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Hydrogen is proposed by many to be the fuel of the future as it is the key ingredient in a

transition from a fossil fuel-based economy toward a zero carbon emission and sustainable energy

economy. Hydrogen can serve as an efficient energy carrier for hydrogen-based technologies (e.g.,

fuel cells and hydrogen internal combustion engine) and lead to substantial reduction of green-

house gas emissions and great environmental benefits. Hydrogen can be produced by a variety of

technologies (e.g., steam methane reforming (SMR), coal gasification, biomass gasification, elec-

trolysis, partial oxidation, solar thermal cracking) fromfossil (e.g., natural gas), non-fossil (e.g.,

biogas) and non-carbon (e.g., water) sources, which highlights the great potential and flexibility of

a hydrogen-based economy. Additionally, hydrogen is a key feedstock for the petroleum refining

and fine chemical manufacturing industries. With current state-of-the-art technology, hydrogen is

produced almost exclusively from fossil fuels by SMR. At SMR-based hydrogen plants, the re-

formers are the most expensive equipment in terms of the maintenance and operating costs, and

thus, even a small improvement in the reformer thermal efficiency to lower operating costs of the

reformer without compromising the expected service life ofthe reformer is expected to allow the

plants to achieve a significant profit.
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Motivated by these considerations, a systematic frameworkfor creating and simulating a com-

putational fluid dynamics (CFD) model for an industrial-scale reformer at an SMR-based hydrogen

plant and, subsequently, a framework for designing and evaluating a real-time furnace balancing

scheme are developed in this dissertation. Specifically, a CFD model for an industrial-scale re-

former is created in ANSYS Fluent, which is used to improve our understanding of the physio-

chemical processes in the tube side and the furnace side of the reformer as well as their thermal

interactions during the catalytic conversion of methane. Then, a furnace balancing scheme is de-

veloped to optimize the reformer input at the nominal total furnace-side feed (FSF) flow rate that

minimizes the inherent variability in the outer tube wall temperature (OTWT) distributions along

the reforming tube length. Subsequently, a statistical-based model identification is developed to

create a computationally efficient and robust model for the OTWT distribution as a function of the

FSF distribution, total FSF flow rate and interactions amongneighboring reforming tubes so that

the optimized reformer input can be identified in real-time.Finally, a real-time furnace-balancing

scheme is developed to optimize the reformer input such thatthe reformer thermal efficiency is

maximized without compromising the expected service life of the reformer.
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Chapter 1

Introduction

1.1 Hydrogen Economy

High levels of atmospheric carbon dioxide, which is a known consequence of extensive use of

fossil fuels as the primary sources of energy in the last century, are adversely affecting climate

patterns across the world. In a global effort to reduce carbon emissions to mitigate some of the

effects of climate change stricter emissions regulations have passed, which have motivated the need

for alternative fuels such as hydrogen. A vision of a carbon-emission-free and sustainable energy

system shared by many [4, 37] is aligned with a future hydrogen economy, in which hydrogen is

used as a transportation fuel. This is because a hydrogen economy holds the potential to allow

a nation to achieve energy security, i.e., to become independent of the limited and constantly

depleting foreign crude oil supplies and on political stability of countries with large crude oil

reservoirs, and to resolve some effects of climate change without halting economic growth. This

vision of a carbon-emission-free and sustainable hydrogeneconomy is viable because hydrogen

can be synthesized from a myriad of commercial thermal pathways (e.g., steam reforming, partial

oxidation, gasification, cracking, pyrolysis, and biological reactions) that start from a diverse array

of primary energy sources including fossil fuels, biomass and renewable energy. Additionally,

physical and chemical properties, e.g., a high diffusivity, a high specific energy content and a wide
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range of flammability, of hydrogen make it an efficient transportation fuel. For instance, hydrogen

can diffuse rapidly into air to create a uniform combustiblemixture while releasing 2.75 times

greater heat of combustion per unit mass than hydrocarbon fuels [4].

In addition to the vision of a carbon-emission-free and sustainable hydrogen economy, the cur-

rent demand for hydrogen is large, e.g., the annual world-wide hydrogen production in 2008 was

∼500 billion Nm3, which is equivalent to 44.5 million metric tons, and corresponded to a global

market of more than $40 billion. The demand for hydrogen is also expected to grow at an annual

rate of 5 to 10% because hydrogen is widely used as precursor across a variety of manufacturing

industries. In petroleum refineries, refining catalytic processes account for approximately 37%

hydrogen world-wide hydrogen consumption [4]. For example, the hydro-treating process uses

hydrogen to convert olefins to paraffins, and the hydro-cracking process uses hydrogen to cleave

sigma carbon-carbon bonds; these refining processes serve the same purpose of increasing the hy-

drogen to carbon ratio in the downstream process reactants,allowing these downstream processes

to have higher efficiency. Additionally, the hydro-desulfurization process uses hydrogen to remove

thiol compounds from the raw natural gas feedstock to prevent the catalysts of downstream pro-

cesses from being deactivated. In fine chemical manufacturing industries, hydrogen is the main

component of synthesis gas; e.g., the production of ammoniaaccounts for approximately 49% hy-

drogen world-wide hydrogen consumption. In semiconductormanufacturing industries, hydrogen

is used as the gas carrier; for example, the feedstock to a plasma enhanced chemical vapor deposi-

tion reactor is typically composed of 90% hydrogen and 10% silane [11]. Moreover, hydrogen is

also a clean and efficient energy carrier for hydrogen-basedtechnologies. Thus, solving challenges

encountered in commercial production of hydrogen and optimizing the production line has become

of particular interest to both academia and industry [4].

It is noted that although hydrogen can be derived from a diverse array of primary energy sources

with a variety of commercial processes, only a few are economically feasible. With current state-

of-the-art technology, hydrogen is produced almost exclusively from fossil fuels, e.g.,∼96% of

the world-wide hydrogen production activity uses fossil fuels as starting materials [4], by ther-
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mochemical processes. Our literature survey recognizes that steam methane reforming (SMR), an

endothermic conversion of methane and superheated steam into hydrogen, is by far the most com-

mon commercial hydrogen production process and accounts for the largest share of the world-wide

hydrogen production [27, 6, 18]; in 2007, SMR was responsible for up to 85% of the world-wide

hydrogen production [55]. The reasons for the prevalent usage of centralized SMR-based facilities

to meet the large and growing demand for hydrogen are twofold: (1) SMR can achieve up to 90%

thermal efficiency on the metric of high heating value [50] and up to 82% of methane conver-

sion [14], and (2) centralized SMR-based facilities with the production rates over 1 million Nm3

per day are reported to require the least capital investment[6] and have a low production cost (e.g.,

$6.90 per gigajoule (GJ)) compared to hydrogen plants that use competing technologies, e.g., the

production cost via electrolysis can be as high as $98 per GJ [37]. Barreto et al. [6] speculated that

SMR would remain the leading technology in world hydrogen production in 2050.

In practice, the process is simultaneously catalyzed and carried out under high operating tem-

peratures inside hundreds of nickel-based catalyst filled tubular reactors to achieve a high conver-

sion of methane in a finite packed-bed length, which allows the SMR-based facilities to become

economically viable. To create the high temperature environment necessary to achieve a high

conversion of methane, the reforming tubes are housed inside an insulated combustion chamber

(which is referred to as a “reformer” in this dissertation) where the recycled effluent from the pu-

rification units and the fresh natural gas undergo a lean combustion process. Reformers can be

categorized with respect to the location of burners: top-fired, side-fired, bottom-fired and terrace

wall-fired reformer, which in turn dictates interactions between the tube side and furnace side, the

temperature distribution characteristics of the furnace-side flow inside the reformer and the heat

flux profile along the reforming tubes, e.g., bottom-fired reformers are characterized by a constant

heat flux along the reforming tubes [19]. For SMR, the reformer configurations that facilitate a

high heat transfer rate to the tube side near the reforming tube inlet are expected to require the

shortest reforming tube length to achieve a desired set-point of the methane conversion and are

preferable. Therefore, the top-fired configuration is frequently employed at SMR-based hydrogen
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plants and is the subject of this dissertation.

SMR-based hydrogen plants typically consist of two major sections: the synthesis section and

the purification section [24]. In the synthesis section, fresh natural gas feedstock is treated in a

desulfurization unit to remove thiol compounds preventingcatalysts used in downstream processes

from being poisoned. Then, the effluent of the desulfurization unit typically undergoes a catalytic

prereforming process to convert higher hydrocarbons in thetreated feedstock into methane and

byproducts (i.e., carbon oxides and hydrogen), preventingthese high hydrocarbons from decom-

posing inside the reforming tubes, which causes coke formation and catalyst deactivation. Next,

the treated feedstock (i.e., the effluent of the prereforming process) and high pressure superheated

steam are fed into the reformer to undergo SMR producing hydrogen. The synthesis gas (i.e.,

the effluent of the reformer) is treated in a water-shift reactor to remove carbon monoxide and

to produce a small additional amount of hydrogen, and the effluent of the water-shift reactor en-

ters the purification section in which the process stream is stripped off of unreacted reactants and

byproducts (i.e., carbon dioxide) to produce high purity product. At SMR-based hydrogen plants,

the reformers are the most expensive equipment in terms of the maintenance and operating costs

compared to other major equipment such as the hydrotreating, prereforming, water-shift and pu-

rification units. For instance, the re-tubing cost of the reformer is∼10% of the total capital invest-

ment [13], and the annual investment to procure fresh natural gas for a SMR-based hydrogen plant

with a production rate of 2.7 million Nm3 per day is $62 million [13]. Therefore, even a small

improvement in the reformer efficiency is expected to significantly lower the reformer operating

cost and improve the plant efficiency, which results in significant financial benefits [32, 56, 13].

Despite the potential economic gain, under the standard operating policy of the reformer, the

nominal operating condition is often suboptimal and is calibrated to maintain the expected reformer

service life by reducing the total fired duty and compromising the hydrogen production rate of the

SMR-based plant to keep the reformer in a safe operating regime. This is because hydrogen manu-

facturing industry recognizes that the degradation of the microstructure of the reforming tube wall

due to temperature aging accelerates, if the outer tube walltemperature (OTWT) at any location
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along the reforming tube length exceeds its design value [23, 2, 22]. Specifically, the evolution

of the microstructure of the reforming tube wall starting from precipitation of primary and sec-

ondary carbides in the austenitic matrix, which leads to creep cavitation damage presented in the

form of isolated cavities and coalesce cavities, followed by the formation of microcracks which

propagate to form macrocracks occurs in an accelerated timeline leading to premature failure of

the reforming tubes. It has been documented that the reformer service life of 100,000 h can be

reduced by half under an operating condition that allows themaximum OTWT to exceed its de-

sign value by 20 K for an extended period of time [49]. This explains the relationship between

the reformer service life and the maximum operating temperature of the reformer or in particular

the maximum outer tube wall temperature (OTWT) along the reforming tube length among all re-

forming tubes. For this reason, the SMR-based hydrogen plant uses a system of infrared cameras

to periodically sample the OTWTs of the reforming tubes at a few discrete locations along the

reforming tube length to monitor the reformer service life;each set of measurements collected at

the fixed height is typically defined as an OTWT distribution.Experimental plant data of OTWT

distributions have revealed that the OTWTs within each OTWTdistribution are nonuniform with a

fluctuating range between 30 K to 110 K [32], and OTWT profiles along the reforming tube length

can vary noticeably among the reforming tubes. This nonuniformity in OTWT distributions poses

a major challenge in the estimation of the optimized firing rate due to the high risk of accelerat-

ing the degradation of the microstructure of the reforming tube wall. Specifically, the maximum

OTWT along the reforming tube length among all reforming tubes in the reformer operated under

a suboptimal fuel distribution can be higher than that in a reformer operated under an optimized

fuel distribution with the same total fuel flow rate [56]. Consequently, the optimized firing rate

may not be implemented without the proper distribution of the optimized total fuel flow rate, and

the SMR-based hydrogen plant throughput is compromised to retain the reformer service life and

to reduce the risk of suffering substantial capital and production losses.
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1.2 Dissertation Objectives and Structure

Motivated by the objective to increase the reformer thermalefficiency while maintaining the ex-

pected service life of the reformer in the presence of the inherent nonuniformity in OTWT distri-

butions, this dissertation is structured as follows.

Chapter 2 focuses on developing a computational fluid dynamics (CFD) model for an industrial-

scale reformer in ANSYS Fluent so that we can achieve an in-depth understanding of the physio-

chemical processes in the tube side and the furnace side as well as their thermal interactions during

the catalytic conversion of methane to hydrogen. Specifically, the effects of turbulence on the

furnace-side transport variables is simulated by the standardk− ε turbulence model with ANSYS

enhanced wall treatment function. Additionally, the lean combustion of the furnace-side feed is

modeled by the finite rate/eddy dissipation turbulence-chemistry interaction model and the global

reaction schemes with the premixed combustion assumption.Next, the absorption coefficient of

the furnace-side flow is modeled by an empirical correlationfor estimating the radiative proper-

ties of a homogeneous gas flow, Kirchhoff’s law, and Lambert Beer’s law, and thermal radiative

heat transfer rate between the interior combustion chamber, the outer reforming tube wall and the

furnace-side flow is modeled by the discrete ordinate method. Similarly, the effects of turbulence

on the tube-side transport variables is also simulated by the standardk− ε turbulence model with

ANSYS enhanced wall treatment function. Additionally, thecatalytic bed of the reforming reactor

is modeled by the continuum approach with ANSYS porous zone function, the effectiveness factor

and catalyst packing factor. It is noted that the effectiveness factor is used to simulate the heat and

mass transfer resistances between the bulk fluid and the surface of the catalyst. Next, the wall of

the reforming reactor is modeled by ANSYS thin wall function, and SMR is modeled by the global

reaction scheme. Subsequently, publicly available SMR-based plant data is used to derive equiva-

lent boundary conditions of the reformer CFD model namely the tube inlet, the burner inlet and the

energy leakage through the combustion chamber refractory wall, etc. As a result, the simulation

data generated by the CFD model for the reformer and the corresponding SMR-based plant data

6



can be used to validate our proposed assumptions and CFD model.

Chapter 3 focuses on developing a furnace-balancing schemeto determine an optimized FSF

distribution at the nominal total FSF flow rate that minimizes the inherent nonuniformity in the

OTWT distribution such that the reformer thermal efficiencycan be subsequently increased while

maintaining the expect service life of the reformer. Initially, the CFD model for an industrial-

scale reformer outlined in Chapter 2 is used to explore the steady-state behavior of the reformer

at the nominal total FSF flow rate with varying FSF distributions. Then, a model identification in

which the algorithm is formulated based on the least squaresregression method, properties of ther-

mal radiative heat transfer, the reformer geometry and the furnace-side flow pattern is proposed.

Next, the relationship between the FSF distribution and theflow control system of the reformer

is formulated under the linear valve assumption, and the fundamental differences between prop-

erly functional and defective flow control valves (i.e., constituents of the flow control system) is

discussed. Subsequently, a model-based furnace-balancing optimizer, which is formulated as an

optimization problem with the valve position distributionas the decision variable, and minimizing

the sum of the weighted squared deviations of the OTWTs from aset-point value for all reforming

tubes with the least the penalty term on the deviation of the valve positions from their fully open

positions as the objective function, is proposed. Finally,simulation data generated in this study

will be used to demonstrate that the optimized FSF distribution created by the furnace-balancing

scheme can significantly reduce the nonuniformity in the OTWT distribution in the combustion

chamber even when the reformer is under the influence of common valve-related disturbances.

Chapter 4 focuses on developing a statistical-based model identification that can be used to

derive a high-fidelity model for the OTWT distribution as a function of the FSF distribution, total

FSF flow rate and interactions among neighboring reforming tubes from simulation data generated

by the CFD model for the reformer outlined in Chapter 2. The model identification is structured

to have two distributed components, namely, a prediction step and a correction step, which can

be used simultaneously and independently to derive the prediction and correction models for the

OTWT distribution. Initially, an algorithm for the prediction step based on Bayesian variable se-
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lection, Bayesian model averaging, sparse nonlinear regression, reformer geometry and properties

of thermal radiation is proposed so that for each reforming tube, the prediction step can system-

atically identify predictors for the OTWT and simultaneously collect a corresponding library of

sub-prediction models, which are subsequently combined toyield the prediction model for the

OTWT of the reforming tube. A collection of prediction models for all reforming tubes is defined

as a prediction model for the OTWT distribution, which is expected to capture the dependence of

the OTWT distribution on the FSF distribution and total FSF flow rate. Next, an algorithm for the

correction step designed based on the ordinary Kriging is proposed so that for each reforming tube,

the correction step creates a spatial model allowing the OTWT to be estimated from the predicted

OTWT of the neighboring reforming tubes. A collection of correction models for all reforming

tubes is defined as a correction model for the OTWT distribution, which is expected to adjust

the predicted OTWT distribution to account for interactions among neighboring reforming tubes.

Subsequently, the data-driven model for the OTWT distribution is created using the prediction and

correction models for the OTWT distribution, which allows the model to account for the effect of

interactions among neighboring reforming tubes while estimating the OTWT distribution based on

the FSF distribution and total FSF flow rate. The model identification is executed on the Hoffman2

shared computing cluster at UCLA to construct the data-driven model for the OTWT distribution,

and the results from the goodness-of-fit and out-of-sample prediction tests of the data-driven model

are used to demonstrate the effectiveness of the scheme outlined in Chapter 4.

Chapter 5 focuses on developing a real-time furnace-balancing scheme that simultaneously

maximizes total FSF flow rate and identifies the corresponding optimized valve distribution in

real-time such that the reformer thermal efficiency is maximized within the physical limitation of

the reforming tube wall material. Initially, the frameworkfor the furnace-balancing scheme, the

valve-to-flow-rate converter and the statistical-based model identification outlined in Chapters 2,

4 and 3 are integrated with a heuristic search algorithm to create a real-time balancing procedure,

which recursively proposes different total FSF flow rate followed by optimizing the correspond

valve distribution until key operational specifications, e.g., the reformer throughput is maximized,
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and the OTWT along the reforming tube length of all reformingtubes must not exceed the design

temperature of the reforming tube wall, are satisfied. Subsequently, a CFD model for the reformer

outlined in Chapter 2 is used to represent the on-line unit atthe SMR-based hydrogen plant and is

used to characterize the previously unstudied dynamic response of the reformer to a step change

input in the total FSF flow rate, based on which an optimal strategy to implement the optimized

total FSF flow rate to maximize the reformer throughput without causing additional damage to the

reforming tubes in the process is proposed. Finally, a case study in which the balancing procedure

is implemented on the reformer initially operated under thenominal reformer input is discussed,

and the results are used to demonstrate that the furnace-balancing scheme successfully determines

the optimized reformer fuel input to increase the reformer throughput while meeting the OTWT

limits.

Chapter 6 summarizes the main results of the dissertation.
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Chapter 2

CFD Modeling of a Reformer

2.1 Introduction

In Chapter 1, we have established that the reformer service life is sensitive to the maximum oper-

ating temperature of the reformer and more specifically the maximum outer tube wall temperature

(OTWT) along the reforming tube length and among all reforming tubes. Due to the inherent vari-

ability in the OTWT distribution and the risk of accelerating the temperature aging process of the

reforming tube wall as outlined in Chapter 1, the maximized fired duty cannot be implemented

without an optimized spatial distribution of the total FSF flow rate in a sense of minimizing the

nonuniformity in the OTWT distribution. Therefore, as a preliminary step to developing a robust

real-time tool to maximize the reformer thermal efficiency,this Chapter focuses on developing a

CFD model for an industrial-scale reformer (details given in Section 2.2) in ANSYS Fluent so that

we can achieve an in-depth understanding of the physiochemical processes in the tube side and

the furnace side as well as their thermal interactions during the catalytic conversion of methane to

hydrogen. Initially, we discuss the modeling methodology for creating the reformer CFD model

which explains the selection of appropriate models to simulate all essential transport phenomena

and chemical reactions typically observed in the reformer with an affordable computational cost

and reasonable computing time. Specifically, the standardk− ε turbulence model with the AN-
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SYS enhanced wall treatment function, finite rate/eddy dissipation (FR/ED) turbulence-chemistry

interaction model and global kinetic models of combustion [5] [46] are integrated to simulate the

non-premixed combustion characteristics (details given in Section 2.4.1). Additionally, an empir-

ical correlation [43], Kirchhoff’s law and Lambert Beer’s law are used to simulate the furnace-

side radiative properties as a function of the furnace-sidetemperature, and the discrete ordinate

method [3] is used to simulate the rates of radiative heat transfer between the furnace-side flow,

the combustion chamber refractory walls and the outer reforming tube walls (details given in Sec-

tion 2.4.2). In the reforming tubes, the effects of turbulence on the tube-side transport variables is

simulated by the standardk− ε turbulence model with ANSYS enhanced wall treatment function.

Additionally, the catalytic bed of the reforming reactor ismodeled by the continuum approach with

ANSYS porous zone function, the effectiveness factor and catalyst packing factor. It is noted that

the effectiveness factor is used to simulate the heat and mass transfer resistances between the bulk

fluid and the surface of the catalyst. Next, the wall of the reforming reactor is modeled by ANSYS

thin wall function, and SMR is modeled by the global reactionscheme. The boundary conditions

for the reforming tube inlet (referred to in the following text as “tube-side feed”), burner inlet (re-

ferred to in the following text as “furnace-side feed”), andcombustion chamber refractory walls

are derived from typical plant data [35]. Finally, the simulation results generated by the reformer

CFD model are rigorously validated by comparing them with the available data in the literature,

converged solution produced by a single reforming tube CFD model [34] and simulation results

generated by a reforming Gibbs reactor of a commercial steady-state process simulator.
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2.2 Reformer geometry

The reformer investigated in this work is developed based onan industrial-scale top-fired, co-

current reformer designed by Selas Fluid Processing Corporation (Fig. 3.2). The reformer is ap-

proximately 16 m wide, 16 m long and 13 m tall and produces 2.83million Nm3 of high-purity hy-

drogen along with 1.7 million kg of superheated steam (i.e.,663.15 K and 4,580 kPa) per day [35].

The reformer contains seven rows of forty-eight reforming tubes of which the external diameter,

internal diameter and exposed length are 14.6 cm, 12.6 cm and 12.5 m, respectively. Inside these

reforming tubes, commercial nickel-based catalyst pellets (e.g., alpha-alumina-supported nickel

oxide denoted asNiO−αAl2O3) are used as packing material. At the combustion chamber ceil-

ing, these rows of reforming tubes are separated by eight rows of twelve burners which are fed with

a furnace-side feed composed of a fuel stream containing methane, hydrogen and carbon monox-

ide, and an oxidizer stream containing combustion air. The rows of burners which are adjacent to

the combustion chamber refractory walls and a single row of reforming tubes (for brevity these

burners are denoted as “outer-lane burners”), are fed with alower FSF flow rate than the rows of

burners which are adjacent to two rows of reforming tubes (for brevity, these burners are denoted

as “inner-lane burners”). Specifically, the FSF flow rate of the outer-lane burners is 60% of that

of the inner-lane burners to avoid causing “over-firing” in the outer lanes and “under-firing” in the

inner lanes, which would occur if the total FSF flow rate were evenly distributed to all burners. At

the reformer floor, the rows of reforming tubes are separatedby the rectangular intrusions known

as flue gas tunnels or coffin boxes which extend from the front to the back of the combustion cham-

ber along the rows of reforming tubes with a height of 3 m from the floor. Additionally, there are

thirty-five extraction ports evenly distributed in a row along each side of the flue gas tunnels that

allow the furnace-side flow to enter the flue gas tunnels, and then to exit the combustion chamber

through the front openings of the flue gas tunnels. In this work, we will focus on the development

of a CFD model of the reformer described above.
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Figure 2.1: The isometric view of an industrial-scale, top-fired, co-current reformer with 336 re-

forming tubes, which are symbolized by 336 smaller circles,96 burners, which are denoted by

96 larger circles, and 8 flue gas tunnels, which are represented by 8 rectangular intrusions. The

outer-lane burners are burners on the right and left boundaries of the figure, while the inner-lane

burners are slightly larger than the outer-lane burners in the figure.
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2.3 Reformer mesh

In the CFD study of the reformer, the reformer volume is divided into small and discrete subdo-

mains also known as grids (a collection of grids is referred to as a mesh), within which spatial vari-

ations are, though not negligible, significantly less drastic than those in the overall domain. Then,

the reformer mathematical model (i.e., two sets of highly non-linear coupled integro-differential

equations with seven independent variables) is numerically solved by the finite volume method

within each grid to characterize the fluid-flow and temperature fields. Then, the numerical solu-

tions of the grids are patched together to reconstruct the solution of the original domain. Hence,

creating a mesh with acceptable mesh quality is a critical task that determines the success level

of CFD modeling because a CFD model built from a poor quality mesh has a slow speed of con-

vergence [7] and is more likely to converge to an inaccurate solution as mesh quality directly

determines solver discretization error [3].

There are two common meshing strategies in ANSYS ICEM, i.e.,the unstructured tetrahe-

dral meshing strategy (for simplicity, it is denoted as “unstructured meshing”) and the multiblock

structured hexahedral meshing strategy (for simplicity, it is denoted as “structured meshing”). The

unstructured meshing procedure creates a collection of predominantly tetrahedral grids that are

arranged in an irregular pattern, while the structured meshing procedure creates a collection of

hexahedral grids that are arranged in a pattern specified by the user of the mesh creation software.

Although unstructured meshing is generally more proficientat approximating complicated geome-

tries than structured meshing, the ANSYS ICEM environment offers an O-grid Block function that

can be utilized to enhance the ability of structured meshingto approximate curvy geometry char-

acteristics by re-arranging existing grid lines into anO shape to effectively improve the overall

hexahedral mesh quality. In the creation of the reformer hexahedral mesh in this work, the O-

grid Block function can be used for meshing of the burner geometries, which have a frustum-like

structure, and the reforming tubes, which have a cylindrical structure. As shown in Figs. 2.2(a),

2.2(b) and 2.2(c), the structured meshing procedure with the O-grid Block function can capture
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the geometries of the reformer components (e.g., the inner-lane burners, outer-lane burners and

reforming tubes) that cannot be represented with straight lines. Therefore, because we can capture

all aspects of the reformer geometry with the structured meshing technique, and because for wall-

bounded systems like the reforming tubes, a CFD model built from structured meshing generally

generates a converged solution closer to experimental dataand also is expected to have a superior

speed of convergence compared to other CFD models built fromunstructured meshing when the

system is decomposed into the same number of discrete grids [3, 34, 15]. Therefore, the reformer

mesh is created using structured meshing in this work. The good agreement of our CFD results

(presented in Section 2.8) with typical plant data (compared in Section 2.10) utilizing this mesh-

ing strategy shows that the meshing method employed was adequate for obtaining results that are

consistent with typical plant data.

In the reformer mesh, the grids are not uniformly distributed and are more dense in regions

expected to have large momentum, material, and temperaturegradients, such as in the neighbor-

hood of the reforming tube walls (where heat transfer from the furnace side to the tube side is

expected to create temperature gradients that must be captured through a denser mesh as shown

in Fig. 2.3) and in the regions directly under the burners that correspond to the flames (where the

mixing-limited nature of non-premixed combustion is expected to create species and flow char-

acteristics that should be captured with a denser mesh as shown in Fig 2.4). This design of the

reformer mesh aims to reduce the stiffness of the spatial gradients of the transport variables, which

allows the ANSYS Fluent CFD solver to obtain the numerical solution of the reformer CFD model

with a shorter computing time.

In CFD, the reformer mesh must be discretized into a sufficient number of grids so that the CFD

simulation data becomes mesh-independent. In this effort,three multiblock structured hexahedral

meshes with the approximate sizes of 13, 29 and 41 million cells are used for the mesh-independent

study to estimate the baseline size of the grid, and three corresponding reformer CFD models

are created and denoted as the coarse-mesh CFD model, CFD model and fine-mesh CFD model,

respectively. It is worth noting that the simulation of the coarse-mesh CFD model is unstable
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even when a conservative mode of ANSYS Fluent solver is used.The converged CFD simulation

results generated by the reformer CFD models are used to determine the appropriate mesh size

for the present work. The difference between the simulationresults (e.g., the average temperature

profiles of the furnace-side flow) of the coarse-mesh CFD model and CFD model is noticeable.

The comparison between the simulation results of the CFD model and fine-mesh CFD model

shows that they are nearly identical while the fine-mesh CFD model requires a longer computing

time to obtain the converged solution. Our studies shows that a mesh size of about 29 million

cells produces mesh-independent results. Specifically, the reformer mesh contains 29,099,252

hexahedral grids, 88,798,168 quadrilateral faces and 30,584,930 nodes.

The quality of the resulting mesh is evaluated utilizing thethree mesh quality evaluation criteria

(the minimum orthogonal factor, maximum ortho skew and aspect ratio) suggested by the manu-

facturer ANSYS Inc. of the commercial CFD software package utilized to develop the reformer

CFD model in this work (other potential mesh evaluation criteria not specified by ANSYS Inc.

were not utilized because ANSYS Inc. did not indicate recommended ranges for such properties

that would suggest appropriate mesh quality based on such other criteria). ANSYS Inc. suggests

that if the values of the three suggested criteria for all subdomains (i.e., mesh quality) are within

the recommended ranges shown in Table 2.1, the mesh can be considered to have reasonably good

quality and can be used to generate CFD results. Because the values of the minimum orthogo-

nal factor, maximum ortho skew, and maximum aspect ratio among all subdomains are within the

ranges recommended by ANSYS Inc., the mesh of the industrial-scale reformer is considered to

have reasonably good quality (this is further validated by the good agreement of the CFD data gen-

erated using this mesh and typical plant data as discussed inSection 2.10). Although the minimum

orthogonal factor and maximum ortho skew of the reformer mesh are close to the lower limits as

shown in Table 2.1, the average orthogonal factor (0.965) and average ortho skew (0.035) of the

reformer mesh are close to the ideal values of 1.000 and 0.000, respectively. Hence, we use the

reformer mesh with approximately 29 million cells to createthe reformer CFD model.
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(a) (b) (c)

Figure 2.2: Isometric view of the hexahedral structured mesh of the outer-lane burner (a), inner-

lane burner (b) and reforming tube (c). This figure demonstrates that the meshes of both the inner-

lane and outer-lane burners, as well as the mesh of the reforming tubes, created by the O-grid

Block function of ANSYS ICEM have the exact geometries of thecorresponding components. In

Fig. 2.2(c), the radial direction of the reforming tube is scaled up by 20 times for display purposes.

Table 2.1: Mesh quality of the reformer mesh.

The reformer mesh
Recommended
range

Minimum orthogonal factor 0.181 0.167−1.000

Maximum ortho skew 0.819 0.000−0.850
Maximum aspect ratio 28.5 1.000−100.0
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Figure 2.3: A sample of the top view of the hexahedral structured mesh of the reformer, where a

row of reforming tubes is adjacent to two inner-lane burners. In Fig. 2.3, the reforming tube inlets

and burner inlets are assigned with different color for display purposes.
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Figure 2.4: A sample of the vertical cross section of the hexahedral structured mesh of the reformer.
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2.4 Furnace chamber modeling

2.4.1 Combustion kinetic model and turbulence-chemistry model

In the combustion chamber, reducing agents in the furnace-side feed are oxidized to their highest

oxidation states generating carbon dioxide, water and a large amount of thermal energy, which is

used to drive SMR inside the reforming tubes. The chemistry of the combustion phenomena is a

complex network of sequential elementary reactions governed by the concentrations of free rad-

icals. For instance, the complete mechanism of the hydrogencombustion phenomena generating

water involves more than 20 elementary reactions with various intermediates, and the correspond-

ing detailed kinetic model consists of more than 20 distinctreaction rates [59]. Although it is

possible to implement such a detailed kinetic model in the reformer CFD model, the CFD model

would be no longer meaningful for industrial applications as it would take a long computing time

to generate the CFD simulation data. As a result, global kinetic models for the combustion of

methane [46] and hydrogen [5] are used to model the combustion of the furnace-side feed to re-

duce the computational requirement for simulating the reformer CFD model:

Global kinetic model of methane combustion:

CH4(g)+1.5O2(g)
R1−→CO(g)+2H2O(g),

R1 = 1015.22[CH4]
1.46[O2]

0.5217exp(−20643/Tcomb) (2.1a)

CO(g)+0.5O2(g)
R2−⇀↽−
R3

CO2(g)

R2 = 1014.902[CO]1.6904[O2]
1.57exp(−11613/Tcomb) (2.1b)

R3 = 1014.349[CO2]exp(−62281/Tcomb) (2.1c)
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Global kinetic model of hydrogen combustion:

H2(g)+0.5O2(g)
R4−→ H2O(g)

R4 = 4.61×1015[H2][O2]exp(−10080/Tcomb) (2.2a)

whereR1, R2, R3 andR4 (kmol m−3 s−1) are the intrinsic volumetric reaction rates,Tcomb(K) and

[i], i =CO2,CO,CH4,H2,O2 (kmol m−3) are the temperature and species molar concentrations of

the furnace-side flow. It is worth noting that because the empirical kinetic formulas (Eqs. 2.1−2.2)

are in the Arrhenius form, they can be directly integrated into the reformer CFD model.

In the reformer, the furnace-side feed composed of two separate streams, i.e., the fuel stream

and the oxidizer stream, is combusted inside the combustionchamber to generate the required fired

duty for SMR. The intrinsic nature of non-premixed combustion is turbulent mixing-controlled,

i.e., the rate of the chemical reactions is relatively faster than that of mixing on which the observed

reaction rates of furnace-side species depend. In the remainder of this section, we demonstrate a

modeling strategy that allows the reformer CFD model to simulate the behavior of non-premixed

combustion processes of the furnace-side feed. Specifically, in the reformer CFD model, the fuel

stream and air stream of the furnace-side feed are assumed tobe well-mixed as shown in Table 2.2

prior to being fed into the combustion chamber, and the combustion phenomena of methane and

hydrogen are modeled by the premixed combustion model. However, the intrinsic nature of non-

premixed combustion phenomena must be shown in the simulation results generated by the re-

former CFD model. This issue is resolved by using the finite-rate/eddy-dissipation (FR/ED) model

as the turbulence-chemistry interaction model to simulatethe reaction rates of the furnace-side

species. In particular, the FR/ED model utilizes the globalkinetic models of combustion phenom-

ena (shown in Eqs. 2.1 and 2.2), finite rate formula (shown in Eq. 2.3c) and eddy-dissipation rates

(shown in Eqs. 2.3a−2.3b) to estimate the observed reaction rates of the furnace-side species [3].

The formulation of the FR/ED model is presented as follows:
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Ri, j = νi, jMiAρcomb
εcomb

kcomb
minR

(
YR

νR, jMR

)
(2.3a)

Ri, j = νi, jMiABρcomb
εcomb

kcomb

∑PYP
∑N

n νn, jMn
(2.3b)

Ri, j = νi, jMiRj (2.3c)

whereRi, j (kg m−3 s−1) andνi, j are the observed reaction rate and stoichiometric coefficient of

speciesi in reaction j, Mi (kg kmol−1) is the molecular weight of speciesi, YR andMR are the

mass fraction and molecular weight of a specified reactantR, νR, j is the stoichiometric coefficient

of a specified reactantR in reaction j, A = 4.0 andB = 0.5 are the default empirical constants

of the FR/ED model [42],kcomb (m2 s−2) andεcomb (m2 s−3) are the turbulence kinetic energy

and dissipation rate (which will be discussed in Section 2.7), YP is the mass fraction of a product

speciesP in reaction j, Rj (kmol m−3 s−1) is the intrinsic volumetric reaction rate of reaction

j from Eqs. 2.1−2.2, ρcomb (kg m−3) is the density of the furnace-side flow,n is the index of

the product species involved in reactionj andN represents the number of chemical species in

reaction j [3]. When the FR/ED model is integrated in the reformer CFD model, the reaction

rate of each furnace-side species is calculated based on thethree different methods presented in

Eqs. 2.3a, 2.3b and 2.3c for which the smallest estimate corresponding to the slowest rate is set

as the observed rate [38]. In other words, in the reaction-limited zone, the observed reaction rates

of the furnace-side species are computed by the finite rate formula (Eq. 2.3c), whereas in the

transport-limited zone, they are computed by the eddy-dissipation formulas (Eqs. 2.3a and 2.3b).

Particularly, because the furnace-side temperature of 532.9 K at the inner-lane/outer-lane burner

inlets is relatively low compared to the typical operating furnace-side temperature, the finite rate

formula is expected to predict slower reaction rates of furnace-side species than those estimated

by the eddy-dissipation formulas. This is because the activation temperature values of combustion

phenomena derived from the chosen kinetic models (Eqs. 2.1−2.2) are substantially larger than

the FSF temperature, and the concentrations of reacting species are diluted by the presence of inert

22



furnace-side species (i.e., nitrogen and argon), which account for∼61% of the FSF molar flow

rate. Furthermore, the contour plots of furnace-side compositions and energy released from the

combustion of the furnace-side feed (presented in Section 2.8) generated by the reformer CFD

model indicate that the oxidation rates of methane and hydrogen detected in the vicinity of the

inner-lane/outer-lane burner inlets are slow, which matches well with the expected observations.

The results suggest that the reaction rates of furnace-sidespecies estimated by the FR/ED model

in these regions mimic the effect of initial mixing of fuel and oxidizer streams in non-premixed

combustion phenomena. As the oxidation of the furnace-sidefeed gradually proceeds to produce

combustion products (i.e., carbon dioxide and water), the enthalpy of reactions is released causing

the temperature of the furnace-side flow to increase, which allows the combustion phenomena to

eventually overcome the activation energy barrier. Therefore, in the flame bodies, the finite rate

formula is expected to yield higher estimates for the reaction rates of the furnace-side species than

those based on the eddy-dissipation formulas. As a result, the premixed combustion model coupled

with the FR/ED model allows the reformer CFD model to simulate the turbulent-mixing controlled

characteristics of non-premixed combustion phenomena.

2.4.2 Radiative heat transfer modeling

In high-temperature applications such as SMR, the contribution of thermal radiation to the total

heat transfer rate cannot be neglected. In Olivieri et al. [47], thermal radiation has also been re-

ported as the dominant mode of heat transfer in a reformer as it accounts for about∼95% of the

total heat transfer rate to the tube side. This is because therates at which thermal energy is trans-

ferred by conduction and convection are known to be approximately proportional to the difference

in temperature, while the rate of thermal energy transferred by radiation is proportional to the dif-

ference between the temperatures raised to the fourth power. Therefore, in the high-temperature

combustion chamber of the reformer, thermal radiation would be expected to contribute signifi-

cantly to heat transfer.

The study of radiative heat transfer is not often conducted experimentally for reformers because
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Table 2.2: Furnace-side inlet operating conditions of the inner-lane burner in whichxi
comb,inlet

represents the mole fraction of speciesi in the furnace-side feed.

Pressure (kPa) 131.3
Temperature (K) 532.9

Flow rate (kg/s) 1.1358

xH2O
comb,inlet 0.0039

xO2
comb,inlet 0.1610

xAr
comb,inlet 0.0071

xN2
comb,inlet 0.6008

xH2
comb,inlet 0.0592

xCO2
comb,inlet 0.0972

xCO
comb,inlet 0.0208

xCH4
comb,inlet 0.0501

of the severe operating temperature of 2050 K inside the reformer and the absence of an accurate

means to measure the radiative heat transfer rate. Additionally, the only experimental data type

related to the total heat transfer rate which can be collected from an on-line reformer may be

the OTWT at a finite number of designated locations (e.g., three along the heated tube length of

12.5 m) [13]. This data is expected to carry a high degree of uncertainty because of the way by

which the OTWT is measured, which involves a system of infrared cameras that gains access

into the reformer to monitor the OTWT through peepholes in the combustion chamber refractory

walls [35]. Therefore, the study of radiative heat transferin reformers has been conducted primarily

by a modeling approach.

To model thermal radiation, it is essential that the role of radiating media in thermal radia-

tion is well understood. Specifically, radiating media, which can consist of various particle types

(e.g., neutral molecules, ionic molecules, free electronsand atoms), participate in thermal radia-

tion by absorbing or emitting radiative energy in the form ofelectromagnetic waves for which the
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corresponding energy content denoted byEwavecan be evaluated as follows:

Ewave= h ·νwave (2.4)

whereh is Plank’s constant andνwave (s−1) is the frequency of an electromagnetic wave. When

a radiating particle absorbs/emits radiative energy, it absorbs/emits an electromagnetic wave, and

its energy increases/decreases correspondingly by the amount of the electromagnetic wave. In

air-fired reformers, radiating media (e.g., the furnace-side flow) can be assumed to be neutral

molecules, and thus, the furnace-side flow can absorb an electromagnetic wave if the radiative en-

ergy content of the electromagnetic wave is equal to the transition energy required for the energy

level to elevate to higher discrete bound states which correspond to the vibrational, rotational and

electronic modes. Hence, radiative heat transfer in the furnace-side flow is spectrum dependent be-

cause the furnace-side flow only absorbs/emits radiative energy at certain frequencies in the entire

spectrum. In the furnace-side flow, monatomic molecules (e.g., argon) and diatomic molecules

(e.g., oxygen, nitrogen, hydrogen and carbon monoxide) canbe considered to be transparent to

radiation [43]. As a result, the furnace-side flow can be treated as aH2O−CO2 flow in the sense

that the radiative properties of the furnace-side flow can beconsidered to depend only on those of

H2O andCO2 (i.e., the furnace-side flow must be modeled as a radiativelyparticipating medium

with radiative properties developed from those ofH2O andCO2).

The combustion modeling literature suggests that the radiative properties of the furnace-side

flow can be estimated with the line-by-line model (LBLM), statistical narrow band model (SNBM)

and exponential wide band model (EWBM); nevertheless, because of the excessively high required

computational cost of utilizing these models for large-scale systems, they are not compatible

with CFD models developed for industrially-oriented applications [43]. In the present work, a

more computationally efficient empirical model developed in [43], which is designed for air-fired

combustion systems, is utilized. The empirical model uses the temperature, composition and total

pressure of the furnace-side flow and the characteristic dimension of the combustion chamber in

the estimation of the total emissivity of the furnace-side flow. The results reported in [43] show
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that the total emissivity of an air-fired combustion system calculated from the empirical model is

within ±5% of the data generated by the SNBM, and the computing time isdecreased by a factor

of at least ten. Hence, the following empirical model for thetotal emissivity of the furnace-side

flow is expected to offer a significant reduction in the computing time and to predict sufficiently

accurate estimates of the furnace-side total emissivity:

ai = a10,i +a11,i ·x
H2O
comb+a12,i ·x

CO2
comb+a13,i ·x

H2O
comb·x

CO2
comb (2.5a)

L = 3.6 ·
Vcomb

Acomb
(2.5b)

εrad = a1+a2 · ln(Tcomb)+a3 · ln
(
Pt

combL
)
+a4 · [ln(Tcomb)]

2 (2.5c)

+a5 ·
[
ln
(
Pt

combL
)]2

+a6 · ln(Tcomb) · ln
(
Pt

combL
)

wherea j ,i andai are the model constants of the empirical model as shown in Table 2.3,xH2O
comband

xCO2
comb are the mole fractions of water and carbon dioxide in the furnace-side flow,Vcomb∼3303.5

m3, Acomb∼5204.4 m2 andL ∼2.3 m are the volume, total surface area and characteristic dimen-

sion of the combustion chamber, respectively, andPt
comb andεrad are the total pressure and total

emissivity of the furnace-side flow. The empirical model of the furnace-side total emissivity is

designed for air-fired combustion systems, and as a result, the total pressure inside the furnace

chamber in [43] as well as in the present work is assumed to be constant and is taken to be near

atmospheric pressure of 100 kPa (i.e., 1 bar).

Though the correlation of Eq. 2.5 depends onxCO2
combandxH2O

comb, which vary in the flame region

of the furnace-side, the flame physical volume (i.e., the reaction zones of the combustion of the

furnace-side feed) accounts for a small fraction of the total volume of the combustion chamber.

Therefore, the region within whichεrad would vary due to the changes inai, i = 1, . . . ,6, would

be expected to be small compared to the dimensions of the furnace-side within which radiation is

occurring. Furthermore, the difference in the furnace-side composition between the combustion

product and the furnace-side feed is small, which is due to the fact that the inert gases (i.e., nitrogen
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and argon) of the furnace-side feed account for∼61.0% of the total molar flow rate, while the fuel

(i.e., methane and hydrogen) only accounts for∼11.0%. Specifically, the differences in the average

mole fractions ofH2O andCO2 between the furnace-side feed and the combustion product change

from 0.0039 to∼0.170 and from 0.0972 to∼0.175, respectively. As a result, the change inεrad

between its value at the furnace-side inlet conditions and the complete oxidation condition of the

furnace-side feed is not expected to be necessary to accountfor within the radiation calculations,

especially given the small flame volume over whichεrad varies. Therefore, to reduce computation

time, xH2O
combandxCO2

combare both approximated as constants at 0.170 and 0.175, respectively, in cal-

culatingεrad according to Eq. 2.5. Moreover, the characteristic dimensionL of the reformer, which

is estimated by Eq. 2.5b based on the volume and total enclosure surface area of the combustion

chamber, is also a constant, as isPt
comb. As a result, the furnace-side total emissivity reduces to

a function only of the furnace-side temperature (it is notedthat the approximation of a constant

furnace-side composition in calculatingεrad does not imply that other properties of the furnace-

side flow should be modeled to be independent of composition;modeling the composition of the

furnace-side is important in capturing, for example, the observed reaction rates of the furnace-side

species, which determines the heat release profile of the combustion of the furnace-side feed).

Next, the absorption coefficient of the furnace-side flow is related to the value ofεrad from the

empirical model of Eq. 2.5 through Kirchhoff’s law and Lamber Beer’s Law as follows:

σa =−
ln(1− εrad)

L
(2.6)

whereσa is the absorption coefficient of the furnace-side flow. It is important to note that the

correlation of the absorption coefficient in Eq. 2.6 inherits all assumptions that are used to develop

the correlation of the total emissivity, and therefore, it is also a function of only the furnace-side

temperature. Subsequently, an absorption coefficient dataset within the operating temperature

range of the reformer is obtained by the correlations of Eqs.2.5 and 2.6 and is fit with a second-

order polynomial function by using a least-squares linear regression method. The result of this fit

is
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σa = 2.10×10−8 ·T2
comb−2.06×10−4 ·Tcomb+0.456, (2.7)

which will be utilized in the reformer CFD model.

The next step in modeling radiation within the furnace side is choosing a suitable radiation

model. The present work is facilitated by the ANSYS Fluent CFD solver, which only supports a

limited number of thermal radiation models. Specifically, ANSYS Fluent uses one of five radiative

heat transfer models (i.e., Rosseland,P−1, discrete transfer radiation model (DTRM), surface to

surface (S2S) model and discrete ordinate model (DOM)) to estimate the energy transferred by

thermal radiation in high-temperature applications in which thermal radiation cannot be ignored.

Among the five radiative heat transfer models, the DOM is the most versatile model [3]. In par-

ticular, the DOM can estimate heat transfer by radiation within absorbing, emitting and scattering

media and between the participating media and opaque/semi-transparent walls. In addition, unlike

the Rosseland andP−1 approximation which are only applicable for high optical thickness sys-

tems, the DOM can be used in any high-temperature application including the reformer in which

the optical thickness is not well-defined because of the complex reformer interior. Unlike the S2S

model which ignores the presence of the participating media, the DOM can account for the effect

of the absorbing and emitting furnace-side flow. Additionally, unlike the DTRM which uses the

ray tracing technique and is more prone to error due to ray effects, the DOM converts the partial

integro-differential radiative transfer equation (RTE) with seven independent variables into a finite

number of transport equations of radiation intensity, which depends on the solid angle discretiza-

tion parameters of the DOM. In particular, by default in eachoctant space the azimuthal division

is equal to two, and the polar division is equal to two, which allows the DOM to generate 32

partial differential equations of radiation intensity corresponding to 32 discrete direction vectors

~s specifying the directions at which energy is transferred byradiation. As a result, the radiative

heat transfer rate obtained by solving the equations of radiation intensity is expected to require

a relatively lower computational cost than is required to directly solve the RTE. In this work, ra-

diative heat transfer between the furnace-side flow, combustion chamber refractory walls and outer
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Table 2.3: Empirical constants of the correlation of the furnace-side flow total emissivity with

temperature. These constants are used in the calculation ofai (Eq. 2.5a) [43].

❍
❍
❍
❍
❍
❍

ai
a10,i a11,i a12,i a13,i

i = 1 −2.756 −12.091 −2.074 8.90
i = 2 1.0155 3.827 0.649 −2.48
i = 3 0.284 −1.024 0.421 −0.64
i = 4 −0.085 −0.286 −0.047 0.17
i = 5 0.0104 −0.067 −0.016 0.19
i = 6 −0.0272 0.162 −0.061 0.08

reforming tube walls will be quantified by the discrete ordinate method (DOM). The description

of the DOM of an absorbing, emitting and non-scattering graygas can be found in [3].

It is critical to a successful modeling task to realize that the internal emissivity of the wall

surface is an intrinsic property of the surface, and therefore, it only depends on the surface’s char-

acteristics, e.g., the surface texture, instead of the surface material. In the reformer CFD model,

the emissivity coefficients for the wall surfaces are assumed to be independent of the furnace-side

temperature and are constant. Specifically, the emissivitycoefficients of the reforming tubes, re-

fractory wall and tunnel wall are chosen to be 0.85, 0.65 and 0.65, respectively, and additional

physical properties of the refractory wall and tunnel wall are shown in Table 2.4 [35].

Table 2.4: Properties of the combustion chamber refractorywalls.

Density
(
kg m−3

)
3950

Heat Capacity
(
J kg−1 K−1

)
718

Thermal Conductivity
(
W m−1 K−1

)
2.6

Emissivity 0.65
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2.5 Reforming tube modeling

In the present work, the 336 reforming tubes are modeled by the pseudo-homogeneous reactor

model, the reforming tube walls are modeled by the ANSYS thinwall model, the catalyst network

is modeled by the continuum approach and its effects on the tube-side flow are modeled by the

ANSYS porous zone function. These modeling strategies wereutilized due to their success in

generating CFD data with good agreement with typical plant data for a single reforming tube with

an assumed OTWT profile (i.e., the furnace-side and its interactions through heat transfer with the

tube-side were not simulated) in [34]. In the remainder of this section, the modeling strategies of

the kinetic model of SMR and the catalyst network are presented.

2.5.1 Reforming Reaction Kinetic Model

On the macroscopic scale, SMR consumes the thermal energy produced by the combustion of the

furnace-side feed to convert steam and methane into hydrogen and carbon oxides in the presence of

a nickel-based catalyst network, and the tube-side composition is reported to be close to the equi-

librium composition at the reforming tube exit [64]. On the microscopic scale, the reactants are

transported from the bulk of the tube-side flow to the surfaceof the catalyst network by convective

mass transfer driven primarily by the reactant concentration gradients, which are generated by the

external diffusion resistance of the catalyst network. Then, they diffuse down the second reactant

concentration gradients from the surface of the catalyst network through the catalyst medium to

the catalyst active sites, where SMR occurs to generate the desired hydrogen along with carbon

oxides. The reactant concentration gradients within the catalyst are generated by the internal dif-

fusion resistance of the catalyst network. Finally, the products diffuse from the catalyst active sites

back to the surface of the catalyst network, and eventually emerge back into the tube-side flow.

A kinetic model that provides a rate formula for each microscopic event of SMR is unsuitable

for the reformer CFD simulation because it would be expectedto require a significant compu-

tation time. Therefore, a global kinetic model of SMR proposed in [64], which is derived based
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on the Langmuir-Hinshelwood mechanism (i.e., the heterogeneous catalysis kinetic model) and is

formulated in kg (kg of catalyst)−1 s−1, is utilized to lessen the computational demand without

substantially sacrificing the accuracy of the simulation results:

CH4(g)+H2O(g)⇄CO(g)+3H2(g),

R5 =
k1(

pH2
tube

)2.5


pCH4

tubep
H2O
tube−

(
pH2

tube

)3
pCO

tube

K1


/DEN2 (2.8a)

CO(g)+H2O(g)⇄CO2(g)+H2(g),

R6 =
k2

pH2
tube

(
pCO

tubep
H2O
tube−

pH2
tubep

CO2
tube

K2

)
/DEN2 (2.8b)

CH4(g)+2H2O(g)⇄CO2(g)+4H2(g),

R7 =
k3(

pH2
tube

)3.5


pCH4

tube

(
pH2O

tube

)2
−

(
pH2

tube

)4
pCO2

tube

K3


/DEN2 (2.8c)

DEN= 1+
KH2OpH2O

tube

pH2
tube

+KCOpCO
tube+KH2 pH2

tube+KCH4 pCH4
tube (2.8d)

whereKH2, KCH4 and KCO are adsorption constants forH2, CH4 andCO, KH2O is a dissocia-

tive adsorption constant ofH2O, K1, K2, and K3 are equilibrium constants of the reactions in

Eqs. 2.8a, 2.8b and 2.8c,k1, k2 andk3 are forward kinetic constant coefficients of the reactions in

Eqs. 2.8a, 2.8b, and 2.8c, respectively,DEN is a dimensionless parameter andpH2
tube, pCH4

tube, pH2O
tube,

pCO
tube and pCO2

tube are the partial pressures ofH2, CH4, H2O, CO andCO2 in the tube-side flow, re-

spectively. This kinetic model is widely accepted [33] and is frequently used in CFD modeling and

first-principles modeling of SMR because it accounts for theamount of the available catalyst. The

kinetic model can also be modified to account for the externaland internal diffusion resistances

of the catalyst network by multiplying the kinetic formulaswith a universal effectiveness factor

of 0.1 [62]. However, unlike the global kinetic models of the methane and hydrogen combustion
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phenomena, because the empirical kinetic formulas shown inEq. 2.8 are not in the Arrhenius form,

they cannot be directly integrated into the reformer CFD model. Nevertheless, ANSYS Fluent al-

lows these non-Arrhenius form kinetic formulas to be integrated into the CFD model by means

of user-defined functions, i.e.,DEFINE VR RATEandDEFINE NET REACTIONRATE, to

simulate the formation and consumption rates of the tube-side components. In [64], the complete

list of the possible chemical reactions in SMR is provided, which does not contain any gas phase

reaction. Additionally, the components of the tube-side flow (i.e., methane, superheated steam,

carbon oxides and hydrogen) of SMR are naturally stable and will not undergo chemical reaction

in the absence of the nickel-based catalyst. Therefore, gasphase reactions are not considered in

the present work.

Inside the reforming tubes, the catalyst network with a uniform packing pattern disrupts the

tube-side flow and enhances the mixing processes of the tube-side flow, and the Reynolds number

at the reforming tube entrances is calculated to be∼70,000 based on the tube-side feed informa-

tion detailed in [34]. Therefore, the tube-side flow is expected to be turbulent, and it is necessary

to utilize a suitable turbulence-chemistry interaction model to simulate the tube-side species reac-

tion rates under the influence of turbulent effects. Two turbulence-chemistry interaction models

offered by ANSYS Fluent that may be appropriate for modelingturbulent effects on the tube-side

species reaction rates are the FR/ED model and the EDC model.On one hand, the FR/ED model is

expected to require less computation time, but is known to estimate observed reaction rates that de-

viate significantly from experimental data for some reactions with multiple dependent elementary

reaction rates [3]. In contrast, the EDC model is expected tobe more accurate because it can utilize

detailed multi-step reaction kinetic models to determine the formation and consumption rates of

the tube-side species in the turbulent reacting flow, but is computationally expensive. Additionally,

the EDC model with default parameters is a robust turbulence-chemistry interaction model, and

can be directly applied for a wide variety of reaction-limited and diffusion-limited systems [41].

The description of the EDC model can be found in [3]. Althoughthe observed reaction rates of the

tube-side species calculated from the EDC model are expected to have higher accuracy than those
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calculated from the FR/ED model of Eq. 2.3, it is preferable for industrial applications to avoid

integrating the EDC model in the reformer CFD model when thatdoes not significantly impact the

solution accuracy due to the corresponding increase in the required computational cost. In Sec-

tion 2.6, the numerical error associated with the FR/ED model in the solution of the reformer CFD

model is evaluated to determine that the FR/ED model is an appropriate chemistry-turbulence

interaction model for the tube-side flow.

2.5.2 Porous Zone Design

In the reforming tubes, the nickel-based catalyst pellets are used as the packing material, and

hence, it is essential to the development of the reformer CFDmodel that the effects of the catalyst

network on SMR are well understood. Specifically, the catalyst network facilitates the formation of

hydrogen from the naturally stable and slowly-reacting tube-side reactants, i.e., steam and methane,

and it also enhances the rate of convective energy transfer from the reforming tube walls to the

tube-side flow by increasing the contact area. Additionally, the catalyst network interferes with

the tube-side flow, increases the residence time of the tube-side species and reduces the free

volume. Furthermore, a pressure difference between the tube-side flow at the reforming tube inlet

and outlet cannot be neglected due to the presence of the catalyst network inside the reforming

tubes. Therefore, the effects of the catalyst on the momentum and energy transport equations

of the tube-side must be accounted for. In the present work, the reforming tubes are modeled

by the pseudo-homogeneous reactor model in which the solid phase (i.e., the catalyst network) is

modeled by the continuum approach, and the effects of the catalyst network on the tube-side flow

are modeled by the ANSYS porous zone function. The porous zone function modifies the standard

governing equations of the pseudo-homogeneous reactor model to account for the presence and

effects of the catalyst network on the tube-side flow (which will be discussed in Section 2.7.2).

Although the modeling strategy does not require the catalyst pellets and the random packing pattern

of the catalyst network to be modeled, the simulation data generated by the reforming tube CFD

model is expected to capture the gradients of the tube-side composition and state variables at
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the macroscopic scale typically larger than the equivalentdimension of the catalyst pellet [45].

The modeling strategy has been shown to be valid for packed-bed reactors in which the effective

characteristic dimension of the catalyst pellets is less than 5 mm [54]. We have found that a

reforming tube CFD model created from this modeling approach can simulate the macroscopic

effects of the catalyst network on the tube-side flow (e.g., the pressure drop across the catalyst

network and the increase of the tube-side residence time generated by the reforming tube CFD

model are consistent with the typical plant data) [34]. In the reformer CFD model, the modeling

parameters of the porous zone function are estimated from the semi-empirical Ergun equation [17]:

∆Ptube

Ltube
=

150µtube

D2
p

(1− γ)2

γ3 v∞,tube+
1.75ρtube

Dp

(1− γ)
γ3 v2

∞,tube (2.9)

where∆Ptube (kPa) is the pressure difference of the tube-side flow acrossthe catalyst network,

v∞,tube (m s−1), ρtube (kg m−3) andµtube (kg m−1 s−1) are the average superficial velocity, density

and viscosity of the tube-side flow at the reforming tube inlet and outlet, respectively,Ltube of

12.5 m is the reforming tube length,γ =0.609 is the porosity of the catalyst network andDp

(m) is an effective diameter of the catalyst pellets. Based on the pressure drop of the tube-side

flow across the catalyst network from typical plant data, reforming tube geometry and available

physical properties of the catalyst network reported in [34], the Ergun equation is employed to

estimate the effective diameter of the catalyst pellets. Then, the modeling parameters of the porous

zone function required by the reformer CFD model are calculated as follows,

α =
D2

p

150
γ3

(1− γ)2 (2.10a)

β =
3.5
Dp

(1− γ)
γ3 (2.10b)

whereα−1 ∼ 8,782,800 m−2 is the viscous resistance coefficient of the catalyst network andβ ∼

1,782 m−1 is the inertial resistance coefficient of the catalyst network. It is noteworthy that because

the semi-empirical Ergun equation is suitable for a wide range of Reynolds numbers and various
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packing patterns [3], it is not necessary to model the detailed packing of the catalyst network within

the reformer. In this CFD model, the catalyst network insideeach reforming tube is assumed to

have a uniform packing structure and to be functioning properly (i.e., no deactivation or sintering

occurs). Hence, the coefficients of viscous resistance and inertial resistance of the catalyst network

can be assumed to be constant and uniform along the axial and radial directions.

Table 2.5: Johnson Matthey’s Katalco 23−4Q catalyst properties.

Density
(
kg m−3

)
3960

Heat Capacity
(
J kg−1 K−1

)
880

Thermal Conductivity
(
W m−1 K−1

)
33

Particle Diameter(mm) 3.5
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2.6 Equation of state and turbulence-chemistry interaction model

In this section, we present the procedure by which the thermodynamic and turbulence-chemistry

interaction models are selected for the reformer CFD model.The modeling considerations that

motivate the analysis of multiple equations of state and turbulence-chemistry interaction models

are discussed. Finally, a strategy to obtain the necessary numerical evidence, which is subsequently

analyzed to determine the solutions for the modeling challenges, is proposed.

The first modeling consideration is the choice of an equationof state for describing the ther-

modynamics of the furnace-side and tube-side flows in the reformer. In the combustion chamber of

the reformer, the maximum temperature of the furnace-side flow is approximately 2050 K due to

the thermal energy released by the rapid oxidation of the furnace-side feed, and the operating pres-

sure is designed to be nearly at atmospheric pressure at∼132 kPa. Therefore, the furnace-side flow

can be assumed to possess incompressible ideal gas characteristics. On the contrary, the thermo-

dynamic behavior of the tube-side flow is speculated to deviate significantly from that governed by

the incompressible ideal gas law due to the high operating pressure inside the reforming tubes (i.e.,

∼3,000 kPa), which is∼25-28 times higher than that of the combustion chamber [35].Specif-

ically, the tube-side density at high operating pressure ofthe reforming tubes is expected to be

significantly different from the estimated density by the incompressible ideal gas law using the ref-

erence state of 298 K. It is critical to the development of thereformer CFD model that the adopted

equation of state accurately predicts the thermodynamics of turbulent reacting flows inside both

the combustion chamber and reforming tubes because SMR is expected to reach equilibrium at the

reforming tube outlets. In an effort to choose an appropriate equation of state, two potential ther-

modynamic models, i.e., the compressible ideal gas and the real gas Soave-Redlich-Kwong (SRK)

equations of state, are selected. It is important to note that the real gas SRK model predicts more

accurate fluid properties than the compressible ideal gas model and is frequently employed for

determining fluid thermodynamic properties for industrialapplications. Nevertheless, the required

computational cost of the real gas SRK model is higher than that of the compressible ideal gas
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model; the former thermodynamic model should be integratedinto the reformer CFD model only

when the latter model is proven to be inadequate for obtaining accurate results.

The second modeling consideration is the selection of an appropriate turbulence-chemistry

interaction model. As discussed in Secs. 2.4.1 and 2.5.1, the FR/ED and EDC models are two

viable models for these phenomena, but the FR/ED model may produce inaccurate results, though

it is expected to have a lower computational time than the EDCmodel.

To evaluate whether the less computationally intensive modeling strategies (compressible ideal

gas and FR/ED models) can be expected to produce sufficientlyaccurate results, we could develop

one reformer CFD model that uses the more computationally intensive modeling strategies (i.e.,

the SRK and EDC models) and one that uses the less computationally intensive modeling strate-

gies. The results could then be compared to analyze the impact on the CFD numerical results

of utilizing the more rigorous SRK and EDC models compared toutilizing the less accurate (but

more suitable in terms of computational cost, computing time, and memory capacity for industrial

applications) compressible ideal gas and FR/ED models. Nevertheless, the available computa-

tional power (i.e., 80 cores on UCLA’s Hoffman2 Cluster) andmemory capacity (i.e., 20.0 GB

on UCLA’s Hoffman2 Cluster) are not expected to be sufficientto simulate the reformer CFD

model with the more computationally intensive modeling strategies in a timely manner because

the reformer mesh is composed of 29,099,252 hexahedral grids, 88,798,168 quadrilateral faces

and 30,584,930 nodes. Consequently, it is not practical to employ the reformer CFD model that

uses the more computationally intensive modeling strategies as a means to obtain the necessary

numerical evidence, which would subsequently be used as a basis for selection of the appropriate

models. As an alternative for assessing the expected order of magnitude of differences in the

CFD numerical results when employing the more computationally intensive versus less computa-

tionally intensive modeling strategies, we would like to use a part of the reformer domain (e.g.,

a single reforming tube) to analyze both types of thermodynamic and chemistry-turbulence inter-

action models. However, the transport phenomena of the reforming tubes of the reformer CFD

model are coupled and thus a single reforming tube from the reformer model could not be simu-
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lated individually. Therefore, a CFD model of a single industrial-scale reforming tube developed

from our previous work [34] using modeling strategies similar to those employed for modeling the

reforming tubes of the reformer CFD model is readily available and will be used in the remainder

of this section for assessing whether the more or less computationally intensive modeling strategies

will be chosen for the reformer CFD model.

Before utilizing the industrial-scale reforming tube from[34] to assess the appropriateness of

the more and less computationally intensive thermodynamicand turbulence-chemistry interaction

models for the reformer CFD model, the differences between the industrial-scale reforming tube

mesh and modeling strategies and those of the reformer CFD model are discussed to demonstrate

the large reduction in the computation time offered by the industrial-scale reforming tube CFD

model. Three key differences between the reformer mesh and industrial-scale reforming tube mesh

are the shape of the subdomains, the number of the subdomainsand the mesh quality. Specifically,

the industrial-scale reforming tube mesh developed in [34]is the 2-D axisymmetric quadrilateral

structured mesh, and the reformer CFD mesh is the 3-D hexahedral structured mesh. Additionally,

the industrial-scale reforming tube mesh consists of∼23 thousand subdomains, and the reformer

mesh has∼29 million subdomains, which corresponds to a cell count that is ∼1264 times higher

than that of the former mesh. Moreover, the mesh quality of the industrial-scale reforming tube

mesh reported in [34] is nearly ideal based on the three suggested criteria (i.e., the orthogonal

factor, aspect ratio and ortho skew) and is better than that of the reformer mesh shown in Table 2.1.

Therefore, the industrial-scale reforming tube CFD model serves as an effective tool to quantify the

magnitude of the numerical error introduced in the CFD simulation data when the computationally

less intensive modeling strategies (i.e., the compressible ideal gas model and the FR/ED model) are

implemented, and the industrial-scale reforming tube CFD model is expected to have a faster speed

of convergence than that of the reformer CFD model, making the analysis possible in a reasonable

time frame.

In this effort, two industrial-scale reforming tube CFD models are developed, one of which

utilizes the SRK and EDC models, and the other of which uses the compressible ideal gas and

38



FR/ED models (for brevity, the former and latter CFD models will be referred to as the original and

simplified tube CFD models, respectively). In this study, all boundary conditions of the tube CFD

models (i.e., the OTWT and the tube-side feed conditions) are derived from typical plant data [34],

and the modeling strategies are identical to those of the reformer CFD model. The simulation

results generated by the original and simplified tube CFD models are shown in Table 2.6. The

deviations of the simulation results generated by the simplified tube CFD model with respect to

the data generated by the original tube CFD model are considered to be insignificant. However, the

computational benefits of utilizing the simplified tube CFD model compared to using the original

tube CFD model are noticeable. Specifically, the original tube CFD model takes 1100 iterations

and 650 seconds of computing time to reach the converged solution, while the simplified tube CFD

model only takes 871 iterations and 320 seconds. This resultshows that the simplified tube CFD

model offers a 20% reduction in the number of iterations and a50% reduction in the computing

time required for the simulation to reach the converged solution and yields similar simulation data

compared to the original tube CFD model. As a result, the compressible ideal gas and FR/ED

models are integrated in the reformer CFD model to describe the thermodynamics and reaction

rates of individual species in the turbulent reacting flows of both the tube-side and furnace-side

flows.

The most prominent difference in the modeling strategies ofthe industrial-scale reforming tube

mesh and of a reforming tube in the reformer CFD model is that the industrial-scale reforming tube

assumes a tube wall temperature profile along the reforming tube length whereas the reforming

tubes in the reformer exhibit a temperature profile dependent on the furnace-side environment

which is simultaneously calculated. Though these differences in the mesh and modeling strategies

exist, they are not expected to significantly impact the order of magnitude of numerical differences

in the CFD results for the industrial-scale reforming tube using the more and less computationally

intensive modeling strategies compared to the order of magnitude of the differences that would be

observed using a reforming tube from the reformer model. Furthermore, the order of magnitude

of the results utilizing a single reforming tube would be expected to be indicative of the order of
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Table 2.6: Simulation results of the original and simplifiedtube CFD models in whichPtube,inlet and

x̄i
tube,outlet represent the radial-weighted average inlet pressure and outlet mole fraction of speciesi

in the tube-side flow.

Original tube
CFD model[∗]

Simplified tube
CFD model

Difference (%,
with respect to∗)

∆Ptube (kPa) 204.2 210.3 3.00

Ptube,inlet (kPa) 2958.2 2964.3 0.21

Average heat
flux

(
kW m−2

) 69.506 68.423 1.56

x̄H2
tube,outlet 0.470 0.469 0.33

x̄H2O
tube,outlet 0.341 0.341 0.00

x̄CH4
tube,outlet 0.043 0.044 3.44

x̄CO
tube,outlet 0.088 0.087 1.18

x̄CO2
tube,outlet 0.058 0.059 1.43

magnitude of differences that would be expected on the furnace-side as well, particularly since

the equation of state is not expected to pose an issue on the furnace side due to the relatively low

pressures in that domain.
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2.7 Governing equations of reformer

The reformer mathematical model consists of two sets of highly non-linear coupled partial integro-

differential equations with seven independent variables as discussed in Section 2.1. Specifically,

one of the two equation sets represents the combustion chamber model, and the other is the re-

forming tube model. In this section, we present the equations of continuity and of momentum,

energy, and species material conservation that employ parameters or variables calculated from the

modeling strategies discussed in the prior sections to characterize the mass, flow, heat and species

transport within the reformer. The physical properties of individual species in these equations

in the tube-side and furnace-side flows are imported from theANSYS Fluent database materials.

Subsequently, the physical properties of the tube-side andfurnace-side flows are computed based

on those of the corresponding constituents, ideal gas mixing law (in the case of the thermal con-

ductivities and viscosities) and kinetic theory (in the case of the diffusion coefficients). Inside the

combustion chamber and reforming tubes, the flow profiles arespeculated to be turbulent as dis-

cussed in Secs. 2.4.1 and 2.5.1, and thus, the state variables (e.g., temperature, pressure, internal

energy, enthalpy, and entropy) and fluid properties (i.e., velocity, density and species concentra-

tion) fluctuate about their corresponding time-averaged values. In the present work, the standard

k− ε turbulence model developed from the Reynolds-averaged Navier-Stokes (RANS) equations

and the Boussinesq hypothesis is integrated in the reformerCFD model to characterize the furnace-

side and tube-side turbulent reacting flows, which allows the reformer CFD model to simulate the

effects of turbulence on the transport and chemical reaction phenomena [29, 36, 3]. The standard

k− ε model is selected because it is a robust turbulence model, itrequires lower computational

resources compared to the realizablek− ε model (i.e., relatively longer computing time), RNG

k− ε model (i.e., 15% more computing time) and Reynolds stress model (i.e., 50%-60% more

computing time), and it is expected to yield reasonably accurate predictions for a wide range of

turbulent flows [3]. Additionally, thek− ε model is expected to be suitable when there are not

extreme pressure gradients within the fluid [3], which we do not expect to observe on either the
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tube side or furnace side of the reformer because the ratios between the pressure drop and the inlet

pressure of the tube-side feed and furnace-side feed are∼5% and∼0%, respectively, based on the

typical plant data [35]. In the present work, the enhanced wall treatment option of the standard

k−ε model is used to improve the model accuracy at the regions near the walls. Therefore, though

the ideal dimensionless distance from the wall to the first interior node (denoted by y+) everywhere

in the reformer mesh is recommended by ANSYS Fluent to be∼1, the use of thek−ε model with

enhanced wall treatment allows the accuracy of the CFD data to be less sensitive to the y+ value,

which allows for the y+ value of the reformer mesh to be greater than 1 and allows the cell count in

the reformer mesh to be reduced compared to the case that the y+ value is∼1. In the present work,

the initial guess of the grid size is obtained from NASA’s viscous grid spacing calculator based

on the Reynolds number of the furnace-side flow at the inner-lane burner inlet (Re = 240,000),

the diameter of the inner-lane burner inlet and the desired value of y+, which varies between 30

and 60. The grid size is further adjusted by a trial-and-error approach during the trial simulations

of the reformer CFD model to ensure that the convergence criteria defined in Section 2.8 can be

reached. From the simulation results, the average y+ valuesat the outer reforming tube wall and

the interior wall of the combustion chamber obtained from the CFD simulation data were 20.8 and

58.9, respectively. The reformer mathematical model accounts for transport phenomena frequently

observed in high-operating-temperature applications in addition to the essential reformer-related

considerations discussed at length in Secs. 2.4.1, 2.4.2, 2.5.1 and 2.5.2. In the remainder of this

section, the combustion chamber model and the reforming tube model are presented.

2.7.1 Furnace Chamber

The combustion chamber model developed in this work can simulate the mixing-controlled char-

acteristics of non-premixed combustion phenomena, radiative heat transfer between the furnace-

side flow, outer reforming tube walls and combustion chamberrefractory inner walls, in addition

to other heat transfer mechanisms observed in reformers (e.g., convective and conductive heat

transfer). Based on the above considerations and those discussed in Section 2.4 and Section 2.6,
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the combustion chamber model including the continuity equation (Eq. 2.11a), the momentum

(Eq. 2.11b), energy (Eq. 2.11c) and species (Eq. 2.11d) conservation equations, and the turbu-

lence model (Eq. 2.11e and Eq. 2.11f) required for characterizing the heat and fluid-flow fields as

well as composition inside the combustion chamber are formulated as follows:

Continuity equation:

∂
∂ t

(ρcomb)+∇ · (ρcomb~vcomb) = 0 (2.11a)

Momentum conservation equation:

∂
∂ t

(ρcomb~vcomb)+∇ · (ρcomb~vcomb~vcomb) =−∇Pcomb+∇ · τcomb+ρcomb~g (2.11b)

Energy conservation equation:

∂
∂ t

(ρcombEcomb)+∇ · (~vcomb(ρcombEcomb+Pcomb)) = (2.11c)

∇ ·

[
ke f f

comb∇Tcomb−

(
∑
i

hi
comb

~Ji
comb

)
+
(
τcomb·~vcomb

)
]
+Sh,rxn

comb+∇ ·~qrad

Species material conservation equation:

∂
∂ t

(ρcombY
i
comb)+∇ · (ρcomb~vcombY

i
comb) =−∇ · (~Ji

comb)+Ri
comb (2.11d)

Transport equations of the standardk− ε turbulence model:

∂
∂ t

(ρcombkcomb)+∇ · (ρcombkcomb~vcomb) = (2.11e)

∇ ·

[(
µcomb+

µt
comb

σk

)
∇kcomb

]
+Gk

comb+Gb
comb−ρcombεcomb

∂
∂ t

(ρcombεcomb)+∇ · (ρcombεcomb~vcomb) = (2.11f)

∇ ·

[(
µcomb+

µt
comb

σε

)
∇εcomb

]
+C1ε

εcomb

kcomb
Gk

comb−C2ερcomb
ε2

comb

kcomb
(2.11g)
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~Ji
comb=

(
ρcombD

m,i
comb+

µt
comb

Sctcomb

)
∇Yi

comb (2.12a)

τcomb= µcomb

[(
∇~vcomb+∇~vT

comb

)
−

2
3

∇ ·~vcombI

]
(2.12b)

Ecomb= hcomb+
v2

comb

2
−

Pcomb

ρcomb
(2.12c)

hcomb= ∑
j

Y j
combh

j
comb (2.12d)

h j
comb(Tcomb) =

∫ Tcomb

Tre f

C j
p,combdT with Tre f = 298.15K (2.12e)

Sh,rxn
comb=−∑

j

hf
j

M j
Rj

comb (2.12f)

Rj
comb=

3

∑
k

νk, j
combR

k, j
comb (2.12g)

ke f f
comb= kl

comb+kt
comb (2.12h)

kt
comb=

Cp,combµt
comb

Prt
(2.12i)

µt
comb= ρcombCµ

k2
comb

εcomb
(2.12j)

Gk
comb=−ρcombv′comb,iv

′
comb, j

∂vcomb, j

∂xi
(2.12k)

Gb
comb= β ′gi

µt
comb

Prt

∂Tcomb

∂xi
(2.12l)

where~vcomb(m s−1), µcomb(kg m−1 s−1), µt
comb(kg m−1 s−1), ke f f

comb(W m−1 K−1), kl
comb(W m−1

K−1), kt
comb (W m−1 K−1), Cp,comb (J kg−1 K−1), Tcomb (K) andPcomb (kPa) are the furnace-side

flow mass-averaged velocity, laminar flow viscosity, turbulent flow viscosity (calculated as shown

in Eq. 2.12j), effective thermal conductivity (estimated as shown in Eq. 2.12h), laminar thermal

conductivity, turbulent thermal conductivity (estimatedas shown in Eq. 2.12i), specific heat capac-

ity, temperature and pressure of the furnace-side flow in thecombustion chamber, respectively,~g is

the universal gravitational acceleration,τcombis the stress tensor (estimated as shown in Eq. 2.12b),

andI is the unit tensor. The combustion chamber model accounts for all reformer-relevant modes
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of momentum, energy and material transport phenomena underthe influence of chemical phe-

nomena and turbulence to characterize the dynamics of the chamber. Specifically, the turbulent

mass diffusion flux of speciesi, ~Ji
comb, driven by concentration gradients, is shown in Eq. 2.12a,

whereYi
comb andDm,i

comb are the furnace-side mass fraction and laminar mass diffusion coefficient

of speciesi, respectively. It is necessary to note that the ratio
µ t

comb
Sctcomb

, in which Sctcomb andµt
comb

are the turbulent Schmidt number and turbulent viscosity ofthe furnace-side flow, is used to ac-

count for the effect of turbulence on the mass diffusion flux of speciesi, and therefore, it can be

written asρcombD
m,t
comb whereDm,t

comb is the turbulent mass diffusion coefficient. Additionally,the

specific internal energy (Ecomb) of the furnace-side flow which can be computed as the sum of

the furnace-side specific sensible enthalpy (hcomb) which depends on the furnace-side specific sen-

sible enthalpy of speciesj at temperatureTcomb (h j
comb(Tcomb)), specific kinetic energy (v2

comb/2)

and external work per unit weight of the furnace-side flow (−Pcomb/ρcomb), is shown in Eq. 2.12c,

Eq. 2.12d and Eq. 2.12e. It is important to note that the valueof Tre f = 298.15 K in Eq. 2.12e is

chosen automatically by ANSYS Fluent’s parallel/pressurebased solver, andC j
p,comb is the heat

capacity of speciesj in the combustion chamber. In addition, from Eq. 2.11c,∇ · (ke f f
comb∇Tcomb),

−∇ ·
(

∑i h
i
comb

~Ji
comb

)
, ∇ · (τcomb·~vcomb) and∇ ·~qrad represent four distinct mechanisms, i.e., con-

duction, species diffusion, viscous dissipation and radiation respectively, through which energy

is transferred. Furthermore, the overall rate at which thermal energy is released from combus-

tion processes inside the combustion chamber,Sh,rxn
comb, is computed as shown in Eq. 2.12f in which

Rj
combandhf

j represent the overall volumetric consumption/formation rate and enthalpy of forma-

tion of speciesj, andνk, j
combandRk, j

combare the stoichiometric coefficient and volumetric consump-

tion/formation rate of speciesj in reactionk. It is noteworthy thatRk, j
comb is determined by the

FR/ED turbulence-chemistry interaction model (Section 2.4.1). Transport equations of the stan-

dardk− ε turbulence model are presented in Eq. 2.11e and Eq. 2.11f, inwhich kcomb andεcomb

are the turbulence kinetic energy and turbulence dissipation rate of the furnace-side flow,β ′ is the

coefficient of thermal expansion of the furnace-side flow,σk = 1.3 andσε = 1.0 are the default

values of the turbulent Prandtl numbers forkcombandεcomb, C1ε = 1.44,C2ε = 1.92,Cµ = 0.09 and
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Prt = 0.85 are default constants of the standardk− ε turbulence model, respectively, andGk
comb

andGb
combrepresent the generation of turbulence kinetic energy in the furnace-side flow due to the

mean velocity gradients (Eq. 2.12k) and buoyancy effect (Eq. 2.12l). The standardk−ε turbulence

model can capture the characteristic parameters of turbulent reacting flow profiles. Specifically, in

Eq. 2.12k, the term−ρcombv′comb,iv
′
comb, j is the Reynolds stress representing the effect of turbu-

lence on the velocity profile of the furnace-side flow that arises from the RANS equations, and

v′comb,i is the time-averaged fluctuating component of~vcomb in thexi direction. It is worth noting

that all default constants of the standardk− ε turbulence model are determined empirically by

experiments for fundamental turbulent flows, and have been shown to be suitable for a wide range

of wall-bounded and free shear flow applications [3].

2.7.2 Reforming Tube

In the present work, the effects of the catalyst network on the tube-side transport phenomena

are accounted for by the ANSYS porous zone function, which includes the additional momentum

sink term in the momentum conservation equation of the reforming tube model to simulate the

interference effect of the catalyst network, which decreases the superficial velocity and increases

the residence time of the tube-side species. In addition, the energy conservation equation of the

reforming tube model is affected by the porous zone functionto include an additional transient

term to account for the thermal inertia of the catalyst network and to use the effective thermal

conductivity to account for the presence of the catalyst network. Moreover, the tube-side species

material balances of the reforming tube model use the overall effectiveness factor (η) to account for

the internal and external mass transfer resistances of the catalyst network and the catalyst packing

factor ((1− γ)ρcat) to convert the surface reaction rates from Eq. 2.8 to volumetric reaction rates

(i.e., kg m−3h−1) that are employed within the FR/ED turbulence-chemistry interaction model

for use within the species material balances. These approximations of the effects of the catalyst

network on the transport equations and species balances were also utilized in the development of

the industrial-scale reforming tube CFD model for which thesimulation results have been shown
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to be in good agreement with typical plant data [34], and thusthese approximations are expected

to be sufficient for the reforming tubes of the reformer CFD model. The reforming tube walls are

modeled by the ANSYS thin wall model in which the thermal resistance of the reforming tube

wall and the temperature profile across the reforming tube wall thickness can be estimated without

meshing the reforming tube wall explicitly. In the simulation of the reforming tube CFD model, the

ANSYS thin wall model creates an artificial wall thickness for the reforming tubes, and the ANSYS

Fluent solver utilizes the 1-D steady heat conduction equation to determine the reforming tube wall

thermal resistance based on the specified artificial wall thickness and material of the reforming

tubes. This modeling strategy is utilized because the wall thickness is negligible compared to other

dimensions of the system (the ratio of the reforming tube exposed length and wall thickness is

∼1250:1, and the ratio of the reforming tube diameter and wallthickness is∼13:1). This modeling

strategy for the tube wall affects the boundary conditions of the reforming tube walls when solving

the heat transfer equations. Radiation is neglected in the energy balance equation for the tube

side [54, 33, 45] because the nickel-based catalyst networkexpands the contact area between the

tube-side flow and the inner reforming tube wall, with the result that convective heat transfer is

expected to be the dominant mode. Based on the above considerations and those discussed in

Section 2.5 and Section 2.6, the governing equations including the continuity equation and the

momentum, energy and tube-side species balances, and the turbulence model required to simulate

SMR inside the reforming tubes, are constructed in a similarmanner to that of the combustion

chamber, which has been described in Section 2.7.1. Additionally, the governing equations of the

tube-side flow have also been explicitly presented in our recent publication [34], and therefore,

they are not repeated here for brevity.
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2.8 Process simulation

Intuitively, the CFD solution of the reformer CFD model would be obtained by simulating the re-

former CFD model until convergence criteria are satisfied. However, the reformer CFD model has

been found to be very sensitive to the initial guess (e.g., the simulation of the reformer CFD model

with the initial guess automatically generated by the ANSYSFluent standard initialization func-

tion based on the boundary conditions of the CFD model is often unstable and is likely to quickly

diverge). Although ANSYS Fluent allows a conservative modeof the ANSYS Fluent solver to

be selected to prevent the reformer CFD simulation from diverging, this strategy often results in

a substantial increase in the required computing time to calculate the converged solution of the

reformer CFD model, and therefore, forfeits the potential of the reformer CFD model for industrial

interests. In this work, a step-by-step converging strategy that allows the implementation of an

aggressive mode of the ANSYS Fluent solver to compute the reformer CFD steady-state solution

is proposed as shown in Fig. 2.5. Specifically, the step-by-step converging strategy is an optimized

procedure that is designed to resolve the instability issueof the reformer CFD simulation, to accel-

erate the rate of convergence and to minimize the required computing time to obtain the converged

solution of the reformer CFD model. Initially, an isothermal, non-reacting (INR) reformer CFD

model is created by deactivating the combustion phenomena,radiative heat transfer and SMR ki-

netic models in addition to excluding the energy conservation equations from the furnace-side and

tube-side models. Then, the simulation of the INR reformer CFD model is initialized with the ini-

tial guess generated by the ANSYS Fluent standard initialization function based on the tube-side

and furnace-side feeds, and is solved by the aggressive modeof the ANSYS Fluent solver. In this

work, the reformer CFD simulation is said to reach the converged solution when the global normal-

ized residuals of all transport variables computed over allsubdomains of the reformer between two

consecutive iterations are less than 10−4, the mass flow rate integrated over all boundaries of the

reformer CFD model is approximately zero, the total heat transfer rate integrated over all bound-

aries of the reformer CFD model is less than 1% of the reformertotal fired duty and the absolute
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residuals of the furnace-side temperature at five differentlocations inside the combustion chamber

are less than 1 K. Next, the converged solution of the INR reformer CFD model is utilized as an ini-

tial guess for the succeeding non-reacting (NR) CFD model because even though the composition

and temperature fields in the INR reformer CFD model are different from those in the NR reformer

CFD model, their velocity and turbulence fields are expectedto be similar [3, 60]. Analogously,

the converged reformer CFD solution in each preceding step is utilized as an initial guess for the

reformer CFD model in the subsequent step until the converged solution of the complete reformer

CFD model is obtained.

The solution of the reformer CFD model is obtained after∼72 hours of computing time by

the ANSYS Fluent parallel solver with a computational powerof 80 cores on UCLA’s Hoffman2

Cluster. During the initialization procedure of the reformer CFD model, the ANSYS Fluent solver

arbitrarily selects one of the available 80 cores as a host process and designates the remaining 79

cores as compute-node processes. It is noteworthy that the host process is only responsible for

interpreting the user’s commands given in the graphical user interface (GUI), then redistributing

them to all compute-node processes by a message-passing library, e.g., the Message Passing In-

terface (MPI). Thus, the reformer mesh is partitioned into 79 parts corresponding to the number

of available compute-node processes, and each partition consisting of∼368,345 grids is assigned

to a different compute-node process. Then, the compute-node processes consider each grid within

the corresponding partitions as an open system in which the reformer mathematical model is dis-

cretized by the finite volume method and numerically solved until the convergence criteria are

satisfied. The corresponding solutions of the grids are recombined to generate the simulation re-

sults of the reformer CFD model.
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2.9 Simulation results

In this section, the steady-state simulation results of thereformer CFD model with the furnace-

side and tube-side operating conditions and properties as shown in Tables 2.2−2.7 are presented.

Two cross-sectional planes (i.e., the frontal and lateral planes) of the combustion chamber as

shown in Fig. 2.6 are designated along which the properties of the furnace-side flow are presented.

Specifically, the furnace-side temperature contour maps (lateral and frontal planes) are shown in

Fig. 2.7. The contour maps of the thermal energy released by the oxidation of the furnace-side

feed are shown in Fig. 2.8. In addition, the furnace-side velocity magnitude vector plots are shown

in Fig. 2.9, and the furnace-side species contour maps are shown in Figs. 2.10−2.13.

The properties of the interior of a reforming tube are displayed for a cross-sectional plane along

the axial direction of a reforming tube. Because the dimension of the heated reforming tube length

is∼85 times longer than that of the reforming tube diameter, theradial dimension of the reforming

tube cross section is scaled up by 20 times for display purposes. The tube-side pressure contour

map is shown in Fig. 2.14. The radially uniform pressure profile inside the reforming tubes is the

result of the uniformly packed catalyst network assumption, and the definition of the porous zone

with uniform coefficients of viscous resistance and inertial resistance of the catalyst network along

the axial and radial directions as presented in Section 2.5.2.

Lastly, the average composition profiles of the tube-side flow are shown in Fig. 2.15, and the

average temperature profiles of the outer and inner reforming tube walls and the furnace-side and

tube-side flows are shown in Fig. 2.16. Fig. 2.16 suggests that the maximum temperature of the

outer reforming tube wall of∼1180 K is below the maximum allowable operating temperatureof

∼1300 K [53]; if the outer reforming tube wall were to exceed the maximum temperature for a

sufficient length of time, the reforming tube would rupture more quickly than if it were kept below
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Figure 2.5: Step-by-step converging strategy designed to resolve the initial instability issue of the

reformer CFD simulation, accelerate the rate of convergence and minimize the required computing

time to obtain the converged solution of the reformer CFD model in which the models withX are

activated, and those withX are disabled.

this maximum temperature.

2.10 Discussion

In computational fluid dynamics study, a converged solutionis not necessarily a physically correct

solution, and therefore, the simulation results produced by the reformer CFD model are inspected

by the well-established knowledge of the phenomena typically observed in reformers and validated

by the typical plant data [35, 13, 52, 16, 21, 49] in the remainder of this section.
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Figure 2.6: The frontal and lateral cross-sectional plane of the combustion chamber.

We begin by checking that the modeling strategies employed produced the effects expected.

For instance, the furnace-side feed composition in Table 2.2 indicates that it is lean-fuel (i.e., the

ratio of air to fuel of the furnace-side feed is higher than the stoichiometric ratio). Therefore, it is

expected that the fuel will be fully oxidized and that oxygenwill remain in the flue gas. Figs. 2.10,

2.11 and 2.12 demonstrate that the composition of the furnace-side reducing agents in the CFD

solution are effectively zero everywhere except in the reaction zones, and Fig. 2.13 shows that

oxygen is not completely consumed, as expected. Additionally, the characteristics of non-premixed

combustion phenomena that are expected in the furnace-sideas discussed in Section 2.4.1 can be

observed in the converged reformer CFD solution. In particular, Figs. 2.10−2.12 reveal that the

furnace-side compositions in the vicinities of the inner-lane and outer-lane burners are almost

identical to those in the furnace-side feed, and Fig. 2.8 shows that the oxidation rate of the furnace-

side feed in these regions is close to zero. These results suggest that the reformer CFD model

correctly simulates the initial mixing of the fuel and air streams of the furnace-side feed, in which
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Figure 2.7: Lateral (left) and frontal (right) furnace-side temperature contour maps predicted by

the reformer CFD simulation in which the parameters of the tube-side feed, furnace-side feed and

combustion chamber refractory walls are consistent with typical plant data [35].

the observed oxidation rate of the furnace-side species is expected to be relatively slow. Moreover,

the characteristics of top-fired reformers can be seen in thepresented solution of the reformer CFD

model. Particularly, Figs. 2.7 and 2.16 indicate that the maximum furnace-side temperature is

located in the upper part of the reformer [12, 13], and Fig. 2.8 demonstrates that the flame length

is consistent with the typical values between∼4.5 m and∼6 m [35]. Furthermore, the simulation

data of the reformer CFD model indicates that approximately55.1% of the thermal energy released

by this process is transferred to the reforming tubes, 3% of which dissipates to the surrounding

air through the chamber refractory walls and the remainder of which exits the reformer at the

combustion chamber outlets, which is in close agreement with typical plant data [35, 12]. Finally,

the solution of the reformer CFD model suggests that SMR is near equilibrium at the reforming

tube outlets as expected. Specifically, Fig. 2.15 shows thatthe slopes of the composition profiles,

which are indicative of the net reaction rates of the tube-side species at the reforming tube outlet,

are close to zero.
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Figure 2.8: Lateral (left) and frontal (right) contour mapsof energy released by the furnace-side

oxidation predicted by the reformer CFD simulation in whichthe parameters of the tube-side

feed, furnace-side feed and combustion chamber refractorywalls are consistent with typical plant

data [35].

We next compare our numerical results with those from typical plant data. When typical plant

data is employed to justify the validity of the simulation results produced by the reformer CFD

model, the data needs to be normalized to unity as follows:

z̄∗ =
z̄− z̄min

z̄max− z̄min
(2.13)

where z̄ and z̄∗ are the original data and corresponding normalized data, respectively, and ¯zmax

andz̄min are the maximum and minimum values of the data set of interest. This is because many

variations of top-fired reformer geometries are employed inthe previous experimental and com-

putational works of SMR, and the typical plant data are commonly reported in deviation forms

for proprietary reasons. Fig. 2.17 and Fig. 2.18 compare thenormalized CFD data with the

normalized typical plant data presented in [35] and [13]. Itis noted that we refer to the data

from [35] and [13] as typical plant data though it is generated from a first-principles reformer
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Figure 2.9: Lateral (left) and frontal (right) contour mapsof the furnace-side velocity magnitude

predicted by the reformer CFD simulation in which the parameters of the tube-side feed, furnace-

side feed and combustion chamber refractory walls are consistent with typical plant data [35].

model in which the combustion of the furnace-side feed was not simulated simultaneously with

the reforming tubes, and a predefined heat released profile was used. In addition, the reforming

tube models from those works are modeled by the 1-D plug flow reactor model and thus ignore

the radial spatial gradients of transport variables and theeffect of the flow pattern on the reform-

ing tubes. Nevertheless, the models from [35] and [13] employ a number of adjustable empirical

constants (e.g., the heat-release length, the predefined parabolic heat-release profile, the gray gas

model, and the convective heat transfer coefficients) that are tuned so that the estimated temper-

ature profile of the outer reforming tube wall is consistent with the experimental data recorded

by the high-cost monitoring IR cameras of an on-line reformer. Thus, we consider that the data

from these works can be considered to be sufficiently close toexperimental plant data to be uti-

lized in validating the reformer CFD model. Therefore, the data from [35] and [13] is used to

validate the proposed modeling strategies that lead to the development of the reformer CFD model

from Section 2.4, Section 2.5, Section 2.6 and 2.7. Specifically, Fig. 2.17 shows that the com-
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Figure 2.10: Lateral (left) and frontal (right) methane mole fraction contour maps inside the com-

bustion chamber predicted by the reformer CFD simulation inwhich the parameters of the tube-

side feed, furnace-side feed and combustion chamber refractory walls are consistent with typical

plant data [35].

position profiles of the tube-side species along the reforming tube length vary in a manner that

is consistent with the previous work, which justifies the choice of the global kinetic model of

SMR with the universal effectiveness factor and the FR/ED model for accounting for turbulence-

chemistry interaction. Additionally, Fig. 2.18 demonstrates that the average temperature profiles of

the furnace-side flow and outer reforming tube wall along thelength of the reforming tube closely

resemble the corresponding profiles reported in the previous reformer study, which validates the

choice of the radiative property correlation and heat transfer model, as well as the neglect of ra-

diation in the tube side and the use of the porous zone function for modifying the heat transfer

equations in the reforming tubes. Specifically, the OTWTs from the reformer CFD model and [13]

are similar, and the temperature profiles for the furnace-side flow have a similar shape in the sense

that both demonstrate a maximum furnace-side temperature that is located in the upper part of the

reformer (i.e., a characteristic of top-fired reformers). Differences between the furnace-side flow
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Figure 2.11: Lateral (left) and frontal (right) hydrogen mole fraction contour maps inside the

combustion chamber predicted by the reformer CFD simulation in which the parameters of the

tube-side feed, furnace-side feed and combustion chamber refractory walls are consistent with

typical plant data [35].

temperature profiles of the CFD simulation and [13] are expected since in [13], the effects of the

furnace-side flow pattern on the temperature of the furnace-side flow are ignored as the combustion

chamber is assumed to behave like a plug flow reactor. As additional validation of the reformer

CFD simulation results, the values of a number of propertiesof the tube-side flow from [35] are

compared with those from the reformer CFD model in Table 2.7 and show good agreement.

The converged reformer CFD solution is validated by the CFD data generated by the industrial-

scale reforming tube CFD model developed in [34]. The industrial-scale reforming tube CFD

model is updated with the same modeling parameters as described in Section 2.2, Section 2.5 and

Section 2.6, and implemented with the tube-side feed conditions and outer reforming tube wall

profile (Fig. 2.16) of the reformer CFD model. Table 2.7 indicates that the differences between the

CFD data generated by the reformer CFD model and updated industrial-scale reforming tube CFD

model are not significant.
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Figure 2.12: Lateral (left) and frontal (right) carbon monoxide mole fraction contour maps inside

the combustion chamber predicted by the reformer CFD simulation in which the parameters of

the tube-side feed, furnace-side feed and combustion chamber refractory walls are consistent with

typical plant data [35].

Furthermore, the converged reformer CFD solution is validated by the data generated by a

standard reforming Gibbs reactor model of a steady-state process simulator (e.g., Pro/II) as shown

in Table 2.7. Because the tube-side reactions have been demonstrated above through Fig. 2.15 to

have approximately reached equilibrium at the reactor outlet, it is expected that the mole fractions

at the tube outlet from the CFD simulation would correspond with the results from the Gibbs

reactor simulation. The reforming Gibbs reactor model is provided with the Gibbs reactor feed

stream and duty, which are set to the tube-side feed and the average thermal energy absorbed by

each reforming tube of 345.090 kW derived from the reformer CFD solution, respectively. The

differences in the results between the reformer CFD model and the reforming Gibbs reactor model

are demonstrated in Table 2.7 to be small. It is important to note that the solution of the reforming

Gibbs reactor model can only be obtained after the solution of the reformer CFD model has

already been computed from which the total energy absorbed by each reforming tube is extracted.
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Figure 2.13: Lateral (left) and frontal (right) oxygen molefraction contour maps inside the combus-

tion chamber predicted by the reformer CFD simulation in which the parameters of the tube-side

feed, furnace-side feed and combustion chamber refractorywalls are consistent with typical plant

data [35].

One might suggest that the total energy absorbed by each reforming tube can be back-calculated

given the tube-side composition at the reforming tube outlets; however, prior to the completion

of the reformer CFD simulation, neither the amount of thermal energy absorbed by the reforming

tubes (i.e., the energy uptake of a reforming Gibbs reactor model) nor the tube-side composition at

the reforming tube outlets (i.e., the approximated yield ofSMR) are available to be used as inputs.

Hence, it is evident that the reforming Gibbs reactor model is not designed to replace the reformer

CFD model.

Next, the area-weighted average heat flux across the reforming tube wall predicted by the

reformer CFD model is compared to that of the typical plant data reported in the literature as

shown in Table 2.8. The average heat flux in Table 2.8 from [35]is estimated based on the

outer and inner reforming tube wall temperature profiles reported in that work, the reforming tube

thermal conductivity of 106,500 J m−1 h−1 K−1 and the typical reforming tube wall thickness
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Figure 2.14: Tube-side pressure contour map predicted by the reformer CFD simulation in which

the parameters of the tube-side feed, furnace-side feed andcombustion chamber refractory walls

are consistent with typical plant data [35].

of 0.015 m. From Table 2.8, the area-weighted average heat flux across the reforming tube wall

predicted by the reformer CFD model is consistent with that of the typical plant data.

Finally, the reformer CFD model is implemented with the furnace-side feed distribution of an

on-line reformer provided by a third party, and the corresponding converged CFD data is obtained

by the proposed step-by-step convergence strategy as discussed in Section 2.8. Subsequently, the

CFD data is compared with the recorded plant data, which is anOTWT distribution at a fixed axial

location (as shown in Fig. 2.19) and is collected by a system of IR cameras situated around the

reformer as discussed in Section 2.4.2. The OTWT distribution constructed based on the CFD

simulation and information of the approximate views of the IR cameras is consistent with the plant

data provided by the third party as the maximum deviation at any location is∼3% and the average

deviation is∼1.2% as shown in Fig. 2.20. The blank spaces shown in Fig. 2.20represent reforming

tubes for which no temperature measurements were provided from the reported data. However,

from the good agreement of our CFD data with the available data, we can be confident that our CFD

results for these additional reforming tubes are indicative of the actual operating conditions. This

highlights the utility of CFD modeling for obtaining information regarding operating conditions
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Figure 2.15: Radial-weighted average tube-side compositions predicted by the reformer CFD sim-

ulation in which the parameters of the tube-side feed, furnace-side feed and combustion chamber

refractory walls are consistent with typical plant data [35].

that are perhaps not available from standard process monitoring techniques (e.g., the outer wall

temperature at allz locations down the reforming tube length, for every reforming tube) which

may be required for assessing whether potentially dangerous operating conditions exist (e.g., any

reforming tube outer wall temperature exceeding the maximum operating temperature at anyz

location) and modifying the process inputs to ameliorate such conditions when they are detected.

Based on the above, the simulation results produced by the reformer CFD model are demon-

strated to be consistent with phenomena observed in reformers and to be in close agreement with

the typical plant data. As a result, the converged solution of the reformer CFD model can be

considered to be a reasonably reliable representation of experimental data and can be utilized to

characterize the velocity, turbulence, composition and temperature fields inside the reformer.

In this work, we focus on presenting only modeling strategies that are expected to be most

suitable for modeling the expected transport and reaction phenomena among the choices offered

by Fluent for the purpose of demonstrating how a high-fidelity CFD model of a reformer can be

devised. Showing how initial modeling strategies can be selected for reasonably accurate results
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Figure 2.16: Average temperature profiles of the furnace-side flow (solid line), outer reforming

tube wall (dashed line), inner reforming tube wall (dash-dotted line) and tube-side flow (dot-

ted line) predicted by the reformer CFD simulation in which the parameters of the tube-side

feed, furnace-side feed and combustion chamber refractorywalls are consistent with typical plant

data [35].

within a reasonable time frame is a significant contributionof the present work, because the cou-

pling between the various transport and reaction phenomenain and between the tube and furnace

sides prevents CFD results of the entire SMR from being generated for comparison with typical

plant data until all phenomena have been included within theCFD simulation. Therefore, we focus

only on the selection of initial modeling strategies that allow CFD data to be obtained that shows

good agreement with typical plant data. Fine-tuning of the models for various phenomena (e.g.,

re-running the CFD simulation with alternative models suchas alternative turbulence-chemistry

interaction models to analyze whether this improves the agreement of the CFD results with typ-

ical plant data) could be performed, particularly by industry with significant plant data that can

be used for distinguishing between the differences in accuracy at this fine-tuning step, but given

the already significant agreement with typical plant data, changing the modeling strategies chosen

would not conceptually change the novelty of the work (developing a step-by-step guide for ob-
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taining a high-fidelity CFD model of an industrial-scale reformer), and thus is not pursued. The

good agreement of the typical plant data with our CFD simulation results indicates that all sim-

plifications and assumptions made in the development of the reformer CFD modeling strategies

and meshing as described in Secs. 2.2-2.7 were sufficient forobtaining a CFD model that can be

considered to be a reasonable substitute for experimental data.

In this work, we assume that the furnace-side feed is uniformly distributed among all inner-lane

burners and among all outer-lane burners, which results in symmetry in the furnace-side feed dis-

tribution and geometry that could have been exploited for the simulation. However, the intended

application of the reformer CFD model is for allowing the evaluation of reformer operating param-

eters to improve the economics of operation when such operating changes cannot be fully evaluated

any other way (for example, furnace balancing, which is optimizing the furnace-side feed distribu-

tion so that the temperature distribution of the outer reforming tube wall at a given length down the

reforming tubes becomes more uniform). Evaluating the mostoptimal operating conditions may

require the flexibility of simulating asymmetry within the reactor (e.g., an asymmetrical furnace-

side feed distribution). Furthermore, the FSF flow rate to each burner is controlled by the percent

opening of the corresponding valve, and therefore, valve-related disturbances (e.g., the valve stick-

iness) can cause an unintended asymmetric furnace-side feed distribution. For such reasons, it is

beneficial to simulate the entire reformer, without exploiting symmetry, in the development of the

reformer CFD model.

The comparison of the Gibbs reactor simulation results and those from the outlet of a reform-

ing tube in the reformer CFD model in Table 2.7 does not indicate that steady-state simulations

that are standard in the chemical process industries can serve as substitutes for a CFD model of a

reformer. The CFD simulations reveal details about the reactor operation (e.g., the flame length,

maximum and minimum temperatures of the reforming tube walls at any given axial location in the

reformer, and the effect of changes in the burner feed flow rates on these maximum and minimum

temperatures) that cannot be obtained from steady-state simulations such as a Gibbs reactor, and

cannot even be obtained from standard experimental measurements that are taken at SMR plants
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(e.g., temperatures of specific reforming tube walls at specific axial locations determined from in-

frared cameras). It is also notable that due to the effects ofthe geometry on the flows and heat

transfer within the SMR (for example, asymmetry in the flow field within the furnace side is ob-

served in Fig. 2.9 due to the flue gas tunnel exits being located on only one side of the reformer,

which creates non-identical environments for the reforming tubes throughout the reformer despite

the fact that they are fed with identical feeds), as well as the interactions of the flow and heat trans-

fer with the observed reaction rates, our prior works ([34, 1]) cannot predict the effects seen in a

reformer as the present work can because they utilize different geometries and modeling strate-

gies. Therefore, the novelty of the present work hinges on the fact that because it demonstrates

how a reformer CFD model can be developed and validated (i.e., it develops neither a simplified

model like a Gibbs reactor nor even a smaller-scale CFD model), it demonstrates a methodology

for obtaining high-fidelity data regarding the operating conditions throughout a reformer that can

be considered to be representative of the actual conditionswithin the SMR but cannot be obtained

any other way. The development of such a model is significant therefore for industry, because

it provides a methodology for optimizing process operationwith highly reliable data that is not

otherwise available and allows problematic operating conditions to be evaluated and mitigated.

Furthermore, the discussion of why the CFD modeling strategies were chosen demonstrates how

expected phenomena within a reactor can be evaluated to allow for appropriate modeling strategies

to be chosen for CFD simulation of other reactors of industrial interest for which such high-fidelity

data would be beneficial.
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Figure 2.17: Radial-weighted average tube-side compositions along the reforming tubes produced

by the reformer CFD model (black) versus those derived from typical plant data of SMR (red) [35].
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Figure 2.18: Average temperature profiles of the furnace-side flow and outer reforming tube wall

produced by the reformer CFD model (black) versus those derived from typical plant data of SMR

(red) [13].
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Table 2.7: Validation of reformer CFD model.

Industrial-scale
reforming tube
CFD model

Reformer
CFD model

Reforming
Gibbs reactor
model

Typical
plant data
[35]

∆Ptube (kPa) 194.29 106.22 N/A 146.9

Ptube,outlet (kPa) 2955.2 3044.0 N/A 2879.8

Average heat
flux (kW m−2)

70.659 69.523 N/A 67.125

x̄H2
tube,outlet 0.4734 0.4687 0.4686 0.4713

x̄H2O
tube,outlet 0.3380 0.3419 0.3411 0.3377

x̄CH4
tube,outlet 0.0389 0.0430 0.0433 0.0453

x̄CO
tube,outlet 0.0905 0.0883 0.0872 0.0889

x̄CO2
tube,outlet 0.0574 0.0576 0.0589 0.0559

Table 2.8: Validation of reformer CFD model by available plant data from literature

Average heat flux (kW m−2)
Reformer CFD model 70
Industrial-scale reforming
tube CFD model [34]

71

[35] 67
[52] 45−90
[16] 79
[21] 76
[49] < 80
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Figure 2.19: Description of the layout of the OTWT distribution, in which each grid contains an

average OTWT of the corresponding reforming tube recorded by a system of IR cameras situated

around the reformer.
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Figure 2.20: Distribution of the percent difference in the OTWT between the reformer CFD data

and the plant data provided by the third party. The percent difference of each reforming tube is

computed by the ratio of the deviation of the CFD data from thecorresponding plant data to the

corresponding plant data.
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2.11 Conclusion

The present work detailed the development of a CFD model of a steam methane reformer and

presented a methodology for analyzing expected transport and reaction phenomena to choose mod-

eling strategies within the CFD software that result in CFD simulation data that can be considered

to be a substitute for experimental data. The reformer modelsimulates the essential transport phe-

nomena observed in industrial high-temperature applications as well as reformer-relevant physi-

cal and chemical phenomena. Specifically, the standardk− ε turbulence model, FR/ED model

and global kinetic models of hydrogen/methane combustion were selected to simulate the non-

premixed combustion characteristics, the reaction rates of the furnace-side species and the thermal

energy released from the oxidation of the furnace-side feedunder the influence of turbulence.

Then, a correlation between the furnace-side radiative properties and temperature, Kirchhoff’s

law, Lambert Beer’s law and the discrete ordinate method were chosen to simulate radiative heat

transfer within the furnace-side flow and between the furnace-side flow and solid surfaces inside

the reformer. Next, the standardk− ε turbulence model, FR/ED model and global kinetic model

of SMR were utilized to simulate the reaction rates of the tube-side species under the influence of

turbulence. Lastly, the modeling strategy of the reformingtubes utilized an approximate repre-

sentation of the catalyst network to simulate the presence of catalyst particles inside the reforming

tube and the effect of internal and external diffusion limitations on the observed reaction rates of

the tube-side species. We recognize that the computing timerequired to complete a simulation of

the reformer CFD model by ANSYS Fluent on 80 cores of UCLA’s Hoffman2 cluster is significant

(i.e., approximately three full days), yet the upfront investment (i.e., time) makes it possible for

us to determine the optimized operating conditions of the reformer. Specifically, the simulation

results generated by the reformer CFD model with the tube-side and furnace-side feed derived

from typical plant data are demonstrated to be consistent with phenomena observed in reformers

and to be in close agreement with typical plant data. In addition, the simulation data generated by

the reformer CFD model, in which the tube-side and furnace-side feed distributions provided by a
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third party are used as boundary conditions, is shown to be inclose agreement with the plant data

recorded from the on-line reformer at the hydrogen manufacturing plant. Therefore, the reformer

CFD model can be considered to be an adequate representationof the on-line reformer and can

be used to determine the risk to operate the on-line reformerat un-explored and potentially more

beneficial operating conditions.

Acomb total surface area of the combustion chamber (m2)

Cp specific heat capacity of the furnace-side flow (J kg−1 K−1)

C j
p,comb heat capacity of speciesj in the furnace-side flow (J kg−1 K−1)

Dp effective diameter of the catalyst pellets (mm)

Dm,i
comb mass diffusion coefficient of the speciesi in the furnace-side flow (m2 s−1)

Dm,t
comb turbulent mass diffusion coefficient of the furnace-side flow (m2 s−1)

Ecomb specific internal energy of the furnace-side flow (J kg−1)

Ewave energy of electromagnetic waves (J)

Pcomb pressure of the furnace-side flow (kPa)

pi
tube partial pressure of the speciesi in the tube-side flow (kPa)

~g universal gravitational acceleration vector (m s−2)

h Plank’s constant

hcomb specific sensible enthalpy of the furnace-side flow (J kg−1)

h j
comb specific sensible enthalpy of speciesj in the furnace-side flow (J kg−1)

KH2 adsorption constants forH2 (bar−1)

KCH4 adsorption constants forCH4 (bar−1)

KCO adsorption constants forCO (bar−1)

KH2O dissociative constants forH2O

K1 equilibrium constant of the reaction 5 (bar2)

K2 equilibrium constant of the reaction 6

K3 equilibrium constant of the reaction 7 (bar2)
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k1 forward kinetic constant coefficient of the reaction 5 (kmolbar1/2 (kg of

catalyst)−1 h−1)

k2 forward kinetic constant coefficient of the reaction 6 (kmol(kg of catalyst)−1

h−1)

k3 forward kinetic constant coefficient of the reaction 7 (kmolbar1/2 (kg of

catalyst)−1 h−1)

ke f f
comb effective thermal conductivity of the furnace-side flow (W m−1 K−1)

kl
comb thermal conductivity of the furnace-side flow (W m−1 K−1)

kt
comb turbulent thermal conductivity of the furnace-side flow (W m−1 K−1)

kcomb turbulence kinetic energy of the furnace-side flow (m2 s−2)

I unit tensor (kPa)

~Ji
comb turbulent mass diffusion flux of speciesi of the furnace-side flow (kg m−2 s−1)

Ri , i = 1, . . . ,4 intrinsic volumetric reaction rate of theith reaction (kmol m−3s−1)

Ri , i = 5, . . . ,7 intrinsic volumetric reaction rate of theith reaction (kmol (kg of catalyst)−1

s−1)

Ri, j observed volumetric rate of speciesi in reactionj (kg m−3s−1)

Mi molecular weight of speciesi (kg kmol−1)

MR molecular weight of a specified reactantR (kg kmol−1)

L characteristic dimension of the combustion chamber (m)

Ltube heated reforming tube length (m)

Sctcomb turbulent Schmidt number of the furnace-side flow

Tcomb temperature of the furnace-side flow (K)

Twall temperature of the solid surfaces (K)

Tre f reference temperature (K)

[i] molar concentrations of the speciesi of the furnace-side flow (kmol m−3)

xi
tube mole fractions of speciesi in the tube-side flow

xi
comb mole fractions of speciesi in the furnace-side flow
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Yi mass fraction of speciesi

Yi
comb mass fraction of speciesi in the furnace-side flow

YR mass fraction of a specified reactantR in reactionj

YP mass fraction of a specified product speciesP in reactionj

Vcomb volume of the combustion chamber (m3)

v∞,tube superficial velocity of the tube-side flow (m s−1)

~vcomb mass-averaged velocity vector of the furnace-side flow (m s−1)

v2
comb/2 specific kinetic energy of the furnace-side flow (J kg−1)

α permeability coefficient of the catalyst network (m2)

β inertial resistance coefficient of the catalyst network (m−1)

β ′ coefficient of thermal expansion of the furnace-side flow (K−1)

νi, j stoichiometric coefficient of speciesi in reactionj

νR, j stoichiometric coefficient of a specified reactantR in reactionj

νwave frequency of electromagnetic waves (s−1)

ρtube density of the tube-side flow (kg m−3)

ρcomb density of the furnace-side flow (kg m−3)

ε total emissivity of the furnace-side flow

εcomb dissipation rate of the furnace-side flow (m2 s−3)

εwall internal emissivity coefficient of the solid surfaces

σa absorption coefficient of the furnace-side flow

τcomb stress tensor (kPa)

γ porosity of the catalyst network

µcomb molecular viscosity of the furnace-side flow (kg m−1 s−1)

µt
comb eddy viscosity of the furnace-side flow (kg m−1 s−1)

µtube molecular viscosity of the tube-side flow (kg m−1 s−1)

−∇ ·~qrad radiative heat transfer rate (J m−3 s−1)

∆Ptube pressure difference of the tube-side flow across the catalyst network (kPa)
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Table 2.9: Notations
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Chapter 3

Temperature Balancing in Steam Methane

Reforming Furnace via an Integrated

CFD/Data-Based Optimization Approach

3.1 Introduction

In Chapter 2, a CFD model for an industrial-scale reformer isdeveloped in ANSYS Fluent to fur-

ther our understanding of the physiochemical processes in the tube side and the furnace side as

well as their thermal interactions during the catalytic conversion of methane to hydrogen, which

allows us to investigate the root causes of the inherent variability in the outer tube wall temperature

(OTWT) distribution among the reforming tubes at a fixed height as outlined in Chapter 1. Specif-

ically, a potential root cause is found to be an asymmetric furnace-side flow pattern as speculated

in the SMR literature; for example, Zheng et al. [65] shows that a maldistribution of the furnace-

side flow in the reformer can cause flame impingement, which creates local hot-spots along the

reforming tube length and causes the OTWT distribution to have a higher degree of variability.

The hot-spot temperatures may significantly exceed the design temperature of the reforming tube

walls, which consequently reduces the reformer service life. Using the reformer CFD model, we
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have found that the asymmetric furnace-side flow pattern is the result of an asymmetric reformer

geometry. For example, the reformer considered in this work, developed and validated in Chapter 2

and shown in Fig. 3.2, is designed such that the furnace-sideoutlets of the combustion chamber are

situated on the front side of the refractory wall. Hence, theasymmetric furnace-side flow pattern

is an intrinsic characteristic of the reformer and cannot beresolved without having to redesign the

reformer geometry and to rebuild the reformer. However, Oprins et al. [48] demonstrates that the

nonuniformity in the OTWT distribution under the influence of the asymmetric furnace-side flow

pattern can be reduced by redistributing the “furnace-sidefeed” whose definition is restated in Sec-

tion 3.2.1, so that the total FSF flow rate can be subsequentlyincreased to improve the reformer

thermal efficiency.

Motivated by the above considerations, this Chapter focuses on developing a model-based

furnace-balancing scheme to determine an optimized furnace-side feed (FSF) distribution at the

nominal total FSF flow rate to lessen the variability in the OTWT distribution along the reforming

tube length in the reformer. The concept of ‘furnace balancing’ is well-founded, and in particu-

lar, Kumar et al. [32] and [31] are noteworthy examples of many proofs of concept in literature,

which address the problem of the optimized FSF distribution. Nevertheless, the features of the

high-fidelity reformer CFD model, model identification process and furnace-balancing optimizer

clearly differentiate this work from those in literature. The remainder of this manuscript is struc-

tured as follows: in Section 3.2, an overview of the model-based furnace-balancing scheme is

presented, of which the algorithm of each component is detailed in Secs. 3.2.1, 3.2.2, 3.2.3 and

3.2.4. In Section 3.2.1, the physical description, processmodeling and process simulation of the

high-fidelity reformer CFD model are presented. Specifically, the reformer CFD model is cre-

ated from a multiblock structured hexahedral reformer meshwith ∼41 million grids that has a

reasonably acceptable mesh quality, and the correspondingCFD data generated from the simu-

lations of the reformer CFD model is verified to be mesh-independent. The modeling strategies

of the reformer CFD model are selected from a pool of potential models such that the chosen

models can simulate characteristics of the transport and chemical reaction phenomena observed
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inside the reformer during hydrogen production and requirea reasonable computational resource.

In addition, Chapter 2 demonstrates that the CFD simulationdata generated from the simula-

tions of the reformer CFD model is in good agreement with various sources in the literature. In

Section 3.2.2, the impact of the furnace-side flow pattern onthe OTWT distributions along the

reforming tubes is investigated, and the concept of a heating zone is introduced and is utilized

to allow the model identification process to embed the characteristics of the reformer geometry

and knowledge of the potential effects of the furnace-side flow pattern on the OTWT distribution

into the data-driven model. The data-driven model derived from this ‘hybrid’ model identification

process (i.e., a model identification strategy that uses information on the reformer geometry and ef-

fects of the furnace-side flow pattern on the OTWT distributions), which represents the reasonably

accurate relationship between the OTWT distribution and the FSF distribution inside the reformer

CFD model, can be obtained from a small set of CFD training data. This feature of the model

identification process highlights contributions of the present work to the existing SMR modeling

literature. In Section 3.2.3, the relationship between theFSF distribution and the flow control sys-

tem of the reformer and the fundamental differences betweenproperly functional and defective

flow control valves (i.e., constituents of the flow control system) are presented. In Section 3.2.4,

the algorithm of the furnace-balancing optimizer, of whichthe decision variables are the valve

positions of the properly functional flow control valves, ispresented. Then in Section 3.3.1, the

proposed furnace-balancing scheme is deployed with the assumption that the reformer is properly

functional, and the CFD data corresponding to the optimizedFSF distribution generated by the

proposed furnace-balancing scheme is used to evaluate its performance. Finally in Section 3.3.2,

the proposed furnace-balancing scheme is deployed for the case in which the reformer is subjected

to two different valve-related disturbances, and the CFD data corresponding to the reoptimized FSF

distribution, generated by the proposed furnace-balancing scheme, is used to evaluate its ability to

compensate for the additional constraints imposed by the disturbances.
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3.2 Furnace-balancing scheme

The furnace-balancing scheme consists of four processes denoted by the rectangular boxes in

Fig. 3.1 (i.e., data generation, model identification, a model-based furnace-balancing optimizer

and a termination checker). It is designed to search for the optimized FSF distribution such that

the nonuniformity in OTWT distributions along the reforming tubes and the overall maximum

outer reforming tube wall temperature (i.e., the maximum radially averaged outer wall temper-

ature among all reforming tubes along their heated length) are minimized, which facilitate the

subsequent increase of the total FSF flow rate to the reformerto achieve higher production rates of

hydrogen and superheated steam without shortening the reformer service life.

Ideally, the initial FSF distribution used by the furnace-balancing scheme is chosen to be the

nominal FSF distribution of the on-line reformer at hydrogen manufacturing plants; however, the

industrial data concerning reformer operational settingsis limited, e.g., although the total FSF flow

rate is available for public access, to the extent of our knowledge the FSF distribution of the re-

former has never been reported. Additionally, it is evidentthat the OTWT distribution is dependent

on the asymmetric furnace-side flow pattern as discussed in Section 3.1, and the quantitative rela-

tionship between them has not yet been revealed; therefore,we do not have sufficient information

to form an educated initial guess of the optimized FSF distribution. As a result, the initial guess

of the optimized FSF distribution is assumed to be a uniform distribution (i.e., the furnace-side

feed is uniformly distributed among the inner-lane burnersand among the outer-lane burners, and

this distribution is referred to as the uniform FSF distribution.) Hence, the reformer CFD simu-

lation result computed using the uniformly distributed furnace-side feed serves as a basis for this

investigation. Initially, the uniform FSF distribution isimplemented as the boundary condition of

the reformer CFD model in the data generation process of Fig.3.1. The corresponding CFD data

generated from the simulation of the reformer CFD model is stored in the reformer CFD database

(which is the Hoffman2 computing cluster at UCLA in this work). Subsequently, the CFD data

in the reformer CFD database is used by the model identification process to derive a data-driven
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model, which is a single input/single output (SISO) model that quantifies the impact of the FSF

distribution on the OTWT distribution. Next, the model-based furnace-balancing optimizer utilizes

the data-driven model to predict the optimized FSF distribution such that the degree of nonunifor-

mity in the OTWT distribution is minimized. Then, the optimized FSF distribution is re-applied as

the boundary condition of the reformer CFD model in the data generation process and is also used

as the input of the data-driven model to generate two sets of the optimized OTWT distribution.

Thereafter, the termination checker process utilizes the corresponding two data sets to evaluate

the accuracy of the data-driven model and the performance ofthe furnace-balancing scheme such

that when the difference between the two data sets is within 1%, or when the performance of the

furnace-balancing scheme is no longer improved, the termination checker process signals for the

furnace-balancing scheme to be terminated and the last optimized FSF distribution to be applied

to the on-line reformer. In the remainder of this section, the data generation, model identification

and model-based furnace-balancing optimizer processes will be presented.

Figure 3.1: Flowchart of the furnace-balancing scheme.
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3.2.1 Data generation

The first step of the furnace-balancing scheme (i.e., the data generation process) utilizes a reformer

CFD model developed in Chapter 2 from which the CFD simulation data is generated and is con-

sistent with various sources in the literature.

The reformer has a width of∼16 m, length of∼16 m and height of∼13 m. This unit consists

of 336 reforming tubes, 96 burners and 8 flue-gas tunnels as shown in Fig. 3.2. Inside the reformer,

336 reforming tubes are arranged as seven rows of 48 units inside which commercial nickel-based

catalyst pellets are used as packing material. At the ceiling of the reformer, 96 burners are posi-

tioned as eight rows of 12 units. Among the 96 burners, there are 24 outer-lane burners which are

adjacent to one row of 48 reforming tubes and 72 inner-lane burners which are adjacent to two

rows of 48 reforming tubes. The outer-lane burners are designed to be smaller and to have lower

maximum flow capacity compared to the inner-lane burners. Atthe floor of the reformer, eight

flue-gas tunnels are placed parallel to the rows of reformingtubes. On each side of the flue-gas

tunnels, there is a row of 35 evenly spaced rectangular extraction ports. The reformer produces

2,800,000 Nm3 of high-purity hydrogen and 1,700,000 kg of superheated steam per day with an

annual operating cost of 62,000,000 dollars.

In CFD study, mesh generation is the most critical and time-consuming process because a CFD

model created from a poor quality grid requires more computational resources and a longer com-

putational time to calculate a converged simulation result, and the result is likely to carry a large

numerical error [3]. The choice of meshing strategy (i.e., the structured multi-block hexahedral

meshing) for creating the reformer mesh and the criteria (i.e., maximum orthogonal factor, mini-

mum ortho skew, and maximum aspect ratio) for evaluating thereformer mesh quality are identical

to those in Chapter 2 and, therefore, will not be repeated forbrevity. However, the current reformer

mesh in this work is designed to be finer than that in Chapter 2 (i.e., the total number of grids is in-

creased from∼29 million to∼41 million) and to have significantly better mesh quality compared

to the mesh in Chapter 2 as shown in Table 3.1. Although the reformer CFD model built from
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the finer reformer mesh is expected to require a longer computational time than the reformer CFD

model in Chapter 2 with the computational resources that we have at our disposal (i.e., 80 cores

on the Hoffman2 cluster), the CFD data generated by the current reformer CFD model is expected

to be a more accurate representation of the experimental data. The increased accuracy resulting in

the increased computational time is essential because the magnitude of the reduction in the overall

maximum outer reforming tube wall temperature in a balancedreformer is expected to be small

(if not negligible) compared to its typical value. It is important to note that though the current

multiblock structured hexahedral reformer mesh with∼41 million grids has a minimum orthog-

onal factor of 0.459 and a maximum ortho skew of 0.541, which may not appear to be suitable

when the accuracy of the CFD data is the primary interest, itsaverage orthogonal factor of 0.964

and average ortho skew of 0.036 are nearly ideal, which dismiss the initial concern of the impact

of the mesh quality of the CFD data accuracy.

In Chapter 2, the modeling strategies of the reformer are chosen based on the transport and

chemical reaction phenomena expected inside the reformer during hydrogen production and are

selected to require a reasonably powerful computational resource and moderate computing time to

create the reformer CFD model. In particular, the reformer CFD model is able to simulate the non-

premixed combustion characteristics of the furnace-side fuel stream by using the standardk− ε

turbulence model with the ANSYS enhanced wall treatment, finite rate/eddy dissipation (FR/ED)

model and global volumetric kinetic models of methane/hydrogen combustion in air [5, 46]; there-

fore, burners in the reformer CFD model are supplied with thewell-mixed feed (i.e., the furnace-

side feed), which is created by mixing the fuel stream and thecombustion air stream. Addition-

ally, the reformer CFD model is capable of simulating radiative heat transfer between within the

furnace-side flow, combustion chamber refractory walls andouter reforming tube walls by using an

empirical correlation between the furnace-side radiativeproperties and temperature [43], Lambert

Beer’s law, Kirchoff’s law and the discrete ordinate method[3]. Furthermore, the reformer CFD

model can simulate the SMR process in the tube side by means ofthe standardk− ε turbulence

model, FR/ED model and global kinetic model of the SMR process [64]. Moreover, the reformer
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CFD model can also simulate the effects of the catalyst network on the tube side flow by employing

the ANSYS porous zone function for which the parameters are estimated from the semi-empirical

Ergun equation and relevant typical industrial data [34].

It has been established that the simulation of the reformer CFD model is sensitive to initial

guesses (e.g., when the simulation of the reformer CFD modelis initialized by the ANSYS stan-

dard initialization based on the boundary conditions of theCFD model, it quickly diverges), and

for that reason in Chapter 2, a step-by-step converging strategy is proposed to counter the numeri-

cal instability issue and to accelerate the rate of convergence of the simulation, which reduces the

computational time devoted to generate the converged CFD data. Hence, the converging strategy

is again utilized in the present work to obtain the CFD data ofthe reformer CFD model in which

the uniform FSF distribution is implemented as the boundarycondition, and the CFD data is ex-

pected to be determined by the ANSYS Fluent parallel solver after∼3 days on the 80 private cores

on UCLA’s Hoffman2 Cluster. Although subsequent simulations of the reformer CFD model, in

which the optimized FSF distribution is implemented as the boundary condition, could be executed

with the converging strategy, we have found that we can further reduce the computational time to

slightly more than a day by utilizing a CFD data set stored in the reformer CFD database as an ini-

tial guess for the simulations and executing with a two-stepconverging strategy. Specifically, the

data generation process of each iteration of the furnace-balancing scheme begins with the simula-

tion of the isothermal, non-reacting (INR) reformer CFD model, which is initialized based on the

reformer CFD data and is solved by the aggressive mode of the ANSYS Fluent solver to generate

an intermediate solution that contains information of the new flow fields (i.e., the velocity and tur-

bulence fields of the furnace-side and tube-side flows) of thebalanced reformer CFD model. This

is because despite the differences in the composition and temperature fields of the furnace-side

and tube-side flows computed by the INR reformer CFD model andthe reformer CFD model, their

furnace-side and tube-side flow fields are expected to be similar [3, 60]. Finally, the simulation

of the (complete) reformer CFD model is initialized based onthe intermediate CFD data (which

contains information of the new flow fields in addition to the temperature and species fields from
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the reformer CFD data of a prior iteration) and is solved by the aggressive mode of the ANSYS

Fluent solver until the convergence criteria, which are adopted from Chapter 2 and described in the

next paragraph, are met.

Typically, after the global normalized residuals of the conserved transport variables are on

the order of 10−4, the total mass flow rate integrated over all boundaries of the reformer CFD

model is∼0 kg s−1, the total heat transfer rate integrated over all boundaries of the reformer CFD

model is less than 1% of the reformer total fired duty, and the absolute residuals of the temper-

ature of the furnace-side flow at five different locations inside the combustion chamber are less

than 1 K, the simulations would be terminated. In the presentwork, the simulations are continued

because we recognize that the global normalized residuals are nonzero which indicates that the

CFD data fluctuates around the true steady-state solution ofthe reformer CFD model, and there-

fore, the averaged CFD data of many converged CFD data sets isthe most accurate representation

of the reformer steady-state solution. In the effort of acquiring the more accurate CFD data for

each reformer CFD model, the simulation is kept running for an additional 300 iterations, which

correspond to∼5%−10% of the total computational time, and the corresponding CFD data is pe-

riodically saved in the reformer CFD database every 100 iterations creating a total of four CFD

data sets for each reformer CFD model, of which the average CFD data is utilized by subsequent

processes of the furnace-balancing scheme. Although the effort to obtain the more accurate CFD

data results in increased computational time, the trade-off is critical because the reduction in the

maximum outer reforming tube wall temperature due to the optimized FSF distribution is expected

to be substantially smaller than the overall average outer wall temperature of the reforming tubes.

3.2.2 Model Identification

The second step of the furnace-balancing scheme (i.e., the model identification process) utilizes

the cumulative reformer CFD database collected from the data generation process to derive a data-

driven model describing the relationship between the OTWT distribution at a specified distance

away from the reforming tube inlets and the FSF distribution. In the present work, we have found
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Figure 3.2: The isometric view of an industrial-scale, top-fired, co-current reformer with 336 re-

forming tubes, which are represented by 336 slender cylinders, 96 burners, which are represented

by 96 frustum cones, and 8 flue-gas tunnels, which are represented by 8 rectangular intrusions.

that the relationship can be assumed to be linear, and the data-driven model can still provide a

reasonably accurate prediction of the OTWT distribution, which is generated by the reformer CFD

model, given a sufficiently large reformer CFD database. Therefore, the radially average outer

reforming tube wall temperature of theith reforming tube at the fixed distance away from the

reforming tube inlet (Ti (K)), which is an element of the OTWT distribution, can be approximated

by a linear combination of the FSF flow rates of all 96 burners (i.e., the FSF distribution) as follows,

Ti =
95

∑
j=0

αi j Fj (3.1)

whereFj (kg s−1) is the furnace-side feed flow rate of thejth burner andαi j (K kg−1s) is the

empirical coefficient of the data-driven correlation corresponding to theith reforming tube andjth

burner, which is to be determined by the model identificationprocess. In this study, the outer-lane/

inner-lane burners and reforming tubes are indexed from 0th−95th and 0th−335th in the specified
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Table 3.1: Reformer mesh quality

Current mesh Mesh in Chapter 2 Recommended range

Number of grids (millions) 41 29

Min orthogonal factor 0.459 0.181 0.167−1.000

Max ortho skew 0.541 0.819 0.000−0.850
Max aspect ratio 28.5 28.5 1−100

patterns as shown in Fig. 3.2. As a result, the model identification process created based on our

assumption of the linear relationship between the OTWT and FSF distributions is an optimization

problem with 32256 decision variables. Due the sheer numberof decision variables, the model

identification process is expected to be a computationally expensive algorithm. Hence, in the

remainder of this section, the concept of a heating zone is introduced in an effort to decrease the

computational time for deriving the data-driven model, anda modified formulation of the model

identification process is presented.

In high-temperature applications, thermal radiation is the dominant mode of heat transfer, and

the reformers are commonly referred to as radiant heat exchangers [32]. Olivieri et al. [47] shows

that radiative heat transfer accounts for∼95% of the total heat transfer in the top-fired reformer

investigated in that work, which suggests that the OTWT distribution is primarily controlled by

thermal radiation. This is because the rate of energy transferred by thermal radiation between

two blackbodies at different temperatures is commonly modeled as being proportional to the dif-

ference in temperatures raised to the fourth power (i.e.,∆
(
T4
)
), while the rate of heat transfer

by conduction and convection between them is proportional to the temperature difference (i.e.,

∆(T)). However, the rate of heat transfer by thermal radiation decreases drastically with increas-

ing distance between two blackbodies because it is proportional to the radiation intensity, which

is inversely proportional to the distance between the two blackbodies raised to the second power.

This idea allows us to assume that when the distance between aspecified burner and reforming

tube is sufficiently large, the furnace-side feed flow rate ofthe burner has negligible impact on
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the average outer reforming tube wall temperature. In this study, the distance between a specified

burner and reforming tube is defined as the distance between the projection of the burner centroid

and the projection of the reforming tube centroid onto any 2-D horizontal cross-sectional plane.

To quantitatively determine the local radiative heating effect on the OTWT distribution due to the

furnace-side feed flow rate of each burner, we consider the following simplifying assumptions:

each burner creates a heating zone represented by a blue cylindrical volume as shown in Fig. 3.5,

the heating zones of the burners have an identical size and shape, and the FSF flow rate of the

jth burner only affects the average outer wall temperature values of the reforming tubes which are

located inside the heating zone of thejth burner.

On the other hand, it has been established that the furnace-side flow pattern can influence

the OTWT distribution, e.g., a maldistribution of the furnace-side flow pattern in the reformer

can potentially cause flame impingement, which might make the outer wall temperature values

of some reforming tubes to exceed the design temperature, causing the OTWT distribution to

have a higher degree of nonuniformity as discussed in Section 3.1. Hence, it is desired that the

model identification process can create a data-driven modelthat is also capable of accounting for

the effect of the furnace-side flow pattern on the OTWT distribution. We begin by utilizing the

existing reformer CFD data reported in Chapter 2 to construct the velocity vector fields of the

furnace-side flow pattern as shown in Fig. 3.3, which allows us to form a hypothesis regarding

the underlining mechanism by which the furnace-side flow field affects the OTWT distribution.

Specifically, Fig. 3.3 indicates that the hot combustion products (i.e., the furnace-side flow) enter

the flue-gas tunnels through the extraction ports and move toward the reformer outlets. The existing

furnace-side flow pattern appears to cause the wall temperature of the flue-gas tunnels to increase

with decreasing distance toward the reformer outlets as shown in Fig. 3.4. Additionally, Fig. 3.4

shows that the minimum wall temperature of the flue-gas tunnel of 1240 K is greater than the

maximum temperature of the reforming tube wall of 1183 K as reported in Chapter 2, so it is

reasonable to assume that the reforming tubes might receiveadditional radiative heating from the

neighboring flue-gas tunnels. However, the magnitude of theadditional heating transferred to each
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reforming tube from the neighboring flue-gas tunnels depends on the location of the reforming

tube with respect to the reformer outlets. Particularly, because the flue-gas tunnels are at higher

temperature toward the reformer outlets, the reforming tubes that are situated closer to the reformer

outlets are expected to receive higher amounts of additional radiative heating from the neighboring

flue-gas tunnels. It is important to note that the existing furnace-side flow pattern (Fig. 3.3) also

suggests that the additional radiative heating received bythe reforming tubes that are situated near

the reformer outlets can be from the combustion products of the burner that is situated near the

reformer back wall. The analysis motivates us to develop heating zones with the shape shown

in Fig. 3.5 in the effort of making the data-driven model aware of the furnace-side flow pattern

and its effects on the OTWT distribution. It is important to note that when a larger cylindrical

heating zone is utilized in the model identification process, each burner is assumed to influence

more surrounding reforming tubes in addition to those that are situated in the direction toward

the reformer outlets and in the two adjacent rows of reforming tubes, which may allow the data-

driven model to be more accurate with respect to the reformerCFD data at the cost of increased

computational time. We conducted a study with various dimensions of the burner heating zone to

determine the appropriate dimension of the cylindrical volume (i.e.,rcyl), and we have found that

at rcyl ∼3.4 m, we are able to form 336 sets of the tube-burner relationships, which are denoted by

Si and i ∈ [0,335] such thatSi contains the FSF flow rates of the burners on which the outer wall

temperature of theith reforming tube depends. The tube-burner relationships reduce the number of

decision variables of the model identification algorithm from 32256 to 6865 and, thus, allow the

data-driven model to be created within a reasonable computing time interval.

The data-driven model is designed to account for the reformer geometry characteristics (i.e.,

the burner and reforming tube arrangements) and is designedto have the potential to account

for the influence of the furnace-side flow pattern on the OTWT distribution by using the concept

of a heating zone. The data-driven model utilizes a given FSFdistribution to predict an OTWT

distribution that is close to that taken from a reformer CFD simulation result in the least squares

sense. The model identification process based onn sets of the reformer CFD data taken from the
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reformer CFD database is formulated as follows,

min
αi j∈[0,∞)

n−1

∑
m=0

(
335

∑
k=0

(
Tk,m−Test

k,m

)2
)2

(3.2)

subject to

Test
k,m =

95

∑
j=0

αk jFj ,m (3.3a)

αk j = 0 if Fj ,m /∈ Sk (3.3b)

αk j = αki if Fj ,m,Fi,m∈ Sk anddk j = dki (3.3c)
(

dk j

dki

)β
·αk j ≥ αki ≥ αk j if Fj ,m,Fi,m∈ Sk anddk j > dki (3.3d)

whereTk,m andTest
k,m are the average outer wall temperature of thekth reforming tube taken from the

mth reformer CFD data set and the corresponding value generatedby the data-driven model given

themth furnace-side feed distribution as shown in Eq. 3.3a, respectively, Fj ,m is the furnace-side

feed flow rate of thejth burner derived from themth reformer CFD data set,β = 4.0 is an empirical

constant of the data-driven model estimated from the study of the burner heating zone,dk j is the

distance between thekth reforming tube and thejth burner anddki is the distance between thekth

reforming tube and theith burner. In Eqs 3.3a−3.3d, the ranges ofk, i, j andmare 0−335, 0−95,

0−95 and 0−n, respectively. The cost function (Eq. 3.2) of the model identification penalizes the

deviation of the average outer wall temperature of each reforming tube generated by the data-driven

model from that derived from the corresponding reformer CFDdata set. Specifically, Eq. 3.3b

suggests that if thekth reforming tube is not situated within the heating zone of thejth burner

(Tk,m 6= Tk,m
(
Fj ,m

)
), the data-driven model will assume that the furnace-side feed flow rate of the

jth burner does not affect thekth outer reforming tube wall temperature. Additionally, Eq. 3.3c

indicates that if the distance between thekth reforming tube and thejth burner is equal to that
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between thekth reforming tube and theith burner, the data-driven model then presumes that the

effects of the burners on thekth outer reforming tube wall temperature are the same. Similarly,

Eq. 3.3d shows that if the distance between thekth reforming tube and thejth burner is greater than

that between thekth reforming tube and theith burner, the data-driven model then infers that the

effects of thejth burner on thekth outer reforming tube wall temperature are weaker than thoseof

the ith burner.

Figure 3.3: The velocity vector field of the furnace-side flowpattern in the vicinity of the 4th burner

row in the reformer is constructed from the reformer CFD datareported in Chapter 2. The outlets

of the reformer are situated at the bottom right corner and are placed in the direction of the velocity

vectors inside the flue-gas tunnels.

3.2.3 Valves and flow rate relation

Although the FSF distribution is used as the boundary condition of the high-fidelity reformer CFD

model and is chosen as the input of the data-driven model, it cannot be directly controlled and is
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Figure 3.4: The temperature contour map of the 4th flue-gas tunnel, which is situated directly under

the 4th burner row in the reformer, is shown. This contour map is created from the reformer CFD

data in Chapter 2. In Fig. 3.4, the outlets of the reformer aresituated at the bottom right corner.

not typically measured in industrial practice. Indeed, theFSF distribution is controlled by a system

of flow regulators consisting of a finite number of flow controlvalves. Specifically, because the

burners in the reformer are interconnected, a fractional amount of the FSF flow rate of thejth

burner can be redistributed to other units by partially closing the corresponding flow control valve.

This suggests that the optimized FSF distribution can be produced by appropriately adjusting the

percent open positions of all flow control valves in the flow regulator system, which is referred to

as the valve position distribution. Hence, the merit of the high-fidelity reformer CFD model and

of the data-driven model for the furnace-balancing application, which aims to reduce the degree

of the temperature nonuniformity in the combustion chamberand to increase the reformer thermal

efficiency, is evident.

In an industrial setting of commercial-scale hydrogen production, it is unconventional for a
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Figure 3.5: A representation of a burner heating zone which is created by the highlighted burner

in red. The burner heating zones are displayed by a blue cylindrical volume (where the reforming

tubes are heated via thermal radiation from the furnace-side flow) and a green rectangular volume

(where the reforming tubes are heated via thermal radiationfrom the neighboring flue-gas tunnels).

It is assumed that only the reforming tubes located within the burner heating zones have the outer

wall temperature values dependent on the FSF flow rate of the burner.

furnace-side feed flow rate of a burner in the reformer to be individually regulated due to the sheer

number of burners. In the present work, we assume that every set of two consecutive burners in a

row of twelve burners is controlled by a flow control valve, and therefore, it is also reasonable to

assume that the same FSF flow rate is delivered to these burners. Additionally, we assume that the

FSF distribution is regulated by two distinct linear flow control valve models with different maxi-

mum capacities. Among the flow control valve models, one valve model with a larger maximum

capacity is used for the inner-lane burners, and the other valve model with a smaller maximum

capacity is implemented in the outer-lane burners such thatwhen valves are at the same opening

position, the FSF flow rate of the outer-lane burners is 60% ofthat of the inner-lane burners. Based
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on the burner arrangement in the reformer and the capacity ratio of the inner-lane valve model and

the outer-lane valve model, the valve-position-to-flow-rate converter is formulated as follows,

[F] = δ · [X] · [Y] · [V] (3.4)

subject to

[V] ∈ IR48×1 (3.5a)

[X] ∈ IR96×96 (3.5b)

Xi j = 0.6; i = j wherei ∈ [0,11]∪ [84,95]

Xi j = 1.0; i = j wherei ∈ [12,93]

Xi j = 0.0; i 6= j

[Y] ∈ IR96×48 (3.5c)

Yi j = 1.0; i = 2 j ∪ i = 2 j +1 wherej ∈ [0,47]

Yi j = 0.0; i 6= 2 j ∩ i 6= 2 j +1 wherej ∈ [0,47]

[F] ∈ IR96×1 Fi ≥ 0 ∀i ∈ [0,95] (3.5d)

δ =
Ftot

‖[X] · [Y] · [V]‖1
(3.5e)

whereFtot (kg s−1) is the total mass flow rate of the furnace-side feed to the reformer,δ is the valve-

to-flow-rate proportionality coefficient and is dependent on the valve position distribution,[F] is

a vector of the FSF flow rate through each burner (the FSF distribution), [X] is a transformation

matrix that identifies the types of the flow control valves (i.e., the inner-lane and outer-lane valves)

in the reformer,[Y] is a transformation matrix that describes the burner arrangement in the reformer

and [V] is a vector of valve positions (the valve position distribution). A characteristic of the

valve-to-flow-rate converter is that an FSF distribution can be produced by different valve position

distributions by changing the inlet pressure of the furnace-side feed to the reformer. To illustrate
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this idea, we utilize a fictitious simplified interconnectedflow system which consists of four inner-

lane burners and is supplied with the constant total FSF massflow rate of 4.0 (kg s−1). When both

flow control valves regulating the four inner-lane burners are at 100% open, the total FSF flow rate

to the simplified interconnected flow system is evenly distributed, i.e., the FSF flow rate to each

inner-lane burner is expected to be 1.0 (kg s−1). When both flow control valves regulating the four

inner-lane burners are 80% open, the FSF flow rate to each inner-lane burner is still required to be

1.0 (kg s−1) to maintain the constant total FSF mass flow rate of 4.0 (kg s−1) because of the two

following reasons: the FSF flow rates of the two inner-lane flow control valves that are at the same

valve position are equal, and the FSF flow rates of the two inner-lane burners that are regulated by

a flow control valve are also assumed to be equal. The primary difference between the two case

studies is in plant’s efficiency, as the magnitude of the inlet pressure of the furnace-side feed to the

reformer is expected to be higher in the second case study, which corresponds to a higher energy

input to the compressor system leading to an increase in the operating cost of the reformer and a

reduction in the plant’s efficiency.

In the reformer, the flow control system has 48 flow control valves among which 36 valves are

designated to regulate the FSF flow rates of the 72 inner-laneburners, and the valve position of

each flow control valve must be adjusted to create the optimized FSF distribution. Therefore, the

reformer thermal efficiency becomes susceptible to common valve-related problems (e.g., valve

stickiness) as these disturbances prevent the valve position distribution that is designed to produce

the optimized FSF distribution from being implemented. In this study, when a flow control valve

is said to become defective, we assume that the flow control valve becomes stuck, and hence, the

valve position cannot be adjusted, which prevents the furnace-side feed from being distributed

according to the optimized distribution.

3.2.4 Model-based furnace-balancing optimizer

The third step of the furnace-balancing scheme (i.e., the model-based furnace-balancing optimizer)

utilizes the data-driven model (Eq. 3.10b), the valve-position-to-flow-rate converter (Eq. 3.10a)
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to derive an optimized FSF distribution that aims to reduce the degree of nonuniformity in the

OTWT distribution. The furnace-balancing optimizer is designed as a multivariable optimization

problem in which the decision variables are the positions ofthe properly functional flow control

valves. Additionally, the furnace-balancing optimizer isdesigned to handle defective valves in

the flow control system by adjusting the number of decision variables. For instance, if a flow

control valve of the 0th and 1st outer-lane burners becomes defective, there are 47 functional valves

in the flow control system, and therefore, the number of decision variables decreases from 48

(which corresponds to the total number of the flow control valves in the reformer) to 47. During

the initialization of the furnace-balancing optimizer, a text file documenting the current status of

the flow control valves is provided, based on which the furnace-balancing optimizer identifies

the defective valve(s) and the corresponding stuck valve position(s) to determine the number of

decision variables.

The decision variables of the furnace-balancing optimizerare subjected to the practical con-

straint of the flow control valves (i.e., Eq. 3.10f, which is enforced to avoid extinguishing the flame)

and the physical constraint of the flow control valves (i.e.,Eq. 3.10e). In addition, we assume that

the total furnace-side feed derived based on typical industrial data is kept constant atFtot (i.e.,

Eq. 3.10c), when the optimized FSF distribution is computed. This strictly controlled operating

window of the reformer allows the radial average temperature of theith reforming tube at a fixed

distance away from the reforming tube inlet to be expressed as a linear combination of the FSF

distribution as shown in Eq. 3.10b.

In the development of the furnace-balancing optimizer, careful considerations regarding the

characteristic of the valve-to-flow-rate converter must begiven. Specifically, the valve-to-flow-rate

converter allows a FSF distribution to be produced by different valve position distributions between

which the primary difference is in the plant’s efficiency because the valve position distribution

deviates further away from the default distribution (i.e.,in which flow control valves are fully

open) and thus requires a higher inlet pressure of the furnace-side feed to the reformer leading to a

higher energy input to the compressor system, an increase inthe operating cost of the reformer and

93



a reduction in the plant’s efficiency. In the present work, a quantitative assessment of the deviation

of a valve position distribution ([V]) from the default distribution ([V]0) is computed as the 1-

norm of the difference between[V]0 and[V], i.e., ||[V]0− [V]||1. Therefore, the furnace-balancing

optimizer is designed to minimize the degree of nonuniformity in the OTWT distribution in a

manner that requires the least duty of the compressor systemto maximize the plant’s efficiency and

reformer service life by penalizing the weighted quadraticdeviation of the outer wall temperature

values of all reforming tubes from the set-point temperature (TAVE),

335

∑
k=0

wk
(
TAVE−Test

k

)2
, (3.6)

and also penalizing the deviation of the optimized valve position distribution ([V]) from [V]0,

||[V]0− [V]||1 =
47

∑
i=0

(Vi,max−Vi) . (3.7)

The objective function of the furnace-balancing optimizermust signify that minimizing the de-

gree of nonuniformity in the OTWT distribution has by far thehighest priority and should not be

compromised by the minor benefit of minimizing the duty of thecompressor system. This idea is

translated into mathematical expression of the penalty associated with the task of minimizing the

compressor duty in the objective function of the furnace-balancing optimizer by normalizing the

deviation of the optimized valve position distribution from [V]0, which is subsequently scaled by

multiplying with the product of the penalty associated withthe task of minimizing the degree of

nonuniformity in the OTWT distribution and a weighting factor (γ),

γ ·
335

∑
k=0

wk
(
TAVE−Test

k

)2
·

47
∑

i=0
(Vi,max−Vi)

47
∑

i=0
(Vi,max−Vi,min)

. (3.8)

As a result, the objective function of the furnace-balancing optimizer is formulated as shown in

Eq. 3.9, in which the first term represents the penalty associated with the task of minimizing the
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degree of nonuniformity in the OTWT distribution, and the second term represents the penalty

associated with the task of minimizing the compressor duty.The set-point temperature (TAVE) can

be computed based on the OTWT distribution from any of the previous CFD data sets from the

reformer CFD database as shown in Eq. 3.10d because the overall average outer wall temperature

at the fixed distance away from the reforming tube inlets is expected to be constant despite the

degree of nonuniformity in the OTWT distribution. Additionally, the initial guesses for the decision

variables of the furnace-balancing optimizer are set to be 100% open (i.e., when the penalty on the

control action is minimized) to allow the furnace-balancing optimizer to initially shift the focus

on minimizing the degree of nonuniformity in the OTWT distribution and to avoid being stuck,

which could happen when it is initially forced to accomplishboth objectives simultaneously. The

model-based furnace-balancing optimizer is formulated asfollows,

min
Vj∈[60,100]

j={0,··· ,47}\Vde f

335

∑
k=0

wk
(
TAVE−Test

k

)2
+ γ

335

∑
k=0

wk
(
TAVE−Test

k

)2
·

47
∑

i=0
(Vi,max−Vi)

47
∑

i=0
(Vi,max−Vi,min)

(3.9)
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subject to

[F] = δ · [X] · [Y] · [V] (3.10a)

Test
k =

95

∑
j=0

αk jFj ∀Fj ∈ [F] (3.10b)

95

∑
j=0

Fj = Ftot, j = {0, · · · ,95} (3.10c)

TAVE =
1

336

335

∑
k=0

Tk,m (3.10d)

Vi,max= 100% i = {0, · · · ,47} (3.10e)

Vi,min= 60% i = {0, · · · ,47} (3.10f)

Vi,max≤Vi,max≤Vi,max i = {0, · · · ,47}\Vde f (3.10g)

Vi,de f (3.10h)

whereVde f is the set of indices of defective control valves,wk is the weighting factor of thekth

reforming tube (which is used to compute the penalty associated with the deviation of the predicted

outer wall temperature of thekth reforming tube (Test
k ) from TAVE), γ is the weighting factor of the

penalty associated with the control action,Vi (the ith component of[V]) is the valve position of the

ith flow control valve (which regulates the FSF flow rates of the(2i)th and(2i +1)th burners) and

Fj (the jth component of[F]) is the optimized FSF flow rate of thejth burner. The idea of assigning

the deviations ofTest
k from TAVE of the reforming tubes different weights in the penalty associated

with the degree of nonuniformity in the OTWT distribution ismotivated by the fact that the local

environments of the reforming tubes are not all identical, and specifically, the additional radiative

heating provided for the reforming tubes from the neighboring flue-gas tunnels is expected to

decrease with increasing distance away from the reformer outlets. Hence, we want to compensate

for the nonuniform additional radiative heating along the rows of 48 reforming tubes by giving

the most weight to the offsets of the reforming tubes that arethe furthest away from the reformer
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outlets (e.g., the 47th reforming tube). Specifically,wk is designed to monotonically decrease with

the position (pk) of thekth reforming tube in a row of 48 reforming tubes as follows,

pk = k−48·

⌊
k
48

⌋
k∈ {0,1, · · · ,335} (3.11a)

wk = wmax
k ·exp[−βw · (47− pk)] pk ∈ {0,1, · · · ,47} (3.11b)

where ⌊·⌋ represents the ‘floor’ operator, andwmax
k and βw are the parameters ofwk. These

weights, combined with the form of the heating zones for the data-driven model discussed in

Section 3.2.2, allow the furnace-balancing optimizer to account to some extent for the reformer

geometry, furnace-side flow pattern and its potential influence on the OTWT distribution. There-

fore, the furnace-balancing optimizer is expected to realize that the burners situated near the re-

fractory back wall might have long range effects on the outerwall temperature of the reforming

tubes near the reformer outlets. As a result, the optimized FSF distribution is expected to lessen the

degree of nonuniformity in the OTWT distributions along thereforming tubes and to reduce the

overall maximum temperature of the outer reforming tube wall, which creates room for improving

the thermal efficiency of the reformer. It is important to note thatwmax
k,1 = 10.0, βw = 0.05 and

γ = 0.1 are determined based on a trial-and-error approach until the largest reduction in the degree

of nonuniformity in the predicted OTWT distribution is observed.
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3.3 Simulation Results

In this section, the average of four CFD data sets produced bythe reformer CFD model, in which

the uniform FSF distribution is used as the boundary condition, are utilized to analyze the exist-

ing degree of nonuniformity in OTWT distributions at different locations along the reforming tube

length as shown in Table 3.2. We note that the spread of the OTWT distributions only raises our

concerns about the reformer life service when the average temperature of the OTWT distribution

at a fixed distance away from the reforming tube inlets is in the regime of the maximum value

of average temperatures of the OTWT distributions along thereforming tube length. This is be-

cause if the average temperature of the OTWT distribution ishigh, the radially averaged maximum

temperature is likely to exceed the design temperature of the reforming tube wall, and therefore,

the service life of the reformer is shortened. Additionally, Kumar et al. [32] shows that OTWT

distributions along the reforming tube length and the spatial distribution of the furnace-side tem-

perature can be made to become more uniform by reducing the degree of nonuniformity in just

one OTWT distribution. In the remainder of this section, we focus on the OTWT distribution that

is ∼6.5 m away from the reforming tube inlets as it has a relatively high overall average temper-

ature (1165.08 K, which is∼99% of the maximum value in the average outer wall temperature

profile), temperature range (67.7 K) and standard deviation(9.7 K). Only the OTWT distributions

and the corresponding FSF distributions are utilized by themodel identification to create the data-

driven model as discussed in Section 3.2.2. Next, the model-based furnace-balancing optimizer

uses the status of the flow control system, the valve-position-to-flow-rate converter and the most

up-to-date data-driven model to search for the optimized FSF distribution to minimize the degree

of nonuniformity in the OTWT distribution. We note that eachdata set utilized by the model iden-

tification process requires 3.64×10−4 GB of storage space, while the original reformer CFD data,

from which the OTWT distribution and FSF distribution are extracted, requires 112 GB of storage

space, and therefore, the data-driven model might not be able to precisely predict the behavior of

the reformer when the training data set is not sufficiently large. Hence, once an optimized FSF

98



distribution is obtained from the furnace-balancing optimizer, the optimized FSF distribution is

simultaneously used as the boundary condition of the reformer CFD and as the input of the data-

driven model, and the corresponding data is utilized in the termination checker process, in which

the accuracy of the data-driven model and the performance ofthe furnace-balancing scheme are

evaluated. In the present work, the performance of the furnace-balancing scheme is assessed based

on the percent reduction in the standard deviation of the OTWT distribution generated by the re-

former CFD model, in which the optimized FSF distribution isused as the boundary condition,

compared to that generated by the reformer CFD model, in which the uniform FSF distribution is

used as the boundary condition.

Each iteration of the proposed furnace-balancing scheme solved by Ipopt [61] generates an

optimized FSF distribution and quantitatively estimates the reduction of the degree of nonunifor-

mity of the OTWT distribution within 30 hours using 80 cores of UCLA Hoffman2 Cluster, and

∼90% of the computational time is designated to the data generation process. The termination

checker process triggers a terminating signal after six iterations of the furnace-balancing scheme.

It is worth noting that subsequent attempt to re-optimize the FSF distribution to compensate for

the influences of common valve-related problems can be accomplished after fewer iterations of the

furnace-balancing scheme as the data-driven model derivedusing the entire reformer CFD database

is expected to accurately predict the reformer behavior.

3.3.1 Case study A

In this subsection, the performance of the furnace-balancing scheme is investigated under the as-

sumption that the flow control system is fully functional (i.e., the furnace-balancing optimizer

has 48 decision variables). The simulation results generated during the first six iterations of the

furnace-balancing scheme are presented and discussed.

The evolution of the data-driven model is shown in Fig. 3.6, which indicates that the data-

driven model progressively becomes a more accurate representation of the reformer CFD data
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with more iterations of the furnace-balancing scheme due toa larger reformer CFD database.

Fig. 3.6 shows the predicted OTWT distributions generated by the data-driven model match well

with those generated by the reformer CFD model with just five training data sets from the reformer

CFD database, which validates our hypotheses of the impact of the furnace-side flow pattern on

the OTWT distribution, the size of the cylindrical heating zone, the altered shape of the heating

zone and the assumption that the radial average temperatureof the ith reforming tube at a fixed

distance away from the reforming tube inlet can be expressedas a linear combination of the FSF

distribution.

Next, the evolution of the OTWT distribution at a distance 6.5 m away from the reforming

tube inlets is shown in Figs. 3.6, 3.7 and 3.8, which reveal that the reformer CFD model, in which

the optimized FSF distribution is used as the boundary condition, has a less severe degree of

nonuniformity in the OTWT distribution after the first iteration of the furnace-balancing scheme.

Fig. 3.8 is created to allow data visualization (allowing the 336 reforming tubes in the reformer to

be represented by a table consisting of 336 rectangular cells, of which each location in the table

maps to a unique reforming tube in the reformer) so that the performance of the furnace-balancing

scheme and the degree of nonuniformity of the OTWT distribution can be evaluated qualitatively

at a glance (e.g., if Fig. 3.8 has a high number of red and greencells, the OTWT distribution is

highly nonuniform). Fig. 3.8 shows that the OTWT distribution gradually becomes more uniform

with more iterations of the furnace-balancing scheme. Specifically, by the 2nd iteration, the under-

heated region near the reformer outlets in the OTWT distribution of the 0th iteration (i.e., the

reformer CFD model of which the uniform FSF distribution is used as the boundary condition)

is completely eliminated, by the 4th iteration the other noticeable under-heated region near the

refractory back wall in the OTWT distribution of the 0th iteration is completely removed, and by

the 6th iteration the severity of the two over-heated regions in theOTWT distribution of the 0th

iteration is reduced. Figs. 3.6 and 3.7 are utilized to quantitatively evaluate the performance of

the furnace-balancing scheme and the degree of nonuniformity of the OTWT distribution. From

the 2nd iteration onward, Figs. 3.6 and 3.7 show that the temperature range and standard deviation
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of the OTWT distribution decrease compared to those of the 0th iteration. Specifically, at the 6th

iteration of the furnace-balancing scheme, the temperature range and standard deviation of the

OTWT distribution are reduced from 67.7 K and 9.7 K to 25.7 K and 4.8 K, respectively. The

reduction in the standard deviation of the OTWT distribution due to the optimized FSF distribution

with respect to the basis is 51%.

Finally, the evolution of the overall maximum outer wall temperature of the reforming tubes

is shown in Fig. 3.9, which indicates that the reformer CFD model, in which the optimized FSF

distribution (generated at any iteration of the furnace-balancing scheme) is used as the boundary

condition, has a lower maximum outer reforming tube wall temperature compared to that of the

0th iteration. Specifically, at the 6th iteration of the furnace-balancing scheme, the overall maxi-

mum outer temperature of the reforming tubes is reduced from1197.2 K to 1191.5 K (by 5.6 K).

We would like to note that although the magnitude of the reduction in the overall maximum outer

reforming tube wall temperature is much less than the overall average outer wall temperature of

1121.6 K, the contribution of our present work for industrial applications that strive to improve the

thermal efficiency and service life of the reformer remains significant for the reason noted in Sec-

tion 3.1. Due to the reduction in the overall maximum outer reforming tube wall temperature, the

total FSF mass flow rate to the reformer can potentially be increased to achieve a higher operating

temperature of the furnace-side flow without reducing the reformer service life, which leads to a

lower rate of methane leakage (i.e., unreacted methane) andhigher production rates of hydrogen

and superheated steam. As a result, the thermal efficiency ofthe reformer is improved.

3.3.2 Case study B

In this subsection, the performance of the furnace-balancing scheme is analyzed when the flow con-

trol system is subjected to two different valve-related disturbances, which are categorized based on

the number of defective valves. We consider the reformer from Case Study A after six iterations

of the furnace balancing scheme have been executed with all valves fully functional. Though the

termination checker of the furnace balancing scheme indicated that the balancing procedure could
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Table 3.2: OTWT distribution obtained from the reformer CFDmodel in which the uniform FSF

distribution is used as the boundary condition.

Distance down
reforming tubes (m)

TAVE (K) TMax (K) TMin (K)
Standard
deviation (K)

1.0 971.9 998.7 948.3 10.8
2.0 1035.3 1064.3 1010.8 11.6
3.0 1086.0 1114.6 1052.1 11.5
4.0 1123.2 1150.1 1076.5 11.7
5.0 1149.4 1172.7 1097.1 11.2
6.0 1161.6 1179.6 1110.6 10.1
6.5 1165.1 1183.2 1115.5 9.7
7.0 1168.5 1186.5 1121.1 9.3
8.0 1174.0 1192.3 1130.5 8.8
9.0 1179.3 1197.2 1138.1 8.0
10.0 1168.8 1187.6 1128.7 7.9
11.0 1164.1 1183.4 1125.0 8.1
12.0 1162.5 1181.7 1124.6 8.2

be terminated after the 6th iteration if no significant changes in the plant dynamics occurred, we

assume that the valve-related disturbances occur after the6th iteration of the furnace-balancing

scheme has been executed and that the furnace-balancing scheme is therefore required to continue

iterating to determine an optimized FSF distribution giventhe change in the valve availability. The

predicted optimized valve position distribution producedby the furnace-balancing optimizer in the

6th when there were no defective valves cannot be utilized because the valve positions of the de-

fective valves cannot be adjusted to the optimized positions. Hence, the valve position distribution

that is sent to the valve-position-to-flow-rate converter to generate the boundary conditions of the

reformer CFD model is non-optimal. As a result, the OTWT distributions obtained by implement-

ing the FSF distribution determined at the 6th iteration prior to the occurrence of the valve-related

disturbances are expected to have a high degree of nonuniformity when implemented in a CFD

model that accounts for the valve-related disturbances, and the furnace-balancing scheme is con-

tinue. We will impose two different valve-related disturbances after the 6th iteration and will refer
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Table 3.3: OTWT distribution obtained from the reformer CFDmodel in the 6th iteration in which

the optimized FSF distribution is used as the boundary condition.

Distance down
reforming tubes (m)

TAVE (K) TMax (K) TMin (K)
Standard
deviation (K)

6.0 1160.1 1177.9 1148.9 5.5
6.5 1163.4 1178.6 1152.9 4.8
7.0 1166.6 1180.0 1155.1 4.3
8.0 1171.8 1185.4 1160.1 4.5
9.0 1177.0 1191.5 1162.8 5.0
10.0 1166.8 1184.1 1155.1 4.9
11.0 1162.2 1181.4 1151.8 5.3
12.0 1160.7 1180.9 1150.2 5.6
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Figure 3.6: Evolution of the maximum, average and minimum temperature values of the OTWT

distribution at a distance 6.5 m away from the reforming tubeinlets during the first 6 iterations of

the furnace-balancing scheme, which are generated by the reformer CFD model (black symbols)

and by the data-driven model (red symbols).

to the iteration of the furnace-balancing scheme assuming the first type of valve-related distur-

bance occurs after the 6th iteration as the 7th iteration, and to the iteration of the furnace-balancing
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Figure 3.7: Evolution of the standard deviation of the OTWT distribution at a distance 6.5 m away

from the reforming tube inlets during the first 6 iterations of the furnace-balancing scheme, which

are obtained from the reformer CFD model. The percent reduction in the magnitude of the standard

deviation of theith iteration with respect to the 0th iteration (i.e.,σi−σ0
σ0

) in the first 6 iterations is

also shown.

scheme assuming the second type of valve-related disturbance occurs after the 6th iteration as the

9th iteration (according to the above analysis, we expect significant OTWT distribution nonunifor-

mity in both the 7th and the 9th iterations). In the re-balancing iterations of the furnace-balancing

scheme (i.e., the 8th and 10th iterations), the text file documenting the status of the flow control

system is updated, which notifies the furnace-balancing optimizer of the defective valves. Addi-

tionally, we simulate the two disturbances by assuming thatthe defective valves of the flow control

system are arbitrarily selected, in which the corresponding stuck valve positions are modified from

the optimized valve position by 5%−30%. The simulation results generated in the 7th, 8th, 9th and

10th iterations of the furnace-balancing scheme are presented and discussed.

In the case in which the reformer CFD model is subjected to a single-valve disturbance, a flow

control valve is assumed to become defective. In particular, the valve regulating the FSF mass flow

rates of the 48th and 49th inner-lane burners is chosen; and while the 6th iteration of the furnace-

104



(a) (b) (c) (d)

Figure 3.8: Evolution of the OTWT distribution at a distance6.5 m away from the reforming tube

inlets during the first 6 iterations of the furnace-balancing scheme, which are obtained from the

reformer CFD model, is displayed by comparing the OTWT distributions in the 0th (a), 2nd (b), 4th

(c) and 6th (d) iterations. In Fig. 3.8, the top row of each subfigure corresponds to the reforming

tubes that are the closest to the reformer outlets, and the bottom row of each subfigure corresponds

to the reforming tubes that are the furthest away from the reformer outlets.

balancing scheme suggests that the optimized valve position is 97%, the stuck valve position is

70%. The CFD data generated by the reformer CFD model, in which the flow control system is

under the influence of the single-valve disturbance, is usedto analyze the degree of nonunifor-

mity of the OTWT distributions in the high temperature regions along the reforming tube length.

Comparing Table 3.4 with Table 3.3 reveals that the OTWT distributions expectedly become more

nonuniform at the 7th iteration compared to the 6th iteration. Specifically, the temperature range

and standard deviation of the OTWT distribution at the location 6.5 m away from the reforming

tube inlets in the 7th iteration increase by 34.6 K and 4.6 K. The results suggest that the furnace-

balancing scheme must be made aware of the constraint imposed by the single-valve disturbance

to properly reoptimize the FSF distribution.
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Figure 3.9: Evolution of the overall maximum outer wall temperature along the reforming tube

length among 336 reforming tubes in the reformer during the first 6 iterations of the furnace-

balancing scheme, which are obtained from the reformer CFD model.

In the 8th iteration, as the text file documenting the status of the flow control system has been

updated, the furnace-balancing optimizer is aware of the defective valve, which allows the num-

ber of decision variables to be reduced from 48 to 47 as discussed in Section 3.2.4. We note that

the furnace-balancing optimizer is designed to handle a varying number of decision variables, and

this ability of the furnace-balancing optimizer makes the furnace-balancing scheme especially ap-

pealing for industrial applications that are interested incontrol and automation. The CFD data

generated by the reformer CFD model, in which the reoptimized FSF distribution is used as the

boundary condition, is used to investigate the ability of the furnace-balancing scheme to compen-

sate for the impact of the single-valve disturbance occurring in the flow control system.

Fig. 3.10 shows that the OTWT distribution at a distance 6.5 maway from the reforming

tube inlets produced in the 8th iteration is more uniform than that produced in the 7th iteration.

Specifically, the under-heated region near the reformer outlets in the OTWT distribution of the 7th

iteration is completely resolved in the 8th iteration, and the severity of the over-heated region in

the 7th iteration is significantly lessened in the 8th iteration. Additionally, the OTWT distribution
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in the 8th iteration shown in Fig. 3.10(b) resembles the optimized OTWT distribution in the 6th it-

eration shown in Fig. 3.8(d) even though the corresponding optimized valve position distributions

are completely different as shown in Table 3.8. This is because the FSF distributions produced by

these optimized valve position distributions in the 6th and 8th iterations are very similar. Moreover,

Table 3.5 shows that the degree of nonuniformity in the OTWT distributions in the high temper-

ature regions along the reforming tube length in the 8th iteration is reduced with respect to the

corresponding quantities in the 7th iteration. Specifically, in the OTWT distribution at the location

6.5 m away from the reforming tube inlets of the 8th iteration, the temperature range and standard

deviation decrease to 24.1 K and 4.5 K. Therefore, the qualitative assessment (Fig. 3.10) and quan-

titative analysis (Table 3.5) of the degree of nonuniformity in the OTWT distribution between the

6th, 7th and 8th iterations indicates that the furnace-balancing scheme compensates for the impact

of the single-valve disturbance occurring in the flow control system.

In the case when the reformer CFD model is subjected to a three-valve disturbance after the 6th

iteration, three flow control valves become defective. In particular, the three valves which control

the FSF mass flow rates of the 0th and 1st outer-lane burners and of the 42nd, 43rd, 82nd and 83rd

inner-lane burners are selected, and the corresponding stuck valve positions are 70%, 80% and

90%, respectively, as oppose to their optimized valve positions of 86%, 87% and 81% in the 6th it-

eration of the furnace-balancing scheme. The only difference between the two disturbances occur-

ring in the flow control system is the number of defective valves, and therefore, the analysis which

is used to investigate the effects of the single-valve disturbance on the degree of nonuniformity

in OTWT distributions along the reforming tube length and the ability of the furnace-balancing

scheme to compensate for the constraint imposed by the single-valve disturbance during the search

for the reoptimized FSF distribution is also utilized.

The quantitative assessment of the effects of the three-valve disturbance on OTWT distribu-

tions in the high temperature region of the reforming tube length is presented in Table 3.6, which

shows that the OTWT distributions of the 9th iteration are more nonuniform compared to the cor-

responding ones in the 6th iteration; and specifically, the temperature range and standard deviation
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of the OTWT distribution at the location 6.5 m away from the reforming tube inlets increase by

19.9 K and 1.9 K, respectively. Subsequently, the information of the three-valve disturbance is uti-

lized to update the text file documenting the status of the flowcontrol system in the 10th iteration,

which notifies the furnace-balancing optimizer of the threedefective valves and allows the number

of decision variables to be reduced from 48 to 45. The CFD datagenerated by the reformer CFD

model, in which the reoptimized FSF distribution is used as the boundary condition, is used to cre-

ate Fig. 3.11 and Table 3.7 to investigate the ability of the furnace-balancing scheme to compensate

for the impact of the three-valve disturbance. Specifically, Fig. 3.11 shows that the OTWT distri-

bution produced in the 10th iteration is more uniform than that produced in the 9th iteration as the

over-heated region near the left corner of the refractory back wall in the OTWT distribution of the

9th iteration is completely resolved in the 10th iteration, and the severity of the under-heated region

near the reformer outlets in the 9th iteration is significantly lessened in the 10th iteration. Moreover,

Table 3.7 shows that the degree of nonuniformity in most of OTWT distributions in the high tem-

perature regions along the reforming tube length in the 10th iteration is reduced compared to those

in the 9th iteration, and specifically, the temperature range and standard deviation in the OTWT

distribution at the location 6.5 m away from the reforming tube inlets decrease to 36.5 K and 5.9

K, respectively. Although the 10th iteration appears to be able to compensate for the impacts ofthe

three-valve disturbance, which are observed in the 9th iteration, the OTWT distribution in the 10th

iteration shown in Fig. 3.11(b) appears to have a higher degree of nonuniformity than the optimized

OTWT distribution in the 6th iteration shown in Fig. 3.8(d). Therefore, the qualitativeassessment

(Fig. 3.11) and quantitative analysis (Table 3.7) of the degree of nonuniformity in the OTWT dis-

tribution between the 6th, 9th and 10th iterations indicates that the furnace-balancing scheme can

compensate for the impact of the three-valve disturbance occurring in the flow distribution system.

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍

Vi

iteration
0th 6th 7th 8th 9th 10th

V0 100 86 86 68 70 70

V1 100 94 94 71 94 99
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V2 100 88 88 68 88 87

V3 100 84 84 67 84 85

V4 100 85 85 66 85 83

V5 100 92 92 72 92 93

V6 100 88 88 69 88 98

V7 100 73 73 60 73 69

V8 100 81 81 65 81 79

V9 100 89 89 69 89 84

V10 100 87 87 69 87 85

V11 100 81 81 64 81 77

V12 100 92 92 71 92 83

V13 100 85 85 66 85 78

V14 100 94 94 73 94 91

V15 100 86 86 68 86 87

V16 100 78 78 61 78 77

V17 100 100 100 78 100 100

V18 100 87 87 71 87 92

V19 100 78 78 62 78 79

V20 100 91 91 70 91 93

V21 100 86 86 68 80 80

V22 100 89 89 71 89 87

V23 100 82 82 65 82 79

V24 100 97 70 70 97 91

V25 100 86 86 67 86 82

V26 100 85 85 68 85 80

V27 100 86 86 68 86 86
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V28 100 84 84 65 84 84

V29 100 100 100 78 100 100

V30 100 86 86 71 86 88

V31 100 78 78 61 78 78

V32 100 92 92 72 92 95

V33 100 88 88 69 88 85

V34 100 86 86 68 86 84

V35 100 92 92 72 92 82

V36 100 86 86 66 86 79

V37 100 81 81 61 81 83

V38 100 84 84 66 84 77

V39 100 82 82 65 82 81

V40 100 86 86 67 86 84

V41 100 81 81 64 90 90

V42 100 90 90 71 90 92

V43 100 90 90 74 90 85

V44 100 87 87 68 87 89

V45 100 91 91 72 91 88

V46 100 86 86 69 86 84

V47 100 95 95 74 95 86

Table 3.8: Summary of the valve position distributions in the 0th, 6th, 7th, 8th, 9th and 10th itera-

tions, in which the highlighted values represent the stuck positions of the defective valves due to

the common valve-related disturbances.
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(a) (b)

Figure 3.10: Comparison between the OTWT distributions at adistance 6.5 m away from the

reforming tube inlets generated from the 7th iteration when the FSF distribution is altered by the

single-valve disturbance (a), and from the 8th iteration when the FSF distribution is reoptimized to

counter the impact of the single-valve disturbance (b). In Fig. 3.10, the top row of each subfigure

corresponds to the reforming tubes that are the closet to thereformer outlets, and the bottom row

of each subfigure corresponds to the reforming tubes that arethe furthest away from the reformer

outlets.
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Table 3.4: OTWT distribution obtained from the reformer CFDmodel in the 7th iteration when the

FSF distribution is altered by the single-valve disturbance.

Distance down
reforming tubes (m)

TAVE (K) TMax (K) TMin (K)
Standard
deviation (K)

6.0 1158.2 1177.2 1112.4 10.0
6.5 1161.6 1178.3 1118.1 9.3
7.0 1164.9 1180.4 1124.7 8.6
8.0 1170.2 1187.4 1134.9 8.0
9.0 1175.5 1194.3 1142.6 7.9
10.0 1165.4 1186.2 1134.7 7.8
11.0 1160.9 1182.4 1132.2 7.7
12.0 1159.5 1181.1 1132.9 7.4

Table 3.5: OTWT distribution obtained from the reformer CFDmodel in the 8th iteration when the

FSF distribution is reoptimized to counter the impact of thesingle-valve disturbance.

Distance down
reforming tubes (m)

TAVE (K) TMax (K) TMin (K)
Standard
deviation (K)

6.0 1160.1 1175.7 1148.6 5.3
6.5 1163.3 1177.8 1153.7 4.5
7.0 1166.4 1179.9 1157.5 4.1
8.0 1171.5 1185.0 1159.6 4.3
9.0 1176.6 1190.7 1162.8 4.7
10.0 1166.4 1182.6 1154.9 4.7
11.0 1161.8 1178.9 1151.4 5.0
12.0 1160.3 1177.8 1147.2 5.3
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(a) (b)

Figure 3.11: Comparison between the OTWT distributions at adistance 6.5 m away from the

reforming tube inlets generated from the 9th iteration when the FSF distribution is altered by the

three-valve disturbance (a), and from the 10th iteration when the FSF distribution is reoptimized to

counter the impact of the three-valve disturbance (b). In Fig. 3.11, the top row of each subfigure

corresponds to the reforming tubes that are the closet to thereformer outlets, and the bottom row

of each subfigure corresponds to the reforming tubes that arethe furthest away from the reformer

outlets.
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Table 3.6: OTWT distribution obtained from the reformer CFDmodel in the 9th iteration when the

FSF distribution is altered by the three-valve disturbance.

Distance down
reforming tubes (m)

TAVE (K) TMax (K) TMin (K)
Standard
deviation (K)

6.0 1159.4 1180.3 1129.6 7.5
6.5 1162.9 1180.9 1135.4 6.7
7.0 1166.3 1181.4 1142.1 6.0
8.0 1171.7 1187.4 1151.5 5.6
9.0 1177.0 1193.1 1158.9 5.7
10.0 1166.8 1184.5 1151.9 5.8
11.0 1162.2 1181.2 1147.9 5.9
12.0 1160.7 1180.6 1146.9 6.0

Table 3.7: OTWT distribution obtained from the reformer CFDmodel in the 10th iteration when

the FSF distribution is reoptimized to counter the impact ofthe three-valve disturbance .

Distance down
reforming tubes (m)

TAVE (K) TMax (K) TMin (K)
Standard
deviation (K)

6.0 1159.1 1179.5 1137.0 6.6
6.5 1162.7 1180.1 1143.6 5.9
7.0 1166.2 1183.1 1151.3 5.3
8.0 1171.6 1188.6 1158.2 5.1
9.0 1177.0 1194.9 1165.0 5.2
10.0 1166.9 1187.9 1152.8 5.6
11.0 1162.4 1185.0 1148.1 5.9
12.0 1160.9 1184.3 1147.1 6.2
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3.4 Conclusion

In this work, we developed a robust model-based furnace-balancing scheme that can reduce the

degree of nonuniformity in OTWT distributions along the reforming tubes inside the furnace of

a steam methane reformer. To this end, we adopted a high-fidelity reformer CFD model created

in our previous work and developed a model identification process based on the effects of ther-

mal radiation, the furnace-side flow pattern, reformer CFD data and the least squares regression

method to approximate the relationship between the OTWT distribution and the FSF distribution.

Then, we introduced the model-based furnace-balancing optimizer that accounts for typical indus-

trial operational constraints and physical constraints onthe flow control valves while searching for

an optimal FSF distribution based on the data-driven model.The CFD data showed that the opti-

mized FSF distribution created by the proposed furnace-balancing scheme allowed the degree of

nonuniformity of OTWT distributions in the high temperature region of the reforming tubes and the

overall maximum outer wall temperature to be reduced compared to the case in which a uniform

FSF distribution was used. This result demonstrated that the proposed furnace-balancing scheme

allowed the spatial distribution of the furnace-side temperature inside the combustion chamber to

also become more uniform, which was expected to enhance the radiative heat transfer efficiency

in the reformer. We also demonstrated the effectiveness of the furnace-balancing scheme in reduc-

ing the degree of nonuniformity of OTWT distributions in thepresence of defects of the valves

regulating the amount of furnace-side feed to the burners. The proposed balancing scheme allows

taking advantage of the reduction in the overall maximum outer reforming tube wall temperature

and the more uniform OTWT distributions to increase the total FSF mass flow rate to the burners,

thereby increasing hydrogen production and extending reforming tube lifetime.
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Chapter 4

Bayesian Model Averaging for Estimating

the Spatial Temperature Distribution in a

Steam Methane Reforming Furnace

4.1 Introduction

In Chapter 2, a potential root cause of the inherent variation in the outer tube wall temperature

(OTWT) distribution has been studied, and an ad hoc mitigation strategy is to re-calibrate total

furnace-side feed (FSF) flow rate in an attempt to prevent theOTWT of all reforming tubes from

exceeding the design temperature of the wall material and tomaintain the expected service life

of the reformer at the expense of the reformer efficiency. Thehydrogen manufacturing industry

reasons that this trade-off is necessary because when the OTWT of a reforming tube exceeds the

design temperature of the reforming tube wall, the reformermight have a significantly shorter ser-

vice life, e.g., Pantoleontos et al. [49] reports that an increase of 20 K above the design temperature

of the reforming tube wall causes the reformer service life to be reduced by half, and the reform-

ing tubes are at risk of rupturing; if rupture were to occur, it would lead to substantial production

and capital losses. For decades, this ad hoc mitigation strategy has been a solution that prevents
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significant unexpected capital costs as the cost of re-tubing is estimated to be approximately 10%

of the total capital investment [13]. Then, in Chapter 3, thesystematic mitigation strategy, i.e., the

furnace balancing scheme, has been proposed to successfully reduce the variability in the OTWT

distributions at a fixed height in the reformer for the nominal total FSF flow rate. Despite of this

initial success, the simulation data shows that the conversions of methane via SMR in the reformer

operated under varying spatial distributions of the fixed total fuel flow rate are constant. In the

continuous effort to maximize the reformer thermal efficiency while maintaining the expected ser-

vice life of the reformer, systematic mitigation strategies for varying total FSF flow rate is getting

much attention from academics and industries. Therefore, it is apparent that an accurate relation-

ship between the OTWT distribution at a fixed height, the FSF distribution and the total FSF flow

rate of the reformer is required to design a robust furnace balancing method. The dependence of

the OTWT distribution on the FSF distribution and the total FSF flow rate of the reformer can

be constructed based on first principles modeling [13] and computational fluid dynamics (CFD)

modeling of the reformer.

However, models derived from these modeling techniques aretypically unsuitable for design-

ing a robust real-time furnace-balancing scheme (for whichthe need is evident as the reformer is

constantly subjected to various disturbances, e.g., ambient temperature) [32]. In particular, first

principles modeling often uses an overwhelming number of simplifying assumptions in the de-

velopment of reformer models, which causes prediction datagenerated by first principles models

often to fall short in terms of accuracy. While CFD modeling does not have the same issue (e.g., the

simulation data generated by the reformer CFD model developed in Chapter 2 have been shown to

be a reasonably accurate representation of the experimental data recorded from an on-line unit), the

significant computational time needed to create a single CFDdata set makes it unsuitable for de-

signing a real-time furnace balancing scheme because the CFD model is required to be repeatedly

solved with different FSF distributions to search for the optimized FSF distribution. Therefore,

data-driven modeling is an appealing alternative as data-driven models are computationally inex-

pensive and can have reasonable accuracy.
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In this work, data-driven modeling is used to discover the dependence of the OTWT distribution

on the FSF distribution and the total FSF flow rate of the reformer. A direct approach is to model

the OTWT at a fixed height of each reforming tube as a function of the FSF distribution and total

FSF flow rate (i.e., the FSF flow rates of all burners), and estimates of the parameters associated

with the regressors in the data-driven model can be determined by the ordinary least squares (OLS)

regression method in which the sum of squared residuals between the OTWT data and fitted data is

minimized. This naive approach is expected to create an uninterpretable (in the sense that it is not

representing physical relationships between burners and reforming tubes within the reformer) data-

driven model for the OTWT distribution with high predictionerrors due to over fitting. Specifically,

Chapter 2 notes that in the high temperature reformer, thermal radiation is expected to be the

dominant mode of heat transfer, and [47] shows that 95% of thetotal heat transfer rate to the tube

side in the reformer of their investigation is due to thermalradiation. Additionally, the inverse

square law for thermal radiation suggests that the OTWT of each reforming tube is governed by

the FSF flow rates of the nearby burners. Therefore, a smallerset of important regressors for

each reforming tube should be identified and used to construct a more computationally efficient

data-driven model.

Standard statistical practice employs shrinkage and subset selection techniques (e.g., LASSO,

nonnegative garotte and ridge regression) to search for theset of important regressors and to cal-

culate the estimates of their corresponding parameters based on some criteria (e.g., minimizing the

sum of squared residuals) to derive a single best data-driven model. Subsequently, this standard

statistical practice assumes this data-driven model to be the true model for the relationship between

the OTWT of a reforming tube, FSF distribution and total FSF flow rates, and then utilizes the cho-

sen model exclusively to make predictions. The greatest flawof the standard statistical practice

is that the approach overlooks the importance of competing data-driven models. Specifically, [25]

illustrates that two competing models with similar goodness of fit for a given training data can

yield substantially different predictions and suggests that predictions made based on a single data-

driven model are unreliable. Bayesian statistics providessystematic straightforward methods to

118



identify the set of important regressors for each reformingtube (i.e., Bayesian variable selection)

and to account for model uncertainty in making predictions based on the observed database (i.e.,

Bayesian model averaging). Bayesian statistics is employed in many disciplines (e.g., chemistry,

genetics, medicine and finance) and has led to over 587 publications between 1996 and 2014 [20].

In this work, we combine the Bayesian methods and sparse nonlinear regression technique (i.e.,

least absolute shrinkage and selection operator or LASSO) to derive a collection of data-driven

models, each of which requires the minimum number of terms for a given basis set of regressors

while revealing the dependence of the OTWT of each reformingtube on the FSF distribution and

total FSF flow rate with a reasonable accuracy. Specifically,it is assumed that a data-driven model

for the OTWT of each reforming tube has the form of a linear combination of nonlinear/linear

transformations of the original regressors (i.e., sparse nonlinear regression) so that the nonlinear

characteristics in the observed data can be adequately described [9, 63] For instance, [9] shows

that sparse nonlinear regression can be used to create data-driven models that describe the under-

lying dynamics of nonlinear systems (e.g., nonlinear oscillators and the chaotic Lorenz system).

A typical library of nonlinear transformations contains monomial, exponential, logarithmic and

trigonometric functions.

Lastly, it is recognized that the OTWT of each reforming tubeis spatially correlated to those of

the nearby neighbors because thermal radiation inside the reformer is expected to occur between

the furnace-side flow, reforming tube walls and refractory wall. It is also recognized from the

reformer CFD simulation data reported in Chapter 3 that reforming tubes which are in close prox-

imity to one another tend to have similar OTWTs. Therefore, it is logical to allow the data-driven

model for the OTWT of each reforming tube to also utilize the information (i.e., the locations and

OTWTs) of the neighboring reforming tubes, in addition to the FSF distribution and total FSF

flow rate, to make predictions of the OTWT. In the geostatistics literature, there exist a variety

of distance-weighted average interpolation algorithms (e.g., Kriging, triangulation and the inverse

distance method), each of which can be used to estimate an OTWT of each reforming tube as a

weighted average of the neighboring OTWTs based on a unique weighting function. In this work,
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Kriging is selected as it provides a straightforward approach to adjust the predicted OTWT dis-

tribution estimated based on the FSF distribution and totalFSF flow rate to account for the effect

of interactions among neighboring reforming tubes on the OTWT distribution. Kriging can also

be used for clustering data, which occurs due to the arrangement of the reforming tubes inside the

reformer, i.e., the reforming tubes are arranged in an irregular grid pattern (e.g., seven rows of 48

units), in which reforming tubes are situated closely to oneanother along a row but are separated by

a relatively large distance between rows. Additionally, the Kriging algorithm is designed to min-

imize the mean squared prediction error, which makes this interpolation algorithm more suitable

for predicting the OTWT at unexplored operating conditionsof the reformer.

Motivated by this, the present work focuses on developing a two-step prediction and correction

model identification procedure that utilizes Bayesian methods with an efficient search algorithm

(Occam’s window), sparse nonlinear regression, Kriging, information on the reformer geometry

and theories of thermal radiative heat transfer to derive a high-fidelity model from reformer data

such that the model can account for interactions among neighboring reforming tubes in making

predictions about the OTWT distribution based on the FSF distribution and total FSF flow rate.

This manuscript is structured as followed: in Section 4.2, physical descriptions, process modeling

and process simulation of a computational fluid dynamics (CFD) model of a reformer are briefly

discussed to be used as supporting evidence that the reformer CFD data are adequate represen-

tations of the data from an on-line reformer, which allows usto use the reformer CFD model to

facilitate the creation of the training and testing data. InSection 4.3, an overview of the integrated

model identification scheme is presented, and the major components, namely, the prediction step

and correction step, are introduced. In Section 4.4, a rundown of the prediction step that details

the procedure for deriving the prediction model for the OTWTdistribution from the training data

is presented, and in Sections 4.4.1, 4.4.2, and 4.4.3 the integration of Bayesian variable selection,

Bayesian model averaging, sparse nonlinear regression andtheories of thermal radiation into an

algorithm for the prediction step is described. In Section 4.5, a rundown of the correction step

that details the procedure for creating the correction model for the OTWT distribution from the
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training data using ordinary Kriging is presented. In Section 4.6, the procedure to generate the

combined data-driven model for the OTWT distribution from the prediction and correction models

is detailed. Finally in Section 4.7, the goodness of fit and out-of-sample predictive performance of

the data-driven model for the OTWT distribution generated from the integrated model identifica-

tion scheme proposed in this work are evaluated using the training and testing data, respectively,

and are discussed to highlight the potential of this work forbeing used in developing more optimal

operating conditions of a reformer in a computationally efficient manner, e.g., it may be considered

for use as the data-driven model for an on-line robust furnace balancing optimizer.
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4.2 Reformer CFD database

In the present work, the high-fidelity reformer CFD model developed in Chapter 2 is used to repre-

sent an on-line reformer designed by Selas Fluid ProcessingCorporation at a hydrogen plant [13].

This is because the geometry of the reformer model is createdto have approximate dimensions of

the on-line unit, which is 16 m wide, 16 m long and 13 m tall. Thegeometry of the reformer model

also contains important features of its physical counterpart, which include the major components

(i.e., 336 reforming tubes, 72 inner-lane burners, 24 outer-lane burners and 8 flue-gas tunnels) and

the layout inside the reformer as shown in Fig. 5.2. Additional details of the reformer geometry

can be found in Chapter 2. Furthermore, the mesh of the reformer CFD model has been verified to

have acceptable mesh quality based on the criteria (i.e., min orthogonal factor and max ortho skew)

suggested by ANSYS ICEM and to allow the reformer CFD model toproduce mesh-independent

solutions. The generation of the reformer mesh is detailed in Chapters 2 and 3. In addition, the

modeling strategies for the known transport phenomena and chemical reactions associated with

SMR and air combustion processes are used to create the reformer CFD model. For instance,

the reformer CFD model is implemented with the empirical correlation for the furnace-side total

emissivity [43], Lambert Beer’s law, Kirchoff’s law and thediscrete ordinate method to simulate

radiative heat transfer between the furnace-side flow, outer reforming tube walls and refractory

walls. Readers who are interested in the details of the modeling strategies for the reformer CFD

model, efficient step-by-step converging strategy and datacollection procedure are recommended

to refer Chapters 2 and 3. Moreover, the CFD simulation data generated by the reformer CFD

model have been shown to be in good agreement with simulationdata generated by a reforming

Gibbs reactor model, with typical plant data in the SMR literature and with plant data provided by

a third party collaborator, and therefore, can be considered as an adequate representation of plant

data collected from an on-line unit.

In the present work, the reformer CFD model is utilized to facilitate the creation of the reformer

database. Specifically, the reformer CFD model is initiallyimplemented with varying FSF distri-
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butions at a fixed typical total FSF flow rate and, subsequently, implemented with varying total

FSF flow rates at the optimized FSF distribution reported in Chapter 3, which creates 21 CFD data

sets. In this work, 18 CFD data sets (i.e., the training data), which is approximately 90% of the

reformer database, are randomly chosen and used as inputs for the integrated model identification

scheme to produce a data-driven model that adequately describes the dependence of the OTWT

distribution on the FSF distribution and total FSF flow rate.The remaining 3 CFD data sets (i.e.,

the testing data), which is approximately 10% of the reformer database, are used to validate the

performance on out-of-sample predictions of the data-driven model.

Figure 4.1: The isometric view of an industrial-scale, top-fired, co-current reformer. The right and

back refractory walls with respect to the flue gas tunnel exits in Fig. 5.2 are removed to expose

the interior of the reformer, which consists of 336 reforming tubes, which are represented by 336

cylinders, 96 burners, which are represented by 96 frustum cones, and 8 flue-gas tunnels, which

are represented by 8 rectangular intrusions.
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4.3 Overview of the prediction and correction model identifi-

cation scheme

The statistical-based model identification scheme is a two step (i.e., prediction and correction)

procedure that is designed to derive a model for the dependence of the OTWT distribution at a

fixed distance of 6.5 m away from the reformer ceiling on the FSF distribution and total FSF

flow rate from the training data of the reformer CFD database.In the prediction step, the model-

building process for theith OTWT as a function of the FSF distribution and total FSF flow rate from

the training data is executed independently of other reforming tubes based on Bayesian methods,

i.e., Bayesian variable selection and Bayesian model averaging (BMA), with an efficient search

algorithm and sparse nonlinear regression (which will be further defined in Sections 4.4.1, 4.4.2

and 4.4.3). The data-driven model for the OTWT of theith reforming tube generated by the

prediction step is referred to as theith prediction model and is formulated as follows,

T̂P,n
i =

Ki

∑
k=1

wP
i,kT̃

P,n
i,k ∀n∈ {1, · · · ,N} (4.1a)

subject to

Ki

∑
k=1

wP
i,k = 1 (4.1b)

#»

F n = [Fn
1 ,F

n
2 , · · · ,F

n
96]

T (4.1c)
∥∥∥ #»

F n
∥∥∥

1
= Fn

tot (4.1d)

T̃P,n
i,k =

G

∑
g=1

(
#»α kg

i

)
· fg
(

#»

F n
)
+αk

i (4.1e)

wheren is the index of thenthdata set in the training data,N is the number of data sets in the train-

ing data,T̂P,n
i is the BMA predicted estimate of theith OTWT based on thenth FSF distribution

(
#»

F n) andnth total FSF flow rate (Fn
tot), T̃P,n

i,k is thekthpredicted estimate of theith OTWT based on
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#»

F n, Fn
tot and thekth sub-prediction model for theith reforming tube (where this model denoted is

by Mi,k and defined and developed in Section 4.4),Ki is the total number of sub-prediction models

in theith library,wP
i,k is the BMA weighting factor ofMi,k (developed in Section 4.4.2),fg(·) is the

gth basis function in the library of transformation functions (developed in Section 4.4.3),G is the

number of functions in the library of transformation functions (developed in Section 4.4.3),#»α kg
i is

the empirical parameter vector ofMi,k corresponding tofg(·) (defined in Section 4.4.3) andαk
i rep-

resents the estimated ambient temperature ofMi,k (defined in Section 4.4.3). The prediction step in

the model identification algorithm is parallelized to simultaneously create 336 prediction models,

each of which corresponds to a reforming tube of the reformer, and subsequently, these prediction

models are combined to create the data-driven model (i.e., the prediction model) for the OTWT

distribution to describe the dependence of the OTWT distribution on the FSF distribution and total

FSF flow rate. However, the prediction model for the OTWT distribution does not account for the

effects of interactions between neighboring reforming tubes on the OTWT distribution, and hence,

the correction step of the model identification procedure iscreated. In the correction step, the

predicted estimate of theith OTWT is adjusted based on information of the neighboring reform-

ing tubes extracted from the reformer geometry and predicted OTWT distribution. The correction

model for theith reforming tube developed based on ordinary Kriging (to be further developed in

Section 4.5) is formulated as follows,

T̂C,n
i =

336

∑
j=1
j 6=i

wC
i, j T̂

P,n
j (4.2)

whereT̂C,n
i is the corrected estimate of theith OTWT andwC

i, j is the Kriging weighting factor of

the jth reforming tube. Finally, the estimated OTWT of theith reforming tube given
#»

F n andFn
tot

is computed as the weighted sum of the BMA predicted and corrected estimates as follows,

T̂n
i = wPT̂P,n

i +
(
1−wP) T̂C,n

i (4.3)

wherewP is the weighting factor of the BMA estimates, of which the optimal value is determined
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by leave-out-one cross validation (developed in Section 4.6). In the remainder of this manuscript,

the development of the prediction and correction model identification algorithm is elucidated in

detail, and the accompanying assumptions are explicitly stated and demonstrated to be valid using

the training data.

The decision to investigate the OTWT distribution at a fixed distance of 6.5 m away from

the reformer ceiling was originally proposed in Chapter 3. In particular, this OTWT distribution

has been found to have a high average OTWT, i.e.,∼99% of the maximum value of the average

OTWT profile (which is a collection of averages of OTWT distributions along the reforming tube

length and is invariant at the fixed total FSF flow rate), so that in a scenario that the hydrogen

plant is at risk of suffering significant capital and production losses due to the suboptimal FSF

distribution, this OTWT distribution is expected to have high degree of nonuniformity (indicated

by a wide temperature range and a high standard deviation), and the maximum value of the OTWT

distribution at a distance of 6.5 m away from the reformer ceiling is expected to exceed the design

temperature of the reforming tube wall. This rationale suggests that the reformer can be kept in

a safe operating regime by reducing the degree of nonuniformity in the OTWT distribution and

preventing the maximum value of the OTWT distribution from exceeding the design temperature,

and therefore, a data-driven model for the OTWT distribution was created in the development of the

furnace-balancing scheme in Chapter 3 that seeks to reduce the nonuniformity. In an anticipation

that an application of the modeling method in this work may beto derive the data-driven model

for a furnace-balancing algorithm as in Chapter 3, we consider a distance of 6.5 m away for the

ceiling in this work for consistency with Chapter 3.
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4.4 Prediction models

In this work, Bayesian methods are integrated in the algorithm for the prediction step because

of the twofold advantage that these methods offer (Section 4.1): the Bayesian variable selection

method provides a straightforward approach to identify theimportant regressors for each reform-

ing tube, and BMA allows model-selection uncertainty to be accounted for in making predictions

about the OTWT distribution given
#»

F n andFn
tot [25]. In the prediction step, the prediction model

for the ith OTWT is derived from the training data independently of the model-building process

for the remaining OTWTs. This approach is expected to effectively reduce the total computa-

tional time devoted for constructing the prediction model for the OTWT distribution because the

model-building process can be simultaneously executed for336 reforming tubes. In this section,

the important terminologies used in the description of the algorithm for the prediction step are

explicitly defined, and then, the algorithm for the prediction step is discussed in the context of

constructing theith prediction model from the training data.

In the jth iteration of the prediction step,

1. Checked predictors are the burners that are in the neighborhood of theith reforming tube,

and a collection of checked predictors in thejth iteration of the prediction step is denoted

asSj
iC. However, checked predictors may or may not have a significant impact on theith

OTWT.

2. Potential predictors are elements of a subset ofSj
iC, which is denoted asSj

iP. Potential predic-

tors are candidate regressors of theith reforming tube model and will be characterized by the

regressor classification layer. Potential predictors thatare classified as important regressors

by the regressor classification layer are added to the basis set of regressors (denoted asSiR).

3. Predictors are important regressors of theith prediction model and are elements ofSiR .

4. A sub-prediction model library of theith reforming tube is a collection of models that allows

the ith OTWT to be estimated based on
#»

F n andFn
tot.
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In addition, the concept of a multistage affecting zone is introduced to facilitate the search for

and classification of checked predictors. Specifically, we define the multistage affecting zone of

theith reforming tube in thejth iteration of the prediction step as a cylindrical region with a radius

that is denotedRj
iZ and is evaluated as follows,

Rj
iZ = R0

iZ + j∆RZ ∀ j = 1,2,3, · · · (4.4)

whereR0
iZ=0 m is the initial radius of the multistage affecting zone ofthe ith reforming tube and

∆RZ=1.5 m is the corresponding step increment. The first stage ofan affecting zone of theith

reforming tube is defined as a cylindrical volume of radiusRj
iZ centered at theith reforming tube

inside which burners are considered to be elements ofSj
iC. The second stage of an affecting zone

of the ith reforming tube is defined as a hollow cylindrical volume bounded by two concentric

cylinders of radiiRj
iZ andRj−1

iZ inside which burners are considered to be elements ofSj
iP, which is

defined as follows,

Sj
iP = Sj

iC\Sj−1
iC . (4.5)

whereSj
iC\Sj−1

iC is defined as all elements that are inSj
iC but are not inSj−1

iC .

The algorithm for the prediction step consists of two layers, which are referred to as the regres-

sor collection (Fig. 4.2) and regressor classification (Fig. 4.3) layers, respectively. The regressor

collection layer is composed of five processes represented by five rectangular boxes, i.e., the loca-

tion identifier, checked predictor identifier, potential predictor identifier, sparse nonlinear regres-

sion and termination checker. The layer is structured to have two sequential modes, which aim to

obtain the defaultSiR and to search for potential predictors to be used as inputs for the regressor

classification layer, respectively. We note that the secondmode is proposed to avoid having to

re-look at all the potential predictors that have already been evaluated. The search algorithm for

the regressor collection layer is developed based on the inverse square law for thermal radiation.

It makes use of two fundamental guidelines, namely, the burners separated from theith reforming
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tube by a significant distance should not be considered as potential predictors, and the nearby burn-

ers have greater influence on theith OTWT than other burners that are situated farther away from

the ith reforming tube, to reduce the regressor space and define a unique searching path, which

will be elaborated later in this section. The search algorithm is the most critical development of

the present work and allows the model identification based onthe Bayesian framework to be com-

putationally efficient. This is because the search algorithm selectively creates a small number of

sub-prediction models for theith OTWT to be used by the BMA in making predictions as opposed

to 296 (≈7.9×1028) sub-prediction models, which would be generated by the alternative, i.e., the

exhaustive search algorithm, which if it was implemented would make the model identification

scheme computationally infeasible. In this work, the distance between theith reforming tube and

jth burner is denoted asdi j and is calculated as the Euclidean distance between the projections of

their centroids on a horizontal plane, and we assume that thedefaultSiR of the ith reforming tube

consists of the four nearest burners.

In the first iteration of the prediction step, the regressor collection layer is operated under the

first mode to obtain the defaultSiR. Initially, it begins with the location identifier, which calculates

the relative distance from theith reforming tube to burners inside the reformer, and simultaneously

computes the radius of the affecting zone (denoted asR1
iZ) of the ith reforming tube according to

Eq. 4.4. Next, the checked predictor identifier uses the information about the relative location of

the ith reforming tube to create a virtual reformer geometry, whichconsists of theith reforming

tube and 96 burners as shown in Fig 4.4, and usesR1
iZ to create the first stage of the affecting zone

as shown in Fig. 4.5. The checked predictor identifier, then,uses the virtual reformer geometry

and first-stage affecting zone to generateS1
iC, which contains information (i.e., distance to theith

reforming tube, burner IDs and FSF flow rates) of the checked predictors. In the first iteration,

the library ofith sub-prediction models is expected empty, and therefore, the cardinality ofS1
iC is

evaluated. If the cardinality ofS1
iC is less than or equal to four, the prediction step is instructed to

terminate the first iteration and to execute the next iteration. The second iteration of the prediction

step begins to recompute the radius of the affecting zone (denoted asR2
iZ) of the ith reforming
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tube according to Eq. 4.4. As in the first iteration of the prediction step, the checked predictor

identifier in the second iteration usesR2
iZ to create the updated first stage of the affecting zone

and, then, uses it and the virtual reformer geometry createdin the first iteration to generateS2
iC.

Thereafter, the cardinality ofS2
iC is also evaluated since the library ofith sub-prediction models is

expected to remain empty, and if its result is still less thanor equal to four, the prediction step is

again instructed to terminate the second iteration and to execute the next iteration. This procedure

is repeated until the number of elements in the checked predictor set of theith reforming tube is

strictly greater than four.

This discussion is continued with the assumption that in thejth iteration of the prediction

step, the cardinality ofSj
iC is greater than four as shown in Fig. 4.6. Initially, the fournearest

burners to theith reforming tube inSj
iC are used to create the defaultSiR, which is utilized by the

sparse nonlinear regression algorithm to create the default sub-prediction model for theith OTWT.

Then, the model is stored in theith library of sub-prediction models and is assigned an index of1.

The remaining elements inSj
iC, i.e.,Sj

iC\SiR , are considered to be potential predictors, which are

elements ofSj
iP, and are used as inputs for the regressor classification layer, which is the secondary

layer of the prediction step algorithm.

The regressor classification layer is structured based on the Bayesian variable selection frame-

work to systematically updateSiR using a given potential predictor set and to selectively create ad-

ditional sub-prediction models for theith OTWT. A brute-force Bayesian variable selection would

require all possible hypothetical basis sets of regressorsto be created fromSj
iP andSiR, followed by

using the sparse nonlinear regression to generate all possible hypothetical sub-prediction models,

from which the important sub-prediction models would be selected. This approach is expected

to be computationally intensive and will not be implemented. Instead, the layer is designed to

exploit Occam’s window [39] and the two fundamental guidelines that are used in the regressor

collection layer to avoid generating all possible hypothetical basis sets of regressors fromSj
iP and

SiR in the process of identifying the important sub-predictionmodels by assessing the impact of

each element in the potential predictor set on the goodness of fit of the sub-prediction model in a
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step-wise fashion. Specifically, in thejth iteration of the regressor collection layer, the regressor

classification layer starts out with the basis set constructor, which is programmed to strategically

select an element inSj
iP followed by adding it to the existingSiR to create a hypothetical basis set

of regressors (denoted asSh
iR), which is subsequently used by the sparse nonlinear regression to

generate the corresponding hypothetical sub-prediction model. If the hypothetical sub-prediction

model can explain the training data significantly better than the sub-prediction model created with

SiR (in a sense related to Bayes factors to be made clear in Section 4.4.1), it is either stored in

or used to replace theith library of sub-prediction models based on the supporting evidence for

the model, andSh
iR is used to replaceSiR; otherwise, the hypothetical sub-prediction model and

Sh
iR are discarded. In this work, the procedure of selecting an element inSj

iP encoded in the ba-

sis set constructor begins by ranking elements inSj
iP in the order of increasing distance to theith

reforming tube such that the potential predictor separatedfrom theith reforming tube by the short-

est distance is considered to have the highest rank (i.e., the 1st rank), and the potential predictors

separated from theith reforming tube by an equal distance are considered to have the same rank.

Then, the rank of each element inSj
iP is utilized by the basis set constructor as an indicator for the

order that the element is selected to constructSh
iR. Specifically, the basis set constructor starts with

the high-ranking elements inSj
iP because the burners that are situated closer to theith reforming

tube are expected to have greater influence on theith OTWT than other burners that are situated

farther away and are more likely to be considered as predictors; therefore,Sh
iR is more likely to

be accepted. When multiple elements ofSj
iP have the same rank, the order that these elements

are selected to constructSh
iR is trivial because our proposed model (Eq. 4.1a) does not contain any

cross term, which suggests that burners are assumed to independently interact with theith reform-

ing tube. In this case, they are iteratively selected one by one to constructSh
iR before the potential

predictors in the next lower rank are selected. This procedure is repeated until all elements inSj
iP

are considered, then the updatedSiR is sent back to the regressor collection layer.

Subsequently, in the regressor collection layer, the termination checker reviewsRj
iZ and the

updatedSiR created in the regressor classification layer to decide if the prediction step should be
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terminated. Specifically, whenRj
iZ is less than the critical radius of the multistage affectingzone

(denoted asRc
Z), the termination checker always instructs the predictionstep to execute the next

iteration. In this work,Rc
Z is chosen to be 3.4 m to prevent the prediction step from exploring

unnecessary regions in the regressor space because Chapter3 shows that the faraway burners,

which are defined as those separated from theith reforming tube by a distance greater than 3.4

m, are expected to have small impact on theith OTWT by demonstrating that data-driven models

which include the faraway burners in the basis set of regressors have similar goodness of fit to that

of the data-driven model that excludes the faraway burners from the basis set of regressors. On

the contrary, whenRj
iZ becomes greater than or equalRc

Z, the termination checker only allows the

prediction step to execute the next iteration if at least onepotential predictor inSj
iP is added toSiR.

This design of the termination checker is proposed to account for the potential influence of the

furnace-side flow pattern on the OTWT distribution that allows the faraway burners to have long

range effects on theith OTWT and to simultaneously prevent the prediction step fromexploring

unnecessary regions in the regressor space.

After the jth iteration of the prediction step, the regressor collectionlayer is operated under

the second mode to exclusively search for potential predictors to be used as inputs for the regres-

sor classification layer. Initially, it begins to computeRj+1
iZ of the ith reforming tube according to

Eq. 4.4, which is used by the checked predictor identifier in the ( j +1)th iteration to create the

first stage of the affecting zone as done in the previous iterations of the prediction step. Next,

the checked predictor identifier uses the first stage affecting zone and virtual reformer geometry

created in the first iteration to generateSj+1
iC . In the( j +1)th iteration of the prediction step, be-

cause the library ofith sub-prediction models is no longer empty, the potential predictor identifier

is executed for the first time; this step is the key differencebetween the first and second modes of

the regressor collection layer. Specifically, the potential predictor identifier usesRj+1
iZ andRj

iZ to

create the second stage of the affecting zone as shown Fig. 4.7 and, then, uses it and the virtual

reformer geometry to generateSj+1
iP , which contains information of the potential predictors. After

that,Sj+1
iP is used as an input for the regressor classification layer, which updatesSiR. Finally, the

132



termination checker utilizesRj+1
iZ and the updatedSiR in the decision-making process of conclud-

ing the prediction step. This procedure is repeatedly executed until the radius of the multistage

affecting zone is greater than or equalRc
Z, and all elements in the potential predictor set of theith

reforming tube are rejected. Finally, BMA is utilized to determine the weighting factor for each

member in theith library of sub-prediction models (see Section 4.4.2).

4.4.1 Bayesian variable selection

In the present work, a Bayesian variable selection method with the search algorithm developed

based on Occam’s window and theories of thermal radiation isused to identify the predictors for

theith OTWT based on the training data and to simultaneously createa collection of sub-prediction

models that can be used to explain the dependence of theith OTWT on the FSF distribution and

total FSF flow rate. At each step, an element in the set of potential predictors is added toSiR to

create aSh
iR, which is subsequently used to create the corresponding hypothetical sub-prediction

model as detailed earlier in this section (the sparse nonlinear regression algorithm used to develop

the hypothetical sub-prediction models will be described in Section 4.4.3). Then, the layer quan-

titatively assesses the goodness of fit of two competing data-driven models of theith reforming

tube, i.e., the sub-prediction model (denoted asMi,k wherek is the model index in theith library of

sub-prediction models) created withSiR and the hypothetical sub-prediction model denoted asMi,h

created withSh
iR, by using the ratio of posterior model probabilities as the metric to determine if a

potential predictor of interest can be classified as an important regressor. Specifically, the posterior

model probability ofMi,k, which is denoted aspr
(
Mi,k | T i

)
to represent the probability thatMi,k

is the true model for the dependence of theith OTWT on the FSF distribution and total FSF flow

rate after observing the training data, is computed as follows,

pr
(
Mi,k | T i

)
=

pr
(
T i |Mi,k

)
pr
(
Mi,k

)

Ki

∑
l=1

pr
(
T i |Mi,l

)
pr
(
Mi,l
) (4.6)

whereT i =
{

T1
i ,T

2
i , · · · ,T

N
i

}
is the collection of allN=18 training data sets,T j

i is theith OTWT
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extracted from thejth training data set,Ki is the total number of sub-prediction models in theith

library, pr
(
Mi,k

)
is the prior model probability ofMi,k and pr

(
T i|Mi,k

)
is the model evidence in

favor ofMi,k. It is worth noting thatpr
(
Mi,k

)
reflects our beliefs thatMi,k is the true model for the

dependence of theith OTWT on the FSF distribution and total FSF flow rate before observing the

training data. If information about the true model for theith reforming tube is available (e.g., the

number of predictors in the true model is known), the prior model probability distribution could

be designed to incorporate such information by assigning the sub-prediction models that have the

same number of predictors as the true model with a higher prior model probability. However, this is

typically not the case in practice. Therefore, the prior model probability distribution is chosen to be

noninformative, which assigns equal prior probability to all sub-prediction models in theith library

and allows conclusions about the true model to be drawn directly from data. The noninformative

prior model probability distribution for theith reforming tube is designed as follows,

pr
(
Mi, j

)
=

1
Ki

∀ j = 1, · · · ,Ki . (4.7)

Hence, the ratio of posterior model probabilities betweenMi,h andMi,k can be evaluated as follows,

pr
(
Mi,h | T i

)

pr
(
Mi,k | T i

) = pr
(
T i |Mi,h

)
pr
(
Mi,h

)

pr
(
T i |Mi,k

)
pr
(
Mi,k

) = pr
(
T i |Mi,h

)

pr
(
T i |Mi,k

) = Bi,hk (4.8)

whereBi,hk is defined as a Bayes factor forMi,h againstMi,k. Eq. 4.8 suggests thatBi,hk and the ratio

of posterior model probabilities betweenMi,h andMi,k under the assumption of the noninformative

prior model probability distribution (Eq. 4.7) are equivalent, and therefore, the value ofBi,hk can be

used as the quantitative evidence in favor of incorporatingthe potential predictor intoSiR. However,

computingBi,hk is a nontrivial task because there is no analytical closed-formed expression for

computingpr
(
T i |Mi,k

)
. Specifically,pr

(
T i |Mi,k

)
is computed by integrating over all possible

values of the parameters ofMi,k as follows,

pr
(
T i |Mi,k

)
=
∫

pr
(

T i |Mi,k,
#»α k

i

)
pr
(

#»α k
i |Mi,k

)
d #»α k

i (4.9)
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where#»α k
i =

[
#»α k1

i , · · · , #»α kG
i ,αk

i

]T
is the parameter vector ofMi,k (see Section 4.4.3),pr

(
#»α k

i |Mi,k
)

is prior probability density of#»α k
i andpr

(
T i |Mi,k,

#»α k
i

)
is the likelihood function ofT i . It is impor-

tant to note that the likelihood function ofT i is defined as the joint probability density function of

T1
i ,T

2
i , · · · ,T

N
i and is dependent on#»α k

i of Mi,k as follows,

pr
(

T i |Mi,k,
#»α k

i

)
=

N

∏
j=1

pr
(

T j
i |Mi,k,

#»α k
i

)
(4.10)

wherepr
(

T j
i |Mi,k,

#»α k
i

)
is the probability density function ofT j

i . In addition, the probability den-

sity function ofT j
i is assumed to be computed as follows,

pr
(

T j
i |Mi,k,

#»α k
i

)
=

1√
2π
(

σ j
i

)2
exp


−

(
T j

i − T̂P, j
i

)2

2
(

σ j
i

)2


 (4.11)

whereσ j
i is the standard deviation of the noise in theith OTWT in the jth training data set. Due

to challenges in computingBi,hk, many published works in the Bayesian statistics literature center

on proposing methods to computepr
(
T i |Mi,k

)
numerically, e.g., Markov Chain Monte Carlo, or

to approximate it with an acceptable accuracy, e.g., Laplace approximation, Bayesian information

criterion (BIC) approximation and maximum likelihood estimator (MLE) approximation [20]. In

this work, the BIC approximation is favored for two reasons:the BIC approximation is expected

to provide a good approximation of logBi,hk for linear models [20] and allows us to avoid making

assumptions about the prior probability density of#»α k
i , which allows the decision to incorporate

the potential predictor intoSiR to be made based entirely on the training data [30]. Under theBIC

approximation, logBi,hk is computed as follows,

logBi,hk =
[
log
(

pr
(

T i |Mi,h,
#̂»α h

i

))
− log

(
pr
(

T i |Mi,k,
#̂»α k

i

))]
(4.12)

−
1
2
(dh−dk) log(N)
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where #̂»α k
i is the MLE of #»α k

i anddk is the number of nonzero parameters of#»α k
i (see Section 4.4.3).

It is important to note that the first term in Eq. 4.12 can be interpreted as the assessment of the

goodness of fit between two sub-prediction models, and the second term can be interpreted as the

penalty for using a model with higher complexity. The approximated value of logBi,hk is the ev-

idence in favor ofMi,h extracted from the training data, and higher values of logBi,hk imply that

the training data provides more evidence in support ofMi,h and againstMi,k. Therefore, the value

of logBi,hk can be used in the decision-making process for determining whether to incorporate a

potential predictor intoSiR. In the present work, the task of interpreting the value of logBi,hk is

especially challenging because the improvement in the model goodness of fit by incorporating an

additional term intoSiR is expected to be underestimated when a small number of training data

sets is used. Hence, guidelines for interpreting Bayes factors proposed in the Bayesian statistics

literature, namely, twice the natural logarithm of the Bayes factor suggested by [30], half unit on

the logarithm of the Bayes factor suggested by [28], Occam’swindow with the lower bound of

1/20 and upper bound of 20 suggested by [51] and Occam’s window with the lower bound of 1/20

and upper bound of 1 suggested by [40], were reviewed. In thiswork, Jeffreys’ interpretation of the

Bayes factor [28] is selected and is tailored to account for the impact of using the small number of

training data sets on the value of logBi,hk as follows: we reason that when an insignificant regres-

sor is incorporated intoSiR to createSh
iR, the two competing sub-prediction models are expected

to have a similar goodness of fit, which causes the first term inEq. 4.12 to be approximately zero,

and the dimension ofSh
iR is greater than that ofSiR, which causes the second term in Eq. 4.12 to

be negative due to the increased model complexity. Therefore, a negative logBi,hk can be viewed

as a strong evidence againstMi,h, which implies that theith OTWT is independent of the potential

predictor. In this case, the regressor classification layeris instructed to discardMi,h and to dismiss

the attempt to incorporate the potential predictor intoSiR. On the contrary, when logBi,hk is non-

negative and greater than 2.0, it can be viewed as a strong evidence againstMi,k, which indicates

that the training data provides significant evidence in support of Mi,h and againstMi,k becauseMi,h

has a significantly higher goodness of fit thanMi,k. In this case, the layer is instructed to discard
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Mi,k along with its nested sub-prediction models (i.e., the sub-prediction models created and stored

throughout the prediction step in the process of generatingMi,k) in the ith sub-prediction model

library followed by accepting the attempt to incorporate the potential predictor intoSiR and storing

Mi,h in theith library as the first sub-prediction model. It is worth notingthat this action is inspired

by the two principles of Occam’s window, which suggests thatwhen a sub-prediction model has a

significantly lower goodness of fit than its competitor, it should be discredited [20]. Furthermore,

in the remaining case, i.e., when logBi,hk is nonnegative and less than or equal to 2.0, it can be

viewed as a weak evidence againstMi,k, which indicates that the training data suggests there is

weak evidence in support ofMi,h and againstMi,k becauseMi,h has a slightly higher goodness of fit

thanMi,k; however, this evidence is insufficient to discreditMi,k. In this case, the layer is instructed

to accept the attempt to incorporate the potential predictor into SiR and storeMi,h in the ith library

as the(k+1)th sub-prediction model.

Although the reformer data (i.e., the training data and testing data) is generated by simulating

the high-fidelity reformer CFD model, it is expected to exhibit some stochastic behavior because

in all simulations of the reformer CFD model, the final globalnormalized residuals have small

nonzero values which suggests that the reformer data fluctuates around the true steady-state. Fur-

thermore, even though the training data and testing data areexpected to exhibit some stochastic

behavior, each reformer data set only has one realization, which prevents the magnitude of the

noise from being estimated from the reformer data. In this work, the noise in OTWTs of all re-

forming tubes in thejth training data set is assumed to be normal, independent and identically

distributed with a mean of zero and a standard deviation ofσ j , which is assumed to be 5%−10%

of the corresponding OTWT range and is approximated as follows,

σ j
i = σ j = ησ

(
max(

#»

T j)−min(
#»

T j)
)

∀i = 1, · · · ,336 (4.13)

where max(
#»

T j) and min(
#»

T j) represent the maximum and minimum OTWT in thejth training

data set, respectively, andησ is a hyperparameter, which has a random value between 0.05 and 0.1

generated by our in-house uniform random number generator.
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4.4.2 Bayesian model averaging

In the present work, Bayesian model averaging is used to account for model uncertainty in making

predictions about theith OTWT based on the FSF distributions and total FSF flow rates. In this

section, it is assumed thatKi sub-prediction models for theith reforming tube, that capture the

dependence of theith OTWT on the FSF distribution and total FSF flow rate reasonably well, are

derived from the training data based on the Bayesian variable selection approach, andT∗
i is to

be estimated given
#»

F ∗ andF∗
tot, which are the unexplored operating conditions of the reformer.

Therefore, the posterior mean ofT∗
i , which represents the most likely value ofT∗

i that is expected

to be observed based on the training data, can be computed as follows,

E
(

T∗
i |T i ,

#»

F ∗,F∗
tot

)
=

Ki

∑
k=1

pr
(
Mi,k|T i

)
E
(

T∗
i |T i ,

#»

F ∗,F∗
tot,Mi,k

)
(4.14)

whereE
(

T∗
i |T i ,

#»

F ∗,F∗
tot,Mi,k

)
represents the posterior mean ofT∗

i whenMi,k is assumed to be the

true model for theith reforming tube. It is recognized that Eqs. 4.1a and 4.14 bearan uncanny

resemblance, and therefore, it can be inferred thatpr
(
Mi,k|T i

)
is the BMA weighting factor of

Mi,k,

pr
(
Mi,k|T i

)
= wP

i,k. (4.15)

In addition,pr
(
Mi,k|T i

)
can be expressed in terms of Bayes factors by dividing the numerator and

denominator of Eq. 4.6 by the posterior probability of an arbitrary model (e.g.,Mi,1) chosen from

the ith sub-prediction model library,

pr
(
Mi,k | T i

)
=

Bi,k1
Ki

∑
l=1

Bi,l1

. (4.16)

Therefore, the BMA weighting factor ofMi,k can be approximated by the BIC approximation

(Eq. 4.12) using the training data, which allowsT̂P,∗
i to be computed as a weighted average ofT̃P,∗

i,k
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generated by sub-prediction models of theith reforming tube.

4.4.3 Sparse nonlinear regression

In the present work, sparse nonlinear regression with maximum likelihood estimation (MLE) is

used to construct data-driven models of theith reforming tube that can be used to explain nonlin-

earities in the dependence of theith OTWT on the FSF distribution and total FSF flow rate. The

idea is inspired by the work in [9] which uses sparse nonlinear regression to extract governing

equations of nonlinear systems from observed data. Additionally, [9] notes that governing equa-

tions of many systems typically consist of a few nonzero terms, which makes sparse nonlinear

regression an especially appealing approach. To derive sub-prediction models that can be used to

describe the dependence of theith OTWT on the FSF distribution and total FSF flow rate from

the reformer data, a library of linear and nonlinear transformations is designed based on expected

interactions between theith OTWT and its predictors. For instance, if thejth burner is a predictor

of the ith OTWT, any nonzero value of thejth burner FSF flow rate is expected to cause theith

OTWT to rise above the ambient temperature, and when the FSF flow rate of the burner is in-

creased, theith OTWT is also expected to increase. Therefore, the transformations are restricted

to nonnegative, monotonically increasing and continuously differentiable classes of functions. In

this work, the library of transformation functions is proposed to consist of monomial, root and

exponential functions as follows,
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whereFn
j is the FSF flow rate of thejth burner from thenth data set. Next, the library of trans-

formations is used to formulate the generalized sub-prediction model for theith reforming tube,

which is assumed to be dependent on all 96 burners, as follows,

T̃P,n
i =

8

∑
g=1

#»α g
i · fg

(
#»

F n
)
+αi (4.18)

where #»α g
i ∈ IR96×1 is the generalized parameter vector associated with thegth transformation

function, whereg = 1, . . . ,8 (Eq. 5.2), andαi ∈ IR represents ambient air temperature. Then, a

basis set of regressors (i.e.,SiR) of theith reforming tube created by the Bayesian variable selection

method developed in the regressor classification layer is utilized in the model-building process

which integrates information about the reformer layout andthe knowledge that thermal radiation

is expected to be the dominant mode of heat transfer in the reformer into the sub-prediction model

(i.e., Mi,k) to set parameters associated with the burners that are not contained inSiR to zero,

effectively reducing the number of terms in Eq. 4.18 by a factor of 96/NiR, whereNiR is the

cardinality ofSiR, leading significant reduction in the computational cost. Therefore,Mi,k can be

written as follows,
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T̃P,n
i,k =

8

∑
g=1

#»α kg
i fg

(
#»

F n
∣∣∣
SiR

)
+αk

i (4.19)

where
#»

F n
∣∣∣
SiR

∈ IRNiR×1 is a vector in the design matrix ofMi,k. The nonlinear sparse regression

with MLE is formulated as a constrained optimization problem that is structured based on the L1

regularization technique (i.e., LASSO) because LASSO is known to shrink parameters associated

with the irrelevant transformations to zero which further reduces the number of terms in the sub-

prediction model (Eq. 4.18) of theith reforming tube. In addition, theories of thermal radiation

discussed in Section 4.1 are integrated into the sub-prediction model by means of equality and

inequality constraints (Eqs. 4.21a−4.21c) in the optimization problem. The formulation for the

sparse nonlinear regression with MLE is proposed as follows,

min
αk

i ∈[298.15,348.15]

αkg
i j ∈[0,∞)

N

∑
n=1

(
Tn

i − T̃P,n
i,k

)2

2
(
σn

i

)2 +λi

8

∑
g=1

∥∥∥ #»α kg
i

∥∥∥
1

(4.20)

subject to
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F
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F
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(
di j
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)βu 8

∑
g=1

αkg
i j fg

(
F

0
)

(4.21c)

F
0
=

Ftyp
tot

96
(4.21d)

wherel and j are indices of burners that are elements inSiR, αkg
i j is the parameter inMi,k associated

with the gth transformed FSF flow rate of thejth burner,αk
i ∈ [298.15,348.15] represents an

ambient temperature parameter inMi,k and its typical range,λi is the tuning parameter in LASSO

of the ith reforming tube,di j anddil are distances from theith reforming tube to thejth and lth
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burners, respectively,βu=6.0 andβl =1.0 are hyperparameters of the constraints and are chosen by

trial and error, andF typ
tot is the total FSF flow rate typically reported in the SMR literature. The

constraints of Eqs. 4.21a−4.21c are formulated in an effort to integrate the inverse square law

of thermal radiation intoMi,k. Specifically, burners, which are separated from theith reforming

tube by an equal distance and are supplied with the same FSF flow rate, are expected to have the

same impact on theith OTWT as shown in the equality constraint (Eq. 4.21a), whereas burners

which are separated from theith reforming tube by different distances but are supplied withthe

same FSF flow rate are expected to have different impacts on the ith OTWT as shown in the

inequality constraint (Eq. 4.21b). In this particular case, a burner that is situated closer to theith

reforming tube is expected to have a higher impact on theith OTWT than those that are further

away. It is noted that an additional inequality constraint (Eq. 4.21c) is added to the optimization

problem to prevent sparse nonlinear regression in an attempt to reduce the number of terms in

Eq. 5.1 from falsely presuming that the impact due to a closerburner is indefinitely higher than

that due to a further burner given the premise that the two areseparated from theith reforming

tube by different distances and are supplied with the same FSF flow rate. It is noted that in the

constrained optimization problem (Eqs. 4.20 and 4.21),λi directly controls the degree of shrinkage

for the parameter vector inMi,k. Specifically, large values ofλi result in a high degree of shrinkage

and favor underfitting data-driven models with low levels ofcomplexity. On the contrary, small

values ofλi result in a low degree of shrinkage and favor overfitting data-driven models with

high goodness of fit. Therefore, it is desired to use the optimal value ofλi to balance between

the degree of complexity and goodness of fit in data-driven models. In this work, leave-out-one

(LOO) cross validation is used to search for the optimal value of λi among the proposed values,

Sλ = {0.1,0.2, · · · ,1.0,1.2, · · · ,2.0,5.0,10}, because the fitting error (i.e., the mean-square error)

might not be an adequate representation for the out-of-sample prediction error. In LOO cross

validation, the training data (T i) is split into sub-training and sub-testing data in such a way that a

reformer data set in the training data is assigned to the sub-testing data, and the remaining data sets

are assigned to the sub-training data. This procedure generatesN different pairs of sub-training and
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sub-testing data from the training data (whereN is the cardinality of the training data), and then,

each pair of the sub-training and sub-testing data is used toderive a sub-prediction model library

for the ith reforming tube and to evaluate a corresponding out-of-sample prediction error for each

value ofλi in Sλ . It is recognized that LOO cross validation is computationally intensive, e.g.,

the total CPU time is expected to be∼ N times more than that required by an approach that uses

the complete training data and the fitting error as the metricto selectλi, but LOO cross validation

provides evidence (i.e., the unbiased estimate of the prediction error) based on which the optimal

λi can be identified. Specifically, the value ofλi in Sλ that yields the least prediction error for

out-of-sample predictions is considered to be the optimalλi.
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Figure 4.2: Flowchart of the regressor collection layer in the prediction step.
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Figure 4.3: Flowchart of the regressor classification layerin the prediction step.
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Figure 4.4: A virtual reformer geometry that is created based on the information generated by the

location identifier in the regressor collection layer and consists of theith reforming tube repre-

sented by a cylindrical tube and 96 burners represented by the frustum cones.

Figure 4.5: The first stage of the multistage affecting zone that is created based onR1
iZ and the

virtual reformer geometry in the first iteration of the prediction step. In Fig. 4.5, the checked

predictors inS1
iC are represented by the four shaded frustum cones and can be visually identified.
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Figure 4.6: The first stage of the multistage affecting zone that is created based onRj
iZ and the

virtual reformer geometry in thejth iteration of the prediction step.

Figure 4.7: The first stage of the multistage affecting zone that is created based onRj+1
iZ , Rj

iZ and

the virtual reformer geometry in the( j +1)th iteration of the prediction step.
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4.5 Correction models

In the present work, an algorithm for the correction step is designed based on ordinary Kriging,

which is superior to other common interpolation techniquesand can yield estimates with minimum

variance [26], to improve the predicted OTWT distribution,which is generated from the prediction

model for the OTWT distribution using
#»

F n andFn
tot, by accounting for the effect of interactions

between neighboring reforming tubes on the OTWT distribution. The correction step is also de-

signed to be a distributed algorithm, which derives the correction model for theith reforming tube

from the training data independently of other reforming tubes allowing the correction models for

the 336 reforming tubes to be simultaneously created, whichexpedites the model-building process

of the correction model for the OTWT distribution. In the remainder of this section, the underlying

process that leads to the temperature variation in the OTWT distribution is discussed to elucidate

the use of ordinary Kriging in an attempt to account for the impact of interactions among neigh-

boring reforming tubes on the OTWT distribution, and then, assumptions and equations associated

with ordinary Kriging will be explicitly presented.

As noted in Section 4.1, the degree of nonuniformity in the OTWT distributions along the re-

forming tube length is controlled by the temperature distribution of the furnace-side flow, which is a

product of many complex interacting transport phenomena and chemical reactions taking place si-

multaneously inside the reformer. The analytical deterministic solution for the OTWT distribution

modeled as a function of the reformer inputs (e.g., the FSF distribution and FSF flow rate) cannot

be easily obtained, and therefore, variations in the OTWT distribution observed in the training data

appear to be as though they are the result of a random process.Fig. 4.8 displays the OTWT of each

reforming tube as a function of theith lag (i=77 for the 77th reforming tube is chosen in this figure

for demonstration purposes), where the lag is defined as the Euclidean distance between thejth

andith reforming tubes wherej is different fromi. The figure suggests that the mean of the OTWT

distribution in each reformer CFD data set in the training data is constant. This realization justifies

the assumption that in a sufficiently small neighborhood theunderlying process that governs the
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variations in the OTWT distribution is intrinsically stationary. Therefore, the spatial correlation

of the OTWT among reforming tubes in a sufficiently small neighborhood can be summarized in

a spatial variance function (i.e., semivariograms). Underthe intrinsic stationarity assumption, the

variance function only depends on lag (which is defined as a Euclidean distance between a pair of

reforming tubes and is denoted ash) and is calculated using the classical estimator (i.e., themethod

of moments) from the training data as follows,

γ̂n
i (h) =

1
2qi(h)

∑
qi(h)

(Tn
j −Tn

k )
2 (4.22)

whereγ̂n
i (h) is the sample semivariogram capturing the spatial correlation of the OTWTs among

reforming tubes that are separated byh±0.15 m and in the neighborhood of theith reforming tube

(denoted asSK
i ) created from using thenth reformer CFD data set in the training data,Tn

j andTn
k

are the OTWTs of the reforming tubes that are separated byh±0.15 m and inSK
i , andqi(h) is the

number of pairs of reforming tubes that are separated byh±0.15 m and inSK
i . In this work,SK

i

is defined to be an 8 m by 8 m region centered at theith reforming tube as shown in Fig. 4.9 so

that there are a sufficient number of reforming tubes inSK
i , which allows relatively stable regional

sample semivariograms to be created for each training data set. The sample semivariograms for

SK
77 (the neighborhood of the 77th reforming tube) calculated based on Eq. 4.22 using the training

data are shown in Fig. 4.10. It is recognized that the sample semivariograms inSK
77 at a given

lag are similar across all training data, which suggests that the spatial correlation among refoming

tubes separated by a distance ofh m can be modeled to be independent of the FSF distribution and

the total FSF flow rate. Therefore, all individual sample semivariograms can be pooled together to

create average sample semivariograms as follows,

γ̂∗i (h) =

N
∑

n=1
γ̂n
i (h)qi(h)

N
∑

n=1
qi(h)

. (4.23)

The average sample semivariograms shown in Fig. 4.11 are expected to be a reasonable represen-
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tation of the spatial correlation among reforming tubes inSK
i [8].

It is noted from Fig. 4.11 that the average sample semivariograms typically increase with in-

creasing lag, which indicates that the OTWTs of reforming tubes that are closely situated are more

highly correlated than the OTWTs of those that are farther apart, with the exception at the lag of

approximately 2 m. A detailed analysis of the reformer geometry shown in Fig. 5.2 reveals that the

spatial correlation between reforming tubes might also be dependent on directionality in which the

reforming tubes are separated. Two new terminologies are introduced to facilitate the discussion

of anisotropic sample semivariograms: pairs of reforming tubes within a row are considered to

be in the North-South direction and are referred to as North-South pairs, while pairs of reforming

tubes in two adjacent rows are considered to be in the East-West direction and are referred to as

East-West pairs. It is noted that the adjacent rows of reforming tubes are separated by a distance

of approximately 2 m which is the smallest lag between any East-West pair. In addition, the East-

West pairs in which reforming tubes are separated by approximately 2 m are expected to be under

the influence of a number of common burners, specifically, under the assumption that the four near-

est burners to theith reforming tube are theith default predictors, the regressor collection layer

determines that their sets of regressors always have two common predictors. On the contrary, the

North-South pairs in which reforming tubes are separated byapproximately 2 m may or may not be

under influence of any common burner. This analysis suggeststhat at the lag of approximately 2 m,

the OTWTs of the East-West pairs are expected to be more similar than those of the North-South

pairs. Furthermore, the number of East-West pairs at the lagof approximately 2 m is significantly

larger than the number of the North-South pairs separated bythe same distance due to the reformer

layout as shown in Fig. 5.2. Therefore, the average omnidirectional sample semivariograms at the

lag of approximately 2 m as shown in Fig. 4.11 might not be usedto represent the spatial correla-

tion between the North-South pairs. In this work, North-South and East-West average anisotropic

sample semivariograms are evaluated according to Eq. 4.23 using information of the North-South

pairs and East-West pairs inSK
i , respectively, and are shown in Figs. 4.12−4.13. It is recognized

that with the exception at the lag of approximately 2 m at which the East-West pairs exhibit a
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strong spatial correlation, the scatter plot of East-West average anisotropic sample semivariograms

shown in Fig. 4.12 indicates that when the lag is greater thanor equal to 2.4 m, East-West pairs

appear to be spatially uncorrelated. Therefore, information of the East-West average anisotropic

sample semivariograms will not be utilized in the model-building process of the spatial model (i.e.,

the correction model) for theith OTWT. Additionally, it is noted from Fig. 4.13 that when the lag

is less than 4 m, North-South pairs are spatially correlated, and North-South average anisotropic

sample semivariograms exhibit the expected trend in which semivariance increases with increasing

lag; however, when the lag becomes greater than or equal to 4 m, North-South pairs suddenly ap-

pear to be spatially uncorrelated. The analysis of the average anisotropic sample semivariograms

suggests that variations in the OTWT of reforming tubes separated by a distance greater than or

equal to 4 m are spatially uncorrelated so that this information should not be utilized in the model-

building process of the correction model for theith reforming tube. Therefore, the present work

only uses information of reforming tubes inSK
i and separated by a distance that is strictly less than

4 m to construct the omnidirectional and isotropic average sample semivariograms.

Next, the omnidirectional and anisotropic average sample semivariograms are fitted with linear

and exponential functions to generate 4 different theoretical semivariograms, namely, linear omni-

directional, exponential omnidirectional, linear anisotropic and exponential anisotropic theoretical

semivariogram models. Then, LOO cross validation is used toidentify the most suitable theoretical

semivariogram model, which most accurately describes the spatial correlation among neighboring

reforming tubes inSK
i , to be used in the model-building process of theith reforming tube. The
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linear (Eq. 4.24a) and exponential (Eq. 4.24b) functions [10] are given as follows,

for h> 0

γ̃l (h) = τ1,l + τ2,l h (4.24a)

0≤ τ1,l ,τ2,l <+∞

γ̃e(h) = τ1,e+ τ2,e

[
1−exp

(
h

τ3,e

)]
(4.24b)

0≤ τ1,e,τ2,e<+∞ & 0 ≤ τ3,e < 4

for h= 0

γ̃l (h) = γ̃e(h) = 0 (4.24c)

whereτ1,l and τ2,l are parameters of the linear theoretical semivariogram model, andτ1,e, τ2,e

andτ3,e are parameters of the exponential theoretical semivariogram model. It is noted thatτ3,e

in Eq. 4.24b is related to the range in which variations of theOTWTs are spatially correlated

and, therefore, it is reasonable to assume thatτ3,e is less than 4 m. Parameters of theoretical

semivariograms are estimated using the method of weighted least squares developed in [10].

Finally, the correction model for theith reforming tube is formulated as a weighted average

OTWT of the neighbors inWK
i as follows,

T̂C,n
i =

WK
i

∑
j

wC
i, jT

n
j (4.25)

where j is an index of a reforming tube inWK
i , which is a subset ofSK

i , andwC
i, j is the correction

weighting factor of thejth reforming tube. In this work,WK
i is defined to consist of the three near-

est northward, three nearest southward, one nearest eastward and one nearest westward neighbors

of the ith reforming tube. In the event that theith reforming tube is missing any of the afore-

mentioned neighbors,WK
i is shrunk down accordingly, and theith OTWT is estimated only using

the existing neighbors. For instance, as the 1st reforming tube has neither three nearest northward
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neighbors nor one nearest eastward neighbor as shown in Fig.5.2, the cardinality ofWK
1 is reduced

to four, and the 1st OTWT is directly computed as the weighted average OTWT of thethree nearest

southward and one nearest westward neighbors.

Two different approaches for obtainingwC
i, j associated with elements inWK

i are proposed to

account for the choice of incorporating directionality into the correction model for theith reforming

tube. Specifically, when an omnidirectional theoretical semivariogram model is used to represent

the spatial correlation between reforming tubes inWK
i , it is assumed that theith reforming tube is

spatially correlated to all neighbors inWK
i , and allwC

i, j in the correction model (Eq. 5.5) are the

Kriging weights and can be calculated as follows,

Γi
#»wC

i = #»γ i (4.26a)

subject to

Γi ∈ IRNi,K+1×Ni,K+1 such that, (4.26b)

Γi,kl = 0; k= l wherek, l ∈ [1,Ni,K +1]

Γi,kl = Γi,lk = γ̃∗i
(

ĥkl

)
wherek, l ∈ [1,Ni,K]

Γi,(Ni,K+1)l = Γi,l(Ni,K+1) wherel ∈ [1,Ni,K]

#»wC
i =

[
wC

i, j , · · · ,λC
i

]T
∀ j ∈ WK

i (4.26c)

#»γ i =
[
γ̃∗i
(
hi j
)
, · · · ,1

]T
∀ j ∈ WK

i (4.26d)

whereΓi represents the matrix of semivariances between the neighbors in WK
i , #»γ i represents the

vector of semivariances between theith reforming tube and its neighbors inWK
i , γ̃∗i is the best

theoretical semivariogram model, which is identified by LOOcross validation as presented at the

end of this section, to describe the spatial correlation of reforming tubes inWK
i , Ni,K is the number

of Kriging weights in the correction model for theith reforming tube,λC
i is the Lagrangian multi-

plier, hi j is the lag between theith and jth reforming tubes and̂hkl is the lag between thekth and
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lth neighbors inWK
i . It is noted that the subscripts in̂hkl represent the order in which neighbors are

arranged inWK
i instead of indices of reforming tubes, and in this study, theneighbors inWK

i are

arranged in an increasing order of their reforming tube indices. When an anisotropic theoretical

semivariogram model is used to represent the spatial correlation between reforming tubes inWK
i ,

it is assumed that theith reforming tube is spatially correlated to the North-South neighbors but is

spatially uncorrelated to the East-West neighbors inWK
i . In this scenario, theith corrected OTWT

is defined as an average of two distinct estimates calculatedusing information of the North-South

neighbors and of the East-West neighbors, respectively. Itis noted that, as the spatial correla-

tion between the North-South neighbors and theith reforming tube is captured in the anisotropic

theoretical semivariogram model, the estimate calculatedusing information of the North-South

neighbors can be obtained after allwC
i, j associated with the North-South neighbors are calculated

as shown in Eq. 4.26. On the other hand, because theith reforming tube is spatially uncorrelated

to the East-West neighbors, the estimate calculated using information of the East-West neighbors

is simplified to an average OTWT among the East-West neighbors.
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Figure 4.8: The scatter plot of OTWTs of all reforming tubes in six training data sets versus the

corresponding distance to the 77th reforming tube, which is referred to as the 77th lag. It is noted

that not all reformer CFD data sets in the training data are shown in Fig. 4.8 to avoid cluttering.
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Figure 4.9: The isometric view of the ordinary Kriging neighborhood of theith reforming tube

that is denoted asSK
i and is defined as an 8 m by 8 m region centered at theith tube, inside which

the underlying process that gives rise to the variations in the OTWT distribution is assumed to be

intrinsically stationary.
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Figure 4.10: Omnidirectional sample semivariograms forSK
77 computed by the classical estimator

as shown in Eq. 4.22 using the training data. It is noted that not all results generated using reformer

CFD data sets in the training data are displayed in Fig. 4.10 to avoid cluttering.
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Figure 4.11: Omnidirectional average sample semivariograms forSK
77 computed by Eqs. 4.22 and

4.23 using information of all reforming tube pairs inSK
77 from the training data.
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Figure 4.12: East-West anisotropic average sample semivariograms forSK
77 computed by Eqs. 4.22

and 4.23 using information of the East-West pairs inSK
77 from the training data.
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Figure 4.13: North-South anisotropic average sample semivariograms forSK
77 computed by

Eqs. 4.22 and 4.23 using information of the North-South pairs inSK
77 from the training data.
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4.6 Combined model uniting prediction and correction models

Upon the simultaneous creation of unified prediction modelsas discussed in Section 4.4 and cor-

rection models as discussed in Section 4.5 for 336 reformingtubes from the training data, the

data-driven model for the OTWT distribution, which is a function of the FSF distribution and total

FSF flow rate and is also able to account for interactions among neighboring reforming tubes, can

be assembled. Initially, the prediction models for 336 reforming tubes are pooled to create the

prediction model for the OTWT distribution, by which the predicted OTWT distribution can be

estimated based on a given FSF distribution and total FSF flowrate, as follows,




T̂P,n
1

T̂P,n
2
...

T̂P,n
336




=




K1

∑
k=1

wP
1,kT̃

P,n
1,k

K2

∑
k=1

wP
2,kT̃

P,n
2,k

...
K336

∑
k=1

wP
336,kT̃P,n

336,k




. (4.27)

Then, the correction models for 336 reforming tubes are alsopooled to create the correction model

for the OTWT distribution, by which the corrected OTWT distribution can be estimated based on

the predicted OTWT distribution, as follows,




T̂C,n
1

T̂C,n
2
...

T̂C,n
336




=




WK
1

∑
j

wC
1, j T̂

P,n
j

WK
2

∑
j

wC
2, j T̂

P,n
j

...
WK

336

∑
j

wC
336, j T̂

P,n
j




. (4.28)

Next, the data-driven model for the OTWT distribution is formulated as a weighted average of the

prediction and correction models for the OTWT distributionas follows,
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


T̂n
1

T̂n
2
...

T̂n
336




= wP




T̂P,n
1

T̂P,n
2
...

T̂P,n
336




+
(
1−wP)




T̂C,n
1

T̂C,n
2
...

T̂C,n
336




(4.29)

where the optimal value ofwP denoted byŵP is selected among the proposed values,Sw =

{0.0,0.1, · · · ,1.0} by LOO cross validation, which can be carried out in the same manner as dis-

cussed in Section 4.4.3. Specifically, the value ofwP in Sw that yields the least prediction error for

out-of-sample predictions is considered to be the optimalwP.
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4.7 Results

The statistical-based model identification approach developed in this work is structured to be en-

tirely parallelized; specifically, the prediction and correction models of theith reforming tube can

be derived simultaneously from the training data and independently of the model-building process

of other reforming tubes. This feature allows the optimal LASSO parameter and theoretical semi-

variogram model for theith reforming tube and the optimal weighting factor of the BMA predicted

estimates to be determined using leave-out-one cross validation, which is expected to improve the

prediction accuracy of the OTWT distribution model for out-of-sample predictions. We note that

the model-building process for the OTWT of each reforming tube is identically, independently and

simultaneously executed on the shared computing cluster atUCLA, and therefore, the effectiveness

of the proposed model identification scheme can be demonstrated using results generated from the

model-building process of any reforming tube. In the remainder of this section, the 77th reforming

tube is chosen as a representative example because the number of sub-prediction models with high

goodness of fit (i.e., 4) and the number of predictors (i.e., 9) for the 77th OTWT make it possible to

illustrate the effectiveness of the proposed approach to identify the important burners and to allow

the prediction model for the 77th OTWT to account for model uncertainty while forecasting in a

concise manner.

The results from LOO cross validation to select the optimal value ofλ77 (denoted aŝλ77) from

Sλ are summarized in Fig. 4.14. Specifically, the value ofλ77 controls the model complexity and

goodness of fit as discussed in Section 4.4.3 when the sparse nonlinear regression is formulated

as an L1 penalized optimization problem, which is illustrated as shown in Fig. 4.14. It is recog-

nized from Fig. 4.14 that the mean square fitting error increases with increasing values ofλ77, and

specifically, the fitting error is the largest at the highest values ofλ77 considered in this work as

low-complexity models are favored, while the fitting error is the smallest at the lowest value of

λ77 as models with high goodness of fit are favored. In addition, Fig. 4.14 reveals that the fitting

error is over-optimistic because it is lower than the mean squared prediction error for all values of
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λ77, and the fitting error should not be used as the metric for selecting λ̂77 from Sλ because the

prediction error is not necessarily minimized at the value of λ77 which minimizes the fitting error.

Specifically, Fig. 4.14 indicates that atλ77=0.4, the prediction error is minimized, which suggests

that the optimal value ofλ77 is 0.4, i.e.,

λ̂77 = 0.4. (4.30)

Thereafter,̂λ77 is used as the LASSO parameter of the sparse nonlinear regression (Eq. 4.20) in the

prediction step algorithm, by which the prediction model for the dependence of the 77th OTWT

on the FSF distribution and total FSF flow rate is derived fromthe complete training data. It is

found that this procedure generates four nested sub-prediction models of the 77th reforming tube,

which together represent the prediction model for the 77th reforming tube. The four sub-prediction

models of the 77th reforming tube, each of which can be used to estimate the 77th OTWT based

on a given FSF distribution and total FSF flow rate, are as follows,
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T̃P,n
77,1 =134.70 5

√
Fn

18+225.49 5
√

Fn
19+141.73 5

√
Fn

30+234.28 5
√

Fn
31 (4.31a)

+2.54exp(Fn
18)+3.17exp(Fn

19)+14.45exp(Fn
32)+348.15

T̃P,n
77,2 =51.80 5

√
Fn

17+131.61 5
√

Fn
18+177.63 5

√
Fn

19+134.87 5
√

Fn
30 (4.31b)

+179.40 5
√

Fn
31+66.49 5

√
Fn

32+10.94exp(Fn
17)+1.17exp(Fn

18)

+0.64exp(Fn
19)+6.22exp(Fn

32)+348.15

T̃P,n
77,3 =61.26 5

√
Fn

17+125.22 5
√

Fn
18+166.56 5

√
Fn

19+125.22 5
√

Fn
30 (4.31c)

+166.56 5
√

Fn
31+60.01 5

√
Fn

32+37.83 5
√

Fn
43+5.40exp(Fn

17)

+6.39exp(Fn
32)+6.63exp(Fn

43)+348.15

T̃P,n
77,4 =61.48 5

√
Fn

17+120.02 5
√

Fn
18+175.72 5

√
Fn

19+120.02 5
√

Fn
30 (4.31d)

+175.72 5
√

Fn
31+69.04 5

√
Fn

32+21.96 5
√

Fn
43+10.00exp(Fn

15)

+8.43exp(Fn
43)+348.15.

At glance, the four sub-prediction models successfully account for the reformer geometry (i.e., the

reforming tube and burner arrangement) as only the parameters associated with burners that are

situated nearby the 77th reforming tube are nonzero and also obey the inverse square law for ther-

mal radiation as the parameters associated with burners that are closer to the 77th reforming tube

are larger. The distance between each predictor of the 77th OTWT and the 77th reforming tube

is detailed in Table 4.1. On closer inspection, it is recognized that out of the eight transformation

functions (Eq. 5.2) proposed in the development of the sparse nonlinear regression, only the pa-

rameters associated with the quint root and exponential functions are nonzero, and the parameters

associated with the quint root function are noticeably larger than those associated with the exponen-

tial function (Eq. 4.31). We speculate that the use of the exponential function in the sub-prediction

models by the sparse nonlinear regression is because the training data might have suggested that

the predictors located further away from the 77th reforming tube have higher impacts on the 77th
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Table 4.1: Distance from burners inS77R to the 77th reforming tube

Burner ID Distance (m)

19th 1.08
31st 1.08
18th 1.44
30th 1.44
32nd 2.32
17th 2.36
43rd 3.21
15th 5.24

OTWT than we previously expect (Eq. 4.21b). This analysis reveals the underlying function that

governs the relationship between the 77th OTWT and FSF flow rates of its predictors.Next, the

prediction model is created as the weighted average of the four sub-prediction models of the 77th

reforming tube using Bayesian model averaging as follows,

T̂P,n
77 = 0.01T̃P,n

77,1+0.23T̃P,n
77,2+0.29T̃P,n

77,3+0.47T̃P,n
77,4 (4.32)

where the weighting factor associated with each sub-prediction model indicates the level of sup-

porting evidence given by the training data. Then, the training data are used to evaluate the resub-

stitution accuracy of the prediction model for the 77th reforming tube. The comparison between

reformer data from the training data and BMA predicted estimates generated from the prediction

model (Eq. 4.32) is shown in Figs. 4.15 and 4.17, and the corresponding residual plot is shown in

Fig. 4.16. Specifically, Fig. 4.16 shows that the maximum andaverage residuals are 2.54 K and

−0.01 K, respectively, and Fig. 4.17 shows that all plotted points are close to the diagonal line with

the slope of 1 and y-intercept of zero. Therefore, Figs. 4.15, 4.16 and 4.17 show that the prediction

model for the 77th reforming tube has a high goodness of fit and provides an excellent description

for the dependence of the 77th OTWT on the FSF distribution and total FSF flow rate.

Next, the results from LOO cross validation, which allow thebest theoretical semivariogram
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Figure 4.14: Summary of LOO cross validation for selecting the optimal value ofλ77 from Sλ

in which the mean squared prediction errors are denoted by the empty red circles and the mean

squared fitting errors are denoted by the filled black squares.

model (denoted aŝγ∗77) to be selected among the linear omnidirectional, linear anisotropic, expo-

nential omnidirectional, and exponential anisotropic theoretical semivariogram models so that the

spatial correlation among neighboring reforming tubes inSK
77 can be described with adequate accu-

racy, are summarized in Fig. 4.18. It is noted from Fig. 4.18 that the correction models for the 77th

reforming tube created in LOO cross validation using the linear omnidirectional theoretical semi-

variogram model yield the smallest mean squared predictionerror for out-of-sample predictions,

and therefore,̂γ∗77 is assumed to be the linear omnidirectional theoretical semivariogram model.

Thereafter,̂γ∗77 is used as the predetermined theoretical semivariogram model in the correction step

algorithm, by which the correction model for the 77th reforming tube is derived from the com-

plete training data as shown in Table 4.2. Table 4.2 shows theexpected trend in spatial modeling,

i.e., as the distance between a neighbor and 77th reforming tube increases, their OTWT values

becomes less correlated. Then, the training data are used toevaluate the resubstitution accuracy of
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Figure 4.15: Comparison of the 77th OTWT between reformer CFD data from the training data

and BMA predicted estimates generated from the prediction model for the 77th reforming tube.

the correction model for the 77th reforming tube. The comparison between reformer data from the

training data and corrected estimates generated from the corrected model (Table 4.2) is shown in

Figs. 4.19 and 4.21; the corresponding residual plot is shown in Fig. 4.20. Specifically, Fig. 4.20

shows that the maximum and average residuals are 1.63 K and−0.74 K, respectively, and Fig. 4.21

shows that all plotted points are close to the diagonal line with the slope of 1 and y-intercept of

zero. Therefore, Figs. 4.19, 4.20 and 4.21 show that the correction model for the 77th reforming

tube has a high goodness of fit and provides an excellent description of the 77th OTWT by using

information of the neighbors.

167



0 5 10 15 20
Index of reformer CFD data

-10

-5

0

5

10

R
es

id
ua

ls
 (

K
)

Figure 4.16: Residuals between reformer CFD data from the training data and BMA predicted

estimates generated from the prediction model for the 77th reforming tube.
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Figure 4.18: A plot of the mean squared prediction error associated with each of the four theo-

retical semivariogram models considered in the LOO cross validation to select the best theoretical

semivariogram to model the spatial correlation among reforming tubes in theSK
77. The values on

the horizontal axis, i.e., 0, 1, 2, and 3, correspond to the linear omnidirectional, linear anisotropic,
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Figure 4.17: Reformer CFD data from the training data versusBMA predicted estimates generated

from the prediction model for the 77th reforming tube scatter plots.
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Figure 4.19: Comparison of the 77th OTWT between reformer CFD data from the training data

and corrected estimates generated from the correction model for the 77th reforming tube.
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Figure 4.20: Residuals between reformer CFD data from the training data and corrected estimates

generated from the correction model of the 77th reforming tube.

1100 1150 1200 1250

77
th

 OK predicted estimates

1100

1150

1200

1250

77
th

 r
ef

or
m

er
 C

F
D

 d
at

a

Figure 4.21: Reformer CFD data from the training data versuscorrected estimates generated from

the correction model for the 77th reforming tube scatter plots.
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Table 4.2: Lags, Kriging weights, and directionality of reforming tubes used in the weighted aver-

age correction step in calculating the 77th OTWT.

Reforming tube ID Lag (m) Kriging weight Directionality

29 2.13 0.03 Eastward

74 0.84 0.06 Northward

75 0.56 0.13 Northward

76 0.28 0.29 Northward

78 0.28 0.30 Southward

79 0.56 0.15 Southward

80 1.60 0.03 Southward

125 2.13 0.03 Westward

The results from LOO cross validation to select the optimal weighting factor for the BMA

predicted estimates fromSw are summarized in Fig. 4.22. It is noted from Fig. 4.22 that the fitting

error decreases with increasing values ofwP, and specifically, the fitting error is at its smallest

when the value ofwP becomes 1, which implies that estimates of the OTWT distribution are based

entirely on the prediction model for the OTWT distribution,while the fitting error is the largest

when the value ofwP becomes 0, which implies that estimates of the OTWT distribution are based

entirely on the correction model for the OTWT distribution.This observation is expected because

the correction model for the OTWT distribution is derived from the training data, which allows

it to have realistic knowledge about spatial correlation among neighboring reforming tubes so

that the overall predictability performance of the data-driven model for the OTWT distribution

for out-of-sample predictions can be improved. Fig. 4.22 demonstrates the necessity of using the

correction model for the OTWT distribution, and specifically, the prediction error is minimized at

wP=0.9, which suggests that the correction model for the OTWT distribution improves the out-of-

sample predictive performance of the data-driven model forthe OTWT distribution. Subsequently,
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the prediction models and correction models for 336 reforming tubes derived from the complete

training data and the optimal value ofwP are used to formulate the data-driven model for the

OTWT distribution. We note that the model for the OTWT distribution depicts a multiple-input

multiple-output (MIMO) system and is composed of 336 algebraic equations, which can be solved

instantaneously on a standard compute node on a shared computing cluster at UCLA (i.e., the

Hoffman2 cluster). Then, the training data are used to evaluate the resubstitution accuracy of

the data-driven model for the OTWT distribution. The comparison between reformer data from

the training data and estimates generated from the data-driven model for the OTWT distribution

is shown in Figs. 4.23−4.24 and Table 4.3. Fig. 4.23 provides a descriptive comparison of the

maximum, average and minimum OTWT in each pair of data sets between reformer CFD data in

the training data and estimates generated from the data-driven model for the OTWT distribution,

Fig. 4.24 provides a visual comparison of the OTWT distribution contour map between the 7th

data set in the training data and its corresponding estimategenerated from the data-driven model

for the OTWT distribution, and Table 4.3 provides an analysis of the deviations between reformer

CFD data in the training data and estimates generated from the data-driven model for the OTWT

distribution. It is noted that the contour maps shown in Fig.4.24 created from the 7thdata set in the

training data and its corresponding estimate generated from the data-driven model for the OTWT

distribution are nearly identical. Specifically, the maximum, minimum and average OTWT of the

estimated OTWT distribution are adequately close to those in the reformer CFD data as shown

in Fig. 4.23, and the maximum and average deviations betweenthe pair as shown in Table 4.3

are 5.6 K and 1.4 K, respectively, with the standard deviation of 1.1 K which is approximately

0.1% of the average OTWT in this reformer data. This evidenceindicates that the 7th OTWT

distribution generated by the data-driven model is an accurate representation of the corresponding

reformer CFD data. In addition, similar conclusions can be drawn from Fig. 4.23 and Table 4.3

for other data sets in the training data. Therefore, it can beconcluded that the data-driven model

for the OTWT distribution has a high goodness of fit and provides an excellent description for the

dependence of the OTWT distribution on the FSF distribution, total FSF flow rate and interactions
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among neighboring reforming tubes.
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Figure 4.22: Summary of LOO cross validation for selecting the optimal value ofwP from Sw

in which the mean squared prediction errors are denoted by the empty red circles and the mean

squared fitting errors are denoted by the filled black squares.

Finally, the unbiased testing data are used to evaluate the out-of-sample predictive performance

of the data-driven model for the OTWT distribution generated from the proposed integrated model

identification scheme. The comparison between reformer data from the testing data and estimates

generated from the data-driven model for the OTWT distribution is shown in Fig. 4.25 and Ta-

ble 4.4. Fig. 4.25 provides a descriptive comparison of the maximum, average and minimum

OTWTs in each pair of data sets between reformer CFD data in the testing data and estimates gen-

erated from the data-driven model for the OTWT distribution, and Table 4.4 provides an analysis

of the deviations between reformer CFD data in the testing data and estimates generated from the

data-driven model for the OTWT distribution. Specifically,the maximum, minimum and average

OTWT of the estimated OTWT distributions are consistent with those in the reformer CFD data as

shown in Fig. 4.25 and the maximum, average and standard deviation of the differences between
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Table 4.3: Analysis of the deviations between reformer CFD data in the training data and estimates

generated from the data-driven model for the OTWT distribution.

Index of
data set

(∆T)max K (∆T)aveK σ∆T K

1 8.9 2.1 2.5
2 8.1 1.8 1.9
3 18.5 2.2 7.2
4 7.3 1.5 1.9
5 6.7 1.1 1.1
6 6.9 1.1 1.1
7 5.6 1.4 1.1
8 8.1 1.6 2.2
9 7.3 0.9 0.9
10 7.3 1.1 1.0
11 7.5 2.0 2.7
12 7.2 1.3 2.0
13 8.5 1.9 1.6
14 7.7 1.4 1.1
15 2.6 0.7 0.3
16 12.7 2.2 6.1
17 7.2 1.3 1.2
18 8.2 1.0 1.6
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Figure 4.23: Comparison of the maximum (Tmax), average (Tave) and minimum (Tmin) OTWTs

in each pair of data sets between reformer CFD data in the training data, which are represented

by the filled black symbols, and estimates generated from thedata-driven model for the OTWT

distribution, which are represented by the empty red symbols.

the pairs as shown in Table 4.3 are nearly negligible compared to the corresponding average OTWT

in each data set. It is noted that the maximum, average and standard deviation of the differences

in the OTWT distributions between the reformer CFD data and estimates generated from the data-

driven model for the OTWT distribution in Table 4.3 and Table4.4 are similar. Therefore, it can

be concluded that the data-driven model for the OTWT distribution also has a high out-of-sample

prediction performance and provides an excellent description for the dependence of the OTWT dis-

tribution on the FSF distribution, total FSF flow rate and interactions among neighboring reforming

tubes.

175



Figure 4.24: Comparison of the OTWT distributions between the 7thdata set in the training data (a)

and its corresponding estimate generated from the data-driven model for the OTWT distribution

(b). In Fig. 4.24, the layout of 336 reforming tubes in the reformer is represented by a table

consisting of 336 rectangular cells, in which each cell corresponds to a unique reforming tube in

the reformer, i.e., a cell at the bottom right corner of the table represents the 48th reforming tube

in the reformer as shown in Fig. 5.2.

Table 4.4: Analysis of the deviations between reformer CFD data in the testing data and estimates

generated from the data-driven model for the OTWT distribution.

Index of
data set

(∆T)max K (∆T)aveK σ∆T K

19 8.2 1.6 2.3
20 5.7 0.7 0.6
21 4.3 1.4 1.0
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Figure 4.25: Comparison of the maximum (Tmax), average (Tave) and minimum (Tmin) OTWTs

in each pair of data sets between reformer CFD data in the testing data, which are represented

by the filled black symbols, and estimates generated from thedata-driven model for the OTWT

distribution, which are represented by the empty red symbols.
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4.8 Conclusion

The present work developed an integrated model identification scheme that was able to derive a

high-fidelity model for the dependence of the OTWT distribution on the FSF distribution, total

FSF flow rate and interactions among neighboring reforming tubes from the reformer data. To

this end, a high-fidelity reformer CFD model that had been developed and rigorously validated by

typical plant data from the SMR literature and actual plant data from our third-party collaborator

in our previous work was utilized to facilitate the generation of the reformer database, which was

split into the training and testing data. Then, we used Bayesian variable selection, Bayesian model

averaging, the BIC approximation, sparse nonlinear regression and theories of thermal radiation to

develop the prediction step algorithm in the integrated model identification, from which the pre-

diction model for the OTWT distribution that estimated a predicted OTWT distribution based on a

FSF distribution and total FSF flow rate was generated using the training data. Next, we used ordi-

nary Kriging to develop the correction step algorithm in theintegrated model identification, from

which the correction model for the OTWT distribution that estimated a corrected OTWT distribu-

tion based on a predicted OTWT distribution was derived using the training data. Thereafter, we

created the data-driven model for the OTWT distribution as aweighted average of the prediction

and correction models previously derived from data.

One of our primary interests regarding this work is integrating it in the development of an

on-line robust furnace balancing optimizer, which searches for the optimized valve distribution

to deliver an optimized FSF distribution and total FSF flow rate to improve the reformer thermal

efficiency and compensate for impacts of disturbances on thereformer efficiency. Therefore, it

was important that the integrated model identification scheme is computationally efficient so that

the optimized FSF distribution and total FSF flow rate can be promptly generated to prevent dis-

turbances from damaging reforming tubes and reducing the reformer service life. In this effort,

the prediction and correction steps were structured to be entirely parallelized; specifically, the pre-

diction and correction models of 336 reforming tubes could be derived simultaneously from the
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training data and independently of one another. This feature allowed the optimal LASSO parame-

ter and the most suited theoretical semivariogram model foreach reforming tube, and the optimal

weighting factor of the prediction estimates to be determined using leave-out-one cross validation,

which was demonstrated to improve the prediction performance of the data-driven model for the

OTWT distribution. Finally, the results from the goodness-of-fit and out-of-sample prediction tests

of the data-driven model for the OTWT distribution generated from the integrated model identifi-

cation scheme demonstrated the high effectiveness of the method proposed in this work. In future

work, the integrated model identification scheme can be usedto develop an advanced furnace bal-

ancing scheme that simultaneously optimizes the FSF distribution and maximizes the total FSF

flow rate to decrease the degree of temperature nonuniformity inside the reformer and to increase

the reformer efficiency without damaging the reforming tubes and reducing the reformer service

life. The ability to adjust the total mass flow rate for the advanced furnace balancing scheme is

of special interest for the hydrogen manufacturing industry as it can potentially lead to substantial

savings in the re-tubing cost of a reformer.
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Chapter 5

Real-time Furnace Balancing for Steam

Methane Reforming Furnace

5.1 Introduction

In Chapters 2, 3 and 4, the inherent variation in the outer tube wall temperature (OTWT) distri-

bution, its negative impacts on the reformer thermal efficiency and its mitigation strategies have

been the central theme of this dissertation because it posesa major challenge in the estimation of

the optimized total furnace-side feed (FSF) flow rate due to the high risk of accelerating the degra-

dation of the microstructure of the reforming tube wall. Specifically, the maximum OTWT along

the reforming tube length among all reforming tubes in the reformer operated under a suboptimal

fuel distribution can be higher than that in a reformer operated under an optimized fuel distribution

with the same total fuel flow rate (Chapter 3). Consequently,the optimized FSF flow rate may

not be implemented without the proper distribution of the optimized total fuel flow rate, and the

SMR-based hydrogen plant throughput is compromised to retain the reformer service life and to

reduce the risk of suffering substantial capital and production losses.

In addition to the challenges associated with the estimation of the optimized firing rate imposed

by the physical limitation of the reforming tube wall material and the inherent nonuniformity in the
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OTWT distributions, the unstudied dynamic response of the reformer under load alterations poses

an additional challenge in the implementation of the optimized firing rate due to the sensitivity of

the reforming tube service life to the operating temperature. Specifically, it is believed that the

furnace-side temperature is expected to increase immediately in response to a positive step change

in the total fuel flow rate due to the rapid combustion of the furnace-side fuel coupled with fast

thermal radiative heat transfer in the high temperature combustion chamber. However, it remains

unclear that if the additional fired duty can be transfered tothe tube-side flow at a sufficient over-

all rate that would prevent the OTWTs from exceeding the respective steady-state values due to

the thermal resistance of the nickel-based catalyst pellets, which are made from an alumina oxide

ceramic material with relatively low thermal conductivity. As a result, there is a possibility that

a large positive step change in the total fuel flow rate designed to achieve the optimized firing

rate may cause the OTWTs of some reforming tubes to temporarily exceed its design tempera-

ture causing the degradation of the microstructure of the reforming tube wall to accelerate, which

leads to premature failure of the reformer. Hence, designing a robust systematic operating method

(i.e., the furnace-balancing scheme) that identifies the optimized firing rate and the corresponding

strategic implementation of the maximum total fuel flow ratewithout accelerating the degradation

of the microstructure of the reforming tube wall is of great interest to the hydrogen manufacturing

industry.

Motivated by this, the present work utilizes a statistical-based model identification and the

furnace-balancing framework to design a real-time robust furnace-balancing scheme that simul-

taneously identifies the optimized total fuel flow rate and its corresponding optimized valve dis-

tribution such that the reformer throughput is maximized within the physical limitation of the

reforming tube wall material. Subsequently, the work utilizes the high-fidelity computational fluid

dynamic (CFD) model for the reformer to investigate the unstudied dynamic response of the re-

former during load alterations to propose a strategic implementation of the optimized total fuel

flow rate without causing additional damage to the reformingtubes in the process. The remainder

of this manuscript is structured as follows: Section 5.2 presents a high-level description of the
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furnace-balancing scheme of which the major components andthe basic workflow are introduced,

Section 5.3 details the development of the reformer CFD model (Chapter 2) to justify using the

reformer CFD model to represent the on-line reformer at the SMR-based hydrogen facility, Sec-

tions 5.4 and 5.5 present the key findings, features and capabilities of the statistical-based model

identification (Chapter 4) and the valve-to-flow-rate converter (Chapter 3) to highlight their utili-

ties for real-time optimization of the reformer to improve the plant-wise energy efficiency and to

reject operational disturbances associated with flow control valves, Section 5.6 introduces read-

ers to the development of a sequential workflow that aims to increase the reformer throughput by

maximizing the total fuel flow rate, i.e., the reformer firingrate, without sacrificing the reformer

service life in the process, and Section 5.7 addresses the computational challenges associated with

the steady-state and transient simulations of the reformerCFD model and the derivation of the

data-driven model for the OTWT distribution to emphasize the importance of parallel computing

for the purpose of determining the optimized reformer fuel input in real-time using the proposed

approach. Finally, in Section 5.8, the goodness-of-fit of the data-driven model for the OTWT dis-

tribution is evaluated to justify the use of the model in the development of the balancing procedure,

the dynamic response of the reformer to two deterministic step changes in the total fuel flow rate

from its nominal value is analyzed to design an appropriate strategy to implement the optimized

firing rate estimated by the balancing procedure, and the performance of the furnace-balancing is

presented to demonstrate the effectiveness of the proposedapproach.
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5.2 Overview of the furnace-balancing scheme

In the present work, the integrated furnace-balancing scheme that simultaneously calculates the

maximum total fuel mass flow rate and the corresponding optimized valve distribution (which

together are referred to as the optimized reformer fuel input) such that the conversion of methane

via SMR is maximized, and the maximum OTWT along the reforming tube length among all

reforming tubes is strictly less than its design temperature to avoid causing the reforming tubes to

fail prematurely is presented for the first time. To this end,the framework for the furnace-balancing

scheme that was proposed in Chapter 3, which was used to reduce the temperature nonuniformity

inside the combustion chamber at the fixed nominal total fuelflow rate, is utilized in this work. The

furnace-balancing scheme is redesigned as shown in Fig 5.1,which makes use of the statistical-

based model identification, the valve-to-flow-rate converter, the balancing procedure and the high-

fidelity reformer CFD model. Initially, it begins with the statistical-based model identification

to derive the data-driven model for the OTWT distribution from the reformer database. Next, it

integrates the most up-to-date data-driven model in the balancing procedure to find the optimized

reformer fuel input that abides the aforementioned operational specifications. Subsequently, it

implements the optimized reformer fuel input as the burner boundary conditions of the reformer

CFD model using the strategy designed from the investigation of the transient response of the

reformer during load alterations (presented in Section 5.8.2). In the remainder of this manuscript,

the key developments and features of our previous work will be revisited in Sections 5.3, 5.4 and

5.5 in an effort to provide readers with sufficient background, and the development of the balancing

procedure will be detailed at great length in Section 5.6 forthe purpose of clarity.
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Figure 5.1: Flowchart of the furnace-balancing scheme.
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5.3 Reformer CFD model

The high-fidelity reformer CFD model that was first proposed in [57] and further developed in

Chapter 3 is a key component of the furnace-balancing schemeand is used to represent the on-

line reformer at a commercial SMR-based hydrogen plant. This assumption will be justified by

examining the geometry, mesh and development of the reformer CFD model.

The geometry of the reformer CFD model is drawn with a 3D computer-aided design tool and

based on the blueprint of the physical counterpart so that itcontains all of the important features of

the on-line reformer, i.e., seven rows of 48 12.5-m long reforming tubes, six rows of 12 inner-lane

burners, two rows of 12 outer-lane burners and eight elongated flue-gas tunnels with extraction

ports. Indeed, the reformer geometry as shown in Fig. 5.2 adequately depicts a 16 m x 16 m x

13 m hydrogen producing unit at the SMR-based hydrogen plant. Readers with interest in the

structural design and detailed layout of the reformer are advised to study our previous work ([57]).

In addition to the accurate representation of the reformer geometry, the mesh of the reformer

CFD model was well crafted. Specifically, during the developing phase of the reformer model ([57])

the generation of the reformer mesh was prioritized becauseaccuracy of converged solutions gen-

erated by CFD models depends on the mesh quality. For example, a CFD model created from

an insufficiently dense and poor quality mesh is expected to yield inaccurate or even unphysical

solutions, and it is also expected to require a higher computational cost compared to CFD models

built from a high quality mesh at the same resolution. In [57], we initially provided an in-depth

review of two different mesh generation procedures, in which their advantages and disadvantages

were studied under the same premise using the reformer geometry, based on which we concluded

that the multi-block structured hexahedral mesh generation procedure was more appropriate. Then,

we used ANSYS ICEM to create the hexahedral reformer mesh that was characterized to have an

acceptable mesh quality. In particular, the reformer mesh has the high averaged orthogonal factor

and low averaged ortho skew, which indicate that the mesh hasa small number of distorted cells,

and the reformer mesh also has the in-range minimum orthogonal factor, in-range max ortho skew
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and in-range max aspect ratio, which indicate that the distorted cells in the reformer mesh are not

expected to cause convergence difficulties. Finally, we carried out a grid-independent study, and

we found that the reformer mesh consisting of∼41 million cells allows the reformer CFD model

to produce grid-independent solutions. We note that readers who are interested in our rationale for

using the multi-block structured hexahedral mesh generation procedure and additional descriptions

of the reformer mesh are advised to study our previous work ([57] Chapter 3).

Furthermore, we tailored the ANSYS Fluent model to simulatethe known transport phenom-

ena and chemical reactions associated with SMR and the air-combustion process as noted in Sec-

tion 5.1. Specifically, the effects of turbulence in the furnace-side flow on the transport phenomena,

chemical reactions and transport variables associated with the air-combustion process are modeled

by the Reynolds-averaged Navier-Stokes (RANS) and Boussinesq hypothesis using the standard

k− ε model coupled with the enhanced wall treatment (EWT) function. We note that the use of

the EWT function in the turbulence model has been shown to improve the accuracy of CFD so-

lutions in the near-wall regions for low-Reynolds number meshes. The air-combustion process

is modeled by adding source terms in the convective-diffusive species material balances, which

are computed using the premixed combustion assumption, theglobal kinetic model of methane-

air combustion ([46]), the global kinetic model of hydrogen-air combustion ([5]) and the finite

rate/eddy dissipation (FR/ED) turbulence-chemistry interaction model. Thermal radiative heat

transfer within the furnace side between outer walls of reforming tubes, walls of the flue-gas tun-

nels, refractory walls of the combustion chamber and the furnace-side flow is modeled by adding a

source term in the convective-diffusive energy balance, which is computed by the discrete ordinate

method, temperature-independent wall emissivity coefficients and the thermal absorptivity of the

furnace-side flow. In addition, the thermal absorptivity ofthe furnace-side flow in the reformer

CFD model is assumed to be temperature dependent and modeledby the empirical correlation of

the furnace-side thermal emissivity ([43]), Lambert Beer’s law and Kirchoff’s law. In the tube

side, the effects of turbulence in the tube-side flow on the transport phenomena, chemical reactions

and transport variables associated with SMR are also modeled by the RANS and Boussinesq hy-
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pothesis using the standardk−ε model with the EWT function. The reforming tubes are modeled

by the pseudo-homogeneous reactor model, i.e., a continuumapproach in which the solid phase

is not explicitly modeled and is assumed to co-exist in thermal equilibrium with the fluid phase

throughout the reactor volume, using the ANSYS Fluent porous zone function with a void frac-

tion factor of 0.609. The reforming tube wall is modeled by the thin wall model ([34]). SMR is

modeled by adding source terms in the convective-diffusivespecies material balances, which are

computed using the global kinetic model of SMR ([64]), the FR/ED model, the catalyst packing

factor and the effectiveness factor. We note that the use of the effectiveness factor is critical for ac-

curate simulations of the methane conversion via SMR because it allows the effects of the external

mass transfer limitation (as superheated steam and methanemust be transferred from the tube-side

bulk flow to the external surface of the catalyst pellets) andinternal mass transfer limitation (as the

reactants must diffuse through the support material to reach the metal active site) on the chemical

reaction rates associated with SMR to be simulated. In addition, physical and chemical proper-

ties of tube-side and furnace-side species are imported from ANSYS Fluent database, based on

which properties of the furnace-side and tube-side flows arecomputed using appropriate models.

For instance, the molecular thermal conductivities and molecular viscosities of the furnace-side

and tube-side flows are calculated using ideal-gas mixing law, while the diffusion coefficients of

the furnace-side and tube-side flows are calculated using the kinetic theory. Moreover, reforming

tubes, catalyst pellets, walls of the combustion chambers and walls of the flue-gas tunnels are as-

sumed to be made of appropriate materials and are encoded allphysical properties (e.g., density,

thermal conductivity, specific heat capacity and emissivity coefficient) reported in the SMR liter-

ature. For example, reforming tubes are typically made fromcast creep resistant austenitic steel

HP grade, and its catalyst pellets are typically made from nickel-based catalyst dispersed in alpha

alumina support. Readers who are interested in our rationales for the proposed modeling strategies

for the reformer CFD model, the two-step converging strategy and the data collecting procedure

are recommended to study our previous work ([57]).

The steady-state simulation results generated by the reformer CFD model, whose boundary
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conditions are modified based on an operating information ofthe on-line reformer provided by

our third party industry collaborator, have been shown to beconsistent with typical plant data in

the SMR literature and with the plant historian data. Therefore, the reformer CFD model can

adequately represent the on-line unit, and simulation results generated by the reformer model,

whose boundary conditions are modified based on varying fueldistributions and total fuel flow

rates, can be considered to be reliable estimates of the plant data obtained from the on-line unit

at equivalent operating conditions. As a result, it is reasonable to use the reformer CFD model

to represent the on-line reformer, so that it can be used to study the transient response of the on-

line reformer when the total fuel flow rate is increased and todemonstrate the effectiveness of the

integrated furnace-balancing scheme.

It is worth noting that at the commercial-scale SMR-based hydrogen plant, the inputs to the

furnace side of the reformer are regulated by a system of flow control valves, OTWTs at a finite

locations along the reforming tubes inside the furnace are continuously monitored by a system

of infrared cameras through peepholes, the synthesis gas composition can be sampled, and the

historian data of the on-line reformer are well documented.Therefore, in an effort to simulate a

realistic on-site investigation we assume that we have access to the historian data, i.e., the reformer

database, which can be reasonably assumed to be a collectionof simulation results generated by

the reformer model. In this study, the reformer database is populated with 26 steady-state solutions

generated by the reformer CFD model under 26 different reformer fuel inputs ([56, 57]). For each

data point, only information about the valve positions of all flow control valves, the total fuel flow

rate, the fuel flow rates of all burners, the composition of the synthesis gas and the OTWTs of all

reforming tubes at a distance 6.5 m away from the reformer ceiling will be utilized, so that the

reformer database and the historian plant data collected from the on-line reformer at the SMR-

based hydrogen plant are essentially equivalent. The reformer database will be utilized extensively

by the statistical-based model identification to create a computationally efficient data-driven model

for the reformer controlled variables (i.e., the OTWT distribution) as a function of the reformer

manipulated inputs (i.e., the flow control valve distribution and the total fuel flow rate), which will
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be detailed in the upcoming section.

Figure 5.2: Isometric view of the reformer in which the rightand back refractory walls are made

transparent to display the interior components. The reformer includes 336 reforming tubes (rep-

resented by 336 cylinders), 96 burners (represented by 96 frustum cones), and 8 flue-gas tunnels

(represented by 8 rectangular intrusions).
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5.4 Statistical-based model identification

The statistical-based model identification that was proposed in Chapter 4 is a key component of the

furnace-balancing scheme and is used to create a computationally efficient data-driven model for

the OTWT distribution as a function of the flow control valve distribution and the total fuel flow

rate from the reformer database in an effort to find the optimized reformer fuel input in real-time.

The model identification is designed to simultaneously execute two model building processes for

each OTWT, i.e., the prediction and correction steps, whichcreate two corresponding data-driven

models, namely, the prediction and correction models, respectively. As a result, the prediction and

correction estimates of theith OTWT are computed based on the fuel flow rate distribution and

based on the OTWTs of the nearby reforming tubes, respectively.

It is important to note that although the reformer has 96 distinct burners, we have found that

the OTWT of theith reforming tube depends primarily on the fuel flow rates of thenearby burners.

This is because more than 95% of the energy absorbed by the reforming tubes is transferred to the

outer tube walls by thermal radiation ([58, 47]), while the intensity of thermal radiation decreases

with increasing distance between the heat source (i.e., theburners) and the heat sink (i.e., the re-

forming tubes). Therefore, the model building process for the ith prediction model is designed to

iteratively screen for the important predictors for theith OTWT using Bayesian variable selection,

Occam’s window, sparse non-linear regression with 11 transformation functions, Bayesian infor-

mation criterion (BIC) and a first-principles model for thermal radiation. In addition, the model

building process is designed to keep tabs on all sub-prediction models for theith OTWT (which are

defined as the data-driven models derived for the purpose of screening for the important predictors)

with high goodness of fit, each of which is expected to adequately explain the non-linearity in the

dependence of theith OTWT on its predictors and can be expressed as follows,

T̃P,n
i,k =

11

∑
g=1

#̂»α
kg
i fg

(
#»

F n
∣∣∣
Sk

iR

)
+ α̂k

i (5.1)
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whereT̃P,n
i,k is an estimate of theith OTWT computed from thekth sub-prediction model for the

ith OTWT (MP
i,k) and thenth fuel distribution (

#»

F n), Sk
iR and fg(·) are the set of predictors and

thegth transformation function used in the identification ofMP
i,k by sparse non-linear regression,

respectively,
#»

F n
∣∣∣
Sk

iR

is the reduced-ordernth fuel distribution such that it only retains the fuel flow

rates of burners associated withSk
iR, #̂»α

kg
i is the estimated parameter vector corresponding tofg(·)

in MP
i,k andα̂k

i is the estimated ambient temperature inMP
i,k. The 11 transformation functions in

sparse non-linear regression are designed to be nonnegative monotonically increasing functions as

follows,
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which is inspired by the observed response of theith OTWT to varying reformer fuel inputs. For

examples, when the fuel flow rates of the predictors for theith OTWT are increased, theith OTWT

increases. Furthermore, three additional transformationfunctions (Eqs. 5.2i, 5.2j and 5.2k) are

incorporated into the library proposed in Chapter 4 (Eqs. 5.2a−5.2h) to improve the goodness of
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fit and forecasting accuracy of theith prediction model for a wider range of reformer fuel inputs. In

an effort to prevent presumptuous bias from being introduced in the derivation of theith prediction

model by our arbitrary choice of the hyperparameter (i.e., LASSO parameter) of sparse non-linear

regression, cross-validation methods are used to select the optimized LASSO parameter based on

the reformer database. Specifically, Section 5.8.1 will demonstrate the importance of using the

optimized LASSO parameter by showing that a LASSO parameterlarger than the optimized value

allows the model building process to favor underfitting sub-prediction models, while a LASSO

parameter smaller than the optimized value allows the modelbuilding process to favor overfitting

sub-prediction models. Subsequently, instead of treatingthe “best” sub-prediction model derived

from the complete set of important predictors as theith prediction model, the prediction step

combines theith sub-prediction models with high goodness of fit to derive theith prediction model

using Bayesian model averaging (BMA) and BIC in an effort to account for uncertainty in model

selection ([25]). Specifically, theith prediction model (MP
i ) is formulated as the weighted sum of

the ith sub-prediction models as follows,

T̂P,n
i =

Ki

∑
k=1

wP
i,kT̃

P,n
i,k (5.3)

whereT̂P,n
i is the prediction estimate of theith OTWT computed fromMP

i and
#»

F n, Ki is the number

of sub-prediction models with high model goodness of fit for the ith OTWT andwP
i,k is the BMA

weighting factor ofMP
i,k. Then, a collection of all prediction models arranged in an ascending order

of reforming tube IDs is used to define the prediction model for the OTWT distribution (MP) as

follows,
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where
#̂»

T P,n is the prediction estimate of the OTWT distribution computed from MP and
#»

F n.

In Chapter 4, we have recognized that OTWTs of neighboring reforming tubes are spatially cor-

related. Therefore, the model building process for theith correction model is designed to compute

the sample correlation (i.e., the sample semivariograms) among the OTWTs of the reforming tubes

in a sufficiently large, predefined neighborhood from the reformer database using the classical es-

timator. Then, a theoretical semivariogram model is fitted based on the sample semivariograms

using the method of weighted least squares ([10]). In an effort to prevent presumptuous bias from

being introduced in the derivation of theith correction model by an ad-hoc and subjective eye-

balling approach to select the theoretical semivariogram model, cross-validation methods are used

to select the optimized theoretical semivariogram model from a collection of four potential mod-

els proposed in Chapter 4. Then, the model building process uses the theoretical semivariogram

model to derive theith correction model using ordinary Kriging modeling. Specifically, the ith

correction model (MC
i ) is formulated as the weighted sum of prediction estimates of OTWTs in the

ith Kriging neighborhood (denoted asWK
i ), which contain at most three nearest northward, one

nearest eastward, three nearest southward and one nearest westward neighbors of theith reforming

tube, as follows,

T̂C,n
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WK
i

∑
j

wC
i, j T̂

P,n
j (5.5)

whereT̂C,n
i is a correction estimate of theith OTWT computed fromMC

i and the prediction es-

timates of OTWTs inWK
i (T̂P,n

j ), andwC
i, j is the Kriging weighting factor corresponding tojth

reforming tube. Then, a collection of all correction modelsarranged in an ascending order of re-

forming tube IDs is used to define the correction model for theOTWT distribution (MC) as follows,
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where
#̂»

T C,n is the correction estimate of the OTWT distribution computed from MC and
#»

F n. Fi-

nally, the data-driven model for the OTWT distribution (M) is formulated as the weighted average

of MP andMC as follows,

#̂»

T n = wP #̂»

T P,n+
(
1−wP) #̂»

TC,n (5.7)

wherewP is the hyperparameter ofM of which an optimized value is estimated by cross-validation

methods from a set of 21 possible values, i.e.,Sw = {0.00,0.05,0.10, · · · ,0.95,1.00}, based on the

reformer database. The resulting data-driven model for theOTWT distribution, of which hyperpa-

rameters are optimized to minimize out-of-sample prediction errors, incorporates the information

about uncertainty in model selection and the spatial correlations in OTWTs among the neighboring

reforming tubes into estimating the OTWT distribution based on the fuel flow rate distribution. It

is worth noting that the data-driven model for the OTWT distribution is a system of algebraic equa-

tions and has been shown to yield estimates of the OTWT distribution for varying reformer fuel

inputs instantaneously on a single core machine of the shared computing cluster at UCLA. This

feature allows the furnace-balancing procedure, which will be detailed in Section 5.6, to search for

the optimal reformer fuel input in real-time.
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5.5 Valve-to-flow-rate converter

The valve-to-flow-rate converter that was developed in Chapter 3 is an important component of

the furnace-balancing scheme and is used to make our presentwork a more realistic representation

of an on-site investigation, where the reformer fuel input is regulated by a system of manual flow

control valves, so that our findings can be brought into practice with little or no changes. It is

important to note that fuel lines to burners, of which fuel flow rates are regulated by the flow

control valves, are interconnected through a header fuel system with a main header fuel inlet and

eight sub-headers fuel pipes as detailed in [32]. This structural design allows the excess fuel feed of

burners in the detected overheating regions to be redistributed by partially closing the flow control

valves of the corresponding fuel lines. The converter modeldeveloped based on the material

conservation law as shown in Eq. 5.8 can capture this characteristic through the system of coupled

algebraic equations.

In the development of the converter, the following assumptions are made and translated into

appropriate mathematical formulations. Two adjacent fuellines to burners within each burner row

are assumed to be regulated by a flow control valve, which forces the fuel flow rates of the asso-

ciated burners to be the same. The structural layout of the system of manual flow control valves

in the reformer can be depicted in an information matrix[Y] as shown in Eq. 5.9c. Next, fuel

lines to burners are assumed to be regulated by two types of linear flow control valves with dif-

ferent maximum capacities corresponding to inner-lane andouter-lane burners. The arrangement

and identity of burners in the reformer can be captured in an information matrix[X] as shown in

Eq. 5.9d. Finally, the pressure of fuel feed in the header fuel system of the reformer is assumed to

be sufficiently high so that there will be no backflow for all valve distributions. The model for the

converter is formulated as follows,

#»

F = δ [X] · [Y] ·
#»

V (5.8)

195



#»

V ∈ IR48×1 (5.9a)

#»

F ∈ IR96×1 Fi ≥ 0 ∀i ∈ [1,96] (5.9b)

[Y] ∈ IR96×48 (5.9c)

Yi, j = 1.0; i = 2 j −1∪ i = 2 j where j ∈ [1,48]

Yi, j = 0.0; i 6= 2 j −1∩ i 6= 2 j where j ∈ [1,48]

[X] ∈ IR96×96 (5.9d)

Xi, j = 0.6; i = j wherei ∈ [1,12]∪ [85,96]

Xi, j = 1.0; i = j wherei ∈ [13,84]

Xi, j = 0.0; i 6= j

δ =
Ftot∥∥∥[X] · [Y] ·

#»

V
∥∥∥

1

(5.9e)

whereδ is the valve-to-flow-rate proportionality coefficient and
#»

V is the valve distribution. In

this work, we define
#»

V as the collection of the percent open positions of all flow control valves in

the reformer. The converter allows us to formulate the furnace-balancing scheme to use the valve

distribution as the manipulated variables as in the on-linereformer, so that the optimized solution

generated from our study can be directly applied to the on-line unit to distribute the fuel feed

among all burners. The converter also gives us an opportunity to examine the transient response

and steady-state behavior of the reformer when the reformeris subjected to common valve related

disturbances. It is important to note that the model for the converter allows a fuel distribution to be

generated from different valve distributions (which will be discussed in Section 5.6.1); however,

these valve distributions are not equivalent in practice. Specifically, among valve distributions

that yield the same fuel flow rate distribution, those that deviate further from the fully open valve

setting require the fuel feed to the reformer to be at a higherpressure which corresponds to higher

operating cost. This information will be used in the formulation of the model-based balancing
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procedure, which will be detailed in the upcoming section.
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5.6 Balancing Procedure

The balancing procedure is the core component of the furnace-balancing scheme and is used to

search for the optimized total fuel flow rate and the corresponding valve distribution such that the

conversion of methane via SMR is maximized, and the maximum OTWT along the reforming tube

length among all reforming tubes is strictly less than the design temperature of the reforming tube

wall material. The balancing procedure is a sequential workflow system, as shown in Fig. 5.3,

of which major components are the data-driven model for the OTWT distribution, the valve-to-

flow-rate converter and the furnace-balancing optimizer. It is designed to assess the nonuniformity

of the current temperature distribution inside the combustion chamber by means of the estimated

OTWT distribution calculated from the current valve distribution (denoted as
#»

V 0) and total fuel

flow rate (denoted asF0
tot) using the valve distribution analyzer. Specifically,

#»

V 0 andF0
tot are used

as inputs for the converter to generate the current fuel distribution (denoted as
#»

F 0), which is used

as an input forM to estimate the current OTWT distribution (denoted as
#̂»

T 0). The assumption

that
#̂»

T 0 is a good representation of the current temperature distribution inside the reformer can be

justified because the plant data of the initial OTWT distribution (denoted as
#»

T
0
) belongs to the

reformer database from whichM is derived, andM is expected to have a high goodness of fit.

Next,
#̂»

T 0 is processed by the OTWT distribution analyzer, which identifies the maximum value in

the OTWT distribution as follows,

T̂max
wall,i =

∥∥∥∥∥∥∥∥∥∥∥∥∥




T̂ i
1

T̂ i
2
...

T̂ i
336




∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

(5.10)

whereT̂max
wall,i is the estimated maximum value of theith OTWT distribution andi is 0. Then,̂Tmax

wall,0

is used as an input for the furnace-balancing search indicator, which produces a binary search
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indicator (denoted asFI ) as follows,

FI = 1.0 T̂max
wall,0 < Tmax,∗

wall (5.11)

FI =−1.0 T̂max
wall,0 ≥ Tmax,∗

wall (5.12)

whereTmax,∗
wall is the maximum allowable OTWT and is a user-specified parameter of the furnace-

balancing scheme (a systematic method to estimateTmax,∗
wall will be discussed in Section 5.8.3).

Subsequently,FI is used to guide the heuristic search algorithm that recursively applies incremental

changes to the total fuel flow rate followed by evaluating theimpact of the adjusted total fuel flow

rate on the maximum value of the OTWT distribution, and basedon which it reformulates the

future action to meet the operational specifications in a finite number of steps. Specifically,FI =1.0

implies that the total fuel mass flow rate can be increased to increase the methane conversion via

SMR, whileFI =−1.0 implies that the total fuel mass flow rate must be decreased to avoid causing

the reforming tubes to fail prematurely.

In this effort, the heuristic search algorithm is structured to have two sequential modes (re-

ferred as the aggressive and conservative modes, respectively) with an identical framework, which

begins with the flow rate generator followed by the furnace-balancing optimizer, valve distribution

analyzer and furnace-balancing analyzer. In particular, the aggressive search is responsible for

identifying the neighborhood of the optimal total fuel flow rate, and the conservative search is re-

sponsible for identifying the optimized value such that theoperational specifications are satisfied.

For instance, when the value ofFI is 1.0, the heuristic search algorithm begins with the aggressive

flow rate generator, which recursively applies “large” increments to the total fuel flow rate to ap-

proximate the “smallest” upper-bound value, which is defined as the minimum total fuel flow rate

that allows the maximum value of the OTWT to exceedTmax,∗
wall , as follows,

F i,1
tot = F0

tot (1.0+ iδ01FI ) where i = 1,2,3, · · · (5.13)

whereδ01=10% is the parameter of the aggressive search,F i,1
tot is the adjusted total fuel flow rate
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at theith iteration in the aggressive search andi=1 is the index of the first iteration. In theith

iteration,F i,1
tot is used as an input for the furnace-balancing optimizer which optimizes the valve

distribution so that the nonuniformity in the OTWT distribution is minimized. Then,F i,1
tot and

the corresponding optimized valve distribution (denoted by
#»

V i,1) are used as inputs to the valve

distribution analyzer to estimate the maximum value in the corresponding OTWT distribution (de-

noted byT̂max,1
wall,i ) as discussed previously. Finally,̂Tmax,1

wall,i is used as an input to the aggressive

furnace-balancing analyzer, which determines ifF i,1
tot can be considered to be an approximation

of the smallest upper-bound value of the total fuel flow rate.Specifically, when̂Tmax,1
wall,i begins to

exceedTmax,∗
wall , the aggressive furnace-balancing analyzer classifiesF i,1

tot as an approximation of the

smallest upper-bound value, which is labeled asF∗,1
tot , and terminates the aggressive search.

After the approximation of the smallest upper-bound value is obtained, the heuristic search

algorithm continues with the conservative flow rate generator, which gradually applies “small”

decrements to the upper-bound value until the reformer returns back into the safe operating regime

as follows,

F j ,2
tot = F∗,1

tot (1.0− jδ02FI ) where j = 1,2,3, · · · (5.14)

whereδ02=1% is the parameter of the conservative search,F j ,2
tot is the adjusted total fuel flow rate

at the jth iteration in the conservative search andj=1 is the index of the first iteration. AfterF j ,2
tot

is computed, an analogous procedure as described in the aggressive search, which begins with the

furnace-balancing optimizer followed by the valve distribution analyzer, is executed. Then, the

maximum value (denoted bŷTmax,2
wall, j ) in the OTWT distribution estimated fromF j ,2

tot and the cor-

responding optimized valve distribution (denoted by
#»

V j ,2) in the jth iteration of the conservative

search is used as an input to the conservative furnace-balancing analyzer, which determines ifF j ,2
tot

can be considered to be the optimized total fuel flow rate. Specifically, whenT̂max,2
wall, j begins to drop

below Tmax,∗
wall , which indicates that the operational specifications are satisfied, the conservative

furnace-balancing analyzer classifiesF j ,2
tot as the optimized total fuel flow rate, which is labeled as
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Fop
tot , and terminates the conservative search. Finally,Fop

tot and the corresponding optimized valve

distribution (denoted by
#»

V op) are translated into the optimized fuel distribution (denoted by
#»

F op),

which is strategically applied as the reoptimized burner boundary conditions for the reformer CFD

model so that the reforming tubes do not suffer additional damage during the transition to achieve

the optimized reformer firing rate.

On the contrary, when the value ofFI is −1.0, the search direction is reversed. Specifically,

the aggressive flow rate generator recursively applies “large” decrements to the total fuel flow

rate as shown in Eq. 5.13 to approximate the “largest” lower-bound value, which is defined as

the maximum total fuel flow rate that allows the maximum valueof the OTWT to approximate

Tmax,∗
wall from the right. Then, the conservative search gradually applies “small” increments to the

lower-bound value as shown in Eq. 5.14 untilT̂max,2
wall, j begins to exceedTmax,∗

wall indicating that the

reformer is leaving the safe operating regime, and at this point, the conservative furnace-balancing

analyzer classifiesF j−1,2
tot asFop

tot , and terminates the conservative search. Similarly,Fop
tot and

#»

V op

are translated into
#»

F op, which is applied as the reoptimized burner boundary conditions for the

reformer CFD model. The heuristic search algorithm proposed in this study can deriveFop
tot ,

#»

V op

and
#»

F op from any arbitrary initial reformer fuel input so that the operational specifications are

satisfied.

5.6.1 Furnace-balancing optimizer

The furnace-balancing optimizer that was developed in Chapter 3 is of the uttermost importance in

the heuristic search algorithm and is reformulated to be fully capable of optimizing the valve dis-

tribution at any total fuel flow rate to reduce the nonuniformity in the OTWT distribution. Specifi-

cally, the improved optimizer aims to minimize the sum of weighted squared differences between

the OTWTs at a location 6.5 m away from the reformer celling ofall reforming tubes and an

“ideal” OTWT at a given total fuel flow rate to allow the reformer to be operated under the optimal

condition in which the OTWT profiles along the reforming tubelength of all reforming tubes are

identical. In this subsection, a means to estimate the idealOTWT at any total fuel flow rate is
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presented followed by the discussion of the development of amore robust objective function for

the furnace-balancing optimizer.

A thorough analysis of the results reported in Chapter 3 suggests that the average value of the

OTWT distribution (denoted byTave
wall) is a good estimator of the ideal OTWT because it is invariant

with respect to the valve distribution under a fixed total fuel flow rate. Therefore, the relationship

betweenTave
wall and total fuel flow rate is analyzed by using the reformer database. In particular,

Fig. 5.4 shows thatTave
wall is, indeed, independent of the valve distribution under a fixed total fuel

flow rate, and Fig. 5.5 shows thatTave
wall exhibits a strong linear correlation to the total fuel flow

rate. Therefore, we can create an estimator for the ideal OTWT as a function of the total fuel flow

rate by fitting a linear function using ordinary least squares (OLS) to the plant data presented in

Fig. 5.5. The result of the fit is,

T̂ave
wall = 2.09Ftot +957.62. (5.15)

Then, the furnace-balancing optimizer is formulated usingthe data-driven model for the OTWT

distribution (Eq. 5.7), the valve-to-flow-rate converter (Eq. 5.8), the estimator for the ideal OTWT

(Eq. 5.15) and the total fuel flow rate (denoted byF i
tot, which is generated by the flow rate gener-

ators of the heuristic search algorithm). Specifically, it is written as a program with the quadratic

cost function that aims to minimize the sum of weighted squared deviations of the OTWTs in

the OTWT distribution from its average value by optimizing the percent open positions of the

functional control valves. The quadratic cost function of the furnace-balancing optimizer has the

following form,

min
Vj∈[60%,100%]

j∈[1,48]\Sde f

336

∑
k=1

wk

(
T̂ave

wall,i − T̂ i
k

)2
(5.16)

whereVu
j =100% andV l

j =60% are the upper and lower bounds of the percent opening position of

the jth flow control valve, respectively,Sde f is the set that contains indices of the defective flow

control valves,wk is the weighting factor of thekth reforming tube (which is has been discussed

at length in Chapter 3 and will not be elaborated further in this manuscript for brevity),̂Tave
wall,i
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andT̂ i
k are the estimated average OTWT and the estimatedkth OTWT, respectively, in the OTWT

distribution. It is worth noting that only in a scenario which all flow control valves are functional,

and the cardinality ofSde f is zero, an optimized valve distribution (denoted by
#»

V op) calculated

by the furnace-balancing optimizer is expected to have multiple equivalent solutions as discussed

in Section 5.5. This statement can be mathematically rationalized by first using the model for the

converter to solve for
#»

V op from the optimized fuel distribution (denoted by
#»

F op) as follows,

Fop
2 j = Fop

2 j−1 = δ opX2 j ,2 jY2 j , jV
op
j where j = 1,2, · · · ,48 (5.17a)

δ op =

96
∑

i=1
Fop

i
∥∥∥[X] · [Y] ·

#»

V op
∥∥∥

1

(5.17b)

whereFop
2 j andFop

2 j−1 are the optimized fuel flow rates of the(2 j)th and(2 j −1)th burners respec-

tively, X2 j ,2 j is the element of the(2 j)th row and(2 j)th column in[X], Y2 j , j is the element of the

(2 j)th row and jth column in [Y] andVop
j is the optimized percent opening position of thejth

flow control valve. Then, the system of non-linear algebraicequations as shown in Eq. 5.17 can

be transformed into a system of linear algebraic equations by taking the ratio of all equations in

Eq. 5.17(a) to an arbitrarily selected equation as follows,

Fop
2 j

Fop
2k

=
X2 j ,2 jY2 j , jV

op
j

X2k,2kY2k,kV
op
k

where j = 1,2, · · · ,48 andj 6= k. (5.18)

It is evident that the system of linear algebraic equations,in which the percent opening positions

of the flow control valves are the unknowns, as shown in Eq. 5.18 is underdetermined and is

expected to have multiple solutions. However, these valve distributions are by no means the same

in a sense of the plant-wise energy efficiency as explained inSection 5.5, and therefore, the valve

distribution that deviates the least from the fully open valve setting is considered as the true and

unique optimized solution. The task of finding such valve distribution is achieved with the valve

optimizer which is developed by exploiting the linear relationship between the percent opening

position of the linear flow control valve and the fuel flow rates that it regulates, and the assumption
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that the flow control valve to which the maximum fuel flow rate corresponds is fully open. The

valve optimizer is formulated as follows,

Vop
j ,eq=

(
δ op[X][Y]

#»

V op
∣∣∣
2 j

X2 j ,2 j

∥∥∥δ op[X][Y]
#»

V op
∥∥∥

∞

(5.19)

whereVop
j ,eq is the equivalent optimized percent open position of thejth flow control valve,

(
δ op[X][Y]

#»

V op
∣∣∣
2 j

is the fuel flow rate of the(2 j)th burner, and
∥∥∥δ op[X][Y]

#»

V op
∥∥∥

∞
is the maximum fuel flow rate

among all burners. The equivalent optimized valve distribution is expected to simultaneously min-

imize the sum of the weighted squared deviations of all OTWTsin the OTWT distribution from

the ideal OTWT, which is computed based on the given total fuel flow rate, and minimizes the

required duty of the upstream compression system, and therefore, improves the energy efficiency

of the SMR-based hydrogen plant.
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Figure 5.3: Flowchart of the balancing procedure.
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Figure 5.4: Average value of the OTWT distribution when the reformer is operated under the

nominal fuel flow rate and varying valve distributions.
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Figure 5.5: Average value of the OTWT distribution when the reformer is operated under varying

fuel flow rates and varying valve distributions.
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5.7 Parallel Processing

In this section, the computational challenges associated with the steady-state and transient simu-

lations of the reformer CFD model under varying reformer fuel inputs and the derivation of the

data-driven model for the OTWT distribution from the reformer database are discussed. Specifi-

cally, in all simulations of the reformer CFD model, the furnace-side and tube-side domains are

discretized into∼41 million control volumes, and in each of which the reformermathematical

model (i.e., a high dimensional system of non-linear partial integro-differential equations with

seven independent variables ([44])) is numerically solvedor integrated forward in time by the

finite volume method. It is evident that the random access memory (RAM), e.g., 32 GB, and

the processing speed of a standard high performance workstation are insufficient to keep track

of values of transport variables in all control volumes and to compute the numerical solutions of

the reformer mathematical model in all control volumes in a practical time frame. In addition,

the derivation ofM can be viewed as an ensemble of 336 independent model building processes

for 336 distinct OTWTs. Each model building process can be viewed as a sub-ensemble of two

independent model building processes, i.e., the prediction and correction steps, in which cross

validation methods are used to select the optimized hyperparameters to improve the forecasting

accuracy ofM. To better comprehend the magnitude of the number of computing tasks needed to

deriveM from the reformer database, we consider the derivation of the data-driven model reported

in Chapter 4 as an illustrative example. Specifically, 18 training data sets were used to create

the reformer database, and leave-out-one (LOO) cross validation was used to select the optimal

lasso parameter from a predefined set of 18 possible LASSO parameters and to select the optimal

theoretical semivariogram model from a collection of four potential models. Given this premise,

the model building process for the OTWT distribution is expected to require more than 120,000

computing tasks (which will be elaborated at the end of this section), each of which requires the

minimum CPU clock time of 10 minutes, which corresponds to a total CPU clock time of∼2.3

years. This evidence shows that serial processing on a standard work station is unfit to deriveM in
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a practical time frame. As a result, all simulations of the reformer CFD model and the derivation

of M are executed on the Hoffman2 computing cluster at UCLA.

In this work, we designate 7 private-access high performance compute nodes with the total

processing power of 128 cores and system memory of 1640 GB forsimulations of the reformer

CFD model. Under ANSYS Fluent parallel architecture, the CFD solver uses a core as a host pro-

cess to create a communication pathway between the CFD solver and the graphical user interface

(GUI) of an instance of ANSYS Fluent, and the remaining coresas computing-node processes to

numerically calculate the solutions of the Navier-Stoke equations, energy balance and species bal-

ances in all control volumes. It is important to note that ANSYS Fluent parallel architecture allows

the compute-node processes to be fully linked, so that they can effectively communicate, synchro-

nize and perform global reductions via ANSYS Fluent message-passing interface (MPI). Next, the

CFD solver uses the automatic mesh partition and load balancing function to divide the reformer

mesh into 127 parts corresponding to the number of compute-node processes followed by assign-

ing a different mesh partition to each compute-node process. Then, 127 compute-node processes

simultaneously use the finite volume method to express the reformer mathematical model within

each control volume of their respective assigned partitions in the form of algebraic equations by

using divergence theorem and second order upwind interpolation algorithm, which are numeri-

cally solved. At the end of each iteration, 127 compute-nodeprocesses synchronize to calculate

the global normalized residuals of all conserved variables, which are used as indicators for the

steady-state CFD solver to terminate and for the transient CFD solver to advance to the next time

step. We note that the steady-state solutions and transientsolutions of the reformer CFD model

executed on 7 private-access high performance compute nodes on the Hoffman2 computing cluster

using ANSYS Fluent parallel solver can be obtained within a day and 60 days, respectively.

In addition, we exploit the intrinsically distributed structure of the statistical-based model iden-

tification and designate our shared computational resources on the Hoffman2 computing cluster to

deriveM from the reformer data, of which optimized hyperparametersare selected by two times

10-fold cross validation (CV) method. To this end, a massivenumber of computing tasks are sub-
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mitted to the job scheduler of the Hoffman2 cluster, which automatically and optimally dispatches

computing tasks. Specifically, 336 job arrays, each of whichhosts 460 independent model build-

ing processes for theith CV prediction models are submitted to identify the optimized LASSO

parameters for the derivations of the prediction models. Simultaneously, 336 additional job arrays,

each of which hosts 80 independent model building processesfor the ith CV correction models

are submitted to identify the optimized theoretical semivariogram model for the derivations of the

correction models. Subsequently, 336 computing tasks for deriving the “forecasting” prediction

models and 336 additional computing tasks for deriving the “forecasting” corrections models using

the respective optimized hyperparameters are submitted tothe job scheduler. Finally, 420 comput-

ing tasks for identifying the optimized value ofwP of M are submitted to the job scheduler. The

resulting data-driven model for the OTWT distribution, of which hyperparameters are optimized

to improve forecasting accuracy using two times 10-fold CV method, can be obtained within a day

on the shared computing cluster. Additionally, in the eventthat new steady-state measurements of

the OTWT distribution inside the reformer become available, they can always be integrated into

the reformer database, andM can be retrained in real-time. The ability to perform on-line model

reidentification is due to the distributed structure of the statistical-based model identification, the

availability of the high performance computing cluster andthe justifiable use of the previously

optimized hyperparameters. Thus, this feature allows the balancing procedure to utilize the most

up-to-date data-driven model at all times so that the optimized reformer fuel input is always the

most optimal solution.
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5.8 Simulation results

5.8.1 Validation of data-driven model for the OTWT distribu tion

In this subsection, the results generated from two times 10-fold cross-validation studies in the

derivation of the data-driven model for the OTWT distribution from the reformer database are used

to demonstrate the importance of using the optimized hyperparameters for obtaining accurate es-

timations of the OTWT distribution. To this end, we considerthe derivation of the prediction and

correction models for two representative OTWTs, namely, 65th and 161st OTWTs, of reforming

tubes in two distinct local environments, which are characterized based on their respective prox-

imity to the combustion chamber wall. The results of the cross-validation studies in the derivation

of MP
64 andMP

161 are presented in Figs. 5.6 and 5.7 based on which the corresponding optimized

LASSO parameters are chosen. Figs. 5.6 and 5.7 show that choosing an arbitrarily small LASSO

parameter to allow the sparse non-linear regression to favor minimizing the CV fitting errors tends

to result in overfitting models, which are indicated by smallCV fitting errors and large CV fore-

casting errors. To the contrary, choosing an arbitrarily large LASSO parameter to allow that sparse

non-linear regression to favor minimizing the model complexity tends to result in underfitting mod-

els, which are indicated by large CV fitting errors and large CV forecasting errors. Next, the results

of the cross validation studies in the derivations ofMC
64 andMC

161 are presented in Figs. 5.8 and

5.9, based on which the corresponding optimized theoretical semivariogram models are chosen.

Figs. 5.8 and 5.9 show that an incorrect choice of the theoretical semivariogram model to describe

the spatial correlation in OTWTs in the Kriging neighborhood can have a detrimental impact on

the forecasting and resubstitution accuracy of the respective correction models. Figs. 5.6−5.9 also

reveal that the choice of optimized hyperparameters is not universal. In particular, the optimized

LASSO parameters for the derivation ofMP
64 andMP

161 are 0.9 and 0.4, respectively, and the op-

timal theoretical semivariogram models for the derivationof MC
64 andMC

161 are the exponential

anisotropic and linear omnidirectional models, respectively. Subsequently, the results of the cross
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validation study in the derivations ofM are presented in Figs. 5.10 and 5.11, based on which the

optimized value ofwP, denoted byŵP, is estimated.ŵP=0.65 indicates that the decision to in-

corporate information about the spatial correlation in OTWTs among neighboring reforming tubes

into M improves its forecasting accuracy and, therefore, justifies the design of the statistical-based

model identification. These findings suggest that two times 10-fold cross validation is a reliable ac-

curacy estimation technique to obtain the optimized hyperparameters from the reformer database

in a sense that it assesses and compares the forecasting performance of CV data-driven models

derived from all given choices of hyperparameters on the basis of root mean square (RMS) errors

with low bias. In addition, this evidence suggests that all hyperparameters used in the derivation

of M must be independently and optimally selected.

In the remainder of this subsection, we demonstrate thatM, which is derived with the optimized

hyperparameters estimated from the presented cross-validation studies and the reformer database,

has an excellent resubstitution accuracy using the fitting errors as a metric. Fig. 5.12 shows that the

descriptive statistics, i.e., the maximum, average and minimum OTWTs, of the estimated OTWT

distribution, which is calculated by using the documented reformer fuel inputs andM, are consis-

tent with those of the respective plant data in the reformer database. Specifically, the maximum

deviations of the maximum, average and minimum OTWTs between the estimated OTWT distribu-

tion and the corresponding plant data are 7.9 K, 2.0 K and 16.9K, respectively, and are considered

to be negligible with respect to the magnitude of the OTWTs. Fig. 5.12 also reveals thatM exhibits

a common characteristic of interpolation methods, i.e., ordinary Kriging, in which the maximum

OTWTs are underestimated, while the minimum OTWTs are overestimated. In addition, due to

the use of a sufficiently large training set, i.e., more than 25 data sets, in the derivation ofM, the

central limit theorem (CLT) can be used to get a quantitativeassessment of the fitting errors of

the maximum, average and minimum OTWTs between the estimated OTWT distribution and the

corresponding plant data. In particular, the mean residual(ēj ) and residual standard error (sj ) of
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the descriptive statistics estimated byM can be computed as follows,

ēj =
1
N

N

∑
i=1

ei
j (5.20a)

s2
j =

1
N−1

N

∑
i=1

(
ei

j − ēj
)2

(5.20b)

where j represents different types of the descriptive statistics,e.g., j is max, min and ave and

N is the number of data sets in the reformer database. It is found that the estimated maximum

OTWT from M has the mean residual of−3.2 K and the residual standard error of 3.8 K, the

estimated minimum OTWT fromM has the mean residual of 5.2 K and the residual standard

error of 17.6 K, and the estimated average OTWT fromM has the mean residual of−0.03 K

and the residual standard error of 0.72 K as shown in Fig. 5.13. This finding and the feature of

M must be accounted for in the formulation of the model-based balancing procedure that aims

to maximize the conversion of methane via SMR within the physical limitation of the reforming

tube wall material. Next, we wish to demonstrate thatM can also generate adequately accurate

estimates for all reforming tubes inside the reformer in addition to the maximum, average and

minimum values of the OTWT distribution. In this effort, we create two heat maps of the OTWT

distribution from the estimates generated by usingM and the optimized reformer fuel input at

the nominal total fuel flow rate (as shown in Fig. 5.14(a)) andfrom the corresponding plant data

(as shown in Fig. 5.14(b)) to visually assess the resubstitution accuracy ofM. Fig. 5.14 shows

that the hot and cold regions in the estimated OTWT distribution are consistent with those in the

corresponding plant data. This evidence indicates thatM derived by the statistical-based model

identification with the optimized hyperparameters estimated from the two times 10-fold cross-

validation studies is the reliable model for the OTWT distribution. Therefore,M can be used to

create the furnace-balancing optimizer to determine the optimized flow control valve distribution

that aims to minimize the degree of nonuniformity in the OTWTdistribution at any given total fuel

flow rate.
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Figure 5.6: RMS fitting and forecasting errors associated with the proposed values ofλ64 generated

from the two times 10-fold cross-validation study in the derivation of MP
64 are plotted in empty

squares and black circles, respectively.

5.8.2 Dynamic response of the reformer

In this subsection, the transient response of the reformer,and particularly, the OTWT distribution,

is investigated when the total fuel flow rate is increased to increase the plant throughput, and based

on which we design the appropriate strategy to implement to the maximized total fuel flow rate

estimated by the furnace-balancing scheme. To this end, we propose two case studies in which the

total fuel flow rate is increased by∼2% (1.8 kg s−1) and∼22% (21.6 kg s−1), respectively, from

the nominal flow rate of 98.133 kg s−1. In both cases, the optimized valve distribution identifiedin

Chapter 3 is used to distribute the total flow rate in the reformer operated at higher capacities, and

the steady-state solution generated by the reformer CFD model at the nominal total fuel flow rate

and the corresponding optimized valve distribution is usedas the initial condition. Subsequently,
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Figure 5.7: RMS fitting and forecasting errors associated with the proposed values ofλ161 gen-

erated from the two times 10-fold cross-validation study inthe derivation ofMP
161 are plotted in

empty squares and black circles, respectively.

ANSYS Fluent parallel solver with the explicit step size of 0.5 s and the max iterations per time step

of 100 (determined by trial and error) is used to obtain the transient response of the reformer CFD

model to step inputs. It is important to note that the predefined max iteration per time step must

be sufficiently large so that the ANSYS Fluent parallel solver can iterate to convergence, which

is defined by the global normalized residuals of conserved variables of which values are strictly

smaller than 10−5, within each time step for a given predefined step size. In an effort to track

the convergence progress of the transient simulations of the reformer CFD model, we monitor the

mole fractions of hydrogen and unreacted steam in the synthesis gas of the reformer, the OTWTs

at a fixed distance of 6.5 m away from the reformer ceiling of 42representative reforming tubes

and the maximum OTWTs across the reforming tube length of a few selected reforming tubes as

shown in Fig. 5.15. A transient simulation of the reformer CFD model subjected to a step increase

in the total fuel flow rate is said to reach convergence when the monitored transport variables fully
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Figure 5.8: RMS fitting and forecasting errors associated with each of the four theoretical semivar-

iogram models (given on the horizontal axis as 0, 1, 2, and 3, which correspond to linear omnidi-

rectional, linear anisotropic, exponential omnidirectional, and exponential anisotropic theoretical

semivariogram models, respectively) considered in the twotimes 10-fold cross-validation study in

the derivation ofMC
64 are plotted in gray and black, respectively.

relax to the steady-state values. In addition, to validate the transient solutions acquired by solving

the reformer CFD model with ANSYS Fluent transient solver, we will compare the monitored

transport variables recorded at the last sampling time in the transient simulations to those extracted

from the converged solutions of the corresponding steady-state simulations.

In the remainder of this subsection, the transient responseof the monitored transport variables

to the deterministic step changes in which the total fuel mass flow rate is increased by 1.8 and 21.6

kg s−1, respectively, are presented as shown in Table 5.1 and Figs.5.16−5.20. Table 5.1 shows that

the steady-state values of the monitored transport variables generated by the transient simulations

are consistent with those generated by the steady-state simulations, which confirms that the phys-
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Figure 5.9: RMS fitting and forecasting errors associated with each of the four theoretical semivar-

iogram models (given on the horizontal axis as 0, 1, 2, and 3, which correspond to linear omnidi-

rectional, linear anisotropic, exponential omnidirectional, and exponential anisotropic theoretical

semivariogram models, respectively) considered in the twotimes 10-fold cross-validation study in

the derivation ofMC
161 are plotted in gray and black, respectively.

ical time of 400 s is sufficient for the transient simulationsof the reformer CFD model subjected

to a step increase in the total fuel flow rate att=0 s to reach steady-state. Specifically, the transient

response (shown in Figs. 5.16−5.20) and steady-state values (shown in Table 5.1) of the monitored

transport variables indicate that the reformer reaches steady-state within∼350 s, and the reformer

time constant is independent of the magnitude of the step increase in the total fuel flow rate. It is

also interesting to note that the reformer time constant is expected to be insensitive to operational

disturbances associated with flow control valves because the disturbances considered in this study

can only affect the reformer fuel input, e.g., stuck valves may cause the spatial distribution of the

optimized reformer fuel input inside the reformer to becomenonoptimal. In addition, the transient
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Figure 5.10: RMS fitting errors associated with the proposedvalues ofwP generated from the two

times 10-fold cross-validation study in the derivation ofM are plotted in black circles.

response of the OTWTs at a fixed distance of 6.5 m away from the reformer ceiling shown in

Figs.5.16 and 5.17 and the transient response of the maximumOTWTs across the reforming tube

length shown in Fig. 5.18 exhibit characteristics of first-order systems in which the initial rates

of change are the largest, and the monitored OTWTs monotonically reach the new steady-state

values. The prior can be explained by the rapid combustion ofthe furnace-side fuel coupled with

fast thermal radiative heat transfer in the high temperature combustion chamber, which allows the

reforming tubes to instantaneously experience the step increase in the total fuel flow rate. While

the latter is believed to be the result of rapid energy consumption due to the endothermic SMR in

the tube side, which prevents the accumulation of thermal energy in the reforming tube wall and,

therefore, dismisses all possibility to observe the overshoot response of OTWTs. To the contrary,

the transient response of the hydrogen and unreacted steam mole fractions in the synthesis gas as

shown in Figs. 5.19 and 5.20 exhibit characteristics of overdamped second order systems, in which
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Figure 5.11: RMS fitting errors associated with the proposedvalues ofwP generated from the two

times 10-fold cross-validation study in the derivation ofM are plotted in black circles.

the monitored mole fractions reach the new steady-state values without oscillatory; however, the

largest rates of change occur well aftert=0 s, e.g.,t=50 s. This observation can be justified by

the thermal resistance of the reforming tube walls and of thecatalyst network. The analysis of the

transient response of the monitored transport variables inthe proposed case studies supports the

assumption that upon a step increase in the total fuel flow rate, the maximum OTWT across the re-

forming tube length of each reforming tube is expected to monotonically approach its steady-state

value without overshoot. The assumption implies that the optimized reformer fuel input predicted

by the furnace-balancing scheme in a sense that the steady-state values of the maximum OTWTs

across the reforming tube length of all reforming tubes are approaching the design temperature

of the reforming tube wall can be implemented in a step changefashion without burning out the

reforming tubes. In addition, the transient solutions are valuable resources, which allows us to

quantitatively assess the forecasting accuracy ofM (derived with the optimized hyperparameters
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Figure 5.12: Comparison of the maximum, average and minimumvalues in the OTWT distribution

between the plant data (represented by filled black symbols)and the corresponding estimate com-

puted byM (represented by the empty red symbols) at varying total fuelflow rates. In Fig. 5.12,

we use jitter to add a small uniform random number on the rangefrom−2% to 2% of the original

total flow rate to itself for visual clarity.

estimated from the cross-validation studies and the reformer database) using the forecasting errors

as a metric. Fig. 5.21 shows that the forecasting errors of the descriptive statistics between the es-

timated OTWT distribution, which is calculated by usingM and the reformer fuel inputs proposed

for the investigation of the reformer dynamic behavior, andthe corresponding OTWT distribution,

which is documented at the last sampling time in the transient simulations, are within two resid-

ual standard error from the mean residual of the respective quantities. Specifically, the maximum

residuals of the maximum, average and minimum OTWTs betweenthe estimated OTWT distribu-

tion and the corresponding plant data are 6.6 K, 1.1 K and 9.6 K, respectively. Fig. 5.22 shows that

the contour heat map of the estimated OTWT distribution generated by usingM and the reformer
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Figure 5.13: Fitting errors of the maximum, average and minimum OTWTs between the estimated

OTWT distribution, which is computed using the plant inputsandM, and the corresponding plant

data. In Fig. 5.13, we use jitter to add a small uniform randomnumber on the range from−2% to

2% of the original total flow rate to itself for visual clarity.

fuel input designed for the second transient case study (as shown in Fig. 5.22(a)) has similar fea-

tures (e.g., locations of the hot and cold regions) to that ofthe corresponding OTWT distribution

documented at the last sampling time in the transient simulation (as shown in Fig. 5.22(b)). This

analysis justifies the assumption thatM is the accurate model for the OTWT distribution in Sec-

tion 5.8.1. Therefore, it can be stated with high certainty that in the reformer operated under the

optimized total fuel flow rate and the corresponding optimized valve distribution predicted by the

furnace-balancing scheme, the steady-state values of the maximum OTWTs across the reforming

tube length of all reforming tubes are expected to be strictly less than the design temperature of the

reforming tube wall.
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Table 5.1: Comparison of representatives of the monitored transport variables documented at the

last sampling time in the transient simulation of the reformer that is subjected to the positive step

change of 21.6 kg s−1 in the total fuel flow rate from the nominal value to those extracted from the

converged solutions of the corresponding steady-state simulation.

Steady-state solutionTransient solution Percent deviation (%)

T96
wall (K) 1213.8 1214.7 0.1

T103
wall (K) 1205.6 1205.0 0.0

T111
wall (K) 1219.5 1219.7 0.0

T112
wall (K) 1217.6 1217.9 0.0

T119
wall (K) 1203.9 1203.7 0.0

T127
wall (K) 1215.4 1214.4 0.1

T16
wall (K) 1212.7 1213.0 0.0

T64
wall (K) 1217.9 1218.0 0.0

T160
wall (K) 1215.0 1213.7 0.1

T208
wall (K) 1219.0 1217.7 0.1

T256
wall (K) 1221.0 1222.3 0.1
∥∥T1

wall

∥∥
∞ (K) 1245.9 1246.1 0.0

∥∥T63
wall

∥∥
∞ (K) 1254.0 1254.6 0.0

∥∥T127
wall

∥∥
∞ (K) 1248.7 1247.1 0.1

∥∥T191
wall

∥∥
∞ (K) 1265.8 1265.3 0.0

∥∥T223
wall

∥∥
∞ (K) 1245.2 1246.3 0.1

∥∥T251
wall

∥∥
∞ (K) 1233.2 1233.8 0.0

∥∥T288
wall

∥∥
∞ (K) 1253.6 1249.0 0.4

x̄H2 0.320 0.320 0.0

x̄H2O 0.500 0.500 0.0
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Figure 5.14: Comparison of the estimated OTWT distribution(a), which is generated by usingM

and the optimized reformer fuel input at the nominal total fuel flow rate, to the respective plant

data (b). In Fig. 5.14, each cell represents a unique reforming tube, the location of each cell in

the table corresponds to that of the respective reforming tube in the combustion chamber, of which

orientation can be visualized by the keywords along the edges and Fig 5.2, and the color of each

cell represents the value of the respective OTWT, which is specified by the colorbar.

5.8.3 Validation of the furnace-balancing scheme

In this subsection, we evaluate the performance of the balancing procedure under the following

assumptions: all flow control valves in the reformer are operational, the initial total fuel flow

rate of 98.133 kg sec−1 is optimally distributed with the optimized valve distribution reported in

[56, 57], and the design OTWT of the reforming tube wall (denoted byTdesign
wall ) taken from typical

plant data has a value of 1300 K. To this end, we propose a systematic approach to estimate the
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Figure 5.15: Isometric view of the reformer in which the right and back refractory walls are made

transparent to display the reforming tubes of which OTWTs ata fixed distance of 6.5 m away from

the reformer ceiling are monitored to track the convergenceprogress of the transient simulations

of the reformer CFD model.

maximum allowable OTWT, which is a critical parameter of thefurnace-balancing scheme because

Tmax,∗
wall directly controls the maximum total fuel flow rate and, therefore, the respective optimized

valve distribution estimated by the proposed approach. Initially, a deliberate review of the results

documented in [56, 57] reveals that the maximum OTWT along the reforming tube length among

all reforming tubes (denoted byTmax,⋆
wall ) does not necessarily occur in the OTWT distribution at

a location 6.5 m from the reformer ceiling. In fact, the reformer database indicates thatTmax,⋆
wall

is always larger than the maximum value in the OTWT distribution as shown in Fig. 5.23. This

finding suggests that if the reformer were to be operated under the total fuel flow rate that permitted

the maximum value in the OTWT distribution to be nearTdesign
wall , Tmax,⋆

wall would undoubtedly exceed
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Figure 5.16: The transient response of the OTWTs at a fixed distance of 6.5 m away from the

reformer ceiling of the reforming tubes at the 17th position across all rows inside the combustion

chamber as shown in Fig. 5.15 to a positive step change of 21.6kg s−1 in the total fuel flow rate

from the nominal value.

Tdesign
wall , which would accelerate the degradation of the microstructure inside the reforming tube

wall and cause the reforming tubes to rupture prematurely. Furthermore, as the maximum total

fuel flow rate and the respective optimized valve distribution calculated with the furnace-balancing

scheme is implemented in an open-loop control fashion in this work, it is necessary to also account

for plant-model mismatch in the estimation ofTmax,∗
wall . Specifically, the residual analysis of the

fitting errors of the data-driven model for the OTWT as presented in Section 5.8.1 provides an

efficient means to estimate plant-model mismatch; as a result, Tmax,∗
wall can be determined as follows,

Tmax,∗
wall = Tdesign

wall − max
1≤i≤26

{
Tmax,⋆

wall,i −
∥∥∥ #»

T i
wall

∥∥∥
∞

}
− (ēmax+2.5smax), (5.21)

and Tmax,∗
wall is found to be∼1260 K. Then, we execute the balancing procedure on our shared
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Figure 5.17: The transient response of the OTWTs at a fixed distance of 6.5 m away from the

reformer ceiling of six representative reforming tubes along the 3rd row inside the combustion

chamber as shown in Fig. 5.15 to a positive step change of 21.6kg s−1 in the total fuel flow rate

from the nominal value.

computational resources on the Hoffman2 computing cluster. The CPU clock time of a high per-

formance computing core on the Hoffman2 computing cluster devoted for the balancing procedure

to optimize the total fuel flow rate and its spatial distribution inside the reformer to maximize

the methane conversion via SMR without violating the physical limitation of the reforming tube

wall material is only on the order of a few minutes. This evidence highlights the potential of the

balancing procedure for real-time optimization of the reformer to improve the plant-wise energy

efficiency and to perform load alterations as well as to reject operational disturbances associated

with flow control valves.

In the remainder of this subsection, the results generated from the balancing procedure under

the predefined assumptions andTmax,∗
wall of 1260 K are presented as shown in Figs. 5.24 and 5.25.

Specifically, Figs. 5.24 and 5.25 indicate that under the initial total fuel flow rate of 98.133 kg
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Figure 5.18: Transient response of the maximum OTWTs acrossthe reforming tube length of seven

representative reforming tubes at different regions inside the combustion chamber to a positive step

change of 21.6 kg s−1 in the total fuel flow rate from the nominal value.

sec−1 optimally distributed with the respective valve distribution, T̂max
wall,0 is equal to 1175.25 K,

which is smaller thanTmax,∗
wall ; therefore,T̂max

wall,0 allows the aggressive search recursively to apply

large increments to the total fuel flow rate to determine the smallest upper-bound value. In addition,

Figs. 5.24 and 5.25 show that in the 4th iteration of the aggressive search,F4,1
tot of 137.4 kg sec−1

is identified as the smallest upper-bound value becauseT̂max,1
wall,4 is equal to 1260.5 K and is greater

thanTmax,∗
wall . Furthermore, Figs. 5.24 and 5.25 show that the conservative search gradually applies

small decrements to the upper-bound value, and in the 1st iteration of the conservative search,F1,2
tot

of 136.896 kg sec−1 is identified as the optimized total fuel flow rate becauseT̂max,2
wall,1 begins to fall

belowTmax,∗
wall indicating that the reformer has returned into the safe operating regime. Finally, in

the main layer of the furnace-balancing scheme,Fop
tot and the

#»

V op are translated into
#»

F op, which

is applied as the reoptimized burner boundary conditions for the reformer CFD model in a step

increase fashion, and the results are presented as shown in Fig 5.26. Specifically, Fig. 5.26 indicates
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Figure 5.19: Transient response of the hydrogen and unreacted steam mole fractions in the synthe-

sis gas to a positive step change of 1.8 kg s−1 in the total fuel flow rate from the nominal value.

that Tmax,⋆
wall is 1288.35 K, which is less thanTdesign

wall , and, therefore, justifies that a positive step

change of 38.763 kg sec−1, which is equivalent to∼39.5% increase from the nominal value, in

the total fuel flow rate can be applied to achieve the optimized firing rate without accelerating the

degradation of the microstructure of the reforming tube wall.
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Figure 5.20: Transient response of the hydrogen and unreacted steam mole fractions in the syn-

thesis gas to a positive step change of 21.6 kg s−1 in the total fuel flow rate from the nominal

value.
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Figure 5.21: Comparison of the maximum, average and minimumvalues in the OTWT distribution

between the plant data (represented by filled black symbols)and the corresponding forecasting

estimate (represented by the empty red symbols) computed byM, the two proposed total fuel flow

rates and the optimized valve distribution identified in Chapter 3.
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Figure 5.22: Comparison of the estimated OTWT distribution(a), which is generated by usingM,

the proposed total fuel flow rate for the second case study andthe optimized valve distribution

identified in Chapter 3, to the respective plant data (b). In Fig. 5.22, each cell represents a unique

reforming tube, the location of each cell in the table corresponds to that of the respective reforming

tube in the combustion chamber, of which orientation can be visualized by the keywords along the

edges and Fig 5.2, and the color of each cell represents the value of the respective OTWT, which

is specified by the colorbar.
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Figure 5.23: Temperature difference between the maximum OTWT along the reforming tube

length among all reforming tube (Tmax,⋆
wall ) and the maximum value of the OTWT distribution (

Tmax,∗
wall ) when the reformer is operated under varying total fuel flow rates and varying valve distri-

butions.
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Figure 5.24: Total fuel flow rate generated by the aggressiveflow rate generator (represented by

the filled symbols) and by the conservative flow rate generator (represented by the empty symbols)

in an effort to determine the maximized total fuel flow rate toachieve the desired reformer firing

rate without causing premature failure of the reforming tubes.

233



0 1 2 3 4 5
Iteration of the Heuristic Search

1150

1200

1250

1300

O
T

W
T

 (
K

)

T
^ max
wall

T
^ ave
wall

T
^ min
wall

Twall
max,

*

Figure 5.25: Maximum, average and minimum values of the estimated OTWT distribution, which

is computed usingM with the total fuel flow rate and the respective optimized valve distribution

proposed by the aggressive search (represented by the filledsymbols) and by the conservative

search (represented by the empty symbols) in the process of estimating the maximized total fuel

flow rate to achieve the desired reformer firing rate without causing premature failure of the re-

forming tubes.
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Figure 5.26: Maximum, average and minimum OTWT profile alongthe reforming tube length

among all reforming tubes generated by the reformer CFD model in which the boundary conditions

are adjusted based on the maximized total fuel flow rate and the corresponding optimized valve

distribution that are identified by the balancing procedure.
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5.9 Conclusion

In this work, a furnace-balancing scheme that simultaneously searches for the optimized total fuel

flow rate and the respective optimized valve distribution toincrease the methane conversion via

SMR without accelerating the degradation of the microstructure of the reforming tube wall mate-

rial was proposed. To this end, a high fidelity CFD model for the reformer, assumed to represent

the on-line unit at an SMR-based hydrogen facility, was usedto characterize the previously unstud-

ied dynamic behavior of the reformer. Specifically, the reformer that was initially operated under

the nominal total fuel flow rate and the respective optimizedvalve distribution was subjected to

two deterministic step changes in the total fuel flow rate. The corresponding evolution of the mole

fractions of hydrogen and unreacted steam in the synthesis gas, the OTWTs at a fixed distance

of 6.5 m away from the reformer ceiling and the maximum OTWTs across the reforming tube

length of a few selected reforming tubes was analyzed, basedon which positive step changes in the

total fuel flow rate to achieve the optimized firing rate in thereformer were deemed appropriate.

It is important to note that the transient simulations of thereformer CFD model were only com-

putationally feasible with the use of 7 private-access highperformance compute nodes with the

total processing power of 128 cores and system memory of 1640GB on the Hoffman2 computing

cluster.

Then, the furnace-balancing framework, the statistical-based model for the OTWT distribu-

tion and the valve-to-flow rate converter developed in our previous work were integrated with the

heuristic search algorithm to design the robust balancing procedure. In the balancing procedure, a

series of computing tasks is executed to estimate the maximum value of the initial OTWT distri-

bution based on information from the initial reformer input. This information and the user-defined

maximum allowable OTWT are used to guide the aggressive search to identify the neighborhood

of the optimal total fuel flow rate and, subsequently, the conservative search to identify the opti-

mized value of the optimal total fuel flow rate such that the operational specifications are satisfied.

The optimized total fuel flow rate and the corresponding optimized valve distribution were used to
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adjust the boundary conditions of the reformer CFD model, and the results demonstrated that the

optimized total fuel flow rate could be increased from 98.133to 136.896 kg sec−1 in a step change

fashion without accelerating the degradation of the microstructure of the reforming tube wall.
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Chapter 6

Conclusions

This dissertation developed a systematic framework for creating and simulating a computational

fluid dynamics (CFD) model for an industrial-scale steam methane reforming furnace at an SMR-

based hydrogen plant. The reformer CFD model was used to improve our understanding of the

physiochemical processes occurring in the tube side and furnace side during the endothermic con-

version of methane, to assess impacts of varying the furnace-side feed (FSF) distribution on the

inherent variability in the outer tube wall temperature (OTWT) at a fixed height, and to study a

reformer dynamic response to step change inputs of the totalFSF flow rate. Additionally, this dis-

sertation also details a framework and practical considerations for developing a real-time furnace

balancing scheme including plant-model mismatch in the estimation of the OTWT distribution, un-

certainty in model selection for the OTWT distribution, anduncertainty in estimating the maximum

OTWT across the reforming tube length among all reforming tubes. Finally, the furnace balancing

scheme was used to improve the reformer thermal efficiency byincreasing the total FSF flow rate

while keeping the reformer in a safe operating regime and maintaining the expected service life of

the reformer.

In Chapter 2, a CFD model for a steam methane reformer was developed within ANSYS Flu-

ent framework, and in particular, the source terms that are integrated into the standard convective-

diffusive transport equations of momentum, energy and material to enable a commercial CFD
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solver to simulate the physiochemical processes in the tubeside and the furnace side as well as

their thermal interactions during the catalytic conversion of methane to hydrogen were explained.

Specifically, the lean combustion of the furnace-side feed,i.e., the source terms in the material

transport equations, was modeled by the finite rate/eddy dissipation turbulence-chemistry inter-

action model and the global reaction schemes with the premixed combustion assumption. Ad-

ditionally, thermal radiative heat transfer rate between the interior combustion chamber, the outer

reforming tube wall and the furnace-side flow, i.e., the source term in the energy transport equation,

was modeled by the discrete ordinate method, and the absorption coefficient of the furnace-side

flow was modeled by an empirical correlation for estimating the radiative properties of a homoge-

neous gas flow, Kirchhoff’s law, and Lambert Beer’s law. Furthermore, the effects of turbulence

on the furnace-side transport variables was simulated by the standardk− ε turbulence model with

ANSYS enhanced wall treatment function. In the tube side, the catalytic bed of the reforming

reactor, i.e., the source term in the momentum transport equation, was modeled by the continuum

approach with ANSYS porous zone function, the effectiveness factor and catalyst packing factor,

and SMR, i.e., the source terms in the material transport equations, was modeled by the global re-

action scheme. Additionally, the wall of the reforming reactor was modeled by ANSYS thin wall

function, and the effects of turbulence on the tube-side transport variables was also simulated by

the standardk−ε turbulence model with ANSYS enhanced wall treatment function. Subsequently,

publicly available SMR-based plant data was used to derive equivalent boundary conditions of the

reformer CFD model. The simulation results generated by thereformer CFD model with bound-

ary conditions derived from available SMR-based plant datawere shown to be consistent with

phenomena observed in reformers and SMR-based industrial plant data, and the simulation re-

sults generated by the reformer CFD model with boundary conditions provided by our industry

collaborator were shown to be in close agreement with the plant data recorded from the on-line

industrial-scale reformer at the SMR-based plant. Therefore, the CFD model can be considered as

an adequate representation of the reformer and as an effect tool that furthers our understanding of

the inherent variability in the outer tube wall temperaturedistribution at a fixed height and allows

239



cost-effective operating conditions to be explored.

In Chapter 3, a furnace-balancing scheme that optimizes thevalve distribution at the nominal

total FSF flow rate to minimize the inherent nonuniformity inthe OTWT distribution such that

the reformer thermal efficiency can be increased while maintaining the expected service life of the

reformer was developed. The CFD data showed when the reformer CFD model implemented with

the optimized valve distribution predicted by the furnace-balancing scheme, the variability in the

OTWT distributions in the high temperature region and the maximum OTWT along the reforming

tube length among all reforming tubes were reduced comparedto the baseline case in which the

reformer CFD model implemented with a uniform FSF distribution. In addition, the CFD data also

showed that when the flow control valve system of the reformerwas defective, which prevented

the pre-optimized valve distribution from being implemented, the furnace-balancing scheme was

able to find an alternative input that also reduced the variability in the OTWT distributions as well

as the maximum OTWT. This result confirmed that it is possibleto improve the reformer thermal

efficiency and increase the throughput of the SMR-base plantby optimizing the reformer input.

In Chapter 4, a statistical-based model identification thatcan be used to derive a data-driven

model for the OTWT distribution as a function of the FSF distribution, total FSF flow rate and

interactions among neighboring reforming tubes was developed. Specifically, Bayesian variable

selection, Bayesian model averaging, the BIC approximation, sparse nonlinear regression and the-

ories of thermal radiation were used to develop the prediction step algorithm, which was used to

derive the prediction model such that the OTWT distributioncan be estimated from the reformer

input. In addition, ordinary Kriging was used to develop thecorrection step algorithm, which was

used to derive the correction model such that the OTWT distribution can be estimated from the

interaction among the reforming tubes. Subsequently, the prediction and correction models were

used to formulate the data-driven model to estimate the OTWTdistribution from the reformer input

while accounting for the interaction among neighboring reforming tubes. The results from the re-

substitution and forecasting tests showed that the data-driven model for the OTWT distribution has

a high goodness of fit and a high predictability, which demonstrated the robustness of the proposed
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model identification.

In Chapter 5, a real-time furnace-balancing scheme that simultaneously maximizes total FSF

flow rate and identifies the corresponding optimized valve distribution in real-time such that the

reformer thermal efficiency is maximized within the physical limitation of the reforming tube wall

material was developed. To this end, insights and developments from Chapters 3 and 4 includ-

ing the framework for the furnace-balancing scheme, the statistical-based model identification and

the valve-to-flow-rate converter were integrated with a heuristic search algorithm to create a real-

time balancing procedure. Specifically, the balancing procedure evaluates the initial variability

in the OTWT distribution by using the respective reformer input and the data-driven model for

the OTWT distribution, based on which it establishes the starting direction of the heuristic search

algorithm that identifies the maximized total FSF flow rate and the corresponding valve distri-

bution to improve the reformer thermal efficiency while maintaining the expected service life of

the reformer. Subsequently, the reformer CFD model developed in Chapter 2 was used to char-

acterize the reformer response to step change inputs of the reformer input such that an optimal

strategy to implement the maximized total FSF flow rate can beimplemented without jeopardizing

the expected service life of the reformer. Additionally, the reformer CFD model was also used

to demonstrate that the optimized reformer input predictedby the real-time balancing procedure

was more optimal than the nominal reformer input in the sensethat the total FSF flow rate and the

average hydrogen mole faction of the reformer effluent stream were increased by∼40% and∼4%,

respectively, while the maximum OTWT across the reforming tube length among all reforming

tubes was kept below the design temperature of the tube wall material.

In summary, this dissertation has provided a systematic framework for creating and simulating

a CFD model for an industrial-scale reformer at an SMR-basedhydrogen plant and, subsequently,

a framework for designing and evaluating a real-time furnace balancing scheme such that the re-

former thermal efficiency, measured by means of the average hydrogen composition of the reformer

effluent stream, can be improved by increasing the total FSF flow rate without compromising the

expected service life of the reformer in the presence of the inherent variability in the OTWT distri-
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butions along the reforming tube length. The results documented in this dissertation are expected

to allow the SMR-based hydrogen plant to be operated at a higher plant efficiency and achieve a

substantial economic benefit by reducing operational costs.
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