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11. Ohran, B. J., J. Liu, D. Muñoz de la Peña, P. D. Christofides and J. F. Davis.

Data-based fault detection and isolation using feedback control: Output feedback and

optimality. Chemical Engineering Science, 64, 2370–2383, 2009.
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Handling abnormal situations, like control actuator, measurement sensor and control

system faults, is a subject of great importance in the chemical and process industries since

abnormal situations account annually for at least $20 billion in lost revenue in the US

alone. Modern chemical plants that rely on highly automated processes to maintain robust

operation and efficient production are particularly vulnerable to these faults. Loss of control

in a chemical process can lead to the waste of raw materials and energy resources, as well

as downtime and production losses but more importantly it may lead to personnel injury

or death. However, the existing paradigm to plant operations deals with the key tasks of

designing control systems and monitoring schemes for detecting faults separately, thereby

liming its applicability since it does not take advantage of an efficient integration of these

tasks.

This dissertation will present a paradigm shift to the existing approach of designing

control systems and monitoring schemes in that it proposes to design control systems that

are stabilizing, robust and optimal yet, they also lead to closed-loop system structures that

facilitate fault isolation. To present our new method of controller-enhanced isolation, we

will focus on a broad class of nonlinear process systems subject to control actuator faults

and disturbances. The method allows isolating faults in the closed-loop system by designing

xix



nonlinear model-based control laws that decouple the dependency between certain process

state variables in the closed-loop system. Fault detection is done using a purely data-based

approach and fault isolation is achieved using the structure of the closed-loop system as

induced by an appropriately designed controller. We will discuss extensions of the basic

framework to deal with the issues of limited state measurements, controller optimality and

networked implementation. We will present examples of large-scale process systems to

demonstrate the effectiveness and benefits of the proposed method.
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Chapter 1

Introduction

1.1 Background on fault detection and isolation and fault-

tolerant control

Advanced automation technology has changed the way the chemical process industry op-

erates in many ways. Over the last few decades, advancements in plant operations have

led to higher efficiency and improved economics through better control and monitoring of

process systems. These technological advances have resulted in process systems becoming

increasingly automated, no longer requiring operators to open and close valves in order

to manually perform process control. In general, there is a trend towards “smart” plants

that are capable of highly automated control with decision making at the plant level taking

into account environmental, health, safety and economic considerations [7]. Along with the

move towards more automated plant operation, improved methods of fault detection, isola-

tion and handling are necessary due to the issues raised by automation itself. Despite the

many benefits of automatic process control, increased complexity and instrumentation can

cause automated plants to become more susceptible to control system failures. Abnormal

situations cost U.S. industries over $20 billion each year [54]. As part of the continuing

improvements to process monitoring and control, it is important to design systems capable

of detecting and handling such process or control system abnormalities.

Over the past ten years, fault-tolerant control has become an active area of research
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within control engineering as a means for avoiding disaster in the case of a fault, see for

example, [44, 46, 18, 21, 43]. Many research studies can be found in the field of aerospace

control engineering [56, 5, 73] as well as within chemical process control [4, 44, 46]. Fault-

tolerant control is based upon the assumption that there exist multiple available control

configurations under which the closed-loop system can operate. Using this redundancy,

fault tolerant control attempts to reconfigure a process control system upon detection of a

fault, in order to preserve closed-loop system stability and performance. This work addresses

active methods of FTC, as opposed to passive methods which rely on robust controller design

rather than control system reconfiguration. The key elements of a successful FTC system

include multiple control configurations with well-defined regions of closed-loop stability, a

supervisor that is able to switch between faulty and well-functioning control configurations,

and perhaps most importantly, a fast, accurate method for detecting faulty process behavior

and isolating its cause.

In this work, the main focus will be on fault detection and isolation, that is, not only

detecting that a control actuator fault or disturbance has occurred, but also diagnosing

the underlying cause of the faulty behavior (i.e., pointing exactly to the specific control

actuator/sensor that has failed). If a fault is isolated early and accurately, it is more likely

that it can be safely dealt with through fault-tolerant control systems (see, for example,

[70, 45] for more results in this area).

Methods for fault detection and isolation fall into two broad categories: model-based

methods and data-based methods. Model-based methods utilize a mathematical model

of the process to build, under appropriate assumptions, dynamic filters that use process

measurements to compute residuals that relate directly to specific faults; in this way, fault

detection and isolation can be accomplished for specific model and fault structures (see,

for example, [22, 65]). On the other hand, data-based methods are primarily based on

process measurements. Analyzing measured data gives a picture of the location and di-

rection of the system in the state-space. It is then possible to extract information about

the fault by comparing the location and/or direction of the system in the state-space with

past behavior under faulty operation (e.g., [60, 72]) or with expected behavior as predicted

by the structure or model of the system. Several methods have been developed that pro-
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cess the measured data to reduce their dimension and extract information from the data

with respect to actuator/sensor faults using principle component analysis (PCA) or partial

least squares (PLS) techniques (e.g., [35, 69, 58, 53]). These methods reduce the dimen-

sionality of the data by eliminating directions in the state-space with low common-cause

variance. Many methods use this reduced space and consequent null space to gain further

information about the process behavior as well as about actuator/sensor faults, including

techniques such as contribution plots (e.g., [31]) or multi-scale statistical process control

using wavelets (e.g., [3, 2, 1]). One of the main drawbacks of these data-based methods is

that in order to accomplish fault isolation, they commonly require fault-specific historical

data that may be costly to obtain. Furthermore, due to the nature of the chemical process,

its structure and/or how it is instrumented, in practice, it is often hard to distinguish be-

tween regions/directions corresponding to operation in the presence of different faults due

to overlap, making fault isolation difficult. For a comprehensive review of model-based and

data-based fault detection and isolation methods, the reader may refer to [65, 64].

In general, most of the FDI methods mentioned thus far rely on measurements that are

continuously or synchronously sampled, and they do not account for measurements that

arrive asynchronously. Recently, research has been done on the topic of feedback control

with asynchronous measurements [46, 51]. These efforts provide a starting framework for

control subject to asynchronous measurements, but they do not include FDI. Because it

is common in chemical processes to encounter states that are measurable, but only on

an asynchronous or infrequent basis, the issue of FDI in such systems is also addressed.

The issue of asynchronous sensor measurements also motivates, in general, a discussion of

networked monitoring and control systems that take advantage of these additional mea-

surements. Although there are many works in the literature focusing on the analysis and

design of networked control systems [52, 62, 48, 49], from a control design standpoint, aug-

menting preexisting, local control networks with additional networked sensors and actuators

poses a number of challenges including the feedback of additional measurements that may

be asynchronous and/or delayed, for example, additional species concentrations or particle

size distribution measurements. In a previous work [32], we introduced a two-tier control

architecture for nonlinear process systems with both continuous and asynchronous sensing
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and/or actuation. This class of systems arises naturally in the context of process con-

trol systems based on point-to-point wired links integrated with networked wired/wireless

communication and utilizing multiple heterogeneous measurements (e.g., temperature and

concentration). In this architecture, the local, pre-existing control system uses continuous

sensing and actuation and an explicit control law (for example, the local controller may

be a classical controller, like a proportional-integral-derivative controller, or a nonlinear

controller designed via geometric or Lyapunov-based control methods for which an explicit

formula for the calculation of the control action is available). In addition, a networked con-

trol system was designed using Lyapunov-based model predictive control to profit from both

the continuous and the asynchronous measurements as well as from additional networked

control actuators. The two-tier control architecture preserves the stability properties of the

local control system while improving the closed-loop performance.

1.2 Dissertation objectives and structure

The objective of this dissertation is to present novel methods of fault detection and isolation

within the framework of fault-tolerant control and the “smart plant” paradigm. This is ac-

complished through the development of a data-based fault detection and isolation technique

using feedback control, a model-based approach to fault detection and isolation in systems

with asynchronously measured states and integration of asynchronous, model-based fault

detection and isolation methods with fault-tolerant control and two-tier control. These

techniques allow for quick, accurate fault detection and isolation in nonlinear process sys-

tems subject to process and control system failures. This information can then potentially

be used for logic-based switching between the faulty control configuration and any well-

functioning redundant configurations in a fault-tolerant control scheme. These methods are

developed theoretically and demonstrated through numerical simulation.

The structure of this dissertation is as follows: first, the method of data-based fault

detection and isolation using feedback control is developed in Chapter 2. Specifically, it

is demonstrated in this chapter that a data-based FDI scheme is able to isolate a given

set of faults if the nonlinear closed-loop system satisfies certain isolability conditions in the
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presence of common-cause process variation. This set of isolability conditions is explicitly

characterized and it is shown that it is possible, under certain conditions on the system

structure, to design a feedback control law that guarantees that the closed–loop system

satisfies the isolability conditions and that the origin of the closed-loop system is asymp-

totically stable. This is achieved through the use of appropriate nonlinear control laws that

effectively decouple the dependency between certain process state variables. The controller

enforces a specific structure on the system that makes fault detection and isolation possible

without prior knowledge of system behavior under faulty operation. The theoretical results

are applied to a continuous stirred tank reactor (CSTR) example and to a polyethylene

reactor example.

Chapter 3 further extends the results of Chapter 2 to a plant-wide setting with a

multiple-input multiple-output reactor-reactor-separator system. The focus of this chapter

is to demonstrate in a plant-wide setting the fault detection and isolation that integrates

model-based controller design with data-based fault detection in order to perform fault

isolation. The work demonstrates that the achievement of fault isolation across multiple

coupled units is possible through feedback control. Additionally the effects of process and

sensor measurement noise on the ability to detect and accurately isolate faults are inves-

tigated through a Monte-Carlo simulation study. The results from the nonlinear control

simulation are compared with a conventional (proportional-integral) feedback controller to

demonstrate that without the isolable structure induced by feedback control the faults are

otherwise indistinguishable without prior knowledge of fault history.

Chapter 4 considers the issues of output-feedback control and optimal control in the

setting of data-based FDI using feedback control. The purpose this chapter is to further

develop the approach proposed in Chapter 2 by relaxing the requirement of full state feed-

back control and developing the use of model predictive control to optimize the manipulated

input cost. Specifically, we first consider the case where only output measurements are avail-

able and design appropriate state estimator-based output feedback controllers to achieve

controller-enhanced fault detection and isolation in the closed-loop system. Second, we

address the problem of controller-enhanced FDI in an optimal fashion within the frame-

work of model predictive control (MPC). We propose an MPC formulation that includes
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appropriate isolability constraints to achieve FDI in the closed-loop system. Throughout

the chapter, a nonlinear chemical process example is used to demonstrate the applicability

and effectiveness of the proposed methods.

The goal of chapter 5 is to develop an FDI scheme that will allow fault tolerant control

to take place when process measurements are available at asynchronous time instants. First,

an FDI scheme that employs model-based techniques is proposed that allows for the isola-

tion of faults. This scheme employs model-based FDI filters similar to those found in [47]

in addition to observers that estimate the fault free evolution of asynchronously measured

states during time intervals in which their measurements are not available. Specifically, the

proposed FDI scheme provides detection and isolation of any fault that enters into the dif-

ferential equation of only synchronously measured states, and grouping of faults that enter

into the differential equation of any asynchronously measured state. For a fully coupled

process system, fault detection occurs shortly after a fault takes place, and fault isolation,

limited by the arrival of asynchronous measurements, occurs when asynchronous measure-

ments become available. Once the FDI methodology has provided the system supervisor

with a fault diagnosis, the supervisor takes appropriate action to seamlessly reconfigure the

system to an alternative control configuration that will enforce the desired operation. Ap-

plications of the proposed asynchronous FDI and FTC framework to a polyethylene reactor

simulation [37] are presented.

Chapter 6 focuses on the monitoring and reconfiguration of a two-tier networked con-

trol system for a chemical process in the presence of control actuator faults. Specifically, a

chemical process system is considered and is controlled by a two-tier networked control sys-

tem integrating a local control system using continuous sensing/actuation with a networked

control system using asynchronous sensing/actuation. To deal with control actuator faults

that may occur in the closed-loop system, a networked fault detection and isolation (FDI)

and fault-tolerant control (FTC) system is designed which detects and isolates actuator

faults and determines how to reconfigure the two-tier networked control system to handle

the actuator faults. The FDI/FTC system uses continuous measurements of process vari-

ables like temperatures and asynchronous measurements of variables like concentrations.

The method is demonstrated using a reactor-separator process consisting of two continuous
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stirred tank reactors and a flash tank separator with recycle stream.
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Chapter 2

Controller enhanced fault

detection and isolation

2.1 Introduction

In most applications, the FDI scheme is designed independently from the feedback control

law and is then applied on top of the closed-loop system operating under a feedback control

law that is previously designed without consideration of the possible faults that might

occur. This is shown in Figure 2.1(a) which shows that the independently designed feedback

control law and FDI scheme are combined only in the final closed-loop system. The focus

of this chapter is to investigate the possibility of integrating the feedback control design

with the data-based FDI scheme. This paradigm shift is illustrated in Figure 2.1(b) which

demonstrates the idea of designing both the feedback control law and the FDI scheme with

the other in mind. With the controller design taking into account the FDI scheme, faults

may be more easily isolated in the resulting closed-loop system.

The above considerations motivate the development of a data-based method of fault

detection and isolation that utilizes the design of the controller to enhance the isolability of

the faults in the closed-loop system. Specifically, it is demonstrated in this work that a data-

based FDI scheme is able to isolate a given set of faults if the nonlinear closed-loop system

satisfies certain isolability conditions in the presence of common-cause process variation. We

8



Figure 2.1: (a) (top) Common methods of fault diagnosis apply the FDI scheme and feed-
back control law to the closed-loop system independently from each other. (b) (bottom)
This work proposes integrating the feedback control law design with the FDI scheme in the
closed-loop system.

explicitly characterize this set of isolability conditions and show that it is possible, under

certain conditions on the system structure, to design a feedback control law that guarantees

that the closed–loop system satisfies the isolability conditions and that the origin of the

closed-loop system is asymptotically stable. This is achieved through the use of appropriate

nonlinear control laws that effectively decouple the dependency between certain process

state variables. The controller enforces a specific structure on the system that makes fault

detection and isolation possible without prior knowledge of system behavior under faulty

operation. The theoretical results are applied to a continuous stirred tank reactor (CSTR)

example and to a polyethylene reactor example. It should also be noted that although the

examples given in this chapter are presented using a specific method for data-based fault

diagnosis, the closed–loop system structure enforced by the proposed approach can also be

exploited to achieve fault isolation using other data-based fault detection methods.
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2.2 Preliminaries

2.2.1 Process model

This chapter focuses on a broad class of nonlinear process systems subject to actuator faults

and disturbances with the following state-space description:

ẋ = f(x, u, d) (2.1)

where x ∈ Rn denotes the vector of process state variables, u ∈ Rm denotes the vector of

manipulated input variables and d ∈ Rp denotes the vector of p possible actuator faults

or disturbances. Normal operating conditions are defined by d = 0. Each component

dk, k = 1, . . . , p, of vector d characterizes the occurrence of a given fault. When fault k

occurs, variable dk can take any value. Therefore, the model of Eq.2.1 can include a broad

class of possible faults ranging from actuator faults to complex process disturbances and

failures. The system under normal operating conditions and zero input has an equilibrium

point at the origin, i.e., f(0, 0, 0) = 0.

Before proceeding with the theoretical development, it is important to state that the

proposed FDI method brings together model-based analysis and controller design techniques

for nonlinear, deterministic ordinary differential equation systems and statistical data-based

fault-diagnosis techniques that will be applied to the closed-loop system to diagnose faults

that affect the process outside of the region determined by the common-cause process vari-

ation. To this end, we will first state the isolability conditions for the closed-loop system

that need to be enforced by the appropriate control laws on the basis of the nonlinear de-

terministic system of Eq.2.1. Subsequently, we will introduce additive autocorrelated noise

in the right-hand side of Eq.2.1 and additive Gaussian noise in the measurements of the

vector x to compute the region of operation of the process variable, x, under common-cause

variance. Finally, we will demonstrate that the enforcement of an isolable structure in the

closed-loop system by an appropriate feedback law allows isolating specific faults whose

effect on the closed-loop system leads to sustained process operation outside of the region

of common-cause variance.
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Throughout this work, the notation Lfh(x) denotes the standard Lie derivative of the

scalar function h(x) with respect to the vector function f(x). The notation Lk
fh(x) denotes

the kth order Lie derivative of the scalar function h(x) with respect to the vector function

f(x) and LgL
k−1
f h(x) denotes the mixed Lie derivative of the scalar function h(x), with

respect to the vector functions f(x) and g(x). Additionally, in order to prove stability of

the closed-loop system, it is necessary to utilize the definition of input-to-state stability

which uses functions of class K and KL. Specifically, a function γ : R≥0 → R≥0 is of class K
if it is continuous, increasing and zero at zero. A function β : R≥0 ×R≥0 → R≥0 is of class

KL if, for each fixed t, the function β(·, t) is of class K and, for each fixed s, the function

β(s, ·) is non-increasing and approaches zero at infinity.

Definition 1 [29]: The system of Eq.2.1 with d(t) = 0 is said to be input-to-state stable

(ISS) with respect to u if there exist functions β of class KL and γ of class K such that for

each x0 ∈ Rn and for each measurable, bounded input u(t), the solution to Eq.2.1 exists for

each t ≥ 0 with x(0) = x0 and satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(||u||), ∀t ≥ 0. (2.2)

Under the assumptions of single-fault occurrence and available measurements for all of

the process state variables, a data-based fault detection and isolation technique is proposed

based on the structure of the system in closed-loop with a state feedback controller u(x).

The conditions (denoted as isolability conditions) under which this technique can be applied

are provided. The main objective is to design a state feedback controller u(x) such that

the origin of the system of Eq.2.1 in closed-loop with this controller is asymptotically stable

under normal operating conditions, i.e., d(t) = 0, and that the closed-loop system satisfies

the isolability conditions needed to apply the proposed FDI method. It is shown that

for certain systems, the controller can be designed to guarantee that these conditions are

satisfied, as well as to stabilize the closed-loop system.

Referring to the assumption that only a single fault occurs at any specific time instance,

note that this is a logical assumption from a practical point of view. Namely, it is more
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likely that a single control actuator (e.g., an automatic valve) will fail at a single time

instance during the process operation than it is that two or more control actuators will

fail at exactly the same instance of time. Referring to the assumption that measurements

of the process state variables are available, note that this assumption is made to simplify

the development. In principle, this assumption can be relaxed by using model-based state

estimator design techniques for nonlinear systems (e.g., [8]) to construct dynamic systems

which yield estimates of the unmeasured states from the output measurements; however,

the detailed development of the results for this case is outside the scope of the present

work. Finally, we focus our attention on general actuator faults and disturbances and do

not explicitly consider sensor faults since there is a plethora of techniques which address

the issue of sensor fault detection (see, for example, [67, 39, 68, 59, 40, 17]). Note that with

the general way in which the faults dk are modeled, it is possible to represent virtually any

fault because dk is not restricted in any way and may be any time-varying signal; however,

to achieve data-based detection and isolation of the fault dk in the closed-loop system in

the presence of noise in the state equations and measurements (noise which is introduced

to model common-cause process variance), dk(t) should be sufficiently large in a way that

is stated precisely in the section titled “Data-based isolation based on a fault signature”.

In order to present the FDI method, it is necessary to define the incidence graph of a

system and its reduced representation. The following definitions are motivated by standard

results in graph theory [26]. This kind of graph-theoretic analysis has been applied before

in the context of feedback control of nonlinear systems (see, for example, [11]).

Definition 2: The incidence graph of an autonomous system ẋ = f(x) with x ∈ Rn is a

directed graph defined by n nodes, one for each state, xi, of the system. A directed arc with

origin in node xi and destination in node xj exists if and only if ∂fj

∂xi
6= 0.

The incidence graph of a system shows the dependence of the time derivatives of its
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Figure 2.2: Incidence graph and reduced incidence graph for the system of Eq.2.3.

states. Figure 2.2 shows the incidence graph of the following system:

ẋ1 = −2x1 + x2 + d1

ẋ2 = −2x2 + x1 + d2

ẋ3 = −2x3 + x1 + d3

(2.3)

when d1 = d2 = d3 ≡ 0. A path from node xi to node xj is a sequence of connected arcs

that starts at xi and reaches xj . A path through more than one arc that starts and ends at

the same node is denoted as a loop. States that belong to a loop have mutually dependent

dynamics, and any disturbance affecting one of them also affects the trajectories of the rest.

The mutual dependence of the dynamics of the states that belong to a given loop makes

data-based isolation of faults that affect the system a difficult task. The following definition

introduces the reduced incidence graph of an autonomous system. In this graph, the nodes

of the incidence graph belonging to a given loop are united in a single node. This allows

identifying which states do not have mutually dependant dynamics.
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Definition 3: The reduced incidence graph of an autonomous system ẋ = f(x) with x ∈ Rn

is the directed graph of nodes qi, where i = 1, ..., N , that has the maximum number of nodes,

N , and satisfies the following conditions:

• To each node qi there corresponds a set of states Xi = {xj}. These sets of states are

a partition of the state vector of the system, i.e.,

⋃
Xi = {x1, . . . , xn}, Xi

⋂
Xj = ∅, ∀i 6= j.

• A directed arc with origin qi and destination qj exists if and only if ∂fl
∂xk

6= 0 for some

xl ∈ Xi, xk ∈ Xj.

• There are no loops in the graph.

In the reduced incidence graph, states that belong to a loop in the incidence graph

correspond to a single node. In this way, the states of the system are divided into subsystems

that do not have mutually dependent dynamics; that is, there are no loops connecting them.

The arcs of the graph indicate if there exists a state corresponding to the origin node that

affects a state corresponding to the destination node. Note that the reduced incidence

graph can be always obtained, but for strongly coupled systems, it may be defined by a

single node; i.e., in the incidence graph there exists a loop that contains all the states of

the system. In this case, data-based fault detection and isolation cannot be achieved using

the proposed method. In the incidence graph of the system of Eq.2.3 there is a loop that

contains states x1 and x2. The reduced incidence graph of the system of Eq.2.3 contains

two nodes. Node q1 corresponds to the states of the loop, that is, X1 = {x1, x2}. Node q2

corresponds to X2 = x3. Figure 2.2 shows the reduced incidence graph of the system of

Eq.2.3. It can be seen that in the reduced incidence graph there are no loops.

Remark 1: In the process model of Eq.2.1, process and sensor noise are not explicitly taken

into account. However, noise is indirectly accounted for in the FDI method below by means

of appropriate tolerance thresholds in the decision criteria for fault detection and isolation.

The thresholds are generated on the basis of operating data and take into account both sensor
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and process noise, allowing for an appropriate FDI performance even if the process model

and the measurements are corrupted by noise. To demonstrate this point, process and sensor

noise are included in the two examples included in this work; see Section 2.5 for details.

Remark 2: Due to the complex nature of faults in nonlinear systems, performing fault

isolation with data-based methods alone generally leaves an ambiguous picture. On the

other hand, it is possible to perform data-based fault isolation of simple faults using data-

based FDI methods (this is discussed and demonstrated in [71] using contribution plots).

In some cases, historical data from faulty operation will improve isolation capabilities of

data-based methods; however, even with this information, due to overlap in the state-space

of the regions corresponding to different faults and incomplete fault libraries, it still may be

very difficult to isolate faults in nonlinear process systems.

2.2.2 Data-based fault detection

Data-based methods for fault detection in multivariate systems are well established in sta-

tistical process monitoring. This section reviews a standard data-based method of fault

detection that will be used in the context of the proposed FDI method.

A common approach to monitoring multivariate process performance is based upon the

T 2 statistic introduced by Harold Hotelling [27]. This approach allows multivariate processes

to be monitored for a shift in the operating mean, X̄, using a single test statistic that has

a well-defined distribution. The true operating mean can be estimated from past history or

chosen based on the known process. Generally, the true process variance is unknown and

must be estimated using sampled data. Hotelling’s T 2 statistic tests the hypothesis that the

current operating mean is the same as X̄ with a certain degree of confidence, α ·100%. This

is the multivariate generalization of Student’s t-distribution. Consider a vector X ∈ Rn

that is the average of m randomly sampled state measurements. Assuming that X has

an n-variate normal distribution with an unknown variance-covariance matrix, Σ, the T 2

statistic can be computed using the operating mean, X̄, estimated from historical data, and

the estimated covariance matrix, S, estimated from the m measurements contributing to
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X, as follows:

T 2 = m(X − X̄)T S−1(X − X̄). (2.4)

Based on the assumption that the measurements in X are normally distributed, the T 2

statistic has the following distribution:

T 2 ∼ mn

(m− n + 1)
F (n, m− n + 1) (2.5)

where F (n,m− n + 1) is the F distribution with n and m− n + 1 degrees of freedom. An

upper control limit (UCL) for the T 2 statistic can be calculated by finding the value, T 2
UCL

on the T 2 distribution for which there is probability α of a greater or equal value occurring,

that is, P (T 2 ≥ T 2
UCL) = α.

T 2
UCL =

mn

(m− n + 1)
Fα(n,m− n + 1) (2.6)

Note that T 2 is a positive quantity and has no lower control limit. With this definition

of the UCL, α is the probability of a type I error, or false alarm. This implies that at least

once every 1/α samples there is expected to be a false alarm or, in other words, the average

run length (ARL) is equal to 1/α. Decreasing the value of α will increase the ARL and

thus decrease the likelihood of a Type I error. However, this decreases the power of the

statistical test. Power is measured as 1 − β where β is the probability of a Type II error,

which is that a failure has occurred, but is not detected by the test. Because the focus of

this work is on failures that cause significant change in the operating point and assumes a

persistent state of failure before declaring a fault, finding the balance between the statistical

power of the test and the likelihood of a false alarm is not considered (see Remark 6 for

further discussion on this issue).

In addition to the method presented above, other methods using Hotelling’s T 2 statistic

have been established which deviate from the strict definition of the test. In particular,

due to the nature of continuous chemical processes, it is sometimes convenient to estimate

S from historical data. This assumes that data from future observations will have similar

covariance. Methods that use historical data generally have two phases of operation. Phase
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1 is for testing during fault-free operation to verify that the process is in control. The

following UCL is used for the T 2 statistic in Phase 1 [50]:

T 2
UCL =

n(h− 1)(m− 1)
hm− h− n + 1

Fα(n, hm− h− n + 1) (2.7)

where h is the number of m-sized samples used to evaluate the covariance matrix S from

historical data. Phase 2 is for the normal monitoring of a process for faults with the following

control limit:

T 2
UCL =

n(h + 1)(m− 1)
hm− h− n + 1

Fα(n, hm− h− n + 1) (2.8)

Note that when h is large, these limits are nearly identical. In addition, it is often convenient

to use a sample size of m = 1 where individual observations are monitored (i.e., [50, 63]).

This is commonly used in data-based fault detection and isolation methods (see, for example,

[60, 31, 50, 69, 63]). In this scenario, the UCL becomes:

T 2
UCL =

(h2 − 1)n
h(h− n)

Fα(n, h− n) (2.9)

where h is now the total number of historical measurements used to evaluate the covariance

matrix S. In the simulation section of this chapter, we use both the traditional method of

Hotelling’s T 2 statistic by monitoring sampled data sets of size m with the corresponding

UCL in Eq.2.6 where the estimated covariance matrix, S, is evaluated at each step from

the m observations, as well as the single observation approach using the control limit from

Eq.2.9 and the appropriate S based on h historical observations.

The T 2 statistic is widely used for fault detection purposes in multivariate processes and

can be used for both the full state vector and the transformed state vector in the reduced

PCA space. The T 2 statistic for the full state vector does not provide additional information

that can be used for isolating the underlying cause of a fault. In some cases, the T 2 statistics

of certain subgroups of the state vector (or functions of it) can be monitored in addition to

the full vector to assist in fault isolation. In this situation, the process is decomposed into

subsystems, generally based on function, structure and/or behavior allowing fault detection

and isolation techniques to be applied to subgroups of sensor measurements. The context of
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the decomposition itself narrows the detection and isolation focus allowing the application of

the T 2 statistic for localized detection. As the focus of the process decomposition context

narrows, detection approaches isolation. If the focus is narrowed to a particular process

component then detection and isolation become one and the same. Examples of work in

which decompositions are used for localized FDI are in [57] and [34]. This idea for data-

based isolation using the T 2 statistic for each subsystem is also utilized in the context of

the proposed method in the next section.

Remark 3: Note that the methods of fault detection presented in this section will naturally

account for process and sensor noise. Thus, the T 2 statistic, which scales the process data

by the inverse of the covariance matrix, will be tolerant to the normal amount of process and

measurement variation without signalling a fault. However, if the variance of the system

were to change during the course of operation, this could signal a fault in the system when

using a covariance matrix, S, estimated from historical data. This type of fault will generally

not be declared as this work requires a fault large enough to cause persistent failure as

discussed in Remark 6.

2.3 Data-based isolation based on a fault signature

Data-based isolation of the underlying cause of a faulty process behavior is, in general, a

difficult problem which strongly depends on the structure of the closed–loop system. In

systems with multiple possible faults, one-dimensional statistics such as the T 2 statistic

presented in the previous section cannot be used to perform fault isolation when applied

globally. To understand this point in the context of a specific example, consider the system

of Eq.2.3. It can be seen based upon the structure of the system, that a fault in d1 or a

fault in d2 will affect the state trajectories of all three states of the system. In this case, the

fault will be readily detected, but the T 2 statistic and the state trajectories will not provide

further information with which one can reliably determine whether a fault in d1 or d2 had

occurred. However, if a failure in d3 were to occur, it can be seen from the system equations

that only the state trajectory of state 3 would be affected. With this particular structure,

which is that there is no path from the affected state, x3, to x1 or x2, it is possible to isolate
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q1 q2

d1 d3

d2

Figure 2.3: Isolability graph for the system of Eq.2.3.

the fault d3 by observing the affected state trajectories at the time of the failure. Thus, it

can be seen that under certain conditions, isolation is possible.

The example given above motivates introducing a set of isolability conditions which

guarantee that fault isolation is possible based on the state trajectories affected by a given

fault. This will also provide guidelines for the design of control laws that guarantee that

these conditions are satisfied. In order to precisely state these conditions, the isolability

graph of an autonomous system is defined below.

Definition 4: The isolability graph of an autonomous system ẋ = f(x, d) with x ∈ Rn,

d ∈ Rp is a directed graph made of the N nodes of the reduced incidence graph of the system

ẋ = f(x, 0) and p additional nodes, one for each possible fault dk. The graph contains all

the arcs of the reduced incidence graph of the system ẋ = f(x, 0). In addition, a directed arc

with origin in fault node dk and destination to a state node qj exists if and only if ∂fl
∂dk

6= 0

for some xl ∈ Xj.

Figure 2.3 shows the isolability graph of the system of Eq.2.3. The isolability graph of

an autonomous system subject to p faults shows, in addition to the incidence arcs of the

reduced incidence graph, which loops of the system are affected by each possible fault.

Based on this graph, it is possible to define the signature of a fault.

Definition 5: The signature of a fault dk of an autonomous system subject to p faults

ẋ = f(x, d) with x ∈ Rn, d ∈ Rp is a binary vector W k of dimension N , where N is the
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number of nodes of the reduced incidence graph of the system. The ith component of W k,

denoted W k
i , is one if there exists a path in the isolability graph from the node corresponding

to fault k to the node qi corresponding to the set of states Xi, or zero otherwise.

The signature of a fault indicates the set of states that are affected by the fault. If each of

the corresponding signatures of the faults is different, then it is possible to isolate the faults

using a data-based fault-detection method. Faults d1 and d2 in the system of Eq.2.3 have

the same signature, W 1 = [1 1]T , because d1 and d2 both directly affect q1 and there is a

path from q1 to q2. This implies that both faults affect the same states and upon detection

of a fault with the signature W 1 = [1 1]T , it is not possible to distinguish between them

based upon the signature. On the other hand, the signature of fault d3 in the same system

is W 1 = [0 1]T because there is no path to q1 from q2, which is the node directly affected

by d3. This implies that the states corresponding to node q1 are effectively decoupled from

fault d3. This allows distinguishing between a fault in d3 and a fault in either d1 or d2 in

the system of Eq.2.3 based on the profiles of the state trajectories.

In this work, we propose to design and implement appropriate feedback laws in the

closed-loop system that induce distinct signatures for specific faults to allow their isolation.

In the next section, we present methods for the design of controllers that enforce an isolable

structure in the closed-loop system. In the remainder of this section, we discuss the issue of

determination of the fault signatures for the closed-loop system in the absence and presence

of noise in the differential equations and measurements. This determination of the fault

signature from process measurements will also lead to a characterization of the type of

fault signals, dk(t), for which isolation can be achieved when common-cause variation is

considered for the closed-loop system (caused by the introduction of noise in the differential

equations and measurements). Specifically, referring to the deterministic closed-loop system

(i.e., no noise is present in the states or in the measurements), the signature of the fault,

W k, for any time-varying signal, dk(t), can be computed directly from the isolability graph

and is independent of the type of time-dependence of dk(t). In other words, the signal dk(t)

need not satisfy any conditions for its signature to be computed. Once the fault signature is

computed, then fault isolation is immediate in the deterministic case by checking whether

or not the signature of the system corresponds to a defined fault. However, in the presence
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of noise in the states and measurements, dk(t) has to be sufficiently large to have an effect

that leads to operation of the process states outside of the range expected due to common-

cause variance for a sufficiently large period of time to allow isolation of the fault, based on

its signature, from other causes that can lead to violations of the upper control limit for a

small period of time. Specifically, in the proposed method, the following statistics based on

the state trajectories of the system of Eq.2.1 in closed-loop with a given feedback controller

u(x) in the presence of noise in the states and measurements are monitored:

• T 2 statistic based on the full state x with upper control limit T 2
UCL.

• T 2
i statistic with i = 1, . . . , N based on the states xj ∈ Xi, where Xi are the sets of

states corresponding to each one of the nodes of the reduced incidence graph. To each

T 2
i statistic a corresponding upper control limit T 2

UCLi is assigned.

The fault detection and isolation procedure then follows the steps given below:

1. A fault is detected if T 2(t) > T 2
UCL, ∀t tf ≤ t ≤ TP , where TP is chosen so that

the window TP − tf is large enough to allow fault isolation with a desired degree of

confidence and depends on the process time constants and potentially on available

historical information of the process behavior.

2. A fault that is detected can be isolated if the signature vector of the fault W (tf , TP )

can be built as follows:

T 2
i (t) > T 2

UCLi ∀t tf ≤ t ≤ TP → Wi(tf , TP ) = 1.

T 2
i (t) ≯ T 2

UCLi ∀t tf ≤ t ≤ TP → Wi(tf , TP ) = 0.

In such a case, fault dk is detected at time TP if W (tf , TP ) = W k. If two or more

faults are defined by the same signature, isolation between them is not possible on

the basis of the fault signature obtained from the isolability graph.

The conditions in steps 1 and 2 above state that the fault dk(t) has to be sufficiently large

in order to be detected and isolated.
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Remark 4 States to which there is not a path from a given fault node to the corresponding

subsystem node in the isolability graph are not affected by changes in the value of dk; thus,

they are effectively decoupled from the fault dk. The FDI method can be applied if the

signatures of the closed-loop system faults are different. This is the isolability condition.

Note that the signature of a fault depends on the structure of the closed-loop system, in

particular, on the isolability graph. For example, if the reduced incidence graph has only

one node, isolation is not possible. In the following section, we propose to design the feedback

controller u(x) to guarantee that the reduced incidence graph of the closed-loop system has

more than one node, that there exist faults with different signatures and that the origin of

the closed-loop system is asymptotically stable.

Remark 5: The concept of the “signature of a fault” employed in this section can be gen-

eralized in the context of monitoring the evolution of a set of variables defined as functions

of the state. In particular, given any variable change, the isolability graph can be obtained

in the new state space and the signature defined on the basis of the new state variables. In

the next section, an example of this idea is provided for input/output linearizable, nonlinear

systems where the signature of a fault is given in a partially linearized state space.

Remark 6: The upper control limit is chosen taking into consideration common-cause

variance, including process and sensor noise, in order to avoid false alarms. Thus, small

disturbances or failures may go undetected if the magnitude and effect of the disturbance is

similar to that of the inherent process variance. For this reason, it was stated in the fault

detection and isolation procedure that a fault dk must be “sufficiently large” in order for

T 2
i (t) to exceed the threshold T 2

UCLi, ∀t, tf ≤ t ≤ TP . It is assumed that if a fault dk is

not large enough to cause T 2
i (t) to exceed the threshold T 2

UCLi, ∀t, tf ≤ t ≤ TP (where tf

is the time in which T 2
i (tf ) ≥ T 2

UCL for the first time) then the fault is not “sufficiently

large” and its effect on the closed-loop system, from the point of view of faulty behavior, is

not of major consequence. Therefore, such a dk is not considered to be a fault. However,

it should be noted that a fault dk that is large enough to cause the T 2 derived from the full

state vector, x, to cross the upper control limit signaling a fault may not be large enough

to signal a fault in all of the affected subgroups. In this case, it is possible to have a false
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isolation. This is investigated in the simulation case studies section. Finally, the condition

T 2
i (t) ≯ T 2

UCLi, ∀t, tf ≤ t ≤ TP , allows violation of the UCL in the full state vector

and individual subsystems due to other causes for a short period of time. However, such

violations do not modify the fault signature W (tf , TP ) if TP is chosen to be sufficiently large.

Remark 7: We would like to point out that the isolability conditions are not restrictive

from a practical point of view. These conditions are not restrictive in the sense that it

is generally possible to induce at least some degree of decoupling within any given system.

For example, any system with a relative degree r ≤ n can be decoupled using the method

presented in the section on feedback linearization. Systems such as this are very common

in practice. However, while the isolability conditions can generally be met for one or a few

faults in almost any system, it can be difficult to isolate all faults within any given system

using this method alone.

2.4 Controller enhanced isolation

2.4.1 Enforcing an isolable closed-loop system structure through con-

troller design

In general, control laws are designed without taking into account the FDI scheme that will

be applied to the closed-loop system. We propose to design an appropriate nonlinear control

law to allow isolation of given faults using the method proposed in the previous section by

effectively decoupling the dependency between certain process state variables to enforce the

fault isolability conditions in the closed-loop system. As explained in previous section, this

requires that the structure of the isolability graph of the closed-loop system be such that

at least one or more faults be partially decoupled from one or more nodes on the isolability

graph. The main idea is to obtain an isolability graph of the closed-loop system which

provides a different signature for each fault. The achievement of this key requirement can

be accomplished by a variety of nonlinear control laws. In general providing a systematic

procedure to design a controller that guarantees both closed-loop stability and satisfaction

of the isolability conditions for any nonlinear process is not possible. The specific form
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of the controller depends on the structure of the open-loop system and such a controller

may not exist. One general procedure that can be followed, however, is to decouple a

set of states from the rest. Recursively applying this decoupling technique, appropriate

closed-loop isolability graphs can be obtained in certain cases. As an example of this design

approach, we first provide a controller that can be applied to nonlinear systems with the

following state space description:

ẋ1 = f11(x1) + f12(x1, x2) + g1(x1, x2)u + d1

ẋ2 = f2(x1, x2) + d2

(2.10)

where x1 ∈ R, x2 ∈ Rn, u ∈ R and g1(x1, x2) 6= 0 for all x1 ∈ R, x2 ∈ Rn. With a state

feedback controller of the form:

u(x1, x2) = −f12(x1, x2)− v(x1)
g1(x1, x2)

(2.11)

the closed-loop system takes the form

ẋ1 = f11(x1) + v(x1) + d1

ẋ2 = f2(x1, x2) + d2

(2.12)

where v(x1) has to be designed in order to achieve asymptotic stability of the origin of

the x1 subsystem when d1 = 0. Note that explicit stabilizing control laws that provide

explicitly-defined regions of attraction for the closed-loop system have been developed us-

ing Lyapunov techniques for specific classes of nonlinear systems, particularly input-affine

nonlinear systems; the reader may refer to [19, 20, 30, 8] for results in this area. The origin

of the closed-loop system is asymptotically stable if ẋ2 = f2(x1, x2) is input-to-state stable

with respect to x1. In this case the proposed controller guarantees asymptotic stability

of the closed-loop system, as well as different signatures for faults d1 and d2. Note that

the reduced incidence graph is defined by two nodes corresponding to both states and the

signatures are given by W 1 = [1 1]T and W 2 = [0 1]T .

The controller design method discussed above provides a basic tool for obtaining control

laws that provide closed-loop stability and satisfy the isolability constraints. The main idea
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is to force decoupling in a first controller design step (in this case u(x)) and then ensure

closed-loop stability in a second (in this case v(x)). Additionally, the next section provides a

systematic controller design for a particular class of nonlinear systems. This procedure along

with the class of systems under consideration are introduced in the following subsection.

2.4.2 Input/output linearizable nonlinear systems

In this subsection, we focus on a class of process systems modeled by single-input single-

output nonlinear systems with multiple possible faults which have the following state-space

description

ẋ = f(x) + g(x)u +
p∑

k=1

wk(x)dk

y = h(x)
(2.13)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ R is the controlled output and dk ∈ R

represents a possible fault. It is assumed that f , g, h and wk are sufficiently smooth

functions, that is, all necessary derivatives exist and are continuous functions of x, and that

a set of p possible faults has been identified. Each of these faults is characterized by an

unknown input to the system dk that can model actuator failures and disturbances. As

before, this definition of dk is not restricted by value and may be time-varying, and thus,

it can model a very broad class of faults. The system has an equilibrium point at x = 0

when u(t) = 0, dk(t) ≡ 0 and h(0) = 0. Note that in general this equilibrium point may

correspond to a given set-point of the output.

The main control objective is to design a feedback control law u(x) such that the origin

is an asymptotically stable equilibrium point of the closed-loop system, and moreover, the

closed-loop system satisfies the isolability conditions. Feedback linearization is used to

accomplish this task. First, it is necessary to review the definition of the relative degree of

the output, y, with respect to the input, u, in the system of Eq.2.13.

Definition 6 [28]: Referring to the system of Eq.2.13, the relative degree of the output, y,
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with respect to the input, u, is the smallest integer, r ∈ [1, n], for which

LgL
i
fh(x) = 0, i = 0, . . . , r − 2

LgL
r−1
f h(x) 6= 0.

A system with an input relative degree r ≤ n is input-output linearizable. If r = n the

entire input-state dynamics can be linearized. If r < n, the feedback controller can be

chosen so that a linear input-output map is obtained from an external input, v, to the

output, y, even though the state equations are only partially linearized (see also, [28]). To

be specific, if the system of Eq.2.13 has input relative degree r < n, then there exists a

coordinate transformation (see [28]) (ζ, η) = T (x) such that the representation of the system

of Eq.2.13 with dk = 0 for all k = 1, ..., p (that is, the system without faults), in the (ζ, η)

coordinates, takes the form

ζ̇1 = ζ2

...

ζ̇r−1 = ζr

ζ̇r = Lr
fh(x) + LgL

r−1
f g(x)u

η̇1 = Ψ1(ζ, η)
...

η̇n−r = Ψn−r(ζ, η)

(2.14)

where y = ζ1, x = T−1(ζ, η), ζ = [ζ1, . . . , ζr]T and η = [η1, . . . , ηn−r]T . Choosing u(x) in an

appropriate way, the dynamics of ζ can be linearized and controlled properly using linear

control theory. The stability of the closed-loop system, however, can only be assured if the

inverse dynamics (η̇ = Ψ(ζ, η)) satisfy additional stability assumptions. In particular, the

inverse dynamics must be input-to-state stable with respect to ζ. If this is the case, then

an appropriate control law can be designed for the input-output subsystem that guarantees

stability of the entire closed-loop system. In the following theorem, we review one example

of an input-output feedback-linearizing controller. The controller presented, under the

assumption of no faults, guarantees asymptotic stability of the closed-loop system.
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Theorem 1 [28]: Consider the system of Eq.2.13 with dk = 0 for all k = 1, ..., p under the

feedback law

u(x) =
1

LgL
r−1
f h(x)

[KTζ(x)− Lr
fh(x)] (2.15)

where ζ = Tζ(x). Assume K is chosen such that the matrix A+BK has all of its eigenvalues

in the left-hand side of the complex plane where

A =


0r−1 Ir−1

0 0T
r−1


 , B =


0r−1

1


 .

Ir−1 is the (r− 1)× (r− 1) identity matrix and 0r−1 is the (r− 1)× 1 zero vector. Then, if

the dynamic system η̇ = Ψ(ζ, η) is locally input-to-state stable (ISS) with respect to ζ, the

origin of the closed-loop system is locally asymptotically stable.

We prove that under certain assumptions, if the state-feedback law given in Eq.2.15 is

used, then the faults of system of Eq.2.13 can be isolated into two different groups: those

that affect the output and those that do not affect the output. The main idea is that

the isolability graph of the closed-loop system in the coordinates (ζ, η) provides different

signatures for the faults depending on their relative degree, which is defined below (this

definition was introduced in [10] in the context of feedforward/feedback control of nonlinear

systems with disturbances, but it is employed here to address a completely different issue).

Definition 7 [10]: Referring to the system of Eq.2.13, the relative degree, ρk ∈ [1, n], of

the output, y, with respect to the fault dk is the smallest integer for which

Lwk
Li

fh(x) = 0, i = 0, . . . , ρk − 2

Lwk
Lρk−1

f h(x) 6= 0.

(2.16)

The definition of the relative degree of a fault is analogous to that of the relative degree of

the input, but instead of relating the output to the input, this definition of relative degree

relates the output to a particular fault. If a feedback-linearizing controller is used, then

the faults can be divided into two different groups: those with a relative degree ρk that is

greater than the relative degree r and those with a relative degree ρk that is less than or
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equal to r. When a fault occurs, the faults of the first group will not affect the output, y,

while those of the latter will.

To show this point, taking into account Definitions 6 and 7, there exists (see [28])

a coordinate transformation (ζ, η) = T (x) such that the representation of the system of

Eq.2.13 with dj = 0 for all dj 6= dk (that is, the system subject only to fault dk), in the

(ζ, η) coordinates, takes the form

ζ̇1 = ζ2

...

ζ̇r−1 = ζr

ζ̇r = Lr
fh(x) + LgL

r−1
f h(x)u

η̇1 = Ψ1(ζ, η, dk)
...

η̇n−r = Ψn−r(ζ, η, dk)

where y = ζ1, x = T−1(ζ, η), ζ = [ζ1, . . . , ζr]T and η = [η1, . . . , ηn−r]T . Following the

definition of the state-feedback law of Eq.2.15, the following state-space representation is

obtained for ζ:

ζ̇ = (A + BK)ζ.

This dynamical system is independent of dk. Therefore, the trajectory of the output y is

independent of the fault dk. This result, however, does not hold if the relative degree ρk

of the fault dk is equal to or smaller than r. In this case, the coordinate change does not

eliminate the dependence of the output on the fault dk. Applying the same coordinate

change (ζ, η) = T (x), the dynamics of the system of Eq.2.13 with dj = 0 for all dj 6= dk
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(that is, the system subject to fault dk), in the (ζ, η) coordinates, takes the form

ζ̇1 = ζ2 + Φ1(dk)
...

ζ̇r−1 = ζr + Φr−1(dk)

ζ̇r = Lr
fh(x) + LgL

r−1
f h(x)u + Φr(dk)

η̇1 = Ψ1(ζ, η, dk)
...

η̇n−r = Ψn−r(ζ, η, dk)

where y = ζ1, x = T−1(ζ, η), ζ = [ζ1, . . . , ζr]T and η = [η1, . . . , ηn−r]T . In this case, when

the fault occurs, the output is affected. In summary, if controller of Eq.2.15 is used, the

possible faults of the system of Eq.2.13 are divided into two groups, each with a different

signature. When a fault occurs, taking into account whether the trajectory of the output is

affected or not, one can determine which group the fault belongs to. Note that if only two

faults are defined and ρ1 ≤ r and ρ2 > r, then the fault is automatically isolated.

Remark 8: The feedback linearizing control laws presented in this subsection are designed

to enforce a linear input/output structure in the closed-loop system. Although the external

input, v = Kζ, may be designed to stabilize the resulting linear closed-loop system optimally,

the total control action u is not optimal with respect to a closed-loop performance index (cost)

that includes a penalty on the control action.

2.5 Simulation case studies

In this section, the proposed approach for integrated FDI and controller design is applied

to two chemical process examples. First, we consider a CSTR example and utilize feedback

linearization to design a nonlinear controller that yields a closed-loop system for which

the isolability conditions hold. Second, we consider a polyethylene reactor example and

design a nonlinear control law, based on the general method of the first subsection under

“Controller enhanced isolation”, that yields a closed-loop system for which the isolability
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conditions hold. In both cases, we demonstrate that data-based fault detection and isolation

is achieved under feedback control laws that enforce isolability in the closed-loop system,

an outcome that is not possible, in general, when other feedback control designs that do

not enforce the required structure are used.

2.5.1 Application to a CSTR example

The first example considered is a well-mixed CSTR in which a feed component A is converted

to an intermediate species B and finally to the desired product C, according to the reaction

scheme

A
1 B

2 C.

Both steps are elementary, reversible reactions and are governed by the following Arrhenius

relationships

r1 = k10e
−E1
RT CA, r−1 = k−10e

−E−1
RT CB

r2 = k20e
−E2
RT CB, r−2 = k−20e

−E−2
RT CC

where ki0 is the pre-exponential factor and Ei is the activation energy of the ith reaction

where the subscripts 1,−1, 2,−2 refer to the forward and reverse reactions of steps 1 and

2. R is the gas constant while CA, CB and CC are the molar concentrations of species A, B

and C respectively. The feed to the reactor consists of pure A at flow rate F , concentration

CA0 and temperature T0. The state variables of the system include the concentrations of

the three main components CA, CB, and CC as well as the temperature of the reactor,

T . Using first principles and standard modeling assumptions, the following mathematical

model of the process is obtained

ĊA = F
V (CA0 − CA)− r1 + r−1 + d1

ĊB = −F
V CB + r1 − r−1 − r2 + r−2

ĊC = −F
V CC + r2 − r−2

Ṫ = F
V (T0 − T ) + (−∆H1)

ρcp
(r1 − r−1) + (−∆H2)

ρcp
(r2 − r−2) + u + d2

(2.17)
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Table 2.1: CSTR example process parameters

F 1 [m3/h] V 1 [m3]
k10 1.0·1010 [min−1] E1 6.0·104 [kJ/kmol]
k−10 1.0·1010 [min−1] E−1 7.0·104 [kJ/kmol]
k20 1.0·1010 [min−1] E2 6.0·104 [kJ/kmol]
k−20 1.0·1010 [min−1] E−2 6.5·104 [kJ/kmol]
∆H1 -1.0·104 [kJ/kmol] R 8.314 [kJ/kmol ·K]
∆H2 -0.5·104 [kJ/kmol] T0 300 [K]
CA0 4 [kmol/m3] ρ 1000 [kg/m3]
cp 0.231 [kJ/kg ·K]

Table 2.2: CSTR example noise parameters
σm σp φ

CA 1E-2 1E-2 0.9
CB 1E-2 1E-2 0.9
CC 1E-2 1E-2 0.9
T 1E-1 1E-1 0.9

where V is the reactor volume, ∆H1 and ∆H2 are the enthalpies of the first and second

reactions, respectively, ρ is the fluid density, cp is the fluid heat capacity, d1 and d2 denote

faults/disturbances and u = Q/ρcp is the manipulated input, where Q is the heat input to

the system.

The system of Eq.2.17 is modeled with sensor measurement noise and autoregressive

process noise. The sensor measurement noise was generated using a zero-mean normal

distribution with standard deviation σM applied to the measurements of all the process

states. The autoregressive process noise was generated discretely as wk = φwk−1 + ξk,

where k = 0, 1, . . . , is the discrete time step, φ is the autoregressive coefficient and ξk is

obtained at each sampling step using a zero-mean normal distribution with standard devi-

ation σp. Table 2.2 provides the values of the noise parameters for each state of the system

of Eq.2.17. Because of the dynamic nature of the process and the autocorrelated process

noise, it is expected that the state trajectories will be serially correlated. Although the dis-

tribution of the state measurements in open-loop operation may not be normal (Gaussian),

the influence of feedback control is such that the measurements under closed-loop opera-
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Figure 2.4: CSTR example. Distribution of normalized, fault-free operating data compared
with a normal distribution of the same mean and variance.

tion are approximately normal (see [50]). Figure 2.4 shows the distribution of the state

measurements of the closed-loop system of Eq.2.17 under the feedback-linearizing control

law in fault-free operation over a long period of time compared with a Gaussian distri-

bution. Note that although the long-term distribution is approximated well by a normal

distribution, this will not hold true for short-term operation, a point that will affect the

choice of test statistic to be applied. The controlled output, y, of the system is defined

as the concentration of the desired product CC . This particular definition of the output,

while meaningful from the point of view of regulating the desired product concentration,

will be also useful in the context of fault isolation. We consider only faults d1 and d2, which

represent undesired changes in CA0 (disturbance) and T0/Q (disturbance/actuator fault),

respectively. For example, if CA0 changes by ∆CA0 then d1 = F
V ∆CA0. These changes may

be the consequence of an error in external control loops. In this system, the input u appears

in the temperature dynamics and is of relative degree 2 with respect to the output, y = CC .

The fault d1 appears only in the dynamics of CA and is of relative degree 3 with respect to

the output, y = CC . Finally, fault d2 is of relative degree 2. The values for the parameters

of the process model are given in Table 2.1.
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The control objective is to regulate the system at the equilibrium point

CCs = 0.9471
kmol

m3
, Ts = 312.6K, us = 0K/s. (2.18)

where the subscript s refers to the steady state value at equilibrium. To this end, we

consider two different feedback controllers: a controller based on feedback linearization and

a proportional controller (it is important to point out that the conclusions of this simulation

study would continue to hold if the proportional controller is replaced by proportional-

integral-derivative control, model-predictive control or any other controller that does not

achieve decoupling of the controlled output, y = CC , from the fault, d1, in the closed-loop

system). The feedback-linearizing controller takes the form of Eq.2.15 with:

K = [−1− 1].

Note that the state variables are shifted so that the origin represents the desired set point.

The proportional controller takes the form:

u = (Ts − T ).

In the closed-loop system operating under the feedback-linearizing control law, according

to the results of previous section, faults with a relative degree higher than that of the input

(i.e., ρk > 2) will not affect the output in the event of a failure. Therefore, because

d1 has a relative degree of 3, it will not affect the behavior of the output. Conversely,

because fault d2 is of relative degree 2, its effect cannot be decoupled from the output.

This result is illustrated in Figure 2.5. The nodes in this figure are q1 = ζ1, q2 = ζ2 and

q3 = {η1, η2}, where ζ1 = CC , ζ2 = ζ1 and {η1, η2} are combinations of CA, CB and T such

that [ζ; η] = T (CA, CB, CC , T ) is an invertible transformation. The isolability graph of this

system in the transformed coordinates shows that each of the states in the ζ subsystem

is a separate node and that the states in the η subsystem form a single additional node.

Although there are multiple nodes in the ζ subsystem, because each is directly affected

by d1, the effect is the same as if they were a single node. Moreover, since there is no
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Figure 2.5: Isolability graph for the system of Eq.2.17. v1 = {ζ1}, v2 = {ζ2} and v3 = {η}.

path from the η subsystem node to any of the ζ subsystem nodes and d2 only affects the η

subsystem node directly, the signatures for faults d1 and d2 will be unique and thus isolable.

Additionally, it should be noted that the trajectory of ζ1 follows that of the output, CC , and

the ζ subsystem is not affected by the other states. Thus, monitoring the output, CC , as

one subsystem and the remaining states as a second subsystem is equivalent to monitoring

the subsystems formed in the transformed space.

The isolability property stated above, however, does not hold for the closed-loop system

under proportional control. In that case, when a fault occurs (whether it be d1 or d2),

the output is affected by the presence of the fault. These theoretical predictions were

tested by simulating the system of Eq.2.17 in closed-loop under both proportional control

and feedback-linearizing control. In both cases, the system was initially operating at the

steady-state of Eq.2.18 with a failure appearing at time t = 0.5 hr.

Based upon the structure of the closed-loop system under feedback-linearizing control,

the state vector was divided into two subvectors, X1 = {CC} and X2 = {CA, CB, T}
as discussed above. Hotelling’s statistic (Eq.2.4) for the full state vector (T 2) and each

of the subvectors (T 2
1 and T 2

2 ) were monitored to detect and evaluate the presence of a

fault. Detection was performed based on the T 2 statistic violating the upper control limit
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Figure 2.6: CSTR example. State trajectories of the closed-loop system under feedback-
linearizing (¦) and P (×) control with a fault d1 at t = 0.5hr.

T 2
UCL defined in Eq.2.6 using m = 10 randomly sampled measurements at intervals of

∆t = −ln(ξ)/Ws where ξ is a uniformly distributed random variable from 0 to 1 and Ws

is the sample rate of 1 sample per minute. Similarly, isolation was done based on the

detection of a violation of the UCL in T 2
1 and T 2

2 and the known fault signatures computed

from the isolability graph, W1 = [0 1] and W2 = [1 1]. Additionally, the same data was

tested with a sample size m = 1 and the upper control limits as defined in Eq.2.9. In this

case a much higher sampling rate was used (20 samples per minute) because there was no

need to capture a larger time scale (see Remark 9). As described in the section on data-

based fault detection, the method of single observations relies on the covariance matrix

S calculated from historical data under common-cause variation only and the method of

m = 10 observations uses a covariance matrix S obtained from the new observations being

analyzed in each sample.

The closed-loop system was simulated under proportional and feedback-linearizing con-

trol. Noise in the states and measurements was included as discussed above. A fault in

d1 was introduced as a step change of magnitude 1 kmol/m3s. Figure 2.6 shows the state

trajectories for the closed-loop system under the proportional and the feedback-linearizing

35



0 0.2 0.4 0.6 0.8 1
0

100T
2 1

0 0.2 0.4 0.6 0.8 1
0

50

T
2 2

0 0.2 0.4 0.6 0.8 1
0

100

200

T
2

Time (hr)

Figure 2.7: CSTR example. Closed-loop system under feedback-linearizing control with
sample size m = 10. Statistics T 2, T 2

1 and T 2
2 (solid) with TUCL (dashed) with a failure in

d1 at t = 0.5 hr.

controller. Figure 2.7 shows the T 2 statistics for the system under feedback-linearizing

control, calculated from m = 10 randomly sampled state measurements using the T 2
UCL

from Eq.2.6 with confidence level α = 0.001 and degrees of freedom (3, 8) for T 2
1 , (1,10)

for T 2
2 and (4,7) for T 2. Also, the data is prone to greater false alarms, because over the

short window of 10 observations the trajectories are much more serially correlated and can

be susceptible to almost singular covariance matrices, leading to large T 2 values for small

deviations from the mean. Figure 2.8 shows the T 2 statistic for the same results, calculated

instead from individual observations (m = 1) using the UCL from Eq.2.9 with confidence

level α = 0.01 and degrees of freedom (3,2997), (1,2999) and (4,2996) for T 2
1 , T 2

2 and T 2,

respectively. Observe that the moving average of m = 10 observations causes a delay in the

fault detection time compared to the case where m = 1.

In both methods, the T 2 statistic exceeds the upper control limit T 2
UCL, signaling a

failure, around t = 0.5 hr. The T 2
1 value remained below its threshold while the T 2

2 value

exceeded T 2
UCL2. This shows that the output (subvector 1) was not affected by the failure.

In the case of proportional control with a failure in d1 the T 2 statistic accurately shows
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Figure 2.8: CSTR example. Closed-loop system under feedback-linearizing control with
sample size m = 1. Statistics T 2, T 2

1 and T 2
2 (solid) with TUCL (dashed) with a failure in

d1 at t = 0.5 hr.
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Figure 2.9: CSTR example. Closed-loop system under proportional control with sample
size m = 10. Statistics T 2, T 2

1 and T 2
2 (solid) with TUCL (dashed) with a failure in d1 at

t = 0.5 hr.
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Figure 2.10: CSTR example. Closed-loop system under proportional control with sample
size m = 1. Statistics T 2, T 2

1 and T 2
2 (solid) with TUCL (dashed) with a failure in d1 at

t = 0.5 hr.

that the failure occurred around time t = 0.5 hr. Figures 2.9 and 2.10 show the results

m = 10 and m = 1, respectively. However, in this simulation, all of the state trajectories

were affected by the failure resulting in values of T 2
1 and T 2

2 that exceeded the upper control

limits. In the case of a failure in d2, introduced as a step change of magnitude 1 K/s both

proportional control and feedback-linearizing control show failures in T 2 at t = 0.5 hr as

well as in both subsystems T 2
1 and T 2

2 see Figures 2.11 and 2.12. Looking at T 2
1 and T 2

2 in

Figures 2.8 and 2.11, it is clear that fault d1 did not affect the output whereas d2 did. In

this situation, where only one fault in each group is considered, it is possible to successfully

identify the failure in Figure 2.8 as d1. However, for proportional control, all of the states

were affected by each failure (see Figures 2.10 and 2.12) leaving an unclear picture as to

the cause of the fault.

A Monte Carlo simulation study was performed by randomly varying the fault sizes

and the amount of variance in the process and measurement noise in order to verify that

the method performs as expected in a broad range circumstances. In total, 500 simulations

were run, each with uniformly distributed random values of fault size, process noise variance
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Figure 2.11: CSTR example. Closed-loop system under feedback-linearizing control with
sample size m = 1. Statistics T 2, T 2

1 and T 2
2 (solid) with TUCL (dashed) with a failure in

d2 at t = 0.5 hr.
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Figure 2.12: CSTR example. Closed-loop system under proportional control with sample
size m = 1. Statistics T 2, T 2

1 and T 2
2 (solid) with TUCL (dashed) with a failure in d2 at

t = 0.5 hr.
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Figure 2.13: CSTR example. Manipulated input profiles for both the proportional controller
(¦) and the feedback-linearizing controller (×) with a failure in d1 at time t = 0.5 hr

and sensor noise variance. Only a fault in d1 was considered with values ranging from 0 to

3 kmol/m3s. The standard deviation of the process noise σp and the sensor noise σm ranged

from 0 to twice the values reported in Table 2.2. A single observation T 2 statistic was used

with the associated UCL. The results of these simulations were that from 500 runs, faults

were detected when d1 > 0.21 with an average initial detection time of 30.7min. Out of the

500 runs, a single run was detected by the T 2 statistic but showed no failure in either T 2
1

or T 2
2 .

Finally, to follow-up on the point of Remark 8, while the feedback-linearizing controller

is not an optimal controller, Figure 2.13 shows that the control action requested by the

feedback-linearizing controller is not excessive and is comparable to that of the control

action requested by the proportional controller.

Remark 9: The simulation results showed that the traditional setting for Hotelling’s T 2

statistic which calls for using m randomly sampled observations and a covariance matrix

based upon the sampled data was less accurate than the method of individual observations.

This is due to the fact that the data is not normally distributed on a short timescale. A

small number of observations in a sample can lead to an almost singular S, while on the
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other hand, the predicted distribution for a large number of observations per sample becomes

increasingly narrow which reveals the fact that the data over a short period are in fact

serially correlated. While this could be remedied by using a larger sample timescale, this

may become inappropriate due to the need to quickly identify faults. However, the single

observation method is a reasonable approach because the individual observations hold to the

normal distribution over a long period of time.

2.5.2 Application to a polyethylene reactor

In this subsection, the proposed method will be demonstrated using a model of an industrial

gas phase polyethylene reactor. The feed to the reactor consists of ethylene, comonomer,

hydrogen, inerts and catalyst. A recycle stream of unreacted gases flows from the top of the

reactor and is cooled by passing through a water-cooled heat exchanger. Cooling rates in

the heat exchanger are adjusted by mixing cold and warm water streams while maintaining

a constant total cooling water flow rate through the heat exchanger. Mass balances on

hydrogen and comonomer have not been considered in this study because hydrogen and

comonomer have only mild effects on the reactor dynamics [37]. A mathematical model for

this reactor has the following form ([9]):

d[In]
dt

=
1
Vg

(FIn − [In]
[M1] + [In]

bt)

d[M1]
dt

=
1
Vg

(FM1 −
[M1]

[M1] + [In]
bt −RM1)

dY1

dt
= Fcac − kd1Y1 − RM1MW1Y1

Bw
+ d2

dY2

dt
= Fcac − kd2Y2 − RM1MW1Y2

Bw
+ d2

dT

dt
=

Hf + Hg1 −Hg0 −Hr −Hpol

MrCpr + BwCppol
+ d1

dTw1

dt
=

Fw

Mw
(Twi − Tw1)−

UA

MwCpw
(Tw1 − Tg1)

dTg1

dt
=

Fg

Mg
(T − Tg1) +

UA

MgCpg
(Tw1 − Tg1) + d3

(2.19)
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where
bt = VpCv

√
([M1] + [In])RRT − Pv

RM1 = [M1]kp0e
−Ea

R
( 1

T
− 1

Tf
)
(Y1 + Y2)

Cpg =
[M1]

[M1] + [In]
Cpm1 +

[In]
[M1] + [In]

CpIn

Hf = (FM1Cpm1 + FInCpIn)(Tfeed − Tf )

Hg1 = Fg(Tg1 − Tf )Cpg

Hg0 = (Fg + bt)(T − Tf )Cpg

Hr = HreacMW1RM1

Hpol = Cppol(T − Tf )RM1MW1

(2.20)

The definitions for all the variables used in Eqs.2.19-2.20 are given in Table 2.3 and their

values can be found in Table 2.4 (see [9, 23]). Under normal operating conditions, the

open-loop system behaves in an oscillatory fashion (i.e., the system possesses an open-loop

unstable steady-state surrounded by a stable limit cycle). The open-loop unstable steady-

state around which the system will be controlled is

[In]ss = 439.7mol
m3 [M1]ss = 326.7mol

m3

Y1ss, Y2ss = 3.835mol Tss = 356.2K

Tg1ss = 290.4K Tw1ss = 294.4K.

Note that with the given parameters, the dynamics of Y1, Y2 are identical and will be

reported in the results as a single combined state. In this example, we consider three

possible faults, d1, d2, and d3 which represent a change in the feed temperature, catalyst

deactivation and a change in the recycle gas flow rate, respectively. The manipulated inputs

are the feed temperature, Tfeed, and the inlet flow rate of ethylene, FM1. The control

objective is to stabilize the system at the open-loop unstable steady state. In addition, in

order to apply the proposed FDI scheme, the controller must guarantee that the closed-

loop system satisfies the isolability conditions. The open-loop system is highly coupled. If

the controller does not impose a specific structure, all the states have mutually dependent

dynamics (i.e., they consist of one node in the isolability graph as stated in Definition 5).
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Table 2.3: Polyethylene reactor example process variables.
ac active site concentration of catalyst
bt overhead gas bleed
Bw mass of polymer in the fluidized bed
Cpm1 specific heat capacity of ethylene
Cv vent flow coefficient
Cpw, CpIn, Cppol specific heat capacity of water, inert gas and polymer
Ea activation energy
Fc, Fg flow rate of catalyst and recycle gas
FIn, FM1 , Fw flow rate of inert, ethylene and cooling water
Hf , Hg0 enthalpy of fresh feed stream, total gas outflow stream from

reactor
Hg1 enthalpy of cooled recycle gas stream to reactor
Hpol enthalpy of polymer
Hr heat liberated by polymerization reaction
Hreac heat of reaction
[In] molar concentration of inerts in the gas phase
kd1 , kd2 deactivation rate constant for catalyst site 1, 2
kp0 pre-exponential factor for polymer propagation rate
[M1] molar concentration of ethylene in the gas phase
Mg mass holdup of gas stream in heat exchanger
MrCpr product of mass and heat capacity of reactor walls
Mw mass holdup of cooling water in heat exchanger
MW1 molecular weight of monomer
Pv pressure downstream of bleed vent
R, RR ideal gas constant, unit of J

mol·K , m3·atm
mol·K

T , Tf , Tfeed reactor, reference, feed temperature
Tg1 , Tw1 temperature of recycle gas, cooling water stream from ex-

changer
Twi inlet cooling water temperature to heat exchanger
UA product of heat exchanger coefficient with area
Vg volume of gas phase in the reactor
Vp bleed stream valve position
Y1, Y2 moles of active site type 1, 2
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Table 2.4: Polyethylene reactor example parameters and units.
Vg = 500 m3

Vp = 0.5
Pv = 17 atm
Bw = 7 · 104 kg

kp0 = 85 · 10−3 m3

mol·s
Ea = (9000)(4.1868) J

mol

Cpw = (103)(4.1868) J
kg·K

Cv = 7.5 mol
atm0.5·s

Cpm1, CpIn = (11)(4.1868), (6.9)(4.1868) J
mol·K

Cppol = (0.85 · 103)(4.1868) J
kg·K

kd1 = 0.0001 s−1

kd2 = 0.0001 s−1

MW1 = 28.05 · 10−3 kg
mol

Mw = 3.314 · 104 kg
Mg = 6060.5 mol

MrCpr = (1.4 · 107)(4.1868) J
K

Hreac = (−894 · 103)(4.1868) J
kg

UA = (1.14 · 106)(4.1868) J
K·s

FIn, FM1 , Fg = 5, 190, 8500 mol
s

Fw = (3.11 · 105)(18 · 10−3) kg
s

F s
c = 5.8

3600
kg
s

Tf , T s
feed, Twi = 360, 293, 289.56 K

RR = 8.20575 · 10−5 m3·atm
mol·K

R = 8.314 J
mol·K

ac = 0.548 mol
kg

umax
1 , umax

2 = 5.78 · 10−4, 3.04 · 10−4 K
s , mol

s

[In]s = 439.68 mol
m3

[M1]s = 326.72 mol
m3

Y1s , Y2s = 3.835, 3.835 mol
Ts , Tw1s

, Tg1s
= 356.21, 290.37, 294.36 K
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In the present work, we propose to design a nonlinear controller to decouple [In], [M1] and

T from (Y1, Y2) and from Tw1 and Tg1. In this way, the resulting closed-loop system consists

of three subsystems (i.e., three nodes in the isolability graph) that do not have mutually

dependent dynamics. In addition, the signature of each of the three faults is different, and

thus, the fault isolability conditions are satisfied. In order to accomplish this objective, we

define the following control laws:

FM1 = u2Vg + FM1ss

Tfeed =
u1(MrCpr + BW Cppol) + Hfss

FM1Cpm1 + FInCpIn
+ Tf

(2.21)

with
u1 =

Hr −Hrss + Hpol −Hpolss −Hg1 + Hg1ss

MrCpr + BwCppol
+ v1

u2 =
RM1 −RM1ss

Vg
+ v2

(2.22)

where terms with the subscript ss are constants evaluated at the steady state and v1, v2 are

the external inputs that will allow stabilizing the resulting closed-loop system (see Eq.2.23)

below. Under the control law of Eq.2.22, the dynamics of the states, T and [M1], take the

following form in the closed-loop system:

d[M1]
dt

= (FM1 −
[M1]

[M1] + [In]
bt −RM1ss)

1
Vg

+ v2

dT

dt
=

Hf + Hg1ss −Hg0 −Hrss −Hpolss

MrCpr + BwCppol
+ v1 + d1

(2.23)

It can be seen that these states only depend on [In], [M1] and T . The closed-loop system

under the controller of Eq.2.21 has a reduced incidence graph with three nodes q1, q2

and q3 corresponding to the three partially decoupled subsystems X1 = {[In], [M1], T},
X2 = {Y1, Y2} and X3 = {Tg1, Tw1}, respectively. The resulting isolability graph for the

closed-loop system is shown in Figure 2.14. This structure leads to each of the three faults

d1, d2 and d3 having unique signatures W 1 = [1 1 1]T , W 2 = [0 1 0]T and W 3 = [0 0 1]T and
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q3 q2

q1 d3

d1 d2

Figure 2.14: Isolability graph for the system of Eq.2.19.

allows fault detection and isolation in the closed-loop system using the proposed data-based

FDI scheme. In open-loop operation, the system has an unstable steady-state with a limit-

cycle as shown by [23]. In order to understand the stability properties of the entire closed-

loop system, the stability of each subsystem around its equilibrium point was investigated

assuming that the remaining states were at their equilibrium points. It can be seen that

both of the uncontrolled subsystems X2 = {Y1, Y2} and X3 = {Tg1, Tw1} are stable. This

implies that to obtain a stable closed-loop system, the control inputs v1, v2 have to be

designed to stabilize the subsystem X1 = {[In], [M1], T}. In the present example, two PI

controllers are implemented that determine v1 and v2 to regulate each state independently.

By simulation, the PI controllers have been tuned to stabilize the equilibrium of the closed-

loop system and achieve a reasonable closed-loop response with regard to requested control

action and response time. Note that any controller that stabilizes subsystem X1 can be

used. The main objective is to demonstrate the proposed data-based FDI method. The PI

controllers are defined as follows:

v1(t) = K1(Tss − T +
1
τ1

∫ t

0
(Tss − T )dt)

v2(t) = K2([M1]ss − [M1] +
1
τ2

∫ t

0
([M1]ss − [M1])dt)

(2.24)
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Table 2.5: Polyethylene reactor noise parameters
σp σm φ

[In] 1E-3 5E-2 0
[M1] 1E-3 5E-2 0.7
Y 1E-3 1E-2 0.7
T 5E-3 5E-2 0.7
Tg1 5E-3 5E-2 0.7
Tw1 5E-3 5E-2 0.7

with K1 = 0.005, K1 = 0.0075, τ2 = 1000, τ1 = 500. We will refer to the controller defined

by Eqs.2.21, 2.22 and 2.24 as the “decoupling” controller. Additionally, for comparison

purposes, a controller is used that stabilizes the closed-loop system, but does not take

into account the isolability conditions of the proposed FDI method. Specifically, two PI

controllers will be used to regulate T and M1. This will be denoted as the “PI-only” control

law. The inputs FM1 and Tfeed are defined by Eq.2.21, but in this case, u1 and u2 are

evaluated by applying the PI controllers of Eq.2.24 with the same tuning parameters to the

states T and M1.

The PI-only controller stabilizes the equilibrium point under normal operating con-

ditions, however, all the states are mutually dependent, or in other words the reduced

incidence graph consists of only one node. This implies that every fault affects all the state

trajectories, making isolation of the fault a difficult task. The proposed FDI scheme cannot

be applied because the closed-loop system does not satisfy the isolability conditions, i.e.,

all the system faults have the same signature. Simulations have been carried out for several

scenarios to demonstrate the effectiveness of the proposed FDI scheme in detecting and

isolating the three faults d1, d2 and d3. In all the simulations, sensor measurement and

process noise were included. The sensor measurement noise trajectory was generated using

a sample time of ten seconds and a zero-mean normal distribution with standard deviation

σM . The autoregressive process noise was generated discretely as wk = φwk−1 + ξk, where

k = 0, 1, . . . , is the discrete time step, with a sample time of ten seconds, φ is the au-

toregressive coefficient and ξk is obtained at each sampling step using a zero-mean normal

distribution with standard deviation σp. The autoregressive process noise is added to the

right-hand side of the differential equations for each state and the sensor measurement noise
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Figure 2.15: Polyethylene reactor example. Distribution of normalized, fault-free operating
data compared with a normal distribution of the same mean and covariance.

is added to the measurements of each state. Sensor measurement noise and process noise are

evaluated independently for each state variable. The process and sensor measurement noise

for Y1 and Y2 are taken to be equal. Table 2.5 provides the values of the noise parameters

for each state of the system of Eq.2.19. The same assumptions regarding the multivariate

normal distribution of the measured process data under closed-loop operation for the CSTR

example apply to this example. Figure 2.15 shows the distribution of the state measure-

ments over a long period of fault-free operation is approximately Gaussian. For each failure

dk, two simulations have been carried out. One using the decoupling controller and another

using the PI-only controller. Both simulations have been carried out using the same sensor

measurement and process noise trajectories. Starting from steady-state, the three different

failures with values d1 = 10 K
s , d2 = −0.002 mol

s , and d3 = 300 K
s were introduced at time

t = 0.5hr. These failures are disturbances in the dynamics of T , Y and Tg1 and represent

changes in the feed temperature, catalyst deactivation and changes in the recycle gas flow

rate, respectively. Figures 2.16, 2.17 and 2.18 show the state trajectories of the closed-

loop system under the decoupling controller (solid line) and the PI-only controller (dashed

line) for each of the three possible faults. It can be seen that for the PI-only controller,
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Figure 2.16: Polyethylene reactor example. State trajectories of the closed-loop system
under decoupling (solid) and PI-only (dashed) controllers with a fault d2 at t = 0.5 hr.

each time a fault occurs, all states deviate from the normal operating region around the

equilibrium point. This makes isolation a difficult task. However, the closed-loop state tra-

jectories under the decoupling controller demonstrate that when a given fault occurs, not

all state trajectories are affected. The decoupling of some states from given faults allows

for the isolation of the faults based on the T 2
i statistics. Specifically, the state trajecto-

ries of the closed-loop system under the decoupling controller were monitored using the T 2

statistic based on all the states of the system of Eq.2.19 and the T 2
i statistic corresponding

to each one of the three subsystems X1, X2, and X3. All statistics were monitored using

the single-observation method (m = 1) with the upper control limit defined in Eq.2.9 and

the covariance matrix, S, obtained from historical observations. As in the CSTR example,

simulations were also run using a multiple observation test statistic (m = 10). This method

showed similar results in terms of fault detection and isolation to the ones of the single

observation statistic and are not presented here for brevity.

Figures 2.19, 2.20 and 2.21 show the trajectories of T 2, T 2
1 , T 2

2 and T 2
3 for each different

scenario along with the corresponding upper control limits. Each failure is defined by a

unique signature that can be isolated based on the monitored statistics. Figure 2.19 shows
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Figure 2.17: Polyethylene reactor example. State trajectories of the closed-loop system
under the decoupling (solid) and PI-only (dashed) controllers with a fault d3 at t = 0.5hr.
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Figure 2.18: Polyethylene reactor example. State trajectories of the closed-loop system
under the decoupling (solid) and PI-only (dashed) controllers with a fault d1 at t = 0.5 hr.
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the statistics corresponding to the simulation with a failure in d2. The signature of d2

is W 2 = [0 1 0]T , because the dynamics of the states corresponding to X1 and X3 are

not affected by fault d2; that is, there is no path from the node corresponding to d2 to

the nodes corresponding to X1 and X2 in the isolability graph of the closed-loop system.

Figure 2.19 clearly shows the fault occurring at time t = 0.5hr and the signature that we

would expect; that is, only T 2
2 violates the upper control limit. The state trajectories of

this faulty scenario of Figure 2.16 demonstrates that there is a failure affecting Y starting

at t = 0.5hr. The failure affects all the state trajectories under PI-only control but affects

only Y for the closed-loop system under nonlinear decoupling control. Similarly, a failure

in Tg1 affects only subsystem X3. The state trajectories of Figure 2.17 shows that under

PI-only control, all of the states are affected, whereas under decoupling control, only the

subsystem X3 = {Tg1, Tw1} is affected. The statistics in Figure 2.20 show that the signature

of the fault is [0 0 1]T = W 3. The signature of fault d1 is W 1 = [1 1 1]T , meaning that

this fault affects all the states in the closed-loop system. The state trajectories and the

corresponding statistics are shown in Figures 2.18 and 2.21. The control action required

under the decoupling control law is on the same order of magnitude as that of the PI-only

controller. Figure 2.22 shows the manipulated input trajectories for both controllers in the

scenario with fault d2 occurring.

Remark 10: Although the method of determining faults by monitoring T 2
i values was used

in this example, other FDI methods could benefit from the fact that the enforced structure

separates regions of faulty operation. In the case where the desired structure is only par-

tially achieved due to plant-model mismatch or other uncertainties, it may be necessary to

utilize more sophisticated methods of fault detection and isolation (e.g., contribution plots

or clustering). It should be noted that even an incomplete decoupling will benefit many of

these methods as the regions of faulty operation are still at least partially separated.

2.6 Conclusions

This chapter has proposed a method for integrating the design of the feedback control

law with the fault detection and isolation scheme. This approach strengthens existing
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Figure 2.19: Polyethylene reactor example. Statistics T 2, T 2
1 , T 2

2 , and T 2
3 (solid) with TUCL

(dashed) of the closed-loop system under the decoupling controller with a failure in d2 at
t = 0.5 hr.
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Figure 2.20: Polyethylene reactor example. Statistics T 2, T 2
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2 , and T 2
3 (solid) with TUCL

(dashed) of the closed-loop system under the decoupling controller with a failure in d3 at
t = 0.5 hr.
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Figure 2.21: Polyethylene reactor example. Statistics T 2, T 2
1 , T 2

2 , and T 2
3 (solid) with TUCL

(dashed) of the closed-loop system under the decoupling controller with a failure in d1 at
t = 0.5 hr.
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Figure 2.22: Polyethylene reactor example. Manipulated input profiles for both decoupling
(solid) and PI-only (dashed) control with a fault in d2 at t = 0.5hr.
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FDI techniques by enforcing an appropriate structure on the closed-loop system that may

separate regions of faulty operation in the state space such that fault isolation may become

possible. This was illustrated through two chemical process examples, a CSTR example

and a polyethylene reactor example. By carefully designing the feedback controller, it

was demonstrated that it is possible to enhance the isolability of particular faults. In the

CSTR example, feedback linearization was used to achieve the required closed-loop system

structure in order to perform fault detection and isolation, whereas in the polyethylene

reactor example, a more general approach to nonlinear controller design was used in meeting

the required conditions for isolability. Additionally, it was demonstrated that using a data-

based method of monitoring the T 2
i values of the resulting subsystems, it was possible to

isolate certain faults due to the enforced closed-loop system structure.
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Chapter 3

Plant-wide FDI

3.1 Introduction

This chapter further extends the results of Chapter 2 to a plant-wide setting with a multiple-

input multiple-output reactor-reactor-separator system. The focus of this chapter is to

demonstrate in a plant-wide setting the fault detection and isolation that integrates model-

based controller design with data-based fault detection in order to perform fault isolation.

The work demonstrates that the achievement of fault isolation across multiple coupled

units is possible through feedback control. Additionally the effects of process and sensor

measurement noise on the ability to detect and accurately isolate faults are investigated

through a Monte-Carlo simulation study. The results from the nonlinear control simulation

are compared with a conventional (proportional-integral) feedback controller to demonstrate

that without the isolable structure induced by feedback control the faults are otherwise

indistinguishable without prior knowledge of fault history.

3.2 Preliminaries

3.2.1 Fault signatures

The objective of this chapter is to demonstrate the method proposed in Chapter 2 of con-

troller enhanced fault detection and isolation in a multi-unit setting. Controller enhanced
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FDI was introduced in Chapter 2 as a method of dividing the state vector into a number

of partially decoupled subvectors which can be monitored for their individual responses

to particular faults in the system using process measurements only. Based on their re-

sponses and the system structure imposed by the model-based controllers, it is possible to

discriminate between individual faults or groups of faults. Dividing the state vector into

partially decoupled subvectors is accomplished by using model-based control laws to enforce

an appropriate structure. Based on this structure, faults affecting the system produce a

unique response as observed in the state trajectories. The responses of the subvectors are

monitored for out-of-control behavior using standard process monitoring methods that take

into account the acceptable level of variation under normal operating conditions (i.e., com-

mon cause variation). Thus, this approach brings together model-based controller design

techniques and data-based statistical process monitoring for diagnosing faults. To better

understand the structure that must be enforced in order to perform fault isolation, we re-

view the definitions of the incidence graph, the reduced incidence graph and the isolability

graph in the context of nonlinear deterministic systems.

Definition 8 The incidence graph of an autonomous system ẋ = f(x) with x ∈ Rn is a

directed graph defined by n nodes, one for each state, xi, i = 1, . . . , n, of the system. A

directed arc with origin in node xi and destination in node xj exists if and only if ∂fj

∂xi
6= 0.

Definition 9 The reduced incidence graph of an autonomous system ẋ = f(x) with x ∈ Rn

is the directed graph of nodes qi, where i = 1, ..., N , that has the maximum number of nodes,

N , and satisfies the following conditions:

• To each node qi there corresponds a set of states Xi = {xj}. These sets of states are

a partition of the state vector of the system, i.e.,

⋃
Xi = {x1, . . . , xn}, Xi

⋂
Xj = ∅, ∀i 6= j.

• A directed arc with origin qi and destination qj exists if and only if ∂fl
∂xk

6= 0 for some

xl ∈ Xi, xk ∈ Xj.

• There are no loops in the graph.
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The incidence graph of a system shows the time derivative dependencies between the

states. By reducing fully coupled states to a single node, the reduced incidence graph reveals

any partially decoupled subsystems that may exist. With the structure of the subsystems

revealed, it is beneficial to look at how faults affect each of the subsystems as shown in an

isolability graph.

Definition 10 The isolability graph of an autonomous system ẋ = f(x, d) with x ∈ Rn,

d ∈ Rp is a directed graph made of the N nodes of the reduced incidence graph of the system

ẋ = f(x, 0) and p additional nodes, one for each possible fault dk. The graph contains all

the arcs of the reduced incidence graph of the system ẋ = f(x, 0). In addition, a directed arc

with origin in fault node dk and destination to a state node qj exists if and only if ∂fl
∂dk

6= 0

for some xl ∈ Xj.

These definitions are convenient in presenting the basic dependencies within a state vec-

tor. Although this graphical approach has the advantage of visualizing the system structure,

it may be noted that it is also possible to understand the structure a system and its faults

using the definition of relative degree [28]. This approach has been used previously in other

FDI papers [47, 55].

In most complex systems, the states are fully coupled and the isolability graph contains a

single node representing all of the states in the system. However, in systems with partially

decoupled dynamics this demonstrates graphically the partially independent subsets of the

state vector. Consider, for example, the following system:

ẋ1 = x1 + x2 + u + d1

ẋ2 = −x2 + x1 + d2

ẋ3 = x1 − x2 − x3 + d3

(3.1)

Figure 3.1 shows the incidence and reduced incidence graphs for the system of Eq.3.1.

Because x1 and x2 are mutually dependent but are not affected by x3, they form a partially

decoupled subsystem represented by a single node (q1) in the reduced incidence graph

leaving x3 to form a node by itself (q2). Figure 3.2 shows the effect of each of the faults

in the isolability graph for the system of Eq.3.1. With the isolability graph of a system,
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Figure 3.1: Incidence and reduced incidence graphs for the system of Eq.3.1.
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Figure 3.2: Isolability graph of the system of Eq.3.1.

58



it is possible to consider fault isolation based upon monitoring the subsystems. For this

purpose, it is necessary to review the definition of a fault signature given below (see also,

Chapter 2).

Definition 11 The signature of a fault dk of an autonomous system subject to p faults

ẋ = f(x, d) with x ∈ Rn, d ∈ Rp is a binary vector W k of dimension N , where N is

the number of nodes of the reduced incidence graph of the system. The ith component of

W k, denoted W k
i , is equal to 1 if there exists a path in the isolability graph from the node

corresponding to fault k to the node qi corresponding to the set of states Xi; W k
i is equal to

0 otherwise.

Using this definition of a fault signature and the isolability graph shown in Figure 3.2,

it is possible to identify the fault signatures for the three faults considered in the system

of Eq.3.1. In this case, because the node q2 = {x3} does not affect the node q1 = {x1, x2},
the fault d3 has the signature W 3 = [0 1] and the two faults d1 and d2 which affect q1 and

q2 have the signature W 1 = W 2 = [1 1]. Based on this, it is expected that a failure in d1

or d2 will affect all of the states, whereas a failure in d3 is expected to affect only those in

q2. In this regard, it is possible to distinguish between a failure in d3 from a failure in d1

or d2 based on the system response. However, it is not generally possible to discriminate

between a failure in d1 and d2.

Remark 11 The process model for the system of Eq.3.1 does not explicitly account for

process and sensor noise. Likewise, the isolability graph and associated fault signatures

are developed for the deterministic case. However, noise is accounted for in the process

monitoring method given in the next section by means of appropriate tolerance thresholds

(computed using historical process data) in the decision criteria for fault detection and

isolation. The thresholds are based on historical, fault-free operating data and take into

account both sensor and process noise present under normal operating conditions. This

allows for appropriate FDI performance even if the process model and the measurements

are corrupted by noise.
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3.2.2 Process monitoring

The discussion in the previous subsection focused on deterministic process behavior in which

evaluation of the fault signature based on the isolability graph is straight-forward. On the

other hand, in processes subject to state and measurement noise, it is possible to have false

positives and false negatives in determining the affect of a fault on the state trajectories. In

the simulation results section of this chapter, autocorrelated noise is added to the process

dynamic equations and white sensor noise is added to process measurements. For this

reason, in order to make a comparison between the fault signature based on the expected

response of the system from the isolability graph and the system signature based on the

actual behavior (computed on the basis of process measurements), it is necessary to use a

method of monitoring the state trajectories that clearly distinguishes normal behavior from

faulty behavior and is tolerant to the normal amount of process variation (as computed

from process historical data). Additionally, it is assumed that faults of interest will be

sufficiently large so that their effect will not be masked by normal process variation; faults

whose influence on the closed-loop system behavior over a large time window is within

the normal common-cause process variation do not have a significant effect on the process.

These types of faults are generally inconsequential and do not need to be handled via

fault-tolerant control schemes.

For the purpose of process monitoring, we use Hotelling’s T 2 statistic, a well established

method in statistical process control that monitors multivariate data using a single statis-

tic [60]. Because of its suitability for continuous, serially correlated chemical processes, the

method of using single observations is employed [63, 50]. The T 2 statistic is computed using

the multivariate state vector (or subset of the state vector) x ∈ Rn, the expected or desired

mean x̄ (the normal operating point) and the estimated covariance matrix S obtained using

h historical measurements of the system under normal operation:

T 2 = (x− x̄)T S−1(x− x̄) (3.2)

The upper control limit for the T 2 statistic is obtained from its distribution and is computed
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using the following equation:

T 2
UCL =

(h2 − 1)n
h(h− n)

Fα(n, h− n) (3.3)

where Fα(n, h− n) is the value from the F distribution with (n, h− n) degrees of freedom

corresponding to a confidence level α. The T 2 statistic is used to both detect that a fault

has occurred as well as provide the system signature that can be compared with the fault

signatures defined by the isolability graph. In order to perform these tasks, the T 2 statistic

based on the full state vector x with upper control limit T 2
UCL is first used to detect the

presence of a fault. Subsequently, the T 2
i statistic is used to monitor the status of each

subset of the state vector with an upper control limit T 2
UCLi where i = 1, . . . , N that is

based on each of the nodes qi and their corresponding states xj ∈ Xi .

The fault detection and isolation procedure then follows the steps given below:

1. A fault is detected if T 2(t) > T 2
UCL, ∀t, tf ≤ t ≤ TP where tf is the first time T 2

crosses the UCL and TP is chosen so that the window TP − tf is large enough to

allow fault isolation with a desired degree of confidence. Choosing TP depends on

the process time constants and potentially on available historical information on the

process behavior.

2. A fault that is detected can be isolated if the signature vector of the fault W (tf , TP )

can be built as follows:

T 2
i (t) > T 2

UCLi, ∀t, tf ≤ t ≤ TP → Wi(tf , TP ) = 1.

T 2
i (t) ≯ T 2

UCLi, ∀t, tf ≤ t ≤ TP → Wi(tf , TP ) = 0.

In such a case, fault dk is detected at time TP if W (tf , TP ) = W k. If two or more

faults are defined by the same signature, isolation between them is not possible on

the basis of the fault signature obtained from the isolability graph.

It should be noted that the method of fault detection discussed here makes no assump-

tion regarding the time-scale of the fault. In general, both abrupt and slowly developing
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faults will be detected and isolated. However, slowly developing faults are more likely to

be subject to false isolation if the fault is diagnosed before becoming sufficiently large as

discussed in Remark 12. To minimize such effects, it is important to adjust the detection

window TP , based on the individual system dynamics. For information regarding fault

detection time see [16, 15, 14]. Additionally, it should be noted that the detection and

isolation method discussed here requires no significant real-time computation other than

computing the T 2 statistics which require only minimal computation time.

Remark 12 In the data-based fault detection and isolation method presented above, the

upper control limit is chosen based on common-cause variance, including process and sensor

noise, in order to minimize false alarms. Additionally, to further avoid false alarms, a period

of persistent failure is required, TP − tf . For these reasons, small disturbances or failures

are likely to go undetected if the magnitude and effect of the disturbance is on the same level

as that of the inherent process variance. Specifically, in order to declare a fault, dk must be

sufficiently large in order for T 2
i (t) to exceed the threshold T 2

UCLi ∀t tf ≤ t ≤ TP . Clearly,

faults that do not meet the criteria for declaring a fault are, from the point of view of faulty

behavior, not of major consequence. However, it should be noted that there is the probability

(albeit low) that there is a fault dk that is large enough to signal a fault in the full state

vector, x, but is not large enough to signal a fault in all of the affected subgroups. In this

case, it is possible to have a false isolation. This is investigated in the results section by

simulating the closed-loop system a large number of times with randomly varying fault sizes

in a Monte-Carlo type simulation.

3.2.3 Controller design

The approach to fault detection and isolation discussed in the previous two sections can be

applied if the signatures of the faults in the closed-loop system are distinct. The uniqueness

of a fault depends on the structure of the closed-loop system as shown in the isolability

graph. In general, complex nonlinear systems are fully coupled and faults cannot be isolated

using this method when the controller is designed only with closed-loop stability in mind.

Despite this being the case for most open-loop systems, an isolable structure in the closed-
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loop system can still be achieved through the application of appropriately designed nonlinear

control laws. Although many control laws exist that will achieve the desired goal, it is not

possible to apply a systematic procedure to controller design that guarantees closed-loop

stability and an isolable closed-loop system structure for any nonlinear process. The specific

form of the controller depends on the structure of the open-loop system and it is possible

that such a controller may not exist. Nonetheless, a general approach can be applied to

decouple a particular set of states from the rest of the system in a number of applications.

As an example, consider a controller that can be applied to nonlinear systems with the

following state space description:

ẋ1 = f11(x1) + f12(x1, x2) + g1(x1, x2)u + d1

ẋ2 = f2(x1, x2) + d2

(3.4)

where x1 ∈ R, x2 ∈ Rn, u ∈ R and g1(x1, x2) 6= 0 for all x1 ∈ R, x2 ∈ Rn. With a nonlinear

state feedback controller of the form:

u(x1, x2) = −f12(x1, x2)− v(x1)
g1(x1, x2)

(3.5)

the closed-loop system takes the form

ẋ1 = f11(x1) + v(x1) + d1

ẋ2 = f2(x1, x2) + d2

(3.6)

where v(x1) has to be designed in order to achieve asymptotic stability of the origin of

the x1 subsystem when d1 = 0. In this case the proposed controller guarantees asymptotic

stability of the closed-loop system, as well as different signatures for faults d1 and d2. Note

that the reduced incidence graph is defined by two nodes corresponding to both states and

the signatures are given by W 1 = [1 1]T and W 2 = [0 1]T . If necessary, using multiple

controllers allows for more degrees of freedom in breaking up the full state vector into

subvectors.

As an example, this is demonstrated with the system of Eq.3.1. Consider a controller
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added to the right-hand side of the dynamic equation for the state x1 of the form:

u = −x2 + v

where v is an external controller that may be used for stabilizing the system. With this

controller, the closed-loop system takes the form:

ẋ1 = x1 + d1 + v

ẋ2 = −x2 + x1 + d2

ẋ3 = x1 − x2 − x3 + d3

(3.7)

Since there are no longer loops in the system, the reduced incidence graph is now

equivalent to the incidence graph having three nodes (one for each state). Consequently,

it becomes possible to distinguish between faults d1 and d2 in addition to d3 using the

method described above. This method will be applied to the reactor-separator system

described in the next section. Note that the controller design outlined above does not take

into consideration optimality criteria beyond the tuning of the external controller v. It is

likely that the nonlinear feedback control law that enforces an isolable structure will incur

additional cost compared with a control law designed for optimality. In the simulation

results section, this issue is addressed by comparing the nonlinear feedback controller with

a conventional PI controller to show that the cost incurred for enabling fault isolation in

the closed-loop system is not excessive.

Remark 13 It is important to note that it is possible to extend the state feedback controller

design to an output feedback controller design, which uses a high-gain observer operating at

a fast time-scale to achieve state estimation, to enforce a near-isolable structure in the

closed-loop system. The reader may refer to [20, 6, 8] for results on high-gain observer

based output feedback control. However, the detailed development of this approach is outside

of the scope of the present chapter.
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Figure 3.3: Reactor-separator system with recycle.

3.3 Reactor-separator process

3.3.1 Process description and modeling

The process considered in this study is a three vessel, reactor-separator system consisting of

two continuous stirred tank reactors (CSTRs) and a flash tank separator (see Figure 3.3).

A feed stream to the first CSTR contains the reactant A which is converted into the desired

product B. The desired product can then further react into an undesired side-product C.

The effluent of the first CSTR along with additional fresh feed makes up the inlet to the

second CSTR. The reactions A → B and B → C (referred to as 1 and 2, respectively) take

place in the two CSTRs in series before the effluent from CSTR 2 is fed to a flash tank.

The overhead vapor from the flash tank is condensed and recycled to the first CSTR, and

the bottom product stream is removed. A small portion of the overhead is purged before

being recycled to the first CSTR. All three vessels are assumed to have static holdup. The

dynamic equations describing the behavior of the system, obtained through material and
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energy balances under standard modeling assumptions, are given below.

dxA1

dt
=

F10

V1
(xA10 − xA1) +

Fr

V1
(xAr − xA1)− k1e

−E1
RT1 xA1

dxB1

dt
=

F10

V1
(xB10 − xB1) +

Fr

V1
(xBr − xB1) + k1e

−E1
RT1 xA1 − k2e

−E2
RT1 xB1

dT1

dt
=

F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

Q1

ρCpV1
+
−∆H1

Cp
k1e

−E1
RT1 xA1

+
−∆H2

Cp
k2e

−E2
RT1 xB1 + u1

dxA2

dt
=

F1

V2
(xA1 − xA2) +

F20

V2
(xA20 − xA2)− k1e

−E1
RT2 xA2

dxB2

dt
=

F1

V2
(xB1 − xB2) +

F20

V2
(xB20 − xB2) + k1e

−E1
RT2 xA2 − k2e

−E2
RT2 xB2

dT2

dt
=

F1

V2
(T1 − T2) +

F20

V2
(T20 − T2) +

Q2

ρCpV2
+
−∆H1

Cp
k1e

−E1
RT2 xA2

+
−∆H2

Cp
k2e

−E2
RT2 xB2 + u2

dxA3

dt
=

F2

V3
(xA2 − xA3)− Fr + Fp

V3
(xAr − xA3)

dxB3

dt
=

F2

V3
(xB2 − xB3)− Fr + Fp

V3
(xBr − xB3)

dT3

dt
=

F2

V3
(T2 − T3) +

Q3

ρCpV3

(3.8)

The definitions for the variables used in Eq.3.8 can be found in Table 3.1, with the

parameter values given in Table 3.2. Each of the tanks has an external heat input. In

both CSTRs, the heat input is a manipulated variable for controlling the reactors at the

appropriate operating temperature. These are the only control actuators considered in the

system. The model of the flash tank separator operates under the assumption that the

relative volatility for each of the species remains constant within the operating tempera-

ture range of the flash tank. This assumption allows calculating the mass fractions in the

overhead based upon the mass fractions in the liquid portion of the vessel. It has also been

assumed that there is a negligible amount of reaction taking place in the separator. The

following algebraic equations model the composition of the overhead stream relative to the

composition of the liquid holdup in the flash tank:
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Table 3.1: Process Variables
xA1, xA2, xA3 mass fractions of A in vessels 1, 2, 3
xB1, xB2, xB3 mass fractions of B in vessels 1, 2, 3
xC1, xC2, xC3 mass fractions of C in vessels 1, 2, 3
xAr, xBr, xCr mass fractions of A, B, C in the recycle
T1, T2, T3 temperatures in vessels 1, 2, 3
T10, T20 feed stream temp. to vessels 1, 2
F1, F2, F3 effluent flow rate from vessels 1, 2, 3
F10, F20 feed stream flow rate to vessels 1, 2
Fr, Fp flow rates of the recycle and purge
V1, V2, V3 volume of vessels 1, 2, 3
u1, u2 manipulated inputs
E1, E2 activation energy for reactions 1, 2
k1, k2 pre-exponential values for reactions 1, 2
∆H1, ∆H2 heats of reaction for reactions 1, 2
αA, αB, αC relative volatilities of A, B, C
Q1, Q2, Q3 heat input into vessels 1, 2, 3
Cp, R heat capacity and gas constant

xAr =
αAxA3

αAxA3 + αBxB3 + αCxC3

xBr =
αBxB3

αAxA3 + αBxB3 + αCxC3

xCr =
αCxC3

αAxA3 + αBxB3 + αCxC3

(3.9)

The open-loop system of Eq.3.8 is fully coupled and is represented by a single node in

the reduced incidence graph. However, using appropriately designed model-based nonlinear

state feedback control laws for the manipulated inputs u1 and u2, it is possible to separate

the closed-loop system into four nodes in the isolability graph. Consider the following

nonlinear control laws which decouple the full state vector into 4 subvectors [8]:

u1 =
Fr

V1
(T3ss − T3)− −∆H1

Cp
k1e

−E1
RT1 (xA1 − xA1ss)− −∆H2

Cp
k2e

−E2
RT1 (xB1 − xB1ss) + v1

u2 = −−∆H1

Cp
k1e

−E1
RT2 (xA2 − xA2ss)− −∆H2

Cp
k2e

−E2
RT2 (xB2 − xB2ss) + v2

(3.10)

where the subscript ss refers to values at the steady state, or set point. The terms v1 and v2

are external controllers used to stabilize the system and achieve offset-free output tracking
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Table 3.2: Parameter Values
T10 = 300, T20 = 300 K

F10 = 1.4 · 10−3, F20 = 1.4 · 10−3 m3

s

Fr = 1.4 · 10−2, Fp = 1.4 · 10−3 m3

s

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5 · 104, E2 = 6 · 104 J
mol

k1 = 2.77 · 103, k2 = 2.5103 1
s

∆H1 = −6 · 104, ∆H2 = −7 · 104 J
mol

Cp = 4.2 · 103 J
kgK

R = 8.314 J
molK

ρ = 1000 kg
m3

Q1 = 3.5 · 105, Q2 = 4.5 · 105, Q3 = 3.5 · 105 J
s

αA = 3.5, αB = 1, αC = 0.5 unitless

and are defined, according to standard proportional-integral control formulas, as follows:

v1(t) = K1(T1ss − T1 +
1

τI1

∫ t

0
(T1ss − T1)dt)

v2(t) = K2(T2ss − T2 +
1

τI2

∫ t

0
(T2ss − T2)dt)

(3.11)

where K1, K2 are the proportional controller gains and τI1 and τI2 are the integral time

constants. The closed-loop system operating under the control laws defined in Eqs.3.10-

3.11 decouples T1 from xA1, xB1 and T3 and T2 from xA2 and xB2. The four subgroups

created by the controller of Eqs.3.10-3.11 are q1 = {T1}, q2 = {T2}, q3 = {T3} and q4 =

{xA1, xA2, xA3, xB1, xB2, xB3}. The resulting isolability graph is shown in Figure 3.4. From

the isolability graph the fault signatures can be defined as follows:

W 1 = [1; 1; 1; 1]

W 2 = [0; 1; 1; 1]

W 3 = [0; 0; 1; 0]

W 4 = [0; 0; 0; 1]

(3.12)

The four faults shown in Figure 3.4 are those that will be considered in this example.

They represent failures in the heat inputs to each of the tanks (faults d1, d2, d3) and a
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Figure 3.4: Isolability graph for the reactor-separator system.

feed stream concentration disturbance in species A in the inlet to CSTR 1 (d4). These

are added to the right-hand side of the dynamic equations for T1, T2, T3 and xA1. Note

that the FDI approach used places no restrictions on the fault di, which can represent any

time-varying signal. Thus, faults may be additive or parametric and can represent any fault

(e.g., time-varying biases, actuator failures, disturbances, process parameter failures).

For comparison purposes, in the simulation results, a PI controller with the form given in

Eq.3.11 is used. This control law is used for comparing the isolability of faults, using process

measurements only, in the closed-loop system under PI-only control and in the closed-loop

system under the nonlinear feedback control which enforces the isolable structure. Although

a PI controller is used for comparison in this chapter, any controller that does not enforce

an isolable structure in the closed-loop system would yield similarly indistinguishable faults.

Additionally, the PI-only controller will be used to evaluate the additional cost incurred by

the nonlinear feedback controller in order to enforce an isolable structure in the closed-loop

system.

3.3.2 Simulation results

The model presented in Section 3.3.1 was numerically simulated using a standard Runge-

Kutta integration method. The system was modeled with both process and sensor noise.
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The sensor measurement noise was generated as Gaussian distributed random noise with

standard deviation σm and was added to the state measurement at a sample rate of 0.1

sample/second. Noisy measurements were used in updating the feedback control law de-

scribed in Eqs.3.10-3.11 on the same interval. Process noise was added to the right-hand

side of each equation in the system of ODEs found in Eq.3.8. Process noise was generated

as autocorrelated noise of the form wk = φwk−1 + ξk where k = 0, 1, . . . is the discrete time

step of 1 second, wk is a normally distributed random variable with standard deviation σp

and φ is the autocorrelation factor. Table 3.3 contains the parameters used in generating

the noise. The sensor measurement and process noise were generated independently for

each state in the system. For purposes of fault detection, a window of 30 seconds was used

in declaring a fault (i.e., TP − tf = 30 sec).

The controllers were designed as shown in Eqs.3.10-3.11 using control parameters K1 =

K2 = 0.01
sec and τI1 = τI2 = 300sec. The PI controllers shown for comparison used the

same parameters. The system was controlled at the set point values of T1ss = 436.8 K and

T2ss = 433.9 K. In all cases, the system was initially at steady-state and was simulated

for 30 min fault-free and for 30 min after the occurrence of the fault. The four faults were

introduced as added terms on the right-hand side of the ODEs in Eq.3.8; only a single fault

was applied in each simulation. The values d1 = 1K
s , d2 = 2K

s , d3 = 1K
s and d4 = −2·10−3 1

s

were added to the dynamic equations for T1, T2, T3 and xA1, respectively. These represent

changes in the heat input (actuator/valve failures) for faults d1, d2 and d3 and an inlet

concentration disturbance in species A for fault d4. However, these faults could also be

thought of as any general faults as the development of this method does not limit the values

that d can take.

Four simulation scenarios were carried out, one for each fault, to demonstrate the method

of detecting and isolating faults in the closed-loop system. In order to apply the method

of fault detection and isolation presented in Section 3.2, the data should be multivariate

normal and fit the T 2 distribution under closed-loop operation. Figure 3.5 demonstrates

that the measurements from each of the states closely approximates a Gaussian distribution.

The distribution for the measured T 2 values is shown in Figure 3.6. Again we see that the

measured statistic closely approximates the predicted distribution, however, in this case
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Figure 3.5: Normalized histogram plots of each of the system states compared with a normal
distribution (dashed) for a large number of measurements during fault-free operation under
nonlinear feedback control.

the fit is less exact due to correlation between states. Nonetheless, the distribution is

reasonably close. If necessary, the upper control limit can be adjusted upward to provide a

more conservative limit if false alarms are problem.

Figure 3.7 shows the trajectories of the mass fractions in each of the tanks and the

recycle stream for the simulation in closed-loop operation under the nonlinear feedback

controller with a failure in d1. The effects of the failure at time t = 0.5 hr are visible in

the plot. The temperature trajectories for each of the tanks is shown in Figure 3.8 along

with the control action requested. Once the failure is detected at t = 0.5 hr, the T 2
i plots

are used to determine the fault signature for the system. Figure 3.9 shows the T 2 statistic

results for the four subsets of the state vector as well as for the full state vector. The

fault is detected at time t = 0.5 hr by the full T 2 and is isolated based on the four T 2
i

corresponding to the subsets. Based on the T 2
i plots the signature of the system in this

case is W = [1; 1; 1; 1] ≡ W 1. Thus, the fault is correctly isolated as one affecting the

states in q1 = T1, or d1. Note that although the process data are serially correlated on a

short timescale, this was compensated for by using a large amount of historical data for
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Figure 3.6: Histogram of T 2 statistic for the full state vector compared with the expected
T 2 distribution (dashed) for a large number of measurements during fault-free operation
under nonlinear feedback control.
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Figure 3.7: Plots of the mass fractions xA (solid), xB (dashed) and xC (dotted) for the
system under nonlinear feedback control with a failure in d1 at t = 0.5 hr.
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Table 3.3: Noise Parameters
σm σp φ

xA1 1E-3 1E-3 0.7
xB1 1E-3 1E-3 0.7
T1 1E-3 1E-2 0.7
xA2 1E-3 1E-3 0.7
xB2 1E-3 1E-3 0.7
T2 1E-3 1E-2 0.7
xA3 1E-3 1E-3 0.7
xB3 1E-3 1E-3 0.7
T3 1E-3 1E-2 0.7

estimating S. Additionally, it has been found that feedback control makes the closed-loop

system data more normally distributed (see [50]). Thus, the assumption that the data are

multivariate normal for applying the T 2 statistic is reasonable. This was also confirmed in

Figures 3.5-3.6. The simulation with a failure in d1 was repeated using only a PI controller

for comparison. The states were similarly all affected by fault d1 (see Figure 3.10) and the

control action requested was of comparable magnitude with that of the nonlinear feedback

controller (see Figure 3.11). This demonstrates that the control action requested by the

nonlinear feedback control law to enforce an isolable structure is not excessive in this case.

For the PI controller, the states of the closed-loop system are all fully coupled and thus

the state trajectories will all be affected by any fault, making it impossible to distinguish

between faults on the basis of process measurements. The simulation with a failure in d2,

below, demonstrates this point.

Figure 3.12 shows the T 2 results for the simulation in closed-loop operation under the

nonlinear feedback controller with a failure in d2 occurring at t = 0.5 hr. Note that

although there may be a brief violation of the upper control limit (e.g., at approximately

t = 0.2 hr in Figure 3.12), this is not declared as a fault nor is it a false alarm since a

fault is declared only after a persistent state of failure lasting at least 30 seconds to avoid

such situations. Once the fault is declared around time t = 0.5 hr the signature of the

system can be determined from the T 2
i plots which show W = [0; 1; 1; 1] ≡ W 2. For the

PI-only controller, all of the states were affected as they were in the case with a failure in

d1; however, the case with the nonlinear feedback controller designed to enforce an isolable
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Figure 3.8: (top) Temperature trajectories for T1 (solid), T2 (dashed) and T3 (dotted) for
the system under nonlinear feedback control with a failure in d1 at t = 0.5 hr. (bottom)
Control action requested for the same system for u1 (solid) and u2 (dashed).
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Figure 3.9: Plots of the T 2 statistic (solid) with the corresponding T 2
UCL (dashed) for each

of the subsystems and for the full state vector under nonlinear feedback control with a
failure in d1 at t = 0.5 hr.

74



0 0.2 0.4 0.6 0.8 1
0

0.5

1

V
es

se
l 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

V
es

se
l 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

V
es

se
l 3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

R
ec

yc
le

Time (hr)

Figure 3.10: Plots of the mass fractions xA (solid), xB (dashed) and xC (dotted) for the
system under PI control with a failure in d1 at t = 0.5 hr.
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Figure 3.11: (top) Temperature trajectories for T1 (solid), T2 (dashed) and T3 (dotted) for
the system under PI-only control with a failure in d1 at t = 0.5 hr. (bottom) Control action
requested for the same system for u1 (solid) and u2 (dashed).
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Figure 3.12: Plots of the T 2 statistic (solid) with the corresponding T 2
UCL (dashed) for

each of the subsystems and for the full state vector under nonlinear feedback control with
a failure in d2 at t = 0.5 hr.

structure correctly shows that T1 is decoupled from the fault, making it possible to identify.

Figure 3.13 shows a comparison of the temperature plots for the PI-only controller and the

nonlinear feedback controller to illustrate this point. The plot in Figure 3.13 (top) shows

that under PI-only control all of the temperature trajectories are affected (as well as the

mass fraction trajectories, however, these have been omitted for brevity) whereas under the

nonlinear feedback controller, the unique response can be identified in Figure 3.13 (bottom)

by the fact that the T1 trajectory is unchanged.

The T 2 plots for the system under nonlinear feedback control with a failure in d3 are

shown in Figure 3.14. This also shows the expected behavior corresponding to the fault

signatures defined in Eq.3.12; that is, the fault affected only the temperature of the flash

tank and did not influence the other states. The PI comparison (omitted) showed similar

results as before in that all states were affected and a fault could not be isolated based on

measured data. Finally, note that for the system under nonlinear feedback control with

a failure in d4 (see Figure 3.15), the fault signature only shows that the fault affects the

dynamics of the states in q4 = {xA1, xA2, xA3, xB1, xB2, xB3}. In this case the fault signature
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Figure 3.13: Temperature trajectories for T1 (solid), T2 (dashed) and T3 (dotted) for the
system with a failure in d2 at t = 0.5 hr under PI-only (top) and nonlinear feedback control
(bottom).

indicates that there is a fault in d4, but is unable to distinguish between any of the faults

that directly affect the states within this set.

As mentioned in Remark 12, it is possible that faults of intermediate size can be detected

but not accurately isolated due to the states being on the threshold of detection and/or

possible small gain effects of the directly affected subsystem on another. This was tested

in the present model by randomly varying the fault sizes of each of the four faults between

0 and twice the value used in the prior 4 simulations. Each fault was tested over 500

simulations to determine how large of a fault is necessary to detect and isolate the fault

accurately. Table 3.4 shows the results for these simulations. The results present the range

of values for which faults were either undetected, falsely isolated or correctly isolated as

well as the number of simulations for which the faults values fell within the indicated range.

As shown in Table 3.4, faults d1 and d2 had a range of values for which false isolations

occurred. This was largely due to the fact that the temperatures had a relatively small

gain effect on the mass fractions. This can be compensated for, partially, by increasing the

upper control limit of the statistical test for fault detection (T 2
UCL for the full state vector).
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Figure 3.14: Plots of the T 2 statistic (solid) with the corresponding T 2
UCL (dashed) for

each of the subsystems and for the full state vector under nonlinear feedback control with
a failure in d3 at t = 0.5 hr.
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Figure 3.15: Plots of the T 2 statistic (solid) with the corresponding T 2
UCL (dashed) for

each of the subsystems and for the full state vector under nonlinear feedback control with
a failure in d4 at t = 0.5 hr.
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Table 3.4: Fault sizes and results from the Monte-Carlo Simulation Study
Undetected (count) False Isolation (count) Correct Isolation (count)

0 <d1< 0.014 (10) 0.027 <d1< 0.50 (121) 0.52 <d1< 2 (369)
0 <d2< 0.022 (3) 0.036 <d2< 1.49 (192) 1.53 <d2< 4 (101)
0 <d3< 0.014 (10) (0) 0.027 <d3< 2 (490)

0 <−d4< 0.0012 (165) (0) 0.0012 <−d4< 0.002 (335)

While this makes the FDI scheme less sensitive, this reduces both the incidence of false

alarms and false isolations.

3.4 Conclusions

This work has demonstrated the application of a model-based nonlinear controller designed

to enforce an isolable structure in the closed-loop system of a multi-unit reactor-separator

chemical process. Fault detection and isolation were performed using statistical process

monitoring techniques and information based upon the imposed closed-loop system struc-

ture. This was demonstrated through numerical simulation studies of the closed-loop system

in the presence of four different faults. It was shown that by decoupling faults of interest

from certain states, it was possible to achieve unique system responses to each of the four

faults allowing fault isolation based on process measurements only. These results were com-

pared with a conventional PI controller and were thoroughly tested for susceptibility to

false isolation through a Monte-Carlo simulation study of 500 runs for each of the four fault

scenarios.
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Chapter 4

Controller-enhanced FDI:Output

feedback and Optimality

4.1 Introduction

This chapter considers the issues of output-feedback control and optimal control in the

setting of data-based FDI using feedback control. The purpose this chapter is to further

develop the approach proposed in Chapter 2 by relaxing the requirement of full state feed-

back control and developing the use of model predictive control to optimize the manipulated

input cost. Specifically, we first consider the case where only output measurements are avail-

able and design appropriate state estimator-based output feedback controllers to achieve

controller-enhanced fault detection and isolation in the closed-loop system. Second, we

address the problem of controller-enhanced FDI in an optimal fashion within the frame-

work of model predictive control (MPC). We propose an MPC formulation that includes

appropriate isolability constraints to achieve FDI in the closed-loop system. Throughout

the chapter, a nonlinear chemical process example is used to demonstrate the applicability

and effectiveness of the proposed methods.
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4.2 Preliminaries

4.2.1 Process system structure

In this chapter, we consider nonlinear process systems with the following general state-space

description:

ẋ = f(x, u, d) (4.1)

where x ∈ Rn is the vector of process state variables, u ∈ Rm is the vector of manipulated

input variables and d ∈ Rp is the vector of p possible actuator faults or disturbances.

Vector d is equal to zero when the system is under normal operating conditions. When

fault k, with k = 1, ..., p occurs, the kth component of vector d, denoted dk, can take any

time-varying value. This model includes a broad class of possible faults. The approach of

controller enhanced FDI was introduced in Chapter 2 as a method of dividing the state

vector into a number of partially decoupled subvectors. These subvectors can be monitored

using measured process data. Based on their responses and the system structure enforced by

the decoupling controller, it is possible to discriminate between individual faults or groups

of faults. Decoupling into subvectors can be accomplished by using model-based control

laws to enforce the appropriate structure (see subsection 4.2.3.) In order to understand the

necessary structure to perform isolation, we review the definitions of the incidence graph,

the reduced incidence graph and the isolability graph.

Definition 12 The incidence graph of the system of Eq.4.1 is a directed graph defined by n

nodes, one for each state, xi, i = 1 . . . n, of the system. A directed arc with origin in node

xi and destination in node xj exists if and only if ∂fj

∂xi
6= 0.

The arcs in the incidence graph illustrate dependencies within the states of the system. A

path through more than one arc that starts and ends at the same node is denoted as a

loop. Nodes connected by a loop have mutually dependent dynamics, and any disturbance

affecting one of them also affects the rest.

Definition 13 The reduced incidence graph of the system of Eq.4.1 is the directed graph

of N nodes, one for each qi, i = 1 . . . N , where N is the maximum number of nodes that
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satisfy the following conditions:

• Each node qi corresponds to a set of states Xi = {xj}. These sets of states are a

partition of the state vector of the system, i.e.,

⋃
Xi = {x1, . . . xn}, Xi

⋂
Xj = ∅, ∀i 6= j.

• A directed arc with origin qi and destination qj exists if and only if ∂fl
∂xk

6= 0 for some

xl ∈ Xi, xk ∈ Xj.

• There are no loops in the graph.

The reduced incidence graph reveals the partially decoupled subsystems within the structure

of the states in x.

Definition 14 The isolability graph of the system of Eq.4.1 is a directed graph made of the

N nodes of the reduced incidence graph and p additional nodes, one for each possible fault

dk. In addition, a directed arc with origin in fault node dk and destination to a state node

qj exists if and only if ∂fl
∂dk

6= 0 for some xl ∈ Xj.

These definitions present the basic dependencies within a state vector. In most nonlinear

process systems, the states are fully coupled and the isolability graph contains a single node

representing all of the states in the system. However, in systems with partially decoupled

dynamics the reduced incidence and isolability graphs demonstrate graphically the subsets

of the state vector. Consider a simple example of the following system:

ẋ1 = −x1 + x2 + d1

ẋ2 = x1 + 2x2 + d2

ẋ3 = −2x1 + x3 + d3

(4.2)

Because x1 and x2 are mutually dependent but are not affected by x3, they form a partially

decoupled subsystem represented by a single node (q1) in the isolability graph leaving x3 to

form a node by itself (q2). Figure 4.1 shows the isolability graph for the system of Eq.4.2.
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Figure 4.1: Isolability graph of the system of Eq.4.2.

With the isolability graph of a system, it is possible to consider fault isolation based

upon monitoring the subsystems. For this purpose, it is necessary to review the definition

of a fault signature given below:

Definition 15 The signature of a fault dk of the system of Eq.4.1 is a binary vector W k of

dimension N , where N is the number of nodes of the reduced incidence graph of the system.

The ith component of W k, denoted W k
i , is equal to 1 if there exists a path in the isolability

graph from the node corresponding to fault dk to the node qi corresponding to the set of

states Xi, or 0 otherwise.

Using this definition of a fault signature and the isolability graph shown in Figure 4.1,

it is possible to identify the fault signatures for the three faults considered in the system of

Eq.4.2. In this case, the fault d3 has the signature W 3 = [0 1]T and the two faults d1 and

d2 have the signature W 1 = W 2 = [1 1]T . Thus, based on the fault signatures, it is possible

to distinguish between a failure in d3 from a failure in d1 or d2. However, it is not generally

possible to discriminate between failures in d1 and d2.

Remark 14 It should be noted that while di can model any type of fault, the present ap-

proach does not attempt to distinguish between types of faults (e.g., disturbances or actuator

faults) that would affect the dynamics of the same state. That is, two faults which affect the

system dynamics through the same state are isolated as the same fault in this method (e.g.,

an inlet temperature disturbance and heat-jacket actuator failure would both affect the re-

actor temperature dynamics and would thus appear identical in the fault detection scheme).
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For recent work on discriminating disturbances from actuator failures, see [24].

Remark 15 There are other approaches in the literature that examine the necessary struc-

tural conditions in order to perform model-based fault diagnosis (see, for example, [25, 12,

13]). While these approaches are similar to our approach in that they take into consid-

eration the system structure and develop conditions for fault diagnosis, they differ in the

fact that they do not enforce the necessary structure for fault detection and isolation in the

closed-loop system via feedback control and use model-based fault diagnosis as opposed to

the data-based fault diagnosis approach used in this work.

4.2.2 Process monitoring

The discussion in the previous subsection focused on deterministic process behavior (i.e.,

the presence of process/measurement noise was not included in the computation of the

fault signature) in which evaluation of the fault signature based on the isolability graph is

straightforward and results in a definitive answer. On the other hand, in processes subject

to state and measurement noise, it is possible to have false positives and false negatives

in determining the effect of a fault on the state trajectories. For this reason, in order to

make a comparison between the fault signature based on the deterministic system structure

and the process signature based on the actual behavior (computed on the basis of process

measurements), it is necessary to use a method of monitoring of the state trajectories that

clearly distinguishes normal behavior from faulty behavior and is tolerant to the normal

amount of process variation (as computed from historical process data). Additionally, it

is assumed that faults of interest will be sufficiently large so that their effect will not be

masked by normal process variation.

For the purpose of monitoring whether or not a state has deviated from its normal

behavior, we use statistical process monitoring methods. In particular, we use Hotelling’s

T 2 statistic [27], a well established method in statistical process control that monitors

multivariate normal (Gaussian) data using a single statistic [60]. Because of its suitability for

continuous, serially correlated chemical processes, the method of using single observations

is employed [63, 50]. Given a multivariate state vector x of dimension n, the T 2 statistic
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can be computed using the mean x̄ and the estimated covariance matrix S of process data

obtained under normal operating conditions (see, for example, [60, 31]), as follows:

T 2 = (x− x̄)T S−1(x− x̄). (4.3)

The upper control limit (UCL) for the T 2 statistic can be calculated from its distribution,

under the assumption that the data are multivariate normal, according to the following

formula:

T 2
UCL =

(h2 − 1)n
h(h− n)

Fα(n, h− n) (4.4)

where h is the number of historical measurements used in estimating S, Fα(n, h− n) is the

value on the F distribution with (n, h − n) degrees of freedom for which there is proba-

bility α of a greater or equal value occurring. Thus, α is the probability of a false alarm.

This distribution is based on the assumption that the data are multivariate normal. This

requirement is generally a reasonable assumption since even process data that may be seri-

ally correlated under open-loop operation are frequently close to normal in the closed-loop

system under feedback control on a large time-scale [50]. The validity of this assumption of

normal process data in the closed-loop system has been verified in Chapter 2. It has also

been verified in the context of the reactor example used in the present chapter. Similar

results verifying that the closed-loop system data in the reactor example are normal are not

given in the present chapter for brevity and to avoid redundancy.

The T 2 statistic is used to both detect that a fault has occurred and to provide the

system signature that can be compared with the fault signatures defined by the isolability

graph. In order to perform these tasks, the T 2 statistic based on the full state vector x with

upper control limit T 2
UCL is first used to detect the presence of a fault. Subsequently, the

T 2
i statistic is used to monitor the status of each subset of the state vector with an upper

control limit T 2
UCLi where i = 1, . . . , N that is based on each of the subvectors and their

states xj ∈ Xi. The fault detection and isolation procedure then follows the steps given

below:

1. A fault is detected if T 2(t) > T 2
UCL ∀t tf ≤ t ≤ tf + TP where tf is the last time
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when T 2 crossed the UCL (i.e., after time tf , T 2 does not return to any values below

T 2
UCL)) and TP is the fault detection window chosen to be large enough to allow fault

isolation with a desired degree of confidence. Choosing TP depends on the process time

constants and potentially on available historical information of past process behavior.

2. Fault isolation can be performed by comparing fault signatures with the process sig-

nature W (tf , TP ) which can be built as follows:

T 2
i (t) > T 2

UCLi ∀t tf ≤ t ≤ tf + TP → Wi(tf , TP ) = 1.

T 2
i (t) ≯ T 2

UCLi ∀t tf ≤ t ≤ tf + TP → Wi(tf , TP ) = 0.

A fault dk is isolated at time tf + TP if W (tf , TP ) = W k. If two or more faults are

defined by the same signature, further isolation between them is not possible on the

basis of the fault signature.

4.2.3 Controller design for enhanced FDI

Decoupling controller design

The approach to fault detection and isolation discussed in the previous section can be applied

if the signatures of the faults in the closed-loop system are distinct. The uniqueness of a fault

depends on the structure of the closed-loop system and the faults considered. In general,

complex nonlinear systems are fully coupled (i.e., cannot be broken down into partially

decoupled subvectors) and faults cannot be isolated using this method when the controller

is designed only to account for closed-loop stability. However, an isolable structure in the

closed-loop system may still be achieved through the application of appropriately designed

nonlinear control laws. Although many control laws exist that may achieve the desired

goal, it is not possible to apply a systematic procedure to controller design that guarantees

closed-loop stability and an isolable closed-loop system structure for any nonlinear process.

Nonetheless, controller designs can be developed to decouple a particular set of states from

the rest of the system in a number of applications. As an example, consider a controller
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that can be applied to nonlinear systems with the following state space description:

ẋ1 = f11(x1) + f12(x1, x2) + g1(x1, x2)u + d1

ẋ2 = f2(x1, x2) + d2

(4.5)

where x1 ∈ R, x2 ∈ Rn, u ∈ R and g1(x1, x2) 6= 0 for all x1 ∈ R, x2 ∈ Rn. With a nonlinear

state feedback controller of the form:

u(x1, x2) = −f12(x1, x2)− v(x1)
g1(x1, x2)

(4.6)

the closed-loop system takes the form

ẋ1 = f11(x1) + v(x1) + d1

ẋ2 = f2(x1, x2) + d2

(4.7)

where v(x1) has to be designed in order to achieve asymptotic stability of the origin of the

x1 subsystem when d1 = 0. In this case, the controller of Eq.4.6 guarantees asymptotic

stability of the closed-loop system, as well as different signatures for faults d1 and d2. Note

that the closed-loop system in this case can be broken down into two subvectors, each

including one state, and the signatures are given by W 1 = [1 1]T and W 2 = [0 1]T . If

necessary, using multiple controllers allows for more degrees of freedom in breaking up the

full state vector into subvectors and allowing fault isolation. Note that in this example, the

x2 subsystem must be input-to-state stable with respect to x1.

Input/output linearizable nonlinear systems

Input/output linearizable nonlinear systems constitute a special class of nonlinear systems

for which it is possible to systematically design nonlinear controllers to achieve controller-

enhanced fault detection and isolation. Specifically, we consider processes modeled by

single-input single-output nonlinear systems with multiple possible faults that have the
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following state-space description

ẋ = f(x) + g(x)u +
p∑

k=1

wk(x)dk

y = h(x)
(4.8)

where x ∈ Rn is the state vector, u ∈ R is the input, y ∈ R is the controlled output and

dk ∈ R represents a possible fault. It is assumed that f , g, h and wk are sufficiently smooth

functions and that a set of p possible faults has been identified. Each of these faults is

characterized by an unknown input to the system dk that can model actuator failures and

process faults and disturbances. The value of dk is not restricted and may be any time-

varying fault. The system has an equilibrium point at x = 0 when u(t) ≡ 0, dk(t) ≡ 0 and

h(0) = 0. Below, we will use the Lie derivative notation: Lfh(x) is the Lie derivative of the

scalar field h(x) with respect to the vector field f(x), Lr
fh(x) is the rth order Lie derivative

and LgLfh(x) is a mixed Lie derivative.

The main control objective is to design a feedback control law u = pDC(x) such that the

closed-loop system has an asymptotically stable equilibrium point, and the input/output

response is linear. Moreover, the closed-loop system must satisfy the isolability conditions

by having two or more groups of faults with unique system signatures. To this end, we

review the definition of relative degree of the output, y, with respect to the input, u, in the

system of Eq.4.8.

Definition 16 [28]: Referring to the system of Eq.4.8, the relative degree of the output, y,

with respect to the input, u, is the smallest integer, r ∈ [1, n], for which

LgL
i
fh(x) = 0, i = 0, . . . , r − 2

LgL
r−1
f h(x) 6= 0.

If the system of Eq.4.8 has input relative degree r < n, then there exists a coordinate

transformation (see [28]) (ζ, η) = Θ(x) such that the representation of the system of Eq.4.8
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with dk = 0 for all k = 1, ..., p, in the (ζ, η) coordinates, takes the form

ζ̇1 = ζ2

...

ζ̇r−1 = ζr

ζ̇r = Lr
fh(x) + LgL

r−1
f g(x)u

η̇1 = Ψ1(ζ, η)
...

η̇n−r = Ψn−r(ζ, η)

(4.9)

where y = ζ1, x = Θ−1(ζ, η), ζ = [ζ1, . . . , ζr]T and η = [η1, . . . , ηn−r]T . Choosing u =

pDC(x) in an appropriate way, the dynamics of ζ can be linearized and controlled. The

stability of the closed-loop system, however, can only be guaranteed if the inverse dynamics

(η̇ = Ψ(ζ, η)) are input-to-state stable with respect to ζ. The feedback-linearizing control

law takes the following general form:

u(x) =
1

LgL
r−1
f h(x)

[v(x)− Lr
fh(x)] (4.10)

where v(x) is an external controller for the purpose of stabilizing the system.

If the state-feedback law given in Eq.4.10 is used, it can be shown that the faults of the

system of Eq.4.8 can be isolated into two different groups: those that affect the output and

those that do not affect the output. It is important to note here that the output function,

h(x), can be appropriately chosen as a nonlinear combination of the states, x, to aid the

task of fault detection and isolation using a feedback linearizing controller design. The

induced structure of the closed-loop system in the transformed coordinates (ζ, η) provides

different signatures for the faults depending on their relative degree which is defined below:

Definition 17 [10]: Referring to the system of Eq.4.8, the relative degree, ρk ∈ [1, n], of

the output, y, with respect to the fault dk is the smallest integer for which

Lwk
Li

fh(x) = 0, i = 0, . . . , ρk − 2

Lwk
Lρk−1

f h(x) 6= 0.

(4.11)

89



Analogous to the relative degree of the output with respect to the input, this definition of

relative degree relates the output to a particular fault. If a feedback-linearizing controller

is used, then the faults can be divided into two different groups: those with a relative

degree ρk that is greater than the relative degree r and those with a relative degree ρk that

is less than or equal to r. When a fault occurs, the faults of the first group will not affect

the output, y, while those of the latter will. Thus, using the control law in Eq.4.10, the

possible faults of the system of Eq.4.8 are divided into two groups, each with a different

signature. When a fault occurs, taking into account whether the trajectory of the output

has deviated from the normal case or not, it is possible to isolate to which group the fault

belongs.

Remark 16 Note that in order for the feedback linearizing controller of Eq.4.10 to decouple

the output from the specific group of faults described above, the first-principles model must

match that of the actual process. In a practical application, there is tolerance for some

degree of plant-model mismatch that can be accounted for by the fault detection thresholds.

In this case, there is not perfect decoupling but the enforcement of near-decoupling in the

closed-loop system by the controller that still allows for fault detection and isolation. On the

other hand, large discrepancies between the plant and the model would not allow enforcing

the desired structure.

4.3 Controller enhanced FDI using output feedback control

In this section, we address the problem of controller enhanced FDI using output feedback

control. Specifically, we discuss the limitations imposed by the availability of measurements

of only few state variables and design state estimator-based output feedback control laws

that enhance fault isolation in the closed-loop system. We will demonstrate an application

of our analysis and controller design to a chemical reactor example.
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4.3.1 State estimation

In order to perform controller enhanced FDI using output feedback control, any unknown

process state variable must be quickly and accurately estimated from the available output

measurements so that the decoupling state feedback controller designs of subsections 4.2.3

and 4.2.3 can be implemented. The state estimation is performed for the state vector x (or

a subset thereof) with the outputs, or measured states, defined as y = Cx. In this chapter,

we consider only outputs of the form yi = xi, i = 1, . . . , q < n. In other words, C is a

matrix with one and only one non-zero entry in each row and that entry is equal to unity.

This set-up is appropriate in chemical process control applications where measurements of

a few states like temperature and concentrations of a few species, like key products, are

available, but concentrations of some species are not measured. This set-up also allows

obtaining a clear picture of the use of output feedback instead of full state feedback in

controller enhanced FDI. The theory for the state estimator design is based upon a linear

system, but can also be applied to nonlinear systems, using a local stability analysis around

the operating point (origin). Specifically, the linearized model of the nonlinear system of

Eq.4.1 takes the following form:

ẋ = Ax + Bu + Wd

y = Cx
(4.12)

where A is the Jacobian matrix of the nonlinear system at the operating point, u is the

manipulated input vector and d is the fault vector. The matrices B and W can be computed

from the linearization of Eq.4.1 around the origin. Under the assumption that (A,C) forms

an observable pair, each state variable x can be estimated by the following dynamic equation:

˙̂x = Ax̂ + Bu + L(y − Cx̂) (4.13)

where x̂ is the state estimate and L is the estimator gain that can be chosen so that all the

eigenvalues of the matrix (A − LC) are placed at appropriate locations in the left-half of

the complex plane to guarantee a desirable rate of convergence of the estimation error to

zero. The computation of L can be done using standard pole placement techniques or via
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a Kalman filtering framework by adding process and measurement noise in the linearized

model of Eq.4.12. In either case, the linearized state estimation error equation with d(t) = 0

takes the form:

ė = (A− LC)e. (4.14)

where e = x−x̂ is the estimation error. While it is possible to perform state estimation using

the full state vector in the state estimator of Eq.4.13 when d(t) ≡ 0, it becomes necessary to

use a reduced-order process model when designing a state estimator-based output feedback

controller to enhance FDI. This need for a reduced-order model arises due to faults that

affect the state estimator and introduce error into the estimate (i.e., the full state estimation

scheme of Eq.4.13 works when d(t) = 0, but not when d(t) 6= 0). Specifically, if the error

vector d on the right-hand side of Eq.4.12 is nonzero, the new equation for the estimator

error becomes ė = (A−LC)e+Wd. Thus, in the presence of a fault, the state estimates no

longer converge to their actual values, and the isolable structure attained in the closed-loop

system under state feedback control cannot be maintained. However, it is possible in some

process systems to perform the state estimation task using a subset of the states that are

not directly affected by the expected faults, i.e., effectively eliminating d in the estimation

error system. The general structure of the model in Eqs.4.12-4.14 remains the same for

the reduced-order system, but it is based on a subset of the full state vector, xr ⊂ x. To

mathematically realize this notion, consider a system with the following structure, where

time derivatives of the states xr are not functions of d and include all unknown states to be

estimated along with some measured states, and xd includes the remaining measured states,

whose dynamic equations may be functions of d. Specifically, we consider the following

decomposition of the vectors and matrices of the linearized system of Eq.4.12

x =


 xr

xd


 , A =


 Ar Ard

Adr Ad


 , W =


 0

Wd




B =


 Br

Bd


 , C =


 Cr 0

0 Cd


 , y =


 yr

yd


 .

(4.15)
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Provided that the pair (Ar, Cr) is observable, the state estimator based on the reduced-order

system then takes the form:

˙̂xr = Arx̂r + Ardxd + Bru + Lr(yr − Crx̂r) (4.16)

Eq.4.16 uses the actual measured values for all of the states in xd. We can break xr down

further into measured states and unmeasured states, xr = [xT
rm xT

ru]T . Note that xrm must

include enough measured states independent of d for the system to be observable. Given

the restrictions on C, this implies that yr = Crxr = xrm and Cd = I (i.e., yd = xd). Finally,

we define a vector with full state information by combining the measured and estimated

data, x̂ = [xT
rm x̂T

ru xT
d ]T . Note that x̂rm is only used as the driving force for convergence of

the state estimator. With these definitions, the reduced-order state estimator of Eq.4.16 is

not a direct function of d and the dynamics of the estimation error, er = xr − x̂r, take the

form ėr = (Ar−LrCr)er which implies that er(t) will converge to zero even in the presence

of a change in d.

The key requirement is that the states of the reduced-order system must be independent

from the faults, or in other words, ∂fr/∂d = 0. This requires that any unknown states must

be independent from the faults as well as that there be enough measured states that can

be chosen such that the reduced-order matrices (Ar, Cr) form an observable pair. Although

this requirement may seem restrictive, a CSTR example below demonstrates a practical

system where the necessary structural requirements to accomplish controller-enhanced FDI

using output feedback control are met. It should be noted that while this work uses state

observers based upon a pole-placement or a Kalman filtering framework, it may be possible

to use other state estimation techniques, such as high-gain observers. The critical point

is that the estimators must maintain specific conditions that allow sufficient convergence

of the estimation error to zero while in the presence of a fault in order to perform fault

isolation. This is demonstrated in the approach laid out above.

Once the estimator gain obtained from the linearized model of the system is calculated,

it can then be used to estimate the states of the process using the nonlinear model dynamics.

Once again, for the nonlinear system, the state vector, x, decomposes into the one of the
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reduced-order system (independent of d) and the remaining states, i.e., x = [xT
r xT

d ]T and

f([xT
r xT

d ]T , u, d) = [fr(xr, xd, u)T fd(xr, xd, u, d)T ]T . The nonlinear dynamic equations for

the reduced-order system are then combined with the estimator gain and the output error

to create a nonlinear state estimator as follows:

˙̂xr = fr(x̂r, xd, u) + Lr(yr − hr(x̂r)) (4.17)

where the measured values are used for the states in xd, i.e., by assumption yd = xd. Note

that following the previous assumption, hr(xr) = Crxr. Combining the nonlinear state

estimator of Eq.4.17 with a nonlinear state feedback controller, u = pDC(x), that enforces

an isolable structure in the closed-loop system and can be designed following the approaches

presented in subsections 4.2.3 and 4.2.3, we obtain the following dynamic nonlinear output

feedback controller:

˙̂xr = fr(x̂r, xd, pDC(x̂)) + Lr(yr − Crx̂r)

u = pDC(x̂)
(4.18)

Due to the effect of estimation error, it is not possible to achieve complete decoupling.

However, it is possible to achieve a near isolable structure that is sufficient for practical

purposes. In this sense, we consider a near isolable structure to be one where the closed-

loop system under output feedback control can be seen as an O(er) regular perturbation of

the closed-loop system under state feedback control which is locally exponentially stable and

has an isolable structure. Thus, the estimation error can be viewed as a small perturbation

error that will be accounted for by the FDI thresholds designed to filter out normal process

variation. Theorem 2 below summarizes the main analysis and controller design result of

this section as well as the closed-loop FDI properties.

Theorem 2 Consider the closed-loop system of Eq.4.1 under the nonlinear output feed-

back controller of Eq.4.18 and assume that the pair (Ar, Cr) is observable and Lr is de-

signed such that the matrix (Ar − LrCr) has all of its eigenvalues in the left-half of the

complex plane. Then, there exist δ, ε and Ty such that if f is continuously differentiable

on D = {x ∈ Rn| ‖x‖2 < δ}, the Jacobian of f is bounded and Lipschitz on D and
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max{‖x(t0)‖2, ‖x̂r(t0)‖2} < δ then ‖xr(t) − x̂r(t)‖2 < ε, ∀t > t0 + Ty, and a near isolable

structure is enforced in the closed-loop system.

Proof: Under the control law of Eq.4.18, the closed-loop system of Eq.4.1 takes the form,

ẋ = f(x, pDC(x̂), d), y = h(x)

˙̂xr = fr(x̂r, xd, pDC(x̂)) + Lr(yr − hr(x̂r)).
(4.19)

Linearizing the closed-loop system of Eq4.19 around the equilibrium point (origin) yields,

ẋ = Ax + BpDC(x̂), y = Cx (4.20)

˙̂xr = Arx̂r + Ardxd + BrpDC(x̂) + Lr(yr − Crx̂r). (4.21)

The error between the actual and estimated states of the reduced-order, linearized system is

then er = xr− x̂r with the dynamics ėr = (Ar−LrCr)er. Assuming that the pair (Ar, Cr) is

observable and that Lr is chosen such that the matrix Ar−LrCr has eigenvalues in the left-

half of the complex plane, the estimation error, er, in the linearized system has exponentially

stable dynamics. If the vector field of the nonlinear system, f(x, pDC(x̂), d), is continuously

differentiable and the Jacobian matrix is bounded and Lipschitz on D = {x ∈ Rn| ‖x‖2 <

δ}, then the nonlinear system dynamics are also locally, exponentially stable within some

region around the equilibrium point [29]. For some initial condition max{‖x0‖2, ‖xr0‖2} <

δ, the state estimation error, er, will be bounded such that ‖xr − x̂r‖ < ε ∀t > t0 + Ty,

where Ty is a time interval of O(ε). Thus, the output feedback control approaches state

feedback control with error of order ε, i.e., xr = x̂r + O(ε) ∀t > t0 + Ty. For sufficiently

small ε, this leads to a near isolable structure in the closed-loop system for almost all times

since the state feedback controller pDC(x) enforces an isolable structure in the closed-loop

system. QED

Remark 17 Theorem 2 provides sufficient conditions on the process structure, location of

faults and/or disturbances and measurement vector such that controller-enhanced isolation

of the type made possible under state feedback control is also possible under output feedback

control. The achievement of a near isolable structure refers to the fact that with a sufficiently
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small ε, the effect of the state estimator error will become increasingly negligible relative to

the common-cause variance and the detection threshold for FDI. Thus, even though the

state estimate will retain some small amount of error, it will be sufficiently small as to be

masked by the normal sensor measurement and process noise which is accounted for in the

FDI detection thresholds.

4.3.2 Application to a CSTR example

The example considered is a well-mixed CSTR in which a feed component A is converted

to an intermediate species B and finally to the desired product C, according to the reaction

scheme

A
1 B

2 C.

Both steps are elementary, reversible reactions and are governed by the following Arrhenius

relationships:

r1 = k10e
−E1
RT CA, r−1 = k−10e

−E−1
RT CB (4.22)

r2 = k20e
−E2
RT CB, r−2 = k−20e

−E−2
RT CC (4.23)

where ki0 is the pre-exponential factor and Ei is the activation energy of the ith reaction

where the subscripts 1,−1, 2,−2 refer to the forward and reverse reactions of steps 1 and

2. R is the gas constant, while CA, CB and CC are the molar concentrations of species A, B

and C, respectively. The feed to the reactor consists of pure A at flow rate F , concentration

CA0 and temperature T0. The state variables of the system include the concentrations of

the three main components CA, CB, and CC as well as the temperature of the reactor,

T . Using first principles and standard modeling assumptions, the following mathematical
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Table 4.1: CSTR example process parameters

F 1 [m3/h] V 1 [m3]
k10 1.0·1010 [min−1] E1 6.0·104 [kJ/kmol]
k−10 1.0·1010 [min−1] E−1 7.0·104 [kJ/kmol]
k20 1.0·1010 [min−1] E2 6.0·104 [kJ/kmol]
k−20 1.0·1010 [min−1] E−2 6.5·104 [kJ/kmol]
∆H1 -1.0·104 [kJ/kmol] R 8.314 [kJ/kmol ·K]
∆H2 -0.5·104 [kJ/kmol] T0 300 [K]
CA0 4 [kmol/m3] ρ 1000 [kg/m3]
cp 0.231 [kJ/kg ·K]

model of the process is obtained

ĊA = F
V (CA0 − CA)− r1 + r−1 + d1

ĊB = −F
V CB + r1 − r−1 − r2 + r−2

ĊC = −F
V CC + r2 − r−2

Ṫ = F
V (T0 − T ) + (−∆H1)

ρcp
(r1 − r−1) + (−∆H2)

ρcp
(r2 − r−2) + u + d2

(4.24)

where V is the reactor volume, ∆H1 and ∆H2 are the enthalpies of the first and second

reactions, respectively, ρ is the fluid density, cp is the fluid heat capacity, u = Q/ρcp is the

manipulated input, where Q is the heat input to the system, d1 denotes a disturbance in

the inlet concentration and d2 denotes a fault in the control actuator. The values for the

parameters of the process model are given in Table 4.1.

The system of Eq.4.24 is modeled with sensor measurement noise and autoregressive

process noise. The sensor measurement noise was generated using a Gaussian distribution

with standard deviation σM applied to the measurements of all the process states. The

autoregressive process noise was generated discretely as wk = φwk−1+ξk where k = 0, 1, . . .

is the discrete time step, φ is the autoregressive coefficient and ξk is obtained at each

sampling step using a zero-mean normal distribution with standard deviation σp. Table 4.2

provides the values of the noise parameters for each state of the system of Eq.4.24. The

sampling time interval is ∆ts = 0.1 min and the fixed numerical integration time interval
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Table 4.2: CSTR example noise parameters
σm σp φ

CA 1E-2 1E-2 0.9
CB 1E-2 1E-2 0.9
CC 1E-2 1E-2 0.9
T 1E-1 1E-1 0.9

is ∆ti = 0.001 min. In this example, the state, CB, is considered to be unmeasured and

is subject to process noise. It should be noted that the open-loop system of Eq.4.24 has

fully coupled dynamics. This means that the two faults d1 and d2 will be indistinguishable

from a data-based perspective because either fault will affect all of the states. Thus, purely

data-based FDI is not possible without enforcing an isolable structure in the closed-loop

system.

In order to obtain the estimated trajectory for CB, a state estimator as in Eq.4.17 was

implemented using the reduced-order system x̂r = [ĈB ĈC ]T . The process measurements

for CA and T were used in computing the dynamics of x̂r. Note that although CC is

measured, it is used in the reduced-order state estimator so that the reduced-order system

is observable. The control input was updated at each sampling interval with the measured

values for CA, T and CC and the estimated value of ĈB. As discussed in subsection 4.3.1,

CA and T should not be modeled as dynamic states in the estimator since they are directly

affected by the faults d1 and d2. Therefore, the measured process data of CA and T must

be used in modeling the estimator. Thus, the final form of the state estimator based on the

reduced subsystem x̂r = [ĈB ĈC ]T is as given below:

˙̂
CB = −F

V ĈB + r1 − r−1 − r2 + r−2 + L1(CC − ĈC)

˙̂
CC = −F

V ĈC + r2 − r−2 + L2(CC − ĈC)
(4.25)

with

r1 = k10e
−E1
RT CA, r−1 = k−10e

−E−1
RT ĈB

r2 = k20e
−E2
RT ĈB, r−2 = k−20e

−E−2
RT ĈC
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where L is the filter gain obtained using Kalman-filtering theory based on the reduced-order

system for the sensor and process noise given in Table 4.2. The resulting value for Lr is

[Lr1 Lr2]T = [0.0081 0.0559]T .

The controlled output of the system, for the purpose of feedback linearization, is defined

as the concentration of the desired product y = h(x) = CC (although, the measured output

vector is ym = [CA T CC ]T .) We consider only faults d1 and d2, which represent undesired

changes in CA0 (disturbance) and Q (actuator fault), respectively. In this process, the

manipulated input u appears in the temperature dynamics and the output, y = CC , has

relative degree 2 with respect to u. The fault d1 appears only in the dynamics of CA

and the output, y = CC , has relative degree 3 with respect to d1. Finally, the output,

y = CC , has relative degree 2 with respect to d2. Based on the relative degrees of the

output with respect to the input and with respect to the faults, under feedback linearizing

control the system structure will be such that the state vector can be separated into two

subsets: X1 = {CA, ĈB, T} and X2 = {CC}. Thus, the fault signature for d1 = [1 0]T and

for d2 = [1 1]T . During the simulation, the T 2 for the full state vector is monitored in order

to perform fault detection (substituting the estimate ĈB for the unknown state CB.) Each

of the subsystems is monitored to compute the system signature upon detection of a fault.

Based on observation of the system dynamic behavior, a fault detection window, TP , of

1 min is used.

The control objective is to regulate the system at the equilibrium point

CAs = 2.06
kmol

m3
, CBs = 1.00

kmol

m3
, CCs = 0.937

kmol

m3
, Ts = 312.6K, us = 0K/s. (4.26)

where the subscript s refers to the steady state values of the variables. It should be noted

that the CSTR system of Eq.4.24 belongs to the class of systems of Eq.4.1 with x =

[CA−CAs, T − Ts, CB −CBs, CC −CCs]T where CB is replaced with ĈB in the definition

of x̂. This implies that we can apply the output feedback scheme presented using the

controlled output y = CC . Using Eq.4.10, the feedback-linearizing controller takes the

following form:

u =
v − L2

fh(x̂)
LgLfh(x̂)

(4.27)
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with

v = [−2ζ1 − 2ζ2].

where
ζ1 = CC

ζ2 = −F
V CC + r2 − r−2

r2 = k20e
−E2
RT ĈB, r−2 = k−20e

−E−2
RT CC .

Note that the state variables are in the transformed space and are shifted so that the

origin represents the desired set point.

The closed-loop system was simulated for each of the two faults considered. Each sim-

ulation was run for a process time of 1 hour with the fault occurring at t = 40 min. The

values for the faults were each zero prior to the fault occurring and took constant values of

d1 = 1 kmol/m3min and d2 = 10 K/min at t = 40 min. The state estimator was initialized

far from the operating point at ĈB(0) = 1.5 kmol/m3 and ĈC(0) = CC(0) = CCs in order

to demonstrate convergence.

Figure 4.2 shows the trajectories for each of the states in the simulation with a failure

in d1. The fault is apparent at approximately t = 40 min (0.667hr). We can readily see

from the state trajectories, that the decoupling scheme was effective as evidenced by the

fact that the output, CC , is unaffected by the fault. Also, we see that the state estimator

converged relatively quickly at around t = 3 min.

For the system with a failure in d1, Figure 4.3 shows the Hotelling’s T 2 statistic for the

two subvectors X1 and X2 as well as for the full state vector. From the graph, we can see

that a fault is clearly detected at the expected time t = 40 min as shown in the plot of

the T 2 statistic for the full state vector (T 2
3 ). Although there were a few single incidents

of data breaching the upper control limit, none of them represented sustained departures

for the length of the fault detection window, TP . Also note that values above the upper

control limit before t = 0.1hr were due to the state estimator not having converged. Upon

detection of the fault, the system signature can be computed as W = [1 0]T due to the fact

that the T 2 statistic for the subvector X1 exceeded the upper control limit for a sustained

period and the T 2 for the subvector X2 remained within the bounds of normal operation.
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Figure 4.2: Plot of measured state values for the CSTR under output feedback decoupling
control with fault d1. CB shows both actual (solid) and estimated (dotted) values.

Because the system signature matches that of the fault signature for d1, a fault in d1 is

declared at time t ≈ 41 min.

In Figure 4.4, we see the simulation results for the same system with a failure in d2.

Again, the failure is evident around t = 40 min. However, in this case we see that all

state trajectories are affected. The process signature obtained from the T 2 statistics in

Figure 4.5 shows that both subvectors were affected and this process signature matches the

fault signature of d2.

The control action required to decouple and stabilize the system is shown in Figure 4.6.

Remark 18 It is important to point out that in the output feedback control formulation

presented above, the output measurements are assumed to be continuously available. The

reader may refer to [38] for recent results on model-based fault detection and isolation using

a combination of synchronous and asynchronous measurements.
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Figure 4.3: T 2 statistics for the CSTR under output feedback decoupling control with fault
d1 for the subsystem X1 (T 2

1 ), the subsystem X2 (T 2
2 ) and the full system x (T 2

3 ).

4.4 Controller enhanced FDI using model predictive control

In addition to addressing the problem of controller enhanced isolation using output feedback

control, we also consider achieving controller enhanced isolation in an optimal fashion using

model predictive control (MPC). We will consider this problem under the assumption that

measurements of the full state vector are available, but the extension to the output feedback

case is conceptually straight-forward by combining the results of the present and previous

sections. We will start with the presentation of a general MPC formulation with an appro-

priate decoupling constraint and continue with an application to the case of input/output

linearizable nonlinear systems.

4.4.1 MPC with isolability constraints

Model predictive control is a popular control strategy that is based on using a process model

to optimize controller performance. MPC predicts the future evolution of the system from
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Figure 4.4: Plot of measured state values for the CSTR under output feedback decoupling
control with fault d2. CB shows both actual (solid) and estimated (dotted) values.

an initial state at discrete sampling times for a given prediction horizon. These predictions

are used to minimize a given cost function by solving a suitable optimization problem. MPC

optimizes over the set of discrete manipulated input trajectories with a fixed sampling time

and within a fixed prediction horizon (number of sampling time steps). The optimization

problem is solved based on a cost function, accounting for input constraints, resulting in a

set of optimal control inputs for the given horizon length. To present the proposed MPC

formulation, we consider the nonlinear system of Eq.4.1 and assume that we can construct

a nonlinear state feedback control law u = pDC(x, v), using the approaches presented in

subsections 4.2.3 and 4.2.3, such that the resulting system

ẋ = f(x, pDC(x, v), d) = f̃(x, v, d) (4.28)

has an isolable structure. For the formulation of the MPC optimization problem, we consider

the controller u = pDC(x, v) to be applied continuously. This requirement can be relaxed

with minimal effect and this issue will be discussed below.
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Figure 4.5: T 2 statistics for the CSTR under output feedback decoupling control with fault
d2 for the subsystem X1 (T 2

1 ), the subsystem X2 (T 2
2 ) and the full system x (T 2

3 ).

We consider the application of MPC to the system of Eq.4.28. It is important to note

that the decoupling controller u = pDC(x, v) should be applied prior to the MPC optimiza-

tion of the external input, v, and thus, the MPC optimization is performed independently

from and does not affect the decoupling controller. In order to define a finite dimensional

optimization problem, v is constrained to belong to the family of piece-wise constant func-

tions S(∆), with sampling period ∆. The MPC framework can now be used to compute

the auxiliary input vk. Specifically, we consider the following MPC formulation:

min
vk∈S(∆)

∫ tk+Th

tk

(x̃T (τ)Rx̃(τ) + vT
k (τ)Qvk(τ))dτ

s.t. ˙̃x(t) = f̃(x̃, vk(t)), x̃(tk) = x(tk)
(4.29)

where x̃ is the simulated system to be optimized, R and Q are positive definite matrices

that penalize the state and manipulated input cost and Th is the prediction horizon.

We note the case of input/output linearizable nonlinear systems with two faults, (i.e.,
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Figure 4.6: Manipulated input profile under output feedback decoupling control with fault
d2.

d = [d1 d2]T ) implies that Eq.4.28 can be written as:

ζ̇ = f̂(ζ, v, d1)

η̇ = ψ̂(ζ, η) + d2

(4.30)

where x = Θ(ζ, η) and Θ(ζ, η) is, in general, a nonlinear coordinate change, and f̂(ζ, v, d1),

ψ̂(ζ, η) are nonlinear vector functions of appropriate dimensions. The generalization to the

case of having more than two faults is conceptually straightforward, yet notationally more

involved. With the input/output linearizing control, Eq.4.29 can be reduced to

min
vk∈S(∆)

∫ tk+Th

tk

(ζ̃T (τ)Rζ̃(τ) + vT
k (τ)Qvk(τ))dτ

s.t. ˙̃
ζ(t) = vk(t), ζ̃(tk) = ζ(tk)

(4.31)

where ζ̃ is the simulated state in the transformed space and the resulting nonlinear controller
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has the form

u(x(t), vk) =
vk − Lr

fh(x(t))

LgL
r−1
f h(x(t))

. (4.32)

Using the input/output linearizing controller to induce the necessary structure for fault

isolation, MPC is used to compute the external controller in order to maintain stability and

optimal performance. Specifically, the external input, vk, is optimized with respect to the

cost function as a set of discrete control inputs over a sequence of sampling times for a given

horizon length. This results in a overall control input that is not optimal with respect to

the total cost due to the input/output linearizing component, but is optimal with respect

to the extra controller cost needed to stabilize and control the system at the steady state.

Remark 19 It should be noted that the MPC formulation given in Eq.4.31 assumes that

the decoupling controller, u = pDC(x, v), is applied continuously. In a practical situation,

the decoupling controller will be implemented via sample and hold. Although this introduces

error into closed-loop system dynamics, the closed-loop system has a near isolable structure

as the hold time, ∆, goes to zero. This is sufficient for near decoupling due to the thresholds

implemented for FDI which account for normal process variation (for further results on

practical closed-loop stability subject to sample and hold control, see [41, 42].) Error intro-

duced by sample-and-hold implementation of the decoupling control law leads, subsequently,

to error in the MPC optimization due to plant-model mismatch. Again, this error becomes

increasingly small as the hold time, ∆, goes to zero and can be adequately accounted for by

the FDI thresholds used.

Remark 20 Referring to the incorporation of stability constraints in MPC, we note that

in order to guarantee robust stability of the closed-loop system, MPC controllers generally

include a set of stability constraints. This can be accomplished through Lyapunov-based

MPC (LMPC) [41, 42, 51] or through terminal constraints in the cost function. Different

schemes can be found in the literature, see [36] for a review on MPC stability results.
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4.4.2 Application to a CSTR example

The input/output linearizing control law with MPC as the external control input was ap-

plied to the chemical reactor example of Section 4.3. All parameters were the same as

in Section 4.3 including sensor noise and process noise characteristics, faults sizes, fault

incident times, system parameters, set points and fault detection time. However, in this

simulation, full state feedback is used (i.e., CA, CB, CC and T are measured). The sample

and hold time for the MPC controller is the same as the discrete sampling time in Section 4.3,

∆ts = 0.1 min, and the numerical integration time step is ∆ti = 0.001 min. The controller

cost function over which the system was optimized used weights of R = [100 0; 0 1] and

Q = 10. The horizon length was 10 time steps (1 min). Because of the inherently sta-

ble nature of the CSTR dynamics, more robust methods of stabilization were not used as

penalizing the state was sufficient in this case.

In Figure 4.7, we see the state trajectories for the system under decoupling control

with MPC as the external input to optimize system performance. A failure in d1 with the

same magnitude as in Section 4.3 is introduced at t = 40 min. As before, we see that the

decoupling control was effective as evidenced by the fact that CC appears to be unaffected

by the fault. Figure 4.8 shows the T 2 statistic for the closed-loop system. We note that fault

detection occurred based on the statistic for the full state vector, T 2
3 , at t ≈ 41 min. The

system signature based on T 2
1 and T 2

2 matches the fault signature for d1, W = W 1 = [1 0]T .

The process simulated with a failure in d2 and its T 2 statistics are shown in Figure 4.9.

Again, we see that the closed-loop system signature based on the monitored subsystems

matches what is expected based on the isolability graph (i.e., W = W 2 = [1 1]T ). In

this plot, we again see temporary violations of the upper control limit, but none that are

sustained for longer than the fault detection window, TP .

In Figure 4.10, we see the control action requested by the feedback linearizing MPC.

Based on the cost function used to perform MPC, the costs of two approaches (feedback

linearizing control with proportional control and feedback linearizing MPC) were compared.

Both controllers were implemented via state feedback. The process was initialized at x(0) =

[CA(0) = 2.06kmol/m3 T (0) = 312.6K CB(0) = 1.00kmol/m3 CC = 1.44kmol/m3]T and
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Figure 4.7: Plot of measured state values for the CSTR under feedback linearizing MPC
with fault d1.

was allowed to run for an hour without faults. The total costs of converging to the steady-

state for the closed-loop system under feedback linearizing control with proportional control

was 19.96 and for the closed-loop system under feedback linearizing MPC was 11.97; as

expected, the use of MPC leads to improved overall performance.

4.5 Conclusions

Building upon our work on controller-enhanced FDI presented in Chapter 2, the present

chapter has addressed two previously unresolved, practical problems. Specifically, it was

demonstrated that the method of controller-enhanced FDI can be applied to processes

where only output measurements are available under appropriate assumptions in the pro-

cess system structure. We developed an approach where systems with incomplete state

measurements can be dealt with using state estimator-based output feedback control. This

approach maintains the necessary isolable structure in the closed-loop system in order to
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2 ) and the full system x (T 2
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perform controller-enhanced FDI. Additionally, we addressed the problem of controller-

enhanced FDI in an optimal fashion within the framework of MPC. We proposed an MPC

formulation that includes appropriate isolability constraints to achieve FDI in the closed-

loop system. The effectiveness of these methods was demonstrated through application to

a nonlinear CSTR example.
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Figure 4.10: Manipulated input profile under feedback linearizing MPC with fault d2.
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Chapter 5

FDI using Asynchronous

Measurements

5.1 Introduction

The goal of this chapter is to develop an FDI scheme that will allow fault tolerant control to

take place when process measurements are available at asynchronous time instants. First,

an FDI scheme that employs model-based techniques is proposed that allows for the isola-

tion of faults. This scheme employs model-based FDI filters similar to those found in [47]

in addition to observers that estimate the fault free evolution of asynchronously measured

states during time intervals in which their measurements are not available. Specifically, the

proposed FDI scheme provides detection and isolation of any fault that enters into the dif-

ferential equation of only synchronously measured states, and grouping of faults that enter

into the differential equation of any asynchronously measured state. For a fully coupled

process system, fault detection occurs shortly after a fault takes place, and fault isolation,

limited by the arrival of asynchronous measurements, occurs when asynchronous measure-

ments become available. Once the FDI methodology has provided the system supervisor

with a fault diagnosis, the supervisor takes appropriate action to seamlessly reconfigure the

system to an alternative control configuration that will enforce the desired operation. Ap-

plications of the proposed asynchronous FDI and FTC framework to a polyethylene reactor
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simulation [37] are presented.

5.2 FDI using asynchronous measurements: Problem formu-

lation and solution

5.2.1 Class of nonlinear systems

In this work, we consider nonlinear process systems described by the following state-space

model
ẋs = fs(xs, xa, u, d)

ẋa = fa(xs, xa, u, d)
(5.1)

where xs ∈ Rns denotes the set of state variables that are sampled synchronously, xa ∈ Rna

denotes the set of state variables that are sampled asynchronously, u ∈ Rnu denotes the

input and d ∈ Rp is a model of the set of p possible faults. The faults are unknown and dj ,

j = 1 . . . p, can take any value. The state of the full system is given by the vector

x =


xs

xa


 ∈ Rns+na

Using this definition for x, the system of Eq.5.1 can be written in the following equivalent

compact form

ẋ = f(x, u, d) (5.2)

We assume that f is a locally Lipschitz vector function and that f(0, 0, 0) = 0. This means

that the origin is an equilibrium point for the fault-free system with u(t) ≡ 0. Moreover,

we assume that the fault-free system (di(t) ≡ 0 for all t) has an asymptotically stable

equilibrium at the origin x = 0 for a given feedback control function h : Rns+na → Rnu

which satisfies h(0) = 0.
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5.2.2 Modeling of asynchronous measurements

The system of Eq.5.1 is controlled using both sampled synchronous and asynchronous mea-

surements. We assume that each state xs,i, i = 1 . . . ns is sampled continuously (i.e., at

intervals of fixed size ∆ > 0 where ∆ is a sufficiently small positive number). Each state

xa,i, i = ns + 1, . . . , ns + na, is sampled asynchronously and is only available at time in-

stants tk,i where tk,i is a random increasing sequence of times. A controller design that

takes advantage of the asynchronous measurements must take into account that it will have

to operate without complete state information between asynchronous samples. This class

of systems arises naturally in process control, where process variables such as temperature,

flow, or concentration have to be measured. In such a case, temperature and flow measure-

ments can be assumed to be available continuously. Concentration measurements, however,

are available at an asynchronous sampling rate.

If there exists a non-zero probability that the system operates in open-loop for a period

of time large enough for the state to leave the stability region or even diverge to infinity

(i.e., finite escape time), it is not possible to provide guaranteed stability properties. In

order to study the stability properties in a deterministic framework, we consider systems

where there is a limit on the maximum number of consecutive sampling times in which

measurements of xa,i are not available, i.e.

max(tk+1,i − tk,i) ≤ ∆M

This bound on the maximum period of time in which the loop is open has been also used

in other works in the literature [66, 52, 46] and allows us to study deterministic notions of

stability.

5.2.3 Asynchronous state observer

An observer that takes advantage of both synchronous and asynchronous measurements

can be constructed to estimate the fault-free evolution of asynchronous states between

consecutive measurements. The observer states are updated by setting the observer state
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equal to the measurement each time a new asynchronous measurement becomes available

at tk,i. The asynchronous state observer takes the form

˙̂xa = fa(xs, x̂a, u, 0) (5.3)

with x̂a,i(tk,i) = xa,i(tk,i) for all tk,i; that is, each time a new asynchronous measurement is

received, the estimated states x̂a,i with i = ns + 1, . . . , ns + na are reset to match the true

process state. The information generated by this observer provides a fault-free estimate for

each asynchronous state at any time t and allows for the design of non-linear control laws

that utilize full state information. Using the estimated states, the control input applied to

the system is given by u = h(x̂) where x̂ = [xT
s x̂T

a ]T .

This control input is defined for all times because it is based on both the synchronous

states and the estimated asynchronous states. We assume that ∆M is small enough to

guarantee that the system in closed-loop with this control scheme is practically stable,

see [66, 52, 46] for details on similar stability results.

5.2.4 Design of fault-detection and isolation filter

In this section we construct fault-detection and isolation (FDI) filters that will automatically

identify the source of a failure in a timely manner. Utilizing both synchronous state measure-

ments, x̂i(t), i = 1, . . . , ns, and asynchronous state estimates, x̂i(t), i = ns + 1, . . . , ns + na,

the following ns + na filters are defined [47]:

˙̃xi = fi(x̂1 . . . x̃i . . . x̂ns+na , h(x̂1 . . . x̃i . . . x̂ns+na), 0) (5.4)

where x̃i is the filter output for the ith state in x̂ and fi is the ith component of the vector

function f . The FDI filters are only initialized at t = 0 such that x̃(0) = x̂(0). For each

state in x̂, the FDI residual can be defined as

ri(t) = |x̂i(t)− x̃i(t)|, i = 1, . . . , ns + na.
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The synchronous residuals ri(t) with i = 1, . . . , ns are computed continuously because x̂i(t)

with i = 1, . . . , ns is known for all t. On the other hand, the asynchronous residuals

ri(t), i = ns + 1, . . . , ns + na, are computed only at times tk,i when a new asynchronous

measurement of x̂i(t), i = ns + 1, . . . , ns + na, is received. These FDI filters operate by

essentially predicting the fault-free evolution of each individual state, accounting for faults

that enter the system when the predicted evolution of the state diverges from the measured

evolution [47].

The dynamics of the synchronous states and asynchronous observers, x̂, and the FDI

filters, x̃i, are identical to those of the system of Eq.5.1 when there are no disturbances or

noise acting on the system. When the states are initialized as x̂(0) = x̃(0) = x(0) both

the observer and filter states will track the true process states. For faults affecting the

synchronous states, when a fault, dj , occurs, only the residual corresponding to the affected

state, ri, will become nonzero. This is the case when the fs(xs, xa, h(x), d) vector field

has a structure such that type I faults are isolable; see [47] for a precise determination of

such a structure. In the case with faults affecting asynchronously measured states, at least

one ri will become non-zero when a fault occurs. However, faults that affect asynchronous

states cause the asynchronous observer x̂a to diverge from the true process state xa between

consecutive measurements, and any FDI filter states that are a function of x̂a will no longer

accurately track the corresponding true process states. When such a fault occurs more than

one residual value may become nonzero.

Continuous measurements for asynchronous states are not available, thus the FDI filters

in Eq.5.4 cannot always completely isolate all failures. We consider two classes of faults.

Type I faults are faults that only affect states that are measured continuously; that is, dj

is a type I fault if
∂fi

∂dj
= 0, ∀i = ns + 1, . . . , ns + na.

Type II faults affect at least one asynchronous state; that is, dj is a type II fault if there

exists at least one i = ns + 1, . . . , ns + na such that

∂fi

∂dj
6= 0.
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The FDI filter will detect and isolate a type I fault dj because the asynchronous state

observers will track the asynchronous states accurately (i.e., the effect of the fault dj(t) on

an asynchronous observer state is accounted for through the synchronous states, so dj(t) is

accounted for in the observer of Eq.5.3 and hence the FDI filter). A type II fault enters the

system in the differential equation of a state that is sampled asynchronously. The effect of

type II faults cannot be accounted for by the observer x̂i, and such a fault will cause x̂i

to no longer track xi and will eventually affect other coupled filter states as well. Strict

isolation cannot take place for a type II fault. The FDI filter will detect and partially

isolate disturbances in this case because the asynchronous state observers will diverge from

the asynchronous states (i.e., the effect of the fault dj(t) on an asynchronous observer state

is unmeasured and unaccounted for, thus the observer in Eq.5.3 does not track the disturbed

state). In other words, if a type I fault occurs, then it can be detected and isolated. If a

type II fault occurs, then this fault can be grouped to the subset of type II faults.

A fault is detected at time tf if there exists a residual i such that ri(tf ) > ri,max, where

ri,max is an appropriate threshold chosen to account for process and sensor noise. In order

to isolate the possible source of the fault, it is necessary to wait until the residuals of all the

asynchronous state filters are updated after tf to determine if the fault is type I or type II.

The residual of each asynchronous state filter x̃i is updated at time

ti(tf ) = min
k

tk,i| tk,i > tf .

If ri(ti(tf )) ≤ ri,max with i = ns + 1, . . . , ns + na, then the fault occurred at time tf is a

type I fault and can be appropriately isolated. Otherwise, the fault belongs to the set of

type II faults.

Consider that a synchronous residual ri indicates a fault at time tf . In this case the

fault could have two possible causes, a type I or type II fault. In order to determine the

true cause of this fault, one has to wait for the complete set of asynchronous measurements

to arrive after tf . When all the asynchronous measurements arrive and if all the residuals

of the asynchronous states are smaller than the threshold, then the fault can be attributed

to a type I fault. If any asynchronous measurement arrives and the corresponding residual
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indicates a fault, then the fault is type II. Note that when an asynchronous residual indicates

a fault, we can also conclude that the fault is type II. When the fault is type II it has been

detected, and it is possible to narrow the fault source down to the set of faults that enter

the differential equations of asynchronous states.

When the fault can be attributed to a type I fault and it has been detected and isolated,

then automated fault tolerant (FTC) control action can be initiated. For example, when a

fault event that is due to a manipulated input failure (i.e., an actuator failure) is detected

and isolated, fault tolerant control methods can be initiated [47]. In general an FTC

switching rule may be employed that orchestrates the re-configuration of the control system

in the event of control system failure. This rule determines which of the backup control

loops can be activated, in the event that the main control loop fails, in order to preserve

closed-loop stability. Owing to the limitations imposed by input constraints on the stability

region for each control configuration, switching from a malfunctioning configuration to a

well-functioning, but randomly selected, backup configuration will not preserve closed-loop

stability if the state of the system, at the time of failure, lies outside the stability region of

the chosen backup configuration. In this case, stabilization using this configuration requires

more control action than is allowed by its constraints. This observation motivates the

development of switching logic, which is to switch to the control configuration for which the

closed-loop state resides within the stability region at the time of control failure. Without

loss of generality, let the initial actuator configuration be k(0) = 1 and let td be the time

when this failure has been isolated, then the switching rule given by

k(t) = j ∀ t ≥ td if x(td) ∈ Ω(umax
j ) (5.5)

for some j ∈ {2, 3, · · · , N} guarantees closed-loop asymptotic stability, where Ω(umax
j ) is the

stability region for the jth control configuration. The implementation of the above switching

law requires monitoring the closed-loop state trajectory with respect to the stability regions

associated with the various fall-back configurations. The reader may refer to [23] for ap-

plication of FTC to a polyethylene reactor with constraints on the manipulated inputs. In

this work we consider a control law without constraints on the manipulated inputs, and the

primary control configuration with a faulty actuator will be deactivated in favor of a fully
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functional fall-back control configuration where the fall-back configuration can guarantee

global stability of the closed-loop system. This integrated FDI/FTC reconfiguration allows

for seamless fault-recovery in the event of an actuator failure. Section 5.3 demonstrates

integrated FDI/FTC for the polyethylene reactor.

5.3 Application to a polyethylene reactor

5.3.1 Process and measurement modeling

The proposed model-based asynchronous FDI and FTC method will be demonstrated using

a model of an industrial gas phase polyethylene reactor. The feed to the reactor consists

of ethylene ([M1]), comonomer, hydrogen, inerts ([In]) and catalyst (Y ). A recycle stream

of unreacted gases flows from the top of the reactor and is cooled by passing through a

water-cooled heat exchanger. Cooling rates in the heat exchanger are adjusted by mixing

cold and warm water streams while maintaining a constant total cooling water flow rate

through the heat exchanger. Mass balances on hydrogen and comonomer have not been

considered in this study because hydrogen and comonomer have only mild effects on the

reactor dynamics [37]. A mathematical model for this reactor has the following form [9]:

d[In]
dt

=
1
Vg

(FIn − [In]
[M1] + [In]

bt)

d[M1]
dt

=
1
Vg

(FM1 −
[M1]

[M1] + [In]
bt −RM1) + d4

dY1

dt
= Fcac − kd1Y1 − RM1MW1Y1

Bw
+ d2

dY2

dt
= Fcac − kd2Y2 − RM1MW1Y2

Bw
+ d2

dT

dt
=

Hf + Hg1 −Hg0 −Hr −Hpol

MrCpr + BwCppol
+ Q + d1

dTw1

dt
=

Fw

Mw
(Twi − Tw1)−

UA

MwCpw
(Tw1 − Tg1)

dTg1

dt
=

Fg

Mg
(T − Tg1) +

UA

MgCpg
(Tw1 − Tg1) + d3

(5.6)
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where
bt = VpCv

√
([M1] + [In])RRT − Pv

RM1 = [M1]kp0e
−Ea

R
( 1

T
− 1

Tf
)
(Y1 + Y2)

Cpg =
[M1]

[M1] + [In]
Cpm1 +

[In]
[M1] + [In]

CpIn

Hf = (FM1Cpm1 + FInCpIn)(Tfeed − Tf )

Hg1 = Fg(Tg1 − Tf )Cpg

Hg0 = (Fg + bt)(T − Tf )Cpg

Hr = HreacMW1RM1

Hpol = Cppol(T − Tf )RM1MW1

(5.7)

The definitions for all the variables used in (5.6) and (5.7) are given in Table 5.1 and

their values can be found in [9] (see also [23]). Under normal operating conditions, the

open-loop system behaves in an oscillatory fashion (i.e., the system possesses an open-loop

unstable steady-state surrounded by a stable limit cycle). The open-loop unstable steady-

state around which the system will be controlled is

[In]ss = 439.7mol
m3 [M1]ss = 326.7mol

m3

Yss = 7.67mol Tss = 356.2K

Tg1ss = 290.4K Tw1ss = 294.4K.

where T , Tg1 and Tw1 are the temperatures of the reactor, recycle gas after cooling and

exit-stream cooling water, respectively. In this example, we consider four possible faults,

d1, d2, d3, and d4 which represent a heat jacket fault, catalyst deactivation, a change in the

recycle gas flow rate, and ethylene consumption, respectively. The primary manipulated

input for these studies is the heat input, Q, and the fall-back manipulated input is the feed

temperature, Tfeed. A fall-back manipulated input is required to maintain desired system

performance in the presence of failure in the primary control configuration.

Simulations have been carried out for several scenarios to demonstrate the effectiveness

of the proposed FDI scheme in detecting and isolating the four faults d1, d2, d3, and d4
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in the presence of asynchronous measurements. The temperature measurements (T , Tg1 ,

Tw1) are all assumed to be available synchronously, while the concentration measurements

([In], [M1], Y ) arrive at asynchronous intervals. In all the simulations, sensor measurement

and process noise are included. The sensor measurement noise trajectory was generated

using a sample time of ten seconds and a zero-mean normal distribution with standard

deviation σM . The autoregressive process noise was generated discretely as wk = φwk−1 +

ξk, where k = 0, 1, . . . is the discrete time step, with a sample time of ten seconds, φ

is the autoregressive coefficient and ξk is obtained at each sampling step using a zero-

mean normal distribution with standard deviation σp. The autoregressive process noise

is added to the right-hand side of the differential equations for each state and the sensor

measurement noise is added to the measurements of each state. Sensor measurement noise

and process noise are evaluated independently for each state variable. Table 5.2 provides

the values of the noise parameters for each state of the system. The length of time between

consecutive asynchronous measurements is generated randomly based on a Poisson process.

The time when the system will receive the next asynchronous measurement of the ith state

is given by tk+1,i = tk,i + ∆a where ∆a = −ln(ξ)/Wa and ξ ∈ (0, 1) is a random variable

chosen from a uniform probability distribution and Wa = 0.003 s−1 is the mean rate of

asynchronous sampling. There is an upper bound limiting the time between consecutive

measurements such that ∆a ≤ ∆M = 1200 s. This value of ∆M is small enough to provide

practical closed-loop stability around the desired equilibrium point for the polyethylene

reactor. An increasing sequence of measurement arrival times is generated independently

for each asynchronously measured state.

5.3.2 Design of the asynchronous state observers

To perform FDI for the polyethylene reactor system we need to construct the asynchronous

state observers of the form in Eq.5.3. The asynchronous state observers for this system
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Table 5.1: Polyethylene reactor example process variables.
ac active site concentration of catalyst
bt overhead gas bleed
Bw mass of polymer in the fluidized bed
Cpm1 specific heat capacity of ethylene
Cv vent flow coefficient
Cpw, CpIn, Cppol specific heat capacity of water, inert gas and polymer
Ea activation energy
Fc, Fg flow rate of catalyst and recycle gas
FIn, FM1 , Fw flow rate of inert, ethylene and cooling water
Hf , Hg0 enthalpy of fresh feed stream, total gas outflow stream from

reactor
Hg1 enthalpy of cooled recycle gas stream to reactor
Hpol enthalpy of polymer
Hr heat liberated by polymerization reaction
Hreac heat of reaction
[In] molar concentration of inerts in the gas phase
kd1 , kd2 deactivation rate constant for catalyst site 1, 2
kp0 pre-exponential factor for polymer propagation rate
[M1] molar concentration of ethylene in the gas phase
Mg mass holdup of gas stream in heat exchanger
MrCpr product of mass and heat capacity of reactor walls
Mw mass holdup of cooling water in heat exchanger
MW1 molecular weight of monomer
Pv pressure downstream of bleed vent
Q Heat added/removed by heating jacket
R, RR ideal gas constant, unit of J

mol·K , m3·atm
mol·K

T , Tf , Tfeed reactor, reference, feed temperature
Tg1 , Tw1 temperature of recycle gas, cooling water stream from ex-

changer
Twi inlet cooling water temperature to heat exchanger
UA product of heat exchanger coefficient with area
Vg volume of gas phase in the reactor
Vp bleed stream valve position
Y1, Y2 moles of active site type 1, 2
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Table 5.2: Polyethylene reactor noise parameters
σp σm φ

[In] 1E-4 5E-2 0
[M1] 1E-4 5E-2 0.7
Y 1E-4 1E-2 0.7
T 5E-3 5E-2 0.7
Tg1 5E-3 5E-2 0.7
Tw1 5E-3 5E-2 0.7

have the form:

d[În]
dt

=
1
Vg

(FIn − [În]
ˆ[M1] + [În]

b̂t)

d ˆ[M1]
dt

=
1
Vg

(FM1 −
ˆ[M1]

ˆ[M1] + [În]
b̂t − R̂M1)

dŶ

dt
= Fcac − kd1 Ŷ − R̂M1MW1Y

Bw

b̂t = VpCv

√
( ˆ[M1] + [În])RRT (t)− Pv

R̂M1 = ˆ[M1]kp0e
−Ea

R
( 1

T (t)
− 1

Tf
)
(Ŷ )

[În](tk,[In]) = [In](tk,[In])

ˆ[M1](tk,[M1]) = [M1](tk,[M1])

Ŷ (tk,Y ) = Y (tk,Y )

(5.8)

where [În], ˆ[M1], and Ŷ are the asynchronous observer states. Each asynchronous observer

state is initialized each time new measurement information becomes available at the times

tk,i. The observer states provide estimates for the asynchronous states between consecutive

measurements allowing the computation of control actions and FDI residuals at each time.

5.3.3 Design of the state feedback controller

The control objective is to stabilize the system at the open-loop unstable steady state.

A nonlinear Lyapunov-based feedback controller that enforces asymptotic stability of the
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closed-loop system is synthesized using the method proposed in [61] (see also [19]). This is a

single input controller that utilizes synchronous measurements as well as observer states.The

polyethylene reactor dynamics belong to the following class of non-linear systems:

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(x(t))d(t) (5.9)

where

x(t) =




[In]− [In]ss

[M1]− [M1]ss

Y − Yss

T − Tss

Tg1 − Tg1ss

Tw1 − Tw1ss




and

u1(t) = Q, u2(t) = Tfeed.

Consider the quadratic control Lyapunov function V (x) = xT Px where

P = 1× 10−2 diag[0.5 0.5 0.5 1 0.005 0.005].

The values of the weighting matrix P are chosen to account for the different range of

numerical values for each state. The following feedback laws [61] asymptotically stabilize

the open-loop and possibly unstable steady-state of the nominal system (i.e., d(t)) ≡ 0)

hi(x) =





Lf V +
√

Lf V 2+LgiV 4

−LgiV
if LgiV 6= 0

0 if LgiV = 0
, i = 1, 2. (5.10)

where LfV and LgiV denote the Lie derivatives of the scalar function V with respect to

the vectors fields f and gi respectively.

In the simulations, the primary control configuration is given by

u1(t) = h1(x̂(t))
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and the fall-back control configuration is given by

u2(t) = h2(x̂(t))

where

x̂(t) =




[În]− [In]ss
ˆ[M1]− [M1]ss

Ŷ − Yss

T − Tss

Tg1 − Tg1ss

Tw1 − Tw1ss




.

5.3.4 Design of FDI/FTC scheme

Fault detection and isolation for the system in closed-loop with the primary configuration

is accomplished by generating FDI filters as in Eq.5.4., and for the polyethylene system the

FDI filters take the following form:

d[Ĩn]
dt

=
1
Vg

(FIn − [Ĩn]
ˆ[M1] + [Ĩn]

b̃
[In]
t )

d ˜[M1]
dt

=
1
Vg

(FM1 −
˜[M1]

˜[M1] + [În]
b̃
[M1]
t − R̃

[M1]
M1 )

dỸ

dt
= Fcac − kd1 Ỹ − R̃Y

M1MW1 Ỹ

Bw

dT̃

dt
=

Hf + H̃T
g1 − H̃T

g0 − H̃T
r − H̃T

pol

MrCpr + BwCppol
+ h1(x̂(t))

dT̃w1

dt
=

Fw

Mw
(Twi − T̃w1)−

UA

MwCpw
(T̃w1 − Tg1)

dT̃g1

dt
=

Fg

Mg
(T − T̃g1) +

UA

MgC̃pg

(Tw1 − T̃g1)

(5.11)
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where
b̃
[In]
t = VpCv

√
( ˆ[M1] + [Ĩn])RRT − Pv

b̃
[M1]
t = VpCv

√
( ˜[M1] + [În])RRT − Pv

b̃
[T ]
t = VpCv

√
( ˆ[M1] + [În])RRT̃ − Pv

R̃
[M1]
M1 = ˜[M1]kp0e

−Ea
R

( 1
T
− 1

Tf
)
(Ŷ )

R̃Y
M1 = ˆ[M1]kp0e

−Ea
R

( 1
T
− 1

Tf
)
(Ỹ )

R̃T
M1 = ˆ[M1]kp0e

−Ea
R

( 1
T̃
− 1

Tf
)
(Ŷ )

C̃pg =
ˆ[M1]

ˆ[M1] + [În]
Cpm1 +

[În]
ˆ[M1] + [În]

CpIn

H̃T
g1 = Fg(Tg1 − Tf )C̃pg

H̃T
g0 = (Fg + b̃T

t )(T̃ − Tf )C̃pg

H̃T
r = HreacMW1R̃

T
M1

H̃T
pol = Cppol(T̃ − Tf )R̃T

M1MW1

(5.12)

In addition, the FDI residuals take the following form:

r[In] = | ˆ[In](tk)− [Ĩn](tk)|
r[M1] = | ˆ[M1](tk)− [Ĩn](tk)|
rY = |Ŷ (tk)− Ỹ (tk)|
rT = |T − T̃ |
rTg1

= |Tg1 − T̃g1 |
rTw1

= |Tw1 − T̃w1 |.

(5.13)

In the case with measurement and process noise, the residuals will be nonzero even without

a failure event. This motivates the use of detection thresholds such that a fault is declared

when a residual exceeds a specific threshold value, ri,max (note that a different threshold

value can be used for each residual). This threshold value must be selected to avoid false

alarms due to process and measurement noise, but it should also be sensitive enough (small

enough) to detect faults in a timely manner so that efficient FTC action can be initiated.
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The threshold values used for each residual in the numerical simulations can be seen as the

dashed lines in Figures 5.3, 5.6, 5.9, and 5.12.

If the fault can be isolated to d1 (i.e., rT exceeds rT,max at t = tf , while ri(ti(tf )) ≤
ri,max with i = [In], [M1], Y ), then one can invoke fault tolerant control methods to handle

actuator failures by activation of a fall-back control configuration. In the simulation studies,

it is assumed that a fall-back configuration, where the fall-back manipulated input u2 =

Tfeed, is available. The control law of Eq.5.10 enforces stability when the control actuator is

functioning properly, thus switching to the operational fall-back configuration will guarantee

stability in the case of failure of the primary control configuration, u1 = Q.

5.3.5 Closed-loop process simulation results

This section consists of four simulation studies, each examining one of the faults d1, d2,

d3, or d4. The first simulation considers a fault, d1, on the heating jacket which is the

primary manipulated input. In this case the simulation includes fault tolerant control that

automatically reconfigures the plant so that the fall-back manipulated input, u2 = Tfeed,

is activated to maintain stability. Specifically, the supervisory control element will deacti-

vate the primary control configuration, u1 and activate the fall-back configuration u2 when

rT > rT,max and ri(ti(tf )) ≤ ri,max with i = [In], [M1], Y . This specific fault signature

corresponds to a type I fault that can be isolated to d1. The reader may refer to [23] to

obtain more information on FTC and reconfiguration rules for a polyethylene reactor with

constraints on the manipulated inputs that give rise to stability regions. This work does not

consider constraints on the manipulated inputs, hence, the fall-back configuration can guar-

antee stability from anywhere in the state space because the closed-loop system under the

fall-back control configuration is globally asymptotically stable. The remaining simulation

studies explore faults that disturb the system, but do not arise from actuator failures. Since

they are not caused by actuation component malfunctions these failures cannot be resolved

simply by actuator reconfiguration. However, these simulations demonstrate quick detec-

tion and isolation in the presence of asynchronous measurements that enables the operator

to take appropriate and focused action in a timely manner.
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For the fault d1 a simulation study has been carried out to demonstrate the proposed

asynchronous fault detection and isolation and fault tolerant control method. The sequence

of asynchronous measurements for this scenario is shown in Figure 5.1. This first simulation

uses the primary control configuration in which Q is the manipulated input and has a fall-

back configuration, in which Tfeed is the manipulated input, available in case of a fault

in d1. A fault takes place where d1 = 1 K/s at t = 0.5 hr representing a failure in the

heating jacket, Q. At this time the synchronous states in Figure 5.2 all move away from

the equilibrium point. Additionally, as asynchronous measurements become available, it is

clear the asynchronous states also move away from the equilibrium point after the failure.

It is unclear from the state information alone what caused this faulty behavior. However,

if the FDI residuals in Figure 5.3 are examined, it is clear that the residual rT that is

associated with the manipulated input Q, violates its threshold at tf = 0.5003 hr. The

fault is detected upon this threshold violation. However, isolation cannot take place until

one new measurement for each asynchronous state becomes available. At t = 0.5944 hr all

three required asynchronous measurements have arrived, and the asynchronous residuals

remain below their thresholds, hence ri(ti(tf )) ≤ ri,max with i = [In], [M1], Y . This signals

that this is a type I fault that can be isolated to d1. At this time, the system is reconfigured

to the fall-back configuration where Tfeed is the manipulated input, and the resulting state

trajectory, shown as the dotted line in Figure 5.2, moves back to the desired operating

point. The manipulated input for this scenario can be seen in Figure 5.4 where the solid

line is the manipulated input without detection and reconfiguration, and the dotted line

represents the input after FDI and reconfiguration.

The second simulation demonstrates the proposed asynchronous model-based fault-

detection and isolation method when a type II fault occurs. The sequence of asynchronous

measurements for this scenario are found in Figure 5.5. This simulation uses the primary

control configuration in which Q is the manipulated input. A fault takes place where

d2 = −0.001 mol/s at t = 0.5 hr representing a catalyst deactivation event. After the

failure, two synchronous states in move away from the equilibrium point (see [38] for ad-

ditional figures). Additionally, as asynchronous measurements become available it can be

seen that asynchronous states also move away from the equilibrium point after the failure.
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Figure 5.1: Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y (circle) with
a fault d1 at t = 0.5 hr.
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Figure 5.2: State trajectories of the closed-loop system without fault-tolerant control (cir-
cle/solid) and with appropriate fault detection and isolation and fault-tolerant control where
the fall-back control configuration is activated (star/dotted) with a fault d1 at t = 0.5 hr.
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Figure 5.3: Fault-detection and isolation residuals for the closed-loop system with a fault d1

at t = 0.5 hr. The fault is detected immediately, but isolation occurs at t = 0.59 hr when
all three asynchronous states have reported a residual below their detection threshold. This
signals a type I fault, and we can isolate the source of this fault as d1.
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Figure 5.4: Manipulated input for the closed-loop system without fault-tolerant control
(solid) and with appropriate fault-tolerant control where the fall-back control configuration
is activated (dotted) with a fault d1 at t = 0.5 hr.
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Figure 5.5: Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y (circle) with
a fault d2 at t = 0.5 hr.

It is unclear from the state information alone what caused this faulty behavior. However, if

the FDI residuals in Figure 5.6 generated by (5.13) are examined, it is clear that the resid-

uals r[M1], rY ,and rT violate their thresholds. The fault is detected upon the first threshold

violation (rY at t = 0.5333 hr). When the residual associated with Y exceeds the threshold

this signals that the fault is type II and entered the system in the differential equation of

an asynchronous state. When the fault is type II it cannot be isolated. However, such a

fault can be grouped in the subset of faults that enter into the differential equation of an

asynchronous state, (i.e., the group of type II faults, specifically, d2 or d4). At this time, the

system operator can utilize the above partial isolation to examine the plant and determine

the exact source of the failure. The manipulated input for this scenario can be seen in

Figure 5.7.

The third simulation study examines FDI in the presence of a type I fault, d3, represent-

ing a change in the recycle gas flow rate. The sequence of asynchronous measurements for

this scenario are found in Figure 5.8. This simulation study uses the primary control con-

figuration in which Q is the manipulate input, and a fault takes place where d3 = 300 K/s
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Figure 5.6: Fault-detection and isolation residuals for the closed-loop system with a fault d2

at t = 0.5 hr. The fault is detected when residual for Y exceeds the threshold. Subsequently,
T and [M1] exceed their thresholds. When any asynchronous residual violates the threshold
this indicates that the fault is in the set of type II faults; d2 or d4.
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Figure 5.7: Manipulated input for the closed-loop system with a fault d2 at t = 0.5 hr.
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Figure 5.8: Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y (circle) with
a fault d3 at t = 0.5 hr.

at t = 0.5 hr. At this time the synchronous states all move away from the equilibrium

point (see [38] for additional figures). Additionally, as asynchronous measurements become

available it is observed that the asynchronous states also move away from the equilibrium

point after the failure. It is unclear from the state information alone what caused this faulty

behavior. However, if the FDI residuals in Figure 5.9 are examined, the residual associated

with Tg1, violates its threshold at t = 0.5003 hr. The fault is detected upon this thresh-

old violation. However, isolation cannot take place until one new measurement for each

asynchronous state becomes available. At t = 0.6086 hr all three required asynchronous

measurements have become available, and the residuals signal a type I fault, allowing the

isolation of the fault to d3. The manipulated input for this scenario can be seen in Figure

5.10.

The final simulation study demonstrates the proposed asynchronous model-based fault-

detection and isolation method when a type II fault occurs. The sequence of asynchronous

measurements for this scenario are found in Figure 5.11 This simulation uses the primary

control configuration in which Q is the manipulated input. A fault takes place where

d4 = −0.2 mol/s at t = 0.5 hr representing unexpected monomer consumption. After

132



0 0.5 1
0

0.1

0.2

r [In
]

0 0.5 1
0

0.5

1

r [M
1]

0 0.5 1
0

0.05

0.1
r Y

0 0.5 1
0

0.5

1

r T

0 0.5 1
0

0.2

0.4

Time (hr)

r T
w

1

0 0.5 1
0

1

2

Time (hr)

r T
g1

Figure 5.9: Fault-detection and isolation residuals for the closed-loop system with a fault d3

at t = 0.5 hr. A fault is detected immediately when residual for Tg1 exceeds the threshold.
Subsequently, none of the asynchronous residuals exceed their thresholds, indicating that
the fault source can be isolated as d3.
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Figure 5.10: Manipulated input for the closed-loop system with a fault d3 at t = 0.5 hr.
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Figure 5.11: Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y (circle)
with a fault d4 at t = 0.5 hr.

the failure the synchronous states diverge from their desired values (see [38] for additional

figures). Additionally, as asynchronous measurements become available it can be seen that

asynchronous states also diverge after the failure. It is unclear from the state information

alone what caused this faulty behavior. However, if the FDI residuals in Figure 5.12 are

examined, the residuals r[In], r[M1], rT ,and rTg1 violate their thresholds. The fault is detected

upon the first threshold violation (r[M1] at t = .05667 hr). When the residual r[M1] exceeds

the threshold this signals that a type II fault has occurred. When a type II fault occurs it

cannot be isolated. As in the second simulation, such a fault can be grouped in the subset

of type II faults d2 or d4. At this time, the system operator can utilize the partial isolation

to examine the plant and determine the exact source of the failure. The manipulated input

for this scenario can be seen in Figure 5.13.

5.4 Conclusions

This chapter addressed the application of fault detection and isolation and fault-tolerant

control in a polyethylene reactor system where several process measurements were not
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Figure 5.12: Fault-detection and isolation residuals for the closed-loop system with a fault
d4 at t = 0.5 hr. The fault is detected when residual for [M1] exceeds the threshold.
Subsequently, T and [In] exceed their thresholds. When any asynchronous residual violates
the threshold this indicates the fault is in the set of type II faults; d2 or d4.
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Figure 5.13: Manipulated input for the closed-loop system with a fault d4 at t = 0.5 hr.
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available synchronously. First, an FDI scheme that employs model-based techniques was

introduced that allowed for the isolation of faults. This scheme employed model-based

FDI filters in addition to observers that estimate the fault-free evolution of asynchronously

measured states during times when they are unmeasured. Specifically, the proposed FDI

scheme provided detection and isolation for a type I fault where the fault entered into the

differential equation of only synchronously measured states, and grouping of type II faults

where the fault entered into the differential equation of any asynchronously measured state.

The detection occurred shortly after a fault took place, and the isolation, limited by the

arrival of asynchronous measurements, occurred once all of the asynchronous measurements

became available. Once the FDI methodology provided the system supervisor with a fault

diagnosis, the supervisor took appropriate action to seamlessly reconfigure the polyethylene

reactor system to an alternative control configuration that enforced the desired operation.
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Chapter 6

Networked Monitoring and Fault

Tolerant Control

6.1 Introduction

This chapter focuses on the monitoring and reconfiguration of a two-tier networked control

system for a chemical process in the presence of control actuator faults. Specifically, a

chemical process system is considered and is controlled by a two-tier networked control sys-

tem integrating a local control system using continuous sensing/actuation with a networked

control system using asynchronous sensing/actuation. To deal with control actuator faults

that may occur in the closed-loop system, a networked fault detection and isolation (FDI)

and fault-tolerant control (FTC) system is designed which detects and isolates actuator

faults and determines how to reconfigure the two-tier networked control system to handle

the actuator faults. The FDI/FTC system uses continuous measurements of process vari-

ables like temperatures and asynchronous measurements of variables like concentrations.

The method is demonstrated using a reactor-separator process consisting of two continuous

stirred tank reactors and a flash tank separator with recycle stream.
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6.2 Preliminaries

6.2.1 Class of nonlinear systems

In this work, we consider nonlinear process systems described by the following state-space

model
ẋs = fs(xs, xa, us, ua, d)

ẋa = fa(xs, xa, us, ua, d),
(6.1)

where xs ∈ Rns denotes the set of state variables that are sampled synchronously, xa ∈ Rna

denotes the set of state variables that can only be sampled asynchronously, us ∈ Rms

denotes the inputs computed from only synchronous measurements, ua ∈ Rma denotes

inputs computed from synchronous and asynchronous measurements and d ∈ Rp is a model

of the set of p possible faults. The faults are unknown and dj , j = 1, . . . , p, can take any

value. The states of the full system are given by the vector

x =


xs

xa


 ∈ Rns+na .

Using this definition for x, the system of Eq.6.1 can be written in the following equivalent

compact form

ẋ = f(x, us, ua, d). (6.2)

We assume that f is a locally Lipschitz vector function and that f(0, 0, 0, 0) = 0. This

means that the origin is an equilibrium point for the fault-free system (d ≡ 0 for all t) with

us ≡ 0 and ua ≡ 0. Moreover, we assume that there exists an output feedback controller

us(xs(t)) that renders the origin x = 0 of the fault-free system asymptotically stable with

ua ≡ 0.

6.2.2 Modeling of asynchronous measurements

The system of Eq.6.1 is controlled using both sampled synchronous and asynchronous mea-

surements. We assume that each state in xs is sampled continuously (i.e., at intervals of

fixed size ∆ > 0 where ∆ is a sufficiently small positive number). Each state in xa is
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sampled asynchronously and is only available at some time instants tk where {tk≥0} is a

random increasing sequence of times. A controller design that takes advantage of the asyn-

chronous measurements must take into account that it will have to operate in open loop

when new asynchronous measurements are unavailable. This class of systems arises natu-

rally in process control, where process variables such as temperature, flow, or concentration

have to be measured. In such a case, temperature and flow measurements can be assumed

to be available continuously. Concentration measurements, however, are available at an

asynchronous sampling rate. This model is also of interest for systems controlled through

a hybrid communication network in which wireless sensors are used to add redundancy to

existing working control loops (which use point-to-point wired communication links and

continuous measurements), because wireless communication is often subject to data losses

due to interference.

Since there exists a non-zero probability that the system operates in open-loop for a

period of time large enough for the state to leave the stability region or even diverge to

infinity (i.e., finite escape time), it is not possible to provide guaranteed stability properties.

In order to maintain reasonable stability and system performance, we consider systems

where there is a limit on the maximum length of times in which measurements of xa are

not available, i.e.

max(tk+1 − tk) ≤ ∆M .

This bound on the maximum period of time in which the loop is open has been also used

in other works in the literature [66, 52, 46]. Note that this bound is also required for fault

detection and isolation systems which take advantage of asynchronous measurements to

detect faults within a reasonable time frame.

6.2.3 Two-tier control architecture

The continuous measurements xs(t) can be used to design a continuous output-feedback

controller us(xs(t)) to stabilize the system. The control system based only on the continuous

measurements xs(t) is called the local control system. This controller is able to stabilize

the system, however, it does not profit from the extra information provided by xa(t).
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Figure 6.1: Two-tier control strategy (solid lines denote dedicated point-to-point, wired
communication links and continuous sensing/actuation; dashed lines denote networked
(wired/wireless) communication and/or asynchronous sampling/actuation).

The main objective of the two-tier control architecture [32, 33] is to improve the perfor-

mance of the closed-loop system using the information provided by xa(t) while guaranteeing

that the stability properties of the local control system us(xs(t)) are maintained. This is

done by defining a controller (networked control system) based on the full state measure-

ments x obtained from both the synchronous (xs) and asynchronous (xa) measurements at

time steps tk. In the two-tier control architecture, the networked control system decides the

trajectory of ua(t) between successive samples, i.e., for t ∈ [tk, tk+1) and the local control

system decides us(t) using the continuously available measurements. Figure 6.1 shows a

schematic of the two-tier control architecture.

In order to take advantage of the model of the system and the asynchronous state

measurements, model predictive control (MPC) is used to decide ua. The main idea is

the following: at each time instant tk that a new state measurement x(tk) is obtained, an

open-loop finite horizon optimal control problem is solved and an optimal input trajectory

is obtained. This input trajectory is implemented until a new set of measurements arrives at

time tk+1. If the time between two consecutive measurements is longer than the prediction

horizon, ua is set to zero until a new set of measurements arrives and the optimal control

problem is solved again. In order to define a finite dimensional optimization problem,

ua is constrained to belong to the family of piece-wise constant functions with sampling

period ∆c, S(∆c). In order to guarantee that the resulting closed-loop system is stable, a

Lyapunov-based MPC (LMPC) which includes a contractive constraint is designed. The

contractive constraint of the networked control system LMPC design is based on the local
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control system us(xs(t)). The LMPC optimization problem is defined as follows:

min
ua∈S(∆c)

∫ N∆
0 L(xe(τ), us(xe

s(τ)), ua(τ))dτ

ẋe(τ) = f(xe(τ), us(xe
s(τ)), ua(τ), 0)

ẋl(τ) = f(xl(τ), us(xl
s(τ)), 0, 0)

xl(0) = xe(0) = x(tk)

V (xe(τ)) ≤ V (xl(τ)) ∀ τ ∈ [0, N∆c]

(6.3)

where x(tk) is the state obtained from both the measurements of xs and xa, xe = [xeT
s xeT

a ]T

is the predicted trajectory of the nominal system for the input trajectory computed by the

LMPC, xl = [xlT
s xlT

a ]T is the predicted trajectory of the nominal system for the input

trajectory ua(τ) ≡ 0 for all τ ∈ [0, N∆C ], L(x, us, ua) is a positive definite function of the

state and the inputs that defines the cost, and N is the prediction horizon. This optimization

problem does not depend on the uncertainty and assures that the system in closed-loop with

the networked control system maintains the stability properties of the local control system.

The optimal solution to this optimization problem is denoted u∗a(τ |tk). This signal is defined

for all τ > 0 with u∗a(τ |tk) = 0 for all τ > N∆C .

The control inputs of the two-tier control architecture based on the above LMPC of

Eq.6.3 corresponding to the measurements provided by x(t) are defined as follows:

uL
s (t|x(t)) = us(xs(t)), ∀t

uL
a (t|x(t)) = u∗a(t− tk|tk), ∀t ∈ [tk, tk+1)

(6.4)

where u∗a(t−tk|tk) is the optimal solution of the LMPC problem at time step tk. This imple-

mentation technique takes into account that the local control system uses the continuously

available measurements, while the networked control system has to operate in open-loop

between consecutive asynchronous measurements.

6.2.4 FDI using asynchronous measurements

An observer that takes advantage of both synchronous and asynchronous measurements

can be constructed to estimate the fault-free evolution of asynchronous states between
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consecutive measurements. The observer states are updated by setting the observer state

equal to the measurement each time a new asynchronous measurement becomes available

at tk. The asynchronous state observer takes the form

˙̂xa = fa(xs, x̂a, u
L
s (x̂), uL

a (x̂), 0) (6.5)

where x̂ = [xT
s x̂T

a ]T and, with a little abuse of notation, we have dropped the time in-

dex of the two-tier controller functions and denote uL
s (t|x(t)), uL

a (t|x(t)) with uL
s (x), uL

a (x)

respectively in order to simplify the FDI definitions. Each time a new asynchronous mea-

surement is received, the estimated states x̂a are reset to match the true process state;

that is, x̂a(tk) = xa(tk) for all tk. The information generated by this observer provides a

fault-free estimate for each asynchronous state at any time t and allows for the design of

non-linear FDI filters that utilize full state information.

Utilizing both synchronous and asynchronous state measurements, the following ns +na

filters are defined [47]:

˙̃xi = fi(X̃i, u
L
s (X̃i), uL

a (X̃i), 0), ∀i = 1, . . . , ns + na (6.6)

where x̃i is the filter output for the ith state, fi is the ith component of the vector function

f and X̃i is a state trajectory obtained from the synchronous measurements, the estimated

and the corresponding filter output as follows:

X̃i = [x̂1 . . . x̃i . . . x̂ns+na ]
T .

Note that in Eq.6.6, it is necessary to compute a separate LMPC optimization problem

for each state in which the LMPC control input (i.e., uL
a ) appears in the state’s dynamic

equation. The FDI filters are only initialized at t = 0 such that x̃(0) = x̂(0). For each state

in x̂, the FDI residual can be defined as [47, 38]:

ri(t) = |x̂i(t)− x̃i(t)|, i = 1 . . . , ns + na.
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The synchronous residuals ri(t) with i = 1, . . . , ns are computed continuously because x̂i(t)

with i = 1, . . . , ns is known for all t. On the other hand, the asynchronous residuals

ri(t), i = ns + 1, . . . , ns + na, are computed only at times tk when a new asynchronous

measurement of x̂i(t), i = ns +1, . . . , ns +na, is received. Under no-fault conditions (d ≡ 0)

with x̂(0) = x̃(0) = x(0), both the observer and filter states will track the true process

states. In this case the dynamics of the synchronous states and asynchronous observers, x̂,

and the FDI filters, x̃, are identical and ri(t) = 0; i = 1, . . . , ns.

When a fault dj occurs, one or more residuals will be affected. For faults affecting the

synchronous states, only the residual corresponding to the affected state, ri, will become

nonzero. This is the case when the fs(xs, xa, us, ua, d) vector field has a structure such that

faults are isolable (see [47]). The following formal definition describes the class of faults dj

that are type I:
∂fi

∂dj
= 0, ∀i = ns + 1, . . . , ns + na.

On the other hand, faults that affect asynchronous states cause the asynchronous observer

x̂a to diverge from the true process state xa between consecutive measurements. Any FDI

filter states that are a function of x̂a will no longer accurately track the corresponding

true process states. When such a fault occurs, more than one residual value may become

nonzero. These faults are labeled type II if they affect at least one asynchronous state; that

is, dj is a type II fault if there exists at least one i = ns + 1, . . . , ns + na such that

∂fi

∂dj
6= 0.

Because the effects of a type I fault are measured synchronously, only the filters of the

states directly affected by the fault deviate from normal. Other filters continue to track

because the effect of the fault is known and accounted for. This allows for both fault

detection and isolation in the case of a type I fault. However, a type II fault affects states

that are measured asynchronously, and thus the effects of the fault are not immediately

known and cannot be accounted for by the observer x̂i. The error introduced into x̂i will

then propagate into the FDI filters. In this scenario, multiple residuals may exceed their

fault detection threshold, making it impossible to isolate the specific fault. Although it is
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Figure 6.2: Two-tier control strategy with integrated networked monitoring and fault-
tolerant control (solid lines denote dedicated point-to-point, wired communication links
and continuous sensing/actuation; dashed lines denote networked (wired/wireless) commu-
nication and/or asynchronous sampling/actuation).

impossible to isolate the specific fault, we are still able to group the fault as type II.

A fault is detected at time tf , if there exists a residual i such that ri(tf ) > ri,max,

where ri,max is an appropriate threshold chosen to account for process and sensor noise. In

order to isolate the source of the fault, it is necessary to wait until the residuals of all the

asynchronous state filters are updated at time tk > tf to determine if the fault is type I or

type II. If ri(tk) ≤ ri,max with i = ns + 1, . . . , ns + na, then the fault occurred at time tf is

a type I fault and can be appropriately isolated. Otherwise, the fault belongs to the set of

type II faults.

When the fault can be attributed to a type I fault and it has been detected and iso-

lated, then automated fault tolerant control action can be initiated. In general an FTC

switching rule may be employed that orchestrates the re-configuration of the control system

in the event of control system failure. This rule determines which of the backup control

loops can be activated, in the event that the main control loop fails, in order to preserve

closed-loop stability. In this work, we look at the closed-loop system under the two-tier

control architecture where, upon detection and isolation of actuator faults, the networked

control system can be reconfigured to maintain stability of the plant. The structure of this

integrated system is shown graphically in Figure 6.2. By updating the model used in the

networked control system, it becomes possible to preserve system stability in the presence
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Figure 6.3: Two CSTRs and a flash tank with recycle stream.

of an actuator fault.

6.3 Application to a reactor-separator process

6.3.1 Process description and modeling

The process considered in this study is a three vessel, reactor-separator system consisting of

two continuous stirred tank reactors (CSTRs) and a flash tank separator (see Figure 6.3). A

feed stream to the first CSTR contains the reactant, A, which is converted into the desired

product, B. Species A can also react into an undesired side-product, C. The solvent does

not react and is labeled as D. The effluent of the first CSTR along with additional fresh feed

makes up the inlet to the second CSTR. The reactions A → B and B → C (referred to as 1

and 2, respectively) take place in the two CSTRs in series before the effluent from CSTR 2

is fed to a flash tank. The overhead vapor from the flash tank is condensed and recycled to

the first CSTR, and the bottom product stream is removed. All three vessels are assumed to

have static holdup. The dynamic equations describing the behavior of the system, obtained

through material and energy balances under standard modeling assumptions, are given

145



Table 6.1: Process Variables
CA1, CA2, CA3 concentration of A in vessels 1, 2, 3
CB1, CB2, CB3 concentration of B in vessels 1, 2, 3
CC1, CC2, CC3 concentration of C in vessels 1, 2, 3
CAr, CBr, CCr concentration of A, B, C in the recycle
T1, T2, T3 temperatures in vessels 1, 2, 3
T10, T20 feed stream temp. to vessels 1, 2
F1, F2, F3 effluent flow rate from vessels 1, 2, 3
F10, F20 feed stream flow rate to vessels 1, 2
Fr recycle flow rate
V1, V2, V3 volume of vessels 1, 2, 3
u1, u2, u3, u4 manipulated inputs
E1, E2 activation energy for reactions 1, 2
k1, k2 pre-exponential values for reactions 1, 2
∆H1, ∆H2 heats of reaction for reactions 1, 2
Hvap heat of vaporization
αA, αB, αC , αD relative volatilities of A, B, C, D
MWA, MWB, MWC molecular weights of A, B, C
Cp, R heat capacity and gas constant

below.

dT1

dt
=

F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) + u1 +

−∆H1

ρCp
k1e

−E1
RT1 CA1 +

−∆H2

ρCp
k2e

−E2
RT1 CA1

dCA1

dt
=

F10

V1
(CA10 − CA1) +

Fr

V1
(CAr − CA1)− k1e

−E1
RT1 CA1 − k2e

−E2
RT1 CA1

dCB1

dt
=

−F10

V1
CB1 +

Fr

V1
(CBr − CB1) + k1e

−E1
RT1 CA1

dCC1

dt
=

−F10

V1
CC1 +

Fr

V1
(CCr − CC1) + k2e

−E2
RT1 CA1

dT2

dt
=

F1

V2
(T1 − T2) +

F20

V2
(T20 − T2) + u2 +

−∆H1

ρCp
k1e

−E1
RT2 CA2 +

−∆H2

ρCp
k2e

−E2
RT2 CA2

dCA2

dt
=

F1

V2
(CA1 − CA2) +

F20

V2
(CA20 − CA2)− k1e

−E1
RT2 CA2 − k2e

−E2
RT2 CA2 + u4

dCB2

dt
=

F1

V2
(CB1 − CB2)− F20

V2
CB2 + k1e

−E1
RT2 CA2

dCC2

dt
=

F1

V2
(CC1 − CC2)− F20

V2
CC2 + k2e

−E2
RT2 CA2

dT3

dt
=

F2

V3
(T2 − T3)− HvapFr

ρCpV3
+ u3

dCA3

dt
=

F2

V3
(CA2 − CA3)− Fr

V3
(CAr − CA3)

dCB3

dt
=

F2

V3
(CB2 − CB3)− Fr

V3
(CBr − CB3)

dCC3

dt
=

F2

V3
(CC2 − CC3)− Fr

V3
(CCr − CC3).

(6.7)146



The definitions for the variables used in Eq.6.7 can be found in Table 6.1, with the

parameter values given in Table 6.2. Each of the tanks has an external heat input.

The model of the flash tank separator operates under the assumption that the relative

volatility for each of the species remains constant within the operating temperature range of

the flash tank. This assumption allows calculating the mass fractions in the overhead based

upon the mass fractions in the liquid portion of the vessel. It has also been assumed that

there is a negligible amount of reaction taking place in the separator. The following algebraic

equations model the composition of the overhead stream relative to the composition of the

liquid holdup in the flash tank:

CAr =
αACA3

K
, CBr =

αBCB3

K
, CCr =

αCCC3

K

K = αACA3
MWA

ρ
+ αBCB3

MWB

ρ
+ αCCC3

MWC

ρ
+ αDxDρ

(6.8)

where xD is the mass fraction of the solvent in the flash tank liquid holdup and is found

from a mass balance.

The system of Eq.6.7 is modeled with sensor measurement noise and gaussian process

noise. The sensor measurement noise is generated using a zero-mean normal distribution

with standard deviation 10−1 for the temperature states and 10−2 for the 9 concentration

states. Noise is applied to each measurement of the synchronous states and to the continuous

measurements of the temperatures with a frequency of ∆m = 0.01hr. The process noise

is generated similarly, with a zero-mean normal distribution and with the same standard

deviation values. Process noise is added to the right-hand side of the ODEs in the system

of Eq.6.7 and changes with a frequency of ∆w = 0.01hr.

In all three vessels, the heat input is a manipulated variable for controlling the reactors

at the appropriate operating temperature. The system has 1 unstable and 2 stable steady

states. The operating set point is the unstable steady state,

T1 = 369.5K, T2 = 435.3K, T3 = 435.3K. (6.9)

The local control system consists of the three heat input actuators (i.e., u1, u2 and u3) oper-
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Table 6.2: Parameter Values
T10 = 300, T20 = 300 K

F10 = 5, F20 = 5, Fr = 1.9 m3

hr

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5E4, E2 = 5.5E4 kJ
kmol

k1 = 3E6, k2 = 3E6 1
hr

∆H1 = −5E4, ∆H2 = −5.3 · 104 kJ
kmol

Hvap = 5 kJ
kmol

Cp = 0.231 kJ
kgK

R = 8.314 kJ
kmolK

ρ = 1000 kg
m3

αA = 2, αB = 1, αC = 1.5, αD = 3 unitless
MWA = 50, MWB = 50, MWC = 50 kg

kmol

ating under identical PI control laws with the proportional gain Kp = 100 and the integral

time τI = 1. In addition, there is a networked control system governing the inlet concentra-

tion of A in the fresh feed into the second CSTR (i.e., u4). The networked control system is

an LMPC controller of the form given in Eq.6.3. The cost function L is quadratic and takes

the form L = xT Qx + Ru2
a, where Q = diag[10 103 103 103 10 103 103 103 10 103 103 103]

and R = 1. The horizon for the optimization problem is N = 5 with ∆C = 0.01hr.

All of the concentration measurements in the system are obtained asynchronously at

time instants tk with an average frequency of W = 10 measurements per hour. The

measurement times are modeled as a Poisson process with the time between measure-

ments ∆a = min{−log(ξ/W ), ∆M} where ξ is a uniformly distributed random number

between 1 and 0 and ∆M = 0.05hr. At each asynchronous measurement time, the LMPC

optimization problem was solved again and implemented over the length of the horizon or

until a new set of measurements becomes available.

In order to perform FDI for the reactor-separator system we construct the asynchronous

state observers of the form in Eq.6.5, where ĈAi, ĈBi, and ĈCi, i = 1, 2, 3 are the asyn-

chronous observer states. Each observer state is reset to its actual value each time a new set

of asynchronous measurements becomes available at time tk. The observer states provide

estimates for the concentration states between measurements allowing the computation of
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FDI filter residuals.

Fault detection and isolation for the system in closed-loop with the primary configuration

is accomplished by generating FDI filters as in Eq.6.6. In addition, the FDI residuals take

the following form:

rTi = |Ti(t)− T̃i(t)|, i = 1, 2, 3

rCAi
= |ĈAi(tk)− C̃Ai(tk)|, i = 1, 2, 3

rCBi
= |ĈBi(tk)− C̃Bi(tk)|, i = 1, 2, 3

rCCi
= |ĈCi(tk)− C̃Ci(tk)|, i = 1, 2, 3

(6.10)

Due to sensor measurement and process noise, the residuals will be nonzero even without a

fault. This necessitates the use of fault detection thresholds so that a fault is declared only

when a residual exceeds a specific threshold value, ri,max. This threshold value is chosen to

avoid false alarms due to process and sensor measurement noise, but should still be sensitive

enough to detect faults in a timely manner so that effective fault-tolerant control can be

performed. The threshold values used for each residual in the numerical simulations can be

seen as the dashed lines in Figures 6.6 and 6.10.

6.3.2 Simulation results

With the present reactor-separator model that takes advantage of asynchronous concen-

tration measurements in an augmented sensor network to both perform FDI and two-tier

control, in the presence of an actuator fault, it is possible to reconfigure the networked

control system to stabilize the system and maintain control. In this simulation example, we

consider a failure in the heat input actuator to vessel 2. Once the fault has been detected

(when rT2 > rT2,max at t = tf ) and isolated (when the other residuals are found to be less

than their respective thresholds at tk > tf ), it is possible to update the LMPC control

law to reflect the failed actuator. If the time between asynchronous measurements is short

enough and the horizon long enough, the system can be stabilized and continue to operate

under the fall-back control configuration. In addition to this example, we first simulate the

system with a failure in the heat input actuator to vessel 2 without updating the LMPC

model in the networked control system, in order to show that without performing FDI and

FTC, the system becomes unstable.
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Figure 6.4: Temperature trajectories in each vessel with an actuator failure in the heat
input to vessel 2 at t = 0.3hr and FTC. No fault tolerant control implemented.
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Figure 6.5: Asynchronous concentration measurements (CA=x, CB =o, CC = ¦) in each
vessel (V1, V2, V3) with an actuator failure in the heat input to vessel 2 at t = 0.3hr.
Dotted lines represent observer trajectories. No fault tolerant control implemented.
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Figure 6.6: FDI filter residuals for temperature (T ) and concentration(CA, CB, CC) in each
vessel (V1, V2, V3) with an actuator failure in the heat input to vessel 2 at t = 0.3hr.
Fault is detected at t = 0.36hr and isolated at tk = 0.41hr, but no fault tolerant control is
implemented.

The system of Eq.6.7, along with the asynchronous state observers and FDI filters,

is simulated in closed-loop operation with the three local PI controllers and the LMPC

controller for 1 hour. The system is subject to both sensor measurement and process noise

as well as a control actuator failure in the heat input to vessel 2, introduced at time t = 0.3hr

(u2 = 0 for all t > 0.3hr). Figures 6.4 and 6.5 show the state trajectories for the system

when the networked control system is not modified, resulting in an unstable system. The

residuals in Figure 6.6 shows that the fault is detected at t = 0.36hr when rT2 > rT2,max. It

can then be isolated when the next asynchronous measurement is received at tk = 0.41hr.

We see that without updating the networked control system (i.e., the model used in the

LMPC optimization problem), the process becomes unstable and cannot be controlled by

the networked control system due to plant model mismatch. The manipulated input profile

for the networked control system is shown in Figure 6.7.

In contrast to the above scenario, we run the same simulation again, but upon isolation

of the fault we reconfigure the networked control system to reflect the failed actuator. In

this case, despite the failed actuator, the networked control system is able to stabilize
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Figure 6.7: Manipulated input profile for the networked control system with an actuator
failure in the heat input to vessel 2 at t = 0.3hr. No fault tolerant control implemented.

the system. Figures 6.8 and 6.9 show the temperature and concentration profiles for the

system with a failure in the heat input to vessel 2. The temperature trajectories show

the initial deviation from steady-state as the fault is first introduced followed by a return

to steady-state as the fault is detected at t = 0.38, isolated at t = 0.46 and the back-up

controller configuration implemented in the networked control system (see Figure 6.10).

The manipulated input profile in Figure 6.11 shows that once the fault is isolated, a large

amount of control action is needed to return to steady-state, after which a minimal amount

of control input is required to maintain system stability.

6.4 Conclusions

In this work, we studied the monitoring and reconfiguration of a networked control system

applied to a chemical process system in the presence of control actuator faults. To deal

with control actuator faults that may occur in the closed-loop system, a networked fault

detection and isolation (FDI) and fault-tolerant control (FTC) system was designed which

detects and isolates actuator faults and determines how to reconfigure the networked control
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Figure 6.8: Temperature trajectories in each vessel with an actuator failure in the heat
input to vessel 2 at t = 0.3hr and fault tolerant control upon fault isolation.
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Figure 6.9: Asynchronous concentration measurements (CA=x, CB =o, CC = ¦) in each
vessel (V1, V2, V3) with an actuator failure in the heat input to vessel 2 at t = 0.3hr and
fault tolerant control upon fault isolation. Dotted lines represent observer trajectories.
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Figure 6.10: FDI filter residuals for temperature (T ) and concentration(CA, CB, CC) in each
vessel (V1, V2, V3) with an actuator failure in the heat input to vessel 2 at t = 0.3hr. Fault
is detected at t = 0.38hr and isolated at tk = 0.46hr. Fault tolerant control implemented
at time of isolation, tk = 0.48hr.
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Figure 6.11: Manipulated input profile for the networked control system with an actuator
failure in the heat input to vessel 2 at t = 0.3hr and fault tolerant control upon fault
isolation.
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system to handle the actuator faults. The networked FDI/FTC method was demonstrated

using a reactor-separator process consisting of two continuous stirred tank reactors and a

flash tank separator with recycle stream.
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Chapter 7

Conclusions

This dissertation developed a novel approach to data-based fault detection and isolation in

nonlinear process systems through the use of feedback control. Taking into account the fault

detection and isolation scheme when designing the feedback control law, it was shown that

by considering the system structure and the structure of potential faults affecting the system,

it is possible to enforce an isolable structure in the closed-loop system of a nonlinear process.

These results were extended to include the cases of output feedback control and optimal

control. Further work in the area of fault detection and isolation included model-based FDI

using asynchronous measurements as well as an approach to networked monitoring and

fault-tolerant control that integrates a two-tier control architecture with asynchronous FDI

in order to perform fault-tolerant control. Specifically, in Chapter 2 a method of enforcing

the necessary structure in order to perform FDI was developed, and the conditions in which

this is possible were clearly outlined. In a CSTR example, feedback linearization was used

to achieve the required closed-loop system structure in order to perform fault detection

and isolation. In a polyethylene reactor example, a more general approach to nonlinear

controller design was used in meeting the required conditions for isolability. Additionally,

it was demonstrated that using a data-based method of monitoring the T 2
i values of the

resulting subsystems, it was possible to isolate certain faults due to the enforced closed-loop

system structure.

Chapter 3 demonstrated the application of the data-based FDI method using feedback
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control laid out in Chapter 2 to a multi-unit reactor-separator chemical process. Fault

detection and isolation were performed using statistical process monitoring techniques and

information based upon the imposed closed-loop system structure. This was demonstrated

through numerical simulation studies of the closed-loop system in the presence of four

different faults. It was shown that by decoupling faults of interest from certain states,

it was possible to achieve unique system responses to each of the four faults, allowing

fault isolation based on process measurements only. These results were compared with a

conventional PI controller and were thoroughly tested for susceptibility to false isolation

through a Monte-Carlo simulation study of 500 runs for each of the four fault scenarios.

Chapter 4 built upon the work in Chapters 2-3 in controller-enhanced FDI by address-

ing two previously unresolved, practical problems. In this chapter, we developed an ap-

proach where systems with incomplete state measurements could be dealt with using state

estimator-based output feedback control. This approach maintains the necessary isolable

structure in the closed-loop system in order to perform controller-enhanced FDI. Addition-

ally, we addressed the problem of controller-enhanced FDI in an optimal fashion within the

framework of MPC. We proposed an MPC formulation that includes appropriate isolability

constraints to achieve FDI in the closed-loop system. The effectiveness of these methods

was demonstrated through application to a nonlinear CSTR example.

In a shift from the previous chapters, Chapter 5 used model-based FDI to address

the problem of FDI and FTC when some of the process measurements are not available

synchronously. This scheme employed model-based FDI filters in addition to observers that

estimate the fault-free evolution of asynchronously measured states during times when they

are unmeasured. We presented applications of the proposed asynchronous FDI and FTC

framework to a polyethylene reactor simulation.

Finally, in Chapter 6, we studied the monitoring and reconfiguration of a networked

control system applied to a chemical process system in the presence of control actuator

faults. To deal with control actuator faults that may occur in the closed-loop system, a

networked fault detection and isolation (FDI) and fault-tolerant control (FTC) system was

designed which detects and isolates actuator faults and determines how to reconfigure the

networked control system to handle the actuator faults. The networked FDI/FTC method
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was demonstrated using a reactor-separator process consisting of two continuous stirred

tank reactors and a flash tank separator with recycle stream.
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