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ABSTRACT OF THE DISSERTATION

Modeling and Control of Particulate Processes:

High-Velocity Oxygen Fuel Thermal Spray and Protein Crystallization

by

Dan Shi

Doctor of Philosophy in Chemical Engineering
University of California, Los Angeles, 2005

Professor Panagiotis D. Christofides, Chair

Particulate processes play an important role in a number of process industries
including agricultural, chemical, food, minerals and pharmaceuticals. By some esti-
mates, 60% of the products in the process industries are manufactured as particu-
lates with an additional 20% using powders as ingredients. Examples of particulate
processes include the crystallization of proteins for pharmaceutical applications, the
emulsion polymerization reactors for the production of latex, and the thermal spray
processing of nanostructured coatings used as thermal and mechanical barriers. From
a control point of view, the distinguishing feature of particulate processes is that they
give rise to nonlinear control problems that involve the regulation of the particle size
distribution (PSD) by using a finite number of control actuators and measurement
sensors. This is because the shape of the PSD strongly influences the product prop-

erties.

This doctoral thesis focuses on modeling and control of two important classes of

XX



particulate processes: high-velocity oxygen fuel (HVOF) thermal spray and protein
crystallization. In particular, the first part of this thesis focuses on the modeling and
feedback control of the HVOF thermal spray processing of nanostructured coatings;
this research work is motivated by the superior qualities of nanostructured coatings
and high sensitivity of the coated material to arbitrary variation in the operating
environment. The second part of this thesis presents a novel and practical framework
for the synthesis of practically-implementable predictive controllers for regulation of

particle size distribution (PSD) in particulate processes.

Specifically, in the area of modeling and control of HVOF thermal spray, we
developed a comprehensive multiscale model, which includes continuum type dif-
ferential equations that describe the evolution of gas and particle temperature and
velocity, and a rule-based stochastic simulator that predicts the evolution of coating
microstructure. Based on the process model, a detailed comprehensive parametric
analysis is carried out to study the relationship between the key process parameters
and the particle inflight behavior as well as the resulting coating properties. This
analysis shows that the particle velocity and melting ratio play a very important role
in the formation of coating microstructure, which in turn, can be almost indepen-
dently adjusted by manipulating the combustion pressure and the fuel /oxygen ratio.
To develop a feedback controller that can be readily implemented in practice, the
control problem is formulated as the one of regulating volume-based averages of the
melting ratio and velocity of the particles at the point of impact on the substrate
by directly manipulating the flow rate of fuel, oxygen and air at the entrance of the
HVOF gun. A multivariable model-based feedback control system is developed and
applied to a fundamental process model. Closed-loop simulations demonstrate that

the proposed control system is effective in driving the particle velocity and melt-

xxi



ing ratio at impact to set-point values and is also robust with respect to various

disturbances in the operating environment.

In the second part of this thesis, we focus on the development and application
of predictive-based strategies for control of PSD in continuous and batch particulate
processes described by population balance models (PBMs). The control algorithms
are developed on the basis of reduced-order models that capture the dominant dy-
namics of the particulate process, utilize measurements of principle moments of the
PSD, and are tailored to address different control objectives for the continuous and
batch processes. For continuous particulate processes, we consider the control ob-
jective of asymptotic stabilization under constraints and develop a hybrid predictive
control strategy that employs logic-based switching between model predictive control
(MPC) and a fall-back controller with a well-defined stability region. The strategy
is shown to provide a safety net for the implementation of MPC algorithms to par-
ticulate processes, and is successfully used to stabilize a continuous crystallizer at an
open-loop unstable steady-state. For batch particulate processes, the control objec-
tive is to achieve PSD with desired characteristics subject to both manipulated input
and product quality constraints. An optimization-based predictive control strategy
that incorporates these constraints explicitly in the controller design is formulated.
The developed control methods are successfully applied via computer simulations
to batch cooling crystallizers which produce inorganic and protein (tetragonal hen

egg-white lysozyme) crystals.
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Chapter 1
Introduction

1.1 High-velocity oxygen fuel thermal spray process

1.1.1 Nanostructured coatings

Nanostructured (also called nanoscale, nanophase or nanocrystalline) materials are
materials with grain sizes less than about 100 nm, and are generally obtained by
processing of nanosize powders. Currently, there is a great interest in the understand-
ing and processing of nanostructured materials which stems from the cost-effective
production of high-quality nanosize powders as well as the discovery that such ma-
terials have properties superior to those of conventional bulk materials, including
strength, hardness, ductility, sinterability, size-dependent light absorption, reactiv-
ity, etc. (see, for example, [58, 69, 76, 101, 194, 156, 3, 193, 89, 90, 100, 88, 166].) The
superior properties of nanostructured materials motivate their use in a wide variety
of applications such as protective coatings for heat engines and gas turbines, hard
materials for machine tools, ductile ceramics, catalysts, new electronic and optical

devises, etc.

With prompt advances in the production of high quality unagglomerated nanoscale



powders, including atomization, colloidal precipitation, mechanical milling, and va-
por phase nucleation and growth (see, for example, [135, 136, 190, 197)), the focus
of nanostructured materials research is now shifting from synthesis to processing,
for example, the fabrication of nanostructured coatings using the so-called thermal
spray technology [101, 68, 1]. Figure 1.1 shows two typical dark field Transmission
Electron Microscopy (TEM) images of the nanocrystalline CoCr coating prepared
by plasma thermal spraying [101] and the nanocrystalline Ni coating prepared by
high-velocity oxygen fuel (HVOF) thermal spraying [1], illustrating an average grain
size smaller than 100 nm. Compared to the traditional counterparts, the nanos-
tructured coatings exhibit superior qualities in several aspects including increased
hardness and strength, improved ductility, and enhanced diffusivity and sinterability
[182, 81, 97, 98]. Nowadays, the nanostructured coatings are widely used in many
industries as thermal-barrier, wear-resistant and corrosion-protective surface layers
to extend product life, increase performance and reduce production and maintenance
costs. Other primary uses of nanostructured coatings include dimensional restora-

tion, maintaining precise clearances, and modifying thermal and electrical properties.

1.1.2 Thermal spray process

In the simplest terms possible, the thermal spray processes represent a group of
particulate deposition processes in which materials, in powder or wire form, are pro-
pelled and heated in a gas/plasma stream and deposited on a given substrate in
a molten or semi-molten state, and the coating microstructure results from the so-
lidification and sintering of the particles {141]. Thermal spray processes provide a

low-cost and energy-efficient route for the processing of nanostructured coatings be-



(b)

Figure 1.1: TEM dark images of (a) plasma sprayed nanocrystalline CoCr and (b) HVOF

sprayed nanocrystalline Ni coatings [101, 1].

cause they require significantly fewer manufacturing steps than conventional welding
processes. They are also characterized by zero dilution of the substrate as a result
of mechanical bonding, the ability to apply thin coatings, and a high rate of area
coverage, compared to arc welding processes. Thermal spray processes of most com-
mercial interest include high-velocity oxygen fuel (HVOF) and atmospheric plasma
arc spraying (PAS) (see Figure 1.2 for a schematic of these two processes). In the
HVOF thermal spray process, the fuel is burnt with oxygen at a high pressure and
generate a sonic or supersonic exhaust jet, which heats up the powders and propels
them to the substrate. Currently, there is an increasing interest in the HVOF ther-
mal spray processing of nanostructured coatings, which owes to its unique process
characteristics - very high gas/particle velocity and relatively low gas/particle tem-
perature, as compared to those in plasma spray process. On the one hand, extremely

high particle velocity helps to densify the coating and to increase the deposition rate.
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Figure 1.2: (a) HVOF thermal spray processing and (b) plasma thermal spray processing.

On the other hand, very short residence time in the relatively low temperature gas

flame makes the powder particles highly plastic and superheating or vaporization is

prevented [22, 24].

Figure 1.3 shows a schematic diagram of the Diamond Jet hybrid HVOF thermal

spray gun (Sulzer Metco, Westbury, NY), which is currently used in industry. In

this process, the premixed fuel (typically propylene or hydrogen) and oxygen are fed

from the annular gap to the air cap (also referred to as convergent-divergent nozzle),

where they react to produce high temperature combustion gases. The exhaust gases,

together with the air injected from the annular inlet orifice, expand through the nozzle
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Figure 1.3: A schematic of the Diamond Jet hybrid HVOF thermal spray process.

to reach supersonic velocity. The air cap is water-cooled to prevent from being melted.
The powder particles are injected from the central inlet hole using nitrogen as the
carrier gas. Consequently, rapid momentum and heat transfer between the gas and
the powder particles leads to acceleration and heating of the powder particles. The
molten or semi-molten particles exit the air cap and move towards the substrate. The
particles hit the substrate, cool and solidify, forming a thin layer of dense and hard
coating. The typical operating conditions and main characteristics of the Diamond
Jet Hybrid HVOF thermal spray process are given in Table 1.1. It should be noted
that although the gain size of nanostructured coatings is about 100 nm, the powders
used for coating processing are actually nanostructured agglomerates whose sizes are
typically on the magnitude of 10 um (see Figures 1.4 and 1.5 for SEM images of the
flake-shaped Cu-10 wt.% Al agglomerates produced by methanol- and cryo-milling
and TEM images of the corresponding TEM images illustrating nanosize grains).
This is because, in the thermal spray processing, very small particles usually follow

the gas stream and do not stick on the substrate [110].



Figure 1.4: SEM images of Cu-10 wt.% Al powders milled for 10 hours in (a) methanol,
and (b) liquid nitrogen [99].

(b)

Figure 1.5: Bright field TEM images of Cu-10 wt.% Al powders for 20 hours in (a) methanol,
and (b) liquid nitrogen [99].



Table 1.1: Typical operating conditions and main characteristics of the Diamond Jet Hybrid

HVOF thermal spray process.

Typical operating conditions Main process characteristics
Gas flow rate 18 g/s (12 1/s) || Flame temperature | 2800 °C
Powder feed rate | 20 - 80 g/min | Exit Mach number 2
Powder size 5-45 um Exit gas velocity 2000 m/s
Coating thickness | 100 - 300 um Deposition efficiency | 70 %
Spray distance 150 - 300 mm | Coating porosity 1-2%

1.1.3 Motivation for process control

Although applications of thermal spray processes as a means of material processing in
many industries have been widely used in the past three decades, it is only recently
that there have been great interests in the processing of nanostructured materials
[22]. In order for these practical applications to be realized in a broad industrial
scale, the basic engineering problem of controlled processing of the nanopowders into
useful nanostructured materials has to be addressed. Whereas thermal spray process-
ing provides a natural way for the processing of nanopowders to useful nanostruc-
tured materials with desired properties, for the most part, they have been developed
through costly trial and error procedures. In many cases, a general knowledge of
the overall behavior has been attained, but fundamental understanding and critical
parameters that affect the final product are not clearly defined. Consequently, the
final product yield and precise regulation of final product properties has been low
due to the lack of tight monitoring and control of the critical parameters. For ex-
ample, the work of Khor et al. [91] shows that the particle melting ratio plays a
very important role in the formation of coating microstructure and resulting coating

properties (see Figure 1.6). Therefore, this parameter should be precisely controlled



during deposition process to achieve coating uniformity.

Over the last decade, the need to optimally design and operate thermal spray
processes has motivated significant research on the development of fundamental
mathematical models for thermal spray processes that explicitly account for various
physico-chemical phenomena and the dynamic behavior of various process compo-
nents. Specifically, fundamental models have been developed targeting the complex
gas/particle flow behavior involved in the internal and external flow field of the
HVOF gun (see review papers [175, 22]); molten droplet formation, motion, impact
and deposition [119, 118, 11, 196]; droplet solidification, microstructure development,
surface roughness and coating porosity [181, 81, 14, 105, 188]; phase transformations
of nanocrystalline powders [28]; and the relationship between the nanostructure and
the mechanical properties of the end-product [61, 15, 14, 37]. In addition, research
has been carried out in the integration of the detailed models of the aforementioned
components to develop general simulators that describe the behavior of entire thermal

spray processes [199, 110].

These modeling efforts have been complemented with significant research on the
development of intelligent measurement sensors for thermal spray process monitoring
including laser light scattering techniques for ensemble and single particle sizing [9,
164, 6, 7, 72, 9, 80, 102, 16, 73, 74, 167, 104, 18]; optical methods for particle velocity
(187, 50] and particle temperature [140, 48] and measurement of melt flowrate [62,
73, 74, 104]. Comprehensive reviews of results in this area can be found in [80, 72,
102, 13]. An effort to integrate real-time diagnostic techniques with simple control
schemes has been done in the context of expert systems (e.g., [176]). However, expert
systems provide simple supervisory control and cannot deal with the critical issue of

precise control of the size distribution of the droplets impinging on the substrate
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Figure 1.6: Cross-sectional morphology of four HVOF sprayed hydroxyapatite (HA) parti-
cles with different melting degrees and a TEM image of the as-sprayed HA coating showing
the interface between melted and unmelted parts of HA splat [91].



which affects the structure and end-properties of the nanostructured coatings.

In order for HVOF thermal spray process to be widely used in industry for the
processing of nanostructured coatings, it is important to achieve excellent real-time
diagnosis and control of the processing stage which will allow to obtain coatings with
nanostructures that yield the desired thermal and mechanical properties. Despite the
recent progress on modeling of the various phenomena that affect droplet motion,
deposition, solidification and microstructure development in HVOF thermal spray
process, at this stage, there exists no systematic framework for integrated on-line
diagnosis and control of the HVOF thermal spray processing which will be capable
of achieving precise regulation of the microstructure and ultimate mechanical prop-
erties of the sprayed materials and coatings. Since the incorporation of the advanced
feedback control on thermal spray processes has been reported to lead to significant
improvements in their operation and performance [2, 125], it is of great significance to
close this gap by integrating fundamental models that accurately describe the inher-
ent relationships between the coating micro- and nano-structure and the processing
parameters (such as substrate surface condition, gas flow rate, and fuel/oxygen ra-
tio etc.) with on-line state-of-the-art diagnostic techniques and advanced nonlinear
control algorithms, to develop high-performance real-time computer control systems
for thermal spray processes which on-line manipulate process variables flow rate, gas
pressure, spray motion and angle, substrate motion, to regulate the microstructure
and end-properties of the deposits. In addition, incorporation of advanced real-time
diagnosis and control schemes into thermal spray processes is expected to reduce
operational cost and environmental impact, and improve end-product properties and
yield. Recent efforts in this direction have mainly focused on diagnostics and control

of plasma thermal spray (see [49]); the reader may also refer to [133] for a discussion
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of various process optimization and control issues.

1.2 Particle size distribution in particulate processes
1.2.1 Particulate processes

Particulate processes are prevalent in a number of process industries including agri-
cultural, chemical, food, minerals, and pharmaceuticals. By some estimates, 60%
of the products in the chemical industry are manufactured as particulates with an
additional 20% using powders as ingredients. Examples of particulate processes in-
clude the crystallization of proteins for pharmaceutical applications, the emulsion
polymerization reactors for the production of latex, and the titania powder aerosol
reactors used in the production of white pigments. Figure 1.7 shows a schematic
illustration of a batch particulate process. One of the key attributes of particulate
systems is the co—presence of continuous phase and dispersed phase, which leads to
the occurrence of physico—chemical phenomena such as particle nucleation, growth,
coagulation, and breakage which are absent in homogeneous processes and lead to a
distributed characterization of the physical and chemical properties of the particulate

product such as particle size, shape, morphology, porosity, molecular weight, etc.

It is now well understood that the physico—chemical and mechanical properties of
materials made with particulates are strongly dependent on the characteristics of the
corresponding particle size distribution (PSD). For example, a nearly mono-disperse
PSD is required for titania pigments to obtain the maximum hiding power per unit
mass. Also, in coatings the product’s composition, molecular weight and particle size
distributions often need to be maintained in specific ranges to ensure the coating has
a desired level of film formation, film strength, and gloss. In all of these instances, the

PSD provides the critical link between the product quality indices and the operating
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Figure 1.7: Schematic illustration of a batch particulate process.

process variables; and, therefore, the ability to effectively manipulate the PSD is
essential for our ability to control the end product quality in these processes. In
this light, the problem of synthesizing and implementing high-performance model-
based feedback control systems on particulate processes to achieve PSDs with desired

characteristics has significant industrial value.

The mathematical models of particulate processes are typically obtained through
the application of population, material and energy balances and consist of systems
of nonlinear partial integro-differential equations that describe the evolution of the
PSD, coupled with systems of nonlinear ordinary differential equations (ODEs) that
describe the evolution of the state variables of the continuous phase. There is an
extensive literature on population balance modeling, numerical solution, and dynam-
ical analysis of particulate processes, see, for example, [153, 142, 124, 53, 57, 150,
75, 95, 79, 154, 152]; see also [30] for further details and references. Early work on

control of particulate processes focused mainly on the understanding of fundamen-
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tal control-theoretic properties of PBMs [170], and the application of conventional
control schemes to crystallizers and emulsion polymerization processes {171, 158, 39],
and the references therein. More recently, the realization that PBMs - owing to
their infinite-dimensional nature — cannot be used directly for the synthesis of prac-
tically implementable controllers, has motivated significant research work on the
development of a general order reduction procedure, based on combination of the
method of weighted residuals and approximate inertial manifolds, which allows de-
riving low-order ODE approximations that capture the dominant dynamics of par-
ticulate processes and can, therefore, serve as an appropriate basis for the design of
low-order controllers that can be readily implemented in practice [26]. This approach
subsequently laid the foundation for the development of a systematic framework for
solving a number of important control problems for particulate processes, including
the problem of dealing with the highly nonlinear behavior, e.g., owing to complex
growth, nucleation, agglomeration and breakage mechanisms, and the Arrhenius de-
pendence of nucleation laws on solute concentration in crystallizers [26], the problem

of model uncertainty [27], and the problem of control under actuator constraints [43].

1.2.2 Protein crystallization process

Proteins play a vital role in most biological processes. In addition to constructing
large-scale biological structures, such as muscle fibers, smaller protein molecules can
function as antibodies, which help the immune system to destroy invading substances
like viruses and bacteria, and enzymes, which can catalyze the synthesis of complex
compounds, the transformation of complex substances into simpler ones, or the gen-
eration of energy in organisms. A protein molecule is a chain of amino acids that are

linked by peptide bonds formed by dehydration synthesis. Many pharmaceuticals act
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by binding to and blocking an active site (the active site is a region on the protein
composed of some of the protein’s amino acids which have a specific three dimensional
arrangement to which a molecule can bind) of a protein [160]. The three-dimensional
arrangement of amino acids, especially, at the active site, determines the specific bi-
ological function of the protein molecule. Figure 1.8 shows the space-filling model of
hen egg-white (HEW) lysozyme molecule and the tetragonal form of HEW lysozyme
crystal. HEW lysozyme is composed of 129 amino acids, with a molecular weight of

14,388.

Figure 1.8: Hen egg-white lysozyme: (a) the space-filling model of the molecule and (b)
the structure of the tetragonal HEW lysozyme crystal.

X-ray and neutron diffraction techniques are the only available methods that
can be used to obtain structural information of proteins with molecular weight over
20,000. To be able to study the structure of proteins using these techniques, large
protein crystals of high structural perfection, typically with diameters of several hun-
dred microns, are needed. Extensive research studies, using model proteins, such as
ferritin, insulin, haemoglobin and lysozyme, that are able to crystallize easily un-
der normal operating conditions, have focussed on growing large protein crystals of
high structural perfection under various operating conditions, including low gravity
[17], different pressure conditions [138], flow condition of the solution [149], purity

[186], temperature [35] and concentrations of precipitants and buffers [148, 111].
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In addition, numerous research studies have considered the problem of modeling of
protein nucleation [54, 147] and growth [42, 96, 51]. The reader may also refer to
[127, 163, 192, 185] for excellent reviews on this subject. Among these model pro-
teins, the tetragonal form of HEW lysozyme is most popular and widely used [19].
HEW lysozyme is composed of 129 amino acids, with a molecular weight of 14,388. It
is a naturally occurring enzyme, and has antibacterial activity against gram-positive

bacteria.

The experimental studies not only benefit the determination of the protein struc-
ture, but also provide, through an understanding of the nucleation and growth mech-
anism of protein crystallization, a means for determining the operating conditions
necessary to achieve protein crystals of desired properties, which can often be ex-
pressed in the form of a desired size distribution. In the pharmaceutical industry,
the size distribution of the protein crystal is a very critical variable and in many
applications a predetermined, typically narrow, crystal size distribution is necessary

in order to guarantee a desired drug delivery performance.

Protein crystals intrinsically grow much slower than most inorganic crystals at
the same supersaturation [161]. This is probably one of the reasons why it has been
widely believed that implementation of advanced control algorithms is not important
for growing perfect crystals in protein crystallization. However, experimental results
show that even in protein crystallization processes, certain growth conditions lead to
crystal defect formation (for example, the structural defect density increases when
the growth rate is relatively high [132]), which necessitates appropriately choosing
the operating conditions. Furthermore, for a given choice of operating conditions, it
is critical to implement real-time control to mitigate the affect of disturbances that

might throw the operating conditions off the desired values.
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1.2.3 Motivation of predictive control

In the operation of particulate processes, constraints typically arise due to physical
limitations on the capacity of control actuators and/or desired restrictions on the
process state variables, such as temperature and certain properties of the PSD (e.g.,
crystal concentration and total particle size), in order to meet some safety or prod-
uct quality requirements. In current industrial practice, the achievement of optimal
performance, subject to input and state constraints, relies to a large extent on the
use of model predictive control (MPC) policies which are well known for their ability
to handle multi-variable interactions, constraints, and optimization requirements, all
in a consistent, systematic manner. Unlike open-loop model-based optimal control
policies (where the optimal operating conditions are calculated off-line), in MPC, the
control action is computed by solving repeatedly, on-line, a constrained optimization
problem at each sampling time. Owing to this, MPC has the ability to suppress the
influence of external disturbances and tolerate model inaccuracies (because of the
use of feedback) and force the system to follow the optimal trajectory that respects

constraints on the operating conditions.

Significant previous works have focused on PSD control in the batch crystallizers
[153, 195, 10]. [137] derived an open-loop optimal control strategy where the objective
function involves maximization of the crystal size and the cooling curve is the decision
variable. [130} developed a method for assessing parameter uncertainty and studied
its effects on the open-loop optimal control strategy, which maximized the weight
mean size of the product. [201] developed an on-line optimal control methodology
for a seeded batch cooling crystallizer to improve the product quality expressed in
terms of the mean size and the width of the distribution. [78] designed a hierarchical

multiobjective strategy to control the PSD in semi-batch emulsion polymerization.
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In these previous works, most efforts were focused on the open-loop optimal control
of the batch crystallizer, i.e., the optimal operating condition was calculated off-line
and based on mathematical models. The successful application of such a control

strategy relies, to a large extent, on the accuracy of the models.

1.3 Research objective and thesis structure

The objective of the present research is to develop a novel and practical framework
for the modeling and control of particulate processes, including HVOF thermal spray
and protein crystallization processes. First, we developed a computational method-
ology to precisely control the coating micro- or nano-structure produced by HVOF
thermal spray process, by manipulating macro-scale operating conditions such as the
gas flow rate and spray distance, etc. The major challenge on this problem lies in
the development of multiscale models linking the macroscopic scale process behavior
(i.e., gas dynamics and particle inflight behavior) and the microscopic scale process
characteristics (evolution of coating microstructure), and the integration of mod-
els, measurements, and control theory to develop measurement/model-based control
strategies [29]. The underlying multiscale behavior of the HVOF process is shown
in Figure 1.9 [112]. On one hand, the microstructure of thermally sprayed coatings
results from the deformation, solidification and sintering of the deposited particles,
which are dependent on the substrate properties (e.g., substrate temperature) as
well as the physical and chemical state (e.g., temperature, velocity, melting ratio,
and oxidant content) of the particles at the point of impact on the substrate. On the
other hand, the particle inflight behavior, however, is coupled with the gas dynamics,
which can be manipulated by adjusting operating conditions such as the total gas

flow rate and the fuel/oxygen ratio. While the macroscopic thermal/flow field can be
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Figure 1.9: Multiscale character of the HVOF thermal spray process [112].

readily described by continuum type differential equations governing the compress-
ible two-phase flow, the process of particle deposition is stochastic and discrete in
nature, and thus, it can be best described by stochastic simulation methods [94]. By
manipulating macroscopic operating conditions, such as gas flow rate, fuel/oxygen
ratio, and spray distance, one can adjust gas and particle dynamics, and eventually,

control coating microstructure.

To address these problems, we conducted research in the following areas:

e Diamond Jet Hybrid HVOF Thermal Spray Process: Control-relevant

Modeling and Analysis of Gas-phase and Particle Behavior [112]

This work focuses on the extensive control relevant parametric analysis of the in-
dustrial HVOF thermal spray process. At this point, it is important to note that
a comprehensive computational fluid dynamic (CFD) model is not practical for the

development of control system to be implemented in practice. (However, for off-line
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optimization and analysis, a comprehensive CFD based modeling work will be pre-
sented at the end of this thesis.) To address this issue, a one-dimensional model
for the industrial Diamond Jet Hybrid HVOF thermal spray process is initially de-
veloped. The model describes the evolution of the gas thermal‘ and velocity fields,
the motion and temperature of agglomerate particles of different sizes, and explicitly
accounts for the effect of powder size distribution. A contribution of this work is to
take into account the particle melting behavior during flight. In addition to providing
useful insight into the in-flight behavior of different size particles, the model is used
to make a comprehensive parametric analysis of the HVOF process. This analysis
allows us to systematically characterize the influence of controllable process variables
such as combustion pressure, oxygen/fuel ratio, as well as the effect of powder size
distribution, on the values of particle velocity and temperature (or melting ratio) at
the point of impact on substrate. Specifically, the study shows that the gas momen-
tum flux (pu?) and the gas temperature, which provide driving forces for particle
motion and particle heating, can be almost independently adjusted by manipulating
the chamber pressure and the fuel oxygen ratio. These findings are consistent with
existing experimental studies and set the basis for the formulation of the control

problem for the HVOF thermal spray process.

e Diamond Jet Hybrid HVOF Thermal Spray Process: Rule-based

Modeling and Analysis of Coating Microstructure [173]

This work focuses on the computational modeling and simulation of microstructure
of coatings prepared by the industrial Diamond Jet Hybrid HVOF thermal spray
process. Based on the understanding of coating structure and mechanisms of pore
formation inside of the coating obtained from experimental studies, a stochastic simu-

lation procedure is used to explore the evolution of the microstructure of the coatings.
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In the coating growth model, the velocity, temperature and degree of melting of parti-
cles hitting on the substrate are determined by a previously developed mathematical
model [112] describing gas and particle behavior, and the complex characteristics
of the thermally sprayed coatings are captured by applying certain basic rules that
encapsulate the main physical features of the deposition process. In addition to pro-
viding useful insight into the pore formation and coating growth, the model is used to
make a comprehensive parametric analysis, which allows us to systematically charac-
terize the influence of operating conditions, such as the gas flow rate, spray distance,
as well as the effect of particle size, on the particle melting behavior, coating poros-
ity, surface roughness and deposition efficiency. Comparison of simulation results
and experimental studies shows that the proposed model can reasonably predict the

relationship between macroscopic processing conditions and coating microstructure.

To control the particle size distribution in particulate processes, predictive-based
strategies are developed and implemented to control continuous and batch crystal-
lizers described by population balance models. Because of the high dimensionality
(population balance model is typically described by PDE) and nonlinearity (such as
the nonlinear dependence of nucleation rate and growth rate on the solute concentra-
tion), the population balance model cannot be used in the controller design directly,
therefore, model reduction techniques must be introduced for the purpose of con-
troller design. Furthermore, the controller design should also explicitly incorporate
the constraints on the manipulated input variables (which reflect physical limitations
of control actuators) and on the process state variables (which reflect performance
considerations). Under the predictive control strategy, a constrained optimization
problem is solved repeatedly at each sampling time. The practical implementation of

predictive control to control the PSD in particulate processes is limited by: (1) the
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computational difficulties of solving a nonlinear and nonconvex optimization problem
at each time step, and (2) the difficulty of characterizing, a priori, the set of initial
conditions starting from where a given nonlinear predictive controller is guaranteed
to be feasible and/or stabilize continuous particulate processes. To address these

problems, we conducted research in the following areas:

o Predictive Control of Particle Size Distribution in Particulate Processes

172]

In this work, we focus on the development and application of predictive-based
strategies for control of PSD in continuous and batch particulate processes described
by population balance models (PBMs). The control algorithms are designed on the
basis of reduced-order models, utilize measurements of principle moments of the
PSD, and are tailored to address different control objectives for the continuous and
batch processes. For continuous particulate processes, we develop a hybrid predic-
tive control strategy to stabilize a continuous crystallizer at an open-loop unstable
steady-state. The hybrid predictive control strategy employs logic-based switching
between MPC and a fall-back bounded controller with a well-defined stability region.
The strategy is shown to provide a safety net for the implementation of MPC algo-
rithms with guaranteed stability region. For batch particulate processes, the control
objective is to achieve a final PSD with desired characteristics subject to both ma-
nipulated input and product quality constraints. An optimization-based predictive
control strategy that incorporates these constraints explicitly in the controller design
is formulated and applied to a seeded batch cooling crystallizer example. The strat-
egy is shown to be able to reduce the total volume of the fines by 13.4% compared to

a linear cooling strategy, and is shown to be robust with respect to modeling errors.
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e Predictive Control of Crystal Size Distribution in Protein Crystal-

lization [174]

This work focuses on the modeling, simulation and control of a batch protein crys-
tallization process that is used to produce the crystals of tetragonal hen egg-white
(HEW) lysozyme. First, a model is presented that describes the formation of infini-
tesimal size protein crystals via nucleation and the subsequent growth of the crystals
via condensation, and predicts the temporal evolution of the crystal size distribu-
tion in the size range of 0 — 300 um. To this end, existing experimental data are
used to develop empirical models of the nucleation and growth mechanisms of the
tetragonal HEW lysozyme crystal. The developed growth and nucleation rate expres-
sions are used within a population balance model to simulate a batch crystallization
process that produces the tetragonal HEW lysozyme crystals. Then, model reduc-
tion techniques are used to derive a reduced-order moments model for the purpose of
controller design. Online measurements of the solute concentration and reactor tem-
perature are assumed to be available, and a Luenberger-type observer is developed to
estimate the moments of the crystal size distribution based on the available measure-
ments. A predictive controller, that uses the available state estimates, is designed to
achieve the objective of maximizing the volume-averaged crystal size while respecting
constraints on the manipulated input variables (which reflect physical limitations of
control actuators) and on the process state variables (which reflect performance con-
siderations). Simulation results demonstrate that the proposed predictive controller
is able to increase the volume-averaged crystal size by 30% and 8.5% compared to
Constant Temperature Control (CTC) and Constant Supersaturation Control (CSC)
strategies, respectively, while reducing the number of fine crystals produced. Fur-

thermore, a comparison of the crystal size distributions (CSDs) indicates that the
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product achieved by the proposed predictive control strategy has larger total volume
and lower polydispersity compared to the CTC and CSC strategies. Finally, the ro-
bustness of the proposed method with respect to plant-model mismatch is evaluated.
The proposed method is demonstrated to successfully achieve the task of maximizing
the volume-averaged crystal size in the presence of plant-model mismatch, and is

found to be robust in comparison to open-loop optimal control strategies.
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Chapter 2

Diamond Jet Hybrid HVOF
Thermal Spray: Gas-Phase and

Particle Behavior Modeling and
Feedback Control Design

This chapter focuses on modeling and control of an industrial high-velocity oxygen
fuel (HVOF) thermal spray process (Diamond Jet hybrid gun, Sulzer Metco, West-
bury, NY). We initially develop a fundamental model for the process which describes
the evolution of the gas thermal and velocity fields, the motion and temperature of
particles of different sizes, and explicitly accounts for the effect of powder size distri-
bution. Based on the proposed model, a comprehensive parametric analysis is made
to systematically characterize the influence of controllable process variables such as
combustion pressure, oxygen/fuel ratio, as well as the effect of powder size distrib-
ution, on the values of particle velocity, temperature and degree of melting at the
point of impact on substrate (these are the variables that directly influence coating

microstructure and porosity, which, in turn, determine coating strength and hard-
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ness, see Chapter 3 for details). A feedback control system, which aims to control the
volume-based average of particle velocity and melting ratio by directly manipulating
the flow rate of fuel, oxygen and air at the entrance of the HVOF gun, is developed
and applied to a detailed mathematical model of the process. Closed-loop simulations
show that the feedback controller is effective in driving the controlled outputs to the
desired set-point values and also robust with respect to various kinds of disturbances

in the operating environment.

2.1 Introduction

The last two decades have witnessed the wide application of the high-velocity oxy-
gen fuel (HVOF) thermal spray technology (see Figure 2.1 for a schematic of this
process) as a means for depositing coatings of cermets, metallic alloys and compos-
ites in order to modify the surface properties of a base material (substrate). Using
the thermal energy produced by the combustion of fuel with oxygen to heat and
propel the powder particles, the HVOF thermal spray provides a highly efficient way
to modify the surface properties of a substrate to extend product life, increase per-
formance and reduce maintenance costs. Recently, there is an increasing interest in
the HVOF thermal spray processing of nanostructured coatings, whose grain size is
less than about 100 nm [100]. This interest has been motivated by several factors,
including: (1) the cost-effective production of high-quality nanosize powders; (2) the
superior qualities of coatings made with the HVOF process [21]; and (3) the discovery
that nanostructured coatings exhibit superior qualities over traditional counterparts
(made of materials with micro-sized grains) in several aspects including hardness,

strength, ductility and diffusivity [100, 182].

Over the last decade, the need to optimally design and operate thermal spray
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Figure 2.1: A schematic of the Diamond Jet hybrid HVOF thermal spray process.

processes has motivated significant research on the development of fundamental
mathematical models to capture the various physicochemical phenomena taking place
in thermal spray processes and to describe the dynamic behavior of various process
components. Specifically, fundamental models have been developed describing the
gas dynamics and particle in-flight behavior inside of the gun and in the free jet
1143, 198, 67]; molten drop deposition, solidification and microstructure development
(188, 134]; and the relationship between coating microstructure and mechanical prop-
erties [64]. In addition, research has been carried out in the integration of the detailed
models of the aforementioned components to develop general simulators that describe

the behavior of entire thermal spray processes [134, 199].

In order to reduce product variability and to improve robustness with respect to
variations in the operating conditions in industrial HVOF thermal spray processes,
it is important to implement excellent real-time process diagnosis and control which
could lead to the fabrication of coatings with microstructures that yield the desired
properties. Despite the recent progress on the modeling of the various phenomena
that affect droplet motion, deposition, solidification and microstructure development

in HVOF thermal spray processes, at this stage, there exists no systematic framework
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for integrated on-line diagnosis and control of the HVOF thermal spray process which
will be capable of achieving precise regulation of the microstructure and ultimate me-
chanical and thermal properties of the sprayed coatings. In addition, incorporation
of advanced real-time diagnosis and control schemes into thermal spray processes is
expected to reduce operational cost and environmental impact, and allow deposit-
ing nanostructured and complex (multi-material) coatings with very low variability.
Since the application of optimization and control techniques to spray casting processes
has been reported to lead to significant improvements in their operation and perfor-
mance [2, 125], it is important to develop real-time computer control systems for
thermal spray processes by integrating fundamental models that accurately describe
the inherent relationships between the coating microstructure and the processing pa-
rameters with on-line state-of-the-art diagnostic techniques and control algorithms.
Recent efforts in this direction have mainly focused on diagnostics and control of
plasma thermal spray [49]; the reader may also refer to Moreau and Leblanc [133] for
a discussion of various process optimization and control issues. In our previous work
(see [108, 109]), we performed a comprehensive control-relevant parametric analysis
and proposed a novel formulation of the control problem that accounts for the im-
portant effect of powder size distribution for an HVOF process in which air is used
as oxidant and propane is used as fuel gas.

The objective of the present research is to develop a computational methodology
to precisely control the coating micro- or nano-structure which determines the coating
mechanical and physical properties by manipulating macro-scale operating conditions
such as the gas flow rate and spray distance. The major challenge on this problem
lies in the development of multiscale models linking the macroscopic scale process

behavior (i.e., gas dynamics and particle inflight behavior) and the microscopic scale
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Figure 2.2: Multiscale character of the HVOF thermal spray process.

process characteristics (evolution of coating microstructure), and the integration of
models, measurements, and control theory to develop measurement/model-based con-
trol strategies [29]. The underlying multiscale behavior of the HVOF process is shown
in Figure 2.2. On the one hand, the microstructure of thermally sprayed coatings
results from the deformation, solidification and sintering of the deposited particles,
which are dependent on the substrate properties (e.g., substrate temperature) as well
as the physical and chemical state (e.g., temperature, velocity, melting ratio, and ox-
idant content) of the particles at the point of impact on the substrate. On the other
hand, the particle inflight behavior, however, is coupled with the gas dynamics, which
can be manipulated by adjusting operating conditions such as the total gas flow rate
and the fuel/oxygen ratio. While the macroscopic thermal/flow field can be readily
described by continuum type differential equations governing the compressible two-
phase flow, the process of particle deposition is stochastic and discrete in nature, and

thus, it can be best described by stochastic simulation methods [94].

This work focuses on modeling and control of an industrial high-velocity oxygen
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fuel (HVOF) thermal spray process (Diamond Jet hybrid gun, Sulzer Metco, West-
bury, NY). We initially develop a fundamental model for the process which describes
the evolution of the gas thermal and velocity fields, the motion and temperature of
agglomerate particles of different sizes, and explicitly accounts for the effect of powder
size distribution. In addition to providing useful insight into the in-flight behavior of
different-size particles, the model is used to make a comprehensive parametric analy-
sis of the HVOF process. This analysis allows us to systematically characterize the
influence of controllable process variables such as combustion pressure, oxygen/fuel
ratio, as well as the effect of powder size distribution, on the values of particle ve-
locity and temperature at the point of impact on substrate. Specifically, the study
shows that the particle velocity is primarily influenced by the combustion pressure,
and the particle temperature is strongly dependent on the fuel/oxygen ratio. These
findings are consistent with existing experimental studies and set the basis for the
formulation of the control problem for the HVOF thermal spray process. To develop
a feedback controller that can be readily implemented in practice, the control prob-
lem is formulated as the one of regulating volume-based averages of the melting ratio
and velocity of the particles at the point of impact on the substrate (these are the
variables that directly influence coating microstructure and porosity, which, in turn,
determine coating strength and hardness) by directly manipulating the flow rate of
fuel, oxygen and air at the entrance of the HVOF thermal spray gun. A feedback
control system is developed and applied to a detailed mathematical model of the
process. Closed-loop simulations demonstrate that the particle velocity and melting
ratio at the point of impact on the substrate reach the desired set-point values in
a short time, which validates the feasibility of real-time implementation of feedback
control on the HVOF thermal spray system. It is also shown that the proposed con-

trol problem formulation and the feedback control system are robust with respect
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to disturbances in spray distance and particle injection velocity, and variations in

powder size distribution.

In the next chapter, we present a mechanistic model which uses information about
particle velocity, temperature and degree of melting at the point of impact on sub-
strate from the model developed in this chapter to predict coating porosity and

microstructure.

2.2 Modeling of gas thermal and flow fields

2.2.1 Process description and modeling procedure

Figure 2.1 shows a schematic diagram of the Diamond Jet hybrid gun. The premixed
fuel (typically propylene or hydrogen) and oxygen are fed from the annular gap
to the air cap (also referred to as convergent-divergent nozzle, whose dimensions
are shown in Table 2.1), where they react to produce high temperature combustion
gases. The exhaust gases, together with the air injected from the annular inlet orifice,
expand through the nozzle to reach supersonic velocity. The air cap is water-cooled
to prevent from being melted. The powder particles are injected from the central
inlet hole using nitrogen as the carrier gas. Consequently, rapid momentum and heat
transfer between the gas and the powder particles leads to acceleration and heating of
the powder particles. The molten or semi-molten particles exit the air cap and move
towards the substrate. The particles hit the substrate, cool and solidify, forming a
thin layer of dense and hard coating. In the remainder of this section, we present
the procedure that we follow for modeling as well as the equations describing the gas

flow and thermal fields.

Roughly speaking, there are three major physicochemical processes involved in
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Table 2.1: Dimensions of the air cap.

Inlet Diameter (mm) 14
Nozzle Diameter (mm) 7.16
Outlet Diameter (mm) 11

Inlet half angle (deg) 12
Outlet half angle (deg) 2

Length of convergent part (mm) 16
Length of divergent part (mm) 54

the HVOF thermal spray process: transformation of chemical energy into thermal
energy by the combustion of the fuel, conversion of thermal energy into kinetic en-
ergy of the burning gases by passing through the nozzle, and transfer of momentum
and heat from the gases to the powder particles. These processes occur simulta-
neously and make the fundamental modeling of the HVOF process a very difficult
task. For example, detailed fundamental modeling of the gas flow and thermal fields
requires state-of-the-art Computational Fluid Dynamics (CFD) methodologies and
leads to complex two- or three-dimensional time-dependent partial differential equa-
tions [40, 67, 144]. For the purposes of control system design and implementation,
a compromise between the model complexity, computational cost and model ability
to capture the dominant (from a control point of view) phenomena occurring in the
process is essential. To simplify the analysis, the process model used here is based
on the one-way coupling assumption, i.e., the existence of particles has a minimal
influence on the gas dynamics while the particle inflight behavior is dependent on the
gas thermal/flow field. This assumption is reasonably accurate because the particle
loading in the HVOF process, which is defined as the ratio of mass flow rate of par-
ticles to that of gases, is typically less than 4% [198]. In addition, the assumptions

of instantaneous equilibrium at the entrance of the HVOF gun and frozen isentropic

31



flow during passage through the nozzle are made. These assumptions were initially
proposed and justified by Swank et al [178]. based on the comparison of numerical
simulations and experimental results, and later also recommended by Cheng et al.
121] Comparisons of simulation results and experimental data which will be shown
later in this chapter further substantiate the validity of these assumptions (see dis-

cussion in subsections 2.4.1 and 2.4.2).

Regarding the role of the air stream, it is really hard to predict what portion of the
air takes part in the reaction. Whereas the air was treated as coolant solely to isolate
the wall from the high temperature flame gases in some references [24, 139], it was
assumed in others [40, 64, 144] that all the oxygen coming from the air participates in
the reaction. The latter assumption is employed here, since it is pointed out clearly
by Gourlaouen et al. [64] that the airflow mixing with the oxygen/propylene mixture
should be more effective in the currently used Diamond Jet hybrid gun (which is
the process under consideration in this work) than the previous Diamond Jet gun,
as implied by the “water-cooled” (not “air-cooled”) nozzle. Other assumptions in
the modeling include: (1) all the gases obey ideal gas law; (2) the combustion gases
behave like a perfect gas during isentropic compression and expansion, and the specific
heat ratio is nearly constant; and (3) the friction and cooling water effects along the
nozzle and barrel are negligible so that laws of isentropic flow of compressible fluids
apply.

Because the flow is chocked at the throat of the nozzle, the convergent part of the
air cap and the divergent one can be solved separately [144]. The modeling proce-
dure that is followed in the simulation is based on the sequential modular method.
Specifically, given the mass flow rates of each stream (fuel, oxygen, air, and carrier

gas) and a postulated combustion pressure, the temperature and gas composition at
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the entrance of the nozzle is calculated using an instantaneous equilibrium model,
and then the nozzle flow using standard isentropic compressible flow relationships is
solved. The total mass flow rate at the throat of the nozzle is then calculated and
compared with the one at the entrance. The combustion pressure is then adjusted
using the shooting method [146], until the discrepancy between the calculated and
specified values of the total mass flow rate falls below the specified tolerance. After
the gas properties at the nozzle throat are determined, the divergent part is solved
using isentropic flow relationships. The external thermal/flow field in the free jet is

described by empirical formulas.

2.2.2 Modeling of gas thermal and flow fields inside the gun

To calculate the equilibrium composition and temperature of the combustion gases,
the method of minimization of the Gibbs free energy under adiabatic conditions is em-
ployed. This approach is advantageous compared to the equilibrium constant method
because it can track a large number of species simultaneously without specifying a
set of reactions a priori [63]. Under the assumption of adiabatic combustion under
constant pressure, the calculation of equilibrium temperature and composition can

be formulated as an optimization problem of the following form:

minG = ) wé
jepr
s.t.

0 = > ay&—0b), (i=1,..,1) (MassBalance) (2.1)

jEpr
1

0 = Z @H?(Teq) + 'Z'qu — hg— Ey  (Energy Balance)

JEpT

where G is the Gibbs free energy of the product mixture (including inert gases and
excess reactants), pr stands for products, &, H; and p,; correspond to the stoichio-

metric coefficient, enthalpy and chemical potential of species ¢, respectively, T¢, is
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the equilibrium temperature (subscript eq represents equilibrium), a;; is the number
of element ¢ in species j, [ is the total number of chemical elements involved in the

system, and the superscript ? stands for the standard condition. v = Z air€y 1S
k€re
the number of moles of elements ¢ per kilogram reactants (subscript re represents

reactants), hg = »_ £.HY(T;,) is the enthalpy per kilogram of reactants (subscript
kere

1
in represents inlet), and Ey = Z Ekokvi is the kinetic energy per kilogram of
kere
reactants (M} is the molecular weight and vy is the velocity of species k). For a gas

obeying the ideal gas law, the chemical potential can be determined by the following

expression:
é'
, = 9 _._j L
wi(T) i (T)+ RTIn 70 + RT'In Z c (2.2)
i€pr

where R is the gas constant and P is the pressure. Due to continuity, the gas velocity

after the combustion reaction is given by the following expression:

_my, _ mgRT, _ m&rRT,
ea = PAm B PAinMpr B PAm (23>

where 7, is the total mass flow rate of the gas, A;, is the cross sectional area at the

inlet of the air cap, M, is the average molecular weight of the product mixture, and

&r = Y &. From Eq.2.3, it follows that:
JEpr
L igRT

=V

27 2P?A% (24)

!
Defining f = G + ZAi Z a:;€; — bY |, where )\; are the Lagrangian multipliers,
i=1 JjEPT
the optimal solution of the optimization problem of Eq.2.1 can be determined by
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solving the following nonlinear algebraic equations:

0 = p?+ RT,In(P/P% + R, In(§/ér) + > Na;  (G=1,..,3)

i€l

0 = Zai]{j—b? (’Lzl,,l)

jEpr
0 = Y &—¢r (2.5)
Jjepr
m2§2 RZTeZ
Jjepr wn

The variables to be determined are equilibrium compositions &; (j = 1,...,s), La-
grangian multipliers \; (¢ = 1,...,{), total number of moles &7, and equilibrium tem-
perature T,,. The set of s + [ + 2 nonlinear algebraic equations of Eq.2.5 are solved
using the decent Newton-Raphson method. The central idea of Newton-Raphon
method is to apply multivariable Taylor series expansion to a nonlinear vector func-
tion and truncate all terms that contain derivatives of second order and higher, and
then use the resulting expression to build an iterative formula which can be used to
compute the solution given an initial guess that is close to the solution; the reader

may refer to the book [146] for details.

Because &;, & and T should be positive numbers, in order to avoid taking the
logarithm of negative numbers in the iteration procedure, we have chosen Alng;
(j=1,..,8), Alnér, AlnT and —A\;/RT (i = 1,...,1) as the solution variables at
each iteration step. In the above equations, the thermodynamic data, such as the

heat capacity, enthalpy, entropy and chemical potential of each species are calculated
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by the following equations [63]:

0
c (T a a
pﬁ%) - T_12+?2+a3+a4T+a5T2+a6T3+a7T4
HY(T) a1 a Q4 as ag a a
= —— +2InT iy sy Rl S Rty
BT T2+Tn +a3—|—2 +3 +4T+5T+T 26)
SQ)(T) aq as as ag ary .
= _Q—T—Q—T+a31nT+a4T+§T2+~3)—T3+ZT4+G9
_& _ HYT) SYT)
RT ~ RT R
where a4, ..., ag are constants for a given species. It usually takes about 10 iterations

to get a convergent solution.

Under the assumption of isentropic frozen flow, the properties of gas phase during
passage through the nozzle (both the convergent part and the divergent part) can
be solved using the following equations (which are derived by solving conservation
equations governing compressible flow) [157]:

As M, { 1+ [(y—1)/2]M2 }(w+1)/2(w—1)

AT M\ T+ [(v-D)/2ME

T, _ 1+[(v-1)/2/M?
T T 1+ - 1/2ME (2:8)

P _ 1—1—[(7—1)/2]1\/[% ¥/ (y-1)
R {1+K7—1)/2]Mg} (2.0)
pr _ [141(y—1)/2ME\ VO
no {1+{(7—1)/2]M§} (2.10)

where A is the cross-sectional area perpendicular to the flow direction, p is the gas
density, vy is the specific heat ratio calculated by the expression v = ¢,/(¢, — R) where
Cp = 2 fic;/zi &;, and M is the mach number defined by the ratio of gas velocity to
the local sonic velocity (a = \/m) At the throat of the nozzle, where the mach

number is 1 [157], the mass flow rate can be calculated using the formula:

g = pvedr = VYPpiAs (2.11)
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where the subscript ¢ stands for gas and the subscript ¢t stands for throat. With
a postulated combustion pressure, the calculated mass flow rate at the throat is
usually different from the one at the entrance of the gun. The shooting method is
then applied to adjust the combustion pressure until these two flow rates match.
We note that the isentropic relationships (Eqgs.2.7-2.10) are valid only if there is

no shock inside of the nozzle. This can be guaranteed as long as the following inequity

holds:

% < %W - Z—E (2.12)
where P, is the back pressure (ambient pressure), and F, is the gas pressure at the exit
of the nozzle. For the experimental Diamond Jet hybrid gun system, our calculations
show that the right hand side of the above equation is about 5, and therefore no
shock will ever occur inside of the nozzle as long as the exit pressure is larger than

one fifth of the back pressure; a condition which is always satisfied under industrial

operating conditions.

We have applied the above modeling procedure and equations to analyze the Di-
amond Jet HVOF process [144], which is similar to the one shown in Figure 2.1 but
whose nozzle has only a convergent part. The combustion products considered in
our numerical simulation are Ar, CO, CO,, H, Hy, H,O, NO, Ny, O, O,, and OH.
It is worth pointing out that CsHg is not part of the products under normal oper-
ating conditions. For the given four different operating conditions, the combustion
pressures predicted by the above procedure are all within 6% of the experimentally
measured values (see Table 2.2); this result is more accurate than the one obtained
with the two step chemical kinetics model [144] and implies that the combustion

model should take into account the dissociation of the combustion products.
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Table 2.2: Comparison of computational and experimental results for a Diamond Jet process

144).

O, C3Hg Air Ny B, P, error

Case scfh scfh scfh scfh psia psia %
1 635 185 790 294 69.7 687 -14
2 635 18 395 294 59.7 56.1 -6.0
3 879 185 795 294 767 T76 1.2
4

347 110 632 294 447 448 0.2

2.2.3 Modeling of gas thermal and flow fields outside the gun

At the exit of the nozzle, the Reynolds number based on the diameter and the gas
velocity is about 3 x 10%, and the flow is fully turbulent. Depending on the magnitude
of the gas pressure at the exit of the air cap and of the back pressure, the flow outside
the nozzle may be under-expanded, ideally expanded or over-expanded. Usually the
velocity and temperature of the gas in the free jet are lower than the ones at the
nozzle exit [82, 25]. From the exit of the nozzle to a position whose distance is
not larger than the potential core length (L,.), the gas velocity and temperature
can be considered almost constant [180]. Further downstream, the gas velocity and
temperature decay rapidly because of the entrainment of the surrounding air. This
decay of the gas velocity and temperature can be described by the following empirical

formulas [180]:

v o
= = — - A
" 1 exp(l_m/ch> (2.13)
and
T-T, 5
_ ol b 14
T-T, ~ ! eXp(l—a:/L,,C) (2.14)

where z is the axial distance from the exit of the gun barrel (z > L,.) and a and 3

are parameters obtained from experimental measurements. L, is a function of the
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mach number at the exit of the gun barrel (M,) and of the barrel diameter (D) of
the following form [180]:
Lye/D = 3.5+1.0M? (2.15)

2.3 Modeling of particle motion and temperature

The particle trajectories and temperature histories in the gas field are computed by
the momentum and heat transfer equations. Since the acceleration and deceleration
of particles in the moving gas in the HVOF process are dominated by the drag force
[141], other forces applied on the particles can be neglected and the particle motion

can be adequately described by the following two first-order ordinary differential

equations:
dv, 1
Ty T §CDP9AP(U9 = Up)vg = pl, 1p(0) = vp,
dz (2.16)
T = U w0 =0

where m,, is the mass of the particle, v, is the axial velocity of the particle, 4, is
the projected area of the particle on the plane perpendicular to the flow direction,
pg is the density of the gas, Cp is the drag coeflicient, and z, is the position of the
particle. The absolute sign in the relative velocity between particle and gas implies
that a particle is accelerated if its velocity is less than that of the gas and decelerated
otherwise. In order to take into consideration the fact that many powders used in
the HVOF process are not spherical, a formula for the drag coefficient Cp, which
accounts for the particle shape using the concept of sphericity ¢ (defined as the ratio
of the surface area of a sphere with equivalent volume to the actual surface area of

the particle) is used here, which has the following form {23, 55]:

0.4305
14 3305/R€K1K2

Cp 24

K,  ReK,K,

(14 0.1118(Re K1 K5)" 7] + (2.17)
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where K; and K, are two sphericity-related factors. The local Reynolds number
(Re) for this two phase flow problem is defined based on the relative velocity Re =
dp | Vg — vy | pg/Mg, Where d,, is either the particle diameter if the particle is spherical
or an appropriate equivalent diameter if the particle is not spherical and 7, is the gas
viscosity.

In the HVOF process, the Biot number of the particles (Bi = hL/\,, h is the heat
transfer coefficient, L is a characteristic dimension defined by the ratio of particle
volume to its surface area, and A, is the thermal conductivity of the particle) is
typically less than 0.1 [23], which means that the particles are heated with negligible
internal resistance and that the temperature gradients inside them can be neglected
[56]. Consequently, the equation describing the heat transfer between a single particle
and the gas reduces to a first-order ordinary differential equation. Depending on the
value of particle temperature, different equations are used. With the assumption of

negligible particle vaporization, the particle heating can be described as follows:

dT,
mpcppd_tp» (Tp # Tom)
AHumy=L, (T, = T)

where T, is the temperature of the particle, A} is the surface area of the particle,
T, is the melting point of the particle, AH,, is the enthalpy of melting and f, is
the melting ratio, or the ratio of the melted mass to the total mass of the particle
(0 < f, < 1). The heat transfer coefficient h is computed by the Ranz-Marshall
empirical equation [8]:

% = Nu = 2+0.6Re?Prs (2.19)
g
where the Prandtl number (Pr) is calculated by Pr = &,,7,/A,.

In the above equations, the viscosity and thermal conductivity of each species are
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calculated by the following formulas [63]:

In(n) = b In(T)+by/T +b3/T? + by

In(\) = ¢ In(T)+ca/T + c3/T? + cq (2.20)

where by, ..., b4, c1,...,cq are constants for a specific species. For gas mixtures, the
average viscosity and thermal conductivity are calculated by the following mixing
rules [63]:
I LT
i T+ inwi‘j
J#i
Tidi
i T+ Z%‘%j
J#i
where the interaction coefficients v;; and ¢;; are obtained from the following formulas:

w“ B E - m 1/2 <Mj>1/4 2 2M] 1/2
Y4 n; M; M; + M;
2.41(M; — M;)(M; — 0.142)M;)
(M; + M;)?

(2.21)

>
i

(2.22)

Sij Vi {1 +

At each step, we integrate Eqs.2.16 and 2.18 with a small enough time-step such
that the gas velocity, gas temperature, and the local Reynolds number can all be
considered constant over this interval. After one integration step, we update the gas
velocity and gas temperature according to the new particle position and then apply
the same strategy for the next time-step. This methodology was proposed by Crowe
and Stock [34] and was found to be computationally less expensive and accurate. To
account for the particle melting behavior, we modified this approach and check the
molten state of the particle at each time-step and applied different formulas for the

particle heating. Specifically, the iterative formulas for particle velocity, position and
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temperature are:

G = v (= ) exn (<A/)
arl = gl +uiAL

Tt = T = (Ty — T exp (—At/wy), (T T > Thor T, Ty < T) (2.23)
i i C (T - Tm) At i i
fp+1 = fi+ %——w_p’ (0 < fp,fp+1 <1)
4ppd127 and wy = Ppcpdf)
3n,Cp Re 6NuA,

in which the current step and the next step correspond to different particle molten

where 7, =

. In the four possible phase transition points,

states, the successive formulas for particle temperature and melting ratio take the

following form:

1. Ti < Ty (fi =0), T;*' > T,,, from totally solid state to partially melted state

i+1
i1 g cpp (T, = Tm)
Ty ot = AT (2.24)

T = T,

2. T:> T, (ff = 1), T;! < Tpy, from totally liquid state to partially melted state

Cpy (Tziﬂ ~Tn)

i1 pi
Jo bt T AL (2.25)
T+ = T,
3. T} =Ty (0 < f} < 1), T;* > Ty, from partially melted state to totally liquid
state i1
e g AH(F 1)
F Cp, (2.26)
fZZ)'-H = 1

4. T =T, (0 < f; < 1), T,;7 < Ty, from partially melted state to totally solid
state .
AHmfz+1

_+_ -

Ti—f—l — Tm
P Cpp (2.27)

f;+1 =0
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To reduce the computation time and to maintain accuracy at the same time, a

time varying time-step is used of the following form:
At = min{7,/100,w,/100, AZpqs/vp} (2.28)

where Az,,., is chosen to be 107% m, which is the maximum flight distance in each
time interval. The first two constraints guarantee that the gas velocity and temper-

ature will change little in each time-step.

2.4 Analysis of gas and particle behavior
2.4.1 Analysis of gas dynamics without the air stream

Initially, we only included propylene and oxygen as feed to the system and tested
the influence of combustion pressure and oxygen/fuel ratio on the gas temperature,
velocity, density, and momentum flux (pu?) in the internal field. The reasons are the
following: (1) the influence of the process parameters on the gas dynamics and the
particle infight behavior is apparent in this simplified case; (2) a bijection of pressure
and equivalence ratio to fuel and oxygen flow rates is possible, and calculation starting
from either side is equivalent to the other, which facilitates the numerical calculation;
and (3) there are many HVOF processes whose feed consists of only fuel and oxygen
(i.e., without air); see, for example, Gu et al. [65] and Yang and Eidelman [198] etc.
The process model was based on the assumptions of negligible injection gas velocity,
instantaneous equilibrium under constant enthalpy and pressure in the injection in-
terface, and frozen isentropic flow during passage through the nozzle. To account for
the dissociation of gaseous products, the model included nine species (CO, CO,, H,
H,, H,O, O, Oy, and OH) in the product mixture. The equilibrium temperature and

composition of combustion was solved by minimizing the total Gibbs free energy, and
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Figure 2.3: Normalized gas temperature, velocity, momentum flux, and mass flow rate in the
internal field under operating conditions: P = 5 - 15 bar and ¢ = 0.5 - 1.6. Normalization
is done with respect to the corresponding gas properties under operating conditions: P =

9 bar and ¢ = 1.0 (Table 2.3).

the gas properties during passage through the nozzle were determined by standard

laws governing compressible flows described in subsection 2.2.2.

Table 2.3: Gas properties under operating conditions: P = 9 bar and ¢ =1.0.

Properties Inlet Throat Exit
Temperature (K) 3486.7 3120.7 2222.6
Velocity (m/s) - 1147.0 2150.8
Density (kg/m3) 0.7535 0.4688 0.1073
Momentum flux (10%kg - m/s?) 6.1673 4.9627

Mass flow rate (1073kg/s) 21.65 2165 21.65
Average molecular weight (107%kg/mol) 24.15 24.15  24.15

In Figure 2.3(a), the combustion pressure is fixed to be 9 bar and the equivalence
ratio varies from 0.5 to 1.6. In this range, it is found that there is a peak in each

of the temperature vs. equivalence ratio plot. As the equivalence ratio increases,
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Figure 2.4: Profile of equilibrium temperature and total mass flow rate with respect to P

and . Operating conditions: P = 5 - 15 bar and ¢ = 0.5 - 1.6.

the temperature at the entrance, the throat and the exit increase first, reaching a
maximum value, and then decrease. However, the equivalence ratio associated with
each peak temperature is about 1.2 (or fuel rich system), which is somewhat different
from a fuel/air system [108], whose optimal value is close to 1.05. It can also be
seen that as the equivalence ratio increases from 0.5 to 1.6, the gas velocity both at
the throat and at the exit increase by about 22-23%, while the gas density decreases
by about 33%. As a result, the momentum flux keeps almost constant at these two
positions. In Figure 2.3(b), the equivalence ratio is kept at 1.0 and the combustion
pressure varies from 5 to 15 bar. In the combustion pressure range of interest, it is
found that both gas velocity and gas temperature change little (about 2% and 5%,
respectively), however, the gas density and momentum flux change almost linearly
with respect to the combustion pressure, by about 190% and 200%, respectively. We
also computed 3D profiles of gas properties under different combustion pressures and

equivalence ratios, as shown in Figures 2.4-2.6. Further analysis reveals the following:
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1. At a fixed pressure, there is a peak in the equilibrium temperature vs. equiva-
lence ratio plot, whose value is about 1.2. It is worth noting that the peak flame
temperature occurs not at stoichiometric, but at a fuel rich condition. This is
because the equilibrium temperature is determined not only by the heat gener-
ated by the exothermic reaction process, but also by the heat capacity of the
product mixture as well. As the equivalence ratio becomes slightly above 1, the
gas temperature increases further with the equivalence ratio; this is because the
heat capacity of products decreases more rapidly than the heat released. Be-
yond the equivalence ratio associated with the peak temperature (about 1.2),
the heat generated falls more rapidly than does the heat capacity, and the tem-
perature decreases. On the other hand, when the equivalence ratio is fixed,
the equilibrium temperature increases with pressure. The primary cause of the
equilibrium temperature variation with pressure is the product dissociation be-
cause higher pressure favors larger molecules (Le Chatelier’s principle). Further
increase in pressure results in an increase in H,O with respect to Hy and O and

helps to increase temperature.

2. The higher the equivalence ratio, the smaller the total mass flow rate is needed
to achieve the same combustion pressure to choke the flow. On the other hand,
under the same equivalence ratio, the combustion pressure increases linearly
with the total mass flow rate. These observations can be explained by the

following equation:

mg = pgUgA = MP

¥ Mpr
A =
A 229

Note that the combustion process tends to increase the total number of moles in

the product mixture and to decrease the average molecular weight. In the fuel

rich case, the total amount of dissociation becomes significant and the molecular
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Figure 2.7 Normalized average molecular weight, temperature, and sonic velocity at the
throat of the nozzle under operating conditions: P = 5 - 15 bar and ¢ = 0.5 - 1.6. Normal-
ization is done with respect to the corresponding gas properties under operating conditions:

P =9 bar and ¢ = 1.0 (Table 2.3).

weight decreases continuously as ¢ increases. Referring to Figure 2.7, when ¢
increases from 0.5 to 1.6 with a fixed P, while T varies less than 10%, M,,
decreases about 30% following a nearly linear function, and as a consequence,
M, /T decreases monotonically. Therefore, 7h, decreases monotonically as ¢
increases. When the combustion pressure increases with a fixed ¢, both M,
and T increase slightly because the product dissociation is suppressed. Because
/ My /T varies less than 2% in the pressure range of interest, the total mass
flow rate of gas is roughly proportional to the combustion pressure. Eq.2.29
also indicates that the pressure can be increased by (1) increasing the total

mass flow rate of the gas, and (2) increasing the equivalence ratio.

3. The gas density at the nozzle throat can increase by increasing the combustion

pressure and decreasing the equivalence ratio. This can be explained by the
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expression p = vP/a?. However, the gas velocity at the nozzle throat, where
the Mach number is one, is mainly a function of the equivalence ratio and

changes little with the combustion pressure, as previously discussed.

. The momentum flux at the throat of the nozzle is independent of the equivalence
ratio and is a linear function of the combustion pressure. The influence of

pressure on momentum flux can be explained by the following equation:

2
pev? = pMPa? = pM?(,/vP/p,)" = M’yP (2.30)

where v is nearly a constant and M mainly depends on the geometrical config-
uration of the nozzle. As a consequence, the momentum flux is a nearly linear
function of the gas pressure. Eq.2.30 is also applicable to the HVOF systems

which include air in the feed stream.

Because the drag force, which is the dominant force that determines the motion of

the particles in the gas field, is approximately proportional to the gas momentum flux,

and the gas temperature, whose difference from the particle temperature provides

the driving force for particle heating, it follows from the above analysis that particle

temperature and velocity can be nearly independently adjusted by manipulating the

equivalence ratio and the combustion pressure, respectively.

2.4.2 Analysis of gas dynamics with the air stream

Motivated by the conclusions drawn from the above parametric analysis, we included

air in the feed stream to the HVOF process; this makes the process analysis more

difficult. Assuming the air is composed by Oy, N,, and Ar only, the reaction formula

becomes

@CsHg + 4.50, + z[Ny + 1/78Ar] = > &(PR); (2.31)

iEpr
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Figure 2.8: Profile of pressure and equilibrium temperature with respect to ¢ and m/my;.
Operating conditions: x the same as the one in the baseline condition (Propylene: 176 scfh
(standard cubic feet per hour), Oxygen: 578 scfh, Air: 857 scfh, Nitrogen: 28.5 scfh),
total mass flow rate varying from 0.8 to 1.2 times the one of the baseline value (18.1 g/s),

and v = 0.5 - 2.0.

where z can be any number from 0 to 16.7, corresponding to the cases of pure
oxygen as oxidant and pure air as oxidant, respectively. Obviously, in this case, the
equilibrium temperature is not only dependent on ¢, but also on z. Furthermore,
because the pressure depends on the temperature, the average molecular weight and
the mass flow rate (Eq.2.29), the air stream plays an important role in achieving a

high pressure.

Figure 2.8 shows the combustion pressure and equilibrium temperature under
different total mass flow rates and equivalence ratios for a fixed x = 3.97. It can
been seen that the process behavior is very similar to the one without air if z is kept
constant (compare Figure 2.8 and Figure 2.4). The pressure contour in Figure 2.8(a)
shows that the total mass flow rate required to achieve the same combustion pressure

decreases as the equivalence ratio increases. The total mass flow rate increases linearly
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with pressure when the equivalence ratio is fixed. The equilibrium temperature is
significantly dependent on the equivalence ratio, but varies slightly with the total

mass flow rate. This also implies that pressure variations do not significantly affect

the equilibrium temperature.

Figure 2.9 shows the combustion pressure and equilibrium temperature under
different equivalence ratios and oxygen/nitrogen ratios with a fixed total mass flow
rate that is equal to the one in the baseline condition. It can been seen that as the
fraction of air in the whole reactant mixture increases, both pressure and temperature
drop. As z varies from 0 (pure oxygen as oxidant) to 16.7 (pure air as oxidant), the
equivalence ratio corresponding to the peak equilibrium temperature decreases from
1.23 to 1.05 (see Figure 2.10); this result provides a way to optimally manipulate the

relative flow rate of oxygen to air.

We tested the gas dynamics under nine different operating conditions shown in
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Figure 2.10: Profile of optimal equivalence ratio corresponding to the peak temperature of
the gas with respect to . Operating conditions: total mass flow rate the same as the one

in the baseline condition, z = 0 - 16.7.

Table 2.4. The baseline condition is recommended by the manufacturer. The sim-
ulation results are given in Table 2.5. Under the baseline conditions, the pressure
at the exit of the air cap calculated by the proposed procedure is 0.63 bar, which
implies that the flow outside the gun is overexpanded. The manufacturer, Sulzer
Metco measured a gauge pressure of -4 psig (-0.3 bar, or the absolute pressure is
about 0.7 bar) at the nozzle exit under the same operating conditions [131], which
validated the model and assumption applied in this work. In fact, the overexpanded

flow condition gives a slightly higher gas velocity.

In the nine different operating conditions, the equilibrium temperature is a func-
tion of the total mass flow rate, as well as a function of ¢ and z. For instance,
cases 1, 6, 7, 8, 9 have the same z (about 4.0), under which the equivalence ratio
associated with the peak temperature is around 1.2 according to our previous discus-
sion, Equilibrium temperature in case 7 is the lowest because its equivalence ratio

is only 0.7. Although the equivalence ratios in cases 2 and 6 are quite different, the
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Table 2.4:

Different operating conditions.

Case

Air

02 C3H6 N2 m 2 X
scfh  scfh  scfh scfh kg/s
1 (baseline) 578.0 176.0 857.0 285 18.10 1.045 3.969
2 (Air7 33%) 578.0 176.0 11398 28.5 20.98 0.969 4.895
3 (Air| 33%) 578.0 176.0 5742 285 1522 1.134 2.885
4 (0,71 33%) 768.7 176.0 857.0 285 20.24 0.835 3.171
5 (02 33%) 387.3 176.0 857.0 285 1595 1.396 5.303
6 (C3Hg? 33%) 578.0 2341 857.0 285 1895 1.390 3.969
7 (C3Hgl 33%) 578.0 117.9 857.0 285 17.24 0.700 3.969
8 (m1 33%) 768.7 2341 1139.8 37.9 24.07 1.045 3.969
9 (m] 33%) 387.3 1179 5742 19.1 1213 1.045 3.969
Table 2.5: Gas properties for different operating conditions.
Case Peq Teq Mpr T;ﬁ Pt Ut (pvg)t
bar K 107%kg/mol K  kg/m® m/s 10°kg/m/s®
1 (baseline) 6.79 3128 26.1 2812  0.428 1050 4.72
2 (Air? 33%) 7.66 3056 26.8 2747 0.509 1023 5.33
3 (Air] 33%) 5.89 3197 25.0 2874 0.349 1083 4.09
4 (041 33%) 747 3112 26.8 2802 0.487 1032 5.19
5 (02} 33%) 5.98 3008 25.0 2693 0.376 1054 4.18
6 (C3He? 33%) 7.34 3128 244 2805 0.433 1087 5.11
7 (C3Hgl 33%) 6.05 2925 27.9 2630 0436 982 4.21
8 (m1 33%) 9.06 3159 26.1 2842  0.567 1054 6.30
9 (] 33%) 4.52 3084 26.0 2772 0.288 1045 3.15
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temperatures are almost the same. This is because these two equivalence ratios are
located in opposite sides of the optimal equivalence ratio and the total mass flow
rates differ slightly. Temperatures are quite different in cases 5 and 6 although the
equivalence ratios are very close because the mass flow rates are different. Note that
a higher mass flow rate favors higher pressure, and accordingly, higher equilibrium
temperature. Case 3 has the lowest z and an equivalence ratio close to the optimal
one, as a consequence; its equilibrium temperature is the highest, compare to cases

1 and 2, even when the total mass flow rate is low.

On the other hand, the combustion pressure under the above operating conditions
is roughly a linear function of the total mass flow rate and changes little with the gas
composition. This is because the average molecular weight of the reaction product
mixture is 24-28 x 1073 kg/mol, and the temperature is 2.9-3.1x10%® K. Consequently,
the sonic velocity does not vary much and the pressure is proportional to the total

mass flow rate (which is in agreement with Eq. 2.29).

2.4.3 Analysis of particle velocity and temperature

In the fabrication of nanostructured coatings, it is crucial to maintain high particle
temperature at the point of impact on the substrate and to prevent particles from
being superheated at the same time, because it is precisely the small grain size that
contributes to the superior qualities of nanostructured coatings [23]. It is also of great
importance to maintain high particle velocity at the point of impact on substrate
since the higher the particle velocity, the denser the coating. We simulated the
Diamond Jet hybrid HVOF process model under the baseline operating conditions
given in Table 2.4 for Nickel (particle properties are given in Table 2.6) and the

results for the in-flight particle velocity, temperature and melting ratio are shown
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Table 2.6: Thermophysical properties of powder particles.

Powder Nt
Density (kg/m?) 8900
Specific heat(J/kg/K) 471
Melting point (K) 1727
Latent heat (J/kg) 3 x 10°
Diameter (um) 1-100

in Figure 2.11. Particles of small sizes may reach very high velocities during flight,
however, their velocities drop more sharply than those of larger particles because of
their smaller momentum inertias. Furthermore, they may be heated to the melting
point in a short time and be fully melted during flight, however, they may eventually
be in a coexistence state of liquid and solid or even in a solid state after a long
enough distance. Smaller particles tend to change their temperatures easily because
of their smaller thermal inertias. For particles of large sizes, however, their period for
acceleration and heating are both longer, and their velocity (or temperature) profiles
become nearly flat as they approach the same velocity (or temperature) of the gas.
In addition, they may not reach the melting point and be in solid state during the
entire flight. However, particles of medium sizes may become partially melted during
flight.

To further understand the behavior of particles in the HVOF process, we also
plotted the velocity, temperature and melting ratio at the 0.254 m standoff as a
function of particle size, shown in Figure 2.12 (note the configuration of each figure
may vary with different spray distances). Under the baseline operating conditions,
particles in the size range of 9 - 30 um hit the substrate as liquid droplets. Particles of
sizes larger than 49 pm or less than 5 um are in solid state at the point of impact on

substrate. Other particles, however, when reach the substrate, are in a semi-molten
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Figure 2.11: Profiles of particle velocity, temperature, and melting ratio along the flow field

(z = 0 corresponds to the nozzle exit).
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state (where both liquid and solid coexist). It is worth pointing out that, although
both very small particles and very big particles hit the substrate in partially molten
state or even solid state, their microstructure is not the same because the former ones
have been fully melted during flight.

Figure 2.13 shows the influences of particle injection velocity and spray distance
on the profiles of particle velocity and temperature and flight time. It is shown that
both disturbances have a minimal effect on particle velocity. However, their influence
on particle temperature and melting behavior, can not be neglected. This behavior
can be explained by the changes of residence time of particles in the gas flow field. An
increase in the particle injection velocity will result in a decrease of particle residence
time, especially in the high temperature zone. This is why larger size particles are
affected to a larger extent. An increase in the spray distance, however, has a greater
influence on the temperature of smaller particles. This is because larger particles
have greater thermal inertia and do not change their temperature very much after

they reach the gas temperature.

2.4.4 Modeling of powder size distribution

The fact that particle temperature and velocity at the point of impact on substrate
depend strongly on particle size implies that particle size of the feedstock is one
of the key parameters deciding coating quality. This property, together with the
significant polydispersity of most powders used in the thermal spray process, mo-
tivates accounting for the effect of powder size distribution in the process model,
the control problem formulation and the controller design. Previous experimental
work (114, 103]) has shown that lognormal functions can adequately describe the size

distribution of many powders used in the HVOF process. To this end, a lognormal
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function is used to describe the powder size distribution with the following form [32]:

1 Ind, — p)?
f(dp) = \/ﬁdd exp [—(n 50-2 Iu):l

(2.32)

where f(d,) is the size distribution function, yu and ¢? are two dimensionless para-
meters corresponding to the mean and the variance of In d,, which obeys the normal
distribution. For particles that are lognormally distributed, x4 and o can be deter-

mined using the following formulas:

2
no= In \3/ d10d50dgo —1.831 (ll’l ggg>

10
c = 0.7811n,/fl-99
le

where dyg, dso and dgg are three characteristic diameters which can be obtained

(2.33)

experimentally {100]. Particle coagulation in the HVOF thermal spray process has not
been reported in the literature, which may be explained by the following argument.
The average distance between individual particles in the HVOF thermal spray process

can be estimated based on the analysis of Crowe et al. [33]. Specifically,

1/3

ﬂ_Fl—H{
d, L6 k

(2.34)

where L, is the distance between two particles and x is the ratio of particle loading
to particle/gas density ratio. Usually the particle loading is about 4%, the density
ratio is about 10374, therefore L;/d, is about 20-50, which implies that the individual
powder particles can be considered isolated from each other. Therefore, in this work,
we assume that particle coagulation is negligible and the powder size distribution

does not change during flight.

There are many ways to define average powder properties. For example, they

can be averaged with respect to particle number or particle volume. In this work,

the average powder properties (P P) are calculated based on particle volume because
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larger particles have a stronger influence on coating properties than smaller ones.

Volume-based average powder properties can be computed as follows:

7 _ /oooé”dgp P(dy)f(dy)d(dy)

001 3
/O =3 f(dy)d(dy)

(2.35)

2.5 Feedback control of HVOF thermal spray process
2.5.1 Control problem formulation and controller design

Based on model predictions and available experimental observations, the control
problem for the HVOF process is formulated as the one of regulating the volume-
based averages of melting ratio and velocity of particles at the impact on substrate
(these are the variables that directly influence coating microstructure and porosity,
see modeling and analysis in Chapter 3) by manipulating the flow rates of propylene,
oxygen and air at the entrance of the HVOF thermal spray gun. From the analysis
in the previous sections, it follows that the gas momentum flux, which is approx-
imately proportional to the drag force, and the gas temperature, whose difference
between the particle temperature provides the driving force for particle heating, can
be almost independently adjusted by manipulating the combustion pressure and the
equivalence ratio. To develop a feedback controller that can be readily implemented
in practice, the manipulation of combustion pressure and equivalence ratio is realized
by adjusting the flow rate of propylene, u;(t), oxygen, us(t), and air uz(t). Owing to
the almost decoupled nature of the manipulated input/controlled output pairs, two

proportional integral (PI) controllers are used to regulate the process. Specially, the
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controllers have the following form:

G = Yspi— Ui G(0)=0, i=1,2
1
u; = K, [(ysm - i)+ 7—_@} +up, ¢=1,2 (2.36)
{u13u2)u3} = f(ull,ulz,l')

where y,p, is the desired set-point value and y; is the value of the output obtained
from the measurement system (y; is the volume-based average of particle velocity
and y, is the volume-based average of particle melting ratio). «} is the combustion
pressure and uj is the equivalence ratio. K., is the proportional gain and 7, is the
integral time constant of the ith controller. The third equation makes use of the
process model. To keep the problem simple, the ratio of air to oxygen (or z) is fixed.
We note that the relationship between the gas temperature and the equivalence ratio
is not monotonic. Beyond the optimal equivalence ratio (about 1.2 for z = 3.97), the
gas temperature decreases as the equivalence ratio increases. Therefore, K., and 7,
should be replaced by —K,, and —7., when the equivalence ratio is above this value.
The design of a model-based feedback control system, employing nonlinear control
techniques for particulate processes, [26, 27, 43, 30, 85, 86, 87] as well as applications
of the control system to an experimental system, will be the subject of future work.

Regarding the practical implementation of the proposed control system (see Fig-
ure 2.14) on the Diamond Jet hybrid HVOF thermal spray, we note that the chamber
pressure and the equivalence ratio can be readily manipulated in real-time by adjust-
ing the mass flow rates of fuel, oxygen and air. The velocity and temperature of
individual particles can be measured experimentally using non-intrusive optical tech-
niques, for example, Laser Doppler Velocimetry [50], Particle Imaging Velocimetry
193, 183], and Two Color Pyrometry {177, 66, 48]. However, it is not possible to
directly measure the degree of melting of individual particles and consequently, the

average degree of melting of the entire particle size distribution. To overcome this
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Figure 2.14: Schematic of the proposed feedback control system.

limitation, one needs to use an estimation scheme based on the modeling equations
that describe the evolution of particle temperature, velocity and degree of particle
melting coupled with the available gas phase measurements to estimate average par-
ticle melting ratio at the point of impact on the substrate. The estimates obtained
by this model can be further improved through comparison with the particle tem-
perature measurements at various locations across the free jet. In the simulation
section, we have included a closed-loop simulation in the presence of measurement
errors to evaluate the effect of such errors in closed-loop performance; the detailed
development of an estimation scheme for particle melting ratio is the subject of fu-
ture work. The controller then obtains information from the measurement system,
and makes decisions, which are sent to the controlled valves (total flow of gases to
the process and oxygen/fuel ratio), to adjust the manipulated input variables until
the deviation of the controlled outputs from their corresponding set-point values falls

within a tolerable region. One of the great advantages of feedback control is that it
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Table 2.7: Process and controller parameters used in the closed-loop simulation.

K., 5 x 103

K., 0.1

1 H X 10_2

72 5x 1072
o (um) 15

d50 (/Lm) 35

dgo (um) 77

& 1.0

* powders are assumed to be lognormally distributed, and dyg, dsg, and dgg are three
characteristic diameters whose corresponding cumulative weight function values are
0.1, 0.5, 0.9.

can compensate for the effect of disturbances in the process operating conditions.

2.5.2 Simulation results of HVOF process model under feedback control

In this subsection, simulation runs of the closed-loop system are presented. The
outputs y;(t) and yo(t) are computed by averaging the individual particle velocity
and melting ratio data obtained from the process model. To account for the powder
size distribution, we first fit a lognormal distribution and calculate the size range
in order to capture more than 99wt% of all the particles. We then divide this size
range into 100 intervals to perform the integration (Further increase on the number
of discretization intervals did not change the accuracy of the computed results) [109,
108]. This requires solving simultaneously 400 ordinary differential equations for each
process simulation. The parameters used in the closed-loop system simulations are

shown in Table 2.7,

Several simulation runs of the process model under the feedback controller were

performed to evaluate the ability of the controller to: a) drive the melting ratio
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Figure 2.15: Profiles of controlled outputs (average particle velocity and melting ratio),
manipulated inputs (flow rate of propylene, oxygen and air), and total mass flow rate
and equivalence ratio, under the request of 5% increase in average particle velocity and
5% decrease in the melting ratio - Control problem formulation accounts for the effect of

powder size distribution.
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and velocity of particles at the point of impact on substrate to desired set-point
values, b) attenuate the effect of disturbances on process operating conditions, and
c) compensate for the effect of measurement errors. The first simulation studies
the behavior of the closed-loop system in the presence of changes in the set-point.
Initially, the process is assumed to operate at the baseline condition, and at time t =
10 sec, the average particle velocity set-point value increases by 5% and the average
particle melting ratio set-point value decreases by 5%. Figure 2.15 shows how the
controlled outputs and manipulated inputs as well as the total mass flow rate and
the equivalence ratio respond in the case of requesting such changes in the set-point
values. The feedback controller drives the controlled outputs to the new set-points
in about 10 sec (note that 10 sec is the time needed for the controlled outputs to
reach the new set-point values, not the time for the particles to hit the substrate,
which is on the order of 1073 sec). In a typical HVOF process, the powder feed rate
is in the range 20-80 g/min and the thickness of a coating is about 100 - 300 um
[141]. The deposition efficiency of HVOF process is around 70% [179]. Considering
the deposition of a coating on a 0.5 m x 0.5 m substrate, the deposition time can be

estimated by the following formula:

200 x 107%m x 0.5m x 0.5m x 8900kg/m3
= = 12.7ms 2.37
! 50 x 10-%kg/min x 0.7 man (237)

For a coating with a larger area, the deposition time is even longer, which means
that the controller is quite effective (compared with a typical time needed for a full
coating) and validates the feasibility of implementation of feedback control on the
HVOF process. Note that in the first 0.8 sec, the liquid ratio increases when the
equivalence ratio decreases. This is because in this time period the mass flow rate
and the pressure increase by 22% and 21% while the equivalence ratio decreases by

6%. As aresult, the increase in gas temperature resulting from the increased pressure
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outweighs its decrease resulting from the lower equivalence ratio.

To demonstrate that the proposed formulation of the control problem, which
explicitly accounts for the effect of powder size distribution, leads to a solution of the
control problem that is superior (with respect to the control action needed to achieve
the desired control objectives) to a solution that assumes a monodisperse powder
size distribution, the two PI controllers are also implemented on the process model
using the same controlled outputs but assuming that the velocity and temperature
measurements are based on a single particle whose size is taken to be d, = 35 um,
which is equal to the dsg value of the powder size distribution used in our simulation.
The corresponding controlled and manipulated variables are given in Figure 2.16.
The results show that the desired objectives of 5% change in the set-point values
are not achieved (compare the controlled output profiles of Figure 2.15, where the
desired set-point change is achieved); this occurs because, as it has been previously
shown [109], the behavior of an individual particle is insufficient to represent that
of the entire powder size distribution. This makes clear the need to account for the

effect of powder size distribution in the control problem formulation and solution.

To test the robustness of the proposed control problem formulation and of the
feedback controller, the problem of controlling the HVOF process in the presence
of disturbances was studied. Figures 2.17 and 2.18 show the controlled output and
manipulated input profiles in the presence of disturbance (20% increase and 20%
decrease, respectively) in the spray distance which occurs at t = 10 sec. Without
control, the process jumps to a new steady state in a very short time (owing to the very
short time of particle fight), the particle velocity in both cases drop instantaneously.
The reason is that the particles are usually accelerated first and then decelerated in

the external field and therefore there is an optimal spray distance. Nevertheless, the
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Figure 2.17: Profiles of controlled outputs (average particle velocity and melting ratio),
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disturbances in spray distance do not have a significant effect on particle velocity
because the velocity profile of particles is almost flat as they reach the gas velocity.
However, the melting ratio of particles at the point of impact on substrate decreases
in the former case and increases in the latter case, which can be explained by the
change in residence time of particles in the gas flame. Such variations in the molten
state of the particle may have a detrimental effect on the coating microstructure
evolution. Under feedback control, the manipulated inputs drive the process outputs
to their original steady state values in 10 - 25 sec. It is also interesting to see how the
controller responds to compensate for this velocity decrease. While it is intuitively
expected that the mass flow rate increases in the latter case to increase the particle
velocity, the total mass flow rate in the former case decreases to drive the particle
velocity to its original value. This is because the equivalence ratio increases all the

time and the pressure increases even as the total mass flow rate decreases.

Figures 2.19 and 2.20 show the controlled output and manipulated input profiles
in the presence of disturbances (10% increase and 20% decrease, respectively) in
initial particle velocity at t = 10 sec. Without control, the system jumps to a new
steady state in a very short time. While the particle velocity changes little in both
cases, the particle melting behavior varies a lot. The changes of particle temperature
in both cases can be explained by the residence time of particles in the flame gas,
which is caused by the variation of the particle velocity along the flight, although
the particle velocity at the point of impact remains nearly the same. Under feedback
control, the manipulated inputs drive the process outputs to their original steady

state values in about 20 sec.

Another source of disturbance to the process operation, especially in an indus-

trial environment, is the variation of the size distribution of the powder during the
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operation of the HVOF process. This may have a significant influence on the particle
velocity and particle temperature at the point of impact on the substrate based on
the analysis of the previous sections. In the following simulation, it is assumed that
the process is at steady state in the first 100 sec and then the powder size distribution
changes gradually (specifically, in the following calculation, u increases according to
the expression g = pg[l + 0.03(1 — e7#/1°%)] and o? is kept constant). Figure 2.21
shows the controlled outputs and the manipulated inputs as well as the total mass
flow rate and the equivalence ratio in the presence of such a variation in the powder
size distribution. Under feedback control, both particle velocity and melting ratio
fluctuate in a very narrow range around the desired set-point values. We note that ¢
changes rather sharply compared to the change in mp,e and o, because both Mgy
and g, have an influence on ¢ (p = Mmpye /Mo, X 4.5). For example, ¢ will go up
sharply if 7 g, increases while 7o, decreases and go down sharply in the opposite
case. When no control is used, in which case the flow rate of each stream is kept
constant, both velocity and melting ratio of particles decrease with time, which may

have an undesirable effect on the resulting coating properties.

To demonstrate that the proposed formulation of the control problem is robust
with respect to measurement errors, we implemented the developed control system
on the process model under the request of 5% decrease in average particle melting
ratio set-point value and 5% increase in the average particle velocity set-point value
at time t = 10 sec but assuming that there are errors in the values of average velocity
and degree of melting used in the controller. In the closed-loop simulation, we assume
that the estimation errors follow an exponentially-decaying function with an initial
error of 10%. The corresponding controlled and manipulated variables are given in

Figure 2.22. The results show that the desired control objective of 5% change in
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Figure 2.21: Profiles of controlled outputs (average particle velocity and melting ratio),
manipulated inputs (flow rate of propylene, oxygen and air), and total mass flow rate and

equivalence ratio, in the presence of variation in the powder size distribution.
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the set-point values is eventually achieved (compare the controlled output profiles
of Figures 2.15 and 2.22); this demonstrates that the proposed formulation of the

control problem is robust with respect to measurement errors.

2.6 Conclusions

This chapter presented a fundamental model and a feedback control system for an
industrial high velocity oxygen-fuel (HVOF) thermal spray process (Diamond Jet hy-
brid gun, Sulzer Metco, Westbury, NY). The process model describes the evolution of
the gas thermal and velocity fields, the motion and temperature of agglomerate parti-
cles of different sizes, and explicitly accounts for the effect of powder size distribution.
In addition to providing useful insight into the in-flight behavior of different-size par-
ticles, the model was used to make a comprehensive parametric analysis of the HVOF
process. This analysis allowed a systematic characterization of the influence of con-
trollable process variables such as combustion pressure, oxygen/fuel ratio, as well as
the effect of powder size distribution, on the values of particle velocity and temper-
ature at the point of impact on substrate. Specifically, the study shows that the
particle velocity is primarily influenced by the combustion pressure, and the particle
temperature is strongly dependent on the fuel/oxygen ratio. These findings are con-
sistent with existing experimental studies and set the basis for the formulation of the
control problem for this HVOF process. To develop a feedback controller that can
be readily implemented in practice, the control problem was formulated as the one
of regulating volume-based averages of the melting ratio and velocity of the particles
at the point of impact on the substrate (these are the variables that directly influ-
ence coating microstructure and porosity, which, in turn, determine coating strength

and hardness) by directly manipulating the flow rate of fuel, oxygen and air at the
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entrance of the HVOF gun. A feedback control system was developed and applied to
the process model. Closed-loop simulations demonstrated that the particle velocity
and melting ratio at the point of impact on substrate reach the desired set-point
values in a short time, which validates the feasibility of real-time implementation of
feedback control on the HVOF thermal spray system. It was also shown that the
proposed control problem formulation and the feedback control system are robust
with respect to disturbances in spray distance and particle injection velocity, and
variations in powder size distribution.

In the next chapter, we present a mechanistic model which uses information about
particle velocity, temperature and degree of melting at the point of impact on sub-
strate from the model developed in this chapter to predict coating porosity and

microstructure.
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Chapter 3

Diamond Jet Hybrid HVOF
Thermal Spray: Rule-Based
Modeling of Coating

Microstructure

This chapter focuses on computational modeling and simulation of microstructure
of coatings produced by an industrial high-velocity oxygen fuel (HVOF) thermal
spray process (Diamond Jet hybrid gun, Sulzer Metco, Westbury, NY). Based on the
understanding of coating structure and mechanisms of pore formation inside of the
coating obtained from experimental studies, a stochastic simulation procedure is used
to explore the evolution of the microstructure of the coatings. In the coating growth
model, the velocity, temperature and degree of melting of particles hitting on the sub-
strate are determined by a previously developed mathematical model [112] describing
gas and particle behavior, and the complex characteristics of the thermally sprayed
coatings are captured by applying certain basic rules that encapsulate the main phys-

ical features of the deposition process. In addition to providing useful insight into
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the pore formation and coating growth, the model is used to make a comprehensive
parametric analysis, which allows us to systematically characterize the influence of
operating conditions, such as the gas flow rate, spray distance, as well as the effect
of particle size, on the particle melting behavior, coating porosity, surface roughness
and deposition efficiency. Comparison of simulation results and experimental stud-
ies shows that the proposed model can reasonably predict the relationship between

macroscopic processing conditions and coating microstructure.

3.1 Introduction

Thermal spray represents a series of particulate deposition processes in which the
particles are heated up and propelled in a gas/plasma stream to hit a substrate,
forming a thin layer of dense, hard and lamellar-structured coating. Since its de-
velopment in the early twentieth century, the thermal spray technology has been
one of the most cost-efficient means of protecting substrate surfaces, via coating
deposition, from wear, corrosion and erosion. The 1980s witnessed the invention
of the so-called high-velocity oxygen fuel (HVOF) thermal spray technology, which
was a major achievement in the thermal spray industry [141]. Featured with high
gas/particle velocity and relatively low gas/particle temperature when compared to
plasma spraying, HVOF thermal spray is a powerful tool for the fabrication of coat-
ings of metals, cermets, and composites. On the one hand, the extremely high par-
ticle velocity helps to densify the coating and to increase the deposition rate. On
the other hand, the very short residence time in the relatively low temperature gas
flame makes the powder particles highly plastic and superheating or vaporization is
prevented [21, 24, 109, 108]. Nowadays, the HVOT thermal spray has carved out a

special niche in the thermal spray industry, particularly in the deposition of nano-
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structured coatings, because the nano-crystalline structure of powder particles can
be preserved during flight [21].

In order to improve coating repeatability and process performance, much exper-
imental work has been done in the last decade to study the effect of key process
parameters such as gas flow rate, fuel/oxygen ratio, and spray distance, on the phys-
ical and mechanical properties of HVOF thermally sprayed coatings [30, 36, 60, 64,
71, 120, 113]. The optimization of process parameters involved in these works re-
lies on the conventional Taguchi method, which uses a set of orthogonal arrays that
stipulates the way of conducting the minimal number of experiments that could give
the full information of all the factors affecting the coating performance parameters
[36]. This approach is expensive but reliable for a specific HVOF thermal spray
process. However, a lack of fundamental understanding of the dynamics of the gas
and particle behavior as well as of the microscopic deposition process significantly
restrict its applicability because, the experimentally derived “optimal” solution may
be questionable when it is applied to another thermal spray process in which some
important parameters, such as the nozzle configuration, powder or fuel type, etc., are
different [21]. Mathematical modeling, on the other hand, provides an efficient and
versatile alternative to quantify the effect of each one of the key process parameters

on coating properties.

In the last decade, significant efforts have been made to simulate the evolution of
coating microstructure using mathematical models. For example, stochastic simula-
tion has been applied to model the stochastic deposition and coating growth process
in plasma spray [20, 31, 94]. These stochastic models are based on certain rules that
govern the splat formation, coating growth and pore formation. Parametric analy-

sis has been made based on these models to study how the coating microstructure
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and physical properties such as the porosity and roughness, are affected by various
process parameters, including the gun scanning velocity, spray angle [20], particle
size, gas temperature and velocity [31]. However, the particle temperature, velocity
and degree of melting profiles in the plasma spray process are very different from the
corresponding profiles in the HVOF thermal spray, and thus, these models cannot
be used to predict coating microstructure in the HVOF thermal spray process. Re-
cently, continuum type and stochastic models have been developed to simulate the
coating microstructure formation [59, 134] in the HVOF thermal spray process; the
continuum type models involve partial differential equations governing particle defor-
mation and spreading. However, in these works, the particles at the point of impact
on the substrate are assumed to be fully melted and the important effect of degree
of particle melting (i.e., most particles hit the substrate in semi-molten state) is not
accounted for in the heat balance that describes the evolution of particle temperature

and the formation of coating microstructure.

To develop a methodology to precisely control the coating micro- or nano-structure
which determines the coating mechanical and physical properties by manipulating
macro-scale operating conditions, the link between the macroscopic operating con-
ditions and the coating microstructure should be established and the relationship
between particle size and melting behavior and coating porosity needs to be under-
stood. In this chapter, we focus on the modeling of microstructure of coatings pro-
duced by an industrial HVOF thermal spray process (Diamond Jet hybrid gun, Sulzer
Metco, Westbury, NY). Based on the understanding of coating structure and mech-
anisms of pore formation inside of the coating obtained from experimental studies
[116, 117, 118], stochastic simulation is used to explore the microstructure evolution

behavior of the coatings on the substrate. In the coating growth model, the velocity,
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temperature and degree of melting of powders hitting on the substrate are determined
by a previously developed mathematical model describing gas and particle behavior
[112], and the complex characteristics of the thermally sprayed coatings are captured
by applying several basic rules that encapsulate the main physical features of the
deposition process. In addition to providing useful insight into the pore formation
and coating growth, the model is used to make a comprehensive parametric analysis,
which allows us to systematically characterize the influence of operating conditions,
such as the gas flow rate, spray distance, as well as the effect of particle size, on
the particle melting behavior, coating porosity, surface roughness and deposition ef-
ficiency. Comparison of simulation results and experimental studies shows that the
proposed model can provide good predictions of the relationship between macroscopic

processing conditions and coating microstructure.

3.2 Characteristics of deposition and coating growth

Thermally sprayed coatings consist of lamellar splats interspersed with pores. The
splats, which are the fundamental building blocks of the coating, are formed by the
impact, deformation, spreading and solidification of individual droplets. The pores,
however, are formed by the interaction of the droplets and the previously-deposited
coating surface. In this section, several characteristics involved in the deposition and

coating growth process, including deformation, pore formation and surface roughness,

will be described.

3.2.1 Deformation

In the HVOF thermal spray process, each individual particle is accelerated and heated

up in a burning gas flame, and then impinges onto the substrate in a molten, partially-
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molten or solid state. At impact, the sudden stagnation of the powder particles
leads to a pressure build-up at the particle-surface interface, and deformation occurs.
As the particles splash on the substrate, they are also quenched to the substrate
temperature in a very short time. For the particle deformation process, if a particle
is fully melted, it is assumed that the droplet becomes a cylinder as a result of

deformation [122] (see Figure 3.1(a)). The splat flattening degree ¢ is defined by the

D 2 A
=gl (3'”

where D and A are the estimated diameter and area of the splat, respectively, and

following equation:

d, is the particle diameter prior to impact. The analysis of Madejski [122] shows
that £ depends on several dimensionless parameters characterizing the impact and
spreading processes, including: the Reynolds number (Re = d,v,/v,, where v, is
the kinematic viscosity of the droplets), which represents the viscous dissipation of
the inertia forces, the Weber number (We = d,v2p,/0,, where o, is surface tension
of the droplets), which quantifies the conversion of the kinetic energy into surface
energy, and the Peclet number (Pe = wv,d,/e,, where €, is the thermal diffusivity
of the solidified layer), which expresses the freezing rate [122]. Under the operating
conditions typically employed in the HVOF thermal spray process, solidification is
insignificant before the deformation is complete, and therefore the flattening ratio

can be expressed as a function of We and Re as follows [122]:

32 1 ( ¢\ _
W_e+§<1.2941> =1 (3.2)

The above equation is valid for We > 100 and Re > 100. When the surface tension
effects are negligible, which is usually true for particles with size larger than 10 um,

Eq.3.2 can be further simplified to:

¢ = 1.2941Re%? (3.3)
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Figure 3.1: Deformation of fully melted particle and partially melted particle upon impact

on the substrate.

If a particle is partially melted, our modeling procedure assumes that the unmelted
part will form a hemisphere with the equivalent volume and the melted part will
form a ring around this hemisphere (see Figure 3.1(b)), whose flattening ratio can be

calculated using the same formula.

3.2.2 Pore formation

Porosity, which is defined as the ratio of the volume of the pores inside the coating
to the total volume of the coating, is one of the most important quality parameters
of the coatings produced by the HVOF thermal spray process. Experimental studies
have shown that a lamellar microstructure is consistently observed on cross sections
of a coating, and pores are distributed in the lamellar structure, regardless of the
processing conditions [141]. However, the amount, size and distribution of pores in
the thermally sprayed coatings are dependent to a large extent on the processing
conditions. These variables, which significantly affect thermal conductivity and me-
chanical properties of the coatings, can be controlled more efficiently if an in-depth

understanding of the fundamental mechanisms of porosity formation is established.
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In this sense, estimation of coating porosity is one of the main objectives of this work.

Liu et al. [116, 117, 118] proposed several possible mechanisms of pore formation
in the coating microstructure based on their experimental investigations. Five major
types of pores are classified (see Figured 3.2). The first one is a macro-pore type,
whose size is comparable to the droplet size. It is primarily formed in the vicinity of
solidified particles, unmelted or partially melted particles as a result of unfree spread-
ing of subsequent droplets around these slightly flattened particles. The remaining
four types of pores are all of micro-pore type, whose size is much smaller than the size
of the droplets. Specifically, they are formed by: (1) solidification of voids caused by
droplet/droplet and droplet/liquid-surface-layer interactions; (2) separation of liquid
from the solid/liquid interface or liquid ejection or rebounding (detached liquid may
entrap voids); (3) presence of cavities in droplets before impact; and (4) extraneous
inclusions and dispersoids (e.g., carbides, nitrides and oxides) that may be present in
droplets. The occurrence of each mechanism depends on the processing conditions.
For example, when the degree of melting of the particles at impact is low and there
are many solid particles in the sprayed powder at the point of impact on substrate,
the first two mechanisms may be dominant. When the deposition layers are thin and
the resultant rate of heat extraction in the deposited material is high, mechanism 3
becomes important. If there is a large amount of extraneous particles in the droplets,
mechanism 5 will be significant. Because the spray powder used in the current study
is nickel, the powder particles are dense and it can be assumed that there is no reac-
tion of carbides or oxides inside them. Therefore, pores formed by mechanisms 4 and
5 can be neglected. Mechanisms 1, 2 and 3 will be included in the microstructure

model and their relative importance will vary depending on the operating conditions.
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Figure 3.2: Schematic of the five types of pores.

3.2.3 Surface roughness

The roughness of a coating surface is another important factor that affects coating
quality. A smooth surface can enhance the coating performance in terms of abrasion,
wear, and corrosion resistance. In this work, the roughness is defined as the arithmetic
mean of the absolute difference between the surface height of each gird and the average

surface height:

1

Z ‘h(i) - hm’

R, = =1 4
- (3.4)

where R, is the roughness, n is the number of grid points used in the model, h(z) is
the surface height of grid point ¢, and A, is the average surface height calculated by
using the expression Y7, h(i)/n.

The surface roughness is primarily dependent on the substrate properties as well
as the particle size and chemical and physical states of the particles at the point
of impact on the substrate. This work considers that the substrate is smooth and
does not account for the effect of substrate roughness on the coating properties.

However, it should be noted that the substrate surface is usually roughened before
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coating processing. Such a treatment can increase the bonding strength between the
thermally sprayed coating and the substrate. Mellali et al. [128] have concluded that
the particle adhesion/cohesion on the surface increases with substrate roughness at

least for the well-molten particles.

3.3 Computer simulation of coating formation

Because of the polydisperse nature of the powder size distribution and the stochastic
nature of the deposition process, a stochastic simulation method, which is based on
random number generation and rule-based modeling of coating formation, is used to
explore the particle behavior in the deposition and coating formation processes. In
this section, the modeling procedure, coating growth rules, and modeling settings
will be presented. While the proposed model will be applied to a coating sprayed by
the Diamond Jet hybrid HVOF' thermal spray process, the modeling methodology is

applicable to coatings sprayed with other HVOF thermal spray processes.

3.3.1 Simulation procedure

The procedure followed for the simulation of coating microstructure is based on the
sequential modular method, which is shown in Figure 3.3. At the beginning of each
simulation run, the process operating conditions (such as the mass flow rate of oxygen,
fuel and air) and the particle size distribution parameters are specified. After the
initialization, the simulation repeats a process in which individual particles hit on the
surface of the coating, until the coating thickness reaches the desired set-point value.
The size of each particle is chosen by using a random number generator according to

a lognormally-distributed particle size distribution of the following form [32]:
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Figure 3.3: Modeling procedure.

(Indp, — N)z} (3.5)

1
fldp) = Vamod, P {— 907
where f(d,) is the size distribution function, u and o2 are two dimensionless para-
meters corresponding to the mean and the variance of Ind,, which obeys the normal
distribution. For particles that are lognormally distributed, 4 and o can be deter-

mined by the following formulas:

2
Ho = In \3/ d10d50d90 —1.831 (ln %)

10
[ dgo
0.7811n ¢+ —
dlo

where djp, dsg and dgo are three characteristic diameters which can be obtained

(3.6)

g

experimentally [100].

Once the particle size is determined, the particle velocity, temperature and melt-
ing ratio at the point of impact on the substrate are calculated by using the HVOF
thermal spray process model developed in the last chapter [112]. The hitting posi-
tion of the particle on the substrate is also determined by two independent random
numbers. The program then simulates how each individual particle hits on the sub-
strate and forms a splat. For the simulation of splat accumulation, we consider that
the coating formation process is a sequence of independent discrete events of each
individual particle hitting on the previously formed coating layer. After all the pa-
rameters of a particle before hitting the previously deposited coating layer, such as

the melting ratio, the flattening ratio etc., are determined, the particle is added to
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the already-formed coating layer based on certain rules, which will be discussed in
subsection 3.3.2 below. When the coating thickness reaches its set-point value, the
program saves the configuration of the simulated coating section and calculates the
coating porosity, surface roughness and deposition efficiency. The deposition effi-
ciency is defined as the ratio of the volume of particles deposited on the substrate to

the total volume of particles sprayed by the HVOF process.

To increase the efficiency of the computation, the model only simulates the cross
section of the coating that is perpendicular to the substrate, i.e., simulation of coating
growth in two dimensions. The point of impact of a particle on the substrate is
determined by two random variables, corresponding to its two dimensional position
on the coating surface. The first one represents its position in the z-coordinate (),
calculated from a reference point on the simulated section to the center of the splat.
The second one stands for its position in the y-coordinate (y,), calculated from the
position where the splat is cut by the cross section to the center of the splat (see
Figure 3.4). Specifically,

{mp = ulL+L/2 (3.7)

Yp = wD
where u and w are two independent and uniformly distributed random variables in
the interval [-0.5, 0.5], L is the length of the simulated coating section and D is the
diameter of the splat. Note uniformly but not normally distributed variables are used
to describe splat position because the thermal spray gun may move in general back
and forth. After the point of impact of a particle on the substrate is determined, the
splat is added on the previously deposited coating layer and pores may be formed,

depending on the conditions of the previously-deposited coating layer.
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Figure 3.4: Sketch of the splat position used in the model.

3.3.2 Coating growth rules

There are several different events which may take place when a particle hits on the
substrate. The occurrence of each event depends on the physical state of the sprayed
particle and the condition of the previously deposited layer at the hitting point. The

rules governing the geometric shape of the splats and the formation of the pores are

described as follows.

1. If a particle at the point of impact on the substrate is partially melted, the
unmelted part will form a hemisphere on the previously deposited layer and the
melted part will form a ring around this hemisphere (see Figure 3.1(b)). Fur-
thermore, if the unmelted part of the particle hits at the point of the previously
deposited layer that is formed by an unmelted particle, it will bounce off, and a
hole will be formed in the center of the disk. Otherwise, the hemisphere will hit
on the surface and macro-size pores may form under the hemisphere. Figures

3.5(a) and (b) show the coating layer before and after a partially melted particle
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Figure 3.5: Splat formation rules (shaded area corresponds to added splat and dotted
area corresponds to pore formation) - (a) coating surface before impact of partially melted
particle, (b) coating structure after impact of partially melted particle, (c) splat breaking
up, (d) pore formation at the corner of a step, (e) pore formation in a gap and (f) splat

pileup on a step.

hits on the surface. It is shown that one pore is formed as the unmelted particle
covers the gap. This kind of pore formation is consistent with the first type of

pore formation mentioned in the subsection 3.2.2.

2. When a particle hits the substrate, the melted part will fit on the surface as
much as possible. The splat will spread outwards, after the impact region of
the particle fits on the surface, without forming a new pore. The impact region

is determined by the size and the cross-sectional position of the particle.

3. During the splat spreading, if the splat comes to a vertical drop, the program
will calculate the ratio of the splat that has not been settled down. If the step
does not continue with a gap (shown in Figure 3.5(e)) that can be covered by the
splat, the splat will break (Figure 3.5(c)) or cover the corner at the step (Figure

3.5(d)) according to the ratio and the height of the step. Otherwise, the gap
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will be covered by the splat (Figure 3.5(e)), and a pore will be formed. Pores
formed in this way fall into the second and third categories of pore formation

mechanism mentioned in the subsection 3.2.2.

4. If the splat encounters a dead end (Figure 3.5(f)), it first fills the available space,
and then it flows over the outer surface if the volume of the remaining splat is

big enough.

To successfully simulate the coating microstructure, several important parameters
are used in these rules. According to the situations that these parameters are used,
there are 5 groups of parameters: (a) One parameter is used to determine how deep
the unmelted part of the particle will hit into the gap (Figure 3.5(b), i.e., the vertical
distance d; at each discretization point between the actual bottom of the unmelted
particle and the straight line connected the boundaries of the gap) based on the width
of the gap, w, and therefore, this parameter decides the size of a macro-sized pore.
Specifically, the vertical distance d; is calculated by ¢;v/22 — wz, where the parameter
¢y is set to be 0.5, and z is the horizontal distance between the discretization point
and the left boundary of the gap; (b) in the third rule, when a splat meets a vertical
drop step (Figure 3.5(c) and (d)), the ratio of the step height to the splat thickness,
set to be 5 in the simulation, determines whether the splat will break; (c) if the
splat breaks when it meets a vertical drop step (Figure 3.5(c)), the distance that it
breaks away is proportional to the difference between the height of the step and the
length of the splat that breaks, and the ratio is set to be 0.3 in the simulation. (d)
if the splat does not break when it meets a vertical drop step (Figure 3.5(d)), a pore
will form at the corner of the step (the size of the pore is decided by a parameter,
which is the slope of the splat covering the corner. The slope is set to be 0.5 in the

simulation); (e) in the fourth rule, a necessary parameter is the slope of the bulk
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formed by the splat at the dead end (Figure 3.5(f)), which is set to be 1 in the
simulation. All these parameters were carefully selected based on the consideration
of their physical meaning and were tuned to provide results of important coating

variables (like coating porosity) which are consistent with the available experimental

results [60, 71].

By means of these parameters, these four basic rules control how each particle hits
and deforms on the substrate to form a lamellar-structured coating. Based on the
simulated coating structure, the coating porosity and roughness can be calculated.
Specifically, the coating porosity P is calculated using the following equation:

Ty
P =
1 + Mo (38>

where n; is the number of void grids under the simulated coating surface, and n,
is the number of grids occupied by splats under the simulated coating surface. The

deposition efficiency 7 is calculated using the following equation:

Vi

= 3.9
V72 (3.9)

where V] is the volume of particles that are added to the coating, and V5 is the volume
of solid particles that are bouncing off by hitting on the surface formed by unmelted
particles. Note that all partially-melted and fully-melted particles stick onto the

surface independently of the nature of the coating layer at the hitting position.

3.3.3 Simulation settings

The simulation model is based on the operation of the Diamond Jet Hybrid gun,
whose geometric configuration can be found in the last chapter [112]. Table 3.1 lists
the baseline operating conditions (recommended by the manufacturer), typical par-

ticle size distribution and the dimension of the simulated coating section. Especially,
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Table 3.1: Baseline operating conditions for the Diamond Jet hybrid thermal spray process

used in the simulation.

Parameter Value
Flow rate of oxygen, Oy (scfh) 578
Flow rate of propylene, CsHg (scfh) 176
Flow rate of air (scfh) 857
Spray distance, L (mm) 245
Characteristic diameter dyo (um) 15
Characteristic diameter dso (um) 35
Characteristic diameter dgy (um) 77
Particle injection velocity, v,, (m/s) 20

Width of the simulated coating section (um) 819.2
Desired set-point of the coating thickness (um) 254

Table 3.2: Thermophysical properties of powder particles.

Powder Nickel
Density (kg/m?) 8.9 x 102
Melting temperature (K) 1727
Heat capacity (J/kg/K) 471
Latent heat of melting (J/kg) 3x10°

Liquid kinematic viscosity (m?/s) 6.2x1077

the three characteristic diameters (djo, dso and dgg) are listed as a reference for the
lognormal distribution of the powder particles. When particles with different sizes
are used in the simulation, these three characteristic diameters are varied proportion-
ally, i.e. only one characteristic diameter is needed to describe a certain lognormal
distribution of particles. Therefore, we only mention ds to characterize the size dis-
tributions of the various powder used in this chapter. The physical properties of the
particles used for coating formation are listed in Table 3.2. The model simulates a
section of the coating. The section is assumed to be a rectangle and is discretized by

a 8192 x 4096 mesh. The size of each grid in the mesh is 0.1 x 0.1 gm. Such a grid
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size is around half of the height of the splat which is formed by a fully melted particle,
whose diameter is 40 ym, under the baseline operating conditions. According to the
mathematical model describing gas and particle behavior [112], particles whose size
is smaller than about 8 pum are mostly fully unmelted. Based on this fact, a grid size
of 0.1 pm 1s small enough to carry out a simulation of coating growth with reasonable
computing power. Each splat formed by a particle hitting on the previously formed
coating surface is discretized to a combination of grids, and is placed on the coating
surface by following certain rules (see section 3.2). The splat with a thickness less
than 0.1 um is rounded to 0.1 um. Eq.3.10 shows the relationship between the ratio

of splat diameter (D) to thickness (h) and the flattening degree (£):

D
—=1.5¢° (3.10)

Usually, £ is around 8 according to our calculations, which means that the splat di-
ameter D is around 768 times the splat thickness h. Considering such a high particle
deformation, a smaller grid size will not be able to substantially improve the accu-
racy of the computed results, this point has been verified by running representative

simulations with different grid size.

3.4 Simulation results and discussion

3.4.1 Microstructure of coatings made of particles of different molten

states

Under normal operating conditions, the gas temperature at the exit of the gun is
around 2000 K, which is several hundred Kelvin higher than the melting point of
the nickel particle. However, simulation results [112] show that even at such a high

temperature, only particles in a certain size range, about 10 - 40 um, can be fully
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melted, while others, either too small or too large, are in a coexistence state of
liquid and solid or even in a solid state at the point of impact on substrate. The
very small particles, although they may be totally melted during flight, are not in
a fully molten state at impact because they are cooled down quickly in the free jet
due to the gas temperature decay and their small thermal inertias. Experiments of
Zhang et al. [200] also shows that particles at the point of impact on the substrate
may be in different molten states (fully melted, partially melted or solid) due to
different sizes and different trajectories in the HVOF thermal spray process. Figure
3.6 shows the simulated configuration of the coating sections that are perpendicular
to the substrate, for particles with different molten states. The simulated section in
Figure 3.6(a) is formed by particles that are all fully melted (ideal case, in which
the particle velocity is calculated based on the baseline operating conditions, and
the particle melting ratio is assumed to be one), while the one in Figure 3.6(b) is
formed by particles with nonuniform molten states (some particles may be partially
melted or even unmelted, in which case the particle velocity, temperature and degree
of melting are calculated based on the baseline operating conditions). The ideal
lamellar structure of the thermally sprayed coating can be easily seen in Figure 3.6(a).
However, such a lamellar structure is disturbed by the unmelted part of the particles,
as shown in Figure 3.6(b). It is also shown that large unmelted particles affect the
coating surface dramatically, thus, leading to high coating roughness. To show the
pore size and distribution inside of the coating, we draw the Figure 3.6(b) again
by ignoring the difference between each splat; the result is shown in Figure 3.6(c).
The white dots in Figure 3.6(c) represent the pores. He et al. [70] and Totemeier et
al. [184] have observed similar coating microstructures in their experiments. It can
be concluded from this comparison that the particle melting behavior plays a very

important role in the coating microstructure evolution and should be accounted for
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in the simulation model.

The effect of particle melting behavior on the coating porosity was studied by
analyzing the simulation results. Figure 3.7 shows the comparison of the coating
porosity simulated by two different models. One model considers the particle melting
behavior, i.e. the melting ratio of each particle is calculated by a mathematical model
[112] considering the particle size and operating conditions. Another model assumes
that all particles are fully melted, while other parameters, such as the particle velocity,
are calculated by the same mathematical model [112]. The comparison shows the
importance of considering the particle melting behavior, which has not been included
in previous coating simulation models [94, 134, 59]. For the model considering that
all the particles are fully melted, the coating porosity decreases monotonically as the
particle size (dso) increases, shown as the dashed line in Figure 3.7. However, the
simulated coating porosity accounting for the particle melting behavior will decrease
first and then increase, as the particle size (dsg) increases, shown as the solid line
in the same figure. The existence of a minimum porosity can be explained by the
existence of the maximum particle melting ratio for particles with different size,
Figure 3.8. Several experimental studies {71, 60] have proved that a better particle
melting condition can lead to a lower coating porosity. It is also found that the error
band increases as bigger particles are used in the simulation. Such a phenomenon
can be explained by the formation of more macro-pores when larger particles are
used for the coating formation. Simulations show that the number of macro-pores is
usually less than 50 inside one simulated coating section. Under operating conditions
in which macro-pores strongly influence the coating porosity (e.g. large particles are
used for the coating formation), a small change of the number of macro-pores will

strongly influence the coating porosity.
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Figure 3.6: Simulated coating section using fully-melted particles and partially-melted

particles.
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3.4.2 Influence of operating conditions on coating properties

In addition to providing useful insight into coating formation and growth, the de-
veloped model is used to make a comprehensive parametric analysis, which allows
us to systematically characterize the influence of operating conditions and the effect
of particle size on the coating porosity and deposition efficiency. The parametric
analysis of macroscopic operating conditions on coating microstructure is based on
the “one-factor-at-a-time” method, i.e. each time only one processing parameter is
varied from 55% to 150% of its baseline condition value while the other parameters
are fixed. The influence of particle size on coating microstructure is also studied by
varying powder size distribution parameters, e.g. dso (whose corresponding cumula-
tive weight function is 0.5), from 20 to 60 um. The simulated results in the following
figures are the average of a large number of repeated simulation runs performed under
the same operating conditions to obtain a convergent average value and make the
variance small enough. The effect of variations of the process parameters is compared

with available experimental data.

Effect of oxygen flow rate

Figure 3.9 shows the influence of oxygen flow rate and particle size on the particle
melting ratio, coating porosity, surface roughness and deposition efficiency. Figure
3.9(a) reveals that the particle melting ratio increases significantly and becomes al-
most flat when the oxygen flow rate increases from its lower bound (318 scfh) to its
upper bound (867 scfh); this behavior can be explained by the discussion in Section
2.4. When the oxygen flow rate is small, the equivalence ratio (fuel/oxygen ratio) is
very far away from its optimal value. As the oxygen flow rate increases, the equiva-

lence ratio becomes close to its optimal value, and the combustion pressure increases
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Figure 3.9: The effect of oxygen flow rate on (a) particle melting behavior, (b) coating

porosity, (c) surface roughness and (d) deposition efficiency.
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(due to an increase in the total mass flow rate of the gas) at the same time. This
leads to an increase of the gas temperature, and therefore, the particle temperature
goes up sharply. However, after the oxygen flow rate exceeds a critical value in which
the equivalence ratio departs significantly from its optimal value, the gas tempera-
ture slightly decreases. This is because the effect of an increase in the combustion
pressure partially compensates for the effect of a decrease in the equivalence ratio.
Accordingly, the coating porosity decreases very fast initially, and then approaches a
nearly constant value as the oxygen flow rate spans its entire range of variation, for
particles of small size (Figure 3.9(b)). This implies that for small particles, a good
particle melting condition (i.e., higher degree of particle melting) helps to decrease
coating porosity. For particles of large size, the coating porosity is large, which can
be explained by the low melting ratio of large particles at the point of impact on
substrate, which results in big pores formed in the coating structure. We should also
notice the effect of particle size on the coating porosity. Figure 3.9(b) shows that a
coating formed by a powder with dsy = 30 um has a lower porosity than the coating
formed by a powder with dsy = 20 um. The roughness of the coating increases with
the particle size, but it is not affected much by the oxygen flow rate, as shown in
Figure 3.9(c). This is because the coating roughness is controlled by the unmelted
part of the particles, whose amount does not change much when the oxygen flow rate
changes. The effect of oxygen flow rate on the deposition efficiency is similar to the
one on particle melting ratio, as shown in Figure 3.9(d). When the oxygen flow rate
is less than 500 scfh, higher oxygen flow rates and smaller particle size lead to higher

degree of particle melting and higher deposition efficiency.
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Figure 3.10: The effect of fuel flow rate on (a) particle melting behavior, (b) coating

porosity, (c) surface roughness and (d) deposition efficiency.
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Effect of fuel flow rate

Compared to the influence of oxygen flow rate, variation in the fuel flow rate has
more obvious effects on coating properties, as shown in Figure 3.10. For example,
a peak in the fuel flow rate vs. particle melting ratio can be clearly seen in Figure
3.10(a). This is because the total mass flow rate does not increase much in the range
of interest (because the flow rate of fuel is small compared to those of oxygen and
air) and the gas temperature is only a function of the equivalence ratio. For particles
of different size, the maximum melting ratio occurs when the fuel flow rate is about
210 scfh, whose corresponding equivalence ratio is about 1.2. Accordingly, as the
fuel flow rate increases, the coating porosity decreases first and then increases, and
the lowest coating porosity is achieved when the fuel flow rate is around 210 scfh.
This fact further substantiates the point that a good particle melting condition (i.e.,
high degree of particle melting) is beneficial to achieve a lower coating porosity.
However, it is not the only factor affecting the coating porosity. Figure 3.10(b)
shows that a coating formed by a powder with dsqg = 30 wm has a lower porosity
than a coating formed by a powder with dsq = 20 um, although smaller particles
have better melting condition than bigger ones. This is similar to the observation in
Figure 3.9(b). Once again, the roughness of the coating increases with the particle
size, and the relationship between the coating roughness and the fuel flow rate is not
so strong (Figure 3.10(c)). Consistent with the variation of particle melting ratio,
the deposition efficiency is shown to increase first and then decrease as the fuel flow

rate increases (Figure 3.10(d)).
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Effect of air flow rate

The effect of air, which partially functions as coolant in the HVOF thermal spray
process, can be seen in Figure 3.11. As the air flow rate increases, the particle melting
ratio at the point of impact on the substrate decreases (Figure 3.11(a)). Correspond-
ingly, the porosity of coatings deposited by different size particles increases, as shown
in Figure 3.11(b). Regardless of the change of air flow rate, the coating roughness is
almost proportional to the particle size (Figure 3.11(c)). A higher air flow rate will
lead to a lower deposition efficiency (Figure 3.11(d)). Moreover, an increase in the

particle size will decrease the deposition efficiency.

Effect of total mass flow rate

The effect of total mass flow rate can be seen in Figure 3.12. According to Figure
3.12(a), the relative ratio of fuel, oxygen and air flow rate is kept at the baseline
condition, while the total mass flow rate varies from 50% to 150% of its baseline
condition. For different particle size, the particle melting ratio changes almost linearly
with the total mass flow rate. Such a dependence is different from the corresponding
effect of the fuel flow rate and of the oxygen flow rate. The increase in degree of
particle melting is caused by an increase in the combustion pressure, and therefore,
gas temperature [112]. Note that as the total mass flow rate increases, the particle
velocity at the point of impact will also increase [112]. From Figure 3.12(b), it can be
seen that the coating porosity decreases slowly as the total mass flow rate changes.
This is caused by an increase in both degree of particle melting and impact velocity.
The deposition efficiency increases dramatically as the total mass flow rate increases.
Again, the coating formed by powder particles with mean size dso = 30 pm has

the lowest porosity and almost the highest deposition efficiency, as shown in Figure
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Figure 3.11: The effect of air flow rate on (a) particle melting behavior, (b) coating porosity,

(c) surface roughness and (d) deposition efficiency.
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Figure 3.12: The effect of total mass flow rate on (a) particle melting behavior, (b) coating

porosity, (¢) surface roughness and (d) deposition efficiency.

108



3.12(d). Also, the coating roughness is mainly a function of the particle size, and is

almost independent of the total mass flow rate.
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Figure 3.13: The effect of spray distance on (a) particle melting behavior, (b) coating

porosity, (¢) surface roughness and (d) deposition efficiency.

Effect of spray distance

The spray distance has the most complicated effect on the particle melting behavior
and coating porosity. Figure 3.13(a) shows that the particle melting ratio decreases

as the spray distance increases. Furthermore, the melting ratio of smaller particles
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drops much faster than bigger ones. For instance, the melting ratio of particles with
dso = 20 um becomes even lower than that of the bigger particles (dso = 40 wum)
at large spray distances. As a result, the coating porosity generally increases as the
spray distance increases, as shown in Figure 3.13(b). Among all particle sizes of
interest, the porosity of coatings produced by particles with dsg = 20 um increases
the fastest as the spray distance increases, and becomes even the largest at a large
spray distance. Figure 3.13(c) shows that the coating roughness is high at small
spray distances, when the particle melting ratio is high, and decreases as the spray
distance increases, especially for large particles. One possible reason for this behavior
is that the deposition efficiency is less than 50% for large spray distances (shown in
Figure 3.13(d)). Such a low deposition efficiency lead to the result that the increase
of the amount of unmelted particles bouncing off the surface outweighs the increase
of the amount of unmelted particles caused by the decrease of particle melting ratio.
Since only the melted part of particles and small unmelted particles are deposited on
the surface, small coating roughness can be achieved at long spray distances. Such a
phenomenon can also be observed in Figure 3.9(c) and 3.10(c). When the deposition
efficiency is less than 50% , which is caused by low flow rate of oxygen and fuel,
the coating roughness is also considerable low. Figure 3.13(d) also shows that the
deposition efficiency decreases very fast because the particle melting ratio decreases
significantly as the spray distance increases. Specifically, comparing the curves for
small particles (dso = 20 um) in Figure 3.13(a) and 3.13(d), we can see that at large
spray distances, the deposition efficiency for particles with dso = 20 um becomes the
smallest among all the particles of interest and their melting ratio is even less than
that of larger particles. Such a result substantiates the conclusion that the particle

melting condition has the strongest effect on the deposition efficiency.
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Table 3.3: Experimental systems for parametric analysis.

Reference HVOF Fuel Powder Size
System (um)

Hearley et al. [71] | UTP Propylene NiAl 15-45
TopGun

de Villers Lovelock | JP-5000 Kerosene WC-17%Co 16-45

et al. [36]

Gil and Staia [60] | JP-5000 Kerosene NiWCrBSi 22-66

Lih et al. [113] A3000 Propylene CrC/20NiCr

Lugscheider et al. | Diamond Hydrogen  or | MCrAlY

1120] Jet Hybrid | Propane

Gourlaouen et al. | Diamond Propylene Stainless Steel

164] Jet Hybrid

Swank et al. [179] | JP-5000 Kerosene Inconel 718 15-63

3.4.3 Comparison of stochastic simulation results and experimental stud-
ies

The influence of operating conditions on coating microstructure and deposition effi-

ciency have been experimentally studied by various groups [36, 60, 64, 71, 120, 113].

The gun type and corresponding fuel and powder used in these HVOF thermal spray

processes are listed in Table 3.3. In this subsection, we attempt to put into perspec-

tive our simulation results described above with respect to the available experimental

results.

The important effect of equivalence ratio (which affects to a large extent the degree
of particle melting) on coating porosity has been analyzed by several experimental
studies. For instance, the porosity of the inert gas atomized (IGA) NiAl coatings
produced by the UTP TopGun HVOF gun is 2% when the equivalence ratio is 1.26,
which is close to the optimal one [112]. When the equivalence ratio is maintained

at 1.68, which is far away from the optimal one, the porosity is 2.54% (or 3.38%) as
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a result of increasing fuel flow rate (or decreasing oxygen flow rate) [71]. Although
the equivalence ratio is the same in the last two cases, the coating porosity is higher
when the total mass flow rate is lower, which validates the conclusion in subsection
3.4.2. By conducting experiments of NiIWCrBSi coating processing using a JP-5000
HVOF thermal spray system, Gil and Staia [60] pointed out that the best coating
properties are achieved at an equivalence ratio between 1.1 and 1.2, which is very
close to our prediction. Note although liquid fuel (kerosene) is used in this process,
the relationship between the equivalence ratio and the combustion temperature (see
analysis in the work of Swank et al. [178]) is very similar to the Diamond Jet hybrid

HVOF thermal spray process studied in our work [112].

One of the main conclusions of our study is that a better particle melting condition
(higher degree of particle melting, which occurs under a fuel-rich condition) will
increase the deposition efficiency. This conclusion is substantiated by the experiments
of Hearley et al. [71]. It is found from their studies that when the equivalence ratio
gets close to the optimal one and the total gas flow rate increases, the deposition
efficiency also increases. Sakaki and Shimizu [165] have also drawn such a conclusion
based on their experiment studies. By analyzing the effects of gun size on HVOF
thermal spray, they found that a higher degree of particle melting will lead to a higher

deposition efficiency.

3.5 Conclusions

Based on the discussion of the influence of operating conditions on coating microstruc-

ture and deposition efficiency, the following main conclusions can be drawn.

1. Particle melting behavior plays a very important role in coating microstructure.

A high degree of particle melting tends to achieve a low coating porosity and
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a high deposition efficiency. This requires the system to be operated under a

fuel-rich condition (¢ = 1.2 for the Diamond Jet Hybrid thermal spray process).

2. Particle size has a significant effect on coating porosity. Particles of mean size
(dso) around 35 um tend to achieve the lowest coating porosity among all the
particles of interest under various operating conditions, including the fuel-rich
condition. Furthermore, the larger the particle size, the higher the coating

surface roughness.

In summary, the comparison of simulation results and available experimental data
shows that the stochastic simulation model developed here can be used to properly
predict the effects of process parameters, including the particle size, spray distance,
flow rate of oxygen, fuel and air, on the microstructure of coatings produced by the

Diamond Jet hybrid HVOF thermal spray process.
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Chapter 4

Predictive Control of Particle Size
Distribution in Particulate

Processes

In this chapter, we focus on the development and application of predictive-based
strategies for control of particle size distribution (PSD) in continuous and batch
particulate processes described by population balance models (PBMs). The control
algorithms are designed on the basis of reduced-order models, utilize measurements
of principle moments of the PSD, and are tailored to address different control objec-
tives for the continuous and batch processes. For continuous particulate processes,
we develop a hybrid predictive control strategy to stabilize a continuous crystallizer
at an open-loop unstable steady-state. The hybrid predictive control strategy em-
ploys logic-based switching between model predictive control (MPC) and a fall-back
bounded controller with a well-defined stability region. The strategy is shown to
provide a safety net for the implementation of MPC algorithms with guaranteed sta-

bility region. For batch particulate processes, the control objective is to achieve a
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final PSD with desired characteristics subject to both manipulated input and product
quality constraints. An optimization-based predictive control strategy that incorpo-
rates these constraints explicitly in the controller design is formulated and applied
to a seeded batch cooling crystallizer example. The strategy is shown to be able to
reduce the total volume of the fines by 13.4% compared to a linear cooling strategy,

and is shown to be robust with respect to modeling errors.

4.1 Introduction

Particulate processes are prevalent in a number of process industries including agri-
cultural, chemical, food, minerals, and pharmaceuticals. By some estimates, 60% of
the products in the chemical industry are manufactured as particulates with an ad-
ditional 20% using powders as ingredients. Examples of particulate processes include
the crystallization of proteins for pharmaceutical applications, the emulsion polymer-
ization reactors for the production of latex, and the titania powder aerosol reactors
used in the production of white pigments. One of the key attributes of particulate
systems is the co—presence of a continuous phase and a dispersed phase, which leads
to the occurrence of physico—chemical phenomena such as particle nucleation, growth,
coagulation, and breakage which are absent in homogeneous processes and lead to a
distributed characterization of the physical and chemical properties of the particulate

product such as particle size, shape, morphology, porosity, molecular weight, etc.

It is now well understood that the physico-chemical and mechanical properties of
materials made with particulates are strongly dependent on the characteristics of the
corresponding particle size distribution (PSD). For example, a nearly mono-disperse
PSD is required for titania pigments to obtain the maximum hiding power per unit

mass. Also, in coatings the product’s composition, molecular weight and particle size
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distributions often need to be maintained in specific ranges to ensure the coating has
a desired level of film formation, film strength, and gloss. In all of these instances, the
PSD provides the critical link between the product quality indices and the operating
process variables; and, therefore, the ability to effectively manipulate the PSD is
essential for our ability to control the end product quality in these processes. In
this light, the problem of synthesizing and implementing high-performance model-
based feedback control systems on particulate processes to achieve PSDs with desired

characteristics has significant industrial value.

The mathematical models of particulate processes are typically obtained through
the application of population, material and energy balances and consist of systems
of nonlinear partial integro-differential equations that describe the evolution of the
PSD, coupled with systems of nonlinear ordinary differential equations (ODEs) that
describe the evolution of the state variables of the continuous phase. There is an
extensive literature on population balance modeling, numerical solution, and dynam-
ical analysis of particulate processes, see, for example, [153, 142, 124, 53, 57, 150,
75, 95, 79, 154, 152]; see also [30] for further details and references. Early work on
control of particulate processes focused mainly on the understanding of fundamen-
tal control-theoretic properties of PBMs [170], and the application of conventional
control schemes to crystallizers and emulsion polymerization processes [171, 158, 39,
and the references therein. More recently, the realization that PBMs — owing to
their infinite-dimensional nature — cannot be used directly for the synthesis of prac-
tically implementable controllers, has motivated significant research work on the
development of a general order reduction procedure, based on combination of the
method of weighted residuals and approximate inertial manifolds, which allows de-

riving low-order ODE approximations that capture the dominant dynamics of par-
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ticulate processes and can, therefore, serve as an appropriate basis for the design of
low-order controllers that can be readily implemented in practice [26]. This approach
subsequently laid the foundation for the development of a systematic framework for
solving a number of important control problems for particulate processes, including
the problem of dealing with the highly nonlinear behavior, e.g., owing to complex
growth, nucleation, agglomeration and breakage mechanisms, and the Arrhenius de-
pendence of nucleation laws on solute concentration in crystallizers [26], the problem

of model uncertainty [27], and the problem of control under actuator constraints [43].

In the operation of particulate processes, constraints typically arise due to physi-
cal limitations on the capacity of control actuators and/or desired restrictions on the
process state variables, such as temperature and certain properties of the PSD (e.g.,
crystal concentration and total particle size), in order to meet some safety or product
quality requirements. In current industrial practice, the achievement of optimal per-
formance, subject to input and state constraints, relies to a large extent on the use
of MPC policies which are well known for their ability to handle multi-variable in-
teractions, constraints, and optimization requirements, all in a consistent, systematic
manner. Unlike open-loop model-based optimal control policies (where the optimal
operating conditions are calculated off-line), in MPC, the control action is computed
by solving repeatedly, on-line, a constrained optimization problem at each sampling
time. Owing to this, MPC has the ability to suppress the influence of external dis-
turbances and tolerate model inaccuracies (because of the use of feedback) and force
the system to follow the optimal trajectory that respects constraints on the operating

conditions.

In this chapter, we focus on the development and application of predictive algo-

rithms for control of PSDs in continuous and batch particulate processes described
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by PBMs. The control algorithms are designed on the basis of finite-dimensional
models that capture the dominant dynamics of the particulate processes and are tai-
lored to address different control objectives for the batch and continuous processes.
The controllers utilize real-time measurements of the principal moments of the PSD
(such measurements, for example, can be obtained from PSD measurements made
by light scattering techniques as in the case of crystallization processes), as well as
measurements of the process temperature and of the concentrations of the continuous-
phase species. For continuous particulate processes, we consider the control objective
of asymptotic stabilization under constraints and develop a hybrid predictive con-
trol methodology that employs logic-based switching between MPC and a fall-back
bounded controller with a well-defined stability region. The hybrid predictive control
strategy provides a safety net for the implementation of MPC algorithms to particu-
late processes with guaranteed stability regions. The strategy is successfully used to
stabilize a continuous crystallizer at an open-loop unstable steady-state. For batch
particulate processes, the control objective is to achieve PSD with desired character-
istics subject to both control and product quality constraints. An optimization-based
predictive control strategy that incorporates these constraints explicitly in the con-
troller design is formulated and applied to a seeded batch crystallizer of potassium
sulfate crystals. The strategy is shown to be able to reduce the volume of fines by
13.4% comparing to linear cooling strategy, and to possess a robustness margin with

respect to modeling errors.
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4.2 Predictive control of continuous particulate processes
4.2.1 A continuous crystallizer: modeling and dynamics

Crystallization is a particulate process which is widely used in industry for the pro-
duction of many products including fertilizers, proteins, and pesticides. The fact that
the shape of the crystal-size distribution influences significantly the necessary liquid-
solid separation, as well as the properties of the product, implies that crystallization
requires a population balance in order to be accurately described, analyzed, and con-
trolled. Continuous crystallizers typically exhibit highly oscillatory behavior which
suggests the use of feedback control to ensure stable operation and attain a crystal-
size distribution with desired characteristics. Under the assumptions of isothermal
operation, constant volume, mixed suspension, nucleation of crystals of infinitesimal
size, and mixed product removal, a dynamic model for a continuous crystallizer can
be derived from a population balance for the particle phase and a mass balance for

the solute concentration of the following form [106, 79]:

R 13
T om0 (oo (1)
d_t_ - ET o T + € EZ_

where n(r, ) is the density of crystals of radius r € [0, c0) at time ¢ in the suspension,
T is the residence time, c is the solute concentration in the crystallizer, cg is the solute
concentration in the feed, and € = 1 — /Ooon(r, t_)gm“adr is the volume of liquid per
unit volume of suspension. R(f) is the growth rate, §(r — 0) is the standard Dirac
function, and Q(f) is the nucleation rate. The term 6(r — 0)Q(t) accounts for the

production of crystals of infinitesimal (zero) size via nucleation. R(f) and Q(f) are
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Figure 4.1: Open-loop profiles of (a) crystal concentration and (b) solute concentration

obtained from the distributed parameter model.

assumed to follow McCabe’s law and Volmer’s nucleation law, respectively:
R(t) = hki(c—c)

Q) = Ekoexp —Tka—z (4:2)

(5=

Cs

where k1, kg, and k3 are constants and ¢, is the concentration of solute at saturation.
To study the dynamic behavior of the crystallizer in question, a second-order

accurate finite-difference spatial discretization scheme with 1,000 discretization points

was used to obtain the solution of the system of Eqgs.4.1-4.2 (simulations of the system

using more discretization points led to identical results). The values of the process

parameters used in the simulations can be found in [26].

The solid lines in Figure 4.1 show the open-loop profiles of the total crystal con-
centration and the solute concentration obtained by solving the distributed parameter
model of Eqs.4.1-4.2. It is clear that the crystallizer exhibits highly oscillatory be-
havior, which is the result of the interplay between growth and nucleation caused
by the relative nonlinearity of the nucleation rate as compared to the growth rate

(compare the nonlinear dependence of Q(t) and R(f) on ¢ in Eq.4.2). To establish
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that the dynamics of the crystallizer are characterized by a small number of degrees
of freedom, the method of moments is applied to the system of Eqs.4.1-4.2 to derive a
reduced-order ODE model. Because the nucleation and growth rates are assumed to
be independent of particle size, this allows closure of the moments equations, which
results in the reduced-order moments model being an exact replication of the evolu-
tion of the PBM model. It is noted that the method of moments has been extensively

used in the past to analyze the dynamics of particulate processes, e.g., [77, 145].

Defining the jth moment of n(r,?) as:

Yy = /oorjn(r, tydr, j=0,..., (4.3)
0

multiplying the population balance in Eq.4.1 by 77, and integrating over all particle
sizes, the following system of infinite ordinary differential equations, which describes
the rate of change of the moments of the particle size distribution and the solute

concentration, is obtained:

ks
-— .
duo  po 4 <g‘"1)
i - +<1 371’/,63) kqe
d
7:% = —%—l—ukl(c—cs)uo
dpa 2
T Ty Tvkle—edm (4.4)
d
—C‘iIL;.—S = —%-f-l/kl(C-—Cs)/,Lg
di; 1 .
d_{j = —73+Vkl(c_cs)uj—la ]=4a5a6"'a
dc  cg=c—dnkiT(c—c;)pa(p—c)
dt 7’(1—%7(‘@)
3THs

On the basis of the system of Eq.4.4, it is clear that the moments of order four
and higher do not affect those of order three and lower, and moreover, the state

of the infinite dimensional system is bounded when ps; and ¢ are bounded, and it
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converges to a globally exponentially stable equilibrium point when tlirgo w3 = ¢; and
tlinolo ¢ = ¢y, where c1,cy are constants. This implies that the dominant dynamics
of the process of Eq.4.1 can be adequately captured by the fifth-order moments
model which includes the dynamics of the first four moments and those of the solute

concentration. Furthermore, when the following set of dimensionless variables and

parameters is introduced:

4
— 3 —_ 2 _ —
To = 8M0 Uy, T1 = 8W0 Uy, To = 4WO g, T3 = —TU3, ...,

3
t
t = 5 0= k17(cos — ¢s), Da = 8madkyT, (4.5)
P kac? o= (p—cs)’y: (c—cs)’uz(co—c%)
(cos — Cs) (cos = ¢s) (cos — ¢5) (cos = ¢5)
The resulting moments model takes the form:
dCEQ -F
- = —z9 + (1 — 25)Daexp (—:&—;)
% = —I+yz
ddt = 1T YZo
x
d—; = —X9 + Y (46>
Ei—aig = —I3+ YT
g 3T YT
dy  _ 1—y—(a-—y)ya:2+ U
dt 1—2z3 1— 23

where z;, 7 = 0, 1, 2, 3, are dimensionless moments of the crystal size distribution, y is
dimensionless concentration of the solute in the crystallizer, and u is a dimensionless
concentration of the solute in the feed (the reader may refer to [43] for a detailed
derivation of the moments model, and to [30] for further results and references in this
area).

The stability properties of the fifth-order model of Eq.4.6 have been studied thor-
oughly in [79], see also [106], where it is shown that the global phase space of this

model has a unique unstable steady-state surrounded by a stable periodic orbit, and

122



that the linearization of the system of Eq.4.1 around the unstable steady-state in-

cludes two isolated complex conjugate eigenvalues with a positive real part.

4.2.2 Hybrid predictive controller design

Having obtained a low-order ODE model that captures the dominant dynamics of the
continuous crystallizer, we proceed in this section to address the controller synthesis
problem on the basis of the low-order model. The control objective is to stabilize
the crystallizer at an unstable steady-state (which corresponds to a desired PSD)
using constrained control action. MPC is a popular method for handling constraints
within an optimal control setting. In MPC, the control action is obtained by solving
repeatedly, on-line, a finite—horizon constrained open-loop optimal control problem.
When the system is linear, the cost quadratic, and the constraints convex, the MPC
optimization problem reduces to a quadratic program for which efficient software
exists and, consequently, a number of control-relevant issues have been explored, in-
cluding issues of closed—loop stability, performance, implementation and constraint
satisfaction. The crystallizer, however, exhibits highly nonlinear behavior that must
be accounted for when designing the controller. While several nonlinear model pre-
dictive control (NMPC) schemes have been proposed in the literature (see [126] for a
survey of results in this area), the practical implementation of MPC is limited by: (1)
the computational difficulties of solving a nonlinear (typically nonconvex) optimiza-
tion problem at each time step, and (2) the difficulty of characterizing, a priori, the
set of initial conditions starting from where a given NMPC controller is guaranteed

to be feasible and/or stabilize the closed-loop nonlinear system.

To overcome these difficulties, we have recently developed [47] a hybrid predic-

tive control structure that provides a safety net for the implementation of predictive
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control algorithms. The central idea is to use a bounded analytical nonlinear con-
troller, with an explicitly characterized stability region, as a fall-back controller, and
embed the operation of MPC within its stability region. In the event that the given
predictive controller (which can be based on linear or nonlinear models) is unable to
stabilize the closed-loop system (e.g., due to failure of the optimization algorithm,
poor choice of the initial condition, insufficient horizon length, etc.), supervisory

switching from MPC to the bounded controller safeguards closed-loop stability.

In order to proceed with the hybrid predictive controller design, we initially re-

write the moments model of Eq.4.6 in a more compact form:

z(t) = f&() + g(ZM)A(t), |8 < Uas (4.7)

where & = [Tg & %o 23 9], & =a;—25,1=0,1,2,3, § =y —v°, @ = u— u’,
Umaz > 0 denotes the bound on the manipulated input, the superscript at zJ refers
to the unstable steady-state at which we would like to asymptotically stabilize the

system.

In order to provide the necessary background for our main results in section
4.2.3, we will briefly review in the remainder of this section the design procedure for,
and the stability properties of, both the bounded and model predictive controllers,
which constitute the basic components of our hybrid control scheme. For clarity of
presentation, we will focus only on the state feedback problem where measurements
of z(t) are assumed to be available for all ¢; the readers may refer to [129] for results

on output feedback hybrid predictive control.

Bounded Lyapunov-based control

Consider the system of Eq.4.7, for which a control Lyapunov function (CLF), V(Z),

is available, for more details on the existence and construction of CLF's, see [52].
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Using the control Lyapunov function, we construct, using the results in [115], see

also [44, 45], the following continuous bounded control law:

w(@) = —k(Z)L,V(Z) :=b(Z) (4.8)
where
: +\/Lf D)+ (unaLVED i g
K(E) = ( [1+ \/1 umaxL v o7 (4.9)
,  L,V(z)=0
where L;V(Z) = 8‘g(j:)f( ), and L,V (%) = 8g;j>g(§:) An estimate of the con-

strained stability region of the above controller can be obtained using the level sets
of V,ie.,
{zeR": V(z) <™} (4.10)

where ¢™%* > (0 is the largest number for which every nonzero element of 1 is fully

contained in the set:

{2 € R™: LiV(Z) < Umas| LV (Z)]} (4.11)

Model predictive control

In this section, we consider model predictive control of the system under control
constraints described by Eq.4.7. In the literature, several MPC formulations are
currently available. For the sake of a concrete illustration, we briefly describe here
the traditional formulation (we note that any other MPC formulation can be used;
see [47] for further details on this issue). For this case, the control action in MPC
at state # and time ¢ is conventionally obtained by solving, on-line, a finite horizon

optimal control problem of the form

P(E,t) : min{J@Eta(-)a() €S}y, st i=f(&) +g(d) (4.12)
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where S = S(¢t,T) is the family of piecewise continuous functions, with period A,
mapping [t,t+7T)] into U := {% € R :|M| <My} and T is the specified horizon. The
constraint in Eq.4.12 is a nonlinear model describing the time evolution of the states
Z. A control 4(+) in S is characterized by the sequence {a[k]} where a[k] := G(kA),
and satisfies @(t) = G[k] for all t € [kA, (k + 1)A). The performance index is given

by

JEnat) = [0 (180501 + i3] ds + FEE+T)  (413)

where || - ||g refers to the weighted norm, defined by ||Z||3, = ZQ% for all Z € R", Q
and R are strictly positive-definite, symmetric matrices and Z“(s; Z,t) denotes the
solution of Eq.4.7, due to control 4, with initial state Z at time ¢ and F'(-) denotes the
terminal penalty. The minimizing control 4°(-) € S is then applied to the plant over
the interval [kA, (k + 1)A] and the procedure is repeated indefinitely. This defines

an implicit model predictive control law

M(z) = argmin(J(Z,t,a())) =a'(t;z,t) (4.14)

A hybrid predictive control strategy: switching logic design

In this section, we describe a switching strategy that brings together the MPC and
bounded controllers in a way that guarantees asymptotic closed-loop stability and
provides a safety net for the implementation of MPC. To this end, consider the
constrained nonlinear system of Eq.4.7, with any initial condition £(0) € Q, where Q
was defined in Eq.4.10, under the model predictive controller of Eqs.4.12-4.14. Also
let T > 0 be the earliest time for which either the closed-loop state, under MPC,

satisfies

LV(2(D) + LV (E(T))M(Z(T)) > 0 (4.15)
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Figure 4.2: Closed-loop system under hybrid predictive control.

or the MPC algorithm fails to prescribe any control move. Then, the switching rule
given by

(4.16)

guarantees that the origin of the switched closed—loop system of Eqs.4.7-4.16 is as-
ymptotically stable (see [47] for a detailed proof as well as possible extensions of the

switching scheme).

The hybrid predictive control structure consists of the predictive controller, the
bounded nonlinear controller with its estimated region of closed-loop stability, and a
high-level supervisor that orchestrates the switching between the two controllers. A
schematic representation of the hybrid predictive control structure is shown in Figure

4.2. The implementation procedure is outlined below:

1. Consider the population balance model of Eqgs.4.1-4.2 and use the model re-
duction procedure, based on the method of moments, to derive the finite di-
mensional ODE model of Eq.4.6 that captures the dominant dynamics of the

continuous crystallizer.
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. Given the constraints on the manipulated input and an appropriate CLF, design
the bounded controller, on the basis of the system of Eq.4.6, using Eqs.4.8-4.9,

and compute the stability region using Eqs.4.10-4.11.

. Given the performance objective and constraints, construct the MPC optimiza-
tion algorithm, on the basis of the system of Eq.4.6, and choose the MPC

parameters.

. Initialize the closed-loop system under MPC, with the initial condition z(0)

belonging to the set €.

. Monitor the temporal evolution of the closed-loop trajectory of = (by checking
Eq.4.15 at each time) and denote the earliest time that either Eq.4.15 holds or

the MPC algorithm prescribes no control move as 7.

. If such a T exists, discontinue MPC implementation, switch to the bounded

controller and implement it for all future times.

4.2.3 Application to control of PSD in a continuous crystallizer

In this section, we demonstrate the application of the hybrid predictive control strat-

egy to the continuous crystallizer of Egs.4.1-4.2. The control objective is to suppress

the oscillatory behavior of the crystallizer and stabilize it at an unstable steady-state

that corresponds to a desired PSD by manipulating the inlet solute concentration. To

achieve this objective, we assume that the first four moments, as well as the solute

concentration, can be measured on line. Following the proposed methodology, we

initially use the moments model of Eq.4.6 to design the controllers. The values of

the dimensionless model parameters in Eq.4.6 are chosen to be: F' = 3.0, o = 40.0

and Da = 200.0. The dimensionless solute feed concentration, u, is subject to the

128



constraints: —1 < u < 1 (which correspond to the following constraint on the inlet
solute concentration; 980kg/m?® < ¢y < 1000kg/m?3). The desired steady-state is
z® =[xy x5 z3 z§ y°] =[0.065 0.040 0.024 0.015 0.612]', and u® = 0.2.

To facilitate the design of the bounded controller and construction of the CLF,
we initially re-write the moments model of Eq.4.6 in deviation variable form — thus
translating the steady-state to the origin — to obtain the system of Eq.4.7 which
we transform into the normal form. To this end, we define the auxiliary output
variable, § = h(z) = Zp, and introduce the invertible coordinate transformation:
€' 7 = 1(z) = [To fi(Z) &1 T2 T3], where £ = [& &) = [Zo A(2)], T = &,
fi(@) = =% + (1 — Z3)Daexp(~F/§%), and n = [m m ms|' = [Z1 2, %3], The

state-space description of the system in the transformed coordinates takes the form:

£ = AEHB(E ) + balé, n)u
n = ¥(n¢) (4.17)
where A = {8 (1)}, b = [01), i(&,n) = L3A(II7'(§,7n)) is the second-order

Lie derivative of the scalar function, h(-), along the vector field f(.), and a(&,n) =
L,Lsh(II71(€,n)) is the mixed Lie derivative. The forms of f(-) and g(-) can be
obtained by re-writing the system of Eq.4.6 in the form of Eq.4.7, and are omitted
for brevity.

The partially-linear &-subsystem in Eq.4.17 is used to design a bounded con-
troller that stabilizes the full interconnected system of Eq.4.17 and, consequently,
the original system of Eq.4.6. For this purpose, a quadratic function of the form,
Ve = ¢'PE, is used as a CLF in the controller synthesis formula of Eqs.4.8-4.9,
where the positive—definite matrix, P, is chosen to satisfy the Riccati matrix equality:
A'P+ PA— PbYP = —Q where @ is a positive-definite matrix. An estimate of the
region of constrained closed-loop stability for the full system is obtained by defining

a composite Lyapunov function of the form V, = V; +V;,, where V;, = n’ Byn and P, is
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Figure 4.3: Two dimensional projections of the stability region for the 10 distinct combi-

nations of the states of the reduced order system of Eq.4.6.

a positive-definite matrix, and choosing a level set of V., Q., for which V, < 0 for all
z in €. The two-dimensional projections of the stability region are shown in Figure

4.3 for all possible combinations of the system states.

In designing the predictive controller, a linear MPC formulation, with a terminal
equality constraint of the form z(t + T) = 0, is chosen (based on the linearization
of the reduced order model of Eq.4.6 around the unstable equilibrium point). The
parameters in the objective function of Eq.4.13 are taken to be: Q = ¢/, with ¢ = 1,
R = rI, with r = 1.0, and F' = 0. We also choose a horizon length of T = 0.25
in implementing the predictive controller. The resulting quadratic program is solved
using the MATLAB subroutine QuadProg, and the full nonlinear closed-loop system

is integrated using finite-differences.

In the first set of simulation runs, we tested the ability of the predictive controller

to stabilize the crystallizer starting from the initial condition, z(0) = [0.066 0.041 0.025 0.015

0.560])’. The result is shown by the solid lines in Figure 4.4(a)—(e) where it is seen
that the predictive controller, with a horizon length of T' = 0.25, is able to stabilize
the closed—loop system at the desired equilibrium point. Starting from the initial
condition z(0) = [0.033 0.020 0.013 0.0075 0.570)', however, the predictive con-

troller yields no feasible solution. If the terminal equality constraint is removed, to
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Figure 4.4: Continuous crystallizer example: closed-loop profiles of the dimensionless crys-

tallizer moments (a)-(d), the solute concentration in the crystallizer (e) and the manipulated

input (f) under MPC with stability constraints (solid lines), under the bounded controller

(dotted lines), and using the hybrid predictive controller (dash-dotted lines).
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Figure 4.5: Closed-loop profiles of the PSD: (a) under MPC without terminal constraints;
(b) under the hybrid predictive controller.

make MPC feasible, we see from the dashed lines in Figure 4.4(a)—(e) that the re-
sulting control action cannot stabilize the closed-loop system, and leads to a stable
limit cycle. Figure 4.5(a) shows the resulting sustained oscillations in the PSD under
MPC without terminal constraints. On the other hand, when the hybrid predictive
controller is implemented, the supervisor detects initial infeasibility of MPC and im-
plements the bounded controller in the closed loop. As the closed-loop states evolve
under the bounded controller and get closer to the desired steady—state, the super-
visor finds (at ¢ = 5.8) that the MPC becomes feasible and, therefore, implements
it for all future times. Note that despite the “jump” in the control action profile
as we switch from the bounded controller to MPC at ¢ = 5.8, (see the difference
between dotted and dash-dotted profiles in Figure 4.4(f)), the moments of the PSD
in the crystallizer continue to evolve smoothly (dash-dotted lines in Figure 4.4(a)-
(e)). The supervisor finds that MPC continuous to be feasible and is implemented in
closed—loop to stabilize the closed-loop system at the desired steady-state. The dot-
ted lines in Figure 4.4(a)—(e) shows the simulation results of the closed-loop system

under the bounded controller only. Compared with the simulation results under the
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bounded controller, the hybrid predictive controller (dash-dotted lines) stabilizes the
system much faster, and achieves a better performance, reflected in a lower value of
the performance index (0.1282 vs 0.1308). The evolution of PSD under the hybrid
predictive controller, shown in Figure 4.5(b), illustrates clearly how the hybrid con-
troller stabilizes the PSD at the desired steady state. The manipulated input profiles

for the three scenarios are shown in Figure 4.4(f).

4.3 Predictive control of batch particulate processes

Batch crystallization differs from continuous crystallization in that the withdrawal
of product for the batch process is made only once at the end of the batch run. It
is commonly used in the chemical, pharmaceutical, photographic, and many other
industries as manufacturing process to prepare a wide variety of crystalline products.
Compared with continuous particulate processes, batch particulate processes have
several desirable features [191]. For instance, in batch particulate processes, the
equipment is relatively simple and flexible, and requires a relatively lower level of
maintenance. Batch particulate processes are particularly applicable to chemical
systems difficult to process, such as processes with toxic or highly viscous properties.
Also, experiments on batch particulate processes can be used to examine a large
number of operational variables in a short time. Systems that are difficult to operate
continuously may conveniently be investigated in a batch-wise manner with relatively
minimum development time and investment. For capacity requirements less than
500 kg/h, batch particulate processes are usually more economically advantageous.
Furthermore, if the product requires a relatively narrow PSD, a batch particulate

process is clearly a better choice.
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4.3.1 A seeded batch crystallizer: modeling and dynamics

As an example, we consider the seeded batch cooling crystallizer studied in [153, 155],
which produces crystals of potassium sulfate. The population balance model of this
crystallizer, describes the evolution of the crystal size distribution, n(r,t), under the
joint effects of nucleation (B is the crystal nucleation rate) and crystal growth (G is
the crystal growth rate). The evolution of the solute concentration, C, and reactor

temperature, T, are described by two ODEs. The process model has the following

form:
on(r,t) on(r,t) _ B(t)
pn G(t) 5 = 0, n(0,t)= 0]
%% = —3pk, G(t)p2(2) (4.18)
dg— = _J\ng (T -T;) - %—f%ka(t)uz(t)

where p is the density of crystals, &, is the volumetric shape factor, U is the overall
heat-transfer coefficient, A is the total heat-transfer surface area, M is the mass of
solvent in the crystallizer, C, is the heat capacity of the solution, T} is the jacket
temperature, AH is the heat of reaction, and uy = /OOO r®n(r,t)dr is the second

moment of the PSD. The nucleation rate, B(¢t), and the growth rate, G(t), are given

by
—Ey/RT C—CS(T) '
B(t) = ke / < C.(T) )Msa (4.19)
G(t) = kye Fa/RT <C;s%(>T)>

where E, is the nucleation activation energy, £, is the growth activation energy, b and
g are exponents relating nucleation rate and growth rate to supersaturation, C is the
saturation concentration of the solute, and pu3 = /Ooo m3n(r, t)dr is the third moment
of the PSD. The values of the process parameters are given in Table 5.1. Eq.4.20

is used to calculate the saturation and metastable concentrations corresponding to
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Table 4.1: Parameter values for the seeded batch cooling crystallizer of Eqs.4.18-4.19.

b = 145 g = 15

ke = 285.0 1/(sum?) kg = 144 x10%  um/s
Ey/R = 75170 K E,/R = 4859.0 K

U = 1800 kJ/m?-hr-K|A = 025 m?

AH = 445  kJ/kg C, = 38 kJ/K - kg
M = 27.0 kg P = 2.66 x 107** g/um?

k., = 15 ts = 30 min

the solution temperature 7". These two concentrations represent the constraints on
the solution concentration, i.e., C; < C < C,, that must hold during the whole
batch run. The initial seed distribution of the seeded batch crystallizer is assumed
to be a parabolic distribution, from 250 to 300 um, and the maximum density of
initial seed distribution, which is 2/um - g solvent, occurs at 275 um, i.e., n(r,0) =
0.0032(300 — r)(r — 250), for 250um < r < 300um, and n(r,0)=0, for r < 250um

and r > 300um.

Co(T) =6.29 x 1072 +2.46 x 10737 — 7.14 x 107°7?
(4.20)
Co(T) = 7.76 x 1072 +2.46 x 10737 — 8.10 x 107°T*?

To study the dynamic behavior of the crystallizer, a second-order accurate finite

difference scheme with 1500 discretization points is used to obtain the solution of
the system of Eq.4.18. Figure 4.6 shows the evolution of the reactor temperature, T
the solution concentration, C, and the PSD under a linear cooling strategy (where
the jacket temperature, T}, is cooled down linearly from 50°C to 30°C). From Figure
4.6(b), it is clear that there is a gap between the crystals formed by nucleation
and those growing from the seeds during the whole reaction period. Based on this
observation, we developed two moments models to simulate the dynamics of the
crystals formed by nucleation and the crystals growing from the seeds separately.

The two models are given by Eqgs. 4.21 and 4.22, respectively. The mass and energy

135



50—
G 454
< wb T 45
~~~~~ =
‘‘‘‘‘ =
e T £
Sl > 35
sor I 8 a
25 L v =y
0 10 15 20 25 30 g“
t (min) g H
1.5
' C =
J— 1
02 m() at
018 — 05
. C(t
S 08 c.( o
B o7 s 0
2 — 100
O o T
0.5k Tt g
o4 T —— 4
013 .
0 5 10 15 20 25 30
t(min) (a)

Figure 4.6: Simulation results for the linear cooling strategy: (a) reactor temperature and
concentration profiles (dashed and dotted lines represent the upper and lower constraints

on the concentration respectively); (b) the evolution of crystal size distribution.

balances in these two models are described by Eq. 4.23.

& | (4.21)
7 = ZG(t)M?_l( ), t=1,2,3
Ho = ka
dt
ac
— = —3pk,G(t)(u5(t) + ui(t))
g% A Al (4.23)
T = G (T-T;) - 7})3/?1%@@)(#2 (t) + p3(t))

where u and pf (¢=0,1,2,3) are the first four moments of the PSD of the crystals
formed by nucleation and the crystals growing from the seeds, respectively, and are
defined by
pur = / ’ rin(r, t)dr
0

ui = / rin(r,t)dr, i=0,1,2,3.

g

(4.24)

The superscript, n, stands for nucleation, and s stands for seed. r, is the radius at

the middle of the gap between two groups of crystals. This characteristic radius is
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Figure 4.7: Simulation results for the linear cooling strategy: (a) the zeroth and (b) third
moments of the PSD of the crystals formed by nucleation (dashed lines) and the those

growing from the seeds (solid lines).

a function of time, and can be determined only from the population balance model.
Since the model does not consider crystal breakage or agglomeration during the crys-
tallization, g, which is the total number of the crystals growing from the seeds,
remains constant k4 during the crystallization period. Figure 4.7 shows a comparison
between u? and 1, (¢=0,3), based on simulations of the two moments models. The
purpose of deriving two moments models instead of one is to facilitate the design of
the predictive controller for the PSD of each group of crystals discussed in the next

section.

4.3.2 Predictive controller design: accounting for state and input con-

straints

Unlike the control of continuous particulate processes, asymptotic stabilization is not
an issue in the control of batch processes. More important is the objective of achiev-
ing a desired particle size distribution at the end of the batch and satisfying state

and control constraints during the whole batch run. Significant previous work has fo-
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cused on PSD control in the batch crystallizers [153, 195]. [137] derived an open-loop
optimal control strategy where the objective function involves maximization of the
crystal size and the cooling curve is the decision variable. [130] developed a method
for assessing parameter uncertainty and studied its effects on the open-loop optimal
control strategy, which maximized the weight mean size of the product. [201] devel-
oped an on-line optimal control methodology for a seeded batch cooling crystallizer
to improve the product quality expressed in terms of the mean size and the width of
the distribution. [78] designed a hierarchical multiobjective strategy to control the
PSD in semi-batch emulsion polymerization. In these previous works, most efforts
were focused on the open-loop optimal control of the batch crystallizer, i.e., the op-
timal operating condition was calculated off-line and based on mathematical models.
The successful application of such a control strategy relies, to a large extent, on the

accuracy of the models.

In this section, we focus on developing a closed-loop predictive control system to
minimize the total volume of fines (i.e., small crystals formed by nucleation) in the
final product. In the operation of industrial crystallizers, the fines usually cause diffi-
culties in downstream processing equipment (e.g., filtration) and affect both product
quality and process economics. Such effects are especially important in a seeded
batch crystallizer, since its final products mainly grow from the seeds rather than
from the crystal formed by nucleation. Excessive fines may also require a relatively
long batch run time to achieve the desired final size of the product. Some experimen-
tal studies on fines destruction for batch crystallizers have been reported. [83] first
described the application of fines destruction in batch crystallization of potassium
sulfate solutions. [159] implemented a feedback control fines dissolution strategy in

order to maintain the fines slurry density at some constant value over the batch run.
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These studies demonstrate the experimental feasibility of dramatically reducing the

amount of fines in the final product based on the reactor design.

In this work, a closed-loop predictive control scheme is developed to control the
seeded batch cooling crystallizer described by Eq.4.18. The control objective is to
minimize the volume of fines in the final product, (i.e., the third moment of the
crystals formed by nucleation, 43), by manipulating the jacket temperature, T;. The
principle moments are calculated from the on-line measured PSD, n, which can be
obtained by measurement techniques such as the laser light scattering method. The
concentration and reactor temperature are also assumed to be measured in real time.
In the closed-loop control structure, the PBM, together with the mass and energy
balances of Eq.4.18, are used to describe the process while the reduced-order model
of Eqs.4.21-4.22 is used within the MPC for the purpose of prediction. Therefore,
the PBM is utilized to simulate the value of the state variables (n, C, T') at t; = (At
where 1=1,2,...,m, m = ty/At, and t; is the length of the crystallization period.
Thus, the values of the moments (u?(t:), u3(t:), j=0,1,2,3) are calculated from the
PSD at every t;, n(r,t;). The values of uj(t:), u3(t:), C(t:), T(t;), and the optimal
trajectory of T; solved at the previous time step, are used as the initial values for the
reduced-order model in MPC to solve an optimization problem for a horizon length
of t; — t;. The first step of the solution (7}) is implemented to generate the value of

state variables at the end of next time step, ¢;,.;. This procedure is repeated every

At until the end of the batch run.

Manipulated input limitations and concentration specifications are incorporated
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as input and state constraints on the optimization problem, which takes the form

min  ug(ts)

s.t. Tj,mm < Tj < Tj,mama
Cy <C <L Cpy,
dT,
dt
ity) 2 VA

where (%, u$, T; and C are obtained by solving the moments models of Eqs.4.21-4.22.

(4.25)

< kBa

T min and T} o, are the constraints on the manipulated variable, T}, and set to 30°C
and 50°C in the simulation. C; and C,,, which can be calculated from Eq.4.20, are the
constraints on the solution concentration. The constant, k5, (chosen to be 2°C/min)
is the maximum gradient of the jacket temperature. V;, chosen as 8.3301 x 10° in
the simulations, denotes the lower bound on the total volume of the crystals growing
from the seeds. Such constraint on p§(ts) represents a desirable quality of the final
product. In the simulation, At and ¢; are chosen as 30 seconds and 30 min, respec-
tively. The optimization problem is solved using the steepest descent method, which
is a gradient-based optimization method and converges faster when compared with
other optimization methods such as SQP. Considering the high dimensionality of the
nonlinear optimization problem, fast convergence is critical to real time implementa-
tion of the feasibility of the predictive control policy. Furthermore, the optimization
results based on the steepest descent method and SQP were compared, and only a
small difference was observed, while the SQP method took a considerably longer time

to converge than the steepest descent method.

4.3.3 Closed-loop simulation results

To illustrate the effect of model accuracy on the ability of the predictive controller

to control the crystallizer, we considered two different cases. In the first case, it
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Figure 4.8: Closed-loop simulation results for matched models: (a) Jacket temperature and
concentration profiles (dashed and dotted lines represent the upper and lower constraints

on the concentration, respectively); (b) the evolution of crystal size distribution.

is assumed that the same model parameters are used in the MPC model (i.e., the
moments model) and the process model (i.e., population balance model). In another
case, a process—model mismatch is allowed by changing the value of the parameter b,
which is the exponent relating nucleation rate to supersaturation, from its nominal
value of 1.45 to 1.35 in the moments model used in MPC. The simulation results of
these two cases were also compared with the open-loop simulation results obtained

under the linear cooling strategy.

Figure 4.8 shows the closed-loop simulation results for the case of a perfect
process—-model match. Figure 4.8(a) shows the optimal trajectory of the jacket tem-
perature and solution concentration while Figure 4.8(b) shows the evolution of the
PSD. Clearly, the constraints on the jacket temperature and concentration are re-
spected during the evolution of the closed-loop profiles. When a process—model mis-
match is considered, MPC is unable to satisfy the state and control constraints unless
the time step of the closed-loop control system (the hold time in MPC implemen-

tation) is lowered from 30 to 15 seconds, indicating that tighter feedback control is
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Figure 4.9: Closed-loop simulation results for mismatched models: (a) Jacket temperature
and concentration profiles (dashed and dotted lines represent the upper and lower con-

straints on the concentration, respectively); (b) the evolution of crystal size distribution.

necessary in the case of imperfect model to avoid violation of the constraints. The
closed-loop simulation results for the case of a process—-model mismatch are shown
in Figure 4.9. Comparing Figure 4.8 and Figure 4.9, it is clear that the predictive
controller produces a different manipulated input trajectory to enforce constraint sat-
isfaction when the model used in MPC design does not perfectly match the process.
It is also noticed that the off-line computed optimal trajectory of T; based on the
mismatched model fails to satisfy the constraints on the solute concentration during
the batch run. Such results indicate that feedback control is necessary to guarantee

the process operating within the constraints.

Table 4.2: Comparison between the simulation results under four different control strategies.

Control Strategy ui (um?/g solvent) | ug (um?/g solvent)
Open-loop with linear cooling 8.9174 x 108 8.3304 x 107
MPC with objective to maximize p5/uj 1.7828 x 10° 1.0545 x 107
MPC with matched moments model 7.7209 x 108 8.3301 x 107
MPC with mismatched moments model 7.8655 x 108 8.3301 x 10°
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Figure 4.10: Comparison of the final crystal size distributions under 4 different control

strategies.

Table 5.3 lists the value of 4% and 43 obtained under four different control strate-
gies: (1) Open-loop with linear cooling, (2) MPC with an objective to maximize
w3/ 1%, (3) MPC with the objective of Eq.5.9 under a perfect process—model match,
and (4) MPC with the objective of Eq.5.9 under a process-model mismatch. Fig-
ure 4.10 compares the final crystal size distribution under these 4 different control
strategies. Comparing the results of control strategies (1), (3) and (4), it is clear that
MPC can lower the volume of fines (nucleation formed crystals) by 13.4% compared
with the linear cooling strategy, while the crystals growing from the seeds in final
product still satisfy the product quality requirement. It is also observed that, in the
case of process—model mismatch, the predictive control strategy (with a smaller time
step) is able to successfully control the system and lower the volume of fines by 11.8%
compared with the linear cooling strategy. To demonstrate the effect of the choice

of optimization objective in the control strategy on the volume of fines, we carried

143



out simulations with the same control structure, but with a different optimization
objective which is to maximize the ratio p§/uy. Comparing the results in Table 5.3,
it is clear that, when MPC with this objective is applied, even though the volume
of crystals growing from the seeds increases by 26.6% (relative to the linear cooling
strategy) which is favorable to product quality, the volume of fines actually increases
dramatically by 129.2%. Such large difference on the crystal size distribution of final
products can be more clearly seen in Figure 4.10. It shows that the control strategy
(2) leads to larger crystals both formed by nucleation and grown from seeds com-
pared to the other 3 control strategies, which allow to produce less crystals formed
by nucleation while satisfying the minimum requirement of the volume of the crystals
grown from seeds. This result suggests that maximizing the ratio ©3/u%, while favor-
ing product quality, does so at the expense of a significant increase in the volume of
fines which is undesirable. In contrast, the optimization problem of Eq.5.9 provides
a more meaningful formulation whereby the volume of fines is explicitly minimized,
and the product quality is accounted for as a constraint on the optimization problem.
This significant difference in the impact on u§ and uj between the two optimization
formulations suggests that the optimization objective should be selected carefully,
when attempting to achieve a desired PSD, in order to strike a balance between en-
hancing product quality and minimizing the difficulties caused by a large volume of
fines. Finally, to study the importance of incorporating measurements in the control
system, we carried out a simulation of the predictive control system where the values
of the state variables at each time step are not updated using measurements from
the process, but instead, are updated using the values generated by simulating the
moments model with b = 1.35. The simulation results (not shown in the manuscript
due to space limitation) show that the state constraints are violated at the end of

the open-loop simulation run because of the discrepancy between the PBM and the
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mismatched moments model, and the lack of measurement feedback.

4.4 Conclusions

In this chapter, we focused on the development and application of predictive algo-
rithms for control of PSDs in continuous and batch particulate processes described
by PBMs. The control algorithms were designed on the basis of finite-dimensional
models that capture the dominant dynamics of the particulate processes and were
tailored to address different control objectives for the continuous and batch processes.
Closed-loop simulations have demonstrated the effectiveness of the proposed control

algorithms.
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Chapter 5

Predictive Control of Crystal Size
Distribution in Protein

Crystallization

This chapter focuses on the modeling, simulation and control of a batch protein
crystallization process that is used to produce the crystals of tetragonal hen egg-
white (HEW) lysozyme. First, a model is presented that describes the formation of
infinitesimal-size protein crystals via nucleation and the subsequent growth of the
crystals via condensation, and predicts the temporal evolution of the crystal size dis-
tribution in the size range of 0 — 300 um. To this end, existing experimental data are
used to develop empirical models of the nucleation and growth mechanisms of the
tetragonal HEW lysozyme crystal. The developed growth and nucleation rate expres-
sions are used within a population balance model to simulate a batch crystallization
process that produces the tetragonal HEW lysozyme crystals. Then, model reduc-
tion techniques are used to derive a reduced-order moments model for the purpose of

controller design. Online measurements of the solute concentration and reactor tem-
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perature are assumed to be available, and a Luenberger-type observer is developed to
estimate the moments of the crystal size distribution based on the available measure-
ments. A predictive controller, that uses the available state estimates, is designed to
achieve the objective of maximizing the volume-averaged crystal size while respecting
constraints on the manipulated input variables (which reflect physical limitations of
control actuators) and on the process state variables (which reflect performance con-
siderations). Simulation results demonstrate that the proposed predictive controller
is able to increase the volume-averaged crystal size by 30% and 8.5% compared to
Constant Temperature Control (CTC) and Constant Supersaturation Control (CSC)
strategies, respectively, while reducing the number of fine crystals produced. Fur-
thermore, a comparison of the crystal size distributions (CSDs) indicates that the
product achieved by the proposed predictive control strategy has larger total volume
and lower polydispersity compared to the CTC and CSC strategies. Finally, the ro-
bustness of the proposed method with respect to plant-model mismatch is evaluated.
The proposed method is demonstrated to successfully achieve the task of maximizing
the volume-averaged crystal size in the presence of plant-model mismatch, and is

found to be robust in comparison to open-loop optimal control strategies.

5.1 Introduction

Proteins play a vital role in most biological processes. In addition to constructing
large-scale biological structures, such as muscle fibers, smaller protein molecules can
function as antibodies, which help the immune system to destroy invading substances
like viruses and bacteria, and enzymes, which can catalyze the synthesis of complex
compounds, the transformation of complex substances into simpler ones, or the gen-

eration of energy in organisms. A protein molecule is a chain of amino acids that are
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linked by peptide bonds formed by dehydration synthesis. Many pharmaceuticals act
by binding to and blocking an active site (the active site is a region on the protein
composed of some of the protein’s amino acids which have a specific three dimensional
arrangement to which a molecule can bind) of a protein [160]. The three-dimensional
arrangement of amino acids, especially, at the active site, determines the specific

biological function of the protein molecule.

X-ray and neutron diffraction techniques are the only available methods that
can be used to obtain structural information of proteins with molecular weight over
20,000. To be able to study the structure of proteins using these techniques, large
protein crystals of high structural perfection, typically with diameters of several hun-
dred microns, are needed. Extensive research studies, using model proteins, such as
ferritin, insulin, haemoglobin and lysozyme, that are able to crystallize easily un-
der normal operating conditions, have focussed on growing large protein crystals of
high structural perfection under various operating conditions, including low gravity
[17], different pressure conditions [138], flow condition of the solution [149], purity
[186], temperature [35] and concentrations of precipitants and buffers [148, 111].
In addition, numerous research studies have considered the problem of modeling of
protein nucleation [54, 147] and growth [42, 96, 51]. The reader may also refer to
(127, 163. 192, 185] for excellent reviews on this subject. Among these model pro-
teins, the tetragonal form of HEW lysozyme is most popular and widely used [19].
HEW lysozyme is composed of 129 amino acids, with a molecular weight of 14,388. It
is a naturally occurring enzyme, and has antibacterial activity against gram-positive

bacteria.

The experimental studies not only benefit the determination of the protein struc-

ture, but also provide, through an understanding of the nucleation and growth mech-
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anisms of protein crystallization, a way of determining the operating conditions nec-
essary to achieve protein crystals of desired properties, which can often be expressed
in the form of a desired size distribution. In the pharmaceutical industry, the size
distribution of the protein crystal is a very critical variable and in many applications
a predetermined, typically narrow, crystal size distribution is necessary in order to

guarantee a desired drug delivery performance.

Protein crystals intrinsically grow much slower than most inorganic crystals at
the same supersaturation [161]. This is probably one of the reasons why it has been
widely believed that implementation of advanced control algorithms is not important
for growing perfect crystals in protein crystallization. However, experimental results
show that even in protein crystallization processes, certain growth conditions lead to
crystal defect formation (for example, the structural defect density increases when
the growth rate is relatively high [132]), which necessitates appropriately choosing
the operating conditions. Furthermore, for a given choice of operating conditions, it
is critical to implement real-time control to mitigate the affect of disturbances that

might drive the operating conditions off the desired values.

While numerous experimental studies of the nucleation and growth mechanisms
of protein crystallization have been carried out, very few results on control of pro-
tein crystallization are available. The feasibility and effectiveness of temperature
control in protein crystallization was discussed in [162], where a series of prelimi-
nary experiments were conducted to demonstrate the ability of temperature control
to manipulate the supersaturation in the protein crystallization. In [38], a method
for control of nucleation in small protein solutions was developed and focused on
control of a relatively smaller number of protein crystals. In [189], an experiment

system was developed to control a crystallization cell, and focused on the develop-
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ment of the control system, including the hardware and software for measurement
and communication, rather than on the control algorithm. A Constant Supersatu-
ration Concentration (CSC) control strategy was developed in [169] to achieve large
protein crystals. Although this strategy shows significant advantage in increasing
the crystal size compared to the case where, for instance, the temperature in the
crystallizer is held steady, it is not optimal with respect to maximizing the crystal
size. Furthermore, being an open-loop control strategy, it is not robust with respect

to modeling errors and disturbances affecting the operation of the crystallizer.

Motivated by the above considerations, this chapter focuses on the modeling,
simulation and control of a batch protein crystallization process that is used to pro-
duce the crystals of tetragonal hen egg-white (HEW) lysozyme. First, a model is
presented that describes the formation of infinitesimal-size protein crystals via nucle-
ation and the subsequent growth of the crystals via condensation, and predicts the
temporal evolution of the crystal size distribution in the size range of 0 — 300 um.
To this end, existing experimental data are used to develop empirical models of the
nucleation and growth mechanisms of the tetragonal HEW lysozyme crystal. The de-
veloped growth and nucleation rate expressions are used within a population balance
model to simulate a batch crystallization process that produces the tetragonal HEW
lysozyme crystals. Then, model reduction techniques are used to derive a reduced-
order moments model for the purpose of controller design. Online measurements of
the solute concentration and reactor temperature are assumed to be available, and
a Luenberger-type observer is developed to estimate the moments of the crystal size
distribution based on the available measurements. A predictive controller, that uses
the available state estimates, is designed to achieve the objective of maximizing the

volume-averaged crystal size while respecting constraints on the manipulated input
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variables (which reflect physical limitations of control actuators) and on the process
state variables (which reflect performance considerations). Simulation results demon-
strate that the proposed predictive controller is able to increase the volume-averaged
crystal size by 30% and 8.5% compared to Constant Temperature Control (CTC)
and Constant Supersaturation Control (CSC) strategies, respectively, while reducing
the number of fine crystals produced. Furthermore, a comparison of the crystal size
distributions (CSDs) indicates that the product achieved by the proposed predictive
control strategy has larger total volume and lower polydispersity compared to the
CTC and CSC strategies. Finally, the robustness of the proposed method with re-
spect to plant-model mismatch is evaluated. The proposed method is demonstrated
to successfully achieve the task of maximizing the volume-averaged crystal size in
the presence of plant-model mismatch, and is found to be robust in comparison to

open-loop optimal control strategies.

5.2 Modeling of nucleation and growth rate of tetragonal

lysozyme crystal

The formation of a single crystal can be modeled as comprising of two sequential
processes: crystal nucleation and growth. Experimental studies [42, 51, 54, 92, 147]
have considered various operating conditions and developed empirical models for the
nucleation and growth of the tetragonal HEW lysozyme crystal. Owing to large
differences in operating conditions, significant discrepancies exist in the nucleation
and growth data obtained in these works. In the current study, we focus on one
operating condition (fixed buffer, pH value and salt concentration; these values are
selected based on the availability of experimental results), and develop an empirical

model of the nucleation and growth mechanisms by using the existing experimental
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results available for these operating conditions. In the remainder of this section,
experimental results on the solubility, nucleation and growth of the tetragonal HEW
lysozyme crystal are analyzed and an empirical model of the nucleation and growth

mechanisms is developed.

5.2.1 Solubility of the tetragonal HEW lysozyme crystals

The main driving force for the crystal nucleation and growth is understood to be
supersaturation, i.e., the concentration of the solution in excess of the saturation
concentration (solubility). The solubility of lysozyme at different pH and precipitant
concentrations has been studied by [12, 161, 168]. In [12], the solubility experiments
covered a pH range from 4.0 to 5.4, NaCl concentration (weight/volume) range from
2.0% to 7.0% and temperature range from 4 to 25°C. The solubility of HEW lysozyme
was also studied in [161], for pH at 4.5, NaCl concentration at 2.1%, 2.5% and
3.0%, and a temperature range from 11 to 30°C. By implementing a more accurate
measurement technique (two-beam interferometry), the solubility in a solution with

pH of 4.5 and NaCl concentration of 2.5% was measured in [168].

Since purer samples and more advanced measurement techniques were used in
[168], this solubility data, shown as circles in Figure 5.1, is considered to be more
accurate and used to derive parameters of the empirical model in our work. A third-
order polynomial is used to fit the data, and the fitted curve is shown as the solid
curve in Figure 5.1. Also shown in Figure 5.1 is the solubility data in [12, 161, 168]
which exhibit trends similar to the data set obtained in [168], with solubility being
low at low temperature and increasing significantly with increasing temperature. The

resulting expression for the solubility, Cs(T'), is as follows:

Co(T) = 1.0036 x 107373 4 1.4059 x 1072T% — 0.128357 + 3.4613  (5.1)
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Figure 5.1: Solubility data of tetragonal lysozyme crystal: dotted and dashed lines show
the data in [12], A shows data in [161], o shows data in [168], and the solid line shows the

empirical model of Eq.5.1).

5.2.2 Modeling of the nucleation rate of the tetragonal HEW lysozyme

crystals

For biological molecules, crystals are most often grown with no seeding, where pri-
mary nucleation must precede crystal growth. Thus, an understanding of the nucle-
ation process and the effect of various parameters on nucleation is essential for suc-
cessful production of protein crystals. Recently, significant progress has been made
in understanding the nucleation and crystallization of globular proteins, including
the formation of compositional and structural crystal defects [163].

Insight into the interactions of protein macro-ions in solution, obtained from light
scattering, small angle X-ray scattering and osmotic pressure studies shows that the
nucleation of globular proteins is governed by the same principles as those of small

molecules. In particular, supersaturation, the difference between solute concentra-
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tion and solubility, is understood to be the main driving force for both nucleation
and growth of the protein crystals. Changes of operating conditions, such as lowering
temperature, increasing salt concentration, pH or protein concentration influence nu-
cleation [84] via influencing the solubility. Therefore, to develop an empirical model,
it is assumed that the homogenous nucleation rate of the tetragonal HEW lysozyme
crystal is only a function of solute concentration and supersaturation. The following
two-parameter empirical expression is used as an empirical model to describe the

crystal nucleation rate B(t) [54, 5):

B(t) = k,Cexp <—%> (5.2)

where o, the supersaturation, is defined as o = In(C/Cs), where C is the solute
concentration and C, is the solubility and k&, and k, are parameters that are obtained

using experimental results.

Different techniques, including light scattering [5], temperature jump [54] and
microcalorimetry [35] have been implemented to measure the nucleation rate of the
tetragonal HEW lysozyme crystal. We initially use the measurements of concentra-
tion and temperature to compute the solubility according to Eq.5.1 and the supersat-
uration. The experimentally obtained values of the nucleation rate, and the computed
concentration and supersaturation values, are then used to obtain the parameters k,
and k; in Eq.5.2. Both sets of data yield the same values for k, = 1044.4/min.cm3
and k, = 51.33 and a single straight line serves as the best fit for both sets of data

(see Figure 5.2).

5.2.3 Modeling of the growth rate of tetragonal HEW lysozyme crystals

Figure 5.3 shows the structure of a tetragonal HEW lysozyme crystal, which shows

well-defined facets similar to inorganic crystals. This observation indicates that
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Figure 5.2: Comparison of the experimental results on the nucleation rate of tetragonal
HEW lysozyme crystal: o show the data in [54], A show the data in [5], and the empirical
model of £q.5.2 is shown by the solid line.

growth occurs via the spreading of layers from growth step sources such as dislo-
cations and 2D nuclei [41]. The microstructure of the faces of protein crystals has
been revealed by implementing advanced measurement techniques, such as electron
microscopy and atomic force microscopy (AFM). Experimental results have shown
that the growth step generation at screw dislocations outcrops and 2D nucleation
islands is the dominant growth mechanism in the growth of tetragonal lysozyme
crystals [41]. Experimental studies have also shown that screw dislocation and 2D
nucleation are the rate-limiting steps for the growth of tetragonal HEW lysozyme
crystals [42, 41, 185]. Detailed spiral growth and 2D nucleation theories have been
developed [4]. Experiments in [186] also showed the existence of a critical super-
saturation, above which the crystal growth is dominated by 2D nucleation. When
the supersaturation is higher than about 1.6, the increase in the growth rate with
increasing supersaturation is much faster than at low supersaturation. This is con-

sistent with the results in [42] which concludes that the growth rates at high and

155



low supersaturation are dominated by two different mechanisms. The experimental
results suggest that dislocations may be involved in the lysozyme crystal growth at
low supersaturation, and 2D nucleation could be dominant at high supersaturation
which leads to equal growth rates on all crystal facets, thereby leading to the forma-
tion of symmetrical crystals. Furthermore, it was found that orthorhombic lysozyme
crystals, rather than tetragonal crystals, tend to be formed at low supersaturation
[51]. This suggests that the supersaturation should be maintained within appropriate

bounds to obtain crystals of desired morphology. Empirical and theoretical models

Figure 5.3: Structure of a tetragonal HEW lysozyme crystal.

of crystal growth mechanisms have been developed and compared to experimental
results [42, 111, 96]. These works studied the growth rate of the tetragonal HEW
lysozyme crystal under various operating conditions, such as different precipitation
concentration, solute concentration and temperature. All of them concluded the
power-law dependence of the growth rate on supersaturation o. Some experimental
results of the studies of the growth rate of the tetragonal HEW lysozyme crystal
are shown in Figure 5.4 [148, 42, 96]. The growth rate data corresponding to the
supersaturation are plotted on log-log scale. It is clear that the growth rate changes
exponentially with the supersaturation, and that the value of the exponents obtained
from different experiments are very close. In our work, we use the following empiri-

cal model to describe the growth rate of the tetragonal HEW lysozyme crystals as a
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Figure 5.4: Comparison of the experimental results on the growth rate of tetragonal HEW
lysozyme crystal: ¢ shows the data in [148], A shows data in [42], and O and o show the
data in [96].

function of supersaturation:

G(t) = koo (5.3)

where k, is the pre-exponential factor of the growth rate. Since the composition of the
solution considered in the present study is the same as that in [96]; the experimental
data of [96], shown as the circles in Figure 5.4, are used to compute the values of k,

and g in Eq.5.3; this yields k, = 3.1451 x 10~ °cm/min and g = 5.169.

5.3 Modeling of a batch crystallizer for protein crystalliza-

tion

The mathematical models of particulate processes, including the protein crystal-
lization process in question, are typically obtained through the application of pop-
ulation, material and energy balances and consist of systems of nonlinear partial

integro-differential equations that describe the evolution of the particle size distribu-
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tion (PSD), coupled with systems of nonlinear ordinary differential equations (ODEs)
that describe the evolution of the state variables of the continuous phase. There is an
extensive literature on population balance modeling, numerical solution, and dynam-
ical analysis of particulate processes, see, for example, [151]; see also [30] for further
details and references.

For the batch crystallizer considered in this chapter, a population balance model
can be used to describe the evolution of the crystal size distribution (CSD), n(r,t).
The evolution of the solute concentration, C, and crystallizer temperature, T', are

described by two ODEs. The process model has the following form:

on(r,t) on(r,t) B(t)
T+G(t)7=0, n(O,t)=—G—,m

2 = 240k G(t)ua(r) (5.4)
dT UA

@ = e )

where G(t) is the growth rate, B(¢) is the nucleation rate, p is the density of crystals,
k, is the volumetric shape factor, U is the overall heat-transfer coefficient, A is the
total heat-transfer surface area, M is the mass of solvent in the crystallizer, C,, is the
heat capacity of the solution and up = /o ” r®n(r, t)dr is the second moment of the
CSD. The nucleation rate, B(t), and the growth rate, G(t), are given by Egs. 5.2 and
5.3, respectively, where the parameters obtained from experimental results are used,
and reported in Table 5.1. Note that because of the tetragonal form of the crystals
and the existence of about 46% of solvent in each crystal [107], the volumetric shape
factor, k,, is set equal to 0.54. To simulate the population balance model of Eq.5.4,
a second-order accurate finite difference scheme with sufficient (3000) discretization
points is used (while not shown here for the sake of brevity, it was verified that
simulations with higher number of discretization points yield results that are almost

indistinguishable from those obtained using 3000 discretization points). Figure 5.5
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Table 5.1: Parameter values for the batch crystallizer model of Egs.5.3 and 5.4.

k, | 1044.4/(min cm?) k, ]3.1451 x 10~%cm/min
k, | 51.33 g | 5169

k, |0.54 0 1.40 x 10%mg/cm3

U 1800kJ/m? - hr - K A 0.25m?

M| 10kg C, |4.13k1/K - kg

shows the evolution of the solute concentration (C), the supersaturation (¢) and the

CSD at a constant crystallizer temperature (7' = 15°C).
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Figure 5.5: Open-loop simulation results of the solute concentration (C), the supersatura-

tion (o) and the CSD at a constant crystallizer temperature (I" = 15°C).

5.4 Predictive control of the batch protein crystallizer

Early work on control of particulate processes focused mainly on the understanding
of fundamental control-theoretic properties of PBMs and the application of conven-
tional control schemes to crystallizers and emulsion polymerization processes, see,
e.g., [158], and the references therein. More recently, the realization that PBMs —
owing to their infinite-dimensional nature — cannot be used directly for the synthe-

sis of practically implementable model-based controllers, has motivated significant
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research work on the development of a general order reduction procedure, based on
combination of the method of weighted residuals and approximate inertial manifolds,
which allows deriving low-order ODE approximations that capture the dominant dy-
namics of particulate processes and can, therefore, serve as an appropriate basis for
the design of low-order controllers that can be readily implemented in practice, see,
for example, {26]. This approach subsequently laid the foundation for the develop-
ment of a systematic framework for solving a number of important control problems
for particulate processes, including the problem of dealing with the highly nonlin-
ear behavior, e.g., owing to complex growth, nucleation, agglomeration and breakage
mechanisms, and the Arrhenius dependence of nucleation laws on solute concentra-
tion in crystallizers [26], the problem of control under model uncertainty [27], and

the problem of control under actuator constraints [43].

The crystal size distribution or the moments of the crystal size distribution are
often not available as online measurements. Solute concentration and temperature,
on the other hand, are more readily available as measurements and can be used to
generate estimates of the moments which are required for implementation of feedback
control strategies based on the reduced order moments model. Also, given the avail-
ability of a reduced order moments model and estimates of the moments, desirable
product characteristics need to be appropriately expressed in terms of constraints
on the crystal size distribution, and physical limitations on the manipulated variable
(jacket temperature) must be accounted for in the control design. In the remainder
of this section we first use model reduction techniques to develop a reduced order
model suitable for the purpose of real-time control. Next, we present the design of a
state estimator, to provide estimates of the states of the reduced order model using

available measurements. Then we present a predictive controller design that uses
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the state estimates for the purpose of real-time control, while incorporating perfor-
mance considerations as appropriate constraints on the moments of the crystal size

distribution and accounting for the constraints on the manipulated input variable.

5.4.1 Model reduction

Owning to the fact that the dominant dynamics of the crystallizer are characterized
by a small number of degrees of freedom [26], the method of moments [77] (see also
[30, 172, 123]) is applied to the system of Eq.5.4 to derive an approximate ODE

model. Defining the ith moment of n(r,t) as:
oo
Wy = / r'n(r,t)dr, 1=0,1,...,00 (5.5)
0

multiplying the population balance in Eq.5.4 by r*, and integrating over all crystal
sizes, the following infinite set of ordinary differential equations, which describes the
rate of change of the moments of the crystal size distribution, solute concentration

and temperature, is obtained:

duo

i@ — B0

da/ljfi = 1G(pia(t), 1=1,2,..,00

at (5.6)
— = ~2ohG(t)pa(t)

dT UA

dt Mcp( 2

Note that in Eq.5.6, the ODEs describing the dynamics of the first N moments,
where N is any positive integer greater than or equal to 3, the solute concentration
and the crystallizer temperature are independent of the moments of order N + 1
and higher. This implies that a set of ordinary differential equations, which include
the first N moments and the evolution of the solute concentration and crystallizer

temperature, would provide an accurate description of the evolution of the first NV
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moments, the solute concentration and the crystallizer temperature. In this case, the
nucleation and growth rates are independent of crystal size and this allows closure of
the moment equations (note that closure can still be achieved if the nucleation and
growth mechanism are dependent on certain moments of the crystal size distribution).
In cases where the moments do not close, a finite set of ordinary differential equations
describing the evolution of the moments would provide an approximation that gets
increasingly better as the number of moments included in the reduced-order model

is increased.

As will be seen in section 5.4.3, the control objective will require computation of
w3 and g, hence N is chosen as 4 and the following reduced-order model is used for
the purpose of controller design:

duo

s _ By

Wi GWmal), i=1,234

dt

dC o0
— = —24pk,G(t)pa(t)

dT UA

- = T-T;

dt Mcp( .7)

5.4.2 State estimator design

In this section, we present an observer design that uses measurements of the solute
concentration, C, and temperature T and the reduced order moments model, to
generate estimates of the moments. Note that building an observer for a nonlinear
system of the form of Eq.5.7 with guaranteed convergence properties is in general
a difficult task. In this chapter, an extended Luenberger-type observer is used to

estimate the values of the moments of the CSD and takes the following form:
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Table 5.2: Parameter values for the Luenberger-type observer of Eq.5.8.
Ly | —04 L, | 0.05

L, | 0.001 L3 |1.7x1075
L4 3 X 10_7 L5 -0.1

di . .
= BO+Le(Cn0)
d‘z = iG)1(t) + Li(Cr— C), i=1,...4 (5.8)
dc . )
7l —24pk, G (t)f2(t) + Ls(Cr — C)

where C,, is the online measurement of the solute concentration, B(t) and G(¢t) are
the nucleation and growth rates computed using the online measurement of 7' and
values of the estimates of [i; and C ;and L;, ¢ =0, ..., 5 are the observer gains (these
values were obtained via running open-loop simulations and comparing the evolution
of the state with the state estimates for different choices of the observer gains), re-
ported in Table 5.2. Figures 5.6a-f show a comparison between the evolution of the
solute concentration (solid line in Figure 5.6(a)) and the moments u;,¢ = 0,1,...,4
(solid lines in Figures 5.6(b)-(f)) and the estimates of the solute concentration C
and the moments, for the perfect model case (dotted lines), and for two instances
of plant-model mismatch, where the parameter g in the moment model is 90% and
110% of its nominal value, respectively (denoted by o and *), under open-loop simu-
lations. In all instances, the effect of measurement noise, often found in experimental
readings, is simulated by introducing a white noise with variance of 0.5 mg/ml in the
measurement of the solute concentration. Furthermore, to evaluate the convergence
of the estimates to the true state values, the initial value of the estimated solute

concentration, C, is set to 40 mg/ml, while the true value is 50 mg/ml.

Note that for the batch crystallization considered in this chapter, the initial values
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Figure 5.6: Comparison between the true value and the estimates of C (the solute concen-

tration) and u;,¢=0,1,...,4.

of the moments at the beginning of the batch run are identically equal to zero, because
there are no crystals initially inside the crystallizer. In the case of a perfect model, the
state estimates converge quickly to the true values, and in both cases of plant-model

mismatch, the observer generates satisfactory estimates of the states (see Figure

5.6(a)-(£)).

5.4.3 Predictive controller formulation

Significant previous work has focused on CSD control in batch crystallizers, e.g.,
(153, 195]. In [137], an open-loop optimal control strategy was derived, where the
objective function involves maximization of the crystal size, and the cooling curve
is the decision variable. In [130], a method was developed for assessing parameter
uncertainty and studied its effects on the open-loop optimal control strategy, which

maximized the weight mean size of the product. An on-line optimal control method-
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ology was developed for a seeded batch cooling crystallizer in [195, 201]. Most of
these works focused on open-loop optimal control of the batch crystallizer, i.e., the
optimal operating condition is calculated off-line and implemented during the batch
operation. The successful achievement of the control objective in such a control strat-
egy depends heavily on the accuracy of the models, and disturbances affecting the

batch operation may easily drive the process off the desired trajectory.

The volume-averaged crystal size is an important parameter that characterizes
the crystal size distribution [201], especially for pharmaceuticals. A larger volume-
averaged crystal size facilitates downstream processing of the crystals, such as filtra-
tion. As mentioned previously, experimental results show low supersaturation leads
to the cessation of the crystal growth, while needle like, instead of tetragonal crystals,
form if the supersaturation is too high and this necessitates maintaining the super-
saturation (and similarly, temperature) within an acceptable range. Constraints on
the jacket temperature reflect the physical limitations in supplying the coolant at a

prescribed temperature.

Based on these considerations, we present in the remainder of this section a predic-
tive controller formulation that uses the available estimates of the process states for
the purpose of feedback control to maximize the volume-averaged crystal size, while
respecting the constraints on the reactor temperature, solute concentration and the

jacket temperature. Specifically, at time ¢;, the control trajectory is computed by

165



solving an optimization problem of the form:

min ————M(tf)
. p3(ty) .
o b
.t. —_— = ——
s I k.Cexp ( U2>
dpss
dt = Zkjgop Mz—l(t)a i=1,..4
dC
= 24pk,ky09 1o ()
dT UA
- = eI -T) (5.9)
pi(ts) = [fi(ti)
C(t:) = C(t:)
t; <t <ty
Tmin S T =

dCs
i Sh
TL(O, t) < nfme,v t> tf/2 (510)

where T, and T,,,, are the constraints on the crystallizer temperature, T, and are
specified as 4°C and 22°C, respectively. T} mn and T; g, are the constraints on the
manipulated variable, T}, and are specified as 3°C and 22°C, respectively. The con-
straints on the supersaturation o are g,,;, = 1.73 and 0,4, = 2.89. The constant,
k1, (chosen to be 0.065mg/ml-min) specifies the maximum rate of change of the sat-
uration concentration C,. nyin. is the largest allowable number of nuclei at any time
instant during the second half of the batch run, and is set to be 5/um.ml. Previous
work has shown that the objective of maximizing the volume-averaged crystal size
can result in a large number of fines in the final product [121]. The constraint of
Eq.5.10, by restricting the number of nuclei formed at any time instant during the

second half of the batch run limits the fines in the final product.

In the closed-loop control structure, the PBM, together with the mass and energy
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balances of Eq.5.4, are used to simulate the batch crystallization process. Measure-
ments of the solute concentration and the crystallizer temperature are assumed to be
available, and are used by the Luenberger-type observer of Eq.5.8 to generate esti-
mates of the moments. These estimates are used as initial conditions of the states in
the moments model, which is used in the predictive controller to compute the control
trajectory. Specifically, the PBM is utilized to simulate the value of the state vari-
ables (n, C, T) at t; = iAt, where i=1,2,....m, m = t;/At, and t; is the length of the
crystallization period. The measurements of C' and T are used to compute estimates
of 1;(t;). These estimates are used as initial values of the states in the reduced order
moments model, and used within the optimization problem over a horizon length of
t; — t; to compute the optimal control trajectory. The first step of the solution (7})
is implemented in the closed-loop, and this procedure is repeated every At until the
end of the batch run. In the simulations, At and ¢; are chosen as 5 minutes and
24 hours, respectively. Eq. 5.4, that describes the evolution of the batch crystal-
lizer, is solved by a second-order accurate finite difference scheme with 3000 spatial
discretization points and 7200 temporal discretization points and the optimization

problem is solved using sequential quadratic programming (SQP).

5.5 Closed-loop simulation results

In this section, we first demonstrate the effect of the unavailability of measurements
of the moments on the evolution of the closed-loop system. To this end, we compare
the following scenarios: 1) state feedback control (i.e., the measurements of the mo-
ments are available); the control trajectory initially computed by the optimization
problem is shown by the dotted line, and the closed—loop control trajectory under

state feedback is shown by the dash-dotted line in Figure 5.7(a), and 2) output feed-
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back control; the control trajectory initially computed by the optimization problem
is shown by the dashed line in Figure 5.7(a), and the closed—loop control trajec-
tory under output feedback control is shown by the solid line in Figure 5.7(a) (the
corresponding supersaturation profiles are shown in Figure 5.7(b)).

Note that in the case of state feedback control, the control trajectory computed
initially coincides with that under the closed-loop implementation (the dotted and
dash-dotted lines overlap), since the tail of the control trajectory continues to be the
solution to the optimization problem at the successive times. In the case of output
feedback control, however, the control trajectory is initially computed based on the
available (incorrect) estimates of the state variables, and leads to state constraints
violation if implemented for the entire duration of the batch run (see dashed lines in

Figure 5.7(b), where the supersaturation hits the lower constraint at ¢ = 18.2 hours).

16 3L
1, S ]
12
%)
< 10} |
= N
8t ‘\\
\
6t
‘\
o s 10 15 20 % B 10 15 20
Time (hr) (a) Time (hr) (b)

Figure 5.7: (a) Jacket temperature and (b) supersaturation profiles under 1) state feedback
control: dotted (implementation of the initially computed manipulated input trajectory)
and dash-dotted (closed—loop state feedback control) lines, and 2) output feedback control,
dashed (implementation of the initially computed manipulated input trajectory) and solid

(closed-loop output feedback control) lines.

Next, we compare the performance of the proposed predictive controller to that
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of three other control strategies, Constant Temperature Control (CTC), Constant
Supersaturation Control (CSC) and open-loop optimal control strategy. To study
the ability of the proposed predictive control strategy to maximize the performance
objective while avoiding the formation of a large number of fines in the final prod-
uct, the predictive controller of Eq.5.9 is implemented with the additional constraint
(Eq.5.10) on the fines in the final product. Also, to evaluate the robustness of the
proposed method with respect to plant-model mismatch, we consider a 10% error in
the nominal value of the parameter g - which is the exponent relating growth rate to

supersaturation - in the moments model used in the predictive controller.
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Figure 5.8: Comparison of the simulation results for (a) jacket temperature and (b) solute

concentration under four different control strategies.

In Figures 5.8 and 5.9, four important variables, the jacket temperature, the solute
concentration, the supersaturation, and the volume distribution of the CSD (P(r))
at the end of the batch run, are shown. The volume distribution of the CSD, P(r),

defined as:

_ ra(rty)
P(r) = Lo r3n(r, ty)dr

(5.11)

where ¢ is the time at the end of the batch run, is an important variable in determin-

ing the product characteristics. The two horizontal lines at 1.73 and 2.89 in Figure
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Figure 5.9: Comparison of the simulation results for (a) supersaturation and (b) volume

density under four different control strategies.

5.9(a) are the lower and upper constraints on the supersaturation. The evolution of

the CSD under different control strategies is shown in Figure 5.10.

Figure 5.8(a) shows the comparison of the manipulated variable trajectories, the
jacket temperature Tj, for the five scenarios. Note that while the trajectories of the
jacket temperature under CSC (dash-dotted line) and under the predictive controller
with a matched model (solid line) are close; the slight difference causes the behavior of
CSD evolution under these two different control strategies to be significantly different
(shown in Figure 5.10(a) and (e)), indicating the necessity to implement control to

achieve a desired product quality.

Since the supersaturation ¢ is the main driving force for the crystal nucleation
and growth, the evolution of supersaturation under various control strategies, shown
in Figure 5.9(a), can be subsequently used to explain the behavior of the CSD evolu-
tion. Specifically, the solid line in Figure 5.9(a) shows that the predictive controller
computes a manipulated input trajectory that results in the supersaturation first
decreasing, then staying almost constant at a low level, and finally increasing at the

end of the batch run. In view of the fact that the control objective is to maximize
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Figure 5.10: Evolution of crystal size distribution under four different control strategies: (a)
Predictive control with matched model, (b) Predictive control with mismatched model, (c)
Predictive control with constraint on fines, (d) constant temperature control, (e) constant

supersaturation control.
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the volume-averaged crystal size at the end of the batch run, i.e., to maximize the
volume of big crystals while minimizing the volume of small crystals, the result can
be understood as follows: after high initial levels of supersaturation, that results in a
number of nuclei formed, a drop in the supersaturation results in the nucleation rate
dropping more drastically than the growth rate (note that while the nucleation rate
in Eq.5.2 shows exponential dependence on the supersaturation, the growth rate in
Eq.5.3 exhibits a power law dependence), and favors growth of the initially formed
crystals instead of formation of new crystals. Towards the end of the batch run, it
is advantageous to increase the growth rate (by increasing the supersaturation) to
maximize the size of the crystals in the batch reactor, even at the cost of forming
a small number of new nuclei because the net result is a favorable increase in the

volume-averaged crystal size.

Note that towards the end of the batch run, the solute concentration has depleted
due to the formation of crystals. Supersaturation, however, is the solute concentra-
tion in excess of the solubility, and may be increased by decreasing the solubility,
which is a function of the reactor temperature. Therefore, the desired increase in the
supersaturation at the end of the batch run is achieved by lowering the jacket tem-
perature (to lower the reactor temperature, which lowers the solubility, and hence,
increases the supersaturation), until it hits the lower constraint (4 °C) on the jacket
temperature.

The closed-loop simulation results for the case of a process—-model mismatch are
shown by the dashed line in Figures 5.8, 5.9 and 5.10(b). Comparing Figure 5.10(a)
and Figure 5.10(b), it is clear that through feedback, the predictive controller ‘cor-
rects’ for plant-model mismatch and produces a different manipulated input trajec-

tory to enforce constraint satisfaction and achieve the desired objective. Simulation
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results, shown in Figure 5.7, also demonstrate that if the off-line optimized trajectory
of jacket temperature, based on the mismatched model, is implemented for the entire
duration of the batch run without using the measurements to update the control
trajectory, the state constraints are violated at the end of the batch run underscoring

the importance of feedback to achieve robustness with respect to modeling errors.
Note that predictive control without constraint on fines can result in a product
with a large number of fines (see Figure 5.10(a)) which is undesirable. The imple-
mentation of the predictive controller with the constraint of Eq.5.10, designed to
reduce the fines in the product, results in a product with much less fines while still

maximizing the volume-averaged crystal size (see Figure 5.10(c) and Table 5.3).

Compared to predictive control, the crystal size distribution evolves very differ-
ently under CTC and CSC. Under CTC, where a constant reactor temperature is
maintained throughout the batch run, the control strategy results in a constant solu-
bility during the batch run, and the depletion in the solute concentration is reflected
in the decrease of supersaturation, which eventually hits its lower constraint (the dot-
ted line in Figure 5.9(a)). In contrast, under CSC, which tries to maintain a constant
value of the supersaturation during the entire batch run, the reactor temperature is
lowered during the entire batch run (via the continued lowering of the jacket tem-
perature) to keep up with the falling concentration levels (see the dash-dotted line
in Figures 5.8(a) and 5.9(a)). Under CSC, therefore, the growth rate stays constant
during the batch run, since it is only dependent on the supersaturation. The nucle-
ation rate, which also depends directly on the solute concentration itself, is lowered
gradually because of the depletion of the solute. Unlike the CSD evolution under
predictive control, in the case of CTC and CSC, a constant number of new nuclei

are continuously formed during the whole batch run until the depletion of the solute
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and this leads to a relatively low volume-averaged crystal size compared to the case

of crystallizer operation under predictive control.

Table 5.3 summarizes the simulation results obtained under the five different con-
trol strategies: (1) Predictive control with a matched model, (2) Predictive control
with a mismatched model, (3) Predictive control with constraint on fines, (4) Open-
loop operation under CTC, and (5) Open-loop operation under CSC. In Table 5.3, six
characteristic parameters of the product at the end of the batch run are compared,
including the value of the volume-averaged crystal size (u4/u3), total volume (u3),
T10, Ts0, Too and the span. 79, 750 and rgy are the 10%, 50% and 90% volume fractions
of the CSD, respectively, denoting the percentage of crystals smaller than that size.
The span, defined as (rgg — r10) /750, is an important characteristic of the CSD, and
is widely used in the pharmaceutical industry. A high span value indicates a wide
distribution in size and a high polydispersity, which is undesirable. Comparing the
results of the five control strategies listed in Table 5.3, it is clear that the predic-
tive controller increases the volume-averaged crystal size by 30% compared to CTC,
and 8.5% compared to CSC. It is also observed that, in the case of process—model
mismatch (a 10% error of the exponent relating growth rate to supersaturation), the

predictive control strategy is able to increase the volume-averaged crystal size by

Table 5.3: Comparison between the simulation results under five different control strategies.

Control Strategy a3 L3 T10 T50 T9o Span
um x10% | um | pum | um

Predictive control (matched) 218 5.589 | 143 | 239 | 253 | 0.463
Predictive control (mismatched) | 201 6.459 | 167 | 208 | 226 | 0.284
Predictive control with con- | 208 6.374 | 166 | 219 | 235 | 0.315
straint on fines

Open-loop CTC 168 3.186 | 123 | 175 | 201 | 0.445
Open-loop CSC 201 5.583 | 143 | 211 | 244 0478
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20% compared to CTC. Although the predictive controller with a mismatched model
results in a similar volume-averaged crystal size compared to CSC, it leads to a much
higher volume of the product, 103% compared to CTC and 16% compared to CSC.
Note also that the CSD under predictive control has the largest r1g, 750 and rgq. Fig-
ure 5.9(b) shows that the CSDs under the proposed predictive controller with perfect
model (solid line), plant-model mismatch (dashed line) and constraint on fines (solid
line marked with circles) have lower polydispersity. A lower span and much larger
volume-averaged crystal size are achieved under predictive control with constraint on
fines compared to the one under CTC and CSC, as shown in Figure 5.10 and Table
5.3. In summary, the implementation of the proposed predictive controller increases
the volume-averaged crystal size, satisfles state and input constraints, and is found

to be robust with respect to plant-model mismatch.

5.6 Conclusions

In this chapter, we considered the problem of modeling, simulation and control of
a batch protein crystallization process that is used to produce the tetragonal HEW
lysozyme crystals. First, a population balance model, using empirically obtained
rate expressions, was developed to simulate the batch crystallization process. Then,
model reduction techniques were used to derive a reduced-order moments model
for the purpose of controller design. Online measurements of the solute concentra-
tion and reactor temperature were assumed to be available, and a Luenberger-type
observer was developed to estimate the moments of the crystal size. A predictive
controller, that uses these state estimates, was designed to achieve the objective of
maximizing the volume-averaged crystal size while respecting constraints on the ma-

nipulated input variables (which reflect physical limitations of control actuators) and

175



on the process state variables (which reflect performance considerations). Simula-
tion results showed that the proposed predictive controller was able to increase the
volume-averaged crystal size by 30% and 8.5% compared to Constant Temperature
Control (CTC) and Constant Supersaturation Control (CSC) strategies, respectively,
while reducing the number of fine crystals produced. Furthermore, a comparison of
the crystal size distributions (CSDs) indicated that the product achieved by the pro-
posed predictive control strategy has larger total volume and lower polydispersity
compared to the CTC and CSC strategies. Finally, the robustness of the proposed
method with respect to plant-model mismatch was evaluated. In contrast to open—
loop control strategies, which led to violation of constraints in the presence of plant-
model mismatch, the proposed method was demonstrated to successfully achieve the
task of maximizing the volume-averaged crystal size while satisfying the state and

input constraints.
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Chapter 6

Conclusions and future research

directions

6.1 Conclusions

This work is focused on the modeling and control of particulate processes, including
high-velocity oxygen fuel (HVOF) thermal spray and protein crystallization processes.
The first part of this work is focused on the modeling and feedback control of the
HVOF thermal spray processing of nanostructured coatings, which is motivated by
the superior qualities of nanostructured coatings and high sensitivity of the coated
material to arbitrary variation in the operating environment. In the second part
of this work, we developed a novel and practical framework for the synthesis of
practically-implementable predictive controllers for regulation of particle size distri-

bution (PSD) in particulate processes.

In the first part of this work, we developed a multiscale modeling and control
framework for the HVOF thermal spray processing of nanostructured coatings. In

the modeling part, we developed a comprehensive multiscale model, which includes
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continuum type differential equations that describe the evolution of gas and particle
temperature and velocity, and a rule-based stochastic simulator that predicts the evo-
lution of coating microstructure. On the macroscopic gas/particle dynamics side, the
Reynolds and Favre-averaged Navier-Stokes equations and energy balance equations
are solved with the renormalization group (RNG) k-¢ turbulence model to capture
the complex fluid/thermal behavior, and the particle trajectories, temperature histo-
ries and melting ratio are determined using the 4th order Runge-Kutta method. On
the microscopic particle deposition process, the formation of coating microstructure
is captured by certain rules that encapsulate the main physical features of parti-
cle deformation, solidification and coating growth. Based on the proposed model, a
detailed comprehensive parametric analysis is carried out to study the relationship
between the key process parameters and the particle inflight behavior as well as the
resulting coating properties. Specifically, the modeling and analysis work shows the

following:

1. Particles in the HVOF thermal spray process are not uniformly accelerated
or heated, i.e., particles of moderate sizes usually achieve highest velocities,
temperatures and melting ratio. Small particles, due to their small momentum
inertia, may follow the gas stream and not stick on the substrate. (Note that the
existence of the substrate will change that pattern of the supersonic free jet. In
the vicinity of substrate, the gas velocity in the axial direction decreases to zero
and the gas flows in parallel to the substrate.) They are most likely in a solid
state upon impact, although they might experience a fully molten state during
flight. Particles with sizes larger than 50 um, however, are hard to be either
accelerated (or heated up) or decelerated (or cooled down). The nonuniform

acceleration and heating of particles of different sizes have been validated by
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experiments [70, 91, 200].

. The particle velocity and melting ratio play an important role in the formation of
coating microstructure. The higher the particle velocity, the larger the flattening
ratio and the denser the coating. Moreover, a high ratio of particle melting
tends to decrease the coating porosity and increase the deposition efficiency
[133]. Therefore, to improve process performance, both the velocity and melting
ratio of particles at the point of impact on the substrate should be maintained
above certain levels. However, for the processing of nanostructured coatings,
the particle melting ratio should not be too high since it is the nanocrystalline
structure preserved in most of the particles deposited on the substrate that

leads to the unique characteristics of nanostructured coatings [24].

. Chamber pressure and fuel /oxygen ratio are two key parameters directly related
to the gas momentum flux (pu?) and gas temperature, which provide driving
forces for particle motion and particle heating. To enhance momentum transfer,
the chamber pressure should be maintained as high as possible, however, the
pressure in the chamber maintained is usually limited by the maximum reservoir
pressure. Moreover, an increase in the total mass flow rate typically results in an
increase in the chamber pressure. And, increasing the total mass flow rate tends
to lengthen the potential core in the supersonic free jet, or both gas velocity
and temperature are maintained at high values for a longer distance, which
enhances momentum and heat transfer. However, the relationship between the
fuel/oxygen ratio and the gas temperature is not monotonic. The maximum
gas temperature is usually achieved at the equivalence ratio around 1.1-1.2, a

fuel rich condition.

Based on the comprehensive process model, a simplified one dimensional model,
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which is computationally tractable (from a control point of view) while capable of
capturing the dominant characteristic occurring within the HVOF thermal spray
process, is developed. The control problem is then formulated as the one of regulating
volume-based averages of the melting ratio and velocity of the particles at the point
of impact on the substrate (these are the variables that directly influence coating
microstructure and porosity, which, in turn, determine coating strength and hardness)
by directly manipulating the flow rate of fuel, oxygen and air at the entrance of
the HVOF thermal spray gun. A feedback control system is developed and applied
to the fundamental process model. Closed-loop simulations demonstrate that the
particle velocity and melting ratio at the point of impact on substrate reach the
desired set-point values in a short time, which validates the feasibility of real-time
implementation of feedback control on the HVOF thermal spray system. It is shown
that the proposed formulation of the control problem (which accounts for the effect
of powder size distribution) leads to a solution of the control problem that is superior
(with respect to the achievement of the desired control objectives) to a solution that
assumes a monodisperse powder size distribution. It is also demonstrated that the
proposed control problem formulation and the feedback control system are robust
with respect to disturbances in spray distance and particle injection velocity, and

variations in powder size distribution.

In the second part of this work, we focused on the development and application
of predictive-based strategies for control of PSD in continuous and batch particulate
processes described by population balance models. The control algorithms were de-
veloped on the basis of reduced-order models that capture the dominant dynamics
of the particulate process, utilize measurements of principle moments of the PSD,

and are tailored to address different control objectives for the continuous and batch
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processes.

For continuous particulate processes, we considered the control objective of as-
ymptotic stabilization under constraints and developed a hybrid predictive control
strategy that employs logic-based switching between model predictive control (MPC)
and a fall-back controller with a well-defined stability region. The control objective
is to stabilize the crystallizer at an unstable steady-state (which corresponds to a
desired PSD) using constrained control action. MPC is a popular method for han-
dling constraints within an optimal control setting. For linear systems, a number
of control-relevant issues have been explored, including issues of closed—loop stabil-
ity, performance, implementation and constraint satisfaction. However, because of
the highly nonlinear behavior exhibited by the continuous crystallizer, the practical
implementation of MPC is limited by: (1) the computational difficulties of solving
a nonlinear (typically nonconvex) optimization problem at each time step, and (2)
the difficulty of characterizing, a priori, the set of initial conditions starting from
where a given NMPC controller is guaranteed to be feasible and/or stabilize the
closed-loop nonlinear system. To overcome these difficulties, we used a recently
developed hybrid predictive control structure [47] that provides a safety net for the
implementation of predictive control algorithms. The central idea is to use a bounded
analytical nonlinear controller, with an explicitly characterized stability region, as a
fall-back controller, and embed the operation of MPC within its stability region. In
the event that the given predictive controller (which can be based on linear or non-
linear models) is unable to stabilize the closed-loop system (e.g., due to failure of
the optimization algorithm, poor choice of the initial condition, insufficient horizon
length, etc.), supervisory switching from MPC to the bounded controller safeguards

closed-loop stability. The strategy was shown to provide a safety net for the imple-

181



mentation of MPC algorithms to particulate processes, and was successfully used to

stabilize a continuous crystallizer at an open-loop unstable steady-state.

For batch particulate processes, the control objective is to achieve PSD with
desired characteristics subject to both manipulated input and product quality con-
straints. An optimization-based predictive control strategy that incorporates these
constraints explicitly in the controller design was formulated. The developed control
methods were successfully applied via computer simulations to batch cooling crys-
tallizer which produce protein (tetragonal hen egg-white lysozyme) crystals. First, a
model was presented that describes the formation of infinitesimal-size protein crys-
tals via nucleation and the subsequent growth of the crystals via condensation, and
predicts the temporal evolution of the crystal size distribution in the size range of
0 — 300 um. To this end, existing experimental data were used to develop empirical
models of the nucleation and growth mechanisms of the tetragonal HEW lysozyme
crystal. The developed growth and nucleation rate expressions were used within a
population balance model to simulate a batch crystallization process that produces
the tetragonal HEW lysozyme crystals. Then, model reduction techniques were used
to derive a reduced-order moments model for the purpose of controller design. Online
measurements of the solute concentration and reactor temperature were assumed to
be available, and a Luenberger-type observer was developed to estimate the moments
of the crystal size distribution based on the available measurements. A predictive
controller, that uses the available state estimates, was designed to achieve the objec-
tive of maximizing the volume-averaged crystal size while respecting constraints on
the manipulated input variables (which reflect physical limitations of control actua-
tors) and on the process state variables (which reflect performance considerations).

Simulation results demonstrated that the proposed predictive controller is able to
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increase the volume-averaged crystal size by 30% and 8.5% compared to Constant
Temperature Control (CTC) and Constant Supersaturation Control (CSC) strate-
gies, respectively, while reducing the number of fine crystals produced. Furthermore,
a comparison of the crystal size distributions (CSDs) indicated that the product
achieved by the proposed predictive control strategy has larger total volume and
lower polydispersity compared to the CTC and CSC strategies. Finally, the robust-
ness of the proposed method with respect to plant-model mismatch was evaluated.
The proposed method was demonstrated to successfully achieve the task of maximiz-
ing the volume-averaged crystal size in the presence of plant-model mismatch, and

was found to be robust in comparison to open-loop optimal control strategies.

6.2 Future research directions

For the purpose of modeling and control of HVOF thermal spray processes, a more
comprehensive CFD model should be developed for HVOF thermal spray systems
which takes into account reactions, transport, phase change and microstructure de-
velopment phenomena taking place in the process. The model should include the gas
dynamics of in the torch and in the free jet, particle injection and the interaction (heat
and momentum transfer) between the injected particles and the turbulent gas flow
inside the outside the barrel, particle interaction with the barrel walls, phase change
of the nanosize powders, droplet motion, distribution and impact on the substrate,
microstructure development, and dependence of coated material end-properties on
microstructure. Since most of the factors have been taken into account in our present
work, this comprehensive model to be developed will focus on the three dimensional
tracking of particles in the gas flow/thermal field and the interaction between parti-

cles and gas, especially the heating and melting of particles during flight. Moreover,
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the impact of particles on the substrate and the interaction between melted parts
and unmelted ones of the splats will be explored. The detailed model will be used
to predict the dependence of the thermal and mechanical properties of the nanos-
tructured coatings on the size, velocity, temperature and molten state of the droplets
which hit on the substrate, along with the consolidation rate of the sprayed droplets.
In addition, the model will predict the dependence of these parameters on the heat
and momentum transfers between the flame and the particles of the nanopowder,
and on the other hand by the morphology, size and injection velocity distribution of
the particles. Moreover, the relationship of the nature, roughness and temperature of
the substrate and the previously deposited layers on the impact, flattening, cooling

and solidification of the droplets will be explicitly modeled.

3-D particle tracking: Most of the previous modeling work is based on the one
dimensional particle tracking, in which case the particle properties are only functions
of particle size and axial position. However, because of the stochastic behavior of
particle motion due to injection velocity distribution, collision of wall, turbulence of
the gas phase, particles of the same size may take totally different trajectories during
flight and have different melting experience. Therefore, the properties of particles at
the point of impact will be not only size dependent but also spatially distributed.
The 3-D particle tracking will provide a more accurate description of the evolution

of velocity, temperature and melting ratio of particles in the HVOF gas flow field.

Interaction between melted parts and unmelted parts in coating microstruc-
ture evolution: Most previous studies of particle deposition and coating growth rely
on the assumption of fully molten state of particles on the substrate. However, both
experiments {70, 91, 200] and numerical modeling [112, 110] have shown that parti-

cles at the point of impact on the substrate may be in different molten states (fully
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melted, partially melted or solid) due to different sizes and different trajectories in the
HVOF thermal spray process. We first included the nonuniform molten states of par-
ticles upon impact on the substrate [173]. However, the rules governing the coating
growth, for example, the threshold for particle bouncing off, the interaction between
the melted parts and the unmelted parts of the splats, can be further improved to
have more accurate predictions. Moreover, further efforts should be devoted to the
modeling of solid particle impingement and the microstructural evolution, particu-

larly the grain growth behavior, and chemical reactions during impingement.

Model validation: Model validation should be conducted in collaboration with
Sulzer Metco, the manufacturer of the Diamond Jet hybrid HVOF thermal spray
gun. Comparison between the CFD predicted gas phase data such as pressure, veloc-
ity, temperature, mach number and density etc., and the corresponding experimental
measurements will point out various modeling assumptions and equations that have
been suggested in the literature to improve the process model. Based on the vali-
dated process model, a comprehensive parametric analysis will be made to find out
the key parameters that affect coating microstructure, including particle velocity,
temperature, melting ratio, and oxidant content etc. This model would allow precise
simulation of HVOF thermal spray processes using any combination of carries gases
and nanostructured powders under any operating conditions, which would facilitate
testing of different operating conditions with minimum cost compared to expensive
laboratory or pilot-scale testing.

We note that although a comprehensive CFD model is adequate to capture the
reaction, transport, phase change, microstructure development phenomena involved
in the HVOF thermal spray process, however, from a control point of view, such a

model is computationally untractable because its solution time can not be comparable
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to the evolution of the process dynamics. Therefore, a well-characterized, simplified
model that is capable of capturing the dominant gas and particle dynamics should
be developed and validated. Combination of experimental data and model predic-
tions will determine whether some mechanisms in the thermal spray process may be
neglected in the models used for controller design in order to simplify the controller
design task. This can be done by running a bunch of comprehensive CFD simula-
tions under different gas flow rates and equivalence ratios and applying interpolation
method to estimate the gas thermal and flow characteristics in a certain range. Our
preliminary study has shown that the gas dynamics can be adequately described by
the weighted sum of several characteristic functions, thus the gas flow/thermal field
can be reasonably estimated in a very short time. Based on the reduced model,
model-based estimation and control algorithms will be then synthesized which use
the information from the measurements and the simulator to manipulate external

variables to achieve the desired performance specifications.

To develop a practical control system for the HVOF thermal spray process, it is
also important to note several physical constraints on this process. Firstly, although
it is found that an increase in the total gas flow rate leads to an increase in the
gas momentum flux and the flame temperature, which is beneficial to the particle
inflight behavior, especially the ratio of particle melting, and eventually, the coating
microstructure. However, It should be noted that the reservoir pressure of the inlet
gases limits the increase of pressure in the combustion chamber. Secondly, the flame
temperature cannot increase unboundedly. Although the gas temperature increases
a little as the total gas flow rate increases, the flame temperature is almost a sole
function of the equivalence ratio, and the highest temperature is achieved at an

optimal equivalence ratio around 1.2. If the process is operated under or around this
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optimal conditions, it will be difficult to further increase the particle temperature
and melting ratio by changing the total mass flow rate and the equivalence ratio.
One possible way to solve this is to adjust the spray distance. This leads to the
development of control systems with switching scheme (see, for example, [129, 47,
46]). Thirdly, significant uncertainty in the parameters of the process model (time-
varying unknown process parameters such as unknown reaction rates, heat transfer
coefficients, heat of reaction, etc.) and external disturbances (arbitrary variations
in the concentration and temperature of inlet streams), and large dead-times in the
measurement instruments and the control actuators should be accounted for in the

synthesis of controllers for implementation into practice.

Further studies in control of the particle size distribution in particulate processes
include model development, molecular simulation and model validation. To simulate
the crystallization processes more accurately, a more detailed model, which considers
the effects of secondary nucleation and multidimensional crystallization, should be
developed to simulate crystallization processes. Molecular simulation is a powerful
tool to capture the stochastic behaviors of the crystallization processes. Deep un-
derstanding on the mechanisms of crystal nucleation and growth can be achieved by
molecular simulation methods, such as Monte Carlo simulation method. The popula-
tion balance model and molecular model should also be validated through experiment
studies.

Modeling of secondary nucleation and multidimensional crystallization
processes: Population balance models were developed in this work to simulate the
crystallization processes. Existing experimental data were used to develop empirical
models of the nucleation and growth mechanisms of the tetragonal HEW lysozyme

crystal. Because of the complex nature of the crystallization process, some important
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phenomena that were not considered in this work, such as secondary nucleation and
multidimensional crystallization, should also be carefully studied to develop a com-
prehensive model for crystallization processes. Other phenomena with minor effects
include heterogeneous nucleation and size-dependant growth. Furthermore, as the
population balance model becomes more complex by accounting for more complex
reaction mechanisms, method of moments may not be able to use as the model re-
duction technique. Other model reduction techniques, such as method of weighted
residuals, should be implemented to achieve lower-order models for the purpose of

controller design.

Molecular simulation of crystallization processes: Crystallization processes
can be viewed and modeled as a molecular assembly process. Molecular simulation
is a powerful tool to capture the stochastic behaviors of such processes. Based on
molecular simulation, the effects of operating conditions on the crystal nucleation
and growth rate can be numerically analyzed. The molecular simulation can also
reveal the mechanisms of defect formation and shape dynamics, which can be used
to validate the setting of constraints on the operating conditions. At this stage, a
close look in the literature indicates that significant research is needed to explore the
crystallization process both from a microscopic (study of the nucleation and growth
mechanisms by molecular simulation) and macroscopic (control of the crystal size
distribution) point of view. Therefore, a multiscale model, which combines both
the molecular simulation and the population balance model, should be developed to
provide a comprehensive view of crystallization processes, and to facilitate the design

of advanced control strategies.

Model validation: Experiments on the control of crystallization processes should

be conducted to validate the process models and control strategies. Comparison
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between the experimental measurements and simulation results, including the solute
concentration, temperature, and crystal size distributions, can be used to validate
the model assumptions and equations that have been suggested in the literature.
Because of the difficulties of the online measurements of solute concentration and
crystal size distribution, different measurement techniques and methods should be
tested to guarantee the accuracy of the measurements. Based on the validated process
model, more accurate and reliable controllers can be designed, and the performance

of the proposed control strategies will be able to be analyzed and validated.

To improve the performance of the proposed control strategies, several important
issues respect to control algorithms should also be further explored. Firstly, the opti-
mization algorithm should be extensively studied to be more robust and efficient. In
this work, optimization problems formulated in the controllers are high-dimensional,
highly nonlinear and nonconvex, and incorporate a large number of linear and non-
linear constraints. Optimization algorithms for such problems are typically very
complex, and do not guarantee the solution to be global optimal. Although the se-
quential quadratic programming methods represent the state-of-the-art in nonlinear
programming methods, there still exist several issues that need to be carefully stud-
ied, for example, how to achieve the initial guess of a feasible control trajectory. The
optimal objectives and constraints considered in the optimization problem should
also be carefully selected to guarantee the performance of the closed-loop system.
Secondly, the robustness of the proposed control strategies should be more exten-
sively analyzed. In this work, the robustness is numerically tested by introducing
a modeling error on a process parameter. Besides the numerical study, theoretical
study should be conducted to thoroughly analyze the robustness of the proposed

control strategies.
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