq. 3.1 converges to the safety regionΩρsp at a rate that is at least as fast

as that which the explicit stabilizing controllerh(x) would offer in a worst case (it may be faster

depending onQ andR), the role of the safety-based constraints is to enhance therate of decrease

of the state until it entersΩρsp in the required number of sampling times that the hard constraint
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of Eq. 3.8f imposes, and then to resume the normal rate of approach to the steady-state using the

classical LMPC scheme. This allows the original tuning of the objective function with respect to

Q andR to retain its significance once the state is within a safe region of operation, and also allows

for the rate of decrease toward the safety region to potentially be faster than it would be under the

classical LMPC design alone. Specifically, the upper bound (Eq. 3.7) in the constraint of Eq. 3.8f

enforces a fast rate of approach of the state toΩρsp by causing the optimization problem to choose

aKc that will decrease the upper boundρ̃(t) on the Lyapunov function value of the predicted state

as quickly as the rate of approach (parametrized bya) required to enter the safety region. This

has the potential to decrease the level set of the predicted Lyapunov function valueV(x̃(t)) over

the prediction horizon more significantly than under the classical LMPC design alone, causing

the closed-loop state to move more quickly toward the safetyregionΩρsp. The rate at which̃ρ

decreases is governed by the magnitude of the decision variable Kc(t) in the first-order ordinary

differential equation of Eq. 3.8g. Moreover, the predictedstate trajectory ˜x(t) is maintained within

the predicted level setΩρ̃(t) over the prediction horizon by the constraint of Eq. 3.8f, sothat the

predicted state cannot leaveΩρ̃ in a given prediction horizon once it enters it. To ensure that the

classical LMPC design of Eq. 3.6 can be recovered when the optimization problem of Eq. 3.8

causes the state to enterΩρsp, the safety-LMPC utilizes state feedback to set the initialcondition

of the constraint of Eq. 3.8g to the value of the Lyapunov function at the current state when the

state measurement is outside the safety regionΩρsp, or to the safety set-pointρsp if the current state

enters the safety region (i.e.,x(tk) ∈ Ωρsp) (Eq. 3.8h). Thus, whenx(tk) enters the safety region,

the classical LMPC design is recovered because the constraint of Eq. 3.8g will be set to zero.

The constraint of Eq. 3.8f may be more likely to become infeasible than the constraint of Eq. 3.7

because it requires that the dynamics of both the nominal process (Eq. 3.8b) and the dynamics of

ρ̃ (Eq. 3.8g) cause Eq. 3.8f to be met. However, the LMPC of Eq. 3.8 has the advantage of

being more readily transformed to the soft constraint formulation that will be developed in the next

subsection than does the LMPC formulation of Eq. 3.6 with Eq.3.7 (and hence further discussion

on this point will be deferred to that subsection). Despite the possible infeasibility of the safety-
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LMPC 1 formulation, the safety-based constraint allows it to require an explicit rate of decrease of

the Lyapunov function value until the closed-loop state enters the safety region, which would be

difficult to achieve by tuningQ andR if the safety-based constraints were not utilized.

Remark 3.1 The proposed safety-LMPC design does not study the process complexity itself (the

nonlinear, coupled nature of the process dynamics is considered to be an innate aspect of the

physics and chemistry of the process), rather this chapter is focused on the problem of the com-

plexity (difficulty) of ensuring safe operation of nonlinear, highly coupled processes. The new

solution proposed by this chapter is a control design that explicitly incorporates safety-based state

constraints that guarantee recursive feasibility and closed-loop stability of a process under the

controller, and also guarantee that the closed-loop process can be driven into a safe region of

operation in finite time, under certain conditions. The new controller design proposed below can

handle the difficulty associated with the conventional tracking MPC formulation in which it is not

obvious how to adjust the matrices Q and R on-line so that the rate of approach to the steady-

state when process monitoring logic determines that the state needs to move faster to a safe region

of operation is enhanced. However, the proposed safety-LMPC design enhances the rate of ap-

proach to the steady-state by incorporating safety-based constraints and a safety penalty term that

can shrink the level set used within the MPC formulation on-line. Subsequently, the process state

will move toward the safe region of operation at a rate potentially faster than that which would

be achieved using the quadratic objective function of the conventional tracking-MPC. Thus, the

proposed formulation avoids the difficulty of tuning the Q and R matrices due to safety considera-

tions and can still achieve the goal of driving the closed-loop state to a region of operation closer

to the steady-state at a faster rate than would otherwise be attained with the Q and R matrices

unchanged.

Remark 3.2 It is noted that the safety-based constraints do not guarantee a decrease in the Lya-

punov function value of the closed-loop state at the rate given by Eq. 3.8g because the dynamics of

V(x) are not those in Eq. 3.8g and furthermore process disturbances will cause the value of V(x)

along the actual closed-loop state trajectory to differ from the predicted upper bound in Eq. 3.8.
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However, when Kc(t) and u(t) decreasẽρ(t) significantly, it is possible that the actual process state

will be decreased significantly for that same value of the input, which may cause the closed-loop

state under Eq. 3.8 to be driven intoΩρsp more quickly than it would be under Eq. 3.6.

Remark 3.3 Though Kc(t) is piecewise constant with period∆ in Eq. 3.8, it is not a physical

quantity and thus could be piecewise constant with a different period if desired.

Remark 3.4 Though it is possible to continue to enforce the enhanced rate of decrease to the

steady-state from Eq. 3.7 or 3.8f even after the closed-loopstate entersΩρsp, this would not in

general be desirable because the weighting matrices Q and R are typically chosen to allow a trade-

off between the rate of approach to the steady-state and the use of the inputs. If the safety-based

constraints of the safety-LMPC were always active and drovethe state quickly toward the origin,

Q and R would lose their value as tuning parameters because the effect would be like having a

large Q.

Remark 3.5 An alternative upper bound in Eqs. 3.7 and 3.8f is(ρsp+(V(x(tsa f))−ρsp)e−a(t−tsa f)),

where tsa f corresponds to the time at which process monitoring logic requests that the closed-loop

state begin to move toward the safety region. This upper bound ensures that the only change in

the value of the upper bound is due to t increasing, whereas the upper bound in Eqs. 3.7 and 3.8f

changes not only due to t changing, but also due to changes in V(x(tk)) and tk. Thus, the requested

rate of decrease toward the safety region corresponding to the former upper bound may be more

easily understood a priori using the decaying exponential,whereas it is more difficult to determine

the rate of decrease throughout time with the latter upper bound because at any given sampling

period it depends on the process state measurement x(tk), which is affected by prior chosen control

actions and process disturbances that cannot be known a priori.

3.3.3 Safety-LMPC 2 Formulation

The second safety-LMPC formulation that is proposed in thischapter is a modification of the

formulation of safety-LMPC 1 such that the resulting controller, termed safety-LMPC 2, forces the
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closed-loop state to go toΩρsp while recursive feasibility and closed-loop stability of the process

of Eq. 3.1 under safety-LMPC 2 are guaranteed. The mathematical formulation of safety-LMPC

2 for the process of Eq. 3.1 is as follows:

min
u(t),Kc(t)∈S(∆)

∫ tk+N

tk
[x̃(τ)TQx̃(τ)+u(τ)TRu(τ) (3.9a)

+φ(ρsp− ρ̃(τ))]dτ

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.9b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.9c)

x̃(tk) = x(tk) (3.9d)

Kc(t)≥ 0, ∀ t ∈ [tk, tk+N) (3.9e)

V(x̃(t))≤ ρ̃(t), ∀ t ∈ [tk, tk+N) (3.9f)

dρ̃
dt

= Kc(t)(ρsp− ρ̃(t)) (3.9g)

ρ̃(tk) =V(x(tk)), if x(tk) /∈Ωρsp

ρ̃(tk) = ρsp, if x(tk) ∈Ωρsp (3.9h)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0) (3.9i)

where the notation follows that in Eq. 3.8. The performance index of the safety-LMPC 2 for-

mulation includes the objective function of the classical LMPC of Eq. 3.6 and a safety penalty

term as in Chapter 2. The safety penalty termφ(ρsp− ρ̃(t)) penalizes the deviation of the upper

bound of the Lyapunov function valuẽρ(t) from the safety set-pointρsp over the prediction hori-

zon. Specifically, the penalty term in the objective can be appropriately weighted to enforce a fast

rate of approach of the state toΩρsp by causing the optimization problem to choose aKc that will

decrease the upper boundρ̃(t) on the Lyapunov function value of the predicted state rapidly. This

has the potential to decrease the value of the Lyapunov function along the predicted closed-loop

state trajectories (V(x̃(t))) over the prediction horizon more significantly than under the classical
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LMPC design alone, causing the closed-loop state to move more quickly toward the safety region

Ωρsp. However, the rate of decrease to the safety region does not necessarily meet the convergence

rate required by Eq. 3.7 because safety-LMPC 2 enforces the hard constraint of Eq. 3.7 as a soft

constraint through a penalty term in the objective functionto drive the closed-loop state toΩρsp

while feasibility of the optimization problem is guaranteed for all times.

It was noted in the prior section that the benefits of the dynamic upper bound̃ρ utilized within

the safety-LMPC 1 formulation in Eq. 3.8 (as opposed to the formulation of Eq. 3.6 with Eq. 3.7)

would be more clear after the formulation of safety-LMPC 2 had been introduced, and they will

now be discussed. Specifically, the formulation of Eq. 3.8 clarifies the relationship between the

desired rate of approach to the safety region as parametrized by a and the gainKc calculated by

the LMPC (i.e., a specific gainKc must be chosen in any given sampling period if the rate of

approach parameterized bya is to be met in Eq. 3.8f). This is helpful in understanding howthe

rate of approach to the steady-state is embedded within the soft constraint formulation of Eq. 3.9

through the gainKc. Furthermore, the closeness of the formulations of Eqs. 3.8and 3.9 is beneficial

because it provides a strategic set-up for, for example, employing logic that enforces a specific

rate of decrease through Eq. 3.8 when that optimization problem is feasible but then switches to

the soft constraint formulation of Eq. 3.9 with minimal adjustment of the optimization problem

when Eq. 3.8 becomes infeasible (i.e., only a penalty on the objective function and the removal

of the upper bound oñρ in Eq. 3.8f need to be implemented when infeasibility occursto obtain

a control action that can guarantee closed-loop stability and controller feasibility; the transition to

the modified optimization problem is not as smooth with the formulation of Eq. 3.6 with Eq. 3.7,

for which new constraints and optimization variables wouldneed to be added to the optimization

problem to enable the transition).

Safety-LMPC 2 provides two primary benefits in terms of enforcing the rate of approach of

the closed-loop state to the safety region that cannot easily be obtained by tuningQ andR in an

LMPC formulation without safety-based constraints. Firstly, safety-LMPC 2 may aid as noted

in the previous paragraph in developing a controller designthat can easily transition between the
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LMPC formulation of Eq. 3.8 and that of Eq. 3.9 whenever Eq. 3.8 becomes infeasible to encourage

the closed-loop state to meet the explicit rate of approach to the closed-loop state (that could not

easily be determined by adjustingQ andR) that is enforced by Eq. 3.8f as closely as possible.

Furthermore, even if safety-LMPC 2 is utilized on its own (i.e., not with Eq. 3.8), safety-LMPC 2

still allows for one parameter (the weighting on the penaltyon (ρsp− ρ̃) in the objective function)

to be adjusted to alter the rate of approach to the safety region as desired. When it is unclear how

large this weight should be for a desired rate of approach, itcan be adjusted based on process

data. Specifically, the rate at which the closed-loop state moves toward the safety region can be

evaluated based on measurements of the process state between sampling times. Then, based on

whether this rate is appropriate for the safety concerns at hand, the weight can be increased (to

drive the process state toward the safety region more quickly) or decreased (if the rate is faster

than required and is using more control action than desired). The relative weighting on the safety

penalty term compared to the quadratic terms in the objective function may depend on the process

dynamics and the length of time remaining until it is desiredthat the state be within the safety

region. This allows the difficult problem of adjustingQ andRat the same time (which involves not

just tuning two different quantities with respect to one another, but also all of the individual values

within both matrices) to achieve a desired rate of approach to the safety region to be simplified to

the problem of adjusting only one parameter, the weighting on the penalty term.

Remark 3.6 The main objective of this chapter is to enhance the safety performance of the con-

ventional tracking MPC by imposing safety-based constraints and Lyapunov-based constraints into

the MPC so that the process state variables can be driven to the safety region at a faster rate than

the conventional tracking MPC would offer. The safety region is defined as a level set of the stabil-

ity region where the process state variables stay within a range that prevents triggering of safety

alarms. Similar to the conventional tracking MPC, the proposed safety-LMPC can be applied to

nonlinear systems that do not obey the superposition principle which defines linear systems. Our

scope includes the nonlinear processes and it also includesa number of assumptions regarding

process safety, such as that there are no actions from the safety system interfering with the actions
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of the control system, that the region of safe operation can be pre-determined on-line as a level set.

Also, this chapter considers controlling a nonlinear process (in terms of its dynamics, the under-

lying differential equations describing the physical-chemical phenomena are nonlinear ordinary

differential equations) with an MPC that includes safety constraints. MPC’s should be equipped

with a sufficiently accurate process model to provide accurate state predictions; in this chapter,

it is considered that the MPC includes a nonlinear process model to make state predictions. It is

in that sense that the MPC incorporates nonlinearity (i.e.,the MPC determines optimal control

actions to apply based on how it predicts these control actions will affect the state of a nonlinear

process throughout the prediction horizon, and also the control actions are applied to a nonlinear

process). Therefore, LMPC is a nonlinear controller as it has constraints and uses a nonlinear

model to compute control actions that regulate the nonlinear process state - LMPC is not a linear

controller.

Feasibility and Stability Analysis of Safety-LMPC 2

In this subsection, sufficient conditions are presented such that the state of the closed-loop system

of Eq. 3.1 under the safety-LMPC 2 design is guaranteed to enter the safety regionΩρsp in finite

time and reside within the safety regionΩρsp thereafter. Moreover, it is proved that the closed-loop

state is guaranteed to be ultimately bounded within a compact set containing the origin. Because

safety-LMPC 1 is not guaranteed to be recursively feasible but safety-LMPC 2 is, the feasibility

and stability analysis is only presented for safety-LMPC 2,though the closed-loop stability results

also hold for both safety-LMPC 1 formulations (Eq. 3.6 with Eq. 3.7 and Eq. 3.8) when those

formulations are recursively feasible. The following theorem provides sufficient conditions that

prove practical stability of the system of Eq. 3.1 under the proposed safety-LMPC 2 design.

Theorem 3.1 Consider the system of Eq. 3.1 in closed-loop under the safety-LMPC 2 design of

Eq. 3.9 based on a controller h(x) that satisfies the conditions of Eq. 3.2. Letεw > 0, ∆ > 0,
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ρ > ρsp> ρs> 0 satisfy

−α3(α−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆. (3.10)

If x(t0) ∈Ωρ , ρmin≤ ρ and N≥ 1 where

ρmin = max{V(x(t +∆)) : V(x(t))≤ ρs}, (3.11)

then the closed-loop state x(t) of Eq. 3.1 is guaranteed to enter the safety regionΩρsp in finite time

and then reside there, and also the state x(t) of the closed-loop system is ultimately bounded in

Ωρmin.

Proof 3.1 The proof consists of two parts. The first part includes the proof of the feasibility of the

safety-LMPC 2 optimization problem for all states x(t) ∈Ωρ . The second part includes the proof

of the two results of Theorem 3.1.

Part 1: The proposed safety-LMPC 2 of Eq. 3.9 is always a feasible optimization problem.

The feasibility of the safety-LMPC 2 formulation is guaranteed because the following solution is

always feasible:

Kc(t) = 0, ∀ t ∈ [tk, tk+N),

u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1)

with n= k, . . . ,N+k−1,

(3.12)

The proof of feasibility of the solution of Eq. 3.12 is given in four steps: 1) the gain Kc(t) =

0,∀ t ∈ [tk, tk+N) is feasible since it satisfies Eq. 3.9e over the prediction horizon 2) when Kc(t)= 0

throughout the prediction horizon, then by Eq. 3.9g,ρ̃(t) will be equal to its initial value from

Eq. 3.9h throughout the prediction horizon, and hence the upper bound on the Lyapunov func-

tion in Eq. 3.9f will remain constant (i.e., either̃ρ(tk) = V(x(tk))⇒ V(x̃(t)) ≤ V(x(tk)),∀ t ∈

[tk, tk+N), if x(tk) /∈Ωρsp or ρ̃(tk) = ρsp⇒V(x̃(t))≤ ρsp,∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρsp) 3) whenρ̃
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is constant, the feasibility of u(t)= h(x̃(tn)),∀ t ∈ [tn, tn+1), with n= k, . . . ,N+k−1, is guaranteed

because it satisfies the input constraint of Eq. 3.9c and also, because of the closed-loop stability

property of the Lyapunov-based controller h(x),72 it satisfies the constraint of Eq. 3.9f, 4) finally,

u(t) = h(x̃(tn)),∀ t ∈ [tn, tn+1), with n= k, . . . ,N+k−1, satisfies the contractive constraint of Eq.

3.9i making it a feasible input trajectory for the safety-LMPC 2 design. Therefore, the solution

of Eq. 3.12 is a feasible solution, and recursive feasibility of the safety-LMPC 2 follows if the

closed-loop state trajectory is maintained withinΩρ .

Part 2: In this part, it is proved that if the closed-loop state x(tk) is initialized within the

stability region, but outside the safety region (i.e., x(tk) ∈ Ωρ/Ωρsp), then within finite time the

closed-loop state will enter the safety regionΩρsp, and also will be ultimately bounded in a small

region containing the originΩρmin.

If x(tk) ∈ Ωρ/Ωρs, then due to the contractive constraint of Eq. 3.9i in the safety-LMPC 2

formulation of Eq. 3.9, the Lyapunov function of the closed-loop state will decrease for the first

sampling period in the prediction horizon by at least the rate given by the explicit stabilizing

controller h(x). Owing to the closed-loop stability property of the explicit controller h(x),72 the

Lyapunov function value of the closed-loop state under the safety-LMPC design will decrease in

the next sampling period (i.e., V(x(t)) ≤ V(x(tk));∀ t ∈ [tk, tk+1], which is derived in.43 Thus, if

x(tk) ∈ Ωρ/Ωρs then V(x(tk+1)) < V(x(tk)) and in finite time, the closed-loop state converges to

Ωρs (i.e., x(tk+ j) ∈ Ωρs where j is a finite positive integer). By the definitions ofρs and ρmin in

Theorem 3.1, once the closed-loop state converges toΩρs ⊆ Ωρmin, it remains insideΩρmin for all

times. This proves the second result of Theorem 3.1 which is the ultimate boundedness of the

closed-loop state inΩρmin. However, the first result of Theorem 3.1 which is that the closed-loop

state converges to the safety regionΩρsp in finite time and then resides there is a result of the

previous proof due to the assumption thatρsp> ρs which is stated in Theorem 3.1.
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3.3.4 Safety Region Changes

The safety-LMPC formulations of Eq. 3.6 with 3.7 and of Eqs. 3.8-3.9 assume thatΩρsp is a subset

of Ωρ . However, there may be scenarios in which the safety logic unit indicates that regions within

the current stability regionΩρ are no longer safe to operate within, but that another safetyregion

that is a subset of a different stability region is appropriate. Therefore, it is necessary to modify the

safety-LMPC during the transition between the stability regions in a manner that allows the region

of operation to shift. The manner in which the safety-based LMPC formulation should be modified

depends on the configuration of the old stability and safety regions (Ωρ1 andΩρsp1 respectively)

with respect to the newly requested stability and safety regions (Ωρ2 andΩρsp2 respectively). This

will be illustrated by presenting two example configurations in the context of the safety-LMPC

2 of Eq. 3.9, though the closed-loop stability results notedwill also hold for the safety-LMPC 1

formulations of Eq. 3.6 with 3.7 and of Eq. 3.8 when those LMPC’s are feasible.

Figure 3.1 shows one possible configuration (Configuration 1) of the two different safe regions

of operationΩρsp1 andΩρsp2. For this configuration, the safety-LMPC 2 of Eq. 3.9 will be applied

with ρsp= ρsp1 until the closed-loop state entersΩρsp1. At the switching timets, the safety logic

unit determines thatΩρsp2 is the new safe region of operation, which is a subset of the stability

regionΩρ2. Therefore, at this timeρsp in the formulation of Eq. 3.9 will be changed toρsp2 (the

quadratic terms in the objective function, nominal processmodel, and Lyapunov function will also

be reformulated to have their origins at the new steady-state). Because the first safety regionΩρsp1

is contained within the stability regionΩρ2 and the safety-LMPC 2 of Eq. 3.9 withρsp = ρsp2

drives the closed-loop state intoΩρsp2 from any initial condition inΩρ2, the safety-LMPC 2 of

Eq. 3.9 is feasible afterts and guarantees that the closed-loop state will be driven from Ωρsp1 into

Ωρsp2 in finite time.

Figure 3.2 shows a second possible configuration (Configuration 2) of Ωρ1, Ωρsp1, Ωρ2, and

Ωρsp2. In this case,Ωρsp1 is not fully within the stability regionΩρ2. To drive the closed-loop state

from any initial condition withinΩρsp1 into Ωρsp2 afterts, one method is to remove the constraints

of Eqs. 3.9e-3.9i and the safety penalty term in the objective function (formulated withρsp= ρsp1)

76



from Eq. 3.9 atts, and to instead utilize a terminal region constraint (e.g.,x̃(ts+N̄) ∈ Ωρ2) with

a sufficiently long prediction horizon̄N to drive the closed-loop state intoΩρ2 by the end of the

prediction horizon. However, due to the hard terminal constraint, feasibility of this optimization

problem is not guaranteed. The formulation of the proposed safety-LMPC for the process of Eq.

3.1 to be used during the transition fromΩρsp1 to Ωρ2 is as follows:

min
u(t)∈S(∆)

∫ tk+N̄

tk
[x̃(τ)TQx̃(τ)+u(τ)TRu(τ)]dτ (3.13a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.13b)

u(t) ∈U, ∀ t ∈ [tk, tk+N̄) (3.13c)

x̃(tk) = x(tk) (3.13d)

V2(x̃(ts+N̄)≤ ρ2, ∀ t ∈ [ts+N̄, tk+N̄] (3.13e)

V1(x̃(t))≤ ρ1, ∀ t ∈ [tk, ts+N̄) (3.13f)

where the objective function, nominal process model, and Lyapunov functionV1 for the old steady-

state have their minimums at the original steady-state, butthe Lyapunov functionV2 for the new

steady-state has its origin at the new steady-state. In the transitioning period, the terminal region

constraint of Eq. 3.13e will be activated with a sufficientlylong prediction horizonN̄ to force

the closed-loop state to be within the second stability region Ωρ2 at the end of the prediction

horizonts+N̄. If the closed-loop state is outside the second stability region Ωρ2 at the switching

time ts, feasibility of the proposed controller of Eq. 3.13 is not guaranteed. The Lyapunov-based

constraint of Eq. 3.13f is imposed to guarantee that the closed-loop state chooses a path that does

not go outside the first stability regionΩρ1 to maintain closed-loop stability of the process in the

transitioning period. In other words, the closed-loop state will be driven to the intersection between

the two stability regionsΩρ1 andΩρ2. After that, the safety-LMPC of Eq. 3.8 will be applied with

ρsp= ρsp2 and the objective function, Lyapunov function, and nominalprocess model with their

origins at the new steady-state to drive the closed-loop state into the safety regionΩρsp2.
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Figure 3.1: Configuration 1 for switching between two different safe regions of operation.

An alternative method for attempting the safety region transition is to remove the contractive

constraint from Eq. 3.9 atts and to add a soft constraint (e.g., a penalty on(V(x̃(t))−ρ2)) in the

objective function to encourage the LMPC to compute controlactions that drive the closed-loop

state intoΩρ2. Though this approach would always be feasible, there is still no guarantee that the

state will be driven intoΩρ2. However, once the state entersΩρ2, the LMPC problem of Eq. 3.9

with ρsp= ρsp2 and the appropriate modifications to the objective function, f , andV could be used

to drive the state intoΩρsp2. These two example configurations show that the manner in which

Ωρ1, Ωρsp1, Ωρ2, andΩρsp2 are related to each other (e.g., how they intersect) determines how the

safety-LMPC 2 of Eq. 3.9 should be modified atts until the state entersΩρ2 to drive the state into

the new stability region, and also whether this can be achieved while guaranteeing closed-loop

stability and feasibility.

3.4 Application to a Chemical Process Example

To illustrate the safety advantage of the safety-LMPC paradigm over the classical LMPC, a chem-

ical process example is considered which is a well-mixed, non-isothermal continuous stirred tank

78



Figure 3.2: Configuration 2 for switching between two different safe regions of operation.

Table 3.1: Parameter values

T0 = 300 K F = 5 m3

hr

V = 1.0 m3 E = 5×104 kJ
kmol

k0 = 8.46×106 m3

kmolhr ∆H =−1.15×104 kJ
kmol

Cp = 0.231 kJ
kgK R= 8.314 kJ

kmolK

ρL = 1000 kg
m3 CAs= 2 kmol

m3

Ts= 400 K CA0s= 4 kmol
m3

Qs= 0 kJ
hr

reactor (CSTR). The reaction transforms a reactantA to a productB through an irreversible,

exothermic second-order reactionA→ B. The feed of the CSTR consists of pureA and the in-

let concentration ofA is CA0. The inlet temperature and feed volumetric flow rate of the reactor

areT0 andF, respectively. By applying material and energy balances under standard modeling

assumptions, the concentration ofA (CA) and temperatureT are modeled as follows:

dCA

dt
=

F
V
(CA0−CA)−k0e

−E
RT C2

A (3.14a)

dT
dt

=
F
V
(T0−T)+

−∆H
ρLCp

k0e
−E
RT C2

A+
Q

ρLCpV
(3.14b)

The notation∆H, k0, E, andR represent the enthalpy of reaction, pre-exponential constant,

activation energy, and ideal gas constant, respectively. The reactor volumeV, heat capacityCp, and
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fluid densityρL within the reactor are assumed constant. Table 3.1 shows thevalues of the process

parameters used in the simulations. The dynamic model of Eq.3.14 is numerically simulated by

using the explicit Euler method with an integration time step of hc = 10−5 hr.
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Figure 3.3: The stability region (black ellipse) for the closed-loop CSTR under the explicit stabi-
lizing controllerh(x) of Eq. 5.28.

The two states of the CSTR areCA andT, and the two manipulated inputs areCA0 andQ. In this

simulation, the safety-LMPC 2 of Eq. 3.9 is applied to the closed-loop CSTR due to its guaranteed

closed-loop stability and recursive feasibility properties in the presence of uncertainty. The process

of Eq. 3.14 is operated at an unstable steady-state[CAsTs] = [2 kmol
m3 400K] with associated steady-

state input values[CA0s Qs] = [4 kmol
m3 0 kJ

hr ] to demonstrate the ability of the safety-LMPC 2 to

enhance process functional safety even around open-loop unstable operating points. The nonlinear
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Figure 3.4: The state profiles for the closed-loop CSTR underthe classical LMPC design of Eq. 3.6
and under the safety-LMPC design of Eq. 3.9 for the initial conditionxint = [−1.42192kmol

m3 22K]
without process disturbances.

process of Eq. 3.14 can be formulated as the following class of nonlinear systems

ẋ(t) = f̃ (x(t))+g1(x(t))u1(t)+g2(x(t))u2(t) (3.15)

wherex(t) andu(t) denote the state and the manipulated inputs of the CSTR in deviation variable

form (i.e.,xT = [CA−CAsT−Ts] is the state vector anduT = [CA0−CA0s Q−Qs] is the manipulated

input vector),f̃ T = [ f̃1 f̃2] is a vector containing the terms in the CSTR model that do not include

u1 or u2, andgT
i = [gi1 gi2] (i = 1,2) is a vector containing the terms in the CSTR model that

multiply u1 (for i = 1) oru2 (for i = 2). The magnitudes of the manipulated inputs are bounded as

follows: |u1| ≤ 3.5 kmol
m3 and|u2| ≤ 5×105 kJ

hr .

The safety-LMPC 2 for the process of Eq. 3.14 is designed to compute feasible control actions
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Figure 3.5: Manipulated input profiles for the closed-loop CSTR under the classical LMPC de-
sign of Eq. 3.6 and under the safety-LMPC design of Eq. 3.9 forthe initial conditionxint =
[−1.42192kmol

m3 22K] without process disturbances.

that drive the closed-loop state into the safety region quickly. Due to operation at the unstable

steady-state, a Lyapunov-based controller of the formhT(x) = [h1(x) h2(x)] is constructed to esti-

mate the stability region for the safety-LMPC 2. Also, a quadratic Lyapunov functionV(x) = xTPx

is used to construct the Lyapunov-based controllerh(x) where the weights of theP matrix were

chosen to account for the different ranges of numerical values for each state. After extensive sim-

ulations, theP matrix was determined to be:

P=







850 18

18 3







To estimate the stability regionΩρ , the following feedback law (Sontag control law59 is utilized
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Figure 3.6: The Lyapunov function value with time for the closed-loop CSTR under the classical
LMPC design of Eq. 3.6 and under the safety-LMPC design of Eq.3.9 for the initial condition
xint = [−1.42192kmol

m3 22 K] without process disturbances. The safety set-pointρsp is also shown.

for the inlet concentration and heat rate (i.e.,ui = hi(x), i = 1,2):

hi(x) =



















−
L f̃V +

√

L f̃V
2+LgiV

4

LgiV
, if LgiV 6= 0

0, if LgiV = 0

(3.16)

whereL f̃V andLgiV are the Lie derivatives of the Lyapunov functionV(x) with respect to the

vector fieldsf̃ (x) andgi(x) respectively. Both control laws are subject to input constraints. Under

the control laws of Eq. 3.16 with input constraints, the stability region Ωρ is determined as a

sufficiently large level set where the time-derivative of the Lyapunov function,̇V, along the closed-

loop state trajectories is negative. Figure 3.3 shows the methodology for choosing the stability
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Figure 3.7: The state-space profile for the closed-loop CSTRunder the classical LMPC de-
sign of Eq. 3.6 and under the safety-LMPC design of Eq. 3.9 forthe initial conditionxint =
[−1.42192kmol

m3 22K] without process disturbances.

region. Specifically, the state-space region shown in Figure 3.3 was discretized and the value ofV̇

along the closed-loop state trajectories of Eq. 3.14 under the control laws of Eq. 3.16 was evaluated

at each discretized point. The grey region in Figure 3.3 is the open neighborhood around the origin

whereV̇ is negative. After these extensive simulations,ρ was found with value 2800.

The process was initiated from an initial condition that is relatively far from the steady-state

(i.e., x(t0) = xint = [−1.42192 kmol
m3 22 K], andV(x(t0)) = 2044.42) at timet0. At this time, it is

determined that the process state must move quickly into a region where the temperature deviates

from the steady-state value by no more than 4.33 K (i.e., ρsp= 50) to avoid an unsafe operating

condition. For this scenario, the abilities of the safety-LMPC 2 and classical LMPC formulations

are compared to meet this safety goal with and without process disturbances. Both controllers drive
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Figure 3.8: The state profiles for the closed-loop CSTR underthe classical LMPC design of Eq. 3.6
and under the safety-LMPC design of Eq. 3.9 for the initial conditionxint = [−1.42192kmol

m3 22K]
with process disturbances.

the closed-loop state toward the steady-state, but the safety-LMPC design accomplishes this while

controlling the rate at which the closed-loop state converges to the steady-state. The safety-LMPC

2 and the classical LMPC formulations considered are both implemented with a prediction horizon

N = 10, a sampling period∆ = 0.01 hr and an operating period of lengtht f = 1 hr. The interior

point solver Ipopt90 was used to solve the optimization problems at each samplingtime.

The safety-LMPC 2 formulation follows that in Eq. 3.9 with the objective function:

L(x̃,u,Kc) =
∫ tk+N

tk
[x̃(τ)T x̃(τ)+u(τ)Tu(τ)+

|ρsp− ρ̃(τ)|2

hc
]dτ

(3.17)
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Figure 3.9: Manipulated input profiles for the closed-loop CSTR under the classical LMPC de-
sign of Eq. 3.6 and under the safety-LMPC design of Eq. 3.9 forthe initial conditionxint =
[−1.42192kmol

m3 22K] with process disturbances.

The first two terms of Eq. 3.17 are the objective function of the classical LMPC where the weight-

ing matrices are

Q= R=







1 0

0 1







This weighting was chosen because it is considered that the heat inputu2 is costly, and since the

magnitude ofu2 can be much larger than the magnitude ofx or u1, the specified weighting matrices

prevent large values ofu2 from being requested and causing the value of Eq. 3.17 to become large.

The third term in Eq. 3.17 is the safety penalty term where thethe squared Euclidean norm is

chosen to penalize the deviation of the Lyapunov function value of the predicted closed-loop state

ρ̃(t) from the safety set-pointρsp. The safety penalty term is significantly penalized by a large
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Figure 3.10: The Lyapunov function value with time for the closed-loop CSTR under the classical
LMPC design of Eq. 3.6 and under the safety-LMPC design of Eq.3.9 for the initial condition
xint = [−1.42192kmol

m3 22 K] with process disturbances. The safety set-pointρsp is also shown.

weight 1/hc. Hence, the safety-LMPC 2 seeks to drive the closed-loop state into the safety region

Ωρsp in a short time while using the minimum amount of energyu2.

Figures 3.4-3.5 show the closed-loop state trajectories and the manipulated input trajectories

of the CSTR, initiated fromxint , under the safety-LMPC scheme and the classical LMPC scheme

without process disturbances. From Figure 3.4, the closed-loop state trajectory of the CSTR for

the safety-LMPC 2 scheme reached the steady-state before that for the classical LMPC scheme.

This is because the safety penalty term is highly penalized,which causes the closed-loop state to

converge to the safety region more quickly than it does underthe classical LMPC, and to then go to

the steady-state. As shown in Figure 3.5, the safety-LMPC 2 utilized a large amount of energy (i.e.,

u2 =−2.6×105 kJ
hr ) and the maximum amount of material (i.e.,u1 = 3.5 kmol

m3 ) in the first sampling
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Figure 3.11: The state-space profile for the closed-loop CSTR under the classical LMPC de-
sign of Eq. 3.6 and under the safety-LMPC design of Eq. 3.9 forthe initial conditionxint =
[−1.42192kmol

m3 22K] with process disturbances.

period of the simulation to drive the closed-loop state intothe safety region quickly due to the high

weight on the safety penalty term. However, the classical LMPC used very little thermal energy

(u2) and less material (u1) in the first sampling period of the simulation to minimize the value of

the quadratic LMPC objective function.

Figures 3.6-3.7 depict the Lyapunov function value of the closed-loop state, and the state-space

profile for the closed-loop state, under both the safety-LMPC 2 and the classical LMPC without

process disturbances. In Figure 3.6, the closed-loop stateunder the safety-LMPC 2 entered the

safety level setΩρsp two sampling times before that under the classical LMPC. Figure 3.7 demon-

strates that the state-space profile for the closed-loop state under the classical LMPC drove the

closed-loop state to the safety region due to the combination of the contractive constraint and the
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quadratic cost function of the classical LMPC. In addition,the safety-LMPC 2 scheme enhances

the rate at which the closed-loop state approaches the safety region by the use of the safety penalty

term and the safety-based constraints. After the closed-loop state trajectories under both schemes

entered the safety region, they both reached the steady-state.

Figures 3.8-3.9 show the corresponding state and manipulated input profiles starting from the

same initial condition but under bounded process disturbances (wT = [w1 w2] is the bounded dis-

turbance vector corresponding to Gaussian white noise withvariancesσ1 = 1 kmol
m3 andσ2 = 40K)

with |w1| ≤ 1 kmol
m3 and|w2| ≤ 40K. In the presence of disturbances, the safety-LMPC computesa

value ofu1 that goes up to its allowable maximum value andu2 reduces to its allowable minimum

value in the first sampling period of the simulation to decrease the Lyapunov function value of

the closed-loop state quickly, but the safety-LMPC eventually computes that both inputs should

remain approximately at their steady-state values. Figures 3.10-3.11 show the Lyapunov function

value of the closed-loop state, and the state-space profile for the closed-loop state, under both the

safety-LMPC 2 and the classical LMPC under bounded process disturbances. In the presence of

uncertainty, the closed-loop state under the safety-LMPC 2entered the safety region two sampling

times before that under the classical LMPC (Figure 3.10). Figure 3.11 and Figure 3.7 show that

the closed-loop state trajectory under the safety-LMPC 2 chose a different path than the one for

the classical LMPC, which led to an earlier entrance to the safety region by two sampling times in

the presence and absence of uncertainty.

Remark 3.7 The proposed control-safety system integration methodology (safety-LMPC) is demon-

strated in the context of the traditional continuous stirred tank reactor (CSTR) example. The

CSTR example uses a generic A→ B reaction which corresponds to numerous industrial reactions.

Generic reactions can be used to represent various industrial reactions including the production

of propylene glycol from propylene oxide, which can be considered unsafe due to its exothermic

nature and open-loop unstable steady-state (conceptuallysimilar to the unstable steady-state an-

alyzed for the CSTR of Eq. 3.14) from which open-loop deviations may result in the state moving

toward a stable steady-state with a relatively high temperature. Therefore, incorporating safety-
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based constraints within the control system can reduce the number of alarms because the control

system is now working to explicitly keep the closed-loop state in a safe region at all times.

3.5 Conclusion

In this chapter, two LMPC schemes with safety-based constraints were presented to integrate feed-

back control and process functional safety within a unified framework. The motivation for the

proposed safety-LMPC design was given, in particular that it can be formulated to drive the closed-

loop state to a safe region of operation at a desired rate, which cannot easily be accomplished by

tuning the weighting matrices in the quadratic objective function. The safety-LMPC’s vary the up-

per bound on the level set of the Lyapunov function to achievethe improved rate of approach to the

safety region, and they can also be modified to shift the region of operation from a level set around

one steady-state to a level set around another. For a sufficiently small sampling period, a proof

of recursive feasibility and closed-loop stability of a class of nonlinear systems under one of the

safety-LMPC formulations in the presence of uncertainty was given. The safety advantage of the

safety-LMPC paradigm over the classical LMPC paradigm was illustrated through a chemical pro-

cess example. Nevertheless, the safety-based controller design was developed with a centralized

model predictive control (MPC) structure; thus, computation time limitations within a sampling

period may reduce the effectiveness of such a controller design for promoting process safety. An

alternative MPC architecture that is intended to improve the computation time of the MPC algo-

rithm is a distributed model predictive control (DMPC) architecture.28,84 This MPC architecture

has been investigated for computation time benefits since itcan reduce the number of decision vari-

ables in each of the distributed optimization problems and may be able to terminate the optimiza-

tion problems before the optimal solution is found while maintaining feasibility and closed-loop

stability of the controller. The next chapter presents a distributed Lyapunov-based model predictive

control architecture formulated with safety-based constraints to decrease the computation time of

the centralized safety-LMPC design.
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Chapter 4

Distributed Economic Model Predictive

Control for Operational Safety of Nonlinear

Processes

4.1 Introduction

This chapter proposes the integration of a distributed model predictive control architecture with

Lyapunov-based economic model predictive control (LEMPC)formulated with safety-based con-

straints. We consider both iterative and sequential distributed control architectures, and the parti-

tioning of inputs between various optimization problems inthe distributed structure based on their

impact on process operational safety. Moreover, sufficientconditions that ensure feasibility and

closed-loop stability of the iterative and sequential safety distributed LEMPC designs are given.

A comparison between the proposed safety distributed EMPC controllers and the safety central-

ized EMPC is demonstrated via a chemical process example. The results of this chapter originally

appeared in.9
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4.2 Preliminaries

4.2.1 Notation

The operator| · | denotes the Euclidean norm of a vector.xT represents the transpose of a vector

x. The symbolΩρ is used to represent a level set of a sufficiently smooth, positive definite scalar-

valued functionV(x) and is defined byΩρ := {x ∈ Rn : V(x) ≤ ρ}. The operator ‘/’ denotes

set subtraction, that is,A/B := {x ∈ Rn : x ∈ A,x /∈ B}. The symbolS(∆) denotes the family of

piecewise constant, right-continuous functions with a fixed time interval∆≥ 0. A diagonal matrix

which has the components of a vectorv as its diagonal elements is denoted by the symbol diag(v).

A function α : [0,a)→ [0,∞) with α(0) = 0 belongs to classK if it is continuous and strictly

increasing.

4.2.2 Class of Nonlinear Process Systems

In this chapter, we consider a nonlinear process system withthe following state-space description:

ẋ= f (x)+
m

∑
i=1

gi(x)ūi +b(x)w (4.1)

wherex∈Rn andw∈Rnw are the state and disturbance vectors, respectively. Due tothe implemen-

tation strategy of the proposed safety-based DEMPC, the full input vector is divided intom input

vectors where theith manipulated input vector is denoted by ¯ui ∈ R
mi for i = 1, . . . ,m, and each of

these input vectors is bounded in a convex setUi (i.e.,Ui := {ūi ∈ R
mi : |ūi | ≤ ūmax

i }, i = 1, . . . ,m,

where the ¯umax
i , i = 1, . . . ,m, represent the magnitudes of the input constraints). The vector func-

tions f , gi, i = 1, . . . ,m, andb are assumed to be locally Lipschitz vector functions of their argu-

ments. Furthermore, it is assumed that the state of the system of Eq. 4.1 is synchronously sampled

at time instancestk = t0+ k∆, k = 0,1, . . ., wheret0 is the initial time. The vectorw is bounded

within the setW := {w ∈ R
nw| |w| ≤ θ , θ > 0} (i.e., w ∈W). We assume that the origin is an

equilibrium point of the unforced nominal system (i.e.,f (0) = 0, gi(0) = 0, i = 1, . . . ,m, and
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b(0) = 0).

Remark 4.1 The systems of equations describing the behavior of many chemical process systems

are of the form of Eq. 4.1. For those that are not, the distributed safety-based controller formu-

lations developed in this chapter can still be utilized, butthe closed-loop stability and feasibility

results presented may not hold.

4.2.3 Stabilizability Assumption

We consider systems of the form of Eq. 4.1 for which Assumption 4.1 (stabilizability assumption)

holds.

Assumption 4.1 There exists a locally Lipschitz feedback control lawh̄T(x) = [h̄1(x) . . . h̄m(x)]

with h̄(0) = 0 for the nominal closed-loop system of Eq. 4.1 (i.e., w(t) ≡ 0) that renders the

origin of the nominal system of Eq. 4.1 underūi = h̄i(x), i = 1, . . . ,m, asymptotically stable for

all x ∈ D⊆ Rn, where D is an open neighborhood of the origin, when applied continuously in the

sense that there exists a continuously differentiable Lyapunov function V(x)49,63 for the nominal

closed-loop system and classK functionsαi(·), i = 1,2,3,4, such that the following inequalities

hold:

α1(|x|)≤V(x)≤ α2(|x|) (4.2a)

∂V(x)
∂x

( f (x)+
m

∑
i=1

gi(x)h̄i(x))≤−α3(|x|) (4.2b)

∣

∣

∣

∣

∂V(x)
∂x

∣

∣

∣

∣

≤ α4(|x|) (4.2c)

h̄i(x) ∈Ui, i = 1, . . . ,m (4.2d)

The stability region of the closed-loop system under the feedback control law that meets Assump-

tion 4.1 is defined as a level set of the Lyapunov function within D where Eq. 4.2 holds, and it is

denoted byΩρ .
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By continuity, the local Lipschitz property assumed for thevector fieldsf , gi , i = 1, . . . ,m, and

b, the continuous differentiability property of the Lyapunov functionV(x), and taking into account

that the manipulated inputsui, i = 1, . . . ,m, and the disturbancesw are bounded in convex sets,

there exist positive constantsLw, Lx, Lūi , i = 1, . . . ,m, andM such that

∣

∣

∣

∣

∣

f (x)+
m

∑
i=1

gi(x)ūi +b(x)w

∣

∣

∣

∣

∣

≤M (4.3)

∣

∣

∣

∣

∂V
∂x

f (x)−
∂V
∂x

f (x′)

∣

∣

∣

∣

≤ Lx
∣

∣x−x′
∣

∣ (4.4)

∣

∣

∣

∣

∂V
∂x

gi(x)−
∂V
∂x

gi(x
′)

∣

∣

∣

∣

≤ Lūi

∣

∣x−x′
∣

∣ , i = 1, . . . ,m (4.5)

∣

∣

∣

∣

∂V
∂x

b(x)

∣

∣

∣

∣

≤ Lw (4.6)

for all x,x′ ∈Ωρ , ūi ∈Ui, i = 1, . . . ,m, andw∈W.

4.2.4 Centralized Safety-Based LEMPC

In the centralized Safety-LEMPC design of Eq. 4.7b presented in Chapter 2, the control actions for

all m input vectors are computed together in one optimization problem.6 The centralized Safety-
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LEMPC controller design for the nonlinear system of Eq. 4.1 is formulated as follows:

max
ū1,...,ūm,Kc∈S(∆)

∫ tk+N

tk
Le(x̃(τ), ū1(τ), . . . , ūm(τ))− (4.7a)

φ(ρsp− ρ̃(τ))dτ

s.t. ˙̃x(t) = f (x̃(t))+
m

∑
i=1

gi(x̃(t))ūi (4.7b)

ūi(t) ∈Ui, i = 1, . . . ,m, ∀ t ∈ [tk, tk+N) (4.7c)

x̃(tk) = x(tk) (4.7d)

Kc(t)≥ 0, ∀ t ∈ [tk, tk+N) (4.7e)

V(x̃(t))≤ ρ̃(t), ∀ t ∈ [tk, tk+N) (4.7f)

dρ̃
dt

= Kc(t)(ρsp− ρ̃(t)) (4.7g)

ρ̃(tk) =V(x(tk)), if x(tk) /∈Ωρsp

ρ̃(tk) = ρsp, if x(tk) ∈Ωρsp

∂V(x(tk))
∂x

(
m

∑
i=1

gi(x(tk))ūi(tk)) (4.7h)

≤
∂V(x(tk))

∂x
(

m

∑
i=1

gi(x(tk))h̄i(x(tk))),

if x(tk) ∈Ωρ/Ωρ̄sp or tk > ts

where the optimization variables are the piecewise-constant input trajectories ¯ui(t), . . ., ūm(t), over

the prediction horizonN∆, as well as the piecewise-constant auxiliary variableKc(t) that plays a

role in the safety-based constraints.Le is a cost function that is determined based on economic

considerations and is not required to have its minimum at a steady-state. The Safety-LEMPC

formulation is a variation on the LEMPC formulation developed in43 that has been augmented

with safety-based constraints, and as a result it contains many of the standard constraints utilized

in EMPC (e.g., a nominal process model for the predicted state x̃ (Eq. 4.7b), input constraints

(Eq. 4.7c), and state feedback (Eq. 4.7d)). The timets represents a time after which the constraint
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of Eq. 4.7h is active for all subsequent times.

The motivation for adding safety-based constraints to thisformulation is that situations may

arise in which parts ofΩρ become unsafe to operate within due to, for example, prolonged closed-

loop operation in a high-temperature region of state-spaceor expected effects from process distur-

bances. In such cases, a safety logic unit that determines the safest level set ofV for the process

to operate within may find that the closed-loop state should enter and remain within the setΩρsp,

ρsp< ρ , to avoid unsafe scenarios. The safety level setΩρsp is determined based on data on the

probability of potential failures of process equipment, control system failures and measurement

sampling time of the process state.6 To drive the closed-loop state rapidly intoΩρsp while main-

taining feasibility of the optimization problem, safety-based constraints (Eqs. 4.7e-4.7h) are added

to the LEMPC, in addition to adding a penalty termφ(ρsp− ρ̃(τ)) to the objective function of Eq.

4.7a, that penalizes the difference between the the upper bound of the Lyapunov functioñρ(τ) and

ρsp. The functionφ(·) is selected based on the need to drive the process state into the safety region;

for example,φ(·) = | · |2 is a potential function since its minimum occurs withρsp= ρ̃sp. When the

penalty term is significant, the Safety-LEMPC will seek to find trajectories for ¯ui(t), i = 1, . . . ,m,

andKc(t) that drive the predicted closed-loop state intoΩρsp more quickly than without the penalty

and dynamic constraints of Eqs. 4.7e-4.7h. Specifically, todecreasẽρ(t) from Eq. 4.7g towardρsp

to minimize the objective function includingφ , a positive value ofKc(t) (Eq. 4.7e) is computed

for which inputs ¯ui(t), i = 1, . . . ,m, are found to decreaseV(x̃(t)) at a rate that allows Eq. 4.7f

to be satisfied at all times given the rate of decrease ofρ̃ from Eq. 4.7g. The constraint of Eq.

4.7h (contractive constraint) forces the time derivative of the Lyapunov function under the Safety-

LEMPC to be less than or equal to the time derivative of the Lyapunov function under the explicit

stabilizing controller̄h(x). A subset of the safety level setΩρ̄sp activates the contractive constraint

of Eq. 4.7h and should be chosen to makeΩρsp an invariant set.6
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4.3 Safety-Distributed-LEMPC

For large-scale industrial nonlinear process systems, thetime required to solve the centralized

Safety-LEMPC design of Eq. 4.7 with the full process model and potentially tens or hundreds of

optimization variables may be large. Therefore, a large sampling period in the LEMPC may be

required. However, the closed-loop stability, feasibility, and safety-related proofs in6 hold only for

a sufficiently small sampling period and sufficiently small disturbances. Furthermore, even if the

sampling period is sufficiently small to ensure that closed-loop stability withinΩρ is guaranteed,

the length of the sampling period affects the minimum size ofthe level set of the stability region

into which the closed-loop state is driven under repeated application of the contractive constraint.43

This minimum size level set corresponds to the minimum size of a safe level set of operation that

can be chosen within the stability region. To improve process safety, it is desirable to be able to

make the safety region as small as possible (i.e., to be able to decrease the sampling period to

a small value) to provide great flexibility in handling unsafe scenarios. When the time required

to solve the centralized Safety-LEMPC is high, the computation time issue cannot be handled

with decentralized control designs (i.e., multiple controllers utilize the same process model to

compute subsets of the entire set of available control actions without communication between the

controllers), because such designs may pose safety concerns since the controllers do not coordinate

their actions.56 However, a distributed Safety-LEMPC design (i.e., multiple controllers utilize

the same process model to compute subsets of the entire set ofavailable control actions but the

controllers communicate) can be used to address the computation time concerns. Therefore, both

sequential and iterative distributed Safety-LEMPC designs are proposed in this chapter.

Remark 4.2 In this chapter, we assume that the upper bound on the disturbance is known, and thus

we appeal to the conditions guaranteeing closed-loop stability and feasibility from6 to motivate the

use of distributed Safety-LEMPC. However, in industry, it is more common that the upper bound

on the disturbance is estimated but not known, and in that case reducing the computation time of

Safety-LEMPC using a distributed architecture has the safety benefit of allowing more frequent
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feedback to reduce the likelihood that the closed-loop state will exit the safety level set during a

sampling period if a large disturbance potentially greaterthan the expected/typical bound affects

the process. However, further discussion of this point is outside the scope of this chapter.

4.3.1 Safety-Sequential-DLEMPC

A sequential design for a distributed Safety-LEMPC (Safety-S-DLEMPC) involves a hierarchy

of m controllers, each of which solves the optimization problemin Eq. 4.7 but optimizes only ¯ui

for a giveni ∈ {1, . . . ,m} and assumes a value of the other inputs. The designation “sequential”

arises because the controllers are connected in series. Theith controller in the hierarchy (which

we will refer to as Safety-S-DLEMPCi) assumes the values of ¯up, p= 1, . . . , i−1, throughout the

prediction horizon calculated by the controllers higher upin the hierarchy, and the values ¯up(t) =

h̄p(x(tq)), p = i +1, . . . ,m, ∀ t ∈ [tq, tq+1), q = k, . . . ,k+N−1, for the rest of the control inputs

when calculating ¯ui. The optimal input trajectory for ¯ui determined for Safety-S-DLEMPCi at tk

is denoted by ¯u∗i (t|tk), t ∈ [tk, tk+N), i = 1, . . . ,m. Two considerations with respect to the distributed

control design are: (1) whether it is necessary to solve forKc in all m Safety-S-DLEMPC’s, and

(2) how to decide which inputs should be placed within ¯u1, which withinū2, and so on. To address

these points, the main results of the proof of feasibility and closed-loop stability for the Safety-S-

DLEMPC will be utilized.

To determine the number of distributed controllers that must solve forKc, consider first the

case that allm distributed controllers solve forKc. First, Safety-S-DLEMPC 1 solves Eq. 4.7

for the piecewise-constant trajectories for ¯u1 andKc throughout the prediction horizon and sets

[ū2(t), . . . , ūm(t)] to the corresponding[h̄2(x(tq)), . . . , h̄m(x(tq))], ∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−

1. The input trajectory ¯u1(t) = h̄1(x(tq)), ∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−1, and the gainKc = 0,

∀ t ∈ [tk, tk+N), is a feasible solution to the resulting optimization problem because it satisfies all

constraints. Therefore, there is always a feasible solution to Safety-S-DLEMPC 1. Now, consider

that Safety-S-DLEMPC 2 receives the optimal trajectory of ¯u1 throughout the prediction hori-

zon from Safety-S-DLEMPC 1, sets[ū3(t), . . . , ūm(t)] = [h̄3(x(tq)), . . . , h̄m(x(tq))], ∀ t ∈ [tq, tq+1),
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q = k, . . . ,k+N−1, and solves for both the trajectory of ¯u2 and ofKc. Whenū2(t) = h̄2(x(tq)),

∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−1, all inputsūi , i = 1, . . . ,m, take the same values as they did for

the optimal solution of Safety-S-DLEMPC 1 and the problem isfeasible, assuming thatKc also

takes the same trajectory as for that optimal solution. Therefore, a feasible solution to safety-S-

DLEMPC 2 exists, which is the same as the feasible solution toSafety-S-DLEMPC 1. Recursively

applying such arguments to Safety-S-DLEMPC 3 through Safety-S-DLEMPCm shows that each

optimization problem in the Safety-S-DLEMPC structure hasa feasible solution, and that the final

solution satisfies Eqs. 4.7f and 4.7h with ¯u∗1(t|tk), . . . , ū
∗
m(t|tk), ∀ t ∈ [tk, tk+N). When Eq. 4.7h is

satisfied throughout a sampling period, then given a sufficiently small ∆ and a sufficiently small

θ , and due to Eq. 4.2b, the distributed Safety-S-DLEMPC architecture will cause the Lyapunov

function value to decrease between two sampling periods when x(tk) ∈ Ωρ/Ωρ̄sp until it reaches

the safety region.43 Due to the safety penalty term in the objective function and safety-based

constraints, there is a possibility that the rate at whichV(x) decreases along the closed-loop state

trajectories under the Safety-S-DLEMPC paradigm may be faster than under a distributed LEMPC

paradigm without safety-based constraints; however, in general, no guarantee can be made regard-

ing this, and no proof can even be made regarding whether the rate of approach is the fastest rate

that was obtained in any one of them Safety-S-DLEMPC optimization problems.

The above discussion shows that ifKc is solved in allmSafety-S-DLEMPC’s of the distributed

architecture, then the Safety-S-DLEMPC is guaranteed to cause the closed-loop state to enter the

safety region in finite time and to remain there. In the above discussion, it was noted thatKc = 0

allowed a feasible solution in each Safety-S-DLEMPC, but potentially a less restrictive solution

than if the value ofKc was allowed to be positive. Therefore, it is possible to setKc = 0 (i.e.,

removeKc as an optimization variable) for some subset of them Safety-S-DLEMPC’s to reduce

the number of optimization variables in some of these controllers when that provides a computation

time benefit. The resulting control actions may not decreasethe Lyapunov function as quickly as

if Kc was optimized; however, if the inputs in the vector ¯ui , for somei ∈ {1, . . . ,m}, have very

little impact on the value ofV(x̃) throughout the prediction horizon, the result of solving Safety-S-
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DLEMPC both includingKc as an optimization variable and the result withKc ≡ 0 may produce

similar results because the vector ¯ui is not able to affect the safety penalty term in the objective

function highly. This implies that grouping inputs with regard to their impact on process safety

may be beneficial for helping to reduce the number of optimization variables in some of them

Safety-S-DLEMPC problems. However, the full effects of theinput partitioning and of setting

Kc = 0 in some optimization problems should be evaluated throughclosed-loop simulations.

x(tk)

Safety-S-DLEMPC m− 1

Safety-S-DLEMPC m

Plant

Safety-S-DLEMPC 2
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ū∗

2
(tk|tk)

ū∗
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ū∗

m(tk|tk)

....
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Figure 4.1: Block diagram of the Safety-S-DLEMPC scheme

A schematic of the sequential distributed safety-based LEMPC architecture withm controllers

is shown in Figure 4.1. Safety-S-DLEMPCj calculates an input vector ¯u j whereū∗j (τ|tk), τ ∈

[tk, tk+N) denotes the optimal solution of Safety-S-DLEMPCj at time tk. Safety-S-DLEMPCj

may calculate the gainKc as well throughout the prediction horizon (the trajectory of the optimal

gain throughout the prediction horizon calculated by Safety-S-DLEMPC j at timetk is denoted by

K∗c (τ|tk), τ ∈ [tk, tk+N); it is not shown in Figure 4.1 because it is not communicated to the other

Safety-S-DLEMPC controllers). The implementation strategy for the Safety-S-DLEMPC design

is summarized as follows:
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1. At tk, all Safety-S-DLEMPC controllers receive a measurement ofthe current statex(tk)

from the sensors. Go to Step 2.

2. For j = 1 to m:

(a) Safety-S-DLEMPCj receives the set of input trajectories ¯u∗p(τ|tk), τ ∈ [tk, tk+N), p=

1, . . . , j−1, from Safety-S-DLEMPCj−1 and assumes the input trajectories ¯ur(t) =

h̄r(x(tq)), t ∈ [tq, tq+1), q= k, . . . ,k+N−1, for r = j +1, . . . ,m. Based on these input

trajectories andx(tk), Safety-S-DLEMPCj evaluates the input trajectory of ¯u j and,

whenKc 6≡ 0, the trajectory of the gainKc. If j 6= m, go to Step 2b. Else, go to Step 2c.

(b) Safety-S-DLEMPCj sends ¯u∗p(τ|tk), τ ∈ [tk, tk+N), p= 1, . . . , j, to Safety-S-DLEMPC

j +1. Go to Step 2a.

(c) Go to Step 3.

3. Each Safety-S-DLEMPC sends its optimal solution for the first sampling period of the pre-

diction horizon to its actuator (i.e., allu∗i (tk|tk), i =1, . . . ,m, are implemented on the process).

Go to Step 4.

4. When a new state measurement is received attk+1, go to Step 1 (k← k+1).
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The formulation of Safety-S-DLEMPCj is as follows:

max
ū j ,Kc∈S(∆)

∫ tk+N

tk
[Le(x̃

j(τ), ū1(τ), . . . , ūm(τ))− (4.8a)

φ(ρsp− ρ̃(τ))]dτ

s.t. ˙̃x j(t) = f (x̃ j(t))+
m

∑
i=1

gi(x̃
j(t))ūi(t) (4.8b)

ū j(t) ∈U j , ∀ t ∈ [tk, tk+N) (4.8c)

ūr(t) = h̄r(x̃
j(tk+q)), r = j +1, . . . ,m, ∀ t ∈ [tk+q, tk+q+1),

q= 0, . . . ,N−1 (4.8d)

ūp(t) = ū∗p(t|tk), p= 1, . . . , j−1, ∀ t ∈ [tk, tk+N) (4.8e)

x̃ j(tk) = x(tk) (4.8f)

Kc(t)≥ 0, ∀ t ∈ [tk, tk+N) (4.8g)

V(x̃ j(t))≤ ρ̃(t), ∀ t ∈ [tk, tk+N) (4.8h)

dρ̃
dt

= Kc(t)(ρsp− ρ̃(t)) (4.8i)

ρ̃(tk) =V(x(tk)), if x(tk) /∈Ωρsp

ρ̃(tk) = ρsp, if x(tk) ∈Ωρsp

∂V(x(tk))
∂x

(
m

∑
i=1

gi(x(tk))ūi(tk)) (4.8j)

≤
∂V(x(tk))

∂x
(

m

∑
i=1

gi(x(tk))h̄i(x(tk))),

if x(tk) ∈Ωρ/Ωρ̄sp or tk > ts

wherex̃ j(t) denotes the predicted state trajectory under Safety-S-DLEMPC j. The values of the

inputs ūr , r = j + 1, . . . ,m, that have not yet been computed by a Safety-S-DLEMPC are setto

the corresponding elements ofh̄(x) applied in a sample-and-hold fashion by the constraint of Eq.

4.8d. The trajectories of ¯up, p=1, . . . , j−1, are set to the optimal trajectories ¯u∗p(t|tk), t ∈ [tk, tk+N),

calculated by the Safety-S-DLEMPC’sp = 1, . . . , j−1, by the constraint of Eq. 4.8e. The other
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constraints of the optimization problem of Eq. 4.8 follow those in Eq. 4.7.

If Kc is set to zero in Safety-S-DLEMPCj, the controller will only solve for the input vec-

tor ū j . As a result, the objective function of Eq. 4.8a will only include the economic cost

Le(x̃ j(τ), ū1(τ), . . . , ūm(τ)). WhenKc(t) ≡ 0, ∀ t ∈ [tk, tk+N), the constraints of Eqs. 4.8h-4.8i

reduce to:

V(x̃ j(t))≤ ρ̃ , ∀ t ∈ [tk, tk+N)

ρ̃ =V(x(tk)), if x(tk) /∈Ωρsp

ρ̃ = ρsp, if x(tk) ∈Ωρsp

The contractive constraint of Eq. 4.8j will also be imposed in the Safety-S-DLEMPC that only

solves for the input vector ¯u j . This constraint guarantees that regardless of the value ofKc, the

closed-loop state can be driven to the safety level setΩρsp and maintained within that set thereafter

(as will be shown below in the proof of Theorem 4.1).

We will now prove recursive feasibility and closed-loop stability of the Safety-S-DLEMPC

implementation strategy, with the design of Safety-S-DLEMPC j following Eq. 4.8, and allowing

for Kc ≡ 0 in any of them Safety-S-DLEMPC’s as desired. To proceed with this analysis, we

first state a proposition that describes the closed-loop stability properties of the Lyapunov-based

controller utilized in defining constraints of the Safety-S-DLEMPC design of Eq. 4.8.

Proposition 4.1 (c.f.72) Consider the trajectorŷx(t) of the system of Eq. 4.1 in closed-loop for a

controller h̄(x), which satisfies the condition of Eq. 4.2, obtained by solving recursively:

˙̂x(t) = f (x̂(t))+
m

∑
i=1

gi(x̂(t))h̄i(x̂(tk))+b(x(t))w(t) (4.9)

where t∈ [tk, tk+1) with k= 0,1, . . .. Let∆,εw > 0 andρ > ρs> 0 satisfy:

−α3(α−1
2 (ρs))+(Lx+

m

∑
i=1

Lūi ū
max
i )M∆+Lwθ ≤−εw/∆. (4.10)
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Then, ifx̂(t0) ∈Ωρ andρmin < ρ where

ρmin = max{V(x(t +∆)) : V(x(t))≤ ρs}, (4.11)

the following inequality holds:

V(x̂(tk))≤max{V(x̂(t0))−kεw,ρmin}. (4.12)

Proposition 4.1 guarantees several points regarding operation of the closed-loop system under

h̄(x) implemented in sample-and-hold, namely that with a sufficiently small sampling period and

bound on the disturbance such that Eq. 4.10 is satisfied: 1) Ifx̂(tk) ∈ Ωρ , then x̂(tk+1) ∈ Ωρ ,

2) if x̂(tk) ∈ Ωρ/Ωρs, thenV(x̂(tk+1)) < V(x̂(tk)), and 3) if x̂(tk) entersΩρs, x̂(t) obtained from

recursively solving Eq. 4.9 remains withinΩρmin (ultimate boundedness of the closed-loop state

of Eq. 4.9 withinΩρmin). We note thatρmin is defined in Eq. 4.11 with respect to the statex(t)

in Eq. 4.1, rather than with respect to the state underh̄(x) as in Eq. 4.9 (i.e.,ρmin is defined with

respect to the worst-case deviation ofV(x) from ρs throughout a sampling period given∆, θ , and

ūmax
i , i = 1, . . . ,m, and does not assume any specific feedback control law in its definition)..

The following theorem provides sufficient conditions underwhich the Safety-S-DLEMPC de-

sign of Eq. 4.8 guarantees recursive feasibility and closed-loop stability of the system of Eq. 4.1.

Theorem 4.1 Consider the system of Eq. 4.1 in closed-loop under the sequential distributed safety-

based LEMPC design of Eq. 4.8 based on a controllerh̄(x) that satisfies the conditions of Eq. 4.2.

Let εw > 0, ∆ > 0, ρ > ρsp> ρ̄sp> ρs> 0 satisfy

−α3(α−1
2 (ρs))+(Lx+

m

∑
i=1

Lūi ū
max
i )M∆+Lwθ ≤−εw/∆. (4.13)

and let ρ̄sp be defined such that if x(tk) ∈ Ωρ̄sp, then x(t) ∈ Ωρsp∀t ∈ [tk, tk+1). If x(t0) ∈ Ωρ ,

ρmin < ρ and N≥ 1, then the state x(t) of the closed-loop system can be driven in a finite time to

Ωρsp and then be bounded there, and after ts the state x(t) of the closed-loop system is ultimately
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bounded inΩρmin with Ωρmin defined as in Proposition 4.1.

Proof 4.1 The proof consists of three parts. We first prove that the optimization problem of Eq. 4.8

is recursively feasible for all x(t0)∈Ωρ . Subsequently, we prove that under the Safety-S-DLEMPC

design of Eq. 4.8, the closed-loop state of the system of Eq. 4.1 is maintained withinΩρ at all times

(i.e., Ωρ is a forward invariant set), and is driven in finite time intoΩρsp and thereafter bounded

there. Finally, we prove that after ts, the closed-loop state under the Safety-S-DLEMPC of Eq. 4.8

is ultimately bounded inΩρmin.

Part 1: The feasibility of the optimization problem for Safety-S-DLEMPC j (for j= 1, . . . ,m)

when x(t0) ∈Ωρ follows because the solution Kc(t) = 0, ∀ t ∈ [tk, tk+N), ū j(t) = h̄ j(x̃ j(tn)), ∀ t ∈

[tn, tn+1), with n= k, . . . ,N+k−1, is a feasible solution both when Kc is pre-set to zero throughout

the prediction horizon and when it is not. The gain Kc(t) = 0, ∀ t ∈ [tk, tk+N), is feasible since

it satisfies Eq. 4.8g over the prediction horizon. When Kc(t) = 0, then by Eq. 4.8i,̃ρ(t) will be

equal to its initial value throughout the prediction horizon, and thus the upper bound on the Lya-

punov function in Eq. 4.8h will be fixed (i.e., eitherρ̃(tk) =V(x(tk))⇒V(x̃ j(t))≤V(x(tk)), ∀ t ∈

[tk, tk+N), if x(tk) /∈Ωρsp or ρ̃(tk) = ρsp⇒V(x̃ j(t))≤ ρsp, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρsp). In such

a case,ū j(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), with n= k, . . . ,N+k−1, satisfies the input constraint of

Eq. 4.8c. To prove that̄u j(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), n= k, . . . ,N+k−1, satisfies Eqs. 4.8h

and 4.8j and is thus a feasible solution to Safety-S-DLEMPC jwhenūr(t) = h̄r(x̃ j(tk+q)), r = j +

1, . . . ,m,∀ t ∈ [tk+q, tk+q+1), q= 0, . . . ,N−1, andūp(t) = ū∗p(t|tk), p= 1, . . . , j−1, ∀ t ∈ [tk, tk+N),

as required by Eqs. 4.8d and 4.8e, the sequence of distributed controllers must be evaluated. We

will proceed by induction. When j= 1, ū j(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), n= k, . . . ,N+ k−1,

satisfies Eq. 4.8h in Safety-S-DLEMPC 1 by Proposition 4.1 when x(t) ∈ Ωρ , and trivially satis-

fies the constraint of Eq. 4.8j sincēur(t), r = 2, . . . ,m are set toh̄r(x̃ j) implemented in sample-

and-hold through Eq. 4.8e. Thus, Kc(t) = 0, ∀ t ∈ [tk, tk+N), ū j(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1),

n= k, . . . ,N+k−1, is a feasible solution for Safety-S-DLEMPC 1.

Now, assume that there exists a feasible solution to Safety-S-DLEMPC j− 1 (i.e., ū∗p(t|tk),

p = 1, . . . , j − 1, ∀ t ∈ [tk, tk+N)) and that feasibility ofū j(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), n =
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k, . . . ,N+ k−1, is being considered for Safety-S-DLEMPC j. Because Safety-S-DLEMPC j−1

was feasible (i.e., Eqs. 4.8h and 4.8j were satisfied) whenūp(t) = ū∗p(t|tk), p= 1, . . . , j−1, ∀ t ∈

[tk, tk+N), with all other inputs set to the corresponding components of h̄(x) implemented in sample-

and-hold, the same input trajectory (i.e.,ū j(t)= h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), n= k, . . . ,N+k−1, and

the other inputs defined according to Eqs. 4.8d and 4.8e) willbe feasible for Safety-S-DLEMPC

j because it will again satisfy Eqs. 4.8h and 4.8j; the feasibility of this solution is independent of

the value of Kc in Safety-S-DLEMPC j−1 or Safety-S-DLEMPC j. Therefore, Kc(t) = 0, ∀ t ∈

[tk, tk+N), ū j(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), n= k, . . . ,N+k−1, is a feasible solution for Safety-

S-DLEMPC 1 and also for Safety-S-DLEMPC j when Safety-S-DLEMPC j− 1 is feasible; by

induction, Kc(t) = 0,∀ t ∈ [tk, tk+N), ū j(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), n = k, . . . ,N+ k− 1, is

therefore a feasible control action for each Safety-S-DLEMPC j, j= 1, . . . ,m. Recursive feasibility

of the Safety-S-DLEMPC follows if the closed-loop state trajectory is maintained withinΩρ (which

will be proven in Part 2 to hold for all times if x(t0) ∈Ωρ ).

Part 2: We now prove that if x(tk) is initialized outside the safety level set (i.e., x(tk)∈Ωρ/Ωρsp

and tk ≤ ts), then the closed-loop state remains bounded withinΩρ (i.e., x(t) ∈ Ωρ when x(t0) ∈

Ωρ ) and within finite time, the closed-loop state will be drivento Ωρsp and remain there for all

subsequent times under the Safety-S-DLEMPC design of Eq. 4.8.

Due to the sequential solution strategy of the Safety-S-DLEMPC architecture, the set of control

actions u∗j (tk|tk), j = 1, . . . ,m, that are implemented on the process (and thus affect closed-loop

stability) satisfy the constraints of the Safety-S-DLEMPCof Eq. 4.8 when j= m. When x(tk) ∈

Ωρ/Ωρ̄sp, from the constraint of Eq. 4.8j of the Safety-S-DLEMPC m of Eq. 4.8 and from Eq. 4.2b,

we obtain:

∂V(x(tk))
∂x

( f (x(tk))+
m

∑
i=1

gi(x(tk))ū
∗
i (tk|tk))≤

∂V(x(tk))
∂x

( f (x(tk))+
m

∑
i=1

gi(x(tk))h̄i(x(tk)))

(4.14a)

≤−α3(|x(tk)|) (4.14b)
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The time derivative of the Lyapunov function along the actual system state trajectory x(t) for

t ∈ [tk, tk+1) can be written as follows:

V̇(x(t)) =
∂V(x(t))

∂x

(

f (x(t))+
m

∑
i=1

gi(x(t))ū
∗
i (tk|tk)+b(x(t))w(t)

)

(4.15)

Adding and subtracting
∂V(x(tk))

∂x
( f (x(tk))+∑m

i=1gi(x(tk))ū∗i (tk|tk)) to/from the above equation

and accounting for Eq. 4.14, the bound on the disturbance (|w| ≤ θ ), and the Lipschitz properties

of Eqs. 4.4-4.6, we can write:

V̇(x(t))≤−α3(|x(tk)|)+

(

Lx+
m

∑
i=1

Lūi ū
∗
i (tk|tk)

)

|x(t)−x(tk)|+Lwθ (4.16)

From Eq. 4.3 and the continuity of x(t), the following bound can be written for all t∈ [tk, tk+1):

|x(t)−x(tk)| ≤M∆ (4.17)

Since x(tk) ∈Ωρ/Ωρ̄sp, it can be concluded that x(tk) ∈Ωρ/Ωρs. Using this, as well as Eqs. 4.16-

4.17 and the bounds on the inputsūi , i = 1, . . . ,m, we obtain the following bound oṅV(x(t)) for

t ∈ [tk, tk+1):

V̇(x(t))≤−α3(α−1
2 (ρs))+

(

Lx+
m

∑
i=1

Lūi ū
max
i

)

M∆+Lwθ (4.18)

If the condition of Eq. 4.13 is satisfied, then there existsεw > 0 such that the following inequality

holds for x(tk) ∈Ωρ/Ωρ̄sp:

V̇(x(t))≤−εw/∆ ∀ t ∈ [tk, tk+1) (4.19)
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Integrating the bound of Eq. 4.19 on t∈ [tk, tk+1) we obtain that:

V(x(tk+1))≤V(x(tk))− εw (4.20a)

V(x(t))≤V(x(tk)), ∀ t ∈ [tk, tk+1) (4.20b)

for all x(tk) ∈ Ωρ/Ωρ̄sp. Using Eq. 4.20 recursively, it is proved that, if x(tk) ∈ Ωρ/Ωρ̄sp, the

state converges toΩρ̄sp in a finite number of sampling times while remaining withinΩρ throughout

the transition since V(x) does not increase. Once the state converges toΩρ̄sp ⊆ Ωρsp, it remains

inside Ωρsp for all times from the definition ofΩρ̄sp in Theorem 4.1 (i.e., if x(tk) ∈ Ωρ̄sp, then

x(t)∈Ωρsp∀t ∈ [tk, tk+1)) and re-activation of the contractive constraint of Eq. 4.8j to decrease the

Lyapunov function value until x(tk)∈Ωρ̄sp whenever x(tk)∈Ωρsp/Ωρ̄sp. SinceΩρsp⊆Ωρ , the state

of the closed-loop system is always maintained withinΩρ making it a forward invariant set.

Part 3: Finally, we prove ultimate boundedness of the closed-loop state withinΩρmin when

tk > ts. If tk > ts, then Eq. 4.8j is active at all subsequent sampling times. Since Eq. 4.19 holds

whenever x(tk)∈Ωρ/Ωρs, Eq. 4.20a also holds and thus for x(tk)∈Ωρ/Ωρs, V(x(tk+1))<V(x(tk))

and the closed-loop state moves to lower level sets until x(tk) ∈ Ωρs. From the definition ofΩρmin

in Proposition 4.1, once the state converges toΩρs ⊆Ωρmin, it remains insideΩρmin for all times.

Remark 4.3 The definition ofΩρ̄sp in Theorem 4.1 removes the direct correspondence between a

constraint of the form in Eq. 4.8h and the proof of closed-loop stability that is made in other works

on LEMPC (e.g.,43). To determinēρsp, closed-loop simulations could be performed utilizing worst-

case scenarios for the process model of Eq. 4.1 based on bounds on the disturbances and inputs in

calculating the value ofΩρ̄sp. In such a case, the constraint of Eq. 4.8h would not play a role in

the closed-loop stability proof. An alternative implementation of the Safety-S-DLEMPC strategy

would, however, allow a bound on̄ρsp to be determined based on satisfaction of a constraint of

the form of Eq. 4.8h. Specifically, because the primary purpose of the constraint of Eq. 4.8h is in

driving the closed-loop state to the safety region, once theclosed-loop state enters the safety region,

it is no longer necessary to utilize the safety-based constraints. Therefore, Eqs. 4.8g-4.8j can be
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replaced by the standard Mode 1 and Mode 2 constraints of43 once the closed-loop state enters

Ωρsp (and the penalty term in the objective function could be removed). The Mode 1 constraint

would be the constraint of Eq. 4.8h but with the upper bound onthe Lyapunov function fixed to

ρ̄sp, and the activation condition being that x(tk) ∈ Ωρ̄sp. The Mode 2 constraint would be the

constraint of Eq. 4.8j. With this modification, an explicit bound can be utilized on̄ρsp to prove that

the closed-loop state is maintained withinΩρsp for all times after this region is entered, where the

bound is based on satisfaction of the Mode 1 constraint requiring V(x̃ j)≤ ρ̄sp when x(tk) ∈Ωρ̄sp.

Remark 4.4 The focus of this chapter is on distributed safety-based LEMPC designs; however,

a safety-based tracking Lyapunov-based model predictive control (LMPC) design presented in

Chapter 3 which takes the form of the centralized safety-based LEMPC design in Eq. 4.7 but with

the contractive constraint of Eq. 4.7h enforced for all times, regardless of the location in state-

space of the measurement of the state at tk. Due to the similarity of this design to the centralized

safety-based LEMPC design considered in this chapter, the results in this chapter, including the

closed-loop stability and feasibility results, can be readily extended to the LMPC design considered

in that work. For the sequential design, the same architecture and implementation strategy can be

employed, with a similar formulation for the j− th distributed controller as in Eq. 4.8 but with the

contractive constraint always activated, Kc can be set to zero in some of the distributed controllers

and inputs can be grouped based on their effect on V(x̃), and the results of Theorem 4.1 would

hold for the resulting formulation, effectively with ts = t0 due to the repeated application of the

contractive constraint.

4.3.2 Safety-Iterative-DLEMPC

An alternative to the Safety-S-DLEMPC that may in some casesdemonstrate improved perfor-

mance compared to the Safety-S-DLEMPC (i.e., the implemented control actions may minimize

the objective function more significantly) is a Safety-Iterative-DLEMPC (Safety-I-DLEMPC). As

for the Safety-S-DLEMPC, there arem controllers, but unlike for the Safety-S-DLEMPC, allm

controllers are solved simultaneously. In addition, the constraint of Eq. 4.8j in thejth Safety-S-
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DLEMPC, j = 1, . . . ,m, is reformulated. The first time that them controllers are solved, thejth

controller (Safety-I-DLEMPCj) solves for ¯u j andKc and assumes that ¯uz(t), z∈ {1, . . . ,m} but

z 6= j, are equal tōhz(x̃ j(tq)), ∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−1. After the solutions of allm con-

trollers have been obtained, the Safety-I-DLEMPC can causethe solutions of thesem controllers

to be implemented, or they can be exchanged. If the solutionsare exchanged, each of the Safety-

I-DLEMPC’s is re-solved for ¯u j andKc assuming that ¯uz, z∈ {1, . . . ,m} butz 6= j, are equal to the

trajectories of ¯uz returned by each of themcontrollers at the prior iteration. In general, the number

of iterations is an integerc ∈ [1,∞). When it is necessary to clearly specify the iteration num-

ber associated with the solution of the Safety-I-DLEMPC’s below, we will refer to the solution to

Safety-I-DLEMPCj at timetk at iterationc asū∗j ,c(t|tk) andKc,c(t|tk), ∀ t ∈ [tk, tk+N). Termination

of the exchange of solutions (i.e., preventing further iterations at a given timetk) can be triggered

by various conditions. Examples of considerations that could be used are a fixed number of iter-

ations or terminating when the value of the objective function evaluated for the predicted state of

the nominal process under the inputs calculated by them Safety-I-DLEMPC’s at iterationc is no

better than the cost function at iterationc−1 or is better by no more than a termination condition

ε.
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The proposed formulation of Safety-I-DLEMPCj, j = 1, . . . ,m, at iterationc is as follows:

max
ū j ,Kc∈S(∆)

∫ tk+N

tk
[Le(x̃

j(τ), ū1(τ), . . . , ūm(τ))− (4.21a)

φ(ρsp− ρ̃(τ))]dτ

s.t. ˙̃x j(t) = f (x̃ j(t))+
m

∑
i=1

gi(x̃
j(t))ūi(t) (4.21b)

ū j(t) ∈U j , ∀ t ∈ [tk, tk+N) (4.21c)

ūz(t) = ū∗z,c−1(t|tk), z∈ {1, . . . ,m}, z 6= j, ∀ t ∈ [tk+r , tk+r+1),

r = 0, . . . ,N−1, c≥ 2 (4.21d)

ūz(t) = h̄z(x̃
j(tk+r)), z∈ {1, . . . ,m}, z 6= j, ∀ t ∈ [tk+r , tk+r+1),

r = 0, . . . ,N−1, c= 1 (4.21e)

x̃ j(tk) = x(tk) (4.21f)

Kc(t)≥ 0, ∀ t ∈ [tk, tk+N) (4.21g)

V(x̃ j(t))≤ ρ̃(t), ∀ t ∈ [tk, tk+N) (4.21h)

dρ̃
dt

= Kc(t)(ρsp− ρ̃(t)) (4.21i)

ρ̃(tk) =V(x(tk)), if x(tk) /∈Ωρsp

ρ̃(tk) = ρsp, if x(tk) ∈Ωρsp

∂V(x(tk))
∂x

g j(x(tk))ū j(tk) (4.21j)

≤
∂V(x(tk))

∂x
g j(x(tk))h̄ j(x(tk)),

if x(tk) ∈Ωρ/Ωρ̄sp or tk > ts

where as for the Safety-S-DLEMPC,Kc may be set to zero in any of them Safety-I-DLEMPC’s

as desired. The constraint of Eq. 4.21d sets the input trajectories ūz(t), z∈ {1, . . . ,m} where

z 6= j, to their optimal solution in the previous iteration assuming c > 1, whereas the constraint

of Eq. 4.21e sets the input trajectories to the corresponding Lyapunov-based control laws imple-
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mented in sample-and-hold when there is no prior iteration (i.e.,c= 1). The notation of the other

constraints follows that in Eq. 4.8.

The implementation strategy for the Safety-I-DLEMPC architecture is as follows:

1. At tk, all m Safety-I-DLEMPC’s receive a measurement of the current state x(tk) from the

sensors. Go to Step 2.

2. At iterationc (c≥ 1):

(a) If c = 1, Safety-I-DLEMPC j assumes ¯uz(t) = h̄z(x̃ j(tk+q)), ∀ t ∈ [tk+q, tk+q+1), z∈

{1, . . . ,m} but z 6= j, q= 0, . . . ,N−1. If c> 1, Safety-I-DLEMPCj assumes ¯uz(t) =

ū∗z,c−1(t|tk), ∀ t ∈ [tk+r , tk+r+1), r = 0, . . . ,N−1, z∈ {1, . . . ,m} but z 6= j. Using these

values, Safety-I-DLEMPCj evaluates both the optimal input trajectory ¯u∗j ,c(τ|tk), and

the optimal gainK∗c,c(τ|tk), τ ∈ [tk, tk+N), or only the optimal input trajectory ¯u∗j ,c(τ|tk),

∀ τ ∈ [tk, tk+N), when Safety-I-DLEMPCj sets the value of the gainKc to zero. Go to

Step 2b.

(b) Both the constraint of Eq. 4.21h under ¯u∗j ,c(τ|tk), ∀ τ ∈ [tk, tk+N), where j = 1, . . . ,m

(i.e., V(x̃tot) ≤ V(x(tk)), ∀ t ∈ [tk, tk+N), if x(tk) /∈ Ωρsp, or V(x̃tot(t)) ≤ ρsp, ∀ t ∈

[tk, tk+N), if x(tk) ∈ Ωρsp, where ˜xtot is the predicted state trajectory of the nominal

system of Eq. 4.1 under ¯u∗j ,c(τ|tk), ∀ τ ∈ [tk, tk+N), j = 1, . . . ,m) and the iteration ter-

mination condition are evaluated. If Eq. 4.21h is not met or the iteration termination

condition is met, go to Step 2c. Else, go to Step 2d.

(c) If c > 1, implement[ū∗1(tk|tk) . . . ū∗m(tk|tk)] = [ū∗1,c−1(tk|tk) . . . ū∗m,c−1(tk|tk)]. Else,

implement[ū∗1(tk|tk) . . . ū∗m(tk|tk)] = [h̄1(x(tk)) . . . h̄m(x(tk))]. Go to Step 3.

(d) The optimal input trajectories are exchanged between the Safety-I-DLEMPC controllers.

The controller stores any required values related to the iteration termination condition

(e.g., the calculated value of the objective function used in evaluating the iteration ter-

mination condition). Go to Step 2a (c← c+1).
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3. When a new state measurement is received attk+1, go to Step 1 (k← k+1).

x(tk)

Safety-I-DLEMPC m− 1

Safety-I-DLEMPC m

Plant

Safety-I-DLEMPC 2

Safety-I-DLEMPC 1
ū∗

1
(tk|tk)

ū∗

2
(tk|tk)

ū∗

m−1
(tk|tk)

ū∗

m(tk|tk)

ū∗

1,c(t|tk)

ū∗

j,c(t|tk)

ū∗

m,c(t|tk)

....

....

Figure 4.2: Block diagram of the Safety-I-DLEMPC scheme

A schematic of the Safety-I-DLEMPC scheme is shown in Figure4.2. At iterationc, Safety-I-

DLEMPC j calculates the optimal solution ¯u∗j ,c(t|tk), ∀ t ∈ [tk, tk+N), with the piecewise-constant

gainK∗c,c(τ|tk), τ ∈ [tk, tk+N), corresponding to that iteration. The values of ¯u1, . . . , ūm that are im-

plemented on the process throughout the sampling period from tk to tk+1 as a result of the above im-

plementation strategy for the Safety-I-DLEMPC architecture are denoted byu∗1(tk|tk), . . . ,u
∗
m(tk|tk).

As for the Safety-S-DLEMPC architecture, the number of controllers in which to solve for

Kc and the method of partitioning the inputs into vectors ¯u1, ū2, and so on are important consid-

erations, which rely on the above implementation strategy for the Safety-I-DLEMPC. It is noted

that because themSafety-I-DLEMPC’s are solved independently, assuming in each controller dif-

ferent values of ¯uz, z∈ {1, . . . ,m} but z 6= j, than are used by the other controllers, there is no

guarantee that the constraint of Eq. 4.21h is satisfied for the nominal system of Eq. 4.1 under the

set of trajectories ¯u∗1,c,(t|tk) . . . , ū
∗
m,c(t|tk), t ∈ [tk, tk+N), returned by the set of Safety-I-DLEMPC’s
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at iterationc, even ifKc = 0 in Eq. 4.21h. However, satisfaction of Eq. 4.21h by this trajectory

would be required for proving feasibility of the next iteration for the Safety-I-DLEMPC design.

Therefore, it is necessary to check whether Eq. 4.21h is satisfied by the optimal control actions at

the end of every iteration (i.e., compute the solution ˜xtot to the nominal system of Eq. 4.1 under

ū∗1,c(t|tk),. . . ,ū∗m,c(t|tk), ∀ t ∈ [tk, tk+N), and check whetherV(x̃tot)≤V(x(tk)) if x(tk) ∈Ωρ/Ωρsp or

V(x̃tot) ≤ ρsp if x(tk) ∈Ωρsp throughout the prediction horizon). If this condition is satisfied, then

the solution ¯u∗1,c(t|tk),. . . ,ū∗m,c(t|tk), ∀ t ∈ [tk, tk+N), at iterationc can be implemented or exchanged

between the controllers and another iteration can begin. IfEq. 4.21h is not satisfied, then either the

solution from iterationc−1 that met the condition should be implemented whenc> 1, or h̄(x(tk))

should be implemented ifc= 1. This strategy, which keeps the optimization problem of Eq. 4.21

feasible at each sampling timetk, has been included in the above implementation strategy.

To determine whetherKc can be set to zero in some of the Safety-I-DLEMPC’s given this

implementation strategy, without negatively impacting closed-loop stability, to decrease the num-

ber of optimization variables in some of the Safety-I-DLEMPC’s, we appeal to feasibility and

closed-loop stability arguments. First, consider iteration c = 1. In this case, thejth Safety-I-

DLEMPC assumes that ¯uz(t), z∈ {1, . . . ,m} but z 6= j, is equal toh̄z(x(tq)), q= k, . . . ,k+N−1,

∀ t ∈ [tk, tk+N), and solves for ¯u j andKc. The solution ¯u j(t) = h̄i(x(tq)), q = k, . . . ,k+N− 1,

∀ t ∈ [tk, tk+N), with Kc = 0, ∀ t ∈ [tk, tk+1), is a feasible solution for thejth Safety-I-DLEMPC;

therefore, there is always a feasible solution to all Safety-I-DLEMPC’s for c= 1. To ensure fea-

sibility of subsequent iterations, there must be a feasiblesolution to the constraint of Eq. 4.21h

at the next iteration. This is ensured, regardless of whether Kc(t) ≡ 0, ∀ t ∈ [tk, tk+N), if V(x̃tot)

is below a required bound throughout the prediction horizonat the prior iteration. The LEMPC

implementation strategy ensures that no subsequent iterations are performed if this iteration con-

dition is not met; therefore, all attempted iterations willhave a feasible solution, regardless of

whetherKc(t) ≡ 0, ∀ t ∈ [tk, tk+N), under the Safety-I-DLEMPC implementation strategy. It is

important to ensure that a control action implemented by theSafety-I-DLEMPC implementation

strategy will be stabilizing (i.e.,x(t) ∈ Ωρ for all times, andx(t) entersΩρsp in finite time and
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remains inΩρsp thereafter). If ¯u∗1,c−1(tk|tk), . . . , ū
∗
m,c−1(t|tk), ∀ t ∈ [tk, tk+N), is implemented, a

summation of the constraints of Eq. 4.21j for allm Safety-I-DLEMPC’s reveals that Eq. 4.14a is

met by these control actions (and therefore, utilizing similar steps as in the proof of Theorem 4.1,

V(x(tk+1))<V(x(tk))). If insteadh̄(x) is implemented in sample-and-hold,V(x(tk+1))<V(x(tk))

from Proposition 4.1. Ifx(tk) ∈ Ωρ̄sp, then under eitheru∗1,c−1(tk|tk), . . . ,u
∗
m,c−1(tk|tk), or h̄(x) im-

plemented in sample-and-hold,x(tk+1) ∈ Ωρsp from the definition ofΩρ̄sp. This establishes that

closed-loop stability is maintained under the Safety-I-DLEMPC implementation strategy because

this implementation strategy ensures that the implementedcontrol actions satisfy both Eq. 4.21h

and 4.21j. Furthermore, this stability proof does not depend on the value ofKc in each controller,

andKc = 0,∀ t ∈ [tk, tk+N), is guaranteed to provide a feasible solution to the Safety-I-DLEMPC at

c= 1 and all subsequent attempted iterations. Therefore, it ispossible to setKc to zero in some of

the Safety-I-DLEMPC optimization problems to reduce the number of decision variables in these

problems. It may be helpful to partition the inputs with a large effect onV(x̃) into some ¯u j vectors

and those with more minimal effect into others, so that the Safety-I-DLEMPC’s for which solving

for ūi may have less effect on the safety penalty term can be selected to haveKc≡ 0. However, the

effects of partitioning and of settingKc≡ 0 in some controllers should be assessed with closed-loop

simulations.

We will now provide the conditions that guarantee closed-loop stability of a nonlinear pro-

cess under the Safety-I-DLEMPC implementation strategy, as well as conditions that guarantee

feasibility of the Safety-I-DLEMPC optimization problem of Eq. 4.21 at a given iteration.

Theorem 4.2 Consider the system of Eq. 4.1 in closed-loop under the implementation strategy

(steps 1-3) of the iterative distributed safety-based LEMPC design of Eq. 4.21 based on a controller

h(x) that satisfies the conditions of Eq. 4.2. Letεw > 0, ∆ > 0, ρ > ρsp> ρ̄sp> ρs > 0 satisfy the

constraint of Eq. 4.13, with̄ρsp defined such that if x(tk) ∈ Ωρ̄sp, then x(t) ∈ Ωρsp∀t ∈ [tk, tk+1).

For any N≥ 1 and c≥ 1, if x(t0) ∈ Ωρ , ρmin < ρ , then the state x(t) of the closed-loop system

can be driven in a finite time toΩρsp and then be bounded there, and after ts the state x(t) of the

closed-loop system is ultimately bounded inΩρmin with Ωρmin defined as in Proposition 4.1.
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Proof 4.2 Like the proof of Theorem 1, the proof of Theorem 2 consists ofthree parts. We first

prove that under steps 1-3 of the safety-I-DLEMPC implementation strategy, the optimization prob-

lem of Eq. 4.21 is feasible for each iteration c that is executed when x(t0)∈Ωρ , and that the control

actions implemented on the process under this implementation strategy have characterizable prop-

erties. Then we prove that the closed-loop state of the system of Eq. 4.1 can be driven in finite

time intoΩρsp under the control actions from the Safety-I-DLEMPC implementation strategy, and

then be bounded there. We also prove that under the Safety-I-DLEMPC implementation strategy,

the closed-loop state is always maintained inΩρ if x(t0) ∈Ωρ (i.e.,Ωρ is a forward invariant set).

Finally, we prove that after ts, the closed-loop state under the Safety-I-DLEMPC implementation

strategy is ultimately bounded inΩρmin.

Part 1: At the initial iteration (i.e., c= 1) and for all x(t0) ∈Ωρ , the solution Kc,1(t) = 0, ∀ t ∈

[tk, tk+N), ū j ,1(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), with n= k, . . . ,N+ k−1, is a feasible solution to

each Safety-I-DLEMPC j of Eq. 4.21, j= 1, . . . ,m, both when Kc is fixed at zero and when it is

not. Feasibility of Kc,1(t) = 0, ∀ t ∈ [tk, tk+N), at c= 1 follows because Kc,1(t) = 0, ∀ t ∈ [tk, tk+N),

satisfies Eq. 4.21g throughout the prediction horizon. WhenKc,1(t) = 0, then as described in

the proof of Theorem 4.1, the upper bound on the Lyapunov function in Eq. 4.21h is fixed to

either V(x(tk)) or ρsp. In such a case,̄u j ,1(t) = h̄ j(x̃ j(tn)), ∀ t ∈ [tn, tn+1), n= k, . . . ,N+ k−1,

satisfies the input constraint of Eq. 4.21c. Becauseūz(t) = h̄z(x̃ j(tk+r)), z∈ {1, . . . ,m}, z 6= j,

∀ t ∈ [tk+r , tk+r+1), r = 0, . . . ,N− 1, from Eq. 4.21e, the constraint of Eq. 4.21h is satisfied by

Proposition 4.1,72 as is the constraint of Eq. 4.21j (trivially). For the subsequent iterations (i.e.,

c > 1), the solution Kc,c(t) = 0, ∀ t ∈ [tk, tk+N), ū j ,c(t) = ū∗j ,c−1(t|tk), ∀ t ∈ [tn, tn+1), with n=

k, . . . ,N+k−1, is a feasible solution to Safety-I-DLEMPC j, j= 1, . . . ,m (regardless of whether

Kc is fixed to zero in the optimization problem or not) when the condition of Eq. 4.21h is satisfied

by the solutions̄u∗j ,c−1(t|tk), ∀ t ∈ [tn, tn+1), n = k, . . . ,N+ k− 1, j = 1, . . . ,m, from the prior

iteration, i.e., when V(x̃tot(t))≤V(x(tk)), ∀ t ∈ [tk, tk+N), if x(tk) /∈Ωρsp, or when V(x̃tot(t))≤ ρsp,

∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρsp, wherex̃tot(t), ∀ t ∈ [tk, tk+N), is defined as the solution obtained by
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recursively solving:

˙̃xtot = f (x̃tot)+
m

∑
i=1

gi(x̃
tot)ū∗i,c−1(t|tk) (4.22)

given x̃tot(tk) = x(tk). Feasibility of this solution follows because since it was feasible at the

prior iteration, it satisfied the input constraint of Eq. 4.21c and will also satisfy the constraints of

Eqs. 4.21h and 4.21j. Because the upper bound on the Lyapunovfunction in Eq. 4.21h is the same

between two iterations since it is based only on a state measurement at tk and thus will be the same

for all iterations at tk, when the condition on V(x̃tot(t)) is checked under̄u∗z,c−1(t|tk), z= 1, . . . ,m,

∀ t ∈ [tk, tk+N), at the end of the prior iteration and now̄uz(t) = ū∗z,c−1(t|tk), z∈ {1, . . . ,m}, but

z 6= j, ∀ t ∈ [tk, tk+N), within Safety-I-DLEMPC j from the constraint of Eq. 4.21d,it is already

known from the check at the prior iteration that with those trajectories for allūz(t) for z 6= j that

ū∗j ,c−1(t|tk), ∀ t ∈ [tk, tk+N), will meet the constraint of Eq. 4.21h. Finally, unlike the constraint

of Eq. 4.21h, the contractive constraint of Eq. 4.21j does not depend on control actions̄uz(t),

z 6= j; therefore, the solution̄u∗j ,c−1(t) will satisfy the contractive constraint of Safety-I-DLEMPC

j, where j= 1, . . . ,m, at iteration c if it is satisfied at the prior iteration. If the termination con-

dition is met or the condition on V(x̃tot(t)) under ū∗j ,c(t|tk), ∀ t ∈ [tk, tk+N), j = 1, . . . ,m, is not

satisfied and c> 1, then a new iteration is not performed. When the new iteration is not performed,

a solution that was feasible at the prior iteration (i.e.,ū∗z,c−1(t|tk), t ∈ [tk, tk+N), z= 1, . . . ,m) is

implemented. Because this solution was feasible for all j Safety-I-DLEMPC’s, j= 1, . . . ,m, at the

prior iteration, it is known to have satisfied the constraintof each Safety-I-DLEMPC and therefore

has characterizable properties. If c= 1 and the condition on V(x̃tot(t)) is not satisfied,̄h(x) is im-

plemented in sample-and-hold, which also has characterizable properties (e.g., Proposition 4.1).

Therefore, feasibility of the Safety-I-DLEMPC is ensured at each iteration that is attempted due

to checking of the condition on V(x̃tot(t)) before attempting a new iteration. However, there is no

guarantee that this condition will be met at the end of any iteration. When it is not met and iterat-

ing stops, however, the solution applied under the implementation strategy (i.e., either̄u∗j ,c−1(tk|tk),

j = 1, . . . ,m, orh̄(x(tk))) has characterizable properties.

Part 2: We now utilize the known properties of the implemented control actions under the
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Safety-I-DLEMPC implementation strategy to prove closed-loop stability of a nonlinear process

under this implementation strategy in the sense of boundedness of the closed-loop state. First,

we prove that if x(tk) ∈ Ωρ/Ωρ̄sp then V(x(tk+1)) < V(x(tk)) and in finite steps, the closed-loop

state converges toΩρ̄sp (i.e., x(tk+p) ∈ Ωρ̄sp where p is a finite positive integer) in a manner that

maintains the closed-loop state withinΩρ . We then demonstrate that once the closed-loop state

entersΩρsp, it is bounded there for all subsequent times.

When x(tk) ∈ Ωρ/Ωρ̄sp andū∗j ,c−1(tk|tk), j = 1, . . . ,m, is applied to the plant, Eq. 4.21j holds

for each implemented control action. By summing the constraints of Eq. 4.21j for all j Safety-I-

DLEMPC’s, j= 1, . . . ,m, and utilizing Eq. 4.2b, we obtain:

m

∑
j=1

∂V(x(tk))
∂x

g j(x(tk))ū
∗
j ,c−1(tk|tk)≤

m

∑
j=1

∂V(x(tk))
∂x

g j(x(tk))h̄ j(x(tk)) (4.23a)

=
∂V(x(tk))

∂x

(

f (x(tk))+
m

∑
j=1

g j(x(tk))ū
∗
j ,c−1(tk|tk)

)

≤
∂V(x(tk))

∂x

(

f (x(tk))+
m

∑
j=1

g j(x(tk))h̄ j(x(tk))

)

(4.23b)

≤−α3(|x(tk)|) (4.23c)

Following the same approach as in the proof of Theorem 1, if the condition of Eq. 4.13 is satisfied,

then V(x(tk+1))<V(x(tk)) under the implemented control action. If x(tk) ∈Ωρ/Ωρ̄sp but h̄(x(tk))

is applied to the plant, then by Proposition 4.1, V(x(tk+1)) < V(x(tk)). Therefore, at any given

sampling time when x(tk) ∈ Ωρ/Ωρ̄sp, regardless of whether̄u∗j ,c−1(tk|tk), i = 1, . . . ,m, or h̄(x(tk))

is implemented according to the implementation strategy ofthe Safety-I-DLEMPC, V(x(tk+1)) <

V(x(tk)) and this will cause the closed-loop state to be driven intoΩρ̄sp in finite time in a manner

that cannot exitΩρ . WhenΩρ̄sp is defined as in Theorem 4.2 such that if x(tk) ∈ Ωρ̄sp, then x(t) ∈

Ωρsp∀t ∈ [tk, tk+1), the result is thatΩρsp is a forward invariant set. This is because if x(tk) ∈

Ωρsp/Ωρ̄sp, the constraint of Eq. 4.21j is active when computing theū∗j ,c−1(tk|tk), j = 1, . . . ,m, that

are applied to the plant, and thus either a solution that meets that constraint or̄h(x(tk)) will be

applied to the plant. The result will be that V(x(tk+1)) < V(x(tk)), so if x(tk) ∈ Ωρsp/Ωρ̄sp, then
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x(tk+1) ∈Ωρsp. If x(tk) ∈Ωρ̄sp, then x(tk+1) ∈Ωρsp from the definition ofΩρ̄sp. Therefore, once the

closed-loop state entersΩρsp under this implementation strategy, it cannot leave it. Furthermore,

sinceΩρsp ⊆ Ωρ , the closed-loop state under this implementation strategyis always bounded in

Ωρ .

Part 3: When tk > ts, either inputsū∗j ,c−1(tk|tk), j = 1, . . . ,m, that cause Eq. 4.23 to hold are

applied to the plant, or the Lyapunov-based controller implemented in sample-and-hold is applied,

for which the results of Proposition 4.1 hold. Following similar steps as in the proof of Part 3 of

Theorem 1, this causes V(x(tk+1))≤V(x(tk)) while x(tk) ∈Ωρ/Ωρs, driving the closed-loop state

into Ωρs in finite time. Subsequently, from the definition ofΩρmin, the system state is ultimately

bounded in an invariant setΩρmin under the implementation strategy of the Safety-I-DLEMPC.

Remark 4.5 For the proof of closed-loop stability and feasibility of the Safety-I-DLEMPC design,

similar comments as in Remark 4.3 can be made. Firstly, the constraint of Eq. 4.21h is not utilized

in the proof of closed-loop stability. Also, once the closed-loop state enters the safety region, the

Safety-I-DLEMPC can be modified to no longer include the penalty term in the objective function

or safety-based constraints, but can instead by formulatedlike an iterative distributed LEMPC

with the constraints of Eqs. 4.21g-4.21i replaced by the constraint of Eq. 4.21h but with a static

upper bound of̄ρsp on the Lyapunov function, and the constraint activated whenever the closed-

loop state is withinΩρ̄sp. The same implementation strategy could continue to be usedafter this

modification (e.g., checking the value of V(x̃tot(t)) between iterations). This discussion brings up

two important points regarding the Safety-I-DLEMPC closed-loop stability and feasibility proof:

1. Though satisfaction of the condition on V(x̃tot(t)) is not directly utilized for proving closed-

loop stability, checking the condition on V(x̃tot(t))was shown through the proof of feasibility

to be important in ensuring that there was a feasible solution to Safety-I-DLEMPC j, j=

1, . . . ,m, at each iteration attempted.

2. Because only the slight modifications discussed in this remark to Eqs. 4.21a and 4.21g-4.21i

are required to transform the Safety-I-DLEMPC into an iterative distributed LEMPC (i.e.,
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not including safety-based constraints), the implementation strategy proposed above with the

resulting guarantees on closed-loop stability withinΩρsp and feasibility of the optimization

problem at every sampling time for c= 1 and at subsequent sampling times when the condi-

tion on V(x̃tot(t)) is met would also hold. This is significant because it is the first closed-loop

stability result for iterative distributed LEMPC in general.

Remark 4.6 Due to the similarity between the centralized safety-LEMPCand safety-LMPC for-

mulations as mentioned in Remark 4.4, an iterative distributed design for the safety-LMPC formu-

lation, with the implementation strategy and associated closed-loop stability and feasibility proofs,

would follow that of this section, with ts= t0.

Remark 4.7 An assumption throughout this chapter is that the time to calculate the solutions to the

distributed safety-LEMPC problems is much less than the sampling time such that the calculations

can be considered instantaneous. When such short time scales are assumed for the computations,

an alternative to terminating the iterations as soon as the condition on V(x̃tot(t)) is not met would

be to re-perform optimization iteration c with different initial guesses to try to meet the condition

on V(x̃tot(t)) at the iteration and potentially improve the optimality of the implemented solutions

from a safety and economics perspective.

4.4 Application to a chemical process example

In this section, we demonstrate the advantages of the proposed Safety-DLEMPC schemes over the

centralized Safety-LEMPC of Eq. 4.7 by applying them to a benchmark catalytic reactor example.

The closed-loop economic performance and the on-line computation time needed to solve the

three Safety-LEMPC optimization problems are the key performance metrics. A chemical process

example (catalytic reactor) is considered in which the oxidation of ethylene to ethylene oxide

takes place in a non-isothermal continuous stirred tank reactor (CSTR) according to the following
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reactions:

C2H4+
1
2

O2
r1→ C2H4O (R1)

C2H4+3O2
r2→ 2CO2+2H2O (R2)

C2H4O+
5
2

O2
r3→ 2CO2+2H2O (R3)

Table 4.1: Values of the dimensionless parameters of the ethylene oxidation CSTR.

A1 = 92.8 B2 = 10.39 γ2 =−7.12

A2 = 12.66 B3 = 2170.57 γ3 =−11.07

A3 = 2412.71 B4 = 7.02

B1 = 7.32 γ1 =−8.13

To remove the heat generated by the exothermic reactions, a cooling jacket is used. The di-

mensionless material and energy balances for the catalyticreactor are developed in77 where the

rate laws for the reactions use the nonlinear Arrhenius reaction in.12 The dimensionless mass and

energy balances for this process are described by the following equations:77

dx1(t)
dt

= u1(1−x1x4) (4.24a)

dx2(t)
dt

= u1(u2−x2x4)−A1e
γ1
x4 (x2x4)

0.5

−A2e
γ2
x4 (x2x4)

0.25 (4.24b)

dx3(t)
dt

=−u1x3x4+A1e
γ1
x4 (x2x4)

0.5−A3e
γ3
x4 (x3x4)

0.5 (4.24c)

dx4(t)
dt

=
u1

x1
(1−x4)+

B1

x1
e

γ1
x4 (x2x4)

0.5 (4.24d)

+
B2

x1
e

γ2
x4 (x2x4)

0.25+
B3

x1
e

γ3
x4 (x3x4)

0.5−
B4

x1
(x4−u3)

The resulting dimensionless dynamic model of this reactor has four statesx1, x2, x3, andx4

and three manipulated inputsu1, u2, andu3. The four dimensionless states represent the reac-

tor gas mixture density, ethylene concentration, ethyleneoxide concentration, and temperature
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Figure 4.3: Evolution of the Lyapunov function value of the closed-loop state under the centralized
Safety-LEMPC

in the reactor, respectively. The three dimensionless inputs u1, u2, andu3 of the reactor are the

feed volumetric flow rate, the concentration of ethylene in the feed, and the coolant tempera-

ture, respectively. The values of the parameters of this model are presented in Table 4.1. Due

to the physical constraints on the control actuators, the manipulated inputs are bounded (i.e.,

u1 ∈ [0.0704, 0.7042], u2 ∈ [0.2465, 2.4648], u3 ∈ [0.6, 1.1]). The economic performance in-

dex of the catalytic reactor is the average yield of ethyleneoxide where the yield is defined by:

Y(t f ) =

∫ t f

t0
u1(τ)x3(τ)x4(τ) dτ

∫ t f

t0
u1(τ)u2(τ) dτ

(4.25)

wheret f is the operating period. A limitation on the amount of reactant material that may be fed
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Figure 4.4: Evolution of the Lyapunov function value of the closed-loop state under the Safety-S-
DLEMPC

to the reactor is fixed by the following integral material constraint:

1
t f

∫ t f

t0
u1(τ)u2(τ) dτ = 0.175. (4.26)

Since the denominator of Eq. 4.25 is fixed over the length of operation, the various Safety-LEMPC

schemes considered in this chapter will maximize the following stage cost:

Le(x,u) = u1x3x4. (4.27)

The dynamic model of the catalytic reactor has an open-loop asymptotically stable steady-state

that satisfies the integral material constraint of Eq. 4.26 with xT
s = [x1s x2s x3s x4s] =

[0.998 0.424 0.032 1.002] which corresponds to the steady-state inputuT
s = [0.35 0.5 1.0]. The

contractive constraint of Eqs. 4.7h, 4.8j, and 4.21j was notimposed in all the simulations be-
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Figure 4.5: Evolution of the Lyapunov function value of the closed-loop state under the Safety-I-
DLEMPC

low since closed-loop stability under the various Safety-LEMPC schemes is not an issue for

the region of operation considered for the dynamic model of this reactor. In order to deter-

mine the safety level set, a characterization of the closed-loop stability regionΩρ of the dy-

namic model of the reactor is required. To estimate the stability region Ωρ , a PI controller

hT(x) = [h1(x) h2(x) h3(x)] is implemented in a sample-and-hold fashion for the three manipu-

lated inputs (i.e.,ha(x) = KPa(xa− xas)+
1
τa

∫ t
0(xa− xas)dt, a = 1,2,3, whereKP1 = 3.0, KP2 =

0.105, KP3 = 0.1, τ1 = 0.00001, τ2 = 0.0002081, andτ3 = 0.005). The centralized and dis-

tributed Safety-LEMPC schemes are implemented with a shrinking prediction horizon that covers

the entire operating windowtp = 47; specifically, at the beginning of thel th operating window, the

prediction horizon was set totp/∆ and the horizon was decreased by one at each sampling period

where∆ = 1. At the beginning of the(l +1)th operating window wherel = 0, . . . ,9, the prediction

horizon is reinitialized totp/∆. To satisfy the material constraint of Eq. 4.26, this constraint is im-
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Figure 4.6: Input trajectories computed by the centralizedSafety-LEMPC

posed over the ten operating windows (i.e., the average molar flow rate of ethylene must be equal

to 0.175 at the end of each operating interval of lengthtp). The dynamic model of the catalytic

reactor is simulated numerically by using the explicit Euler method with a step size of 10−5, while

the step size used for the model within the Safety-LEMPC optimization problems is 0.0005. All

the optimization problems were solved using the interior-point solver Ipopt.90

We use a quadratic Lyapunov function of the formV(x̄) = x̄TPx̄ to estimate the stability region

of the closed-loop system underh(x) whereP = diag([1 1 1 1]). The notation ¯x denotes the

process state vector in deviation form (i.e., ¯x = x− xs). The safety level setΩρsp is chosen to

operate the closed-loop process in a relatively small region around the steady-state to avoid the

boundary of the stability region. Following this techniqueand using the Lyapunov functionV(x̄),

the values ofρ andρsp were chosen to be 2.1 and 0.5, respectively. As a result of theintegral

material constraint of Eq. 4.26, the inputsu1 andu2 are optimized by one Safety-DLEMPC (i.e.,

ūT
1 = [u1 u2]), as well asKc, while onlyu3 is computed by another (i.e., ¯u3 = u3 with Kc ≡ 0) for
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Figure 4.7: Process state trajectories under the centralized Safety-LEMPC

both iterative and distributed Safety-DLEMPC’s.

The termination condition for the Safety-I-DLEMPC algorithm was to stop iterating the opti-

mization problem when the cost function at the current iteration is less than or equal to the cost

function at the previous iteration. In this example, the condition on the value ofV(x̃tot) along the

closed-loop state trajectories of the nominal system underthe control actions calculated by the two

iterative distributed controllers was not checked betweeniterations, but no issues with feasibility

occurred during the iterations performed. Ipopt was forcedto stop optimizing the problem after

100 iterations to take real-time computation considerations into account.

Table 4.2: The average yield and computation time under the safety-LEMPC strategies.

Strategy Yield (%) Computation Time (s)
Safety-S-DLEMPC 9.85 6.64
Safety-I-DLEMPC 9.94 5.59

Centralized Safety-LEMPC 10.15 16.87
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Figure 4.8: Input trajectories computed by the Safety-I-DLEMPC
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Figure 4.9: Process state trajectories under the Safety-S-DLEMPC
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Figure 4.10: Process state trajectories under the Safety-I-DLEMPC

The computation time for the Safety-S-DLEMPC is evaluated as the sum of the computa-

tion times of Safety-S-DLEMPC 1 and Safety-S-DLEMPC 2 at each sampling time because the

distributed controllers are evaluated in sequence which means that the minimal time to obtain a

solution is the sum of the evaluated times of all controllers. However, the computation time for

one iteration of the Safety-I-DLEMPC is computed as the maximum computation time of the two

optimization problems because the distributed controllers are evaluated in parallel which implies

that the minimal time to obtain a solution is the largest computation time among all the Safety-I-

DLEMPC controllers.

In these simulations, the catalytic reactor was initiated far fromΩρsp with xT(t0) =

[0.9818 1.4566 0.1987 1.0523] (i.e.,V(x(t0)) = 1.09> ρsp= 0.5). Starting attk = 222, the safety

logic unit requests the closed-loop state to move toward thesafety level set under the centralized

and distributed Safety-LEMPC schemes. Figures 4.3, 4.5 and4.4 show the Lyapunov function

value of the closed-loop states under the centralized Safety-LEMPC and iterative and sequential
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Figure 4.11: Input trajectories computed by the Safety-S-DLEMPC

Safety-DLEMPC controllers, respectively. From these figures, the closed-loop states under the

three controllers successfully entered the safety level set after one sampling time (i.e.,V(tk) <

ρsp where tk = 223). Figures 4.7, 4.6, 4.10, 4.8, 4.9 and 4.11 represent theclosed-loop state

trajectories and the manipulated input trajectories of thecentralized Safety-LEMPC and iterative

and sequential Safety-DLEMPC controllers, respectively.As in,17 the centralized Safety-LEMPC,

the Safety-S-DLEMPC, and the Safety-I-DLEMPC dictate periodic operation (i.e., the ethylene is

distributed in a non-uniform fashion with respect to time) to maximize the yield of ethylene oxide.

The input trajectoriesu1 and u2 satisfied the material constraint of Eq. 4.26 under all Safety-

LEMPC schemes. Figure 4.7, Figure 4.10 and Figure 4.9 show that the closed-loop trajectories

under all the Safety-LEMPC schemes changed after the safety-based constraints are activated at

tk = 222 while periodic operation is still maintained. Due to thenonlinearity and non-convexity of

the optimization problem, the Safety-I-DLEMPC under the termination condition described above

terminates most of the time after the second iteration so that the c = 1 solution is applied (i.e.,

129



the cost function at the first iteration is generally greaterthan or equal to the cost function at the

second iteration). Table 4.2 shows the average yield and average computation time required to

solve each of the three optimization problems over the ten operating windows. From Table 4.2,

the average yield of ethylene oxide under the centralized safety-LEMPC and distributed (iterative

and sequential) safety-LEMPC’s is similar. The centralized safety-LEMPC of Eq. 4.7 requires

over 150% more computation time than both the iterative and the sequential safety-DLEMPC’s.

Additionally, the average yield of ethylene oxide over ten operating periods under the PI controllers

is 5.34%; the average yield under the centralized safety-LEMPC is 90% better than that under the

PI controllers.

Remark 4.8 Even though the dynamic model of the reactor of Eq. 4.24 does not explicitly follow

the class of systems of Eq. 4.1 due to the bilinear term in the right hand side of the second

differential equation (i.e., u1(u2− x2x4)), the system can be reformulated to take a form in the

class of systems of Eq. 4.1. Since the manipulated input u2 only appears in that term and the

safety DLEMPC 1 solves for the inputs u1 and u2 together in one optimization problem due to the

material constraint of Eq. 4.26, a new variable u4 = u1u2 can be introduced to make the process

model appear in the form of the class of systems of Eq. 4.1 (input affine with inputs u1, u3 and

u4). Furthermore, as is demonstrated above, the distributed control methodology of this chapter

performed well for this example.

4.5 Conclusion

In this chapter, sequential and iterative Safety-DLEMPC schemes were proposed as alternatives

to centralized Safety-LEMPC that may have less on-line computation time while achieving sim-

ilar closed-loop performance and safety constraints satisfaction. An implementation strategy and

mathematical formulation for the Safety-Sequential-DLEMPC design and the Safety-Iterative-

DLEMPC design were developed. The main objective of the two distributed Safety-LEMPC

schemes is to improve the computation time with respect to the centralized Safety-LEMPC while
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maintaining similar closed-loop performance. For a sufficiently small sampling period, proofs of

recursive feasibility and closed-loop stability of a classof nonlinear systems under the Safety-S-

DLEMPC and Safety-I-DLEMPC formulations in the presence ofuncertainty were given. Using

a catalytic reactor example, the proposed iterative and sequential Safety-DLEMPC strategies were

able to yield comparable closed-loop performance while significantly decreasing the on-line com-

putation time compared to that required to solve the centralized Safety-LEMPC. This illustrates

that distributed implementation may allow Safety-LEMPC tobe implemented on processes where

the computation time of the centralized implementation strategy exceeds the controller sampling

time.
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Chapter 5

Process Operational Safety Using Model

Predictive Control Based on A Process

Safeness Index

5.1 Introduction

The development of a systematic methodology for coordinating safety and control systems poses

fundamental challenges; for example, metrics must be developed that can be shared by the control

and safety systems to indicate safe or unsafe system operation, and constraints need to be developed

for MPC that prevent the closed-loop state from entering unsafe regions based on the developed

safety metrics while maintaining closed-loop stability and feasibility. A metric that can unify

control and safety systems considerations could improve the designs of both of these systems.

Motivated by the above considerations, in this chapter a metric termed the Safeness Index that is

a function of the closed-loop process state is developed. The Safeness Index indicates the relative

safeness of the process state in state-space based on past process data, first-principles models

and traditional safety analysis tools. The safety system aswell as the control system can then

incorporate this index by setting thresholds on the value ofthis index upon which the actions of the
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control and safety systems are based. An LEMPC design and implementation strategy that uses

the Safeness Index as a hard constraint and maintains closed-loop stability is rigorously developed

to demonstrate the incorporation of this metric within a process control system. The proposed

Safeness Index framework can be applied to both existing systems and new process systems and

technologies. Using a chemical process example, the proposed LEMPC is compared with that of

an LEMPC scheme that does not incorporate the Safeness Index-based constraint in terms of its

ability to maintain the process state within a region where the value of the Safeness Index is less

than a desired threshold. The results of this chapter originally appeared in.26

5.2 Preliminaries

5.2.1 Notation

The operator| · | signifies the 2-norm of a vector. The transpose of a vectorx is represented by

the symbolxT . The symbolΩρ is used to denote a level set of a sufficiently smooth, positive

definite scalar-valued functionV(x) and is defined byΩρ := {x ∈ Rn : V(x) ≤ ρ}. The operator

‘/’ denotes set subtraction, that is,A/B := {x∈ Rn : x ∈ A,x /∈ B}. The symbolS(∆) denotes the

family of piecewise constant, right-continuous functionswith a fixed time interval∆ ≥ 0. The

initial time instant is denoted byt0. A function α(·) : [0,a)→ [0,∞) belongs to classK if it is

strictly increasing and continuous, andα(0) = 0.

5.2.2 Class of Nonlinear Process Systems

The class of nonlinear process systems considered in this chapter is that of the general form:

ẋ= f (x,u,w) (5.1)

wherex∈ R
n, u∈U ⊂ R

m, andw∈ R
l are the state, input, and disturbance vectors, respectively.

We assume thatf is a locally Lipschitz vector function of its arguments and that the state of the

133



system of Eq. 5.1 is synchronously sampled at time instancestk = t0+k∆, k = 0,1, . . ., where∆

is the sampling period andt0 is the initial time. The disturbancew(t) is bounded within the set

W := {w∈Rl : |w| ≤ θ ,θ > 0} (i.e.,w(t) ∈W). We assume that the origin is an equilibrium point

of the unforced nominal system which implies thatf (0,0,0) = 0.

5.2.3 Nonlinear System Stabilizability Assumption

We consider systems of the form of Eq. 5.1 for which Assumption 5.1 holds.

Assumption 5.1 There exists a locally Lipschitz feedback control law h(x) ∈U with h(0) = 0 for

the nominal closed-loop system of Eq. 5.1 (i.e., w(t)≡ 0) that renders the origin of the closed-loop

system with u= h(x) asymptotically stable for all x∈ D ⊆ Rn where D is an open neighborhood

of the origin, when applied continuously in the sense that there exists49,63 a continuously dif-

ferentiable Lyapunov function V(x) for the nominal closed-loop system and classK functions

αi(·), i = 1,2,3,4 such that the following inequalities hold:

α1(|x|)≤V(x)≤ α2(|x|)

∂V(x)
∂x

f (x,h(x),0)≤−α3(|x|)
∣

∣

∣

∣

∂V(x)
∂x

∣

∣

∣

∣

≤ α4(|x|)

h(x) ∈U, ∀ x∈ D⊆ Rn

(5.2)

The stability region of the closed-loop system under the feedback control law that meets Assump-

tion 5.1 is defined as a level set of the Lyapunov function within D where Eq. 5.2 holds, and it is

denoted byΩρ . Techniques for designing explicit stabilizing control laws for different classes of

nonlinear systems can be found in works such as.27,35,53,59

Whenx is maintained within the stability regionΩρ , we have from the continuity ofx, the

local Lipschitz property off , and the continuous differentiability ofV(x) that there exist positive
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constantsM, Lx, Lw, L
′

x andL
′

w such that the following inequalities hold:

| f (x(t),u(t),w(t))| ≤M (5.3)

| f (x,u,w)− f (x∗,u,0)| ≤ Lx |x−x∗|+Lw |w| (5.4)

∣

∣

∣

∣

∂V(x)
∂x

f (x,u,w)−
∂V(x∗)

∂x
f (x∗,u,0)

∣

∣

∣

∣

≤ L′x |x−x∗|+L′w |w| (5.5)

for all x,x∗ ∈Ωρ , ui ∈Ui, i = 1, . . . ,m, andw∈W.

When h(x) is applied to the nonlinear process in a sample-and-hold fashion, the following

proposition holds.

Proposition 5.1 (c.f.43,72) Let Assumption 5.1 hold, V be the Lyapunov function that satisfies

Eq. 5.2, andΩρ be the resulting stability region. Then ifρs< ρ , θ , and∆ satisfy

−α3(α−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆ (5.6)

for εw > 0, then for any x(t0) ∈Ωρ ,

V(x(t))≤V(x(tk)), ∀ t ∈ [tk, tk+1) (5.7)

and

V(x(tk+1))<V(x(tk)) (5.8)

along the closed-loop state trajectory of the sampled-datasystem

ẋ(t) = f (x(t),h(x(tk)),w(t)), ∀ t ∈ [tk, tk+1), k= 0,1, . . . (5.9)

when x(tk) ∈Ωρ/Ωρs. If ρmin < ρ where

ρmin = max{V(x(t +∆)) : V(x(t))≤ ρs} (5.10)
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then the closed-loop state is always bounded inΩρ and is (uniformly) ultimately bounded inΩρmin

as follows:

limsup
t→∞

x(t) ∈Ωρmin . (5.11)

ρmin in the above proposition is defined as the maximum value of theLyapunov function that

will be reached under any sample-and-hold control action (not necessarilyh(x(tk))) that meets the

input constraints in the presence of bounded disturbances by the end of a sampling time when

x(tk) ∈Ωρs.

5.2.4 Lyapunov-based EMPC

The control design that will be investigated in this chapterwill be a specific type of EMPC

termed Lyapunov-based economic model predictive control (LEMPC). LEMPC is a dual-mode

optimization-based control strategy that utilizes the Lyapunov-based controllerh(x) to define two

modes of operation where closed-loop stability is guaranteed in the presence of uncertainty.43 The

mathematical formulation of LEMPC is as follows:

min
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (5.12a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (5.12b)

x̃(tk) = x(tk) (5.12c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (5.12d)

V(x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρe (5.12e)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0)

if x(tk) /∈Ωρe (5.12f)
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where the decision variable of the LEMPC of Eq. 5.12 is the piecewise constant input trajectory

u(t) defined over the prediction horizonN∆ (i.e.,u∈ S(∆)). The optimization problem of Eq. 5.12

optimizes the economic measureLe(x(t),u(t)) (Eq. 5.12a) which defines the cost function, subject

to a nominal process model (Eq. 5.12b). The initial condition of the nominal process model of

Eq. 5.12b comes from a measurement of the process state at thecurrent sampling timetk (Eq.

5.12c). Eq. 5.12d shows that the calculated control actionsu(t) are restricted to the setU over the

prediction horizon.

Under the first operation mode (Eq. 5.12e), the LEMPC optimizes the economic measure

Le(x(t),u(t)) in a time-varying fashion while maintaining the predicted closed-loop state within

the setΩρe which is a subset of the stability regionΩρ . The regionΩρe is defined such that if the

measured process state at a sampling timetk is within Ωρe, then at the next sampling timetk+1,

it is still within Ωρ , even in the presence of bounded disturbances. Under the second operation

mode, the LEMPC utilizes a contractive constraint (Eq. 5.12f) to ensure that the control action for

the first sampling period of the prediction horizon for the closed-loop system forces the state along

a path that causes the Lyapunov function value to decrease between two sampling periods. The

two-mode operating strategy of LEMPC ensures that the stability regionΩρ is a forward invariant

set.43 The LEMPC produces a set ofN input vectorsu∗(t|tk), t ∈ [tk, tk+N), after solving at each

sampling time, but only the input vectoru∗(tk|tk) corresponding to the first sampling period of the

prediction horizon is applied to the process in a sample-and-hold fashion.

Remark 5.1 The explicit stabilizing controller h(x) provides a feasible control action for both

modes of operation of Eq. 5.12 for x(tk) ∈ Ωρ . In other words, if the measured state is within

Ωρe, then applying h(x̃(t j)), ∀ t ∈ [t j , t j+1), j = k, . . . ,k+N−1, throughout each corresponding

sampling period in the prediction horizon guarantees that the predicted state will be maintained

within Ωρe over the prediction horizon (i.e., Eq. 5.12e is met by h(x) implemented in sample-

and-hold throughout the prediction horizon). If the measured state leavesΩρe, then applying the

explicit stabilizing controller h(x(tk)) for the first sampling period of the prediction horizon, with

any other sample-and-hold control action that meets the input constraint of Eq. 5.12d throughout
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the rest of the prediction horizon (h(x̃(t j)), ∀ t ∈ [t j , t j+1), j = k+1, . . . ,k+N−1, is a control law

that satisfies this requirement by Eq. 5.2) is a feasible solution to the LEMPC of Eq. 5.12 since it

meets the contractive constraint of Eq. 5.12f applied at thefirst sampling period of the prediction

horizon.43

5.3 Safeness Index-Based Control and Safety System Design

In this section, we develop the concept of a process SafenessIndex for use in the control and

safety systems. We then discuss techniques that can allow the safety system, as well as the control

system, to incorporate this index by setting thresholds on the value of this index that cause the

control and safety systems to take certain actions. Finally, we develop a controller that utilizes this

index (specifically, the LEMPC scheme of Eq. 5.12 with a hard constraint related to a threshold on

the Safeness Index, termed Safeness Index-based LEMPC) with an implementation strategy that is

proven to maintain closed-loop stability of a nonlinear process.

5.3.1 Development of a Process Safeness Index

To effectively integrate the process control and safety systems, it is desirable to develop a Safeness

Index that is a function of the process (closed-loop) state only and indicates the safeness of a

plant as a whole, given multivariable interactions and interactions between units, which cannot be

evaluated with the typical component-by-component safetyanalyses that are usually performed.

Such a state-based index is consistent with the sentiments of various researchers who have stated

that a process does not become unsafe automatically, but takes a gradual trajectory in that direction

(e.g.,58). The index also benefits from being a function only of the current state; much of the safety

thinking in the process industries is a cause-and-effect-type relationship for which the reasons

that a state became unsafe are important to the fact that it isunsafe. By developing a Safeness

Index that is a function of the current state only, engineersdo not need to think of every possible

failure mechanism of a system and whether the system is on anyof those many paths to understand
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whether a system is unsafe, but need only characterize whereit is on the safeness spectrum based on

its present condition. Another benefit of a state-based index is that it can capture safety information

even for unmeasured states if an appropriate state estimator is developed, which is not a capability

of traditional safety system designs based on process measurements only.

Though the development of a Safeness Index has great promisefor improving process safety,

the form of the Safeness Index will be process-dependent, and thus a methodology for determining

the value of the Safeness Index must be developed. A possiblemethodology would be to define

a functionS(x) (the Safeness Index) that can take one of two values at each state-space location

(e.g., 0 for 100% safe operating states and 1 for less safe states). An important consideration in

the development of a Safeness Index, however, is its intended use in developing constraints in

optimization-based control and triggers for the alarm, emergency shut-down, and relief systems,

and the binary form ofS(x) discussed above would be ineffective for enhancing the safety systems

(e.g., the binary function cannot indicate whether the system is near an unsafe state but has not

yet reached it, which would be required to trigger elements of the safety system based onS(x)

exceeding a threshold). To address these issues, this section develops a systematic methodology

for formulating a (not necessarily binary) Safeness Index for a given process based on two factors:

1) S(x) is a function of the process (closed-loop) state only (the path followed to arrive at the state

is immaterial; this enables a departure from the limiting cause-and-effect mentality traditionally

utilized in chemical process safety system design and accident analysis,57 and furthermore, allows

the safeness of the system given the controller’s effects and limitations to be analyzed); and 2)

S(x) indicates the safeness of a plant as a whole, given multivariable interactions and interactions

between units, which cannot be evaluated with the component-by-component safety analyses that

are usually performed.

The proposed methodology requires analysis, for a given process, of information on past ac-

cidents, the results of industrial safety studies, first-principles models, and past operating data to

determine both the states that should explicitly appear inS(x) and also a suitable functional de-

pendence ofS(x) on these states, as shown in Figure 5.1. The first step in this procedure is to
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determine which states to incorporate inS(x). Initially, an extensive literature review of accidents

and their causes (e.g.,32,50,52,87) can be performed to determine guidelines for states that should

be considered based on which states (e.g., temperature, pressure) took abnormal values when past

accidents occurred. This study can be used to analyze what kinds of accidents might occur at the

plant under consideration, which may have also been investigated for the plant through standard

industrial safety analysis techniques (e.g., what-if analyses and HAZOP studies). Any states that

are tied to the abnormal situations expected both from the literature review and the safety analy-

ses should be selected for inclusion inS(x). A first-principles model may also reveal that other

states should be considered that were perhaps neglected in the qualitative analyses in the early

steps due to complexities in the system that are revealed through analyzing the dynamics. For

example, it should be checked thatS(x): 1) Incorporates states from the model that are known to

lead to unsafe/explosive conditions based on the chemistryof the reactions involved (e.g., reac-

tions associated with ignition at certain temperatures30) or the reactor material limitations (e.g.,

high temperature or high pressure can lead to reactor rupture); 2) Incorporates states that have a

large influence on other states in the reactor that affect process safety; 3) Incorporates all states

that influence the safeness of the process, even if these states are unmeasurable or only affect the

safeness of the process when they take values far from their values under normal process operating

conditions (states that do not indicate the safeness of the process under any condition would not

need to be included, however). Analyses like these may be aided through closed-loop simulations

of the process from various initial conditions in state-space. Process operating data may also aid in

determining which states to incorporate inS(x). For example, process data corresponding to time

periods of normal, near-miss (e.g., situations in which thesafety system is triggered78), and acci-

dent operating conditions may be analyzed to determine which states reach values at the near-miss

and accident conditions that are significantly different from their values under normal operation,

and then include such states inS(x).

After the states to be included inS(x) are identified, it is necessary to determine the functional

form of S(x). This functional form should be developed to facilitate thepurpose of definingS(x),
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which is to set thresholds on its value that can be used to distinguish between safe and unsafe

operating regions in state-space to cause the control and safety systems to take specific actions

based on the threshold values. This indicates that two primary principles should guide the choice

of the functional form ofS(x): 1) It should be designed so thatS(x) will have a significantly

larger value when the closed-loop state reaches an unsafe operating region than when it is in a

safe operating region; 2) It should incorporate controllerlimitations and therefore increase rapidly

as the boundary of the stability region in which closed-loopstability is guaranteed is approached

to reflect that beyond this boundary, the process cannot be guaranteed to be controllable, which

is considered an unsafe scenario. Principle 1 may require careful design ofS(x) due to potential

differences in magnitude of the various states of the process. For example, consider a case in

which temperature and concentration of corrosive reactantplay a role in the safeness of a chemical

process. In many cases, the order of magnitude of the temperature will be greater than that of

the concentration, with the result that without careful design of S(x), the reactant concentration

may take unsafe values for values ofS(x) that are not significantly greater than its value under

normal operating conditions or even may be the same as the value ofS(x) under normal operating

conditions if the temperature drops when the concentrationincreases. Such a design ofS(x) would

not facilitate meaningful thresholds being set on its valuefor use in the control and safety systems;

this indicates that scaling of process states or givingS(x) a nonlinear dependence on certain process

states may be required when developing the functional form of the Safeness Index. Other cases in

which scaling or nonlinearities inS(x) may be beneficial include cases when a process state results

in an unsafe condition only when it takes an extreme value, orwhen the process dynamics are such

that there are values of the state vector from which, according to the process dynamics, the state

quickly can move from those values to states that pose safetyconcerns (e.g., if there is a certain

pressureP1 within a reactor from which, under certain conditions, the reactor pressure can quickly

elevate to a level that would rupture the reactor,S(x) should become large as this pressureP1 is

reached).

Stability of the closed-loop state can dictate the functional form of the Safeness Index, which
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allows safety systems that are triggered by a threshold onS(x) to incorporate considerations from

the control system in identifying unsafe operating regions. An example of a characterizable form

of S(x) that increases as the boundary of the stability region is approached (and, for convenience,

is scaled byρ so that it lies between 0 and 1 and takes a value of 1 on the boundary of the stability

region) is a quadratic form (e.g.,S(x) = xTx/ρ). A Safeness Index with a functional form that

gives states further from an open-loop unstable operating steady-state a higher value ofS(x) may

be beneficial if the open-loop trajectories initiated near this steady-state evolve toward an open-

loop stable steady-state with a temperature above the allowable operating limits (even when the

open-loop unstable steady-state is stabilized by a controller andS(x) is evaluated for the closed-

loop state, actuator outputs are typically limited such that beyond a certain region in state-space,

the available control energy may no longer prevent the statefrom reaching unsafe conditions).

5.3.2 Choosing Thresholds forS(x) for Use within the Control and Safety

Systems

After the functional form ofS(x) is determined, it is necessary to set thresholds onS(x) that can be

used to modify the control design and trigger the safety system. Figure 5.1 illustrates the approach

for developing the thresholds onS(x) to be used in the control and safety systems. The control,

alarm, emergency shut-down, and relief systems should utilize different thresholds onS(x) for

consistency with their independence and also for consistency with standard industrial practice in

which the alarms are only activated when the control system does not maintain the process state

within a region where all variables instrumented with alarms are within their recommended ranges,

and the emergency shut-down system is only activated after another set of thresholds on the instru-

mented variables is exceeded.62 However, because the control system is the first line of defense

against unsafe situations (i.e., the safety systems would ideally not be activated frequently for

a well-controlled process), the thresholdSTH on S(x) utilized by an optimization-based control

design should be lower than the thresholds utilized in the safety systems. If the controller then

computes control actions subject to a constraint that it should maintain the closed-loop state pre-
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dictions in a region where the Safeness Index value is less thanSTH, false alarms (i.e., activations

of the safety system in regions of state-space where the controller guarantees closed-loop stability

and guarantees that it can drive the state back into a region whereS(x) < STH) may be avoided.

Motivated by this, methods for determiningSTH will be the focus of this section.

To set the value ofSTH, past accidents, the results of industrial safety studies,and first-

principles models can be analyzed to gain insight into whichvalues of the states may become

large during unsafe conditions and what their expected magnitudes may be to aid in settingSTH.

In addition, process data can be valuable for settingSTH. Specifically, past operating data can be

labeled as corresponding to safe or unsafe process operating conditions by: 1) labeling the data as

“safe” if no alarms were triggered during the time period corresponding to that data set; 2) labeling

the data as “safe” if very few (e.g., one or two) alarms sounded during the time period correspond-

ing to the data set, but the closed-loop state subsequently re-entered an operating region where

no alarms were triggered without intervention from the operator, emergency shut-down, or relief

systems; and 3) labeling data as “unsafe” if a number of alarms sounded during the time period

corresponding to that data set. Subsequently, the value ofS(x) can be evaluated for each of the la-

beled data sets. The thresholdSTH can then be chosen as a value that is below the minimum value

of S(x) observed in the “unsafe” data sets that is significantly different from the values ofS(x)

observed during “safe” operation to allow “safe” and “unsafe” operating conditions to be appropri-

ately distinguished in the control design.STH should be somewhat conservatively chosen to allow

for other thresholds to be used in triggering the safety system (i.e., the process should not exhibit

any negative consequences immediately afterS(x)> STH, because that gives the safety system no

opportunity to prevent accidents). However, the conservatism in the control design should not be

extreme to the point that operating in the region whereS(x) < STH impacts process economics

unnecessarily.

Another important consideration in settingSTH for use in an optimization-based control design

that utilized stability constraints based onΩρ (e.g., LEMPC) is to ensure that there exist states in

the stability region for whichS(x)< STH (if not, there would be no safe operating condition in the
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Figure 5.1: Systematic methodology to constructS(x) and its thresholds.

region in which the controller ensures closed-loop stability). Therefore, off-line calculations for

the value of the Safeness IndexS(x) within the stability regionΩρ could be performed to validate

that with the chosen form ofS(x) and the chosen value ofSTH, this condition is satisfied. Also,STH

should be set such that when the process is operated in the region whereS(x) < STH, none of the

thresholds on individual measured variables traditionally utilized to trigger the alarm, emergency

shut-down, or relief systems is surpassed to prevent frequent and unnecessary activation of the

safety systems at a plant. The concept of a set of states in state-space being partitioned into “safe”

and “unsafe” regions utilizing a threshold on the Safeness Index is illustrated in Figure 5.2, where

the boundary between the regions occurs at a threshold valueS(x) = STH. An illustration of how

to defineS(x) andSTH will be performed in the context of a chemical process example in Section

5.4.

S(x) > STH

S(x) < STH

Ωρe

Ωρ

Figure 5.2: Example of level set partitioned into “safe” (S(x) < STH), and “unsafe” (S(x) > STH)
regions.
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Remark 5.2 The triggering mechanism of the alarm and emergency shut-down systems, and el-

ements of the relief system that can be automated, can be augmented to include not only the tra-

ditional triggers based on individual measured variables exceeding or falling below their rec-

ommended ranges, but also triggers based on the value of the Safeness Index exceeding threshold

values. This can help prevent missed alarms because it allows the safety system to account for mul-

tivariable interactions and unmeasured states that may be important in assessing process safety

but have traditionally been unavailable to these systems. The thresholds on S(x) utilized by the

safety system can come from analyzing industrial safety studies, past accidents, first-principles

models, and process operating data as in the evaluation of STH, except that the thresholds should

be tiered so that the thresholds utilized in the alarm, emergency shut-down, and relief systems re-

flect increasing levels of concern over the process operating conditions. While the control system

designs will only use STH to bound S(x), the various levels of the safety system should be acti-

vated by tiered thresholds for consistency with industrialpractice. In addition, the threshold value

set for the control system should be chosen such that the value of the Safeness Index S(x) of the

process state during the short excursions from the safety region (i.e., S(x) ≤ STH) does not reach

the threshold value of the alarm system. In other words, the threshold value STH utilized by the

control system should be chosen such that “short excursions” of the process state do not violate

the threshold value of the safety system to avoid triggeringsafety alarms.

Remark 5.3 S(x) can be defined to take any values within the set of real numbers, but because we

consider that the states and inputs are bounded, S(x) will only practically take values within the

control system within a subset of the real numbers that correspond to points in state-space where

closed-loop stability is guaranteed (i.e.,Ωρ).

5.3.3 Safeness Index-Based LEMPC Formulation

In the remainder of this chapter, we analyze an optimization-based control design (specifically, an

LEMPC) that incorporates a hard constraint requiring that the controller compute control actions

that maintain the predicted process state within the regionwhereS(x)< STH. This control design
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may improve process economic performance and be less conservative than the safety-based control

design developed in Chapter 2, where safety-based constraints were included within LEMPC that

were triggered when a measurement of the closed-loop state was outside a safe Lyapunov level

set of operation termed the safety regionΩρsp ⊂ Ωρ . The level set-based method of triggering

safety-based constraints is conceptually the same as developing a binary Safeness Index function

that evaluates to either its value corresponding to safe operation within Ωρsp (indicating that the

process is within a 100% safe operating region and that the safety-based constraints do not need

to be activated) or its value corresponding to unsafe operation outside ofΩρsp (indicating that the

process is not operating in a safe region and that the safety-based constraints should be activated).

Whenever the process state is within a safe region of operation and the safety-based constraints are

not applied, the process economics are optimized while the process state is maintained within this

safe region of operation. Thus, process safety is ensured while the process profit is maximized.

Despite the guaranteed closed-loop stability and recursive feasibility properties of this method,6

as well as its economic optimization capabilities, it may beunnecessarily restrictive for many

processes. For example, regions within whichS(x) is below a desired threshold may not be level

sets of a Lyapunov function, and trying to find the largest Lyapunov level set within a region where

S(x) is less than the threshold may cause the level set to be quite small, which can greatly reduce

the economic optimality of process operation within this small region compared to allowing the

process to operate within the entire region whereS(x) is less than a desired threshold. Furthermore,

the threshold value onS(x) may not be a hard threshold (i.e., it may reflect that the process should

not in general operate above the threshold, but that short excursions into the region whereS(x) is

greater than a desired threshold are acceptable; this may bethe case, for example, for a reforming

tube of a steam methane reformer, for which minor excursionsof temperature above the design

temperature may reduce the tube lifetime, e.g., increasingthe temperature by 20K can half the

lifetime,55 but will not result in immediate negative consequences). Therefore, allowingS(x) above

a threshold value for finite periods of time may be perfectly acceptable from a process safety

perspective, and may also be economically beneficial by allowing the closed-loop state to move
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throughout a larger region of state-space during process operation.

To allow for this less restrictive process operating strategy (for processes for which leaving

the region whereS(x) is less than a threshold value for finite periods of time is acceptable) while

still utilizing LEMPC to allow for economic optimality of process operation, the threshold on the

Safeness Index can be used as a hard constraint within LEMPC to form a Safeness Index-based

LEMPC design. Specifically, we propose the following formulation of the Safeness Index-based

LEMPC:

max
u(t)∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (5.13a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (5.13b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (5.13c)

x̃(tk) = x(tk) (5.13d)

V(x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρe (5.13e)

S(x̃(t))≤ STH, ∀ t ∈ [tk, tk+N)

if S(x(tk))≤ STH (5.13f)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0),

if x(tk) ∈Ωρ/Ωρe or tk > ts or S(x(tk))> STH (5.13g)

where the notation follows that in Eq. 5.12. The timets is a pre-determined time after which

it is desired to apply the constraint of Eq. 5.13g at each sampling time. The constraint of Eq.

5.13e defines the first operation mode of the LEMPC of Eq. 5.12 and allows the cost function of

Eq. 5.13a to be maximized while keeping the predicted closed-loop state withinΩρe. When the

contractive constraint of Eq. 5.13g is not concurrently applied (as it would be ifx(tk) ∈ Ωρe but

eithertk > ts or S(x(tk))> STH), the constraints of Eqs. 5.13e-5.13f allow the controllerto enforce
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a potentially dynamic operating policy to maximize the process economics while maintaining the

predicted closed-loop state within the region whereS(x̃(t)) ≤ STH (Eq. 5.13f), defined as the

safety zone (i.e., the region where the Safeness Index is less than the threshold value forS(x)).

The hard constraint on the Safeness Index (Eq. 5.13f) may also be enforced concurrently with

the contractive constraint if the measured state is within the safety zone but eitherx(tk) ∈Ωρ/Ωρe

or tk > ts. The role of the contractive constraint is to maintain boundedness of the closed-loop

state within the stability regionΩρ , and also to drive the closed-loop state back into the safety

zone in finite time when it leaves this region when the LEMPC isfeasible at every sampling time

(an implementation strategy utilizing the LEMPC of Eq. 5.13in combination with a Lyapunov-

based controller implemented in sample-and-hold is proposed below that is guaranteed to provide

closed-loop stability of a nonlinear process withinΩρ and to drive the closed-loop state back into

the safety zone whenever it exits this region even if the LEMPC is not feasible at every sampling

time). Unlike the stability regionΩρ , the safety zone is not necessary a forward invariant set

because as stated above, the thresholdSTH set on the Safeness Index may define a region that is

irregularly shaped; for instance, Figure 5.2 shows one possible safety zone that is not necessarily

a forward invariant set and is irregularly shaped. An important point regarding this formulation is

that the origin of the nominal closed-loop system of Eq. 5.1 is always assumed to be inside the

safety zone (i.e.,S(x)≤ STH whenx= 0).

The fact that the safety zone is not necessarily a forward invariant set means that feasibility

of the LEMPC of Eq. 5.13 cannot be guaranteed whenever the constraint of Eq. 5.13f is activated

(i.e., wheneverS(x(tk))≤ STH). This means that though the explicit stabilizing controllerh(x̃(t j)),

∀ t ∈ [t j , t j+1), j = k, . . . ,k+N− 1, is guaranteed to meet the constraints of Eqs. 5.13b-5.13e

and the constraint of Eq. 5.13g since these constraints formthe LEMPC formulation of Eq. 5.12

(Remark 5.1) and will thus be a feasible control action whenever S(x(tk)) > STH, this control

law is no longer guaranteed to be feasible whenS(x(tk)) ≤ STH. In other words, it is possible

that the only feasible control action that satisfies Eqs. 5.13b-5.13d and Eqs. 5.13e and/or 5.13g

(depending on whether the conditions that activate Eqs. 5.13e and 5.13g are active) ish(x(tk)) in
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the first sampling period with eitherh(x̃(t j)), ∀ t ∈ [t j , t j+1), j = k+1, . . . ,k+N−1 (if Eq. 5.13e

is active) or any other control actions that meet Eq. 5.13c ifEq. 5.13e is not active but Eq. 5.13g

is (Remark 5.1). However, controlling a system underh(x(tk)), ∀ t ∈ [tk, tk+1) (andh(x̃(t j)), ∀ t ∈

[tk, tk+1), j = k+1, . . . ,k+N−1) only guarantees that the Lyapunov function of the closed-loop

state will decrease between two sampling periods, though itmay cause the Lyapunov function to

decrease along a path that causes the closed-loop state to leave the safety zone while it decreases

the Lyapunov function value. Ifh(x(tk)), ∀ t ∈ [tk, tk+1) (andh(x̃(t j)), ∀ t ∈ [t j , t j+1), j = k+

1, . . . ,k+N−1) is the only feasible solution to the constraints of Eqs. 5.13b-5.13d and Eqs. 5.13e

and/or 5.13g, but it drives the closed-loop state out of the safety zone, the optimization problem

of Eq. 5.13 becomes infeasible. To deal with this infeasibility issue, we introduce the following

implementation strategy for the Safeness Index-based LEMPC that utilizes the solution of the

Safeness Index-based LEMPC whenever it is feasible and applies the Lyapunov-based controller

in sample-and-hold instead when the LEMPC is infeasible (closed-loop stability of a nonlinear

process under this implementation strategy is proven in thenext section):

1. At tk, a measurement of the current statex(tk) is received from the sensors; go to Step 2.

2. Solve the Safeness Index-based LEMPC problem of Eq. 5.13 and then go to Step 3.

3. If the Safeness Index-based LEMPC problem of Eq. 5.13 is feasible, then go to Step 3a.

Else, go to Step 3b.

(a) Apply u∗(tk|tk) from the Safeness Index-based LEMPC solution to the nonlinear pro-

cess in a sample-and-hold fashion, and then go to Step 4.

(b) Apply the explicit stabilizing controllerh(x) in a sample-and-hold fashion (i.e.,u(t) =

h(x(tk));∀ t ∈ [tk, tk+1)). Then go to Step 4.

4. Go to Step 1 (k← k+1).

Remark 5.4 It was noted that the Safeness Index-based LEMPC is appropriate for processes for

which finite-time excursions of the closed-loop state outside of the safety zone are acceptable from
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a process safety standpoint (as will be shown in the next section, these excursions of S(x) above STH

do not jeopardize the closed-loop stability of the process because the closed-loop state is always

maintained withinΩρ under this implementation strategy) and for which there aresubstantial

economic benefits for allowing such excursions. However, for nonlinear processes that cannot

tolerate leaving the safety zone, the Safeness Index-basedLEMPC can be formulated to handle

such processes. In these cases, S(x) can be defined as the Lyapunov function scaled by the value

of the Lyapunov function at the boundary of the stability region (i.e., S(x) = xTPx/ρ), and STH

for use within Eq. 5.13f can be chosen sufficiently lower thanthe value of the Lyapunov function

corresponding to the actual desired threshold to guaranteeclosed-loop stability and feasibility

within the safety zone even in the presence of disturbances/plant-model mismatch. In this case, the

safety zone will be a forward invariant set and closed-loop stability of a nonlinear process initiated

within Ωρ , guaranteed entry to the safety zone and maintenance of the state within the safety zone

after it enters this region, and recursive feasibility of the resulting Safeness Index-based LEMPC

would follow from6,43 if the region where V(x) ≤ STH includes a neighborhood of the origin into

which the Lyapunov-based controller implemented in sample-and-hold would drive the closed-loop

state. In this case, h(x̃(t j)), ∀ t ∈ [t j , t j+1), j = k, . . . ,k+N−1, would be a feasible solution to the

Safeness Index-based LEMPC when the process is initializedwithin the safety zone.

Remark 5.5 The fact that S(x)is developed based on the closed-loop state is vital to its effective

use within the safety system. Another type of constraint that may be examined as a Safeness Index-

based constraint in the context of MPC is a constraint that allows the closed-loop state to increase

above a threshold value of S(x) but only for a limited time. This may be the case, for example,

for a reforming tube of a steam methane reformer, for which increasing the temperature slightly

above the design temperature may decrease tube lifetime butwould not be expected to immediately

rupture the tube if it had not been in service for long. For this case, the constraint of Eq. 5.13fcan

be replaced with tsum≤ tA to enforce that the total time tsum in an operating period during which

S(x)> STH be no more than a time length tA.

Remark 5.6 In both the Safeness Index-based LEMPC formulation of Eq. 5.13 and the modifica-
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tion that Remark 5.5 introduces to the LEMPC formulation of Eq. 5.13, the value of the Safeness

Index for the predicted state trajectory (S(x̃)) is constrained to be no greater than the threshold

STH over the prediction horizon N∆ or to not exceed STH for more than tA. However, in some

chemical processes the safety of the process is a matter of cumulative behavior of the process state

over time; for example, if the temperature of a reactor is above a certain value over some time, that

may diminish the material strength of the reactor. In such scenarios, the integration (summation)

of the value of S(x) over a given period of time will indicate the safeness of the process. To account

for this safety property, the Safeness Index constraint of Eq. 5.13f can be replaced with

∫ t

0
S(x(t ′))dt′ ≤ Sb (5.14)

where Sb is a parameter dependent on the material strength of the process equipment.

Remark 5.7 In this chapter, we have focused on the case that a single upper bound STH is defined

on S(x) for use in the control system, though the methodology for thedevelopment of thresholds

on S(x) and the constraints on S(x) in the control design can be extended to the case that there

are both an upper bound and a lower bound on S(x) that indicate the safety of the process (and

similarly in the safety system).

Remark 5.8 The discussion in this section shows that another consideration for setting STH is the

control system design that will incorporate this threshold. Because S(x) may exceed STH under the

Safeness Index-based LEMPC design (though the state will always be driven back into the safety

zone), the threshold STH may be more conservatively chosen when such a control designis used.

If, as in Remark 5.4, S(x) is a Lyapunov function, the region in which it is desired to maintain the

closed-loop state for safety reasons may be more directly tied to the values of the process states

as the state approaches unsafe conditions because the controller can guarantee that the state will

not leave the region where S(x) is below a desired value. Also, to guarantee closed-loop stability

under the implementation strategy of the control design presented in this section (which will be

shown in the next section), the safety zone has to be defined toincludeΩρmin, which affects both

151



the form of S(x) and its thresholds.

5.3.4 Feasibility and Stability Analysis

In this subsection, we present sufficient conditions to showthat the state of the closed-loop system

of Eq. 5.1 under the Safeness Index-based LEMPC implementation strategy is guaranteed to enter

the safety zone whereS(x) ≤ STH in finite time and to remain within the stability regionΩρ at

all times. Moreover, we prove that the closed-loop state is guaranteed to be ultimately bounded

in a small region containing the origin. To proceed, we first re-state two propositions from43 to

define functions and parameters needed for the proof of closed-loop stability of a nonlinear process

the Safeness Index-based LEMPC implementation strategy, and then present Theorem 1 that gives

sufficient conditions for the proof of closed-loop stability of a nonlinear process under the Safeness

Index-based LEMPC implementation strategy.

Proposition 5.2 (c.f.43,67) Consider the systems

ẋa(t) = f (xa(t),u(t),w(t))

ẋb(t) = f (xb(t),u(t),0)
(5.15)

with initial states xa(t0) = xb(t0) ∈Ωρ . There exists aK function fW(·) such that

|xa(t)−xb(t)| ≤ fW(t− t0), (5.16)

for all xa(t),xb(t) ∈Ωρ and all w(t) ∈W with

fW(τ) =
Lwθ
Lx

(eLxτ −1). (5.17)

Proposition 5.3 (c.f.43,67) Consider the Lyapunov function V(·) of the system of Eq. 5.1. There
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exists a quadratic function fV(·) such that

V(x)≤V(x̂)+ fV(|x− x̂|) (5.18)

for all x, x̂∈Ωρ with

fV(s) = α4(α−1
1 (ρ))s+Mvs

2 (5.19)

where Mv is a positive constant.

Theorem 5.1 Consider the system of Eq. 5.1 in closed-loop under the implementation strategy

(Steps 1-4) of the Safeness Index-based LEMPC of Eq. 5.13 based on a controller h(x) that satisfies

the conditions of Eq. 5.2. Letεw > 0, ∆ > 0, ρ > ρe> ρs> 0 satisfy

ρe≤ ρ− fV( fW(∆)) (5.20)

and

−α3(α−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆. (5.21)

If x(t0) ∈Ωρ , ρmin≤ ρ and N≥ 1 whereρmin is defined as in Eq. 5.10 and where the compact set

Ωρmin satisfies

Ωρmin ⊆ {x∈Ωρ : S(x)≤ STH}, (5.22)

then the closed-loop state x(t) of Eq. 5.1 is guaranteed to enter the safety zone in finite timewhen

x(t0) ∈Ωρ , to be bounded withinΩρ at all times, and to be ultimately bounded inΩρmin.

Proof 5.1 The proof consists of two parts. The first part is the proof that an input trajectory with

characterizable properties exists for a nonlinear processoperated under Steps 1-4 of the Safeness

Index-based LEMPC implementation strategy when x(t0) ∈Ωρ . The second part is the proof of the

three results of Theorem 5.1 given these characterizable properties.
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Part 1: To prove the results of Theorem 5.1, it is necessary toprove that the inputs applied to

the process from the Safeness Index-based LEMPC implementation strategy are characterizable so

that closed-loop stability of a nonlinear process under such input trajectories can be investigated.

According to the implementation strategy, in a given sampling period, one of two cases will occur:

1) the Safeness Index-based LEMPC of Eq. 5.13 is a feasible optimization problem and u(tk|tk)

is applied to the process for t∈ [tk, tk+1); 2) the Safeness Index-based LEMPC of Eq. 5.13 is not

a feasible optimization problem and h(x(tk)) is applied for t∈ [tk, tk+1). In the first case when

the Safeness Index-based LEMPC is feasible, this means thata feasible solution was determined

that satisfied the constraints of Eqs. 5.13b-5.13g for the nominal closed-loop system for the given

sampling period. In the second case when the LEMPC is not feasible and h(x) is applied in

a sample-and-hold fashion, the conditions of Proposition 5.1 hold for the given sampling period.

Thus, for any given sampling period, the conditions met by the control actions that are implemented

can be characterized, and therefore the conditions met by the input trajectory applied throughout

time can be characterized and thus used in analyzing closed-loop stability.

Part 2: We now prove the results of Theorem 5.1. Specifically,we prove that if the closed-loop

state of the nonlinear process under the Safeness Index-based LEMPC implementation strategy

is initialized within the stability regionΩρ , even outside the safety zone (i.e., S(x(t0)) > STH),

then within finite time the closed-loop state will enter the safety zone. Furthermore, we prove that

for any x(t0) ∈ Ωρ , the closed-loop state remains within the stability regionΩρ at all times. We

also show that if tk > ts, then the closed-loop state will be ultimately bounded in a compact set

containing the origin.

To prove that the closed-loop state will always enter the safety zone in finite time under the

Safeness Index-based LEMPC implementation strategy when it is either initiated outside of this

region or leaves this region while operated in closed-loop when the process is initiated from any

initial condition x(t0)∈Ωρ , we first show that the closed-loop state under either a feasible solution

to the Safeness Index-based LEMPC of Eq. 5.13 or under h(x) implemented in sample-and-hold

will drive the closed-loop state toward the setΩρmin throughout a given sampling period, where
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Ωρmin is within the safety zone from Eq. 5.22. When S(x(tk)) > STH and the Safeness Index-based

LEMPC is feasible at tk, the contractive constraint of Eq. 5.13g is active. In,43 it is proven

that when the conditions of Eqs. 5.20-5.21 are satisfied, V(x(t)) ≤ V(x(tk)), ∀ t ∈ [tk, tk+1), and

V(x(tk+1))<V(x(tk)) along the trajectories of the closed-loop system under an LEMPC containing

the contractive constraint, even in the presence of boundeddisturbances, when x(tk) /∈Ωρs⊆Ωρmin.

If the Safeness Index-based LEMPC is infeasible at tk, h(x(tk)) is applied, which causes Eqs. 5.7-

5.8 to hold when x(tk) /∈Ωρs⊆Ωρmin. This means that in a given sampling period, whether u∗(tk|tk)

is applied or h(x(tk)) according to the implementation strategy, the Lyapunov function value of the

closed-loop state is guaranteed to decrease throughout thesampling period. At each sampling

time until S(x(tk))≤ STH, the contractive constraint of Eq. 5.13g will remain activeand therefore

the Lyapunov function value will continue to decrease. Therefore, the closed-loop state will either

enter the safety zone in finite time (before it entersΩρmin), or Eq. 5.13g will continue to be applied

within the LEMPC and the Safeness Index-based LEMPC implementation strategy will continue

to cause V(x(t)) ≤ V(x(tk)), ∀ t ∈ [tk, tk+1), until the closed-loop state entersΩρmin. Because

Eq. 5.22 holds, and the closed-loop state entersΩρmin in finite time from any initial condition in

Ωρ , the closed-loop state is thus guaranteed to enter the safety zone, regardless of its shape, within

finite time, from any x(tk) ∈Ωρ where S(x(tk))> STH, even in the presence of disturbances.

To prove thatΩρ is a forward invariant set under the Safeness Index-based LEMPC imple-

mentation strategy (i.e., when x(t0) ∈ Ωρ , x(t) ∈ Ωρ ∀ t ∈ [t0,∞)), we first demonstrate that in a

given sampling period, if x(tk)∈Ωρ , then x(t)∈Ωρ∀t ∈ [tk, tk+1) both in the case that the Safeness

Index-based LEMPC of Eq. 5.13 has a feasible solution throughout the prediction horizon N∆, and

in the case that it does not and h(x(tk)) is applied for t∈ [tk, tk+1). When the Safeness Index-based

LEMPC is feasible, the stability results of43 hold because they are based only on feasibility of the

Lyapunov-based stability constraints of Eqs. 5.13e and 5.13g and do not depend on whether other

constraints such as Eq. 5.13f are enforced. Specifically, ifx(tk) ∈ Ωρe such that the constraint of

Eq. 5.13e is active, theñx(tk+1)∈Ωρe and x(t)∈Ωρ∀t ∈ [tk, tk+1) from the constraint of Eq. 5.13e,

Propositions 5.2-5.3, and Eq. 5.20. If x(tk)∈Ωρ/Ωρe, then Eq. 5.13g is active, which decreases the
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Lyapunov function value between two sampling periods and thus ensures that the closed-loop state

enters a lower level set (and thus cannot exitΩρ ). When the Safeness Index-based LEMPC has no

feasible solution throughout the prediction horizon, thenh(x(tk)) will be applied between two sam-

pling times, which will decrease the Lyapunov function between the two sampling times and thus

ensure that the closed-loop state does not leaveΩρ in that sampling period. If x(t0) ∈ Ωρ , then

recursive application of the property that x(tk) ∈Ωρ ensures that x(t) ∈Ωρ∀t ∈ [tk, tk+1), starting

with k= 0, shows that the Safeness Index-based LEMPC implementationstrategy maintains the

closed-loop state withinΩρ at all times.

To prove that if tk > ts, the closed-loop state under the Safeness Index-based LEMPC implemen-

tation strategy is ultimately bounded inΩρmin, we note that under this condition, the contractive

constraint of Eq. 5.13g will be active within the LEMPC, and either the LEMPC will be feasible

or h(x(tk)) will be applied to the process throughout the sampling period. As noted above, control

actions generated from either the LEMPC or from h(x(tk)) under this condition will continue to

decrease the Lyapunov function value until the closed-loopstate enters the compact setΩρmin in

a finite time. From the definition ofΩρmin, once the closed-loop state entersΩρmin, if u∗(tk|tk) that

meets the contractive constraint or h(x(tk)) is then applied to the process, decreasing the Lyapunov

function value until the closed-loop state entersΩρs, the closed-loop state cannot leaveΩρmin. The

proof of this is analogous to the proof of ultimate boundedness in.43

Remark 5.9 It is noted that if Eq. 5.22 holds, then if tk > ts and the closed-loop state has en-

tered Ωρmin and is ultimately bounded there, the closed-loop state is within the safety zone for

all subsequent times. This shows that if it is found that the closed-loop state under the Safeness

Index-based LEMPC implementation strategy is spending an undesirable length of time above the

safety threshold, the current sampling time tk can be set to ts to cause the Safeness Index-based

LEMPC implementation strategy to drive the closed-loop state into a region where the threshold

on the Safeness Index is always met and to maintain closed-loop operation in this region until the

value of STH can be redesigned so that the Safeness Index-based LEMPC causes the closed-loop

state to remain below a desired threshold for more of the operating time.
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5.4 Application to a Chemical Process Example

In this section, a chemical process example is provided to illustrate the ability of the Safeness

Index-based LEMPC to maintain the closed-loop state withina region whereS(x(tk))≤ STH when

the LEMPC of Eq. 5.12 would not compute an input trajectory that achieves this. The chemical

process example is a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where an

irreversible second-order exothermic reaction takes place. The reaction transforms a reactantA to

a productB (A→ B). The feedstock of the CSTR consists of pureA and the inlet concentration

of A is CA0. The inlet temperature and feed volumetric flow rate of the reactor areT0 and F,

respectively. The CSTR is equipped with a heating jacket that heats/cools the reactor at a heat

rateQ. The process has two states,CA for the concentration of the reactant speciesA andT for

the reactor temperature, and these states are taken to evolve according to the mass and energy

balances derived from first-principles modeling of the CSTRwith standard chemical engineering

assumptions as follows:

dCA

dt
=

F
V
(CA0−CA)−k0e

−E
RgT C2

A (5.23a)

dT
dt

=
F
V
(T0−T)+

−∆H
ρLCp

k0e
−E
RgT C2

A+
Q

ρLCpV
(5.23b)

The notation∆H, k0, E, andRg represent the enthalpy of reaction, pre-exponential constant,

activation energy, and ideal gas constant, respectively. The reactor volumeV, heat capacityCp,

and fluid densityρL within the reactor are assumed constant (process parametervalues are listed

in Table 5.1). The dynamic model of Eq. 5.23 is integrated numerically by using the explicit Euler

method with an integration time step ofhc = 10−5 hr.

The manipulated inputs are the concentrationCA0 of the reactant speciesA in the feed and

the heat input/removal rateQ. The process of Eq. 5.23 has multiple steady-states with associated

steady-state input values[CA0s Qs] = [4 kmol
m3 0 kJ

hr ]. The CSTR is operated around an open-loop

asymptotically stable steady-state that occurs at[CAs Ts] = [1.2 kmol
m3 438K]. The dynamic model
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Figure 5.3: Manipulated input profiles for the closed-loop CSTR under the LEMPC design of
Eq. 5.12 and under the Safeness Index-based LEMPC design of Eq. 5.13 for the initial condition
xT

int = [0 kmol
m3 0 K].

of Eq. 5.23 is in the following class of nonlinear systems:

ẋ(t) = f̃ (x(t))+g1(x(t))u1(t)+g2(x(t))u2(t) (5.24)

wherex(t) andu(t) denote the state and the manipulated inputs of the CSTR in deviation variable

form (i.e.,xT = [CA−CAsT−Ts] is the state vector anduT = [CA0−CA0s Q−Qs] is the manipulated

input vector),f̃ T = [ f̃1 f̃2] is a vector containing the terms in the CSTR model that do not includeu1

or u2, andgT
i = [gi1 gi2] (i = 1,2) is a vector containing the terms in the CSTR model that multiply

u1 (for i = 1) oru2 (for i = 2). The magnitudes of the manipulated inputs are bounded as follows:

|u1| ≤ 3.5 kmol
m3 and |u2| ≤ 5× 105 kJ

hr . The control objective is to maximize the time-averaged

production rate ofB using the following stage cost:

Le(x,u) =
k0e
− E

RgT C2
A

N∆
(5.25)
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Figure 5.4: The state profiles for the closed-loop CSTR underthe LEMPC design of Eq. 5.12
and under the Safeness Index-based LEMPC design of Eq. 5.13 for the initial conditionxT

int =
[0 kmol

m3 0 K].

where the prediction horizonN = 10 and the sampling period∆ = 0.01hr. In addition, a material

constraint that represents the limitation on the amount of reactant material available over a given

operating periodtp = 1.0 hr is described by the following constraint:

1
tp

∫ tp

0
u1(τ) dτ = 0.0 kmol/m3. (5.26)

The Safeness Index functionS(x) for the CSTR is designed as follows so that points in state-space

with higher temperatures have larger values ofS(x):

S(x) =
ax1+bx2

max{ax1+bx2 : V(x)≤ ρ}
(5.27)

wherea and b are weighting constants. The value of the Safeness IndexS(x) of Eq. 5.27

varies between -1 and 1, where -1 indicates the safest point at which to operate in state-space
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Figure 5.5: The Safeness Index functionS(x) for the closed-loop CSTR under the LEMPC design
of Eq. 5.12 and under the Safeness Index-based LEMPC design of Eq. 5.13 for the initial condition
xT

int = [0 kmol
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and 1 indicates the most unsafe point at which to operate in state-space within the stability region

Ωρ . In the simulation below, the weighting constantsa andb are set to 1 so that the deviation

variable form of the temperature (x2), which can reach several orders of magnitude above the

deviation form ofCA (x1), contributes heavily to the value of the Safeness IndexS(x) at a given

state. The maximum value of max{ax1 + bx2 : V(x) ≤ ρ} within the stability region is 74.46.

The Safeness Index threshold valueSTH is set to 0.6 so that the reactor temperature in deviation

form from the steady-state value cannot exceed 47K (i.e., x2 ≤ 47 K). To guarantee closed-loop

stability of the process considered under the controller ofEq. 5.13, a Lyapunov-based controller

of the formh(x) = [h1(x) h2(x)]
T is constructed to estimate the stability region for the Safeness

Index-based LEMPC. The inlet concentration control lawh1(x) is set to its steady-state value

(h1(x) = 0.0 kmol/m3) so that the material constraint of Eq. 5.26 is met. The following feedback
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Figure 5.6: The state-space profile for the closed-loop CSTRunder the LEMPC design of Eq. 5.12
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law (Sontag control law59) is utilized for the heat rateu2:

h2(x) =



















−
L f̃V +

√

L f̃V
2+Lg2V

4

Lg2V
, if Lg2V 6= 0

0, if Lg2V = 0

(5.28)

whereL f̃V andLg2V are the Lie derivatives of the Lyapunov functionV(x) with respect to the

vector fields f̃ (x) and g2(x) respectively. The control law of Eq. 5.28 is subject to the input

constraint (i.e.,|h2(x)| ≤ 5×105 kJ
hr ). Extensive closed-loop simulations were performed underthe

Lyapunov-based controllerh(x) to construct the regions needed in designing stability constraints

in the LEMPC of Eq. 5.12. A quadratic Lyapunov function of theform V(x) = xTPx was utilized

to estimate the stability region of the closed-loop system with the following positive definiteP
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Figure 5.7: Manipulated input profiles for the closed-loop CSTR under the LEMPC design of
Eq. 5.12 and under the Safeness Index-based LEMPC design of Eq. 5.13 for the initial condition
xT

int = [0 kmol
m3 0 K] with bounded process disturbances.

matrix:

P=







1060 22

22 0.52







Using this Lyapunov function,ρ was chosen to be 368 andρe was chosen to be 340.

To show that the Safeness Index-based LEMPC is capable of maintaining closed-loop operation

within the region whereS(x) ≤ STH, even when the LEMPC of Eq. 5.12 without the Safeness

Index-based constraint would not achieve this, we apply both controllers to the CSTR of Eq. 5.23,

where the two optimization problems at each sampling time were solved using the interior-point

solver Ipopt.90 The CSTR was initiated in both cases from the steady-state (xT
int = [0 kmol

m3 0 K])

where the Safeness IndexS(x) equals zero.

Figure 5.3 shows the closed-loop input trajectories for theCSTR under the Safeness Index-

based LEMPC scheme and the LEMPC scheme of Eq. 5.12 throughout one hour of operation.

The input met the material constraint of Eq. 5.26 under both controllers. Also, the heat rateu2
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Figure 5.8: The state profiles for the closed-loop CSTR underthe LEMPC design of Eq. 5.12
and under the Safeness Index-based LEMPC design of Eq. 5.13 for the initial conditionxT

int =
[0 kmol

m3 0 K] with bounded process disturbances.

of both schemes settled at its steady-state valueu2 = 0 kJ
hr for close to eighty percent of the one

hour of operation, and then deviated from its steady-state value at the end of the simulation so

that the other constraints of the formulation (e.g., the material constraint) could be met by the

controller while continuing to optimize process economics. Figure 5.4 depicts the trajectories

of the reactant concentration and reactor temperature in deviation from the steady-state values

([x1 x2] = [CA−CAs T − Ts]). From Figures 5.3 and 5.4, it is seen that before the end of the

simulation, the behavior of the closed-loop state and the input trajectories under both the Safeness

Index-based LEMPC scheme and the LEMPC scheme of Eq. 5.12 areoverlapping. This overlap

is contributed to by the goal of both LEMPC’s to maximize the production rate ofB within the

stability region over the prediction horizon, which is achieved under both LEMPC’s for much of

the period of operation by maintaining the closed-loop state at [x1 x2] = [−0.477 kmol
m3 44.6 K],

which is within the safety zone (i.e.,S(x) = 0.59≤ 0.6 wherex= [−0.477 kmol
m3 44.6 K]). At the

end of the simulation, the LEMPC’s ensure that the material constraint of Eq. 5.26 is met before the
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Table 5.1: Parameter values

T0 = 300 K F = 5 m3

hr

V = 1.0 m3 E = 5×104 kJ
kmol

k0 = 8.46×106 m3

kmolhr ∆H =−1.15×104 kJ
kmol

Cp = 0.231 kJ
kgK Rg = 8.314 kJ

kmolK

ρL = 1000 kg
m3 CAs= 1.2 kmol

m3

Ts= 438 K CA0s= 4 kmol
m3

Qs= 0 kJ
hr

end of the operating period. When the constraint onS(x) is not imposed, the LEMPC of Eq. 5.12

computes a solution that maximizes the process economics, but leaves the safety region; therefore,

the Safeness Index-based LEMPC computes a different trajectory than the LEMPC of Eq. 5.12 at

the end of the prediction horizon that meets the material constraint and also maximizes the process

economics but subject to the requirement that the closed-loop state cannot leave the safety region.

Specifically, Figure 5.4 shows that the closed-loop trajectory of the reactor temperature under the

Safeness Index-based LEMPC decreases, while that under theLEMPC design of Eq. 5.12 exceeds

the maximum temperature set by the Safeness Index functionS(x) because it lacks the Safeness

Index-based constraints.

Figure 5.5 further demonstrates that the LEMPC of Eq. 5.12 causesSTH to be exceeded at the

end of the operating window by presenting the Safeness IndexvalueS(x) for the LEMPC of Eq.

5.12 and the Safeness Index-based LEMPC over the operating window. Figure 5.6, which displays

the state-space trajectories of the reactant concentration and reactor temperature in deviations from

the steady-state values ([x1 x2] = [CA−CAs T −Ts]), also shows this. The closed-loop trajectory

under the LEMPC of Eq. 5.12 is seen to leave the safety zone (shaded gray), whereas the closed-

loop state under the Safeness Index-based LEMPC never leaves the safety zone.

To illustrate the robustness of the Safeness Index-based LEMPC of Eq. 5.13 and the LEMPC

of Eq. 5.12, a bounded disturbance vectorwT = [w1 w2] was added to the right-hand side of Eq.

5.23. The bounded disturbance vectorwT = [w1 w2] corresponds to Gaussian white noise with
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Figure 5.9: The Safeness Index functionS(x) for the closed-loop CSTR under the LEMPC design
of Eq. 5.12 and under the Safeness Index-based LEMPC design of Eq. 5.13 for the initial condition
xT

int = [0 kmol
m3 0 K] with bounded process disturbances.

variancesσ1 = 1 kmol
m3 andσ2 = 20 K with |w1| ≤ 1 kmol

m3 and |w2| ≤ 20 K. Figures 5.7 and 5.8

show the corresponding manipulated input and state profilesstarting from the same initial condi-

tion but under bounded process disturbances for both schemes. In the presence of disturbances,

the inlet concentrationu1 satisfied the material constraint of Eq. 5.26 under the Safeness Index-

based LEMPC and the LEMPC of Eq. 5.12. The heating rateu2 exhibited similar closed-loop

behavior as the case of nominal operation for the Safeness Index-based LEMPC, whileu2 exhib-

ited different closed-loop behavior for the LEMPC in the presence of disturbance. Unlike the case

of nominal operation, the closed-loop trajectory of the reactor temperature under the LEMPC ex-

ceeds the maximum allowable temperature 47K for almost half of the operating window due to

the disturbance. Figure 5.9 and Figure 5.10 demonstrate that the Safeness Index-based LEMPC

was able to maintain the closed-loop state within the safetyzone at all times even in the presence

of uncertainty while the closed-loop state trajectory under the LEMPC of Eq. 5.12 left the safety

zone and never went back to it. It is noted that the two simulations under the different controllers in
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Figure 5.10: The state-space profile for the closed-loop CSTR under the LEMPC design of Eq. 5.12
(black trajectory) and under the Safeness Index-based LEMPC design of Eq. 5.13 (dark gray tra-
jectory) for the initial conditionxT

int = [0 kmol
m3 0 K] with bounded process disturbances.

Figures 5.7-5.10 had different realizations of the processdisturbance than each other at each sam-

pling time (though with the same bounds and standard deviation for the disturbance distribution),

which has also contributed to the differences in the trajectories presented.

Remark 5.10 In the above simulation results, for both nominal process operation (i.e., w= 0)

and in the presence of disturbance, the Safeness Index-based LEMPC of Eq. 5.13 was feasible at

each sampling time when different values of the upper bound of the disturbance were considered.

However, in the presence of disturbances that have certain upper bound values (e.g.,θ1 = 1 kmol
m3

and theta2 = 40 K), the classical LEMPC was infeasible towards the end of theoperating time

period. The proof of closed-loop stability and recursive feasibility of the LEMPC illustrated that

for sufficiently small sampling period∆ and sufficiently small upper bound of the disturbanceθ ,

the LEMPC is guaranteed to be feasible at each sampling time.Nevertheless, determining exactly

the value of the upper bound of disturbanceθ that can ensure feasibility of the LEMPC is difficult

166



due to the nonlinearity and nonconvexity of the problem. In addition, incorporating the material

constraint of Eq. 5.26 into both the classical LEMPC and the Safeness Index-based LEMPC does

not allow guaranteeing a priori closed-loop stability and feasibility of both optimization problems.

However, for the value of the upper bounds considered in thissimulation (θ1 = 1 kmol
m3 and θ2 =

20 K), both optimization problems were feasible at each sampling time.

5.5 Conclusion

In this chapter, a Safeness Index was developed that can coordinate, for the first time, the control

and safety systems within a chemical process plant. Specifically, an approach for defining the func-

tional form of the Safeness IndexS(x) was presented, and a methodology of choosing the threshold

STH of the Safeness IndexS(x) was given. To demonstrate the use of this Safeness Index within a

control system, an LEMPC scheme with a hard Safeness Index-based constraint was presented to

integrate feedback control, process safety and process economics within a unified framework. An

implementation strategy was developed that is guaranteed,under sufficient conditions, to drive the

closed-loop state into the region where the Safeness Index is less than a desired threshold when ini-

tiated from any state within the stability region. The proposed method was demonstrated through

a chemical process example to be capable of maintaining the closed-loop state within a safe region

of operation while maximizing process economics. An illustration of how to define the Safeness

IndexS(x) and its threshold was given in the context of a non-isothermal continuous stirred tank

reactor (CSTR) example where the temperature of the reactorhas the largest effect on the safeness

of the process.
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Chapter 6

Distributed Economic Model Predictive

Control with Safeness-Index Based

Constraints for Nonlinear Systems

6.1 Introduction

In this chapter, sequential and iterative DEMPC’s with Safeness Index-based constraints, and im-

plementation strategies for each, are developed. Sufficient conditions that guarantee closed-loop

stability of a nonlinear process operated under these implementation strategies are derived. A cat-

alytic reactor example is used to compare the two distributed controllers with a centralized design

in terms of computation time, closed-loop performance, andsafety constraints satisfaction. The

results of this chapter originally appeared in.10
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6.2 Preliminaries

6.2.1 Notation

The operator| · | denotes the 2-norm of a vector. The transpose of a vectorx is signified byxT .

A level set of a sufficiently smooth, positive definite scalar-valued functionV(x) is represented

by Ωρ := {x ∈ Rn : V(x) ≤ ρ}. The operator ‘/’ denotes set subtraction, that is,A/B := {x ∈

Rn : x∈ A,x /∈ B}. The family of piecewise constant, right-continuous functions with a fixed time

interval ∆ ≥ 0 is denoted byS(∆). The symbol diag(v) represents a diagonal matrix which has

the components of a vectorv as its diagonal elements. A functionα(·) : [0,a)→ [0,∞) belongs to

classK if it is strictly increasing and continuous, andα(0) = 0.

6.2.2 Class of Nonlinear Process Systems

We consider nonlinear process systems with the form:

ẋ= f (x)+
m

∑
i=1

gi(x)ūi +b(x)w (6.1)

wherex ∈ Rnx, w ∈ Rnw and ūi ∈ Rni for i = 1, . . . ,m, are the process state vector, disturbance

vector andith manipulated input vector, respectively. Each input vectorūi is constrained to be in

a nonempty convex setUi := {ūi ∈ Rni : |ūi | ≤ ūmax
i }, whereūmax

i is a bound on the 2-norm of ¯ui

resulting from actuator limitations. State measurements are assumed to be available at synchronous

time instantstk = t0+ k∆, k = 0,1, . . ., where∆ is the sampling period andt0 is the initial time.

Bounded disturbances are considered in the sense thatw∈W := {w∈ Rnw : |w| ≤ θ ,θ > 0}. The

vector functionsf , gi , i = 1, . . . ,m, andb are assumed to be locally Lipschitz vector functions of

their arguments. The origin is assumed to be an equilibrium point of the unforced nominal (i.e.,

w(t)≡ 0) system (i.e.,f (0) = 0, gi(0) = 0, i = 1, . . . ,m, andb(0) = 0).
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6.2.3 Stabilizability Assumption

We consider systems of the form of Eq. 6.1 that are stabilizable in the sense that there exists a

locally Lipschitz feedback control law̄hT(x) = [h̄1(x) . . . h̄m(x)] with h̄(0) = 0 for the nominal

closed-loop system of Eq. 6.1 that renders the origin of the nominal system asymptotically stable

for all x∈ D⊆ Rn, whereD is an open neighborhood of the origin, in the sense that thereexists a

sufficiently smooth Lyapunov functionV(x)49,63 for the nominal closed-loop system and classK

functionsαi(·), i = 1,2,3,4, such that the following inequalities hold for allx∈ D:

α1(|x|)≤V(x)≤ α2(|x|) (6.2a)

∂V(x)
∂x

( f (x)+
m

∑
i=1

gi(x)h̄i(x))≤−α3(|x|) (6.2b)

∣

∣

∣

∣

∂V(x)
∂x

∣

∣

∣

∣

≤ α4(|x|) (6.2c)

h̄i(x) ∈Ui, i = 1, . . . ,m (6.2d)

The stability region of the closed-loop system is taken to bea level set of the Lyapunov function

within D where Eq. 6.2 holds, and it is denoted byΩρ .

By the local Lipschitz property assumed for the vector fieldsf , gi , i = 1, . . . ,m, andb, and the

boundedness of both ¯ui, i = 1, . . . ,m, andw, there exists a positive constantM such that

∣

∣

∣

∣

∣

f (x)+
m

∑
i=1

gi(x)ūi +b(x)w

∣

∣

∣

∣

∣

≤M (6.3)

for all x∈ Ωρ , ūi ∈Ui , i = 1, . . . ,m, andw∈W. In addition, by the smoothness of the Lyapunov

functionV(x) and the Lipschitz property off , gi , i = 1, . . . ,m, andb, there exist positive constants

Lx, Lūi , i = 1, . . . ,m, andLw such that

∣

∣

∣

∣

∂V
∂x

f (x)−
∂V
∂x

f (x′)

∣

∣

∣

∣

≤ Lx
∣

∣x−x′
∣

∣ (6.4)
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∣

∣

∣

∣

∂V
∂x

gi(x)−
∂V
∂x

gi(x
′)

∣

∣

∣

∣

≤ Lūi

∣

∣x−x′
∣

∣ , i = 1, . . . ,m (6.5)

∣

∣

∣

∣

∂V
∂x

b(x)

∣

∣

∣

∣

≤ Lw (6.6)

for all x,x′ ∈Ωρ , ūi ∈Ui, i = 1, . . . ,m, andw∈W.

6.3 Centralized Safeness Index-based LEMPC

A Safeness Index (denoted byS(x)) that is a function of the process state was developed in.11

This is a process-specific metric that should be developed with a functional form that causesS(x)

to increase as the process state approaches unsafe operating regions in state-space. This allows

a thresholdSTH to be set onS(x) for use in defining a constraint for an LEMPC that requires

predictions of the process state to be maintained within theregion whereS(x) ≤ STH (the safety
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zone)11 as follows:

max
u(t)∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ)) dτ (6.7a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (6.7b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (6.7c)

x̃(tk) = x(tk) (6.7d)

V(x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if x(tk) ∈Ωρe (6.7e)

S(x̃(t))≤ STH, ∀ t ∈ [tk, tk+N)

if S(x(tk))≤ STH (6.7f)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)

≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0),

if x(tk) ∈Ωρ/Ωρe or tk > ts or S(x(tk))> STH (6.7g)

where the input trajectoryu(t) is the decision variable of the optimization problem of Eq. 6.7

over the prediction horizonN∆. This control scheme seeks to maintain safe operation of a class of

nonlinear systems while maximizing the economic measureLe(x(t),u(t)) (Eq. 6.7a) that defines

the stage cost, subject to input constraints (Eq. 6.7c) and anominal process model (Eq. 6.7b)

initialized with a state measurement at the current sampling time tk (Eq. 6.7d). The notationts

denotes the time after which it is desired to apply the constraint of Eq. 6.7g. The predicted state

trajectoryx̃(t) is maintained withinΩρe throughout the prediction horizon by the constraint of Eq.

6.7e whenx(tk) ∈ Ωρe. The regionΩρe is chosen such that if the measured statex(tk) is within

Ωρe, thenx(tk+1) is still within Ωρe even in the presence of uncertainty. The constraint of Eq. 6.7f

maintains the predicted closed-loop state within the safety zone throughout the prediction horizon

whenS(x(tk)) ≤ STH. The safety zone is assumed to contain the origin of the system of Eq. 6.1

in its interior. The contractive constraint of Eq. 6.7g guarantees that the calculated control actions
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will decrease the value of the Lyapunov function betweentk andtk+1 when this constraint is applied

(i.e.,x(tk) ∈Ωρ/Ωρe, tk > ts, or S(x(tk))> STH).

When the constraint of Eq. 6.7f is not applied (i.e.,S(x(tk))>STH), h̄(x̃(tq)), ∀ t ∈ [tq, tq+1), q=

k, . . . ,k+N−1, is a feasible solution to the Safeness Index-based LEMPC optimization problem.43

However, because the safety zone is not required to take a certain shape (e.g., it is not required to

be a Lyapunov level set),̄h(x̃(tq)), ∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−1, does not necessarily meet

this constraint and therefore, the centralized Safeness Index-based LEMPC may become infeasible

when the constraint of Eq. 6.7f is applied.

Remark 6.1 In this chapter, we focus on distributed LEMPC designs with Safeness Index-based

constraints for the case that STH is not a hard threshold (i.e., when S(x) > STH, that does not

necessarily mean that the process requires operator intervention, but may instead reflect that the

process should avoid operating in a region where S(x) > STH for long periods of time). The

case where STH is a hard threshold can be handled by choosing S(x) as a Lyapunov function

and selecting STH such that the closed-loop state cannot leave a safe operating region within a

sampling period if STH is the upper bound on S(x) in Eq. 6.7f. Such a design would be similar

to the safety-based LEMPC design for which a distributed control architecture has already been

developed in9 and therefore will not be considered here.

6.4 Distributed Safeness Index-based LEMPC design

The computation time required to solve the centralized Safeness Index-based LEMPC of the prior

section may be significant with the process model and constraints of a large-scale industrial nonlin-

ear process system. Therefore, the problem may not be solvedto optimality within a short sampling

period, which prevents the optimization problem from beingsolved frequently with new state mea-

surements. However, frequent feedback of the process statecan be beneficial for enhancing process

safety under this control law because the safety zone is not necessarily an invariant set under the

Safeness Index-based LEMPC design, and the controller is made aware that the state has exited
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the safety zone (so that it can compute control actions guaranteed to drive the state back into the

safety zone in finite time) through feedback of the process state (Eq. 6.7g). Moreover, this LEMPC

design may be applied in practice to processes for which the upper bound on the disturbance is es-

timated but not known (though that is not the theoretical consideration in this chapter), and in such

cases, more frequent feedback may aid in preventing the closed-loop state from exiting the safety

zone during a sampling period if a large disturbance potentially greater than the expected bound

affects the process. To obtain Safeness Index-based controllers with reduced computation time

(allowing more frequent feedback) compared to the centralized design, this chapter develops two

distributed (sequential and iterative) Safeness Index-based LEMPC designs. Sufficient conditions

that guarantee closed-loop stability of a nonlinear process under the implementation strategies of

the two distributed LEMPC (DLEMPC) designs with Safeness Index-based constraints are given.

6.4.1 Safeness Index-based Sequential DLEMPC

The first distributed control scheme considered is a sequential Safeness Index-based DLEMPC

(termed Safeness Index-S-DLEMPC) design where each ofm controllers solves for a different

subset of the set of all control actions. Thejth controller solves for then j control actions in vector

ū j out of the totalntot = ∑m
i=1ni available control actions while it assumes values of the remaining

ntot−n j manipulated inputs. In the Safeness Index-S-DLEMPC design, them controllers form a

hierarchy connected using a one-directional communication network and are evaluated in sequence

(i.e., the first LEMPC in the hierarchy calculates ¯u1, the second LEMPC receives the computed

value of ū1 and calculates ¯u2, and so on). Thejth controller, j ∈ {1, . . . ,m}, in the hierarchy

(Safeness Index-S-DLEMPCj) solves only for ¯u j . It assumes that ¯uz, z= 1, . . . , j − 1, are the

optimal values of these control actions from the controllers higher up in the hierarchy, and assumes

that ūz = h̄z(x̃(tq)), ∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−1, for z= j +1, . . . ,m. The j − th Safeness
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Index-S-DLEMPC solves the following optimization problem:

max
ū j∈S(∆)

∫ tk+N

tk
Le(x̃

j(τ), ū1(τ), . . . , ūm(τ))dτ (6.8a)

s.t. ˙̃x j(t) = f (x̃ j(t))+
m

∑
i=1

gi(x̃
j(t))ūi(t) (6.8b)

ū j(t) ∈U j , ∀ t ∈ [tk, tk+N) (6.8c)

ūr(t) = h̄r(x̃
j(tk+q)), r = j +1, . . . ,m, (6.8d)

∀ t ∈ [tk+q, tk+q+1), q= 0, . . . ,N−1

ūp(t) = ū∗p(t|tk), (6.8e)

p= 1, . . . , j−1, t ∈ [tk, tk+N)

x̃ j(tk) = x(tk) (6.8f)

V(x̃ j(t))≤ ρe, ∀ t ∈ [tk, tk+N) (6.8g)

if x(tk) ∈Ωρe

S(x̃ j(t))≤ STH, ∀ t ∈ [tk, tk+N) (6.8h)

if S(x(tk))≤ STH

∂V(x(tk))
∂x

(
m

∑
i=1

gi(x(tk))ūi(tk)) (6.8i)

≤
∂V(x(tk))

∂x
(

m

∑
i=1

gi(x(tk))h̄i(x(tk))),

if x(tk) ∈Ωρ/Ωρe or tk > ts or S(x(tk))> STH

wherex̃ j(t) denotes the predicted state trajectory under Safeness Index-S-DLEMPC j. The con-

straint of Eq. 6.8e sets the trajectory of each ¯up, p= 1, . . . , j−1, to the optimal trajectory (denoted

by ū∗p(t|tk), t ∈ [tk, tk+N)) calculated by Safeness Index-S-DLEMPCp, p= 1, . . . , j−1. The values

of the inputs ¯ur , r = j +1, . . . ,m, that will be calculated by Safeness Index-S-DLEMPC’s later in

the sequence ofm controllers are set by the constraint of Eq. 6.8d to the corresponding elements

of h̄(x) applied in a sample-and-hold fashion. The other constraints of the optimization problem of
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Eq. 6.8 follow those in Eq. 6.7.

The manner in which thentot inputs are partitioned between the various ¯u j and the order in

which the various ¯u j are computed in the hierarchy of distributed controllers can impact whether

each of them controllers in the hierarchy is feasible. Specifically, when Eq. 6.8h is not ap-

plied (i.e., S(x(tk)) > STH), ū j = h̄ j(x̃(tq)), ∀ t ∈ [tq, tq+1), q = k, . . . ,k+ N− 1, is a feasible

control action for Safeness Index-S-DLEMPCj. However, the region whereS(x) ≤ STH is not

required to take a specific shape, so when Eq. 6.8h is applied,there is no guarantee that any con-

trol action within the input bounds can satisfy this constraint (whether or not constraints such

as Eqs. 6.8g and/or 6.8i are simultaneously applied). This means that thejth Safeness Index-S-

DLEMPC will have a feasible solution when the constraint of Eq. 6.8h is applied only if there

exists a ¯u j that, when ¯up(t) = ū∗p(t|tk), p = 1, . . . , j − 1, t ∈ [tk, tk+N), and ūr(t) = h̄r(x̃ j(tk+q)),

r = j +1, . . . ,m, ∀ t ∈ [tk+q, tk+q+1), q= 0, . . . ,N−1, the state predictions are maintained within

the safety zone. Furthermore, if the control actions calculated by Safeness Index-S-DLEMPC 1

ensure thatS(x̃1) ≤ STH throughout the prediction horizon (i.e., Safeness Index-S-DLEMPC 1 is

feasible even when Eq. 6.8h is applied), then Safeness Index-S-DLEMPC 2 to Safeness Index-S-

DLEMPC m will be feasible as well because a feasible solution to Safeness Index-S-DLEMPC

j is a feasible solution to Safeness Index-S-DLEMPCj + 1. Hence, grouping inputs that have

a large effect on the magnitude ofS(x) (and thus provide significant flexibility for adjusting its

value throughout the prediction horizon to seek to maintainthe state predictions within the safety

zone) together within ¯u1 may enable the constraint of Eq. 6.8h to be feasible more regularly in

Safeness Index-S-DLEMPC 1 than if inputs with less impact onS(x) were computed by this con-

troller. This would allow the set ofm distributed controllers to be feasible more regularly as well

(since all are feasible if Safeness Index-S-DLEMPC 1 is feasible). Furthermore, other process

constraints beyond those presented in Eq. 6.8 may be added tothe Safeness Index-S-DLEMPC’s

(e.g., constraints on the time-averaged value of certain inputs or products of inputs due to physical

constraints on the process; an example of this is shown in thesection “Application to a Chemical

Process Example,” where the product of two inputs represents the total amount of reactant available
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to a process which is limited in a given period of time), and input partitioning may impact feasibil-

ity of these constraints as well. For example, if a constraint on the product of two inputs is present,

it may be desirable to solve for both inputs in the same Safeness Index-S-DLEMPC if it is likely

that the constraint will be infeasible if such flexibility insatisfying the constraint is not provided.

Process economics may be impacted by the manner in which the inputs are partitioned (e.g., as the

number of control actionsn j determined by Safeness Index-S-DLEMPCj is decreased due to an

increasing magnitude ofm, Safeness Index-S-DLEMPCj may have less flexibility to maximize

process economic performance). Computation time is also affected by input partitioning (e.g.,

it may increase for Safeness Index-S-DLEMPCj if n j is increased to provide the LEMPC with

greater flexibility in control action selection for feasibility and/or economics reasons). Thus, an

appropriate partitioning of inputs may be based on trade-offs between feasibility, economics, and

computation time considerations. This approach for partitioning inputs may be complemented by

other methods of input partitioning (see, e.g.,29,47), though the partitions resulting from alternative

methods should be evaluated from the feasibility standpoint discussed before being used.

A schematic of the Safeness Index-S-DLEMPC architecture isdepicted in Figure 6.1. An

implementation issue for the Safeness Index-S-DLEMPC design is that, when Safeness Index-S-

DLEMPC 1 is infeasible when the constraint of Eq. 6.8h is applied, no feasible solution to Safeness

Index-S-DLEMPC 1 is available to be sent to Safeness Index-S-DLEMPC 2 tom. Safeness Index-

S-DLEMPC 2 tom cannot then be solved to obtainu∗i (tk|tk), i = 1, . . . ,m, to apply to the process;

in such cases, we require that the explicit stabilizing controller h̄i(x(tk)), i = 1, . . . ,m, be applied

to the plant becausēh(x(tk)) is guaranteed to maintain the closed-loop state inΩρ throughout a

sampling period.72 This implementation strategy for the Safeness Index-S-DLEMPC design is

summarized as follows:

1. At tk, them Safeness Index-S-DLEMPC’s receive a measurement of the current statex(tk)

from the sensors. Go to Step 2.

2. Solve Safeness Index-S-DLEMPC 1. If the Safeness Index-S-DLEMPC 1 optimization

problem is feasible, go to Step 2a. Else, go to Step 2b.
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∗

2
(τ |tk)

ū∗
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Figure 6.1: Block diagram of the Safeness Index-S-DLEMPC scheme.

(a) Safeness Index-S-DLEMPC 1 sends ¯u∗1(τ|tk), τ ∈ [tk, tk+N), to Safeness Index-S-DLEMPC

2. Go to Step 3 (j = 2).

(b) Apply ūi(tk) = h̄i(x(tk)), i = 1, . . . ,m, to the plant. Go to Step 6.

3. Solve Safeness Index-S-DLEMPCj. If j < m, go to Step 4. Ifj = m, go to Step 5.

4. Send ¯u∗p(τ|tk), τ ∈ [tk, tk+N), p= 1, . . . , j, to Safeness Index-S-DLEMPCj +1. Go to Step 3

( j← j +1).

5. Them Safeness Index-S-DLEMPC’s send the optimal solutionsu∗i (tk|tk), i = 1, . . . ,m, for

the first sampling period of the prediction horizon to the actuators to be implemented on the

process. Go to Step 6.
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6. When a new state measurement is received attk+1, go to Step 1 (k← k+1).

Remark 6.2 The partitioning of the inputs based on feasibility is not intended to make the m

Safeness Index-S-DLEMPC’s feasible at each sampling time (e.g., when the centralized Safeness

Index-based LEMPC of Eq. 6.7 would be infeasible at tk, there is no partitioning of the inputs

that would be able to make Safeness Index-S-DLEMPC 1 to m feasible). Appropriate partitioning

is intended to prevent the distributed controllers from frequently becoming infeasible when the

centralized design would not have been.

6.4.2 Feasibility and Closed-Loop Stability Analysis for the Safeness Index-

S-DLEMPC Implementation Strategy

In this subsection, we prove closed-loop stability of a nonlinear process operated under the Safe-

ness Index-S-DLEMPC implementation strategy. To proceed with this analysis, we present a

proposition that illustrates the closed-loop stability properties of the Lyapunov-based controller

used for the Safeness Index-S-DLEMPC constraint design.

Proposition 6.1 (c.f.72) Consider the trajectorŷx(t) of the system of Eq. 6.1 in closed-loop under

a controllerh̄(x), which satisfies the conditions of Eq. 6.2, obtained by solving recursively:

˙̂x(t) = f (x̂(t))+
m

∑
i=1

gi(x̂(t))h̄i(x̂(tk))+b(x̂(t))w(t) (6.9)

where t∈ [tk, tk+1) with k= 0,1, . . .. Let∆,εw > 0 andρ > ρs> 0 satisfy:

−α3(α−1
2 (ρs))+(Lx+

m

∑
i=1

Lūi ū
max
i )M∆+Lwθ ≤−εw/∆. (6.10)

Then, ifx̂(t0) ∈Ωρ andρmin < ρ where

ρmin = max{V(x(t +∆)) : V(x(t))≤ ρs}, (6.11)
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the following inequality holds:

V(x̂(tk))≤max{V(x̂(t0))−kεw,ρmin}. (6.12)

We note thatρmin in Proposition 6.1 is defined without reference to a specific controller such

as h̄(x), but rather as the maximum value thatV(x) can take in a time period∆ if V(x(t)) ≤ ρs

at the beginning of this time period, given∆ and the constraints. Proposition 6.1 guarantees that

with a sufficiently small sampling period and bound on the disturbance (i.e., Eq. 6.10 holds), the

magnitude ofV(x) decreases throughout a sampling period for the system of Eq.6.1 underh̄(x)

whenx̂(tk) ∈Ωρ/Ωρs, and when ˆx(tk) ∈Ωρs, thenx̂(t) ∈Ωρmin, ∀ t ∈ [tk, tk+1).

Two additional propositions that will be used in the closed-loop stability analysis of a nonlinear

process under the Safeness Index-S-DLEMPC implementationstrategy are now introduced. The

first bounds the norm of the difference between the trajectories of the nominal and perturbed (i.e.,

w(t) 6≡ 0) systems when initiated from the same initial condition. The second bounds the difference

in the Lyapunov function value at different locations in thestability region.

Proposition 6.2 (c.f.43,67) Consider the systems

ẋa(t) = f (xa(t))+∑m
i=1gi(xa(t))ūi(t)+b(xa(t))w(t)

ẋb(t) = f (xb(t))+∑m
i=1gi(xb(t))ūi(t)

(6.13)

with initial states xa(t0) = xb(t0) ∈Ωρ . There exists aK function fW(·) such that

|xa(t)−xb(t)| ≤ fW(t− t0), (6.14)

for all xa(t),xb(t) ∈Ωρ and all w(t) ∈W with

fW(τ) =
L′wθ
L′x

(eL′xτ −1). (6.15)

where L′w and L′x are positive constants.

180



Proposition 6.3 (c.f.43,67) Consider the Lyapunov function V(·) of the system of Eq. 6.1. There

exists a quadratic function fV(·) such that

V(x)≤V(x̂)+ fV(|x− x̂|) (6.16)

for all x, x̂∈Ωρ with

fV(s) = α4(α−1
1 (ρ))s+Mvs

2 (6.17)

where Mv is a positive constant.

Theorem 6.1 below provides sufficient conditions which guarantee closed-loop stability of the

system of Eq. 6.1 under the Safeness Index-S-DLEMPC implementation strategy.

Theorem 6.1 Consider the system of Eq. 6.1 in closed-loop under the implementation strategy

(Steps 1-6) of the Safeness Index-S-DLEMPC based on a controller h̄(x) that satisfies the condi-

tions of Eq. 6.2. Letεw > 0, ∆ > 0, ρ > ρe> ρs> 0 satisfy

ρe≤ ρ− fV( fW(∆)) (6.18)

and Eq. 6.10. If x(t0) ∈ Ωρ , ρmin≤ ρe and N≥ 1 whereρmin is defined as in Eq. 6.11 and where

the compact setΩρmin satisfies

Ωρmin ⊆ {x∈Ωρ : S(x)≤ STH}, (6.19)

then the closed-loop state x(t) of Eq. 6.1 is guaranteed to enter the safety zone in finite timewhen

x(t0) ∈Ωρ , to be bounded withinΩρ at all times, and to be ultimately bounded inΩρmin.

Proof 6.1 The proof of Theorem 1 is given in two parts. The first part is the proof of the existence

of an input trajectory with characterizable properties forthe process of Eq. 6.1 operated under

Steps 1-6 of the Safeness Index-S-DLEMPC implementation strategy when x(t0) ∈ Ωρ . The proof
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of the three results of Theorem 1 given these characterizable properties is provided in the second

part of the proof of Theorem 1.

Part 1: Based on the implementation strategy of the SafenessIndex-S-DLEMPC, in a given

sampling period, either: 1) Safeness Index-S-DLEMPC 1 is a feasible optimization problem and

ū∗1(τ|tk), τ ∈ [tk, tk+N), is communicated to Safeness Index-S-DLEMPC 2, or 2) Safeness Index-S-

DLEMPC 1 is not feasible and̄hi(x(tk)) for i = 1, . . . ,m, is applied to the process for t∈ [tk, tk+1).

In the case that Safeness Index-S-DLEMPC 1 is feasible, Safeness Index-S-DLEMPC’s2 to m are

guaranteed to be feasible. This is because if Safeness Index-S-DLEMPC j is feasible with the

input trajectories defined bȳu∗j (t|tk), t ∈ [tk, tk+N), ūp(t) = ū∗p(t|tk), p= 1, . . . , j−1, t ∈ [tk, tk+N),

and ūr(t) = h̄r(x̃ j(tk+q)), r = j +1, . . . ,m, ∀ t ∈ [tk+q, tk+q+1), q= 0, . . . ,N−1, then in Safeness

Index-S-DLEMPC j+1, which solves for̄u∗j+1(t|tk), t ∈ [tk, tk+N), but sets the other inputs accord-

ing to the constraints of Eqs. 6.8d-6.8e (which forces all inputs except̄u∗j+1(t|tk), t ∈ [tk, tk+N), to

take the same values as they had in the feasible solution returned by Safeness Index-S-DLEMPC

j), the trajectory ofū∗j+1(t|tk), t ∈ [tk, tk+N), that was feasible for Safeness Index-S-DLEMPC j

(i.e., ū∗j+1(t|tk) = h̄ j+1(x̃(tq)), ∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−1) is feasible for Safeness Index-

S-DLEMPC j+1. Whenū∗j+1(t|tk) = h̄ j+1(x̃(tq)), ∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−1, is applied

with the input trajectories of Eqs. 6.8d-6.8e, the state predictions of Eq. 6.8b for Safeness Index-

S-DLEMPC’s j and j+ 1 are initiated from the same initial condition (Eq. 6.8f) andhave the

same input trajectories. We assume that the local Lipschitzproperty for vector functions f , g

and b allows them to be constructed such that since x(t) ∈ Ωρ for all times (as will be demon-

strated in Part 2 of this proof), Eq. 6.8b in Safeness Index-S-DLEMPC’s j and j+1 has the same

unique solution throughout the prediction horizon when thesame input trajectories are applied;49

therefore, if such trajectories meet the constraints of Eqs. 6.8g-6.8i in Safeness Index-S-DLEMPC

j, they will also meet them in Safeness Index-S-DLEMPC j+1. The only constraint in Eq. 6.8

that is enforced in Safeness Index-S-DLEMPC j+ 1 that is not enforced in Safeness Index-S-

DLEMPC j is Eq. 6.8c (in Safeness Index-S-DLEMPC j, it is enforced onū j , whereas in Safeness

Index-S-DLEMPC j+1, it is enforced onū j+1). By Eq. 6.2, however,̄u∗j+1(t|tk) = h̄ j+1(x̃(tq)),
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∀ t ∈ [tq, tq+1), q= k, . . . ,k+N−1, satisfies this constraint as well, showing that this trajectory

fully satisfies all constraints of Safeness Index-S-DLEMPCj +1 if Safeness Index-S-DLEMPC j

was feasible. Because Safeness Index-S-DLEMPC 1 is feasible, Safeness Index-S-DLEMPC’s 2 to

m are therefore feasible by induction. When a feasible solution to Safeness Index-S-DLEMPC’s 1

to m is obtained, Eqs. 6.8b-6.8i are satisfied in Safeness Index-S-DLEMPC m for the set of imple-

mented control actions̄u∗i (t|tk), t ∈ [tk, tk+N), i = 1, . . . ,m, and thus the set of implemented control

actions has characterizable properties. When Safeness Index-S-DLEMPC 1 is not feasible and

h̄(x(tk)) is applied, the conditions of Proposition 6.1 hold. Thus, the control actions applied to

the process according to the Safeness Index-S-DLEMPC implementation strategy throughout any

sampling period have characterizable properties that can be used to analyze closed-loop stability

of a nonlinear process under these control actions.

Part 2: We now prove the results of Theorem 6.1. To prove that if S(x(tk))>STH and x(t0)∈Ωρ ,

then the Safeness Index-S-DLEMPC implementation strategywill drive the closed-loop state into

the safety zone in finite time, we demonstrate that either a feasible solution to all m distributed

controllers of the Safeness Index-S-DLEMPC design orh̄(x(tk)) will drive the closed-loop state

toward the setΩρmin (which is within the safety zone from Eq. 6.19) throughout a given sampling

period. When all m Safeness Index-S-DLEMPC’s are feasible at a given sampling time (which

follows if Safeness Index-S-DLEMPC 1 is feasible), the set of control actionsū∗i (tk|tk), i = 1, . . . ,m,

that are applied to the process satisfy the constraints of Safeness Index-S-DLEMPC m (the last

controller in the hierarchy). Specifically, when S(x(tk)) > STH, from the contractive constraint of

Eq. 6.8i and Eq. 6.2b, we obtain:

∂V(x(tk))
∂x

( f (x(tk))+
m

∑
i=1

gi(x(tk))ū
∗
i (tk|tk))≤

∂V(x(tk))
∂x

( f (x(tk))+
m

∑
i=1

gi(x(tk))h̄i(x(tk))) (6.20a)

≤−α3(|x(tk)|) (6.20b)

The time derivative of the Lyapunov function along the statetrajectory x(t) under ū∗i (tk|tk),
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i = 1, . . . ,m, for t∈ [tk, tk+1), is:

V̇(x(t)) =
∂V(x(t))

∂x

(

f (x(t))+
m

∑
i=1

gi(x(t))ū
∗
i (tk|tk)+b(x(t))w(t)

)

(6.21)

Adding and subtracting
∂V(x(tk))

∂x
( f (x(tk))+∑m

i=1gi(x(tk))ū∗i (tk|tk)) to/from Eq. 6.21, we obtain

the following inequality by utilizing Eq. 6.20, the Lipschitz properties in Eqs. 6.4-6.6, and the

disturbance bound|w| ≤ θ :

V̇(x(t))≤−α3(|x(tk)|)+

(

Lx+
m

∑
i=1

Lūi ū
∗
i (tk|tk)

)

|x(t)−x(tk)|+Lwθ (6.22)

From the continuity of x(t) and Eq. 6.3, the following bound holds for all t∈ [tk, tk+1):

|x(t)−x(tk)| ≤M∆ (6.23)

Because S(x(tk))> STH, it follows from Eqs. 6.11 and 6.19 that x(tk)∈Ωρ/Ωρs. In addition, since

Eqs. 6.22-6.23 and the bounds onūi , i = 1, . . . ,m, also hold, the following bound oṅV(x(t)) can

be written for t∈ [tk, tk+1):

V̇(x(t))≤−α3(α−1
2 (ρs))+

(

Lx+
m

∑
i=1

Lūi ū
max
i

)

M∆+Lwθ (6.24)

When Eq. 6.10 is satisfied, there existsεw>0such that the following inequality holds for S(x(tk))>

STH:

V̇(x(t))≤−εw/∆ ∀ t ∈ [tk, tk+1) (6.25)

By integrating the bound of Eq. 6.25 on t∈ [tk, tk+1), we obtain that:

V(x(tk+1))≤V(x(tk))− εw (6.26a)

V(x(t))≤V(x(tk)), ∀ t ∈ [tk, tk+1) (6.26b)
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whenever S(x(tk)) > STH and the m Safeness Index-S-DLEMPC’s are feasible. When Safeness

Index-S-DLEMPC 1 has no feasible solution and x(t0) ∈ Ωρ , then h̄(x(tk)) is applied for t∈

[tk, tk+1), which will decrease the value of the Lyapunov function between tk and tk+1 according

to Proposition 6.1. Therefore, regardless of whetherū∗i (tk|tk), i = 1, . . . ,m, or h̄(x(tk)) is imple-

mented throughout a given sampling period when S(x(tk)) > STH, V(x(tk+1)) < V(x(tk)) and the

sequence of control actions implemented until S(x(tk))≤ STH will thus drive the closed-loop state

into Lyapunov level sets with a smaller upper bound on the Lyapunov function. This will even-

tually drive the state into the safety zone, because the control actions will drive the state toward

Ωρmin throughout every sampling period and thus intoΩρmin if S(x(tk)) is greater than STH at every

sampling time until x(tk) ∈ Ωρmin (the state is within the safety zone after it is withinΩρmin from

Eq. 6.19, regardless of the shape of the safety zone).

To prove that x(t) ∈Ωρ , ∀ t ∈ [t0,∞), when x(t0) ∈ Ωρ for a process operated under the Safe-

ness Index-S-DLEMPC implementation strategy, we begin by demonstrating that if x(tk)∈Ωρ , then

x(t)∈Ωρ , ∀ t ∈ [tk, tk+1), both in the case that a feasible solution of the Safeness Index-S-DLEMPC

design is applied to the process and in the case thath̄(x(tk)) is instead applied for t∈ [tk, tk+1).

When Safeness Index-S-DLEMPC 1 is feasible and x(tk) ∈Ωρe such that the constraint of Eq. 6.8g

is applied and satisfied by the solution of Safeness Index-S-DLEMPC m under the implemented

control actionsū∗i (t|tk), t ∈ [tk, tk+N), i = 1, . . . ,m, thenx̃m(t) ∈Ωρe for t ∈ [tk, tk+1). From Propo-

sitions 6.2 and 6.3, and considering that the maximum value of t− tk for t ∈ [tk, tk+1) is ∆, we have

that

V(x(t))≤V(x̃m(t))+ fV( fW(∆)) (6.27)

for t ∈ [tk, tk+1). Since V(x̃m(t))≤ ρe for t ∈ [tk, tk+1) and Eq. 6.18 holds, we conclude that x(t) ∈

Ωρ for t ∈ [tk, tk+1). If x(tk) ∈ Ωρ/Ωρe (or S(x(tk)) > STH), then Eq. 6.8i is active and Eqs.

6.26a-6.26b hold, preventing the closed-loop state from leaving Ωρ in a sampling period. When

Safeness Index-S-DLEMPC 1 is not feasible, thenh̄(x(tk)) will be applied for t∈ [tk, tk+1), in

which case Proposition 6.1 holds. A similar series of steps to those performed in Eqs. 6.20-6.26

can be performed when Proposition 6.1 holds, with the resultthat Eqs. 6.26a-6.26b hold when

185



Proposition 6.1 holds and therefore x(t) ∈ Ωρ for t ∈ [tk, tk+1). Since throughout each sampling

period, a feasible solution to the m Safeness Index-S-DLEMPC’s or h̄(x(tk)) maintains the closed-

loop state withinΩρ , the sequence of control actions generated throughout timeby applying either

the Safeness Index-S-DLEMPC m solution orh̄(x(tk)) at each sampling time according to the

Safeness Index-S-DLEMPC implementation strategy maintains the closed-loop state inΩρ .

Finally, the closed-loop state under the Safeness Index-S-DLEMPC implementation strategy is

ultimately bounded inΩρmin when tk > ts because when tk > ts, either a feasible solution to the m

Safeness Index-S-DLEMPC’s that had Eq. 6.8i applied is implemented for the process, orh̄(x(tk))

is implemented. In both cases, Eqs. 6.26a-6.26b hold and theLyapunov function value decreases

until the closed-loop state entersΩρmin in finite time. After it entersΩρmin, it cannot come out due

to the definition ofΩρmin in Eq. 6.11.

6.4.3 Safeness Index-based Iterative DLEMPC

In this section, we develop an iterative Safeness Index-based DLEMPC paradigm (Safeness Index-

I-DLEMPC). In the iterative control design, each of them controllers calculates a control action

simultaneously. Thejth controller solves for ¯u∗j (t|tk), t ∈ [tk, tk+N), j = 1, . . . ,m, and assumes

that the control actions for which it does not solve ( ¯uz, z∈ {1, . . . ,m}, z 6= j) are set tōhz(x̃(tq)),

∀ t ∈ [tq, tq+1), q = k, . . . ,k+N−1. After the solution for each controller is obtained, either this

solution is applied to the process or is provided to (exchanged with) the otherm− 1 Safeness

Index-I-DLEMPC’s and each of them controllers is then re-solved assuming that the control ac-

tions for which it does not solve are set to the values ¯u∗z(t|tk), t ∈ [tk, tk+N), z∈ {1, . . . ,m}, z 6= j,

that have just been exchanged. Each re-solution of allm optimization problems is called an iter-

ation. The number of iterations of the Safeness Index-I-DLEMPC is an integerc∈ [1,∞), where

c = 1 corresponds to the case that them controllers have not yet exchanged solutions. The ter-

mination condition for the iterations of the Safeness Index-I-DLEMPC design can be chosen in

various ways; for example, a fixed number of iterations may beselected after which the solution

of all m controllers is implemented on the process attk and the optimization problems no longer
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exchange solutions. Another consideration to prevent further iterations attk is to terminate the op-

timization problem when the value of the objective functionevaluated using the predicted nominal

process state trajectories when ¯ui(t) = ū∗i (t|tk), t ∈ [tk, tk+N), i = 1, . . . ,m, at iterationc shows no

improvement compared to iterationc−1 or improves by no more than a toleranceε. However,

even with a termination condition based on the objective function, there is no guarantee that the

economic performance of a nonlinear process under the Safeness Index-I-DLEMPC design will

be comparable to that of the process under the centralized Safeness Index-based LEMPC since the

manipulated inputs in the Safeness Index-I-DLEMPC are calculated by different controllers. The

block diagram in Figure 6.2 shows the Safeness Index-I-DLEMPC, where the solution to Safeness

Index-I-DLEMPC j at timetk at iterationc is denoted by ¯u∗j ,c(t|tk), t ∈ [tk, tk+N).
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The formulation of thejth Safeness Index-I-DLEMPC optimization problem is as follows:

max
ū j∈S(∆)

∫ tk+N

tk
Le(x̃

j(τ), ū1(τ), . . . , ūm(τ))dτ (6.28a)

s.t. ˙̃x j(t) = f (x̃ j(t))+
m

∑
i=1

gi(x̃
j(t))ūi(t) (6.28b)

ū j(t) ∈U j , ∀ t ∈ [tk, tk+N) (6.28c)

ūz(t) = h̄z(x̃
j(tk+r)),z∈ {1, . . . ,m}, (6.28d)

z 6= j, ∀ t ∈ [tk+r , tk+r+1),

r = 0, . . . ,N−1, c= 1

ūz(t) = ū∗z,c−1(t|tk), z∈ {1, . . . ,m}, (6.28e)

z 6= j, t ∈ [tk, tk+N), c≥ 2

x̃ j(tk) = x(tk) (6.28f)

V(x̃ j(t))≤ ρe, ∀ t ∈ [tk, tk+N) (6.28g)

if x(tk) ∈Ωρe

S(x̃ j(t))≤ STH, ∀ t ∈ [tk, tk+N) (6.28h)

if S(x(tk))≤ STH

∂V(x(tk))
∂x

g j(x(tk))ū j(tk) (6.28i)

≤
∂V(x(tk))

∂x
g j(x(tk))h̄ j(x(tk)),

if x(tk) ∈Ωρ/Ωρe or tk > ts or S(x(tk))> STH

The notation of Eqs. 6.28a-6.28c and Eqs. 6.28f-6.28h follows that in Eq. 6.8. Eq. 6.28d is

applied whenc = 1 (i.e., no iteration has yet been performed attk) and assumes ¯uz(t) is h̄z(x),

z 6= j, implemented in sample-and-hold throughout the prediction horizon. Eq. 6.28e is applied

if c > 1 and sets ¯uz(t), z∈ {1, . . . ,m}, wherez 6= j, to the optimal solutions obtained from all

Safeness Index-I-DLEMPC’s except thejth at the prior iteration. Unlike the constraint of Eq. 6.8i,

in which all inputs appear, the contractive constraint of Eq. 6.28i only constrains the decision
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variableū j(tk).

To obtain a solution to the Safeness Index-I-DLEMPC design at tk, all m Safeness Index-I-

DLEMPC’s must be feasible simultaneously. It may be more likely for all m controllers to be fea-

sible attk when Eq. 6.28h is applied if each vector ¯ui, i = 1, . . . ,m, contains control actions that have

a significant impact onS(x) and therefore may give each of themdistributed controllers more flex-

ibility to satisfy Eq. 6.28h. For some processes, feasibility of them Safeness Index-I-DLEMPC’s

for several iterations may improve process economic performance because the controllers can ex-

change solutions and re-solve Eq. 6.28 to attempt to improveprocess economic performance only

if the solutions of allmcontrollers at the prior iteration are feasible. Unlike thecomputation time of

the Safeness Index-S-DLEMPC, which is equal to the summation of the computation times of each

of them controllers, the computation time of the iterative controlarchitecture (at one iteration) is

equal to the maximum computation time among allmSafeness Index-I-DLEMPC’s (the sum of the

computation times of all iterations performed is the total computation time of the iterative architec-

ture). This indicates that increasing the number of distributed controllers (i.e., increasingm) may

improve the computation time compared to using a smallerm because it parallelizes the compu-

tations more significantly. As noted in the section “Safeness Index-based Sequential DLEMPC,”

constraints beyond those noted in Eq. 6.28 may be required tobe satisfied by the process and

may affect the input partitioning. Therefore, tradeoffs between feasibility, computation time, and

economic performance may affect input partitioning for theSafeness Index-I-DLEMPC design.

The solutions of them Safeness Index-I-DLEMPC’s are calculated independently,with each

controller assuming different values of ¯uz, z∈ {1, . . . ,m} but z 6= j, than are used by the other

controllers (e.g., Safeness Index-I-DLEMPC 1 assumes forc = 1 that ū1 can be any piecewise-

constant input trajectory that satisfies the constraints ofEq. 6.28, but assumes that ¯u2 = h̄2(x̃(tq)),

∀ t ∈ [tq, tq+1), q = k, . . . ,k+N− 1, whereas Safeness Index-I-DLEMPC 2 assumes that ¯u1 =

h̄1(x̃(tq)), ∀ t ∈ [tq, tq+1), q = k, . . . ,k+N− 1, but that ¯u2 can be any piecewise-constant input

trajectory that satisfies the constraints of Eq. 6.28). Therefore, allm controllers may be feasible

(i.e., Eqs. 6.28g-6.28h may be satisfied in Safeness Index-I-DLEMPC j by the nominal trajec-
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tory of Eq. 6.1 under ¯u∗j (t|tk), t ∈ [tk, tk+N), and the assumed control actions in Eqs. 6.28d-6.28e),

but Eqs. 6.28g-6.28h may not be satisfied for the nominal system of Eq. 6.1 under the trajectories

ū∗1,c,(t|tk) . . . , ū
∗
m,c(t|tk), t ∈ [tk, tk+N) (this trajectory is denoted by ˜xtot in the following) returned by

the set ofm Safeness Index-I-DLEMPC’s at iterationc since that was not a condition required for

feasibility of any of them Safeness Index-I-DLEMPC’s. Nevertheless, iterationc+1 is not guar-

anteed to be feasible unless ˜xtot meets the constraints of Eqs. 6.28g-6.28h. Therefore, satisfaction

of those constraints by the control actions returned at iterationc should be checked before a new

iteration is performed. If Eqs. 6.28g-6.28h are not satisfied by x̃tot andc> 1, the solution from

iterationc−1 should be implemented (this implementation strategy ensures that the solution from

iterationc−1 causes Eqs. 6.28g-6.28h to be met or iterationc would not have been performed).

If Eqs. 6.28g-6.28h are not satisfied by ˜xtot andc= 1, thenh̄(x(tk)) should be implemented (the

solution to them Safeness Index-I-DLEMPC’s should not be implemented because satisfaction of

Eqs. 6.28g-6.28h by ˜xtot is required for the closed-loop stability results in the next section). This

gives the following implementation strategy of the Safeness Index-I-DLEMPC design:

1. At tk, all m Safeness Index-I-DLEMPC’s receive a measurement of the current statex(tk)

from the sensors. Go to Step 2 (c= 1).

2. An attempt is made to solve allm Safeness Index-I-DLEMPC optimization problems. If

c = 1, Safeness Index-I-DLEMPCj assumes ¯uz(t) = h̄z(x̃ j(tk+r)), ∀ t ∈ [tk+r , tk+r+1), z∈

{1, . . . ,m} butz 6= j, r = 0, . . . ,N−1. If c> 1, Safeness Index-I-DLEMPCj assumes ¯uz(t)=

ū∗z,c−1(t|tk), t ∈ [tk, tk+N), z∈ {1, . . . ,m} butz 6= j. If all mSafeness Index-I-DLEMPC’s are

feasible, go to Step 3. Else, go to Step 4.

3. Evaluate whetherV(x̃tot(t)) ≤ ρe and S(x̃tot(t)) ≤ STH, ∀ t ∈ [tk, tk+N). Also, evaluate

whether the iteration termination conditions are met (e.g., the objective function evaluated

for x̃tot andū∗i,c(t|tk), i = 1, . . . ,m, t ∈ [tk, tk+N) fails to improve between two iterations). If

Eqs. 6.28g-6.28h are not satisfied by ˜xtot or the iteration termination condition is met, go

to Step 4. Else, any information required for evaluating theiteration termination condition
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(e.g., the objective function value) is stored, and go to Step 5 (c← c+1).

4. If c>1, implement[ū∗1(tk|tk) . . . ū∗m(tk|tk)]= [ū∗1,c−1(tk|tk) . . . ū∗m,c−1(tk|tk)]. Else, implement

[ū∗1(tk|tk) . . . ū∗m(tk|tk)] = [h̄1(x(tk)) . . . h̄m(x(tk))]. Go to Step 6.

5. Safeness Index-I-DLEMPCj receives the optimal solutions ¯u∗z,c−1(t|tk), z= 1, . . . ,m, z 6= j,

t ∈ [tk, tk+N), for j = 1, . . . ,m. Go to Step 2.

6. When a new state measurement is received attk+1, go to Step 1 (k← k+1).

x(tk)

Safeness Index-I-DLEMPC m− 1

Safeness Index-I-DLEMPC m

Plant

Safeness Index-I-DLEMPC 2

Safeness Index-I-DLEMPC 1
ū∗

1
(tk|tk)

ū∗

2
(tk|tk)

ū∗

m−1
(tk|tk)

ū∗

m(tk|tk)

ū∗

1,c(t|tk)

ū∗

j,c(t|tk)

ū∗

m,c(t|tk)

....

....

Figure 6.2: Block diagram of the Safeness Index-I-DLEMPC scheme.
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6.4.4 Feasibility and Closed-Loop Stability Analysis for the Safeness Index-

I-DLEMPC Implementation Strategy

The following theorem provides sufficient conditions underwhich the implementation strategy

of the Safeness Index-I-DLEMPC is guaranteed to maintain closed-loop stability of a nonlinear

process.

Theorem 6.2 Consider the system of Eq. 6.1 in closed-loop under the implementation strategy

(Steps 1-6) of the Safeness Index-I-DLEMPC based on a controller h̄(x) that satisfies the conditions

of Eq. 6.2. Letεw > 0, ∆ > 0, ρ > ρe> ρs> 0 satisfy Eqs. 6.18 and 6.10. If x(t0) ∈Ωρ , ρmin≤ ρe

and N≥ 1 whereρmin is defined as in Eq. 6.11 and where the compact setΩρmin satisfies Eq. 6.19,

then the closed-loop state x(t) of Eq. 6.1 is guaranteed to enter the safety zone in finite timewhen

x(t0) ∈Ωρ , to be bounded withinΩρ at all times, and to be ultimately bounded inΩρmin.

Proof 6.2 The proof consists of two parts. In Part 1, we demonstrate that the inputs applied to the

process at every sampling time have characterizable properties. In Part 2, we demonstrate that

this sequence of characterizable inputs guarantees the results of Theorem 6.2.

Part 1. At each sampling time, according to the implementation strategy of the Safeness Index-

I-DLEMPC, eitherh̄(x(tk)) is implemented on the process, or a feasible solution to all mSafeness

Index-I-DLEMPC’s (i.e., a solution satisfying Eqs. 6.28b-6.28i in Safeness Index-I-DLEMPC i,

∀ i = 1, . . . ,m) is implemented that ensures V(x̃tot) ≤ ρe and S(x̃tot) ≤ STH from Step 3 of the im-

plementation strategy (feasibility of Safeness Index-I-DLEMPC’s 1 to m ensures that each imple-

mented input̄u∗i (t|tk), t ∈ [tk, tk+1), i = 1, . . . ,m, satisfies Eqs. 6.28c and 6.28i because satisfaction

of these constraints depends only on the value ofū∗j (t|tk) calculated by the controller and is not

affected by the values of u∗z(t|tk), t ∈ [tk, tk+N), z∈ {1, . . . ,m}, z 6= j). When c= 1, there is no

guarantee that a feasible solution to Eq. 6.28 exists in any of the m Safeness Index-I-DLEMPC’s

when Eq. 6.28h is applied (however, a feasible solutionū∗i,1(t|tk) = h̄i(x̃(tq)), ∀ t ∈ [tq, tq+1),

q= k, . . . ,k+N−1, is guaranteed for Safeness Index-I-DLEMPC i, i= 1, . . . ,m, when Eq. 6.28h

is not applied because this manipulated input trajectory satisfies Eq. 6.28c from Eq. 6.2, it sat-
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isfies Eq. 6.28g when combined with the manipulated input trajectories of Eq. 6.28d by Eq. 6.12

whenρmin ≤ ρe, and it trivially satisfies Eq. 6.28i). When c> 1, each iteration performed is

guaranteed to have a feasible solution. To show this, it is noted that if iteration c is attempted,

thenū∗i,c−1(t|tk), t ∈ [tk, tk+N), i = 1, . . . ,m, met Eqs. 6.28c and 6.28i from feasibility of those con-

straints at iteration c−1 and ensured that Eqs. 6.28g-6.28h were satisfied by the nominal solution

of Eq. 6.1 under̄u∗i,c−1(t|tk), t ∈ [tk, tk+N), i = 1, . . . ,m, by Step 3 of the Safeness Index-I-DLEMPC

implementation strategy. At iteration c, Safeness Index-I-DLEMPC j setsū∗z,c(t|tk) = ū∗z,c−1(t|tk),

t ∈ [tk, tk+N), z∈ {1, . . . ,m}, z 6= j, by Eq. 6.28e (the input trajectory for the prior iterationexcept

for ū∗j ,c−1(t|tk)). Therefore,ū∗j ,c(t|tk) = ū∗j ,c−1(t|tk), t ∈ [tk, tk+N), is a feasible solution to Safeness

Index-I-DLEMPC j because it is guaranteed to satisfy all constraints in Eq. 6.28 at iteration c

since it satisfied them at iteration c−1 (even when the constraint of Eq. 6.28h is applied). When

any of the m Safeness Index-I-DLEMPC’s is infeasible for c= 1, h̄(x(tk)) is implemented, and

Proposition 6.1 holds. Thus, whether a feasible solution tothe Safeness Index-I-DLEMPC’s is

implemented or̄h(x(tk)), the implemented solution is characterizable and closed-loop stability of

a nonlinear system under such control actions can be analyzed.

Part 2. We will now prove the three results of Theorem 6.2. First, we prove that the Safe-

ness Index-I-DLEMPC implementation strategy guarantees that the closed-loop state will enter

the safety zone in finite time whenever x(tk) ∈Ωρ but S(x(tk)) > STH. At each sampling time that

S(x(tk)) > STH and a feasible solution to the m Safeness Index-I-DLEMPC’s meeting the condi-

tions checked in Step 3 of the Safeness Index-I-DLEMPC implementation strategy is implemented

on the process, the constraint of Eq. 6.28i is applied in eachof the m Safeness Index-I-DLEMPC’s.

Summing these constraints gives Eq. 6.20a, and the results developed through Eqs. 6.20-6.26 in

the proof of Theorem 6.1 hold, showing that V(x(tk+1)) < V(x(tk)). Alternatively, ifh̄(x(tk)) is

applied at tk when S(x(tk)) > STH, then by Proposition 6.1, V(x(tk+1)) <V(x(tk)). This indicates

that at each sampling time that S(x(tk))> STH, the implementation strategy of the Safeness Index-

I-DLEMPC drives x(t) from a Lyapunov level set to one with a lower upper bound on theLyapunov

function. The state will either enter the safety zone beforeit entersΩρmin or will be driven toΩρmin
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(contained within the safety zone from Eq. 6.19) in finite time.

We next prove that the closed-loop state remains bounded inΩρ at all times under the Safe-

ness Index-I-DLEMPC implementation strategy. When a feasible solution to the Safeness Index-

I-DLEMPC is implemented on the process, this solution satisfies the constraint of Eq. 6.28g for

x̃tot and/or the constraint of Eq. 6.28i. When the constraint of Eq. 6.28i is applied (regardless of

whether the constraint of Eq. 6.28g is simultaneously applied), the analysis from the prior para-

graph indicates that Eq. 6.26b holds and therefore, V(x(t))≤V(x(tk)), ∀ t ∈ [tk, tk+1), so that the

state cannot leaveΩρ within ∆ if x(tk) ∈ Ωρ . If Eq. 6.28g is applied but Eq. 6.28i is not (i.e.,

x(tk) ∈ Ωρe, tk < ts, and S(x(tk)) ≤ STH), then utilizing Propositions 6.2 and 6.3, Eq. 6.18, and

Eq. 6.28g, we conclude that Eq. 6.27 holds and that x(t) ∈ Ωρ , ∀ t ∈ [tk, tk+1), if x(tk) ∈ Ωρe. If

h̄(x(tk)) is implemented on the process and Eq. 6.10 holds, then Eqs. 6.20-6.26 hold and Eq. 6.26b

shows that x(t) cannot leaveΩρ in ∆ if x(tk) ∈ Ωρ . Therefore, under the implementation strategy

of the Safeness Index-I-DLEMPC, the implemented control action at tk ensures that x(t) ∈ Ωρ ,

∀ t ∈ [tk, tk+1), whenever x(tk) ∈Ωρ and therefore, x(t) ∈Ωρ throughout the length of operation if

x(t0) ∈Ωρ .

Finally, we prove that the closed-loop state is ultimately bounded inΩρmin when tk > ts. In this

case, either Eq. 6.28i holds (if a feasible solution to the Safeness Index-I-DLEMPC is implemented)

or h̄(x(tk)) is implemented. In both cases from the analysis above, V(x(tk+1)) < V(x(tk)) for

x(tk) ∈ Ωρ/Ωρs. Once x(tk) ∈Ωρs, then by definition ofΩρmin, the closed-loop state will not leave

Ωρmin.

6.5 Application to a Chemical Process Example

The two proposed distributed control schemes and the centralized Safeness Index-based LEMPC

are compared through an ethylene oxidation example. Three oxidation reactions12 convert ethylene

to ethylene oxide in a continuous stirred tank reactor (CSTR) with a cooling/heating jacket for
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which the dimensionless mass and energy balances are:77

dx1

dt
= u1(1−x1x4) (6.29a)

dx2

dt
= u1(u2−x2x4)−A1e

γ1
x4 (x2x4)

0.5−A2e
γ2
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dx3
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Figure 6.3: The manipulated input profile of the catalytic reactor under the Safeness Index-I-
DLEMPC.

Becauseu2 only appears in theu1u2 term of ẋ2, we can defineu4 = u1u2 so that the form of

Eq. 6.29 resembles that of Eq. 6.1. The manipulated inputsu1, u2 andu3 are the dimensionless

feed volumetric flow rate, the concentration of ethylene in the feed, and the coolant temperature,

respectively. The state variablesx1, x2, x3, andx4 represent the dimensionless gas density, ethy-

lene concentration, ethylene oxide concentration, and thereactor temperature, respectively. The

values of the parameters in Eq. 6.29 can be found in.9 The manipulated inputs are constrained by
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physical actuator limitations as follows: 0.0704≤ u1 ≤ 0.7042, 0.2465≤ u2 ≤ 2.4648, 0.6 ≤

u3 ≤ 1.1. The process of Eq. 6.29 is operated around the asymptotically stable steady-state

[x1s x2s x3s x4s] = [0.998 0.424 0.032 1.002] that corresponds to the manipulated input values of

[u1s u2s u3s] = [0.35 0.5 1.0]. The control objective is to maximize the average yield of ethylene

oxide, which is computed over a time period fromt0 to ctf by:

Y(te) =

∫ ct f

t0
u1(τ)x3(τ)x4(τ) dτ

∫ ct f

t0
u1(τ)u2(τ) dτ

(6.30)

wherectf is an integer multiple (c= 10) of the length of the operating periodt f = 47. For practical

reasons, the average amount of material that may be fed to thereactor over each operating period

t f is fixed as follows:
1
t f

∫ jt f

( j−1)t f

u1(τ)u2(τ) dτ = u1su2s = 0.175 (6.31)

where j = 1,2, . . . ,10. Since the material constraint of Eq. 6.31 fixes the denominator of Eq.

6.30, the centralized and distributed Safeness Index-based LEMPC schemes will only maximize

the following stage cost:

Le(x,u) = u1x3x4. (6.32)

A characterization of the closed-loop stability regionΩρ is developed using a Lyapunov-

based controllerhT(x) = [h1(x) h2(x) h3(x)] where each component is a PI controller with the

form ha(x) = KPa(xa−xas)+
1
τa

∫ t
0(xa−xas)dt, a= 1,2,3, whereKP1 = 3.0, KP2 = 0.105, KP3 =

0.1, τ1 = 0.00001, τ2 = 0.0002081, andτ3 = 0.005. The quadratic Lyapunov functionV(x) =

(x− xs)
TP(x− xs) where the positive definite matrixP is P=diag[1 1 1 1] was used to estimate

the stability regionΩρ whereρ = 2.1. The Lyapunov-based constraints of the distributed and

centralized Safeness Index-based LEMPC’s were Eqs. 6.7e, 6.8g, and 6.28g; in this example, the

contractive constraints of Eqs. 6.7g, 6.8i, and 6.28i were not applied because no closed-loop sta-

bility or safety issues were encountered during the simulation, and thereforeρe was set toρ in

Eqs. 6.7e, 6.8g, and 6.28g. The Explicit Euler numerical integration method with an integration
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Figure 6.4: The manipulated input profile of the catalytic reactor under the Safeness Index-S-
DLEMPC.

step size ofhI = 10−5 was used to simulate the process of Eq. 6.29 and an integration step size

of hO = 0.005 was used to integrate the model of Eq. 6.29 within the optimization problems. The

interior-point solver Ipopt90 was used to solve all LEMPC optimization problems. The LEMPC’s

are implemented with a shrinking prediction horizon so thatat tk = ( j−1)t f , j = 1, . . . ,10, where

the operating windowt f = 47, the prediction horizonN is set tot f/∆ for ∆ = 1, butN is then de-

creased by one at each subsequent sampling time between( j−1)t f and jt f . No feasibility issues

were encountered for any of the optimization problems performed. However, after every iteration

of the iterative Safeness Index-based LEMPC, the conditionsV(x̃tot) ≤ ρ andS(x̃tot) ≤ STH and

the iteration termination condition (terminate the optimization problem when the integral of the

stage cost of Eq. 6.32 over the prediction horizon calculated using the solutions to them Safeness

Index-I-DLEMPC’s at iterationc is no better than the value at iterationc−1) were checked. When

these conditions indicated that no second iteration shouldbe performed,h(x(tk)) was applied to

the process. The number of iterations performed at a given sampling time using this strategy was

at most 4.
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Figure 6.5: The manipulated input profile of the catalytic reactor under the centralized Safeness
Index-based LEMPC.

The Safeness Index for this example was designed to incorporate both the concentration of

ethylene oxide (since it is a flammable, reactive, and toxic gas) and the temperature in the reactor

(which we considered to be a quantity that we want to bound) asfollows:

S(x) =
ax3+bx4

max{ax3+bx4 : x3,x4 ∈ Ss}
(6.33)

wherea andb are weighting constants, andSs is a set utilized in analyzing expected values

of the Safeness Index for determining a threshold forS(x). Specifically, based on prior works in

which the process of Eq. 6.29 was controlled using EMPC (e.g.,9), the following estimated ranges

in which the values of the process states were expected to remain when the process is operated

under EMPC were developed:x1 ∈ [0.98,1], x2 ∈ [0,2], x3 ∈ [0,0.25], x4 = [0.7,1.03]. The set of

all x1, x2, x3, andx4 for which those states are in their respective bounds definesSs. Based on these

ranges,a andb are set to 5 and 2 so that whenx3 andx4 take their maximum values inSs, the terms

ax3 andbx4 in S(x) are on the same order of magnitude. To determine an appropriate value ofSTH,
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Figure 6.6: The value of the Safeness Index functionS(x) under the Safeness Index-I-DLEMPC.

the value ofS(x) was analyzed at many points throughoutSs through numerical simulations, and

the maximum value observed wasS(x) = 3.31, which is used as the denominator in Eq. 6.33 (i.e.,

max{ax3+bx4 : x3,x4 ∈ Ss} was defined to be 3.31 in Eq. 6.33).

The thresholdSTH was set to 0.7 to attempt to prevent the value ofx3 from exceeding about

75% of the maximum value of 0.25 within the expected region ofoperation defined bySs, and to

attempt to prevent the value ofx4 from getting more than about 15% larger withinSs than the feed

temperature which was used as the reference temperature formakingx4 dimensionless in.77

For both distributed Safeness Index-based LEMPC’s, the partitioning of the manipulated inputs

was based on the constraint of Eq. 6.31 (i.e., because the constraint is enforced on the product of

u1 andu2, the inputsu1 andu2 were solved by one distributed controller andu3 was solved by

another). The dynamic model of Eq. 6.29 under all control strategies was initiated from the steady-

state pointx(t0)T = [0.998 0.424 0.032 1.002] where the value of the Safeness IndexS(x) is equal

to 0.65 which is less than threshold valueSTH = 0.7 (this satisfies the assumption that the steady-

state is inside the safety zone). Figures 6.3-6.5 representthe manipulated input profiles under the

Safeness Index-I-DLEMPC, the Safeness Index-S-DLEMPC, and the centralized Safeness Index-
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Figure 6.7: The value of the Safeness Index functionS(x) under the Safeness Index-S-DLEMPC.
S(x) overlaysSTH in the figure throughout much of the time of operation.

Table 6.1: The average yield and computation time under the distributed and centralized Safeness
Index-based LEMPC strategies.

Strategy Yield (%) Computation Time (s)
Safeness Index-S-DLEMPC 7.72 7.37
Safeness Index-I-DLEMPC 6.60 6.167
Safeness Index-C-LEMPC 8 10.1

based LEMPC, respectively. From these figures, the manipulated inputs under all control strategies

exhibit periodic operation so that the ethylene is distributed in a non-uniform fashion with respect

to time to maximize the yield of ethylene oxide. In addition,the material constraint of Eq. 6.31

was met under all three control strategies over each operating window.

Figures 6.6-6.8 show the Safeness Index value under the distributed and centralized control

strategies. From these figures, both the distributed and centralized Safeness Index-based LEMPC’s

were able to maintain the closed-loop state within the safety zone during the time of operation.

The value ofS(x) evolves periodically due to the periodic nature of the optimal solution of the

input profile. Table 6.1 shows the average computation time and yield under the two distributed
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Figure 6.8: The value of the Safeness Index functionS(x) under the centralized Safeness Index-
based LEMPC.S(x) overlaysSTH in the figure throughout much of the time of operation.

Safeness Index-based LEMPC’s and under the centralized Safeness Index-based LEMPC (denoted

by Safeness Index-C-LEMPC in the table). From the table, thecentralized Safeness Index-based

LEMPC requires almost 40% more computation time than the Safeness Index-S-DLEMPC and

requires over 60% more computation time than the Safeness Index-I-DLEMPC. The yield of the

Safeness Index-S-DLEMPC is about 15% greater than that of the Safeness Index-I-DLEMPC and

is close to that of the centralized design (the yield for the centralized design is only about 4%

greater), but it requires 16% more computation time than theSafeness Index-I-DLEMPC. Due to

the conditions onV(x̃tot) andS(x̃tot) and the iteration termination condition that must be met at

the end of each iteration for the Safeness Index-I-DLEMPC, the iterations for this control design

frequently terminated after the second iteration so that the c = 1 solution was applied. The lack

of communication between the controllers when thec = 1 solution is applied, or the application

of h(x(tk)) instead of an optimal solution to the optimization problem when thec = 1 solution

does not meet the termination criteria, may contribute to the lower economic performance of the

iterative control design for this example than the sequential design. However, all control designs
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were successful at keepingS(x)≤ STH at all times.

6.6 Conclusion

In this chapter, sequential and iterative DLEMPC designs were developed with constraints based

on a Safeness Index. Implementation strategies were developed for each that guarantee closed-loop

stability of a nonlinear process. A chemical process example demonstrated that the computation

time may be lower for the DLEMPC designs than for a centralized LEMPC design with Safeness

Index-based constraints.
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Chapter 7

Conclusions

Due to the increasing importance of the safety and economic objectives of process operation, this

dissertation developed different methods for integratingprocess operational safety and process

economics with advanced process control system design. In addition, we developed for the first

time a metric termed the Safeness Index that can quantify thesafeness of each point in state-

space, and then developed an EMPC scheme that can utilize a threshold on this index to maintain

the closed-loop state within a safety zone. To reduce the computation time issues introduced by

the centralized safety-based EMPC designs, various distributed EMPC paradigms were developed

with guaranteed closed-loop stability and recursive feasibility.

Specifically, in Chapter 2, an implementation strategy was presented for systems where a safe

level set of operation is evaluated on-line within which theclosed-loop state can vary throughout

time. Various Lyapunov-based EMPC schemes that can utilizethis safety level set were proposed.

The first safety-LEMPC utilizes a constraint based on a Lyapunov-based controller to drive the

state into a safe level set; however, the rate at which the state approaches the safety level set

under this scheme may be long. To drive the process states into the safety level set by a pre-

specified time, an LEMPC design that uses a sufficiently long prediction horizon and a region

constraint was developed. Due to the computation time difficulties that can be introduced by such

a scheme, two LEMPC formulations with tuning parameters that can be used to modify the rate of

203



transition of the closed-loop state to the safety region without the need for a long prediction horizon

to ensure feasibility/stability were proposed. The first safety-based LEMPC formulation utilizes

slack variables to adjust the Lyapunov function bound, and the second one decreases the upper

bound on the Lyapunov function dynamically. Closed-loop stability in the sense of boundedness

of the closed-loop state and recursive feasibility was proved under each scheme.

Chapter 3 developed two LMPC schemes with safety-based constraints that can integrate feed-

back control and process functional safety. The motivationfor the proposed safety-LMPC design

is to drive the closed-loop state to a safe region of operation at a desired rate, which cannot easily

be accomplished by tuning the weighting matrices in the quadratic objective function. These two

safety-based LMPC paradigms ensure process safety by varying the upper bound on the level set

of the Lyapunov function to seek to improve the rate of approach of the process state to the safety

region. In addition, these two schemes can also be modified toshift the region of operation from

a level set around one steady-state to a level set around another. Recursive feasibility and closed-

loop stability of a class of nonlinear systems under one of the safety-LMPC formulations in the

presence of uncertainty was proved for a sufficiently small sampling period.

Since the aforementioned safety-based EMPC designs were implemented with a centralized

control paradigm, this dissertation developed various distributed safety-based EMPC formulations

for a class of nonlinear processes to reduce the computationtime issues that can be introduced

by the centralized EMPC. Specifically, in Chapter 4, sequential and iterative Safety-DLEMPC

schemes were developed as alternative control techniques to the centralized Safety-LEMPC. The

motivation for developing these two distributed safety-based LEMPC schemes is to achieve less

on-line computation time while attaining similar closed-loop performance and safety constraints

satisfaction with respect to the centralized one. An implementation strategy and mathematical

formulation for the Safety-Sequential-DLEMPC design and the Safety-Iterative-DLEMPC design

were developed. Recursive feasibility and closed-loop stability of a class of nonlinear systems

under the Safety-S-DLEMPC and Safety-I-DLEMPC formulations in the presence of uncertainty

were proved for a sufficiently small sampling period. Utilizing a chemical process example, the
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proposed iterative and sequential Safety-DLEMPC strategies were able to yield comparable closed-

loop performance while significantly decreasing the on-line computation time compared to that

required to solve the centralized Safety-LEMPC.

Subsequently, in Chapter 5, a new metric termed Safeness Index that can coordinate, for the first

time, the control and safety systems within a chemical process plant was developed. A systematic

approach for defining the functional form of the Safeness Index was given, and a methodology of

choosing the threshold of the Safeness Index was presented.To efficiently utilize this Safeness

Index within a control system, an LEMPC scheme with a hard Safeness Index-based constraint

was proposed to integrate feedback control, process safetyand process economics within a unified

framework. Since the safety zone defined by this constraint is not necessary forward invariant set,

an implementation strategy that can guarantee that the closed-loop state is driven into the region

where the Safeness Index is less than a desired threshold waspresented. Through a chemical

process example, the proposed method was demonstrated to becapable of maintaining the closed-

loop state within a safe region of operation while maximizing process economics.

Chapter 6 developed sequential and iterative DEMPC’s with Safeness Index-based constraints,

and implementation strategies for each. Sufficient conditions that guarantee closed-loop stability

of a nonlinear process operated under these implementationstrategies were derived. A catalytic re-

actor example was used to compare the two distributed controllers with a cenralized design in terms

of computation time, closed-loop performance, and safety constraints satisfaction. The proposed

iterative and sequential Safeness Index-based DLEMPC strategies were able to yield comparable

closed-loop performance while significantly decreasing the on-line computation time compared to

that required to solve the centralized Safeness Index-based LEMPC.
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