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Chemical process operations rely extensively on highly automated control systems

in order to deal with increasingly stringent requirements of safety, environmental

sustainability, and profitability. Automation, however, adds a layer of complexity to

a chemical process that may lead to additional faults (e.g., failures in the actuators,

sensors or in the controllers) potentially causing a host of safety, environmental and

economic problems. Management of abnormal situations, such as automation faults,

is a major challenge in the chemical and process industries since abnormal situations

account annually for at least 10 billion USD in lost revenue in the US alone. Despite

the major industrial importance of the problems of detecting, isolating and handling

process/control system faults in a unified and efficient manner, these problems have

been traditionally addressed in isolation, thereby significantly limiting the range of

practical applicability and performance of the available solutions.

This work develops a general and practical framework for the design of automated
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fault-tolerant control systems that seamlessly integrate the tasks of fault-detection

and isolation and control system reconfiguration for fault handling. Working with

general nonlinear dynamic models of chemical processes, we design nonlinear dynamic

filters that allow for timely detection and isolation of actuator/control system faults

using limited plant measurements. The key idea is to design a fault-detection and

isolation scheme for nonlinear process systems that decouples the effect of a fault on

all process variables except one. This allows fault detection and isolation for nonlinear

chemical processes even with highly coupled variables. The nonlinear dynamic filters

are coupled with suitable control system reconfiguration strategies which achieve quick

fault recovery and guarantee closed-loop system stability. In addition, fault-tolerant

control methods are developed to deal explicitly with the practical issues of limited

control actuator capacity, model uncertainty and disturbances, measurement noise

and sensor faults. We present applications of the proposed fault-tolerant control

system design framework to: a) a chemical plant consisting of two reactors in series,

b) a high recovery reverse osmosis desalination plant, and c) a gas-phase polyethylene

reactor.
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Chapter 1

Introduction

1.1 Background on fault-detection and fault-tolerant control

Modern-day chemical plants involve a complex arrangement of processing units con-

nected, in series and/or in parallel, and highly integrated with respect to material and

energy flows through recycle streams and to information flows through tightly inter-

acting control systems. Increasingly faced with the requirements of safety, reliability

and profitability, chemical plant operation is relying extensively on highly automated

process control systems. Automation, however, adds a layer of complexity to a chem-

ical process that may lead to additional faults (e.g., defects/malfunctions in process

equipment, sensors and actuators, failures in the controllers or in the control loops)

potentially causing a host of economic, environmental, and safety problems that can

seriously degrade the operating efficiency of the plant if not addressed within a time

appropriate to the context of the process dynamics. Examples include physical dam-

age to the plant equipment, increase in the wasteful use of raw material and energy

resources, increase in the downtime for process operation resulting in significant pro-

duction losses, and jeopardizing personnel and environmental safety. Management
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of abnormal situations is a major challenge in the chemical industry since abnormal

situations account annually for at least $10 billion in lost revenue in the US alone [77].

These considerations provide a strong motivation for the development of methods and

strategies for the design of advanced fault-tolerant control structures that ensure an

efficient and timely response to enhance fault recovery, prevent faults from propagat-

ing or developing into total failures, and reduce the risk of safety hazards. Providing

responsive actions comparable to those of an experienced human operator freeing the

operator to do more strategic process analysis. Given the geographically-distributed,

interconnected nature of the plant units and the large number of distributed sensors

and actuators typically involved [99], the success of a fault-tolerant control method

requires efficient fault detection, control designs that account for the complex nonlin-

ear dynamics and constraints, and a high-level supervisor that coordinates the overall

plant response to achieve fault-tolerant control.

Fault-tolerant control has been an active area of research for the past ten years,

and has motivated many research studies in the context of aerospace engineering ap-

plications (see, e.g., [80, 101]) that are based on the underlying assumption of the

availability of more control configurations than is required. Under this assumption,

the reliable control approach dictates use of all the control loops at the same time

so that failure of one control loop does not lead to the failure of the entire control

structure (e.g., [96]). Using only as many control loops as is required at a time,

is often motivated by economic considerations (to save on unnecessary control ac-

tion), and in this case, fault-tolerant control can be achieved through control–loop

reconfiguration. Recently, fault-tolerant control has gained increasing attention in the

context of chemical process control; however, the available results are mostly based

on the assumption of a linear process description (e.g., [6, 95]), and do not account for
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complexities such as control constraints or the unavailability of state measurements.

In process control, given the complex dynamics of chemical processes (e.g., non-

linearities, uncertainties and constraints) the success of any fault-tolerant control

method requires an integrated approach that brings together several essential ele-

ments, including: (1) the design of advanced feedback control algorithms that handle

complex dynamics effectively, (2) the quick detection of process faults, and (3) the

design of supervisory switching schemes that orchestrate the transition from the failed

control configuration to available well-functioning fall-back configurations to ensure

fault-tolerance. The realization of such an approach is increasingly aided by a con-

fluence of recent, and ongoing, advances in several areas of process control research,

including advances in nonlinear controller designs, advances in the analysis and con-

trol of hybrid process systems and advances in fault detection. In the remainder of

this section, we will briefly review the state-of-the-art in these areas, as pertinent to

the focus of this dissertation.

The highly nonlinear behavior of many chemical processes has motivated extensive

research on nonlinear process control. Chemical process nonlinearities can arise from

the first principles process model, bounds on manipulated inputs, controller elements,

or complex process interactions. Excellent reviews of results in the area of nonlinear

process control can be found, for example, in [7, 98, 43]; for a more recent review,

see [13]. The problems caused by input constraints have motivated numerous studies

on the dynamics and control of systems subject to input constraints. Important

contributions in this area include results on optimization-based control methods such

as model predictive control (e.g., [36, 59, 30]), Lyapunov-based control (e.g., [54, 91,

46, 51, 24, 25]) and hybrid predictive control (e.g., [28, 64]).

The occurrence of faults in chemical processes and subsequent switching to fall-
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back control configurations naturally leads to the superposition of discrete events on

the underlying continuous process dynamics thereby making a hybrid systems frame-

work a natural setting for the analysis and design of fault-tolerant control structures.

Proper coordination of the switching between multiple (or redundant) actuator/sensor

configurations provides a means for fault-tolerant control. However, at this stage, de-

spite the large and growing body of research work on a diverse array of hybrid system

problems (e.g., [40, 38, 45, 17, 26]), the use of a hybrid system framework for the

study of fault-tolerant control problems for nonlinear systems subject to constraints

has received limited attention. In a previous work [27], a hybrid systems approach

to fault-tolerant control was employed where, under the assumption of full state

measurements and knowledge of the fault, stability region-based reconfiguration is

implemented to achieve fault-tolerant control.

Existing results on the design of fault-detection filters include those that use past

plant-data and those that use fundamental process models for the purpose of fault-

detection filter design. Statistical and pattern recognition techniques for data analysis

and interpretation (e.g., [52, 84, 78, 23, 74, 22, 16, 90, 3, 100]) use past plant-data to

construct indicators that identify deviations from normal operation to detect faults.

The problem of using fundamental process models for the purpose of detecting faults

has been studied extensively in the context of linear systems [58, 31, 32, 61]; and more

recently, some results in the context of nonlinear systems have been derived [86, 18].

Close examination of the existing literature indicates a lack of general and prac-

tical methods for the design of integrated fault-detection and fault-tolerant control

structures for chemical plants accounting explicitly for actuator/controller failures,

process nonlinearities and input constraints.
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1.2 Dissertation objectives and structure

The objective of this dissertation is to develop a general and practical framework

for the design of automated nonlinear fault-tolerant control systems that seamlessly

integrate the tasks of fault-detection and isolation and control system reconfiguration

for fault handling. The basic idea is that of detecting faults and orchestrating logic-

based switching between multiple constrained control configurations, each character-

ized by different manipulated inputs and a different region of closed-loop stability. The

switching policy, which is based on the information provided by the fault-detection

filter and stability regions, is implemented by a supervisor that receives and transmits

information to the feedback system and activates/deactivates the appropriate control

configurations in a way that ensures fault-tolerance. The design of fault-detection

filters for single-input systems is shown for both the state-feedback and output-feed

back cases. The design of fault-detection and isolation filters for multi-input systems

is also shown for both state-feedback and output-feedback cases. The design of fault

detection and isolations filters is a key contribution of this work. Finally, the imple-

mentation of the proposed approaches are demonstrated through several multi-unit

chemical process examples.

The rest of the dissertation is organized as follows: Chapter 2 considers the prob-

lem of implementing fault-tolerant control to single input nonlinear processes with

input constraints subject to control actuator failures is considered in chapter two. An

approach predicated upon the idea of integrating fault-detection, feedback and super-

visory control is presented and demonstrated. For the processes under consideration,

a family of candidate control configurations, characterized by different manipulated

inputs, is first identified. For each control configuration, a Lyapunov-based con-

troller that enforces asymptotic closed-loop stability in the presence of constraints, is

5



designed, and the constrained stability region, associated with it, is explicitly charac-

terized. A fault-detection filter is used to compute the expected closed–loop behavior

in the absence of faults. Deviations of the process states from the expected closed–

loop behavior are used to detect faults. A switching policy is then derived, on the

basis of the stability regions, to orchestrate the activation/deactivation of the con-

stituent control configurations in a way that guarantees closed-loop stability in the

event that a failure is detected. Simulation studies are presented to demonstrate the

implementation and evaluate the effectiveness of the proposed fault-tolerant control

scheme.

Chapter 3 considers integrated fault-detection and isolation and fault tolerant con-

trol (FDI/FTC) for single-input single-output nonlinear process systems with input

constraints subject to control actuator failures. An approach predicated upon the

idea of integrating fault-detection, feedback and supervisory control is presented and

demonstrated in the context of chemical process simulation studies with state feed-

back and output feedback. Chapter 3 proposes a general framework of FDI/FTC for

multi-input multi-output nonlinear process systems with input constraints subject to

control actuator failures. The integrated FDI/FTC approach is demonstrated through

multi-unit chemical process simulations with state feedback and output feedback.

Chapter 4 considers the problem of nonlinear process control subject to input con-

straints and sensor faults (complete failure or intermittent unavailability of measure-

ments). A fault-tolerant controller is designed that utilizes reconfiguration (switching

to an alternate control configuration) in a way that accounts for the process non-

linearity, input constraints and the occurrence of sensor faults. To clearly illustrate

the importance of accounting for input constraints, we first consider the problem of

sensor faults that necessitate sensor recovery to maintain closed- loop stability. We
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address the problem of determining which control configuration should be activated

(reactivating the primary control configuration may not preserve stability) after the

sensor is rectified based on stability region characterizations for the candidate control

configurations. We then consider the problem of asynchronous measurements, i.e., of

intermittent unavailability of measurements. To address this problem, the stability re-

gion (that is, the set of initial conditions starting from where closed-loop stabilization

under continuous availability of measurements is guaranteed) as well as the maxi-

mum allowable data loss rate are calculated to preserve closed-loop stability for the

primary and the candidate backup configurations. This characterization is utilized in

identifying the occurrence of a destabilizing sensor fault and in activating a suitable

backup configuration that preserves closed-loop stability. The proposed method is

illustrated using a chemical process example and demonstrated via application to a

polyethylene reactor.

Chapters 5 and 6 develop model-based nonlinear control structures for reverse

osmosis desalination systems while accounting for such practical issues as sampled

and noisy measurements, large time-varying disturbances, and actuator faults. To

accomplish this a detailed mathematical model of a high-recovery RO plant is first

developed. The dynamic reverse osmosis process model developed for the purpose of

process control is a key contribution of this work. This model adequately describes

the evolution of process states in time, and it also accounts for the spatial variation

of total dissolved solids (TDS) and flow-rate inside the membrane units. Under high

recovery operation the gradients along the length of the membrane unit can be quite

significant. As fluid flows axially along the module the bulk concentration increases,

the flow rate decreases, and the local permeate flux decreases [20]. The model de-

veloped in the present work includes appropriate differential equations in space that
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account for these gradients. A Lyapunov-based nonlinear controller is then applied

to this high recovery RO model. One of the main objectives of a controller in high re-

covery RO is to reject disturbances caused by feed water variation. Feed disturbances

could cause undesired fluctuations in the product flow rate or the internal pressure.

To accomplish disturbance rejection, the control law includes both feedback and feed-

forward components (i.e., measurement of feed concentration fluctuations). The feed

water stream concentration can easily be measured in practice, so the first set of sim-

ulations presented in this work explore the ability of the proposed control method to

reject such disturbances. Another objective is to detect and isolate actuator faults as

soon as possible. Additionally, illustrative examples demonstrate how fault-detection

and isolation (FDI) and fault tolerant control (FTC) can be applied to reverse os-

mosis systema, and how appropriate action can be taken to maintain desired system

operation when a fault occurs in the control system.

Chapter 7 addresses the problem of fault-detection and isolation and fault-tolerant

control when some process variable measurements are available at regular sampling

intervals, and the remaining states are measured at an infrequent asynchronous rate.

First, a fault-detection and isolation (FDI) scheme that employs model-based tech-

niques is proposed that allows for the isolation of faults. The proposed FDI scheme

provides detection and isolation of any fault that enters into the differential equa-

tion of only a synchronously measured state, and grouping of faults that enter into

the differential equation of any asynchronously measured state. For a fully coupled

process system, fault-detection occurs shortly after a fault takes place, and fault isola-

tion, limited by the arrival of asynchronous measurements, occurs when asynchronous

measurements become available. Fault-tolerant control methods with a supervisory

control component are then employed to achieve stability in the presence of fail-

8



ures. Numerical simulations of a polyethylene reactor are performed to demonstrate

the applicability and performance of the proposed fault-detection and isolation and

fault-tolerant control scheme in the presence of asynchronous measurements.

Chapter 8 summarizes the research contributions of this doctoral dissertation in

terms of fault-detection and isolation and fault tolerant control, reverse osmosis wa-

ter desalination systems, and FDI for process systems that rely on asynchronously

measured state variables.
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Chapter 2

Integrated fault-detection and

fault-tolerant control

2.1 Introduction

Close examination of the existing literature indicates a lack of general and practical

methods for the design of integrated fault-detection and fault-tolerant control struc-

tures for chemical plants accounting explicitly for actuator/controller failures, process

nonlinearities and input constraints. Motivated by these considerations the problem

of implementing fault-detection and fault-tolerant control to single input nonlinear

processes with input constraints subject to control actuator failures is considered in

this chapter. An approach predicated upon the idea of integrating fault-detection,

feedback and supervisory control is presented and demonstrated. To illustrate the

main idea behind the proposed approach, we first assume availability of measure-

ments of all the process state variables. For the processes under consideration, a fam-

ily of candidate control configurations, characterized by different manipulated inputs,

is first identified. For each control configuration, a Lyapunov-based controller that

enforces asymptotic closed-loop stability in the presence of constraints, is designed,
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and the constrained stability region, associated with it, is explicitly characterized.

A fault-detection filter is used to compute the expected closed–loop behavior in the

absence of faults. Deviations of the process states from the expected closed–loop

behavior are used to detect faults. A switching policy is then derived, on the basis

of the stability regions, to orchestrate the activation/deactivation of the constituent

control configurations in a way that guarantees closed-loop stability in the event that

a failure is detected. Often, in chemical process applications, all state variables are

not available for measurement. To deal with the problem of lack of process state

measurements, a nonlinear observer is designed to generate estimates of the states,

which are then used to implement the state feedback controller and the fault-detection

filter. A switching policy is then derived to orchestrate the activation/deactivation

of the constituent control configurations in a way that accounts for the estimation

error. Finally, simulation studies are presented to demonstrate the implementation

and evaluate the effectiveness of the proposed fault-tolerant control scheme.

2.2 Preliminaries

2.2.1 Process description

We consider a class of continuous-time, single-input nonlinear processes with con-

straints on the manipulated input, represented by the following state-space descrip-

tion:
ẋ(t) = f(x(t)) + gk(t)(x(t))(uk(t) + mk(t)), ym = hm(x)

k(t) ∈ K = {1, · · · , N}, N < ∞, |uk(t)| ≤ uk
max

(2.1)

where x(t) ∈ IRn denotes the vector of process state variables, ym ∈ IR denotes the

measured variable, uk(t) ∈ [−uk
max, u

k
max] ⊂ IR denotes the constrained manipulated

input associated with the k-th control configuration and mk(t) ∈ IR denotes the fault

in the k-th control configuration. For each value that k assumes in K, the process is
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controlled via a different manipulated input which defines a given control configura-

tion.

It is assumed that the origin is the equilibrium point of the nominal process (i.e.,

f(0) = 0), gk(x) 6= 0 ∀ x ∈ IRn, and that the vector functions f(·) and gk(·) are

sufficiently smooth, for all k, on IRn. Throughout the manuscript, a function β(r, s)

is said to belong to class KL if, for each fixed s, the mapping β(·, s) belongs to class

K (a continuous function α(·) is said to belong to class K if it is strictly increasing

and α(0) = 0) and for each fixed r, the mapping β(r, ·) is decreasing, and β(r, s) → 0

as s →∞; see also [49]. The notation ‖ · ‖ is used to denote the standard Euclidean

norm of a vector, the notation | · | is used to denote the absolute value of a scalar

and x′ denotes the transpose of x and the notation R = [r1 r2] is used to denote

the augmented vector R ∈ IRm+n comprising of the vectors r1 ∈ IRm and r2 ∈ IRn.

The notation Lfh denotes the standard Lie derivative of a scalar function h(·) with

respect to the vector function f(·) and the notation x(T+) denotes the limit of the

trajectory x(t) as T is approached from the right, i.e., x(T+) = lim
t→T+

x(t). Throughout

the manuscript, we assume that for any |uk| ≤ uk
max the solution of the system of

Eq.2.1 exists and is continuous for all t.

2.2.2 Motivating example

To motivate our fault-tolerant control design methodology, we introduce in this sub-

section a benchmark chemical reactor example that will be used to illustrate the design

and implementation of the fault-tolerant control structure. To this end, consider a

well-mixed, non-isothermal continuous stirred tank reactor (see Fig. 2.1) where three

parallel irreversible elementary exothermic reactions of the form A
k1→ B, A

k2→ U and

A
k3→ R take place, where A is the reactant species, B is the desired product and

U, R are undesired byproducts. Under standard modeling assumptions, a mathemat-
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ical model of the process can be derived from material and energy balances and takes

the following form:

dT

dt
=

F

V
(TA0 − T ) +

3∑
i=1

(−∆Hi)

ρcp

ki0 exp

(−Ei

RT

)
CA +

Q

ρcpV

dCA

dt
=

F

V
(CA0 − CA)−

3∑
i=1

ki0 exp

(−Ei

RT

)
CA

dCB

dt
= −F

V
CB + k10 exp

(−E1

RT

)
CA

(2.2)

where CA and CB denote the concentrations of the species A and B, T denotes the

temperature of the reactor, Q denotes the rate of heat input/removal from the reactor,

V denotes the volume of the reactor, ∆Hi, ki, Ei, i = 1, 2, 3, denote the enthalpies,

pre-exponential constants and activation energies of the three reactions, respectively,

cp and ρ denote the heat capacity and density of the reactor, respectively. The values

of the process parameters and the corresponding steady-state values can be found

in [27]. It was verified that under these conditions, the process of Eq.2.2 has three

steady-states (two locally asymptotically stable and one unstable at (Ts, CAs, CBs) =

(388.57 K, 3.59 kmol/m3, 0.41 kmol/m3)).

The control objective considered here is the one of stabilizing the reactor at the

(open-loop) unstable steady-state. Operation at this point is typically sought to

avoid high temperature, while simultaneously achieving reasonable conversion. To

accomplish this objective in the presence of control system failures, we consider

as manipulated inputs the rate of heat input, u1 = Q, subject to the constraints

|Q| ≤ u1
max = 748 KJ/s, the inlet stream temperature, u2 = TA0 − TA0s, subject

to the constraints |u2| ≤ u2
max = 100 K, with TA0s = 300 K and the inlet reactant

concentration, u3 = CA0−CA0s, subject to the constraints |u3| ≤ u3
max = 4 kmol/m3,

with CA0s = 4 kmol/m3.

Each of the above manipulated inputs, together with measurements of reactor tem-
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Figure 2.1: A schematic of the CSTR showing the three candidate control configurations.

perature and/or concentration, represents a unique control configuration (or control-

loop) that, by itself, can stabilize the reactor. In the event of some failure in the

primary configuration (involving the heat input, Q), the important questions that

arise include how can the supervisor detect this fault (note that measurements of

the manipulated input variable are not available), and which control loop to activate

once failure is detected in the active configuration. The answer to the first question

involves the design of an appropriate fault-detection filter. The approach that we will

utilize to answer the second question, i.e., that of deciding which backup controller

should be activated in the event of a fault, will be based on the stability regions under

the individual control configuration. To this end, we next review a state feedback con-

trol design that allows for characterizing the constrained stability region under each

control configuration. Note that this particular choice of the controller is presented

only as an example to illustrate our results, and that any other controller design that

allows for an explicit characterization of the constrained stability region can be used
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instead. Note also, that while the above example will be used to illustrate the main

ideas behind the proposed fault-detection and fault-tolerant control method, we also

investigate in the simulation studies an application to a network of chemical reactors

in the presence of uncertainty and measurement noise.

2.2.3 Bounded Lyapunov-based control

Consider the system of Eq.2.1, for which a family of control Lyapunov functions

(CLFs), Vk(x), k ∈ K ≡ {1, · · · , N} has been found (see below for a discussion on the

construction of CLFs). Using each control Lyapunov function, we construct, using

the results in [54] (see also [24]), the following continuous bounded control law:

uk(x) = −
L∗fVk(x) +

√(
L∗fVk(x)

)2
+ (uk

max‖(Lgk
Vk)(x)‖)4

‖(Lgk
Vk)(x)‖2

[
1 +

√
1 + (uk

max‖(Lgk
Vk)(x)‖)2

](Lgk
Vk)(x) (2.3)

when (Lgk
Vk)(x) 6= 0 and uk(x) = 0 when (Lgk

Vk)(x) = 0, L∗fVk(x) =
∂Vk(x)

∂x
f(x) +

ρkVk(x), ρk > 0 and Lgk
Vk(x) =

∂Vk(x)

∂x
gk(x). Let Πk be the set defined by

Πk(u
k
max) = {x ∈ IRn : L∗fVk(x) ≤ uk

max‖(Lgk
Vk)(x)‖} (2.4)

and assume that

Ωk := {x ∈ IRn : Vk(x) ≤ cmax
k } ⊆ Πk(u

k
max) (2.5)

for some cmax
k > 0. It can be shown, using standard Lyapunov arguments, that in the

absence of faults (mk(t) = 0), Ωk provides an estimate of the stability region, starting

from where the control law of Eq.2.3 guarantees asymptotic (and local exponential)

stability of the origin of the closed–loop system under each control configuration.

This implies that there exist class KL functions βi, i = 1, · · · , N , such that ‖x(t)‖ ≤
βi(‖x(0)‖, t). We will use this property later in the design of the output feedback

controllers.
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Referring to the above controller design, it is important to make the following

remarks. First, a general procedure for the construction of CLFs for nonlinear systems

of the form of Eq.2.1 is currently not available. Yet, for several classes of nonlinear

systems that arise commonly in the modeling of engineering applications, it is possible

to exploit system structure to construct CLFs (see, for example, [53, 33]). Second,

given that a CLF, Vk, has been obtained for the system of Eq.2.1, it is important to

clarify the essence and scope of the additional assumption that there exists a level

set, Ωk, of Vk that is contained in Πk. Specifically, the assumption that the set, Πk,

contains an invariant subset around the origin, is necessary to guarantee the existence

of a set of initial conditions for which closed-loop stability is guaranteed (note that

even though V̇k < 0 ∀ x ∈ Πk\{0}, there is no guarantee that trajectories starting

within Πk remain within Πk for all times). Moreover, the assumption that Ωk is

a level set of Vk is made only to simplify the construction of Ωk. This assumption

restricts the applicability of the proposed control method because a direct method for

the construction of a CLF with level sets contained in Πk is not available. However,

the proposed control method remains applicable if the invariant set Ωk is not a level

set of Vk but can be constructed in some other way (which, in general, is a difficult

task). Note also that possibly larger estimates of the stability region can be computed

using constructive procedures such as Zubov’s method [21] or by using a combination

of several Lyapunov functions.

2.3 State feedback case

State feedback fault-tolerant control

Consider the system of Eq.2.1, where all process states are available as measurements,

i.e., hm(x) = x, and without loss of generality, assume that it starts operating using
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control configuration i, under the controller of Eq.2.3. At some unknown time, T f
i ,

a fault occurs in the first control configuration such that for all t ≥ T f
i , mi = −ui,

i.e., control configuration i fails. The problems at hand are those of detecting that

a fault has occurred and, upon detection, to decide which of the available backup

configurations should be implemented in the closed–loop to achieve fault-tolerant

control. To this end, we consider a fault-detection filter and a switching logic of the

form:

ẇ(t) = ff (w, x), r(t) = hf (w, x), k(t) = ϕ(r, w, x) (2.6)

where w ∈ IRn is the state of the filter, r(t) ∈ IR is a residual that indicates the

occurrence of a fault, and is the output of the filter, ff ∈ IRn is the vector field

describing the evolution of the filter state w, and ϕ(r, w, x) is the switching logic that

dictates which of the available control configurations should be activated.

The main idea behind the fault-tolerant control design is as follows: (1) use the

available state measurements, the process model, and the computed control action to

simulate the evolution of the closed–loop process in the absence of actuator faults,

compare it with the actual evolution of the states, and use the difference between

the two behaviors, if any, to detect faults, and (2) having detected the fault, activate

a backup control configuration for which the closed–loop state is within its stability

region estimate. To formalize this idea, consider the constrained system of Eq.2.1

for which a bounded controller of the form of Eq.2.3 has been designed for each

control configuration, and the stability region, Ωj, j = 1, . . . , N has been explicitly

characterized. The fault-detection filter and the fault-tolerant control design are

described in Theorem 2.1 below.

Theorem 2.1: Let k(0) = i for some i ∈ K and x(0) := x0 ∈ Ωi. Set w(0) = x(0),

and consider the system

ẇ = f(w) + gi(w)ui(w); r = ‖w − x‖ (2.7)
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where w ∈ IRn is the filter state and ui(·) is the feedback control law defined in Eq.2.3.

Let T f
i be such that mi(t) = 0 ∀ 0 ≤ t ≤ T f

i , then r(T f+
i ) > 0 if and only if

mi(T
f
i ) 6= 0. Furthermore, let T s

i be the earliest time such that r(t) > 0, then the

following switching rule:

k(t) =





i, 0 ≤ t < T s
i

j 6= i, t ≥ T s
i , x(T s

i ) ∈ Ωj



 (2.8)

guarantees asymptotic stability of the origin of the closed–loop system.

Proof of Theorem 2.1: We split the proof of the theorem in two parts. In the first

part we show that the filter detects a fault if and only if one occurs, and in the second

part we establish closed–loop stability under the switching rule of Eq.2.8.

Part 1: Let x(T f
i ) := xT f

i
and w(T f

i ) := wT f
i

and consider

ẇ(T f
i )−ẋ(T f

i ) = f(xT f
i
)+g(xT f

i
)(ui(xT f

i
)+mi(T

f
i ))−(f(wT f

i
)+g(wT f

i
)ui(wT f

i
)) (2.9)

with mi(T
f
i ) 6= 0. Since wT f

i
= xT f

i
, we have that

f(xT f
i
) + g(xT f

i
)(ui(xT f

i
) + mi(T

f
i ))− (f(wT f

i
) + g(wT f

i
)ui(wT f

i
)) = g(xT f

i
)mi(T

f
i )

(2.10)

Furthermore, since g(xT f
i
) 6= 0, we have that

ẇ(T f
i )− ẋ(T f

i ) = g(xT f
i
)mi(T

f
i ) 6= 0 (2.11)

if and only if mi(T
f
i ) 6= 0. Since wT f

i
− xT f

i
= 0 and ẇ(T f

i )− ẋ(T f
i ) 6= 0 if and only if

mi(T
f
i ) 6= 0, we have that

w(T f+
i )− x(T f+

i ) 6= 0 (2.12)

or

r(T f+
i ) = ‖w(T f+

i )− x(T f+
i )‖ > 0 (2.13)

if and only if mi(T
f
i ) 6= 0.
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Part 2: We prove closed–loop stability for the two possible cases; first if no switching

occurs, and second if a switch occurs at a time T s
i .

Case 1: The absence of a switch implies ri(t) = 0. Furthermore, ri(t) = 0 =⇒ x(t) =

w(t). Since x(0) = w(0) ∈ Ωi, and control configuration i is implemented for all times

in this case, we have that asymptotic closed–loop stability is achieved.

Case 2: At time T s
i , the supervisor switches to a control configuration j for which

x(T s
i ) ∈ Ωj. From this time onwards, since configuration j is implemented in the

closed–loop system for all times, and since x(T s
i ) ∈ Ωj, closed–loop stability follows.

This completes the proof of Theorem 2.1.

The fault-detection filter and fault-tolerant controller are designed and imple-

mented as follows (see also Fig.2.2):

• Given any x0 ∈ Ωi, initialize the filter states as w(0) = x0 and integrate the

filter dynamics using Eq.2.7.

• Compute the norm of the difference between the filter states and the process

states, r(t) = ‖w(t) − x(t)‖ and if r(t) = 0, continue to implement control

configuration i.

• At any time T s
i that r(T s

i ) > 0, switch to a control configuration j 6= i, for

which x(T s
i ) ∈ Ωj to achieve asymptotic stability of the origin of the closed–

loop system.

Note that the fault-detection filter uses a replica of the process dynamics, and

that the state of the filter w is initialized at the same value as the process states x(0).

In the absence of faults, the evolution of w(t) is identical to x(t), and hence r(t) = 0.

In the presence of faults, however, the effect of the fault is registered by a change

in the evolution of the process, but not in that of the filter state (since the filter
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Figure 2.2: Integrated fault-detection and fault-tolerant control design: state feedback case.

state dynamics include the computed control action, ui(w), and not the implemented

control action, ui(w) + mi). This change is detected by a change in the value of r(t)

and declared as a fault. Note also, that the fact that the faults mi appear as additive

terms to the manipulated input variable is a natural consequence of focussing on the

problem of detecting (through the design of appropriate fault-detection filters) and

dealing (via reconfiguration) with faults in control actuators. The approach employed

in the design of the fault-detection filter can also be used to detect faults that do not

necessarily appear in the control actuators, as long as they influence the evolution of

the state variables.

Remark 2.1: Once a fault is detected, the switching logic ensures that the backup

control configuration that is implemented in the closed–loop is one that can guarantee

closed–loop stability in the presence of constraints, and this is achieved by verifying

that the state of the process, at the time that a fault is detected, is present in the

constrained stability region of the candidate control configuration. Note that while
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the bounded controller is used for a demonstration of the main ideas, other control

approaches, that provide an explicit characterization of the set of initial conditions

for which closed–loop stability is guaranteed (achieved, for example, via the use of

the hybrid predictive approach [28] or via a Lyapunov-based model predictive control

design [63]) can be used within the proposed framework. Note also that early detection

of a fault enhances the chances that corrective action can be taken in time to achieve

fault-tolerant control (Theorem 2.1 guarantees that a fault is detected as soon as it

occurs). Specifically, it may happen that a fault occurs when the closed–loop state

resides in the stability region of one of the backup configurations, but if the fault

is not immediately detected, the destabilizing effect of the fault may drive the state

outside the stability region of the backup configuration by the time a fault is detected

(for a demonstration, see the simulation example).

In the event that the process state, at the time of the failure of the primary control

configuration, lies in the stability region of more than one backup control configura-

tion, additional performance considerations such as ease and/or cost of implementing

one control configuration over another, can be used in choosing which control con-

figuration should be implemented in the closed–loop system [66]. If the state at the

time of a failure lies outside the stability region of all the backup controllers, then this

indicates that the back up controllers do not have enough control action available and

calls for increasing the allowable control action in the fall-back configurations. Note

that the set of initial conditions starting from where a given control configuration

can stabilize a steady state – the so-called null-controllable region – is fundamentally

limited by the constraints on the available control action, and that different con-

trol laws typically provide estimates of the stability region which are subsets of the

null-controllable region.
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Remark 2.2: In the presence of plant model mismatch or unknown disturbances,

the value of r(t) will be nonzero even in the absence of faults. The FDFTC problem

in the presence of time varying disturbances with known bounds on the disturbances

can be handled by (1) redesigning the filter to account for the disturbances; specif-

ically, requiring that a fault be declared only if the value of r(t) increases beyond

some threshold, δ, where δ accounts for the deviation of the plant dynamics from

the nominal dynamics in the absence of faults (please see the simulation example for

a demonstration of this idea in an application to a network of chemical reactors in

the presence of uncertainty and measurement noise) and (2) by redesigning the con-

trollers for the individual control configurations to mitigate the effect of disturbances

on the process, and characterizing the robust stability regions and using them as cri-

teria for deciding which backup controller should be implemented in the closed–loop.

Note that while Theorem 2.1 presents the fault-detection filter and fault-tolerant con-

trol (FDFTC) design for a fault in the primary control configuration, extensions to

faults in successive backup configurations are straightforward and involve similar fil-

ter designs for the active control configuration and a switching logic that orchestrates

switching to the remaining control configurations.

Remark 2.3: While we illustrate our idea using a single input, extensions to multi-

input systems are possible, and fault-detection filters can be designed in the same

way, using a replica of the process dynamics. The case of multi-input systems, how-

ever, introduces an additional layer of complexity due to the need of identifying which

particular manipulated input has failed, i.e., the additional problem of fault-isolation.

For the purpose of presenting the integrated fault-detection and fault-tolerant control

structure, we focus here on multiple control configurations, where each control con-

figuration comprises of a single input that does not require the filter to perform the
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additional task of fault-isolation. For a simple illustration of a fault-detection and

isolation filter design, please see the simulation example.

Remark 2.4: Note that the fault-detection filter presented in Theorem 2.1 detects

the presence of both complete and partial failures. Once a fault is detected, the

control reconfiguration strategy is the same for both cases, and that is to shut down

the faulty configuration and switch to some well-functioning fall-back configuration.

Note that in the case of a partial failure, unless the faulty configuration is shut

down, the backup control configurations will have to be redesigned to be robust with

respect to the bounded disturbance generated by the faulty configuration (for the

backup control configuration, the unmeasured actuator action of the faulty control

configuration will act as a disturbance and will be bounded because of the fact that

the actuator itself has a limited capacity and, therefore, even if the implemented

control action is not the same as that prescribed by the controller, it cannot exceed

the physical limitations and will remain bounded). By shutting down the faulty

configuration, however, the source of the disturbance is eliminated and no controller

redesign is needed for the backup control configurations.

2.3.1 Simulation results

In this subsection, we illustrate the implementation of the proposed fault-detection/fault-

tolerant control methodology to the chemical reactor introduced as a motivating ex-

ample. We first describe the controller design for the individual control configurations.

Note that our objective is full state stabilization; however, to facilitate the controller

design and subsequent stability analysis, we use a state transformation to transform

the system of Eq.2.2.2 into the following one describing the input/output dynamics:

ė = Ae + lk(e) + bαkuk := f̄k(e) + ḡk(e)uk (2.14)
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where e ∈ IRn is the variable in transformed co-ordinate (for the specific transforma-

tions used for each control configuration, please see below), A =

[
0 1
0 0

]
, b =

[
0
1

]
,

lk(·) = L2
fk

hk(x), αk(·) = Lgk
Lfk

hk(x), hk(x) = yk is the output associated with the

k-th configuration, x = [x1 x2]
T with x1 = T − Ts, x2 = CA − CAs, and the functions

fk(·) and gk(·) can be obtained by re-writing the (T, CA) model equations in Eq.2.2

in the form of Eq.2.1. The explicit forms of these functions are omitted for brevity. A

quadratic Lyapunov function of the form Vk = eT Pke, where Pk is a positive-definite

symmetric matrix that satisfies the Riccati inequality AT Pk + PkA− Pkbb
T Pk < 0, is

used for controller design. In particular:

1. For the first configuration with u1 = Q, we consider the controlled output

y1 = CA − CAs. The coordinate transformation (in error variables form) takes

the form: e1 = CA − CAs, e2 = F
V

(CA0 − CA) − ∑3
i=1ki0e

−Ei
RT CA and yields a

relative degree of two with respect to the manipulated input.

2. For the second configuration with u2 = TA0 − TA0s, we choose the output y2 =

CA − CAs which yields the same relative degree as in the first configuration,

r2 = 2, and the same coordinate transformation.

3. For the third configuration with u3 = CA0 − CA0s, a coordinate transformation

of the form used for configurations 1 and 2 above does not yield a sufficiently

large estimate of the stability region, we therefore choose a candidate Lyapunov

function of the form V3(x) = x′Px, where P > 0 and x = [T − Ts CA − CAs]
′

with P =

[
0.011 0.019
0.019 0.101

]
.

Fig.2.3 depicts the stability region, in the (T, CA) space, for each configuration.

The desired steady-state is depicted with an asterisk that lies in the intersection

of the three stability regions. The reactor as well as the fault-detection filter for
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the first control configuration is initialized at T (0) = 330 K, CA(0) = 3.6 kmol/m3,

CB(0) = 0.0 kmol/m3, using the Q-control configuration, and the supervisor proceeds

to monitor the evolution of the closed-loop trajectory.
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Figure 2.3: Evolution of the closed-loop state profiles under the switching rule of Eq.2.8

subject to failures in control systems 1 and 2 (solid line) and under arbitrary switching

(dashed line).

As shown by the solid lines in Figs.2.3-2.4, the controller proceeds to drive the

closed-loop trajectory towards the desired steady-state, up until the Q-configuration

fails after 3 minutes of reactor startup (see Fig.2.6a). As can be seen in Fig.2.5a, at

this time the value of r1(t) becomes non-zero and the fault-detection filter detects

this fault. If the supervisor switches arbitrarily, and in particular, switches to backup

configuration 3, closed–loop stability is not achieved (dashed lines in Figs.2.3-2.4).

Note that this happens because the closed–loop state is outside the stability region

of the third control configuration, and even though the third control configuration

does not encounter a fault (r3(t) = 0; see dashed line in Fig.2.5b), the limited control
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Figure 2.4: Evolution of the closed-loop (a) temperature and (b) concentration under the

switching rule of Eq.2.8 subject to failures in control systems 1 and 2 (solid lines) and under

arbitrary switching (dashed lines).
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action available in this configuration is unable to achieve closed–loop stability. On the

basis of the switching logic of Eq.2.8, the supervisor activates the second configuration

(with TA0 as the manipulated input, see Fig.2.6b), which continues to drive the state

trajectory closer to the desired steady-state.
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Figure 2.5: Evolution of the closed-loop residual under the fault-detection filter for (a)

control configuration 1 and (b) control configurations 2 and 3 under the switching rule

of Eq.2.8 subject to failures in control systems 1 and 2 (solid lines) and under arbitrary

switching (dashed lines).

To demonstrate the implementation of the proposed FDFTC strategy when faults

occur in successive control configurations, we consider the case when a second failure
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Figure 2.6: Manipulated input profiles under (a) control configuration 1, (b) control con-

figuration 2, and (c) control configuration 3 under the switching rule of Eq.2.8 subject to

failures in control systems 1 and 2 (solid lines) and under arbitrary switching (dashed lines).
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occurs (this time in the TA0-configuration) at t = 13 minutes. Once again, the filter

detects this failure via an increase in the value of r2(t) (solid line in Fig.2.5b) using

the fault-detection filter for control configuration 2. From Fig.2.3, it is clear that

the failure of the second control configuration occurs when the closed-loop trajectory

is within the stability region of the third configuration. Therefore, the supervisor

immediately activates the third control configuration (with CA0 as the manipulated

input, see Fig.2.6c) which finally stabilizes the reactor at the desired steady-state.

2.4 Output feedback case

The feedback controllers, the fault-detection filters and the switching rules in the

previous section were designed under the assumption of availability of measurements

of all the process states. The unavailability of full state measurements has several

implications. First, it necessitates generating estimates of the states to be used in

conjunction with both the state feedback controller and the fault-detection filter.

The state estimates, however, contain errors, and this results in a difference between

the expected closed–loop behavior of the measured variables (computed using the

state estimates) and the evolution of the measured variables, even in the absence of

actuator faults. The fault-detection filter has to be redesigned to account for this fact

so that it does not treat this difference to be an indicator of an actuator fault (i.e., to

prevent a false alarm). Also, the switching logic has to account for the fact that the

supervisor can monitor only the state estimates and needs to make inferences about

the true values of the states using the state estimates.

In the remainder of this section, we first review an output feedback controller

design, proposed in [25], based on a combination of a high-gain observer and a state

feedback controller (see also [57, 47, 48, 89, 12] for results on observer designs and
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output feedback control for unconstrained nonlinear systems) and characterize the

stability properties of the closed–loop system under output feedback control. Then,

we present the fault-detection filter and fault-tolerant controller and demonstrate its

application via a simulation example.

2.4.1 Output feedback control

To facilitate the design of a state estimator with the required convergence properties,

we make the following assumption:

Assumption 2.1: For each i ∈ K, there exists a set of coordinates

[
ξi

]
=




ξ1
i

ξ2
i

...

ξn
i




= χi(x) =




hm(x)

Lfhm(x)
...

ÃLn−1
f hm(x)




(2.15)

such that the system of Eq. 2.1 takes the form

ξ̇1
i = ξ2

i

...

ξ̇n−1
i = ξn

i

ξ̇n
i = Ln

fhm(χ−1
i (ξ)) + Lgi

Ln−1
f hm(χ−1

i (ξ))(ui(t) + mi(t))

(2.16)

where Lgi
Ln−1

f hm(x) 6= 0 for all x ∈ IRn. Also, ξi −→ 0 if and only if x −→ 0.

We note that the change of variables is invertible, since for every x, the variable

ξi is uniquely determined by the transformation ξi = χi(x). This implies that if one

can estimate the values of ξi for all times, using an appropriate state observer, then

we automatically obtain estimates of x for all times, which can be used to implement

the state feedback controller. The existence of such a transformation will facilitate

the design of high-gain observers which will be instrumental in preserving the same

closed-loop stability properties achieved under full state feedback.
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Proposition 2.1 below presents the output feedback controller used for each mode

and characterizes its stability properties. The proof of the proposition, which invokes

singular perturbation arguments (for a result on input-to-state stability with respect

to singular perturbations, and further references, see [14]), is a special case of the

proof of Theorem 2.2 in [25], and is omitted for brevity. To simplify the statement of

the proposition, we first introduce the following notation. We define αi(·) as a class

K function that satisfies αi(‖x‖) ≤ Vi(x). We also define the set Ωb,i := {x ∈ IRn :

Vi(x) ≤ δb,i}, where δb,i is chosen such that βi(α
−1
i (δb,i), 0) < α−1

i (cmax
i ), where βi(·, ·)

is a class KL function and cmax
i is a positive real number defined in Eq.2.5.

Proposition 2.1: Consider the nonlinear system of Eq.2.1, for a fixed mode, k(t) =

i, and with mi(t) ≡ 0, under the output feedback controller:

˙̃y =




−Lia
(i)
1 1 0 · · · 0

−L2
i a

(i)
2 0 1 · · · 0

...
...

...
. . .

...

−Ln
i a

(i)
n 0 0 · · · 0




ỹ +




Lia
(i)
1

L2
i a

(i)
2

...

Ln
i a

(i)
n




ym

ui = uc
i(x̂, umax

i )

(2.17)

where uc
i is defined in Eq.2.3, the parameters, a

(i)
1 , · · · , a

(i)
n are chosen such that

the polynomial sn + a
(i)
1 sn−1 + a

(i)
2 sn−2 + · · · + a

(i)
n = 0 is Hurwitz, x̂ = χ−1

i (sat(ỹ)),

sat(·) = min{1, ζmax,i/| · |}(·), with ζmax,i = βζ(δζ,i, 0) where βζ is a class KL function

and δζ,i is the maximum value of the norm of the vector [hm(x) · · · Ln−1
fi

hm(x)] for

Vi(x) ≤ cmax
i and let εi = 1/Li. Then, given Ωb,i, there exists ε∗i > 0 such that if

εi ∈ (0, ε∗i ], x(0) ∈ Ωb,i, and ‖ỹ(0)‖ ≤ δζ,i, the origin of the closed–loop system is

asymptotically (and locally exponentially) stable. Furthermore, given any positive real

numbers, em,i and T b
i , there exists a real positive number ε∗∗i such that if εi ∈ (0, ε∗∗i ]

then ‖x(t)− x̂(t)‖ ≤ em,i for all t ≥ T b
i .

The state observer in Eq.2.17 ensures sufficiently fast convergence that is nec-
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essary for the implementation of both the state feedback controller (and preserving

its stability properties under output feedback control), and the fault-detection fil-

ter. The most important feature of this estimator (and one that will be used in the

fault-detection filter design) is that the estimation error is guaranteed to fall below

a certain value in a small period of time, T b
i , which can be chosen arbitrarily small

by sufficiently increasing the observer gain. This requirement or constraint on the

error dynamics is needed even when other estimation schemes, such as moving hori-

zon observers, are used (for example, see [71, 81]). For such observers, however, it is

difficult in general to obtain a transparent relationship between the tunable observer

parameters and the error decay rate.

Due to the lack of full state measurements, the supervisor can rely only on the

available state estimates to decide whether switching at any given time is permissible,

and, therefore, needs to make reliable inferences regarding the position of the states

based upon the available state estimates. Proposition 2.2 below establishes the ex-

istence of a set, Ωs,i := {x ∈ IRn : Vi(x) ≤ δs,i}, such that once the state estimation

error has fallen below a certain value (note that the decay rate can be controlled by

adjusting Li), the presence of the state within the output feedback stability region,

Ωb,i, can be guaranteed by verifying the presence of the state estimates in the set

Ωs,i. A similar approach was employed in the construction of the output feedback

stability regions Ωb,i and the regions for the state estimates Ωs,i in the context of

output feedback control of linear systems in [62].

Proposition 2.2: Given any positive real number δb,i, there exist positive real num-

bers e∗m,i and δs,i such that if ‖x − x̂‖ ≤ em,i, where em,i ∈ (0, e∗m,i], and Vi(x̂) ≤ δs,i,

then Vi(x) ≤ δb,i.

Proof of Proposition 2.2: From the continuity of the function Vi(·), we have that
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for any positive real number em,i, there exists a positive real number γi such that

‖x − x̂‖ ≤ em,i =⇒ |Vi(x) − Vi(x̂)| ≤ γi =⇒ Vi(x) ≤ Vi(x̂) + γi. Since γi can be

made small by choosing em,i small, it follows that given any positive real number δb,i,

there exists a positive real number, e∗m,i, such that for all em,i ∈ (0, e∗m,i], γi < δb,i.

Now, let δs,i be any positive real number that satisfies δs,i + γi ≤ δb,i. Then if

‖x − x̂‖ ≤ em,i ≤ e∗m,i and Vi(x̂) ≤ δs,i, we have Vi(x) ≤ Vi(x̂) + γi ≤ δs,i + γi ≤ δb,i.

This completes the proof of the proposition.

Note that for the inference that x̂ ∈ Ωs,i =⇒ x ∈ Ωb,i to be useful in executing

the switching, the set Ωs,i needs to be contained within Ωb,i. From Proposition 2.2,

this can be ensured if em,i is sufficiently small, which in turn is ensured for all times

greater than T b
i provided that the observer gain is sufficiently large. In practice, use

of a sufficiently high observer gain leads to an Ωb,i that is almost identical to Ωi, and

furthermore, once the error has sufficiently decreased, Ωs,i can be taken to be almost

equal to Ωb,i.

2.4.2 Integrating fault-detection and fault-tolerant output feedback con-

trol

In this subsection we will present a fault-tolerant controller that uses the estimates

generated by the high-gain observer for the implementation of the fault-detection fil-

ter, the state feedback controllers and the switching logic (see Fig.2.7). We proceed by

first showing how the implementation of the design and implementation of the fault-

detection filter should be modified to handle the absence of full state measurements.

To this end, we consider the following system:

ẇ(t) = f(w) + gi(w)ui(w)

r(t) = ‖x̂(t)− w(t)‖ (2.18)

Note that, as in the full state feedback case, the state equation for the filter in Eq.2.18

is a replica of the closed-loop state equation under full state feedback and in the ab-
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sence of faults. However, because of the absence of full state measurements, the

residual can only be defined in terms of the state estimates, not the actual states.

The residual therefore provides a measure of the discrepancy between the evolution

of the nominal closed-loop system (i.e., with no faults) under full state feedback and

the evolution of the closed-loop state estimates under output feedback. Since the dis-

crepancy can be solely due to estimation errors and not necessarily due to faults, it is

important to establish a bound on the residual which captures the expected difference

in behavior in the absence of faults. This bound, which is given in Proposition 2.3

below, will be useful as a threshold to be used by the supervisor in declaring when a

fault has occurred and consequently when switching becomes necessary.SupervisorStability Region 1Stability Region 2Stability Region N Control Configuration 1 Control Configuration 2 Control Configuration NController reconfigurationx = f(x) + gk(x)uk + mk(t)y = h(x) |uk| ≤ ukmaxukFault mk w = f(w)+gk(w)uk(w)w(Tb) = x(Tb)
+-

Fault-detection filtery(t)
x(t)

x(t)
w(t)r(t)

x(t)=f(x,y,uk)^ ^
^

^^
Figure 2.7: Integrated fault-detection and fault-tolerant control design under output feed-

back.

Proposition 2.3: Consider the nonlinear system of Eq.2.1, for a fixed mode, k(t) =

i, and with mi(t) ≡ 0, under the output feedback controller of Eq.2.17. Consider also

the system of Eq.2.18. Then, given the set of positive real numbers {δb,i, δζ,i, δm,i, T
b
i },
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there exists a positive real number, ε′i > 0, such that if εi ∈ (0, ε′i], Vi(x(0)) ≤ δb,i,

‖ỹ(0)‖ ≤ δζ,i, w(T b
i ) = x̂(T b

i ), the residual satisfies a relation of the form r(t) ≤ δm,i

for all t ≥ T b
i .

Proof of Proposition 2.3: Consider the system of Eq.2.1 with mi(t) ≡ 0 under the

output feedback controller of Eq.2.17. From the result of Proposition 2.1, we have

that given x(0) ∈ Ωb,i and any positive real number T b
i , there exists a real positive

number ε∗∗i such that ‖x(t)− x̂(t)‖ ≤ k1εi, for all t ≥ T b
i , εi ∈ (0, ε∗∗i ], for some k1 > 0,

i.e., x(t) = x̂(t) + O(εi), where O(εi) is the standard order of magnitude notation.

Now, consider the following two systems for t ≥ T b
i :

ẋ(t) = f(x(t)) + gi(x(t))ui(x̂(t)) (2.19)

ẇ(t) = f(w(t)) + gi(w(t))ui(w(t)) (2.20)

where w(T b
i ) = x̂(T b

i ). The system of Eq.2.20 is exactly the closed-loop system under

full state feedback and has an asymptotically (and exponentially) stable equilibrium

at the origin, for all initial conditions within Ωi. The system of Eq.2.19 is the closed-

loop system under output feedback and (from Proposition 2.1) has an asymptotically

(and locally exponentially) stable equilibrium at the origin, for all initial conditions

within Ωb,i ⊂ Ωi and for all εi ≤ ε∗i . Since x(t) = x̂(t) + O(εi) for all t ≥ T b
i , we

have that x(T b
i ) = x̂(T i

b ) + O(εi) and, when εi = 0, the two systems of Eqs.2.19-2.20

become identical. Let Fi(·) = f(·) + gi(·)ui(·), and x(T b
i ) = x̂(T i

b ) + O(εi) := η(εi),

where η is a continuous function that depends smoothly on εi, then we can write

ẋ(t) = Fi(x(t), εi), x(T b
i ) = η(εi)

ẇ(t) = Fi(w(t)), w(T b
i ) = η(0)

(2.21)

It is clear from the above representation that the state equations for both the filter

system and the closed-loop system, as well as their initial conditions at T b
i , are iden-

tical when εi = 0. Therefore, we can use the theory of regular perturbations (see
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Chapter 8 in [49]) to establish the closeness of solutions between the two systems

over the infinite time interval. In particular, since Fi(·) is continuous and bounded

on Ωb,i, and the w-system is exponentially stable, an application of the result of

Theorem 8.2 in [49] yields that there exists ε
′′
i > 0 such that for all εi ∈ (0, ε

′′
i ],

x(t) = w(t) + O(εi) for all t ≥ T b
i . We therefore have that, for εi ∈ (0, min{ε∗∗i , ε

′′
i }],

r(t) = ‖x̂(t)−w(t)‖ = ‖x̂(t)− x(t) + x(t)−w(t)‖ ≤ ‖x̂(t)− x(t)‖+ ‖x(t)−w(t)‖ ≤
(k1 + k2)εi for all t ≥ T b

i . This implies that given any positive real number δm,i, there

exists ε′i > 0 such that ‖x̂(t) − w(t)‖ ≤ δm,i for all εi ∈ (0, ε′i], for all t ≥ T b
i , where

ε′i = min{ε∗∗i , ε
′′
i , δm,i/(k1 + k2)}.

To summarize, we conclude that given the set of positive real numbers

{δb,i, δζ,i, δm,i, T
b
i }, there exists a positive real number, ε′i > 0, such that if εi ∈ (0, ε′i],

Vi(x(0)) ≤ δb,i, ‖ỹ(0)‖ ≤ δζ,i, w(T b
i ) = x̂(T b

i ), the residual satisfies a relation of the

form r(t) ≤ δm,i for all t ≥ T b
i . This completes the proof of the proposition.

Note that the bound δm,i can be chosen arbitrarily small by choosing the observer

gain to be sufficiently large. Note also that, unlike the case of full state feedback,

the fault-detection filter is initialized only after the passage of some short period of

time, [0, T b
i ] (which can be chosen arbitrarily small by increasing the observer gain),

to ensure that the closed-loop state estimates have converged sufficiently close to the

true closed-loop states and thus – by setting the filter state w at this time equal to the

value of the state estimate – ensure that the filter state is initialized sufficiently close

to the true values of the state. From this point onwards, the filter simply integrates

a replica of the dynamics of the process in the absence of errors. In the absence of

actuator faults, the difference between the filter states and the process states is a

function of the initial error, which can be bounded from above by a value that can be
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made as small as desired by decreasing the initial error, which in turn can be done

by appropriate choice of the observer parameters.

Having established a bound on the residual in the absence of faults, we are now

ready to proceed with the design of the switching logic. To this end, consider the

nonlinear system of Eq.2.1 where, for each control configuration, an output feedback

controller of the form of Eq.2.17 is available and, given the desired output feedback

stability regions Ωb,i ⊂ Ωi, i = 1, · · · , N , as well as the desired values for δm,i, T i
b , an

appropriate observer gain has been determined (e.g., εi ≤ min{ε∗i , ε′i, ε∗∗i } to guarantee

both stability and satisfaction of the desired bound on the residual) and the sets Ωs,i

(see Proposition 2.2) have been computed. The implementation of the fault-detection

filter and fault-tolerant controller is described in Theorem 2.2 below.

Theorem 2.2: Let k(0) = i for some i ∈ K, x(0) ∈ Ωb,i, w(T b
i ) = x̂(T b

i ), and

consider a fault for which r(T s
i ) ≥ δm,i, where T s

i > T b
i is the earliest time for which

r(t) ≥ δm,i. Then under the switching rule

k(t) =





i, 0 ≤ t < T s
i

j 6= i, t ≥ T s
i , x̂(T s

i ) ∈ Ωs
j



 (2.22)

the origin of the closed–loop system is asymptotically stable.

Proof of Theorem 2.2: Consider the nonlinear system of Eq.2.1, under the output

feedback controller of Eq.2.17, and the system of Eq.2.18, where k(0) = i for some

i ∈ K, x(0) ∈ Ωb,i, w(T b
i ) = x̂(T b

i ), εi ≤ min{ε∗i , ε′i, ε∗∗i }, where ε∗i , ε∗∗i were defined in

Proposition 2.1 and ε′i was defined in Proposition 2.3. Since we consider only faults

for which r(T s
i ) ≥ δi

m, where T s
i > T b

i is the earliest time for which r(t) ≥ δi
m, it

follows that:

(a) in the absence of such faults, no switching takes place and configuration i is

implemented for all times. Since x(0) ∈ Ωb,i and εi ≤ ε∗i , asymptotic closed-loop

stability of the origin follows directly from Proposition 2.1.
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(b) in the case that such faults take place, the earliest time a fault is detected

is T s
i > T b

i and we have, from Eq.2.22, that k(t) = i for 0 ≤ t < T s
i . From the

stability of the i-th closed-loop system established in Proposition 2.1, we have that

the closed-loop trajectory stays bounded within Ωb,i for 0 ≤ t < T s
i . At time T s

i ,

the supervisor switches to a control configuration j for which x̂(T s
i ) ∈ Ωs,j. By

design, x̂(t) ∈ Ωs,j =⇒ x(t) ∈ Ωb,j for all t ≥ T s
i > T b

i . From this point onwards,

configuration j is implemented in the closed–loop system for all future times and,

since x(T s
i ) ∈ Ωb,j, asymptotic closed–loop stability of the origin follows from the

result of Proposition 2.1. This completes the proof of Theorem 2.2.

The design and implementation of the fault-detection filter and fault-tolerant con-

troller proceed as follows:

1. Given the nonlinear process of Eq.2.1, identify the available control configura-

tions, k = 1, . . . , N . For each configuration, design the output feedback con-

troller of Eq.2.17, and for a given choice of the output feedback stability region,

Ωb,i, determine a stabilizing observer gain, ε∗i .

2. Given any positive real numbers, δm,i and T b
i , determine the observer gain, ε′i, for

which the maximum possible difference between the filter states and the state

estimates, in the absence of faults, is less than the threshold δm,i for all times

greater than T b
i .

3. Given the output feedback stability region, Ωb,i, determine the maximum error,

e∗m,i, and the set Ωs,i such that if ‖x− x̂‖ ≤ em,i ≤ e∗m,i (i.e., the error between

the estimates and the true values of the states is less than em,i) and x̂ ∈ Ωs,i

(i.e., the state estimates belong to Ωs,i), then x ∈ Ωb,i (i.e., the state belongs to

the output feedback stability region).
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4. For a choice of em,i ∈ (0, e∗m,i] and given T b
i , determine the observer gain, ε∗∗i ,

for which the maximum possible difference between the states and the state

estimates, in the absence of faults, is less than the threshold em,i for all times

greater than T b
i . Set εi := min{ε∗i , ε′i, ε∗∗i }. Note that this choice guarantees that

by time T b
i : (1) the residual is within the desired threshold and (2) the presence

of x̂ within Ωs,i guarantees that x belongs to Ωb,i.

5. Initialize the closed-loop system such that x(0) ∈ Ωb,i, for some i ∈ K, and start

generating the state estimates x̂(t). At time T b
i , initialize and start integrating

the filter dynamics of Eq.2.18 with w(T b
i ) = x̂(T b

i ), where x̂ is the state estimate

generated by the high-gain observer.

6. At the earliest time T s
i > T b

i that r(t) > δm,i (implying that the difference

between the expected evolution of the process states and the estimates of the

process states is more than what can be accounted for by the error in the ini-

tialization of the filter states, implying that a fault has occurred), activate the

backup configuration for which x̂(T s
i ) ∈ Ωs,j (note that since t = T s

i > T b
i , we

have that ‖x(T s
i ) − x̂(T s

i )‖ ≤ em,i; this together with x̂(T s
i ) ∈ Ωs,j implies that

x(T s
i ) ∈ Ωb,j, i.e., the state belongs to the stability region of configuration j).

Implement the backup configuration j to achieve closed–loop stability.

Theorem 2.2 considers faults that are “observable” from the filter’s residual, in

the sense that if the residual in Eq.2.18 exceeds the allowable threshold δm,i at any

time, then the supervisor can conclude with certainty that a fault has occurred. On

the other hand, if the residual does not exceed the allowable threshold, it might

still be possible that some “unobservable” fault – the effect of which is within the

filter threshold – has taken place. Note that in contrast to the case of full state

feedback, the states in this case are only known up to a certain degree of accuracy.
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Therefore, any fault that causes a difference in the closed–loop behavior that is within

that margin of (i.e., indistinguishable from) the effect of the estimation error will, in

principle, go undetected. This class of faults is not considered in Theorem 2.2 since its

effect on closed-loop stability cannot be discerned from the behavior of the residual.

This, however, is not a restriction since the observability threshold δm,i is a design

parameter and can be chosen arbitrarily small, thus rendering the possibility of major

(i.e., destabilizing) faults that cannot be detected quite small. Ultimately, the choice

of δm,i reflects a fundamental tradeoff between the need to avoid false alarms that

could be caused by estimation errors (this favors a relatively large threshold) and

the need to minimize the possibility of some faults going undetected (this favors a

relatively small threshold).

Note that for all times prior to T b
i , the filter is inactive. Up-until this time,

the state estimates have not yet converged close enough to the true values of the

states, and no inference about the state of the system can be drawn by looking at the

evolution of the state estimate, and therefore no inference about any possible faults

can be drawn via the fault-detection filter. If a fault occurs within this time, the filter

will detect its occurrence only after the time T b
i . By choosing a larger value of the

observer gain, however, the time T b
i can be reduced further, if so desired. Note also

that while we consider the problem of unavailability of some of the state variables

as measurements, we do not consider the problem of sensor faults, i.e., we assume

that the sensors do not malfunction both in the state and output feedback cases. In

the event of availability of multiple measurements in a way that each of them can be

used to estimate of the process states, the estimates of the states generated using the

different measurements can be used to also detect sensor faults.

Remark 2.5: The central idea behind the model-based fault-detection filter design,
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that of comparing the evolution of the process to the expected evolution of the process

in the absence of faults, can also be used to design a rule-based fault-detection filter.

One example of a rule-based fault-detection filter is to declare a fault if the state

estimates, after a time T b
i , touch the boundary of Ωs,i, indicating that the closed-loop

states themselves may be about to escape the output feedback stability region Ωb,i.

The rule-based fault detection filter, however, would be able to detect the fault only

when the state estimates hit the boundary of Ωs,i, as opposed to the model-based

fault detection filter, which detects a fault as soon as the effect of the fault on the

closed–loop evolution goes beyond a prescribed threshold. This delay in a rule-based

approach could result in the state escaping the stability region of the available backup

configurations (see the simulation for an example). Also, it may happen that the fault

causes the closed–loop process states evolving within Ωs,i to neither escape Ωs,i nor

converge to the origin. The rule based fault-detection filter would not be able to

detect such a fault. In contrast, the model-based fault-detection filter of Theorem

2.2, is able to detect faults that have an effect, up-to a desirable threshold, on the

evolution of the closed–loop process. Note also that the model-based fault-detection

filter of Theorem 2.2 and the rule-based fault-detection filter discussed above differ

only in that the model-based filter of Theorem 2.2 uses a more quantitative knowledge

of the closed–loop dynamics to predict the expected closed–loop trajectory, instead of

using the qualitative knowledge that the fault-free closed–loop state trajectory does

not the escape the stability region.

2.4.3 Simulation results

In this subsection, we first illustrate the implementation of the proposed fault-tolerant

control methodology to the chemical reactor introduced as a motivating example to

clearly explain the main ideas behind the application of the proposed fault-detection
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and fault-tolerant control method, and then demonstrate an application to a net-

worked chemical reactor example, investigating issues such as uncertainty and mea-

surement noise.

For the chemical reactor of the motivating example, Fig.2.11 depicts the stabil-

ity region, in the (T,CA) space, for each configuration. The desired steady-state is

depicted with an asterisk that lies in the intersection of the three stability regions.

For the first two control configurations, a state estimator of the form of Eq.2.17 is

designed. For thresholds of δm = 0.0172 and 0.00151 in the fault detection filters, the

parameters in the observer of Eq.2.17 are chosen as L1 = L2 = 100, a
(1)
1 = a

(2)
1 = 10

and a
(1)
2 = a

(2)
2 = 20. For the third configuration, the estimates, T̂ , ĈA are generated

as follows:

dT̂

dt
=

F

V
(TA0 − T̂ ) +

3∑
i=1

(−∆Hi)

ρcp

ki0e

−Ei

RT̂ ĈA + α1(CA − ĈA)

dĈA

dt
=

F

V
(CA0 − ĈA)−

3∑
i=1

ki0e

−Ei

RT̂ ĈA + α2(CA − ĈA)

(2.23)

where α1 = −104 and α2 = 10. The reactor is initialized at T (0) = 330 K, CA(0) =

3.6 kmol/m3, CB(0) = 0.0 kmol/m3, using the Q-control configuration, while the

state estimates are initialized at T̂ (0) = 390 K, ĈA(0) = 3.6 kmol/m3 and the

supervisor proceeds to monitor the evolution of the closed-loop estimates.

We first demonstrate the need to wait for a sufficient time before initializing the

filter. To this end, consider the fault-detection filter initialized at t = 0.005 minutes ≡
T b

1 at which time the state estimates (dash-dotted lines in Fig.2.8) have not converged

to the true values (solid lines in Fig.2.8). As a result, the fault-detection filter shows

a false alarm (see Fig.2.9a) by crossing the threshold even when control configuration

1 is functioning properly (see Fig.2.9b) and stabilizes the closed–loop system. Note

that while the initialization of the filter at a time when the state estimates have not
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converged leads to the residual crossing the threshold, the residual eventually goes

to zero as expected, since both the filter states and the closed–loop process states

eventually stabilize and go to the same equilibrium point.

We now demonstrate the application of the fault-detection filter and fault-tolerant

controller of Theorem 2.2. Starting from the same initial conditions, the estimates of

T and CA (dash-dotted lines in Figs.2.10a,b) converge very quickly to the true values

of the states (solid lines in Figs.2.10a,b). The states in the fault-detection filter are

initialized and set equal to the value of the state estimates at t = 0.01 minutes ≡ T b
1 ;

note that by this time the estimates have converged to the true values. By initializing

the fault-detection filter appropriately, a false alarm is prevented (the value of r1(t)

does not hit the threshold in the absence of a fault after a time t = 0.01 minutes, see

Fig.2.12a). As shown by the solid lines in Fig.2.11, the controller proceeds to drive the

closed-loop trajectory towards the desired steady-state, up until the Q-configuration

fails after 3.0 minutes ≡ T f
1 of reactor startup (see solid lines in Fig.2.14a). Note that

at this time, the value of r1(t) becomes non-zero and hits the threshold at t = 3.3

minutes ≡ T s
1 . From Fig.2.11, it is clear that the failure of the primary control

configuration occurs when the closed-loop trajectory is within the stability region of

the second control configuration, and outside the stability region of the third control

configuration. Therefore, on the basis of the switching logic of Eq.2.22, the supervisor

activates the second configuration (with TA0 as the manipulated input). The result

is shown by the solid line in Fig.2.11 where it is seen that upon switching to the TA0-

configuration, the corresponding controller continues to drive the state trajectory

closer to the desired steady-state.

When a second failure occurs (this time in the TA0-configuration) at t = 13.0

minutes ≡ T f
2 (which is simulated by fixing TA0 for all t ≥ 13.0 minutes, see solid
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Figure 2.8: Evolution of the closed-loop (a) temperature (solid line), estimate of temper-

ature (dash-dotted line) and the temperature profile generated by the filter (dashed line)

and (b) concentration (solid line), estimate of concentration (dash-dotted line) and the con-

centration profile generated by the filter (dashed line) under control configuration 1 when

the fault detection filter is initialized at t = 0.005 minutes.
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Figure 2.9: Evolution of (a) the residual and (b) the manipulated input profile for the first

control configuration when the fault detection filter is initialized at t = 0.005 minutes.
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Figure 2.10: Evolution of the closed-loop (a) temperature (solid line), estimate of temper-

ature (dash-dotted line) and the temperature profile generated by the filter (dashed line)

and (b) concentration (solid line), estimate of concentration (dash-dotted line) and the con-

centration profile generated by the filter (dashed line) under the switching rule of Eq.2.22

subject to failures in control systems 1 and 2.
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Figure 2.11: Evolution of the closed-loop state trajectory under the switching rule of Eq.2.22

subject to failures in control systems 1 and 2, using an appropriate fault-detection filter

(solid line) and in the absence of a fault-detection filter (dashed line).
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lines in Fig.2.14b) before the process has reached the steady state, the filter detects

this failure via the value of r2(t) hitting the threshold (see Fig.2.12b). From the

solid line in Fig.2.11, it is clear that the failure of the second control configuration

occurs when the closed-loop trajectory is within the stability region of the third

configuration. However, if the fault-detection filter is not in place and the backup

configuration is implemented late in the closed–loop (at t = 30 minutes ≡ T s
3 ), by

this time the state of the closed–loop system has moved out of the stability region of

the third control configuration, and closed–loop stability is not achieved (see dashed

line in Fig.2.11, see also Fig.2.13 and dashed lines in Fig.2.14). In contrast, when the

fault-detection filter is in place, it detects a fault at t = 15.82 minutes ≡ T s
2 and when

the supervisor switches to configuration 3, closed–loop stability is achieved (see solid

line in Fig.2.11).
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Figure 2.12: Evolution of the residual for (a) the first control configuration and (b) the

second control configuration.
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Figure 2.13: Evolution of the closed-loop (a) temperature (solid line), estimate of temper-

ature (dash-dotted line) and the temperature profile generated by the filter (dashed line)

and (b) concentration (solid line), estimate of concentration (dash-dotted line) and the con-

centration profile generated by the filter (dashed line) under the switching rule of Eq.2.22

subject to failures in control systems 1 and 2 in the absence of a fault-detection filter.
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Figure 2.14: Manipulated input profiles under (a) control configuration 1, (b) control con-

figuration 2, and (c) control configuration 3 under the switching rule of Eq.2.22 subject to

failures in control systems 1 and 2 in the presence (solid lines) and absence (dashed lines)

of a fault-detection filter.
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Chapter 3

Integrated fault-detection and

isolation and fault-tolerant control

3.1 Introduction

This chapter considers the problem of implementing fault tolerant control on a multi-

input multi-output nonlinear system subject to multiple faults in the control actuators

and constraints on the manipulated inputs. To illustrate some of the ideas behind

the design of the fault-detection and isolation filter and subsequent reconfiguration,

the case where all the states of the system are measured is first considered. The state

measurements and the model are used to design filters that essentially capture the

difference between the fault-free evolution and the evolution of the system to detect

and isolate faults. Once a fault is detected and isolated, out of the available backup

configurations, a configuration is chosen that 1) does not use the failed control ac-

tuator, and 2) guarantees the stability of the closed-loop system starting from the

system state at the time of the failure. To be able to ascertain the second condition,

Lyapunov-based controllers are used in designing the control laws for the individual

control configurations which provide an explicit characterization of the set of ini-
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tial conditions starting from where the closed-loop stability is guaranteed. The more

complicated and realistic problem where all the system states are not measured is con-

sidered next. First, output-feedback controllers are designed that use a combination

of state estimators and state-feedback controllers in a way that allows for an explicit

characterization of the output-feedback stability region. The state estimates are em-

ployed in the design of the fault-detection and isolation filters, and also in devising

the reconfiguration rule that determines which of the backup control configurations

should be implemented in the closed-loop system. Finally, the implementation of

the fault-detection and isolation filters and reconfiguration strategy is first illustrated

via a state-feedback chemical reactor example, and then issues such as uncertainty,

measurement noise, and applicability in an output-feedback setting are investigated

in further chemical reactor examples.

3.2 Preliminaries

We consider nonlinear systems with input constraints, described by:

ẋ = f(x) + Gk(t)(x)(uk(t)(x) + ũk(t)(t)), y(x) = h(x)

uk ∈ Uk, k(t) ∈ K = {1, · · · , N}, N < ∞
(3.1)

where x ∈ IRn denotes the vector of state variables, y ∈ IRm denotes the vector of

measured variables and uk(t)(x) ∈ IRm denotes the control action prescribed by the

control law for the vector of constrained manipulated inputs under the kth configura-

tion. ũk(t) denotes the unknown fault vector with and uk(t)(x)+ũk(t) taking values in a

nonempty convex subset Uk of IRm, where Uk = {uk + ũk ∈ IRm : ‖uk + ũk‖ ≤ umax
k },

‖ ·‖ is the Euclidean norm of a vector, umax
k > 0 is the magnitude of input constraints

and f(0) = 0. The vector function f(x) and the matrices Gk(x) = [g1,k(x) · · · gm,k(x)]

are assumed to be sufficiently smooth on their domains of definition. k(t), which

takes values in the finite index set K, represents a discrete state that indexes the
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matrix Gk(·) as well as the manipulated input uk(·) and the possible faults in the ma-

nipulated inputs ũk(·). For each value that k assumes in K, the process is controlled

via a different set of manipulated inputs which defines a given control configuration.

The notation Lfh denotes the standard Lie derivative of a scalar function h(·) with

respect to the vector function f(·) and the notation x(T+) denotes the limit of the

trajectory x(t) as T is approached from the right, i.e., x(T+) = lim
t→T+

x(t). Throughout

the manuscript, we assume that for any uk ∈ Uk the solution of the system of Eq.3.1

exists and is continuous for all t.

To illustrate some of the ideas behind the fault detection and isolation filter design

and reconfiguration strategy, we begin by assuming that all the states are available

as measurements. We next review one example of a state-feedback controller that

provides an explicit estimate of the stability region for the closed–loop system subject

to constraints (for more details on the controller design, and the proof, see [25] and

[54]).

Theorem 3.1 [25]: Consider the switched nonlinear system of Eq.3.1 for a config-

uration k for which a Control Lyapunov Function Vk exists, with ũk(t) ≡ 0, under

state-feedback using the following bounded nonlinear feedback controller:

uk = −wk(x, umax
k )(LGk

Vk(x))T (3.2)

where wk(x, umax
k ) =





αk(x) +
√

α2
k(x) + (umax

k ‖bT
k (x)‖)4

‖bT
k (x)‖2

[
1 +

√
1 + (umax

k ‖bT
k (x)‖)2

] , bT
k (x) 6= 0

0, bT
k (x) = 0

(3.3)

with αk(x) = Lfk
Vk(x) + ρkVk(x), ρk > 0 and bk(x) = LGk

Vk(x). Assume that the

set Φk(u
max
k ) of x satisfying

Lfk
Vk(x) + ρkVk(x) ≤ umax

k ‖(LGk
Vk(x))T‖ (3.4)
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contains the origin and a neighborhood of the origin. Also, let Ωk(u
max
k ) := {x ∈ IRn :

Vk(x) ≤ cmax
k } be a level set of Vk, completely contained in Φk, for some cmax

k > 0.

Then for all x(0) ∈ Ωk(u
max
k ) the control law guarantees that the origin of the closed-

loop system is asymptotically stable.

3.3 State-feedback Fault-tolerant control

In this section, we first consider the problem under state-feedback to illustrate the

main idea behind the fault detection and isolation filter and fault-tolerant controller

design.

3.3.1 State-feedback fault detection and isolation filter

To be able to detect the occurrence of a fault in a control actuator via observing the

state evolution, it is necessary that the control actuator influences the evolution of at

least some of the states. To be able to isolate the occurrence of a fault, it becomes

further necessary that the control actuator in question be the only one influencing at

least some state. To understand this better, consider the following single state, two

input example: ẋ = x + u1(x) + ũ1 + u2(x) + ũ2. As is clear from the equation, the

faults in the manipulated inputs u1 and u2 effect the evolution of the state additively,

i.e., as the sum (ũ1 + ũ2). While it may be possible to detect that a fault has occurred

in either u1 or u2 (if the faults do not cancel out each other, i.e., if ũ1 + ũ2 6= 0), it is

not possible, in this case, to determine by observing the evolution of the system (and

finding it to be different when compared to the expected evolution with ũ1 = ũ2 = 0)

whether ũ1 6= 0 or ũ2 6= 0, or both. In other words, while it may be possible to

detect the occurrence of a fault, it is not possible to isolate it. Below we formulate

a verifiable assumption on the structure of the system of Eq.3.1 that allows for fault
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detection and isolation.

Assumption 3.1: Consider the system of Eq.3.1 in configuration k under state-

feedback. Then for every input uj,k, j = 1, . . . , m, there exists a unique state xi,k,

i ∈ {1, . . . , n} such that with xi,k as output, the relative degree of xi,k with respect to

uj,k and only with respect to uj,k is equal to 1.

Consider now the system of Eq.3.1 in configuration k for which Assumption 3.1

holds. Theorem 3.2 below formulates the fault detection and isolation filter and

outlines its fault detection and isolation properties.

Theorem 3.2: Consider the system of Eq.3.1 in configuration k under the control

law of Eq.3.2. Let the fault detection and isolation filter for the jth manipulated input

in the kth configuration be described by

˙̃xi,k = fi(x1, . . . , x̃i,k, . . . , xn) + gj,k[i](x1, . . . , x̃i,k, . . . , xn)uj,k(x1, . . . , x̃i,k, . . . , xn)

ei,k = x̃i,k − xi

(3.5)

where gj,k[i] denotes the ith element of the vector gj,k, x̃i,k(0) = xi(0) and the sub-

scripts i, k refer to the ith state under the kth control configuration. Let T f
j,k be the

earliest time for which ũj,k 6= 0, then the fault detection and isolation filter of Eq.3.5

ensures that ei,k(T
f
j,k

+
) 6= 0. Also, ei,k(t) 6= 0 only if ũj,k(s) 6= 0 for some 0 ≤ s < t.

Proof of Theorem 3.2:

Part 1: We first show the only if part of the Theorem by contradiction. To this end,

consider the equation describing the evolution of the ith state, xi described by

ẋi = fi(x) + gj,k[i](x)(uj,k(x) + ũj,k(t)) (3.6)

and let us assume that ũj,k(s) = 0, for all 0 ≤ s < t. Then for all 0 ≤ s < t Eq.3.6

reduces to

ẋi = fi(x) + gj,k[i](x)uj,k(x) (3.7)

Since xi(0) = x̃i,k(0), we therefore have that ẋi(s) = ˙̃xi,k(s) for s = 0 and subsequently
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for all 0 ≤ s < t. Therefore ei,k(s) = 0 for all 0 ≤ s < t, which leads to a contradiction.

This means that the assumption that ũj,k(s) = 0, for all 0 ≤ s < t does not hold,

i.e., ũj,k(s) 6= 0 for some 0 ≤ s < t. This completes the proof of the first part of the

theorem.

Part 2: To prove the if part of the theorem, consider once again Eq.3.5 and Eq.3.6

with ũk
j (t) = 0 for all t ≤ T f

k . Then following the line of reasoning as in Part 1, we

get that xi(T
f
j,k) = x̃i,k(T

f
j,k). Since ũj,k(T

f
j,k) 6= 0, we get that ẋi(T

f
j,k) 6= ˙̃xi,k(T

f
j,k),

and therefore, that xi(T
f
j,k

+
) 6= x̃i,k(T

f
j,k

+
), i.e., ei,k(T

f
j,k

+
) 6= 0. This completes the

proof of Theorem 3.2.

Remark 3.1: As stated in Theorem 3.2 above, the fault detection and isolation

filter performs the task of detection as well as isolation. Specifically, the if part of the

theorem characterizes the detection capabilities where the residual for a manipulated

input becomes non-zero if a fault occurs in the given manipulated input. The only

if part of the theorem allows isolation since a residual is non-zero only if a fault has

occurred at some previous time in the given manipulated input. Note that in general

it is possible that a fault-occurs for some time and disappears, and also the fault

profile is such that after some time the evolution of the system becomes identical

again to the fault-free system, in which case the residual would once again go back to

zero. The immediate detection capability of the filter above, however, precludes the

possibility that such a fault goes undetected.

Remark 3.2: Note that Assumption 3.1 is a sufficient condition that allows fault

detection and isolation filter design, and can be readily relaxed. For instance, if

the inputs influence the evolution of the states in an ‘upper triangular’ or ‘lower

triangular’ form, fault detection and isolation is possible using the same idea as in

Theorem 3.2 above. As an illustration, consider a two state two input system, of the
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form
ẋ1 = f1(x) + g1[1](x)(u1(x) + ũ1(t))
ẋ2 = f2(x) + g1[2](x)(u1(x) + ũ1(t)) + g2[2](x)(u2(x) + ũ2(t)) (3.8)

where fi(·) denotes the ith elements of the vector function f(·) and gi[j] denotes the

jth element of the vector gi. While this system does not satisfy Assumption 3.1, fault

detection and isolation can still be achieved. Specifically, a filter design of the form

of Eq.3.5 can be used to build a detection filter for the first manipulated input. The

dynamics of the second filter can then be designed as

˜̇x2 = f2(x1, x̃2) + g1[2](x1, x̃2)(u1(x1, x̃2)) + g2[2](x1, x̃2)(u2(x1, x̃2))
e2 = x̃2 − x2

(3.9)

In this setup, faults in u1 will be captured in both e1 and e2, while faults in u2 will

only effect e2. The task of fault detection and isolation can therefore be carried out

via a simple process of elimination.

Remark 3.3: Even in cases where the structure of the process dynamic model does

not allow for complete isolation of a fault (i.e., more than one manipulated input

has a relative degree one with respect to a given state), the proposed method can

still isolate the failure to a subset of the entire group of active manipulated inputs.

This would be especially useful in the case of high-dimensional process systems with

a large number of states and inputs where several redundant inputs are used simul-

taneously. However, once a subset of control actuators including the failed ones has

been identified by the filter, nothing can be said about which actuator(s) of the ones

in this subset has actually failed. Therefore, in order to guarantee stability in the

controller reconfiguration phase, the worst case scenario, where all the actuators in

this subset have failed, must be assumed and the supervisor must then switch to a

fallback configuration that does not implement any of the control actuators included

in this subset.
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3.3.2 State-feedback fault-tolerant controller

Given that a fault is detected and isolated using the filters designed in the previ-

ous section, the problem that we address in this section is that of determining an

appropriate backup configuration. The first requirement for an appropriate backup

control configuration is that it does not use the faulty control actuator. Secondly,

the limitations imposed by the presence of input constraints must be accounted for,

and in particular, a backup configuration should be implemented for which the state

of the closed–loop system resides in its stability region. This idea is formalized in

Theorem 3.3 below.

Theorem 3.3: Consider the closed–loop system of Eqs.3.1-3.2 under state-feedback

and let x(0) := x0 ∈ Ωk0 for some k0 ∈ K. Let Tj,k0 be the earliest time such that

ei,k0 6= 0 for some i corresponding to a manipulated input uj,k0 in Eq.3.5. Then the

following switching rule:

k(t) =





k0, 0 ≤ t < Tj,k0

q 6= k0,
t ≥ Tj,k0 , x(Tj,k0) ∈ Ωq,

uj,k0 6∈ uq





(3.10)

guarantees asymptotic stability of the origin of the closed–loop system.

Proof of Theorem 3.3: We consider the two cases, 1) ei,k0(t) = 0 for all t ≥ 0 for

all i ∈ {1, . . . , n} and 2) ei,k0(t) 6= 0 for some Tj,k0 for some j ∈ {1, . . . , m}.

Case 1: ei,k0(t) = 0 ∀ t ≥ 0 for all j ∈ {1, . . . ,m} implies (using Theorem 3.2) that

ũj,k(t) = 0 for all t ≥ 0 and for all j ∈ {1, . . . , m}. The switching rule of Eq.3.10 then

dictates that k(t) = k0 ∀ t ≥ 0. Since x(0) ∈ Ωk0 , asymptotic stability of the origin

of the closed–loop system follows from Theorem 3.1.

Case 2: If ei,k0(t) 6= 0 for some Tj,k0 for some j ∈ {1, . . . , m}, the switching rule

dictates switching to configuration q such that x(Tj,k0) ∈ Ωq. Closed–loop stability of
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the origin of the closed–loop system again follows from Theorem 3.1. This completes

the proof of Theorem 3.3.

Remark 3.4: Early detection of a fault enhances the chances that corrective action

can be taken in time to achieve fault-tolerant control. Specifically, it may happen

that a fault occurs when the closed–loop state resides in the stability region of one

of the backup configurations, but the destabilizing effect of the fault may drive the

state outside the stability region of the backup configuration by the time the fault

is detected. Theorem 3.2 guarantees that a fault is detected as soon as it occurs.

Note also that in the presence of plant model mismatch or unknown disturbances,

the value of ei,k(t) will be nonzero even in the absence of faults. The presence of

time varying disturbances θ(t) with known bounds θb on the disturbances can be

accounted for in the filter design as well as reconfiguration. Specifically, the filter

can be redesigned to declare a fault only if the value of ei,k(t) increases beyond some

threshold, δ(θb), where δ(θb) accounts for the deviation of the plant dynamics from

the nominal dynamics in the absence of faults. Further robust controllers can be

utilized and the robust stability regions can be used as criteria for deciding which

backup configuration should be implemented in the closed–loop system.

Remark 3.5: In the event that the process state at the time of the failure of the pri-

mary control configuration lies in the stability region of more than one backup control

configurations, additional performance considerations such as ease and/or cost of im-

plementing one control configuration over another can be used in choosing the backup

control configuration to be implemented [66]. Note that the set of initial conditions

starting from where a given control configuration can stabilize a steady state – the

so-called null-controllable region – is fundamentally limited by the constraints on the

available control action, and that different control laws typically provide estimates of
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the stability region which are subsets of the null-controllable region. If the state at

the time of a failure lies outside the stability region of all the backup configurations,

then this indicates that the backup configurations do not have enough control action

available and calls for increasing the allowable control action.

3.4 Output-feedback fault-tolerant control

In the previous section, we assumed the availability of all the state measurements

to illustrate the design of the fault detection and isolation filters and the controller

reconfiguration strategy. In this section, we consider the case where only some of the

process states are available for measurement. The unavailability of some states as

measurements necessitates estimating the states from the measurements for the pur-

poses of fault detection and isolation, feedback control and controller reconfiguration.

To this end, we next review an output–feedback controller design [25] that provides

estimates of the states (for other examples of nonlinear observer and output-feedback

controller designs, see [47, 50]) along with an explicit characterization of the output

feedback stability region.

3.4.1 Output feedback controller

To design the output feedback controllers for the individual configurations, we will

use the following assumption:

Assumption 3.2 : Consider the system of Eq.3.1 in configuration k with ũk ≡ 0.

There exists a set of integers r1,k, r2,k, . . . , rm,k (with r1,k + r2,k + · · · + rm,k = n for

each k) and a coordinate transformation ζk = χk(x) such that the representation of

the system of Eq.3.1, in the ζk coordinates, takes the form:
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ζ̇
(i)
1,k = ζ

(i)
2,k

...

ζ̇
(i)
ri,k−1 = ζ

(i)
ri,k

ζ̇
(i)
ri,k = L

ri,k

f hi(x) + Lgi,k
L

ri,k−1

f hi(x)ui,k

(3.11)

where x = χ−1
k (ζk) and ζk = [ζ

(1)
k

T · · · ζ
(m)
k

T
]T .

Theorem 3.4 [25]: Consider the constrained nonlinear process of Eq.3.1 with

ũk(t) ≡ 0 for which Assumption 3.2 holds, under the output feedback controller using

the kth control configuration:

˙̃yi,k =




−Li,ka
(1)
i,k 1 0 · · · 0

−L2
i,ka

(2)
i,k 0 1 · · · 0

...
...

...
. . .

...

−Lri
i,ka

(ri)
i,k 0 0 · · · 0




ỹi,k

+




Li,ka
(1)
i,k

L2
i,ka

(2)
i,k

...

Ln
i,ka

(ri)
i,k




yi,k

uk = −wk(x̂, umax
k )(LGk

Vk(x̂))T

(3.12)

where x̂ = χ−1
k (sat(ỹk)), ỹk = [ỹT

(1,k) · · · ỹT
(m,k)]

T , i = 1, · · · ,m where the parameters,

a
(1)
i,k , · · · , a

(ri)
i,k are chosen such that the polynomial sri + a

(1)
i,k sn−1 + a

(2)
i,k sri−2 + · · · +

a
(ri)
i,k = 0 is Hurwitz, x̂ = χ−1

k (sat(ỹ)), sat(·) = min{1, ζmax,k/‖ · ‖}(·), with ζmax,k =

βζ(δζ,k, 0) where βζ is a class KL function and δζ,k is the maximum value of the vector

[lT1 (x) lT2 (x) · · · lTm(x)]T for Vk(x) ≤ δb,k, where li(x) = [hi(x) Lfhi(x) · · ·Lri−1
f hi(x)]T ,

and let εk = max
i

1/Li,k. Then, given Ωb,k := {x ∈ IRn|Vk(x) ≤ δb,k} and positive real

numbers em,k, ũ∗k and dk there exists ε∗k > 0, T b
k > 0 such that if εk ∈ (0, ε∗k],

x(0) ∈ Ωb,k, and ‖ỹ(0)‖ ≤ δζ,k, the origin of the closed–loop system is asymptotically

(and locally exponentially) stable, and if ‖ũk(t)‖ ≤ ũ∗k then ‖x(t) − x̂(t)‖ ≤ em,k for
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all t ≥ T b
k and lim sup

t→∞
x(t) = dk.

Remark 3.6: Theorem 3.4 above provides the estimation and controller design that

guarantees asymptotic stability in the case of fault-free system as well as practical

stability in the presence of ‘small’ faults (that preserve stability). The result relies

on closeness of the state estimates to the true states over the infinite time interval.

In fault detection and isolation, the closeness of solution would be required to hold

even in the presence of large, possibly destabilizing faults, at least up-to some finite

time to be able to detect and isolate the faults. This requirement is formalized in

assumption 3.3 below.

Assumption 3.3: Consider the system of Eq.3.1 in configuration k under the output

feedback controller of Theorem 3.4. There exist positive real numbers Tclose > T b
k and

δk such that if ‖ũk(t)‖ > ũ∗k for some Tfault > T b
k where ũ∗k was defined in Theorem 3.4,

then ‖x(t)−x̂(t)‖ ≤ em,k for all t ∈ [T b
k , Tfault+T close

k ] and ‖ ∫ t

T b
k
gj,k[i](x(τ))ũj,k(τ)dτ‖ >

δk for some t ∈ [Tfault, Tfault + T close
k ].

Due to the lack of full state measurements, the reconfiguration decision needs to be

done based only on the available state estimates. It is therefore necessary to be able

to make reliable inferences regarding the states using the state estimates. Proposition

3.1 below establishes the existence of a set, Ωs,k := {x ∈ IRn : Vk(x) ≤ δs,k}, such that

once the state estimation error has fallen below a certain value (note that the decay

rate can be controlled by adjusting Lk), the presence of the state within the output

feedback stability region, Ωb,k, can be guaranteed by verifying the presence of the state

estimates in the set Ωs,k. A similar approach was employed in the construction of

the output feedback stability regions Ωb,k and the regions for the state estimates Ωs,k

in the context of output feedback control of linear systems in [62], and for nonlinear

systems in [29]. For a proof of the proposition, see [29].
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Proposition 3.1: Given any positive real number δb,k, there exist positive real num-

bers e∗m,k and δs,k such that if ‖x− x̂‖ ≤ em,k, where em,k ∈ (0, e∗m,k], and Vk(x̂) ≤ δs,k,

then Vk(x) ≤ δb,k.

3.4.2 Output-feedback fault detection and isolation filter

The output feedback fault detection and isolation filter uses the same principle as the

state feedback fault detection and isolation filter while using the state estimates to

implement the filter. For the system of Eq.3.1, the fault detection and isolation filter

for the jth manipulated input in the kth configuration is designed as:

˙̃xi,k = fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k)
+gj,k[i](x̂

k
1, . . . , x̃i,k, . . . , x̂n,k)uj,k(x̂1,k, . . . , x̃i,k, . . . , x̂n,k)

ei,k = x̂i,k − x̃i,k

(3.13)

where gj,k[i] denotes the ith element of the vector gj,k, and x̃i,k(T
b
k) = x̂i,k(T

b
k), where

T b
k was defined in Theorem 3.4.

Proposition 3.2: Consider the nonlinear system of Eq.3.1, for a fixed mode under

the output feedback controller of Eq.3.12 and the filter of Eq.3.13. Given ũ∗j,k, δk

and T close
k there exist positive real numbers δj,k and ε∗∗k such that if |ũj,k(t)| ≥ ũ∗j,k

for some T fault
k ≥ Tb,k and εk ≤ min{ε∗k, ε∗∗k } then ei,k(t) > δj,k for some t ∈

[T fault
k , T fault

k + T close
k ].

Proof of Proposition 3.2: Consider, the filter of Eq.3.13 and the evolution of xi

for t ∈ [T b
k , T fault

k + T close
k ], i.e., consider the systems

˙̃xi,k = fi(x) + gj,k[i](x)(uj,k(x))
+(fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k)− fi(x))
+(gj,k[i](x̂1,k), . . . , x̃i,k, . . . , x̂n,k)uj,k(x̂1,k, . . . , x̃i,k, . . . , xn,k + x̂n,k)
−gj,k[i](x)uj,k(x))

(3.14)

and

ẋi,k = fi(x) + gj,k[i](x)(uj,k(x) + ũj,k(t)) (3.15)
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Therefore,

ẋi,k − ˙̃xi,k = gj,k[i](x)ũj,k(t) + (fi(x)− fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k))
+(gj,k[i](x)uj,k(x))
−gj,k[i](x̂1,k, . . . , x̃i,k, . . . , x̂n,k)uj,k(x̂1,k, . . . , x̃i,k, . . . , xn,k + x̂n,k)

(3.16)

Note that x̂(Tb) − x(Tb) can be made as small as desired by choosing a sufficiently

small ε. From the continuity of fi(·) and gj,k[i](·), this implies that the last two

terms in Eq.3.16 can be made as small as desired. The difference between ẋi,k and

˙̃xi,k can therefore be made as close as desired to gj,k[i](x)(ũj,k(t)). Using assumption

3.3, therefore, given a time T close > T b
k , there exists a positive real number δ∗j,k = δ∗k

such that if |ũj,k(t)| > ũ∗j,k for some T fault
k ≥ T b

k then ‖xi,k(t) − x̃i,k(t)‖ ≥ δ∗j,k for

some t ∈ [T fault
k , T fault

k + T close
k ]. Finally, once again since x̂(t) − x(t) can be made

as close as desired (up until T close
k ), then given that ‖xi,k(t) − x̃i,k(t)‖ ≥ δ∗j,k, there

exists a positive real number δj,k such that ei,k = ‖x̂i,k(t) − x̃i,k(t)‖ ≥ δj,k for some

t ∈ [T fault
k , T fault

k + T close
k ]. In summary, there exists a positive real number ε∗∗k such

that if εk ≤ min{ε∗k, ε∗∗k } and |ũj,k(t)| ≥ ũ∗j,k for some T fault
k ≥ Tb,k then ei,k(t) > δj,k

for some t ∈ [T fault
k , T fault

k + T close
k ].

Remark 3.7: Note that unlike the case of full state-feedback, the fault detection

filter is initialized only after the passage of some short period of time, T b
k (which

can be chosen arbitrarily small by increasing the observer gain), to ensure that the

closed-loop state estimates have converged sufficiently close to the true closed-loop

states and thus – by setting the filter state x̃i,k at this time equal to the value of the

state estimate – ensure that the filter state is initialized sufficiently close to the true

values of the state. Note also, that unlike the case of full state availability, where

the filter is able to immediately detect and isolate the occurrence of fault, the lack of

measurements which induces the error in the initialization of the filter states allows

detection of only such faults that impact the states of the closed–loop system above a
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certain threshold. The key is to ensure that only such faults go undetected which do

not impact undesirably on the stability of the closed–loop system. In the subsequent

section, we design an output-feedback fault detection and isolation and fault-tolerant

control structure that ensures detection and isolation of destabilizing faults.

3.4.3 Output-feedback fault detection and isolation and fault tolerant

control

Having designed the state estimators and controllers and output feedback fault detec-

tion and isolation filters, in this section we present an integrated output-feedback fault

detection and isolation and fault-tolerant controller structure. To this end, consider

the nonlinear system of Eq.3.1, for which the output feedback controller of Eq.3.12

and the filters of Eq.3.13 have been designed for each manipulated input under the

primary configuration, k(0) = k0 under possible faults in only one control actuator.

The theorem below formalizes the integrated output-feedback fault detection and

isolation and fault-tolerant control structure.

Theorem 3.5: Let k(0) = k0 for some k0 ∈ K, x(0) ∈ Ωb,k0, x̃i,k(T
b
i,k) = x̂(T b

i,k).

Given a positive real number dk0 there exist positive real numbers δi,k and ε∗∗∗k such

that if εk ∈ (0, ε∗∗∗k ] then under the switching rule

k(t) =





k0, 0 ≤ t < Tdetect

q 6= k0,
t ≥ Tdetect, x̂(Tdetect) ∈ Ωs,q,

uj,k0 6∈ uq





(3.17)

where Tdetect is the earliest time for which ei,k > δi,k for some i ∈ [0, . . . , n], we have

that lim sup
t→∞

x(t) ≤ dk0.

Proof of Theorem 3.5: We consider the two cases, 1) ei,k(t) ≤ δi,k ∀ t and 2)

ei,k(t) > δi,k for some t = Tdetect.
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Case 1: From theorem 3.4, we have that given a positive real number dk, there exist

positive real numbers ε∗∗k and ũ∗k such that if ‖ũj,k(t)‖ ≤ ũ∗k, then lim sup
t→∞

x(t) = dk0 .

For such choices of ε∗∗k and ũ∗k, we have from Proposition 3.2 that there exists a

positive real number δi,k such that if εk ∈ (0, min{ε∗k, ε∗∗k } = ε∗∗∗k ] then ei,k ≤ δi,k ⇒
‖ũj,k(t)‖ ≤ ũ∗k. Therefore, for the above choices of ũ∗k, ε∗∗∗k and δj,k, we have that

ei,k(t) ≤ δi,k implies ‖ũi,k0(t)‖ ≤ ũ∗i,k0
yielding lim sup

t→∞
x(t) = dk0 .

Case 2: The switching rule of Eq.3.17 ensures that at t = Tdetect, x̂(t) ∈ Ωs,q, which in

turn implies that x(t) ∈ Ωb,q (Proposition 3.1). This, together with the switching to

the qth control configuration ensures asymptotic stability of the origin of the closed–

loop system (Theorem 3.4). In either cases we get that lim sup
t→∞

x(t) ≤ dk0 . This

completes the proof of the theorem.

The design of the output feedback fault detection and isolation filter and controller

reconfiguration is best understood through the following algorithm

1. Given the system of the form of Eq.3.1, design the output feedback controller

of Eq.3.12, that also yields estimates of the states, and estimate the output

feedback stability regions of the control configurations, Ωb,k and the sets Ωs,k,

defined in Proposition 3.1, and compute the values of T b
k . For an initial condi-

tion in the stability region of the k0th control configuration, initialize the state

estimator and the output feedback controller as described in Theorem 3.4.

2. After a time T b
k0

, initialize the fault detection and isolation filters of the form of

Eq.3.13 using the values of the state estimates at time T b
k0

.

3. Monitor the evolution of the residuals (ei,k0). If any of the residuals go above

the threshold, it implies that a possibly destabilizing fault has occurred.

4. Switch to a configuration q for which the closed–loop state estimates at the
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time of fault detection lie in Ωs,q, where Ωs,q was defined in Proposition 3.1 (this

ensures that the states are in the output feedback stability region of the qth

configuration) and one which does not involve the failed control actuator.

5. Implement this control configuration to achieve closed–loop stability and fault-

tolerant control.

Remark 3.8: Note that while the above switching rule provides a sufficient condition

for practical stability, it is not a necessary condition. In other words, the value of

the residual going above the threshold does not imply that a destabilizing fault has

occurred. However, the value of the residual being less than the threshold does ensure

that no destabilizing fault has occurred. So while the above switching logic may trig-

ger a switching where simply continuing with the primary control configuration could

have preserved stability (i.e., it allows for false alarms), it is designed to preclude the

possibility that a destabilizing fault takes place and reconfiguration is not executed.

This, however, is not a limitation of the proposed filter, but stems simply from the

fundamental problem of differentiating between the error introduced in the filtering

system due to the presence of estimation errors and those due to the faults.

Remark 3.9: Note that while the algorithm above is written for the case of a single

fault, generalization to multiple faults, whether simultaneous or otherwise, is straight-

forward: the current fault detection filter design can detect and isolate multiple faults,

while the reconfiguration rule can be ‘re-initialized’ after the first backup control con-

figuration is activated to handle subsequent faults (see the simulation section for a

demonstration).
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3.5 Simulation examples

We demonstrate the application of the proposed fault detection and isolation and

reconfiguration strategy to two chemical reactors configured to operate in series. To

this end, consider two well mixed, non-isothermal continuous stirred tank reactors

(see Fig.3.1), where three parallel irreversible elementary exothermic reactions of the

form A
k1→ B, A

k2→ U and A
k3→ R take place. A is the reactant species, B is the

desired product and U and R are undesired byproducts. The feed to the first reactor

consists of pure A at a flow rate F0, molar concentration CA0 and temperature T0.

The output from the first reactor is fed to the second reactor along with a fresh feed

that consists of pure A at a flow rate F3, molar concentration CA03, and temperature

T03. Due to the non-isothermal nature of the reactions, jackets are used to remove or

provide heat to the reactors. Under standard modeling assumptions, a mathematical

model of the process can be derived from material and energy balances and takes the

following form:

dT1

dt
=

F0

V1

(T0 − T1) +
3∑

i=1

(−∆Hi)

ρcp

Ri(CA1, T1) +
Q1

ρcpV1

dCA1

dt
=

F0

V1

(CA0 − CA1)−
3∑

i=1

Ri(CA1, T1)

dT2

dt
=

F0

V2

(T1 − T2) +
F3

V2

(T03 − T2) +
3∑

i=1

(−∆Hi)

ρcp

Ri(CA2, T2) +
Q2

ρcpV2

dCA2

dt
=

F0

V2

(CA1 − CA2) +
F3

V2

(CA03 − CA2)−
3∑

i=1

Ri(CA2, T2)

(3.18)

where Ri(CAj, Tj) = ki0 exp
(
−Ei

RTj

)
CAj, for j = 1, 2. T , CA, Q, and V denote the tem-

perature of the reactor, the concentration of species A, the rate of heat input/removal

from the reactor, and the volume of reactor, respectively, with subscript 1 denot-

ing CSTR 1 and subscript 2 denoting CSTR 2. ∆Hi, ki, Ei, i = 1, 2, 3, denote

the enthalpies, pre–exponential constants and activation energies of the three re-
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actions, respectively, cp and ρ denote the heat capacity and density of the fluid.

The values of the process parameters can be found in Table 3.1. CSTR 1, with

Q1 = 0, has three steady–states: two locally asymptotically stable and one unstable

at (T s
1 , Cs

A1) = (388.57 K, 3.59 kmol/m3). The unstable steady–state of CSTR 1 cor-

responds to three steady–states for CSTR 2 (with Q2 = 0), one of which is unstable

at (T s
2 , Cs

A2) = (429.24 K, 2.55 kmol/m3).CoolantOutCoolantIn F0, T0, CA0 F1, T1, CA1TemperatureSensor
CSTR 1

CompositionAnalyzer CoolantOutCSTR 2F2, T2, CA2CoolantIn TemperatureSensorCompositionAnalyzerPlant Supervisor
F3, T03, CA03

Figure 3.1: A schematic of two CSTRs operating in series.

The control objective is to stabilize the reactors at the (open-loop) unstable steady-

state. Operation at this point is typically sought to avoid high temperatures while

simultaneously achieving reasonable reactant conversion. To accomplish this objective

in the presence of actuator failures, we consider the following manipulated input

candidates:

1. Rate of heat input into reactor one, Q1, subject to the constraint |Q1| ≤
1.4 (107) kJ/hr.

2. Reactor one inlet stream temperature, T0 − T s
0 , subject to the constraint |T0 −

T s
0 | ≤ 60 K.

3. Reactor one inlet reactant concentration, CA0 − Cs
A0, subject to the constraint
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Table 3.1:

F0 = 4.998 m3/hr

F1 = 4.998 m3/hr

F3 = 30.0 m3/hr

V1 = 1.0 m3

V2 = 3.0 m3

R = 8.314 KJ/kmol ·K
T0 = 300.0 K

T03 = 300.0 K

CA0 = 4.0 kmol/m3

Cs
A03 = 3.0 kmol/m3

∆H1 = −5.0× 104 KJ/kmol

∆H2 = −5.2× 104 KJ/kmol

∆H3 = −5.4× 104 KJ/kmol

k10 = 3.0× 106 hr−1

k20 = 3.0× 105 hr−1

k30 = 3.0× 105 hr−1

E1 = 5.0× 104 KJ/kmol

E2 = 7.53× 104 KJ/kmol

E3 = 7.53× 104 KJ/kmol

ρ = 1000.0 kg/m3

cp = 0.231 KJ/kg ·K
T s

1 = 388.57 K

Cs
A1 = 3.59 kmol/m3

T s
2 = 429.24 K

Cs
A2 = 2.55 kmol/m3
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|CA0 − Cs
A0| ≤ 4.0 kmol/m3.

4. Rate of heat input into reactor two, Q2, subject to the constraint |Q2| ≤
4.2 (107) kJ/hr.

5. Reactor two inlet stream temperature, T03−T s
03, subject to the constraint |T03−

T s
03| ≤ 60 K.

6. Reactor two inlet reactant concentration, CA03−Cs
A03, subject to the constraint

|CA03 − Cs
A03| ≤ 3.0 kmol/m3.

The above manipulated inputs can be used in various combinations to stabilize the

reactors using measurements of the reactor temperatures and reactant concentrations

provided by the sensors (full state-feedback) and to employ reconfiguration. The

primary control configuration (k = 1) involves four inputs consisting of the two

heating jackets and the two inlet stream concentrations (Q1, Q2, CA0, and CA03). In

the event of a partial failure in this configuration the supervisor needs to detect and

isolate the fault and activate a fall-back configuration in order to maintain closed-loop

stability.

We first illustrate the application of the fault detection and isolation and fault-

tolerant control under state-feedback control. A quadratic Lyapunov function of the

form Vk = xT Pkx, where Pk is a positive-definite symmetric matrix that satisfies the

Riccati inequality AT Pk + PkA − Pkbkb
T
k Pk < 0, is used in controller design with A

and b based on the linearized system around the desired steady-state.

1. For the primary control configuration, the manipulated inputs are scaled to give

b∗1 =




1 0 0 0
0 0.0198 0 0
0 0 1 0
0 0 0 0.0297


 and
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P1 =




1.2290 2.2195 0.0203 0.1733
2.2195 28.4462 0.1396 8.8183
0.0203 0.1396 1.6150 9.8728
0.1733 8.8183 9.8728 145.7245


.

2. The fall-back control configuration involves four manipulated inputs given by

u2 = [T0 − T s
0 CA0 − Cs

A0 T03 − T s
03 CA03 − Cs

A03]
′. Scaling the manipulated

input yields b∗2 =




1 0 0 0
0 0.1333 0 0
0 0 2 0
0 0 0 0.2


 and

P2 =




1.1991 1.8730 .00051 0.0236
1.8730 12.6725 0.0093 0.4141
0.0051 0.0093 0.6150 1.9055
0.0236 0.4141 1.9055 17.9826


.

The state-feedback controller of Eq.3.2 is subsequently designed for both the con-

trol configurations, and their stability region characterized, yielding cmax
1 and cmax

2

equal to 7.2 and 1.9 respectively. The fault detection filters are designed using

Eq.3.5 and the reactors as well as the filter states for the first control configura-

tion are initialized at T1(0) = 386.8 K, CA1(0) = 3.6 kmol/m3, T2(0) = 430.5 K,

CA2(0) = 2.56 kmol/m3. This initial condition is within the stability region of the

primary control configuration (V1(x) = 6.64 ≤ cmax
1 = 7.2). As shown by the solid

lines in Figs.3.2-3.5 the controller proceeds to drive the closed-loop trajectory toward

the desired steady-state until the heating jackets fail simultaneously 0.1 minutes after

reactor startup. As can be seen in Fig.3.6 and Fig.3.7 the values of only the residuals

e1,1(t) and e3,1(t) become non-zero, thereby detecting as well as isolating the faults in

the control actuators. If the supervisor does not perform any switching at this point

closed-loop stability is not achieved (dashed lines in Figs.3.2-3.5). Note that this oc-

curs because the actuators heating/cooling the jackets have failed, but the controller

still tries to use the heat supplied to/removed from the reactors as manipulated in-

puts. Having identified that the faults occurred in the actuators changing Q1 and
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Q2, the supervisor can implement the fall-back configuration (using T0, CA0, T03, and

CA03 as the manipulated inputs, k = 2) since the fall-back configuration does not

use the failed actuators. Furthermore, at the time when the fault is detected, the

state of the closed loop system is within the stability region of the backup control

configuration (V2(x(t = 0.162)) = 0.221 < cmax
2 = 1.9). The supervisor therefore

activates the fall-back configuration (solid lines in Figs.3.2-3.5) which stabilizes the

closed–loop system and achieves fault-tolerant control.
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Figure 3.2: Evolution of reactor one closed-loop temperature profile under the switching

rule of Theorem 3.3 (solid line) and in the absence of fault-tolerant control (dashed line)

subject to simultaneous failures in both the heating jackets.

The next simulation illustrates the application of fault detection and isolation

and fault-tolerant control when not all of the process states are available for mea-

surement. In this case the output-feedback methodology is implemented on the same

two-reactor system used for the previous simulation study with changes to the pa-

rameters F3 = 4.998 m3/hr and V2 = 0.5 m3. This changes the unstable steady state

of the second reactor to T s
2 = 433.96 K and Cs

A2 = 2.88 kmol/m3. The dynam-

ics for the controller are designed using the same state-feedback methodologies as in

the previous simulation study. However, the controller utilizes the state estimates to

compute a control action. The fault detection and isolation filter is designed based
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Figure 3.3: Evolution of reactor two closed-loop temperature profile under the switching

rule of Theorem 3.3 (solid line) and in the absence of fault-tolerant control (dashed line)

subject to simultaneous failures in both the heating jackets.
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Figure 3.4: Evolution of reactor one closed-loop reactant concentration profile under the

switching rule of Theorem 3.3 (solid line) and in the absence of fault-tolerant control (dashed

line) subject to simultaneous failures in both the heating jackets.
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Figure 3.5: Evolution of reactor two closed-loop reactant concentration profile under the

switching rule of Theorem 3.3 (solid line) and in the absence of fault-tolerant control (dashed

line) subject to simultaneous failures in both the heating jackets.
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Figure 3.6: Evolution of residuals e1,1 (solid line) and e2,1 (dashed line) corresponding to

the manipulated inputs in the first reactor.
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Figure 3.7: Evolution of residuals e3,1 (solid line) and e4,1 (dashed line) corresponding to

the manipulated inputs in the second reactor.

on Eq. 3.13.

The control objective is to stabilize the reactor at the open-loop unstable steady-

state using measurements of CA1 and CA2. The available manipulated inputs in-

clude the rate of heat input into reactor one, Q1, subject to the constraint |Q1| ≤
2.333 (106) kJ/hr, the rate of heat input into reactor two, Q2, subject to the con-

straint |Q2| ≤ 1.167 (106) kJ/hr, and a duplicate backup heating configuration for

reactor one, Q3, subject to the constraint |Q3| ≤ 2.333 (106) kJ/hr.

The primary control configuration (k = 1) consists of the manipulated inputs

Q1 and Q2, while the backup configuration (k = 2) consists of manipulated inputs

Q2 and Q3. In order to implement the state-feedback Lyapunov-based controllers,

estimates of T1 and T2 are generated using a state estimator of the form of Eq. 3.12

with Li,k = 10000, a
(1)
i,k = 5, and a

(2)
i,k = 1 for i = 1, 2 and k = 1, 2. The reactors

are initialized at T1(0) = 386.97 K, CA1(0) = 3.59 kmol/m3, T2(0) = 432.36 K, and

CA2(0) = 2.88 kmol/m3. The state estimator is initialized at the steady-state values

for this system (T̃1(0) = 388.57 K, C̃A1(0) = 3.59 kmol/m3, T̃2(0) = 433.96 K, and

C̃A2(0) = 2.88 kmol/m3). The fault detection filter states are initialized with the
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value of the state estimates at t = 0.0022 min ≡ T b
1 . Note that by this time the

estimates have converged sufficiently close to the true values as can be seen as the

dash-dotted lines in Fig.3.8.

As shown by the solid line in Fig.3.8, the controller drives the closed–loop system

to the desired steady-state (for the sake of brevity, only T1 is shown). A complete

failure occurs in Q1 early on at Tf = 0.01 min while the system is still moving toward

the desired steady-state. If the fault is not detected and no switching takes place the

value of T1 moves away from the desired operating temperature shown as the dotted

line in Fig.3.8. However, when the fault detection and isolation filter is utilized we

can see the filter value T̂1, dashed line in Fig.3.8, diverges from the estimated value

T̃1. This discrepancy causes the residual e1,1(t) corresponding to Q1 to rise to the

threshold value of 0.01 K (chosen to ensure that all destabilizing faults are detected)

at time t = 0.0116 min, as shown in Fig.3.9. A fault in Q1 is declared at this

time, and the supervisor checks the value of the Lyapunov function for k = 2. Since

V2(0.0116) = 0.38 < cmax
2 = 9.4 the supervisor activates the fall-back configuration to

achieve closed-loop stability despite actuator failure in Q1. The fault detection and

isolation filter is restarted 0.0022 minutes later at T b
2 = 0.0138 min. As expected,

no fault is declared at any time in Q2 as can be seen in Fig.3.10. In summary, the

output-feedback fault detection and isolation and fault-tolerant control system is able

to detect and isolate the fault to allow reconfiguration and drive the system to the

desired steady state (solid line in Fig.3.8).

The application and effectiveness of the proposed fault-detection and isolation

and fault-tolerant control method has been illustrated in the case of both state and

output feedback. Next, this method is applied in the presence of uncertainty and

measurement noise. To this end consider the two reactor system used in the previous
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Figure 3.8: Evolution of the closed-loop temperature (solid line), estimate of temperature

(dash-dotted line), and the temperature profile generated by the FDI filter (dashed line)

with fault-tolerant control in place. Evolution of the temperature (dotted line) without

fault-tolerant control in place.
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Figure 3.9: Evolution of the residual corresponding to Q1 for before switching (k = 1, solid

line), and Q3 after switching (k = 2, dashed line). A fault is declared when e1,1 reaches the

threshold at 0.1.
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Figure 3.10: Evolution of the residual corresponding to Q2 for before switching (k = 1, solid

line), and after switching (k = 2, dashed line). No fault is declared.

example with full-state feedback.

The control objective is to stabilize the reactor at the open-loop unstable steady-

state where (T s
1 , Cs

A1) = (388.57 K, 3.59 kmol/m3) and (T s
2 , Cs

A2) = (433.96 K, 2.88

kmol/m3). The measurements of temperature and concentration are assumed to con-

tain a noise of magnitude 1 K and 0.1 kmol/m3, respectively. Also, the concentration

of A in the inlet streams CA0 and CA03 used in the process model are 10% smaller than

the values used in the filter equations and the controller. The available manipulated

inputs include the rate of heat input into reactor one, Q1, subject to the constraint

|Q1| ≤ 2.333 (106) kJ/hr, the rate of heat input into reactor two, Q2, subject to the

constraint |Q2| ≤ 1.167 (106) kJ/hr, and a duplicate backup heating configuration

for reactor two, Q3, subject to the constraint |Q3| ≤ 1.167 (106) kJ/hr.

The primary control configuration consists of the manipulated inputs Q1 and Q2,

while the backup configuration is comprised of manipulated inputs Q1 and Q3. As

before, quadratic Lyapunov functions of the form Vk = xT Pkx are used for controller

design. the controller design yields a stability region estimate with cmax
1 and cmax

2 both

approximately equal to 9.4. Note that all the information about the stability region
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is completely contained in the values of cmax
1 and cmax

2 . Specifically, the presence of

the closed-loop state in the stability region can be ascertained by simply evaluating

the value of the Lyapunov-function and checking against the value of cmax.

In the first scenario the ability to detect a fault in the presence of multiple distur-

bances and noise is demonstrated. the reactors, as well as the fault detection filter

for the first control configuration are initialized at the desired unstable steady-state.

For the sake of brevity, only the evolution of T2 and the residuals are shown. As

can be seen in Fig.3.11a, the controller maintains the closed-loop trajectory near the

desired steady-state until heating jacket two (Q2) fails 40 min after reactor startup.

If a fault-detection and isolation filter is not in place, and the fault is not detected,

close-loop stability is not achieved (dotted lines in Fig.3.11a). The fault-detection

and isolation filter designed using the proposed methodology, however, detects this

fault when the value of residual e2,1(t) becomes grater than the threshold value of

2.0 K at t = 40.79 min (see Fig. Fig.3.11c) while e1,1(t) (Fig.3.11b) remains below

the threshold of 2.0, allowing the detection and isolation of the fault. While at the

time of the failure (t = 40 min), the state of the closed-loop system is within the

stability region of the backup-configuration, but the time that the failure is detected

at t = 40.79 min, operation of reactor two in an open-loop fashion for 0.79 min

results in the state moving out of the stability region of the backup configuration

(V2(40.79) = 73.17 > cmax
2 = 9.4) and stability is not guaranteed after switching.

However, it is possible that stability may still be achieved by using the fallback con-

figuration. In particular, having been alerted by the fault-detection and isolation

filter of the occurrence of the fault, the supervisor activates the fallback configuration

(with Q1 and Q3 as the manipulated inputs, solid lines in Fig.3.11a) and is able to

drive the system to the desired steady-state and enforce closed-loop stability.
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Figure 3.11: (a) Temperature profile of reactor two with reconfiguration (solid line) and

without reconfiguration (dotted line), (b) Q1 residual profile, and (c) Q2 residual profile

(note fault detection at time t = 40.79 min).
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Detection of faults in the presence of process disturbances and noise is clearly pos-

sible using the methodology above. In order to guarantee stability after switching,

however, the disturbances acting on the system should be reduced or the constraints

on the control action should be relaxed to enlarge the estimate of the closed-loop

stability region. In the second scenario, the ability to detect a fault in the presence

of noise and single disturbance (in contrast to two disturbances in the first scenario),

then switch to a fallback configuration with guaranteed stability is demonstrated. In

this case, the measurements of temperature and concentration are again assumed to

contain noise of magnitude 1 K and 0.1 kmol/m3, respectively. Also, the concentra-

tion of A in the inlet stream CA03 used in the process model is 10% smaller than the

values used in the filter equations and the controller. The reactors, as well as the fault

detection filter for the first control configuration are initialized at the desired steady

state. As can be seen in Fig.3.11a, the controller maintains the closed-loop trajectory

near the desired steady-state until heating jacket two (Q2) fails 40 min after reactor

startup. If a fault-detection filter is not in place and the fault is not not detected,

closed loop stability is not achieved (dotted lines in fig. Fig.3.11a). The implemented

fault-detection and isolation filter detects this fault when the value of the residual

e2,1(t) becomes greater than the threshold value of 2.0 at 41.33 min (see Fig.3.11c)

while e1,1(t) (Fig.3.11b) remains below the threshold of 2.0, allowing the detection

and isolation of the fault. In this scenario, by the time that the fault is detected,

the state of the closed-loop system resides within the stability region of configuration

two (V2 = 8.03 < cmax
2 = 9.4). therefore, the supervisor activates the fallback con-

figuration with Q1 and Q3 as the manipulated inputs (solid lines in Fig.3.11a) and

the control system is able to drive the process to the desired steady-state and enforce

closed-loop stability.
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Figure 3.12: (a) Temperature profile of reactor two with reconfiguration (solid line) and

without reconfiguration (dotted line), (b) Q1 residual profile, and (c) Q2 residual profile

(note fault detection at time t = 41.33 min).
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Remark 3.10: In order to implement the fault detection and isolation filter on

process systems accounting for noise, disturbances, and/or output feedback consider-

ations one needs to decide on a value for the detection threshold for each individual

residual. Given the complexity of the closed-loop system, there is not a simple and

explicit way (formula) to directly calculate this threshold; a trial-and-error procedure

needs to be followed. However, there are several things to consider when choosing an

appropriate threshold value. The threshold should be chosen large enough so that

noisy data, system disturbances, or discrepancies due to estimation error do not cause

frequent false alarms. The threshold must also be chosen small enough so that at the

time of detection the state of the system is within the stability region of a fallback

configuration. These two considerations will give a reasonable range of threshold

values to implement on the fault detection and isolation filter.
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Chapter 4

Fault-tolerant control of nonlinear

process systems subject to sensor

faults

4.1 Introduction

In this chapter we consider the problem of fault-tolerant control of nonlinear process

systems subject to input constraints and sensor faults (both complete failures and

asynchronous measurements). We employ a reconfiguration-based approach, wherein,

for a given process, a set of candidate control configurations are first identified, and

in the event of a fault an appropriate backup configuration is activated to maintain

stability. To illustrate the importance of accounting for the presence of constraints,

we first consider sensor faults manifested as complete loss of measurements (faults

that necessitate taking corrective action to repair the sensors). We address the prob-

lem of determining which candidate control configuration should be implemented in

the closed-loop system to achieve stability after the sensor is recovered (this analy-

sis is carried out under the assumption of continuous availability of measurements
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when the sensor is functioning). We then consider the problem in the presence of

intermittent sensor data losses. We define the sensor data loss rate to account for

the presence of constraints (specifically, we define the data loss rate over a finite time

interval) and analyze the stability properties in the presence of input constraints and

sensor data losses. We characterize the stability region (that is, the set of initial con-

ditions starting from where closed-loop stabilization under continuous availability of

measurements is guaranteed) and the maximum allowable data loss rate that a given

control configuration can tolerate. If the data loss rate goes above the allowable data

loss rate, reconfiguration is triggered and a candidate backup configuration is acti-

vated for which the state of the closed-loop system resides in the stability region of

the candidate configuration and the data loss rate is less than the allowable data loss

rate for the candidate control configuration. We use a chemical reactor to illustrate

our method and then demonstrate an application to a polyethylene reactor.

4.2 Preliminaries

We consider nonlinear processes with input constraints, described by:

ẋ = f(x) + Gk(t)(x)uk(t)(y(t))

y(t) =

{
x(t) t ∈ [t2i, t2i+1)

x(t2i+1) t ∈ [t2i+1, t2i+2)

}

uk ∈ Uk, k(t) ∈ K = {1, · · · , N}, N < ∞

(4.1)

where x ∈ IRn denotes the vector of state variables, y ∈ IRn denotes the vector

of measured variables, [t2i, t2i+1) and [t2i+1, t2i+2) denote the time intervals during

which measurements of the state variables are available, and are lost, respectively,

with t0 = 0 (that is, measurement being initially available), uk(t)(x) ∈ IRm denotes

the manipulated inputs under the kth configuration taking values in a nonempty

convex subset Uk of IRm, where Uk = {u ∈ IRm : ‖u‖ ≤ umax
k }, ‖ · ‖ is the Euclidean
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norm of a vector, umax
k > 0 is the magnitude of input constraints and f(0) = 0.

The vector function f(x) and the matrix Gk(x) = [g1,k(x) · · · gm,k(x)] are assumed

to be sufficiently smooth on their domains of definition. k(t), which takes values

in the finite index set K, represents a discrete state that indexes the matrix Gk(·)
as well as the manipulated input uk(·). For each value that k assumes in K, the

system is controlled via a different set of manipulated inputs which defines a given

control configuration. The notation Lfh denotes the standard Lie derivative of a

scalar function h(·) with respect to the vector function f(·) and the notation x(T−)

denotes the limit of the trajectory x(t) as T is approached from the left, that is,

x(T−) = lim
t→T−

x(t). Throughout the manuscript, we assume that for any uk ∈ Uk the

solution of the system of Eq.4.1 exists and is continuous for all t.

We next review one example of a state feedback controller [24, 25] (inspired by

the results on bounded control in [54]) that, under the assumption of continuous

availability of measurements, provides an explicit estimate of the stability region

for the closed-loop system subject to constraints (for more details on the controller

design, and the proof, see [24, 25]).

Theorem 4.1 [25]:Consider the nonlinear system of Eq.4.1 under state feedback (that

is, x(t) is available for all t ≥ 0) for a configuration k, for which a Control Lyapunov

Function Vk exists, under the following bounded nonlinear feedback controller:

uk = −wk(x, umax
k )(LGk

Vk(x))T (4.2)

where wk(x, umax
k ) =





αk(x) +
√

α2
k(x) + (umax

k ‖bT
k (x)‖)4

‖bT
k (x)‖2

[
1 +

√
1 + (umax

k ‖bT
k (x)‖)2

] , bT
k (x) 6= 0

0, bT
k (x) = 0

(4.3)
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with αk(x) = Lfk
Vk(x) + ρkVk(x), ρk > 0 and bk(x) = LGk

Vk(x). Assume that the

set Φk(u
max
k ) of x satisfying

Lfk
Vk(x) + ρkVk(x) ≤ umax

k ‖(LGk
Vk(x))T‖ (4.4)

contains the origin and a neighborhood of the origin. Also, let Ωk(u
max
k ) := {x ∈ IRn :

Vk(x) ≤ cmax
k } be a level set of Vk, completely contained in Φk, for some cmax

k > 0.

Then for all x(0) ∈ Ωk(u
max
k ) the control law of Eqs.4.2-4.4 guarantees that the origin

of the closed-loop system is asymptotically stable.

Remark 4.1: The problems caused by input constraints have motivated numerous

studies on the dynamics and control of systems subject to input constraints. Im-

portant contributions include results on optimization-based methods such as model

predictive control (for example, [36, 92, 59]) and Lyapunov-based control (for exam-

ple, [54, 91, 46, 51]). Stabilizing control laws that provide explicitly-defined regions of

attraction for the closed-loop system have been developed using Lyapunov techniques;

the reader may refer to [51] for a survey of results in this area. Recently, we developed

a hybrid predictive control structure that employs switching between bounded con-

trol and MPC for stabilization of nonlinear systems [28], and nonlinear systems with

uncertainty [64], subject to input constraints via using Lyapunov-based controllers

[24, 25] as fall-back controllers. More recently Lyapunov-based model predictive con-

trollers were designed that guarantee stabilization from an explicitly characterized set

of initial conditions in the presence of input [63] and input and state [65] constraints.

The controller of Eq.4.3 is one example of a controller design that provides an ex-

plicit characterization of the stability region in the presence of input constraints, and

is only used to illustrate the main ideas behind the proposed approach. The results in

this work are not limited to this particular controller design, and any other controller

design that provides an explicit characterization of the stability region can be used
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instead (for example, the hybrid predictive controller [28, 64] or the Lyapunov-based

predictive controller [63, 65]; for further details and references, see [13]).

4.2.1 A chemical reactor example

In this section, we describe a chemical reactor that we will use to illustrate the key

features of our proposed method. To this end, consider a well-mixed, non-isothermal

continuous stirred tank reactor where three parallel irreversible elementary exother-

mic reactions of the form A
k1→ B, A

k2→ U and A
k3→ R take place, where A is the

reactant species, B is the desired product and U, R are undesired byproducts. The

feed to the reactor consists of pure A at flow rate F , molar concentration CA0 and

temperature TA0. Due to the non-isothermal nature of the reactions, a jacket is used

to remove/provide heat to the reactor. Under standard modeling assumptions, a

mathematical model of the process can be derived from material and energy balances

and takes the following form:

dT

dt
=

F

V
(TA0 − T ) +

3∑
i=1

Ri(CA, T ) +
Q

ρcpV

dCA

dt
=

F

V
(CA0 − CA)−

3∑
i=1

ki0e

−Ei

RT CA

(4.5)

where Ri(CA, T ) = (−∆Hi)
ρcp

ki0e
−Ei
RT CA, CA denotes the concentrations of the species

A, T denotes the temperature of the reactor, Q denotes rate of heat input/removal

from the reactor, V denotes the volume of the reactor, ∆Hi, ki, Ei, i = 1, 2, 3,

denote the enthalpies, pre-exponential constants and activation energies of the three

reactions, respectively, cp and ρ denote the heat capacity and density of fluid in the

reactor. The values of the process parameters and the corresponding steady-state

values can be found in [67]. It was verified that under these conditions, the system

of Eq.4.5 has three steady-states (two locally asymptotically stable and one unstable
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at (Ts, CAs) = (388 K, 3.59 mol/L)).

The control objective considered here is that of stabilizing the reactor at the

(open-loop) unstable steady-state using the measurements of concentration and tem-

perature. The following manipulated input candidates are assumed to be available

(see Fig.4.1):

1. Configuration 1: Rate of heat input, u1 = Q, subject to the constraints |Q| ≤
u1

max = 748 KJ/s.

2. Configuration 2: Inlet stream temperature, u2 = TA0 − TA0s, subject to the

constraints |u2| ≤ u2
max = 100 K.

3. Configuration 3: Inlet reactant concentration, u3 = CA0 − CA0s, subject to the

constraints |u3| ≤ u3
max = 4 mol/L.

where configuration 2 will be used as the primary manipulated input.

Q

A0T

A0C

A B

A, B, C CCoolant in T

A0F

Temp.
sensor

Composition analyzer

Supervisor

Actuator 1

Actuator 2

Actuator 3

                          Coolant out

Figure 4.1: A schematic of the CSTR showing the three candidate control configurations.

We will use this chemical reactor to motivate our results. To this end, we consider

the chemical reactor operating under a given control configuration. At a certain

time one of the sensors fails in a way that it is imperative to recover the sensor to
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implement feedback control. The problem that we analyze is whether reactivating the

original control configuration (after sensor recovery) guarantees closed-loop stability.

We will next consider the problem where the sensors do not fail, however, the process

experiences intermittent loss of measurements (and this rate increases at a certain

time due to sampling/measurement/communication errors. In this case, we want

to know how much measurement data loss can be tolerated by the currently active

control configuration, before it becomes necessary to reconfigure, and, if necessary,

which backup configuration should be activated in the closed-loop system. Note that

while we use the simple chemical reactor example only to motivate our results, the

scenarios that we describe are relevant to all process operations. We also include an

application to a more realistic process example, a polyethylene reactor, on the second

example.

4.3 Stabilization subject to sensor failures

In this section, we consider the problem arising out of sensor failures that lead to

the failure of the control loop and necessitate recovery. In analyzing this problem

and in devising the fault-tolerant control strategy, we account for the presence of

nonlinearity and constraints and show how they impact the reconfiguration logic.

4.3.1 Reconfiguration law

Consider the closed-loop system of Eqs.4.1-4.4 for which candidate control configura-

tions have been identified and the stability region under each candidate configuration

has been explicitly characterized. Let the closed-loop system of Eqs.4.1-4.4 be initial-

ized under a configuration k with x0 ∈ Ωk. Let T f be the time at which the sensor

fails and T r be the time at which the sensor recovers. In the absence of measurements,
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the process runs open loop from the time T f to T r. Consequently, during this time

the process state may drift further away from the desired operating condition. When

the measurements become available again, switching to the original control configu-

ration may not achieve closed-loop stability. The key consideration in devising the

reconfiguration logic is the limitation imposed on the stability region under a given

control configuration by the presence of input constraints and is formalized below:

Theorem 4.2: Let k(0) = i for some i ∈ K and x(0) := x0 ∈ Ωi. Let T f be the time

that the sensor measurements become unavailable and let T r be the earliest time that

they become available again. Then, the following switching rule:

k(t) =





i, 0 ≤ t < T f

l, t ≥ T r, x(T r) ∈ Ωl



 (4.6)

guarantees asymptotically stabilization of the origin of the closed-loop system.

Proof of Theorem 4.2: We consider the two possible cases; first if no sensor failure

occurs (T f = ∞), and second if a failure occurs at some finite time T f and the sensors

are recovered at time T r.

Case 1: The absence of a failure implies k(t) = i ∀ t ≥ 0. Furthermore, since

x(0) ∈ Ωi, and control configuration i is implemented for all times in this case,

asymptotic stability follows from Theorem 4.1.

Case 2: At time T r, the supervisor switches to a control configuration l for which

x(T r) ∈ Ωl. From this time onwards, since configuration l is implemented in the

closed-loop system for all times, and since x(T f ) ∈ Ωl, once again, asymptotic stability

follows from Theorem 4.1. This completes the proof of Theorem 4.2.

Remark 4.2: Theorem 4.2 accounts for the presence of constraints in the reconfig-

uration logic via the consideration of the stability region of candidate control config-

urations. Note that the problem that we consider here are sensor failures that result
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in loss of controllability. For the sake of illustration, consider a linear system of the

form ẋ = Ax + Bu; y = Cx, where x is the state vector, y is the vector of measured

variables and u is the vector of manipulated variables, with A, B and C being matri-

ces of appropriate dimensions. Consider the case when all state variables are being

measured (C = I), and a state feedback law of the form u = Ky = Kx is used to

stabilize the system. Further let some of the sensors fail at some time, resulting in a

new C matrix denoted by C̄. The same feedback gain matrix K may no longer be

stabilizing. If C̄ is such that it can be used to reconstruct (estimate) the unstable

states of the system (that is, all the unstable states remain observable) then feedback

control (with an observer, and with a different feedback gain matrix) can still be used

to stabilize the system. However if C̄ is such that some of the unstable states of the

system become unobservable, then the system simply cannot be stabilized using feed-

back control, and fixing the sensors becomes imperative. In other words, it is when

measurements become unavailable (due to individual sensor malfunction, or loss of

communication lines) that result in loss of controllability, that it becomes imperative

to detect, isolate and correct the problem. Due to the open-loop behavior of the

process during this intermediate time, the process states may drift and go out of the

stability region of the currently active control configuration. Reactivating the origi-

nal control configuration may therefore not stabilize the closed-loop system making

it necessary to ascertain the suitability of a candidate control configuration by using

Theorem 4.2 (see the simulation example for a demonstration).

Remark 4.3: While in this work we do not focus on the problem of fault-detection

and isolation (considering instead the problem of determining the corrective action

that needs to be taken once the fault information is available), this problem has been

approached using a data-based or a model-based strategy. Statistical and pattern
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recognition techniques for data analysis and interpretation (for example, [85, 41, 4, 3,

61]), use past plant data to construct indicators that identify deviations from normal

operation, and help in isolating faults. The problem of using fundamental process

models for the purpose of detecting faults has been studied extensively in the context

of linear systems [58, 31, 37]; and recently, some existential results in the context of

nonlinear systems have been derived [76, 86, 19].

In [67] we proposed an integrated fault-detection and fault-tolerant control struc-

ture that handles faults in the control actuators under the assumption of continuous

availability of state or output measurements. The fault-detection and isolation fil-

ter in [67] relies on the measurements to observe deviations of the process behavior

from the expected closed-loop behavior to detect faults, and needs to be redesigned

if required to detect and isolate faults in the sensors. While the problem of designing

sensor fault-detection and isolation filter remains outside the scope of the present

work, we note that the proposed fault-tolerant controller allows the use of any data-

or model-based fault-detection and isolation filter to provide information about the

occurrence of the fault (leading to its recovery). In this work we focus instead on

determining what corrective action needs to be taken after a fault has been reported

and how the time that it takes to recover the fault impacts on the reconfiguration

logic. Specifically, the reconfiguration logic points to the necessity of recovering the

sensor sufficiently fast to avoid the situation where the process state, by the time of

recovery, has escaped the stability region of the backup configurations. Alternatively,

the proposed method can also be used for the purpose of designing the control con-

figurations in a way that maximizes the region in state space covered by the backup

configurations to increase the chances that the process state at the time of recovery

lies in the stability region of at least one backup configuration.
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4.3.2 Application to the chemical reactor

In this section, we illustrate the utility of the reconfiguration law of Eq.4.6. To this

end, consider the chemical reactor of Eq.4.5 with the three candidate control config-

urations available. The first step in implementing the reconfiguration law of Eq.4.6

is that of determining the stability regions of the individual control configurations

under the control law of Eqs.4.2-4.4. An explicit characterization of the stability re-

gions is obtained and is shown in Fig.4.2. The area indicated by I, II and III indicates

the set of initial conditions starting from where all three configurations can stabilize

the closed-loop system, I, II starting from where only configurations 1 and 2 can

achieve stability and I, III indicate the set of initial conditions starting from where

only configurations 1 and 3 can stabilize the closed-loop system.
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Figure 4.2: Evolution of the state profile under configuration 2 (dashed line) followed by loss

of measurements (dotted line) and upon recovery reactivating configuration 2 (dash-dotted

line), closed-loop stability is not preserved; however, switching to configuration 1 (solid line)

preserves closed-loop stability.

The closed-loop system is initialized under configuration 2 from an initial condition

belonging to the stability region of configuration 2. At t = 200 min, however, a sensor
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failure occurs resulting in open-loop operation, and the process state begins to drift

away from the desired equilibrium point (see dotted line in Fig.4.2). Recognizing

that it is imperative to rectify this fault, the sensors are recovered (alternatively,

redundant sensors are activated) at t = 220 min. With the state information again

available, if the original control configuration (configuration 2) is reactivated, closed-

loop stability is not achieved (see dash-dotted lines in Fig.4.2). This happens because

during the time that the process was running open-loop, the states of the closed-loop

system moved away from the desired equilibrium point and out of the stability region

of configuration 2. In contrast, if the reconfiguration law of Eq.4.6 is used, the law

dictates activation of configuration 1 (since the process state, when state information

becomes available again, lies in the stability region of configuration 1). Closed-loop

stability is subsequently achieved (solid line in Fig.4.2). Note that at the time the

state information became available again, the state was also in the stability region of

configuration 3, and switching to either configuration 1 or 3 would guarantee closed-

loop stability. In such cases (when more than one control configurations satisfy the

stability criteria), additional performance criteria, such as ease/cost of use can be

used to decide which control configuration should be implemented in the closed-loop

system [66].

4.4 Stabilization subject to sensor data losses

In the previous section, we considered the problem of devising the reconfiguration

law in a way that accounts for the presence of constraints on the manipulated in-

puts under the available control configurations. We now consider the problem of

intermittent sensor data losses (not complete failures) and develop a reconfiguration

law that achieves fault-tolerant in the presence of sensor data-losses. As evidenced
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in the previous section, a prerequisite to implementing fault-tolerant control is the

characterization of the stability properties under the available control configurations,

which we undertake in this section, and in the next section present the reconfiguration

law. We consider the closed-loop system of Eqs.4.1-4.4 under a configuration k and

drop the subscript k in the remaining of this section with the understanding that the

robustness of the closed-loop system under control configuration k is being analyzed.

4.4.1 Modeling sensor data loss

Preparatory to the analysis of the stability properties of the closed-loop system under

sensor data losses, we describe how we model the occurrence of sensor data losses.

Specifically, sensor data availability is modeled as a random Poisson process. At

a given time t an ‘event’ takes place that determines whether the system will be

closed-loop or open-loop (see Fig.4.3). For a given rate of data loss 0 ≤ r ≤ 1, a

random variable P is chosen from a uniform probability distribution between 0 and

1. If P ≤ r, the event is deemed to be ‘measurement loss’, while if P > r, the event

is understood to be ‘measurement available’. Furthermore, with W defined as the

number of events per unit time, another random variable χ with uniform probability

distribution between 0 and 1 determines the time for which the current event will last,

given by ∆ =
−lnχ

W
. At t + ∆ another event takes place and whether it represents a

measurement or loss of measurement, as well as its duration, is similarly determined.

Note that in the presence of constraints, prolonged duration of measurement loss

may land the system states at a point starting from where stabilization may not

be achievable (even with continuous measurement); in characterizing the stability

properties of constrained systems, we therefore need to define data loss rates over a

finite time interval as stated in assumption 1 below.
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Figure 4.3: Closed-loop system in the (a) absence, and (b) presence of sensor data losses.

Assumption 1: For a positive real number T ∗, defining r ∈ [0, 1] as the sensor data

loss rate implies that over every successive finite time interval T ∗, the measurements

are available for a total time of T ∗ × (1− r).

Note that assumption 1 does not impose any restrictions on the distribution of se-

quences of measurement loss and availability over the time interval T ∗. Furthermore,

the assumption does not need to hold for any finite interval T ∗ but only successive

time intervals T ∗. To illustrate the difference, consider the case where the assumption

requires the data loss rate to hold over any finite time interval T ∗, and that one such

interval is τ, τ + T ∗. Requiring the data loss rate to hold over any interval T ∗ would

mean that the same data loss rate should also hold over the interval τ +εt, τ +T ∗+εt,

for any positive real number εt, which can only be true if the data loss and mea-

surement events are periodic with a period T ∗. The requirement that the data loss

rate hold over successive intervals T ∗ only says that over the time interval T ∗, if the

duration of all the measurement loss events is summed up, then that sum is equal to

T ∗ × r, and the data loss events could be distributed arbitrarily during this time in-

terval. In simulating data losses, assumption 1 can be practically realized by picking

W to be sufficiently large; the reasoning behind this is as follows: a larger value of

W increases the number of events per unit time, and when W is sufficiently large, we
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can get a sufficiently large number of events over every finite time interval T ∗ such

that the rate of data loss is sufficiently close to r.

4.4.2 Analyzing closed-loop stability

In this section, we consider the closed-loop system subject to sensor data losses as

defined in previous section, and analyze the stability properties (robustness) with

respect to sensor data losses. Specifically, the objective is to establish, for convergence

to a desired neighborhood of the origin, a data loss rate r∗, defined over a finite

time interval T , such that if r ≤ r∗ then convergence to a desired neighborhood

is achieved in the presence of data losses. Note that implicit in this analysis (also

in the formulation of Eq.4.1) is the understanding that during the time that sensor

measurements are unavailable, the values of the measured variables (in computing

the control action) are ‘frozen’ at the last available measurement. This results in

the value of the manipulated variable being frozen at the last computed value. The

implications of this intuitive assumption on the stabilizing properties under a given

control configuration is discussed in Remark 4.5.

We first consider the closed-loop system under the controller of Eq.4.3, where the

control action is computed in an implement and hold fashion with a hold time ∆. We

establish that for convergence to a desired neighborhood of the origin, there exists a

bound on the implement and hold time ∆∗, such that if the hold time is less than

∆∗, then during the entire hold time, we get (outside of the desired neighborhood

of the origin) that V̇ < 0 (by virtue of the fact that the control action is ‘held’ at

the value computed using the last available measurement) and eventual convergence

to the desired neighborhood can be achieved. This analysis reveals that anytime the

control action is ‘updated’ by using the current state value, the closed-loop Lyapunov-
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function decreases during the next ∆ (for ∆ ≤ ∆∗) time. In essence, it reveals that

the worst distribution of the measurement loss events, or the most destabilizing that

they can be, would be if they were to occur consecutively. The sum of the duration

of all the measurement loss events not being greater than r × T ∗ over a finite time

interval T ∗ can be exploited to yield the desired result which is formalized in Theorem

4.3 below.

Theorem 4.3: Consider the constrained system of Eq.4.1 under the bounded

control law of Eqs.4.2-4.4 designed using the Lyapunov function V and ρ > 0, and

the stability region estimate Ω under continuous implementation. Then, given any

positive real number d such that ‖x‖ ≤ d implies x ∈ Ω and T ∗ over which a data loss

rate r is defined, there exists a positive real number r∗ such that if x(0) := x0 ∈ Ω

and is known, and r ∈ (0, r∗], then x(t) ∈ Ω ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ d.

Proof of Theorem 4.3: The proof consists of two parts. In the first part, we assume

that the measurement loss events occur consecutively, and show the existence of a

bound on the data loss rate r∗ below which convergence to the desired neighborhood

is achieved. In part 2, we show that this result also holds for any distribution of the

open loop events over the time interval T ∗.

Part 1: Substituting the control law of Eqs.4.2-4.4 into the system of Eq.4.1 it can

be shown that:

V̇ (x) = −ρ∗V (x) (4.7)

for all x ∈ Ω, where Ω was defined in Eq.4.4. Note that since V (·) is a continuous

function of the state, one can find a finite, positive real number, δ
′
, such that V (x) ≤ δ

′

implies ‖x‖ ≤ d. Consider now evolution of the states between the time 0 to T ∗, where

T ∗ is the time interval over which the data loss rate is defined, and for a given data

loss rate r, denote the duration of open-loop operation as ∆. In the rest of the proof,

we show the existence of a positive real number ∆∗ such that all state trajectories
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originating in Ω converge to the level set of V (V (x) ≤ δ
′
) for any value of ∆ ∈ (0, ∆∗].

Hence we have that lim sup
t→∞

‖x(t)‖ ≤ d. We then use the definition of the data loss

rate to come up with an r∗ to show that the result holds for any r ≤ r∗.

To this end, consider a “ring” close to the boundary of the stability region, de-

scribed by M := {x ∈ IRn : (cmax − δ) ≤ V (x) ≤ cmax}, for a 0 ≤ δ < cmax. Let

the control action be computed for some x(0) := x0 ∈M and, upon unavailability of

subsequent measurements, held constant until a time ∆∗∗, where ∆∗∗ is a positive real

number (u(t) = u(x0) := u0 ∀ t ∈ [0, ∆∗∗]) to be determined. Then, ∀ t ∈ [0, ∆∗∗],

V̇ (x(t)) = LfV (x(t)) + LGV (x(t))u0

= LfV (x0) + LGV (x0)u0

+(LfV (x(t))− LfV (x0))
+(LGV (x(t))u0 − LGV (x0)u0)

(4.8)

Since the control action is computed based on the states in M ⊆ Ω, LfV (x0) +

LGV (x0)u0 ≤ −ρ∗V (x0). By definition, for all x0 ∈ M, V (x0) ≥ cmax − δ, therefore

LfV (x0) + LGV (x0)u0 ≤ −ρ∗(cmax − δ).

Since the function f(·) and the elements of the matrix G(·) are continuous, ‖u‖ ≤
umax, M is bounded and LfV (·), LGV (·) are Lipschitz, then one can find, for all

x0 ∈M, positive real numbers ∆∗∗, K1, K2 and K3 such that ‖x(τ)− x0‖ ≤ K1∆∗∗

for all τ ≤ ∆∗∗, ‖LfV (x(τ))−LfV (x0)‖ ≤ K3K1∆∗∗, ‖LGV (x(τ))u0−LGV (x0)u0‖ ≤
K2K1∆∗∗ for all τ ≤ ∆∗∗, and ∆∗∗ <

ρ∗(cmax − δ)− ε

(K1K2 + K1K3)
where ε is a positive real

number such that

ε < ρ∗(cmax − δ) (4.9)

Using these inequalities in Eq.4.8, we get

V̇ (x(τ)) ≤ −ε < 0 ∀ 0 ≤ τ ≤ ∆∗∗ (4.10)

This implies that, given δ
′
, if we pick δ such that cmax− δ < δ

′
then if the control

action is computed for any x ∈ M, and the measurement loss time is less than ∆∗∗,
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we get that V̇ remains negative during this time, and therefore the state of the closed-

loop system cannot escape Ω (since Ω is a level set of V ). We now show the existence

of ∆
′

such that for all x0 ∈ Ωf := {x ∈ IRn : V (x0) ≤ cmax − δ}, we have that

x(∆) ∈ Ωu := {x0 ∈ IRn : V (x0) ≤ δ
′}, where δ

′
< cmax, for any ∆ ∈ (0, ∆

′
].

Consider ∆
′
such that

δ′ = max
V (x0)≤cmax−δ, u∈U , t∈[0,∆′ ]

V (x(t)) (4.11)

Since V is a continuous function of x, and x evolves continuously in time, then for any

value of δ < cmax, one can choose a sufficiently small ∆
′
such that Eq.4.11 holds. Let

∆∗ = min{∆∗∗, ∆
′}. We now show that for all x0 ∈ Ωu and ∆ ∈ (0, ∆∗], x(t) ∈ Ωu

for all t ≥ 0.

For all x0 ∈ Ωu
⋂

Ωf , by definition x(t) ∈ Ωu for 0 ≤ t ≤ ∆ (since ∆ ≤ ∆
′
). For

all x0 ∈ Ωu\Ωf (and therefore x0 ∈M), V̇ < 0 for 0 ≤ t ≤ ∆ (since ∆ ≤ ∆∗∗). Since

Ωu is a level set of V , then x(t) ∈ Ωu for 0 ≤ t ≤ ∆.

We note that for x such that x ∈ Ω\Ωu, negative definiteness of V̇ is guaranteed for

∆ ≤ ∆∗ ≤ ∆∗∗. Finally, for all ∆∗ ≤ t ≤ T ∗, negative definiteness of V̇ is guaranteed

by the control law of Eq.4.3. Now for a given value of T ∗, the worst case scenario

(that is, the maximum time over which the system may run open-loop) involves loss of

measurements for the last ∆ time for a given interval, followed by consecutive loss of

measurements for the first ∆ time of the next interval. Therefore, continued negative

definiteness of V (and convergence to the desired neighborhood) can be guaranteed

if the measurement loss time in each interval ∆ ≤ ∆∗

2
. An r∗ =

∆∗

2T ∗ will ensure that

the maximum duration of measurement loss over the interval T ∗ is less than ∆∗/2,

and also maximum loss of measurement between two successive intervals is less than

∆∗ ( If
∆∗

2
> T ∗, then we have to restrict r∗ to 1 to ensure that r < 1 and that we

get at least one measurement over the entire interval T ∗). Therefore, for all x(0) ∈ Ω,
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there exists an r∗ such that if r ≤ r∗, lim sup
t→∞

V (x(t)) ≤ δ
′
. Finally, since V (x) ≤ δ

′

implies ‖x‖ ≤ d, therefore we have that lim sup
t→∞

‖x(t)‖ ≤ d.

Part 2: Consider now the finite time interval T ∗, such that for convergence to a desired

neighborhood of the origin, the bound on the data loss rate r∗, under the assumption

that the data-loss events all occur consecutively, has been computed. Consider now

that the data-loss events do not occur continuously, but occur in N intervals, each of

duration ∆i with
N∑

i=1

∆i = T ∗×r∗. From part 1 above, for each of these durations ∆i,

negative definiteness of V̇ can be established. For the duration during which the mea-

surements are available, V̇ < 0 is achieved by virtue of the control law. In summary,

having established the bound r∗ under consecutive loss of measurement, the same

bound r∗ continues to guarantee practical stability irrespective of the distribution of

the measurement loss events. This completes the proof of Theorem 4.3.

Remark 4.4: Note that one can easily remove the assumption that x0 is known

by ‘stepping back’ from the boundary of the stability region enough to ensure that

during the time r∗T ∗, the state trajectory cannot escape the boundary of the stability

region. By the definition of rate of data loss, the first measurement is guaranteed to

be available by (r∗T ∗)+. Any time during the interval T ∗ that a measurement is

received with the state still residing in the stability region (due to the ‘stepping

back’) Theorem 4.3 can be used to establish practical stability. Note also, that the

value of r∗ depends on the interval T ∗ over which it is defined (see the simulation

example in section 4.4.3 for a demonstration). To understand this more clearly, let

us revisit the proof of Theorem 4.3. It can be seen that for convergence to a desired

neighborhood of the origin, one can come up with a value ∆∗ such that if only one

measurement was received every ∆∗, then convergence to the desired neighborhood

would be achieved. Theorem 4.3 exploits this fact together with the definition of the
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data loss rate, to ensure that over a ∆∗ duration within T ∗ (and across two time

intervals), at least one measurement is received. In summary, ∆∗ is fixed by the given

size of the neighborhood to the origin where convergence is desired (δ
′
); given a T ∗

over which the data loss rate is defined, r∗ can then in turn be picked such that the

maximum duration of open-loop behavior across intervals stays less than ∆∗.

Remark 4.5: In our results, no bound on the open-loop instability is assumed to be

known, leading to practical (and not asymptotic) stability to the desired equilibrium

point. If additional assumptions are made on the open-loop growth of the Lyapunov-

function (locally) around the desired equilibrium point, asymptotic stability can be

shown using the same line of reasoning as in [42]. Specifically, during the time that the

measurements are not available, the value of V is allowed to increase during T ∗, so long

as the increase in V can be ‘countered’ by the decrease in V during the rest of the time

(which relies on assuming a known measure of open-loop instability). The limitations

imposed by the presence of constraints, however, would still need to be accounted for,

with the data loss rate having to be defined over a finite interval. Furthermore, the set

of stabilizable initial conditions will only be a subset of Ω such that starting from this

subset, the closed-loop state can not escape Ω during the time of open-loop evolution

r∗T ∗. In our results, with x0 known, r∗ is picked so that V̇ stays negative during

the entire duration of T ∗ (until convergence to the desired neighborhood is achieved),

thereby obviating the need to restrict the set of initial conditions to a subset of Ω.

Note also that V being allowed to increase during T ∗ (as long as it decays by the end

of T ∗) could possibly lead to a larger allowable r∗. The tradeoff would be that the

Lyapunov function would not be guaranteed to decay all the time but only to decay

in value at steps of T ∗, and it could take longer to reach the desired neighborhood of

the origin. Note that the problem considered in this work is not that of ascertaining
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finite-time stability (ensuring convergence to the desired equilibrium point in finite

time, see, for example, [8]) under continuous availability of measurement but rather

that of analyzing preservation of stability under asynchronous measurements. Note

that for the case when sensor measurements are lost but it is possible to change

the value of the manipulated input, statistical (e.g., [75]) or first principles model

based methods designed to ‘fill-in’ the unavailable state measurement can very well

be included within the proposed framework, and can serve to improve the data-loss

handling capabilities of the control designs (depending upon the accuracy of the data

prediction). The proposed fault-tolerant control structure, however, addresses a more

general problem, that of intermittent loss of communication between the controller

and the process, including asynchronous measurements as well as the inability to

change the manipulated input value during the communication lapses.

Remark 4.6: The proof of theorem 4.3 relies on the stabilizing properties of the

controller during the time that measurements are not available to ensure that even

during that time, V̇ < 0. Note that the rate of decay of the Lyapunov function that

is achieved under continuous measurements is closely related to how much data loss

can be tolerated in the system in the sense that for a given process and constraints

on the manipulated inputs, if one control law achieves greater decay of the Lyapunov

function over the other, then it can tolerate greater sensor data loss compared to

the other (note that the tradeoff could be a smaller stability region estimate). The

continued decay of the Lyapunov function, however, can only be achieved over a

finite time, and in turn, requires the data loss rate to be defined over a finite time.

Even if one were to use the approach discussed in Remark 4.4 to come up with an

alternate bound, the limitations imposed by the constraints on the definition of the

rate of data loss (specifically, the need to define it over a finite time interval) would be
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present and can be understood as follows: If there were no constraints, V̇ < 0 under

continuous measurement could possibly be achieved over the entire state space. No

matter how ‘far’ the states go during the unavailability of measurements, when (over

the infinite time duration) the measurements do become available, one could require

them to be available for a large enough time (compared to the time during which

they were not available) to achieve an overall reduction in the value of the Lyapunov

function. Constraints, however, limit the set of initial conditions (estimated using

the stability region Ω) starting from where V̇ < 0 is achievable. If the measurements

are not available for a large duration, the states may go too ‘far’ (that is, out of

the stability region) and then even if measurements were available for all time after

that, V̇ < 0 could not be achieved simply due to limited available control action (see

the simulation example for a demonstration). In contrast, defining the data loss rate

over a finite time interval enables restricting the states to stay within the region from

where V̇ < 0 and hence closed-loop stability is achievable.

Remark 4.7: Note that the specific problem that this work considers yields a solu-

tion that is essentially different from, and cannot be handled by simply using adaptive

or other robust control approaches. These approaches, however, can very well be inte-

grated within the proposed framework. The key requirement being that the controller

design (whether it be an adaptive control design or another robust controller design)

for the individual control configuration allow for an explicit characterization of its

stability properties in the presence of input constraints and asynchronous data losses.

It is this characterization that can be subsequently used in fault-tolerant reconfigura-

tion strategies. Note also that multi-rate data loss problems, where data is available

at predetermined (but different) times for the different measurements can be analyzed

as special cases for the problem considered in the present work which does not assume

107



data availability at predetermined rates.

4.4.3 Control of a chemical reactor subject to sensor data loss

Consider the chemical reactor of Eq.4.5 again with the inlet stream temperature, as

the manipulated input u2 = TA0 − TA0s, subject to the constraints |u2| ≤ u2
max = 100

K, and subject to measurement data losses. We first design the bounded controller

and estimate the stability region (see Fig.4.4). For a given value of T ∗ = 10 minutes,

we pick a value of W = 10 events per minute (the simulations are run as discussed

in section 4.4.1); which yields an overall event rate of 1/W that is, about one event

every six seconds (or about 100 events in 10 minutes). It was verified that with this

value of W , the rate of data loss, as defined, was approximately achieved over the

duration of every ten minutes, in other words, that W = 10 is a sufficiently large

value of W . Starting from an initial condition within the stability region of the first

configuration, the closed-loop system is unstable with a data loss rate r = 0.4 (dashed

lines in Fig.4.4; the corresponding manipulate input profile can be seen in Fig.4.5).

However, if the data loss rate is kept at 0.1, closed-loop stability is achieved (see solid

lines in Figs.4.4-4.5), demonstrating the need for the data loss to be sufficiently small.

The next simulation run demonstrates the dependence of r∗ on the time interval

over which it is defined (as discussed in Remark 4.6). Specifically, we now run the

same simulation with an even smaller data loss rate (r = 0.05), however, with the

data rate defined over the duration of the simulation of 68 minutes. A scenario where

measurements are received continuously for the first five minutes, lost consecutively

for the next 3.6 minutes, and received thereafter results in an overall rate of data loss

of only 0.05. We see however, that closed-loop stability is not achieved (dash-dotted

lines in Figs.4.4-4.5). This is so because with this larger value of T ∗, the acceptable

108



280 300 320 340 360 380 400 420
3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

T (K)

C
A
 (

m
ol

/K
)

I & II I, II & III

I & III
(T(0),C

A
(0)) 

Steady−state 
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Figure 4.5: Manipulated input profile under control configuration 2 in the presence of

sensor data loss (defined over a finite interval) at a rate of 0.4 (dashed line), sensor data

loss (defined over an infinite interval) at a rate of 0.05 (dash-dotted line) and sensor data

loss (defined over a finite interval) at a rate of 0.1 (solid line).
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bound on the rate of data loss decreases, and illustrates the interconnection between

the maximum allowable data loss rate and the interval over which it is defined. In

summary, the above simulations demonstrate the need for the data loss rate to be

less than what the system can tolerate (that is, for r ≤ r∗), with r∗ appropriately

computed for a given time interval T ∗ over which the rate is defined.

4.5 Fault-tolerant control subject to sensor data losses

Having analyzed the stability properties of the individual control configurations sub-

ject to sensor data losses, in this section we present a fault-tolerant controller that

maintains closed-loop stability in the presence of sensor data losses.

4.5.1 Reconfiguration law

Fault-tolerance is achieved via switching to a backup configuration for which the state

of the closed-loop system is within the stability region, and the sensor data loss rate

is less than the bound on the data loss rate required for closed-loop stability. To

formalize this idea, consider the constrained nonlinear system of Eq.4.1 for which the

bounded controllers of the form of Eq.4.3 have been designed and the stability regions

Ωj, j = 1, . . . , N have been explicitly characterized under each control configuration,

and the bounds on the data loss rate r∗j , j = 1, . . . , N have been computed. Let

dmax = max
j=1,...,N

dj, where dj was defined in Theorem 4.3 and let ΩU =
N⋃

j=1

Ωj. We

consider the problem where the process starts operating under configuration i with

a data loss rate of ri(0), and at some point in time the data loss rate r(t) possibly

becomes greater than r∗i .

Theorem 4.4: Let k(0) = i for some i ∈ K and x(0) := x0 ∈ Ωi. Let T f be the

earliest time such that r(t) > r∗i with x(T f ) measured. Then, the following switching
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rule:

k(t) =





i, 0 ≤ t < T f

l, t ≥ T f , x(T f ) ∈ Ωl, r(T
f ) ≤ r∗l



 (4.12)

and r(t) ≤ r∗l ∀ t ≥ T f guarantees that x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax.

Proof of Theorem 4.4: We consider the two possible cases; first if the data loss

rate r stays less than or equal to r∗i for all times, and second if r > r∗i at some time

T f .

Case 1: The absence of a switch implies k(t) = i ∀ t ≥ 0. Furthermore, since

x(0) ∈ Ωi, r(t) ≤ r∗i and control configuration i is implemented for all times in this

case, we have that x(t) ∈ Ωi ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ di. Finally, since Ωi ⊆ ΩU

and di ≤ dmax, we have that x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax.

Case 2: At time T f , the supervisor switches to a control configuration l for which

x(T f ) ∈ Ωl and r ≤ r∗l . From this time onwards, since configuration l is implemented

in the closed-loop system for all times, and since x(T f ) ∈ Ωl and r(t) ≤ r∗l , we have

that x(t) ∈ Ωl ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dl. As in case 1, since Ωl ⊆ ΩU and

dl ≤ dmax, we have that x(t) ∈ ΩU ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dmax. This completes

the proof of Theorem 4.4.

Remark 4.8: Theorem 4.4 explicitly takes into consideration the constraints in the

manipulated inputs and the measurement losses in deciding which backup configu-

ration to implement in the closed-loop system, and therefore requires that a backup

configuration is implemented for which the state resides in its stability region and the

data loss rate is less than the data loss rate that the backup configuration can toler-

ate. Disregarding either of these factors could lead to instability (see the simulation

example for a demonstration).

Remark 4.9: Note that the result of Theorem 4.4 assumes explicit knowledge of
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the current data loss rate to not only identify the appropriate backup configuration

but also to trigger reconfiguration. In this sense, the reconfiguration logic has an in-

built fault detection mechanism, with faults being defined as data loss rate exceeding

the allowable data loss rate. In practice, the data loss rate can only be estimated

over finite intervals of time, and this estimate can be used in deciding which backup

configuration should be activated according the reconfiguration rule of Theorem 4.4.

Note also, that other than the data loss rate (estimate) going over the allowable

bound, other means of detecting instability like behavior (such as the state trajectory

going close to the boundary of the stability region under the currently-active control

configuration) can be used to trigger the reconfiguration. It is worth pointing out,

however, that this fault-detection capability is only limited to the rate of data loss

exceeding the tolerable value. As discussed in Remark 4.3, explicit fault detection

mechanisms which detect faults in the sensors (such as sensors reporting incorrect

values) can be used within the proposed approach to tackle sensor faults manifested

as erroneous measurements.

Remark 4.10: While we assume the availability of measurements of all the state

variables, the same approach can be used to analyze the case where each control con-

figuration is comprised of a set of sensors and actuators with the sensors (measure-

ments) different in different control configurations. Specifically, under each control

configuration, an estimation scheme, coupled with the feedback controller, will have

to be implemented and the output feedback stability region, subject to constraints

and sensor data losses characterized. Subsequently, the reconfiguration rule will have

to be modified to account for the fact that the reconfiguration decision is made on

the basis of state estimates (which may contain errors); for a switching scheme that

addresses these issues in the context of switched nonlinear systems under continuous
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output feedback control, see [29].

4.5.2 Fault-tolerant control of a chemical reactor

Consider, once again the chemical reactor of section 4.4.3 in the presence of sensor

data losses. As seen in section 4.4.3, the closed-loop system using configuration 2

experiences instability when the data loss rate becomes 0.4. In the event of such data

losses, one of the backup control configurations need to be activated and this choice

cannot be made only by looking at the states with respect to the stability region.

In this section we demonstrate the application of the switching rule of Theorem 4.4

that achieves fault-tolerance. To this end, we first characterize the stability region

under each backup configuration. Fig.4.6 depicts the stability region, in the (T, CA)

space, for each configuration. The desired steady-state is depicted with an asterisk

that lies in the intersection of the three stability regions. For configurations 1, 2 and

3, the bound on the data loss rate is estimated at r∗1 = 0.35, r∗2 = 0.3 and r∗3 = 0.15,

respectively.

We consider an initial condition, T (0) = 300 K, CA(0) = 4.0 mol/L, CB(0) =

0.0 mol/L, using the TA0-control configuration within the stability region of config-

uration 2, and consider a case where the rate of sensor data loss increases from an

initial value of 0.1 to 0.35. As shown by the solid line in Fig.4.6, the controller pro-

ceeds to drive the closed-loop trajectory towards the desired steady-state, up until

time 13.5 minutes of reactor startup when the sensor data loss rate increases to 0.35.

If the supervisor does not use the result of Theorem 4.4 to trigger reconfiguration,

but persists with using configuration 2, stability is not achieved (see dotted lines in

Figs.4.6-4.7). Note that at this time, the state of the closed-loop system resides in

the stability region of both backup configurations 1 and 3. If the supervisor does
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Figure 4.6: Evolution of the state trajectory: At t = 13.5 minutes the data loss rate goes

up to 0.35 under configuration 2 (solid line). Keeping with configuration 2 (dotted line)

or switching to configuration 3 (dashed line) does not preserve stability, while switching to

configuration 1 (dash-dotted line) preserves stability.

implement reconfiguration, but in a way that does not account for the presence of

sensor data loss and activates configuration 3, the state trajectory does not converge

to the desired steady-state (see dashed line in Fig.4.6) even though the state at the

switching time is within stability region of control configuration 3. This happens

because the rate of data loss is not within the tolerable bound for configuration 3.

In contrast, if the reconfiguration rule of Eq.4.12 is implemented, and the supervisor

activates configuration 1, the state trajectory converges to the desired steady-state

(see dashed-dotted line in Fig.4.6). The corresponding manipulated input profiles are

shown in Fig.4.7.

4.5.3 Fault-tolerant control of a polyethylene reactor subject to sensor

data loss

Having demonstrated the application of the proposed fault-tolerant controller on the

illustrative example, we next consider a more complex process, specifically, an in-
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dustrial gas phase polyethylene reactor system (see Fig.4.8 for a schematic). This

reactor was also studied in [35] in the context of faults in the control actuator (under

assumption of continuous availability of process measurements).

Cooling
Water

Bleed

Catalyst

Product

Fresh Feed
Ethylene
Comonomer
Inerts
Hydrogen

Figure 4.8: Industrial gas phase polyethylene reactor system.

The feed to the reactor consists of ethylene, comonomer, hydrogen, inerts, and

catalyst. A stream of unreacted gases flows from the top of the reactor and is cooled

by passing through a heat exchanger in counter-current flow with cooling water.

Cooling rates in the heat exchanger are adjusted by instantaneously blending cold

and warm water streams while maintaining a constant total cooling water flowrate

through the heat exchanger. Mass balance on hydrogen and comonomer have not been

considered in this study because hydrogen and comonomer have only mild effects on
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the reactor dynamics [60]. A mathematical model for this reactor has the form [15]:

d[In]

dt
=

FIn − [In]

[M1] + [In]
bt

Vg

d[M1]

dt
=

FM1 −
[M1]

[M1] + [In]
bt −RM1

Vg

dY1

dt
= Fcac − kd1Y1 − RM1MW1Y1

Bw

dY2

dt
= Fcac − kd2Y2 − RM1MW1Y2

Bw

dT

dt
=

Hf + Hg1 −Hg0 −Hr −Hpol

MrCpr + BwCppol

dTw1

dt
=

Fw

Mw

(Twi − Tw1)−
UA

MwCpw

(Tw1 − Tg1)

dTg1

dt
=

Fg

Mg

(T − Tg1) +
UA

MgCpg

(Tw1 − Tg1)

(4.13)

where

bt = VpCv

√
([M1] + [In]) ·RR · T − Pv

RM1 = [M1] · kp0 · exp[−Ea

R
( 1

T
− 1

Tf
)] · (Y1 + Y2)

Cpg = [M1]
[M1]+[In]

Cpm1 + [In]
[M1]+[In]

CpIn

Hf = FM1Cpm1(Tfeed − Tf ) + FInCpIn(Tfeed − Tf )

Hg1 = Fg(Tg1 − Tf )Cpg

Hg0 = (Fg + bt)(T − Tf )Cpg

Hr = HreacMW1RM1

Hpol = Cppol(T − Tf )RM1MW1

(4.14)

For the definition of all the variables used in Eqs.4.13-4.14 and the values of

the process parameters see [35]. The open-loop system at the nominal operating

condition exhibits an unstable equilibrium point surrounded by a limit cycle. The

control objective is to stabilize the reactor using measurements of the state variables.

To accomplish this objective we consider the following manipulated input candidates:
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1. Catalyst flowrate, u1 = (Fc − F s
c )ac, subject to the constraint |u1| ≤ u1

max =

( 2
3600

)ac
mol
s

.

2. Feed temperature, u2 =
FM1

Cpm1+FInCpIn

MrCpr+BwCppol
(Tfeed−T s

feed), subject to the constraint

|u2| ≤ u2
max =

FM1
Cpm1+FInCpIn

MrCpr+BwCppol
(20) K

s
.

First, process operation under primary control configuration was considered (that

is, the catalyst flowrate, Fc, was the manipulated input) and a bounded nonlinear

controller was designed using the formula of Eqs.4.2-4.4. Specifically, a quadratic

function of the form V1 = eT
1 P1e1 and ρ1 = 0.01 were used to design the controller

and a composite Lyapunov function of the form Vc1 = 5 × 10−3(In − Ins)
4 + 5 ×

10−4(M1−M1s)
2 + 5× 10−11(Y1− Y1s)

2 + 5× 10−11(Y2− Y2s)
2 + 5× 10−4(T − Ts)

2 +

5 × 10−11(Tw1 − Tw1s)
2 + 5 × 10−11(Tg1 − Tg1s)

2 was used to estimate the stability

region of the primary control configuration yielding a cmax
1 = 56.8. A quadratic

Lyapunov function of the form V2 = 1
2
(T −Ts)

2 and ρ2 = 0.01 were used to design the

controller that used the fall-back control configuration (that is, the feed temperature,

Tfeed, was the manipulated input) and a composite Lyapunov function of the form

Vc2 = 5 × 10−3(In − Ins)
4 + 5 × 10−4(M1 − M1s)

2 + 5 × 10−11(Y1 − Y1s)
2 + 5 ×

10−11(Y2 − Y2s)
2 + 5× 10−4(T − Ts)

2 + 5× 10−2(Tw1 − Tw1s)
2 + 5× 10−11(Tg1 − Tg1s)

2

was used to estimate the stability region of the fall-back control configuration yielding

a cmax
2 = 62.

Fig.4.9 shows the evolution of the closed-loop state profiles under continuous mea-

surement (solid lines) starting from the initial condition In(0) = 450 mol
m3 , M1(0) =

340 mol
m3 , Y1(0) = 4.6 mol, Y2(0) = 4.6 mol, T (0) = 360 K, Tw1(0) = 300 K, and

Tg1(0) = 300 K for which Vc1 = 56.78. Since this initial state is within the stability

region of the primary control configuration (that is, Vc1(x(0)) ≤ cmax
1 ), the primary

control configuration is able to stabilize the system at the steady-state of interest.
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The corresponding manipulated inputs are shown on Figs.4.10-4.11. The dynamics of

the process also reveal an important feature regarding tolerance to sensor data losses.

Specifically, for this particular process, even under no control (equivalent to complete

data loss), the process goes to a limit cycle which is within the stability region for

the closed-loop system under continuous availability of measurements. This charac-

teristic impacts positively on the tolerance of the closed-loop system to data losses,

and a high sensor data loss rate of 0.75 ends up being tolerable (see dotted lines in

Figs.4.9 & 4.11), even with the value of the manipulated input variable set to the

nominal value during the time that the measurements are unavailable (equivalent to

open-loop operation).

Consider now a case where the rate of sensor data loss increases from an initial

value of 0.75 to 0.80 at 0.97 hour of reactor startup. As shown by the dashed lines

in Fig.4.12, the controller proceeds to drive the closed-loop trajectory towards the

desired steady-state up until 0.97 hours. If the supervisor does not account for the

increase of sensor data loss and continues utilizing the primary control configuration

to control the reactor, the state trajectory does not converge to the desired steady-

state (see Fig.4.12) even though the state at the time that the data loss rate increases

is within the stability region of the primary configuration (Vc1(x(t = 0.97hour)) =

1.6380 ≤ cmax
1 ). This happens because the rate of data loss is not within the tolerable

bound for primary control configuration (r > r∗1 = 0.75).

In this case, the supervisor had available a fall-back control configuration with the

feed temperature as the manipulated input. At time 0.97 hour when sensor data loss

rate increases from 0.75 to 0.80, Vc2 = 1.6382 implying that the state of the closed-loop

system resides in the stability region of the fall-back configuration (that is, Vc2(x(t =

0.97hour)) ≤ cmax
2 ) as well as r ≤ r∗2 = 0.95. If the reconfiguration rule of Eq. 4.12

119



0 0.5 1 1.5 2 2.5
435

440

445

450

455

Time (hr)

[I
n
] 
(m

o
l/m

3
)

0 0.5 1 1.5 2 2.5
150

200

250

300

350

400

450

Time (hr)

[M
1
] 
(m

o
l/m

3
)

0 0.5 1 1.5 2 2.5
3

3.5

4

4.5

5

Time (hr)

Y
1
, 
Y

2
 (

m
o
l)

0 0.5 1 1.5 2 2.5
345

350

355

360

365

370

375

Time (hr)

T
 (

K
)

0 0.5 1 1.5 2 2.5
290

292

294

296

298

300

Time (hr)

T
w

1

 (
K

)

0 0.5 1 1.5 2 2.5
292

294

296

298

300

302

304

Time (hr)

T
g

1

 (
K

)

Figure 4.9: Evolution of the closed-loop state profiles under primary control configuration

under continuous measurements (solid lines) and sensor data loss rate of 0.75 (dotted lines).
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Figure 4.10: Evolution of the manipulated input profiles under primary control configuration

under continuous measurements.
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Figure 4.11: Evolution of the manipulated input profiles under primary control configuration

with sensor data loss rate of 0.75.
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Figure 4.12: Evolution of the closed-loop state profiles under the primary configuration

with the data loss rate increasing from 0.75 to 0.80 at 0.97 hours.
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is implemented, and the supervisor activates the fall-back configuration, the state

trajectory converges to the desired steady-state (see Fig.4.13). The corresponding

manipulated input profiles are shown in Fig.4.14.
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Figure 4.13: Evolution of the closed-loop state profiles under the reconfiguration law of

Eq.4.12 with the data loss rate increasing from 0.75 to 0.80 at 0.97 hours.
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Figure 4.14: Evolution of the closed-loop input profiles under the reconfiguration law of

Eq.4.12 with the data loss rate increasing from 0.75 to 0.80 at 0.97 hours.
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4.6 Conclusions

In this work we considered the problem of designing a fault-tolerant controller for non-

linear process systems subject to constraints and sensor data losses. Having identified

candidate control configurations for a given system, we first explicitly characterized

the stability properties that is, the set of initial conditions starting from where closed-

loop stabilization under continuous availability of measurements is guaranteed as well

as derived a bound on the maximum allowable data loss rate which preserves closed-

loop stability. This characterization was utilized in designing a reconfiguration logic

that was shown to achieve practical stability in the presence of sensor data losses. The

application of the proposed method was illustrated using a chemical process example

and demonstrated on a polyethylene reactor.
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Chapter 5

Fault-tolerant control of a reverse

osmosis desalination process

5.1 Introduction

System automation and reliability are crucial components of any modern reverse os-

mosis (RO) plant. The operational priorities are personnel and product water safety,

while also meeting environmental and economic demands. Automated RO plants,

however, can be vulnerable to faults in several process components that can effect

plant operation. Examples of faults can include valve failure, membrane fouling or

scaling, sensor data loss, and pump or variable frequency drive failure. Because RO

plants run at high pressures, these failures may cause immediate safety risks to plant

personnel. These failures can also lead to a decline in the product water quality,

rendering it unsafe for public consumption. These safety issues provide strong moti-

vation for the development of fault-detection and isolation (FDI) and fault-tolerant

control (FTC) structures that can quickly identify failed actuators and make effective

decisions to maintain safe plant operation.
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Several contributions have been made in the literature to process control of RO

systems. The first paper which proposed an effective closed-loop control strategy

for RO utilized multiple SISO control-loops [2]. Step tests were used to perform

system identification, resulting in a model that is a linear approximation around the

operating point. The control algorithm of MPC was applied to the resulting linear

model in [83] and [1]. Experimental system identification and MPC applications can

also be found in [5] and [10]. [55] and [44] implemented minimal feedback control

on RO desalination systems, powered by renewable energy sources, in the form of

digital on/off switching. Some hybrid systems modeling and control work has been

published, such as in [34]. The goal of this chapter is to extend the research on RO

control systems to include model-based FDIFTC structures.

Fault-tolerant control structures are based on an underlying assumption that there

are more control configurations available than required for the given process [87] and

[97]. The use of the minimum number of control inputs is desirable to minimize un-

necessary control action. Fault-tolerant control, in this case, can be achieved through

reconfiguration of the control-loops. To implement fault-tolerant control structures

on an RO system, first it is necessary to detect and isolate failure events. The results

from [69] can be directly applied in order to implement FDI on an RO system. Other

FTC results relevant to this project can be found in [67] and [35].

This chapter focuses on FTC of an RO process. First, a detailed mathematical

model that adequately describes the process evolution is derived. A family of candi-

date control configurations are identified, and Lyapunov-based feedback control laws

are constructed for each configuration such that closed-loop stability is guaranteed

within an associated constrained stability region. Subsequently, an FDI filter that

observes the deviation of the process states from the expected closed-loop behavior
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Bypass Valve 1 (ev1) Back Valve (ev2)High-Pressure Pump RO MebraneFeed Water Brine Productv1
v2 v3

Bypass Valve 2 (ev3)v4
Figure 5.1: Single membrane unit reverse osmosis desalination process.

is developed to detect and isolate actuator failures. A supervisory switching logic is

then derived, on the basis of stability regions and FDI filter information, to orches-

trate switching between the available control configurations in a way that guarantees

closed-loop stability in the event of actuator faults. The effectiveness of the proposed

FDIFTC structure is demonstrated through simulation.

5.2 Process description and modeling

Fig.5.1 shows a schematic of an elementary RO desalination process. This is a single-

unit RO system with no pre-treatment or post-treatment units. Feed brackish or

seawater enter the system through the high pressure pump. This high-pressure wa-

ter then flows across an RO membrane, and low salinity product water permeates.

Concentrated brine then continues through a throttling valve and is discharged at

atmospheric pressure. The RO plant consists of a high pressure pump, the three au-

tomated valves, membrane unit, and required plumbing and tanks. The valve settings

can be manipulated in real time based on measurement information which includes

the flow velocities.

The first principles model of this system is based on a macroscopic kinetic energy
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balance. This model assumes an incompressible fluid and constant internal volume

and mass. Skin friction through piping and the membrane system are negligible

relative to hydraulic losses in the throttling valves and across the membrane. Three

ordinary differential equations that can describe such a system are derived and they

have the following form:

dv2

dt
=

1

ρV
(

Wp

v1(v2, v3, v4)
− 1

2
ev1v2)

dv3

dt
=

1

ρV
(

Wp

v1(v2, v3, v4)
− 1

2
ev2v3)

dv4

dt
=

1

ρV
(

Wp

v1(v2, v3, v4)
− 1

2
ev3v4)

v1 = −1

2
b +

1

2

√
b2 + 4c

b = −(v2 + v3 + v4 − AmKm∆π

ρAp

)

c =
AmKmWp

ρA2
p

(5.1)

where v1, feed velocity, is a nonlinear function of v2, v3, and v4. v2, v3, and

v4 are the velocities of bypass discharge one, brine discharge, and bypass discharge

two respectively. ρ is the fluid density, V is the internal volume, Wp is the power

delivered by the pump, Ap is the pipe cross sectional area. ev1, ev2, and ev3 are

the frictional valve constants. Am is the membrane area, Km is a membrane mass

transfer coefficient, and ∆π is the osmotic pressure. The potential manipulated inputs

of the model are the valve constants (ev1, ev2, and ev3) which can be manipulated in

practice by an automated electric motor that partially opens or closes the valves. The

measured outputs are the velocities of the fluid in the bypass lines, and brine velocity

(v2, v3, and v4). Internal pressure, P can be related to feed velocity by P = Wp

v1Ap
. The

product velocity, v5, can be related to the system pressure by v5 = AmKm

ρAp
(P −∆π).
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Table 5.1 shows the parameter values used for this example.

The control objective is to stabilize the process at the desired steady-state. There

are at least two unique configurations that will give simultaneous independent control

of transmembrane pressure and brine flow-rate. Configuration one, u1, uses the back

valve and the first bypass valve (ev1, ev2) as manipulated inputs. The valves are

subjected to input constraints of the form 0 < ev1 < 200 and 130 < ev2 < 330.

Configuration two, u2, uses the back valve with the second bypass valve (ev2, ev3)

as manipulated inputs. These valves are subjected to input constraints of the form

130 < ev2 < 330 and 200 < ev3 < 400. The first control configuration, u1, will be

considered as the primary configuration. However, in the event of a failure the plant

supervisor may need to implement the fall-back configuration, u2, to maintain closed-

loop stability. By observing the evolution of the plant the FDI filters can detect and

isolate an actuator fault. If there is a fall-back control configuration available that is

able to stabilize the RO plant, then the supervisor will initiate a mode transition to

the fall-back configuration. These issues are addressed in detail in the next section.

5.3 Fault-detection and isolation and fault-tolerant control

Given the properties of the dynamic model, Eq.5.1, it can be shown that both config-

urations, u1 and u2, satisfy the requirements of achieving fault-detection and isolation

of actuator faults (see [69] for details). This section discusses the four steps to imple-

ment FDIFTC on the RO process. The first step is to synthesize stabilizing feed-back

controllers for each configuration. The second step is to explicitly characterize the

constrained stability region associated with each configuration. The third step is to

design FDI filters for each manipulated input. The final step is to design the switching

law that orchestrates the reconfiguration of the control system in a way that guaran-
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Table 5.1: Process parameters and steady–state values

ρ = 1000 kg/m3

V = 10 L

Wp = 104.4 Watts

Ap = 0.25 in2

Am = 5 m2

Km = 9.218× 10−9 s/m

∆π = 200 psi

es1
v1 = 100

es1
v2 = 230

es1
v3 = 10−8

vs1
2 = 1.0547 m/s

vs1
3 = 0.4625 m/s

vs1
4 = 1.07× 10−6 m/s

P s1 = 243.7 psi

es2
v1 = 150

es2
v2 = 230

es2
v3 = 300

vs2
2 = 0.7092 m/s

vs2
3 = 0.4625 m/s

vs2
4 = 0.3546 m/s

P s2 = 243.7 psi
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tees closed-loop stability in the event of faults in the active control configuration.

To present results in a convenient form, the model of Eq.5.1 is written in deviation

variable form around the desired steady state. This is defined as x = [x1 x2 x3]
T where

x1 = v2 − v2s , x2 = v2 − v2s , and x3 = v4 − v4s . The plant can then be described by

the following nonlinear continuous-time system:

ẋ(t) = fk(t)(x(t)) + gk(t)(x(t))uk(t)

|uk(t),i| ≤ umax
k,i

k(t) ∈ K = {1, 2}
(5.2)

where x(t) ∈ <3 denotes the vector of process state variables and uk(t) is a vector of

inputs where uk,i(t) ∈ [−umax
k,i , uk

max] ⊂ <3 denotes the ith constrained manipulated

input associated with the kth control configuration. k(t), which takes values in the

finite set K, represents a discrete state that indexes the vector fields fk(·), gk(·) and

the manipulated inputs uk(·). The explicit form of the vector fields can be obtained by

comparing Eqs.5.1 and 5.2 and is omitted for brevity. For each value that k assumes

in K, the process is controlled via a different set of manipulated inputs which define

a given control configuration. Switching between the two available configurations is

handled by the high-level supervisor. The control objective is to stabilize the process

in the presence of actuator constraints and possible faults. The state feedback problem

where measurements of all process states are available for all times is considered to

simplify presentation of the results.

5.3.1 Constrained feedback controller synthesis

In this step we synthesize for each control configuration a feedback controller that

enforces asymptotic closed-loop stability in the presence of actuator constraints. To

accomplish this task first a quadratic Lyapunov function of the form Vk = xT Pkx is

defined, where Pk is a positive-definite symmetric matrix that satisfies the Riccati in-
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equality. This Lyapunov function is used to synthesize a bounded nonlinear feedback

control law for each control-loop (see [54] and [25]) of the form:

uk = −r(x, umax
k )Lḡk

Vk (5.3)

where

r =
L∗̄

fk
Vk +

√
(L∗̄

fk
Vk)2 + (umax

k |Lḡk
Vk|)4

(|Lḡk
Vk|)2(1 +

√
1 + (umax

k |Lḡk
Vk|)2)

(5.4)

and L∗̄
fk

Vk = Lf̄k
Vk + αVk, α > 0. The scalar function r(·) in Eqs.5.3 and 5.4 can

be considered as a nonlinear controller gain. It can be shown that each control config-

uration asymptotically stabilizes the states in each mode. This controller gain, which

depends on both the size of actuator constraints, umax
k , and the particular configura-

tion used is shaped in a way that guarantees constraint satisfaction and asymptotic

stability within a well-characterized region in the state space. The characterization

of this region is discussed in the next step.

5.3.2 Characterization of stability regions

Actuator constraints place fundamental limitations on the initial conditions from

which the closed-loop system is asymptotically stable. It is important for the control

system designer to explicitly characterize these limitations by identifying, for each

control configuration, the set of initial conditions for which the constrained closed-

loop system is asymptotically stable. This is necessary for the design of an appropriate

switching policy that ensures the fault-tolerance of the closed-loop system. The feed-

back controller of Eq.5.3 that is synthesized for each configuration provides such a

characterization. Specifically, using a Lyapunov argument, one can show that the set
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Θ(umax
k ) = {x ∈ <3 : L∗̄fk

Vk ≤ umax
k |Lḡk

Vk|} (5.5)

describes a region in the state-space where the control action satisfies the constraints

and the time-derivative of the corresponding Lyapunov function is negative-definite

along the trajectories of the closed-loop system (see [13]). Note that the size of

the set depends on the magnitude of the constraints. The set becomes smaller as

the constraints become tighter (smaller umax
k,i ). For a given control configuration,

the above inequality can be used to estimate the associated stability region. This

can be done by constructing the largest invariant subset of Θ, which is denoted

by Ω(umax
k ). Initial conditions within the set Ω(umax

k ) ensure that the closed-loop

trajectory stays within the region defined by Θ(umax
k ), and thereby Vk continues to

decay monotonically, for all times that the kth control configuration is active (see [24]

for further discussion on this issue). An estimate of Ω(umax
k ) is obtained by defining

a composite Lyapunov function of the form VCk
= xT PCx, where PC is a positive

definite matrix, and choosing a level set of VCk
, ΩCk

, for which V̇Ck
< 0 for all x in

ΩCk
. The value cmax

k represents a level set on VCk
where V̇Ck

< 0.

5.3.3 Fault-detection and isolation filter design

The third step in implementing FDIFTC is that of designing appropriate fault-

detection filters. The filters should detect and isolate the occurrence of a fault in

an actuator by observing the behavior of the closed-loop process. The FDI filter

design for the primary control configuration takes the form:
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dṽ2

dt
=

1

ρV
(

Wp

v1(ṽ2, v3, v4)
− 1

2
ev1(ṽ2, v3, v4)ṽ2)

dṽ3

dt
=

1

ρV
(

Wp

v1(v2, ṽ3, v4)
− 1

2
ev2(v2, ṽ3, v4)ṽ3)

r1,1 = |v2 − ṽ2|
r1,2 = |v3 − ṽ3|

(5.6)

Where ṽ2 and ṽ3 are the filter states for valve one and two respectively. rk,i is the

residual associated with the ith input of the kth configuration. The filter states are

initialized at the same value as the process states (x̃(0) = x(0)) and essentially predict

the evolution of the process in the absence of actuator faults (This assumption can

be relaxed, see [69]). The residual associated with each manipulated input captures

the difference between the predicted evolution of the states in the absence of a fault

on that actuator and the evolution of the measured process state. If a given residual

becomes non-zero, a fault is declared on the associated input. For a detailed analysis

of the FDI properties of the filter, see [69].

5.3.4 Fault-tolerant supervisory switching logic

The final step is to design a switching logic that the plant supervisor will use to decide

what fall-back control configuration to implement given an actuator failure. The

supervisor should only implement those configurations that will guarantee closed-loop

stability and do not utilize a failed actuator. This requires that the supervisor only

activates fall-back control configurations for which the state is within the associated

stability region at the time of fault-detection. Let the initial actuator configuration

be k(0) = 1, Tfault be the time of an actuator failure, and Tdetect be the earliest time

at which the value of r1,i(t) > δr1,i
> 0 (for the ith input where δr1,i

is the ith detection

threshold). The switching rule given by
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k(t ≥ Tdetect) = 2 if x(Tdetect) ∈ ΩC2(u
max
2 ) (5.7)

guarantees asymptotic closed-loop stability if u2 does not include any faulty actu-

ators. The switching law requires monitoring of FDI filters and process state location

with respect to fall-back stability regions.

5.4 Simulation results

A simulation has been performed to demonstrate the implementation of the proposed

FDIFTC strategy on the RO plant of Fig.5.1. The states in the mathematical model

given in Eq.5.1 may not be the system parameters of interest for the operator because

bypass flows (v2 and v4) do not interact with the membrane unit. Pressure and brine

flow, P and v3, are useful parameters to regulate because they directly effect the

membrane unit. Hence, two steady-states have been considered, each one of them

has the same system pressure and brine flow rate (v3), but different bypass flows (v2

and v4). The first steady-state corresponds to bypass valve two being closed. The

parameters and steady-state values can be seen in Table 5.1. Under these operating

conditions the open-loop system behaves in a stable fashion at each steady-state.

First, nonlinear feedback control under the primary configuration, u1, was con-

sidered. The bounded nonlinear controller was synthesized using Eqs.5.3 and 5.4,

with α = 0.1. The stability region for the primary configuration was estimated using

the Lyapunov function, V1 = xT P1x, yielding a cmax
1 = 1 (note: this value of cmax

1

represents a sufficiently large region of the state space for this simulation, in general

much higher values can be considered). Fig.5.2 shows the evolution of the closed-loop

state profiles starting from the initial condition v2 = v3 = 0.1m
s

and v4 = 0.001m
s

for

which V1(x(0)) = 0.0263. Evolution of the system pressure is shown in Fig.5.3. Since
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the initial state was within the stability region of the primary control configuration,

V1(x(0)) = 0.0263 ≤ cmax
1 = 1, the primary control configuration was able to stabilize

the system at the desired steady-state.

Next, a fault in the primary configuration (in ev1 specifically) at a time Tfault =

10 s was considered. In this case the fall-back configuration, u2, was available with

valve three, ev3, as one of the manipulated inputs. The quadratic Lyapunov function

V2 = xT P2x and α = 0.1 was used to design the controller. The stability region was

also estimated using V2 yielding a cmax
2 = 1.

To demonstrate the advantage of operating under the FDIFTC structure consider

the case where no control system reconfiguration takes place after Tfault. The system is

initialized at v2 = v3 = 0.1m
s

and v4 = 0.001m
s
, and the primary control configuration

operates normally until the time Tfault = 10 s. At this time valve one stops operating

and is partially closed, ev1 = 150. As shown by the solid lines in Figs.5.2 and 5.3 the

states move away from the desired values, and settle at a new, undesired, steady-state.

However, by implementing the FDIFTC structure the fault can be mitigated.

The residual value associated with valve one, r1,1, becomes non-zero and reaches the

detection threshold, δr1,1 = 0.01, at Tdetect = 10.004 s when the fault is declared. The

residual value associated with valve two, r1,2 remains at zero, indicating that the fault

is effecting only valve one. At time Tdetect the value of the fall-back Lyapunov function

is checked against the fall-back stability region to see if switching would guarantee

stability. The value of V2(x(Tdetect)) = 0.0119 < cmax
2 = 1, so reconfiguration to the

fall-back controller, k = 2, does guarantee closed-loop stability. The evolution of the

system states and pressure under the proposed FDIFTC structure can be seen in

Figs.5.2 and 5.3 (solid lines). This automated reconfiguration allowed the closed-loop

system to maintain pressure and brine flow at the desired values.
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Figure 5.2: Evolution of the closed-loop state profiles under fault-tolerant control (dashed

line) and without fault tolerant-control (solid line). FTC recovers the desired brine flow,

v3.
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Figure 5.3: Evolution of the closed-loop pressure profile under fault tolerant control (dashed

line) and without fault tolerant control (solid line). FTC recovers the desired operating

pressure.

5.5 Conclusions

The focus of this work was to apply recently-developed FDIFTC structures to an RO

desalination process model. First, a mathematical model that describes the process

evolution was developed. A family of candidate control configurations was then iden-

tified, and Lyapunov-based feedback control laws were constructed for each configura-

tion such that closed-loop stability was guaranteed within an associated constrained

stability region. An FDI filter that observes the deviation of the process states from

the expected closed-loop behavior was developed to detect and isolate actuator fail-

ures. A supervisory switching logic was then derived, on the basis of stability regions

and FDI filter information, to orchestrate switching between the available control

configurations in a way that guarantees closed-loop stability in the event of actuator

faults. These ideas were then demonstrated in the context of an RO system simula-

tion. The proposed FDIFTC methodology was able to maintain closed-loop operation

at the desired steady-state in the presence of actuator failures.
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Chapter 6

Control and monitoring of a high

recovery reverse osmosis

desalination process

6.1 Introduction

The goal of this chapter is to develop model-based nonlinear feed-forward/feedback

control structures for high recovery RO desalination systems while accounting for such

practical issues as sampled and noisy measurements, large time-varying disturbances,

and actuator faults. In order to accomplish this goal a detailed mathematical model

of a high-recovery RO plant is first developed. This model adequately describes the

evolution of process states in time, and it also accounts for the spatial variation

of total dissolved solids (TDS) and flow-rate inside the membrane units. Most RO

models simple enough for control purposes, such as those found in [39], consider a

well mixed model with a single value for concentration on the retentate side of the

membrane. However, under high recovery operation the gradients along the length of

the membrane unit can be quite significant. As fluid flows axially along the module
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the bulk concentration increases, the flow rate decreases, and the local permeate

flux decreases [20]. The model developed in the present work includes appropriate

differential equations in space that account for these gradients. A Lyapunov-based

nonlinear controller [13, 24] is then applied to this high recovery RO model. One of

the main objectives of a controller in high recovery RO is to reject disturbances caused

by feed water variation. Feed disturbances could cause undesired fluctuations in the

product flow rate or the internal pressure. To accomplish disturbance rejection, the

control law includes both feedback and feed-forward components (i.e., measurement

of feed concentration fluctuations). The feed water stream concentration can easily

be measured in practice, so the first set of simulations presented in this work explore

the ability of the proposed control method to reject such disturbances. Another

objective is to detect and isolate actuator faults as soon as possible. A second set of

illustrative examples demonstrate how fault-detection and isolation (FDI) and fault

tolerant control (FTC) can be applied to this system, and how appropriate action

can be taken to maintain desired system operation when a fault occurs in the control

system.

6.2 Process description and modeling

Fig. 6.1 shows a schematic of an elementary RO desalination process. This is a single-

unit RO system with no pre-treatment or post-treatment units. Feed brackish water

or seawater enters the system through a high pressure pump. This high pressure

water then flows across an RO membrane, and low salinity product water permeates

through the membrane. Concentrated brine then exits the membrane module and

passes through a throttling valve to be discharged at atmospheric pressure. The

RO plant consists of a high pressure pump, two automated valves, a spiral wound
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Figure 6.1: Single membrane unit high recovery reverse osmosis desalination process. The

two actuated valves, retentate valve and bypass valve, act as manipulated inputs.

membrane unit, required plumbing, and tanks. The valve settings can be manipulated

in real time based on measurement information which includes the flow velocities and

feed concentration.

The first principles model of this system is based on a macroscopic kinetic energy

balance, a local mass balance, and a microscopic mass shell balance. This model

assumes an incompressible fluid and constant internal volume and mass. It is assumed

that the water in the module travels in a plug flow with no back-mixing or axial

diffusion. It is also assumed that the osmotic pressure can be related to the TDS

at the membrane surface [56]. Skin friction through the piping and the membrane

module are considered negligible relative to the hydraulic losses in the throttling

valves and across the membrane.

The energy balance consists of two nonlinear ordinary differential equations (ODEs)

in time where the velocities of the bypass and retentate stream are the states. Each

ODE is derived from an energy balance around an actuated control valve [9]. Specif-

ically, the two ODEs that can describe the process depicted in Fig. 6.1 take the

following form:
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Figure 6.2: An expanded view of a spiral wound membrane module and typical concentra-

tion and velocity profiles inside the module.

dvb

dt
=

Ap

ρV
(P − 1

2
v2

bev1)

dvr

dt
=

Ap

ρV
(P − 1

2
v2

rev2)
(6.1)

where vb is the bypass velocity, vr is the retentate velocity, Ap is the pipe cross

sectional area, V is the total internal volume, ρ is the fluid density, and P is the

internal pressure. ev1 and ev2 are friction loss factors for the actuated valves and act

as manipulated inputs. The two ODEs of (6.1) are not explicitly coupled, however,

coupling does occur through the pressure term, P . The pressure, P , in this work is

an algebraic variable which is an implicity nonlinear function of vb and vr for which

there exists no differential equation in time. P is assumed to be space independent

throughout the high pressure region by neglecting skin friction. Specifically, P at each

time is obtained via solving a local mass balance and a microscopic mass shell balance
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along the length of the membrane module in space. The local mass balance around

the bypass line and feed line junction allows the calculation of the feed velocity to

the membrane module, vmf , given the bypass and retentate velocities from (6.1):

vf = vb + vmf (6.2)

where vf is the constant velocity of the feed stream.

It is critical in a high recovery system, where the concentration and velocity in

the module change significantly along the axis of flow, to accurately describe the con-

centration and velocity profiles along the membrane module. In order to model these

profiles a shell balance is performed across the length of the membrane module to

generate a two state ODE system in space. To clarify how this model is developed,

an expanded view of an unwound spiral-wound membrane module and a drawing

depicting typical concentration and velocity profiles in a module can be seen in Fig.

6.2. The internal compartment of the membrane module is simplified to a rectangular

space. A steady-state shell balance is performed on this space assuming radially well

mixed plug flow. This steady-state approximation is made under the assumption that

disturbances on the system will act on a much slower time scale than the residence

time in the membrane unit. The shell balances are based on the conservation of TDS

mass and water mass inside the membrane module. The differential volume for the

shell balance has the dimensions W by H by δz, where δz is an infinitesimal length

in the z direction. W is the membrane width (W = Am/L, Am is the membrane

area) and H is the channel height. The derivation assumes that dissolved solids are

completely rejected, and that only water permeates the membrane at a flux approx-

imated by Jw = Km(P −K∆πCz), where Jw is the permeate flux, Km is the overall
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mass transfer coefficient, K∆π is a constant that relates Cz to osmotic pressure, and

Cz is the concentration along the z-axis in the membrane. The result of the shell

balance is the following two coupled ODEs in space and three boundary conditions

(owing to the fact that P is an algebraic variable):

dCz

dz
=

Cz

vz

Km(P −K∆πCz)

ρH

dvz

dz
= −Km(P −K∆πCz)

ρH
Cz(z=0) = Cf

vz(z=0) = αvmf

vz(z=L) = αvr

(6.3)

where z is the direction of flow through the membrane, vz is the velocity of flow in

the membrane along the z-axis, and H is the height of the membrane channel. The

boundary conditions arise when (6.3) is coupled with (6.1) and (6.2). Equation (6.3)

is solved at each time step as we integrate (6.1) in time. The solution to the ODEs

of (6.3) is complicated by the fact they must satisfy three boundary conditions, two

at the inlet, and one at the outlet owing to the fact that P is an unknown algebraic

variable. The feed concentration, Cf , represents a boundary condition at z = 0 (at

the membrane inlet) provided as a time varying parameter. The feed velocity to the

module, vmf , provides the velocity boundary condition at z = 0. Retentate velocity,

vr, provided from (6.1) is a boundary condition at the membrane outlet, x = L, where

L is the membrane length in the z direction. The parameter α is the ratio of the pipe

cross sectional area to the membrane channel cross sectional area. Pressure is the

unknown variable in time that must be adjusted in order to find the solution to (6.3).

The solution to (6.3) is found at each time by using a type of shooting method [11]

where the system pressure is adjusted until all three boundary conditions are satisfied.
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This system pressure is then substituted into (6.1) for the next step of integration

forward in time.

Remark 6.1: The model of (6.1), (6.2), and (6.3) can be expanded in several ways

to improve the accuracy at the expense of greater model complexity. The pressure,

for example, is taken as constant along the length of the membrane module at a

specific time instant. However, in a real system there is a minor pressure loss due to

skin friction and the pressure will decrease in the z direction. The model could be

expanded to handle this by deriving an ODE that describes dP
dz

and including it in

Eq. 6.3. The same solution algorithm would be used, but a guess value for P (z = 0)

should be used in the place of P in step 2. Another improvement to the model would

be to use transient PDEs to describe the velocity and concentration profiles. This

would effectively remove the steady-state approximation in (6.3), and would make the

model dynamics more accurate on time scales shorter than the membrane residence

time. The model could also be expanded to include the concentration gradient in

the y direction (the gradient from the bulk solution to the membrane surface), thus

giving a more accurate osmotic pressure and product flux. The osmotic pressure term

could also be expanded algebraically to include the effects of temperature. There are

also other minor modeling improvements that could be made, but the goal is to

obtain a model that is computationally tractable yet accurate enough to synthesize

model-based feedback control laws.

6.3 Reverse osmosis process model solution algorithm

A step-by-step discussion of the algorithm used to compute the solution of the open-

loop model of (6.1), (6.2), and (6.3) is presented to clarify the method employed in

this work. An assumption is made that the profiles of Cz and vz change only with
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respect to z within each integration step in time; this assumption can be satisfied by

picking the time step of integration to be sufficiently small. It is also assumed that

Cf changes slowly relative to the residence time in the module which is a reasonable

assumption for any real RO process. This allows the independent solution of (6.3) at

each time step. A large well-mixed holding tank placed before the feed can act as a

low-pass filter to eliminate fast time-scale disturbances.

In order to solve the system of equations presented in (6.1), (6.2), and (6.3) nu-

merically, the following algorithm is applied.

1. Initial conditions for vb and vr are chosen.

2. vmf is computed from (6.2).

3. Given vmf , Cf , and a guess value for P , a solution to (6.3) is computed numer-

ically.

4. The resulting vz(z = L) is compared to αvr, and P is adjusted via shooting

method until vz(z=L) is equal to αvr.

5. The value of P resulting from step 4 is used in (6.1) to integrate numerically

one step forward in time.

6. The results of step 5 provide updated values of the states, vb and vr, and the

algorithm returns to step 1 using these values as new initial conditions. This

process is repeated until the desired integration time is reached.

The open-loop simulation results can be seen as the solid lines in Figs. 6.4 through

6.7 for the parameters in Table 6.1. The simulation is run at high recovery (just

over 90% recovery) for a time of 24 hr with a time varying disturbance on Cf as

defined in Fig. 6.3. This disturbance was generated from sinusoidal functions and
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Figure 6.3: Disturbance on feed concentration versus time, this large time-varying distur-

bance on the RO system is added to the nominal Cf value.

autocorrelated noise to give an approximation of disturbances encountered in practice.

It can be seen that vb and vp oscillate due to the disturbance, but the oscillations are

not large relative to the steady-state values for these states. However, Fig. 6.6 shows

wide swings in the internal pressure for the open-loop case. This type of behavior

could lead to safety issues if the pressure exceeds the safety rating of hoses, fittings,

or pressure vessels. This motivates the use of feedback control to reduce the effects

of feed disturbances on the process.

6.4 Feedback controller synthesis

The potential manipulated inputs to the system are the friction loss factors for the

valves (ev1 and ev2). Valves can be manipulated in practice by an automated electric

motor that partially opens or closes the valves. The measured outputs are the bypass

velocity (vb), retentate velocity (vr), and internal pressure (P ). The super script
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Figure 6.4: Bypass velocity, vb, profiles versus time; Open-loop (solid line), closed-loop

feedback control without disturbance measurements (dotted line).
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Figure 6.5: Retentate velocity, vr, profiles versus time; Open-loop (solid line), closed-loop

feedback control without disturbance measurements (dotted line). The dotted line nearly

overlaps the solid line.
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Figure 6.6: Internal pressure, P , profiles versus time; Open-loop (solid line), closed-loop

feedback control without disturbance measurements (dotted line). The dotted line nearly

overlaps the solid line.
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Figure 6.7: Product velocity, vp, profiles versus time; Open-loop (solid line), closed-loop

feedback control without disturbance measurements (dotted line).

151



Table 6.1: Process parameters and steady–state values

ρ = 1000 kg/m3

V = 0.1 m3

vf = 4.0 m/s

Ap = 1.27 cm2

Am = 13 m2

Km = 9.218× 10−9 s/m

K∆π = 78.7 Pa/(mg/L)

Cf = 10000 mg/L

H = 1.0 mm

L = 5.0 m

α = 0.049

Css
f = 10000 mg/L

ess
v1 = 3.57× 107

ess
v2 = 1.92× 108

vss
b = 0.7 m/s

vss
r = 0.3 m/s

vss
p = 3.0 m/s

P ss = 8.61× 106 Pa
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ss corresponds to the high recovery steady-state values for this system when Css
f =

10000 mg/L, corresponding to a brackish feed water source. Operation at this point

provides a recovery of 91%.

One control objective is to stabilize the process at the desired retentate velocity,

vr, and operating pressure, P , in the presence of large time varying disturbances

in the feed concentration Cf . This configuration would be used on a system that

operates close to the maximum allowable internal pressure. The internal pressure

often needs to be below a specified value for safety reasons (safety ratings for fittings

and pressure vessels), and at high recovery an RO plant may operate close to this

safety threshold. Another control objective could be to stabilize the process at the

desired retentate velocity, vr, and the desired product flow rate, vp. This type of

disturbance rejection may be used on RO systems that are designed for extremely

high pressures, and allows for a consistent delivery of product water. The controller

will use both ev1 and ev2 as manipulated inputs.

To present the controller design method in a concise form, the model of (6.1) is

written in a deviation variable form around the desired steady state. The states are

defined as x = [x1 x2]
T where x1 = vb− vss

b and x2 = vr − vss
r . The plant can then be

described by the following non-linear continuous-time ODE system:

ẋ(t) = f(x(t)) + g(x(t))u(t) + w(x(t))d(t)

|ui| ≤ umax
i

(6.4)

where x(t) ∈ <2 denotes the vector of process state variables, u(t) is a vector of

inputs where u(t) ∈ [−umax
i , umax] ⊂ <2 denotes the ith constrained manipulated

input, u1(t) = ev1 − ess
v1 and u2(t) = ev2 − ess

v2, and d(t) denotes the disturbance on

the system, d(t) = P − P ss. The disturbance in this system originates from the feed

concentration, Cf , but d(t) is expressed in terms of P because Cf acts on P in an
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algebraic fashion through (6.3). The control objective is to maintain the outputs

at their desired values in the presence of large time varying disturbances on the feed

concentration. The state feedback control problem where measurements of all process

states are available for all times is considered because velocities, vb and vr, can be

readily measured in practice. The disturbance, d(t) is available as a measurement of

Cf , and Cf can be used to calculate P , and hence, d(t). Since d(t) is readily available

f̂(x(t)) = f(x(t)) + w(x(t))(d(t)) is defined.

Next, a Lyapunov-based nonlinear feedback controller that enforces asymptotic

stability in the presence of actuator constraints is synthesized. First, a quadratic

Lyapunov function of the form VL = xT PLx is defined where PL is a positive-definite

symmetric matrix. This Lyapunov function is used to synthesize a bounded nonlinear

feedback control law (see [54], [25], and [13]) of the form:

uk = −r(x, umax)LgVL (6.5)

where

r =
L∗

f̂
VL +

√
(L∗

f̂
VL)2 + (umax|LgVL|)4

(|LgVL|)2(1 +
√

1 + (umax|LgVL|)2)
(6.6)

and L∗
f̂
VL = Lf̂VL + αVL, α > 0. The scalar function r(·) in (6.5) and (6.6) can be

considered as a nonlinear controller gain.

If the value of d(t) is available at each time the Lyapunov-based feedback controller

of (6.5) and (6.6) employs a feed-forward compensation component. In this case the

controller is updated with the latest disturbance information to reject the effects of

the disturbance on the states, vb and vr. In practice it is possible to use a conductivity

meter in the feed line to get real-time measurements of the disturbance. However,
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if the value of d(t) is not available for measurement at each time, P = P ss for the

control law and the controller acts in a standard Lyapunov-based feedback manner

using a nominal value for d(t). In this case, control action is not taken until the

states have moved away from the steady-state values due to the disturbance, and the

control action does not completely compensate for the disturbance.

6.5 Fault detection and isolation and fault tolerant control

In addition to feedback control and disturbance compensation, the problem of actu-

ator fault detection and isolation and fault tolerant control is also addressed. Given

the properties of the dynamic model of (6.1), (6.2), and (6.3) it can be shown that the

primary control configuration with ev1 and ev2 as manipulated inputs, satisfies the

requirements of achieving fault-detection and isolation of actuator faults (see chapter

3 for details). This section presents the methods used to implement fault detection

and isolation and fault tolerant control (FDIFTC) on this high recovery RO pro-

cess. First, the existence of fall-back control configurations is discussed. Next, the

construction and explicit forms of FDI filters for the primary configuration are pre-

sented. Finally, a switching law that orchestrates the reconfiguration of the control

system in a way that provides closed-loop stability in the event of actuator failures is

presented.

6.5.1 Fall-back control configurations

In order to carry out FTC there must be some redundant control inputs that can be

used to control the system in the event of a failure. For this RO system let the initial

control configuration, k(t = 0) = 1 be the primary configuration with ev1 and ev2 as

manipulated inputs. For the first fall-back configuration consider the system shown in
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Fig. 6.1 with an identical fall-back actuator for the retentate valve, efb
v2. Flow can be

diverted from the primary retentate valve (ev2) to the fall-back retentate valve (efb
v2)

through the use of simple on/off valves. Let k = 2 be this fall-back configuration with

ev1 and efb
v2 as manipulated inputs. For the second fall-back configuration consider

the RO system with an additional fall-back valve for the bypass. Let k = 3 be the

fall-back configuration with efb
v1 and ev2 as the manipulated inputs.

6.5.2 Fault detection and isolation filters

The FDI filters should enable the detection and isolation of an actuator fault by

observing the behavior of the closed-loop process. This is done by using real-time

measurements of system states to decouple the ODEs in time. The FDI filter design

for the primary control configuration takes the form:

dṽb

dt
=

Ap

ρV
(P̃1 − 1

2
ṽ2

bev1), ṽb(0) = vb(0)

dṽr

dt
=

Ap

ρV
(P̃2 − 1

2
ṽ2

rev2), ṽr(0) = vr(0)

rb = |vb − ṽb|
rr = |vr − ṽr|

(6.7)

where ṽb and ṽr are the FDI filter states for the bypass and retentate velocity re-

spectively. rb is the residual associated with the bypass valve, and rr is the residual

associated with the retentate valve. P̃1 is a function of ṽb and vr. P̃2 is a function

of vb and ṽr. P̃1 and P̃2 are calculated for each time using the above algorithm and

(6.2) and (6.3) with the appropriate values for vb, vr, ṽb, and/or ṽr. The filter states

are initialized at the same value as the process states (ṽ(0) = v(0)) and essentially

predict the evolution of the process in the absence of actuator faults. The residual

associated with each manipulated input captures the difference between the predicted
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evolution of the states in the absence of a fault on that actuator and the evolution of

the measured process state. If a given residual becomes non-zero, a fault is declared

on the associated input. For a detailed mathematical analysis of the FDI properties

of the filter, the reader may refer to chapter 3.

6.5.3 Fault-tolerant supervisory switching logic

The next step is to design a switching logic that the plant supervisor will use to

decide what fall-back control configuration to implement given an actuator failure.

The supervisor should only implement those configurations that do not utilize a failed

actuator. Let Tfault be the time of an actuator failure, and Tdetect be the earliest time

at which the value of ri(t) > δri > 0 (for the i-th input where δri is the i-th detection

threshold). The switching rule given by

k(t ≥ Tdetect) = 2 if rr(t) > δrr

k(t ≥ Tdetect) = 3 if rb(t) > δrb
(6.8)

guarantees asymptotic closed-loop stability if the new configuration does not include

any faulty actuators. The switching law requires monitoring of FDI filters and acti-

vation of a fall-back control configuration when a threshold is exceeded.

Remark 6.2: In general when considering FDI and FTC for a nonlinear system using

the framework proposed in chapter 3 one needs to account for the stability region of

each bounded control configuration, and switch only to a control configuration that

guarantees stability. However, in the case of an RO system, stability is not the focus

because the system is inherently very stable even when operated open-loop, and

converges quickly to the steady-state equilibrium point. Therefore, the main goal of

feedback control in the RO application is not to enforce stability on the system, but to

improve performance and handle events such as actuator faults and feed disturbances.
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6.6 Simulation results

The simulation results section is divided into two subsections where the first subsec-

tion considers large time-varying disturbance on the feed concentration, as shown in

Fig. 6.3, and the second subsection considers actuator failures in addition to this

disturbance. Time varying disturbances in the feed concentration tend to occur on a

long time scale (hours or days), however, failures in the actuators are often sudden

and propagate quickly (on the order of 1 second or less).

6.6.1 Large time varying disturbance

This section considers the application of three different non-linear control algorithms

to handle a large time-varying disturbance in the feed concentration, Cf . Propor-

tional/Integral (PI) control is also implemented on the system as a point of compar-

ison.

PI feedback control: P and vr as the controlled outputs

The first simulation scenario involves using two PI loops to handle the time varying

disturbance on the feed concentration, as shown in Fig. 6.3. The first PI loop uses the

bypass valve to control the value of the term P . For the first loop the measurement is

P , and the manipulated input is ev1. The second PI loop uses the retentate valve to

control the state vr. For the second loop the measurement is vr and the manipulated

input is ev2. The proportional gain, K, and the integral time, τI , could not be tuned

using standard tuning methods as in [82, 79] because of non-linearities and the coarse

grained sampling time. For this reason, the gains and integral time constants were

determined through trial and error runs. The system has a sampling time of 60

seconds, and the control is sample and hold. The results can be seen in Figs. 6.8
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Figure 6.8: Bypass velocity, vb, profiles versus time; Open-loop (solid line) and PI control

with P and vr as controlled outputs (dashed line).

to 6.12. While PI control is able to reject the disturbance under some conditions, it

ultimately fails to keep P and vr at the desired values due to the time varying nature

of the disturbance.

Feedback control: vb and vr are the controlled outputs

This simulation scenario involves using the Lyapunov-based control law presented in

(6.5). This scenario considers the same dynamic disturbance as in the previous case,

where Cf varies with time according to Fig. 6.3. The states, vb and vr, are sampled

at a rate of one measurement per 60 seconds which is well within the capabilities of

existing sensing systems. The control action for the manipulated inputs is computed

once per 60 seconds based on these measurements. This control action is implemented

for the duration of the sample time, which is 60 seconds, in a sample-and-hold fashion.

The disturbance is not measured in this case. The value of P used in f̂(x(t)) is P ss
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Figure 6.9: Retentate velocity, vr, profiles versus time; Open-loop (solid line) and PI control

with P and vr as controlled outputs (dashed line).
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Figure 6.10: Internal pressure, P , profiles versus time; Open-loop (solid line) and PI control

with P and vr as controlled outputs (dashed line).
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Figure 6.11: Product velocity, vp, profiles versus time; Open-loop (solid line) and PI control

with P and vr as controlled outputs (dashed line).
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Figure 6.12: Manipulated inputs for the PI controller with P and vr as the controlled

outputs. Control action applied to ev1 and ev2 are the solid and dashed lines, respectively.
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for all t, and the controller does not compensate well for the disturbance on Cf .

The closed-loop simulation results can be seen as the dotted lines in Figs. 6.4

through 6.7. The manipulated inputs can be seen in Fig. 6.13. The states, vb and

vr, and the product flow, vp, oscillate at a marginally lower magnitude than the cor-

responding profiles for the open-loop case, so the feedback control is able to slightly

damp out the effects of the disturbance. If the gain on the controller is increased by

changing PL, it is possible to decrease the disturbance effect further at the expense

of higher control actions and possible instability at this sampling rate. However, the

pressure oscillates at a somewhat higher magnitude than in the open-loop simulation,

and this may not be acceptable for safety reasons. This type of feedback control

may be useful for the case where regulating the states and product flow rate is more

important than regulating the internal pressure, for example, when the system is

being operated at a pressure far below its rated maximum. However, the poor per-

formance of feedback alone motivates the addition of feed-forward compensation to

the controller that takes advantage of Cf measurements.

Feed-forward/feedback control: vb and vr are the controlled outputs

The second simulation scenario involves using the Lyapunov-based control law pre-

sented in (6.5), with model-based feed-forward compensation. This technique takes

advantage of the dynamic model and the ability to measure Cf to produce better

system performance. For this scenario the time varying nature of Cf is the same as

in the open-loop case. Measurements of the states and of the disturbance, Cf , are

sampled at a rate of one per 60 seconds. At each sampling time a control action

is computed and implemented in a sample-and-hold fashion. At each sampling time

(6.1), (6.2), and (6.3) are solved for the parameters contained in f̂(x(t)) correspond-
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Figure 6.13: Manipulated inputs for the Lyapunov-based feedback controller with no feed-

forward compensation with vb and vr as the controlled outputs. Control actions applied to

ev1 and ev2 are the solid and dashed lines, respectively.
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Figure 6.14: Bypass velocity, vb, profiles versus time; Open-loop (solid line) and under

feed-forward/feedback control with vb and vr as controlled outputs (dashed line).
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Figure 6.15: Retentate velocity, vr, profiles versus time; Open-loop (solid line) and under

feed-forward/feedback control with vb and vr as controlled outputs (dashed line).
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Figure 6.16: Internal pressure, P , profiles versus time; Open-loop (solid line) and under

feed-forward/feedback control with vb and vr as controlled outputs (dashed line).
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Figure 6.17: Product velocity, vp, profiles versus time; Open-loop (solid line) and under

feed-forward/feedback control with vb and vr as controlled outputs (dashed line).

ing to the current Cf value and the desired vp and vr values. This can be done with

the following steps:

1. Choose set points for vb and vr, in this case 0.7 and 0.3 m/s respectively to

achieve a recovery of over 90%.

2. Solve (6.2) for vmf .

3. Find the appropriate P , via shooting method, to satisfy all the boundary con-

ditions for (6.3).

4. Set (6.1) equal to zero, and solve for enom
v1 and enom

v2 . These are the nominal values

for the manipulated inputs that will compensate for the current disturbance,

Cf (t), and are components of f̂(x(t)).

The control law in (6.5) is used to compute a feedback control action based on the

current f̂(x(t)) obtained from the above algorithm. This control action is added to
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Figure 6.18: Manipulated inputs for the feed-forward/feedback controller with vb and vr

as the controlled outputs. Control actions applied to ev1 and ev2 are the solid and dashed

lines, respectively.

the nominal enom
v1 and enom

v2 values, and implemented on the valves. This process is

repeated at each sampling time to obtain a feedback control action that includes

feed-forward compensation. The manipulated inputs can be seen in Fig. 6.18 and

compared to Fig. 6.13. The control actions are larger, yet they are within reasonable

actuator limits.

The simulation results can be seen as the dashed lines in Figs. 6.14 through 6.17.

The values of vb, vr, and vp all stay very close to the steady-state values given in Table

6.1, and the effects of the disturbance are effectively damped. A shorter sampling

interval would reduce the disturbance effects even further. In this case, the value

of P swings sharply in order to compensate for the changing feed conditions. To

achieve the desired recovery of over 90% even when the Cf (t) is much higher than

Css
f requires very high pressures. This type of control would be advantageous only

when product flow rate is a critical parameter that cannot be disturbed, and the RO
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Figure 6.19: Bypass velocity, vb, profiles versus time; Open-loop (solid line) and under

feed-forward/feedback control with P and vr as controlled outputs (dash-dotted line).

system is designed to handle such high internal pressures.

Feed-forward/feedback control: P and vr are the controlled outputs

The third simulation scenario does not fall directly under the Lyapunov-based feed-

forward/feedback framework utilized in the previous two simulations, however, it

is an important one from a practical point of view. For safety reasons, the large

internal pressures exemplified in the previous examples motivate the use of feed-

forward/feedback control that maintains P (t) at a constant value, P ss. In order

to accomplish this, another variable (either vb or vr) must be used to compensate

for the effects of Cf . The flow rate vr is often constrained due to the membrane

module capacity, so vb is an excellent candidate for this role. The bypass velocity

can vary widely with little to no ill-effect on the system: vb is readily recycled, there

are usually no downstream lines that depend on vb, and there are no dominant safety
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Figure 6.20: Retentate velocity, vr, profiles versus time; Open-loop (solid line) and under

feed-forward/feedback control with P and vr as controlled outputs (dash-dotted line).

0 500 1000 1500

7.5

8

8.5

9

9.5

10
x 10

6

Time (min)

P
re

s
s
u

re
, 

P
 (

P
a

)

Figure 6.21: Internal pressure, P , profiles versus time; Open-loop (solid line) and under

feed-forward/feedback control with P and vr as controlled outputs (dash-dotted line).

168



0 500 1000 1500
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

Time (min)

P
ro

d
u
c
t 
V

e
lo

c
it
y
, 
v p

 (
m

/s
)

Figure 6.22: Product velocity, vp, profiles versus time; Open-loop (solid line) and under

feed-forward/feedback control with P and vr as controlled outputs (dash-dotted line).

issues associated with wide vb variations.

The third simulation scenario involves using a Lyapunov-based nonlinear feedback

control law similar to the one presented in (6.5). Again, Cf is the same as the previous

scenarios, and measurements of the states and disturbance are obtained at a rate of

one sample per 60 seconds. The control action is implemented in a sample-and-hold

fashion.

The framework for the feedback control with feed-forward compensation with P

and vr as the controlled outputs is slightly different than the one used in the previous

two examples. Specifically, at each sampling time (6.1), (6.2) and (6.3) are solved

for the steady-state corresponding to the current Cf value and the desired P and vr

values. This can be done with the following steps:

1. Choose set points for P and vr, in this case 8.6×106 Pa and 0.3 m/s respectively.

2. Solve (6.3) with the following two boundary conditions using shooting method
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where an initial guess is made on vz(z = 0):

(a) Cz(z = 0) = Cf

(b) vz(z = L) = αvr

3. The resulting value of vz(z = 0) from the previous step is used to calculate vmf

4. vmf is used with (6.2) to calculate a desired value for vb. This vb and the set

point for vr designate a new desired operating point where P (t) = P ss

5. Set (6.1) equal to zero, substitute in the values for P , vr, and vb, and solve for

enom
v1 and enom

v2 .

The control law in (6.5) is then used to compute a control action based on this new

operating point provided from the above algorithm. This control action is added to

the enom
v1 and enom

v2 values from the above algorithm, and implemented on the valves.

This process is repeated at each sample time to obtain a new operating point and

compute a control action that has feed-forward and feedback components. In other

words, at each sampling time the steady state problem of (6.1), (6.2), and (6.3) is

solved to find the desired operating point where P (t) = P ss and vr(t) = vss
r , and a

control action from a Lyapunov-based control law is implemented based on this new

operating point. The manipulated input profiles resulting from this control algorithm,

ev1 and ev2, are shown in Fig. 6.23.

The closed-loop feed-forward/feedback control with P and vr as controlled outputs

can be seen as the dash-dotted line in Figs. 6.19 through 6.22. In this case, the

pressure, P , stays close to the desired set point, and the effects of the disturbance

on pressure and retentate velocity are largely damped. To maintain this pressure,

however, the bypass velocity, vb, now varies to a large degree to act as a buffer and
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Figure 6.23: Manipulated inputs for the feed-forward/feedback controller with P and vr

as the controlled outputs. Control actions applied to ev1 and ev2 are the solid and dashed

lines, respectively.

absorb the effects of the feed disturbance. The manipulated input ev1 also varies to

accomplish this control task. This type of feed-forward/feedback control is the best to

use in a situation where the plant is operating close to the high pressure constraints,

which is usually the case at very high recoveries. This type of control is desirable

because the bypass velocity can vary widely with little to no ill-effects on the system:

vb is readily recycled, there are usually no downstream structures that depend on vb,

and there are no major safety issues associated with wide vb variations.

Remark 6.3: Energy efficiency is often a critical concern in the operation of RO

plants to minimize environmental and economic costs. Inherently, a bypass line with-

out an energy recovery device is an energy waster because pressurized feed water is

throttled, and energy is lost to friction. It is possible to operate an RO system under a

feed-forward/feedback framework as described above using a variable frequency drive

(VFD) on the pump. In this case, the control system could regulate the VFD and
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pump speed in order to change system pressure and flow rather than wasting energy

by sending pressurized water through a bypass line. For example, if a VFD was used,

vf could be considered as a manipulated input, and vb could be removed from the

system. For safety reasons, however, emergency bypass lines that open at a high pres-

sure threshold should still be installed to prevent the accidental over-pressurization

of the system.

6.6.2 Actuator failures

This section considers the application of FDI and FTC to handle valve actuator fail-

ures. This plant model is the same as the system used in the pervious example with

the same time varying disturbance on the feed concentration. Additionally the system

is considered to have noisy sampled measurements. The retentate velocity measure-

ments are subject to gaussian noise with a standard deviation of 6× 10−4 m
s
, and the

bypass velocity measurements are subject to gaussian noise with standard deviation

of 1.4 × 10−3 m
s
. The standard deviation of the noise is 0.2% of the nominal flow

values. In order to isolate a failure, the sampling time must be much faster than the

system dynamics. If the sampling time is too slow, then a failure occurring between

sampling times will propagate to all system states, and the FDI filter will not function

properly. An adequate sampling time can be estimated by examining the open-loop

response time of the system. The sampling time must be significantly shorter than the

response time. This is practically possible given that the filter only requires measure-

ments of vb and vr. Furthermore, while the FDI component requires a fast sampling

rate in order to do isolation, the FTC reconfiguration can happen on a much slower

timescale. FTC reconfiguration could be delayed for several moments after a fault is

isolated, however the states may move to an undesired region during this delay. This
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Figure 6.24: Retentate velocity, vr, profile versus time; subject to a failure in ev2 (solid line)

and with FDIFTC recovery (dotted line).

is clearly better than the alternative of not implementing FDIFTC where the state

may move to an undesired region for all time after an actuator fault. For two simu-

lations measurements are available continuously, and the control is sample-and-hold

every 60 seconds. It is also assumed that FTC reconfiguration takes place at the next

sample and hold interval after detection. A third example displays how FDI performs

with sampled measurements that allow for detection but not isolation. The FDIFTC

framework allows the resilient operation of the RO system in the presence of valve

actuator failures. For this section it is assumed that the fall-back configurations k = 2

and k = 3 discussed in the FDIFTC section are available for the operator to use.

Failure of the retentate valve

For this simulation, the RO system is subjected to a failure in the retentate valve

at t = 35, 424 s where the value of ev2 gets fixed at 1.4 × 108. The control in this
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Figure 6.25: System pressure, P , profile versus time; subject to a failure in ev2 (solid line)

and with FDIFTC recovery (dotted line).
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Figure 6.26: Residual corresponding to the bypass valve versus time. No fault is detected

on the bypass valve. The solid line is under the primary control configuration, and the

dotted line is under the fall-back configuration.
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Figure 6.27: Residual corresponding to the retentate valve versus time. A fault is detected

in this valve at t = 592 min. The solid line is under the primary control configuration, and

the dotted line is under the fall-back configuration.

case is nonlinear feedback control with feed-forward compensation as in section 6.1.4.

Measurements are assumed to be available continuously, while control is implemented

sample-and-hold with a hold time of 60 seconds. The profiles for retentate velocity,

vr, and pressure, P , with and without FDIFTC recovery can be seen in Figs. 6.24

and 6.25. It is clear that if no FDI is used, shown by the solid lines in 6.24 and 6.25,

then the system states move away from the desired set-point values. However, the

FDI filters shown in Eq. 6.7 can be used with this system to generate residual plots

shown in Figs. 6.26 and 6.27. The sampling time is fast enough to effectively detect

and isolate the failure, so only one of the two residuals responds to the fault. It is

clear from the residual plots that the failure has occurred in the retentate valve, and

not in the bypass valve. This actuator fault isolation could not have been done with

inspection of the states alone, because both vb and vr change significantly upon failure.

At the time of detection, t = 592 min, the system is switched to the appropriate fall-
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Figure 6.28: Retentate velocity, vr, profile versus time; subject to a failure in ev1 (solid line)

and with FDIFTC recovery (dotted line).

back configuration under FDIFTC, k = 2 in this case, and the system returns to the

desired operating point. At the time of detection the FDI filter is initialized at the

current state, and is ready to detect an actuator failure in the new configuration.

Failure of the bypass valve

This example explores a sudden failure in the bypass valve. At t = 35, 424 the bypass

valve resistance goes to the nominal value, ev1 = ess
v1, and is fixed. The profiles of

the retentate velocity, vr, and the pressure, P , with FDIFTC recovery can be seen in

Figs. 6.28 and 6.29.

It is clear that if no FDI is used (solid lines in Figs. 6.28 and 6.29) then the system

states respond, and the system moves to an undesirable operating mode. However,

FDIFTC can be implemented to regain control. It can be seen in Figs. 6.30 and 6.31

that the failure has occurred in the bypass line. According to the FDIFTC switching
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Figure 6.29: System pressure, P , profile versus time; subject to a failure in ev1 (solid line)

and with FDIFTC recovery (dotted line).
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Figure 6.30: Residual corresponding to the bypass valve versus time. A fault is detected in

this valve at t = 592 min. The solid line is under the primary control configuration, and

the dotted line is under the fall-back configuration.
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Figure 6.31: Residual corresponding to the retentate valve versus time. No fault is detected

on the retentate valve. The solid line is under the primary control configuration, and the

dotted line is under the fall-back configuration.

logic, the system can switch to the fall-back configuration where k = 3. This fall-

back configuration uses a fall-back bypass valve to replace ev1, and the controller

is able to move the system back to the desired operating point. The FDI filter is

initialized after reconfiguration to isolate additional actuator failures. The system

recovery under FDIFTC can be seen as the dotted lines in Figs. 6.28 and 6.29.

Failure of the bypass valve; sampled measurements

The final example presents a case where continuous measurements of the system states

are not available. Limitations on sampling time are imposed by the dynamic behavior

of flow meters and other sensors. Specifically, flow meters have a dynamic response

time that can by characterized by a time constant, and the flow signal takes some

finite time to adjust to changes in the pipe flow [82]. To this end, sample-and-hold

operation, with a sampling time of 60 seconds, is implemented. The sensor dynamics

178



0 500 1000 1500
0.29

0.295

0.3

0.305

0.31

Time (min)

R
e

te
n
ta

te
 V

e
lo

c
it
y
, 
v r (

m
/s

)

Figure 6.32: Retentate velocity, vr, profile versus time; subject to a failure in ev1.
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Figure 6.33: System pressure, P , profile versus time; subject to a failure in ev1.
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Figure 6.34: Residual corresponding to the bypass valve versus time. The residual is ex-

ceeded at t = 592 min.
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Figure 6.35: Residual corresponding to the retentate valve versus time. The residual is

exceeded at t = 592 min.
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are assumed to be fast compared to this sampling time, and are neglected.

This example includes a sudden failure in the bypass valve; at t = 35, 424 s the

bypass valve resistance goes to 1.5 × 108 and is fixed. The profiles of the retentate

velocity, vr, and the pressure, P , with FDIFTC recovery can be seen in Figs. 6.32

and 6.33. Both states diverge simultaneously due to this failure.

The FDI filters, shown in Figs. 6.34 and 6.35, cannot isolate the failure. The failure

propagates to both states between consecutive measurements, and thus both residuals

exceed the threshold so that it is impossible to isolate the failed actuator. However,

the FDI filters still provide fault detection, and the operator could take action at the

time of detection to examine the system and search for source of the failure. Even

though FDI is impossible with a large sample period for this system, in practice the

dynamics of an RO plant may not be as fast as the dynamics of the model proposed

in (6.1). Slower system dynamics would allow for FDI filters to perform adequately

even under sampled measurements if the sample time is sufficiently fast compared to

the system dynamics.

6.7 Conclusions

The contributions of this chapter include the development of a dynamic model for

high recovery RO desalination. This model describes the spatial and temporal be-

havior of a high recovery RO desalination process. Additionally, nonlinear control

techniques that include feed-forward/feedback control for disturbance rejection and

FDIFTC have been applied to this dynamic model accounting for practical issues

such as noisy/sampled measurements, large time varying disturbances, and actuator

failures. Nonlinear Lyapunov-based feed-forward/feedback controllers were imple-

mented on the high recovery RO system in simulation examples. The additional feed-
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forward component in the controller was able to compensate for large time varying

disturbances in the feed concentration. FDIFTC methods were applied in simula-

tion examples in order to detect actuator faults and switch appropriately to fall-back

configurations avoiding undesired RO system operation.

The first set of simulation studies examined the ability of the feed-forward/feedback

control algorithms to handle a large time varying disturbance on the feed concentra-

tion. These simulations account for such practical issues as sampled measurements

and time-varying disturbances. The first feed-forward/feedback control simulation

demonstrated the ability to mitigate disturbances with the system states, vb and vr,

as controlled outputs. The pressure, P , in this simulation varied to a large extent

(a possible safety concern), and this P variation motivated the application of feed-

forward/feedback control with the pressure and retentate, P and vr, as controlled

outputs. The second feed-forward/feedback simulation demonstrated the ability to

mitigate the effect of the disturbance on the system pressure, P . The second set

of simulation studies demonstrated the application of a fault-detection and isolation

and fault tolerant control structures for this RO system. These simulations account

for such practical issues as sampled noisy measurements and plant/model parame-

ter mismatch. The first FDIFTC simulation demonstrated the detection, isolation,

and appropriate switching when the system is subjected to a failure on the retentate

valve. The second FDIFTC simulation demonstrated the detection, isolation, and

appropriate switching when the system is subjected to a failure on the bypass valve.
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Chapter 7

Fault-Detection and Isolation for

Nonlinear Process Systems Using

Asynchronous Measurements

7.1 Introduction

This work addresses the problem of fault-detection and isolation for nonlinear pro-

cesses when process measurements are available at asynchronous time instants. First,

a fault-detection and isolation (FDI) scheme that employs model-based techniques is

proposed that allows for the isolation of faults. This scheme employs model-based FDI

filters similar to those proposed in chapter 3 in addition to observers that estimate the

fault free evolution of asynchronously measured states during time intervals in which

their measurements are not available. Specifically, the proposed FDI scheme provides

detection and isolation of any fault that enters into the differential equation of only

synchronously measured states, and grouping of faults that enter into the differential

equation of any asynchronously measured state. For a fully coupled process system,

fault-detection occurs shortly after a fault takes place, and fault isolation, limited by
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the arrival of asynchronous measurements, occurs when asynchronous measurements

become available. Once the FDI methodology has provided the system supervisor

with a fault diagnosis, the supervisor takes appropriate action to seamlessly recon-

figure the system to an alternative control configuration that will enforce the desired

operation. We present applications of the proposed asynchronous FDI and FTC

framework to a polyethylene reactor simulation [60]. Specifically, the polyethylene

reactor includes six state variables such as temperatures, species concentrations, and

catalyst activity. This polyethylene plant naturally gives rise to measurements that

can be sampled synchronously (such as temperature), and those that are sampled

asynchronously (such as reactant and catalyst concentrations). Previous work of our

group [35] considered fault-tolerant control of the polyethylene reactor assuming that

all process variables are continuously measured. In the present work, it is shown

through a detailed simulation study that the proposed model-based asynchronous

FDI technique can lead to reliable actuator fault detection and isolation and fault

tolerant control in a timely manner.

7.2 FDI using asynchronous measurements: Problem formu-

lation and solution

7.2.1 Class of nonlinear systems

In this work, we consider nonlinear process systems described by the following state-

space model

ẋ1 = f1(x1, . . . , xns , xns+1, . . . , xns+na , u, d1, . . . , dp)
...

ẋns = fns(x1, . . . , xns , xns+1, . . . , xns+na , u, d1, . . . , dp)
ẋns+1 = fns+1(x1, . . . , xns , xns+1, . . . , xns+na , u, d1, . . . , dp)

...
ẋns+na = fns+na(x1, . . . , xns , xns+1, . . . , xns+na , u, d1, . . . , dp)

(7.1)
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where xi ∈ R with i = 1, . . . , ns denotes the set of state variables that are sampled

synchronously, xi ∈ R with i = ns+1, . . . , ns+na denotes the set of state variables that

are sampled asynchronously, u ∈ Rnu denotes the input and di ∈ R with i = 1, . . . , p

is a model of the set of p possible faults. The faults are unknown and di can take any

value. The state of the system is given by the vector

x =




x1
...

xns

xns+1
...

xns+na



∈ Rns+na

Using this definition for x, (7.1) can be written in the following equivalent compact

form

ẋ = f(x, u, d1, . . . , dp) (7.2)

We assume that f is a locally Lipschitz vector function and that f(0, 0, 0, . . . , 0) = 0.

This means that the origin is an equilibrium point for the fault-free system with

u(t) ≡ 0. Moreover, we assume that the fault-free system (system (7.1) with di(t) ≡ 0

for all t) has an asymptotically stable equilibrium at the origin x = 0 for a given

feedback control h : Rns+na → Rnu which satisfies h(0) = 0.

Remark 7.1: The assumption of existence of a stabilizing feedback law h(x) is

equivalent to the existence of a control Lyapunov function (CLF) for the system

ẋ = f(x, u, 0, . . . , 0). Explicit stabilizing control laws that provide explicitly-defined

regions of attraction for the closed-loop system have been developed using Lyapunov

techniques for specific classes of nonlinear systems, particularly input-affine nonlinear

systems; the reader may refer to [51, 13] for results in this area. In Section 7.3, a

method such as the one presented in [88] is used for the design of h(x).
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7.2.2 Modeling of asynchronous measurements

System (7.1) is controlled using both sampled synchronous and asynchronous mea-

surements. We assume that xi(t) ∈ R with i = 1, . . . , ns are available continuously

(i.e., at intervals of fixed size ∆ > 0 where ∆ is a sufficiently small positive number).

Each state xi ∈ R with i = ns + 1, . . . , ns + na is sampled asynchronously and is

only available at time instants tk,i where tk≥0,i is a random increasing sequence of

times. A controller design that takes advantage of the asynchronous measurements

must take into account that it will have to operate without complete state informa-

tion between asynchronous samples. This class of systems arises naturally in process

control, where process variables such as temperature, flow, or concentration have to

be measured. In such a case, temperature and flow measurements can be assumed

to be available continuously. Concentration measurements, however, are available at

an asynchronous sampling rate. This model is also of interest for systems controlled

through a hybrid communication network in which wireless sensors are used to add

redundancy to existing working control loops (which use point-to-point wired com-

munication links and continuous measurements) because wireless communication is

often subject to data losses due to interference.

If there exists a non-zero probability that the system operates in open-loop for a

period of time large enough for the state to leave the stability region or even diverge

to infinity (i.e., finite escape time), it is not possible to provide guaranteed stability

properties. In order to study the stability properties in a deterministic framework,

in this paper we consider systems where there is a limit on the maximum number of

consecutive sampling times in which measurements of xi, i = ns . . . ns + na, are not

available, i.e.

∆M ≥ max tk,i − tk+1,i
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This bound on the maximum period of time in which the loop is open has been

also used in other works in the literature [93, 94, 73, 72, 68] and allows us to study

deterministic notions of stability.

7.2.3 Asynchronous state observer

An observer that takes advantage of synchronous measurements, asynchronous mea-

surements, and a process model can be constructed to estimate the fault-free evolution

of asynchronous states between consecutive measurements. The observer states are

updated by setting the observer state equal to the measurement each time a new

asynchronous measurement becomes available, tk,i. The asynchronous state observer

takes the form

˙̂xns+1 = fns+1(x1, . . . , xns , x̂ns+1, . . . , x̂ns+na , u, 0, . . . , 0)
...

˙̂xns+na = fns+na(x1, . . . , xns , x̂ns+1, . . . , x̂ns+na , u, 0, . . . , 0)

(7.3)

with x̂i(tk,i) = xi(tk,i) for all tk,i; that is, each time a new asynchronous measurement

is received, the estimated states x̂i with i = ns +1, . . . , ns +na are reset to match the

true process state. The information generated by this observer provides a fault-free

estimate for each asynchronous state at any time t and allows for the design of non-

linear control laws that utilize full state information. Using the estimated states, the

control input applied to the system is given by

u = h(x̂) (7.4)

with

x̂ =




x1
...

xns

x̂ns+1
...

x̂ns+na



∈ Rns+na
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This control input is defined for all times because it is based on both the synchronous

states and the estimated asynchronous states. We assume that ∆M is small enough

to guarantee that the system in closed-loop with this control scheme is practically

stable, see [93, 94, 73, 72, 68] for details on similar stability results.

7.2.4 Design of fault-detection and isolation filter

Fault tolerant control methods rely on the availability of a fall-back configuration

that can maintain system stability and a control supervisor that will orchestrate the

mode transition in a timely manner. The stability of the fault tolerant control system

depends on accurate and timely FDI, stability of the closed-loop system under the

fall-back configuration, and the location of the state in the state space upon FDI

and reconfiguration. In this section we construct fault-detection and isolation (FDI)

filters that will automatically identify the source of a failure in a timely manner.

Utilizing synchronous state measurements, xi(t) with i = 1, . . . , ns and asynchronous

state estimates, x̂i(t) with i = n + 1, . . . , ns + na the following ns + na filters are

defined [70]:

˙̃xi = fi(x1, . . . , x̃i, . . . , xns , x̂ns+1, . . . , x̂ns+na , ui, 0, . . . , 0), i = 1, . . . , ns

ui = h(x1, . . . , x̃i, . . . , xns , x̂ns+1, . . . , x̂ns+na), i = 1, . . . , ns

˙̃xi = fi(x1, . . . , xns , x̂ns+1, . . . , x̃i, . . . , x̂ns+na , ui, 0, . . . , 0), i = ns + 1, . . . , ns + na

ui = h(x1, . . . , xns , x̂ns+1, . . . , x̃i, . . . , x̂ns+na), i = ns + 1, . . . , ns + na

(7.5)

where x̃i is filter output for the ith state. The FDI filters are only initialized at t = 0

such that x̃i(0) = xi(0), i = 1 . . . , ns + na. For each state, the FDI residual can be

defined as

ri(t) = |xi(t)− x̃i(t)|, i = 1 . . . , ns + na.

The synchronous residuals ri(t) with i = 1, . . . , ns are computed continuously because

xi(t) with i = 1, . . . , ns is known for all t. On the other hand, the asynchronous
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residuals ri(t) with i = ns + 1, . . . , ns + na are computed only at times tk,i when a

new asynchronous measurement of xi(t) with i = ns, . . . , ns + na is received. These

FDI filters operate by essentially predicting the fault-free evolution of each individual

state, accounting for faults that enter the system when the predicted evolution of the

state diverges from the measured evolution (see chapter 3).

The dynamics of both the asynchronous observers, x̂i, and the FDI filters, x̃i,

are identical to those of (7.1) when there are no disturbances or noise acting on the

system. When the states are initialized as x̂i(0) = x̃i(0) = xi(0) both the observer and

filter states will track the true process states. For the synchronous case when a fault,

di, occurs, only the corresponding residual, ri, will become nonzero. A rigorous proof

of this FDI filter property can be found in chapter 3. In the case with asynchronous

measurements, at least one ri will become non-zero when a fault occurs. However,

in the asynchronous case some faults (specifically, type two faults as defined below)

cause the asynchronous observer x̂i to diverge from the true process state xi between

consecutive measurements, and any FDI filter states that are a function of x̂i will

no longer accurately track the corresponding true process states. When such a fault

occurs more than one residual value may become nonzero.

Continuous measurements for asynchronous states are not available, thus the FDI

filters of (7.5) cannot always completely isolate all failures. We consider two classes

of faults. Type one faults are faults that only affect states that are measured contin-

uously; that is, dj is a type one fault if

∂fi

∂dj

= 0,∀i = ns + 1, . . . , ns + na.

Type two faults affect at least one asynchronous state; that is, dj is a type two fault
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if there exists at least one i = ns + 1, . . . , ns + na such that

∂fi

∂dj

6= 0.

The FDI filter will detect and isolate a type one fault dj because the asynchronous

state observers will track the asynchronous states accurately (i.e., the effect of the

fault dj(t) on an asynchronous observer state is accounted for through the synchronous

states, so dj(t) is accounted for in the observer (7.3) and hence the FDI filter). A

type two fault enters the system in the differential equation of a state that is sampled

asynchronously. The effect of type two faults cannot be accounted for by the observer

x̂i, and such a fault will cause x̂i to no longer track xi and will eventually affect other

coupled filter states as well. Strict isolation cannot take place for a type two fault.

The FDI filter will detect and partially isolate disturbances in this case because the

asynchronous state observers will diverge from the asynchronous states (i.e., the effect

of the fault dj(t) on an asynchronous observer state is unmeasured and unaccounted

for, thus (7.3) does not track the disturbed state). In other words, if a type one fault

occurs, then it can be detected and isolated. If a type two fault occurs, then this

fault can be grouped to the subset of type two faults.

A fault is detected at time tf if there exists a residual i such that ri(tf ) > ri,max,

where ri,max is an appropriate threshold chosen to account for process and sensor

noise. In order to isolate the possible source of the fault, it is necessary to wait until

the residuals of all the asynchronous state filters are updated after tf to determine if

the fault is type one or type two. The residual of each asynchronous state filter x̃i is

updated at time

ti(tf ) = min
k

tk,i| tk,i > tf .

If ri(ti(tf )) ≤ ri,max with i = ns + 1, . . . , ns + na, then the fault occurred at time tf

is a type one fault and can be appropriately isolated. Otherwise, the fault belongs to
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the set of type two faults.

Consider that a synchronous residual ri indicates a fault at time tf . In this case

the fault could have two possible causes, a type one or type two fault. In order

to determine the true cause of this fault, one has to wait for the complete set of

asynchronous measurements to arrive after tf . When all the asynchronous measure-

ments arrive and if all the residuals of the asynchronous states are smaller than the

threshold, then the fault can be attributed to a type one fault. If any asynchronous

measurement arrives and the corresponding residual indicates a fault, then the fault

is type two. Note that when an asynchronous residual indicates a fault, we can also

conclude that the fault is type two. When the fault is type two it has been detected,

and it is possible to narrow the fault source down to the set of faults that enter the

differential equations of asynchronous states.

When the fault can be attributed to a type one fault and it has been detected and

isolated, then automated fault tolerant control action can be initiated. For example,

when a fault event that is due to a manipulated input failure (i.e., an actuator failure)

is detected and isolated, fault tolerant control methods can be initialed as proposed

in chapter 3. In general an FTC switching rule may be employed that orchestrates

the re-configuration of the control system in the event of control system failure. This

rule determines which of the backup control loops can be activated, in the event that

the main control loop fails, in order to preserve closed-loop stability. Owing to the

limitations imposed by input constraints on the stability region for each control con-

figuration, switching from a malfunctioning configuration to a well-functioning, but

randomly selected, backup configuration will not preserve closed-loop stability if the

state of the system, at the time of failure, lies outside the stability region of the cho-

sen backup configuration. In this case, stabilization using this configuration requires
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more control action than is allowed by its constraints. This observation motivates

the development of switching logic, which is to switch to the control configuration for

which the closed-loop state resides within the stability region at the time of control

failure. Without loss of generality, let the initial actuator configuration be k(0) = 1

and let td be the time when this failure has been isolated, then the switching rule

given by

k(t) = j ∀ t ≥ td if x(td) ∈ Ω(umax
j ) (7.6)

for some j ∈ {2, 3, · · · , N} guarantees closed-loop asymptotic stability. Ω(umax
j is the

stability region for the jth control configuration. The implementation of the above

switching law requires monitoring the closed-loop state trajectory with respect to the

stability regions associated with the various fall-back configurations. The reader may

refer to [35] for application of FTC to a polyethylene reactor with constraints on the

manipulated inputs. In this work we consider a control law without constraints on

the manipulated inputs, and the primary control configuration with a faulty actuator

will be deactivated in favor of a fully functional fall-back control configuration where

the fall-back configuration can guarantee global stability of the closed-loop system.

This integrated FDI/FTC reconfiguration allows for seamless fault-recovery in the

event of an actuator failure. Section 7.3 demonstrates integrated FDI/FTC for the

polyethylene reactor.

Remark 7.2: In the process model of (7.1), process and sensor noise are not explicitly

taken into account. However, noise is indirectly accounted for in the FDI method

below by means of appropriate tolerance thresholds in the decision criteria for fault

detection and isolation; that is, ri,max. The thresholds are generated on the basis of

operating data and take into account both sensor and process noise, allowing for an

appropriate FDI performance even if the process model and the measurements are

corrupted by noise. To demonstrate this point, process and sensor noise are included
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in the simulation study; see Section 7.3 for details.

7.3 Application to a polyethylene reactor with asynchronous

measurements

7.3.1 Process and measurement modeling

The proposed model based asynchronous FDI and FTC method will be demonstrated

using a model of an industrial gas phase polyethylene reactor. The feed to the reactor

consists of ethylene, comonomer, hydrogen, inerts and catalyst. A recycle stream of

unreacted gases flows from the top of the reactor and is cooled by passing through

a water-cooled heat exchanger. Cooling rates in the heat exchanger are adjusted by

mixing cold and warm water streams while maintaining a constant total cooling water

flow rate through the heat exchanger. Mass balances on hydrogen and comonomer

have not been considered in this study because hydrogen and comonomer have only

mild effects on the reactor dynamics [60]. A mathematical model for this reactor has
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the following form [15]:

d[In]

dt
=

1

Vg

(FIn − [In]

[M1] + [In]
bt)

d[M1]

dt
=

1

Vg

(FM1 −
[M1]

[M1] + [In]
bt −RM1) + d4

dY1

dt
= Fcac − kd1Y1 − RM1MW1Y1

Bw

+ d2

dY2

dt
= Fcac − kd2Y2 − RM1MW1Y2

Bw

+ d2

dT

dt
=

Hf + Hg1 −Hg0 −Hr −Hpol

MrCpr + BwCppol

+ Q + d1

dTw1

dt
=

Fw

Mw

(Twi − Tw1)−
UA

MwCpw

(Tw1 − Tg1)

dTg1

dt
=

Fg

Mg

(T − Tg1) +
UA

MgCpg

(Tw1 − Tg1) + d3

(7.7)

where
bt = VpCv

√
([M1] + [In])RRT − Pv

RM1 = [M1]kp0e
−Ea

R
( 1

T
− 1

Tf
)
(Y1 + Y2)

Cpg =
[M1]

[M1] + [In]
Cpm1 +

[In]

[M1] + [In]
CpIn

Hf = (FM1Cpm1 + FInCpIn)(Tfeed − Tf )

Hg1 = Fg(Tg1 − Tf )Cpg

Hg0 = (Fg + bt)(T − Tf )Cpg

Hr = HreacMW1RM1

Hpol = Cppol(T − Tf )RM1MW1

(7.8)

The definitions for all the variables used in (7.7) and (7.8) are given in Table 7.1 and

their values can be found in [15] (see also [35]). Under normal operating conditions,

the open-loop system behaves in an oscillatory fashion (i.e., the system possesses an

open-loop unstable steady-state surrounded by a stable limit cycle). The open-loop

unstable steady-state around which the system will be controlled is

[In]ss = 439.7mol
m3 [M1]ss = 326.7mol

m3

Y1ss, Y2ss = 3.835mol Tss = 356.2K
Tg1ss = 290.4K Tw1ss = 294.4K.
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Note that with the given parameters, the dynamics of Y1, Y2 are identical and will

be reported in the results as a single combined state. In this example, we consider

four possible faults, d1, d2, d3, and d4 which represent a heat jacket fault, catalyst

deactivation, a change in the recycle gas flow rate, and ethylene consumption, respec-

tively. The primary manipulated input for these studies is the heat input, Q, and the

fall-back manipulated input is the feed temperature, Tfeed. In practice the tempera-

ture of the feed stream would be manipulated via a heat exchanger positioned on the

feed line before it enters the process. A fall-back manipulated input is required to

maintain desired system performance in the presence of failure in the primary control

configuration.

Simulations have been carried out for several scenarios to demonstrate the ef-

fectiveness of the proposed FDI scheme in detecting and isolating the four faults

d1, d2, d3, and d4 in the presence of asynchronous measurements. The temperature

measurements (T , Tg1 , Tw1) are all assumed to be available synchronously, while the

concentration measurements ([In], [M1], Y ) arrive at asynchronous intervals. In all

the simulations, sensor measurement and process noise are included. The sensor mea-

surement noise trajectory was generated using a sample time of ten seconds and a

zero-mean normal distribution with standard deviation σM . The autoregressive pro-

cess noise was generated discretely as wk = φwk−1 + ξk where k = 0, 1, . . . is the

discrete time step, with a sample time of ten seconds, φ is the autoregressive coeffi-

cient and ξk is obtained at each sampling step using a zero-mean normal distribution

with standard deviation σp. The autoregressive process noise is added to the right-

hand side of the differential equations for each state and the sensor measurement noise

is added to the measurements of each state. Sensor measurement noise and process

noise are evaluated independently for each state variable. The process and sensor
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measurement noise for Y1 and Y2 are taken to be equal. Table 7.2 provides the values

of the noise parameters for each state of system (7.7). The length of time between

consecutive asynchronous measurements is generated randomly based on a Poisson

process. The time when the system will receive the next ith asynchronous measure-

ment is given by tk+1,i = tk,i + ∆a where ∆a = ln(ξ)/Wa and ξ ∈ (0, 1) is a random

variable chosen from a uniform probability distribution and Wa = 0.003 s−1 is the

mean rate of asynchronous sampling. There is an upper bound limiting the time be-

tween consecutive measurements such that ∆a ≤ ∆M = 1200 s. This value of ∆M is

small enough to provide practical closed-loop stability around the desired equilibrium

point for the polyethylene reactor of (7.7). An increasing sequence of measurement

arrival times is generated independently for each asynchronously measured state.

7.3.2 Design of the asynchronous state observers

To perform FDI for the polyethylene reactor system we need to construct the asyn-

chronous state observers of (7.3). The asynchronous state observers for this system
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Table 7.1: Polyethylene reactor example process variables.

ac active site concentration of catalyst
bt overhead gas bleed
Bw mass of polymer in the fluidized bed
Cpm1 specific heat capacity of ethylene
Cv vent flow coefficient
Cpw, CpIn, Cppol specific heat capacity of water, inert gas and polymer
Ea activation energy
Fc, Fg flow rate of catalyst and recycle gas
FIn, FM1 , Fw flow rate of inert, ethylene and cooling water
Hf , Hg0 enthalpy of fresh feed stream, total gas outflow stream from

reactor
Hg1 enthalpy of cooled recycle gas stream to reactor
Hpol enthalpy of polymer
Hr heat liberated by polymerization reaction
Hreac heat of reaction
[In] molar concentration of inerts in the gas phase
kd1 , kd2 deactivation rate constant for catalyst site 1, 2
kp0 pre-exponential factor for polymer propagation rate
[M1] molar concentration of ethylene in the gas phase
Mg mass holdup of gas stream in heat exchanger
MrCpr product of mass and heat capacity of reactor walls
Mw mass holdup of cooling water in heat exchanger
MW1 molecular weight of monomer
Pv pressure downstream of bleed vent
Q Heat added/removed by heating jacket
R, RR ideal gas constant, unit of J

mol·K , m3·atm
mol·K

T , Tf , Tfeed reactor, reference, feed temperature
Tg1 , Tw1 temperature of recycle gas, cooling water stream from ex-

changer
Twi inlet cooling water temperature to heat exchanger
UA product of heat exchanger coefficient with area
Vg volume of gas phase in the reactor
Vp bleed stream valve position
Y1, Y2 moles of active site type 1, 2
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Table 7.2: Polyethylene reactor noise parameters

σp σm φ

[In] 1E-4 5E-2 0

[M1] 1E-4 5E-2 0.7

Y 1E-4 1E-2 0.7

T 5E-3 5E-2 0.7

Tg1 5E-3 5E-2 0.7

Tw1 5E-3 5E-2 0.7

have the following form:

d[În]

dt
=

1

Vg

(FIn − [În]

ˆ[M1] + [În]
b̂t)

d ˆ[M1]

dt
=

1

Vg

(FM1 −
ˆ[M1]

ˆ[M1] + [În]
b̂t − R̂M1)

dŶ

dt
= Fcac − kd1Ŷ − R̂M1MW1Y

Bw

b̂t = VpCv

√
( ˆ[M1] + [În])RRT (t)− Pv

R̂M1 = ˆ[M1]kp0e
−Ea

R
( 1

T (t)
− 1

Tf
)
(Ŷ )

[În](tk,[In]) = [In](tk,[In])

ˆ[M1](tk,[M1]) = [M1](tk,[M1])

Ŷ (tk,Y ) = Y (tk,Y )

(7.9)

where [În], ˆ[M1], and Ŷ are the asynchronous observer states. Each asynchronous

observer state is initialized each time new measurement information becomes available

at the times tk,i. The observer states provide estimates for the asynchronous states

between consecutive measurements allowing the computation of control actions and

FDI residuals at each time.
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7.3.3 Design of the state feedback controller

The control objective is to stabilize the system at the open-loop unstable steady state.

A nonlinear Lyapunov-based feedback controller that enforces asymptotic stability of

the closed-loop system is synthesized using the method proposed in [88] (see also

[24]). This is a single input controller that utilizes synchronous measurements as well

as observer states generated by (7.9). System (7.7) belongs to the following class of

non-linear systems

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(x(t))d(t) (7.10)

where

x(t) =




[In]− [In]ss
[M1]− [M1]ss

Y − Yss

T − Tss

Tg1 − Tg1ss

Tw1 − Tw1ss




and

u1(t) = Q, u2(t) = Tfeed.

Consider the quadratic control Lyapunov function V (x) = xT Px where

P = 1× 10−2 diag[0.5 0.5 0.5 1 0.005 0.005].

The values of the weighting matrix P are chosen to account for the different range

of numerical values for each state. The following feedback laws [88] asymptotically

stabilize the open-loop and possibly unstable steady-state of the nominal system (i.e.,

d(t)) ≡ 0)

hi(x) =

{
−Lf V +

√
Lf V 2+LgiV 4

LgiV
if Lgi

V 6= 0

0 if Lgi
V = 0

, i = 1, 2. (7.11)

where LfV and Lgi
V denote the Lie derivatives of the scalar function V with respect

to the vectors fields f and gi respectively.
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In the simulations, the primary control configuration is given by

u1(t) = h1(x̂(t))

and the fall-back control configuration is given by

u2(t) = h2(x̂(t))

where

x̂(t) =




[În]− [In]ss
ˆ[M1]− [M1]ss
Ŷ − Yss

T − Tss

Tg1 − Tg1ss

Tw1 − Tw1ss




.

7.3.4 Design of FDI/FTC scheme

Fault-detection and isolation for the system in closed-loop with the primary configu-

ration is accomplished by generating FDI filters from (7.5), and for the polyethylene

system the FDI filters take the following form:

d[Ĩn]

dt
=

1

Vg

(FIn − [Ĩn]

ˆ[M1] + [Ĩn]
b̃
[In]
t )

d ˜[M1]

dt
=

1

Vg

(FM1 −
˜[M1]

˜[M1] + [În]
b̃
[M1]
t − R̃

[M1]
M1 )

dỸ

dt
= Fcac − kd1Ỹ − R̃Y

M1MW1Ỹ

Bw

dT̃

dt
=

Hf + H̃T
g1 − H̃T

g0 − H̃T
r − H̃T

pol

MrCpr + BwCppol

+ h1(x̂(t))

dT̃w1

dt
=

Fw

Mw

(Twi − T̃w1)−
UA

MwCpw

(T̃w1 − Tg1)

dT̃g1

dt
=

Fg

Mg

(T − T̃g1) +
UA

MgC̃pg

(Tw1 − T̃g1)

(7.12)
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where

b̃
[In]
t = VpCv

√
( ˆ[M1] + [Ĩn])RRT − Pv

b̃
[M1]
t = VpCv

√
( ˜[M1] + [În])RRT − Pv

b̃
[T ]
t = VpCv

√
( ˆ[M1] + [În])RRT̃ − Pv

R̃
[M1]
M1 = ˜[M1]kp0e

−Ea
R

( 1
T
− 1

Tf
)
(Ŷ )

R̃Y
M1 = ˆ[M1]kp0e

−Ea
R

( 1
T
− 1

Tf
)
(Ỹ )

R̃T
M1 = ˆ[M1]kp0e

−Ea
R

( 1
T̃
− 1

Tf
)
(Ŷ )

C̃pg =
ˆ[M1]

ˆ[M1] + [În]
Cpm1 +

[În]

ˆ[M1] + [În]
CpIn

H̃T
g1 = Fg(Tg1 − Tf )C̃pg

H̃T
g0 = (Fg + b̃T

t )(T̃ − Tf )C̃pg

H̃T
r = HreacMW1R̃

T
M1

H̃T
pol = Cppol(T̃ − Tf )R̃

T
M1MW1

(7.13)

In addition, the FDI residuals take the following form:

r[In] = |[In](tk)− [Ĩn](tk)|
r[M1] = |[M1](tk)− [Ĩn](tk)|
rY = |Y (tk)− Ỹ (tk)|
rT = |T − T̃ |
rTg1

= |Tg1 − T̃g1|
rTw1

= |Tw1 − T̃w1|.

(7.14)

In the case with measurement and process noise, the residuals will be nonzero even

without a failure event. This motivates the use of detection thresholds such that

a fault is declared when a residual exceeds a specific threshold value, ri,max (note

that a different threshold value can be used for each residual, see Remark 7.2). This

threshold value must be selected to avoid false alarms due to process and measurement

noise, but it should also be sensitive enough (small enough) to detect faults in a timely

manner so that efficient FTC action can be initiated. The threshold values used for

each residual in the numerical simulations can be seen as the dashed lines in Figures

7.3, 7.7, 7.11, and 7.15.
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If the fault can be isolated to d1 (i.e., rT exceeds rT,max at t = tf , while ri(ti(tf )) ≤
ri,max with i = [In], [M1], Y ), then one can invoke fault tolerant control methods to

handle actuator failures by activation of a fall-back control configuration. In the

simulation studies, it is assumed that a fall-back configuration, where the fall-back

manipulated input u2 = Tfeed, is available. The control law of (7.11) enforces stability

when the control actuator is functioning properly, thus switching to the operational

fall-back configuration will guarantee stability in the case of failure of the primary

control configuration, u1 = Q.

7.3.5 Closed-loop process simulation results

This section consists of four simulation studies, each examining one of the faults d1,

d2, d3, or d4 as shown in (7.7). The first simulation considers a fault, d1, on the

heating jacket which is the primary manipulated input. In this case the simulation

includes fault tolerant control that automatically reconfigures the plant so that the

fall-back manipulated input, u2 = Tfeed, is activated to maintain stability. Specifically,

the supervisory control element will deactivate the primary control configuration, u1

and activate the fall-back configuration u2 when rT > rT,max and ri(ti(tf )) ≤ ri,max

with i = [In], [M1], Y . This specific fault signature corresponds to a type one fault

that can be isolated to d1. The reader may refer to [35] to obtain more information

on FTC and reconfiguration rules for a polyethylene reactor with constraints on the

manipulated inputs that give rise to stability regions. This work does not consider

constraints on the manipulated inputs, hence, the fall-back configuration can guaran-

tee stability from anywhere in the state space because the closed-loop system under

the fall-back control configuration is globally asymptotically stable. The remaining

simulation studies explore faults that disturb the system, but do not arise from actu-
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ator failures. Since they are not caused by actuation component malfunctions these

failures cannot be resolved simply by actuator reconfiguration. However, these sim-

ulations demonstrate quick detection and isolation in the presence of asynchronous

measurements that enables the operator to take appropriate and focused action in a

timely manner.

For the fault d1 a simulation study has been carried out to demonstrate the pro-

posed asynchronous fault-detection and isolation and fault tolerant control method.

The sequence of asynchronous measurements for this scenario is shown in Figure 7.1.

This first simulation uses the primary control configuration in which Q is the ma-

nipulated input and has a fall-back configuration, in which Tfeed is the manipulated

input, available in case of a fault in d1. A fault takes place where d1 = 1 K/s at t =

0.5 hr representing a failure in the heating jacket, Q. At this time the synchronous

states in Figure 7.2 all move away from the equilibrium point. Additionally, as asyn-

chronous measurements become available, it is clear the asynchronous states also

move away from the equilibrium point after the failure. It is unclear from the state

information alone what caused this faulty behavior. However, if the FDI residuals in

Figure 7.3 generated by (7.12) are examined, it is clear that the residual rT that is

associated with the manipulated input Q, violates its threshold at tf = 0.5003 hr.

The fault is detected upon this threshold violation. However, isolation cannot take

place until one new measurement for each asynchronous state becomes available. At

t = 0.5944 hr all three required asynchronous measurements have arrived, and the

asynchronous residuals remain below their thresholds, hence ri(ti(tf )) ≤ ri,max with

i = [In], [M1], Y . This signals that this is a type one fault that can be isolated to d1.

At this time, the system is reconfigured to the fall-back configuration where Tfeed is

the manipulated input, and the resulting state trajectory, shown as the dotted line
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Figure 7.1: Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y (circle) with

a fault d1 at t = 0.5 hr.

in Figure 7.2, moves back to the desired operating point. The manipulated input for

this scenario can be seen in Figure 7.4 where the solid line is the manipulated input

without detection and reconfiguration, and the dotted line represents the input after

FDI and reconfiguration.

The second simulation demonstrates the proposed asynchronous model-based fault-

detection and isolation method when a type two fault occurs. The sequence of asyn-

chronous measurements for this scenario is shown in Figure 7.5. This simulation uses

the primary control configuration in which Q is the manipulated input. A fault takes

place where d2 = −0.001 mol/s at t = 0.5 hr representing a catalyst deactivation

event. After the failure, two synchronous states in Figure 7.6 move away from the

equilibrium point. Additionally, as asynchronous measurements become available it

can be seen that asynchronous states also move away from the equilibrium point after

the failure. It is unclear from the state information alone what caused this faulty be-

havior. However, if the FDI residuals in Figure 7.7 generated by (7.14) are examined,

it is clear that the residuals r[M1], rY ,and rT violate their thresholds. The fault is

detected upon the first threshold violation (rY at t = 0.5333). When the residual
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Figure 7.2: State trajectories of the closed-loop system without fault-tolerant control (cir-

cle/solid) and with appropriate fault-detection and isolation and fault-tolerant control where

the fall-back control configuration is activated (star/dotted) with a fault d1 at t = 0.5 hr.
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Figure 7.3: Fault-detection and isolation residuals for the closed-loop system with a fault d1

at t = 0.5 hr. The fault is detected immediately, but isolation occurs at t = 0.59 hr when

all three asynchronous states have reported a residual below their detection threshold. This

signals a type one fault, and we can isolate the source of this fault as d1
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Figure 7.4: Manipulated input for the closed-loop system without fault-tolerant control

(solid) and with appropriate fault-tolerant control where the fall-back control configuration

is activated (dotted) with a fault d1 at t = 0.5 hr.

associated with Y exceeds the threshold this signals that the fault is type two and

entered the system in the differential equation of an asynchronous state. When the

fault is type two it cannot be isolated. However, such a fault can be grouped in the

subset of faults that enter into the differential equation of an asynchronous state, (i.e.,

the group of type two faults, specifically, d2 or d4). At this time, the system operator

can utilize the above partial isolation to examine the plant and determine the exact

source of the failure. The manipulated input for this scenario can be seen in Figure

7.8.

The third simulation study examines FDI in the presence of a type one fault, d3,

representing a change in the recycle gas flow rate. The sequence of asynchronous

measurements for this scenario is shown in Figure 7.9. This simulation study uses

the primary control configuration in which Q is the manipulate input, and a fault

takes place where d3 = 300 K/s at t = 0.5 hr. At this time the synchronous states in

Figure 7.10 all move away from the equilibrium point. Additionally, as asynchronous

measurements become available it is observed that the asynchronous states also move

away from the equilibrium point after the failure. It is unclear from the state in-
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Figure 7.5: Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y (circle) with

a fault d2 at t = 0.5 hr.
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Figure 7.6: State trajectories of the closed-loop system with a fault d2 at t = 0.5 hr.
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Figure 7.7: Fault-detection and isolation residuals for the closed-loop system with a fault d2

at t = 0.5 hr. The fault is detected when residual for Y exceeds the threshold. Subsequently,

T and [M1] exceed their thresholds. When any asynchronous residual violates the threshold

this indicates that the fault is in the set of type two faults; d2 or d4.
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Figure 7.8: Manipulated input for the closed-loop system with a fault d2 at t = 0.5 hr.
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Figure 7.9: Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y (circle) with

a fault d3 at t = 0.5 hr.

formation alone what caused this faulty behavior. However, if the FDI residuals in

Figure 7.11 generated by (7.12), (7.13), and (7.14) are examined, the residual associ-

ated with Tg1, violates its threshold at t = 0.5003 hr. The fault is detected upon this

threshold violation. However, isolation cannot take place until one new measurement

for each asynchronous state becomes available. At t = 0.6086 hr all three required

asynchronous measurements have become available, and the residuals signal a type

one fault, allowing the isolation of the fault to d3. The manipulated input for this

scenario can be seen in Figure 7.12.

The final simulation study demonstrates the proposed asynchronous model-based

fault-detection and isolation method when a type two fault occurs. The sequence of

asynchronous measurements for this scenario is shown in Figure 7.13. This simulation

uses the primary control configuration in which Q is the manipulated input. A fault

takes place where d4 = −0.2 mol/s at t = 0.5 hr representing unexpected monomer

consumption. After the failure the synchronous states in Figure 7.14 diverge from

their desired values. Additionally, as asynchronous measurements become available it

can be seen that asynchronous states also diverge after the failure. It is unclear from
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Figure 7.10: State trajectories of the closed-loop system with a fault d3 at t = 0.5 hr.
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Figure 7.11: Fault-detection and isolation residuals for the closed-loop system with a fault

d3 at t = 0.5 hr. A fault is detected immediately when residual for Tg1 exceeds the threshold.

Subsequently, none of the asynchronous residuals exceed their thresholds, indicating that

the fault source can be isolated as d3.
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Figure 7.12: Manipulated input for the closed-loop system with a fault d3 at t = 0.5 hr.
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Figure 7.13: Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y (circle)

with a fault d4 at t = 0.5 hr.

the state information alone what caused this faulty behavior. However, if the FDI

residuals in Figure 7.15 generated by (7.12) are examined, the residuals r[In], r[M1],

rT ,and rTg1 violate their thresholds. The fault is detected upon the first threshold

violation (r[M1] at t = .05667 hr). When the residual r[M1] exceeds the threshold this

signals that a type two fault has occurred. When a type two fault occurs it cannot

be isolated. As in the second simulation, such a fault can be grouped in the subset

of type two faults d2 or d4. At this time, the system operator can utilize the partial

isolation to examine the plant and determine the exact source of the failure. The

manipulated input for this scenario can be seen in Figure 7.16.
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Figure 7.14: State trajectories of the closed-loop system with a fault d4 at t = 0.5 hr.
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Figure 7.15: Fault-detection and isolation residuals for the closed-loop system with a fault

d4 at t = 0.5 hr. The fault is detected when residual for [M1] exceeds the threshold.

Subsequently, T and [In] exceed their thresholds. When any asynchronous residual violates

the threshold this indicates the fault is in the set of type two faults; d2 or d4.
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Figure 7.16: Manipulated input for the closed-loop system with a fault d4 at t = 0.5 hr.

7.4 Conclusions

This work addressed the problem of fault-detection and isolation and fault-tolerant

control when several process measurements are not available synchronously. First, a

fault-detection and isolation scheme that employs model-based techniques was pro-

posed that allowed for the isolation of faults. This scheme employed model-based FDI

filters in addition to observers that estimate the fault-free evolution of asynchronously

measured states during times when they are unmeasured. Specifically, the proposed

FDI scheme provides detection and isolation for a type one fault where the fault enters

into the differential equation of only synchronously measured states, and grouping of

type two faults that enter into the differential equation of any asynchronously mea-

sured state. The detection occurs shortly after a fault takes place, and the isolation,

limited by the arrival of asynchronous measurements, occurs once all of the asyn-

chronous measurements become available. Once the FDI methodology provided the

system supervisor with a fault diagnosis, the supervisor took appropriate action to

seamlessly reconfigure the system to an alternative control configuration that enforces

the desired operation. We presented applications of the proposed asynchronous FDI

and FTC framework to a polyethylene reactor simulation.

213



Chapter 8

Conclusions

This dissertation developed a general and practical framework for the design of non-

linear automated fault tolerant control systems that seamlessly integrate the tasks

of nonlinear fault-detection and isolation and control system reconfiguration for fault

handling. Working with general nonlinear dynamic models of chemical processes, we

designed nonlinear dynamic filters that allow for timely detection and isolation of

actuator/control system faults using limited plant measurements. The key idea is

to design a fault detection and isolation scheme for nonlinear process systems that

decouples the effect of a fault on all process variables except one. This allows fault

detection and isolation for nonlinear chemical processes even with highly coupled

variables. The nonlinear dynamic filters were coupled with suitable control system

reconfiguration strategies which achieve quick fault recovery and guarantee closed-

loop system stability. In addition, these fault-tolerant control methods deal explicitly

with the practical issues of limited control actuator capacity, model uncertainty and

disturbances, measurement noise and sensor faults. We presented applications of

the proposed fault-tolerant control system design framework to a number of process

systems.
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It is important to point out several major conclusions that can be drawn from this

dissertation. First and foremost this work develops theory and techniques for non-

linear system applications. The focus on non-linear system is in itself a major area

of contribution because it is an areas that has not been well-developed even though

virtually all process systems with integrated control are non-linear. The consideration

of guaranteed stability as a key additional constraint is substantially enriched as a

result. One major contribution is the development of fault detection and isolation

filters for a general class of nonlinear systems. Previous work has focused extensively

on linear filters. The extension to nonlinear systems required considerable expan-

sion of the theory and integration with other components in the overall FTC system.

The proposed fault detection and isolation framework is general enough to define the

class of nonlinear systems for which isolation is possible, thus the framework can also

be used in the design of control systems for which full fault isolation is achievable.

For example, assumption 3.1 can be used by the control engineer to help determine

the states that are important to measure, and the variables that are best to use for

manipulated inputs in order to enable full isolation of actuator faults. In addition,

the proposed fault detection and isolation methodologies are useful in application to

existing chemical process systems, as many process systems are naturally structured

to allow actuator fault detection and isolation. Chapter 7 provides results for process

systems subject to asynchronous measurements that can assist the engineer in select-

ing appropriate manipulated inputs, asynchronous sensors, and synchronous sensors

that will provide the desired level of isolability. Another contribution is the develop-

ment of a fault-tolerant control structure in the presence of sensor data losses. This

fault-tolerant control structure allows the control engineer to determine acceptable

level of data loss while still providing a guarantee of stability. The final major con-

tribution is the seamless integration of newly developed fault detection and isolation
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methods with fault tolerant control methods. These fault tolerant control methods

consist of constrained nonlinear controllers, which provide explicit stability regions

for each fall-back closed-loop configuration, in conjunction with a supervisory control

system that can make timely decisions about reconfiguration in the event of a fault.

The integration of fault detection and isolation and fault-tolerant control enables

the automated supervisory control system to react to abnormal situations quickly

and optimally, thus freeing up the human plant operator to focus on strategic plant

management.

Specifically, chapters 2 and 3 focused on the development of integrated fault tol-

erant control methodologies for general process systems. These methodologies were

developed in a general manner so they may be applied to a wide variety of chemical

processing plants. Specifically, chapter 2 focused on fault detection for single-input

process systems with manipulated input constraints, and chapter 3 extended these

results to include multi-input nonlinear process systems with constraints on the ma-

nipulated inputs. Necessary conditions for the design of state- and output-feedback

fault detection and isolation filters were derived. Filters were designed that essentially

capture the difference between fault-free and observed (or estimated) evolution of the

system states to detect and isolate faults in the control actuators. Reconfiguration

rules were devised to identify the appropriate backup control configuration account-

ing for the faulty actuator and constraints. The implementation of the fault detection

and isolation filters and reconfiguration strategy as well as robustness with respect

to plant-model mismatch, measurement sampling and delay and measurement noise

were demonstrated via chemical process examples.

Chapter 4 considered the problem of designing a fault-tolerant controller for non-

linear process systems subject to constraints and sensor data losses. Having identified
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candidate control configurations for a given system, we first explicitly characterized

the stability properties that is, the set of initial conditions starting from where closed-

loop stabilization under continuous availability of measurements is guaranteed as well

as derived a bound on the maximum allowable data loss rate which preserves closed-

loop stability. This characterization was utilized in designing a reconfiguration logic

that was shown to achieve practical stability in the presence of sensor data losses. The

application of the proposed method was illustrated using a chemical process example

and was also applied to a polyethylene reactor.

The contributions of chapters 5 and 6 include the development of a dynamic model

for high recovery RO desalination. This model describes the spatial and temporal

behavior of a high recovery RO desalination process. Additionally, nonlinear control

techniques that include feed-forward/feedback control for disturbance rejection and

FDIFTC were applied to this dynamic model accounting for practical issues such as

noisy/sampled measurements, large time varying disturbances, and actuator failures.

The feed-forward component in the controller was able to compensate for large time

varying disturbances in the feed concentration. FDIFTC methods were applied in

simulation examples in order to detect actuator faults and switch appropriately to

fall-back configurations avoiding undesired RO system operation.

Finally, chapter 7 addressed the problem of fault detection and isolation and fault-

tolerant control when several process measurements are not available synchronously.

First, a fault detection and isolation scheme that employs model-based techniques

was proposed that allowed for the isolation of faults. The detection occurs shortly

after a fault takes place, and the isolation, limited by the arrival of asynchronous

measurements, occurs once all of the asynchronous measurements become available.

Once the FDI methodology provided the system supervisor with a fault diagnosis,
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the supervisor took appropriate action to seamlessly reconfigure the system to an

alternative control configuration that enforces the desired operation. We presented

applications of the proposed asynchronous FDI and FTC framework to a polyethylene

reactor simulation.

There are several opportunities for future work in the area of nonlinear fault de-

tection and isolation and fault tolerant control to follow up on the research direction

developed in this dissertation. The implementation of data based fault detection and

isolation schemes on processes with asynchronous measurements is a natural extension

of the work in chapter 7. Augmenting chemical processes, with existing synchronous

closed-loop control in place, by addition of asynchronous sensors/actuators could be

studied. Such augmentation would improve fault isolability and closed-loop perfor-

mance. The reverse osmosis models proposed in chapters 5 and 6 could be verified

and improved via laboratory scale experiments, and fault detection and isolation and

fault-tolerant control methods could be applied to experimental reverse osmosis sys-

tems. Based on the work of chapter 7, one could consider the case of output feedback

where some process variables are measured synchronously, some are measured asyn-

chronously, and some are not measured at all. In this case the unmeasured states

must be reconstructed through state estimation. Furthermore, future work in this

area could include the application of the results from chapter 3, 4, and 7 to a large

scale chemical processing plant based on an industrial example, such as a highly inter-

connected refinery, to explore unique issues for model-based FDI and FTC that arise

when very large numbers of states and manipulated inputs are involved. Eventually

this could lead to the verification of the proposed frameworks on a large scale based

on data from chemical processes that are currently in operation.
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