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Control valves are the most prevalent final control element in the chemical process industries.

However, the behavior of valves (i.e., the manner in which the valve output flow rate changes

in response to changes in the control signal to the valve) cancontribute to a number of negative

effects in a control loop, such as set-point tracking issuesand sustained closed-loop oscillations.

Valve stiction, for example, is a dynamic valve nonlinearity (i.e., the relationship between the valve

output flow rate and the control signal to the valve is described by nonlinear differential equations)

resulting from friction that is known to be problematic in the process industries. This dissertation

describes the impact of valve behavior on process control loops and methods for compensating

for the valve behavior through appropriate control designs. It begins by describing how the

addition of input rate of change constraints to an optimization-based control design with a general

objective function (economic model predictive control (EMPC)) can be performed in a manner

that may reduce actuator wear while simultaneously guaranteeing feasibility of the controller and

closed-loop stability of a nonlinear process operated under the control design. It then focuses on a

specific type of actuator (a valve) and elucidates that coupled, nonlinear interactions between the

process and valve model states and any internal states of thecontroller model create the negative

effects that may be observed in control loops containing valves for which the dynamics cannot be
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neglected (e.g., valves subject to significant stiction). These multivariable interactions illustrate

the closed-loop nature of the negative effects observed, and this closed-loop perspective is then

used to analyze stiction compensation methods from the literature, to develop a novel stiction

compensation scheme for control loops under proportional-integral control, and to demonstrate that

incorporating models, both first-principles and empirical, of valve behavior within the model used

for making state predictions in a model predictive controller is an effective means for compensating

for valve behavior in general. The benefits of adding actuation magnitude and input rate of change

constraints within EMPC including a model of stiction dynamics are discussed. Throughout

the work, process examples are utilized to illustrate the advanced control-based frameworks for

understanding and compensating for valve limitations.
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Chapter 1

Introduction

1.1 Model Predictive Control

Model predictive control (MPC) has been a critical technology within the chemical process

industries for several decades25,37,126,127due to its ability to determine optimal inputs to a process

by minimizing a quadratic function of the inputs and (predicted) process states. Unlike optimal

control problems that optimize a quadratic objective function over an infinite horizon,28,74 MPC

is implemented with a finite-time horizon known as the prediction horizon. This means that the

objective function can be numerically discretized and represented as a sum of a finite number of

terms. The prediction horizon is partitioned intoN time intervals where each has a length known

as a sampling period. Throughout a sampling period, the MPC assigns a constant value to each

process input. At every sampling time, the MPC receives feedback of the process state through

a state measurement and re-solves the optimization problemconsisting of a quadratic objective

function and state and input constraints, where every occurrence of the state in both the objective

function and state constraints must come from the predictions of a dynamic process model with

its initial condition at the state measurement at the beginning of the sampling period. After the

solution to the MPC has been obtained (which consists ofN values of each manipulated input,

each of which will be held constant for a sampling period), itapplies only the first of theN values
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of each input to the process for one sampling period. At the next sampling period, the remaining

N−1 values of each input are discarded so that the MPC can re-solve for theN values of each

input based on a new state measurement and then apply the firstof each of these new values to the

process for the next sampling period. This is known as a receding horizon implementation. Many

industrial MPC designs employ linear dynamic process models.

Because MPC uses a process model for state predictions givenan input trajectory, it can

account for multivariable interactions and actuator constraints. The quadratic objective function

of an MPC can in general be tuned by adjusting the weighting matrices on the quadratic terms

to more significantly penalize set-point deviations (by increasing the weight on the state term) or

the use of control inputs (by increasing the weight on the input term). Because the cost function

of MPC can be tuned in this manner, MPC has been promoted as a controller that can improve

process economics by enforcing either rapid set-point tracking or minimal input use, whichever

corresponds to greater profit for a company. In general, however, the tuning of the weighting

matrices that achieves economic optimality in this sense isdifficult to discern, and in addition a

quadratic cost function may not actually represent the process economics (which may be more

adequately represented by, for example, a nonlinear Arrhenius rate law expression that quantifies

the production rate of a desired product). For these reasons, optimal control actions computed

by solving the tracking MPC optimization problem do not typically correspond to economically

optimal input trajectories. To increase profits for a process under tracking MPC, MPC has

been coupled with an optimizer referred to as a real-time optimizer (RTO)42,103 that computes

economically optimal steady-states for the MPC to track by solving a nonlinear optimization

problem with a detailed steady-state plant model and a possibly nonlinear and nonquadratic

objective function representing the process economics.
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1.2 Economic Model Predictive Control

The RTO-MPC hierarchy described above has a number of disadvantages from an economic point

of view, most significantly that steady-state operation maynot be the most economically optimal

operating strategy. In fact, it has been repeatedly shown inthe chemical engineering literature, both

experimentally and through a variety of simulated chemicalprocess examples, that a number of

industrially relevant processes may achieve higher profitswhen operated in a time-varying fashion

than when operated at steady-state.20,122,131,139 To achieve dynamic, economically optimal

process operation while still incorporating process feedback, the tracking MPC framework was

modified by replacing the quadratic objective function withan objective function that specifically

represents the process economics (and does not typically have its minimum at a steady-state of

the process), forming economic MPC (EMPC).62,63 The time-varying operating policies that can

be computed by EMPC have been repeatedly shown to be capable of increasing process profits

compared to operating a process at steady-state for some systems.59,79

However, this new time-varying operating policy comes witha large number of theoretical

and practical challenges, including: 1) evaluating whether the economic performance of a process

under EMPC is better than that for steady-state operation, particularly when there are restrictions

such as constraints on actuator movement or production schedules that must be met, 2) defining the

conditions under which EMPC is guaranteed to be feasible andto maintain closed-loop stability

of a nonlinear process for various stability constraints added to the formulation and even when

there are disruptions such as preventive maintenance, 3) reducing the computation time of the

methodology, which can be prohibitively large since it requires a nonlinear program to be solved

due to the non-quadratic objective function and often nonlinear constraints (as opposed to a convex

optimization problem like a typical tracking MPC), and 4) guaranteeing operational safety of

chemical processes operated under EMPC when the control design is highly focused on process

economics. These considerations have been addressed in recent years by a number of works.

One method that has been utilized for addressing the first twoconsiderations is the development

of multiple EMPC formulations. Due to differences in these formulations, different guarantees can
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be made in terms of economic performance, feasibility, stability, and robustness. Four common

designs in the literature are those with a terminal equalityconstraint requiring the state at the end

of the prediction horizon to be at the steady-state,16,47,128a terminal region constraint requiring

the state at the end of the prediction horizon to be in a regionaround the steady-state,11,13

an EMPC formulation without additional constraints (but with technical assumptions such as a

sufficiently long prediction horizon or turnpike property of the optimal control problem made for

analyzing the closed-loop system under the EMPC),69,75,76and a two-mode EMPC formulation

with Lyapunov-based stability constraints.79 Several of these methods have been beneficial

for analyzing economic performance guarantees under the EMPC formulations in the absence

of disturbances and for showing that steady-state trackingis possible under EMPC if certain

conditions are met on the process model and objective function. The Lyapunov-based EMPC

formulation has been used to address a number of the major considerations encountered for

a process under EMPC listed above, including optimizing economic performance even when

schedules must be tracked,2 maintaining closed-loop stability when sensors are taken off-line

for maintenance,97 and explicitly integrating operational chemical process safety and process

control.7–10 This EMPC formulation has been ideally suited for addressing this wide range of

issues because it allows explicita priori characterization of the set of initial conditions from

which feasibility of the EMPC optimization problem is guaranteed at every sampling time, and

explicit a priori characterization of the region in state-space within whichthe closed-loop state

is guaranteed to be maintained for all times in the presence of sufficiently small disturbances

and with a sufficiently small sampling period. In general, however, various economic model

predictive control formulations have been utilized in the literature to address numerous practical

considerations including wastewater treatment,155 determining zone temperatures for heating,

ventilation, and air conditioning systems,124,144microgrid dispatch,154 and fault-tolerant control

of systems for which empirical models are available.5 Infinite horizon results for EMPC have also

been developed (e.g.,84,121).

A disadvantage of EMPC is that it typically requires the solution of a nonconvex nonlinear
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optimization problem and thus may not be able to be solved in asampling period. Methods that

have been looked at for enhancing the ability of EMPC to be applied on-line include using two-tier

schemes,59,65 triggering of the EMPC optimization problem as the error between state predictions

and state measurements becomes larger than a threshold,156 using empirical models in place

of first-principles models in EMPC,6 or simplifying the EMPC formulation through Carleman

approximation.68

1.3 Stiction

Both MPC and EMPC compute control actions that must be physically implemented on a

process. The most common final control elements used to implement control actions at chemical

plants and refineries are control valves. Valve dynamics aretypically neglected in the chemical

process control literature, meaning that the valve output is typically assumed to instantaneously

reach the value requested by the controller. However, valves often have dynamics or other

behavior that undermines control system performance. Specifically, nonlinearities in control valve

dynamics can cause poor set-point tracking and even sustained control loop oscillations.24 Some

nonlinearities can be described by static functions (e.g.,an equal percentage valve characteristic,

which represents a nonlinear one-to-one relationship between the percent that the valve is open

and the percent of flow through the valve),38 while others are modeled as nonlinear dynamic

systems (e.g., stiction).33 Stiction is a particularly problematic issue for the chemical process

industries,46,117 as it is a friction effect in the valve that causes it to stick until the force on the

valve exceeds a certain level, at which point the valve movesand may even jump to a new position.

Though there have been efforts to develop compensation techniques for stiction (e.g., methods that

add additional signals to the output of a controller such as pulses77 or optimally-determined signals

with respect to a performance metric135), they have not yet been able to eradicate this significant

industrial concern.
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1.4 Dissertation Objectives and Structure

Motivated by next-generation manufacturing objectives,34,43 including safer and more profitable

operating strategies, this dissertation develops formulations of advanced process controllers such as

MPC and EMPC, as well as modifications to classical control designs such as proportional-integral

(PI) control, that seek to achieve these objectives by improving process economic performance in

the presence of actuator nonlinearities.

As noted above, one of the primary concerns within the EMPC literature is determining the

conditions that guarantee that a process under EMPC will have an economic performance at least

as good as that for the standard industrial operating paradigm (steady-state operation). However,

industry is only interested in these performance guarantees if they can be achieved without abuse

of the process equipment by the control actions computed by EMPC. This is a concern since

EMPC may operate a process in a time-varying fashion, sometimes by calculating bang-bang

type control actions which may wear out the control actuators. Therefore, Chapter 2 of this

dissertation addresses this issue by adding input rate of change constraints to a specific EMPC

formulation that utilizes Lyapunov-based stability constraints for closed-loop stability purposes

(termed Lyapunov-based EMPC or LEMPC). The input rate of change constraints are formulated

with respect to a Lyapunov-based controller to form an EMPC formulation with both input rate

of change constraints and guaranteed feasibility and closed-loop stability properties, even in the

presence of disturbances. Furthermore, an additional terminal constraint is developed based on a

Lyapunov-based controller and it is shown that when there are no disturbances or plant-model

mismatch, the LEMPC with input rate of change constraints and the terminal constraint has

guaranteed economic performance properties. Specifically, its economic performance is at least

as good as that of a stabilizing Lyapunov-based controller on both the finite-time and infinite-time

intervals (when the stabilizing Lyapunov-based controller has certain properties, the infinite-time

performance result signifies that the asymptotic average performance of a nonlinear process

operated under the LEMPC with input rate of change constraints is at least as good as that for

steady-state operation). This result holds regardless of the magnitude of the input rate of change
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or whether the input rate of change is penalized in the cost function. These results address a key

industrial concern regarding the wear on a physical system under EMPC and also show that EMPC

may still provide economic benefits compared to the standardindustrial operating paradigm even

when the input variability is reduced.

Chapter 3 of this dissertation turns from the focus on controllers designed to improve process

economics subject to physical actuator limitations such aswear possibilities to the more general

problem of how to enhance process economic performance in the presence of valve behavior,

for processes operated under any feedback control design (e.g., proportional-integral (PI) control,

MPC) for which the control design objectives such as set-point tracking are not being met due

to valve dynamics. Specifically, this chapter develops a unified framework for understanding

the negative impacts of valve dynamics on process control, elucidating the manner in which the

type of valve nonlinearity, the type of controller, and the control loop architecture impact the

consequences of having that nonlinearity within the control loop. It demonstrates that these factors

work together to influence set-point tracking, process constraint satisfaction, and the initiation of

sustained control loop oscillations. After such issues have been clarified, it is possible to propose

novel compensation methods for valve nonlinearities that modify the type of controller already in

the control loop containing the valve nonlinearity (ratherthan adding an additional compensating

system). For example, the chapter demonstrates that the manner in which the forces on the valve

balance causes stiction-induced oscillations within a control loop containing an integrating linear

controller and a sticky valve. From this understanding of the oscillation phenomenon, it then

proposes the modification of the integral action with a term reflecting the difference between the

valve output set-point and the actual valve output.

Chapter 4 augments the developments of Chapter 3 by proposing that model-based control

designs (in particular, model predictive control designs)accounting for valve dynamics provide a

systematic method for attempting to remove the negative effects observed in closed-loop systems

within which the valve dynamics cannot be neglected. A critical component of the MPC-based

valve nonlinearity compensation strategy is the availability of a model describing the valve layer
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dynamics. To handle the range of controllers, control loop architectures, and valve nonlinearities

for which this dissertation investigates MPC with valve dynamics as a compensation technique, a

systematic methodology is utilized to obtain valve layer models. The modeling efforts assume that

a higher-level controller (e.g., a PI controller or an MPC controlling a process) communicates a

valve output flow rate set-point to a valve. The flow rate set-point is related to the force applied

to the valve by the actuation through either a linear relationship (for a valve operated without flow

control) or using a dynamic model of a linear controller for the valve that computes the force

applied to the valve (for a valve operated under flow control). In accordance with the literature,

a force balance is utilized to describe the valve stem position and velocity dynamics. Finally, the

valve position and valve output flow rate are related using a static function (e.g., a linear valve

characteristic). The flow rate out of the valve is then utilized as the chemical process input.

This first-principles valve layer modeling effort pursued in Chapters 3-4 permits an entire

closed-loop process-valve system to be modeled, which allows the dynamics of a nonlinear

process influenced by a variety of control loop architectures, nonlinearities, and controllers to

be systematically investigated, understood, and improved. It also allows a practical challenge

which might otherwise limit the industrial applicability of the MPC-based valve nonlinearity

compensation technique (that it can be difficult to determine the parameters of a dynamic

first-principles valve model) to be investigated in Chapter4. Specifically, Chapter 4 uses a

first-principles process-valve model as the representation of a plant containing a sticky valve and

uses the data from simulations of this plant to address the empirical modeling of the valve layer. It

suggests an empirical modeling strategy that can capture all of the valve layer dynamics, including

the linear controller for the valve, the stiction dynamics,and the valve characteristic, using only

the data on the valve output set-point from the MPC and the valve output flow rate, via a branched

model with branches corresponding to sticking and slippingthat are identified for standard model

structures such as first-order-plus-dead-time and second-order models, and accounting for the

effect of the set-point change magnitude on the time that thevalve is stuck (delay before it begins

moving when the linear controller for the valve is present within the valve layer for a sticky valve)

8



by fitting a function to the data on the length of the delay versus the set-point change magnitude.

Furthermore, because the empirical model may be less stiff than the first-principles valve layer

model, the computation time of an EMPC utilizing the empirical valve layer model may be less

than that of an EMPC utilizing a first-principles valve layermodel.

In Chapter 5 of this dissertation, MPC with stiction dynamics is handled in a rigorous

mathematical framework and also is analyzed in terms of additional constraints that may be

required in MPC for valve nonlinearity compensation beyondthe incorporation of the stiction

dynamics within the model used for state predictions. The focus is on a process under EMPC

(due to the time-varying operating policies set up under this control design which may cause the

valve actuation to be more likely to hit its constraints) where the EMPC computes set-points for

a control valve’s output, and the valve outputs are regulated to their set-points by flow controllers

for consistency with the architectures traditionally utilized within the chemical process industries

for MPC. The additional constraints in an MPC focused on stiction compensation, such as input

rate of change constraints or actuation magnitude constraints (e.g., the pressure applied by the

pneumatic actuation of a pneumatic spring-diaphragm sliding-stem globe valve cannot become

negative), may be necessary to include within the MPC for stiction compensation to prevent the

MPC from requesting set-points that the valve could reach before stiction worsened but can no

longer reach with the available actuation energy.

In the final chapter of this dissertation, the contributionsof the various sections are reviewed,

establishing a unified framework for compensating for valvelimitations and nonlinearities within

process control by modifying standard controller designs.
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Chapter 2

Economic Model Predictive Control with

Input Rate-of-Change Constraints for

Actuator Wear Reduction with Economic

Performance Guarantees

2.1 Introduction

As environmental requirements tighten and chemical processing companies are increasingly

interested in operating processes in the most economicallyefficient but safe manner, advanced

process control is being exploited as a means to achieve these objectives. As noted in Chapter 1,

real-time optimization (RTO), coupled with model predictive control (MPC) and a distributed

control system (DCS) architecture, has been used in industry to improve production profits.42,103

Typical industrial implementations of the RTO-MPC paradigm have structures that are considered

to make the advanced control strategy safe to use in the sensethat they may include logic

steps at the RTO level to evaluate RTO solutions before implementing them,103 a tracking MPC

formulation with a quadratic objective, and penalties on changes in the manipulated inputs between
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two sampling periods of the prediction horizon to prevent aggressive movement of the actuation

elements.126

Chapter 1 reviewed a fairly recent development in the MPC literature that is often viewed as

an alternative to the RTO-MPC hierarchy (economic model predictive control) and noted that the

objective function of EMPC is not required to have its minimum at a steady-state of the process

because it is based on the concept that processes may operatemore profitably off steady-state than

at steady-state. To attain greater economic profitability than the steady-state operating strategy

dictated by the RTO-MPC control architecture, EMPC may calculate widely varying or bang-bang

type control actions20,59,107 (which is consistent with the optimal process operation literature

mentioned in Chapter 1, which has demonstrated that the economic results from time-varying

operation may be highly favorable). However, the possible extreme movement required by the

actuation elements when time-varying operation is dictated brings up safety concerns with respect

to whether such movement might cause actuators or other components that regulate the process

flow rates, such as pumps, to wear out early and thus fail when they are used for safety-critical

processes or are crucial to compliance with environmental regulations. If such an issue were to

occur, the economic benefits from time-varying process operation under EMPC would no longer

matter or be realized.

The issue of reducing the aggressiveness of input changes has been a consideration in the

tracking MPC literature since its inception; however, mosttheoretical studies in EMPC to date have

not focused on this issue, but the majority of the literaturehas instead focused on other concerns

like those mentioned in Chapter 1. To extend the foundational results on EMPC to address the

issue of input change aggressiveness, additional constraints may be added to EMPC. One type of

constraint that has been used extensively for tracking MPC formulations to prevent rapid changes

of the actuator output and consequently to prevent rapid changes of the process states is a rate of

change constraint on the values of the inputs calculated by the MPC (see, e.g.,25,44,125,126for both

industrial and research work incorporating such a constraint). For example, in,116 feasibility and

closed-loop stability of linear, discrete-time systems under MPC with input magnitude and rate of
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change constraints are proven for both open-loop stable andunstable systems. In,109 an MPC

formulation for input-affine nonlinear systems accountingfor input magnitude constraints and

input rate of change constraints using a penalty in the objective and hard constraints when possible

is proven to be feasible and to ensure closed-loop stabilityfor bounded process uncertainty. Input

rate of change constraints have also been used in several works on EMPC. In particular, an MPC

including input magnitude and rate of change constraints was used to improve the economic

performance of a heat pump by incorporating electricity price and weather forecasts,141 and EMPC

including magnitude and rate of change constraints on the inputs was applied for power production

and use.83 Though input rate of change constraints have been applied toseveral EMPC examples

in the literature, no proof of general feasibility and closed-loop stability for a nonlinear system

under an EMPC strategy incorporating both input magnitude and input rate of change constraints

with Lyapunov-based constraints that ensure closed-loop stability in the presence of disturbances

has yet been developed. The development of such an EMPC strategy will be one of the topics

covered in this chapter.

Despite the benefits from an actuator durability perspective of incorporating constraints that

prevent an EMPC from calculating aggressive control actions, it would be expected that limiting the

control actions that the EMPC can calculate would reduce theeconomic profitability of the EMPC

compared to the case that no input rate of change constraintsare used. However, determining

whether there is still an economic benefit of EMPC compared with the traditional steady-state

paradigm when input rate of change constraints are used in EMPC requires the development

of proofs regarding the economic performance of EMPC with input rate of change constraints.

Previous proofs of the economic performance of EMPC have notexplicitly addressed the case

when input rate of change constraints are included in the EMPC formulation. The proofs for many

of the methods use terminal constraints in the EMPC13,16,63or an EMPC prediction horizon that is

sufficiently long with some additional technical conditions (e.g.,75,114). Studies to investigate the

economic performance of EMPC have been carried out for EMPC with a stage cost and terminal

constraints that change with time,17 for EMPC with a generalized terminal region constraint and
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self-tuning terminal cost,113 for EMPC without terminal costs or constraints for discrete-time

systems meeting certain assumptions including controllability and dissipativity assumptions,76 and

a two-layer EMPC structure including performance constraints.58

Motivated by all of the above, in this chapter, we introduce aLyapunov-based economic model

predictive control (LEMPC) architecture that can incorporate input rate of change constraints

with provable feasibility, stability, and closed-loop performance properties. First, we introduce

input rate of change constraints in the context of LEMPC and show that when the constraints

are formulated with reference to a Lyapunov-based controller, the LEMPC can be proven to be

feasible and to maintain closed-loop stability for a sufficiently small sampling period. Through

a chemical process example, we demonstrate that the incorporation of input magnitude and

rate of change constraints in EMPC can prevent significant variations in the process inputs

while improving the profit compared to steady-state operation. Subsequently, we develop an

LEMPC design incorporating a terminal equality constraintbased on an explicit stabilizing

Lyapunov-based controller for which closed-loop economicperformance improvement guarantees

with respect to the Lyapunov-based controller (and with respect to steady-state operation when

the Lyapunov-based controller is exponentially stabilizing) may be proven for nominal operation.

A chemical process example demonstrates the use of this LEMPC strategy. We then show that

LEMPC with the terminal equality constraint based on a Lyapunov-based controller, with input

magnitude constraints, and with input rate of change constraints retains these provable performance

guarantees for nominal operation. This chapter originallyappeared in.50,55,61

2.2 Preliminaries

2.2.1 Notation

The symbol| · | signifies the Euclidean norm of a vector. A continuous, strictly increasing function

α : [0,a) → [0,∞) belongs to classK if α(0) = 0. The notationΩρ signifies a level set of a

positive definite scalar-valued functionV : Rn → R≥0 and is defined byΩρ := {x∈ Rn : V(x) ≤
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ρ , ρ > 0}. The notationtk = k∆, k = 0,1,2, . . . signifies the time at the beginning of a sampling

period of length∆ for synchronously sampled time intervals. Set subtractionis signified by ‘/’

(e.g.,x∈ A/B := {x∈ A : x /∈ B}). The symbolS(∆) denotes the family of piecewise constant

vector-valued functions with period∆ > 0. More specifically,u(·)∈ S(∆) for t ∈ [tk, tk+N) whereN

is a positive integer means that the functionu can be described by a sequence{u( j)}k+N−1
j=k where

u( j) ∈ Rm, or

u(t) = u( j)

for t ∈ [t j , t j+1), j = k, . . . ,k+N−1. The notationxT denotes the transpose of a vectorx.

2.2.2 Class of Systems

The class of systems of nonlinear first-order ordinary differential equations considered in this

chapter is that of the general form:

ẋ= f (x,u,w) (2.1)

wherex∈ Rn, u = [u1 u2 · · · um]
T ∈ Rm, andw∈ Rl are the state, input, and disturbance vectors,

respectively, and are related to the time-derivative of thestate vector through the nonlinear vector

function f . In addition, we assume that the statesx(t) are restricted to the setX (x(t)∈X⊂Rn), that

ui(t), i = 1, . . . ,m, are bounded (ui(t) ∈ Ui := {ui,min ≤ ui(t) ≤ ui,max}), and that the disturbance

w(t) is bounded within a setW⊂ Rl (w(t)∈W := {w(t) : |w(t)| ≤ θ , θ > 0}). For simplicity of

presentation in the following, we will use the notationu(t)∈U⊂Rm to denote that each component

ui(t) of u(t) is bounded within its respective setUi . The vector functionf : X×U×W is assumed

to be locally Lipschitz with respect to its arguments.

It is assumed that the process economic cost for the system ofEq. 2.1 can be represented by an

economic stage cost functionle :X×U→ R that is continuous onX×U. In addition, it is assumed

that there is a steady-state and steady-state input pair(x∗s,u
∗
s) for the nominal (w(t) ≡ 0) system

(on X×U) that minimizes the economic cost in the sense that the minimum of le is attained at

the pair(x∗s,u
∗
s) when the time derivative of the nominal state in Eq. 2.1 is zero. For simplicity,
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the minimizing pair is assumed to be unique. With these assumptions, the minimizing steady-state

pair is given by:

(x∗s,u
∗
s) = argmin

x∈X,u∈U
{le(x,u) : f (x,u,0) = 0} .

The minimizing pair will be taken to be the origin of the nominal system of Eq. 2.1.

2.2.3 Lyapunov-Based Controller Stabilizability Assumptions under

Continuous Implementation

We initially make two stabilizability assumptions for the system of Eq. 2.1 that a Lyapunov-based

controllerh(x) = [h1(x) h2(x) · · · hm(x)]T exists for the nominal system of Eq. 2.1 that renders

the origin either locally asymptotically stable or locallyexponentially stable in a sense to be made

precise in the following two assumptions,92,104while also meeting the input constraints. The first

assumption covers the weaker of the two cases, that of asymptotic stability, while the second covers

exponential stability. With slight abuse of notation, the same notation is used in both assumptions.

Assumption 2.1.There exists a locally Lipschitz feedback controller h: X→ U with h(0) = 0 for

the nominal system of Eq. 2.1 that renders the origin of the closed-loop systeṁx = f (x,h(x),0)

asymptotically stable when applied continuously in the sense that there exists a sufficiently smooth

Lyapunov function V: Rn → R≥0 such that the following inequalities hold:

α1(|x|)≤V(x)≤ α2(|x|) (2.2a)

∂V(x)
∂x

f (x,h(x),0)≤−α3(|x|) (2.2b)

∣

∣

∣

∣

∂V(x)
∂x

∣

∣

∣

∣

≤ α4(|x|) (2.2c)

for all x ∈ D where D is an open neighborhood of the origin andαi ∈ K , i = 1,2,3,4.

Assumption 2.2.There exists a locally Lipschitz feedback controller h: X→ U with h(0) = 0 for

the nominal system of Eq. 2.1 that renders the origin of the systemẋ= f (x,h(x),0) exponentially
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stable when applied continuously in the sense that there exists a sufficiently smooth Lyapunov

function V: Rn → R≥0 such that the following inequalities hold:

c1|x|2 ≤V(x)≤ c2|x|2 (2.3a)

∂V(x)
∂x

f (x,h(x),0)≤−c3|x|2 (2.3b)

∣

∣

∣

∣

∂V(x)
∂x

∣

∣

∣

∣

≤ c4|x| (2.3c)

for all x ∈ D where D is an open neighborhood of the origin and ci , i = 1,2,3,4 are positive

constants.

We define the setΩρ ⊆ X⊂ D, which is an estimate of the region of attraction of the nominal

closed-loop system under a feedback controller meeting either Assumption 2.1 or Assumption 2.2,

as the stability region of the closed-loop system for that controller. Methods for designing

Lyapunov-based feedback controllers can be found in works such as.35,57,100,108

A consequence of our assumption of the Lipschitz continuityof h(x) meeting either

Assumption 2.1 or 2.2 is that its components are Lipschitz continuous inx, and thusLhL > 0

exists such that

|hi(x)−hi(x
′)| ≤ LhL |x−x′| (2.4)

for all x,x′ ∈ Ωρ . Here,LhL is chosen such that it satisfies the bound in Eq. 2.4 with the same value

for eachhi(x) (i.e., LhL = max{LhL1
, . . . ,LhLm

}, whereLhLi
, i = 1, . . . ,m, is the smallest positive

constant such that|hi(x)−hi(x′)| ≤ LhLi
|x−x′| for all x,x′ ∈ Ωρ ). The requirement thath(x) and

its components are Lipschitz continuous inx does not pose significant practical restrictions.

We note that from the assumption of Lipschitz continuity off and the bounds onw andui ,

i = 1, . . . ,m, there existM > 0, Lx > 0, andLw > 0 such that:

| f (x,u,w)| ≤ M (2.5)
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| f (x,u,w)− f (x′,u,0)| ≤ Lx|x−x′|+Lw|w| (2.6)

for all x,x′ ∈ Ωρ , ui ∈ Ui , i = 1, . . . ,m, and|w| ≤ θ . Furthermore, sinceV is sufficiently smooth,f

is locally Lipschitz andΩρ is compact, there existL′
x > 0 andL′

w > 0 such that the following also

holds:
∣

∣

∣

∣

∂V(x)
∂x

f (x,u,w)− ∂V(x′)
∂x

f (x′,u,0)

∣

∣

∣

∣

≤ L′
x|x−x′|+L′

w|w| (2.7)

for all x,x′ ∈ Ωρ , ui ∈ Ui , i = 1, . . . ,m, and|w| ≤ θ .

2.2.4 Lyapunov-Based Controller Stabilizability Results for

Sample-and-Hold Implementation

Though the system of Eq. 2.1 is continuous and it is assumed that a controllerh(x) can be designed

that can stabilize the nominal closed-loop system as described in Assumptions 2.1 and 2.2 when

implemented continuously, the Lyapunov-based controllerwill be used in this dissertation to

design stability constraints for an economic model predictive control method that is implemented

in sample-and-hold. Thus, we develop in this section the stability properties of the nominal

closed-loop system of Eq. 2.1 underh(x) applied in sample-and-hold, whereh(x) meets either

Assumption 2.1 or Assumption 2.2 and Eq. 2.4 when applied continuously. Specifically, we

consider the following nonlinear sampled-data system:

ẋ(t) = f (x(t),h(x(tk)),0) (2.8)

for t ∈ [tk, tk+1), wherek= 0,1, . . .. We present two propositions that follow from standard results

in the nonlinear sampled-data systems literature to state the stability results for the process under

a sample-and-hold controller. The first proposition statesthat the origin of the sampled-data

system of Eq. 2.8 usingh(x) that satisfies Assumption 2.1 is rendered practically stable (i.e.,

the closed-loop state trajectory will converge to a small neighborhood of the origin where it

will be maintained thereafter). This result follows from standard results found in the literature
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(e.g.,112,142). The second proposition states that the origin of the sampled-data system of Eq. 2.8

usingh(x) that satisfies Assumption 2.2 is rendered exponentially stable. This result is stronger

than the result that can be obtained whenh(x) satisfies Assumption 2.1, and the proof can be found,

for example, in Corollary 1 of64 as well as93 and the results contained therein.

Proposition 2.1. Let Assumption 2.1 hold and V andΩρ be the Lyapunov function that satisfies

Eq. 2.2 and the resulting stability region, respectively. Given ρmin ∈ (0,ρ), there exists∆∗ > 0

such that for any∆ ∈ (0,∆∗) and x(t0) ∈ Ωρ , the closed-loop state trajectory of the sampled-data

system of Eq. 2.8 is always bounded inΩρ and is (uniformly) ultimately bounded inΩρmin and

limsup
t→∞

x(t) ∈ Ωρmin . (2.9)

Proposition 2.2. Let Assumption 2.2 hold and V andΩρ be the Lyapunov function that satisfies

Eq. 2.3 and the resulting stability region, respectively. There exists∆∗
e > 0 such that for any

∆∈ (0,∆∗
e) the closed-loop state trajectory of the sampled-data system of Eq. 2.8 is always bounded

in Ωρ and the origin of the sampled-data system of Eq. 2.8 is exponentially stable for all initial

states inΩρ .

We can also develop stability properties for the closed-loop system of Eq. 2.1 in the presence

of disturbances underh(x) applied in sample-and-hold, whereh(x) meets either Assumption 2.1 or

Assumption 2.2 and Eq. 2.4 when applied continuously. Specifically, these results are derived for

the following nonlinear sampled-data system:

ẋ(t) = f (x(t),h(x(tk)),w(t)) (2.10)

for t ∈ [tk, tk+1), wherek = 0,1, . . .. The following two properties address this sample-and-hold

system with disturbances. In both the case thath(x) in Eq. 2.10 meets Assumption 2.1 and the case

that it meets Assumption 2.2, only uniform ultimate boundedness of the closed-loop state can be

proven. We note that the sampling times and regions within which uniform ultimate boundedness
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of the state are proven are different from those in Propositions 2.1-2.2. The proof of the results of

the following two propositions can be found, for example, in.112

Proposition 2.3. Let Assumption 2.1 hold and V andΩρ be the Lyapunov function that satisfies

Eq. 2.2 and the resulting stability region, respectively. If ρs > 0, ∆ > 0, εw > 0, and ρ∗
min < ρ

satisfy

ρ∗
min = max{V(x̄(t+∆)) : V(x̄(t))≤ ρs} (2.11)

and

−α3(α−1
2 (ρs))+L′

xM∆+L′
wθ ≤−εw/∆ (2.12)

for all x̄(t) ∈ Ωρs and x̄(t +∆) ∈ Ωρ , wherex̄(t) is the solution of Eq. 2.1 under a sequence of

sample-and-hold control actions u∈ U, then there exists∆∗
w such that for∆ < ∆∗

w and x(t0) ∈ Ωρ ,

the closed-loop state trajectory of the sampled-data system of Eq. 2.10 is always bounded inΩρ

and is (uniformly) ultimately bounded inΩρ∗
min

and

limsup
t→∞

x(t) ∈ Ωρ∗
min

. (2.13)

Proposition 2.4. Let Assumption 2.2 hold and V andΩρ be the Lyapunov function that satisfies

Eq. 2.3 and the resulting stability region, respectively. If ρ̄s > 0, ∆ > 0, ε̄w > 0, andρ∗
min,e < ρ

satisfy

ρ∗
min,e= max{V(x̄(t +∆)) : V(x̄(t))≤ ρ̄s} (2.14)

and

−c3

c2
ρ̄s+L′

xM∆+L′
wθ ≤ −ε̄w

∆
(2.15)

for all x̄(t) ∈ Ωρ̄s and x̄(t +∆) ∈ Ωρ , wherex̄(t) is the solution of Eq. 2.1 under a sequence of

sample-and-hold control actions u∈U, then there exists∆∗
w,e such that for∆< ∆∗

w,e and x(t0)∈Ωρ ,

the closed-loop state trajectory of the sampled-data system of Eq. 2.10 is always bounded inΩρ
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and is (uniformly) ultimately bounded inΩρ∗
min,e

and

limsup
t→∞

x(t) ∈ Ωρ∗
min,e

. (2.16)

The requirement thatρ∗
min andρ∗

min,e be defined with respect to ¯x(t) and x̄(t +∆), where ¯x(t)

refers to the closed-loop state of the system of Eq. 2.1 at time t under any sample-and-hold control

actionsu∈ U (i.e., u is not necessarily represented as an explicit function ofx), is made because

the results of Propositions 2.3-2.4 will be used later to prove closed-loop stability of the system of

Eq. 2.1 under an optimization-based controller with constraints designed based onh(x) but which

may compute a control action to implement for a sampling period that is not necessarily equal to

h(x(tk)). Therefore, Eqs. 2.11 and 2.14 are written for general ¯x so that the definitions ofρ∗
min, ∆∗

w,

ρ∗
min,e, and∆∗

w,e can be utilized in these later proofs for analyzing a closed-loop system that is not

necessarily underh(x(tk)).

It is noted that Assumption 2.2 is stronger than Assumption 2.1 (i.e., whenever Assumption 2.2

is satisfied, Assumption 2.1 is also satisfied). Therefore, for clarity in the remainder of this chapter

regarding which results require the stronger conditions inAssumption 2.2 to hold, we will state

that the results require Assumption 2.1 when only the conditions of that assumption are required

(though the result is then also satisfied if Assumption 2.2 ismet), and we will reserve mention of

Assumption 2.2 only for those results that require the stronger conditions in that assumption to

hold.

2.2.5 Economic Model Predictive Control

This chapter develops a formulation for EMPC with constraints guaranteeing closed-loop stability,

satisfaction of bounds on the input rate of change, and an upper bound on the economic cost for

the process under the controller. The general formulation of EMPC (which can be augmented

with various constraints, model adjustments, or objectivefunction adjustments to give the various
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EMPC formulations in Chapter 1) is given by:

min
u(·)∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ))dτ (2.17a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.17b)

x̃(tk) = x(tk) (2.17c)

ui(t) ∈ Ui , i = 1, . . . ,m (2.17d)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (2.17e)

Eq. 2.17 is a general nonlinear optimization problem that minimizes a stage costle(x(t),u(t))

(Eq. 2.17a) subject to a model of the nominal system (Eq. 2.17b) and the initial condition in

Eq. 2.17c that comes from a measurement of the process state at time tk. The calculated inputs

ui , i = 1, . . . ,m, and the predicted states ˜x(t), t ∈ [tk, tk+N), are restricted to their respective sets as

shown in Eqs. 2.17d-2.17e. In general, additional equalityor inequality constraints may be added

to a general EMPC with the form in Eq. 2.17 as desired.

The optimization variable in Eq. 2.17 is the piecewise constant optimal control trajectoryu(t)

over a prediction horizon withN sampling periods of length∆. Thus, the input profile that is

the solution to the EMPC optimization problem is a set ofN vectors denoted byu∗(t|tk), t =

tk, . . . , tk+N−1, of which only the first,u∗(tk|tk), is implemented on the process in a sample-and-hold

fashion. Attk+1, the EMPC optimization problem is re-solved.

2.2.6 Lyapunov-Based Economic Model Predictive Control

The specific type of EMPC that will be the focus of this chapteris Lyapunov-based economic

model predictive control (LEMPC),79 which is an EMPC with the form of Eq. 2.17 but with the

addition of Lyapunov-based stability constraints that define two modes of operation, as shown
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below:

min
u(·)∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ))dτ (2.18a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.18b)

x̃(tk) = x(tk) (2.18c)

ui(t) ∈ Ui , i = 1, . . . ,m (2.18d)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (2.18e)

V(x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if tk < t ′ andV(x(tk))≤ ρe (2.18f)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0)

if tk ≥ t ′ orV(x(tk))> ρe (2.18g)

where the notation follows that in Eq. 2.17, with the added constraints in Eqs. 2.18f-2.18g that

define two modes of operation of the LEMPC (Modes 1 and 2), andt ′ is a pre-determined time

at which it is desired to apply only Mode 2 of the LEMPC. Mode 1 is active whentk < t ′ and

when the measured state is withinΩρe, which is a subset ofΩρ defined such that if the state attk is

within Ωρe, then bytk+1, it is still within Ωρ , even in the presence of bounded process disturbances

or plant-model mismatch. Mode 2 is activated when the measured state is outside ofΩρe due

to process disturbances or plant-model mismatch, or once the time t ′ has been reached. This

dual-mode strategy guarantees that the closed-loop state trajectories of the process under LEMPC

are maintained withinΩρ at all times.
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2.3 LEMPC Formulation with Input Magnitude Constraints,

Input Rate of Change Constraints, and an Equality

Terminal Constraint Based on a Lyapunov-Based

Controller

This chapter introduces input rate of change constraints that can be used in an LEMPC framework

while guaranteeing closed-loop stability and feasibilityof the controller, and it also addresses

the performance guarantees that can be made for this LEMPC incorporating input rate of change

constraints for nominal process operation (the performance guarantees are also shown to hold in

the absence of the input rate of change constraints). The guarantees will be made for a general cost

function, so that they will hold even if the objective function of the LEMPC is designed to reduce

the input rate of change (for example, a penalty on the input rate of change may be added to the

objective function). This chapter thus addresses the questions of not only how to add input rate

of change constraints to LEMPC in a manner that does not affect the feasibility and closed-loop

stability of the controller, but also of whether that reduces the economic benefits of using LEMPC

for a given process.

To develop the answers to these questions, the contributions of this chapter are divided

into three parts. In Part 1, we introduce a Lyapunov-based economic model predictive control

(LEMPC) architecture that incorporates input magnitude and rate of change constraints with

provable feasibility and stability properties, even in thepresence of disturbances. In Part 2, we

develop a terminal equality constraint based on a Lyapunov-based controller that, when used

in an LEMPC for a process with no disturbances or plant-modelmismatch (nominal process)

ensures that the economic performance of the resulting LEMPC is at least as good as that of

the Lyapunov-based controller implemented in sample-and-hold. In Part 3, the results of the first

two sections will be combined to show that the nominal process of Eq. 2.1 under an LEMPC

with input magnitude and rate of change constraints and a terminal equality constraint based on a
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Lyapunov-based controller performs at least as well as it does under the Lyapunov-based controller

implemented in sample-and-hold.

2.3.1 Part 1: LEMPC with Input Magnitude and Rate of Change

Constraints

In this section, we develop LEMPC with input magnitude constraints that restrict the calculated

control actions between an upper and a lower bound, as well asinput rate of change constraints,

which prevent the calculated inputs between two sampling periods from differing from each other

by more than a pre-specified amount. Specifically, we add input rate of change constraints to

the LEMPC of Eq. 2.18 (which has input magnitude constraintsin Eq. 2.18d). The input rate

of change constraints developed are written with respect toa Lyapunov-based controller, but we

demonstrate that for a sufficiently small sampling period and an appropriate value of a parameter

of the constraints, the constraints developed ensure that the difference between the control actions

calculated for two subsequent sampling periods can be bounded by any desired value. We prove

that the LEMPC incorporating input rate of change constraints is feasible and furthermore that

it ensures closed-loop stability of a process even in the presence of bounded disturbances. The

results presented hold for the case that the Lyapunov-basedcontroller meets Assumption 2.1,

except where it is noted that Assumption 2.2 is required. Finally, we present a chemical process

example to demonstrate the effect of incorporating input rate of change constraints in addition to

input magnitude constraints in EMPC, which shows that the manner in which the input rate of

change constraints are enforced in EMPC can significantly affect whether the closed-loop process

is able to meet other hard constraints.

2.3.1.1 Part 1: Formulation of LEMPC with Input Magnitude an d Input Rate of Change

Constraints

As noted in Section 2.1 of this chapter, it may be desirable toadd input rate of change constraints to

LEMPC, especially since Mode 1 of LEMPC attempts to dynamically optimize process operation
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within the stability region and does not drive the process toa steady-state. The result of this is that

an LEMPC may request input trajectories with sharp changes in the requested control actions (an

example is shown in Section 2.3.1.4 of this chapter) to maximize profit subject to the constraints.

Restricting the range of allowable control actions in such acase (e.g., increasingui,min and/or

decreasingui,max) may ameliorate this issue, but it may be necessary to drastically decrease this

range to reduce the difference between two calculated control actions to a desired level, particularly

if the LEMPC calculates bang-bang type control actions. Such a drastic reduction in the allowable

range of control actions may significantly reduce the process profit; thus, input rate of change

constraints may instead be considered as an alternative constraint that achieves the same goal but

with potentially higher profit.

The desired form of the input rate of change constraints, assuming that the actuators bring the

actuator outputs to the requested valuesu∗i (tk−1|tk−1), i = 1, . . . ,m, beforetk when the LEMPC is

re-solved, is as follows:

|u∗i (tk|tk)−u∗i (tk−1|tk−1)| ≤ εdesired, ∀ i = 1, . . . ,m (2.19)

whereεdesired> 0 is a bound on the difference between the control actionu∗i (tk|tk) implemented

at tk and the immediate past value of the actuator output that was implemented on the process.

To make the predicted state trajectories within the LEMPC more consistent with the actual state

trajectory, it may also be desirable that the other control actions in the prediction horizon that are

not implemented meet the following constraints:

|u∗i (t j |tk)−u∗i (t j−1|tk)| ≤ εdesired, ∀ i = 1, . . . ,m, j = k+1, . . . ,k+N−1 (2.20)

The chemical process example in Section 2.3.1.4 will show that the decision to enforce both

Eqs. 2.19 and 2.20 (imposing restrictions on both the implemented and not implemented control

actions) or only Eq. 2.19 (imposing a constraint on the implemented control actions only) may

significantly affect the results obtained for LEMPC with input rate of change constraints, and thus
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should be carefully considered.

If the input rate of change constraints are written as in Eqs.2.19-2.20 and directly added into

the LEMPC of Eq. 2.18, it is not possible to prove feasibilityof the resulting LEMPC, as will be

further discussed in Section 2.3.1.3 of this chapter. For this reason, modified constraints are added

to the LEMPC of Eq. 2.18 that constrain the calculated control actions to differ by no more than

a constantεr ≥ 0 from the value of the Lyapunov-based control law at ˜x(t j), j = k, . . . ,k+N−1.

These modified constraints ensure, as will be demonstrated in Section 2.3.1.3, that the LEMPC is

feasible, and they also ensure that the desired constraintsof Eqs. 2.19-2.20 are met for anyεdesired

whenεr and∆ are suitably chosen.

Incorporating the above considerations, the proposed LEMPC with both input magnitude and

rate of change constraints is as follows:

min
u(·)∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ))dτ (2.21a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.21b)

x̃(tk) = x(tk) (2.21c)

ui(t) ∈ Ui , i = 1, . . . ,m (2.21d)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (2.21e)

|ui(tk)−hi(x(tk))| ≤ εr , i = 1, . . . ,m (2.21f)

|ui(t j)−hi(x̃(t j))| ≤ εr , i = 1, . . . ,m, j = k+1, . . . ,k+N−1 (2.21g)

V(x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if tk < t ′ andV(x(tk))≤ ρe (2.21h)

∂V(x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0)

if tk ≥ t ′ orV(x(tk))> ρe (2.21i)

where the notation follows that in Eqs. 2.17 and 2.18. The rate of change constraints of

Eqs. 2.19-2.20 are imposed through Eqs. 2.21f-2.21g, whichrequire that the values ofu∗i (t j |tk), i =
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1, . . . ,m, j = k, . . . ,k+ N − 1, be within εr ≥ 0 of the values ofhi(x̃(t j)). Note thatεr in

Eqs. 2.21f-2.21g is not the same asεdesired in Eqs. 2.19-2.20, which will be justified in the next

section.

Remark 2.1. It is noted that in the LEMPC formulation of Eq. 2.21, as well as in the other LEMPC

formulations developed throughout this chapter, the number of constraints considered is kept to a

minimum, and the form of the objective function and the manner of developing such an objective

function are not discussed. This is done so that the theoretical developments in this chapter in

the proofs to be presented are kept as general as possible andare not obscured by the additional

considerations that may arise when the optimization problem is augmented. The results presented

in this chapter could be extended, however, to certain caseswith additional constraints and may

hold practically even when the formulation/assumptions ofthis chapter are not met, though such

an extended study is outside the scope of the present chapter.

2.3.1.2 Part 1: Rate of Change Constraints Analysis

In this section, we prove that givenεdesired, we can ensure that the desired rate of change

constraints of Eqs. 2.19-2.20 are met by enforcing the rate of change constraints with respect

to hi(x̃(t j)), i = 1, . . . ,m, j = k, . . . ,k+N−1, in Eqs. 2.21f-2.21g for a suitableεr value, withh(x)

meeting Assumption 2.1.

Theorem 2.1.Consider the closed-loop input trajectories of the processof Eq. 2.1 operated under

the LEMPC of Eq. 2.21, with h(x) meeting Assumption 2.1 and Eq. 2.4. If there existεr and∆ < ∆∗
w

such that for any chosenεdesired> 0,

2εr +LhLM∆ ≤ εdesired (2.22)

then Eqs. 2.19-2.20 are satisfied for all tk with k> 0 and u∗i (t0|t0) = hi(x(t0)), i = 1, . . . ,m.

Proof. From the bound onf in Eq. 2.5 and continuity ofx, the following bound holds for allx(t),

27



x(tk−1) ∈ Ωρ andt ∈ [tk−1, tk], wherex(t) is the solution of Eq. 2.1 at timet:

|x(t)−x(tk−1)| ≤ M∆ (2.23)

for ∆ sufficiently small (i.e.,∆ < ∆∗
w). In addition, because the bound in Eq. 2.5 and continuity of

x hold whenw(t)≡ 0 as well, the following inequality holds for the predicted state of the nominal

closed-loop system for the LEMPC of Eq. 2.21 (Eq. 2.21b):

|x̃(t)− x̃(t j−1)| ≤ M∆ (2.24)

for x̃(t), x̃(t j−1) ∈ Ωρ , t ∈ [t j−1, t j ], j = k+ 1, . . . ,k+N, and∆ < ∆∗
w. It is noted that because

Ωρ ⊆ X, x(t) ∈ Ωρ implies thatx(t) ∈ X as required by Eq. 2.21e; the fact that the LEMPC

formulation of Eq. 2.21 maintains the state withinΩρ is proven in Section 2.3.1.3.

From Eqs. 2.23-2.24 and the Lipschitz continuity property of hi(x) in x (Eq. 2.4), the following

bounds hold forx(tk) ∈ Ωρ andx(tk−1) ∈ Ωρ :

|hi(x(tk))−hi(x(tk−1))| ≤ LhL |x(tk)−x(tk−1)| ≤ LhLM∆ (2.25)

|hi(x̃(t j))−hi(x̃(t j−1))| ≤ LhL |x̃(t j)− x̃(t j−1)| ≤ LhLM∆ (2.26)

for ∆ < ∆∗
w, j = k+1, . . . ,k+N−1.

Under the assumption that a feasible solution to the LEMPC ofEq. 2.21 exists and thus that

Eqs. 2.21f-2.21g are satisfied (which will be proven in Section 2.3.1.3), we use the constraints of

Eqs. 2.21f-2.21g and Eqs. 2.25 and 2.26, in addition to the triangle inequality, to develop upper

bounds on the value of the desired rate of change constraintsin Eqs. 2.19-2.20 when the LEMPC
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of Eq. 2.21 is used to control the process as follows:

|u∗i (tk|tk)−u∗i (tk−1|tk−1)|=

|u∗i (tk|tk)−u∗i (tk−1|tk−1)−hi(x(tk))+hi(x(tk))−hi(x(tk−1))+hi(x(tk−1))|

≤ |u∗i (tk|tk)−hi(x(tk))|+ |u∗i (tk−1|tk−1)−hi(x(tk−1))|+ |hi(x(tk))−hi(x(tk−1))|

≤ 2εr +LhLM∆

(2.27)

|u∗i (t j |tk)−u∗i (t j−1|tk)|=

|u∗i (t j |tk)−u∗i (t j−1|tk)−hi(x̃(t j))+hi(x̃(t j))−hi(x̃(t j−1))+hi(x̃(t j−1))|

≤ |u∗i (t j |tk)−hi(x̃(t j))|+ |u∗i (t j−1|tk)−hi(x̃(t j−1))|+ |hi(x̃(t j))−hi(x̃(t j−1))|

≤ 2εr +LhLM∆

(2.28)

for ∆ < ∆∗
w and j = k+ 1, . . . ,k+N− 1. It is noted that by assumingu∗i (t0|t0) = hi(x(t0)), i =

1, . . . ,m, then |u∗i (tk−1|tk−1)− hi(x(tk−1))| = 0 ≤ εr in Eq. 2.27 whenk = 1, which allows the

result of Eq. 2.27 to hold for allk > 0. For anyεdesired> 0, there always existεr and∆ that are

sufficiently small such that 2εr +LhLM∆ ≤ εdesiredif ∆∗
w exists (i.e., Eqs. 2.11-2.12 are satisfied for

someρ∗
min < ρ , ρs> 0, θ > 0, ∆ > 0, andεw > 0). When these values ofεr and∆ are chosen, the

desired rate of change constraints in Eqs. 2.19-2.20 are met, which follows from Eqs. 2.27-2.28

with the bound in Eq. 2.22.

Remark 2.2. The value ofεdesired would typically be chosen based on practical considerations.

Becauseεdesired depends on the sampling time in Eq. 2.22, one of these practical considerations

may be the minimum sampling time possible with the controller software/hardware.

2.3.1.3 Part 1: Feasibility and Stability Analysis

In this section, we extend the proofs of feasibility and closed-loop stability from79 for nonlinear

processes under LEMPC without input rate of change constraints to those under LEMPC including

input rate of change constraints. The results are developedwhenh(x) used in the design of LEMPC
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meets Assumption 2.1, and stronger closed-loop stability results are presented for that case that

it meets Assumption 2.2. We first state several propositionsto define functions used to state

the theorems giving the conditions under which feasibilityand closed-loop stability of nonlinear

processes under LEMPC with input magnitude and rate of change constraints are guaranteed.

Proposition 2.5. (c.f.79,110) Consider the systems

ẋa(t) = f (xa(t),u(t),w(t))

ẋb(t) = f (xb(t),u(t),0)

with initial states xa(t0) = xb(t0) ∈ Ωρ . There exists aK function fW(·) such that

|xa(t)−xb(t)| ≤ fW(t − t0),

for all xa(t),xb(t) ∈ Ωρ and all w(t) ∈W with

fW(τ) =
Lwθ
Lx

(eLxτ −1).

Proposition 2.6. (c.f.79,110) Consider the Lyapunov function V(·) of the system of Eq. 2.1 under

h(x) meeting Assumption 2.1. There exists a quadratic function fV(·) such that

V(x)≤V(x′)+ fV(|x−x′|)

for all x,x′ ∈ Ωρ with

fV(s) := α4(α−1
1 (ρ))s+MVs2

where MV is a positive constant.

Proposition 2.7. (c.f.6,112) Consider the Lyapunov function V(·) of the system of Eq. 2.1 under
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h(x) meeting Assumption 2.2. There exists a quadratic function fV(·) such that

V(x)≤V(x′)+ fV(|x−x′|)

for all x,x′ ∈ Ωρ with

fV(s) :=
c4
√ρ

√
c1

s+βs2

whereβ is a positive constant.

In the following theorems, we use the notation developed in Propositions 2.5-2.7 and prove

feasibility and closed-loop stability of a process under LEMPC with input magnitude and rate

of change constraints in the presence of bounded process disturbances. The theorems extend

the results of79 by requiring a modified bound on∆ based on the results of Section 2.3.1.2 to

ensure that the LEMPC of Eq. 2.21 computes control actions that satisfy the desired constraints in

Eqs. 2.19-2.20. We present proofs for LEMPC designed using both the asymptotically stabilizing

h(x) (Assumption 2.1) and the exponentially stabilizingh(x) (Assumption 2.2).

Theorem 2.2.Consider the system of Eq. 2.1 in closed-loop under the LEMPCdesign of Eq. 2.21

based on a controller h(x) that satisfies the conditions of Eq. 2.4 and Assumption 2.1, and assume

that u∗i (t0|t0) = hi(x(t0)), i = 1, . . . ,m. Letεw > 0, 0 < ∆ < ∆∗
w, θ > 0, ρ > ρe ≥ ρ∗

min ≥ ρs > 0

satisfy

ρe≤ ρ − fV( fW(∆)), (2.29)

−α3(α−1
2 (ρs))+L′

xM∆+L′
wθ ≤ −εw

∆
, (2.30)

and

2εr +LhLM∆ ≤ εdesired (2.31)

where fV and fW are defined in Propositions 2.5-2.6. If x(t0) ∈ Ωρ and N≥ 1 where

ρ∗
min = max{V(x̄(t +∆)) : V(x̄(t))≤ ρs} (2.32)
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then the state x(t) of the closed-loop system is always bounded inΩρ and is (uniformly) ultimately

bounded inΩρ∗
min

.

Proof. The proof of closed-loop stability of nonlinear processes under LEMPC with both input

magnitude and rate of change constraints, whereh(x) satisfies Eq. 2.4 and Assumption 2.1, follows

along the lines of that for the LEMPC without input rate of change constraints in79 because the

stability proof depends only on the Lyapunov-based stability constraints in Eqs. 2.21h-2.21i and is

unaffected by the added rate of change constraints. Feasibility follows becauseui(tk) = hi(x(tk)),

i = 1, . . . ,m, and ui(t j) = hi(x̃(t j)), i = 1, . . . ,m, j = k+ 1, . . . ,k+ N − 1, is a solution that

meets the Lyapunov-based constraints of Eqs. 2.21h-2.21i,the input constraints of Eq. 2.21d,

and the rate of change constraints of Eqs. 2.21f-2.21g, as well as the assumption that the first

value ofui calculated,u∗i (t0|t0), i = 1, . . . ,m, is set tohi(x(t0)), i = 1, . . . ,m (the assumption that

u∗i (t0|t0) = hi(x(t0)), i = 1, . . . ,m, is made so that every input calculated by the EMPC, which is

all inputs calculated from timet1 and above since the components of the input vector att0 are

fixed tohi(x(t0)), meets the desired constraints of Eqs. 2.19-2.20). The constraint of Eq. 2.21e is

satisfied whenx(t)∈ Ωρ due to the definition ofΩρ , and is thus always satisfied when the LEMPC

optimization problem is feasible due to the closed-loop stability proof of the LEMPC which shows

thatx(t) ∈ Ωρ for t ≥ t0 if the LEMPC is feasible andx(t0) ∈ Ωρ .

Theorem 2.3.Consider the system of Eq. 2.1 in closed-loop under the LEMPCdesign of Eq. 2.21

based on a controller h(x) that satisfies the conditions of Eq. 2.4 and Assumption 2.2, and assume

that u∗i (t0|t0) = hi(x(t0)), i = 1, . . . ,m. Letε̄w > 0, 0< ∆ < ∆∗
w,e, θ > 0, ρ > ρe ≥ ρ∗

min,e ≥ ρ̄s > 0

satisfy

ρe≤ ρ − fV( fW(∆)), (2.33)

−c3

c2
ρ̄s+L′

xM∆+L′
wθ ≤ −ε̄w

∆
, (2.34)

and

2εr +LhLM∆ ≤ εdesired (2.35)
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where fV and fW are defined in Propositions 2.5 and 2.7. If x(t0) ∈ Ωρ and N≥ 1 where

ρ∗
min,e= max{V(x̄(t +∆)) : V(x̄(t))≤ ρ̄s} (2.36)

then the state x(t) of the closed-loop system is always bounded inΩρ , and is (uniformly) ultimately

bounded inΩρ∗
min,e

.

Proof. The proof of feasibility of the LEMPC with both input magnitude and rate of change

constraints, whereh(x) satisfies Eq. 2.4 and Assumption 2.2, is the same as the proof of feasibility

of the LEMPC whereh(x) satisfies Assumption 2.1 (the proof for feasibility for Theorem 2.2). The

proof of closed-loop stability of a process under this LEMPCis an extension of the results in,79

and the major steps of this proof will be presented here to outline how this extension proceeds.

We first examine the case whenx(tk) ∈ Ωρe. In this case, the proof thatx(tk+1) ∈ Ωρ when

x(tk) ∈ Ωρe and Eq. 2.33 holds follows that in.79 When insteadx(tk) ∈ Ωρ/Ωρe, the Mode 2

constraint of Eq. 2.21i is activated which leads to the following bound:

∂V(x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V(x(tk))

∂x
f (x(tk),h(x(tk)),0)≤−c3|x(tk)|2 (2.37)

where the upper bound follows from Eq. 2.3b. The bound in Eq. 2.37 is then used to bound the

time derivative of the Lyapunov function as follows:

V̇(x(t))≤−c3|x(tk)|2+
∣

∣

∣

∣

∂V(x(t))
∂x

f (x(t),u(tk),w(t))−
∂V(x(tk))

∂x
f (x(tk),u(tk),0)

∣

∣

∣

∣

(2.38a)

Eq. 2.7, |w|≤θ
≤ −c3|x(tk)|2+L′

x|x(t)−x(tk)|+L′
wθ (2.38b)

Eqs. 2.23, 2.3a
≤ −c3

c2
ρ̄s+L′

xM∆+L′
wθ (2.38c)

for all t ∈ [tk, tk+1).

If Eq. 2.34 holds, then the time derivative of the Lyapunov function along the closed-loop

state trajectories is negative and can be integrated as in79 to show that whenx(tk) ∈ Ωρ/Ωρe, the
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Lyapunov function decreases between two sampling times, bringing the state back intoΩρe in

finite time. When the state re-entersΩρe, either the Mode 1 constraint in Eq. 2.21h is re-activated,

which maintains the state withinΩρ between two sampling times as noted above in this proof, or if

tk ≥ t ′, the Mode 2 constraint continues to be enforced, which continues to decrease the Lyapunov

function value forx(tk) ∈ Ωρ/Ωρ̄s from Eqs. 2.37-2.38c. This causes the state to enter the region

Ωρ∗
min,e

as stated in Proposition 2.4 and maintains it there thereafter. This completes the proof of

Theorem 2.3.

Remark 2.3. In prior sections, it was mentioned thatεr ≥ 0 and εdesired> 0, for practical

implementation reasons related to controller feasibility. Specifically, the optimization problem

of Eq. 2.21 is feasible ifεr = 0, but the only feasible solution is ui(tk) = hi(x(tk)), i = 1, . . . ,m,

and ui(t j) = hi(x̃(t j)), i = 1, . . . ,m, j = k+ 1, . . . ,k+ N − 1, in which case the application of

LEMPC to a process whenεr = 0 will be the same as applying the Lyapunov-based controller

in sample-and-hold (Eq. 2.10), for which the more complex LEMPC architecture is not necessary.

If εdesired= 0, however, no∆ > 0 can be chosen to satisfy Eqs. 2.31 and 2.35, so it could not be

guaranteed through the proofs of Theorems 2.1-2.3 that Eqs.2.19-2.20 are satisfied ifεdesired= 0

in this LEMPC.

Remark 2.4. The reason that the constraints of Eqs. 2.21f-2.21g are enforced with respect to

h(x), rather than being enforced as the desired constraints of Eqs. 2.19-2.20, is because there is

no guarantee that the constraints of Eqs. 2.19-2.20 are feasible within the LEMPC since they are

unrelated to the controller h(x) upon which the two constraints of Eqs. 2.21h-2.21i that alsomust

be satisfied are based.

2.3.1.4 Part 1: Application to a Chemical Process Example

In this section, we use a chemical process example to demonstrate the effect on the computed

control actions and process profit of incorporating input rate of change constraints in EMPC.

We perform this demonstration by comparing the closed-loopresults for a process under three

EMPC’s: one which does not incorporate input rate of change constraints, a second which imposes
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input rate of change constraints only on the implemented inputs, and a third which imposes input

rate of change constraints on all control actions in the prediction horizon. This chemical process

example shows that input rate of change constraints can be used to reduce wide variations in

the control actions and thus process variables while still providing economic benefit compared

to steady-state operation, and furthermore shows that the number of sampling periods of the

prediction horizon over which the input rate of change constraints are enforced in an EMPC can

have a significant impact on whether the EMPC can satisfy other process constraints.

The chemical process considered is the oxidation of ethylene to ethylene oxide in a

nonisothermal continuous stirred tank reactor (CSTR), which is assumed to occur according to

the following three complex reactions:

C2H4+
1
2

O2 →C2H4O (2.39)

C2H4+3O2 → 2CO2+2H2O (2.40)

C2H4O+
5
2

O2 → 2CO2+2H2O (2.41)

In,122 the dimensionless material and energy balances for this reactor are developed, with the

rate laws for the reactions in Eqs. 2.39-2.41 taken from.12 The resulting dimensionless equations

defining the relationship ˙x= f (x,u,0) whereu= [u1 u2]
T are as follows:

ẋ1 = u1(1−x1x4) (2.42a)

ẋ2 = u1(u2−x2x4)−A1e
γ1
x4 (x2x4)

0.5−A2e
γ2
x4 (x2x4)

0.25 (2.42b)

ẋ3 =−u1x3x4+A1e
γ1
x4 (x2x4)

0.5−A3e
γ3
x4 (x3x4)

0.5 (2.42c)

ẋ4 =
u1

x1
(1−x4)+

B1

x1
e

γ1
x4 (x2x4)

0.5+
B2

x1
e

γ2
x4 (x2x4)

0.25+
B3

x1
e

γ3
x4 (x3x4)

0.5− B4

x1
(x4−Tc) (2.42d)

where the dimensionless state variablesx1, x2, x3, andx4 represent the dimensionless gas density,

ethylene concentration, ethylene oxide concentration, and temperature in the reactor, respectively,

andu1 andu2 are inputs to the process, withu1 being the feed volumetric flow rate andu2 the
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Table 2.1: Ethylene Oxide Process Parameters122

Parameter Value Parameter Value
γ1 -8.13 B1 7.32
γ2 -7.12 B2 10.39
γ3 -11.07 B3 2170.57
A1 92.80 B4 7.02
A2 12.66 Tc 1.0
A3 2412.71

concentration of ethylene in the feed. The parameters in Eqs. 2.42a-2.42d are constants and have

the values defined in Table 2.1, which are taken from.122

The goal of the process operating strategy is to maximize theyield of ethylene oxide for a

limited reactant feedstock, where the yield is defined by thefollowing equation:

Y(t f ) =

∫ t f
0 u1(τ)x3(τ)x4(τ)dτ
∫ t f

0 u1(τ)u2(τ)dτ
(2.43)

wheret f is the time at the end of operation. We assume that the available reactant material is fixed

by the following integral material constraint:

∫ t f

0
u1(τ)u2(τ)dτ = 0.175t f (2.44)

Thus, the EMPC’s considered in this example will maximize the following stage cost:

le(x,u) = u1(t)x3(t)x4(t) (2.45)

In addition, due to actuator limitations,u1 andu2 are restricted to the following sets:

0.0704≤ u1 ≤ 0.7042, 0.2465≤ u2 ≤ 2.4648 (2.46)

The reactor is initialized atxI = [x1I x2I x3I x4I ]
T = [0.997 1.264 0.209 1.004]T , and a sampling

period of∆ = 9.36 is used. The Explicit Euler numerical integration methodis used to integrate

the ordinary differential equations in Eqs. 2.42a-2.42d using an integration step size ofhI = 10−4
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within the EMPC andhp = 10−5 for the model used to simulate the process behavior (which is

again Eqs. 2.42a-2.42d since it is assumed that there are no disturbances/plant-model mismatch).

The open-source interior point optimization software Ipopt148 was used for all optimizations.

To accomplish the above control objectives, we develop an EMPC, referred to asEMPC−1,

as follows:

min
u(·)∈S(∆)

∫ tk+Nk

tk
−u1(τ)x̃3(τ)x̃4(τ)dτ (2.47a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.47b)

x̃(tk) = x(tk) (2.47c)

0.0704≤ u1(t)≤ 0.7042, ∀ t ∈ [tk, tk+Nk) (2.47d)

0.2465≤ u2(t)≤ 2.4648, ∀ t ∈ [tk, tk+Nk) (2.47e)

1
tp

∫ tk

jtp

u∗1(τ)u
∗
2(τ)dτ +

1
tp

∫ tk+Nk

tk
u1(τ)u2(τ)dτ = 0.175 (2.47f)

where the notation is as in Eq. 2.21 except that the problem isimplemented with a shrinking

horizon of lengthNk and the material constraint is implemented over operating periods of length

tp to reduce the computation time. Ten operating periods, eachof length tp = 46.8, under this

EMPC were simulated. The indexj signifies the number of operating periods that have passed

prior to the current one (j = 0, . . . ,9), andu∗1(t) andu∗2(t) represent the previously computed and

applied input trajectories (u∗1(t) = u∗1(tq|tq) for t ∈ [tq, tq+1), andu∗2(t) = u∗2(tq|tq) for t ∈ [tq, tq+1),

wheretq varies betweenjtp andtk−1 in Eq. 2.47f). Nk is initialized to tp
∆ = 5 at the beginning of

each operating period and is decremented by one at the beginning of each sampling period. The

results of the simulations underEMPC−1 are shown as the solid lines in Figs. 2.1-2.2. As seen

in Fig. 2.2, the EMPC determines that the optimal input trajectories are those for which the inputs

make extreme jumps throughout each operating period, whichin turn causes significant variation

in the state variables, as shown in Fig. 2.1, especially inx2 andx3.

We now suppose that we do not want to have such rapid changes inthe requested control

actions. As a result, we impose input rate of change constraints in the EMPC to allow it to continue
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Figure 2.1: State trajectories for the process of Eqs. 2.42a-2.42d underEMPC−1, EMPC−2, and
EMPC−3.
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to optimize the process economics throughout the whole range of u1 andu2, but without taking

extreme, sudden action to do so. We enforce that the difference between two control actions can

be no more than 0.1. We formulate two EMPC’s with input rate ofchange constraints, the first of

which (EMPC−2) enforces the rate of change constraint only on the first control action that will be

implemented, and the second of which (EMPC−3) enforces the rate of change constraint at each

sampling period in the shrinking prediction horizonNk. Thus,EMPC−2 solves the optimization

problem of Eq. 2.47 with the added constraints:

|u1(tk)−u∗1(tk−1|tk−1)| ≤ 0.1 (2.48a)

|u2(tk)−u∗2(tk−1|tk−1)| ≤ 0.1 (2.48b)

and EMPC− 3 solves the optimization problem of Eq. 2.47 with the added constraints in

Eqs. 2.48a-2.48b plus the additional constraints:

|u1(t j)−u1(t j−1)| ≤ 0.1, j = k+1, . . . ,k+Nk−1 (2.49a)

|u2(t j)−u2(t j−1)| ≤ 0.1, j = k+1, . . . ,k+Nk−1 (2.49b)

The Lyapunov-based constraints in Eqs. 2.21h-2.21i were not considered for this example because

the process is operated within a region around an open-loop asymptotically stable steady-state and

showed no closed-loop stability issues during the simulations of the three EMPC’s. Because no

Lyapunov-based constraints were employed, the input rate of change constraints used were those

in Eqs. 2.48a-2.49b, which are written in terms of the desired rate of change as in Eqs. 2.19-2.20,

rather than based off of the controllerh(x) as was done in the LEMPC of Eq. 2.21. The state

and input trajectories for the simulations of the closed-loop system of Eqs. 2.42a-2.42d under

EMPC−2 andEMPC−3 are plotted against the state and input trajectories for the closed-loop

system underEMPC−1 in Figs. 2.1-2.2.

The yields (according to Eq. 2.43) for the process under the three different EMPC’s are shown
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Figure 2.2: Input trajectories for the process of Eqs. 2.42a-2.42d underEMPC−1, EMPC−2,
andEMPC−3.
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Table 2.2: Process Yield

Process Yield
EMPC−1 9.61%
EMPC−2 9.56%
EMPC−3 8.23%

SS 6.63%

in Table 2.2 and compared to the yield for the steady-state case (SSin the table) obtained by starting

atxI and using the constant input vectorus= [u1s u2s]
T = [0.35 0.5]T to bring the process states to

the open-loop asymptotically stable steady-state[x1s x2s x3s x4s] = [0.998 0.424 0.032 1.002].

As shown in Figs. 2.1-2.2, the input rate of change constraints significantly reduce the

variability in the state and input trajectories as desired,while still allowing optimization of the

process economics, as shown by the periodic trajectories that still exist in the state and input

trajectories forEMPC−3, though with reduced amplitude compared to those underEMPC−1.

As expected, the addition of input rate of change constraints reduces the ability of the EMPC

to maximize the yield of the process to its fullest extent (the yield underEMPC− 1 is 16.8%

greater than that underEMPC− 3). However, even with the input rate of change constraints,

EMPC−3 outperforms steady-state operation (the yield underEMPC−3 is 24.1% greater than

that for steady-state operation).

Because the input rate of change constraints inEMPC−2 are not enforced at every sampling

period,EMPC− 2 becomes infeasible in the last sampling period of all operating periods after

the third (when Ipopt determines a problem is locally infeasible, it returns a solution that locally

minimizes the constraint violation using a separate optimization problem147). In each of the

operating periods in whichEMPC−2 is infeasible, the process’ use of reactant material exceeded

the value of the integral constraint, in some operating periods by as much as 8.7%. Thus, the value

of the yield reported in Table 2.2 forEMPC−2 cannot be compared with the yields ofEMPC−1

andEMPC−3 becauseEMPC−1 andEMPC−3 met the process constraints, whileEMPC−2

did not. The violation of the integral constraint byEMPC−2 occurs becauseEMPC−2 predicts

that there can be sharp changes in all inputs in the prediction horizon except those for the first
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sampling period, which are forced to stay within 0.1 of the previous input value. Thus, because

of the lack of foresight ofEMPC−2, the implemented control actions for the first four sampling

periods in most of the operating periods use too much of the reactant material, with the result that

there is no way that the integral constraint can be met in the last sampling period of the operating

periods if the rate of change constraints and hard bounds on the inputs are also to be met.

We note that though we did not formulate the constraints ofEMPC− 3 with respect to a

Lyapunov-based controller which, as was proven above in this chapter, ensures feasibility of the

optimization problem, no issues with feasibility of the solution of EMPC−3 were encountered.

This can occur in practice, and emphasizes that the requirements for feasibility of an EMPC with

input rate of change constraints as developed in this chapter, such as formulating the constraints

as in Eqs. 2.21f-2.21g rather than as in Eqs. 2.19-2.20, are conservative. For example, in this

problem, we setu∗(t−1|t−1) = us. The input vectorus satisfies all constraints in Eqs. 2.47-2.49b,

and thus is itself a feasible input trajectory. BecauseEMPC−3 recognizes that all future inputs in

the prediction horizon must meet the input rate of change constraint, when it finds a solution that

outperforms steady-state operation but is able to satisfy the constraints, this solution is feasible

both in the current operating period and also, in reverse, inthe next (because for this problem,

we assume that the plant follows the nominal process model and that all constraints depend only

on u1 andu2, not on process states, so the input trajectory just implemented, in reverse, will be

feasible for the next operating period). By progressing in this manner, the full input trajectory that

EMPC−3 takes is feasible in reverse, and it is able to settle to an off steady-state input trajectory

without feasibility issues.

To evaluate the robustness ofEMPC−3 when there are process disturbances (w(t) 6≡ 0), the

process of Eqs. 2.42a-2.42d was simulated underEMPC−3, but with bounded Gaussian white

noise added to the right-hand side of Eqs. 2.42a-2.42d for the simulation of the process outside

of the EMPC, with zero mean, standard deviation vector[σx1 σx2 σx3 σx4]
T = [0.6 10 1.8 0.6]T ,

and bound vector[θx1 θx2 θx3 θx4]
T = [1.8 30 5.4 1.8]T . The standard deviations and bounds

were chosen such that the noise had a significant effect on theprocess states. The simulation
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Figure 2.3: State trajectories for the process of Eqs. 2.42a-2.42d underEMPC−3 in the presence
of bounded disturbances.

results are shown in Figs. 2.3-2.4, and demonstrate thatEMPC− 3 incorporating input rate of

change constraints maintained closed-loop stability of the process in the presence of bounded

disturbances. In addition, it met the integral material constraint and was feasible in all sampling

periods, demonstrating the robustness of the controller.

Remark 2.5. It is noted that the periodic state trajectories for EMPC− 1 and EMPC− 3 in

Fig. 2.1 are the result of the periodic input policies in Fig.2.2. The periodic input policies are

chosen by the EMPC because the EMPC found that that was the most economically optimal

input policy; this is consistent with prior work on the ethylene oxide production process example

(e.g.,59,122), which showed that a periodic operating policy is more economically optimal than

steady-state operation for this example. The integral constraint of Eq. 2.44 plays a role in the

periodic trajectories observed because it requires that within each operating period, only a certain
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Figure 2.4: Input trajectories for the process of Eqs. 2.42a-2.42d underEMPC−3 in the presence
of bounded disturbances.
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amount of material can be used. Despite the periodic nature of the trajectories, the closed-loop

states remain in a bounded region in state-space around the asymptotically stable steady-state such

that the closed-loop process is stable in the sense that the states remain within a bounded region.

2.3.2 Part 2: LEMPC with a Terminal Constraint Design Based on a

Lyapunov-Based Controller

In this section, we further build toward the development of provable performance guarantees for

LEMPC with input rate of change constraints by developing anLEMPC formulation (without

input rate of change constraints) for which provable performance guarantees can be made for

nominal operation. Specifically, an LEMPC incorporating a terminal equality constraint based

on a Lyapunov-based controller will be developed, and performance guarantees will be made for

this LEMPC for both finite-time and infinite-time. While a number of performance results have

been developed for other EMPC formulations (such as EMPC with a terminal steady-state equality

constraint16,47 or a terminal region constraint13), few performance results have appeared for

LEMPC. Previous performance results for LEMPC have been developed utilizing solutions from

an auxiliary tracking MPC;58,80 the performance guarantees for LEMPC developed in this section

compare the closed-loop performance under LEMPC not with that under MPC but with that under a

Lyapunov-based controller implemented in sample-and-hold. Like many other EMPC performance

guarantees, those made in this chapter rely on the use of a terminal constraint and thus hold only

for nominal process operation; however, they have several advantages over performance guarantees

developed for some other formulations of EMPC in that ana priori characterization of the feasible

region is possible and because the terminal constraint is not necessarily the economically optimal

steady-state (in the design the terminal constraint asymptotically converges to the economically

optimal steady-state or a neighborhood of it, depending on the properties ofh(x)), the resulting

LEMPC may give a larger feasible region relative to an EMPC with a terminal equality constraint

equal to the economically optimal steady-state.

To develop the LEMPC with a terminal equality constraint based on a Lyapunov-based
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controller and its provable performance guarantees, this section begins with a description of the

LEMPC formulation for which provable performance guarantees can be made, which is an LEMPC

of the form of Eq. 2.18 but without Eq. 2.18g (since only nominal operation is considered) and with

the addition of a terminal equality constraint based on the same Lyapunov-based controller as is

used to develop the Lyapunov-based stability constraint ofEq. 2.18f (we note that the LEMPC,

like that with input magnitude and rate of change constraints developed in Part 1, has input

magnitude constraints with the form in Eq. 2.18d, but since the input trajectories themselves

are not the focus of Part 2, this will not be further highlighted in Part 2). Subsequently, it

is shown that when there are no disturbances and when there isno plant-model mismatch, the

LEMPC with a terminal equality constraint based onh(x) is feasible and maintains closed-loop

stability of the nominal process in the sense of boundednessof the closed-loop state. Following

this development, the performance properties of the controller are proven on both the finite-time

and infinite-time intervals for a Lyapunov-based controller satisfying Assumption 2.1 and for

a Lyapunov-based controller satisfying Assumption 2.2 (for h(x) meeting Assumption 2.2, the

infinite-time performance result is equivalent to the statement that the nominal process under

LEMPC with a terminal constraint based on a Lyapunov-based controller performs at least as

well in infinite-time as it does under steady-state operation). Finally, a chemical process example

is presented that demonstrates the use of the LEMPC incorporating a terminal equality constraint

based on a Lyapunov-based controller and shows that for a short prediction horizon used in an

EMPC, the use of terminal equality constraints in the EMPC may be crucial to improving process

economic performance over steady-state operation.

2.3.2.1 Part 2: Formulation of LEMPC with a Terminal Equalit y Constraint Based on a

Lyapunov-Based Controller

In the standard LEMPC design,79 an EMPC scheme is designed by taking advantage of

a Lyapunov-based controller (meeting Assumption 2.1 or Assumption 2.2), a corresponding

Lyapunov function, and the stability region. Though feasibility, closed-loop stability, and
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robustness to sufficiently small disturbances may be provenfor this standard LEMPC design,

guaranteed closed-loop performance under the resulting LEMPC cannot be proven in general

without additional conditions or constraints (the standard LEMPC design does not incorporate

terminal constraints75,114). Nevertheless, owing to the availability of the Lyapunov-based

controller of Assumption 2.1 or Assumption 2.2, the corresponding Lyapunov function, and the

stability region used to design LEMPC, a terminal equality constraint may be readily designed for

the LEMPC problem that allows performance guarantees to be made for nominal process operation

while maintaining the unique recursive feasibility property of LEMPC for all initial states inΩρ .

In this chapter, the terminal constraint is computed from the solution of the sampled-data system

of Eq. 2.8 (whereh meets either Assumption 2.1 or Assumption 2.2).

Because the terminal constraint is derived from the solution of Eq. 2.8, it is necessary to define

notation that distinguishes the solution of Eq. 2.8 from thesolution of the LEMPC. To distinguish

the state and input trajectories of the system under the Lyapunov-based controller implemented in

sample-and-hold (Eq. 2.8) from the state and input trajectories of the closed-loop system under

LEMPC incorporating a terminal equality constraint derived from Eq. 2.8,z andv will be used

for the former, andx and u∗ will be used for the latter. Thus, for simplicity of notation, the

sampled-data system consisting of the nominal system of Eq.2.1 under the sample-and-hold

implementation of the Lyapunov-based controller is given by:

ż(t) = f (z(t),v(t),0)

v(t) = h(z(tk))
(2.50)

for t ∈ [tk, tk+1), k = 0,1, . . . with initial condition z(0) = z0 ∈ Ωρ . The sampled-data system

consisting of the nominal system of Eq. 2.1 under the sample-and-hold inputs computed by the

LEMPC with a terminal equality constraint based on the Lyapunov-based controller is given by:

ẋ(t) = f (x(t),u∗(t),0)

u∗(t) = u∗(tk|tk)
(2.51)
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for t ∈ [tk, tk+1), k= 0,1, . . . with initial conditionx(0)= x0 ∈Ωρ , wherex0 = z0. It is noted that the

two sampled-data systems in Eqs. 2.50 and 2.51 are initiatedfrom the same initial condition, but the

system of Eq. 2.50 only incorporates feedback ofz(tk) without any reference to the measured state

of the sampled-data system of Eq. 2.51, and the sampled-datasystem of Eq. 2.51 only incorporates

feedback ofx(tk) (though it does requirez(tk+N) for the determination of the inputu∗(t) that is

applied to the system, as will be shown subsequently).

The solution of the sampled-data system of Eq. 2.50 is used todesign a terminal equality

constraint for LEMPC that requires that the predicted stateat the end of the prediction horizon

(x̃(tk+N)) be equal to the solution of Eq. 2.50 at timetk+N (z(tk+N)), where the functionh in

Eq. 2.50 is the sameh used to designV andΩρ in the LEMPC. The terminal conditionz(tk+N) is

determined at each sampling time as follows:

Step 1. At the initial timet0 = 0, z(tN) is computed by first initializing the system of Eq. 2.50

at z0 = x0 (a measurement of the state of Eq. 2.51 at the initial time) and recursively solving

the system from the initial time totN = N∆. Then, the statez(tN) is used as a terminal equality

constraint in an LEMPC problem solved att = 0.

Step 2. For all sampling times aftert0, the terminal constraint that is imposed in the LEMPC

problem attk is computed by recursively solving the system of Eq. 2.50 from z(tk) to z(tk+N)

(because only nominal operation is considered andz(tk+N−1) was computed at the previous

sampling time, it is only necessary to recursively solve thesystem of Eq. 2.50 fromtk+N−1 to tk+N

to obtain the solution fromz(tk) to z(tk+N) if the solution from the previous sampling time was

stored; for added robustness, especially to numerical and discretization errors, one may reinitialize

the system of Eq. 2.50 with a state measurementz(tk) at each sampling time and numerically

integrate forward from this measurement to computez(tk+N), but in the nominal operating setting

considered here, numerical and discretization errors are not considered).

Using the terminal equality constraint described above, the formulation of the LEMPC with the

terminal equality constraint formulated based on the statez obtained under the Lyapunov-based
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controller is given by the problem:

min
u(·)∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (2.52a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.52b)

x̃(tk) = x(tk) (2.52c)

x̃(tk+N) = z(tk+N) (2.52d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (2.52e)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (2.52f)

V(x̃(t))≤ ρ , ∀ t ∈ [tk, tk+N) (2.52g)

where the notation follows that in Eqs. 2.17 and 2.18 and, as noted in Section 2.2.2,u(t) ∈ U is

equivalent toui ∈ Ui , i = 1, . . . ,m. Becauseρe = ρ for nominal process operation, the Mode 1

constraint of Eq. 2.52g enforces that the predicted state remain in Ωρ throughout the prediction

horizon. The terminal constraint of Eq. 2.52d forces the computed input trajectory to steer the

predicted state trajectory to the statez(tk+N) at the end of the prediction horizon. This terminal

constraint differs from traditional terminal equality constraints in the sense that it is not necessarily

a steady-state. However, the terminal constraint in the LEMPC of Eq. 2.52 converges to a

neighborhood of the steady-state owing to the stability properties of the Lyapunov-based controller

(if h used in the design of Eq. 2.52 meets Assumption 2.1 and∆ < ∆∗, thenz(t) eventually enters

Ωρmin from Proposition 2.1, and ifh used in the design of Eq. 2.52 meets Assumption 2.2 and

∆ < ∆∗
e, thenz(t) reaches the steady-state in infinite-time from Proposition2.2). A difference

between the standard LEMPC design of Eq. 2.18 and the LEMPC incorporating a terminal equality

constraint in Eq. 2.52 is that there is no contractive constraint in the LEMPC with a terminal

equality constraint. The reason for this difference is thatonly nominal operation is considered

for the LEMPC with a terminal equality constraint, so only the constraint in Eq. 2.52g is required

to ensure closed-loop stability in the sense that the state trajectory will be maintained within the
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stability regionΩρ for all times. The effect of including the contractive constraint will be discussed

in Section 2.3.2.2, along with the stability and feasibility properties of the LEMPC incorporating

a terminal equality constraint based on the Lyapunov-basedcontroller.

The LEMPC of Eq. 2.52 is implemented according to a standard receding horizon

implementation. At each sampling timetk, a state measurementx(tk) is received and the terminal

constraintz(tk+N) is computed. The optimization problem of Eq. 2.52 is solved with the computed

z(tk+N) to obtain the input trajectory over the prediction horizon.However, only the control action

computed for the first sampling period of the prediction horizon is implemented on the system.

At the next sampling time, a new state measurement is obtained, a new terminal constraint is

computed, and the optimization problem is re-solved with the updated parameters to obtain the

control action for the next sampling period.

2.3.2.2 Part 2: Feasibility and Stability Analysis

In this section, we develop a theorem stating that the LEMPC of Eq. 2.52 is feasible and maintains

closed-loop stability of the nominal system of Eq. 2.1 when the Lyapunov-based controller used

in the design of the LEMPC meets Assumption 2.1 and a sufficiently small sampling period is

utilized.

Theorem 2.4. Consider the system of Eq. 2.1 with w(t) ≡ 0 in closed-loop under the LEMPC

design of Eq. 2.52 based on a controller h that satisfies the conditions of Eq. 2.4 and

Assumption 2.1. Letρ > 0, and 0 < ∆ < ∆∗. If x(t0) ∈ Ωρ and N≥ 1, then the state x(t) of

the closed-loop system is always bounded inΩρ .

Proof. Recursive feasibility of the optimization problem of Eq. 2.52 is guaranteed when the

conditions of Theorem 2.4 are met because the sample-and-hold input trajectory obtained from

the Lyapunov-based controller is a feasible solution to theoptimization problem att0 (i.e., the

input trajectoryu(t) = v(t), t ∈ [t0, tN) satisfies the input constraint of Eq. 2.52e and the terminal

constraint of Eq. 2.52d by design, it satisfies Eq. 2.52g because the Lyapunov-based controller

implemented in sample-and-hold maintains the state withinΩρ from Proposition 2.1 when∆ < ∆∗,
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and it satisfies Eq. 2.52f since Eq. 2.52g is satisfied andΩρ ⊆ X). At the next sampling time

(t1), u(t) = u∗(t j |t0) for t ∈ [t j , t j+1), j = 1, . . . ,N−1 (which drives ˜x(tN) to z(tN) sinceu∗(t j |t0),

j = 0, . . . ,N−1, was feasible at the previous sampling time and thus Eq. 2.52d is satisfied for this

input trajectory), andu(t) = h(z(tN)) for t ∈ [tN, tN+1) is a feasible solution to the optimization

problem because nominal operation is considered. At subsequent sampling times (i.e., attk), a

feasible solution to the LEMPC of Eq. 2.52 is, similarly, thepart of the solution from the previous

sampling time that was not implemented followed byh(z(tk+N−1)) utilized for the last sampling

period in the prediction horizon. This shows that for nominal operation, the LEMPC of Eq. 2.52 is

always feasible. Closed-loop stability of the LEMPC of Eq. 2.52 in the sense that the closed-loop

state trajectory is maintained withinΩρ at all times is guaranteed when the optimization problem

is feasible owing to the fact that the Lyapunov-based constraint of Eq. 2.52g is imposed in the

optimization problem and nominal operation is considered.

Though the terminal condition itself converges to the origin or a neighborhood of it, the input

trajectory generated by applying the input calculated for the first sampling period of each prediction

horizon may not drive the process state to the origin or a small neighborhood of it. The LEMPC of

Eq. 2.52 may be extended to include the two-mode control strategy of Eq. 2.18, or the contractive

constraint in Eq. 2.18g may be added to the LEMPC of Eq. 2.52 todrive the process state to a

neighborhood of the origin, even in the presence of disturbances, if the resulting LEMPC remains

feasible. However, the performance results to be developedin Section 2.3.2.3 hold for the nominal

case.

Remark 2.6. It has been previously noted in this chapter that the feasible region of LEMPC with a

terminal equality constraint based on a Lyapunov-based controller can be explicitly characterized

a priori. Theorem 2.4 and its proof show that the feasible region is the stability region of the

LEMPC.
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2.3.2.3 Part 2: Closed-Loop Performance Analysis

In this section, we prove that the economic performance of the LEMPC of Eq. 2.52 is at least

as good as that of the Lyapunov-based controller used in its design in both finite-time and

infinite-time. The analysis techniques used follow those of,16 which analyzes the closed-loop

performance of EMPC formulated with an equality terminal constraint equal tox∗s. In the

following, J∗e(x(tk)) denotes the optimal value of the objective function of the optimization problem

of Eq. 2.52 at timetk given the state measurementx(tk).

The first performance result, presented in the following theorem, gives the finite-time

performance of the process under the LEMPC of Eq. 2.52 designed with a Lyapunov-based

controller that satisfies Assumption 2.1.

Theorem 2.5. Consider the closed-loop system of Eq. 2.1 with w(t) ≡ 0 under the LEMPC of

Eq. 2.52 based on a Lyapunov-based controller that satisfiesAssumption 2.1. Let∆ ∈ (0,∆∗)

where∆∗ > 0 is the conclusion of Proposition 2.1. For any strictly positive finite integer T , the

closed-loop economic performance under the LEMPC of Eq. 2.52 is bounded by:

∫ T∆

0
le(x(t),u

∗(t)) dt ≤
∫ (T+N)∆

0
le(z(t),v(t)) dt (2.53)

where x and u∗ denote the closed-loop state and input trajectories of the system of Eq. 2.51 and z

and v denote the state and input trajectories of the system ofEq. 2.50 where z(0) = x(0) ∈ Ωρ .

Proof. Let u∗(t|tk) for t ∈ [tk, tk+N) be the optimal input trajectory of Eq. 2.52 attk. The piecewise

defined input trajectory consisting ofu(t) = u∗(t|tk) for t ∈ [tk+1, tk+N) andu(t) = h(z(tk+N)) for

t ∈ [tk+N, tk+N+1) is a feasible solution to the optimization problem attk+1. Utilizing this feasible

solution to the problem of Eq. 2.52 attk+1, the difference between the optimal values of Eq. 2.52

at any two successive sampling timestk andtk+1 may be bounded as follows:

J∗e(x(tk+1))−J∗e(x(tk))≤
∫ tk+N+1

tk+N

le(z(t),h(z(tk+N))) dt−
∫ tk+1

tk
le(x(t),u

∗(tk|tk)) dt . (2.54)
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Let T be any positive finite integer. Summing the differences between the optimal values of

Eq. 2.52 at two subsequent sampling times, the following upper bound is derived:

T−1

∑
k=0

[J∗e(x(tk+1))−J∗e(x(tk))]≤
∫ (T+N)∆

tN
le(z(t),v(t)) dt−

∫ T∆

0
le(x(t),u

∗(t)) dt (2.55)

We takele(x,u)≥ 0 for all x∈ Ωρ andu∈U. Then the left-hand side of Eq. 2.55 is bounded below

by:

T−1

∑
k=0

[J∗e(x(tk+1))−J∗e(x(tk))] = J∗e(x(T∆))−J∗e(x(0))

≥−J∗e(x(0)) (2.56)

where the inequality follows from the fact thatle(x,u) ≥ 0 for all x ∈ Ωρ andu ∈ U. Owing to

optimality, the optimal value of Eq. 2.52 at the initial timemay be bounded by the cost under

a feasible solution; thus, it may be bounded by the cost underthe Lyapunov-based controller

implemented in sample-and-hold over the prediction horizon:

J∗e(x(0))≤
∫ tN

0
le(z(t),v(t)) dt . (2.57)

Combining Eqs. 2.55-2.57, the closed-loop economic performance from the initial time toT∆ is

no worse than the closed-loop performance under the Lyapunov-based controller from the initial

time to(T +N)∆, which proves the bound of Eq. 2.53.

It is noted that due to continuity ofle(x,u) on X×U and the fact thatx andu are bounded

within Ωρ andU respectively,le achieves a minimum onΩρ ×U. Therefore, the assumption

that le(x,u) ≥ 0 can be made in the proof of Theorem 2.5 without loss of generality because the

minimum value ofle(x,u) onΩρ ×U exists and can always be subtracted fromle(x,u) to make the

resulting objective function defined as̄le(x,u) take it minimum at zero. This objective function can

then be used in Eq. 2.52 without changing the optimal solution to the optimization problem, and
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therefore we assume thatle(x,u)≥ 0 in the proofs of this section.

The upper limit of integration of the right-hand side of Eq. 2.53 ((T+N)∆) arises from the fact

that a fixed prediction horizon is used in the LEMPC of Eq. 2.52. If, instead,T∆ represents the

final operating time of a given system, one could employ a shrinking horizon from time(T −N)∆

to T∆ in the LEMPC and the upper limit of integration of the right-hand side of Eq. 2.53 would be

T∆. Specifically, fortk ∈ [t0, tT−N), we have from Eq. 2.55:

T−N−1

∑
k=0

[J∗e(x(tk+1))−J∗e(x(tk))]≤
∫ T∆

N∆
le(z(t),v(t)) dt−

∫ (T−N)∆

0
le(x(t),u

∗(t)) dt (2.58)

and from Eq. 2.53 we have:

∫ (T−N)∆

0
le(x(t),u

∗(t)) dt ≤
∫ T∆

0
le(z(t),v(t)) dt . (2.59)

For sampling times betweentT−N andtT , we employ a shrinking horizon in the EMPC. That

is, let N̄k = N− j be the horizon used at sampling timetk for k ∈ {T −N, . . . ,T −1} where j =

k−T +N. With slight abuse of notation, let

J∗e(x(tk)) =
∫ tk+N̄k

tk
le(x(t),u

∗(t|tk)) dt (2.60)

be the optimal value of the EMPC problem at sampling timestk, k∈ {T −N, . . . ,T−1} where the

EMPC is formulated with a prediction horizon of̄Nk. By the principle of optimality, the difference

between the optimal value of the EMPC problem at two subsequent sampling times is

J∗e(x(tk+1))−J∗e(x(tk)) =−
∫ tk+1

tk
le(x(t),u

∗(tk|tk)) dt (2.61)

for k ∈ {T −N, . . . ,T −2}. BecauseT∆ for this shrinking horizon case represents the final time

of operation, the EMPC is not solved at that time and thus there is no value ofJ∗e(x(tT)). For this
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reason, we consider the following summation of the terms in Eq. 2.61:

T−2

∑
k=T−N

[J∗e(x(tk+1))−J∗e(x(tk))]−J∗e(x(tT−1)) =−J∗e(x(tT−N)) =−
∫ T∆

(T−N)∆
le(x(t),u

∗(t)) dt .

(2.62)

where the left-hand side is equivalent to the summation of the terms in Eq. 2.61 fromk= T −N to

k= T −1 with J∗e(x(tT)) := 0. The sum of the differences between the optimal values of Eq. 2.52

at two subsequent sampling times between 0 andT −2 with J∗e(x(tT−1)) subtracted from this sum

gives:

T−2

∑
k=0

[J∗e(x(tk+1))−J∗e(x(tk))]−J∗e(x(tT−1))

=
T−N−1

∑
k=0

[J∗e(x(tk+1))−J∗e(x(tk))]+
T−2

∑
k=T−N

[J∗e(x(tk+1))−J∗e(x(tk))]−J∗e(x(tT−1))

(2.58),(2.62)
≤

∫ T∆

N∆
le(z(t),v(t)) dt−

∫ (T−N)∆

0
le(x(t),u

∗(t)) dt−
∫ T∆

(T−N)∆
le(x(t),u

∗(t)) dt (2.63)

Also,

T−2

∑
k=0

[J∗e(x(tk+1))−J∗e(x(tk))]−J∗e(x(tT−1)) = J∗e(x(tT−1))−J∗e(x(0))−J∗e(x(tT−1)) =−J∗e(x(0))

≥−
∫ N∆

0
le(z(t),v(t)) dt (2.64)

where the last inequality follows from the same arguments used to write Eq. 2.57 above.

Combining Eqs. 2.63-2.64, the required performance bound is obtained for the shrinking horizon

case as follows:
∫ T∆

0
le(x(t),u

∗(t)) dt ≤
∫ T∆

0
le(z(t),v(t)) dt (2.65)

This completes the proof of the finite-time performance bound for the shrinking horizon case.

Again considering the case that no shrinking horizon is used, we note that as a consequence of

the performance bound of Eq. 2.53, the average finite-time economic performance may be bounded
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as follows:

1
T∆

∫ T∆

0
le(x,u

∗) dt ≤ 1
T∆

∫ T∆

0
le(z,v) dt+

1
T∆

∫ (T+N)∆

T∆
le(z,v) dt (2.66)

for any integerT > 0. From the right-hand side of Eq. 2.66, the significance of the second term

on the right-hand side dissipates asT gets large. Thus, the results of Theorem 2.5 show that the

average closed-loop economic performance over a finite-time operating interval under LEMPC

with a terminal equality constraint based onh that meets Assumption 2.1 is at least as good as the

average closed-loop economic performance underh implemented in sample-and-hold plus a term

that dissipates as the length of operation increases.

In the above discussion, we developed economic performanceguarantees for LEMPC with a

terminal equality constraint based on a Lyapunov-based controller satisfying Assumption 2.1 on

the finite-time interval. We now consider the infinite-time (asymptotic average) performance. The

provable result on asymptotic average economic performance varies depending on whether the

Lyapunov-based controller satisfies Assumption 2.1 or Assumption 2.2. We first present a theorem

for the infinite-time performance for a controller satisfying Assumption 2.1 (the performance result

when the Lyapunov-based controller satisfies Assumption 2.2 is stronger and will be presented

subsequently).

Theorem 2.6. Consider the closed-loop system of Eq. 2.1 with w(t) ≡ 0 under the LEMPC of

Eq. 2.52 where the Lyapunov-based controller satisfies Assumption 2.1 and z(0) = x(0) ∈ Ωρ . Let

∆ ∈ (0,∆∗) where∆∗ is the conclusion of Proposition 2.1. The asymptotic average performance is

bounded by:

limsup
T→∞

1
T∆

∫ T∆

0
le(x(t),u

∗(t)) dt ≤ max
x,y∈Ωρmin

le(x,h(y)). (2.67)

Proof. To develop the proof of Theorem 2.6, we first consider the asymptotic average economic

performance of the nominal system of Eq. 2.1 under the Lyapunov-based controller that satisfies

Assumption 2.1 implemented in sample-and-hold (i.e., the sampled-data system of Eq. 2.50) for

∆ ∈ (0,∆∗) where∆∗ > 0 is the conclusion of Proposition 2.1. Owing to the fact thatz and
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v are bounded in compact sets andle and h are continuous onΩρ ×U and Ωρ , respectively,

the asymptotic average economic performance, which is given by the left-hand side of Eq. 2.68

below, is bounded. Moreover,z converges toΩρmin from Proposition 2.1. Therefore, the

following inequality, which represents the worst-case asymptotic average performance under the

sample-and-hold Lyapunov-based controller, follows:

limsup
T→∞

1
T∆

∫ T∆

0
le(z(t),v(t)) dt ≤ max

x,y∈Ωρmin

le(x,h(y)) . (2.68)

where the Lyapunov-based controller is evaluated aty instead ofx sincey does not necessarily

equalx due to the sample-and-hold implementation of the controller. Given that for any finite-time

interval, the bound of Eq. 2.53 holds, the inequality of Eq. 2.67 follows from the fact thatx andu∗

are bounded in compact sets, the fact thatle is continuous onΩρ ×U, and the bound of Eq. 2.68.

As noted, Theorem 2.6 characterizes the worst-case infinite-time (asymptotic average)

performance for the process under the LEMPC based on a Lyapunov-based controller that satisfies

Assumption 2.1, and states that it is no worse than the worst-case asymptotic average performance

under the Lyapunov-based controller. Though this is a weaker result than showing that the

asymptotic average performance is at least as good as that for steady-state operation, the level

setΩρmin may be selected arbitrarily small, at the expense of requiring a faster sampling rate.

We now focus on the performance guarantees that can be made ininfinite-time whenh meets

Assumption 2.2. We first present a lemma on the infinite-time performance of the nominal

process of Eq. 2.1 under the Lyapunov-based controller meeting Assumption 2.2 implemented in

sample-and-hold (Eq. 2.50). We will then present a theorem relating this result to the infinite-time

performance of the process under the LEMPC with a terminal constraint based onh. The lemma

that will now be presented states that the asymptotic average economic performance under a

Lyapunov-based controller that satisfies Assumption 2.2 isno worse than the economic cost at

the optimal steady-state pair(x∗s,u
∗
s).
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Lemma 2.1. The asymptotic average economic cost of the closed-loop system of Eq. 2.50 under a

feedback controller that satisfies Assumption 2.2 for any initial condition z(0) ∈ Ωρ is

lim
T→∞

1
T∆

∫ T∆

0
le(z(t),v(t)) dt = le(x

∗
s,u

∗
s) (2.69)

where∆ ∈ (0,∆∗
e) (∆∗

e > 0 is the conclusion of Proposition 2.2) and z and v denote the state and

input trajectories of the system of Eq. 2.50.

Proof. Recall, the economic stage cost functionle is continuous on the compact setΩρ ×U and

z(t) ∈ Ωρ andv(t) ∈ U for all t ≥ 0. Thus, the integral:

1
T∆

∫ T∆

0
le(z(t),v(t)) dt < ∞ (2.70)

for any integerT > 0. Sincez(t) andv(t) exponentially converge to the optimal steady-state pair

(x∗s, u∗s) ast → ∞, the limit of the integral of Eq. 2.70 asT tends to infinity exists and is equal to

le(x∗s,u
∗
s). To prove the limit, it is sufficient to show that for anyε > 0, there exists aT∗ such that

for T > T∗, the following holds:

∣

∣

∣

∣

1
T∆

∫ T∆

0
le(z(t),v(t)) dt− le(x

∗
s,u

∗
s)

∣

∣

∣

∣

< ε (2.71)

To simplify the presentation, defineI(T1,T2) as the following integral:

I(T1,T2) :=
∫ T2∆

T1∆
le(z(t),v(t)) dt (2.72)

where the arguments ofI are integers representing the integers of the lower and upper limits of

integration, respectively. Sincez(t) andv(t) converge tox∗s andu∗s ast tends to infinity, respectively,

le(x(t),v(t))→ le(x∗s,u
∗
s) ast tends to infinity. Furthermore,z(t) ∈ Ωρ andv(t) ∈ U for all t ≥ 0,
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so for everyε > 0, there exists an integerT̃ > 0 such that

|le(z(t),v(t))− le(x
∗
s,u

∗
s)|< ε/2 (2.73)

for t ≥ T̃∆. For anyT > T̃,

|I(0,T)−T∆le(x
∗
s,u

∗
s)|= |I(0, T̃)+ I(T̃,T)−T∆le(x

∗
s,u

∗
s)|

≤
∫ T̃∆

0
|le(z(t),v(t))− le(x

∗
s,u

∗
s)| dt+

∫ T∆

T̃∆
|le(z(t),v(t))− le(x

∗
s,u

∗
s)| dt

< T̃M̃∆+(T − T̃)∆ε/2 (2.74)

where

M̃ := sup
t∈[0,T̃∆]

{|le(z(t),v(t))− le(x
∗
s,u

∗
s)|} .

For anyT > T∗ = 2T̃(M̃−ε/2)/ε (which implies(M̃−ε/2)T̃/T < ε/2), the following inequality

is satisfied:

|I(0,T)/(T∆)− le(x
∗
s,u

∗
s)|< T̃M̃/T +(1− T̃/T)ε/2

= (M̃− ε/2)T̃/T + ε/2< ε (2.75)

which proves the limit of Eq. 2.69.

Utilizing Lemma 2.1, one may prove that the asymptotic average closed-loop economic

performance under the LEMPC of Eq. 2.52 designed with a Lyapunov-based controller that

satisfies Assumption 2.2 is no worse than the closed-loop performance at the economically optimal

steady-state (from Lemma 2.1, this is the same as stating that the asymptotic average performance

of the nominal process under the LEMPC of Eq. 2.52 designed with h that meets Assumption 2.2

is no worse than the asymptotic average performance underh implemented in sample-and-hold).

This result is stated in the following theorem.
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Theorem 2.7. Consider the system of Eq. 2.1 with w(t) ≡ 0 under the LEMPC of Eq. 2.52 based

on a Lyapunov-based controller that satisfies Assumption 2.2. Let∆ ∈ (0,∆∗
e) where∆∗

e > 0 is the

conclusion of Proposition 2.2. The closed-loop asymptoticaverage economic performance is no

worse than the economic cost at steady-state; that is, the following bound holds:

limsup
T→∞

1
T∆

∫ T∆

0
le(x(t),u

∗(t)) dt ≤ le(x
∗
s,u

∗
s) . (2.76)

Proof. From Theorem 2.5, for anyT > 0:

1
T∆

∫ T∆

0
le(x(t),u

∗(t)) dt ≤ 1
T∆

∫ (T+N)∆

0
le(z(t),v(t)) dt . (2.77)

As T increases, both sides of the inequality of Eq. 2.77 remain finite owing to the fact thatle

is continuous and the state and input trajectories are bounded in compact sets. The limit of the

right-hand side asT → ∞ is equal tole(x∗s,u
∗
s) (Lemma 2.1). Therefore, the result in Eq. 2.76 is

obtained.

Remark 2.7. The performance results of this section hold for any prediction horizon size even

when N= 1. The use of a short horizon may be computationally advantageous for real-time

application. Also, owing to the fact that the terminal equality constraint of Eq. 2.52d may be a

point in the state-space away from the steady-state, the feasible region of the LEMPC of Eq. 2.52

may be larger than the feasible region of EMPC with a terminalequality constraint equal to the

steady-state especially when a short prediction horizon isused.

2.3.2.4 Part 2: Application to a Chemical Process Example

In this section, we use a chemical process example to demonstrate that the nominal process

under LEMPC with a terminal equality constraint based on a Lyapunov-based controller can

show improved economic performance compared to the processunder the sample-and-hold

Lyapunov-based controller. The LEMPC of Eq. 2.52 is appliedto a chemical process example
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consisting of a continuous stirred-tank reactor (CSTR) within which two parallel reactions occur:20

R→ P1 (2.78a)

R→ P2 (2.78b)

whereP1 is the desired product andP2 is a by-product. The rates of the reactions are second-order

and first-order inR, respectively.

To model the reactor, it is assumed that there is no significant heat of reaction or heat of mixing,

that the temperature dependence of the reaction rates can bemodeled through the Arrhenius

equation, and that the reactor mixture density, heat capacity, and inlet and outlet volumetric flow

rates are constant. Applying these assumptions, the dimensionless dynamic model of the reactor,

obtained from the conservation equations, is

ẋ1 =−a1e−1/x3x2
1−a2e−δ/x3x1−x1+1 (2.79a)

ẋ2 = a1e−1/x3x2
1−x2 (2.79b)

ẋ3 =−x3+u (2.79c)

wherex1 is the dimensionlessR concentration,x2 is the dimensionlessP1 concentration,x3 is the

dimensionless temperature, and the manipulated input, denoted byu, is a dimensionless quantity

related to the heat flux provided to the reactor. The process parameters area1 = 1.0×104, a2 =

400, andδ = 0.55, and the input is restricted to take values in the interval[0.049,0.449].

The operating profit of the CSTR is assumed to scale with the flow of the desired product out

of the reactor. Owing to the fact that the volumetric inlet and outlet flow rates are constant, the

stage cost minimized in LEMPC to maximize the operating profit of the reactor is given by:

le(x,u) =−x2 . (2.80)

The economically optimal steady-state that minimizes Eq. 2.80 is x∗s = [0.0832 0.0846 0.149]T
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Figure 2.5: Closed-loop trajectories for the system of Eq. 2.79 under the LEMPC of Eq. 2.52 (solid
trajectories). The horizontal (dashed) trajectories indicate the steady-state value of each state and
input.

corresponding to the steady-state inputu∗s = 0.149. Regarding the implementation details of

the LEMPC, the sampling period is∆ = 0.05, the prediction horizon consists of sixty sampling

periods (N = 60), and the Lyapunov-based controller is chosen to be a proportional controller

with saturation to account for the bound on the input (i.e.,h̄(x) = −K(x2 − x∗2s) + u∗s where

K = 3.3 andh(x) = h̄(x) if h̄(x) ∈ [0.049,0.449]; else if h̄(x) < 0.049 thenh(x) = 0.049; else

h(x) = 0.449). The closed-loop simulations were written in Python. To integrate the ODEs

and solve the corresponding sensitivity information required to solve the nonlinear optimization

problem, CVODE81 and automatic differentiation via CasADi15 were used, respectively. The

resulting nonlinear program was solved using Ipopt.148

To demonstrate that using the LEMPC with a terminal equalityconstraint based onh can
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indeed lead to better economic performance than using the Lyapunov-based controller (in this

case, the proportional controller with saturation) in sample-and-hold, two closed-loop simulations

were completed: the closed-loop system under the LEMPC and the closed-loop system under the

Lyapunov-based feedback controller. Fig. 2.5 gives the closed-loop trajectories under LEMPC for

a closed-loop simulation over a length of 10.0 dimensionless time units. From Fig. 2.5, the LEMPC

of Eq. 2.52 dictates a periodic-like operating policy. On the other hand, the Lyapunov-based

controller dictates a steady-state operating policy. The average closed-loop economic performance

is given by the index:

J̄e=
1

10.0

∫ 10.0

0
x2(t) dt . (2.81)

The average performance under the LEMPC is 0.0919, while theaverage performance under the

feedback controller is 0.0849; the performance under LEMPCis 8.3% better than that under

the feedback controller. It is important to note that it has been demonstrated that time-varying

operation of this example improves closed-loop performance relative to steady-state operation.20

Two potentially interesting issues to address are the closed-loop performance under EMPC with

and without a terminal constraint and the closed-loop performance under EMPC with different

terminal constraint formulations. While these issues may be difficult to address in general,

we may explore these issues with simulation for this particular example. Fig. 2.6 displays the

average closed-loop performance for several closed-loop simulations over 10.0 dimensionless

time units for three different EMPC schemes and different horizon lengths. In particular, the

three EMPC’s considered are the LEMPC of Eq. 2.52, EMPC with aterminal constraint equal

to the economically optimal steady-state, and EMPC withoutterminal constraints. Overall,

the closed-loop performance for the two EMPC schemes with terminal constraints is relatively

similar and for each horizon length the closed-loop performance realized was better than the

profit at the economically optimal steady-state and also better than the closed-loop performance

under the Lyapunov-based controller. On the other hand, there is a noticeable dependence

of the average closed-loop performance on the prediction horizon length. ForN = 10, the

closed-loop performance under the EMPC without terminal constraints was worse than that under
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Figure 2.6: Closed-loop economic performance with prediction horizon length for the process of
Eq. 2.79 under the LEMPC of Eq. 2.52 (solid line, denoted as LEMPC), under an EMPC with a
terminal equality constraint equal to the economically optimal steady-state (dashed line, denoted
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economically optimal steady-state is also plotted (dottedline, denoted asx∗2).
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the Lyapunov-based controller, illustrating that performance-based constraints imposed in EMPC

may be needed to ensure acceptable closed-loop economic performance for shorter prediction

horizons.

2.3.3 Part 3: LEMPC with Input Magnitude Constraints, Input Rate of

Change Constraints, and an Equality Terminal Constraint Based on

a Lypaunov-Based Controller

In this section, we combine the results of Parts 1 and 2 on LEMPC with input magnitude and rate

of change constraints and on LEMPC with a terminal state constraint based on a Lyapunov-based

controller to show that the performance of LEMPC with input magnitude and rate of change

constraints can be proven to be at least as good as it would be under a Lyapunov-based controller

implemented in sample-and-hold for nominal process operation.

The formulation of LEMPC incorporating a terminal state constraint based on the

Lyapunov-based controller, input magnitude constraints,and input rate of change constraints,

assuming nominal process operation, is as follows:

min
u(·)∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (2.82a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.82b)

x̃(tk) = x(tk) (2.82c)

x̃(tk+N) = z(tk+N) (2.82d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (2.82e)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (2.82f)

|ui(t j)−hi(z(t j))| ≤ εr , i = 1, . . . ,m, j = k, . . . ,k+N−1 (2.82g)

V(x̃(t))≤ ρ , ∀ t ∈ [tk, tk+N) (2.82h)

where the notation follows that of Eqs. 2.21 and 2.52, and theimplementation strategy is like that of
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Eq. 2.52 (at eachtk, a state measurementx(tk) is received andz(tk+N) is updated before the LEMPC

optimization problem is solved), except that eachhi(z(t j)), i = 1, . . . ,m, j = k, . . . ,k+N−1, is also

determined and incorporated into the LEMPC of Eq. 2.82 at each sampling time.

We will now briefly address how the properties of the LEMPC in Eq. 2.82 compare with those

of the LEMPC of Eq. 2.21 and of the LEMPC of Eq. 2.52. Specifically, we will address the

bounds onεr and∆ required for the LEMPC of Eq. 2.82 to satisfy the desired input rate of change

constraints in Eqs. 2.19-2.20 whenh(x) meets Assumption 2.1, the feasibility of the LEMPC

optimization problem, the closed-loop stability properties of a process under the LEMPC, and

the performance guarantees that can be made for the nominal process under LEMPC. We note that

we will not address the robustness of the method, because only nominal operation is considered

for the LEMPC of Eq. 2.82 due to the use of the terminal equality constraint.

Using arguments similar to those in Eqs. 2.23-2.28, it can beshown that the desired input rate

of change constraints of Eqs. 2.19-2.20 are met when the sampling period is sufficiently small,

the LEMPC of Eq. 2.82 is feasible (Eq. 2.82g is met by the calculated control actions), and 2εr +

LhLM∆ ≤ εdesired. The proof of feasibility of the LEMPC is similar to that noted in the proof of

Theorem 2.4 in that, because nominal operation is considered,u(t)= h(z(t j)) for j = k, . . . ,k+N−

1, is a feasible solution to the LEMPC of Eq. 2.82 att0, with u(t) = u∗(t|tk) for t ∈ [tk+1, tk+N) and

u(t) = h(z(tk+N)) for t ∈ [tk+N, tk+N+1) being a feasible solution at timetk+1 whenu(t) = u∗(t|tk)

for t ∈ [tk, tk+N) is the solution at timetk. Closed-loop stability of a process under the LEMPC in

Eq. 2.82 is ensured for nominal operation in the sense that the state is always maintained within

the compact setΩρ due to the constraint in Eq. 2.82h.

Finally, we compare the performance of the nominal process of Eq. 2.1 under the LEMPC of

Eq. 2.82 with the performance of the process under the Lyapunov-based controller implemented

in sample-and-hold. Because this comparison can only be made if the constraints are met under

both controllers, we note that the Lyapunov-based controller implemented in sample-and-hold

meets all input constraints in Eq. 2.82 and causes the statesto meet all constraints for the reasons

mentioned in the proof that this control law is a feasible solution to the LEMPC att0; it also
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satisfies the desired rate of change constraints of Eqs. 2.19-2.20 if the termsu∗(tk|tk) are replaced by

hi(z(tk)), i = 1, . . . ,m, since these are the implemented control actions under the sample-and-hold

Lyapunov-based controller. With that replacement, Eqs. 2.19-2.20 become a requirement that

|hi(z(tk))−hi(z(tk−1))| ≤ εdesired, i = 1, . . . ,m, which holds for allεdesired> 0 for LhLM∆ ≤ εdesired

from Eq. 2.25. Thus, when the control actions calculated by the LEMPC meet Eqs. 2.19-2.20 (i.e.,

2εr +LhLM∆≤ εdesired), it is also true thatLhLM∆≤ εdesiredso that the control actions implemented

by the sample-and-hold Lyapunov-based controller also satisfy the desired input rate of change

constraints. This establishes that a comparison can be madebetween the performance of the

process under the LEMPC of Eq. 2.82 and the sample-and-hold Lyapunov-based controller. The

performance results of Theorem 2.5 hold forh meeting Assumption 2.1 on the finite-time interval,

the performance results of Theorem 2.6 hold forh meeting Assumption 2.1 on the infinite-time

interval, and the performance results of Theorem 2.7 hold for h meeting Assumption 2.2 on the

infinite-time interval. It is noted that these performance results hold for the LEMPC of Eq. 2.82

regardless of the form of the cost function; this proves thatfor nominal operation, the performance

of LEMPC with a terminal equality constraint and input rate of change constraints is no worse on

both the finite-time and infinite-time intervals than that ofan alternative controller that enforces

steady-state operation, regardless of whether the cost function includes additional penalties on the

input rate of change to reduce actuator wear. Like the LEMPC with a terminal equality constraint

but without input rate of change constraints (Eq. 2.52), theLEMPC of Eq. 2.82 has a number of

advantages over other EMPC formulations for which performance guarantees have been made,

particularly that the feasible region can be characterizeda priori.

Remark 2.8. The motivation for adding input rate of change constraints to LEMPC (that the

LEMPC may dictate a dynamic operating policy) is also motivation for the addition of input rate

of change constraints to EMPC in general. Thus, it is noted that input rate of change constraints

can be added to other EMPC formulations for which performance guarantees have been previously

developed (such as the steady-state terminal equality constraint formulation) as well. However, as

noted above, LEMPC has a number of advantages over some of theother EMPC formulations that
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make it more attractive for incorporating input rate of change constraints and making performance

guarantees for the resulting formulation.

2.4 Conclusions

In this chapter, we developed a formulation of LEMPC incorporating input magnitude and rate of

change constraints and a terminal equality constraint based on a Lyapunov-based controller that

allows provable performance guarantees to be made for the LEMPC. The LEMPC formulation

was developed in three parts. In Part 1 of this chapter, we demonstrated that input rate of change

constraints written with respect to a Lyapunov-based controller can be added to LEMPC, and that

the implemented inputs can then be ensured to differ by no more than a desired bound between two

subsequent sampling periods. The formulation of LEMPC withinput rate of change constraints

developed was shown to be feasible and to maintain closed-loop stability of a process even in the

presence of bounded disturbances. A chemical process example demonstrated that the number

of sampling periods of the prediction horizon over which theinput rate of change constraints

are enforced may have a significant impact on whether other process constraints such as integral

material constraints can be met.

In Part 2, we developed an LEMPC formulation with a terminal equality constraint based

on the Lyapunov-based controller utilized in the formulation of the LEMPC. With this terminal

equality constraint, the LEMPC formulation was proven to benot only feasible and stable in the

sense of boundedness of the closed-loop state for nominal operation, but was also proven to have

finite-time and infinite-time economic performance properties such that the process under LEMPC

performs no worse than it does under an asymptotically stabilizing or exponentially stabilizing

Lyapunov-based controller implemented in sample-and-hold. When the exponentially stabilizing

controller is utilized to design the LEMPC, the asymptotic average performance of the process

under the LEMPC was proven to be no worse than that under steady-state operation. The LEMPC

formulation presented has advantages over other EMPC’s forwhich performance guarantees
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have been made, such as that the feasible region can be explicitly characterizeda priori. A

chemical process example demonstrated the economic benefits of incorporating a terminal equality

constraint in EMPC when a short prediction horizon is used.

In Part 3, the results of Parts 1 and 2 were combined to developan LEMPC formulation

incorporating a terminal equality constraint based on a Lyapunov-based controller that also had

input magnitude and rate of change constraints. It was proven that the closed-loop performance

under this LEMPC with input magnitude and rate of change constraints is no worse than that under

an asymptotically or exponentially stabilizing Lyapunov-based controller for nominal operation on

the finite-time and infinite-time operating intervals (thismeans that the infinite-time performance

under the LEMPC based on an exponentially stabilizing controller is no worse than that under

steady-state operation), regardless of the form of the costfunction or any penalties on the input

rate of change in the cost function. This is significant because it may be desirable from a

safety perspective to reduce input variations under EMPC but without reducing the economic

performance of the process below that obtainable with the traditional steady-state operating

strategies.
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Chapter 3

Elucidation of the Cause of Stiction-Induced

Oscillations and Valve Nonlinearity

Compensation within the Classical Control

Framework

3.1 Introduction

The results of the prior chapter indicate that control actuator limitations, such as the ability of

actuators to wear, should influence control design since proper functioning of the actuators that

implement control actions is critical to effective processcontrol loops. In the remainder of this

dissertation, we examine other limitations of control actuators (specifically, valve dynamics), their

impacts on control loop performance, and how these impacts can be mitigated.

In undergraduate process control courses, valve dynamics are often modeled with linear

transfer function models; such dynamics can be related to, for example, resistance of the gas used

to apply pressure in a pneumatic actuator to flow at the top of avalve.38 Valve characteristics (e.g.,

linear, equal percentage, and square root) may be reviewed in undergraduate coursework to provide

70



undergraduates with fundamentals regarding valve sizing and the effects of installing a valve on

the valve’s flow characteristics (the manner in which the flowthrough the valve is related to the

valve opening).38,118,129 Though there may be some discussion of other types of valve behavior

described by nonlinear models (e.g., saturation of the valve output at its maximum value, failure of

a valve to respond to changes in the control signal to the valve for some time after a valve movement

direction change due to mechanical parts in a valve (deadband due to backlash),33 or stiction,18,24

which refers to valve behavior due to friction that can be described by nonlinear dynamic

equations), time constraints in a semester/quarter and also a general focus in undergraduate process

control on linear dynamic systems do not typically permit anin-depth treatment of nonlinear valve

behavior and its impact on process control from a first-principles perspective. The chemical process

control literature also typically neglects valve dynamics. However, at chemical plants throughout

the world, valve issues such as stiction, deadband, saturation, hysteresis, and deadzone prevent

adequate set-point tracking.31,89

A variety of methods for analyzing and/or compensating for valve dynamics of various

types have been proposed. For example,54 demonstrates that even linear valve dynamics can

be problematic for a process operated under EMPC when the valve dynamics are neglected in

the model utilized by the EMPC for making state predictions;therefore, that work suggests

incorporating the valve dynamics in the dynamic process model for the controller. Reference31

analyzes the range of valve travel over which linear controldesign theory would be expected to be

adequate when a process that can be effectively modeled witha linear model receives a flow rate

from a valve with a square root or an equal percentage inherent valve characteristic. Reference152

develops an MPC-based method for linear processes where thevalve is subject to backlash. The

literature analyzing and compensating for the stiction nonlinearity is particularly extensive, with

reviews such as24 categorizing the methods, though stiction compensation remains an important

research topic with newer works such as those in19,115expanding the compensation literature.

It has been noted33,89,143that the controller, process, and valve dynamics all play a role in

determining the trajectories of the measured outputs of a closed-loop system. For example,143
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presents a table showing whether various combinations of linear processes (integrating and

non-integrating) and linear controllers (proportional (P) and proportional-integral (PI)) with

different stiction characteristics for a valve in the control loop are expected to result in limit cycling

of the valve output or not. In the present chapter, we analyzethe difficulty of determining,a

priori , the process output trajectories for nonlinear processes with various types of feedback control

designs, loop architectures, and types of valve behavior exhibited by the valves in the loop. We

begin by examining the coupled and nonlinear dynamics of such process-valve systems in a general

sense using systems of differential equations. This treatment provides a uniform mathematical

platform from which both the valve behavior commonly taughtin undergraduate coursework and

also nonlinear valve dynamics known to cause problems in industry can be understood and related.

We then use the insights gained from this study to describe the relationship between our analysis

and a number of valve behavior compensation methods in the literature, ending with a new integral

term modification stiction compensation technique for processes under PI control. The next chapter

continues the discussion of valve nonlinearity compensation methods with a focus on those for

processes under MPC. A level control example and ethylene oxidation continuous stirred tank

reactor example demonstrate the various points throughoutthe next two chapters. This chapter and

the next originally appeared in.51,53,56

3.2 Preliminaries

3.2.1 Notation

The transpose of a vectorx is denoted byxT . The notationu∈ S(∆) signifies that the vectoru is a

member of the set of piecewise-continuous (from the right) functions with period∆. The notation

tk= k∆, k= 0,1,2, . . ., and the notatioñt j = j∆e, j = 0,1,2, . . ., refer to elements of a time sequence

separated by sampling time periods of lengths∆ and∆e, respectively. The notation| · | signifies the

Euclidean norm of a vector.
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3.2.2 Class of Systems

We consider a nonlinear chemical process system with the following form:

ẋ= f (x,ua,w) (3.1)

wherex ∈ X ⊆ Rn is the process state vector (bounded in the setX), ua ∈ Rm is the vector of

process inputs,w ∈ Rl is a vector of bounded process disturbances (i.e.,w ∈ W := {w : |w| ≤

θ}), and f : Rn×Rm×Rl is a locally Lipschitz vector function of its arguments withf (0,0,0) =

0. Each componentua,i , i = 1, . . . ,m, of the process input vector is an output of a valve that is

adjusted utilizing a feedback controller for the nonlinearprocess that outputs a set-pointum,i, i =

1, . . . ,m, for each valve output. Because the valve output flow rates are bounded by physical valve

constraints, each inputua,i is bounded between a minimum (ua,i,min) and a maximum (ua,i,max)

flow rate, with the resulting input constraint onua denoted byU (i.e., ua ∈ U , whereU := {ua ∈

Rm | ua,i,min ≤ ua,i ≤ ua,i,max, i = 1, . . . ,m}). Since the flow rates out of the valve are bounded, the

set-points are bounded also (i.e.,um∈Um, whereUm := {um∈ Rm : um,i,min ≤ um,i ≤ um,i,max, i =

1, . . . ,m}). The relationship between eachum,i and eachua,i depends on the valve behavior. We

will consider valve behavior for which theua,i −um,i relationship is either static or dynamic. In the

case that theua,i −um,i relationships are static, the following equation holds:

ua,i = fstatic,i(um,i) (3.2)

where fstatic,i is a nonlinear vector function (fstatic(um) = [ fstatic,1(um,1) · · · fstatic,m(um,m)]
T).

Alternatively, a dynamic model may characterize theua,i −um,i relationship, whereua,i is related to

bothum,i and the dynamic state vectorxdyn,i ∈ Rpi , for which the componentsxdyn,i, j , j = 1, . . . , pi ,

are states of the valve model. In this case, the following equations describe the dynamics of the

valve model for thei − th valve:

ẋdyn,i = x̂dyn,i(xdyn,i ,um,i) (3.3)
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ua,i = fdynamic,i(xdyn,i) (3.4)

where x̂dyn,i is a nonlinear vector function characterizing the dynamicsof the

internal states of the model for thei − th valve, and fdynamic,i is a nonlinear vector

function relating ua,i and the internal dynamic states of the valve model. We define

xdyn = [xdyn,1 · · ·xdyn,m]
T , x̂dyn(xdyn,um) = [x̂dyn,1(xdyn,1,um,1) · · · x̂dyn,m(xdyn,m,um,m)]

T , and

fdynamic(xdyn) = [ fdynamic,1(xdyn,1) · · · fdynamic,m(xdyn,m)]
T .

We assume in this chapter that the value of eachum,i is determined utilizing a feedback

controller that utilizes knowledge of at least one process state to compute control actions. This

means that the value of eachum,i is affected by some subset of the state vector as follows:

um,i = fcontroller,i(x, ζ̂i) (3.5)

whereζ̂i ∈ Rr i , i = 1, . . . ,m, is a vector of internal states of the controller calculating um,i . These

internal states may be dynamic as follows:

˙̂ζi = finternal,i(x,xdyn, ζ̂i) (3.6)

Defining fcontroller(x, ζ̂ ) = [ fcontroller,1(x, ζ̂1) · · · fcontroller,m(x, ζ̂m)]
T , ζ̂ = [ζ̂1 · · · ζ̂m]

T , and

finternal(x,xdyn, ζ̂ ) = [ finternal,1(x,xdyn, ζ̂1) · · · finternal,m(x,xdyn, ζ̂m)]
T , we can write the

process-valve system as follows for the case of a static relationship betweenua and um

(i.e., Eq. 3.2 holds):






ẋ

˙̂ζ






=







f (x(t), fstatic( fcontroller(x, ζ̂ )),w(t))

finternal(x,xdyn, ζ̂ )






(3.7)

For the case of a dynamic relationship betweenua andum (i.e., Eqs. 3.3-3.4 hold), the following
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process-valve system results:













ẋ

ẋdyn

˙̂ζ













=













f (x(t), fdynamic(xdyn),w(t))

x̂dyn(xdyn, fcontroller(x, ζ̂ ))

finternal(x,xdyn, ζ̂ )













(3.8)

With slight abuse of notation, the right-hand sides of both Eqs. 3.7 and 3.8 will be denoted by

fq(q(t),um(t),w(t)) ( fq signifies the right-hand side of Eq. 3.7 when Eq. 3.2 characterizes the

ua,i −um,i relationship, and it signifies the right-hand side of Eq. 3.8when Eqs. 3.3-3.4 characterize

theua,i −um,i relationship), whereq(t) represents the vector of process-valve states (i.e.,q= [x ζ̂ ]T

when Eq. 3.7 describes the process-valve dynamics, andq= [x xdyn ζ̂ ]T when Eq. 3.8 describes the

process-valve dynamics). We assume thatfq is a locally Lipschitz vector function of its arguments

with fq(0,0,0) = 0.

Remark 3.1. Disturbances could also be considered in other dynamic states of the process-valve

model besides x, such as in xdyn, and the analysis presented throughout this chapter would continue

to hold.

3.2.3 Feedback Control Designs for Obtaining Valve Output Set-Points

Though in general any state feedback controller can be used to compute the values ofum,i, i =

1, . . . ,m, the examples in this chapter will obtainum utilizing a standard linear control design with

an integral term (PI control) and model predictive control (MPC).

3.2.3.1 Classical Linear Control with Integral Action

Linear control designs with an integral term are designed todrive a selected process output (here

taken to be a process state, which is consistent with standard industrial practice in the chemical

process industries) to its set-point. Thus, we assume that the process state vector or a subset of

it comprises the vector ˆx ∈ Rn̂, n̂ ≤ n, of measured outputs being driven to the set-point vector
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x̂sp ∈ Rn̂. When a PI controller is used, each component of ˆx is regulated to its set-point by an

individual linear controller that outputs a valve output flow rate set-point for an individual valve,

and thus ˆn= m. The dynamics of thei − th PI controller are represented by:

um,i = gA,i(x̂i ,ζi) (3.9)

ζ̇i = Acon,i







x̂i

ζi






+Bcon,i x̂i,sp (3.10)

The form of these equations follows that in Eqs. 3.5-3.6, with ζ̂i = ζi , fcontroller,i given bygA,i, and

finternal,i given by the right-hand side of Eq. 3.10.Acon,i andBcon,i are a matrix and scalar.

3.2.3.2 Model Predictive Control

Model predictive control126 is an optimization-based control strategy that computes

piecewise-constant set-pointsum for the control actuators with period∆ (i.e., um ∈ S(∆)) based

on the following optimization problem:

min
um(t)∈S(∆)

∫ tk+N

tk
Le(x̃(τ),um(τ))dτ (3.11a)

s.t. ˙̃x(t) = f (x̃(t),um(t),0) (3.11b)

x̃(tk) = x(tk) (3.11c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (3.11d)

um(t) ∈Um, ∀ t ∈ [tk, tk+N) (3.11e)

gMPC,1(x̃(t),um(t)) = 0 (3.11f)

gMPC,2(x̃(t),um(t))≤ 0 (3.11g)

The stage costLe(x,um) is minimized subject to bounds on the states (Eq. 3.11d), bounds on

the inputs (Eq. 3.11e), equality and inequality constraints (Eqs. 3.11f-3.11g), and the restriction
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that the states must evolve according to the nominal (w(t)≡ 0) dynamic model in Eq. 3.11b when

initialized from a measurement of the state (Eq. 3.11c). In Eq. 3.11b,um(t) is used in place ofua(t)

because the standard formulation of MPC in industry and the literature neglects valve behavior in

general (i.e., it assumes thatua = um; therefore, no reference is made toua in Eq. 3.11). MPC

can, however, handle valve saturation through the constraint of Eq. 3.11e, assumingua = um. A

vector of control actionsum is computed for each of theN sampling periods of length∆ (N is the

prediction horizon), and only the first of these vectors is applied to the process in a sample-and-hold

fashion according to a receding horizon strategy. The notation u∗m(t|tk), t ∈ [tk, tk+N), signifies the

optimal value ofum for time t for the optimization problem initiated at timetk.

A form of MPC that is commonly used in the chemical process industries is tracking MPC,

which drives ˆx to x̂sp (though it is not necessary in this case that ˆn = m) by utilizing a quadratic

stage cost with its minimum at the set-point vector ˆxsp with corresponding steady-state input vector

um,sp as follows:

Le(x̃(τ),um(τ)) = (x̂sp− ˜̂x)TQ(xsp− ˜̂x)+(um,sp−um)
TR(um,sp−um) (3.12)

whereQ> 0 andR> 0 are tuning matrices, and̂̃x denotes the predicted value of the vector ˆx.

The value of eachum,i calculated by the MPC has the form of Eq. 3.5 withζ̂i = 0 (which leaves

um,i as a function of the process state), though the functionfcontroller,i is not explicitly defined in

this case but is defined implicitly by the optimization problem in Eq. 3.11.

Remark 3.2. We assume that full state feedback is available for all MPC designs presented in this

chapter. When it is not, state estimation can be considered to develop an output feedback MPC

strategy (e.g.,66) but this will not be pursued here.
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3.3 Control Loop Including Valve Behavior: Process Output

Responses as a Closed-Loop Effect

In this section, we analyze the class of systems from the prior section under linear control and MPC

to show, at a fundamental mathematical level, that the negative responses of closed-loop systems

containing sticky valves result from the coupling of the controller, process, and valve dynamics

(i.e., they are closed-loop effects), and therefore also depend on the control loop architecture. We

then exemplify, by demonstrating that both linear valve dynamics and the dynamics of stiction

fall within the framework of Eq. 3.8, that this closed-loop perspective extends both to valve

dynamics typically discussed in the literature/undergraduate process control coursework as well as

to nonlinear dynamic behavior that is typically neglected at an academic level. Finally, we examine

two process examples that demonstrate the complexity of thedynamics of a process-valve system

and demonstrate that different effects are observed with different control designs and control loop

architectures.

3.3.1 Class of Systems Analysis

Consider the system of Eq. 3.7, which represents a process-valve system subject to only a static

valve nonlinearity under feedback control. The static nonlinearity impacts the dynamics ofx (i.e.,

in the absence of the static valve nonlinearity (ua = um), the dynamics of ˙x would be described by

f (x(t), fcontroller(x, ζ̂ ),w(t)), which is different than the dynamics in Eq. 3.7). In addition, bothẋ

and ˙̂ζ are functions ofx, so modifying fstatic affects the response of bothx andζ̂ . Due to the fact

that the system is nonlinear, the effect on the closed-loop response of changingfstatic is difficult

to determine without performing closed-loop simulations.This is particularly significant when

there are multiple process inputsua,i related toum,i through different static nonlinear functions,

especially assuming that the dynamics of the components ofx are coupled. Then, eachua,i affects

all components ofx either directly or through coupling of those components in the vector function

f , and the value of eachua,i is affected by all components ofx due to the fact that the components of

78



x are coupled and at least one of those components is used to calculateum,i to defineua,i (Eq. 3.2)

due to the use of state feedback control (Eq. 3.5). Using a similar analysis, it can be deduced

that changing the control law (i.e., changingfcontroller and finternal) also impacts the closed-loop

response in a manner that is difficult to determinea priori (without simulations).

When the valve dynamics can be described by dynamic systems of equations as in Eq. 3.8, the

dynamics of the valve, controller, and process are again coupled. In this case, however, there is an

additional complexity in that the valve dynamics add additional states with nonlinear dynamics (or

linear in the specific case of linear valve dynamics) that arenot present in the case thatua = um.

Furthermore, becauseum,i is a function of at least one of the components ofx, it is affected by the

other components ofx as well, assuming coupling between these components. This causesxdyn,i

andua,i to also be affected byx (Eqs. 3.3-3.4), and the components ofx are affected by the values

of all ua,i in Eq. 3.1 and thus by the valve statesxdyn,i , i = 1, . . . ,m, from Eq. 3.4.

The above analysis shows that from a fundamental mathematical analysis of general equations

for a process-valve system, the dynamics of all valves can beseen to be coupled with the dynamics

of the other valves and also with the dynamics of the process and the controller due to state

feedback (this is not limited to PI control or MPC). Because the controller dynamics affect

the evolution of the states and thus the process outputs, different types of controllers would be

expected to result in different responses of the process outputs. Furthermore, the control loop

architecture will also affect the response because it will impact the equations that describe the

controller dynamics. This analysis reveals that the negative effects of valve dynamics on control

loop effectiveness are related to the controller, process,and valve dynamics, in addition to the

control architecture.

Remark 3.3. In this chapter, we consider that all states of the process-valve model are coupled

since this is the most general case. For specific cases when this does not hold, it may be possible

to analyze the dynamics of the specific process to see if any simplifications result compared to the

analysis in this chapter.
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3.3.1.1 Linear Valve Dynamics

The analysis just presented holds for linear valve dynamicswhich, though typically presented in

transfer function form in undergraduate coursework, can becast in state-space form in the time

domain as:

ẋua,i = Aixua,i +Bium,i (3.13)

ua,i =Cixua,i (3.14)

wherexua,i ∈ Rpi is the vector of internal states of the linear valve dynamic model for thei − th

valve, andAi , Bi , andCi are two matrices and a vector, respectively, of appropriatedimensions.

Combining the process and valve layer models gives the following process-valve model for this

case (omitting the dynamics of the controller):







ẋ

ẋua






=







f (x(t),Cxua(t),w(t))

Axua +Bum






(3.15)

whereA, B, andC are matrices and vectors of appropriate dimensions containing the elements of

Ai , Bi , andCi , i = 1, . . . ,m, in an appropriate order, andxua = [xua,1 . . . xua,m]
T . Using the notation

in Eqs. 3.3-3.4,xdyn= xua, andx̂dyn,i(xdyn,i ,um,i) and fdynamic,i(xdyn,i) equal the right-hand sides of

Eqs. 3.13 and 3.14, respectively.

3.3.1.2 Sticky Valve Dynamics

Like linear valve dynamics, nonlinear valve dynamics also fit within the framework of Eq. 3.8.

For the case that all valves are sticky (i.e., affected by friction/stiction, which prevents the valve

position from appreciably changing until the force appliedto the valve moving parts becomes

sufficiently large) and move in a straight line (rather than rotating), the valve positionxv,i and the

valve velocityvv,i for the i − th valve evolve in time according to the following force balance:

ẋv,i = vv,i (3.16)
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v̇v,i =
1

mv,i
(aT

i FO,i +cT
i FA,i −Ff ric,i) (3.17)

wheremv,i is the mass of the moving parts of thei− th valve,FO,i is a vector of non-friction forces

on the valve that are not related to the controller output or friction force and which have coefficient

vectorai , FA,i is a vector of non-friction forces on the valve that are adjusted based on the controller

output and have coefficient vectorci , andFf ric,i is the friction force on thei− th valve. The friction

force is a static function ofxv,i , vv,i , andzf ,i (which is a dynamic internal state of the friction model),

as follows:

Ff ric,i = F̂f ric,i(xv,i ,vv,i ,zf ,i) (3.18)

żf ,i = ẑf ,i(xv,i ,vv,i ,zf ,i) (3.19)

whereẑf ,i is a nonlinear vector function describing the dynamics of the internal states of the friction

model.

Assuming thatFA,i is a static function ofum,i as follows:

FA,i = fSO,i(um,i) (3.20)

wherefSO,i is a nonlinear vector function describing the relationshipbetweenum,i andFA,i, and that

FO,i is also a function of the valve model states, the right-hand side of Eq. 3.17 can be denoted by

v̂v,i(um,i ,xv,i ,vv,i ,zf ,i). Finally, assuming that the relationship betweenua,i andxv,i can be expressed

through the following static nonlinear equation describing the valve characteristic:

ua,i = f f low,i(xv,i) (3.21)

we obtain the following process-valve model (omitting the dynamics of the controller for the
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process):


















ẋ

ẋv

v̇v

żf



















=



















f (x(t), f f low(xv(t)),w(t))

vv

v̂v(um,xv,vv,zf )

ẑf (xv,vv,zf )



















(3.22)

where xv = [xv,1 · · ·xv,m]
T , vv = [vv,1 · · ·vv,m]

T , zf = [zf ,1 · · ·zf ,m]
T , f f low(xv(t)) = [ f f low,1(xv,1)

· · · f f low,m(xv,m)]
T , v̂v(um,xv,vv,zf ) = [v̂v,1(um,1,xv,1,vv,1,zf ,1) · · · v̂v,m(um,m,xv,m,vv,m,zf ,m)]

T ,

ẑf (xv,vv,zf ) = [ẑf ,1(xv,1,vv,1,zf ,1) · · · ẑf ,m(xv,m,vv,m,zf ,m)]
T . In the notation of Eq. 3.8,xdyn =

[xv vv zf ]
T , fdynamic(xdyn) = f f low(xv(t)), andx̂dyn,i(xdyn,i ,um,i) is given by the right-hand sides of

Eqs. 3.16-3.17 and 3.19.

For clarification on the stiction modeling concepts presented in this section, the reader may

refer to Chapter 5, in which stiction is the focus of the chapter, and specifically to Figs. 5.1,

5.2, 5.4, and 5.5, which provide schematics exemplifying the concepts of forces on a valve, valve

characteristics, and different amounts of flow through a valve for different valve positions.

3.3.2 Process Examples Illustrating a Closed-Loop Perspective on Effects of

Valve Behavior

In this section, we provide two example process systems (a level control example and a continuous

stirred tank reactor (CSTR) example) that highlight the interactions between the controller, valve,

and process dynamics in a control loop where valve behavior cannot be neglected.

3.3.2.1 Single-Input/Single-Output Level Control Loop

We consider first a level control problem with a sticky valve in the control loop. The level

control problem is chosen due to its simplicity, which allows us to focus on the effects of the

valve dynamics in this example without the added complexityof a large-scale nonlinear process

model. In the level control problem (shown in Fig. 3.1) considered, the tank inlet flow rateua is
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Figure 3.1: Schematic depicting the tank considered in the level control example.

the controlled variable. The dynamics of the tank level are:

dh
dt

=
1
A
(ua−c1

√
h) (3.23)

whereA= 0.25 m2 denotes the cross-sectional area of the tank, andc1 = 0.008333m5/2/s is the

outlet resistance coefficient. On an order of magnitude consistent with an example from118 that

uses these parameter values, we define the minimum tank height as 0m, the maximum tank height

as 0.5184m, the minimum value ofua asua,min = 0 m3/s (fully closed valve), and the maximum

value ofua asua,max= 0.006m3/s (fully open valve).

Without Valve Dynamics: Well-Tuned Control. We first demonstrate that when the valve

dynamics can be assumed to be instantaneous (i.e., they are so fast thatua = um at all times is
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a reasonable approximation), as is typically assumed in thechemical process control literature, a

well-tuned PI controller and an MPC can be designed that effectively drive the level to its set-point.

The PI controller for the tank level is taken to have the following form:

ζ̇ = hsp−h, ζ (0) = 0 (3.24)

um = uas+Kc(hsp−h)+Kcζ/τI (3.25)

whereum is the controller output,ζ is the dynamic (integrating) variable of the PI controller,uas

is the steady-state value ofua before the set-point change, andhsp is the level set-point. A tuning

Kc = 0.006 andτI = 43.2 was selected that preventsum from dipping belowua,min or shooting

aboveua,max for the set-points simulated. The response of the level of the tank of Eq. 3.23 under

the PI controller of Eqs. 3.24-3.25 whenua = um (no valve dynamics) is shown in the top plot

of Fig. 3.2, plotted every 100 integration steps, for the tank level initiated from its maximum

(ua = 0.006m3/s, h= 0.5184m), decreased to 0.15m, and then increased to 0.20m (the set-point

change from 0.15m to 0.20mwill be the focus in the remainder of this section to avoid theeffects

of possible initial transients during the first set-point change). Each set-point was held for 1040

s. The dynamic system was integrated with the Explicit Euler numerical integration method and

an integration step size of 10−3 s. At the set-point changes, the value ofζ was re-set to 0 and the

value ofuas was set to the last applied value ofum.

A more systematic method than tuning a PI controller for ensuring that the process meets its

set-point without violating the constraints on the inputs is to use tracking MPC, which calculates

control actions subject to constraints. Focusing on the second set-point change from the example

above, we assume that the level has already been brought to 0.15 m and that a well-tuned tracking

MPC must now drive the closed-loop stateh to 0.20 m when there are no actuator dynamics (i.e.,

84



0 500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

h
(m

),
P

I

 

 

h
hsp

0 500 1000 1500 2000 2500

0.15

0.16

0.17

0.18

0.19

0.2

h
(m

),
M

P
C

Time (s)

 

 

h
hsp

Figure 3.2: Closed-loop trajectory of levelh with reference to its set-pointhsp for the process of
Eq. 3.23 under the PI controller of Eqs. 3.24-3.25 (top plot)and under the MPC of Eq. 3.26 (bottom
plot) with no actuator dynamics.
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ua = um). The MPC for this case is:

min
um(t)∈S(∆)

∫ tk+N

tk
Q(hsp− h̃)2+R(ua,sp−um)

2dτ (3.26a)

s.t. ˙̃h=
1
A
(um−c1

√

h̃) (3.26b)

h̃(tk) = h(tk) (3.26c)

0≤ um(t)≤ 0.006, ∀ t ∈ [tk, tk+N) (3.26d)

whereQ = 0.00001 andR = 1. Using this MPC to control the process of Eq. 3.23 with an

integration step size of 10−3 s within the MPC, an integration step size of 10−5 s to simulate

the level, a prediction horizon ofN = 50, a sampling period of length∆ = 1 s, a final time of the

simulation of 2500s, and a set-pointhsp = 0.20 m with its corresponding steady-state flow rate

ua,sp= 0.00373m3/s, the state profile in the bottom plot of Fig. 3.2 is obtained (the results are

plotted every 10000 integration steps). The nonlinear interior point optimization solver Ipopt148

was used for the simulations with a tolerance of 10−8 on a 2.40 GHz Intel Core 2 Quad CPU

Q6600 on a 64-bit Windows 7 Professional operating system with 4.00 GB of RAM.

With Stiction: Undesirable Closed-Loop Behavior.We now demonstrate that when the valve

is sticky, but the PI and MPC designs shown above to be well-tuned when the valve did not have

significant dynamics (i.e., before it became sticky) are applied, various set-point tracking issues

can occur. This demonstrates that sustained oscillations can be set up in an originally well-tuned

control loop that has become sticky (perhaps due to, for example, the valve packing being tightened

to prevent chemical emissions from the plant89). For the sticky valve case,ua in Eq. 3.23 is

the flow rate out of a pressure-to-close spring-diaphragm sliding-stem globe valve actuated by a

pressureP. If the valve is initiated from its fully open position, no pressure is initially applied

and the valve stem is at its equilibrium positionxv = 0 m. Its fully closed position corresponds to

xv = xv,max= 0.1016m. The differential equations for the valve dynamics are:72

dxv

dt
= vv (3.27)

86



dvv

dt
=

1
mv

[AvP−ksxv−Ff ] (3.28)

whereAv andks are the diaphragm area and spring constant, respectively, and the friction forceFf

is determined from the LuGre friction model:26

Ff = σ0zf +σ1
dzf

dt
+σ2vv (3.29)

dzf

dt
= vv−

|vv|σ0

FC+(FS−FC)e−(vv/vs)2
zf (3.30)

The parameters of the valve dynamic model in Eqs. 3.27-3.30 are those for the “nominal valve”

in72 and are displayed in Table 3.1. In addition, we assume that the valve has a linear installed

characteristic:38

ua =

(

xv,max−xv

xv,max

)

ua,max (3.31)

The pressure to be applied to the valve for a given set-pointum is determined from the following

um−P relationship that was developed for a low-stiction valve (its development will be described

in Section 5.4.2):

P=
(um/ua,max)−0.70391/0.7042

− 0.05864
6894.76∗0.7042

(3.32)

Thus, we assume that the valve is operated with the pressure applied to the valve determined

by a law that was developed when the valve had low friction, though this relationship does

not adequately describe the valve input-output relationship for a valve with more significant

stiction. Though this relationship was developed for a low-stiction valve (instead of the no-stiction

valve for which the tuning of both the PI controller and MPC were determined in Fig. 3.2),

the tunings developed in the no-stiction case perform well for the low-stiction valve with the

um−P relationship in Eq. 3.32 because the slope and intercept of the implicitP versusum/ua,max

relationship assumed in Fig. 3.2 (obtained fromFf = 0 N in Eq. 3.28) are only about 0.08% and

0.04% different, respectively, from the values in Eq. 3.32.The relationship of Eq. 3.32 has the

form of Eq. 3.20, whereP is FA,i and the right-hand side of Eq. 3.32 isfSO,i(um).

87



Table 3.1: Valve Model Parameters72

Parameter Value
mv 1.361kg
Av 0.06452m2

ks 52538kg/s2

vs 0.000254m/s
σ0 108 kg/s2

σ1 9000kg/s
σ2 612.9 kg/s
FC 1423kg·m/s2

FS 1707.7 kg·m/s2
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Figure 3.3: Closed-loop trajectories ofh, ua, andum for the process of Eq. 3.23 under the PI
controller of Eqs. 3.24-3.25 with the valve dynamics in Eqs.3.27-3.32. This data is plotted every
100000 integration steps.
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Fig. 3.3 showsh, um, andua when the valve with the dynamics in Eqs. 3.27-3.32 is used to

adjust the flow rate to the process of Eq. 3.23 under the PI controller of Eqs. 3.24-3.25. The

valve was initiated from its fully open position (i.e.,h= 0.5184m, ua = 0.006m3/s, ζ = 0 m· s,

xv = 0 m, vv = 0 m/s, zf = 0 m), and the set-point was changed to 0.15m for 15600s, then to

0.20 m for 15600s. Because the second set-point change is the focus in this chapter, we will

refer to the process-valve state att = 15600s from this simulation asqI (the initial process-valve

state for the level set-point change from 0.15 m to 0.20 m). The value ofζ was re-set to zero

when the level set-point was changed, and the value ofuas in Eq. 3.25 was re-set to the last applied

value ofua when the set-point was changed. The trajectories were obtained using the Explicit Euler

numerical integration method with an integration step sizeof 10−5 s. In the simulations of the valve

throughout this section, several physical considerationsare taken into account: ifum > ua,max or

um < ua,min, um is saturated atua,max or ua,min respectively; ifP< 0, P is set to 0; ifua > ua,max or

ua < ua,min, ua is saturated atua,max or ua,min respectively.

The cause of the oscillations that are set up at the second set-point change in Fig. 3.3 under the

PI controller is related to the manner in which the forces applied to the valve change over time.

The deadband/stickband causes the force applied to the valve by the pneumatic actuation to build

up to a level that un-sticks the valve, allowing it to move. However, once the valve begins moving,

there is a rapid drop in the friction force due to the frictiondynamics for this valve (a contributor to

this is that the parameterFS, which represents the static friction coefficient, is larger thanFC, which

represents the Coulomb friction coefficient). As the forcesbalance, the valve position changes in

such a way thathsp is overshot. As the valve then starts to move in the opposite direction, another

series of changes in the forces on the valve causes it to move to a position that results in overshoot

of hsp in the opposite direction.

To clarify this point, we present some details specific to thesimulation performed (the exact

numbers reported are related to the integration step size utilized, but the general effects would

be expected to extend qualitatively to other integration step sizes). We analyze the force balance

between the times̄t1 = 17608.72441s and t̄2 = 17608.72597s in Fig. 3.3, during whichP only
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increases from 55942.138 to 55942.181Pa due to the manner and rate at which the integral and

proportional terms in the PI control law change. Within thissame time period,xv changes only

slightly (from 0.036236m to 0.036295m). Thus, the two terms in Eq. 3.28 involving the pressure

and the valve position do not change much betweent̄1 and t̄2. However, in this short time, the

friction force changes significantly (i.e., it is 1700.022N, which is approximately the value ofFS,

at t̄1, while it is 1501.874N (closer to the value ofFC) at t̄2). With this rapid change of the friction

force, the right-hand side of Eq. 3.28 increases from 4.1304N/kg at t̄1 to 147.4380N/kg at t̄2

because though the first two terms do not change much, the termfor the friction force decreases

significantly. When the right-hand side of Eq. 3.28 increases, the valve velocity increases, which

can cause the valve to move. Though this only looks at two timeinstants, it shows that the rapid

drop in the friction force can play an important role in changing the total force applied to the

valve before it moves to a position that causes the level to overshoot its set-point (which is why

slip-jump, related to this effect, is cited as one of the contributors to stiction-induced oscillations).

In addition, the dynamics of the PI controller play a role in the oscillations because the dynamics

do not permit the pressure on the valve stem to change at the rate necessary to keep up with the

changes in the friction force (e.g., as the term related to the friction force in Eq. 3.28 decreases

by close to 200N betweent̄1 and t̄2, the force due to the pressure only changes by 0.0027N).

The magnitude of the integral term is significantly larger than the magnitude of the proportional

term when the level changes and overshoots its set-point, which also contributes to the length of

time that the valve is stuck. However, the cause of the oscillations cannot be attributed only to the

interactions of the pressure applied to the valve and the changes in the friction force; a good deal of

complex behavior occurs due to the nonlinear dynamics of thevalve that are coupled with those of

the process and controller, including a sharp increase in the friction force after it begins decreasing

followed by another decrease, the manner in which the changes inxv affect the force balance as the

valve moves, and the manner in which the dynamics of the levelchange the value of the pressure

applied to the valve through the PI control law. Thus, closed-loop oscillations that occur when a

sticky valve is within a control loop containing an integrating controller should be understood as a
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closed-loop property, dependent on the interactions between all of the forces in the force balance,

and the manner in which all states of the closed-loop process-valve system, including the controller

states, evolve to affect the force balance through coupled dynamic equations. The root cause of

stiction-induced oscillations should thus be understood as an imbalance in the forces applied to the

valve that does not allow it to stabilize at values that wouldcause the process variable to remain at

its set-point; however, there is no specific contributor in the valve dynamics, controller dynamics,

or process dynamics that causes this phenomenon, but how they interact together.

The fact that the negative effects of stiction in a control loop are a closed-loop property is

further emphasized by utilizing the MPC of Eq. 3.26 (i.e., anMPC that accounts only for the level

dynamics and not the actuator dynamics) for the set-point change from 0.15 m to 0.20 m for the

process-valve system of Eqs. 3.23 and 3.27-3.32, initiatedfrom qI . The process was integrated

with an integration step size of 10−6 s using the Explicit Euler numerical integration method.

The resulting trajectories of the level under the MPC are shown in Fig. 3.4, plotted every 1000

integration steps (the values ofh, ua, andum for this case are denoted in the legend by U, signifying

that stiction is uncompensated in these results because theMPC does not account for the actuator

dynamics). No oscillations are observed for this level set-point change as in Fig. 3.3, demonstrating

that the stiction-induced oscillations observed under thePI controller are a closed-loop property

(i.e., they depend on the controller utilized). Instead of oscillations, a persistent offset from the

set-point occurs under the MPC. The reason for this is that because the MPC is unaware of the

actuator dynamics, it calculates values ofum that correspond to pressures (through Eq. 3.32) that

do not allow the valve to move according to the force balance (i.e., the MPC expects that the

control actions that it calculates will drive the level toward the set-point because it is anticipating

that there is no friction in the valve, but due to friction thevalve cannot move with the pressure

applied to it). The MPC continues to compute approximately the same control action for the first

sampling period of the prediction horizon at each sampling time (which is reasonable considering

that the state measurement that it receives is approximately the same each time since the valve is

stuck and thus the flow rate out of the valve is not appreciablychanging to adjust the level). This
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Figure 3.4: Plot of trajectories ofh, ua, um, and their set-points for the MPC of Eq. 3.26 (U,
signifying “uncompensated”) and the MPC of Eq. 4.4 (C, signifying “compensated”) applied to the
nonlinear process of Eqs. 3.23 and 3.27-3.32 for a level set-point change from 0.15m to 0.20m.

control action continues to be unable to affect the level appreciably, resulting in persistent off-set

of the level fromhsp because the MPC has no mechanism for detecting that the set-points it has

calculated are failing to make an impact on the system.

In addition to the valve behavior, controller dynamics, andprocess dynamics, the control loop

architecture affects the response of the process outputs. This can be demonstrated by adding flow

control to the valve of Eqs. 3.27-3.31. In this case, the flow rate set-pointum is computed by the

PI controller of Eqs. 3.24-3.25 for the tank level, and becomes the set-point for a minor PI control

loop used to regulateua to um. This minor loop calculates the pressureP to be applied to the valve
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stem based on the errorum−ua as follows:

P= Ps+Kc,p
um−ua

ua,max
+

Kc,p

τI ,p
ζP (3.33)

ζ̇P =
um−ua

ua,max
, ζP(0) = 0 (3.34)

wherePs is the steady-state value of the pressure, andKc,p = −82737.09, τI ,p = 0.01, andζP are

the proportional gain, integral time, and internal state, respectively, of the minor loop controller.

The tuning performed successfully whenum was constant for some time.

The valve was initially operated without flow control (i.e.,Eq. 3.32 was used to relateum and

P) for 15600s for a level set-point change from 0.5184m to 0.15 m to reachqI . Subsequently, it

was operated under the flow controller of Eqs. 3.33-3.34 for 15600s for the level set-point change

from 0.15m to 0.20m. Fig. 3.5 shows the responses ofh, um, andua for the set-point change from

0.15m to 0.20m (the time axis is short to display the fast response of the valve under flow control).

These results were obtained using an integration step size of 10−5 s, with the data plotted every

100000 integration steps. The integral termζP of the controller for the valve was re-set to zero

when the level set-point was changed, and at that point the value of Ps was also re-set to the last

applied pressure. As shown in Fig. 3.5, the sustained oscillations apparent in Fig. 3.3 do not appear

though the same process, sticky valve, and outer loop PI controller are used as in Fig. 3.3. Instead,

when flow control is used,ua tracksum well after some initial overshoot ofum in the time period

immediately after the set-point change. During these initial overshoots, the pressure applied to the

valve changed rapidly according to Eqs. 3.33-3.34, causingthe forces on the valve to result in the

initial significant overshoots ofua around the changingum set-point. However, despite these initial

overshoots ofua, the flow controller is successful at causing the forces to eventually balance on the

valve in such a manner thatua is able to trackum and thus to drive the level to its set-point. This

shows that for this example, the manner in which the forces onthe valve are changed using the flow

controller is able to eliminate the stiction-induced oscillations in the level. At a more fundamental

level, changing the control loop architecture changed the number of coupled dynamic states in the
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Figure 3.5: Closed-loop trajectories ofh, ua, andum for the process of Eq. 3.23 under the PI
controller of Eqs. 3.24-3.25 with the valve in Eqs. 3.27-3.31 and the PI controller of Eqs. 3.33-3.34
used to control the valve flow rate to its set-point value for the set-point change from 0.15 m to
0.20m.

system of nonlinear differential equations describing theprocess-valve system (i.e., whereas the

state vector of the process-valve system without flow control includedh, ζ , xv, vv, andzf , it also

includesζP when flow control is used). Returning to the notation of Eq. 3.8, this means thatxdyn

incorporates an extra state and its dynamics when flow control is used, which overall changes the

response of the measured output (h) of the process-valve system.

Remark 3.4. The analysis performed demonstrates that the standard valve output-controller input

response for a sticky valve exhibited in Fig. 3.6 (and displayed in multiple sources in the literature

such as33 and24) can be understood as the response of the valve output when the force applied to

the valve is ramped up and down by a controller (i.e., the closed-loop analysis above indicates
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Figure 3.6: Standard controller input-valve output relationship reported for a sticky valve. The
control signal to the valve changes but the valve output doesnot change appreciably in the regions
of deadband and stickband. The valve output changes quicklyin the region of slip-jump, and the
valve output and control signal are linearly related in the moving phase region of the response.

that the “controller output” on the standard plots is linkedto the force applied to the valve).

Furthermore, Fig. 3.6 reflects the transient behavior of thevalve after it begins moving (i.e., it

shows the slip-jump). Because the plot can also be understood as the valve position xv (rather than

ua) versus the controller signal as in,86 a linear valve characteristic is assumed when the same

plot is obtained for ua versus the controller signal.

3.3.2.2 Multiple-Input/Multiple-Output Ethylene Oxidat ion Process

In this section, we highlight that as the complexity of the process-valve dynamics increases

compared to those in the prior section (i.e., we move from a one-state, single-input process model

to a four-state, three-input process model), it can be difficult to determine the effects of valve

dynamics on process output responses without simulating the entire process-valve system under

the proposed control design and control loop architecture.Specifically, we examine the ethylene
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oxide production process from Section 2.3.1.4 with the fourstatesx1, x2, x3, andx4, but for the

case that there are three inputs to this process that are determined by valve outputs as follows:12,122

ẋ1 = ua,1(1−x1x4) (3.35a)

ẋ2 = ua,1(ua,2−x2x4)−A1exp(γ1/x4)(x2x4)
0.5−A2exp(γ2/x4)(x2x4)

0.25 (3.35b)

ẋ3 =−ua,1x3x4+A1exp(γ1/x4)(x2x4)
0.5−A3exp(γ3/x4)(x3x4)

0.5 (3.35c)

ẋ4 =
ua,1

x1
(1−x4)+

B1

x1
exp(γ1/x4)(x2x4)

0.5+
B2

x1
exp(γ2/x4)(x2x4)

0.25+

B3

x1
exp(γ3/x4)(x3x4)

0.5− B4

x1
(x4−ua,3)

(3.35d)

where the process inputsua,1, ua,2, andua,3 are dimensionless quantities corresponding to the feed

volumetric flow rate, feed ethylene concentration, and coolant temperature, which are assumed to

be adjusted by individual valves either directly (e.g.,ua,1) or indirectly (e.g.,ua,2 may be adjusted

by opening or closing valves that allow a more concentrated ethylene stream to mix with a solvent

stream, andua,3 may be adjusted by heating or cooling the coolant using a higher or lower flow

rate of another fluid past the coolant in a heat exchanger). Due to the coupling between the states

in Eq. 3.35, and the highly nonlinear dynamic equations, it is difficult to predict the evolution of

x1, x2, x3, andx4, regardless of the type of controller used to calculateum,1, um,2, andum,3, and

even ifua,1 = um,1, ua,2 = um,2, andua,3 = um,3. Therefore, if the valves also have dynamics, linear

or nonlinear, static or dynamic, or potentially different dynamics for each valve, and different

controllers or control loop architectures for each valve, the number of coupled states in this system

of nonlinear differential equations increases and performing simulations will be the best way to

understand how each process output will respond.
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3.4 Valve Behavior Compensation for Classical Control Loops

In this section, we demonstrate that the closed-loop perspective on the process output responses

observed in control loops with valves for whichua 6= um, developed in the prior sections,

enables an understanding of previously proposed valve behavior compensation techniques, and

the development of new compensation techniques that tacklethe root cause of issues observed in

many control loops (which is that they are the result of coupled, nonlinear process-valve dynamics).

Due to the prevalence of compensation techniques specifically for sticky valve behavior, we will

focus first on analyzing several stiction compensation methods from the literature in a closed-loop

context. We will then propose a new integral term modification stiction compensation method for

a control loop under PI control.

3.4.1 Stiction Compensation Methods: Flow Control

Utilizing flow control to driveua to um is a common industrial practice, and it has similarities to

another common practice of adding a positioner77,86to a valve. Such methods can change the force

applied by the actuation to the valve in an attempt to make thesum of forces balance in a manner

that allows the process outputs to reach their set-points. With flow control, the force applied to the

valve would be a function ofum, ua, and internal states of the flow controller. This method relies

on the higher-level controller being well-tuned whenua = um, so thatua should be brought toum

again by manipulating the forces on the valve. A PI control law for this case is:

ζ̇c = (um−ua), ζc(0) = 0 (3.36)

uc = ucs+Kc,c(um−ua)+Kc,cζc/τI ,c (3.37)

whereζc, uc, ucs, Kc,c andτI ,c are the dynamic state, control action, steady-state control action,

proportional gain, and integral time of the flow controller.
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3.4.2 Stiction Compensation Methods: Controller Tuning Adjustments

Re-tuning of controllers has been advocated as a method for reducing closed-loop oscillations

developed in a control loop containing a sticky valve under classical PID-type control (e.g.,111).

The re-tuning may result in an improved closed-loop response because it changes the dynamics of

the PID-type controller, which, from the analysis above, alters the response of the process outputs

due to the coupling of the controller, process, and valve dynamics. Reference143 highlights the

difficulty of determining an appropriate tuning for obtaining a desired response, which is consistent

with the closed-loop analysis proposed above.

3.4.3 Stiction Compensation Methods: Augmented Controller Signal

The knocker77,134 and constant reinforcement86 adjust the control signal received by the valve

by adding either a constant or time-varying signal to the input calculated by the controller. This

changes the manner in which the force applied to the valve is calculated. For example, consider the

knocker applied to the level control example without flow control. The PI controller has its own

dynamics that, in the absence of the knocker, dictate the pressure applied to the valve. However,

with the knocker, there are times when the pressure applied to the valve is increased by an amount

determined by the knocker parameters above the amount output by the PI controller, but then after

a certain time period, the knocker takes away that extra amount of pressure. This allows the PI

controller to retain its dynamics but permits the pressure to be adjusted using a source other than

the PI controller as well, which changes the balance of forces on the valve and can result in a

different closed-loop response than would be obtained without the knocker. Because the different

values of the knocker parameters change the way that the forces on the valve are applied, different

values of the knocker parameters cause different closed-loop responses as observed in.134 Constant

reinforcement similarly augments the output of the PI controller, adding a constant positive signal

when the PI controller output is increasing and a constant negative signal when the PI controller

output is decreasing, which again changes the right-hand side of the equation for the valve velocity

compared to not adding such a signal. One aspect of the effectof this on the level control problem
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might be, for example, that the integral term of the PI controller may not need to become as large

for the pressure from the pneumatic actuation to overcome the static friction force and cause the

valve to move. A method proposed by39 for turning off the PID-type controller and the knocker

is an extension of the knocker method, but as noted by150 and clarified through the closed-loop

(force balance) analysis in this section, the knocker changes the force balance but that does not

guarantee that there will be no offset between the process output and its set-point so thus removing

the controller and compensating pulses may not be appropriate.

3.4.4 Stiction Compensation Methods: Two Moves Method

The two moves method135 specifies compensating signals to apply to the signal comingfrom a

linear controller that will drive the stem position to its set-point. This method is model-based,

which means that it has accounted for the coupling of the process-valve dynamics, and a number of

assumptions are required to guarantee that the method can drive the valve position to its set-point,

including that the plant dynamics are linear and have the origin as a stable equilibrium, that a

particular data-driven stiction model is an exact representation of the stiction dynamics, and that

there are no disturbances or plant-model mismatch. A methodsimilar in concept to the two moves

method (it determines how to change the set-points for a closed-loop system in a manner that brings

the valve position to a desired value) is developed in150 and is again a model-based compensator

for processes that can be described with a linear model and are under linear control.

3.4.5 Stiction Compensation Methods: Integral Term Modification

A novel stiction compensation method that we describe in this chapter is intended for processes

under linear control. It seeks to change the manner in which the force applied to a valve is

calculated by modifying the integral term of the linear control law used to regulate the process

output to its set-point. This is an alternative to the controller tuning adjustment methods discussed

above, and is considered because it may be undesirable to change a controller’s tuning if the tuning

being utilized is known to work well for the valve when it is not sticky and thus would be the
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preferred tuning after valve maintenance is performed. Furthermore, the nonlinearity of the stiction

phenomenon and the complexity of the manner in which the forces on the valve balance and come

out of balance makes it difficult to discerna priori what the best tuning to use when the valve

is sticky should be. Therefore, instead of disrupting the desired tuning, in thead hoc fashion

that would be required, a term can be added to the integral action of the linear controller that

can easily be removed or adjusted for any set-point change toattempt to alleviate stiction-induced

oscillations. Given that a characteristic of the stiction-induced oscillations is that the valve output

ua does not track its set-pointum, we propose a modification to the integral term of the controller

based on the scaled difference betweenua andum. Specifically, for a PI controller for whichζ

signifies the integral of the error between the process output set-point (assuming a single output

denoted by ˆxsp) and the process output ( ˆx, assumed to be a component of the process state vector),

the following control law defines the control action with an integral term modification:

um = uas+Kc(x̂sp− x̂)+Kcζ/τI (3.38)

ζ̇ =











(x̂sp− x̂)+L(ua−um), t < tAW

(x̂sp− x̂)+Le(−β (t−tAW))(ua−um), t ≥ tAW

ζ (0) = 0

(3.39)

whereL, β , andtAW are tuning parameters that can be adjusted by a control engineer to attempt to

mitigate stiction-induced oscillations. WhenL = 0, Eq. 3.39 reduces to the standard integral term

in a PI control law, and thus has no effect. The parameters arebest determined using closed-loop

simulations and/or on-line adjustments ofL, β , andtAW; however, the general goals of adjusting the

parameters provide a potential methodology for looking foran appropriate tuning. In particular,

the goal of this method is to determine a tuning that can decreaseζ̇ in such a way that the forces

on the valve equilibrate at a value that causes the controlled process output to reach its set-point.

By choosing a value ofL that causes the termL(ua−um) in Eq. 3.39 to have a sign opposite to that

of the term(x̂sp− x̂), it is possible to causėζ to decrease even before ˆx= x̂sp (this would not be
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possible with the standard PI control law, for which the integral term can only begin to decrease

after the set-point is exceeded). Therefore, a possible strategy for tuning the term containingL in

Eq. 3.39 is by first settingβ and tAW to zero, and then searching for a value ofL that is able to

causeζ̇ to equal zero and stabilize the force balance by providing a constant force from the valve

actuation. This may occur, however, before ˆxsp is reached, resulting in offset. Therefore, the value

of tAW may be set to a time at which the force balance appears to have equilibrated and that allows

x̂ to begin to approach its set-point as soon as possible after this force balancing has occurred.

Then, various values ofβ may be tried to attempt to decrease the term containingL in ζ̇ , which

can cause this integral term to change and thus changes the force applied to the valve as a result

of the control actionum received by the valve. If a value ofβ can be found that changes the force

applied to the valve in a manner that causes the forces to onceagain equilibrate, but this time at

a value of the valve position that causes ˆxsp to be reached, then this control strategy is successful

for the set-point change examined. However, some values ofβ may even cause stiction-induced

oscillations to be set up once again even if the value ofL examined was able to attenuate them

before the timetAW; this shows that the tuning problem is complex and that an appropriate tuning

cannot be decideda priori. In addition, due to the nonlinearities in the valve and process dynamics,

there is no guarantee that any appropriate tuning will be found for a given set-point change, or that

the same tuning will work for a variety of set-point changes or disturbances; however, closed-loop

simulations or on-line adjustment can be attempted to see ifthere are values ofL, β , andtAW that

are generally appropriate for a given process.

To demonstrate this integral term modification method, we return to the level control problem.

We consider that the process of Eq. 3.23 with the open-loop valve dynamics in Eqs. 3.27-3.32

was initially operated under the PI controller of Eqs. 3.24-3.25 for 15600s for a level set-point

change from 0.5184m to 0.15 m to reachqI . Subsequently, it was controlled using the controller

of Eqs. 3.38-3.39 (with ˆx = h) for a level set-point change from 0.15 m to 0.20 m. The Explicit

Euler method with a numerical integration step size of 10−5 s was used, and the results are shown

in Fig. 3.7 (plotted every 100000 integration steps) for thecase thatL = 7, β = 0.007, andtAW =

101



1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
4

0.1

0.15

0.2

0.25
h

(m
)

 

 

h
hsp

1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
4

3

4

5

6
x 10

−3

u
(m

3
/s

)

Time (s)

 

 

ua

um

Figure 3.7: Closed-loop trajectories ofh, ua, andum for the process of Eq. 3.23 under the controller
of Eqs. 3.39-3.38 withL = 7 andβ = 0.007, with the open-loop valve (Eqs. 3.27-3.32), andhsp=
0.20m.

22880s (i.e., 7280s after the set-point change from 0.15 m to 0.20 m). From comparison with

Fig. 3.3, the addition of the term containingL to the integral action was able to reduce control loop

oscillations (though there is some offset from the set-point for the chosenL beforetAW because the

integrator state in Eq. 3.39 can haveζ̇ = 0 whenh 6= hsp). After tAW, the value ofum is able to

change again becauseζ̇ becomes nonzero, and eventually the valve moves and the forces due to

this strategy balance in such a way that the set-point is achieved.
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3.5 Conclusions

In this chapter, we analyzed the roles of the process, valve,and controller dynamics, and also

the control loop architecture, in the closed-loop responseof a process-valve dynamic system.

The closed-loop perspective discussed allows valve behavior typically taught in undergraduate

chemical engineering coursework to be analyzed in the same framework as nonlinear dynamic

valve behavior like stiction and deadband that is frequently problematic in industry. A number of

stiction compensation methods from the literature were analyzed to demonstrate how they fit into

this closed-loop context based on understanding the phenomena (e.g., closed-loop oscillations)

that the methods seek to compensate at a fundamental mathematical level. We also described an

integral term modification stiction compensation technique for control loops under PI control.
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Chapter 4

Valve Nonlinearity Compensation Using

Model Predictive Control

4.1 Introduction

The prior chapter elucidated the causes of the impacts of valve nonlinearities on feedback

control loops and reviewed several compensation methods intended for control loops under

classical linear control designs. In this chapter, we continue the discussion of valve nonlinearity

compensation but for the case that the control loop is under MPC (or could be placed under

MPC as a valve nonlinearity compensation strategy). The motivation for analyzing MPC-based

stiction compensation methods in depth is that they providea systematic method for handling the

multivariable interactions in a process-valve system, where the models in such control designs can

come from either first-principles or empirical modeling techniques. This is a continuation of the

discussion from the prior chapter (i.e., the notation and equations introduced in the prior chapter

continue to be used here, and the level control and ethylene oxidation examples from Chapter 3

will be utilized in this chapter to demonstrate the MPC-based valve nonlinearity compensation

method).
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4.2 Valve Behavior Compensation Methods: MPC for Valve

Behavior Compensation

Due to the potential multivariable interactions and nonlinear process-valve dynamics that make

the response of a nonlinear process-valve system difficult to predict, the stiction compensation

methods in Chapter 3 that do not utilize predictions of the process-valve response in order to

determine appropriate control actions to apply to the process may not provide the best control

actions for compensating for stiction or may be difficult to tune to achieve a desired response.

The model-based methods in135 and150 are more straightforward to develop once a model of

the process-valve dynamics is obtained but they have not been designed for nonlinear processes.

Another model-based method (an MPC method) in153 that incorporates an inverse model of valve

backlash was also designed for linear processes, as was the optimization-based method from,135

which utilizes the Stenman model138 of the valve dynamics in addition to a model of the linear

process dynamics to make state predictions in an MPC-like framework where the objective function

penalizes the error between the process variable value and its set-point, the valve stem variability,

and the valve aggressiveness. Though such methods do attempt to account for the process-valve

dynamics in the control design to an extent, the Stenman model may not accurately represent

the valve dynamics, the process dynamics may be nonlinear, and the flexibility to adjust the

objective function of an MPC-based method may be desirable.Therefore, an MPC-based stiction

compensation method is proposed which is an MPC design with ageneral objective function, the

ability to incorporate constraints that guarantee feasibility and closed-loop stability of a nonlinear

process operated under the controller, and the flexibility to utilize any nonlinear process-valve

dynamic model that adequately captures the dynamics for making state predictions. This is a

systematic method for compensating for stiction because itaccounts for multivariable interactions

and nonlinear dynamics when choosing an appropriate control action to apply to the process. In

addition, due to the generality of the process models that can be handled in this framework, it

can predict appropriate control actions not only when multiple inputs are affected by differing
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levels of stickiness of multiple control valves, but it can also account for the control valves having

other behavior (e.g., pure deadband, linear dynamics, saturation, hysteresis, or an equal percentage

valve characteristic). It can handle processes where a single valve exhibits multiple nonlinearities

(e.g., stiction and also an equal percentage valve characteristic) or where the various inputs exhibit

different dynamics (e.g., one valve is sticky but another for the same process has linear dynamics).

The MPC design is able to compensate for all of these valve dynamics as long as they can be

modeled and then included within the process-valve dynamicmodel, which allows the MPC to

predict the response of the nonlinear process-valve systemfor various feasible control inputs and

to choose those which minimize the chosen objective function.

The formulation of a tracking MPC that includes the valve andprocess dynamics (Eqs. 3.7-3.8)

and is designed to track the states in a vector ˆx (denoted by ˆq for the process-valve system) to a

set-point vector ˆqsp (associated with steady-state input vectorua,sp) is as follows:

min
um(t)∈S(∆)

∫ tk+N

tk
(q̂sp− ˜̂q)TQ(q̂sp− ˜̂q)+(ua,sp− ũa)

TR(ua,sp− ũa)dτ (4.1a)

s.t. ˙̃q(t) = fq(q̃(t),um(t),0) (4.1b)

q̃(tk) = q(tk) (4.1c)

q̃(t) ∈ Qv, ∀ t ∈ [tk, tk+N) (4.1d)

um(t) ∈Um, ∀ t ∈ [tk, tk+N) (4.1e)

where the notation follows that in Eqs. 3.11-3.12. The predicted process-valve state ˜q follows the

model of Eqs. 4.1b-4.1c and is bounded within the setQv (Eq. 4.1d) (the setQv is defined to be the

bounds on the process-valve model states, which may include, for example, the state constraints

restrictingx ∈ X and the state constraints corresponding toua ∈ U sinceua is a function of the

states from Eqs. 3.2 (since eachum,i is calculated by a state feedback controller) and 3.4). The

notationũa denotes the predictions of the vectorua. In Eq. 4.1, unlike in Eq. 3.12, the deviation

of the prediction ofua from the steady-state value of the valve output flow rate corresponding to

q̂sp is penalized instead of the deviations of the values ofum from this steady-state valve output
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flow rate sinceua is the valve output that is actually implemented on the process and therefore it

is the quantity that should track the set-point. A general stage costLe(q̃(τ),um(τ)) (whereLe is a

general nonlinear scalar-valued function of its argumentsas in Eq. 3.11a) could be used in place

of the tracking objective function in Eq. 4.1a. Additional constraints may also be added to the

MPC of Eq. 4.1 to allow for closed-loop stability guaranteesor to account for issues that may arise

due to the properties of a specific valve nonlinearity (for example, Chapter 5 develops additional

constraints required for both stability and physical reasons for an MPC used specifically for stiction

compensation). A first-principles model can be used to capture the process and valve dynamics in

Eq. 4.1b, or an empirical model can be used. A first-principles model may be more accurate, but

an empirical model may be beneficial because it may not require detailed information on the valve

layer dynamics like the details of the friction force model or valve characteristic, and it may also

be less stiff than a first-principles model (an example of this is demonstrated in Section 4.3.2),

resulting in a lower computation time for the MPC for valve behavior compensation. If the model

utilized within the MPC can capture the dominant process-valve dynamics to provide sufficiently

accurate state predictions, it would be expected to be beneficial in compensating for stiction, even

if it is not an exact model, due to the incorporation of state feedback.

4.2.1 MPC for Valve Behavior Compensation with Empirical Models

Utilizing a first-principles model in Eq. 4.1b is straightforward when it is available (for example,

first-principles stiction models are reviewed in24). With regard to empirical models, several

data-driven models for stiction exist in the literature (e.g., the Choudhury model,33 the Kano

model,90 and the He model78) and these generally assume that the relationship betweenua and

the force applied to the valve is similar to that in Fig. 3.6, so they use an “if-then” type structure to

mimic this (i.e., if the control signal has not changed enough to un-stick the valve, then the valve

position does not change with a change in the control signal;if the control signal has changed

enough to un-stick the valve, the valve takes a new position defined by the data-driven model).

The models usually have only a few parameters that are identified through techniques that assume
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a process model structure and an empirical valve model structure and then identify the parameters

of both from process input/output data.88,137,149

Several potential limitations of many of the prior stictionempirical modeling methods include:

1. They relate the valve positionxv and the force on the valve determined by a controller

2. The models are specific to stiction

The first point above is a disadvantage given the complexities that may exist in the control loop

architecture and the potential that theua−xv relationship is nonlinear. In such cases, utilizing an

empirical stiction model would not eliminate the issue thatsome aspect of the relationship between

um andua must still be modeled even when the empirical model is in place. For example, if flow

control is utilized on the valve as in the example of Fig. 3.5,some knowledge of the relationship

between the valve output flow rate set-point from the major loop controller and the force applied

to the valve by the minor loop controller is required. If an equal percentage valve characteristic

characterizes theua−xv relationship, the form of this model must be known. The second potential

limitation of the stiction empirical modeling techniques is that they cannot capture dynamics like

hysteresis or linear valve dynamics that are not observed inthe response of a sticky valve to control

signal changes. Therefore, for the MPC-based strategy for compensating for valve behavior in

general, it is desirable to have an empirical valve layer model relating eachum,i andua,i (rather

than force toxv,i) to avoid the need toa priori know/develop a first-principles model for any

part of the valve behavior, and to allow theum,i −ua,i relationship to be general for any type of

valve behavior instead of for stiction only (the valve layerfor valve i is defined in this chapter

to refer to all dynamics describing the relationship between um,i and ua,i). Motivated by these

considerations, we propose empirical modeling of valve behavior for use in the MPC-based valve

behavior compensation method using standard empirical model structures to relate eachum,i and

ua,i , i = 1, . . . ,m, but inspired by the “if-then” structure of empirical stiction models, we allow for

branched (“if-then”) model structures based on an understanding of the physics of the valve layer.

For example, consider that we want to develop an empirical model for the relationship between
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eachua,i and um,i when eachum,i is a valve output flow rate set-point from an MPC which is

transmitted to a valve layer containing a sticky valve with alinear valve characteristic under flow

control. We assume thatum,i , i = 1, . . . ,m, is held constant for a time period∆ during which the

minor loop linear controller repeatedly computes new values of the pressure applied to the valve

stem to driveua,i toum,i . To identify an empirical model betweenum,i andua,i , it is necessary to first

gather valve layer input-output (um,i−ua,i) data and to have some intuition regarding how the linear

controllers and sticky valves in the valve layer affect the shape of the valve layer input-output data

trends so that a proper empirical model structure can be chosen. For example, if the valve output

flow rate set-point change direction reverses (e.g., the set-pointsum,i were previously increasing

but the next set-point is lower than the previous one), the valve may stick throughout some or all

of the time period∆ during whichum,i is constant, depending on whether the pressure applied to

the valve changes enough throughout∆ to overcome the force required to move the valve. Not

only does the direction of the set-point change affect whether the valve remains stuck throughout

a sampling period, but the magnitude of the set-point changealso affects the speed with which the

valve overcomes deadband/stickband due to the dynamics of the minor loop controller. Because

typical linear controller designs are based on the error between the set-point and the actual value of

a process variable, the minor loop controller in the valve layer will calculate larger control actions

when the valve output flow rate set-point changes significantly (because this creates a large error

betweenum,i andua,i), and such larger control actions (pressures) are more likely to overcome the

deadband/stickband within the time period∆. Therefore, it is more likely that the valve will move

if the controller is aggressively tuned or if the set-point change is large and the error betweenum,i

andua,i affects the controller output.

Based on the above discussion, different types of valve output responses are expected to be

observed depending on the set-point change magnitude and direction. Thus, it is reasonable to

postulate that an empirical valve layer model for our example sticky valve with flow control

will be defined in a piecewise fashion, with the set-point changes dictating which equation is

chosen to describe the valve layer input-output relationship. Also, the minor loop controller
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may cause some of the parameters in the empirical model to depend on the magnitude of the

set-point change (an example of this is shown in Section 4.3.2). Saturation of the valve (e.g., the

pressure from the pneumatic actuation dropping to zero so that the valve can no longer move in the

direction of decreasing pressure) can also define branches of the valve output response. Therefore,

the procedure proposed for empirical modeling of the feedback loop for the sticky valve under

consideration is as follows:

1. Collect valve layer input-output data (i.e., data relating ua,i andum,i, i = 1, . . . ,m), ensuring

that data gathered represents all aspects of the valve layerresponse that should have separate

equations (branches) within the piecewise model structure(e.g., sticking and slipping).

2. For each aspect of the response that requires its own modelstructure, select an appropriate

structure based on the valve layer input-output data trendsand determine what activates the

different branches of the response (e.g., set-point changedirection reversals).

3. Identify the parameters for the different branches of themodel.

4. Develop models for any parameters that can be seen from thevalve layer input-output data

to be dependent on the valve layer inputs (e.g., parameters that depend on the magnitude of

the valve output flow rate set-point change).

5. Validate the final piecewise-defined model.

It will be shown in Section 4.3.2 that Step 2 in the procedure above may be able to be performed

with standard empirical model structures in the chemical process industries, such as second-order

or first-order-plus-dead time models. Furthermore, the fivesteps above are general such that

they are not restricted to the valve layer with a sticky valveunder flow control above but can be

examined for extension to other control loop architecturesand valve behavior that characterize the

valve layer. Furthermore, the goal of valve layer empiricalmodeling in this section is to develop

models of valve dynamics that are flexible by not assuminga priori that a specific valve behavior

is present in the loop, and that also are intended for use in place of a first-principles model in the

110



MPC-based valve behavior compensation methodology of Eq. 4.1. Because MPC is a feedback

control technique, it possesses a degree of robustness to plant-model mismatch and therefore an

approximate empirical model of valve behavior with a standard empirical model form may in many

cases be sufficient for predicting the valve response in the MPC to compensate for valve behavior.

The following equation denotes the empirical model for use in the MPC-based valve behavior

compensation method:

ẏ(t) = fy(y,um) (4.2)

wherey(t) is the predicted value ofua from the empirical model at timet and has dynamics

characterized by the vector functionfy. Using this notation, the MPC-based valve behavior

compensation method of Eq. 4.1 (with an empirical valve layer model and general stage cost

functionLe) becomes:

min
um(t)∈S(∆)

∫ tk+N

tk
Le(x̃(τ),y(τ),um(τ))dτ (4.3a)

s.t. ˙̃x(t) = f (x̃(t),y(t),0) (4.3b)

ẏ(t) = fy(y,um) (4.3c)

x̃(tk) = x(tk) (4.3d)

y(tk) = ua(tk) (4.3e)

x̃∈ X, ∀ t ∈ [tk, tk+N) (4.3f)

y∈U, ∀ t ∈ [tk, tk+N) (4.3g)

um(t) ∈Um, ∀ t ∈ [tk, tk+N) (4.3h)

where the notation follows that in Eq. 3.11. The initial condition for the nominal first-principles

model of the process states (Eq. 4.3b) is a measurement of thestatex at tk (Eq. 4.3d), while

the empirical model (Eq. 4.3c) is initialized from a measurement of the valve output (Eq. 4.3e).

The set-pointsum, the state predictions ˜x, and the predictions of the valve outputy are bounded

(Eqs. 4.3f-4.3h).
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Remark 4.1. Prior works that have looked at MPC with a general objective function with

empirical models3,4,6 have focused on empirical models of the nonlinear process (rather than

valves) and have indicated that significant computation time reductions may result from using

empirical as opposed to first-principles models in MPC. We will demonstrate in Section 4.3.2 that

empirically modeling the valve layer can result in computation time reduction even if the process

is modeled with a first-principles model because it can make the process-valve combination model

less stiff. Empirically modeling both the process and valvedynamics could be examined as well;

however, there may arise cases in which it may not be possibleto easily capture the process and

valve dynamics in the same model (i.e., developing an empirical model between um and x only).

To see why difficulty may arise, consider a process with multiple inputs, all of which are adjusted

by sticky valves. Because the valves are sticky, each changein um,i will either cause ua,i to change

appreciably (which will cause x to respond to the change in um,i), or it will not cause ua,i to

change appreciably (which will cause x to continue behavingafter the change in um,i as if um,i

had not changed). Due to the coupling of the dynamics of the states of a process-valve system, the

combination of ua,i ’s affects the process dynamics, so a branched empirical model describing the

um−x relationship may need to include different branches for every combination of sticking and

slipping for all valves, which may lead to a difficult identification task. A solution if this is found

to be an issue would be to empirically model each ua,i −um,i relationship for each valve as well

as the ua−x relationship for the process. Such a modeling strategy mayalso be beneficial from a

valve maintenance perspective because it permits monitoring of how closely ua,i matches um,i for

each valve, allowing valve maintenance to be performed firston those valves for which ua,i tracks

um,i the least.

Remark 4.2. One could examine whether the MPC-based valve behavior compensation method,

particularly with an empirical valve layer model, could be utilized for compensating for dynamic

effects (e.g., slower movement of a valve or lack of movement) related to physical valve issues like

oversizing, undersizing, corrosion, leaks through the valve packing, or diaphragm faults that can

affect valve performance.31
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Remark 4.3. An appropriate empirical model structure for the valve layer input-output data

must be selected. Many model identification techniques for obtaining linear and nonlinear

empirical models exist that can be evaluated for their suitability for modeling a given valve layer

input-output trend, which fall in the categories of state-space and input-output models (see, for

example,22,102,123,145).

Remark 4.4. It is possible to consider automation of the model identification procedure in this

section to allow it to be carried out on-line, providing a consistently available model of the valve

behavior that can be used not only to obtain reasonable statepredictions of the valve layer within

the MPC throughout time, but also to help detect changes in the valve behavior over time and

therefore to help set valve maintenance schedules. There will need to be logic integrated within

such an automated procedure that analyzes the ua,i −um,i data based on an understanding of the

physics of the valve layer (e.g., for the valve layer comprised of a sticky valve with a linear valve

characteristic under flow control used as the motivation forSteps 1-5 of the proposed empirical

modeling procedure in this section, Step 1 of the empirical modeling procedure could be automated

by having a computer check whether there are any regions of the ua,i−um,i data where um,i changed

but ua,i did not move immediately, and if so, have the computer perform step-tests including

changes in um,i in one direction and also in the reverse direction to ensure that data from the

valve sticking and from it slipping is gathered).

4.3 MPC-Based Valve Behavior Compensation Methods:

Process Examples

This section demonstrates the MPC-based valve nonlinearity compensation method through

applications to systems where a valve experiences stiction. The compensation method is

demonstrated with a first-principles stiction model via thelevel control example described in

Section 3.3.2.1 and with an empirical stiction model via theethylene oxidation example described

in Section 3.3.2.2.
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4.3.1 Level Control Example with a Sticky Valve: MPC with a

First-Principles Valve Layer Model

For the level control problem, we develop an MPC for stictioncompensation as follows:

min
um(t)∈S(∆)

∫ tk+N

tk
Q(hsp− h̃)2+R(ua,sp− ũa)

2dτ (4.4a)

s.t. ˙̃q(t) = fq(q̃(t),um(t),0) (4.4b)

q̃(tk) = q(tk) (4.4c)

0≤ ũa(t)≤ 0.006, ∀ t ∈ [tk, tk+N) (4.4d)

0≤ um(t)≤ 0.006, ∀ t ∈ [tk, tk+N) (4.4e)

P̃≥ 0, ∀ t ∈ [tk, tk+N) (4.4f)

where ua,sp = 0.00373m3/s, hsp = 0.20 m, Q = 0.00001, andR = 1. For physical reasons

(described in more detail in Chapter 5), the predicted pressure P̃ from the pneumatic actuation is

restricted to take non-negative values in Eq. 4.4f. The process-valve state vectorqT = [h xv vv zf ]

is modeled for the open-loop valve using Eqs. 3.23 and 3.27-3.32. The process-valve system

was initiated atqI . The level was controlled by the MPC of Eq. 4.4 for 150s with ∆ = 1 s and

N = 50. An integration step of 10−5 s was used within the MPC to integrate Eq. 4.4b, with an

integration step of 10−6 s used outside of the MPC to simulate the process. The constraints in

Eqs. 4.4d and 4.4f were enforced once every sampling period.The objective function derivatives

required by the optimization solver Ipopt were calculated using a centered finite difference, and the

Ipopt limited-memory Hessian approximation option was used, so that the non-differentiability in

Eq. 3.30 did not prevent a solution to the optimization problem from being obtained. The results are

shown in Fig. 3.4 (designated by C because the valve dynamicsare compensated) and are plotted

every 1000 integration steps. They indicate that the MPC including the valve dynamics drove the

level toward its set-point, in contrast to the MPC that did not include the actuator dynamics from

Section 3.3.2.1 (designated by U in this figure). The reason for this is that the MPC of Eq. 4.4
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incorporates the full process-valve model, and thus computes an input trajectory that accounts for

the manner in which the forces on the valve will balance underthe control actions calculated by

the MPC.

Though the MPC was able to drive the level toward its set-point (a significant improvement

with regard to set-point tracking of the level compared to the case that the valve dynamics were

not accounted for within the MPC), the fact that the valve is operated without flow control reduces

the flexibility of the MPC to be able to maintain the level at the set-point for all times after it first

approaches the set-point in Fig. 3.4. Specifically, each time that the MPC setsum, the pressure

applied to the valve changes according to the relationship of Eq. 3.32 since the valve is operated

without flow control. However, because the MPC implements piecewise-constant control actions

that are held for a sampling period, the pressure that is applied to the valve (a function ofum

calculated by the MPC) is held constant throughout a sampling period. The length of the sampling

period in this example is long compared to the dynamics of thevalve, such that the dynamics of

the valve under a constant applied pressure dictate the finalposition of the valve at the end of a

sampling period. The result is that the MPC is not able to find avalue ofum that will drive the

valve, subject to its dynamics during the sampling period that the pressure is held constant and

the MPC cannot intervene, exactly to the valve position corresponding to the steady-state flow rate

through the valve at which the level set-point is achieved. Instead, the MPC must continuously

calculate new values ofum that allow the valve to stick and slip in ways that the MPC findswill

minimize the tracking objective function and therefore keep the value ofh in a region around the

set-point over time. Based on this analysis, potential waysof improving the set-point tracking

of the level include decreasing the MPC sampling period until it is on a timescale comparable to

the timescale of the valve dynamics, increasing the prediction horizon to give the MPC greater

foresight to potentially allow it to determine a sequence ofvalues ofum that can drive the value of

ua to its set-point, or adding flow control to the valve and then including the dynamics of both the

valve and the flow controller in the MPC as it calculates set-pointsum for the flow controller.

Remark 4.5. Fig. 3.4 demonstrates the effects of not accounting for the behavior of the valve
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of Eqs. 3.27-3.32 within an MPC (no significant change of the level for certain changes in the

valve output flow rate set-point um) and the improvement that can be obtained when the dynamics

are accounted for. However, other types of valve behavior that are not exhibited by the valve

of Eqs. 3.27-3.32 can result in different types of negative effects when the valve behavior is not

included within the MPC model for making state predictions.For example, consider a valve

without stiction but with the following equal percentage valve characteristic:38

ua = ua,maxe
ln(0.03)xv/xv,max (4.5)

developed for the case that the valve stem is fully retractedwhen the valve is fully open and is

fully extended when the valve is fully closed. Assume that the valve can be manipulated in such a

manner that the valve position is an explicit function of um given by Eq. 3.31 (i.e., xv = xv,max−
um

ua,max
xv,max) though this linear relationship does not reflect the nonlinear xv− ua relationship of

Eq. 4.5. If an MPC is used to control the process but is not aware of the mismatch between

the valve behavior of Eq. 4.5 and the linear um− xv relationship that sets the valve position (a

similar concept to the mismatch between Eq. 3.32 and the actual um−P relationship for the sticky

valve of Eqs. 3.27-3.31), permanent offset of the level fromits set-point can result due to the

plant-model mismatch. For example, consider again the set-point change from an initial level of

0.15 m, corresponding to a steady-state flow rate of0.00323m3/s, to the set-point hsp= 0.20 m

corresponding to ua,sp=0.00373m3/s. The steady-state flow rate for a level of0.15m corresponds

to a fraction FI ,A = 0.5379of the maximum flow rate of0.006m3/s through the valve as shown

in Fig. 4.1. For the equal percentage valve of Eq. 4.5, the valve position associated with the flow

rate ua,sp is a fraction XI ,A = 0.1768of its maximum. When the set-point of the level is changed

to 0.2 m, the flow rate out of the valve should increase to achieve this (ideally it should reach

the fraction of the maximum flow rate FD = 0.62113shown Fig. 4.1). For the equal percentage

valve of Eq. 4.5, this flow rate is achieved at a fraction of 0.1358 of the maximum stem position.

The um−xv relationship used to set the stem position based on xv, however, is linear, so when the
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Figure 4.1: Figure depicting linear (L) and equal percentage (EP) valve characteristics of Eqs. 3.31
and 4.5, respectively, along with several fractions of the maximum flow rate (FI ,A = 0.5379,
FD = 0.62113, andFD,A = 0.2649) and of the maximum stem position (XI ,A = 0.1768 and
XD,C = 0.37887) for the level control example.

MPC requests that um = ua,sp, the linear um− xv relationship moves the valve stem to a position

corresponding to a fraction XD,C = 0.37887of the maximum stem position. However, when the

fraction of the stem position for an equal percentage valve is 0.37887, the fraction of the maximum

flow through the valve is FD,A = 0.2649(corresponding to a flow rate lower than the initial value

instead of above it as desired). This example highlights that including valve behavior in MPC can

be beneficial for many types of valve behavior. Also, the example valve in this section has a um−ua

relationship of the form in Eq. 3.2 since xv in the linear um−xv relationship can be substituted in

terms of um in the ua−xv relationship of Eq. 4.5.
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4.3.2 Ethylene Oxidation Example with a Sticky Valve: MPC with an

Empirical Valve Layer Model

In this section, we return to the ethylene oxidation exampleof Section 3.3.2.2 (with the parameters

listed in Table 2.1) for the case thatua,2 = 0.5 andua,3 = 1.0. We consider that the value of

ua,1 is adjusted by a pneumatic spring-diaphragm sliding-stem globe valve (because it is the only

manipulated input considered for this process in the following example, we will drop the “1” in the

subscript for this section and refer to the process input as “ua”). This valve is under flow control and

has the same design as the valve described in Section 3.3.2.1(i.e., it is pneumatically actuated and

pressure-to-close, with no pressure applied to the valve initially when it is in its fully open position,

it hasxv = 0 m when the valve is fully open andxv = xv,max = 0.1016m when the valve is fully

closed withua = 0, and the valve layer dynamics are described by Eqs. 3.27-3.31 and 3.33-3.34)

except that the time unit for all parameters and variables isdenoted by a dimensionless unittd

instead ofs for consistency with the dimensionless units in Eq. 3.35 (i.e., all valve model parameter

values in Table 3.1 apply for this valve except that each instance of the units in that table is replaced

with td in this example) and the fully open valve position corresponds toua = ua,max= 0.7042. The

values ofζP and of the steady-state value of the pressurePs are re-set each time thatum changes

(ζP is re-set to zero, andPs is set to the last applied pressure). The value ofum is changed by an

EMPC every sampling period of length∆ = 0.2 td.

The control objective is to maximize the yield of ethylene oxide utilizing an EMPC that

accounts for the valve dynamics, where the yield is given by the following ratio of the amount

of ethylene oxide produced from the reactor in a time period of length t f − t0 to the amount of

ethylene fed to the reactor in that time:

Y(t f ) =

∫ t f
t0 ua(τ)x3(τ)x4(τ)dτ

∫ t f
t0 0.5ua(τ)dτ

(4.6)

We also consider that the valve output flow rate is constrained between the minimum flow through

the valve (0) and the maximum flow (0.7042), and is also required to satisfy the following
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restriction on the amount of ethylene that can be fed in a timeperiod of lengtht f − t0:

1
t f − t0

∫ t f

t0
0.5ua(τ)dτ = 0.175 (4.7)

This constraint requires that the amount of ethylene fed to the process in a time period of length

t f − t0 must equal the amount that would be fed in that time period under steady-state operation.

We seek to avoid fully closing the valve by requiring the MPC to keep the value ofum between

0.0704 and 0.7042.

To achieve the control objectives, we will utilize an MPC with an empirical model of the

valve dynamics, and we will compare the computation time of that controller with the computation

time of an MPC that includes a first-principles model of the valve dynamics. We develop the

empirical model for the valve layer described in Eqs. 3.27-3.31 and 3.33-3.34 according to the

steps outlined in Section 4.2.1. According to Step 1, we firstgatherum−ua data, and notice that

when the set-points repeatedly change in the same direction, the valve responds rapidly to the

set-point change, but when the set-point change direction reverses, there is a delay before the valve

responds. Also, there is a greater delay for small set-pointchanges than for large set-point changes

when the deadband is encountered due to the use of the PI controller in the valve layer. In addition,

the valve layer input-output data indicates that when the valve output set-point is kept constant

for multiple sampling periods, the valve output will not exhibit deadband if the next change in the

set-point is in the same direction as the changes prior to thevalve set-point remaining constant,

but will exhibit deadband if the next change in the set-pointis in the opposite direction to the last

changes. The valve layer data also suggests that valve output flow rates above about 0.5164 are

not achievable with the pressure available from the pneumatic actuation after the valve first begins

to close because stiction alters theua−P relationship (as will be discussed in Chapter 5) such that

these flow rates would require negative pressures to be reached (i.e., since the valve is initialized

with ua = 0.7042, it can only close (it cannot reverse direction to open more) untilua ∼ 0.5164,

and subsequently cannot reach flow rates above that value).
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The above observations are used in Step 2 of the model identification procedure to postulate that

the dynamics betweenua andum can be captured in a piecewise-defined model with two branches,

one corresponding to the response ofua when the set-point changes inum are repeatedly in the same

direction (no deadband), and another corresponding to the response when the set-point changes

switch direction (deadband), with a special considerationfor the case that the set-point does not

change between two sampling periods. The part of the model corresponding to the case when

there is deadband before the valve moves should have different speeds of response of the valve for

different set-point change magnitudes. The valve layer input-output data should be gathered while

avoiding increasing the set-pointum above 0.5164 to avoid gathering data for flow rates where the

pressure is saturated (the decision was made not to add branches to the empirical model to account

for saturation of the actuation pressure due to the complexity that this adds to the empirical model,

but to instead seek to avoid saturating the pressure during process operation by utilizing input rate

of change constraints as in Chapter 2 in the MPC used to control the process).

Step 3 of the model identification procedure will now be carried out to identify the equations for

the two branches of the proposed model. We first verify that such a piecewise-defined valve layer

model is necessary by showing the results of attempting to identify a single model for the valve

layer based on the valve layer input-output data. The valve layer input-output data was gathered

by initializing the valve at its fully open position (ua = 0.7042,Ps= 0 kg/m· t2
d, ζP = 0, zf = 0 m,

xv = 0 m, vv = 0 m/td) and integrating the first-principles valve layer model in Eqs. 3.27-3.31

and 3.33-3.34 with the Explicit Euler numerical integration method and an integration step of

hI = 10−6 td for 19 step changes in the set-point (the set-point was first decreased fromum=0.7042

to 0.7, and was subsequently decreased to 0.15 in incrementsof 0.05, and then increased to 0.5

in increments of 0.05, with each set-point held for a sampling period). A subset of theum− ua

data generated is shown in Fig. 4.2. Based on the data generated, the valve output response to a

set-point change was postulated to be able to be described bya second-order linear dynamic model.

The values ofum andua were measured every 10−4 time units (every 100 integration steps; i.e.,

∆e = 10−4 td according to the notation in Section 3.2.1), and the following ARX model was fit to
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Figure 4.2: Comparison of valve layer set-point (um), valve layer output (ua), and prediction of the
valve layer output (y) from Eq. 4.8 when 19 set-point changes are applied (a subsetof the data is
shown).

the data by using a least-squares regression:

y(t̃ j) = 1.99212y(t̃ j−1)−0.99219y(t̃ j−2)+0.00035um(t̃ j−1)−0.00027um(t̃ j−2) (4.8)

wherey(t̃ j) refers to the predicted value ofua for the j − th measurement of the valve layer output

data (i.e., at timẽt j , where the notation follows that in Section 3.2.1). When thepredictionsy

are generated from this model and the input data, they overshoot the values ofua, and there is

poor agreement withua when the valve velocity changes sign (deadband is reached),as shown in

Fig. 4.2.

Though it was not possible to identify an adequate second-order model using the input-output

data for the entire set of 19 set-point changes, it is possible to successfully identify a second-order
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Figure 4.3: Comparison of valve layer set-point (um), valve layer output (ua), and prediction of the
valve layer output (y) using the set-points decreasing between 0.6 and 0.15 and Eq. 4.9 (y overlays
ua).

model if only the data corresponding to the set-point decreases between 0.6 and 0.15, for which no

deadband occurs, are used to identify the model. In this case, the following model is obtained:

y(t̃ j) = 1.96209y(t̃ j−1)−0.96249y(t̃ j−2)+0.00038um(t̃ j−1)+0.00002um(t̃ j−2) (4.9)

When the decreasing set-points between 0.6 and 0.15 are usedas inputs in Eq. 4.9, the predictions

y of the valve output closely match the actual values, as shownin Fig. 4.3.

To complete Step 3 of the empirical modeling procedure, it isnecessary to complement Eq. 4.9

with a model for the case that deadband is observed. Based on the valve layer input-output data in

Fig. 4.2 corresponding to the deadband whenum changes from 0.15 to 0.2, it is postulated that the

response of the valve output to set-point change direction reversals can be modeled as a first-order
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process with time delay. However, the values of the time constantτ and of the delayα in such a

model are dependent on the magnitude of the set-point changes because the speed of the response

of the valve layer to a set-point change inum depends on the magnitude of the set-point change.

Closed-loop simulations indicate that for a set-point change direction reversal, set-point changes

less than approximately 0.02 are unable to cause the PI controller to overcome the deadband within

a sampling period. To determine the dependence of the delay on the magnitude of the set-point

change, in accordance with Step 4 of the model identificationprocedure,um was decreased from

0.7042 to 0.15, and subsequentlyum was increased by set-point changes of different magnitudes.

The regression method in118 for the determination of the parameters of a first-order-plus-dead-time

model was applied to the data generated for each set-point change. A plot of the resulting delays

against the set-point changes with which they were associated was fit to the functiona/x using the

MATLAB function lsqcurvefit, witha= 0.0037 providing the best fit. The values ofτ associated

with each delay were averaged to giveτ = 0.0123 for the first-order-plus-dead-time model. Thus,

the first-order-plus-dead-time model is written in discrete-time form as:

y(t̃ j) =























y(t̃ j−1), t̃ j − tk < α

y(tk)+exp(−∆e/τ)(y(t̃ j−1)−y(tk))+K(1−exp(−∆e/τ))×

(um(tk)−um(tk−1)), t̃ j − tk ≥ α

(4.10)

where

α =











∆, |um(tk)−um(tk−1)|< 0.02

a/(|um(tk)−um(tk−1)|), |um(tk)−um(tk−1)| ≥ 0.02
(4.11)

In Eqs. 4.10-4.11,k is the value ofk that bringstk closest tõt j (tk ≤ t̃ j), andK = 1.

Incorporating the above considerations, the following discrete-time empirical valve layer model

was devised and validated to perform well for a number of valve layer input-output data points,

completing Step 5 of the model identification procedure:

1. If the set-point has not changed betweentk andtk−1 and also did not change betweentk−1

andtk−2, sety(t̃ j) = y(tk) for all t̃ j ∈ [tk, tk+1).
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2. If two set-point changes are changing in the same direction, or if the set-point has been

constant for some time but has now changed in the same direction that it was changing prior

to becoming constant, use the model of Eq. 4.9.

3. If two set-point changes are in opposite directions, or ifthe set-point has been constant for

some time but has now changed in the opposite direction to that in which it was changing

prior to becoming constant, use the model of Eqs. 4.10-4.11.

The MPC-based stiction compensation strategy incorporating the empirical model described

above is as follows:

min
um(t)∈S(∆)

∫ tk+Nk

tk
−y(τ)x̃3(τ)x̃4(τ)dτ (4.12a)

s.t. ˙̃x(t) = f (x̃(t),y(t),0) (4.12b)

ẏ(t) = fy(y,um) (4.12c)

x̃(tk) = x(tk) (4.12d)

y(t̃0) = ua(t0) (4.12e)

0.0704≤ um(t)≤ 0.7042, ∀ t ∈ [tk, tk+N) (4.12f)

0≤ y(t)≤ 0.7042, ∀ t ∈ [tk, tk+N) (4.12g)

|um(tk)−u∗m(tk−1|tk−1)| ≤ 0.1 (4.12h)

|um(t j)−um(t j−1)| ≤ 0.1, j = k+1, ...,k+N−1 (4.12i)
∫ tk+Nk

tk
y(τ)dτ +

∫ tk

(p−1)tp
u∗a(τ)dτ = 0.175tp/Ce (4.12j)

where the notation follows that in Eqs. 3.11 and 4.3. The notation u∗m(tk−1|tk−1) signifies the value

of um that was determined to be optimal at the prior sampling time and was applied to the process

for the sampling period betweentk−1 andtk. Minimization of the objective function in Eq. 4.12a

maximizes the yield of ethylene oxide when the amount of reactant fed to the process over the

p− th operating period of lengthtp = 1 td meets the constraint in Eq. 4.12j (the notationu∗a(t)

signifies a value ofua that was applied to the process at a past timet). Enforcing the constraint

124



of Eq. 4.12j ensures that Eq. 4.7 is satisfied by the final timet f of operation. Two operating

periods were simulated under this EMPC; though a longer simulation may reduce the effects from

the transient on the results, the two operating periods simulated are sufficient for demonstrating

that an empirical model of the valve dynamics can readily be used in place of a first-principles

model in the MPC for valve behavior compensation. A shrinking prediction horizonNk was used

in each operating period with an initial length of 5 at the beginning of each operating period. At

each subsequent sampling time, the prediction horizon was decreased by 1. The process model

of Eq. 4.12b (the ethylene oxide process model from Section 3.3.2.2 with a single input as noted

above) is integrated using the Explicit Euler numerical integration method with an integration step

size ofhemp= 10−4 td for making state predictions. Eq. 4.12c signifies that the predictionsy of

ua in the EMPC come from the empirical model developed in this section, which evolves in time

every∆e = hemp. Though the empirical model developed in this section is a discrete-time model

as opposed to a continuous-time model, both the discretized(with Explicit Euler) process dynamic

model and the empirical valve dynamics model evolve every 10−4 td when state predictions are

made within the EMPC, and therefore, the discrete-time nature of the empirical model poses no

issues for combining it with the continuous-time process model for making state predictions. In

the simulations, the value ofy was not updated with a state measurement ofua at each sampling

time but instead evolved in an open-loop fashion (the notation in Eq. 4.12e signifies that the initial

data required for simulating the valve layer based on the empirical model (i.e.,y(t̃0) andy(t̃−1)) are

known and used to integrate the empirical model for all timeswithout feedback ofua). The state

constraint in Eq. 4.12g was enforced every integration step. The input rate of change constraints

in Eqs. 4.12h-4.12i are added to reduce the likelihood that the EMPC will request (unreachable)

flow rates that would cause the pressure from the pneumatic actuation to become saturated at zero.

The optimization problems were solved using the open-source interior-point optimization solver

Ipopt148 with a tolerance of 10−10.

Fig. 4.4 shows the trajectories ofua, um, and y initiated from [x1 x2 x3 x4 xv vv zf ζP] =

[0.997 1.264 0.209 1.004 0.051 m 2.000×10−6 m/td 1.426×10−5 m 0] resulting from the use
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Figure 4.4: Comparison of valve layer set-point (um), valve layer output (ua), and prediction of the
valve layer output (y) under the EMPC using an empirical valve layer model (y almost overlays
ua).

of the empirical EMPC. The empirical model was successfullyable to capture the behavior ofua,

and the EMPC calculated set-points that the valve layer could track. Fig. 4.5 shows the pressure

applied to the valve throughout this closed-loop simulation, which never saturated at zero with the

help of the input rate of change constraints. Fig. 4.6 shows the closed-loop process states under

the empirical EMPC.

In addition to calculating reachable set-points and preventing pressure saturation in the

two operating periods simulated, the MPC-based valve behavior compensation strategy with an

empirical model was also able to ensure that the integral material constraint was not significantly

violated. In the first operating period, the empirical EMPC used only 0.02% less material than

required by the material constraint, and in the second operating period only 0.05% less.
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A comparison of a simulation of the form of Eq. 4.12 but with the first-principles valve layer

model of Eqs. 3.27-3.31 and 3.33-3.34 in place of the empirical model of Eqs. 4.9-4.11 was

formulated, in which the first-principles model for both thevalve and process was simulated with

an integration step of 10−5 td within the MPC, and state feedback of the process-valve states was

obtained at each sampling time. The integration step size issmaller than for the simulation with

the empirical EMPC because the first-principles model of Eqs. 3.27-3.31 and 3.33-3.34 cannot be

integrated with a step size of 10−4 td using Explicit Euler due to numerical stability issues. The

constraint of Eq. 4.12g was enforced onua every 10 integration steps so that it was enforced every

10−4 td as for the empirical EMPC. The finite difference approximation used for the gradients of

the objective function and constraints used a perturbationone order of magnitude smaller than in

the empirical EMPC. The resulting simulation of two operating periods took approximately three

times longer to solve than the EMPC of Eq. 4.12 with the empirical valve layer model where the

integration step within the MPC was 10−4 td. Though the difference in computation time depends

on a large number of factors such as the code used and the integration step size, it is significant

that the empirical model is less stiff than the first-principles model.

4.4 Perspectives on Valve Nonlinearity Compensation

A conclusion of the results in this chapter and Chapter 3 is that an MPC design that utilizes

models of both the process and valve behavior for making state predictions provides a systematic

method for driving an output to its set-point that can account for multivariable interactions in a

process-valve dynamic system and constraints such as valveoutput and actuation magnitude (e.g.,

actuator pressure) saturation that can lead to undesirableclosed-loop behavior. This method is

not restricted to linear plant dynamics, and it does not require tuning of compensator-specific

parameters that are not clearly tied to the process output responses as do some of the stiction

compensation methods discussed in Chapter 3 such as flow control, the integral term modification

method, and knocker-type methods. The significant benefits of an MPC including valve dynamics
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for improving the issues commonly observed due to valve behavior indicate that it may be

beneficial for industry to consider wider use of MPC due to analysis not only of whether the

chemical process itself would benefit from being controlledby an MPC (which is the typical

analysis performed), but also of whether it might provide better valve behavior compensation in

the long run (undesirable behavior like valve stiction can develop over time) that may reduce

efficiency and profit in the long-term and therefore may make MPC a more attractive option than

classical regulatory control designs. Thus, more analysisof the impact of actuator dynamics at the

initial design phase may allow for better controller designs to be chosen that can handle changes

in the actuator dynamics that often plague processes at a later phase and are much more difficult

to handle when non-model-based control strategies are attempted to be used to handle nonlinear

valve behavior.

Though the MPC-based valve nonlinearity compensation method was shown in the process

examples in this chapter to be beneficial at compensating forthe valve behavior, it was also shown

that it has limitations in handling valve nonlinearities. For example, in Section 4.3.1, it was noted

that a valve without flow control under MPC accounting for valve stiction may not be able to keep

a process output at its set-point for all times when the MPC sampling period is long compared to

the timescale of the valve dynamics such that the MPC is not able to regularly adjust the force

applied by the valve actuation throughout a sampling period. An alternative to this is to use a

flow controller for the valve or a small sampling period for the MPC to allow the force from the

valve actuation to be adjusted frequently as the valve position changes according to its dynamics

to try to drive it to the position corresponding to the valve output set-point. However, this may

cause significant variations in the valve actuation during the time that the valve position is being

adjusted, which may increase actuator wear.86 This indicates that an MPC-based valve behavior

compensation method must seek to balance actuator wear and set-point offset for certain control

architectures and valve nonlinearities through appropriate constraints and design of parameters

such as the sampling period. Another conclusion of this chapter and Chapter 3 is that because

the effects observed in control loops due to valve behavior are closed-loop effects, changing the
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control design of a system may result in different process output responses in a control loop in

which valve dynamics cannot be neglected. This is importantto consider as controllers at a plant

are re-tuned or as upgrades are made to the control design.

Finally, the closed-loop perspective on valve behavior developed in this chapter and Chapter 3

can impact the stiction detection and quantification literature. It gives greater insight into the

benefits and limitations of the detection/quantification methods for stiction in the literature, which

are reviewed in24 and include shape-based methods and model identification-based methods. Many

of the shape-based methods (e.g.,32,82,132,136) assume that a specific pattern exists in the data from

the measured outputs of the system (process outputs or valveoutputs), often in relation to the

controller outputs. It has been highlighted that the process and controller dynamics will affect

the patterns and thus may reduce the effectiveness of shape-based methods (e.g.,78 notes that

the stiction detection method in82 may give different results depending on the controller tuning,

and32 and89 also note that the pattern-based methods are not always effective because patterns

depend on the controller, process, and valve dynamics). Chapter 3 gives a general mathematical

framework for analyzing the difficulties noted with pattern-based methods through a process-valve

dynamic model. It also gives greater insight into the conditions under which the assumption that

oscillations are occurring in a process output due to stiction, made in multiple pattern-based

stiction detection/quantification works, may not hold (e.g., when the controller, process, and

valve dynamics produce the uncompensated case in Fig. 3.4).Multiple model identification-based

stiction detection/quantification methods (see, for example,89,137) assume that the process can be

described by a linear model, which may be a limiting assumption especially as the requirement

of steady-state operation is being challenged by the recentdevelopments in EMPC. The primary

goal of stiction detection methods is to identify problematic valve behavior so that maintenance

can be performed on a valve, and quantification methods are intended to be used to prioritize

valve maintenance based on which valves are most sticky. Theempirical modeling strategy in

this chapter could be considered as a valve behavior detection/quantification strategy that is not

limited to stiction. Theum,i − ua,i relationship could be developed for every valve ifum,i −ua,i ,
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i = 1, . . . ,m, data is available. The difference betweenum,i andua,i could then be tracked over

time, and when it becomes significant, the valve could be flagged for maintenance. The valves

for which ua,i deviates most significantly fromum,i could be given priority in the maintenance

schedule. Though measurements of flow through a valve (ua,i) are not always available in industrial

applications when the control loop is not a flow control loop,143 this analysis indicates that new

instrumentation to provide measurements of process variables such as flow (when it is not already

measured) may be beneficial long-term for detecting and compensating for valve behavior by

allowing empirical models to be developed for a process-valve system when it may be difficult

to obtain a process-valve model without the flow measurement(Remark 4.1).

A final observation is that many contributions to the stiction literature have focused on stiction

as the nonlinearity in the process-valve system (i.e., manyworks examine linear processes and

linear controllers); the results of this chapter and Chapter 3 indicate that nonlinear processes,

especially with multiple inputs all affected by nonlinear valve behavior, may be particularly

interesting to consider in future works on stiction detection, quantification, and compensation,

due to the multivariable interactions of the process-valvestates, which may, as noted above, best

be handled with multiple-input/multiple-output nonlinear control designs.

4.5 Conclusions

This chapter demonstrated that an MPC design incorporatinga dynamic model (first-principles

or empirical) of the full process-valve system is able to systematically address the root cause

of negative effects (nonlinear, multivariable interactions between the states of a process-valve

dynamic model) in control loops with valve behavior that cannot be neglected (both for sticky

valves and for valves exhibiting other behavior). This analysis indicates that consideration of valve

behavior at the control design phase may warrant greater useof MPC in industry. A level control

example and a continuous stirred tank reactor were used to demonstrate the MPC-based valve

nonlinearity compensation strategy.
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Chapter 5

Valve Nonlinearity Compensation via Model

Predictive Control for Nonlinear Processes:

Theoretical Considerations and Actuation

Magnitude Constraints for Compensating

for Valve Stiction

5.1 Introduction

Chapter 4 developed an MPC framework for compensating for valve nonlinearities and

demonstrated its applicability through two chemical process examples focused on stiction. The

discussion of the examples in Sections 4.3.1-4.3.2 indicated that stiction may change theua-P

relationship for a sticky valve and could cause the values ofua requested to not be physically

realizable with the given actuation energy (e.g., no non-negative values of the pressure may be

capable of drivingua to its set-point value from the MPC in certain circumstances). This issue

deserves further discussion, which will be a goal of this chapter. Furthermore, this chapter
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proposes systematic methods for accounting for such issues. Building from the developments in

Chapter 2, this chapter examines the conditions under whichfeasibility and closed-loop stability of

a nonlinear process under the MPC for valve nonlinearity compensation are guaranteed when the

MPC is augmented with constraints designed for the specific case of stiction compensation (e.g.,

actuator magnitude and input rate of change constraints with a process-valve dynamic model for a

sticky valve). This chapter concludes with a chemical process example that motivates the need for

actuation magnitude constraints, particularly in EMPC in which extreme values of the valve output

flow rate may be requested by the MPC since the process is not necessarily operated at steady-state.

The example demonstrates the benefits of including the actuation magnitude constraints in EMPC

when a sticky valve is in the control loop. This chapter thus provides an indication of how the

MPC-based valve nonlinearity compensation method of the prior chapter can be modified through

changes in the constraints as desired to handle issues arising in the control loop specific to a certain

valve nonlinearity, indicating the flexibility of the overall approach in Chapter 4. Because this

chapter focuses on stiction compensation, the remainder ofthis introduction provides background

on the stiction valve nonlinearity.

Valve stiction is a phenomenon caused by friction between valve components and refers to the

tendency of a valve not to move upon the change of the control signal sent to the valve until the

control signal exceeds a certain threshold, at which time there may be a sudden movement of the

valve components causing the valve output (i.e., process manipulated input) to change quickly.

The percentage of the available range of valve outputs traversed when the valve output changes

quickly quantifies the phenomenon of slip-jump. When the valve is moving (in the moving phase),

the valve output typically is linearly related to the valve input until the changes in the valve input

change sign (i.e., the valve input begins to decrease when itwas previously increasing, or vice

versa), at which point the valve begins to stick again. Because stiction has been characterized in

various ways by different authors, the authors of33 compile some of the stiction definitions, ending

with the definition determined by the authors based on observations of plant data, which classifies

stiction as a friction effect that manifests itself througha sudden change in the valve output in
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response to a changing input signal. Specifically, the authors of33 define four major regimes in the

dynamic response of the control valve output to changes in the input to the valve determined by

the controller: deadband, stickband, slip-jump, and the moving phase. In the absence of slip-jump,

only deadband (the percentage of the available range of the input signals to the valve throughout

which the valve output does not change in the absence of slip-jump) and the moving phase exist.

When a valve experiences slip-jump, the valve remains stuckthroughout the deadband and also

throughout a percentage of the available range of inputs beyond the deadband (called the stickband)

until it slips from the value at which it was stuck to a value inthe moving phase.

Stiction has posed a significant issue in chemical process control throughout the last

several decades. Reports from the 1990s indicated that stiction negatively affected control

loop performance at the time,72,91 and a report from Honeywell indicated that when studying

26,000 proportional-integral-derivative (PID) controllers, the performance of about one third was

classified in the lowest of the classification categories (“poor” and “fair”), with valve issues,

including stiction, causing about one third of these low classifications.46 More recently,29 cited

stiction as a contributor to plantwide oscillations and included plant data from the Mitsubishi

Chemical Corporation for a plant where stiction contributed to plantwide oscillations. In addition,

in,30 the proposed stiction detection and quantification method is performed on industrial data for

plants with sticky valves, demonstrating that the problem of valve stiction remains a challenging

one. As a result, a significant level of research has been performed throughout the years in an

attempt to more accurately model, detect, quantify, and combat stiction (see the review paper24 for

a general overview of stiction modeling, detection, quantification, and compensation).

The physical cause of stiction in control valves is best explained using a specific valve type

for clarity of presentation, but the same basic principles will hold for other valve types as well.

For example, a pneumatic spring-diaphragm sliding-stem globe valve has a valve stem that, in

response to a pressure applied to a diaphragm, moves to adjust the valve output. In a valve with

stiction, the valve output may not approach the value requested due to friction forces between the

valve stem and the packing that can prevent the valve stem from moving to the required position
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until the pressure applied to the valve diaphragm is large enough to overcome the breakaway force

for the packing-stem contact. The cause of friction betweenthe valve stem and the packing is that

the materials from which the stem and packing are made are rough at a microscopic level, with

protrusions called asperities. The interactions of the asperities on the two surfaces result in friction

forces.18 The friction phenomenon is often described using static, Coulomb, and viscous friction,

as well as the Stribeck effect. However, there are a number ofother phenomena that result from

friction, including rising static friction, presliding displacement (micro-slip), frictional memory in

sliding, stick-slip,18 hysteresis with nonlocal memory during presliding,140 velocity weakening,

the lift-up effect,1 and asymmetric stiction.151

Friction models have been developed throughout the years that model these friction effects

to varying degrees. For example, the Classical72,120 model only accounts for the Coulomb and

viscous forces and the Stribeck effect in the sliding regime, representing any presliding dynamics

with a static friction force. As models were developed throughout time, such as the Dahl,41,119

LuGre,26 Leuven,95,140 Elasto-Plastic,48 and generalized Maxwell-Slip94 models, they began to

incorporate some of the more subtle friction effects in boththe presliding and sliding regimes.

A generic model that attempted to represent the known friction dynamics by modeling various

interactions between asperities was also developed.1 A number of researchers have also developed

algorithm-based empirical friction models, known as data-driven models, that attempt to represent

friction dynamics using decision tree structures. This class of models includes the Stenman,138

Choudhury,33 Kano,90 and He78 models.

A number of works utilizing friction models in control strategies to counter friction have

examined adapting friction model parameters.70,71,85 In addition, the parameters of the friction

model change with time for a valve as stiction worsens over time, which may occur for reasons

such as tightening of the valve packing or degradation or depletion of materials that comprise or

lubricate the valve.77,133For example, in72 and,91 it is seen that as stiction worsens in a pneumatic

sliding-stem globe valve, the range of stem positions that can be reached with a given range of

pressures applied to the valve is reduced. This is significant because the pressure available to be
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applied to a valve is limited,38 with the result that as stiction worsens, the given range of pressures

cannot move the valve stem as significantly as when stiction was minimal. This shows that a

negative effect of stiction is that it changes the valve dynamics and in effect constrains the range

of valve outputs available for a given range of actuation magnitudes.

Other negative effects of stiction include set-point tracking issues and oscillations in control

loops that result from deadband/stickband and slip-jump. For example, when a valve has

deadband/stickband, the valve output does not change in response to changes in the control signal

to the valve until the control signal overcomes the deadband/stickband, which prevents the valve

output from tracking its set-point. Oscillations can occurin a control loop with integral action as

demonstrated in Chapter 3.

A good deal of work has been performed to reduce the negative effects of stiction on

engineering processes. As mentioned above with respect to adapting friction model parameters, a

number of methods have been developed to reduce the trackingoffset that can result from friction

(many appear in the literature for high-precision mechanical applications such as machining) using

control laws based on a friction model (see, for example,87,91). Much of the stiction compensation

literature for sticky valves in chemical plant control loops has focused on reducing oscillations.

Methods for oscillation reduction include those reviewed in Section 3.4 such as the knocker and

variations upon it,39,77,133,134the constant reinforcement method of,86 the two moves method and

its extensions,40,135,150the optimization method of,135 and retuning methods.73,99,111

In addition to the stiction compensation methods mentionedabove, predictive control methods

have also been looked at for compensating for friction. In,27 a predictive controller for applications

requiring high precision of mechanical movement was augmented by time delay control and zero

phase error tracking control to improve its tracking performance in the presence of nonlinear

friction effects. In,152 an inverse backlash model and valve saturation are incorporated in an MPC

for linear systems to overcome the deadband associated withbacklash, and this controller is applied

to a system with stiction in.153 In,45 the bounds on the optimization variables computed by an MPC

are adjusted based on the knowledge that the MPC is in series with a unit that applies the inverse
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model for deadzone, stiction, or backlash to the output fromthe MPC and sends this signal to a

valve with nonlinear dynamics that can saturate. The prior chapter developed an MPC-based valve

nonlinearity compensation framework, which will now be investigated to develop constraints that

should be developed to handle issues that may arise due to stiction and to guarantee feasibility and

closed-loop stability of a process operated under the control design. The results of this chapter

originally appeared in.49,52

5.2 Preliminaries

5.2.1 Notation

In this chapter,tk = k∆, k= 0,1,2, ... refers to synchronous time instants separated by a sampling

period∆. The Euclidean norm of a vector is denoted by| · |. A function α : [0,a)→ [0,∞) with

α(0)=0 belongs to classK if it is continuous and strictly increasing. A level set of a scalar-valued

positive definite functionV(x) is defined to be the setΩρ := {x∈ Rn |V(x)≤ ρ}. Set subtraction

is denoted using ‘/’ (i.e.,x∈ A/B := {x∈ Rn | x∈ A, x /∈ B}).

5.2.2 Class of Systems

In this chapter, we consider a process-valve model for use inMPC that incorporates the dynamics

of the process as well as the dynamics of the valves. This model includes dynamic equations for

the process, the valve position, the valve output, and a linear controller for the valve. We introduce

these equations separately, and then present the integrated model that combines them.

5.2.2.1 Class of Nonlinear Processes

As in Chapters 3-4, we consider nonlinear processes of the form in Eq. 3.1. We assume that each

input ua,i , i = 1, ...,m, to the process is bounded within a setUi (Ui := {ua,i : ua,i,min ≤ ua,i ≤

ua,i,max}). We also assume that the disturbance is bounded (w ∈ W := {w : |w| ≤ θ ,θ > 0}).

138



We note that the model of Eq. 3.1 can be constructed either through first-principles or system

identification techniques.

5.2.2.2 Nonlinear Valve Dynamics

The dynamics of the positionxv,i and velocity vv,i of the moving parts of thei − th valve

relative to the valve surfaces causing friction are given byEqs. 3.16-3.17. The friction

force experienced by the valve moving parts for thei − th valve (Ff ric,i) and the dynamics

of the internal friction model stateszf ,i ∈ Rzi are given by Eqs. 3.18-3.19, respectively.

Assuming that each valve controls one process input, we define a = [a1, . . . ,am]
T , c =

[c1, . . . ,cm]
T , FO = [FT

O,1 ... FT
O,m]

T , and FA = [FT
A,1 ... FT

A,m]
T . Here, FO,i ∈ Rp̃i and FA,i ∈ Rs̃i ,

so ai ∈ Rp̃i and ci ∈ Rs̃i as well. The notation ˆvv(a(t),FO(t),c(t),FA(t),xv(t),vv(t),zf (t)) =

[v̂v,1(a1(t),FO,1(t),c1(t),FA,1(t),xv,1(t),vv,1(t),zf ,1(t)) . . .

v̂v,m(am(t),FO,m(t),cm(t),FA,m(t),xv,m(t),vv,m(t),zf ,m(t))]T signifies the vector containing the

right-hand side of Eq. 3.17 for all valvesi = 1, . . . ,m. In addition, we define:

z=
m

∑
i=1

zi (5.1)

To clarify the valve model dynamics presented in this section, Fig. 5.1 depicts a sliding-stem

globe valve with a friction force and a force from the actuator acting upon it. This valve figure

does not provide a detailed schematic of the inside of the valve, but helps to clarify how some of

the forces described above may act on an example valve. It should also be noted that the discussion

above is not limited to this sliding-stem globe valve type.

Remark 5.1. We note that the form of Eqs. 3.16-3.17, which define the position and velocity of the

valve using a force balance, implies that the moving parts ofthe valve under consideration move

linearly, as would be the case with, for example, a sliding-stem globe valve. A variety of other

valve types exist, however, and the moving parts of many of these do not move linearly, but rather

rotate (this is the case with, for example, a ball or butterflyvalve).21,23,101Appropriate equations
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Figure 5.1: Schematic of forces on an example valve (vv, Ff ric, andFA denote the valve velocity,
friction force, and force from the actuation, respectively).
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for the dynamics and friction for a valve that does not have linear movement could be substituted

for Eqs. 3.16-3.17.

Remark 5.2. The data-driven friction models use decision-tree structures traversed based on

the evaluation of Boolean expressions, and thus are not immediately in the first-order ordinary

differential equation form of Eqs. 3.16-3.19. However, such models can be used to simulate

a system, and then model identification utilizing the simulation data could be investigated for

developing continuous-time state-space models describing the valve dynamics.

5.2.2.3 Relating Valve Position and Valve Output

We relateua,i to xv,i through the nonlinear relationship in Eq. 3.21, wheref f low,i is a one-to-one

continuous nonlinear function. As an example of possible relationships betweenua,i and xv,i ,

Fig. 5.2 presents a plot of two types of relationships (linear and equal percentage) betweenua,i

andxv,i that are described in the literature for sliding-stem globevalves, and depicts the case that

the zero of the valve position corresponds to zero flow.21,38

Remark 5.3. As noted in,38 ua,i depends not only on xv,i , but also on the fluid pressures upstream

and downstream of the valve. In Eq. 3.21, we assume that the upstream and downstream pressures

are fixed for a given value of xv,i such that we are able to write ua,i as a function of xv,i only by

writing the pressure differential as a function of xv,i as well. However, for the case that this is

not possible and the pressures are varying, it is possible toinstead write Eq. 3.21 as a function of

xv,i as well as of the upstream and downstream pressures and to still apply the method proposed

in this chapter to the resulting system if the dynamics of thepressure variations are added to the

process-valve model.

5.2.2.4 Linear Controller Dynamics

It is customary in industry to implement a regulatory layer where classical linear controllers

are used to influence the valve dynamics and force the valve output to be closer to the valve
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Figure 5.2: Examples of relationships betweenua,i andxv,i for a valve. xv,i,max is the maximum
stem position of the valve. In this figure,xv,i,max corresponds to the stem position when the valve
is fully open.
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output set-point computed by the model predictive controller.42 Thus, for consistency with

industrial practice, we assume that a linear controller (for example, a proportional (P) controller,

a proportional-integral (PI), or a proportional-integral-derivative (PID) controller) is used, as

opposed to a nonlinear controller, to regulate the flow rate from the valve to its set-point. Because

xv,i and ua,i are related through a one-to-one nonlinear algebraic equation, this is equivalent to

assuming that the linear controller regulates the stem position of the valve to its set-point (though

the dynamics of the controller in terms ofxv,i are not necessarily linear if the dynamics in terms

of ua,i were linear sincef f low,i in Eq. 3.21 may be a nonlinear function). The dynamics of this

controller are described (in terms of the valve layer statesinstead of the valve output flow rate) by:

ζ̇i = fLC,i(ζi ,xv,i ,vv,i ,um,i) (5.2)

whereζi ∈ Rr i is the vector of controller states for the linear controllerof the i − th valve output

(this is the zero vector if a static controller is used),um,i is the set-point for the valve output of the

i − th valve, which is set by the MPC, andfLC,i is a nonlinear vector function associated with the

dynamics of the linear controller for thei − th valve. In addition, we definefLC(ζ ,xv,vv,um) =

[ fLC,1(ζ1,xv,1,vv,1,um,1) . . . fLC,m(ζm,xv,m,vv,m,um,m)]
T and:

r =
m

∑
i=1

r i (5.3)

5.2.2.5 Combined Process-Valve Model

Given the differential and algebraic equations describingthe dynamics of the process-valve system

in Eqs. 3.1, 3.16-3.19, 3.21, and 5.1-5.3 to be controlled byMPC, we now combine these equations
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into one process-valve dynamic model with state vectorq= [xT xT
v vT

v zT
f ζ T ]T :

q̇=






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= fq(q(t),a(t),FO(t),c(t),FA(t),um(t),w(t)) = fq(q(t),um(t),w(t)) =


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









(5.4)

whereA andB are matrices containing the entries of everyAi andBi , respectively, in appropriate

orders. The statement thatfq(q(t),a(t),FO(t),c(t),FA(t),um(t),w(t)) = fq(q(t),um(t),w(t))

follows because the vectorsa, FO, c, andFA will be functions of the statesq and/or the inputs

um when they are defined for a system.

Definingqv = n+2m+z+ r, we assume thatfq : Rqv ×Rm×Rw → Rqv is a locally Lipschitz

function of its arguments with the origin of the unforced nominal system (the system of Eq. 5.4

with um(t)≡ 0 andw(t)≡ 0) at the origin (i.e.,fq(0,0,0) = 0). We further assume that the inputs

um,i, i = 1, ...,m are restricted as follows:um,i ∈Um,i := {um,i : um,i,min ≤ um,i ≤ um,i,max}. It is

noted that a valve set-pointum,i from the MPC need not be restricted to the same setUi that the

actual valve output is restricted within (for example, it may be restricted to a smaller setUm,i if it is

known that the linear controller controlling the valve output overshoots the set-point). In addition

to the restriction that eachum,i ∈ Um,i, we consider that there may be additional input constraints

that depend on the current states, inputs, or both (as opposed to constraints that may depend on

past and future values of the inputs or states). Thus, we consider that eachum,i ∈ UT,i(q), where

UT,i(q) represents the set of allowable values of the inputum,i given all constraints involving this
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input, and it is defined separately at each state-space pointq since the input constraints may depend

on the current state.

We further assume that a Lyapunov-based controllerhv(q)= [hv,1(q) . . . hv,m(q)]T with hv(0)=

0 exists for the nominal system of Eq. 5.4 that can render the origin locally asymptotically stable

while meeting the input constraints in the sense that35,92 a sufficiently smooth, positive definite

Lyapunov functionV(q) and classK functionsα1(·), α2(·), α3(·), andα4(·) exist that satisfy the

following inequalities:

α1(|q|)≤V(q)≤ α2(|q|) (5.5a)

∂V(q)
∂q

fq(q,hv(q),0)≤−α3(|q|) (5.5b)

∣

∣

∣

∣

∂V(q)
∂q

∣

∣

∣

∣

≤ α4(|q|) (5.5c)

hv,i(q) ∈UT,i(q), i = 1, ...,m (5.5d)

for all q∈ D ⊆ Rqv, whereD is an open neighborhood of the origin.

There may be constraints on the states of the system of Eq. 5.4(for example, the constraint that

eachua,i ∈Ui), which will restrict the allowable states within the setQv. The stability region of the

process-valve system of Eq. 5.4 under the controllerhv(q) is defined as the level setΩρ ⊆ Qv ⊆ D

of the Lyapunov function. In addition to the requirements onhv,i in Eq. 5.5d, we require that each

hv,i , i = 1, ...,mbe locally Lipschitz as follows:

|hv,i(q1)−hv,i(q2)| ≤ Lv|q1−q2|, i = 1, ...,m (5.6)

for all q1,q2 ∈ Ωρ whereLv > 0 can satisfy the Lipschitz condition for everyhv,i (i.e.,Lv is greater

than or equal to the minimum Lipschitz constant that can satisfy the Lipschitz condition for the

control lawhv,i that has the largest minimum Lipschitz constant from alli = 1, ...,m). We note

that whenhv(q) is applied to the system of Eq. 5.4 in sample-and-hold, it canrender the origin

practically stable for sufficiently small sampling periods(Proposition 2.3).
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From Lipschitz continuity offq, from the bounds onum,i andw, and from the fact thatV(q) is

sufficiently smooth, there exist positive constantsM̄, L̄q, L̄w, L̄′
q, andL̄′

w such that:

| fq(q,um,1, ...,um,m,w)| ≤ M̄ (5.7)

| fq(q1,um,1, ...,um,m,w)− fq(q2,um,1, ...,um,m,0)| ≤ L̄q|q1−q2|+ L̄w|w| (5.8)

∣

∣

∣

∣

∂V(q1)

∂q
fq(q1,um,1, ...,um,m,w)−

∂V(q2)

∂q
fq(q2,um,1, ...,um,m,0)

∣

∣

∣

∣

≤ L̄′
q|q1−q2|+ L̄′

w|w| (5.9)

for all q,q1,q2 ∈ Ωρ , um,i ∈ UT,i(q), i = 1, ...,m, and|w| ≤ θ . A consequence of Eq. 5.7 and the

continuity ofq is that the following inequality holds:

|q(t)−q(tk−1)| ≤ M̄∆ (5.10)

for all q(t),q(tk−1) ∈ Ωρ whent ∈ [tk−1, tk], and a∆ sufficiently small.

Remark 5.4. In Eq. 5.4, disturbances are only considered in the process states. It is noted that

disturbances could also be added to the states xv, vv, and zf if desired, and all results in this

chapter would continue to hold if the resulting noise vectorwas bounded as w is assumed to be.

5.3 MPC for Stiction Compensation

A stiction compensation strategy should address the negative effects of stiction on control loop

performance, including that it can prevent a valve from effectively tracking the set-points it

receives. Another negative effect of stiction can be changes in the valve dynamics as stiction

worsens that affect the range of values that the valve outputcan take with the available actuation

energy. The MPC proposed in this section can help to alleviate these negative impacts of valve

stiction. We first discuss the proposed control loop architecture, and then proceed to develop the

model predictive controller formulation incorporating the process and valve dynamics, actuation

magnitude constraints, and input rate of change constraints. We also include Lyapunov-based
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stability constraints that will be used to prove feasibility of the proposed MPC optimization

problem and stability of the closed-loop system under the MPC. We discuss how the proposed

formulation addresses the various issues associated with stiction and provide the proofs of

feasibility and closed-loop stability for a sufficiently small sampling period.

5.3.1 MPC Architecture and Formulation for Stiction Compensation

The proposed control architecture, shown in Figure 5.3, incorporates an MPC controlling a process

by providing set-points for the valve outputs (process manipulated inputs) to a linear controller

that drives the valve output quickly to its set-point. It is noted that the control of the valve

output set-point, rather than the stem position itself, is chosen for consistency with the control

architectures incorporating MPC and a lower layer with linear controllers in industry. The proposed
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MPC computes control actions by solving the following optimization problem:

min
um,1(t),...,um,m(t)∈S(∆)

∫ tk+N

tk
LMPC(q̃(τ),um,1(τ), ...,um,m(τ))dτ (5.11a)

s.t. ˙̃q(t) = fq(q̃(t),um,1(t), ...,um,m(t),0) (5.11b)

q̃(tk) = q(tk) (5.11c)

q̃(t) ∈ Qv, ∀ t ∈ [tk, tk+N) (5.11d)

um,i(t) ∈Um,i, ∀ i = 1, ...,m, t ∈ [tk, tk+N) (5.11e)

gact,1(q̃(t),um,1(t), ...,um,m(t)) = 0, ∀ t ∈ [tk, tk+N) (5.11f)

gact,2(q̃(t),um,1(t), ...,um,m(t))≤ 0, ∀ t ∈ [tk, tk+N) (5.11g)

|um,i(tk)−hv,i(q(tk))| ≤ ε, i = 1, ...,m (5.11h)

|um,i(t j)−hv,i(q̃(t j))| ≤ ε, i = 1, ...,m, j = k+1, ...,k+N−1 (5.11i)

g̃MPC,1(q̃(t),um,1(t), ...,um,m(t)) = 0, ∀ t ∈ [tk, tk+N) (5.11j)

g̃MPC,2(q̃(t),um,1(t), ...,um,m(t))≤ 0, ∀ t ∈ [tk, tk+N) (5.11k)

V(q̃(t))≤ ρe, ∀ t ∈ [tk, tk+N) if tk < t ′ andV(q(tk))≤ ρe (5.11l)

∂V(q(tk))
∂q

fq(q(tk),um,1(tk), ...,um,m(tk),0)≤

∂V(q(tk))
∂q

fq(q(tk),hv,1(q(tk)), ...,hv,m(q(tk)),0)

if tk ≥ t ′ orV(q(tk))> ρe (5.11m)

where the notation follows that in Eq. 4.1. The general stagecostLMPC (Eq. 5.11a) is a function

of the predicted state ˜q from the full process-valve model (Eq. 5.11b, with initial condition in

Eq. 5.11c) and the vector of valve set-pointsum, which is the decision variable of the optimization

problem (this is in contrast to, for example, Eq. 3.11, wherethe objective function depends only

on x̃ andum; an example of an objective function that fits within the framework of Eq. 5.11a is

Eq. 4.1a wherẽ̂q is considered to include predictions of the process state but ũa,i can be written

as a function of the valve layer statexv,i through Eq. 3.21 and thus the objective function includes
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both process and valve model states). The solution to the optimization problem of Eq. 5.11 at time

tk is denoted asu∗m,i(t|tk), i = 1, ...,m, t = tk, tk+1, ..., tk+N−1.

In Eq. 5.11, the predicted state ˜q is restricted to the setQv (Eq. 5.11d; Qv bounds the

process-valve state vector as noted in Section 4.2), and each manipulated inputum,i is restricted

to the setUm,i, i = 1, ...,m (Eq. 5.11e) (note that the predicted values ofua,i are restricted by

Eq. 5.11d and Eq. 3.21). In addition to such constraints on the actuation of each valve, the use of the

detailed stiction model within the MPC allows additional restrictions to be placed on the actuation

magnitude, including the equality and inequality constraints in Eqs. 5.11f-5.11g, to prevent the

MPC from calculating undesirable or non-physical set-points um,i (these constraints were written

with the states and inputs as arguments, though they are functions ofa(t), FO(t), c(t), andFA(t),

using the simplification noted in Section 5.2.2.5 thata(t), FO(t), c(t), andFA(t) will be functions

of the states and inputs when they are explicitly defined for the given valve). Input rate of change

constraints can also be added, as in Eqs. 5.11h-5.11i, to reduce actuator wear as described in

Chapter 2. The input rate of change constraints are written with respect to the controllerhv,i but for

a givenεdesired, these constraints constrain the rates of change|um,i(tk)−u∗m,i(tk−1|tk−1)| ≤ εdesired

and |um,i(t j)−um,i(t j−1)| ≤ εdesired, j = k+1, ...,k+N−1, when a sufficiently small sampling

period ∆ and an appropriate value ofε are chosen (from Theorem 2.1, which is placed within

the notation of the process-valve system through Proposition 5.3 below). Eqs. 5.11j and 5.11k

represent general equality and inequality constraints, respectively, for the process-valve states and

valve output flow rate set-points described by functions ˜gMPC,1 and g̃MPC,2 that can be added to

the optimization problem to achieve desired performance goals. As stated in Section 5.2.2.5, we

require that the constraints in Eqs. 5.11f-5.11g and 5.11j-5.11k be constraints defined point-wise in

space (they only depend on the current states and inputs, andnot on past values of these variables).

In addition to the constraints designed to improve process performance in the presence of

stiction, the Lyapunov-based constraints in Eqs. 5.11l-5.11m have been added to prove feasibility

and closed-loop stability of the proposed MPC formulation.These constraints define two modes

of operation of the MPC. When the constraint of Eq. 5.11l is active, Mode 1 of the MPC is active
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Figure 5.3: Proposed architecture for MPC incorporating valve dynamics and actuation magnitude
constraints for stiction compensation. For simplicity of presentation, the only force on the valve
presented is one which is calculated by the linear controller.

and the process performance is optimized to the maximum extent possible within a subset of the

stability region,Ωρe ⊂ Ωρ , which is defined such that if the MPC is initialized at timetk from

any state withinΩρe, the state at timetk+1 is still within Ωρ . This Mode 1 constraint is specific

to Lyapunov-based economic model predictive control,79 the goal of which is to maximize the

process profit to the maximum extent possible using dynamic operation in Mode 1. In Mode 2,

the contractive constraint in Eq. 5.11m drives the state to aneighborhood of the origin. Mode

1 and Mode 2 are activated by either the location of the measured state in state-space, or by the

current time (t ′ denotes the time at which process operation switches from Mode 1 to Mode 2).

For tracking MPC, the Mode 2 constraint would be active for all times (i.e.,t ′ = 0 and the MPC

formulation in Eq. 5.11 is like that proposed as Lyapunov-based model predictive control (LMPC)

in36).

Remark 5.5. Due to the generality of the proposed MPC formulation, it is possible for a different

stabilizing formulation, such as a terminal cost with a terminal region constraint,13,105a terminal

state constraint,47,67or an infinite horizon,84 to be used in place of Eqs. 5.11l-5.11m (see also63,106

and the references therein for more information on various types of constraints that can be used

in MPC and EMPC). However, due to the ease of establishing thestate-space points from which

feasibility and closed-loop stability are guaranteed using Eqs. 5.11l-5.11m and the fact that these

properties can be proven for the process under the MPC with those constraints without any

assumptions on the cost function structure, we choose to establish feasibility and stability of the

proposed method in this chapter by using the stability constraints in Eqs. 5.11l-5.11m.
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Remark 5.6. In a practical setting, the parameters of the stiction modelmay change with time as

stiction worsens. Thus, it may be desirable to re-identify the parameters of the stiction model at

various points in time. In addition, it may be necessary to re-tune14,98,146the linear controller of

the valve as the valve dynamics change due to stiction. Therefore, an assumption of the proposed

design is that one can successfully detect and identify stiction and re-tune the controller as desired.

Remark 5.7. As commonly noted in the literature, the negative impact of valve stiction cannot

be fully remedied unless valve maintenance is performed.73 However, there are circumstances in

which maintenance is not performed on sticky valves until a planned process shutdown, which is

often infrequent (every 6 months to 3 years).135 If MPC is used to control a process-valve system

for stiction compensation purposes, it may also aid in allowing valve maintenance to be performed

before a planned shutdown through an actuator preventive maintenance strategy using MPC like

that developed in.96

5.3.2 Analysis of MPC Formulation

The power of the proposed stiction compensation strategy lies in its flexibility. Because of the

incorporation of the stiction dynamics in the MPC, a controlengineer can adjust the cost function

and the constraints to minimize the negative impacts of stiction. To clarify this point, we present

a number of remarks that exemplify how the proposed MPC couldbe modified to counter various

control loop issues due to stiction. Though the control architecture considered in this chapter is that

from Fig. 5.3, we will address the case that the flow controller is not present in Remarks 5.9-5.10

below for completeness.

Remark 5.8. The linear controller for the valve can be used to speed the response of the valve

to a valve output flow rate set-point change, even a valve output flow rate set-point change in the

direction opposite to previous set-point changes (i.e., a set-point change that causes the valve to

stick). If the controller is aggressive, it can cause the control input to the valve to quickly overcome

the deadband, reducing set-point tracking issues arising from stiction (if the aggressiveness does

not cause oscillations).
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Remark 5.9. The MPC cost function could include a penalty on deviations of the valve output

from a target value throughout time (e.g., a quadratic objective function). Because the MPC

incorporates a model of the stiction dynamics and thus is aware that the valve will slip and by

how much, this penalty would encourage the MPC to choose valve output flow rate set-points that

bring the valve output to or close to the target (this was shown to be beneficial, for example, in the

compensated case of Fig. 3.4).

Remark 5.10. If the proposed method is implemented with an economics-based objective function,

the proposed method could be used to choose valve output flow rate set-points that are more

economically optimal than if the MPC was unaware of the process dynamics. Even if the response

is not that of the ideal case with no valve dynamics, the sequence of valve output flow rate set-points

would still be the most economically optimal method for operating the system (given limitations

such as the sampling period and prediction horizon length inaddition to the valve dynamics)

because the MPC included the effect of the valve dynamics in its determination of the optimal

valve output flow rate set-points.

Remark 5.11. Some stiction compensation methods such as constant reinforcement and the

knocker that add signals to the output of the controller being sent to the valve are cited as sources

of valve wear and tear, which makes these methods short-termsolutions.39,86 Several stiction

compensation strategies have been developed to address this, including an optimization-based

stiction compensation method that minimizes a cost function including a term representing the

degree of movement of the valve to seek compensating signalsto add to the valve controller output

that will minimize the valve movement.135 The MPC stiction compensation method proposed in this

chapter is flexible and could include similar penalties in the objective function (in addition to input

rate of change constraints) if valve wear and tear is a concern. This flexibility to add penalties on

valve variability to the objective function may be particularly beneficial in cases where it may not

be obvious what value ofε in Eq. 5.11 provides an acceptable level of variability of the valve.

Remark 5.12. A major contribution of the proposed method is that it accounts for changes in the

range of valve outputs that can be achieved with the given actuation energy as stiction worsens.
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MPC strategies previously developed for stiction compensation have not explicitly addressed the

change in constraints that results as the valve output-actuation magnitude dynamics change,

though45,152,153address valve output saturation. The proposed method of this chapter, however,

introduces actuation magnitude constraints in Eqs. 5.11f-5.11g to constrain the valve actuation

magnitude and prevent the process-valve model from predicting non-physical values for such

forces. A benefit of these constraints is that if they are based on hard limitations of the valve

actuators, they may not need to be updated over time even if the valve model parameters are

updated due to changes, for example, in the friction force characteristics. This will be further

clarified in Section 5.4.

5.3.3 Feasibility and Stability

In this section, we prove that the optimization problem of Eq. 5.11 is feasible for all times and

that the closed-loop system of Eq. 5.4 is stable under the MPCof Eq. 5.11 when a sufficiently

small sampling period is used. We first re-state two propositions from Chapter 2 in terms of

the process-valve states and the notation of this chapter (e.g., Eqs. 5.7-5.9) to define parameters

and equations that will be used in the feasibility and stability proof. We then state the results of

Theorem 2.1 as a proposition in terms of the notation of this chapter to motivate the introduction

of a constraint that we will impose on∆ in the feasibility and stability proof. Finally, we combine

the results of the propositions to prove feasibility and stability of the proposed MPC.

Proposition 5.1. (c.f.79,110) Consider the systems

q̇a(t) = fq(qa(t),um,1(t), ...,um,m(t),w(t)) (5.12a)

q̇b(t) = fq(qb(t),um,1(t), ...,um,m(t),0) (5.12b)

with initial states qa(t0) = qb(t0) ∈ Ωρ . There exists aK function f̄W(·) such that

|qa(t)−qb(t)| ≤ f̄W(t− t0) (5.13)
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for all qa(t),qb(t) ∈ Ωρ and all w(t) ∈W with

f̄W(τ) =
L̄wθ
Lq

(eL̄qτ −1) (5.14)

Proposition 5.2. (c.f.79,110) Consider the Lyapunov function V(·) of the nominal system of Eq. 5.4

under the controller hv(q). There exists a quadratic function̄fV(·) such that

V(q)≤V(q′)+ f̄V(|q−q′|) (5.15)

for all q,q′ ∈ Ωρ with

f̄V(s) = α4(α−1
1 (ρ))s+ M̄vs

2 (5.16)

whereM̄v is a positive constant.

Proposition 5.3. Consider the system of Eq. 5.4 in closed-loop with the MPC of Eq. 5.11. If a

Lyapunov-based controller hv(q) that meets the assumptions of Eqs. 5.5 and 5.6 exists, then the

constraints of Eqs. 5.11h-5.11i ensure that for a givenεdesired,

|um,i(tk)−u∗m,i(tk−1|tk−1)| ≤ εdesired (5.17)

and

|um,i(t j)−um,i(t j−1)| ≤ εdesired, j = k+1, ...,k+N−1 (5.18)

when∆ < ∆1 andε in Eqs. 5.11h-5.11i are chosen such that

2ε +LvM̄∆ ≤ εdesired (5.19)

Proof. The proof follows that of Theorem 2.1. Specifically, from thebound in Eq. 5.10 and the

Lipschitz continuity ofhv,i(q) in Eq. 5.6,

|hv,i(q(tk))−hv,i(q(tk−1))| ≤ Lv|q(tk)−q(tk−1)| ≤ LvM̄∆ (5.20)
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and

|hv,i(q̃(t j))−hv,i(q̃(t j−1))| ≤ Lv|q̃(t j)− q̃(t j−1)| ≤ LvM̄∆ (5.21)

for q(tk), q̃(t j), q̃(t j−1) ∈ Ωρ for j = k+ 1, ...,k+ N − 1 and a sufficiently small∆ < ∆1 that

maintainsq(t) within Ωρ at all times for the MPC of Eq. 5.11 (the conditions under which ∆1

exists such that∆ < ∆1 maintainsq(t) ∈ Ωρ whenq(t0) ∈ Ωρ for the system of Eq. 5.4 under

the MPC of Eq. 5.11 are given in the theorem below). Combiningthis with Eqs. 5.11h-5.11i and

following steps similar to those in Eqs. 2.27-2.28, it is shown that

|um,i(tk)−u∗m,i(tk−1|tk−1)| ≤ 2ε +LvM̄∆ (5.22)

and

|um,i(t j)−um,i(t j−1)| ≤ 2ε +LvM̄∆ (5.23)

for j = k+1, ...,k+N−1, andi = 1, . . . ,m. Thus, the desired constraints in Eqs. 5.17 and 5.18 are

satisfied when 2ε +LvM̄∆ ≤ εdesired.

Theorem 5.1. Consider the system of Eq. 5.4 in closed-loop under the MPC design of Eq. 5.11

based on a controller hv(q) that satisfies the conditions of Eqs. 5.5-5.6 and assume thatu∗i (t0|t0) =

hi(x(t0)), i = 1, ...,m. Letε̃w > 0, ∆ > 0, θ > 0, ρ > ρe≥ ρ̃s> 0 satisfy

ρe ≤ ρ − f̄V( f̄W(∆)) (5.24)

−α3(α−1
2 (ρ̃s))+ L̄′

qM̄∆+ L̄′
wθ ≤ −ε̃w

∆
(5.25)

and

2ε +LvM̄∆ ≤ εdesired (5.26)

If q(t0) ∈ Ωρ , ρ̃s≤ ρ̃min, and N≥ 1 where

ρ̃min = max{V(q̄(t +∆)) : V(q̄(t))≤ ρ̃s} (5.27)
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then the state q(t) of the closed-loop system is always bounded inΩρ and is ultimately bounded in

Ωρ̃min.

Proof. Feasibility of the proposed formulation will be proven by showing that when the

Lyapunov-based controllerhv(q) exists that satisfies the constraints in Eqs. 5.5-5.6, it is afeasible

solution for the MPC optimization problem at all times ifq(t) ∈ Ωρ for all times. The proof of

closed-loop stability of the proposed method follows that in79 and will not be repeated here, but it

shows that the proposed MPC of Eq. 5.11 can maintain the states within the regionΩρ for all times

if a sampling period∆ < ∆1 is used, where∆1 is the largest value of∆ that causes Eqs. 5.24-5.25

and 5.27 to be satisfied. The proof in79 also shows that iftk ≥ t ′, the state is driven intoΩρ̃min

(defined by Eq. 5.27 where ¯q(t) represents the state of Eq. 5.4 under any sample-and-hold control

actionsum,i ∈ Um,i, i = 1, . . . ,m, which is similar to the definition used for ¯x in Section 2.2.4).

Closed-loop stability of a process under the proposed MPC follows from79 with the only bounds

on ∆ being those coming from Eqs. 5.24-5.25 and 5.27. In this theorem, in order to obtain the

desired rates of change in Eqs. 5.17-5.18, we also add the requirement from Proposition 5.3 that

Eq. 5.26 must be satisfied as well; however, this is not required for closed-loop stability to be

proven.

The feasibility of the state, input, Lyapunov-based, and input rate of change constraints

will be addressed whenum,i(tk) = hv,i(q(tk)) and um,i(t j) = hv,i(q̃(t j)), j = k+ 1, ...,k+N− 1,

i = 1, . . . ,m, andq(tk), q̃(t) ∈ Ωρ . Due to the definition of the stability regionΩρ , which included

the requirement that it be a region within which all state constraints are satisfied, the state

constraint in Eq. 5.11d is satisfied for all states withinΩρ . Also, by Eq. 5.5d,um,i(tk) = hv,i(q(tk))

and um,i(t j) = hv,i(q̃(t j)), j = k+ 1, ...,k+N − 1, i = 1, . . . ,m, satisfy the input constraints in

Eqs. 5.11e-5.11g and 5.11j-5.11k. Furthermore, by design of the Lyapunov-based constraints and

when∆ < ∆1, um,i(tk) = hv,i(q(tk)) andum,i(t j) = hv,i(q̃(t j)), j = k+1, ...,k+N−1, i = 1, . . . ,m,

satisfy the Lyapunov-based constraints in Eqs. 5.11l-5.11m. This is because Eq. 5.11m is trivially

satisfied byum,i(tk) = hv,i(q(tk)) andum,i(t j) = hv,i(q̃(t j)), j = k+ 1, ...,k+N− 1, i = 1, . . . ,m,

and when Eqs. 5.25 and 5.27 are met, it can be shown79,112 that um,i(tk) = hv,i(q(tk)) and
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um,i(t j) = hv,i(q̃(t j)), j = k+ 1, ...,k+ N − 1, i = 1, . . . ,m, will causeV(q̃(t)) ≤ V(q(tk)) for

t ∈ [tk, tk+1) such that Eq. 5.11l is therefore satisfied by those control actions. Finally, by design of

the input rate of change constraints in Eqs. 5.11h-5.11i with respect to the Lyapunov-based control

law,um,i(tk) = hv,i(q(tk)) andum,i(t j) = hv,i(q̃(t j)), j = k+1, ...,k+N−1, i = 1, . . . ,m, also satisfy

those equations. Thus, feasibility of the proposed MPC at each sampling time is ensured.

5.4 Application to a Chemical Process Example

In this section, we present a case study that shows how an MPC incorporating stiction dynamics

and actuation magnitue constraints may be designed for a specific chemical process example. For

this study, we focus on EMPC because EMPC can dictate a dynamic operating policy, which has

interesting implications for the constraints that need to be added to the EMPC for effective stiction

compensation in this example, and thus helps to illustrate the considerations that may go into the

design of the MPC in Eq. 5.11 to ensure that it adequately prevents the negative effects of stiction.

5.4.1 Dynamic Model Development

We first define the valve and process models that will be used inthis example.

5.4.1.1 Nonlinear Process Model

We consider control of the catalytic oxidation of ethylene in a continuous stirred tank reactor

(CSTR) for which the reactions in Eqs. 2.39-2.41 occur. The dimensionless material and energy

balances for this process from,122 which use reaction rate equations from,12 form the following

nonlinear process model of the system, which has the form of Eq. 3.35 but with a single inputua

as follows:
dx1

dt
= ua(1−x1x4) (5.28a)

dx2

dt
= ua(Ce−x2x4)−A1exp(

γ1

x4
)(x2x4)

0.5−A2exp(
γ2

x4
)(x2x4)

0.25 (5.28b)
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dx3

dt
=−uax3x4+A1exp(

γ1

x4
)(x2x4)

0.5−A3exp(
γ3

x4
)(x3x4)

0.5 (5.28c)

dx4

dt
=

1
x1
(ua(1−x4)+B1exp(

γ1

x4
)(x2x4)

0.5+B2exp(
γ2

x4
)(x2x4)

0.25+

B3exp(
γ3

x4
)(x3x4)

0.5−B4(x4−Tc))

(5.28d)

wherex1, x2, x3, andx4 are the dimensionless quantities from Section 2.3.1.4 (thegas density in

the reactor, the reactor ethylene and ethylene oxide concentrations, and the reactor temperature).

The process input (valve output)ua is the dimensionless volumetric flow rate of the feed. The

dimensionless concentration of ethylene in the feed (Ce) and the dimensionless coolant temperature

Tc are set to their values corresponding to an open-loop asymptotically stable steady-state of the

reactor at[x1s x2s x3s x4s] = [0.998 0.424 0.032 1.002] whenuas= 0.35,Ce = 0.5, andTc = 1.0).

The other parameters in Eq. 5.28 are taken from122 and are noted in Table 2.1.

5.4.1.2 Nonlinear Valve Model

In this section, we describe the model of the valve dynamics for the valve that adjustsua. Due

to their prevalence in industry, we model a pneumatic spring-diaphragm sliding-stem globe valve

using the values for the valve parameters from,72 with the exception that the time units of all

parameters are changed to the dimensionless time unittd for consistency with the time units in the

process model of Eq. 5.28, and are given in Table 3.1 (but withs replaced bytd). The valve is

modeled as a pressure-to-close valve with no pressure initially applied by the pneumatic actuation

at the fully open valve position. The valve stem can travel a maximum of 0.1016m from the

fully open valve position (which corresponds to the flow rateua = 0.7042) to the fully closed

position (with corresponding flow rateua = 0). Figures 5.4-5.5 depict the fully open and fully

closed valve positions; however, these are not detailed drawings of the valve interior and are meant

only for clarification of how the stem’s location is related to the valve opening. In accordance

with,33,72,91we assume that the differential equations in Eqs. 3.27-3.28are sufficient for describing

the stem position and velocity for the valve adjustingua (i.e., as in,33,72,91we neglect additional

forces known to be present in sliding-stem globe valves, such as the additional force required to
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move the valve plug into the seat and the force due to the pressure drop of the fluid as it moves

through the valve). The actuator applies a pressureP determined from the linear controller for

the valve to the valve diaphragm, and a spring opposes the movement of the diaphragm when

pressure is applied. We associate the fully open position ofthe valve with the equilibrium spring

positionxv= 0 m, and we associate the fully closed valve position with the maximum stem position

xv = xv,max= 0.1016m.

To determine the value of the friction forceFf in Eq. 3.28 at each time instant, we use

the LuGre26 friction model due to its relative simplicity (it is a dynamic model with only one

differential equation) and ability to qualitatively describe many of the effects of friction (e.g.,

presliding displacement, hysteresis in the friction forcewith velocity changes in the sliding regime,

and a lowering of the force required for breakaway as the applied force increases more quickly;26

also see72 for information on the ability of a valve simulated using theLuGre model and the valve

parameters in this paper to qualitatively exhibit the behavior expected when subjected to valve

tests developed by the Instrumentation, Systems, and Automation (ISA) Society). The LuGre

model describes friction using the differential and algebraic equations in Eq. 3.29 and:26

dzf

dt
= vv−

|vv|
g(vv)

zf (5.29)

whereσ0, σ1, andσ2 are model parameters,zf is an internal state variable of the friction model, and

g(vv) is a nonlinear function of the valve stem velocity. Though the LuGre model is fundamentally

a set of equations that can dynamically capture the effects of friction through the introduction of

an appropriately formulated state variablezf , a somewhat physical interpretation ofzf arises if one

imagines asperity junctions to behave like contacting bristles that bend against one another until

they slip, with stiffnessσ0 and damping coefficientσ1, andzf representing the average deflection

of the bristles. The last term of the friction force is for theviscous friction, with viscous friction

coefficientσ2. The functiong(vv) aids in defining the Stribeck effect and the friction-velocity
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Flow Direction

Figure 5.4: Schematic depicting a pressure-to-close pneumatic sliding-stem globe valve in the
open position. In this chapter, it is considered that no pressure is being applied to the valve initially
when it is in this position, and the stem position is considered to be atxv = 0 m from the valve’s
equilibrium, fully open position.
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Flow Direction

Figure 5.5: Schematic depicting a pressure-to-close pneumatic sliding-stem globe valve in the
closed position. In this chapter, the stem position for the closed valve isxv,max= 0.1016m from
the valve’s equilibrium, fully open position, and is maintained in this position by the application
of pressure to the valve diaphragm.
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characteristics at constant velocity, and for consistencywith 26,72will be taken to be:

g(vv) =
1

σ0

[

FC+(FS−FC)e
−(vv/vs)

2
]

(5.30)

whereFC is the Coulomb friction coefficient,FS is the static friction coefficient, andvs is the

Stribeck velocity. The parameters of the friction model in Eqs. 3.29 and 5.29-5.30 are defined in

Table 3.1. The notation in these equations follows that in Eqs. 3.18-3.19.

Remark 5.13. The LuGre model is used in this example because its simplicity makes it more

suitable for use in MPC than some of the more complex stictionmodels. Despite its relative

simplicity and ability to qualitatively represent a numberof friction effects, the LuGre model is

neither the most accurate nor the most current friction model available (see, for example,48 for

a criticism of its ability to model stiction when an oscillating force with magnitude less than the

Coulomb friction level is applied after breakaway, and140 for a criticism of some of its hysteresis

features in presliding, as well as1,94,95 for more detailed friction models). For the purposes of

the example in this chapter, which demonstrates the generaleffects that stiction may have on a

chemical process and how the incorporation of the dynamics in a model predictive controller can

reduce the undesirable effects of stiction, a stiction model that shows qualitatively correct behavior

for many scenarios is sufficient.

5.4.1.3 Relating Valve Position and Valve Output

We assume that the valve has a linear installed characteristic38 so that the valve output is linearly

related to the stem position in the sense that Eq. 3.31 holds.

Remark 5.14. The assumption of a linear installed characteristic was made for simplicity

of presentation for this example. A variety of other valve characteristics are possible (for

example, an equal percentage or quick opening inherent valve characteristic, or an installed valve

characteristic affected by the pressure drop across the valve);21,38,101,130however, the focus of this

example is the valve behavior in the presence of stiction, rather than the relationship between the
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flow and the stem position, so the assumption of a linear installed valve characteristic is considered

sufficient. For more information on inherent valve characteristics and how valve installation may

affect these characteristics, see.21,38,130

5.4.1.4 Linear Controller Model

In this example, we use a PI controller to regulate the valve outputua to the set-pointum set by

the EMPC. The PI controller determines the pressure that thevalve pneumatic actuation element

should apply according to the following equations, which have the form given in Eq. 5.2:

P= Ps+6894.76

(

Kc

(

um−ua

ua,max

)

+
Kc

τI
ζ
)

(5.31)

dζ
dt

=

(

um−ua

ua,max

)

(5.32)

whereKc = −12 andτI = 0.01 are the controller gain and integral time, chosen for a fast valve

response to a set-point change even with the deadband of the stiction model used in this example.

Ps is the steady-state value of the control signal. To ensure that P changes in the correct direction

and to prevent the integral error from the previous set-point from impacting the approach to a new

set-point once the set-point is changed, we setPs to the last applied value ofP and the value ofζ

(whereζ denotes the internal state of the PI controller in this example) to 0 at a set-point change.

Combining Eqs. 3.27-3.29, 3.31, and 5.28-5.32, we obtain a combined process-valve dynamic

model as in Eq. 5.4, with stateq = [x1 x2 x3 x4 xv vv zf ζ ]T and inputum, which we define as

q̇= fq(x1,x2,x3,x4,xv,vv,zf ,ζ ,um).

5.4.2 Motivation for Actuation Magnitude Constraints

When the process of Eqs. 3.27-3.29, 3.31, and 5.28-5.32 is controlled using EMPC, the EMPC

will output a set-pointum for the valve that controlsua for each sampling period. The set-point

um will be used in Eqs. 5.31-5.32 to determine the pressure thatshould be applied to the valve
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to bring it to the requested set-point. Because the dynamicsbetweenua, um, andP are critical to

the EMPC’s choice of the value of its optimization variableum, it is necessary that the dynamics

be understood and appropriately constrained to avoid non-physical situations. This concept will

be made clear in this section, which will show that the effectof stiction on the valve dynamics

requires the introduction of additional constraints to theEMPC with the form of Eqs. 5.11f-5.11g.

To demonstrate the manner in which stiction changes the dynamics, we first examine the

relationship betweenum andP for the open-loop valve in the presence of low stiction and inthe

presence of significant stiction (the open-loop valve is considered because the parametersKc andτI

in Eqs. 5.31-5.32 for the closed-loop valve can be adjusted for both the low stiction and significant

stiction cases to cause the closed-loop response of the valve output to a set-point change to be

rapid). A valve with low stiction can be modeled using the parameters listed in Table 3.1, with the

exception that the values ofFC andFS in the table are both replaced by 44.48 kg·m/t2
d. This low

stiction valve will be referred to as having “vendor” parameters, in keeping with the terminology

used in.72 The valve parameters listed in Table 3.1 are referred to as “nominal” valve parameters.72

To determine a relationship betweenum andP that can be used to determine the pressure to

apply to the open-loop valve to bringua to um, we start by determining the steady-state relationship

between the valve output and the applied pressure for the vendor valve. This relationship is

determined by ramping the pressure applied to the valve up and down between 0kg/m· t2
d and

82737kg/m· t2
d in increments of 69kg/m· t2

d every 0.5 td and recording the value ofua at the end

of every 0.5 td, using the Explicit Euler numerical integration method with an integration time step

of 10−6 td. The resulting plot of the steady-state value ofua versus input pressure is almost linear,

as shown in Fig. 5.6. If we assume thatum ≈ ua for the valve because stiction is low so the valve

output should track its set-point well, we obtain the following relationship betweenum andP for

the vendor valve using a least-squares optimization on the vendor valve data (neglecting the initial

transient) shown in Fig. 5.6:

um =−0.05864
6894.76

∗P+0.70391 (5.33)

We now assume that we have a series of desired set-pointsum that we would like to achieve for
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Figure 5.6: Comparison of steady-state relationship betweenua andP for the vendor and nominal
valve parameters.
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the open-loop valve with significant stiction (nominal valve). We investigate whether theum−P

relationship developed for the vendor valve is applicable for the nominal valve by developing the

ua−P relationship when the pressure value calculated from Eq. 5.33 is applied to the nominal valve

to attempt to achieve the desired value ofum. Accordingly, we ramp the set-pointum up and down

between 0.1042 and 0.7042 in increments of 0.01 every 0.5 td and record the value ofua at the end

of every 0.5 td, again using the Explicit Euler numerical integration method with an integration

time step of 10−6 td (the Explicit Euler numerical integration method with an integration time step

of 10−6 td was used for all simulations of the nominal valve in Section 5.4.2). The resultingua−P

relationship can no longer be described as one linear relation, but two that depend on whether

the pressure is being increased or decreased, and the deadband at a velocity change is visible in

Fig. 5.6. In addition, it can be observed from the figure that because of the effect of stiction on the

ua−P relationship, there are certain flow rates that can be achieved with a positive pressure for the

vendor valve that would require a negative pressure for the nominal valve, which is physically not

possible to achieve. This is the first hint that to compensatefor stiction, additional constraints of

the form of Eqs. 5.11f-5.11g will need to be added to the EMPC to prevent physically unrealizable

set-points from being requested.

As shown in Fig. 5.6, the linear relationship betweenum andP developed in Eq. 5.33 is not

sufficient to control a valve subject to stiction. Further evidence of this comes from ramping the

set-pointum of the nominal open-loop valve up and down between 0.1042 and0.7042 in increments

of 0.01 every sampling period of length∆ = 0.2 td and determining the pressure to apply to the

valve from Eq. 5.33. The dynamic response (i.e., not steady-state; this is the reason for the step-like

quality of the trajectories) of the valve output to these set-point changes is shown in Figs. 5.7-5.8.

Fig. 5.7 shows the insufficiency of Eq. 5.33 to determine the pressure value that should be applied

to the valve for a desiredum because it shows that for this sticky valve,ua does not effectively track

um (theua−um plot in Fig. 5.7 is not linear). This is further emphasized inFig. 5.8, which also

shows the deadband whenum begins to change in the opposite direction to that in which itwas

changing previously. This demonstrates that a different relationship betweenum andP is needed
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Figure 5.7: Open-loop values ofua andum for the nominal valve.

to control the nominal valve than that provided by Eq. 5.33 toensure good set-point tracking.

In the proposed method, the linear controller of Eqs. 5.31-5.32 is used to improve the set-point

tracking performance ofua. To demonstrate that this does indeed improve the set-pointtracking,

we ramp the set-pointum to the nominal valve in closed-loop with the linear controller in

Eqs. 5.31-5.32, again ramping it up and down between 0.1042 and 0.7042 in increments of 0.01

every∆ = 0.2 td. The dynamic response of the valve is shown in Figs. 5.9-5.10which show that the

ua−um relationship is close to linear under the linear controller, and thatua is able to closely track

um in time and is quickly able to overcome the deadband caused bystiction. However, despite its

benefit in providing good set-point tracking performance, the use of Eqs. 5.31-5.32 does not ensure

that the value ofP requested will not become negative. This is demonstrated inFigs. 5.11-5.12,

which plot the dynamic response of the closed-loop valve to eight set-point changes (um = 0.35,

0.2, 0.35, 0.2, 0.3, 0.4, 0.5, and 0.6) each held for∆ = 0.2 td when initialized from the fully open

position (i.e.,ua = 0.7042,Ps= 0 kg/m· t2
d, xv = 0 m, vv = 0 m/td, zf = 0 m initially). The results

in Fig. 5.11 again show that the PI control law developed in Eqs. 5.31-5.32 helps the valve to

effectively track its set-points even when there is deadband because the direction of the valve stem
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Figure 5.8: Open-loop values ofua andum with time for the nominal valve.

movement changes. However, the results of Fig. 5.12 show that the good set-point tracking can

only be achieved when the pressure is able to adjust as necessary, including becoming negative,

which is physically impossible. From Figs. 5.11-5.12 it canbe deduced that if the pressure is

saturated at 0kg/m· t2
d when a lower pressure is requested, the valve output would not be able

to reach all of the set-points in this simulation. This indicates that when the control law of

Eqs. 5.31-5.32 is used, the constraints of the EMPC need to ensure that the pressure does not

become negative at the set-points it requests, because the control law itself does not ensure this.

Remark 5.15. The constraintP̃ ≥ 0 kg/m· t2
d (whereP̃ signifies the prediction of the pressure

from the pneumatic actuation based on the process-valve model) was developed for the EMPC in

this section to ensure that the set-points calculated by theEMPC are physically realizable (i.e.,

that they do not require the pressure to become negative for ua to meet um). Based on the plots

presented in this section, other methods for handling this scenario could be considered as well.

For example, based on Fig. 5.6, another method for preventing negative pressures for this example

may be to decrease the range of allowable values of um as stiction worsens such that the allowable

values of um always correspond to positive pressures. However, it may bedifficult to determine
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Figure 5.9: Closed-loop values ofua andum for the nominal valve under PI control. The plot
depicts thatua increases with increasingum and decreases with decreasingum when the value of
um is changed by 0.01 every∆. The arrow in the lower left corner of the plot shows the direction
in which the increasing and decreasing steps in the plot are traversed.
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Figure 5.10: Closed-loop values ofua andum with time for the nominal valve under PI control.
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Figure 5.11: Closed-loop values ofua andum with time for the nominal valve under PI control for
several set-point changes.
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Figure 5.12: Closed-loop values of the pressure with time for the nominal valve under PI control
for several set-point changes.
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what the new bound on um should be without doing an off-line test to generate data like that in

Fig. 5.6, and the valve stiction may continue to worsen with time, meaning that new ranges for um

may need to be determined throughout time. In addition, because the profit from EMPC may be

improved by allowing operation over a larger region of state-space, it is not desirable to choose

extremely conservative bounds on um to avoid the calculation of set-points that would require

negative pressures because that may lower profit below that which could be realized. Finally, the

steady-state ua−P data in Fig. 5.6 may not be sufficient for determining an appropriate bound

on um because it does not show the transient behavior (e.g., underthe linear controller, ua may

overshoot um before settling to um). Motivated by these considerations, for the EMPC in this

example, we set the constraint of Eq. 5.11g in our proposed MPC compensation strategy to be a

constraint that the actuator pressure must never become negative.

Remark 5.16. We note that the basic relationships between um, ua, and P presented in this section

are well-known; for example, one can find plots similar to those in Figs. 5.6-5.8 in.33,72,91 In

addition, it is well-known that control of the valve position may help to improve the response of

a valve in the presence of valve nonlinearities (for example,91 suggests a control law to bring

the valve position to its set-point in the presence of stiction, and135 states that valve positioners

are often able to improve a valve’s response if it exhibits deadband). The results in this section

are novel, however, because they present the dynamic plots of the open and closed-loop valve

responses as an analysis tool useful for the design of an MPC with appropriate constraints for

stiction compensation and show how this analysis can be carried out using plots of this type.

Furthermore, this discussion is not meant to be applicable only to this example, but to suggest the

type of thinking and analysis that may need to go into the design of the proposed MPC for other

processes.

Remark 5.17. Fig. 5.6 and Fig. 3.6 can be compared. Fig. 5.6 relates ua and P for a low-stiction

valve and a valve experiencing more significant stiction upon increasing and decreasing the

pressure applied to the valve stem and holding it for some time upon each increase or decrease;

however, only the final values of ua and P at the end of each hold time are plotted, such that the
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transient response of ua to the P changes is not shown. Furthermore, the ramping of thepressure

in Fig. 5.6 is performed for the valve in open-loop in the sense that no controller is computing the

values of the pressure to be applied to the stem, but the pressure is being independently increased

and decreased. These features of the plot in Fig. 5.6 contrast with the features of the plot in Fig. 3.6,

for which a controller is assumed to be an important part of the dynamic plot (it is the label on the

x-axis); therefore, coupling between the controller, process, and valve dynamics for a system for

which such a plot is obtained may play a role in the response observed and there is a potential that

the plots may look different for the same valve when a different controller or process is present in

the loop. For example, a plot of ua versus P for the level control problem without flow control in

Fig. 3.3 would not have a significant moving phase because thecontroller begins to seek to move

the valve stem back in the direction from which it just moved soon after the valve slips.

5.4.3 Proposed MPC Formulation

In this section, we describe the performance of an EMPC formulation meeting the form of

our proposed MPC stiction compensation strategy in Eq. 5.11with the process-valve model of

Eqs. 3.27-3.29, 3.31, and 5.28-5.32 and the constraint thatP̃≥ 0 kg/m· t2
d at all times.

The control objective is to maximize the yield of the productethylene oxide. The yield of

ethylene oxide between the initial and final times of the plant operation (t0 andt f ) is defined by

Eq. 4.6. However, we assume that the volumetric flow rate of the inlet stream is bounded such that

betweent0 andt f , the integral in Eq. 4.7 holds. Combining Eqs. 4.6-4.7, the objective of the EMPC

becomes the maximization of the time integral of the stage cost LMPC, whereLMPC is defined as

follows:

LMPC = ua(τ)x3(τ)x4(τ) (5.34)

The inputua is physically bounded between the flow rates at the maximum and minimum valve

openings as follows:

ua,min ≤ ua ≤ ua,max (5.35)
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with ua,min = 0 (valve fully closed) andua,max = 0.7042 (valve fully open). The value ofua is

computed using the actuator layer equations in Eqs. 3.27-3.29, 3.31, and 5.29-5.32.

We assume that the only data available to aid in choosing the allowable range of valve set-points

um that the EMPC calculates is the vendor data in Fig. 5.6. Thus,we assume that the bounds

developed for the EMPC include set-points that can only be met with negative pressures by the

nominal valve, though they can be met with positive pressures by the vendor valve. The set-points

um are thus restricted as follows:

um,min ≤ um ≤ um,max (5.36)

with um,min = 0.0704 andum,max = 0.7042 (the minimum value ofum is greater than 0 because

we assume that we want to avoid fully closing the valve for this process). Physically, the pressure

applied to the valve diaphragm cannot drop below 0kg/m· t2
d.

For this example, the optimization variableua does not have a large effect on the process

economics. Thus, we emphasize that the choice to use EMPC forthis example is primarily

driven, as previously noted, by the ability of EMPC to promote time-varying operation such

that it computes set-points at the bounds of what is physically possible to maximize the process

profit and thus effectively illustrates the advantages of including the constraint on the actuation

magnitude (pressure). Furthermore, the profitability of EMPC over steady-state operation for

a variety of processes has been well-documented in the literature (see, for example,79 and60),

including for the present example when two actuators are used as in,54 and is not the focus of

this chapter. However, it is noted that the process in the absence of stiction or valve dynamics

has a steady-state yield of 6.63% over 468td and a yield of 32.22% over 2td when initiated from

[x1I x2I x3I x4I ]
T = [0.997 1.264 0.209 1.004]T. This shows that for the two operating periods

considered in this study, the effect of the transient is verystrong because the average steady-state

yield is much larger over the 2td considered in this study than it is after a longer time period.

To achieve the above objectives while countering stiction,we develop an EMPC, termed

EMPC−A, that incorporates actuator dynamics to aid in stiction compensation and maximizes the

yield of ethylene oxide subject to the integral material constraint and constraints on the allowable
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values of the valve output, valve set-point, and actuator output to prevent non-physical situations.

This EMPC solves the following optimization problem:

min
um(t)∈S(∆)

−
∫ tk+Nk

tk
ũa(τ)x̃3(τ)x̃4(τ)dτ (5.37a)

s.t. ˙̃q(t) = fq(q̃(t),um(t)) (5.37b)

q̃(tk) = q(tk) (5.37c)

0≤ ũa(t)≤ 0.7042, ∀ t ∈ [tk, tk+N] (5.37d)

0.0704≤ um(t)≤ 0.7042, ∀ t ∈ [tk, tk+N) (5.37e)

P̃(t)≥ 0, ∀ t ∈ [tk, tk+N] (5.37f)
∫ tk+Nk

tk
ũa(τ)dτ +

∫ tk

( j−1)tp
u∗a(τ)dτ =

0.175tp

Ce
(5.37g)

where the cost function in Eq. 5.37a represents the total yield of ethylene oxide throughout

the prediction horizon when the material constraint is met,and Eq. 5.37g is the method for

implementing the integral material constraint by constraining the value ofua to meet the material

constraint in each operating period. Eq. 5.37g states that the time-average value of the sum of

the predicted valve output ˜ua plus the previously applied valve outputsu∗a must be no greater than

0.175
Ce

over the j − th operating period (j = 1,2, ...). A shrinking prediction horizon is used, such

that the prediction horizonNk = 5 at the beginning of an operating period of lengthtp = 1 td

(∆ = 0.2 td) but is decremented by 1 at each subsequent sampling time in the operating period. The

use of this shrinking horizon allows the integral material constraint of Eq. 4.7 to be implemented in

Eq. 5.37g. The state constraints in Eqs. 5.37d and 5.37f wereenforced every two integration steps.

Because this process has an asymptotically stable steady-state and no closed-loop stability issues

were encountered during the simulations, the Lyapunov-based constraints of Eqs. 5.11l-5.11m

were not considered. The dynamic equation in Eq. 5.37b was integrated within the EMPC using

the Explicit Euler numerical integration method with an integration step ofhA = 10−6 td. Centered

finite difference approximations of derivatives required for the solution of the optimization problem
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were obtained by perturbing the optimization variables by 10−6.

For comparison withEMPC−A, we also introduce an EMPC that does not include the valve

dynamics, which will be referred to asEMPC−B, formulated as follows:

min
um(t)∈S(∆)

−
∫ tk+Nk

tk
um(τ)x̃3(τ)x̃4(τ)dτ (5.38a)

s.t. ˙̃x(t) = f (x̃(t),um(t)) (5.38b)

x̃(tk) = x(tk) (5.38c)

0.0704≤ um(t)≤ 0.7042, ∀ t ∈ [tk, tk+N) (5.38d)
∫ tk+Nk

tk
um(τ)dτ +

∫ tk

( j−1)tp
u∗m(τ)dτ =

0.175tp

Ce
(5.38e)

where the notation in Eq. 5.38b signifies thatua in Eqs. 5.28a-5.28d is replaced byum in the

model used to predict the process states withinEMPC−B. Numerical integration of the dynamic

equations in Eq. 5.38b was performed using the Explicit Euler method with an integration time step

of hB = 10−4 td. Centered finite difference approximations of derivativesrequired for the solution

of the optimization problem were obtained by perturbing theoptimization variables by 10−4.

A third EMPC,EMPC−C, was also developed with the form ofEMPC−B but with rate of

change constraints added, for reasons that will be clarifiedbelow.EMPC−C solves the following
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optimization problem:

min
um(t)∈S(∆)

−
∫ tk+Nk

tk
um(τ)x̃3(τ)x̃4(τ)dτ (5.39a)

s.t. ˙̃x(t) = f (x̃(t),um(t)) (5.39b)

x̃(tk) = x(tk) (5.39c)

0.0704≤ um(t)≤ 0.7042, ∀ t ∈ [tk, tk+N) (5.39d)
∫ tk+Nk

tk
um(τ)dτ +

∫ tk

( j−1)tp
u∗m(τ)dτ =

0.175tp

Ce
(5.39e)

|um(tk)−u∗m(tk−1|tk−1)| ≤ γ (5.39f)

|um(t j)−um(t j−1)| ≤ γ, j = k+1, ...,k+Nk−1 (5.39g)

whereγ in Eqs. 5.39f-5.39g is a constant that defines the change inum that will be accepted

between sampling periods. In the following simulations,γ = 0.1. Eq. 5.39b was numerically

integrated using the Explicit Euler numerical integrationmethod with an integration step size of

hC = 10−4 td. Centered finite difference approximations of derivativesrequired for the solution of

the optimization problem were obtained by perturbing the optimization variables by 10−4.

Outside ofEMPC−A, EMPC−B, andEMPC−C, the actual process was simulated using

Eqs. 3.27-3.29, 3.31, and 5.28-5.32 with an Explicit Euler integration step size ofh= 10−6 td, with

the pressure saturated at 0kg/m· t2
d if a lower pressure was requested (ua would have been saturated

at ua,min or ua,max if those values were exceeded, but neither of these extremeswere violated in

these simulations). All three EMPC’s usedtp = 1 td, ∆ = 0.2 td, and simulated the results for two

operating periods. They were initiated from the pointqI = [0.997 1.264 0.209 1.004 0.051 2.000×

10−6 1.426×10−5 0]T , where the process states are dimensionless and the states of the actuator

layer have SI units except for a dimensionless time unit, andthe initial value of the steady-state

pressure isPs=63713kg/m·t2
d. All optimizations were performed using the open-source nonlinear

interior point optimization solver Ipopt148 and were coded in the C++ programming language. The

Ipopt convergence tolerance for optimization terminationwas set to 10−10 for EMPC−A, and to
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10−8 for EMPC−B andEMPC−C. Simulations were carried out on a 2.40 GHz Intel Core 2

Quad CPU Q6600 on a 64-bit Windows 7 Professional operating system with 4.00 GB of RAM.

Figs. 5.13-5.14 show the values ofua, um, andP for the valve with time when the system of

Eqs. 3.27-3.29, 3.31, and 5.28-5.32 is controlled byEMPC−A andEMPC−B. These figures

show that the inclusion of valve dynamics and actuation magnitude constraints in EMPC causes

EMPC−A to calculate lower set-points thanEMPC−B, which allows the valve output to track the

EMPC-requested set-points throughout the two operating periods, even when the pressure drops,

becauseEMPC− A is aware of the limitations of the pneumatic actuation and thus calculates

set-points that the valve output can reach (it is noted that there are two small set-point changes in

Fig. 5.13 thatua for EMPC−A does not track; the reason for this will be explained furtherbelow,

but the overall trend thatua tracksum well underEMPC−A can be deduced from Fig. 5.13).

Figs. 5.13-5.14 show that when the actuator dynamics are notincluded in EMPC and stiction

develops with time such that the pressure-flow rate relationship is altered, the valve output is not

able to track theEMPC−B set-points becauseEMPC−B calculates set-points for which the

pressure would need to drop to negative values to allow the valve to move enough to reach them

(because this is physically impossible, the pressure underEMPC−B saturates at its minimum

value of 0kg/m· t2
d for four sampling periods, though the pressure underEMPC−A does not

because the set-points calculated byEMPC−A are reachable). The inability of the valve to reach

the set-points calculated byEMPC−B causes theEMPC−B optimization problem to become

infeasible in the last two sampling periods of each operating period and causesEMPC−B to be

unable to meet the integral constraint (it cannot use all available material; the value of the integral

constraint in Eq. 4.7 calculated for each operating period (i.e., between( j −1)tp and jtp, j = 1,2,

instead of betweent0 andt f ) is approximately 0.133, which is 24% less than the requiredvalue

of 0.175). The yield ofEMPC− A throughout two operating periods according to Eq. 4.6 is

32.4%, while that ofEMPC−B according to Eq. 4.6 is 35.1%. This at first appears to suggest

thatEMPC−B out-performsEMPC−A economically; however, becauseEMPC−B did not meet

a hard constraint of the process, the yield that it achieved without meeting this constraint cannot
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Figure 5.13: Valve output set-pointsum (solid trajectories) and actual valve outputsua (dashed
trajectories) throughout two operating periods forEMPC−A, EMPC−B, andEMPC−C.

be compared with the yield of a process that did meet the constraint. Thus, no further discussion

of yields under the various EMPC’s will be pursued, and the discussion will focus on the degree

to which the various formulations ensure that the process constraints are satisfied. In contrast to

EMPC−B, EMPC−A is feasible in both operating periods.

Despite the advantages of usingEMPC−A rather thanEMPC−B to ensure that all process

constraints are met, the computational burden ofEMPC− A due to the enforcement of the

constraints on the pressure and onua at every other integration stephA = 10−6 td within the EMPC

is much larger than that forEMPC−B. In an actual plant, this computation time increase could

prohibit the use ofEMPC−A if the process has fast dynamics such that a short sampling period

is required for effective control. However, the input rate of change constraints discussed in this

chapter for the design of an MPC incorporating nonlinear valve dynamics may be considered for

use inEMPC−B to minimize the large jumps inum that causeEMPC−B to be unable to meet

the material constraint at the end of the operating periods but without adding much computation

time. Thus, we demonstrate the use of input rate of change constraints and how they affect the

trajectories ofum, ua, andPusingEMPC−C. Figs. 5.13-5.14 show these trajectories and show that

178



0 0.5 1 1.5 2
0

10

20

Time (td)
 

 
EMPC − A

0 0.5 1 1.5 2
0

5

10

15

Time (td)
 

 
EMPC − B

0 0.5 1 1.5 2
0

5

10

15

Time (td)

P
re

ss
u
re

/6
89

4.
76

(k
g
/m

·
t2 d

)

 

 
EMPC − C

Figure 5.14: Actuator pressure applied to valve stem throughout two operating periods for
EMPC−A (solid trajectory),EMPC−B (dashed trajectory), andEMPC−C (dotted trajectory).
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the addition of the input rate of change constraints toEMPC−B to form EMPC−C significantly

improves the set-point tracking performance compared toEMPC−B. In contrast toEMPC−B,

for which four of the set-points were not reachable and caused significant offset, there is only

one set-point calculated byEMPC−C in Fig. 5.13 for which offset is observed, and the offset is

much smaller than those forEMPC−B. In addition, the pressure in Fig. 5.14 only saturates at

its minimum value for one sampling period underEMPC−C, instead of the four during which

it saturates underEMPC−B. ThoughEMPC−C is infeasible for three sampling periods (the

last two sampling periods of the first operating period and the last sampling period of the second

operating period) and the integral constraint is not met at the end of either operating period, the

degree to which the integral constraint is violated is significantly less than underEMPC−B (the

integral constraint is 0.171 at the end of the first operatingperiod and 0.172 at the end of the second

underEMPC−C, such that in each operating period, it is only about 2% less than the required

value of 0.175). In addition, the computation time ofEMPC−C is, as forEMPC−B, much lower

than that forEMPC−A owing to the use of a lower-order model thanEMPC−A. The rate of

change constraints were added toEMPC−C in anad hocfashion and are not guaranteed to reduce

the negative effects of stiction on the controller performance, but the positive impact that they had

on the process performance does indicate the breadth of constraints that could be considered to

combat the effects of stiction with both the proposed MPC andalso with MPC’s for processes that

cannot fully incorporate the proposed method due to computation time constraints.

Figs. 5.15-5.16 show the closed-loop process and actuator layer states underEMPC− A,

EMPC−B, andEMPC−C. Fig. 5.15 shows that the process state trajectories are notdrastically

affected by the differences between the trajectories ofua under the three EMPC’s, which

contributes to the fact that the focus of this example is not on the profitability of the proposed

EMPC compared to the other methods, but rather on its abilityto meet the constraints of the

process when the valve is affected by stiction. The plot of the controller stateζ in Fig. 5.16

shows the manner in which the integral term of the controlleris affected by the different EMPC

formulations. InEMPC−B, the integral term becomes large in the sampling periods in which
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Figure 5.15: Closed-loop process statesx1, x2, x3, and x4 throughout two operating periods
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trajectories).

the EMPC cannot reach its set-points. This plot also shows the benefits of re-setting the value

of ζ to zero at each set-point change so that, for example, the value of ζ for EMPC−B at the

beginning of the second operating period is not large from the integration of this state at the end

of the first operating period. In addition, the plot shows that the inclusion of the actuator dynamics

and constraints on the pressure inEMPC−A and rate of change constraints inEMPC−C prevent

the integral term from becoming large because they ensure that the set-points can be met or (in the

case ofEMPC−C) reached closely enough so that the integral term does not reach large values. In

addition, the increase inζ at a direction change of the velocity to allow the pressure toovercome

the deadband is visible in this plot as well.

The trajectories in Figs. 5.13-5.14 and 5.16 show the relationships between the physical states
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xv andvv of the valve and the valve output and pressure applied to the valve for the process under

EMPC−A, EMPC−B, andEMPC−C. Because the value ofua is an explicit function ofxv,

changes inua occur whenxv changes. A comparison of the trajectories ofxv andua with the values

of P for EMPC−A shows the deadband where the pressure is increasing but the values ofxv and

ua do not change much because the error (and thusζ ) is not large enough to cause much stem

movement for the small set-point changes toward the end of the first and second operating periods

of the EMPC. The set-point changes inEMPC−B andEMPC−C are all significant enough that

the deadband is overcome within a sampling period. The velocity vv for all three EMPC’s is

non-zero whenxv and thusua are changing, but is zero whenua reachesum and the friction force

balances the pressure and spring forces on the valve.

The trajectories ofzf in Fig. 5.16 show that when deadband is encountered, the statezf is driven

through zero. This is consistent with the physical visualization ofzf suggested by the authors of the

LuGre model,26 which related it to the average deflection of theoretical bristles on two contacting

surfaces, whose bending caused friction. It would be expected that bristles would be deflected from

an equilibrium (zero) location corresponding to the starting position of the valve when the stem

position first begins to move in a given direction. In addition, it is necessary for continuity of the

friction force in Eq. 3.29 that the value ofzf approach this zero value in a dynamic fashion, rather

than abruptly. The passing ofzf through zero at a change in the direction of set-point changes

allows the friction force of Eq. 3.29 to change direction so that it continues to be in the direction

opposite the applied force.

We now address the fact thatEMPC− A calculated set-points that are not reachable (see

Fig. 5.13) though it could predict the dynamics of the valve with respect to the set-point changes.

Stiction is often noticeable when pressure is applied to a valve, but the valve stem does not move

because the opposing friction force is significant. This phenomenon is exhibited during the two

set-point changes forEMPC−A that the valve output does not track. Due to the small set-point

reversals inum requested byEMPC−A at the end of the first and second operating periods, the

value of the pressure applied to the valve according to Eqs. 5.31-5.32 does not change quickly
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since the error betweenum andua (and thusζ ) is low. However, though the valve is considered to

be stuck at this time, as the pressure changes, the dynamics in Eqs. 3.27-3.29, 3.31, and 5.28-5.32

cause the stem position and velocity (in addition tozf ) to continue to change, though slowly. It

is because of this effect thatEMPC−A calculates set-points that it cannot reach; it does so to

manipulate the numerical results such that the valve stem and thus output would move just enough

in the sampling periods in which unreachable set-points arecalculated to allow all constraints to

be met, including the integral constraint. While this suggests that the results are dependent on the

friction model used, it also shows that including the friction model within the EMPC allows the

EMPC to make smart set-point choices that are not necessarily intuitive.

To demonstrate the robustness of the proposed approach to disturbances and plant-model

mismatch, the process of Eqs. 3.27-3.29, 3.31, and 5.28-5.32 was controlled byEMPC−A and

was simulated with different levels of bounded Gaussian white noise in the process and actuator

states, and the closed-loop stability of the process underEMPC− A was found to be robust

with respect to the different noise levels. In addition, when the process was simulated with

noise in the process states with standard deviationσw = [0.1 300 60 0.4 0 0 0 0]T and bound

θ = [0.3 900 180 1.2 0 0 0 0]T (this standard deviation and bound on the noise were chosen because

they provided a meaningful perturbation to the process states when added to the right-hand side of

Eqs. 5.28a-5.28d), the integral material constraint was met in both operating periods.

Remark 5.18. In the example of this section, the addition of input rate of change constraints to

an MPC was shown to be beneficial for valve behavior compensation, and in Chapter 2, such

constraints were suggested to help prevent actuator wear. It should be noted, however, that input

rate of change constraints may cause issues for effective process control if stiction is present in the

control loop and the constraints are not carefully designed. For example, returning to the results

in Fig. 3.4 for the sticky valve without flow control of Eqs. 3.27-3.32, we see that the valve does

not move due to friction if the changes in the valve output flowrate set-point um are not significant

enough to increase the pressure to a level that overcomes thestatic friction force. If input rate of

change constraints are included in an MPC that accounts for the stiction dynamics in this case,
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they may prevent um from changing enough to cause the level to move in some sampling periods.

However, for the example in this chapter, because the valve is under flow control, the pressure

applied to the valve can change throughout a sampling period(i.e., it is not fixed by um but can be

adjusted even for a fixed um by the flow controller). Therefore, when the magnitude of um−ua is

large in Eqs. 3.24-3.25, the magnitude of P may become large,resulting in the actuation magnitude

saturation seen in this example. The input rate of change constraints can thus be beneficial in this

case because they are not bounding P directly (i.e., P can still adjust as required to cause ua

to reach um if the pressure does not saturate), but they are instead reducing the flexibility that the

controller has to change the valve output flow rate set-pointto values that would cause the value of

P to saturate. This emphasizes the need to carefully design an MPC for stiction compensation with

the understanding developed in Chapter 3 that the effects ofstiction are closed-loop effects and

therefore different MPC constraint designs may be needed for different control loop architectures,

for example.

5.5 Conclusions

In this chapter, we showed that MPC can be used to compensate for the effects of stiction by

including detailed valve dynamics for sticky valves in addition to constraints on the rate of change

of inputs and the actuation magnitude. The flexibility of theMPC-based stiction compensation

strategy, which allows it to incorporate a variety of cost functions or constraints to reduce tracking

offset in control loops, was discussed. In addition, closed-loop stability and feasibility of the MPC

optimization problem including Lyapunov-based stabilityconstraints were proven for a sufficiently

small sampling period. Using a chemical process example, weshowed how constraints can be

developed for the MPC for stiction compensation and demonstrated that this MPC can result in

better valve layer set-point tracking and constraint satisfaction than an MPC that does not account

for stiction.
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Chapter 6

Conclusion

This dissertation developed a framework for accounting foractuator constraints and nonlinearities

for control loops with various control designs, ranging from state-of-the-art control methods such

as EMPC to classical control designs like PI control.

Chapter 2 discussed methods of accounting for actuator wearthrough input rate of change

constraints in EMPC. It was demonstrated that the constraints can be developed within the context

of an EMPC design with Lyapunov-based stability constraints in a manner that not only ensures

that the value of each implemented input differs from the value of the last implemented value

of that input by no more than a desired valueεdesired between two sampling periods, but also

guarantees feasibility of the EMPC design and closed-loop stability in the sense of boundedness of

the closed-loop state within a pre-defined region of state-space for all times and uniform ultimate

boundedness of the closed-loop state within a neighborhoodof the origin when a contractive

constraint in the EMPC formulation is activated for all times. It was also demonstrated that

the EMPC design could be formulated with a terminal constraint such that even with input rate

of change constraints, a nonlinear process operated under the EMPC is guaranteed to have an

economic performance at least as good as that of a Lyapunov-based controller implemented in

sample-and-hold on both the finite-time and infinite-time intervals. The EMPC with input rate

of change constraints was demonstrated through an ethyleneoxidation example, and the terminal
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constraint was demonstrated utilizing a CSTR.

Chapter 3 analyzed valve nonlinearities from a fundamentalmathematical perspective and also

through simulation. It was shown that the interactions among the states describing the process

model and the valve model are nonlinear and coupled, and as a result, the negative impacts of valve

nonlinearities such as stiction on control loop performance should be analyzed in a closed-loop

context. A level control example was used to illustrate thisby demonstrating the set-point tracking

issues occurring in the control loop containing a sticky valve when the tank level is controlled by

either a PI controller or an MPC. The closed-loop insights obtained were then utilized to place

some of the stiction compensation literature for systems under classical linear control designs

in a closed-loop context, and to demonstrate via the level control example how a flow control

compensation method and an integral term modification method improve the closed-loop response

when the sticky valve is in the loop.

In Chapter 4, the closed-loop perspective on valve nonlinearity compensation was utilized to

propose model predictive control methodologies with empirical and first-principles process-valve

models for making state predictions as valve nonlinearity compensation methodologies. A level

control example and an ethylene oxidation example demonstrated the effectiveness of making the

MPC aware of the valve dynamics through the process model andconstraints. Finally, Chapter 5

extended the developments of Chapter 4 to focus specificallyon MPC for stiction compensation.

It demonstrated that special considerations (e.g., actuation magnitude or input rate of change

constraints) may be beneficial for preventing the MPC from calculating unreachable set-points

for the valve output flow rates due to changes in the valve dynamics that arise due to stiction. An

ethylene oxidation example motivated the use of the actuation magnitude constraints and showed

that an EMPC that does not account for the valve dynamics in the process model and pneumatic

actuation in the constraints may cause the input trajectories computed by the EMPC to violate hard

process constraints, whereas accounting for the valve layer dynamics in the EMPC can allow the

resulting input trajectories to cause the constraints to bemet.

In conclusion, this dissertation has provided a framework for accounting for actuator
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dynamics/constraints in classical control designs, MPC, and EMPC by adjusting the process model

and constraints to improve set-point tracking and reduce actuator wear.
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[36] P. D. Christofides, J. Liu, and D. Muñoz de la Peña.Networked and Distributed Predictive
Control: Methods and Nonlinear Process Network Applications. Advances in Industrial
Control Series. Springer-Verlag, London, England, 2011.

[37] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña,and J. Liu. Distributed model
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applications. In F. Allgöwer and A. Zheng, editors,Nonlinear Model Predictive Control,
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