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Control valves are the most prevalent final control elemeié chemical process industries.
However, the behavior of valves (i.e., the manner in whiah \thlve output flow rate changes
in response to changes in the control signal to the valvexoatribute to a number of negative
effects in a control loop, such as set-point tracking issuebssustained closed-loop oscillations.
Valve stiction, for example, is a dynamic valve nonlineafite., the relationship between the valve
output flow rate and the control signal to the valve is desttiby nonlinear differential equations)
resulting from friction that is known to be problematic iretprocess industries. This dissertation
describes the impact of valve behavior on process contogld@and methods for compensating
for the valve behavior through appropriate control desigfisbegins by describing how the
addition of input rate of change constraints to an optinmrabased control design with a general
objective function (economic model predictive control (E®I)) can be performed in a manner
that may reduce actuator wear while simultaneously gueeamy feasibility of the controller and
closed-loop stability of a nonlinear process operated utigecontrol design. It then focuses on a
specific type of actuator (a valve) and elucidates that @mypionlinear interactions between the
process and valve model states and any internal states obttiller model create the negative

effects that may be observed in control loops containingesafor which the dynamics cannot be



neglected (e.g., valves subject to significant stictionhede multivariable interactions illustrate
the closed-loop nature of the negative effects observeti tl@ia closed-loop perspective is then
used to analyze stiction compensation methods from thelitee, to develop a novel stiction

compensation scheme for control loops under proportioriazral control, and to demonstrate that
incorporating models, both first-principles and empiricéivalve behavior within the model used

for making state predictions in a model predictive conénals an effective means for compensating
for valve behavior in general. The benefits of adding actmatiagnitude and input rate of change
constraints within EMPC including a model of stiction dynasare discussed. Throughout
the work, process examples are utilized to illustrate theaaded control-based frameworks for

understanding and compensating for valve limitations.
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Chapter 1

Introduction

1.1 Model Predictive Control

Model predictive control (MPC) has been a critical techgglavithin the chemical process
industries for several decades’’-126.12ye to its ability to determine optimal inputs to a process
by minimizing a quadratic function of the inputs and (preéelit) process states. Unlike optimal
control problems that optimize a quadratic objective fiorcover an infinite horizoR® 74 MPC

is implemented with a finite-time horizon known as the predichorizon. This means that the
objective function can be numerically discretized and@spnted as a sum of a finite number of
terms. The prediction horizon is partitioned iltictime intervals where each has a length known
as a sampling period. Throughout a sampling period, the Mé¥jas a constant value to each
process input. At every sampling time, the MPC receivesliaekl of the process state through
a state measurement and re-solves the optimization protdesisting of a quadratic objective
function and state and input constraints, where every oenae of the state in both the objective
function and state constraints must come from the predistaf a dynamic process model with
its initial condition at the state measurement at the begqof the sampling period. After the
solution to the MPC has been obtained (which consistd @hlues of each manipulated input,

each of which will be held constant for a sampling periodapplies only the first of th&l values



of each input to the process for one sampling period. At the sempling period, the remaining
N — 1 values of each input are discarded so that the MPC can ve-fml theN values of each
input based on a new state measurement and then apply tred Biesth of these new values to the
process for the next sampling period. This is known as a regdtbrizon implementation. Many
industrial MPC designs employ linear dynamic process nsdel

Because MPC uses a process model for state predictions givenput trajectory, it can
account for multivariable interactions and actuator c@msts. The quadratic objective function
of an MPC can in general be tuned by adjusting the weightingices on the quadratic terms
to more significantly penalize set-point deviations (byr@asing the weight on the state term) or
the use of control inputs (by increasing the weight on theiiriprm). Because the cost function
of MPC can be tuned in this manner, MPC has been promoted ast@ler that can improve
process economics by enforcing either rapid set-poinkingcor minimal input use, whichever
corresponds to greater profit for a company. In general, iexwvéhe tuning of the weighting
matrices that achieves economic optimality in this sensbffisult to discern, and in addition a
guadratic cost function may not actually represent the gge@conomics (which may be more
adequately represented by, for example, a nonlinear Aibeate law expression that quantifies
the production rate of a desired product). For these reaspisnal control actions computed
by solving the tracking MPC optimization problem do not gadly correspond to economically
optimal input trajectories. To increase profits for a precesder tracking MPC, MPC has
been coupled with an optimizer referred to as a real-timémpér (RTOY? 193 that computes
economically optimal steady-states for the MPC to track blyisg a nonlinear optimization
problem with a detailed steady-state plant model and a Iplgsapbnlinear and nonquadratic

objective function representing the process economics.



1.2 Economic Model Predictive Control

The RTO-MPC hierarchy described above has a number of casdayes from an economic point
of view, most significantly that steady-state operation malybe the most economically optimal
operating strategy. In fact, it has been repeatedly showreiohemical engineering literature, both
experimentally and through a variety of simulated chempratess examples, that a number of
industrially relevant processes may achieve higher pnefiisn operated in a time-varying fashion
than when operated at steady-sté22131.13% Tg gchieve dynamic, economically optimal
process operation while still incorporating process feettb the tracking MPC framework was
modified by replacing the quadratic objective function wathobjective function that specifically
represents the process economics (and does not typicaidyitaminimum at a steady-state of
the process), forming economic MPC (EMPE)?3 The time-varying operating policies that can
be computed by EMPC have been repeatedly shown to be capfainler@asing process profits
compared to operating a process at steady-state for soreersrs: /2

However, this new time-varying operating policy comes watlarge number of theoretical
and practical challenges, including: 1) evaluating whiethe economic performance of a process
under EMPC is better than that for steady-state operat@nticplarly when there are restrictions
such as constraints on actuator movement or productiomatdsethat must be met, 2) defining the
conditions under which EMPC is guaranteed to be feasibletamdaintain closed-loop stability
of a nonlinear process for various stability constraintdeatito the formulation and even when
there are disruptions such as preventive maintenance,dBrireg the computation time of the
methodology, which can be prohibitively large since it regsl a nonlinear program to be solved
due to the non-quadratic objective function and often maar constraints (as opposed to a convex
optimization problem like a typical tracking MPC), and 4)aganteeing operational safety of
chemical processes operated under EMPC when the contighdsshighly focused on process
economics. These considerations have been addresseeim years by a number of works.

One method that has been utilized for addressing the firstbneiderations is the development

of multiple EMPC formulations. Due to differences in thesmiulations, different guarantees can



be made in terms of economic performance, feasibility,istygband robustness. Four common
designs in the literature are those with a terminal equabtystraint requiring the state at the end
of the prediction horizon to be at the steady-stété’-128a terminal region constraint requiring
the state at the end of the prediction horizon to be in a regiaund the steady-state 3
an EMPC formulation without additional constraints (buttwiechnical assumptions such as a
sufficiently long prediction horizon or turnpike propertiytbe optimal control problem made for
analyzing the closed-loop system under the EMPECP: "®and a two-mode EMPC formulation
with Lyapunov-based stability constrairis. Several of these methods have been beneficial
for analyzing economic performance guarantees under thBEKbrmulations in the absence
of disturbances and for showing that steady-state traclingossible under EMPC if certain
conditions are met on the process model and objective famctiThe Lyapunov-based EMPC
formulation has been used to address a number of the maj@idesations encountered for
a process under EMPC listed above, including optimizingneauc performance even when
schedules must be trackédnaintaining closed-loop stability when sensors are takiéfine

for maintenanc&’ and explicitly integrating operational chemical proceafety and process
control/~10 This EMPC formulation has been ideally suited for addrassitis wide range of
issues because it allows expli@tpriori characterization of the set of initial conditions from
which feasibility of the EMPC optimization problem is guateed at every sampling time, and
explicit a priori characterization of the region in state-space within whleh closed-loop state
is guaranteed to be maintained for all times in the presefificiently small disturbances
and with a sufficiently small sampling period. In generalwbger, various economic model
predictive control formulations have been utilized in therhture to address numerous practical
considerations including wastewater treatm@atdetermining zone temperatures for heating,
ventilation, and air conditioning systert&: 144 microgrid dispatcH?* and fault-tolerant control
of systems for which empirical models are availablefinite horizon results for EMPC have also
been developed (e.&%129.

A disadvantage of EMPC is that it typically requires the $iolu of a nonconvex nonlinear



optimization problem and thus may not be able to be solvedsamapling period. Methods that
have been looked at for enhancing the ability of EMPC to béiagpn-line include using two-tier

schemes? 55triggering of the EMPC optimization problem as the erromsn state predictions
and state measurements becomes larger than a thréShalding empirical models in place
of first-principles models in EMPE€ or simplifying the EMPC formulation through Carleman

approximatiorf®

1.3 Stiction

Both MPC and EMPC compute control actions that must be phigiémplemented on a
process. The most common final control elements used to imgsiecontrol actions at chemical
plants and refineries are control valves. Valve dynamicsygneally neglected in the chemical
process control literature, meaning that the valve outptypically assumed to instantaneously
reach the value requested by the controller. However, sabfeen have dynamics or other
behavior that undermines control system performance.ifsgaly, nonlinearities in control valve
dynamics can cause poor set-point tracking and even sadtaomtrol loop oscillation$? Some
nonlinearities can be described by static functions (euggqual percentage valve characteristic,
which represents a nonlinear one-to-one relationship déetwhe percent that the valve is open
and the percent of flow through the val#)while others are modeled as nonlinear dynamic
systems (e.g., stictiof} Stiction is a particularly problematic issue for the chemhiprocess
industries?® 117 as it is a friction effect in the valve that causes it to stickiluthe force on the
valve exceeds a certain level, at which point the valve mawnelamay even jump to a new position.
Though there have been efforts to develop compensationitpads for stiction (e.g., methods that
add additional signals to the output of a controller suchusg® ’ or optimally-determined signals
with respect to a performance metd®), they have not yet been able to eradicate this significant

industrial concern.



1.4 Dissertation Objectives and Structure

Motivated by next-generation manufacturing objecti¥®43 including safer and more profitable
operating strategies, this dissertation develops fortimna of advanced process controllers such as
MPC and EMPC, as well as modifications to classical contrsigies such as proportional-integral
(P1) control, that seek to achieve these objectives by impgoprocess economic performance in
the presence of actuator nonlinearities.

As noted above, one of the primary concerns within the EMRB&dture is determining the
conditions that guarantee that a process under EMPC wi# haveconomic performance at least
as good as that for the standard industrial operating pamadteady-state operation). However,
industry is only interested in these performance guararifebey can be achieved without abuse
of the process equipment by the control actions computed MP& This is a concern since
EMPC may operate a process in a time-varying fashion, somestiby calculating bang-bang
type control actions which may wear out the control actusatorherefore, Chapter 2 of this
dissertation addresses this issue by adding input rate afgshconstraints to a specific EMPC
formulation that utilizes Lyapunov-based stability coasits for closed-loop stability purposes
(termed Lyapunov-based EMPC or LEMPC). The input rate ohgkeaconstraints are formulated
with respect to a Lyapunov-based controller to form an EMB@ntilation with both input rate
of change constraints and guaranteed feasibility and dias®p stability properties, even in the
presence of disturbances. Furthermore, an additionainiafroonstraint is developed based on a
Lyapunov-based controller and it is shown that when theeenar disturbances or plant-model
mismatch, the LEMPC with input rate of change constraintd #re terminal constraint has
guaranteed economic performance properties. Specificilgconomic performance is at least
as good as that of a stabilizing Lyapunov-based controtidyaih the finite-time and infinite-time
intervals (when the stabilizing Lyapunov-based contrdilgs certain properties, the infinite-time
performance result signifies that the asymptotic averagéonmeance of a nonlinear process
operated under the LEMPC with input rate of change condrasnat least as good as that for

steady-state operation). This result holds regardlesiseofrtagnitude of the input rate of change



or whether the input rate of change is penalized in the cosition. These results address a key
industrial concern regarding the wear on a physical systaheuEMPC and also show that EMPC

may still provide economic benefits compared to the stanuahastrial operating paradigm even

when the input variability is reduced.

Chapter 3 of this dissertation turns from the focus on cdiei®designed to improve process
economics subject to physical actuator limitations suctvear possibilities to the more general
problem of how to enhance process economic performanceeipitbsence of valve behavior,
for processes operated under any feedback control desmngeoportional-integral (PI) control,
MPC) for which the control design objectives such as setpwacking are not being met due
to valve dynamics. Specifically, this chapter develops diethiframework for understanding
the negative impacts of valve dynamics on process contiwdjdating the manner in which the
type of valve nonlinearity, the type of controller, and thentol loop architecture impact the
consequences of having that nonlinearity within the cdtiap. It demonstrates that these factors
work together to influence set-point tracking, process trairg satisfaction, and the initiation of
sustained control loop oscillations. After such issueshasen clarified, it is possible to propose
novel compensation methods for valve nonlinearities thadifig the type of controller already in
the control loop containing the valve nonlinearity (rattfean adding an additional compensating
system). For example, the chapter demonstrates that theemamwhich the forces on the valve
balance causes stiction-induced oscillations within arobfoop containing an integrating linear
controller and a sticky valve. From this understanding & dscillation phenomenon, it then
proposes the modification of the integral action with a teeftecting the difference between the
valve output set-point and the actual valve output.

Chapter 4 augments the developments of Chapter 3 by praptisett model-based control
designs (in particular, model predictive control desigamjounting for valve dynamics provide a
systematic method for attempting to remove the negatiexeffobserved in closed-loop systems
within which the valve dynamics cannot be neglected. Aaaltcomponent of the MPC-based

valve nonlinearity compensation strategy is the availigtaf a model describing the valve layer



dynamics. To handle the range of controllers, control lo@hisectures, and valve nonlinearities
for which this dissertation investigates MPC with valve dgnics as a compensation technique, a
systematic methodology is utilized to obtain valve layedels. The modeling efforts assume that
a higher-level controller (e.g., a Pl controller or an MPQitrolling a process) communicates a
valve output flow rate set-point to a valve. The flow rate s@ivpis related to the force applied
to the valve by the actuation through either a linear retesiop (for a valve operated without flow
control) or using a dynamic model of a linear controller fbe tvalve that computes the force
applied to the valve (for a valve operated under flow contrbil)accordance with the literature,
a force balance is utilized to describe the valve stem mosdnd velocity dynamics. Finally, the
valve position and valve output flow rate are related usintatcsfunction (e.g., a linear valve
characteristic). The flow rate out of the valve is then utiias the chemical process input.

This first-principles valve layer modeling effort pursuedChapters 3-4 permits an entire
closed-loop process-valve system to be modeled, whiclwalline dynamics of a nonlinear
process influenced by a variety of control loop architecureonlinearities, and controllers to
be systematically investigated, understood, and improvéalso allows a practical challenge
which might otherwise limit the industrial applicabilityf the MPC-based valve nonlinearity
compensation technique (that it can be difficult to deteemihe parameters of a dynamic
first-principles valve model) to be investigated in Chapter Specifically, Chapter 4 uses a
first-principles process-valve model as the represemati@ plant containing a sticky valve and
uses the data from simulations of this plant to address thmreal modeling of the valve layer. It
suggests an empirical modeling strategy that can captuoétake valve layer dynamics, including
the linear controller for the valve, the stiction dynamiasd the valve characteristic, using only
the data on the valve output set-point from the MPC and theevaltput flow rate, via a branched
model with branches corresponding to sticking and slippivag are identified for standard model
structures such as first-order-plus-dead-time and seco¥et- models, and accounting for the
effect of the set-point change magnitude on the time thavahee is stuck (delay before it begins

moving when the linear controller for the valve is preserthmithe valve layer for a sticky valve)



by fitting a function to the data on the length of the delay usithe set-point change magnitude.
Furthermore, because the empirical model may be less Iséiff the first-principles valve layer

model, the computation time of an EMPC utilizing the emgilicalve layer model may be less
than that of an EMPC utilizing a first-principles valve layeodel.

In Chapter 5 of this dissertation, MPC with stiction dynasnis handled in a rigorous
mathematical framework and also is analyzed in terms oftexhdl constraints that may be
required in MPC for valve nonlinearity compensation beydmel incorporation of the stiction
dynamics within the model used for state predictions. The$os on a process under EMPC
(due to the time-varying operating policies set up undes tlointrol design which may cause the
valve actuation to be more likely to hit its constraints) wehthe EMPC computes set-points for
a control valve’s output, and the valve outputs are regdladeheir set-points by flow controllers
for consistency with the architectures traditionallyiagld within the chemical process industries
for MPC. The additional constraints in an MPC focused ortisticcompensation, such as input
rate of change constraints or actuation magnitude constrée.g., the pressure applied by the
pneumatic actuation of a pneumatic spring-diaphragmrsajiditem globe valve cannot become
negative), may be necessary to include within the MPC fatish compensation to prevent the
MPC from requesting set-points that the valve could readbrbestiction worsened but can no
longer reach with the available actuation energy.

In the final chapter of this dissertation, the contributiohshe various sections are reviewed,
establishing a unified framework for compensating for véilvetations and nonlinearities within

process control by modifying standard controller designs.



Chapter 2

Economic Model Predictive Control with
Input Rate-of-Change Constraints for
Actuator Wear Reduction with Economic

Performance Guarantees

2.1 Introduction

As environmental requirements tighten and chemical pgisgscompanies are increasingly
interested in operating processes in the most economie#flient but safe manner, advanced
process control is being exploited as a means to achieve tigsctives. As noted in Chapter 1,
real-time optimization (RTO), coupled with model predreticontrol (MPC) and a distributed
control system (DCS) architecture, has been used in indtsimprove production profit$2 103
Typical industrial implementations of the RTO-MPC paradigave structures that are considered
to make the advanced control strategy safe to use in the sbaseéhey may include logic
steps at the RTO level to evaluate RTO solutions before imeieing thent% a tracking MPC

formulation with a quadratic objective, and penalties canges in the manipulated inputs between
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two sampling periods of the prediction horizon to prevergragsive movement of the actuation
elementg?6

Chapter 1 reviewed a fairly recent development in the MP&diure that is often viewed as
an alternative to the RTO-MPC hierarchy (economic modalliptve control) and noted that the
objective function of EMPC is not required to have its minmat a steady-state of the process
because it is based on the concept that processes may aperaterofitably off steady-state than
at steady-state. To attain greater economic profitabifigntthe steady-state operating strategy
dictated by the RTO-MPC control architecture, EMPC mayuake widely varying or bang-bang
type control actior®: 59107 (which is consistent with the optimal process operatioerditure
mentioned in Chapter 1, which has demonstrated that theoewarresults from time-varying
operation may be highly favorable). However, the possiliteeene movement required by the
actuation elements when time-varying operation is didtaténgs up safety concerns with respect
to whether such movement might cause actuators or otheraoengs that regulate the process
flow rates, such as pumps, to wear out early and thus fail whey dare used for safety-critical
processes or are crucial to compliance with environmeetllations. If such an issue were to
occur, the economic benefits from time-varying processatjmer under EMPC would no longer
matter or be realized.

The issue of reducing the aggressiveness of input changebden a consideration in the
tracking MPC literature since its inception; however, ntbebretical studies in EMPC to date have
not focused on this issue, but the majority of the literatuaie instead focused on other concerns
like those mentioned in Chapter 1. To extend the foundaticesults on EMPC to address the
issue of input change aggressiveness, additional contstnraiay be added to EMPC. One type of
constraint that has been used extensively for tracking Mi?@dlations to prevent rapid changes
of the actuator output and consequently to prevent rapidgdgsof the process states is a rate of
change constraint on the values of the inputs calculatedéWPC (see, e.d> 44125 12&or hoth
industrial and research work incorporating such a comjraiFor example, i1 feasibility and

closed-loop stability of linear, discrete-time systemdemMPC with input magnitude and rate of
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change constraints are proven for both open-loop stableuastible systems. ##° an MPC
formulation for input-affine nonlinear systems accountfog input magnitude constraints and
input rate of change constraints using a penalty in the @ilsgeand hard constraints when possible
is proven to be feasible and to ensure closed-loop stabilitpounded process uncertainty. Input
rate of change constraints have also been used in seveia woEMPC. In particular, an MPC
including input magnitude and rate of change constraints used to improve the economic
performance of a heat pump by incorporating electricitggend weather forecasts;and EMPC
including magnitude and rate of change constraints on fh&swas applied for power production
and usé® Though input rate of change constraints have been appliseMeral EMPC examples
in the literature, no proof of general feasibility and clddeop stability for a nonlinear system
under an EMPC strategy incorporating both input magnitudkiaput rate of change constraints
with Lyapunov-based constraints that ensure closed-ltaplgy in the presence of disturbances
has yet been developed. The development of such an EMP@gstradll be one of the topics
covered in this chapter.

Despite the benefits from an actuator durability perspeativincorporating constraints that
prevent an EMPC from calculating aggressive control astignvould be expected that limiting the
control actions that the EMPC can calculate would reducetlo@omic profitability of the EMPC
compared to the case that no input rate of change constai@tased. However, determining
whether there is still an economic benefit of EMPC compardti Wie traditional steady-state
paradigm when input rate of change constraints are used iRENMequires the development
of proofs regarding the economic performance of EMPC withutrrate of change constraints.
Previous proofs of the economic performance of EMPC haveerplicitly addressed the case
when input rate of change constraints are included in the EKdPmulation. The proofs for many
of the methods use terminal constraints in the ENfP¥:83or an EMPC prediction horizon that is
sufficiently long with some additional technical conditiofe.g.’>119. Studies to investigate the
economic performance of EMPC have been carried out for EMRR avstage cost and terminal

constraints that change with timéfor EMPC with a generalized terminal region constraint and
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self-tuning terminal cost!® for EMPC without terminal costs or constraints for discrétee
systems meeting certain assumptions including contrititiaand dissipativity assumption®,and
a two-layer EMPC structure including performance consts®

Motivated by all of the above, in this chapter, we introdutgapunov-based economic model
predictive control (LEMPC) architecture that can incogderinput rate of change constraints
with provable feasibility, stability, and closed-loop fiemance properties. First, we introduce
input rate of change constraints in the context of LEMPC amalvsthat when the constraints
are formulated with reference to a Lyapunov-based coetralhe LEMPC can be proven to be
feasible and to maintain closed-loop stability for a sudiintly small sampling period. Through
a chemical process example, we demonstrate that the imatigo of input magnitude and
rate of change constraints in EMPC can prevent significanttans in the process inputs
while improving the profit compared to steady-state openati Subsequently, we develop an
LEMPC design incorporating a terminal equality constramased on an explicit stabilizing
Lyapunov-based controller for which closed-loop econopgdormance improvement guarantees
with respect to the Lyapunov-based controller (and witlpees to steady-state operation when
the Lyapunov-based controller is exponentially staliligimay be proven for nominal operation.
A chemical process example demonstrates the use of this EMRtegy. We then show that
LEMPC with the terminal equality constraint based on a Lyspubased controller, with input
magnitude constraints, and with input rate of change caimgrretains these provable performance

guarantees for nominal operation. This chapter origiralyeared iR 5% 61

2.2 Preliminaries

2.2.1 Notation

The symbol - | signifies the Euclidean norm of a vector. A continuous, #jriacreasing function
a :[0,a) — [0,00) belongs to class?” if a(0) =0. The notatiorQ, signifies a level set of a

positive definite scalar-valued functidh: R" — R>g and is defined b, := {x e R" : V(x) <
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p, p > 0}. The notatiorty = kA, k= 0,1,2,... signifies the time at the beginning of a sampling
period of lengthA for synchronously sampled time intervals. Set subtradsosignified by ‘/’
(e.g9.xe A/B:={xe A : x¢ B}). The symbolS(A) denotes the family of piecewise constant
vector-valued functions with periail> 0. More specificallyu(-) € S(A) fort € [ty, tx.n) WhereN

is a positive integer means that the functiooan be described by a sequer{céi)}'j‘i’lz"l where
uld) e R™ or

u(t) = ul)

fort e [tj,tj;1), j=k,...,k+N—-1. The notatiorx” denotes the transpose of a vector

2.2.2 Class of Systems

The class of systems of nonlinear first-order ordinary difféial equations considered in this
chapter is that of the general form:

x= f(x,u,w) (2.1)

wherex e R\, u=[up up --- um]T e R™, andw € R are the state, input, and disturbance vectors,
respectively, and are related to the time-derivative ofstlage vector through the nonlinear vector
functionf. In addition, we assume that the statés are restricted to the s&t(x(t) € X C R"), that
ui(t),i=1,...,m, are boundedy((t) € Uj := {Uj min < Ui(t) < Ui max}), and that the disturbance
w(t) is bounded within a séf c R (w(t) € W:= {w(t) : |w(t)| <8, 8> 0}). For simplicity of
presentation in the following, we will use the notatia) € U C R™ to denote that each component
ui(t) of u(t) is bounded within its respective d8t. The vector functiorf : X x U x W is assumed

to be locally Lipschitz with respect to its arguments.

It is assumed that the process economic cost for the systé&m.&.1 can be represented by an
economic stage cost functidg: X x U — Rthat is continuous oK x U. In addition, itis assumed
that there is a steady-state and steady-state inpui{xair;) for the nominal W(t) = 0) system
(on X x U) that minimizes the economic cost in the sense that the noimiraf | is attained at

the pair(x, us) when the time derivative of the nominal state in Eq. 2.1 i®zdfor simplicity,
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the minimizing pair is assumed to be unique. With these aptions, the minimizing steady-state
pair is given by:

(x5,us) = argmin{lg(x,u) : f(x,u,0) =0} .

xeX,ueU

The minimizing pair will be taken to be the origin of the nomlisystem of Eq. 2.1.

2.2.3 Lyapunov-Based Controller Stabilizability Assumptons under

Continuous Implementation

We initially make two stabilizability assumptions for thgstem of Eq. 2.1 that a Lyapunov-based

controllerh(x) = [hy(x) ha(X) --- hm(x)]T exists for the nominal system of Eq. 2.1 that renders
the origin either locally asymptotically stable or locaflyponentially stable in a sense to be made
precise in the following two assumptiof81%*while also meeting the input constraints. The first

assumption covers the weaker of the two cases, that of asyimgtability, while the second covers

exponential stability. With slight abuse of notation, tlaeng notation is used in both assumptions.

Assumption 2.1. There exists a locally Lipschitz feedback controlleth— U with h(0) = O for
the nominal system of Eq. 2.1 that renders the origin of tbhead-loop system= f(x,h(x),0)
asymptotically stable when applied continuously in thesedhat there exists a sufficiently smooth

Lyapunov function ! R" — R-( such that the following inequalities hold:

a(X) V() < ax(x) (2.22)
P10 06, 0) < et [x) (2.20)
000 < aui) 2.20

for all x € D where D is an open neighborhood of the origin amd= %", i = 1,2,3,4.

Assumption 2.2. There exists a locally Lipschitz feedback controlleéh— U with h(0) = O for

the nominal system of Eq. 2.1 that renders the origin of tiséesygx = f(x, h(x),0) exponentially
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stable when applied continuously in the sense that theistseai sufficiently smooth Lyapunov

function V: R" — R-( such that the following inequalities hold:

c1]X® <V(x) < calx? (2.32)
M 1 (.0) < —cafu? (2.30)
“”;ix) < calx (2.3¢)

for all x € D where D is an open neighborhood of the origin andic= 1,2,3,4 are positive

constants.

We define the se®, C X C D, which is an estimate of the region of attraction of the nahin
closed-loop system under a feedback controller meetihgefssumption 2.1 or Assumption 2.2,
as the stability region of the closed-loop system for thatticdler. Methods for designing
Lyapunov-based feedback controllers can be found in warkhk as3> 57,100,108

A consequence of our assumption of the Lipschitz contingifyh(x) meeting either
Assumption 2.1 or 2.2 is that its components are Lipschitatinaous inx, and thusLy > 0
exists such that

[hi (%) = i (X)| < Ly [x—X] (2.4)

forall x,x' € Q. Here, Ly, is chosen such that it satisfies the bound in Eq. 2.4 with thresalue
for eachhj(x) (i.e., L, = max{LhLl, SN WhereLhLi, i=1,...,m, is the smallest positive
constant such thahj(x) — hi(X)| < Ln [x—X| for all x,X' € Qp). The requirement that(x) and
its components are Lipschitz continuousidoes not pose significant practical restrictions.

We note that from the assumption of Lipschitz continuityfoand the bounds ow andu;,

i=1,...,m,there exisM > 0, Ly > 0, andL,, > 0 such that:

[ uw)| <M (2.5)
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(6 U W) — F(X,U,0)] < Lx— X+ Luw (2.6)

forall x,x € Qp, u € Uj,i =1,...,m, and|w| < 6. Furthermore, sinc¥ is sufficiently smoothf

is locally Lipschitz and, is compact, there exit, > 0 andL{, > 0 such that the following also

holds:
oV (X) oV (X) , ,
7 < — .
00U w) — LK, 0,0)| < L X+ L @)
forall x,X € Qp, Ui € Uj,i=1,...,m, and|w| < 6.

2.2.4 Lyapunov-Based Controller Stabilizability Results  for

Sample-and-Hold Implementation

Though the system of Eq. 2.1 is continuous and it is assuna @ ttontrolleih(x) can be designed
that can stabilize the nominal closed-loop system as destin Assumptions 2.1 and 2.2 when
implemented continuously, the Lyapunov-based controlldir be used in this dissertation to
design stability constraints for an economic model predéatontrol method that is implemented
in sample-and-hold. Thus, we develop in this section thbilgiaproperties of the nominal
closed-loop system of Eq. 2.1 undeix) applied in sample-and-hold, wheh¢x) meets either
Assumption 2.1 or Assumption 2.2 and Eg. 2.4 when appliedimoously. Specifically, we

consider the following nonlinear sampled-data system:

X(t) = f(x(t), h(x(t)), 0) (2.8)

fort € Jty,tk11), wherek=0,1,.... We present two propositions that follow from standard itssu
in the nonlinear sampled-data systems literature to dtatstability results for the process under
a sample-and-hold controller. The first proposition stdked the origin of the sampled-data
system of Eq. 2.8 using(x) that satisfies Assumption 2.1 is rendered practically stébé.,
the closed-loop state trajectory will converge to a smalbimeorhood of the origin where it

will be maintained thereafter). This result follows fronastlard results found in the literature
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(e.g.112.143 The second proposition states that the origin of the sadhghta system of Eq. 2.8
usingh(x) that satisfies Assumption 2.2 is rendered exponentiallylestarhis result is stronger
than the result that can be obtained wheéx) satisfies Assumption 2.1, and the proof can be found,

for example, in Corollary 1 of* as well a83 and the results contained therein.

Proposition 2.1. Let Assumption 2.1 hold and V a3}, be the Lyapunov function that satisfies
Eqg. 2.2 and the resulting stability region, respectivelyivéb pmin € (0,p), there exist\* > 0
such that for anyA € (0,A*) and Xtg) € Qp, the closed-loop state trajectory of the sampled-data

system of Eq. 2.8 is always boundeddp and is (uniformly) ultimately bounded @, and

limsupx(t) € Qp,, - (2.9)

t—o0

Proposition 2.2. Let Assumption 2.2 hold and V afd}, be the Lyapunov function that satisfies
Eqg. 2.3 and the resulting stability region, respectivelyheie existsA; > 0 such that for any
A€ (0,Af) the closed-loop state trajectory of the sampled-data systfeEq. 2.8 is always bounded
in Qp and the origin of the sampled-data system of Eq. 2.8 is exyi@ly stable for all initial

states inQ,.

We can also develop stability properties for the closegrlggstem of Eq. 2.1 in the presence
of disturbances undéx(x) applied in sample-and-hold, whenéx) meets either Assumption 2.1 or
Assumption 2.2 and Eq. 2.4 when applied continuously. Sipally, these results are derived for

the following nonlinear sampled-data system:

X(t) = £ (x(t), h(x(t)), w(t)) (2.10)

for t € [ty,tk 1), wherek =0,1,.... The following two properties address this sample-andthol
system with disturbances. In both the case titat in Eq. 2.10 meets Assumption 2.1 and the case
that it meets Assumption 2.2, only uniform ultimate bounuest of the closed-loop state can be

proven. We note that the sampling times and regions withirchviniform ultimate boundedness
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of the state are proven are different from those in PropmsstR.1-2.2. The proof of the results of

the following two propositions can be found, for examplelif

Proposition 2.3. Let Assumption 2.1 hold and V afy}, be the Lyapunov function that satisfies
Eq. 2.2 and the resulting stability region, respectivelfiod > 0, A >0, &, > 0, andp;,;, < p
satisfy

Piin = Max{V (Xt +4)) : V(X(t)) < ps} (2.11)

and

—a3(ay (ps)) + LMA+ L6 < —&w/A (2.12)

for all x(t) € Qp, and x(t +A) € Qp, wherex(t) is the solution of Eq. 2.1 under a sequence of
sample-and-hold control actionsauU, then there existy, such that forA < A}, and Xto) € Qp,
the closed-loop state trajectory of the sampled-data systEEq. 2.10 is always bounded 42,

and is (uniformly) ultimately bounded mp%m and

limsupx(t) € Qp- (2.13)

t—o0

Proposition 2.4. Let Assumption 2.2 hold and V af}, be the Lyapunov function that satisfies

Eg. 2.3 and the resulting stability region, respectivelyypd > 0, A > 0, &, > 0, and pr*;]ime <p

satisfy
Prmine = Max{V (x(t+4)) : V(X(t)) < ps} (2.14)
and
C3 — / / _EW
——ps+LyMA+L,0 < — (2.15)
C2 A

for all x(t) € Qp, and x(t +A) € Qp, wherex(t) is the solution of Eq. 2.1 under a sequence of
sample-and-hold control actionsaiU, then there existay, . such that fod < Ay, . and Xto) € Qp,

the closed-loop state trajectory of the sampled-data systEEq. 2.10 is always bounded 42,
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and is (uniformly) ultimately bounded mp%ine and

limsupx(t) € Qp: - (2.16)

t—oo

The requirement thaty,, and py;, o be defined with respect t(t) andx(t +A), wherex(t)
refers to the closed-loop state of the system of Eq. 2.1 a&ttumder any sample-and-hold control
actionsu € U (i.e., u is not necessarily represented as an explicit functio, o6 made because
the results of Propositions 2.3-2.4 will be used later torprdosed-loop stability of the system of
Eg. 2.1 under an optimization-based controller with caists designed based biix) but which
may compute a control action to implement for a samplingqektinat is not necessarily equal to
h(x(t)). Therefore, Egs. 2.11 and 2.14 are written for gervesal that the definitions qé>. ., Ay,
Prine’ andAy, . can be utilized in these later proofs for analyzing a closeqh-system that is not
necessarily under(x(ty)).

It is noted that Assumption 2.2 is stronger than Assumptiar{ize., whenever Assumption 2.2
is satisfied, Assumption 2.1 is also satisfied). Therefameglarity in the remainder of this chapter
regarding which results require the stronger condition8ssumption 2.2 to hold, we will state
that the results require Assumption 2.1 when only the camdtof that assumption are required
(though the result is then also satisfied if Assumption 2r2és), and we will reserve mention of

Assumption 2.2 only for those results that require the gfeortonditions in that assumption to

hold.

2.2.5 Economic Model Predictive Control

This chapter develops a formulation for EMPC with constsaguaranteeing closed-loop stability,
satisfaction of bounds on the input rate of change, and aerupgund on the economic cost for
the process under the controller. The general formulatioBMPC (which can be augmented

with various constraints, model adjustments, or objedtivetion adjustments to give the various
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EMPC formulations in Chapter 1) is given by:

tirN
i [ e, ) dr (2.172)
s.t. X(t) = f(X(t),u(t),0) (2.17b)
R(t) = X(t) (2.17¢)
U(t) €Uj, i=1,...,m (2.17d)
X(t) € X, Vt € [tk, tkrn) (2.17e)

Eqg. 2.17 is a general nonlinear optimization problem thatimizes a stage cos$t(x(t),u(t))
(Eq. 2.17a) subject to a model of the nominal system (Eq.8.and the initial condition in
Eq. 2.17c that comes from a measurement of the process stateed,. The calculated inputs
u, i =1,...,m, and the predicted stat&f J, t € [tx,tk.n), are restricted to their respective sets as
shown in Egs. 2.17d-2.17e. In general, additional equalitynequality constraints may be added
to a general EMPC with the form in Eq. 2.17 as desired.

The optimization variable in Eq. 2.17 is the piecewise camsoptimal control trajectory(t)
over a prediction horizon wittN sampling periods of length. Thus, the input profile that is
the solution to the EMPC optimization problem is a setN\ofectors denoted by*(t|ty), t =
ty, . .., tkan_1, Of which only the firstu* (ty|tk), is implemented on the process in a sample-and-hold

fashion. Atty, 1, the EMPC optimization problem is re-solved.

2.2.6 Lyapunov-Based Economic Model Predictive Control

The specific type of EMPC that will be the focus of this chapsekLyapunov-based economic
model predictive control (LEMPC}? which is an EMPC with the form of Eq. 2.17 but with the

addition of Lyapunov-based stability constraints that refiwo modes of operation, as shown
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below:

ticrN
i [ o), ) dr (2.182)
s.t. X(t) = f(X(t),u(t),0) (2.18b)
R(t) = X(t) (2.18¢)
U(t) €Uj, i=1,...,m (2.18d)
X(t) e X, Vt € [tk tkrn) (2.18e)

V(1)) < Pe, V1 € [t tpn)

if t <t’andV (x(t)) < pe (2.18f)

PO ¢ x50, utt, 0) < 20D 1t i, 0

if tx >t orV(x(t)) > pe (2.189)

where the notation follows that in Eq. 2.17, with the addedst@ints in Egs. 2.18f-2.18g that
define two modes of operation of the LEMPC (Modes 1 and 2),taigla pre-determined time

at which it is desired to apply only Mode 2 of the LEMPC. Modeslactive whert, < t’ and
when the measured state is witlid,, which is a subset d@, defined such that if the statetpis
within Q,,, then byt 1, itis still within Q,, even in the presence of bounded process disturbances
or plant-model mismatch. Mode 2 is activated when the measstate is outside d@,, due

to process disturbances or plant-model mismatch, or oreditiet’ has been reached. This
dual-mode strategy guarantees that the closed-loop stggetbries of the process under LEMPC

are maintained withi6, at all times.
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2.3 LEMPC Formulation with Input Magnitude Constraints,
Input Rate of Change Constraints, and an Equality
Terminal Constraint Based on a Lyapunov-Based
Controller

This chapter introduces input rate of change constraiatsctiin be used in an LEMPC framework
while guaranteeing closed-loop stability and feasibibfythe controller, and it also addresses
the performance guarantees that can be made for this LEM&Eporating input rate of change
constraints for nominal process operation (the perforrman@rantees are also shown to hold in
the absence of the input rate of change constraints). Thaugees will be made for a general cost
function, so that they will hold even if the objective furartiof the LEMPC is designed to reduce
the input rate of change (for example, a penalty on the ingigt of change may be added to the
objective function). This chapter thus addresses the gumssbf not only how to add input rate
of change constraints to LEMPC in a manner that does nottafiecfeasibility and closed-loop
stability of the controller, but also of whether that redsitee economic benefits of using LEMPC
for a given process.

To develop the answers to these questions, the contrilsutbérthis chapter are divided
into three parts. In Part 1, we introduce a Lyapunov-basedauic model predictive control
(LEMPC) architecture that incorporates input magnitudd eamte of change constraints with
provable feasibility and stability properties, even in firesence of disturbances. In Part 2, we
develop a terminal equality constraint based on a Lyapwased controller that, when used
in an LEMPC for a process with no disturbances or plant-madismatch (nominal process)
ensures that the economic performance of the resulting LEMPat least as good as that of
the Lyapunov-based controller implemented in samplefarid- In Part 3, the results of the first
two sections will be combined to show that the nominal preaefsEq. 2.1 under an LEMPC

with input magnitude and rate of change constraints andnainat equality constraint based on a
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Lyapunov-based controller performs at least as well asasdmder the Lyapunov-based controller

implemented in sample-and-hold.

2.3.1 Part 1: LEMPC with Input Magnitude and Rate of Change

Constraints

In this section, we develop LEMPC with input magnitude comists that restrict the calculated
control actions between an upper and a lower bound, as welpas rate of change constraints,
which prevent the calculated inputs between two samplimgpg@e from differing from each other
by more than a pre-specified amount. Specifically, we addtirge of change constraints to
the LEMPC of Eg. 2.18 (which has input magnitude constraimt&q. 2.18d). The input rate
of change constraints developed are written with respeatligapunov-based controller, but we
demonstrate that for a sufficiently small sampling period an appropriate value of a parameter
of the constraints, the constraints developed ensurehbatifference between the control actions
calculated for two subsequent sampling periods can be lsalibg any desired value. We prove
that the LEMPC incorporating input rate of change constsais feasible and furthermore that
it ensures closed-loop stability of a process even in thegmee of bounded disturbances. The
results presented hold for the case that the Lyapunov-besetoller meets Assumption 2.1,
except where it is noted that Assumption 2.2 is requiredalinwe present a chemical process
example to demonstrate the effect of incorporating inpte oh change constraints in addition to
input magnitude constraints in EMPC, which shows that themeain which the input rate of
change constraints are enforced in EMPC can significanfiégiavhether the closed-loop process

is able to meet other hard constraints.

2.3.1.1 Part 1: Formulation of LEMPC with Input Magnitude an d Input Rate of Change

Constraints

As noted in Section 2.1 of this chapter, it may be desirab&ltbinput rate of change constraints to

LEMPC, especially since Mode 1 of LEMPC attempts to dynalftyicatimize process operation
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within the stability region and does not drive the process steady-state. The result of this is that
an LEMPC may request input trajectories with sharp changése requested control actions (an
example is shown in Section 2.3.1.4 of this chapter) to mearrofit subject to the constraints.
Restricting the range of allowable control actions in suatase (e.g., increasing min and/or
decreasingii maxy) may ameliorate this issue, but it may be necessary to dedigtidecrease this
range to reduce the difference between two calculatedalattions to a desired level, particularly
if the LEMPC calculates bang-bang type control actions hSudrastic reduction in the allowable
range of control actions may significantly reduce the pregasfit; thus, input rate of change
constraints may instead be considered as an alternatiwtraon that achieves the same goal but
with potentially higher profit.

The desired form of the input rate of change constraintsimsgy that the actuators bring the
actuator outputs to the requested valug$x_1|tx_1), i = 1,...,m, beforet, when the LEMPC is

re-solved, is as follows:

‘ui* (tk‘tk) - Ui#< (tkfl‘tkfl)‘ < Edesired Vi=1,....m (2.19)

whereggesired > 0 is @ bound on the difference between the control aaijgtk|ty) implemented

atty and the immediate past value of the actuator output that matemented on the process.
To make the predicted state trajectories within the LEMPCentonsistent with the actual state
trajectory, it may also be desirable that the other contttibas in the prediction horizon that are

not implemented meet the following constraints:

|ul*(tl|tk) _ul*(tj—1|tk)| S Sdesireda VI = 17"'7m7 J = k+l77k+N _1 (220)

The chemical process example in Section 2.3.1.4 will shaat the decision to enforce both
Egs. 2.19 and 2.20 (imposing restrictions on both the impleed and not implemented control
actions) or only Eg. 2.19 (imposing a constraint on the imm@eted control actions only) may

significantly affect the results obtained for LEMPC with innpate of change constraints, and thus
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should be carefully considered.

If the input rate of change constraints are written as in Rg9-2.20 and directly added into
the LEMPC of Eq. 2.18, it is not possible to prove feasibibfythe resulting LEMPC, as will be
further discussed in Section 2.3.1.3 of this chapter. Fsrrrason, modified constraints are added
to the LEMPC of Eq. 2.18 that constrain the calculated camictions to differ by no more than
a constant, > 0 from the value of the Lyapunov-based control law@f); j =K, ..., k+N—1.
These modified constraints ensure, as will be demonstrat8détion 2.3.1.3, that the LEMPC is
feasible, and they also ensure that the desired constrdiBigs. 2.19-2.20 are met for a8yesired
wheng; andA are suitably chosen.

Incorporating the above considerations, the proposed LEM#®h both input magnitude and

rate of change constraints is as follows:

tiern

Jin [ e, ) dr (2.213)
st X(t) = f(X(t),u(t),0) (2.21b)
K(t) = X(t) (2.21c)
ut)eUi,i=1,...,m (2.21d)

X(t) e X, Vt € [tk tuen) (2.21e)

Ui(t) —hi(X(t))| < &, i=1,....m (2.21f)

ui(t) =&)< &, i=1,....m j=k+1... k+N-1 (2.219)

V(X)) < pe, V't € [t tin)

if tx <t’andV (X(tk)) < pe (2.21h)
POt x50, utt). 0 < 25 1t i, 0
if tx >t' orV(x(t)) > pe (2.21i)

where the notation follows that in Eqs. 2.17 and 2.18. The @t change constraints of

Egs. 2.19-2.20 are imposed through Egs. 2.21f-2.21g, wieighire that the values of (tj|ty),i =
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1,....m, j=Kk,...,k+N—1, be withing > 0 of the values ofhj(X(tj)). Note thatg in
Egs. 2.21f-2.219 is not the same &gsireq inN EQs. 2.19-2.20, which will be justified in the next

section.

Remark 2.1. Itis noted that in the LEMPC formulation of Eq. 2.21, as walimthe other LEMPC
formulations developed throughout this chapter, the nurobeonstraints considered is kept to a
minimum, and the form of the objective function and the maahdeveloping such an objective
function are not discussed. This is done so that the thealetievelopments in this chapter in
the proofs to be presented are kept as general as possiblar@nabot obscured by the additional
considerations that may arise when the optimization pnohbikeaugmented. The results presented
in this chapter could be extended, however, to certain castsadditional constraints and may
hold practically even when the formulation/assumptionthif chapter are not met, though such

an extended study is outside the scope of the present chapter

2.3.1.2 Part 1: Rate of Change Constraints Analysis

In this section, we prove that givegyesieg W€ can ensure that the desired rate of change
constraints of Eqs. 2.19-2.20 are met by enforcing the ratehange constraints with respect
tohi(X(tj)),i=1,...,m j=Kk,....k+N—1,in Egs. 2.21f-2.21g for a suitabée value, withh(x)

meeting Assumption 2.1.

Theorem 2.1.Consider the closed-loop input trajectories of the proaddsqg. 2.1 operated under
the LEMPC of Eq. 2.21, with(R) meeting Assumption 2.1 and Eq. 2.4. If there exiahdA < A},

such that for any chosefyesireq> 0,

2&; +Lp, MA < &gesired (2.22)

then Eqgs. 2.19-2.20 are satisfied for alltith k> 0 and y (to|to) = hi(X(tg)), i=1,...,m.

Proof. From the bound ori in Eq. 2.5 and continuity of, the following bound holds for ak(t),
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X(tk—1) € Qp andt € [tx_1, 1], wherex(t) is the solution of Eq. 2.1 at tinte

X(t) — X(t_1)| < MA (2.23)

for A sufficiently small (i.e.A < Ay). In addition, because the bound in Eq. 2.5 and continuity of
x hold whenw(t) = 0 as well, the following inequality holds for the predictedte of the nominal

closed-loop system for the LEMPC of Eq. 2.21 (Eq. 2.21b):

() — K(tj1)| < MA (2.24)

for X(t), X(tj—1) € Qp, t € [tj—1,tj], j =k+1,...,k+ N, andA < A},. It is noted that because
Qp C X, X(t) € Qp implies thatx(t) € X as required by Eq. 2.21e; the fact that the LEMPC
formulation of Eq. 2.21 maintains the state witlf}g is proven in Section 2.3.1.3.

From Eqgs. 2.23-2.24 and the Lipschitz continuity propeftiix) in x (Eq. 2.4), the following
bounds hold fox(tx) € Qp andx(ty_1) € Qp:

|hi (X(t)) — hi(X(tk—1) )| < L, [X(tk) —X(tk—1)| < Lp MA (2.25)

[hi(R(t;)) = hi(X(tj—1))| < Ln [X(t}) = X(tj-1)| < Ln MA (2.26)

forA<Ay, j=k+1,...,k+N—-1.

Under the assumption that a feasible solution to the LEMPE®f2.21 exists and thus that
Egs. 2.21f-2.21g are satisfied (which will be proven in Setf.3.1.3), we use the constraints of
Egs. 2.21f-2.21g and Eqgs. 2.25 and 2.26, in addition to fhadte inequality, to develop upper
bounds on the value of the desired rate of change constraifigs. 2.19-2.20 when the LEMPC
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of Eq. 2.21 is used to control the process as follows:

Ui (tltc) — Ui (tk—1[te—1) | =

U] (tiltk) — U (tk—1ftk—1) — hi(X(t)) + hi(X(t)) — i (X(tk—1)) + hi (X(tc—1))|

(2.27)
< U (tftie) — i (X(t) )| 4 45 (tk—a [t—1) — hi(X(tk—1))| + [hi(X(tk)) — i (X(tk—1))]|
<2 +Lp MA
Ui (tj[te) — Ui (tj-afte) | =
Ui (tj[t) — Ui (tj—aftic) — Mi(X(tj)) + hi(X(t))) —hi(X(tj—1)) + hi(X(tj-1))]
(2.28)

< U (tlt) — PW(R(E))] + 17 (t-aft) — Pi(R(tj—) -+ [PNCR () — i (Rt 0))]
< 26 4Ly MA

for A< Ay, andj=k+1,...,k+N—1. Itis noted that by assuming (to|to) = hi(X(tg)), i =
1,...,m, then|u(tx_1|tk—1) — hi(X(tk—1))| = 0 < & in Eq. 2.27 wherk = 1, which allows the
result of Eq. 2.27 to hold for akk > 0. For anyegesired> 0, there always exist; andA that are
sufficiently small such thate2 + L, MA < gqesireqif Ay, eXists (i.e., Egs. 2.11-2.12 are satisfied for
somep;, < P, Ps> 0,60 > 0,A > 0, andg,, > 0). When these values ef andA are chosen, the
desired rate of change constraints in Egs. 2.19-2.20 arewhéth follows from Eqgs. 2.27-2.28
with the bound in Eq. 2.22. O

Remark 2.2. The value ofyesireg Would typically be chosen based on practical consideration
Becauseesireg depends on the sampling time in Eq. 2.22, one of these pahctbnisiderations

may be the minimum sampling time possible with the contretiéware/hardware.

2.3.1.3 Part 1: Feasibility and Stability Analysis

In this section, we extend the proofs of feasibility and elb$oop stability fromd® for nonlinear
processes under LEMPC without input rate of change conssrn those under LEMPC including

input rate of change constraints. The results are develwpedh(x) used in the design of LEMPC
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meets Assumption 2.1, and stronger closed-loop stabésults are presented for that case that
it meets Assumption 2.2. We first state several proposittondefine functions used to state
the theorems giving the conditions under which feasibdgityl closed-loop stability of nonlinear

processes under LEMPC with input magnitude and rate of ahaogstraints are guaranteed.

Proposition 2.5. (c.f.”®: 119 Consider the systems

with initial states %(tp) = Xp(tg) € Qp. There exists a#” function {y(-) such that

Xa(t) —X%p(t)| < fw(t —to),

for all xa(t),%,(t) € Qp and all WMt) € W with

Lub

LT
x—1).

fw(T) =

Proposition 2.6. (c.f.”®119 Consider the Lyapunov function(Vf of the system of Eq. 2.1 under

h(x) meeting Assumption 2.1. There exists a quadratic functjon $uch that
V(x) <V(X) + fy (Ix=X])

for all x,x' € Q, with
fv(s) == as(a; (p))s+Mys

where M, is a positive constant.

Proposition 2.7. (c.f811% Consider the Lyapunov function(\J of the system of Eq. 2.1 under
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h(x) meeting Assumption 2.2. There exists a quadratic functjon $uch that
V(x) <V(X) + v (Ix=X])

forall x,x' € Q, with

fy(s) 1= %H Bs?

wheref3 is a positive constant.

In the following theorems, we use the notation developedrop®@sitions 2.5-2.7 and prove
feasibility and closed-loop stability of a process undeMBEC with input magnitude and rate
of change constraints in the presence of bounded processldiaces. The theorems extend
the results of® by requiring a modified bound oA based on the results of Section 2.3.1.2 to
ensure that the LEMPC of Eq. 2.21 computes control actiocsisstitisfy the desired constraints in
Egs. 2.19-2.20. We present proofs for LEMPC designed usitig the asymptotically stabilizing
h(x) (Assumption 2.1) and the exponentially stabilizimg) (Assumption 2.2).

Theorem 2.2. Consider the system of Eq. 2.1 in closed-loop under the LEMEXIN of Eq. 2.21
based on a controller (x) that satisfies the conditions of Eq. 2.4 and Assumption 2d agsume

that 4 (to|to) = hi(X(to)), i=1,...,m. Letey, >0,0<A <A}, 6 >0,p > pe> prin = Ps >0

satisfy
Pe < p— fv(fw(d)), (2.29)
—&
—0t3(a (ps)) + LMA + 13,0 < —, (2.30)
and
2& + Ly MA < Egesired (2.31)

where { and fy are defined in Propositions 2.5-2.6. Ifty) € Q, and N> 1 where

Pinin = Max{V (Xt +4)) : V (X(1)) < ps} (232)
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then the state(x) of the closed-loop system is always bounde@jrand is (uniformly) ultimately

bounded ier;ﬂn.

Proof. The proof of closed-loop stability of nonlinear processedar LEMPC with both input
magnitude and rate of change constraints, whéxgsatisfies Eq. 2.4 and Assumption 2.1, follows
along the lines of that for the LEMPC without input rate of sha constraints if? because the
stability proof depends only on the Lyapunov-based stglibnstraints in Eqs. 2.21h-2.21i and is
unaffected by the added rate of change constraints. Fégsibilows becausey;(ty) = hij(x(tx)),
i=1...,m andutj) = h(X{tj)), i=1,....m j=k+1,...,k+N—1, is a solution that
meets the Lyapunov-based constraints of Egs. 2.21h-2Rdijnput constraints of Eq. 2.21d,
and the rate of change constraints of Egs. 2.21f-2.21g, #sawehe assumption that the first
value ofuy; calculatedu (toto), i = 1,...,m, is set tohj(X(tg)), i = 1,...,m (the assumption that
U (tolto) = hi(X(to)), i = 1,...,m, is made so that every input calculated by the EMPC, which is
all inputs calculated from timé& and above since the components of the input vectdg ate
fixed tohj(x(tp)), meets the desired constraints of Eqs. 2.19-2.20). Thereamsof Eq. 2.21e is
satisfied whex(t) € Q, due to the definition of2,, and is thus always satisfied when the LEMPC
optimization problem is feasible due to the closed-loopisita proof of the LEMPC which shows

thatx(t) € Q, fort > tg if the LEMPC is feasible ang(tp) € Qp. O

Theorem 2.3. Consider the system of EqQ. 2.1 in closed-loop under the LEREX®N of Eq. 2.21
based on a controller (x) that satisfies the conditions of Eq. 2.4 and Assumption 2@ agsume

that ' (tofto) = hi(X(to)), i =1,...,m. Letew > 0,0 < A <Ay, 8 >0, 0> Pe > Piine > Ps > 0

satisfy
pe < p — fv(fw(d)), (2.33)
O UMAL,E < 5 (2.34)
Co A
and
2& + Ly MA < &gesired (2.35)
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where {; and fy are defined in Propositions 2.5 and 2.7. (t® € Q, and N> 1 where

Pirine = Max{V (X[t +4)) : V(X)) < s} (2.36)

then the state(x) of the closed-loop system is always boundedjnand is (uniformly) ultimately

bounded inQp: .

Proof. The proof of feasibility of the LEMPC with both input magnitel and rate of change
constraints, wherb(x) satisfies Eq. 2.4 and Assumption 2.2, is the same as the pirtesgibility
of the LEMPC wherd(x) satisfies Assumption 2.1 (the proof for feasibility for Them 2.2). The
proof of closed-loop stability of a process under this LEMB@n extension of the results 18,
and the major steps of this proof will be presented here tinautow this extension proceeds.

We first examine the case whe(ty) € Qp,. In this case, the proof thait, 1) € Qp when
X(tk) € Qp, and Eq. 2.33 holds follows that Y. When instead(tx) € Qp/Qp., the Mode 2
constraint of Eq. 2.21i is activated which leads to the fwitgg bound:

IV (X(t))
1704

oV (X(tx))

S £ (x(t), h(x(1)),0) < —calx(t)P (2:37)

f (X(tk>v u(tk>7 O) <

where the upper bound follows from Eq. 2.3b. The bound in E8j7 & then used to bound the

time derivative of the Lyapunov function as follows:

V(X(t)) S —CS|X(tk>|2+ 0V‘(;:((t)> f(X(t),U(tk),W(t)> _Wf(x(tk),u(tk),m (238a)
Eq. 2.77§\W|§9 —C3|X(tk)|2+ L;(|X(t) Xt + L\'NQ (2.38b)
Egs. 2.§23, 2'361_%2554-L;MA+L§\,9 (2.38¢c)

forallt € [tk,tkr1).
If Eq. 2.34 holds, then the time derivative of the Lyapunowrdiion along the closed-loop

state trajectories is negative and can be integrated’&sdrshow that whex(ty) € Q,/Qp,, the
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Lyapunov function decreases between two sampling timesgibg the state back int@,, in
finite time. When the state re-entd®g,, either the Mode 1 constraint in Eq. 2.21h is re-activated,
which maintains the state withi, between two sampling times as noted above in this proof, or if
tx > t’, the Mode 2 constraint continues to be enforced, which naes to decrease the Lyapunov
function value forx(tx) € Qp/Qp, from Egs. 2.37-2.38c. This causes the state to enter therregi
ngﬂn.e as stated in Proposition 2.4 and maintains it there thereafthis completes the proof of

Theorem 2.3. O

Remark 2.3. In prior sections, it was mentioned that > 0 and &4esireq > 0, for practical
implementation reasons related to controller feasihilitgpecifically, the optimization problem
of Eq. 2.21 is feasible i§; = 0, but the only feasible solution is(tk) = hij(x(t)), i =1,...,m,

and y(tj) = hi(X(tj)), i=1,....,m, j=k+1,...,k+N—1, in which case the application of
LEMPC to a process wheg = 0 will be the same as applying the Lyapunov-based controller
in sample-and-hold (Eqg. 2.10), for which the more complekPE architecture is not necessary.

If €qesirea= 0, however, nd\ > 0 can be chosen to satisfy Eqgs. 2.31 and 2.35, so it could not be
guaranteed through the proofs of Theorems 2.1-2.3 that £49-2.20 are satisfied &;egireq= 0

in this LEMPC.

Remark 2.4. The reason that the constraints of Egs. 2.21f-2.21g arereadlowith respect to
h(x), rather than being enforced as the desired constraints &f Bdql9-2.20, is because there is
no guarantee that the constraints of Egs. 2.19-2.20 areldmwithin the LEMPC since they are
unrelated to the controller (x) upon which the two constraints of Egs. 2.21h-2.21i that atest

be satisfied are based.

2.3.1.4 Part 1: Application to a Chemical Process Example

In this section, we use a chemical process example to deratmshe effect on the computed
control actions and process profit of incorporating inpué raf change constraints in EMPC.
We perform this demonstration by comparing the closed-lesults for a process under three

EMPC'’s: one which does not incorporate input rate of chamgeitaints, a second which imposes
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input rate of change constraints only on the implementedts)@nd a third which imposes input
rate of change constraints on all control actions in theiptieth horizon. This chemical process
example shows that input rate of change constraints can d tosreduce wide variations in
the control actions and thus process variables while stiViding economic benefit compared
to steady-state operation, and furthermore shows that tingbar of sampling periods of the
prediction horizon over which the input rate of change a@msts are enforced in an EMPC can
have a significant impact on whether the EMPC can satisfyrgittoeess constraints.

The chemical process considered is the oxidation of etkylen ethylene oxide in a
nonisothermal continuous stirred tank reactor (CSTR)ctviis assumed to occur according to

the following three complex reactions:

1
CoHs+ 502 — CoH40 (2.39)
CoHs+ 30, — 2C0Oy + 2H,0 (2.40)
5
CoH4O+ 502 — 2C0Ox 4 2H,0 (2.41)

In,122 the dimensionless material and energy balances for thigaeare developed, with the
rate laws for the reactions in Egs. 2.39-2.41 taken fférifhe resulting dimensionless equations

defining the relationshig = f(x,u,0) whereu = [u; up|" are as follows:

X1 = Uz (1—X1Xa) (2.42a)
. _ Al 05 A 2 0.25 b
Xp = U1 (U2 — XoXa) — A€ (XoXg) ™~ — Age™ (XX4) (2.42b)
n ¥
X3 = —U1XaXa + A1€% (XoXa) *° — Age™ (xaxq) *° (2.42¢)
_u

. B a By, % B & Bs
o= —(1—-Xq) + % (xxa) O+ 2% (xx4) 2%+ €% (xax0) 0 = (x4 —Te)  (2.42d)
X1 X1 X1 X1 X1
where the dimensionless state variablgs<,, X3, andx, represent the dimensionless gas density,
ethylene concentration, ethylene oxide concentratiod tamperature in the reactor, respectively,

andu; anduy are inputs to the process, with being the feed volumetric flow rate and the
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Table 2.1: Ethylene Oxide Process Paramétérs

Parameter Value Parameter Valug
Vi -8.13 B, 7.32
Vo -7.12 B, 10.39
V3 -11.07 Bs 2170.57
Aq 92.80 Ba 7.02
A, 12.66 Te 1.0
Az 2412.71

concentration of ethylene in the feed. The parameters in E48a-2.42d are constants and have
the values defined in Table 2.1, which are taken fféf.
The goal of the process operating strategy is to maximizeyitld of ethylene oxide for a

limited reactant feedstock, where the yield is defined byfétHewing equation:

_ Jo! ua(T)x3(T)Xa(T)dT
Jof ug(T)up(1)dT

Y(tf)

(2.43)

wheret; is the time at the end of operation. We assume that the alail@actant material is fixed

by the following integral material constraint:
tf
/ up(T)up(7)dr = 0.17%+ (2.44)
0
Thus, the EMPC'’s considered in this example will maximizefillowing stage cost:
le(X, u) = Uy (t)xa(t)xa(t) (2.45)
In addition, due to actuator limitationg, andu, are restricted to the following sets:
0.0704<u; <0.7042 0.2465< up < 2.4648 (2.46)

The reactor is initialized at, = [xy Xz X3 Xa]" = [0.997 1264 0209 1004 ", and a sampling
period of A = 9.36 is used. The Explicit Euler numerical integration metigdsed to integrate

the ordinary differential equations in Egs. 2.42a-2.43dgian integration step size bf = 10~%
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within the EMPC ancdhp = 10~° for the model used to simulate the process behavior (which is
again Egs. 2.42a-2.42d since it is assumed that there arsstuolbdinces/plant-model mismatch).
The open-source interior point optimization software ligéwas used for all optimizations.

To accomplish the above control objectives, we develop a?EMeferred to aEMPC—1,

as follows:
O TSN 2.472)
min —up(T)X3(T)%a(T)dT A7a
uresie) Sy R
st X(t) = f(X(t),u(t),0) (2.47b)
X(tk) = X(tk) (2.47c¢)
0.0704< Uy (t) < 0.7042 V't € [ty, tiyn,) (2.47d)
0.2465< Up(t) < 2.4648 V't € [ty, tirn,) (2.47e)
1 [ 1 /teeng
— [ u(n)ux(T)dT+ — ur(T)up(1)dT =0.175 (2.471)
to Jitp tp J

where the notation is as in Eq. 2.21 except that the problemngemented with a shrinking
horizon of lengthNx and the material constraint is implemented over operatarggds of length
tp to reduce the computation time. Ten operating periods, eaddngtht, = 46.8, under this
EMPC were simulated. The indgxsignifies the number of operating periods that have passed
prior to the current onej(=0,...,9), andu;(t) anduj(t) represent the previously computed and
applied input trajectoriesuf (t) = uj(tgltg) for t € [tg,tq1), andus(t) = us(tgltg) fort € [tg, tg+1),
wheretg varies betweert, andt,_1 in Eq. 2.47f). Ny is initialized to%p =5 at the beginning of
each operating period and is decremented by one at the lregiaheach sampling period. The
results of the simulations unde&ftMPC— 1 are shown as the solid lines in Figs. 2.1-2.2. As seen
in Fig. 2.2, the EMPC determines that the optimal input tijees are those for which the inputs
make extreme jumps throughout each operating period, whitlrn causes significant variation
in the state variables, as shown in Fig. 2.1, especialkg sndxs.

We now suppose that we do not want to have such rapid changég irequested control

actions. As a result, we impose input rate of change conssrad the EMPC to allow it to continue
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Figure 2.1: State trajectories for the process of Eqs. 22422d undeEMPC— 1, EMPC- 2, and
EMPC-3.
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to optimize the process economics throughout the wholeerafig; andu,, but without taking
extreme, sudden action to do so. We enforce that the ditferbetween two control actions can
be no more than 0.1. We formulate two EMPC'’s with input rateleinge constraints, the first of
which EMPC-2) enforces the rate of change constraint only on the firdrobaction that will be
implemented, and the second of whiéhM PC— 3) enforces the rate of change constraint at each
sampling period in the shrinking prediction horizNp Thus,EMPC-— 2 solves the optimization

problem of Eq. 2.47 with the added constraints:

g (t) — U3 (tk-1/tk—1)| < 0.1 (2.483)

|up(t) — U3 (tk—1/tk—1)| < 0.1 (2.48D)

and EMPC — 3 solves the optimization problem of Eq. 2.47 with the addedstraints in

Egs. 2.48a-2.48b plus the additional constraints:

lup(t)) —up(tj—1)] < 0.1, j=k+1,....k+N¢—1 (2.49a)

lUa(t)) — Up(tj_1)| < 0.1, j=k+1,... ket N—1 (2.49D)

The Lyapunov-based constraints in Egs. 2.21h-2.21i wetreortsidered for this example because
the process is operated within a region around an open-®gpatotically stable steady-state and
showed no closed-loop stability issues during the simaratiof the three EMPC'’s. Because no
Lyapunov-based constraints were employed, the input fatbange constraints used were those
in Egs. 2.48a-2.49b, which are written in terms of the desiate of change as in Egs. 2.19-2.20,
rather than based off of the controllefx) as was done in the LEMPC of Eq. 2.21. The state
and input trajectories for the simulations of the closeabl®ystem of Egs. 2.42a-2.42d under
EMPC—- 2 andEMPC - 3 are plotted against the state and input trajectories foclbsed-loop
system undeEMPC—1 in Figs. 2.1-2.2.

The yields (according to Eq. 2.43) for the process underttteetdifferent EMPC’s are shown
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Table 2.2: Process Yield

Process | Yield
EMPC—-1| 9.61%
EMPC-2 | 9.56%
EMPC-3 | 8.23%

SS 6.63%

in Table 2.2 and compared to the yield for the steady-state §&5in the table) obtained by starting
atx and using the constant input vecter= [us Ups]” = [0.35 Q5] to bring the process states to
the open-loop asymptotically stable steady-speiexos Xas Xas] = [0.998 0424 0032 1002,.

As shown in Figs. 2.1-2.2, the input rate of change condsasignificantly reduce the
variability in the state and input trajectories as desirgldile still allowing optimization of the
process economics, as shown by the periodic trajectoregsstiil exist in the state and input
trajectories foEMPC— 3, though with reduced amplitude compared to those uadéPC— 1.
As expected, the addition of input rate of change conssatluces the ability of the EMPC
to maximize the yield of the process to its fullest extene (Yfield underEMPC— 1 is 16.8%
greater than that und&eMPC— 3). However, even with the input rate of change constraints,
EMPC— 3 outperforms steady-state operation (the yield utMiPC — 3 is 24.1% greater than
that for steady-state operation).

Because the input rate of change constrainENMPC— 2 are not enforced at every sampling
period, EMPC— 2 becomes infeasible in the last sampling period of all dpeygperiods after
the third (when Ipopt determines a problem is locally infiel&s it returns a solution that locally
minimizes the constraint violation using a separate ogtition problent*’). In each of the
operating periods in whicBRMPC— 2 is infeasible, the process’ use of reactant material elanbe
the value of the integral constraint, in some operatinggasrby as much as 8.7%. Thus, the value
of the yield reported in Table 2.2 f&iMPC— 2 cannot be compared with the yieldsEoMPC— 1
andEMPC— 3 becaus& MPC— 1 andEMPC— 3 met the process constraints, wri&PC— 2
did not. The violation of the integral constraint ByMPC— 2 occurs becaudeMPC— 2 predicts

that there can be sharp changes in all inputs in the predittimizon except those for the first
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sampling period, which are forced to stay within 0.1 of thevowus input value. Thus, because
of the lack of foresight obEMPC— 2, the implemented control actions for the first four sangplin
periods in most of the operating periods use too much of thetaat material, with the result that
there is no way that the integral constraint can be met ingbiedampling period of the operating
periods if the rate of change constraints and hard boundseoimputs are also to be met.

We note that though we did not formulate the constraint&BPC — 3 with respect to a
Lyapunov-based controller which, as was proven above siadhapter, ensures feasibility of the
optimization problem, no issues with feasibility of thean of EMPC— 3 were encountered.
This can occur in practice, and emphasizes that the reqgairenfior feasibility of an EMPC with
input rate of change constraints as developed in this chagqieh as formulating the constraints
as in Eqgs. 2.21f-2.219g rather than as in Egs. 2.19-2.20, @ieetvative. For example, in this
problem, we seti*(t_1]t_1) = Us. The input vectous satisfies all constraints in Egs. 2.47-2.49b,
and thus is itself a feasible input trajectory. Becati8&4PC— 3 recognizes that all future inputs in
the prediction horizon must meet the input rate of changstcaimt, when it finds a solution that
outperforms steady-state operation but is able to satisfycbnstraints, this solution is feasible
both in the current operating period and also, in reverséhennext (because for this problem,
we assume that the plant follows the nominal process modkthat all constraints depend only
on u; anduz, not on process states, so the input trajectory just imphéeae in reverse, will be
feasible for the next operating period). By progressindnia manner, the full input trajectory that
EMPC- 3 takes is feasible in reverse, and it is able to settle to Bste@hdy-state input trajectory
without feasibility issues.

To evaluate the robustness®BMPC— 3 when there are process disturbanced (# 0), the
process of Eqs. 2.42a-2.42d was simulated utMPC — 3, but with bounded Gaussian white
noise added to the right-hand side of Eqs. 2.42a-2.42d ®ositiulation of the process outside
of the EMPC, with zero mean, standard deviation veQy oy, Ox, 0x,|" = [0.6 10 18 0.6]T,
and bound vectof6y, 6, 6, 6]’ =[1.8 30 54 1.8]T. The standard deviations and bounds

were chosen such that the noise had a significant effect oprtieess states. The simulation
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Figure 2.3: State trajectories for the process of Eqs. 22422d undeEMPC— 3 in the presence
of bounded disturbances.

results are shown in Figs. 2.3-2.4, and demonstrateBEMPC — 3 incorporating input rate of
change constraints maintained closed-loop stability efglhocess in the presence of bounded
disturbances. In addition, it met the integral materialstoaint and was feasible in all sampling

periods, demonstrating the robustness of the controller.

Remark 2.5. It is noted that the periodic state trajectories for EMPCL and EMPC— 3 in
Fig. 2.1 are the result of the periodic input policies in F&)2. The periodic input policies are
chosen by the EMPC because the EMPC found that that was theenoesomically optimal
input policy; this is consistent with prior work on the ety oxide production process example
(e.g.2%123, which showed that a periodic operating policy is more exuitally optimal than
steady-state operation for this example. The integral trairg of Eq. 2.44 plays a role in the

periodic trajectories observed because it requires théihiwieach operating period, only a certain
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Figure 2.4: Input trajectories for the process of Eqs. 2222d undeEMPC-— 3 in the presence
of bounded disturbances.
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amount of material can be used. Despite the periodic natlitbetrajectories, the closed-loop
states remain in a bounded region in state-space aroundsimmptotically stable steady-state such

that the closed-loop process is stable in the sense thatéibessemain within a bounded region.

2.3.2 Part 2. LEMPC with a Terminal Constraint Design Based m a

Lyapunov-Based Controller

In this section, we further build toward the development miviable performance guarantees for
LEMPC with input rate of change constraints by developingt&VIPC formulation (without
input rate of change constraints) for which provable penmmce guarantees can be made for
nominal operation. Specifically, an LEMPC incorporatingeartinal equality constraint based
on a Lyapunov-based controller will be developed, and perémce guarantees will be made for
this LEMPC for both finite-time and infinite-time. While a nber of performance results have
been developed for other EMPC formulations (such as EMPE avierminal steady-state equality
constraint®4’ or a terminal region constrait¥), few performance results have appeared for
LEMPC. Previous performance results for LEMPC have beerldped utilizing solutions from
an auxiliary tracking MPCG8-8%the performance guarantees for LEMPC developed in thisosect
compare the closed-loop performance under LEMPC not withithder MPC but with that under a
Lyapunov-based controller implemented in sample-and-Hake many other EMPC performance
guarantees, those made in this chapter rely on the use ahatdrconstraint and thus hold only
for nominal process operation; however, they have sevdvalrdages over performance guarantees
developed for some other formulations of EMPC in thatagamiori characterization of the feasible
region is possible and because the terminal constrainttisgeessarily the economically optimal
steady-state (in the design the terminal constraint asyticptly converges to the economically
optimal steady-state or a neighborhood of it, dependingherptoperties oh(x)), the resulting
LEMPC may give a larger feasible region relative to an EMP@naiterminal equality constraint
equal to the economically optimal steady-state.

To develop the LEMPC with a terminal equality constraintdzh®n a Lyapunov-based
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controller and its provable performance guarantees, #u® begins with a description of the
LEMPC formulation for which provable performance guarastean be made, which is an LEMPC
of the form of Eq. 2.18 but without Eq. 2.18g (since only noatimperation is considered) and with
the addition of a terminal equality constraint based on HmesLyapunov-based controller as is
used to develop the Lyapunov-based stability constraifigpf2.18f (we note that the LEMPC,
like that with input magnitude and rate of change constsad#veloped in Part 1, has input
magnitude constraints with the form in Eq. 2.18d, but sirfee input trajectories themselves
are not the focus of Part 2, this will not be further highligghtin Part 2). Subsequently, it
is shown that when there are no disturbances and when theie ptant-model mismatch, the
LEMPC with a terminal equality constraint based lyx) is feasible and maintains closed-loop
stability of the nominal process in the sense of boundedoktt closed-loop state. Following
this development, the performance properties of the cthetrare proven on both the finite-time
and infinite-time intervals for a Lyapunov-based contmoBatisfying Assumption 2.1 and for
a Lyapunov-based controller satisfying Assumption 2.2 (f(x) meeting Assumption 2.2, the
infinite-time performance result is equivalent to the stedat that the nominal process under
LEMPC with a terminal constraint based on a Lyapunov-basedraller performs at least as
well in infinite-time as it does under steady-state opematiéinally, a chemical process example
is presented that demonstrates the use of the LEMPC inatipgra terminal equality constraint
based on a Lyapunov-based controller and shows that for 4 gtemliction horizon used in an
EMPC, the use of terminal equality constraints in the EMP§ b®crucial to improving process

economic performance over steady-state operation.
2.3.2.1 Part 2: Formulation of LEMPC with a Terminal Equalit y Constraint Based on a
Lyapunov-Based Controller

In the standard LEMPC desidfl, an EMPC scheme is designed by taking advantage of
a Lyapunov-based controller (meeting Assumption 2.1 oruAgstion 2.2), a corresponding

Lyapunov function, and the stability region. Though fedsyp closed-loop stability, and
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robustness to sufficiently small disturbances may be prdgerhis standard LEMPC design,
guaranteed closed-loop performance under the resultifgRE& cannot be proven in general
without additional conditions or constraints (the staddeEMPC design does not incorporate
terminal constraints:119. Nevertheless, owing to the availability of the Lyapurimased
controller of Assumption 2.1 or Assumption 2.2, the cormegpng Lyapunov function, and the
stability region used to design LEMPC, a terminal equaldgstraint may be readily designed for
the LEMPC problem that allows performance guarantees todukerfor nominal process operation
while maintaining the unique recursive feasibility prayesf LEMPC for all initial states irQ,.

In this chapter, the terminal constraint is computed fromdblution of the sampled-data system
of Eq. 2.8 (wherdn meets either Assumption 2.1 or Assumption 2.2).

Because the terminal constraint is derived from the satuticEq. 2.8, it is necessary to define
notation that distinguishes the solution of Eq. 2.8 fromgbkition of the LEMPC. To distinguish
the state and input trajectories of the system under thedryapbased controller implemented in
sample-and-hold (Eq. 2.8) from the state and input trajeegmf the closed-loop system under
LEMPC incorporating a terminal equality constraint dedvfeom Eq. 2.8,z andv will be used
for the former, andk and u* will be used for the latter. Thus, for simplicity of notatiothe
sampled-data system consisting of the nominal system of2Hqunder the sample-and-hold

implementation of the Lyapunov-based controller is givgn b

(2.50)
v(t) = h(z(t))

for t € [ty,ter1), k=0,1,... with initial condition z(0) = zp € Qp. The sampled-data system
consisting of the nominal system of Eq. 2.1 under the samptehold inputs computed by the

LEMPC with a terminal equality constraint based on the Lyapubased controller is given by:

(2.51)
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fort € [ty,tk11), k=0,1,... withinitial conditionx(0) = Xp € Qp, Wherexg = 7. It is noted that the
two sampled-data systems in Egs. 2.50 and 2.51 are inifiaecthe same initial condition, but the
system of Eq. 2.50 only incorporates feedback(tf) without any reference to the measured state
of the sampled-data system of Eq. 2.51, and the sampledsgsteam of Eq. 2.51 only incorporates
feedback ofx(tx) (though it does require(ty,n) for the determination of the inpuff(t) that is
applied to the system, as will be shown subsequently).

The solution of the sampled-data system of Eq. 2.50 is usetksign a terminal equality
constraint for LEMPC that requires that the predicted statthe end of the prediction horizon
(X(tk.n)) be equal to the solution of Eq. 2.50 at timey (z(tk.n)), Where the functiorh in
Eq. 2.50 is the samie used to desigh’ andQ,, in the LEMPC. The terminal conditioz(ti;n) is
determined at each sampling time as follows:

Step 1 At the initial timety = 0, z(ty) is computed by first initializing the system of Eq. 2.50
at zp = Xp (a measurement of the state of Eg. 2.51 at the initial timel) r@cursively solving
the system from the initial time tty = NA. Then, the state(ty) is used as a terminal equality
constraint in an LEMPC problem solvedtat 0.

Step 2 For all sampling times aftdp, the terminal constraint that is imposed in the LEMPC
problem atty is computed by recursively solving the system of Eq. 2.50nfafty) to z(tx. )
(because only nominal operation is considered aftg n_1) was computed at the previous
sampling time, it is only necessary to recursively solvesysem of Eq. 2.50 froryn_1 tO tkin
to obtain the solution fronz(t) to z(tx n) if the solution from the previous sampling time was
stored; for added robustness, especially to numerical excdatization errors, one may reinitialize
the system of Eq. 2.50 with a state measurenzéipj at each sampling time and numerically
integrate forward from this measurement to comg(te ), but in the nominal operating setting
considered here, numerical and discretization errors@reansidered).

Using the terminal equality constraint described abowefdhmulation of the LEMPC with the

terminal equality constraint formulated based on the statktained under the Lyapunov-based
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controller is given by the problem:

tin

i [ e, um) dr (2.52)
st %(t) = f(%t),u(t),0) (2.52b)
X(tk) = X(t) (2.52c)

X(tkn) = Z(tkn) (2.52d)

u(t) e U, vt e [ty tkin) (2.52¢)

K(t) € X, V't € [t trn) (2.52f)

V() < p, V1 € [t tieen) (2.529)

where the notation follows that in Eqgs. 2.17 and 2.18 and,oéschin Section 2.2.2)(t) € U is
equivalent toy; € Ui, i = 1,...,m. Becausegoe = p for nominal process operation, the Mode 1
constraint of Eq. 2.52g enforces that the predicted statmirein Q, throughout the prediction
horizon. The terminal constraint of Eq. 2.52d forces the potad input trajectory to steer the
predicted state trajectory to the statg, ) at the end of the prediction horizon. This terminal
constraint differs from traditional terminal equality ctraints in the sense that it is not necessarily
a steady-state. However, the terminal constraint in the PENVDf Eq. 2.52 converges to a
neighborhood of the steady-state owing to the stabilitpprtes of the Lyapunov-based controller
(if hused in the design of Eq. 2.52 meets Assumption 2.1/aad\*, thenz(t) eventually enters
Qp..., from Proposition 2.1, and ifi used in the design of Eq. 2.52 meets Assumption 2.2 and
A < A, thenz(t) reaches the steady-state in infinite-time from Proposifid). A difference
between the standard LEMPC design of Eq. 2.18 and the LEM&&porating a terminal equality
constraint in Eq. 2.52 is that there is no contractive camstrin the LEMPC with a terminal
equality constraint. The reason for this difference is thally nominal operation is considered
for the LEMPC with a terminal equality constraint, so onlg &tonstraint in Eq. 2.52g is required

to ensure closed-loop stability in the sense that the stajiectory will be maintained within the
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stability regionQ, for all times. The effect of including the contractive coastt will be discussed
in Section 2.3.2.2, along with the stability and feasipifiroperties of the LEMPC incorporating
a terminal equality constraint based on the Lyapunov-besgttoller.

The LEMPC of Eqg. 2.52 is implemented according to a standatkeding horizon
implementation. At each sampling tinig a state measuremexity) is received and the terminal
constraintz(ty, N ) is computed. The optimization problem of Eq. 2.52 is solvéti the computed
Z(tx.N) to obtain the input trajectory over the prediction horizblowever, only the control action
computed for the first sampling period of the prediction honi is implemented on the system.
At the next sampling time, a new state measurement is olotageew terminal constraint is
computed, and the optimization problem is re-solved with tpdated parameters to obtain the

control action for the next sampling period.

2.3.2.2 Part 2: Feasibility and Stability Analysis

In this section, we develop a theorem stating that the LEMPEN02.52 is feasible and maintains
closed-loop stability of the nominal system of Eqg. 2.1 whiea ltyapunov-based controller used
in the design of the LEMPC meets Assumption 2.1 and a suftigiesmall sampling period is

utilized.

Theorem 2.4. Consider the system of Eq. 2.1 witlityv= 0 in closed-loop under the LEMPC
design of Eq. 2.52 based on a controller h that satisfies theditions of Eq. 2.4 and
Assumption 2.1. Lgb >0, and0 < A < A*. If X(tg) € Qp and N> 1, then the state (x) of

the closed-loop system is always bounde@n

Proof. Recursive feasibility of the optimization problem of Eq52.is guaranteed when the
conditions of Theorem 2.4 are met because the sample-dddsiput trajectory obtained from
the Lyapunov-based controller is a feasible solution todgpgmization problem aty (i.e., the
input trajectoryu(t) = v(t), t € [to,tn) Satisfies the input constraint of Eq. 2.52e and the terminal
constraint of Eq. 2.52d by design, it satisfies Eq. 2.52g ezdhe Lyapunov-based controller

implemented in sample-and-hold maintains the state withifrom Proposition 2.1 wheA < A*,
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and it satisfies Eq. 2.52f since Eq. 2.529 is satisfied @pd- X). At the next sampling time
(t2), u(t) = u*(tjlto) for t € [tj,tj+1), j = 1,...,N—1 (which drivesx(tn) to z(tn) sinceu*(tjto),
j=0,...,N—1, was feasible at the previous sampling time and thus E§d2assatisfied for this
input trajectory), andi(t) = h(z(ty)) for t € [tn,tn+1) is a feasible solution to the optimization
problem because nominal operation is considered. At sulescgampling times (i.e., &), a
feasible solution to the LEMPC of Eq. 2.52 is, similarly, et of the solution from the previous
sampling time that was not implemented followedHiy(tx . n_1)) utilized for the last sampling
period in the prediction horizon. This shows that for norhoperation, the LEMPC of Eq. 2.52 is
always feasible. Closed-loop stability of the LEMPC of Ecp22in the sense that the closed-loop
state trajectory is maintained with{d, at all times is guaranteed when the optimization problem
is feasible owing to the fact that the Lyapunov-based camgtiof Eq. 2.52g is imposed in the

optimization problem and nominal operation is considered. O

Though the terminal condition itself converges to the origi a neighborhood of it, the input
trajectory generated by applying the input calculatedHerfirst sampling period of each prediction
horizon may not drive the process state to the origin or alsmahborhood of it. The LEMPC of
Eq. 2.52 may be extended to include the two-mode contrdisjyaof Eq. 2.18, or the contractive
constraint in Eq. 2.18g may be added to the LEMPC of Eq. 2.5&1it@ the process state to a
neighborhood of the origin, even in the presence of distwres, if the resulting LEMPC remains
feasible. However, the performance results to be develwp8dction 2.3.2.3 hold for the nominal

case.

Remark 2.6. It has been previously noted in this chapter that the feasigion of LEMPC with a
terminal equality constraint based on a Lyapunov-basedrobiar can be explicitly characterized
a priori. Theorem 2.4 and its proof show that the feasiblaargs the stability region of the

LEMPC.
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2.3.2.3 Part 2: Closed-Loop Performance Analysis

In this section, we prove that the economic performance eflEBMPC of Eq. 2.52 is at least
as good as that of the Lyapunov-based controller used indssgd in both finite-time and
infinite-time. The analysis techniques used follow thosé®avhich analyzes the closed-loop
performance of EMPC formulated with an equality terminahstoaint equal taxg. In the
following, J3(x(tk)) denotes the optimal value of the objective function of thiémjzation problem
of Eq. 2.52 at timey given the state measuremexty).

The first performance result, presented in the followingoteen, gives the finite-time
performance of the process under the LEMPC of Eqg. 2.52 dedigvith a Lyapunov-based

controller that satisfies Assumption 2.1.

Theorem 2.5. Consider the closed-loop system of Eq. 2.1 witl)w O under the LEMPC of
Eqg. 2.52 based on a Lyapunov-based controller that satigfessimption 2.1. Leh € (0,A%)
whereA* > 0 is the conclusion of Proposition 2.1. For any strictly posgtfinite integer T, the

closed-loop economic performance under the LEMPC of EQ i8.5ounded by:

TA (T+N)A
/ le(X(t), U*(t)) dt < / le(2(t), v(t)) dt (2.53)
0 0

where x and tidenote the closed-loop state and input trajectories of yils¢esn of Eq. 2.51 and z

and v denote the state and input trajectories of the systef 02.50 where (®) = x(0) € Q.

Proof. Letu*(t|ty) for t € [tx,tk n) be the optimal input trajectory of Eq. 2.52tat The piecewise
defined input trajectory consisting aft) = u*(t|tk) for t € [tkr1,tken) @andu(t) = h(z(tx;n)) for

t € [tkin,tkint1) IS @ feasible solution to the optimization problentiat. Utilizing this feasible
solution to the problem of Eq. 2.52 &t 1, the difference between the optimal values of Eq. 2.52

at any two successive sampling tinigandty . ; may be bounded as follows:

l(2(0) h(z(te:)) dt - [ (O, U (W) dt . (2.54)

tk

et N1

35 (Xt 1)) =I5 (X(%)) < /

N
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Let T be any positive finite integer. Summing the differences betwthe optimal values of

Eq. 2.52 at two subsequent sampling times, the followingeuppund is derived:

L . (T+N)A TA .
> Bx(ten) =0 < [l V) di- [ laxpun)dt (255)

k=0 N 0

We takelg(x,u) > 0 for allx € Q, andu € U. Then the left-hand side of Eq. 2.55 is bounded below

by:

> —J:(x(0)) (2.56)

where the inequality follows from the fact thiatx,u) > 0 for all x € Q, andu € U. Owing to
optimality, the optimal value of Eq. 2.52 at the initial timeay be bounded by the cost under
a feasible solution; thus, it may be bounded by the cost utidelLyapunov-based controller

implemented in sample-and-hold over the prediction heorizo

N

J5(x(0)) < / le(2(t), v(t)) dit . (2.57)

0

Combining Egs. 2.55-2.57, the closed-loop economic perémice from the initial time td A is
no worse than the closed-loop performance under the Lyapbhased controller from the initial

time to (T + N)A, which proves the bound of Eq. 2.53. O

It is noted that due to continuity d§(x,u) on X x U and the fact thak andu are bounded
within Q, and U respectively|le achieves a minimum o®, x U. Therefore, the assumption
thatle(x,u) > 0 can be made in the proof of Theorem 2.5 without loss of gdihetsecause the
minimum value ofg(x,u) onQ, x U exists and can always be subtracted fig(®, u) to make the
resulting objective function defined €$x, u) take it minimum at zero. This objective function can

then be used in Eq. 2.52 without changing the optimal satuiiothe optimization problem, and
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therefore we assume thiatx,u) > 0 in the proofs of this section.

The upper limit of integration of the right-hand side of Eb2((T + N)A) arises from the fact
that a fixed prediction horizon is used in the LEMPC of Eq. 2.B2instead,TA represents the
final operating time of a given system, one could employ an&img horizon from timgT — N)A
to TA in the LEMPC and the upper limit of integration of the righar side of Eq. 2.53 would be

TA. Specifically, forty € [to,tt—n), we have from Eq. 2.55:

TA (T=N)A

lo(2(t), V(1)) dt—/ lo(X(t),u*(t)) dt  (2.58)

0

S mumﬂw—xmwﬂs/

NA

and from Eq. 2.53 we have:

TA

(T-N)A
/0 le(X(), U (1)) dt g/ le(2(t), V(1)) dt . (2.59)

0

For sampling times betweef_y andtt, we employ a shrinking horizon in the EMPC. That
is, let N = N — j be the horizon used at sampling timefor k € {T —N,..., T —1} where| =

k—T + N. With slight abuse of notation, let

tk+ Nk

Bt = [ 1e0x(t), v (el ot (2.60)

tk

be the optimal value of the EMPC problem at sampling titpelsc {T —N,..., T — 1} where the
EMPC is formulated with a prediction horizon INE. By the principle of optimality, the difference

between the optimal value of the EMPC problem at two subseaanpling times is

X))~ 60x0) = — [ Telx(t). v 1) (2.61)

k

forke {T —N,..., T —2}. BecauseTl A for this shrinking horizon case represents the final time

of operation, the EMPC is not solved at that time and thusetiseno value ofl;(x(tt)). For this
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reason, we consider the following summation of the termsgnZ61:

=2 TA
k:Tz_N [J6 (X(ter 1)) — e (X(t))] — Ja(X(tr-1)) = —Je (X(tr—n)) = _/(TN)AIE(X(t)’u*(t» dt .

(2.62)
where the left-hand side is equivalent to the summationefélms in Eq. 2.61 frork=T — N to
k=T —1with J{(x(tT)) := 0. The sum of the differences between the optimal values 023
at two subsequent sampling times between 0BrAd2 with J; (X(tt_1)) subtracted from this sum

gives:

K=
_ (T-N)A TA
S 2)/NA le(z(t), V(1)) dt — /O le(x(t),u*(t)) dt - /(TN)AIe(XG),U*(t)) dt (2.63)
Also
T-2

> —/NAIe(z(t),v(t)) dt (2.64)
0

where the last inequality follows from the same argumenesdu® write Eq. 2.57 above.
Combining Egs. 2.63-2.64, the required performance bosiiotbiained for the shrinking horizon

case as follows:

TA TA
/ lo(X(t), u*(t)) dt < / le(z(t), V(1)) dt (2.65)
0 0

This completes the proof of the finite-time performance labiam the shrinking horizon case.
Again considering the case that no shrinking horizon is pusedchote that as a consequence of

the performance bound of Eq. 2.53, the average finite-timme@uic performance may be bounded
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as follows:

TA 1 (T+N)A

1 (TA 1
—TA/O ey dt < [ Tle@vidte o [ lezv) o (2.66)

for any integerT > 0. From the right-hand side of Eq. 2.66, the significance efdglcond term

on the right-hand side dissipatesagets large. Thus, the results of Theorem 2.5 show that the
average closed-loop economic performance over a finite-bperating interval under LEMPC
with a terminal equality constraint based lothat meets Assumption 2.1 is at least as good as the
average closed-loop economic performance uhderplemented in sample-and-hold plus a term
that dissipates as the length of operation increases.

In the above discussion, we developed economic performgmaeantees for LEMPC with a
terminal equality constraint based on a Lyapunov-basett@iar satisfying Assumption 2.1 on
the finite-time interval. We now consider the infinite-tinasymptotic average) performance. The
provable result on asymptotic average economic performaades depending on whether the
Lyapunov-based controller satisfies Assumption 2.1 or Agxion 2.2. We first present a theorem
for the infinite-time performance for a controller satisiyiAssumption 2.1 (the performance result
when the Lyapunov-based controller satisfies Assumpti@n2stronger and will be presented

subsequently).

Theorem 2.6. Consider the closed-loop system of Eq. 2.1 witl)ws O under the LEMPC of
Eq. 2.52 where the Lyapunov-based controller satisfiestAgan 2.1 and @) = x(0) € Q,. Let
A € (0,A%) whereA* is the conclusion of Proposition 2.1. The asymptotic averagrformance is
bounded by:
1 [To

li;njogpﬁ | le(X(D), U (D) dt < ny@&ﬁmle(x, h(y)). (2.67)
Proof. To develop the proof of Theorem 2.6, we first consider the gggtit average economic
performance of the nominal system of Eq. 2.1 under the Lyapidorased controller that satisfies
Assumption 2.1 implemented in sample-and-hold (i.e., iraed-data system of Eq. 2.50) for

A € (0,A%) whereA* > 0 is the conclusion of Proposition 2.1. Owing to the fact thaind
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v are bounded in compact sets algdand h are continuous o2, x U and Q,, respectively,
the asymptotic average economic performance, which isngiyethe left-hand side of Eq. 2.68
below, is bounded. Moreoveg converges toQ, . from Proposition 2.1. Therefore, the
following inequality, which represents the worst-casenagiptic average performance under the

sample-and-hold Lyapunov-based controller, follows:

TA

. 1
— < . .
"Tjﬁpm A le(Z(U,V(t))dt_wrggg:mle(x,h(y)) (2.68)

where the Lyapunov-based controller is evaluatey iastead ofx sincey does not necessarily
equalx due to the sample-and-hold implementation of the conttdBéven that for any finite-time
interval, the bound of Eq. 2.53 holds, the inequality of E.7Xollows from the fact that andu*

are bounded in compact sets, the fact thas continuous orf2, x U, and the bound of Eq. 2.68.

O

As noted, Theorem 2.6 characterizes the worst-case infimie (asymptotic average)
performance for the process under the LEMPC based on a Lgaghased controller that satisfies
Assumption 2.1, and states that it is no worse than the veaist-asymptotic average performance
under the Lyapunov-based controller. Though this is a weaésult than showing that the
asymptotic average performance is at least as good as thatefady-state operation, the level
setQ,,.,, may be selected arbitrarily small, at the expense of reagiaifaster sampling rate.

We now focus on the performance guarantees that can be mad@ite-time whenh meets
Assumption 2.2. We first present a lemma on the infinite-tirrefggmance of the nominal
process of Eq. 2.1 under the Lyapunov-based controlleringe@ssumption 2.2 implemented in
sample-and-hold (Eq. 2.50). We will then present a theordating this result to the infinite-time
performance of the process under the LEMPC with a terminastcaint based oh. The lemma
that will now be presented states that the asymptotic aeeempnomic performance under a
Lyapunov-based controller that satisfies Assumption 21 2oisvorse than the economic cost at

the optimal steady-state pdis, us).
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Lemma 2.1. The asymptotic average economic cost of the closed-loogmnsys Eq. 2.50 under a

feedback controller that satisfies Assumption 2.2 for aitialrcondition 20) € Q, is

TA
lim T—lA/o le(2Z(0), V(1)) dt = le(x, 1) (2.69)

T—oo

whereA € (0,A%) (A; > 0'is the conclusion of Proposition 2.2) and z and v denote thte stnd

input trajectories of the system of Eq. 2.50.

Proof. Recall, the economic stage cost functigris continuous on the compact € x U and

Z(t) € Qp andv(t) € U for allt > 0. Thus, the integral:

%/OTAIe(z(t),v(t)) dt < o (2.70)

for any integefT > 0. Sincez(t) andv(t) exponentially converge to the optimal steady-state pair
(X%, uf) ast — oo, the limit of the integral of Eq. 2.70 &6 tends to infinity exists and is equal to
le(X,us). To prove the limit, it is sufficient to show that for agy> 0, there exists & * such that

for T > T*, the following holds:

1 TA o
'ﬁ A le(z(t),v(t)) dt —la(Xs,Us) | < € (2.71)

To simplify the presentation, defin€Ty, T,) as the following integral:

ToA

|(To,To) = / le(2(t), V(1)) dt 2.72)

T1A

where the arguments dfare integers representing the integers of the lower andrupis of
integration, respectively. Sineé& ) andv(t) converge to¢ andug ast tends to infinity, respectively,

le(X(t),V(t)) — le(X§, us) ast tends to infinity. Furthermore(t) € Q, andv(t) € U for all t > 0,
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so for everye > 0, there exists an integdr> 0 such that

le(z(t),v(t)) —le(xs, Us)| < €/2 (2.73)
fort > TA. ForanyT > T,

TA TA
< [ Nelat) v(t) —leb,ug) dt+ [, lea(t) ) ~1e0g,ug)]

<TMA+ (T -T)Aae/2 (2.74)

where

M= sup {[le(z(t),v(t) — e, 1)1} -
te[0,TA]

ForanyT > T* = 2T (M —¢&/2) /¢ (which implies(M — £/2)T /T < &/2), the following inequality

is satisfied:

1(0,T)/(TA) —le(X,ul)| < TM/T+(1—T/T)e/2

= (M—¢/2)T/T+e/2<¢ (2.75)

which proves the limit of Eq. 2.69. O

Utilizing Lemma 2.1, one may prove that the asymptotic ayeralosed-loop economic
performance under the LEMPC of Eq. 2.52 designed with a Lyaptbased controller that
satisfies Assumption 2.2 is no worse than the closed-lodpmeance at the economically optimal
steady-state (from Lemma 2.1, this is the same as statingf#hasymptotic average performance
of the nominal process under the LEMPC of Eq. 2.52 designédiwthat meets Assumption 2.2
is no worse than the asymptotic average performance unioheplemented in sample-and-hold).

This result is stated in the following theorem.
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Theorem 2.7. Consider the system of Eq. 2.1 witlitjv= 0 under the LEMPC of Eq. 2.52 based
on a Lyapunov-based controller that satisfies Assumptidnl2tA € (0,Af) whereAg > Ois the
conclusion of Proposition 2.2. The closed-loop asymp@ierage economic performance is no

worse than the economic cost at steady-state; that is, fh@vimg bound holds:

1 TA

limsup—- le(x(t),u*(t)) dt <le(X5,Us) - (2.76)
Toeo TAJo

Proof. From Theorem 2.5, for any > 0:

= / " lex(t),u ) dt < = I T e ) d. (2.77)

As T increases, both sides of the inequality of Eq. 2.77 remaitefiowing to the fact thate
is continuous and the state and input trajectories are mlimdcompact sets. The limit of the
right-hand side a3 — o is equal tole(x$, u$) (Lemma 2.1). Therefore, the result in Eq. 2.76 is

obtained. O

Remark 2.7. The performance results of this section hold for any préaiichorizon size even
when N= 1. The use of a short horizon may be computationally advaoiagdor real-time

application. Also, owing to the fact that the terminal eqtyatonstraint of Eq. 2.52d may be a
point in the state-space away from the steady-state, thelfiearegion of the LEMPC of Eq. 2.52
may be larger than the feasible region of EMPC with a termiggiality constraint equal to the

steady-state especially when a short prediction horizarsel.

2.3.2.4 Part 2: Application to a Chemical Process Example

In this section, we use a chemical process example to dermateghat the nominal process
under LEMPC with a terminal equality constraint based on apunov-based controller can
show improved economic performance compared to the progeder the sample-and-hold

Lyapunov-based controller. The LEMPC of Eq. 2.52 is appt®é chemical process example
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consisting of a continuous stirred-tank reactor (CSTRpimitvhich two parallel reactions occdf:

R— P, (2.78a)

R P, (2.78b)

whereP; is the desired product ari® is a by-product. The rates of the reactions are second-order
and first-order irR, respectively.

To model the reactor, it is assumed that there is no signifiozat of reaction or heat of mixing,
that the temperature dependence of the reaction rates camodeled through the Arrhenius
equation, and that the reactor mixture density, heat cgparid inlet and outlet volumetric flow
rates are constant. Applying these assumptions, the diordass dynamic model of the reactor,

obtained from the conservation equations, is

s = —age 8 —ae % xg —xq 41 (2.792)
%o = are” Y — x, (2.79b)
%3 = —X3+U (2.79¢)

wherex; is the dimensionlesR concentrationy; is the dimensionlesB; concentrationys is the
dimensionless temperature, and the manipulated inpugteérbyu, is a dimensionless quantity
related to the heat flux provided to the reactor. The processnpeters are; = 1.0 x 10%, ap =
400, andd = 0.55, and the input is restricted to take values in the intgz@49,0.449.

The operating profit of the CSTR is assumed to scale with the diicthe desired product out
of the reactor. Owing to the fact that the volumetric inletl autlet flow rates are constant, the

stage cost minimized in LEMPC to maximize the operating paffihe reactor is given by:

le(X,U) = =X . (2.80)

The economically optimal steady-state that minimizes E§0 2sx; = [0.0832 00846 0149
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Figure 2.5: Closed-loop trajectories for the system of E¢Q 2inder the LEMPC of Eq. 2.52 (solid
trajectories). The horizontal (dashed) trajectoriesdat# the steady-state value of each state and
input.
corresponding to the steady-state inpgt= 0.149. Regarding the implementation details of
the LEMPC, the sampling period &5 = 0.05, the prediction horizon consists of sixty sampling

periods N = 60), and the Lyapunov-based controller is chosen to be aoptiopal controller

with saturation to account for the bound on the input (i@x) = —K(x2 — X5¢) + us where

K = 3.3 andh(x) = h(x) if h(x) € [0.049,0.449; else if h(x) < 0.049 thenh(x) = 0.049; else
h(x) = 0.449). The closed-loop simulations were written in Pythoro ifitegrate the ODEs
and solve the corresponding sensitivity information reggiito solve the nonlinear optimization
problem, CVODE! and automatic differentiation via CasABDiwere used, respectively. The
resulting nonlinear program was solved using Iptgt.

To demonstrate that using the LEMPC with a terminal equaldystraint based oh can
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indeed lead to better economic performance than using tl@urov-based controller (in this
case, the proportional controller with saturation) in sk¥gnd-hold, two closed-loop simulations
were completed: the closed-loop system under the LEMPClandlbsed-loop system under the
Lyapunov-based feedback controller. Fig. 2.5 gives theerdoop trajectories under LEMPC for
a closed-loop simulation over a length of 10.0 dimensiaiiese units. From Fig. 2.5, the LEMPC
of Eg. 2.52 dictates a periodic-like operating policy. Oe tither hand, the Lyapunov-based
controller dictates a steady-state operating policy. Meeage closed-loop economic performance
is given by the index:

-1 ot
Je_m/o Xa(t) dt . (2.81)

The average performance under the LEMPC is 0.0919, whilatbeage performance under the
feedback controller is 0.0849; the performance under LEM$8.3% better than that under
the feedback controller. It is important to note that it haer demonstrated that time-varying
operation of this example improves closed-loop perforreaetative to steady-state operatfsh.
Two potentially interesting issues to address are the dits&p performance under EMPC with
and without a terminal constraint and the closed-loop perémce under EMPC with different
terminal constraint formulations. While these issues maydifficult to address in general,
we may explore these issues with simulation for this paicaxample. Fig. 2.6 displays the
average closed-loop performance for several closed-laoplations over 10.0 dimensionless
time units for three different EMPC schemes and differeniZom lengths. In particular, the
three EMPC'’s considered are the LEMPC of Eqg. 2.52, EMPC witarainal constraint equal
to the economically optimal steady-state, and EMPC witheuaminal constraints. Overall,
the closed-loop performance for the two EMPC schemes withitel constraints is relatively
similar and for each horizon length the closed-loop pertoroe realized was better than the
profit at the economically optimal steady-state and alstebétan the closed-loop performance
under the Lyapunov-based controller. On the other handetige a noticeable dependence
of the average closed-loop performance on the predictioizdm length. ForN = 10, the

closed-loop performance under the EMPC without terminakt@ints was worse than that under

63



0.092

0.090
0.088
I~ 0.086
0.084 b/ |
LEMPC —
EMPC-term s
0.082 b |
,/'/ EMPC-woterm - - X
£ ;US ,,,,,,,,,,,,,,,,,,,,,,
0.080 L | | . . .
10 20 30 40 50 60

N

Figure 2.6: Closed-loop economic performance with préalichorizon length for the process of
Eq. 2.79 under the LEMPC of Eq. 2.52 (solid line, denoted aMPBE), under an EMPC with a
terminal equality constraint equal to the economicallyiropt steady-state (dashed line, denoted
as EMPC-term), and under EMPC without a terminal constr@ashed-dotted line, denoted as
EMPC-woterm). For comparison, the closed-loop economifopmance for operation at the

economically optimal steady-state is also plotted (dditex] denoted ax’).
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the Lyapunov-based controller, illustrating that perfarmoe-based constraints imposed in EMPC
may be needed to ensure acceptable closed-loop econonfiicrpance for shorter prediction

horizons.

2.3.3 Part 3: LEMPC with Input Magnitude Constraints, Input Rate of
Change Constraints, and an Equality Terminal Constraint Based on
a Lypaunov-Based Controller

In this section, we combine the results of Parts 1 and 2 on LEM#&h input magnitude and rate
of change constraints and on LEMPC with a terminal statetcains based on a Lyapunov-based
controller to show that the performance of LEMPC with inpuagnitude and rate of change
constraints can be proven to be at least as good as it woulddes @ Lyapunov-based controller
implemented in sample-and-hold for nominal process ojerat

The formulation of LEMPC incorporating a terminal state swaint based on the
Lyapunov-based controller, input magnitude constraiatg] input rate of change constraints,

assuming nominal process operation, is as follows:

ticiN

(in [, u) e (2:822)
st X(t) = f(X(t),u(t),0) (2.82b)
X(tk) = X(tk) (2.82c)

X(tkn) = Z(tkn) (2.82d)

ut) e U, vVt e [ty tkin) (2.82¢e)

K(t) €X, V1t € [te,tkrn) (2.82f)

ui(t) —hiZtG) | <&,i=1,....m j=k....k+N-1 (2.829)

V(X)) < p, VtE [t tien) (2.82h)

where the notation follows that of Egs. 2.21 and 2.52, anthtipdementation strategy is like that of
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Eq. 2.52 (at eacty, a state measuremexity) is received and(tx. N ) is updated before the LEMPC
optimization problem is solved), except that eadla(tj)),i=1,...,m, j=Xk,...,k+N—1, is also
determined and incorporated into the LEMPC of Eq. 2.82 &t sampling time.

We will now briefly address how the properties of the LEMPC @ E.82 compare with those
of the LEMPC of Eq. 2.21 and of the LEMPC of Eq. 2.52. Specilicale will address the
bounds org; andA required for the LEMPC of Eq. 2.82 to satisfy the desired tnpte of change
constraints in Egs. 2.19-2.20 whéaix) meets Assumption 2.1, the feasibility of the LEMPC
optimization problem, the closed-loop stability propestiof a process under the LEMPC, and
the performance guarantees that can be made for the nomatalgs under LEMPC. We note that
we will not address the robustness of the method, becaugenontinal operation is considered
for the LEMPC of Eq. 2.82 due to the use of the terminal equabinstraint.

Using arguments similar to those in Eqgs. 2.23-2.28, it cashwmsevn that the desired input rate
of change constraints of Egs. 2.19-2.20 are met when thelsagmeriod is sufficiently small,
the LEMPC of Eq. 2.82 is feasible (Eq. 2.82g is met by the dated control actions), ands2+
Ln, MA < ggesire¢ The proof of feasibility of the LEMPC is similar to that ndtéen the proof of
Theorem 2.4 in that, because nominal operation is consideftg = h(z(t;)) for j =k,... ,k+N—

1, is a feasible solution to the LEMPC of Eq. 2.82@twith u(t) = u*(t|ty) fort € [tx.1,tken) and
u(t) = h(z(tx+n)) for t € [terns tkin+1) being a feasible solution at tintg, 1 whenu(t) = u*(t|ty)
fort € [tk, tkrn) is the solution at timé. Closed-loop stability of a process under the LEMPC in
Eq. 2.82 is ensured for nominal operation in the sense tleasttite is always maintained within
the compact se®, due to the constraintin Eq. 2.82h.

Finally, we compare the performance of the nominal procé§x02.1 under the LEMPC of
Eq. 2.82 with the performance of the process under the Lyaptased controller implemented
in sample-and-hold. Because this comparison can only besrfidlde constraints are met under
both controllers, we note that the Lyapunov-based comrtrothplemented in sample-and-hold
meets all input constraints in Eq. 2.82 and causes the stataset all constraints for the reasons

mentioned in the proof that this control law is a feasibleuioh to the LEMPC aty; it also
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satisfies the desired rate of change constraints of Eqs2218if the termai* (ty|tk) are replaced by
hi(z(tk)), i =1,...,m, since these are the implemented control actions undeathels-and-hold
Lyapunov-based controller. With that replacement, Eq$9-2.20 become a requirement that
hi(z(t)) — i (z(tk-1))| < €desired | = 1, ..., m, which holds for allgesireq™> 0 for Ly, MA < ggesired
from Eq. 2.25. Thus, when the control actions calculatechby EEMPC meet Eqgs. 2.19-2.20 (i.e.,
2&; +Ln MA < ggesired), It is also true thak, MA < ggesiredSO that the control actions implemented
by the sample-and-hold Lyapunov-based controller alsgfgate desired input rate of change
constraints. This establishes that a comparison can be imetdesen the performance of the
process under the LEMPC of Eq. 2.82 and the sample-and-h@lgunov-based controller. The
performance results of Theorem 2.5 hold fianeeting Assumption 2.1 on the finite-time interval,
the performance results of Theorem 2.6 holdianeeting Assumption 2.1 on the infinite-time
interval, and the performance results of Theorem 2.7 haldhfmeeting Assumption 2.2 on the
infinite-time interval. It is noted that these performanesults hold for the LEMPC of Eq. 2.82
regardless of the form of the cost function; this proves thiahominal operation, the performance
of LEMPC with a terminal equality constraint and input rafeclbange constraints is no worse on
both the finite-time and infinite-time intervals than thataof alternative controller that enforces
steady-state operation, regardless of whether the costidtrincludes additional penalties on the
input rate of change to reduce actuator wear. Like the LEMRE avterminal equality constraint
but without input rate of change constraints (Eq. 2.52),UBMPC of Eqg. 2.82 has a number of
advantages over other EMPC formulations for which perforceaguarantees have been made,

particularly that the feasible region can be character&pdori.

Remark 2.8. The motivation for adding input rate of change constraitd EMPC (that the
LEMPC may dictate a dynamic operating policy) is also mdtoafor the addition of input rate
of change constraints to EMPC in general. Thus, it is noted iput rate of change constraints
can be added to other EMPC formulations for which perforneegigarantees have been previously
developed (such as the steady-state terminal equalityt@nsformulation) as well. However, as

noted above, LEMPC has a number of advantages over someathttiecEMPC formulations that
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make it more attractive for incorporating input rate of clggnconstraints and making performance

guarantees for the resulting formulation.

2.4 Conclusions

In this chapter, we developed a formulation of LEMPC incogbimg input magnitude and rate of
change constraints and a terminal equality constraintdbarsea Lyapunov-based controller that
allows provable performance guarantees to be made for th¢RAE The LEMPC formulation
was developed in three parts. In Part 1 of this chapter, weodstrated that input rate of change
constraints written with respect to a Lyapunov-based otletrcan be added to LEMPC, and that
the implemented inputs can then be ensured to differ by ne thain a desired bound between two
subsequent sampling periods. The formulation of LEMPC wiphut rate of change constraints
developed was shown to be feasible and to maintain closguldtability of a process even in the
presence of bounded disturbances. A chemical process éxalemonstrated that the number
of sampling periods of the prediction horizon over which thput rate of change constraints
are enforced may have a significant impact on whether otlogegs constraints such as integral
material constraints can be met.

In Part 2, we developed an LEMPC formulation with a termingliaity constraint based
on the Lyapunov-based controller utilized in the formwatof the LEMPC. With this terminal
equality constraint, the LEMPC formulation was proven tonbé only feasible and stable in the
sense of boundedness of the closed-loop state for nomieahtign, but was also proven to have
finite-time and infinite-time economic performance progsrsuch that the process under LEMPC
performs no worse than it does under an asymptotically Istadg or exponentially stabilizing
Lyapunov-based controller implemented in sample-and:-h@lhen the exponentially stabilizing
controller is utilized to design the LEMPC, the asymptotierage performance of the process
under the LEMPC was proven to be no worse than that undenstate operation. The LEMPC

formulation presented has advantages over other EMPC'swfoch performance guarantees
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have been made, such as that the feasible region can beidxpl@aracterizeda priori. A
chemical process example demonstrated the economic sesfefitorporating a terminal equality
constraint in EMPC when a short prediction horizon is used.

In Part 3, the results of Parts 1 and 2 were combined to devaiopEMPC formulation
incorporating a terminal equality constraint based on gouy@v-based controller that also had
input magnitude and rate of change constraints. It was prtvat the closed-loop performance
under this LEMPC with input magnitude and rate of change traimgs is no worse than that under
an asymptotically or exponentially stabilizing Lyapunoased controller for nominal operation on
the finite-time and infinite-time operating intervals (tmeans that the infinite-time performance
under the LEMPC based on an exponentially stabilizing abletris no worse than that under
steady-state operation), regardless of the form of the foostion or any penalties on the input
rate of change in the cost function. This is significant beeait may be desirable from a
safety perspective to reduce input variations under EMPCwhilnout reducing the economic
performance of the process below that obtainable with thdittonal steady-state operating

strategies.
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Chapter 3

Elucidation of the Cause of Stiction-Induced
Oscillations and Valve Nonlinearity
Compensation within the Classical Control

Framework

3.1 Introduction

The results of the prior chapter indicate that control actubmitations, such as the ability of
actuators to wear, should influence control design sincpgertunctioning of the actuators that
implement control actions is critical to effective processtrol loops. In the remainder of this
dissertation, we examine other limitations of control atbws (specifically, valve dynamics), their
impacts on control loop performance, and how these impactde mitigated.
In undergraduate process control courses, valve dyname&féen modeled with linear

transfer function models; such dynamics can be relatedt@x¥ample, resistance of the gas used
to apply pressure in a pneumatic actuator to flow at the topvafvae 38 Valve characteristics (e.g.,

linear, equal percentage, and square root) may be reviewetlergraduate coursework to provide
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undergraduates with fundamentals regarding valve sizmigthe effects of installing a valve on
the valve’s flow characteristics (the manner in which the ftavough the valve is related to the
valve opening§® 118129 Though there may be some discussion of other types of valvaviier
described by nonlinear models (e.g., saturation of theavaldput at its maximum value, failure of
avalve to respond to changes in the control signal to theevfalvsome time after a valve movement
direction change due to mechanical parts in a valve (deatithae to backlash¥® or stiction18 24
which refers to valve behavior due to friction that can becdbsd by nonlinear dynamic
equations), time constraints in a semester/quarter an@alseneral focus in undergraduate process
control on linear dynamic systems do not typically permitradepth treatment of nonlinear valve
behavior and its impact on process control from a first-fpiles perspective. The chemical process
control literature also typically neglects valve dynamie®wever, at chemical plants throughout
the world, valve issues such as stiction, deadband, satoyadtysteresis, and deadzone prevent
adequate set-point trackiri¢.2°

A variety of methods for analyzing and/or compensating fatve dynamics of various
types have been proposed. For exam¥fleemonstrates that even linear valve dynamics can
be problematic for a process operated under EMPC when tlve dgihamics are neglected in
the model utilized by the EMPC for making state predictiotiserefore, that work suggests
incorporating the valve dynamics in the dynamic processehtmt the controller. Referenge
analyzes the range of valve travel over which linear comtesign theory would be expected to be
adequate when a process that can be effectively modeledaiitiear model receives a flow rate
from a valve with a square root or an equal percentage inheadve characteristic. Referericé
develops an MPC-based method for linear processes wheralireeis subject to backlash. The
literature analyzing and compensating for the stictionlinearity is particularly extensive, with
reviews such &8 categorizing the methods, though stiction compensatioraies an important
research topic with newer works such as thos& it°expanding the compensation literature.

It has been noted:8%-143that the controller, process, and valve dynamics all plagla in

determining the trajectories of the measured outputs obsed-loop system. For exampt®&,
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presents a table showing whether various combinationsnefali processes (integrating and
non-integrating) and linear controllers (proportiona) @hd proportional-integral (P1)) with
different stiction characteristics for a valve in the cohtoop are expected to result in limit cycling
of the valve output or not. In the present chapter, we anatlyeedifficulty of determininga
priori, the process output trajectories for nonlinear procesgbsarious types of feedback control
designs, loop architectures, and types of valve behavioibégd by the valves in the loop. We
begin by examining the coupled and nonlinear dynamics df puacess-valve systems in a general
sense using systems of differential equations. This treatmprovides a uniform mathematical
platform from which both the valve behavior commonly taughtindergraduate coursework and
also nonlinear valve dynamics known to cause problems insitng can be understood and related.
We then use the insights gained from this study to describedlationship between our analysis
and a number of valve behavior compensation methods intdratiire, ending with a new integral
term modification stiction compensation technique for peses under PI control. The next chapter
continues the discussion of valve nonlinearity compeaoratiethods with a focus on those for
processes under MPC. A level control example and ethyleigatan continuous stirred tank
reactor example demonstrate the various points througheurext two chapters. This chapter and

the next originally appeared it: 5356

3.2 Preliminaries

3.2.1 Notation

The transpose of a vectriis denoted by’ . The notatioru € S(A) signifies that the vectaris a
member of the set of piecewise-continuous (from the rigintcfions with period\. The notation
ty=kA, k=0,1,2,..., and the notatiofy = jAe, j =0,1,2,.. ., refer to elements of a time sequence
separated by sampling time periods of lendirendAe, respectively. The notation| signifies the

Euclidean norm of a vector.
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3.2.2 Class of Systems

We consider a nonlinear chemical process system with th@afisig form:

X = f(X,Ua, W) (3.1)

wherex € X C R" is the process state vector (bounded in theXgetu; € R™ is the vector of
process inputsw € R is a vector of bounded process disturbances ves,W := {w : |w| <

6}), andf : R" x R" x R is a locally Lipschitz vector function of its arguments witt0,0,0) =

0. Each component,;, i =1,...,m, of the process input vector is an output of a valve that is
adjusted utilizing a feedback controller for the nonlinpascess that outputs a set-point;, i =
1,....m, for each valve output. Because the valve output flow rae®annded by physical valve
constraints, each input,; is bounded between a minimurnga( min) and a maximumug,j max)
flow rate, with the resulting input constraint op denoted byJ (i.e.,u; € U, whereU := {uy €

R™ | Uajmin < Uai < Uaimax | = 1,...,m}). Since the flow rates out of the valve are bounded, the
set-points are bounded also (i@m <€ Um, whereUny := {um € R™ Ui min < Umj < Umjmax | =
1,...,m}). The relationship between eaah,; and eachu,; depends on the valve behavior. We

will consider valve behavior for which thej — um; relationship is either static or dynamic. In the

case that the, j — um; relationships are static, the following equation holds:

Uai = fstatici (Um,i) (3.2)

where fsatici is @ nonlinear vector functionfgatic(Um) = [fstatic1(Um1) - - fstatiqm(um,m)]T).
Alternatively, a dynamic model may characterize the— um relationship, wherey; is related to
bothum; and the dynamic state vectyynj € R™, for which the componentgyni j, j =1,..., pi,
are states of the valve model. In this case, the followingadqos describe the dynamics of the

valve model for the —th valve:

Xdyni = Xdyni (Xdyni, Umi) (3.3)
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Uai = faynamici (Xdyni) (3.4)

where Xgyni is a nonlinear vector function characterizing the dynamio$ the
internal states of the model for the— th valve, and fgynamici iS @ nonlinear vector
function relating u;; and the internal dynamic states of the valve model. We define
Xdyn = [Xdynl"'xdynm]T, Kdyn(Xdyn, Um) = [)A(dynl(xdynl,um,l)"')A(dynm(xdynmaum,mﬂ-r, and
faynamidXdyn) = [ fdynamic1(Xdyn1) - - fdynamicm(xdynm)]T-

We assume in this chapter that the value of eagh is determined utilizing a feedback
controller that utilizes knowledge of at least one procéateso compute control actions. This

means that the value of eadR; is affected by some subset of the state vector as follows:

A

Umi = feontrolleri (X, i) (3.5)

Wherefi e R, i=1,...,m, is a vector of internal states of the controller calculgti,;. These

internal states may be dynamic as follows:

Zi = finternali (X, Xdyn, ZI) (3.6)
Defining fcontroller(X72> = [fcontroller,l(x7 21) fcontroller,m(xa Zm)]Ta 2 = [21"‘2m]T, and
finternal(xaxdyn,2> = [finternal,1(X;, Xdyn, 21) finternal m(X, Xdyn zm)]T, we can write the

process-valve system as follows for the case of a statidioekhip betweenu, and up

(i.e., Eq. 3.2 holds):

X _ f(x(t), fstatic( feontroler(X; {)), W(t)) (3.7)

N A

14 finternal (X, Xdyn )

For the case of a dynamic relationship betwegmandup, (i.e., Egs. 3.3-3.4 hold), the following
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process-valve system results:

X f(X(t), faynamidXdyn), W(t))
Xdyn = )A(dyn(xdyn, feontroller(X, 2)) (38)
2 finternal (X, Xdyn 2)

With slight abuse of notation, the right-hand sides of botjs.E3.7 and 3.8 will be denoted by
fq(a(t),um(t),w(t)) (fq signifies the right-hand side of Eq. 3.7 when Eq. 3.2 charaet the
Uaj — Umi relationship, and it signifies the right-hand side of Eq.\@i#&n Eqgs. 3.3-3.4 characterize
theu,; —um; relationship), where(t) represents the vector of process-valve statesi-e.[x 4 il
when Eq. 3.7 describes the process-valve dynamicsg ank Xgyn f]T when Eq. 3.8 describes the
process-valve dynamics). We assume tljas a locally Lipschitz vector function of its arguments

with 4(0,0,0) = 0.

Remark 3.1. Disturbances could also be considered in other dynami@stat the process-valve
model besides x, such as i and the analysis presented throughout this chapter wourdicue

to hold.

3.2.3 Feedback Control Designs for Obtaining Valve Output 8t-Points

Though in general any state feedback controller can be wsedrhpute the values afy, | =
1,...,m, the examples in this chapter will obtaig, utilizing a standard linear control design with

an integral term (Pl control) and model predictive contMP(C).

3.2.3.1 Classical Linear Control with Integral Action

Linear control designs with an integral term are designedriie a selected process output (here
taken to be a process state, which is consistent with stdnddustrial practice in the chemical
process industries) to its set-point. Thus, we assume hiegpitocess state vector or a subset of

it comprises the vectax € R1, A < n, of measured outputs being driven to the set-point vector
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Xsp € RY. When a PI controller is used, each component & fegulated to its set-point by an
individual linear controller that outputs a valve outputrfleate set-point for an individual valve,

and thusn= m. The dynamics of the—th PI controller are represented by:

Umi = 0ai(Xi, &) (3.9)
. % )
(i = Aconi . + BeoniXisp (3.10)

The form of these equations follows that in Egs. 3.5-3.6nit= &, feontrolleri given byga ;, and

finternali given by the right-hand side of Eq. 3.18:0nj andBgonj are a matrix and scalar.

3.2.3.2 Model Predictive Control

Model predictive contrdf® is an optimization-based control strategy that computes
piecewise-constant set-pointg, for the control actuators with periofl (i.e., un € S(A)) based

on the following optimization problem:

i [ L) () o (3.112)
s.t. X(t) = f(X(t),um(t),0) (3.11b)
K(t) = X(t) (3.11c)

K(t) € X, Vt € [t tien) (3.11d)

Um(t) € U, ¥t € [t tien) (3.11e)
gmpc,1(X(t), Um(t)) =0 (3.11f)
gmpc2(X(t), Um(t)) <0 (3.119)

The stage coste(X,Um) iS minimized subject to bounds on the states (Eq. 3.11d)nd®wn

the inputs (Eqg. 3.11e), equality and inequality constg(figs. 3.11f-3.11g), and the restriction
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that the states must evolve according to the nomingl)(= 0) dynamic model in Eq. 3.11b when
initialized from a measurement of the state (Eq. 3.11c¢).dnEL1bun(t) is used in place afiz(t)
because the standard formulation of MPC in industry anditbeature neglects valve behavior in
general (i.e., it assumes that = uny,; therefore, no reference is madeugin Eq. 3.11). MPC
can, however, handle valve saturation through the constodiEqg. 3.11e, assuming, = Uun. A
vector of control actionsy, is computed for each of the sampling periods of length (N is the
prediction horizon), and only the first of these vectors iagl to the process in a sample-and-hold
fashion according to a receding horizon strategy. The iwotat,(t|tk), t € [t tkin), Signifies the
optimal value ofuy, for timet for the optimization problem initiated at tinig

A form of MPC that is commonly used in the chemical processigtides is tracking MPC,
which drivesxto Xsp (though it is not necessary in this case that i) by utilizing a quadratic
stage cost with its minimum at the set-point vectgywith corresponding steady-state input vector

Um,sp as follows:
Le(R(T),Um(T)) = (Rsp—X) " Q(Xsp—X) + (Umsp— Um) " R(Umsp— Um) (3.12)

whereQ > 0 andR > 0 are tuning matrices, arkddenotes the predicted value of the veotor *
The value of eachi,j calculated by the MPC has the form of Eq. 3.5 V\j{h: 0 (which leaves
um;i as a function of the process state), though the functigiolieri is not explicitly defined in

this case but is defined implicitly by the optimization prerolin Eq. 3.11.

Remark 3.2. We assume that full state feedback is available for all MP€lgtes presented in this
chapter. When it is not, state estimation can be consideyetktelop an output feedback MPC

strategy (e.g%%) but this will not be pursued here.
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3.3 Control Loop Including Valve Behavior: Process Output
Responses as a Closed-Loop Effect

In this section, we analyze the class of systems from the geiction under linear control and MPC
to show, at a fundamental mathematical level, that the negetsponses of closed-loop systems
containing sticky valves result from the coupling of the toher, process, and valve dynamics
(i.e., they are closed-loop effects), and therefore alp@dé on the control loop architecture. We
then exemplify, by demonstrating that both linear valveaipits and the dynamics of stiction
fall within the framework of Eqg. 3.8, that this closed-looprgpective extends both to valve
dynamics typically discussed in the literature/undergedd process control coursework as well as
to nonlinear dynamic behavior that is typically neglectedreacademic level. Finally, we examine
two process examples that demonstrate the complexity afythamics of a process-valve system
and demonstrate that different effects are observed wiférdnt control designs and control loop

architectures.

3.3.1 Class of Systems Analysis

Consider the system of Eg. 3.7, which represents a proags-8ystem subject to only a static
valve nonlinearity under feedback control. The static im@drity impacts the dynamics &fi.e.,

in the absence of the static valve nonlinearity € uy), the dynamics ok would be described by
f(X(t), feontroter(X; 2),w(t)), which is different than the dynamics in Eq. 3.7). In addifibothx
andé are functions ok, so modifyingfsiatic affects the response of boxhandf . Due to the fact
that the system is nonlinear, the effect on the closed-lespanse of changin@asic is difficult

to determine without performing closed-loop simulatiorishis is particularly significant when
there are multiple process inpuig; related toun; through different static nonlinear functions,
especially assuming that the dynamics of the componentsud# coupled. Then, each; affects
all components ox either directly or through coupling of those componenthimvector function

f, and the value of eaalp,; is affected by all components fiue to the fact that the components of
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x are coupled and at least one of those components is usedtdatal,j to defineu,j (Eq. 3.2)
due to the use of state feedback control (Eq. 3.5). Using dasimnalysis, it can be deduced
that changing the control law (i.e., changifi@ntrolier and finternal) @lso impacts the closed-loop
response in a manner that is difficult to determangriori (without simulations).

When the valve dynamics can be described by dynamic systeeguations as in Eq. 3.8, the
dynamics of the valve, controller, and process are agaipleduln this case, however, there is an
additional complexity in that the valve dynamics add addi¢il states with nonlinear dynamics (or
linear in the specific case of linear valve dynamics) thatrartepresent in the case thaf = uy,.
Furthermore, becausg,; is a function of at least one of the components,df is affected by the
other components of as well, assuming coupling between these components. &hseegyn;
andus, to also be affected by (Eqgs. 3.3-3.4), and the componentxeire affected by the values
of all uaj in Eq. 3.1 and thus by the valve staiggn;, i = 1,...,m, from Eq. 3.4.

The above analysis shows that from a fundamental matheshatialysis of general equations
for a process-valve system, the dynamics of all valves caebe to be coupled with the dynamics
of the other valves and also with the dynamics of the processthe controller due to state
feedback (this is not limited to PI control or MPC). Becauke tontroller dynamics affect
the evolution of the states and thus the process outpufsretit types of controllers would be
expected to result in different responses of the procegsutait Furthermore, the control loop
architecture will also affect the response because it wijpact the equations that describe the
controller dynamics. This analysis reveals that the negatifects of valve dynamics on control
loop effectiveness are related to the controller, procasd, valve dynamics, in addition to the

control architecture.

Remark 3.3. In this chapter, we consider that all states of the procedsermodel are coupled
since this is the most general case. For specific cases wigeddhs not hold, it may be possible
to analyze the dynamics of the specific process to see if arpliications result compared to the

analysis in this chapter.
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3.3.1.1 Linear Valve Dynamics

The analysis just presented holds for linear valve dynamtush, though typically presented in
transfer function form in undergraduate coursework, caicdst in state-space form in the time

domain as:

Xuai = AiXyy; + Bilm; (3.13)
Uai = CiXyy; (3.14)

wherex,,; € RP is the vector of internal states of the linear valve dynamawlei for thei —th
valve, andA;, Bj, andC; are two matrices and a vector, respectively, of appropdatensions.
Combining the process and valve layer models gives theviolip process-valve model for this
case (omitting the dynamics of the controller):

X | ] (), Cxa(t), w(t)) (3.15)

Xua AXy, +Bum
whereA, B, andC are matrices and vectors of appropriate dimensions canggihe elements of
A, B, andCj, i =1,...,m, in an appropriate order, anxg, = [Xua,l xua‘m]T. Using the notation
in Egs. 3.3-3.4Xdyn = Xu,» @NdXgyni (Xdyni, Umi) and faynamici (Xdyni) €qual the right-hand sides of
Egs. 3.13 and 3.14, respectively.

3.3.1.2 Sticky Valve Dynamics

Like linear valve dynamics, nonlinear valve dynamics alsavithin the framework of Eq. 3.8.
For the case that all valves are sticky (i.e., affected kgtiém/stiction, which prevents the valve
position from appreciably changing until the force appltedthe valve moving parts becomes
sufficiently large) and move in a straight line (rather thatating), the valve positior,; and the

valve velocityw,; for thei —th valve evolve in time according to the following force balanc
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) 1
Wi = W(aiT Fo,i+ CiT Fai— I:fric,i) (3.17)

Al

wherem,; is the mass of the moving parts of theth valve,Fo is a vector of non-friction forces
on the valve that are not related to the controller outputiotibn force and which have coefficient
vectora;, Fa j is a vector of non-friction forces on the valve that are agjd®ased on the controller
output and have coefficient vectgr andFgic j is the friction force on the—th valve. The friction
force is a static function of,j, w;, andz; ; (which is a dynamic internal state of the friction model),
as follows:

Feric.i = Fric.i (Xvi> Vi, 21 i) (3.18)
Z¢ i = 2¢,i(Xvi, Wi, Zf ) (3.19)

wherez; j is a nonlinear vector function describing the dynamics efititernal states of the friction
model.

Assuming thaf, is a static function ofin as follows:

Fai = fsqi(Umi) (3.20)

wherefsq; is a nonlinear vector function describing the relationdi@pveerun,j andFa j, and that
Fo, is also a function of the valve model states, the right-haahel sf Eq. 3.17 can be denoted by
Wi (Um,j, %vi, Wi, Zf ). Finally, assuming that the relationship betwegnandx,; can be expressed

through the following static nonlinear equation descjline valve characteristic:
Uai = Ffiowi(Xyi) (3.21)

we obtain the following process-valve model (omitting thenamics of the controller for the
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process):

X F(X(t), Friow(Xv(t)), W(t))
X Vi
| = Y (3.22)
W Vi (U, Xy, Vur; Zf )
1z | Zt (%, W, Zt)
where x, = [Xv,l“‘xv,m]T, W = [Vv,l“'Vv,m]T, Zy = [Zf,l“‘zf,m]T, frow(Xv(t)) = [friow1(Xv1)
: fflow7m(xv7m>]T, W(Um, Xy, W,Zf) = [\7\/,1(Um,17Xv,1,Vv,1,Zf,1> \7\/7m(Um7m,Xv7m7Vv7m,Zf,m)]T,

2t (X, W, Z¢) = [2¢ 1(Xy1, W1, 2£,1) - 2f7m(x\,,m,v\,7m,zf7m)]T. In the notation of Eq. 3.8xgyn =
[Xv W zf]T, faynamid Xdyn) = Friow(Xv(t)), @andXgyni (Xdyni,Umi) is given by the right-hand sides of
Egs. 3.16-3.17 and 3.19.

For clarification on the stiction modeling concepts preseérnh this section, the reader may
refer to Chapter 5, in which stiction is the focus of the clkapand specifically to Figs. 5.1,
5.2, 5.4, and 5.5, which provide schematics exemplifyirggdbncepts of forces on a valve, valve

characteristics, and different amounts of flow through aevé&br different valve positions.

3.3.2 Process Examples lllustrating a Closed-Loop Perspiage on Effects of

Valve Behavior

In this section, we provide two example process systemyéhdentrol example and a continuous
stirred tank reactor (CSTR) example) that highlight theriattions between the controller, valve,

and process dynamics in a control loop where valve behasiomat be neglected.

3.3.2.1 Single-Input/Single-Output Level Control Loop

We consider first a level control problem with a sticky valvethe control loop. The level
control problem is chosen due to its simplicity, which alfows to focus on the effects of the
valve dynamics in this example without the added complesitg large-scale nonlinear process

model. In the level control problem (shown in Fig. 3.1) caolesed, the tank inlet flow rate, is
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Figure 3.1: Schematic depicting the tank considered indtel lcontrol example.
the controlled variable. The dynamics of the tank level are:

dh 1

= (V) (3.23)

whereA = 0.25 n? denotes the cross-sectional area of the tank,care 0.008333nm/2 /s is the
outlet resistance coefficient. On an order of magnitudeisters with an example frof?® that
uses these parameter values, we define the minimum tankt lasi@m, the maximum tank height
as 05184m, the minimum value ofi; asua min = 0 m?/s (fully closed valve), and the maximum
value 0fu, asUs max= 0.006m?/s (fully open valve).

Without Valve Dynamics: Well-Tuned Control. We first demonstrate that when the valve

dynamics can be assumed to be instantaneous (i.e., they &astghatu, = uy, at all times is
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a reasonable approximation), as is typically assumed ichlenical process control literature, a
well-tuned PI controller and an MPC can be designed thattftgy drive the level to its set-point.

The PI controller for the tank level is taken to have the folloy form:

{ =hsp—h, {(0)=0 (3.24)

Um = Uas+ Kc(hsp—h) +Kcd /Ty (3.25)

whereup, is the controller output{ is the dynamic (integrating) variable of the PI controligg

is the steady-state value of before the set-point change, ang is the level set-point. A tuning
Kc = 0.006 andr, = 43.2 was selected that prevents from dipping belowu, min or shooting
aboveua max for the set-points simulated. The response of the level®tdhk of Eq. 3.23 under
the PI controller of Egs. 3.24-3.25 wheg = uy, (no valve dynamics) is shown in the top plot
of Fig. 3.2, plotted every 100 integration steps, for thektivel initiated from its maximum
(ua = 0.006m*/s, h = 0.5184m), decreased to.05m, and then increased todD m (the set-point
change from @5 mto 0.20 mwill be the focus in the remainder of this section to avoideffects
of possible initial transients during the first set-poinaoge). Each set-point was held for 1040
s. The dynamic system was integrated with the Explicit Eulemerical integration method and
an integration step size of 1®s. At the set-point changes, the valuefofvas re-set to 0 and the
value ofuys was set to the last applied valuelgf.

A more systematic method than tuning a PI controller for enguthat the process meets its
set-point without violating the constraints on the inpst$a use tracking MPC, which calculates
control actions subject to constraints. Focusing on thersgset-point change from the example
above, we assume that the level has already been broughitien@nd that a well-tuned tracking

MPC must now drive the closed-loop st&téo 0.20 mwhen there are no actuator dynamics (i.e.,
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Figure 3.2: Closed-loop trajectory of leveith reference to its set-poittik, for the process of
Eq. 3.23 under the PI controller of Egs. 3.24-3.25 (top @atg under the MPC of Eq. 3.26 (bottom
plot) with no actuator dynamics.
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Ua = Um). The MPC for this case is:

N

um(gleirslm) . Q(hsp— M)+ R(Uasp— Um)?dt (3.26a)
st h= %(um—clﬁ) (3.26b)
h(te) = h(ty) (3.26¢)

0 < Um(t) < 0.006, Vt € [t tiin) (3.26d)

where Q = 0.00001 andR = 1. Using this MPC to control the process of Eqg. 3.23 with an
integration step size of I8 s within the MPC, an integration step size of F0s to simulate
the level, a prediction horizon ™ = 50, a sampling period of length= 1 s, a final time of the
simulation of 25005, and a set-poinsp = 0.20 m with its corresponding steady-state flow rate
Uasp = 0.00373m3/s, the state profile in the bottom plot of Fig. 3.2 is obtainduk (tesults are
plotted every 10000 integration steps). The nonlinearimteoint optimization solver Ipopt8
was used for the simulations with a tolerance of 4@n a 2.40 GHz Intel Core 2 Quad CPU
Q6600 on a 64-bit Windows 7 Professional operating systetm 400 GB of RAM.

With Stiction: Undesirable Closed-Loop BehaviokVe now demonstrate that when the valve
is sticky, but the Pl and MPC designs shown above to be wetduvhen the valve did not have
significant dynamics (i.e., before it became sticky) areliadpvarious set-point tracking issues
can occur. This demonstrates that sustained oscillatiande set up in an originally well-tuned
control loop that has become sticky (perhaps due to, for pl@rthe valve packing being tightened
to prevent chemical emissions from the pPfit For the sticky valve casey, in Eq. 3.23 is
the flow rate out of a pressure-to-close spring-diaphragaimglstem globe valve actuated by a
pressureP. If the valve is initiated from its fully open position, nogssure is initially applied
and the valve stem is at its equilibrium positin= 0 m. Its fully closed position corresponds to

Xy = Xymax = 0.1016m. The differential equations for the valve dynamics Gre:

d)(v_

o Vy (3.27)
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d 1
d—‘:v = AP kot — (3.28)
whereA, andks are the diaphragm area and spring constant, respectinelyha friction force-;

is determined from the LuGre friction mod&l:

dz
Ft = 0ozs + ald—tf + 02wy (3.29)

dzr _ W% 2
dt ~ " o+ (Fs— Fo)e Wi

(3.30)

The parameters of the valve dynamic model in Egs. 3.27-3@@h@se for the “nominal valve”
in’2 and are displayed in Table 3.1. In addition, we assume teavalve has a linear installed

characteristic8
Xy max — X
Uy = (M) Ua,max (3.31)

Xv,max
The pressure to be applied to the valve for a given set-pgins determined from the following
un — P relationship that was developed for a low-stiction val¥se @ievelopment will be described

in Section 5.4.2):

(Um/Uamax) — 0.70391/0.7042

005864
689476+0.7042

P— (3.32)

Thus, we assume that the valve is operated with the presppieea@ to the valve determined
by a law that was developed when the valve had low frictiomutih this relationship does
not adequately describe the valve input-output relatignébr a valve with more significant
stiction. Though this relationship was developed for a kigtion valve (instead of the no-stiction
valve for which the tuning of both the PI controller and MPCrseletermined in Fig. 3.2),
the tunings developed in the no-stiction case perform walltfie low-stiction valve with the
um — P relationship in Eq. 3.32 because the slope and intercepieafplicit P versusum/ua max
relationship assumed in Fig. 3.2 (obtained frém= 0 N in Eq. 3.28) are only about 0.08% and
0.04% different, respectively, from the values in Eq. 3.32e relationship of Eq. 3.32 has the
form of Eq. 3.20, wher® is Faj and the right-hand side of Eq. 3.32fisq;i (Um).
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Table 3.1: Valve Model Parametéts

Parameter Value
my 1.361kg
A 0.06452n7
Ks 52538kg/s’
Vs 0.000254m/s
0o 108 kg/&
01 9000kg/s
02 6129 kg/s
Fe 1423kg- m/s?

Fs 17077 kg- m/s?

- ——n
= |
r _I - = |0 -1 [ r
— 02f N T S D T N N
|
< 0.5} ———————— . .

Tlme (S) x 10*

Figure 3.3: Closed-loop trajectories bf uy, andup, for the process of Eq. 3.23 under the Pl
controller of Egs. 3.24-3.25 with the valve dynamics in E2j27-3.32. This data is plotted every
100000 integration steps.
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Fig. 3.3 showd, uy,, anduy when the valve with the dynamics in Egs. 3.27-3.32 is used to
adjust the flow rate to the process of Eq. 3.23 under the Plraltett of Egs. 3.24-3.25. The
valve was initiated from its fully open position (i.éa = 0.5184m, uy = 0.006 m*/s, { =0m-s,

Xy =0m, vy =0 m/s, zz = 0 m), and the set-point was changed to Orf\$or 15600s, then to
0.20m for 15600s. Because the second set-point change is the focus in thigeshave will
refer to the process-valve statet at 15600s from this simulation ag| (the initial process-valve
state for the level set-point change froml®mto 0.20 m). The value of{ was re-set to zero
when the level set-point was changed, and the valugoh Eg. 3.25 was re-set to the last applied
value ofuy when the set-point was changed. The trajectories werermutaising the Explicit Euler
numerical integration method with an integration step efzZ€)~° s. In the simulations of the valve
throughout this section, several physical consideratasrgaken into account: tfm > Uamax Of

Um < Ug min, Um iS saturated alia max OF Ua min respectively; ifP < 0, P is set to 0; ifua > Ua max OF

Ua < Uamin, Ua IS Saturated atfia max O Ua min respectively.

The cause of the oscillations that are set up at the secombs#tchange in Fig. 3.3 under the
PI1 controller is related to the manner in which the forcesliagpo the valve change over time.
The deadband/stickband causes the force applied to the bglthe pneumatic actuation to build
up to a level that un-sticks the valve, allowing it to move wéwer, once the valve begins moving,
there is a rapid drop in the friction force due to the frictdymamics for this valve (a contributor to
this is that the paramet&g, which represents the static friction coefficient, is landp@anFc, which
represents the Coulomb friction coefficient). As the forsaknce, the valve position changes in
such a way thaltsp is overshot. As the valve then starts to move in the opposietibn, another
series of changes in the forces on the valve causes it to ro@pasition that results in overshoot
of hspin the opposite direction.

To clarify this point, we present some details specific todimeulation performed (the exact
numbers reported are related to the integration step silzeedt but the general effects would
be expected to extend qualitatively to other integrati@p stizes). We analyze the force balance

between the timeg = 1760872441s andt, = 1760872597s in Fig. 3.3, during whictP only
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increases from 55942.138 to 55942. B due to the manner and rate at which the integral and
proportional terms in the Pl control law change. Within th&ne time periodx, changes only
slightly (from 0.036236mto 0.036295m). Thus, the two terms in Eq. 3.28 involving the pressure
and the valve position do not change much betwgeandt,. However, in this short time, the
friction force changes significantly (i.e., it is 170@2N, which is approximately the value &%,
atty, while it is 1501874N (closer to the value dfc) atty). With this rapid change of the friction
force, the right-hand side of Eq. 3.28 increases fro8@4N/kg att; to 1474380N/kg att,
because though the first two terms do not change much, thefeertime friction force decreases
significantly. When the right-hand side of Eq. 3.28 incrsasiee valve velocity increases, which
can cause the valve to move. Though this only looks at two tirs&nts, it shows that the rapid
drop in the friction force can play an important role in chisuggthe total force applied to the
valve before it moves to a position that causes the level &wshoot its set-point (which is why
slip-jump, related to this effect, is cited as one of the dbators to stiction-induced oscillations).
In addition, the dynamics of the PI controller play a rolehe bscillations because the dynamics
do not permit the pressure on the valve stem to change at ttheeaessary to keep up with the
changes in the friction force (e.g., as the term related oftiction force in Eqg. 3.28 decreases
by close to 200N betweent; andt,, the force due to the pressure only changes 0027 N).
The magnitude of the integral term is significantly largearthhe magnitude of the proportional
term when the level changes and overshoots its set-pointhvaiso contributes to the length of
time that the valve is stuck. However, the cause of the @agiglis cannot be attributed only to the
interactions of the pressure applied to the valve and theggsain the friction force; a good deal of
complex behavior occurs due to the nonlinear dynamics ofahes that are coupled with those of
the process and controller, including a sharp increaseeifrittion force after it begins decreasing
followed by another decrease, the manner in which the clsingg affect the force balance as the
valve moves, and the manner in which the dynamics of the lhahge the value of the pressure
applied to the valve through the PI control law. Thus, cleleeg oscillations that occur when a

sticky valve is within a control loop containing an integngtcontroller should be understood as a
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closed-loop property, dependent on the interactions lestvad of the forces in the force balance,
and the manner in which all states of the closed-loop precals® system, including the controller
states, evolve to affect the force balance through coupy@drmic equations. The root cause of
stiction-induced oscillations should thus be understaarsimbalance in the forces applied to the
valve that does not allow it to stabilize at values that waiddse the process variable to remain at
its set-point; however, there is no specific contributothia valve dynamics, controller dynamics,
or process dynamics that causes this phenomenon, but hpunteeact together.

The fact that the negative effects of stiction in a contraldare a closed-loop property is
further emphasized by utilizing the MPC of Eq. 3.26 (i.e.MIC that accounts only for the level
dynamics and not the actuator dynamics) for the set-poiabhgé from 015 mto 0.20 m for the
process-valve system of Eqgs. 3.23 and 3.27-3.32, inititxted q;. The process was integrated
with an integration step size of 10 s using the Explicit Euler numerical integration method.
The resulting trajectories of the level under the MPC arenshim Fig. 3.4, plotted every 1000
integration steps (the valueshyfu,, anduy, for this case are denoted in the legend by U, signifying
that stiction is uncompensated in these results becauddRi@does not account for the actuator
dynamics). No oscillations are observed for this levels®tt change as in Fig. 3.3, demonstrating
that the stiction-induced oscillations observed underRRheontroller are a closed-loop property
(i.e., they depend on the controller utilized). Instead sdilbations, a persistent offset from the
set-point occurs under the MPC. The reason for this is thedumse the MPC is unaware of the
actuator dynamics, it calculates valuesugfthat correspond to pressures (through Eq. 3.32) that
do not allow the valve to move according to the force balanee, (the MPC expects that the
control actions that it calculates will drive the level tawdhe set-point because it is anticipating
that there is no friction in the valve, but due to friction tveve cannot move with the pressure
applied to it). The MPC continues to compute approximateé/game control action for the first
sampling period of the prediction horizon at each samplimg {which is reasonable considering
that the state measurement that it receives is approxiynidtelsame each time since the valve is

stuck and thus the flow rate out of the valve is not appreciabénging to adjust the level). This
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Figure 3.4: Plot of trajectories df, uy, un, and their set-points for the MPC of Eq. 3.26 (U,
signifying “uncompensated”) and the MPC of Eq. 4.4 (C, figng “compensated”) applied to the
nonlinear process of Egs. 3.23 and 3.27-3.32 for a levgbsieit change from @5 mto 0.20 m.

control action continues to be unable to affect the levelaqppbly, resulting in persistent off-set
of the level fromhs, because the MPC has no mechanism for detecting that thesgs-it has
calculated are failing to make an impact on the system.

In addition to the valve behavior, controller dynamics, anolcess dynamics, the control loop
architecture affects the response of the process outphis.cén be demonstrated by adding flow
control to the valve of Egs. 3.27-3.31. In this case, the flate set-pointiy, is computed by the
PI1 controller of Egs. 3.24-3.25 for the tank level, and beestme set-point for a minor PI control

loop used to regulate, to uy. This minor loop calculates the pressiré be applied to the valve
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stem based on the errog, — uy as follows:

— K
tm~Ya , Bopg, (3.33)

Ua max TU.p

P: Ps+ Kc7p

p=-""2 5(0)=0 (3.34)

Ua,max

wherePs is the steady-state value of the pressure, lngl= —8273709, 1, , = 0.01, and{p are
the proportional gain, integral time, and internal staéspectively, of the minor loop controller.
The tuning performed successfully whegq was constant for some time.

The valve was initially operated without flow control (i.&q. 3.32 was used to relatig, and
P) for 15600s for a level set-point change from3184mto 0.15mto reachq,. Subsequently, it
was operated under the flow controller of Eqgs. 3.33-3.345@0Ds for the level set-point change
from 0.15mto 0.20m. Fig. 3.5 shows the responsedpiiy,, andu, for the set-point change from
0.15mto 0.20m (the time axis is short to display the fast response of theeuahder flow control).
These results were obtained using an integration step §iz@ 9 s, with the data plotted every
100000 integration steps. The integral te€mof the controller for the valve was re-set to zero
when the level set-point was changed, and at that point thee vd Ps was also re-set to the last
applied pressure. As shown in Fig. 3.5, the sustained asoitls apparent in Fig. 3.3 do not appear
though the same process, sticky valve, and outer loop Ptaltertare used as in Fig. 3.3. Instead,
when flow control is usedy, tracksumy, well after some initial overshoot afy, in the time period
immediately after the set-point change. During theseahitvershoots, the pressure applied to the
valve changed rapidly according to Eqgs. 3.33-3.34, causiadorces on the valve to result in the
initial significant overshoots af; around the changingy, set-point. However, despite these initial
overshoots ofi,, the flow controller is successful at causing the forces émtally balance on the
valve in such a manner thaj is able to tracku, and thus to drive the level to its set-point. This
shows that for this example, the manner in which the forcaberalve are changed using the flow
controller is able to eliminate the stiction-induced dstibns in the level. At a more fundamental

level, changing the control loop architecture changed theber of coupled dynamic states in the
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Figure 3.5: Closed-loop trajectories bf uy, andup, for the process of Eq. 3.23 under the Pl
controller of Egs. 3.24-3.25 with the valve in Egs. 3.27138d the PI controller of Egs. 3.33-3.34
used to control the valve flow rate to its set-point value f@ set-point change fromIb mto
0.20m.

system of nonlinear differential equations describing ghecess-valve system (i.e., whereas the
state vector of the process-valve system without flow comidudedh, Z, x,, w, andz;, it also
includes¢p when flow control is used). Returning to the notation of E§, this means thatyyn
incorporates an extra state and its dynamics when flow dastused, which overall changes the

response of the measured outhjtdf the process-valve system.

Remark 3.4. The analysis performed demonstrates that the standare altput-controller input
response for a sticky valve exhibited in Fig. 3.6 (and digethin multiple sources in the literature
such a2 and®®) can be understood as the response of the valve output whdortte applied to

the valve is ramped up and down by a controller (i.e., theede®op analysis above indicates
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Figure 3.6: Standard controller input-valve output relaship reported for a sticky valve. The
control signal to the valve changes but the valve output doeshange appreciably in the regions
of deadband and stickband. The valve output changes quitkhe region of slip-jump, and the
valve output and control signal are linearly related in thevimg phase region of the response.
that the “controller output” on the standard plots is linkdd the force applied to the valve).
Furthermore, Fig. 3.6 reflects the transient behavior of Wadve after it begins moving (i.e., it
shows the slip-jump). Because the plot can also be undetstothe valve positionXrather than

Ua) versus the controller signal as f§,a linear valve characteristic is assumed when the same

plot is obtained for y versus the controller signal.

3.3.2.2 Multiple-Input/Multiple-Output Ethylene Oxidat ion Process

In this section, we highlight that as the complexity of th@gass-valve dynamics increases
compared to those in the prior section (i.e., we move fromeasiate, single-input process model
to a four-state, three-input process model), it can be diffito determine the effects of valve

dynamics on process output responses without simulatiegiire process-valve system under

the proposed control design and control loop architect8peecifically, we examine the ethylene
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oxide production process from Section 2.3.1.4 with the fetatesxi, X2, X3, andxy, but for the

case that there are three inputs to this process that arerie¢el by valve outputs as follows: 122

X1 = Ug1(1—X1X4) (3.353)
X2 = Ua1(Ua2 — X2Xa) — AreX (V1 /Xa) (X2Xa) *° — Azexpl y2/Xa) (XoXa) > (3.35b)
X3 = —Ua 1XaX4 + A1eX (V1 /X4) (X2Xa)*° — Agex s/ Xa) (XaXa) *° (3.35¢)

Ua 1

. B B
= (lmx)+ X—llexr(vl/m (XoXa) % + X—lzexF(Vz/X4) (%xa) 25+

By s Ba (3.35d)
X—lexp(vg/ Xa) (XaXa)™ — X—1(><4 —Ua3)
where the process input 1, Us 2, andug 3 are dimensionless quantities corresponding to the feed
volumetric flow rate, feed ethylene concentration, and aatolemperature, which are assumed to
be adjusted by individual valves either directly (ewg,;1) or indirectly (e.g.us > may be adjusted
by opening or closing valves that allow a more concentratiegene stream to mix with a solvent
stream, andi; 3 may be adjusted by heating or cooling the coolant using aenighlower flow
rate of another fluid past the coolant in a heat exchanger. tBthe coupling between the states
in Eq. 3.35, and the highly nonlinear dynamic equations difficult to predict the evolution of
X1, X2, X3, andxs, regardless of the type of controller used to calculgtg, um2, anduy 3, and
even ifua 1 = Um 1, Ua 2 = Um2, @andua 3 = Um 3. Therefore, if the valves also have dynamics, linear
or nonlinear, static or dynamic, or potentially differentdmics for each valve, and different
controllers or control loop architectures for each valfie,iumber of coupled states in this system
of nonlinear differential equations increases and periiognsimulations will be the best way to

understand how each process output will respond.
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3.4 Valve Behavior Compensation for Classical Control Loop

In this section, we demonstrate that the closed-loop petispeon the process output responses
observed in control loops with valves for whialy # un, developed in the prior sections,
enables an understanding of previously proposed valvevimmheompensation techniques, and
the development of new compensation techniques that tdokleoot cause of issues observed in
many control loops (which is that they are the result of cedphonlinear process-valve dynamics).
Due to the prevalence of compensation techniques spebiffcalsticky valve behavior, we will
focus first on analyzing several stiction compensation pugtirom the literature in a closed-loop
context. We will then propose a new integral term modifiaastiction compensation method for

a control loop under PI control.

3.4.1 Stiction Compensation Methods: Flow Control

Utilizing flow control to driveu, to uy, is @ common industrial practice, and it has similarities to
another common practice of adding a positidAéPto a valve. Such methods can change the force
applied by the actuation to the valve in an attempt to makestine of forces balance in a manner
that allows the process outputs to reach their set-pointih M#w control, the force applied to the
valve would be a function dfiy,, uz, and internal states of the flow controller. This methodeseli
on the higher-level controller being well-tuned whep= uy, so thatu, should be brought ta,

again by manipulating the forces on the valve. A Pl contrelfiar this case is:
{c = (Um—Ua), {c(0) =0 (3.36)

Uc = Ucs+ Kc,c(um —Ua) + Kc,ch/TI .C (3.37)

where{c, U, Ucs, Kec and T ¢ are the dynamic state, control action, steady-state doattmn,

proportional gain, and integral time of the flow controller.
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3.4.2 Stiction Compensation Methods: Controller Tuning Agustments

Re-tuning of controllers has been advocated as a methoceflucing closed-loop oscillations
developed in a control loop containing a sticky valve undassical PID-type control (e.gL}).
The re-tuning may result in an improved closed-loop respdrexause it changes the dynamics of
the PID-type controller, which, from the analysis abovegralthe response of the process outputs
due to the coupling of the controller, process, and valveadyins. Referendé? highlights the
difficulty of determining an appropriate tuning for obtaigia desired response, which is consistent

with the closed-loop analysis proposed above.

3.4.3 Stiction Compensation Methods: Augmented ControlieSignal

The knockef’-134 and constant reinforceméftadjust the control signal received by the valve
by adding either a constant or time-varying signal to thastrgalculated by the controller. This
changes the manner in which the force applied to the valhvacsitated. For example, consider the
knocker applied to the level control example without flow ttoh The PI controller has its own
dynamics that, in the absence of the knocker, dictate thespre applied to the valve. However,
with the knocker, there are times when the pressure apmittetvalve is increased by an amount
determined by the knocker parameters above the amounttdatplie Pl controller, but then after
a certain time period, the knocker takes away that extra atnafupressure. This allows the PI
controller to retain its dynamics but permits the pressareg adjusted using a source other than
the PI controller as well, which changes the balance of ®ome the valve and can result in a
different closed-loop response than would be obtainedawitthe knocker. Because the different
values of the knocker parameters change the way that thesforcthe valve are applied, different
values of the knocker parameters cause different clossuiskssponses as observed$ Constant
reinforcement similarly augments the output of the Pl calidr, adding a constant positive signal
when the PI controller output is increasing and a constagtines signal when the PI controller
output is decreasing, which again changes the right-haledasithe equation for the valve velocity

compared to not adding such a signal. One aspect of the effdts on the level control problem
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might be, for example, that the integral term of the Pl cdigranay not need to become as large
for the pressure from the pneumatic actuation to overcometidtic friction force and cause the
valve to move. A method proposed®yfor turning off the PID-type controller and the knocker
is an extension of the knocker method, but as noted%gnd clarified through the closed-loop
(force balance) analysis in this section, the knocker charge force balance but that does not
guarantee that there will be no offset between the procegsiband its set-point so thus removing

the controller and compensating pulses may not be apptepria

3.4.4 Stiction Compensation Methods: Two Moves Method

The two moves methd@® specifies compensating signals to apply to the signal corfnorg a
linear controller that will drive the stem position to itstg®int. This method is model-based,
which means that it has accounted for the coupling of thege®walve dynamics, and a number of
assumptions are required to guarantee that the method iwvartltk valve position to its set-point,
including that the plant dynamics are linear and have thgiroias a stable equilibrium, that a
particular data-driven stiction model is an exact repregem of the stiction dynamics, and that
there are no disturbances or plant-model mismatch. A metimodar in concept to the two moves
method (it determines how to change the set-points for @&dlésop system in a manner that brings
the valve position to a desired value) is developéddand is again a model-based compensator

for processes that can be described with a linear model &naraler linear control.

3.4.5 Stiction Compensation Methods: Integral Term Modifiation

A novel stiction compensation method that we describe is thiapter is intended for processes
under linear control. It seeks to change the manner in whiehforce applied to a valve is
calculated by modifying the integral term of the linear cohtaw used to regulate the process
output to its set-point. This is an alternative to the cdigrduning adjustment methods discussed
above, and is considered because it may be undesirablerigehacontroller’s tuning if the tuning

being utilized is known to work well for the valve when it istngticky and thus would be the
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preferred tuning after valve maintenance is performedthiéumore, the nonlinearity of the stiction
phenomenon and the complexity of the manner in which thesfoom the valve balance and come
out of balance makes it difficult to disceenpriori what the best tuning to use when the valve
is sticky should be. Therefore, instead of disrupting thsirge tuning, in thead hocfashion
that would be required, a term can be added to the integradraof the linear controller that
can easily be removed or adjusted for any set-point changtempt to alleviate stiction-induced
oscillations. Given that a characteristic of the stictinduced oscillations is that the valve output
Uz does not track its set-point,, we propose a modification to the integral term of the cotdrol
based on the scaled difference betwegranduy,. Specifically, for a P1 controller for whicly
signifies the integral of the error between the process osgHpoint (assuming a single output
denoted bysp) and the process outpw, @ssumed to be a component of the process state vector),

the following control law defines the control action with amegral term modification:
Um = Uas+ Kc(Xsp— X) +Kcd /T (3.38)

()A(sp—)A() + L(Ua— Um), t < tAW

(Rsp— X) + Lel=PE=taw)) (U — upy), t > taw (3.39)

whereL, B, andtay are tuning parameters that can be adjusted by a controlegrgio attempt to
mitigate stiction-induced oscillations. Whéen= 0, Eq. 3.39 reduces to the standard integral term
in a PI control law, and thus has no effect. The parameterbestedetermined using closed-loop
simulations and/or on-line adjustmentd.of3, andtay; however, the general goals of adjusting the
parameters provide a potential methodology for lookingdierappropriate tuning. In particular,
the goal of this method is to determine a tuning that can dseriéin such a way that the forces
on the valve equilibrate at a value that causes the condrpliecess output to reach its set-point.
By choosing a value df that causes the terbr{u, — um) in Eq. 3.39 to have a sign opposite to that

of the term(Xsp— X), it is possible to causé to decrease even befoxe="Xsp (this would not be
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possible with the standard PI control law, for which the gn&t term can only begin to decrease
after the set-point is exceeded). Therefore, a possikdéegly for tuning the term containingin

Eq. 3.39 is by first settingg andtay to zero, and then searching for a valuelLathat is able to
causeZ to equal zero and stabilize the force balance by providingrstant force from the valve
actuation. This may occur, however, befagg iS reached, resulting in offset. Therefore, the value
of tayy may be set to a time at which the force balance appears to haiéeated and that allows

X to begin to approach its set-point as soon as possible &itefdrce balancing has occurred.
Then, various values @@ may be tried to attempt to decrease the term contaihith, which
can cause this integral term to change and thus changesrteedpplied to the valve as a result
of the control actioruy, received by the valve. If a value @f can be found that changes the force
applied to the valve in a manner that causes the forces toageie equilibrate, but this time at
a value of the valve position that causggto be reached, then this control strategy is successful
for the set-point change examined. However, some valu@smay even cause stiction-induced
oscillations to be set up once again even if the value ekamined was able to attenuate them
before the timeay; this shows that the tuning problem is complex and that amaggpjate tuning
cannot be decided priori. In addition, due to the nonlinearities in the valve and pesadynamics,
there is no guarantee that any appropriate tuning will baeddor a given set-point change, or that
the same tuning will work for a variety of set-point changesdisturbances; however, closed-loop
simulations or on-line adjustment can be attempted to sthelié are values df, 3, andtay that
are generally appropriate for a given process.

To demonstrate this integral term modification method, vrreto the level control problem.
We consider that the process of Eqg. 3.23 with the open-lobgevdynamics in Eqs. 3.27-3.32
was initially operated under the Pl controller of Egs. 3325 for 15600s for a level set-point
change from (5184mto 0.15mto reachq,. Subsequently, it was controlled using the controller
of Egs. 3.38-3.39 (withx = h) for a level set-point change fromXb mto 0.20 m. The Explicit
Euler method with a numerical integration step size ofl®was used, and the results are shown

in Fig. 3.7 (plotted every 100000 integration steps) foradhse that. = 7, B = 0.007, anday =
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Figure 3.7: Closed-loop trajectorieshgfu,, anduy, for the process of Eq. 3.23 under the controller
of Egs. 3.39-3.38 with. = 7 andp = 0.007, with the open-loop valve (Egs. 3.27-3.32), aggl=

0.20m.

22880s (i.e., 7280s after the set-point change from1l® mto 0.20 m). From comparison with
Fig. 3.3, the addition of the term containihdo the integral action was able to reduce control loop
oscillations (though there is some offset from the set{gointhe choser. beforetay because the
integrator state in Eq. 3.39 can haf{/e: 0 whenh # hsp). After taw, the value ofuy, is able to

change again becaué’ebecomes nonzero, and eventually the valve moves and thesfdie to

this strategy balance in such a way that the set-point isaeti
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3.5 Conclusions

In this chapter, we analyzed the roles of the process, valwd,controller dynamics, and also
the control loop architecture, in the closed-loop resparfsa process-valve dynamic system.
The closed-loop perspective discussed allows valve beh#aypically taught in undergraduate
chemical engineering coursework to be analyzed in the saameefvork as nonlinear dynamic
valve behavior like stiction and deadband that is freqygobblematic in industry. A number of
stiction compensation methods from the literature werdyaed to demonstrate how they fit into
this closed-loop context based on understanding the phemarte.g., closed-loop oscillations)
that the methods seek to compensate at a fundamental maitedrtevel. We also described an

integral term modification stiction compensation techeifpr control loops under PI control.
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Chapter 4

Valve Nonlinearity Compensation Using

Model Predictive Control

4.1 Introduction

The prior chapter elucidated the causes of the impacts ofevabnlinearities on feedback
control loops and reviewed several compensation metho@mnded for control loops under
classical linear control designs. In this chapter, we caithe discussion of valve nonlinearity
compensation but for the case that the control loop is undeCMor could be placed under
MPC as a valve nonlinearity compensation strategy). Thevatadn for analyzing MPC-based
stiction compensation methods in depth is that they proaidgstematic method for handling the
multivariable interactions in a process-valve system,re/iee models in such control designs can
come from either first-principles or empirical modelingheimjues. This is a continuation of the
discussion from the prior chapter (i.e., the notation angaéqns introduced in the prior chapter
continue to be used here, and the level control and ethylgigation examples from Chapter 3
will be utilized in this chapter to demonstrate the MPC-loagalve nonlinearity compensation

method).
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4.2 Valve Behavior Compensation Methods: MPC for Valve
Behavior Compensation

Due to the potential multivariable interactions and nogdinprocess-valve dynamics that make
the response of a nonlinear process-valve system diffioytrédict, the stiction compensation
methods in Chapter 3 that do not utilize predictions of thecpss-valve response in order to
determine appropriate control actions to apply to the m®cray not provide the best control
actions for compensating for stiction or may be difficult tmeé to achieve a desired response.
The model-based methods'# and®® are more straightforward to develop once a model of
the process-valve dynamics is obtained but they have not éegigned for nonlinear processes.
Another model-based method (an MPC method}dthat incorporates an inverse model of valve
backlash was also designed for linear processes, as wagtidzation-based method frohi®
which utilizes the Stenman modé8 of the valve dynamics in addition to a model of the linear
process dynamics to make state predictions in an MPC-lgtadxvork where the objective function
penalizes the error between the process variable valugssédtipoint, the valve stem variability,
and the valve aggressiveness. Though such methods do atteagrount for the process-valve
dynamics in the control design to an extent, the Stenman hrodg not accurately represent
the valve dynamics, the process dynamics may be nonlinedrtree flexibility to adjust the
objective function of an MPC-based method may be desiratilerefore, an MPC-based stiction
compensation method is proposed which is an MPC design vgtmaral objective function, the
ability to incorporate constraints that guarantee felilaind closed-loop stability of a nonlinear
process operated under the controller, and the flexibititytilize any nonlinear process-valve
dynamic model that adequately captures the dynamics foingadtate predictions. This is a
systematic method for compensating for stiction becausecibunts for multivariable interactions
and nonlinear dynamics when choosing an appropriate daattion to apply to the process. In
addition, due to the generality of the process models thatbeahandled in this framework, it

can predict appropriate control actions not only when mldtinputs are affected by differing
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levels of stickiness of multiple control valves, but it cdsceaccount for the control valves having
other behavior (e.g., pure deadband, linear dynamicg,atain, hysteresis, or an equal percentage
valve characteristic). It can handle processes where éesmatye exhibits multiple nonlinearities
(e.g., stiction and also an equal percentage valve chaistator where the various inputs exhibit
different dynamics (e.g., one valve is sticky but anothettie same process has linear dynamics).
The MPC design is able to compensate for all of these valvamyes as long as they can be
modeled and then included within the process-valve dynanudel, which allows the MPC to
predict the response of the nonlinear process-valve sylstewarious feasible control inputs and
to choose those which minimize the chosen objective functio

The formulation of a tracking MPC that includes the valve pratess dynamics (Egs. 3.7-3.8)
and is designed to track the states in a vegt@enoted byq Tor the process-valve system) to a

set-point vectorsp (associated with steady-state input vectgs,) is as follows:

) LSS ~ A ~ ~ ~
min / (Gsp— )" Q(Gsp— §) + (Uasp— Ta) ' R(Uasp— Ua) AT (4.1a)
um(t)eSA)  Jiy

S.t. q(t) = fQ(q<t)7um(t)7o) (41b)

G(t) = a(ty) (4.1c)
q(t) € Qu, Vt € [tk, tiyn) (4.1d)
Um(t) € Um, V't € [tk, trn) (4.1e)

where the notation follows that in Egs. 3.11-3.12. The potedi process-valve statgdllows the
model of Egs. 4.1b-4.1c and is bounded within the@gtEq. 4.1d) (the sed, is defined to be the
bounds on the process-valve model states, which may inclfadexample, the state constraints
restrictingx € X and the state constraints correspondingif@ U sinceu, is a function of the
states from Eqgs. 3.2 (since eagh; is calculated by a state feedback controller) and 3.4). The
notationuz denotes the predictions of the vectgr In Eq. 4.1, unlike in Eq. 3.12, the deviation
of the prediction ofu, from the steady-state value of the valve output flow rateesponding to

dsp is penalized instead of the deviations of the valueappfrom this steady-state valve output
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flow rate sinceu, is the valve output that is actually implemented on the pge@nd therefore it
is the quantity that should track the set-point. A genemdstcoste(G(T),um(T)) (WhereLeis a
general nonlinear scalar-valued function of its argumeasts Eqg. 3.11a) could be used in place
of the tracking objective function in Eq. 4.1a. Additionanstraints may also be added to the
MPC of Eqg. 4.1 to allow for closed-loop stability guaranteeso account for issues that may arise
due to the properties of a specific valve nonlinearity (fcaraple, Chapter 5 develops additional
constraints required for both stability and physical ressor an MPC used specifically for stiction
compensation). A first-principles model can be used to cafhe process and valve dynamics in
Eq. 4.1b, or an empirical model can be used. A first-prinsipl®odel may be more accurate, but
an empirical model may be beneficial because it may not reqigtailed information on the valve
layer dynamics like the details of the friction force modelalve characteristic, and it may also
be less stiff than a first-principles model (an example of thidemonstrated in Section 4.3.2),
resulting in a lower computation time for the MPC for valvénaeior compensation. If the model
utilized within the MPC can capture the dominant procedsevdynamics to provide sufficiently
accurate state predictions, it would be expected to be lmaiafi compensating for stiction, even

if it is not an exact model, due to the incorporation of statxback.

4.2.1 MPC for Valve Behavior Compensation with Empirical Models

Utilizing a first-principles model in Eq. 4.1b is straightfeard when it is available (for example,
first-principles stiction models are reviewed4ph With regard to empirical models, several
data-driven models for stiction exist in the literatureg(ethe Choudhury modéP the Kano

model?® and the He modéf) and these generally assume that the relationship betweand

the force applied to the valve is similar to that in Fig. 3®tlsey use an “if-then” type structure to
mimic this (i.e., if the control signal has not changed erotggun-stick the valve, then the valve
position does not change with a change in the control sigh#the control signal has changed
enough to un-stick the valve, the valve takes a new positefimeld by the data-driven model).

The models usually have only a few parameters that are fashthrough techniques that assume
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a process model structure and an empirical valve modeltateiand then identify the parameters
of both from process input/output d&ta137 149

Several potential limitations of many of the prior stictiempirical modeling methods include:
1. They relate the valve positiog and the force on the valve determined by a controller
2. The models are specific to stiction

The first point above is a disadvantage given the complexitiat may exist in the control loop
architecture and the potential that tlye— x, relationship is nonlinear. In such cases, utilizing an
empirical stiction model would not eliminate the issue g@nhe aspect of the relationship between
Umn anduy must still be modeled even when the empirical model is ingl&or example, if flow
control is utilized on the valve as in the example of Fig. 3&@mne knowledge of the relationship
between the valve output flow rate set-point from the majoploontroller and the force applied
to the valve by the minor loop controller is required. If aruagpercentage valve characteristic
characterizes the, — xy relationship, the form of this model must be known. The sdquutential
limitation of the stiction empirical modeling techniquestihat they cannot capture dynamics like
hysteresis or linear valve dynamics that are not observéttiresponse of a sticky valve to control
signal changes. Therefore, for the MPC-based strategydimpensating for valve behavior in
general, it is desirable to have an empirical valve layer ehoelating eachuy,j andu,; (rather
than force toxyj) to avoid the need t@ priori know/develop a first-principles model for any
part of the valve behavior, and to allow thg; — u,; relationship to be general for any type of
valve behavior instead of for stiction only (the valve layer valvei is defined in this chapter
to refer to all dynamics describing the relationship betwag; andu,;j). Motivated by these
considerations, we propose empirical modeling of valvealign for use in the MPC-based valve
behavior compensation method using standard empiricabhstdictures to relate each,j and
Uai, I = 1,...,m, but inspired by the “if-then” structure of empirical start models, we allow for
branched (“if-then”) model structures based on an undedstg of the physics of the valve layer.

For example, consider that we want to develop an empiricalehfor the relationship between
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eachu,j andunj when eachun; is a valve output flow rate set-point from an MPC which is
transmitted to a valve layer containing a sticky valve witinaar valve characteristic under flow
control. We assume thak,j, i = 1,...,m, is held constant for a time periasiduring which the
minor loop linear controller repeatedly computes new valokthe pressure applied to the valve
stem to driveu,j to um. To identify an empirical model between,j andu,, it is necessary to first
gather valve layer input-outpul,j — Uy j) data and to have some intuition regarding how the linear
controllers and sticky valves in the valve layer affect thage of the valve layer input-output data
trends so that a proper empirical model structure can beechd=or example, if the valve output
flow rate set-point change direction reverses (e.g., th@aetsun; were previously increasing
but the next set-point is lower than the previous one), theevaay stick throughout some or all
of the time periodA during whichum is constant, depending on whether the pressure applied to
the valve changes enough throughdutio overcome the force required to move the valve. Not
only does the direction of the set-point change affect wéretie valve remains stuck throughout
a sampling period, but the magnitude of the set-point chafsgeaffects the speed with which the
valve overcomes deadband/stickband due to the dynami¢geahinor loop controller. Because
typical linear controller designs are based on the errav&en the set-point and the actual value of
a process variable, the minor loop controller in the valyetawill calculate larger control actions
when the valve output flow rate set-point changes signifigghecause this creates a large error
betweerun,j andua ), and such larger control actions (pressures) are morly likevercome the
deadband/stickband within the time periddTherefore, it is more likely that the valve will move
if the controller is aggressively tuned or if the set-poin&ge is large and the error betwegg)
andu,; affects the controller output.

Based on the above discussion, different types of valveubugsponses are expected to be
observed depending on the set-point change magnitude aectidn. Thus, it is reasonable to
postulate that an empirical valve layer model for our exargilcky valve with flow control
will be defined in a piecewise fashion, with the set-pointnges dictating which equation is

chosen to describe the valve layer input-output relatigmshAlso, the minor loop controller
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may cause some of the parameters in the empirical model tendepn the magnitude of the
set-point change (an example of this is shown in Sectior2}l. &aturation of the valve (e.g., the
pressure from the pneumatic actuation dropping to zeroadlle valve can no longer move in the
direction of decreasing pressure) can also define brandlles walve output response. Therefore,
the procedure proposed for empirical modeling of the feekilb@op for the sticky valve under

consideration is as follows:

1. Collect valve layer input-output data (i.e., data relgtiaj andumj, i = 1,...,m), ensuring
that data gathered represents all aspects of the valverkeg@onse that should have separate

equations (branches) within the piecewise model strugaugg, sticking and slipping).

2. For each aspect of the response that requires its own ratrdeture, select an appropriate
structure based on the valve layer input-output data trandsdetermine what activates the

different branches of the response (e.g., set-point chdingetion reversals).
3. Identify the parameters for the different branches oftioelel.

4. Develop models for any parameters that can be seen fronathe layer input-output data
to be dependent on the valve layer inputs (e.g., paramdiarsiépend on the magnitude of

the valve output flow rate set-point change).
5. Validate the final piecewise-defined model.

It will be shown in Section 4.3.2 that Step 2 in the procedureva may be able to be performed
with standard empirical model structures in the chemicatess industries, such as second-order
or first-order-plus-dead time models. Furthermore, the $iteps above are general such that
they are not restricted to the valve layer with a sticky valwneler flow control above but can be
examined for extension to other control loop architectares valve behavior that characterize the
valve layer. Furthermore, the goal of valve layer empirioaldeling in this section is to develop
models of valve dynamics that are flexible by not assunaipgiori that a specific valve behavior

is present in the loop, and that also are intended for useaicepdf a first-principles model in the
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MPC-based valve behavior compensation methodology of Hq. Because MPC is a feedback
control technique, it possesses a degree of robustnesaribmpbdel mismatch and therefore an
approximate empirical model of valve behavior with a stad@snpirical model form may in many
cases be sufficient for predicting the valve response in tRENbd compensate for valve behavior.
The following equation denotes the empirical model for usthe MPC-based valve behavior

compensation method:

y(t) = fy (Y, Um) (4.2)

wherey(t) is the predicted value afi; from the empirical model at time and has dynamics
characterized by the vector functioi). Using this notation, the MPC-based valve behavior
compensation method of Eq. 4.1 (with an empirical valve lap@del and general stage cost

functionLe) becomes:

min, [ L) 90 ) (4.30)
s.t. K(t) = f(X(t),y(t),0) (4.3b)
y(t) = fy(Y, Um) (4.3c)
X(ti) = X(t) (4.3d)
¥(tk) = Ua(tk) (4.3e)
Xe X, Vte [ty tkin) (4.3f)
yeU, Vt e [t tkin) (4.30)
Um(t) € Um, V't € [tk, tkin) (4.3h)

where the notation follows that in Eq. 3.11. The initial cdiwh for the nominal first-principles
model of the process states (Eg. 4.3b) is a measurement aftdbex at tx (Eq. 4.3d), while
the empirical model (Eq. 4.3c) is initialized from a measoeat of the valve output (Eq. 4.3e).
The set-pointsiy, the state predictions and the predictions of the valve outpuare bounded

(Egs. 4.3f-4.3h).

111



Remark 4.1. Prior works that have looked at MPC with a general objectivadtion with
empirical model&4 % have focused on empirical models of the nonlinear procesther than
valves) and have indicated that significant computatioretmeductions may result from using
empirical as opposed to first-principles models in MPC. Wedeimonstrate in Section 4.3.2 that
empirically modeling the valve layer can result in compiagtatime reduction even if the process
is modeled with a first-principles model because it can mh&gtocess-valve combination model
less stiff. Empirically modeling both the process and valyeamics could be examined as well;
however, there may arise cases in which it may not be possildasily capture the process and
valve dynamics in the same model (i.e., developing an erapmodel betweengand x only).
To see why difficulty may arise, consider a process with pialthputs, all of which are adjusted
by sticky valves. Because the valves are sticky, each cliangg will either cause y; to change
appreciably (which will cause x to respond to the change dp)uor it will not cause y; to
change appreciably (which will cause x to continue behawftgr the change in i as if Un;
had not changed). Due to the coupling of the dynamics of Hitesbf a process-valve system, the
combination of y;’s affects the process dynamics, so a branched empiricakiharbscribing the
Umn — X relationship may need to include different branches fargwombination of sticking and
slipping for all valves, which may lead to a difficult iderti#tion task. A solution if this is found
to be an issue would be to empirically model eagh-tun; relationship for each valve as well
as the Y — x relationship for the process. Such a modeling strategy afsy be beneficial from a
valve maintenance perspective because it permits mongai how closely 4 matches w; for
each valve, allowing valve maintenance to be performeddirshose valves for whichyutracks

Um, the least.

Remark 4.2. One could examine whether the MPC-based valve behavior@esation method,

particularly with an empirical valve layer model, could bglized for compensating for dynamic
effects (e.g., slower movement of a valve or lack of movgmadated to physical valve issues like
oversizing, undersizing, corrosion, leaks through thesegdacking, or diaphragm faults that can

affect valve performancé.
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Remark 4.3. An appropriate empirical model structure for the valve layeput-output data
must be selected. Many model identification techniques fibaiming linear and nonlinear
empirical models exist that can be evaluated for their dility for modeling a given valve layer

input-output trend, which fall in the categories of sta@se and input-output models (see, for

example?? 102,123,145

Remark 4.4. It is possible to consider automation of the model identiftcaprocedure in this
section to allow it to be carried out on-line, providing a sstently available model of the valve
behavior that can be used not only to obtain reasonable gtaeictions of the valve layer within
the MPC throughout time, but also to help detect changeseénvtiive behavior over time and
therefore to help set valve maintenance schedules. Théreeed to be logic integrated within
such an automated procedure that analyzes fye-Wn,; data based on an understanding of the
physics of the valve layer (e.g., for the valve layer congatisf a sticky valve with a linear valve
characteristic under flow control used as the motivation$oeps 1-5 of the proposed empirical
modeling procedure in this section, Step 1 of the empiricadefing procedure could be automated
by having a computer check whether there are any regionsatth- uy i data where W changed
but w; did not move immediately, and if so, have the computer parfstep-tests including
changes in w; in one direction and also in the reverse direction to ensinat idata from the

valve sticking and from it slipping is gathered).

4.3 MPC-Based Valve Behavior Compensation Methods:
Process Examples

This section demonstrates the MPC-based valve nonligeadimpensation method through
applications to systems where a valve experiences stictidine compensation method is
demonstrated with a first-principles stiction model via tbeel control example described in
Section 3.3.2.1 and with an empirical stiction model viadtigeylene oxidation example described

in Section 3.3.2.2.
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4.3.1 Level Control Example with a Sticky Valve: MPC with a

First-Principles Valve Layer Model

For the level control problem, we develop an MPC for stictompensation as follows:

min o Q(hsp— M)+ R(Uasp— Ua)?dT (4.4a)
um(t)eS(A)  Jig

st G(t) = fq(G(t),um(t),0) (4.4b)

Ai(tk) = q(ti) (4.4c)

0 < (ia(t) < 0.006, V't € [ti, tesn) (4.4d)

0 < Um(t) < 0.006, V't € [t ticen) (4.4€)

P>0,Vt e [t ten) (4.41)

where ua sp = 0.00373 m3/s, hsp = 0.20 m, Q = 0.00001, andR = 1. For physical reasons
(described in more detail in Chapter 5), the predicted jpired3 from the pneumatic actuation is
restricted to take non-negative values in Eq. 4.4f. Thegsswalve state vectgl = [h x, W, zf]

is modeled for the open-loop valve using Egs. 3.23 and 3.3Z-:3The process-valve system
was initiated aty. The level was controlled by the MPC of Eq. 4.4 for 1&®&ith A = 1 s and

N = 50. An integration step of 1@ s was used within the MPC to integrate Eq. 4.4b, with an
integration step of 1 s used outside of the MPC to simulate the process. The constriai
Egs. 4.4d and 4.4f were enforced once every sampling pefibd.objective function derivatives
required by the optimization solver Ipopt were calculatethg a centered finite difference, and the
Ipopt limited-memory Hessian approximation option wasdys® that the non-differentiability in
Eq. 3.30 did not prevent a solution to the optimization peoibfrom being obtained. The results are
shown in Fig. 3.4 (designated by C because the valve dynaamécsompensated) and are plotted
every 1000 integration steps. They indicate that the MPQighieg the valve dynamics drove the
level toward its set-point, in contrast to the MPC that did include the actuator dynamics from

Section 3.3.2.1 (designated by U in this figure). The reasonhiis is that the MPC of Eq. 4.4
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incorporates the full process-valve model, and thus coegpam input trajectory that accounts for
the manner in which the forces on the valve will balance unkercontrol actions calculated by
the MPC.

Though the MPC was able to drive the level toward its set{p@irsignificant improvement
with regard to set-point tracking of the level compared t® thse that the valve dynamics were
not accounted for within the MPC), the fact that the valvegerated without flow control reduces
the flexibility of the MPC to be able to maintain the level a¢ #et-point for all times after it first
approaches the set-point in Fig. 3.4. Specifically, eacle tinat the MPC sets,,, the pressure
applied to the valve changes according to the relationshifgo 3.32 since the valve is operated
without flow control. However, because the MPC implemenge@ivise-constant control actions
that are held for a sampling period, the pressure that isieppd the valve (a function ofi,
calculated by the MPC) is held constant throughout a sagpkmiod. The length of the sampling
period in this example is long compared to the dynamics ofvetiee, such that the dynamics of
the valve under a constant applied pressure dictate thegosiiion of the valve at the end of a
sampling period. The result is that the MPC is not able to findlae ofupy, that will drive the
valve, subject to its dynamics during the sampling periat the pressure is held constant and
the MPC cannot intervene, exactly to the valve positionesponding to the steady-state flow rate
through the valve at which the level set-point is achievatstdad, the MPC must continuously
calculate new values afy,, that allow the valve to stick and slip in ways that the MPC findls
minimize the tracking objective function and thereforefkéige value oh in a region around the
set-point over time. Based on this analysis, potential wayisnproving the set-point tracking
of the level include decreasing the MPC sampling periodi itris on a timescale comparable to
the timescale of the valve dynamics, increasing the predidiorizon to give the MPC greater
foresight to potentially allow it to determine a sequencealfies ofuy, that can drive the value of
Uy to its set-point, or adding flow control to the valve and thaeiuding the dynamics of both the

valve and the flow controller in the MPC as it calculates set{s uy, for the flow controller.

Remark 4.5. Fig. 3.4 demonstrates the effects of not accounting for efeabior of the valve
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of Egs. 3.27-3.32 within an MPC (no significant change of theel for certain changes in the
valve output flow rate set-pointiand the improvement that can be obtained when the dynamics
are accounted for. However, other types of valve behaviat #ne not exhibited by the valve
of Egs. 3.27-3.32 can result in different types of negatffects when the valve behavior is not
included within the MPC model for making state predictiorfor example, consider a valve

without stiction but with the following equal percentagdvescharacteristic*®
Uy = Ueymaxem(O'O?))X\'/Xv’max (4.5)

developed for the case that the valve stem is fully retraeteen the valve is fully open and is
fully extended when the valve is fully closed. Assume tleatdlve can be manipulated in such a

manner that the valve position is an explicit function gfgiven by Eq. 3.31 (i.€.,w%= Xymax—

u:n“:axxwmag though this linear relationship does not reflect the noaéinx, — u, relationship of
Eq. 4.5. If an MPC is used to control the process but is not awafrthe mismatch between
the valve behavior of Eq. 4.5 and the lineaf ¢ %, relationship that sets the valve position (a
similar concept to the mismatch between Eqg. 3.32 and thabatu— P relationship for the sticky
valve of Egs. 3.27-3.31), permanent offset of the level iterset-point can result due to the
plant-model mismatch. For example, consider again theeeit change from an initial level of
0.15m, corresponding to a steady-state flow raté@@f0323m?*/s, to the set-pointdp = 0.20m
corresponding to ysp= 0.00373m3/s. The steady-state flow rate for a leveddf5m corresponds

to a fraction ko = 0.53790f the maximum flow rate @006 m3/s through the valve as shown

in Fig. 4.1. For the equal percentage valve of Eq. 4.5, theeglosition associated with the flow
rate Wy sp is a fraction X o = 0.17680f its maximum. When the set-point of the level is changed
to 0.2 m, the flow rate out of the valve should increase to achiewe (ttieally it should reach
the fraction of the maximum flow ratg = 0.62113shown Fig. 4.1). For the equal percentage

valve of EqQ. 4.5, this flow rate is achieved at a fraction of384 of the maximum stem position.

The y, — Xy relationship used to set the stem position basedyphowever, is linear, so when the
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Figure 4.1: Figure depicting linear (L) and equal perceat@}’) valve characteristics of Egs. 3.31
and 4.5, respectively, along with several fractions of theximum flow rate i o = 0.5379,
Fo = 0.62113, andFp A = 0.2649) and of the maximum stem positioX, 4 = 0.1768 and
Xp,c = 0.37887) for the level control example.

MPC requests thathl= Uy sp, the linear y, — X, relationship moves the valve stem to a position
corresponding to a fraction pXc = 0.37887of the maximum stem position. However, when the
fraction of the stem position for an equal percentage vav@ 37887, the fraction of the maximum
flow through the valve isg-a = 0.2649(corresponding to a flow rate lower than the initial value
instead of above it as desired). This example highlightsittcduding valve behavior in MPC can
be beneficial for many types of valve behavior. Also, the plawalve in this section has g\u- us
relationship of the form in Eq. 3.2 sincg ix the linear y, — %, relationship can be substituted in

terms of y, in the y, — %y relationship of Eq. 4.5.
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4.3.2 Ethylene Oxidation Example with a Sticky Valve: MPC wth an

Empirical Valve Layer Model

In this section, we return to the ethylene oxidation exampgection 3.3.2.2 (with the parameters
listed in Table 2.1) for the case thaf, = 0.5 andus3 = 1.0. We consider that the value of
Ug 1 is adjusted by a pneumatic spring-diaphragm sliding-stierbegvalve (because it is the only
manipulated input considered for this process in the falgvexample, we will drop the “1” in the
subscript for this section and refer to the process inpuig3.“This valve is under flow control and
has the same design as the valve described in Section 3(i3e2. it is pneumatically actuated and
pressure-to-close, with no pressure applied to the valtiallg when it is in its fully open position,
it hasx, = 0 mwhen the valve is fully open and, = xymax = 0.1016m when the valve is fully
closed withuy = 0, and the valve layer dynamics are described by Eqs. 32 &hd 3.33-3.34)
except that the time unit for all parameters and variableteisoted by a dimensionless utjt
instead o for consistency with the dimensionless units in Eg. 3.35,(all valve model parameter
values in Table 3.1 apply for this valve except that eaclaims of the unisin that table is replaced
with ty in this example) and the fully open valve position corresfsoiou, = Ug max= 0.7042. The
values of{p and of the steady-state value of the pres$yrare re-set each time that, changes
(¢p is re-set to zero, anks is set to the last applied pressure). The valugfs changed by an
EMPC every sampling period of length= 0.2 t.

The control objective is to maximize the yield of ethylenddexutilizing an EMPC that
accounts for the valve dynamics, where the yield is givenhgyfollowing ratio of the amount
of ethylene oxide produced from the reactor in a time peribleiogtht; — to to the amount of

ethylene fed to the reactor in that time:

ft:)f Ua(T)X3(T)Xa(T)dT
ftf)f 0.5uq(T)dT

Y(tr) = (4.6)

We also consider that the valve output flow rate is constcalb@ween the minimum flow through

the valve (0) and the maximum flow .{®42), and is also required to satisfy the following
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restriction on the amount of ethylene that can be fed in a pereod of lengtht; — to:

1 L
0.5u4(1)dT = 0.175 4.7)
tr — 1o Ji

This constraint requires that the amount of ethylene fedhé¢optrocess in a time period of length
ts —to must equal the amount that would be fed in that time perioceustbady-state operation.
We seek to avoid fully closing the valve by requiring the MRCkeep the value ofi,, between
0.0704 and 0.7042.

To achieve the control objectives, we will utilize an MPC hlwin empirical model of the
valve dynamics, and we will compare the computation timéaft tontroller with the computation
time of an MPC that includes a first-principles model of théveadynamics. We develop the
empirical model for the valve layer described in Eqs. 3.2%k3and 3.33-3.34 according to the
steps outlined in Section 4.2.1. According to Step 1, we §asheru, — u; data, and notice that
when the set-points repeatedly change in the same diredtiervalve responds rapidly to the
set-point change, but when the set-point change direatigrses, there is a delay before the valve
responds. Also, there is a greater delay for small set-pbiamhges than for large set-point changes
when the deadband is encountered due to the use of the Pblbenin the valve layer. In addition,
the valve layer input-output data indicates that when tHeevautput set-point is kept constant
for multiple sampling periods, the valve output will not @xhdeadband if the next change in the
set-point is in the same direction as the changes prior twdhe set-point remaining constant,
but will exhibit deadband if the next change in the set-p@nh the opposite direction to the last
changes. The valve layer data also suggests that valvetdigpurates above about 0.5164 are
not achievable with the pressure available from the pneigraatuation after the valve first begins
to close because stiction alters tlpe— P relationship (as will be discussed in Chapter 5) such that
these flow rates would require negative pressures to beaddchk., since the valve is initialized
with uz = 0.7042, it can only close (it cannot reverse direction to opemenuntilug ~ 0.5164,

and subsequently cannot reach flow rates above that value).
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The above observations are used in Step 2 of the model idaiwin procedure to postulate that
the dynamics betweam, anduy, can be captured in a piecewise-defined model with two branche
one corresponding to the responsegivhen the set-point changesup are repeatedly in the same
direction (no deadband), and another corresponding tog$onse when the set-point changes
switch direction (deadband), with a special considerafowrthe case that the set-point does not
change between two sampling periods. The part of the modetsmonding to the case when
there is deadband before the valve moves should have diffepeeds of response of the valve for
different set-point change magnitudes. The valve layanthgutput data should be gathered while
avoiding increasing the set-poiat, above 0.5164 to avoid gathering data for flow rates where the
pressure is saturated (the decision was made not to addhietathe empirical model to account
for saturation of the actuation pressure due to the comyléhat this adds to the empirical model,
but to instead seek to avoid saturating the pressure duroggps operation by utilizing input rate
of change constraints as in Chapter 2 in the MPC used to dah&@rocess).

Step 3 of the model identification procedure will now be eout to identify the equations for
the two branches of the proposed model. We first verify thelh supiecewise-defined valve layer
model is necessary by showing the results of attemptingdotify a single model for the valve
layer based on the valve layer input-output data. The valyerlinput-output data was gathered
by initializing the valve at its fully open position{ = 0.7042,Ps = 0 kg/m- tg, (p=0,zs =0m,
xy = 0 m, vy = 0 m/ty) and integrating the first-principles valve layer model igsE3.27-3.31
and 3.33-3.34 with the Explicit Euler numerical integratimethod and an integration step of
hy = 10-%t4 for 19 step changes in the set-point (the set-point was fastdised frory, = 0.7042
to 0.7, and was subsequently decreased to 0.15 in increrae@t85, and then increased to 0.5
in increments of 0.05, with each set-point held for a sangpperiod). A subset of thay, — Ug
data generated is shown in Fig. 4.2. Based on the data gedgethé valve output response to a
set-point change was postulated to be able to be describeeddyond-order linear dynamic model.
The values ol andu, were measured every 1ftime units (every 100 integration steps; i.e.,

Ae = 10~ t4 according to the notation in Section 3.2.1), and the follmvARX model was fit to
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Figure 4.2: Comparison of valve layer set-pount), valve layer outputuy), and prediction of the
valve layer outputy() from Eq. 4.8 when 19 set-point changes are applied (a sobse¢t data is
shown).

the data by using a least-squares regression:

y(j) = 1.99213({j 1) — 0.99219/({j2) +0.000384y(fj 1) —0.0002 Um({j 2) (4.8)
wherey(f;) refers to the predicted value of for the j —th measurement of the valve layer output
data (i.e., at timdj, where the notation follows that in Section 3.2.1). When phedictionsy
are generated from this model and the input data, they owetghe values oti;, and there is
poor agreement with; when the valve velocity changes sign (deadband is reachs@hown in
Fig. 4.2.

Though it was not possible to identify an adequate secoddranodel using the input-output

data for the entire set of 19 set-point changes, it is passtbsuccessfully identify a second-order
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Figure 4.3: Comparison of valve layer set-pount), valve layer outputuy), and prediction of the
valve layer outputy() using the set-points decreasing between 0.6 and 0.15 arti¥fj overlays

Ua).
model if only the data corresponding to the set-point desgeaetween 0.6 and 0.15, for which no

deadband occurs, are used to identify the model. In this tdaséollowing model is obtained:

y(£) = 1.96209(f; 1) — 0.96249(f;_2) +0.0003&4m(f; 1) +0.00002im(f;_») (4.9)

When the decreasing set-points between 0.6 and 0.15 arasisgguts in Eq. 4.9, the predictions
y of the valve output closely match the actual values, as shiowig. 4.3.

To complete Step 3 of the empirical modeling procedure neigessary to complement Eg. 4.9
with a model for the case that deadband is observed. Basdtvalve layer input-output data in
Fig. 4.2 corresponding to the deadband whgrthanges from 0.15 to 0.2, it is postulated that the

response of the valve output to set-point change direcéoeersals can be modeled as a first-order
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process with time delay. However, the values of the time t@omns and of the delayr in such a
model are dependent on the magnitude of the set-point ckdregause the speed of the response
of the valve layer to a set-point changeug depends on the magnitude of the set-point change.
Closed-loop simulations indicate that for a set-point ¢feadirection reversal, set-point changes
less than approximately 0.02 are unable to cause the Platientio overcome the deadband within

a sampling period. To determine the dependence of the deldlygeomagnitude of the set-point
change, in accordance with Step 4 of the model identificgirmeedureyy, was decreased from
0.7042 to 0.15, and subsequently was increased by set-point changes of different magnitudes
The regression method'it for the determination of the parameters of a first-ordes{glead-time
model was applied to the data generated for each set-pangeh A plot of the resulting delays
against the set-point changes with which they were assatvaas fit to the functioa/x using the
MATLAB function Isqcurvefit, witha = 0.0037 providing the best fit. The values Dassociated
with each delay were averaged to give- 0.0123 for the first-order-plus-dead-time model. Thus,

the first-order-plus-dead-time model is written in diserétme form as:

y(tj-1), fj—t<a
y(di) = q vt + exp(—Ae/T)(Y(fj—1) — Y(t)) + K(1—exp(—Ae/T)) X (4.10)

(Um(tk) —Um(tk-1)), fj -t > a

where
q— A, [um(tc) — Um(tk—1)| < 0.02 (4.11)
a/(|um(tk) — Um(tk-1)]), |Um(tk) — Um(tk-1)| = 0.02
In Egs. 4.10-4.11k is the value ok that bringsi closest tdj (tx < fj), andK = 1.
Incorporating the above considerations, the followingite-time empirical valve layer model
was devised and validated to perform well for a number of ddyer input-output data points,

completing Step 5 of the model identification procedure:

1. If the set-point has not changed betwéeandty_; and also did not change betweign,

andty_o, sety(fj) = y(t«) for all fj € [tk tks1).
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2. If two set-point changes are changing in the same directo if the set-point has been
constant for some time but has now changed in the same dingtiat it was changing prior

to becoming constant, use the model of Eq. 4.9.

3. If two set-point changes are in opposite directions, t¢inéf set-point has been constant for
some time but has now changed in the opposite direction tarthahich it was changing

prior to becoming constant, use the model of Egs. 4.10-4.11.

The MPC-based stiction compensation strategy incorpayahie empirical model described

above is as follows:

. TNy
min /t —y(T)Rs(T)Ru(T) dT (4.122)
s.t. K(t) = f(X(t),y(t),0) (4.12Db)
y(t) = fy(y, Um) (4.12c)
K(t) = x(t) (4.12d)
y(fo) = Ua(to) (4.12¢)
0.0704< Un(t) < 0.7042 Yt € [ty, tirn) (4.12f)
0 < y(t) < 0.7042 Yt € [t tin) (4.12)
|Um(t) — Um(tk-1/tk—1)[ < 0.1 (4.12h)
lUm(tj) —Um(tj_1)| <0.1, j=k+1,...k+N—1 (4.12i)
/t: “My(nydr+ /( ;kmp Ui(T)dT = 0.17%/Ce (4.12)

where the notation follows that in Egs. 3.11 and 4.3. Thetiatar,(tk_1|tk_1) signifies the value
of uy that was determined to be optimal at the prior sampling tintkvaas applied to the process
for the sampling period betwedg ; andt,. Minimization of the objective function in Eg. 4.12a
maximizes the yield of ethylene oxide when the amount oftesdaded to the process over the
p —th operating period of length, = 1 ty meets the constraint in Eq. 4.12j (the notatigjt)

signifies a value ofi; that was applied to the process at a past tilmeEnforcing the constraint
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of Eq. 4.12) ensures that Eq. 4.7 is satisfied by the final timef operation. Two operating
periods were simulated under this EMPC; though a longerlsitiotmn may reduce the effects from
the transient on the results, the two operating periods lated are sufficient for demonstrating
that an empirical model of the valve dynamics can readily $&dun place of a first-principles
model in the MPC for valve behavior compensation. A shrighanediction horizorNy was used
in each operating period with an initial length of 5 at theibhagg of each operating period. At
each subsequent sampling time, the prediction horizon wasedsed by 1. The process model
of Eq. 4.12b (the ethylene oxide process model from Secti8r22 with a single input as noted
above) is integrated using the Explicit Euler numericadgnation method with an integration step
size ofhemp= 10~ ty for making state predictions. Eq. 4.12c¢ signifies that thesljotionsy of
Uy in the EMPC come from the empirical model developed in thadiea, which evolves in time
everyAe = hemp Though the empirical model developed in this section issardie-time model
as opposed to a continuous-time model, both the discrefwia Explicit Euler) process dynamic
model and the empirical valve dynamics model evolve every* 19 when state predictions are
made within the EMPC, and therefore, the discrete-timereabfithe empirical model poses no
issues for combining it with the continuous-time processleidor making state predictions. In
the simulations, the value gfwas not updated with a state measurementycdt each sampling
time but instead evolved in an open-loop fashion (the nmati Eqg. 4.12e signifies that the initial
data required for simulating the valve layer based on tharapmodel (i.e. y(fo) andy(t_1)) are
known and used to integrate the empirical model for all tinvébout feedback ofi;). The state
constraint in Eq. 4.12g was enforced every integration. stéye input rate of change constraints
in Egs. 4.12h-4.12i are added to reduce the likelihood tmaB&EMPC will request (unreachable)
flow rates that would cause the pressure from the pneumadtiatéan to become saturated at zero.
The optimization problems were solved using the open-sounterior-point optimization solver
Ipopti“8 with a tolerance of 10°.

Fig. 4.4 shows the trajectories of, un, andy initiated from [x; X2 X3 X4 Xy W Z; {p] =

[0.997 1264 0209 1004 Q051 m 2.000x 10°® m/ty 1.426x 10~° m (] resulting from the use
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Figure 4.4: Comparison of valve layer set-pount), valve layer outputuy), and prediction of the
valve layer outputy)) under the EMPC using an empirical valve layer mogelfnost overlays

Ua).

of the empirical EMPC. The empirical model was successfattile to capture the behavior of,
and the EMPC calculated set-points that the valve layerdctvatk. Fig. 4.5 shows the pressure
applied to the valve throughout this closed-loop simulgtishich never saturated at zero with the
help of the input rate of change constraints. Fig. 4.6 shtwsctosed-loop process states under
the empirical EMPC.

In addition to calculating reachable set-points and prémgnpressure saturation in the
two operating periods simulated, the MPC-based valve hehaempensation strategy with an
empirical model was also able to ensure that the integragmahiconstraint was not significantly
violated. In the first operating period, the empirical EMP§2d only 0.02% less material than

required by the material constraint, and in the second ¢ipgrperiod only 0.05% less.
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A comparison of a simulation of the form of Eq. 4.12 but witle first-principles valve layer
model of Egs. 3.27-3.31 and 3.33-3.34 in place of the enmgdimecodel of Eqs. 4.9-4.11 was
formulated, in which the first-principles model for both tedve and process was simulated with
an integration step of 1@ ty within the MPC, and state feedback of the process-valvestahs
obtained at each sampling time. The integration step sigemaller than for the simulation with
the empirical EMPC because the first-principles model of Bd&7-3.31 and 3.33-3.34 cannot be
integrated with a step size of 10ty using Explicit Euler due to numerical stability issues. The
constraint of Eq. 4.12g was enforced wpevery 10 integration steps so that it was enforced every
104 tq as for the empirical EMPC. The finite difference approximatiised for the gradients of
the objective function and constraints used a perturbatmanorder of magnitude smaller than in
the empirical EMPC. The resulting simulation of two opargtperiods took approximately three
times longer to solve than the EMPC of Eq. 4.12 with the erogivalve layer model where the
integration step within the MPC was 18t4. Though the difference in computation time depends
on a large number of factors such as the code used and theatbegstep size, it is significant

that the empirical model is less stiff than the first-prinegomodel.

4.4 Perspectives on Valve Nonlinearity Compensation

A conclusion of the results in this chapter and Chapter 3 & #n MPC design that utilizes
models of both the process and valve behavior for making gtadictions provides a systematic
method for driving an output to its set-point that can aceédanmultivariable interactions in a
process-valve dynamic system and constraints such aseadpat and actuation magnitude (e.g.,
actuator pressure) saturation that can lead to undesicaised-loop behavior. This method is
not restricted to linear plant dynamics, and it does not irequning of compensator-specific
parameters that are not clearly tied to the process outgpbreses as do some of the stiction
compensation methods discussed in Chapter 3 such as flovokdné integral term modification

method, and knocker-type methods. The significant bendfaa PC including valve dynamics
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for improving the issues commonly observed due to valve Wiehandicate that it may be
beneficial for industry to consider wider use of MPC due tolgsia not only of whether the
chemical process itself would benefit from being controllgdan MPC (which is the typical
analysis performed), but also of whether it might providédrevalve behavior compensation in
the long run (undesirable behavior like valve stiction cawvedop over time) that may reduce
efficiency and profit in the long-term and therefore may mak&Qva more attractive option than
classical regulatory control designs. Thus, more anabfdise impact of actuator dynamics at the
initial design phase may allow for better controller desi¢gm be chosen that can handle changes
in the actuator dynamics that often plague processes agrapghase and are much more difficult
to handle when non-model-based control strategies anmptiéel to be used to handle nonlinear
valve behavior.

Though the MPC-based valve nonlinearity compensation agettas shown in the process
examples in this chapter to be beneficial at compensatingpéovalve behavior, it was also shown
that it has limitations in handling valve nonlinearitieqrfexample, in Section 4.3.1, it was noted
that a valve without flow control under MPC accounting forveastiction may not be able to keep
a process output at its set-point for all times when the MR@pdiag period is long compared to
the timescale of the valve dynamics such that the MPC is nlet tabregularly adjust the force
applied by the valve actuation throughout a sampling peridd alternative to this is to use a
flow controller for the valve or a small sampling period foe thlPC to allow the force from the
valve actuation to be adjusted frequently as the valve iposithanges according to its dynamics
to try to drive it to the position corresponding to the valugput set-point. However, this may
cause significant variations in the valve actuation durhregtime that the valve position is being
adjusted, which may increase actuator wiafhis indicates that an MPC-based valve behavior
compensation method must seek to balance actuator weaeapdiat offset for certain control
architectures and valve nonlinearities through approgri@anstraints and design of parameters
such as the sampling period. Another conclusion of this ieregnd Chapter 3 is that because

the effects observed in control loops due to valve behaverickbsed-loop effects, changing the
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control design of a system may result in different procegpuiuresponses in a control loop in
which valve dynamics cannot be neglected. This is impotmobnsider as controllers at a plant
are re-tuned or as upgrades are made to the control design.

Finally, the closed-loop perspective on valve behavioettgyed in this chapter and Chapter 3
can impact the stiction detection and quantification lite@ It gives greater insight into the
benefits and limitations of the detection/quantificatiorthods for stiction in the literature, which
are reviewed iff* and include shape-based methods and model identificatiseekmethods. Many
of the shape-based methods (€82 132. 13§ assume that a specific pattern exists in the data from
the measured outputs of the system (process outputs or gatpeits), often in relation to the
controller outputs. It has been highlighted that the preaasd controller dynamics will affect
the patterns and thus may reduce the effectiveness of $fesel methods (e.6f, notes that
the stiction detection method& may give different results depending on the controllerngni
and? and® also note that the pattern-based methods are not alwaydtiedfdecause patterns
depend on the controller, process, and valve dynamics)pt€nd gives a general mathematical
framework for analyzing the difficulties noted with pattdrased methods through a process-valve
dynamic model. It also gives greater insight into the caodg under which the assumption that
oscillations are occurring in a process output due to stictmade in multiple pattern-based
stiction detection/quantification works, may not hold (exyhen the controller, process, and
valve dynamics produce the uncompensated case in Fig.Nutliple model identification-based
stiction detection/quantification methods (see, for exefp13% assume that the process can be
described by a linear model, which may be a limiting assuompéispecially as the requirement
of steady-state operation is being challenged by the retmrdlopments in EMPC. The primary
goal of stiction detection methods is to identify probleimaalve behavior so that maintenance
can be performed on a valve, and quantification methods #&edad to be used to prioritize
valve maintenance based on which valves are most sticky. efiigrical modeling strategy in
this chapter could be considered as a valve behavior detégtiantification strategy that is not

limited to stiction. Theumi — Uai relationship could be developed for every valvelifi — Ua;,
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i =1,...,m, data is available. The difference betwagp andu,; could then be tracked over
time, and when it becomes significant, the valve could be 8ddgr maintenance. The valves
for which u,; deviates most significantly froray,j could be given priority in the maintenance
schedule. Though measurements of flow through a val¢ are not always available in industrial
applications when the control loop is not a flow control Id6pthis analysis indicates that new
instrumentation to provide measurements of process \tagaich as flow (when it is not already
measured) may be beneficial long-term for detecting and eosgting for valve behavior by
allowing empirical models to be developed for a processesalystem when it may be difficult
to obtain a process-valve model without the flow measureiffarnark 4.1).

A final observation is that many contributions to the stietiiterature have focused on stiction
as the nonlinearity in the process-valve system (i.e., nveorks examine linear processes and
linear controllers); the results of this chapter and ChaBténdicate that nonlinear processes,
especially with multiple inputs all affected by nonlineaalwe behavior, may be particularly
interesting to consider in future works on stiction det&gtiquantification, and compensation,
due to the multivariable interactions of the process-vabates, which may, as noted above, best

be handled with multiple-input/multiple-output nonlimentrol designs.

4.5 Conclusions

This chapter demonstrated that an MPC design incorporatidgnamic model (first-principles
or empirical) of the full process-valve system is able totaymtically address the root cause
of negative effects (nonlinear, multivariable interan8obetween the states of a process-valve
dynamic model) in control loops with valve behavior that mainbe neglected (both for sticky
valves and for valves exhibiting other behavior). This gsialindicates that consideration of valve
behavior at the control design phase may warrant greatesfud®C in industry. A level control
example and a continuous stirred tank reactor were usednmmgrate the MPC-based valve

nonlinearity compensation strategy.
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Chapter 5

Valve Nonlinearity Compensation via Model
Predictive Control for Nonlinear Processes:
Theoretical Considerations and Actuation
Magnitude Constraints for Compensating

for Valve Stiction

5.1 Introduction

Chapter 4 developed an MPC framework for compensating fdvevaonlinearities and
demonstrated its applicability through two chemical psscexamples focused on stiction. The
discussion of the examples in Sections 4.3.1-4.3.2 inglic#tat stiction may change thg-P
relationship for a sticky valve and could cause the valuesaafequested to not be physically
realizable with the given actuation energy (e.g., no nagatiee values of the pressure may be
capable of drivingu, to its set-point value from the MPC in certain circumstafcéshis issue

deserves further discussion, which will be a goal of thisptba Furthermore, this chapter
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proposes systematic methods for accounting for such is®gkling from the developments in
Chapter 2, this chapter examines the conditions under vibagibility and closed-loop stability of
a nonlinear process under the MPC for valve nonlinearitymemsation are guaranteed when the
MPC is augmented with constraints designed for the spea@se of stiction compensation (e.g.,
actuator magnitude and input rate of change constraintsayiirocess-valve dynamic model for a
sticky valve). This chapter concludes with a chemical pss@xample that motivates the need for
actuation magnitude constraints, particularly in EMPC imah extreme values of the valve output
flow rate may be requested by the MPC since the process is ce¢serily operated at steady-state.
The example demonstrates the benefits of including the Emtuaagnitude constraints in EMPC
when a sticky valve is in the control loop. This chapter thusvigles an indication of how the
MPC-based valve nonlinearity compensation method of tlee phapter can be modified through
changes in the constraints as desired to handle issuesgarighe control loop specific to a certain
valve nonlinearity, indicating the flexibility of the ovérapproach in Chapter 4. Because this
chapter focuses on stiction compensation, the remaindéisintroduction provides background
on the stiction valve nonlinearity.

Valve stiction is a phenomenon caused by friction betwedrevaomponents and refers to the
tendency of a valve not to move upon the change of the corigoaksent to the valve until the
control signal exceeds a certain threshold, at which tineeetimay be a sudden movement of the
valve components causing the valve output (i.e., processpulated input) to change quickly.
The percentage of the available range of valve outputsrsadewhen the valve output changes
quickly quantifies the phenomenon of slip-jump. When thee& moving (in the moving phase),
the valve output typically is linearly related to the valwput until the changes in the valve input
change sign (i.e., the valve input begins to decrease wheadtpreviously increasing, or vice
versa), at which point the valve begins to stick again. Bseaiiction has been characterized in
various ways by different authors, the author®@bmpile some of the stiction definitions, ending
with the definition determined by the authors based on olsiens of plant data, which classifies

stiction as a friction effect that manifests itself througlsudden change in the valve output in
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response to a changing input signal. Specifically, the asthid® define four major regimes in the
dynamic response of the control valve output to changesanrput to the valve determined by
the controller: deadband, stickband, slip-jump, and theingophase. In the absence of slip-jump,
only deadband (the percentage of the available range ohfhé signals to the valve throughout
which the valve output does not change in the absence ofwstip) and the moving phase exist.
When a valve experiences slip-jump, the valve remains sfudughout the deadband and also
throughout a percentage of the available range of inputsrimkthe deadband (called the stickband)
until it slips from the value at which it was stuck to a valughe moving phase.

Stiction has posed a significant issue in chemical procesdraiothroughout the last
several decades. Reports from the 1990s indicated thaiostinegatively affected control
loop performance at the tin&;°! and a report from Honeywell indicated that when studying
26,000 proportional-integral-derivative (PID) contes, the performance of about one third was
classified in the lowest of the classification categorie@fp and “fair”), with valve issues,
including stiction, causing about one third of these lowssifications® More recently?® cited
stiction as a contributor to plantwide oscillations andluded plant data from the Mitsubishi
Chemical Corporation for a plant where stiction contrilouti@ plantwide oscillations. In addition,
in,3% the proposed stiction detection and quantification methgubiformed on industrial data for
plants with sticky valves, demonstrating that the probldmadve stiction remains a challenging
one. As a result, a significant level of research has beemneed throughout the years in an
attempt to more accurately model, detect, quantify, andaarstiction (see the review papéfor
a general overview of stiction modeling, detection, quariion, and compensation).

The physical cause of stiction in control valves is best &x@d using a specific valve type
for clarity of presentation, but the same basic principlés vold for other valve types as well.
For example, a pneumatic spring-diaphragm sliding-stesbelalve has a valve stem that, in
response to a pressure applied to a diaphragm, moves td #tgugalve output. In a valve with
stiction, the valve output may not approach the value regdesdue to friction forces between the

valve stem and the packing that can prevent the valve stem imoving to the required position
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until the pressure applied to the valve diaphragm is largeigh to overcome the breakaway force
for the packing-stem contact. The cause of friction betwbervalve stem and the packing is that
the materials from which the stem and packing are made aghratia microscopic level, with
protrusions called asperities. The interactions of theasgs on the two surfaces result in friction
forces!® The friction phenomenon is often described using statizil@uab, and viscous friction,
as well as the Stribeck effect. However, there are a numbethafr phenomena that result from
friction, including rising static friction, presliding siplacement (micro-slip), frictional memory in
sliding, stick-slip!® hysteresis with nonlocal memory during preslidifi§,velocity weakening,
the lift-up effect! and asymmetric stictiof!

Friction models have been developed throughout the yeatsntlbhdel these friction effects
to varying degrees. For example, the ClasgieAt® model only accounts for the Coulomb and
viscous forces and the Stribeck effect in the sliding regirapresenting any presliding dynamics
with a static friction force. As models were developed tlylout time, such as the Dat11°
LuGre2® Leuven?> 140 Elasto-Plastié® and generalized Maxwell-Skp models, they began to
incorporate some of the more subtle friction effects in bibign presliding and sliding regimes.
A generic model that attempted to represent the known dmnctlynamics by modeling various
interactions between asperities was also develdpedumber of researchers have also developed
algorithm-based empirical friction models, known as d#tigen models, that attempt to represent
friction dynamics using decision tree structures. Thisglaf models includes the Stenmigf,
Choudhury?? Kano? and Heé® models.

A number of works utilizing friction models in control stegfies to counter friction have
examined adapting friction model paramet€¥$1:85 |n addition, the parameters of the friction
model change with time for a valve as stiction worsens owveetiwhich may occur for reasons
such as tightening of the valve packing or degradation otetiep of materials that comprise or
lubricate the valvé!-133For example, if? and?! it is seen that as stiction worsens in a pneumatic
sliding-stem globe valve, the range of stem positions thatlwe reached with a given range of

pressures applied to the valve is reduced. This is signifitacause the pressure available to be
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applied to a valve is limited® with the result that as stiction worsens, the given rangeessures
cannot move the valve stem as significantly as when stictiag minimal. This shows that a
negative effect of stiction is that it changes the valve dyiea and in effect constrains the range
of valve outputs available for a given range of actuation mitagles.

Other negative effects of stiction include set-point tiagkissues and oscillations in control
loops that result from deadband/stickband and slip-jumpor €ample, when a valve has
deadband/stickband, the valve output does not changepomes to changes in the control signal
to the valve until the control signal overcomes the deadfsticband, which prevents the valve
output from tracking its set-point. Oscillations can octua control loop with integral action as
demonstrated in Chapter 3.

A good deal of work has been performed to reduce the negaffeete of stiction on
engineering processes. As mentioned above with respedafaiag friction model parameters, a
number of methods have been developed to reduce the traaotgey that can result from friction
(many appear in the literature for high-precision mecharapplications such as machining) using
control laws based on a friction model (see, for exanipl&). Much of the stiction compensation
literature for sticky valves in chemical plant control I@opas focused on reducing oscillations.
Methods for oscillation reduction include those reviewedbection 3.4 such as the knocker and
variations upon i% 77.133.134he constant reinforcement method®®the two moves method and
its extensiong? 13% 150%he optimization method df° and retuning methods: %9 111

In addition to the stiction compensation methods mentiaiEae, predictive control methods
have also been looked at for compensating for frictior?’la predictive controller for applications
requiring high precision of mechanical movement was augetkeby time delay control and zero
phase error tracking control to improve its tracking perfance in the presence of nonlinear
friction effects. In'®? an inverse backlash model and valve saturation are incatgwin an MPC
for linear systems to overcome the deadband associatetdadittash, and this controller is applied
to a system with stiction if3 In,* the bounds on the optimization variables computed by an MPC

are adjusted based on the knowledge that the MPC is in settiegwnit that applies the inverse
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model for deadzone, stiction, or backlash to the output fleenMPC and sends this signal to a
valve with nonlinear dynamics that can saturate. The phapter developed an MPC-based valve
nonlinearity compensation framework, which will now beestigated to develop constraints that
should be developed to handle issues that may arise duetiostind to guarantee feasibility and
closed-loop stability of a process operated under the obdesign. The results of this chapter

originally appeared ifi 2

5.2 Preliminaries

5.2.1 Notation

In this chapteny = kA, k= 0,1, 2, ... refers to synchronous time instants separated by a sampling
periodA. The Euclidean norm of a vector is denoted|by. A functiona : [0,a) — [0, ) with

a(0) =0 belongs to clasg” if it is continuous and strictly increasing. A level set otcakar-valued
positive definite functio (x) is defined to be the s€l, := {x€ R" | V(x) < p}. Set subtraction

is denoted using '/ (i.,ex€ A/B:= {xe R"|x€ A, x ¢ B}).

5.2.2 Class of Systems

In this chapter, we consider a process-valve model for us#A€ that incorporates the dynamics
of the process as well as the dynamics of the valves. This hioclades dynamic equations for
the process, the valve position, the valve output, and atlicentroller for the valve. We introduce

these equations separately, and then present the intégnatdel that combines them.

5.2.2.1 Class of Nonlinear Processes

As in Chapters 3-4, we consider nonlinear processes of theifoEq. 3.1. We assume that each
input uaj, i = 1,...,m, to the process is bounded within a 8gt(U; := {Ua; : Uaimin < Uaj <

Uaimax}). We also assume that the disturbance is bounded \V := {w : |w| < 8,6 > 0}).
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We note that the model of Eq. 3.1 can be constructed eitheudjhr first-principles or system

identification techniques.

5.2.2.2 Nonlinear Valve Dynamics

The dynamics of the position,j and velocityw,j of the moving parts of the —th valve
relative to the valve surfaces causing friction are given Hys. 3.16-3.17. The friction
force experienced by the valve moving parts for theth valve (¢ic;) and the dynamics
of the internal friction model stateg;; € R% are given by Egs. 3.18-3.19, respectively.
Assuming that each valve controls one process input, we aefin- [ag,...,am]", C =
[c1,....Cm, Fo=[Fd1 ... Fd )T, andFa = [F{; ... F 7. Here,Fo; € RP andFa; € RS,
soa € RF andc € RS as well. The notationsfa(t), Fo(t),c(t), Fa(t), x(t), w(t),zs(t)) =
W1(as(t), Foa(t),co(t), Faa(t),xa(t), wa(t),zs a(t)) ...

Yum(@m(t), Fom(t),cm(t), Fam(t), Xum(t), Wm(t), z¢ m(t))]T signifies the vector containing the

right-hand side of Eq. 3.17 for all valves- 1,...,m. In addition, we define:

/- ia (5.2)

To clarify the valve model dynamics presented in this sectiig. 5.1 depicts a sliding-stem
globe valve with a friction force and a force from the actwatoting upon it. This valve figure
does not provide a detailed schematic of the inside of theey&lut helps to clarify how some of
the forces described above may act on an example valve.utdhiso be noted that the discussion

above is not limited to this sliding-stem globe valve type.

Remark 5.1. We note that the form of Egs. 3.16-3.17, which define theiposind velocity of the

valve using a force balance, implies that the moving parthefvalve under consideration move
linearly, as would be the case with, for example, a sliditegrsglobe valve. A variety of other
valve types exist, however, and the moving parts of manyeeséttlo not move linearly, but rather

rotate (this is the case with, for example, a ball or butteviiyve)?L- 23 101 Appropriate equations
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Figure 5.1: Schematic of forces on an example valyeKsic, andFa denote the valve velocity,
friction force, and force from the actuation, respectiyely
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for the dynamics and friction for a valve that does not hamedir movement could be substituted

for Egs. 3.16-3.17.

Remark 5.2. The data-driven friction models use decision-tree strigguraversed based on
the evaluation of Boolean expressions, and thus are not diatedy in the first-order ordinary

differential equation form of Egs. 3.16-3.19. However,hsuwodels can be used to simulate
a system, and then model identification utilizing the simoadata could be investigated for

developing continuous-time state-space models desgrthavalve dynamics.

5.2.2.3 Relating Valve Position and Valve Output

We relateu,j to x,i through the nonlinear relationship in Eq. 3.21, whéyg,,; is a one-to-one
continuous nonlinear function. As an example of possiblati@ships between,; and xy;,
Fig. 5.2 presents a plot of two types of relationships (lin@ad equal percentage) betwea))
andxy; that are described in the literature for sliding-stem gleales, and depicts the case that

the zero of the valve position corresponds to zero fibwt

Remark 5.3. As noted ir?8 Uaj depends not only on,x but also on the fluid pressures upstream
and downstream of the valve. In Eq. 3.21, we assume that gteeam and downstream pressures
are fixed for a given value of,xsuch that we are able to writesu as a function of i only by
writing the pressure differential as a function gfj>xas well. However, for the case that this is
not possible and the pressures are varying, it is possibledtead write Eq. 3.21 as a function of
Xy as well as of the upstream and downstream pressures andltapgily the method proposed
in this chapter to the resulting system if the dynamics ofptlessure variations are added to the

process-valve model.

5.2.2.4 Linear Controller Dynamics

It is customary in industry to implement a regulatory layenene classical linear controllers

are used to influence the valve dynamics and force the valygubto be closer to the valve
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Figure 5.2: Examples of relationships betwegn andxy; for a valve. Xyj max is the maximum
stem position of the valve. In this figurg, max corresponds to the stem position when the valve
is fully open.

142



output set-point computed by the model predictive corgrdfi Thus, for consistency with
industrial practice, we assume that a linear controller ¢fample, a proportional (P) controller,
a proportional-integral (PI), or a proportional-integd@rivative (PID) controller) is used, as
opposed to a nonlinear controller, to regulate the flow natmfthe valve to its set-point. Because
Xyi andu,; are related through a one-to-one nonlinear algebraic @oyéhis is equivalent to
assuming that the linear controller regulates the stentiposf the valve to its set-point (though
the dynamics of the controller in terms xf; are not necessarily linear if the dynamics in terms
of uaj were linear sinceffqy; in EQ. 3.21 may be a nonlinear function). The dynamics of this

controller are described (in terms of the valve layer staistead of the valve output flow rate) by:

G = fLei (i, %vis Vi, Umi) (5.2)

where(; € R’ is the vector of controller states for the linear controtiéthei — th valve output
(this is the zero vector if a static controller is usag); is the set-point for the valve output of the
i —th valve, which is set by the MPC, arfgc j is a nonlinear vector function associated with the
dynamics of the linear controller for thie- th valve. In addition, we defind _c(Z, Xy, W,Um) =

[fLC71(Zlyxv,l,Vv,1,Um,1) fLQm(Zm,Xv,m,Vv,m,Um,m)]T and:

3

r=>yr; (5.3)

5.2.2.5 Combined Process-Valve Model

Given the differential and algebraic equations describiegdynamics of the process-valve system

in Egs. 3.1, 3.16-3.19, 3.21, and 5.1-5.3 to be controllesBEZ, we now combine these equations
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into one process-valve dynamic model with state vegter(x' xJ v zf {T]T:

- (5.4)
f(X(t), Friow(Xv(t)), w(t))

vy (1)
Ov(a(t>7 FO(t>7 C(t>7 FA(t)7XV(t>7VV(t>7 Zg (t>)
Zs (xv(t), w(t),zs (1))

fLC(Z 9 XV7 VV7 Um)

whereA andB are matrices containing the entries of evAnandB;, respectively, in appropriate
orders. The statement thet(q(t),a(t), Fo(t),c(t), Fa(t),um(t),w(t)) = fq(q(t), um(t),w(t))
follows because the vectoes Fo, ¢, andFa will be functions of the stateq and/or the inputs
Un When they are defined for a system.

Definingqy = n+2m+z+r, we assume thafly : R% x R x RY — R% is a locally Lipschitz
function of its arguments with the origin of the unforced nioah system (the system of Eq. 5.4
with um(t) = 0 andw(t) = 0) at the origin (i.e.fq(0,0,0) = 0). We further assume that the inputs
Umj, i = 1,...,mare restricted as followsini € Umj := {Umi @ Umimin < Umi < Umjmax}. ItisS
noted that a valve set-poinf,j from the MPC need not be restricted to the samdJs¢hat the
actual valve output is restricted within (for example, ityniee restricted to a smaller dé; if it is
known that the linear controller controlling the valve auttpvershoots the set-point). In addition
to the restriction that eaal; € Umj, we consider that there may be additional input constraints
that depend on the current states, inputs, or both (as oggosmsnstraints that may depend on
past and future values of the inputs or states). Thus, wedanthat eachu,,; € Ut i(q), where

Ur.i(q) represents the set of allowable values of the inpuytgiven all constraints involving this
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input, and it is defined separately at each state-spacegsinte the input constraints may depend
on the current state.

We further assume that a Lyapunov-based contrblier) = [hy1(q) ... hym(q)]T with hy(0) =
0 exists for the nominal system of Eq. 5.4 that can render tiggndocally asymptotically stable
while meeting the input constraints in the sense3hdta sufficiently smooth, positive definite
Lyapunov functiorV (q) and class’#” functionsay (-), a2(+), as(-), anday(-) exist that satisfy the

following inequalities:

ai(|q)) <V(a) < az(|q)) (5.5a)
20 y(ah(@).0) < ~as(a) (5.50)
'd\;—éq)' < ay(|al) (5.5¢)

hyi(g) € Uri(@), i=1,....m (5.5d)

for all g € D C R%, whereD is an open neighborhood of the origin.

There may be constraints on the states of the system of E¢(fo% @xample, the constraint that
eachuyj € Uj), which will restrict the allowable states within the €&t The stability region of the
process-valve system of Eq. 5.4 under the contrblj¢n) is defined as the level s&t, C Q, C D
of the Lyapunov function. In addition to the requirementshgnin Eq. 5.5d, we require that each

hyi, i =1,...,mbe locally Lipschitz as follows:

‘h\ﬂi<q1) _hV,i(q2)| < |—V|q1_q2‘7 | = 17“'7m (56)

for all ;,02 € Qp whereL, > 0 can satisfy the Lipschitz condition for evemy; (i.e.,Ly is greater
than or equal to the minimum Lipschitz constant that carsgathe Lipschitz condition for the
control lawhy; that has the largest minimum Lipschitz constant fromial 1,...,m). We note
that whenh,(q) is applied to the system of Eqg. 5.4 in sample-and-hold, itresder the origin

practically stable for sufficiently small sampling peridésoposition 2.3).
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From Lipschitz continuity offg, from the bounds onn; andw, and from the fact that (q) is

sufficiently smooth, there exist positive constatsLq, Lw, Ly, andL}, such that:

| (0 Um 1, o, Umm, W) < M (5.7)
|fq(CI17 Umn1, .- Um,m,W) - fq(Q27 Uma1, .-, Umm, 0)| < Ijq‘cll — | + EW‘W‘ (5.8)

oV oV - -
) o, ) — 23 bt 0] < e il + ol (69)

for all q,q1,02 € Qp, Umi € Uti(0),i=1,...,m and|w| < 8. A consequence of Eqg. 5.7 and the

continuity ofq is that the following inequality holds:
la(t) — d(te-1)| < MA (5.10)

for all q(t),q(tk—1) € Qp whent € [tx_1, ], and aA sufficiently small.

Remark 5.4. In Eqg. 5.4, disturbances are only considered in the proceses. It is noted that
disturbances could also be added to the statgswx and z if desired, and all results in this

chapter would continue to hold if the resulting noise veetas bounded as w is assumed to be.

5.3 MPC for Stiction Compensation

A stiction compensation strategy should address the negatiects of stiction on control loop
performance, including that it can prevent a valve from aifely tracking the set-points it
receives. Another negative effect of stiction can be changehe valve dynamics as stiction
worsens that affect the range of values that the valve outputake with the available actuation
energy. The MPC proposed in this section can help to allevlase negative impacts of valve
stiction. We first discuss the proposed control loop archite, and then proceed to develop the
model predictive controller formulation incorporatingetprocess and valve dynamics, actuation

magnitude constraints, and input rate of change consttaiie also include Lyapunov-based
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stability constraints that will be used to prove feasipildf the proposed MPC optimization
problem and stability of the closed-loop system under theCMW®/e discuss how the proposed
formulation addresses the various issues associated witlios and provide the proofs of

feasibility and closed-loop stability for a sufficiently athsampling period.

5.3.1 MPC Architecture and Formulation for Stiction Compensation

The proposed control architecture, shown in Figure 5.3yriparates an MPC controlling a process
by providing set-points for the valve outputs (process malaited inputs) to a linear controller
that drives the valve output quickly to its set-point. It isted that the control of the valve
output set-point, rather than the stem position itself,hiesen for consistency with the control

architectures incorporating MPC and a lower layer withdingontrollers in industry. The proposed
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MPC computes control actions by solving the following opgation problem:

i [ e, U (1), et ) i (5.11a)
s.t. G(t) = fq(G(t),uma(t), ..., Umm(t),0) (5.11b)

Ai(tk) = q(ti) (5.11c)

G(t) € Qu, Vt € [t tkin) (5.11d)

Umi(t) € Umi, Vi=1,...m, t € [t,tk1n) (5.11e)

act,1(G(1), Uma(t),...,Umm(t)) = 0, Vt € [ti, tkin) (5.11)

act2(G(t), Um1(t), ..., Umm(t)) < O, ¥t € [ty, tkiN) (5.11g)

|Umi (k) — hyi(a(t)[ < &, 1=1,...m (5.11h)

lumi(t) —hvi(6(t))| < &i=1,...m j=k+1,...k+N—-1  (5.11i)

G (A1) Um0, - Umn(©)) = 0, 71 € [t o) 5.11)
Gpc 2(A(1) Uma (1), Umm(t)) < 0,V € f ) (5.11K)
V(G(t)) < pe, V't € [tk, tkun) if tx <t andV(q(tk)) < pe (5.111)
P (0100 U (0 - ). 0) <
)ttt (080 - (8.0

if te >t orV(q(ty)) > pe (5.11m)

where the notation follows that in Eq. 4.1. The general stagptLypc (EQ. 5.11a) is a function
of the predicted statg from the full process-valve model (Eqg. 5.11b, with initi@nalition in
Eq. 5.11c) and the vector of valve set-poiats which is the decision variable of the optimization
problem (this is in contrast to, for example, Eqg. 3.11, whbaeeobjective function depends only
on X andum,; an example of an objective function that fits within the feamork of Eq. 5.11a is
Eq. 4.1a wherdj is considered to include predictions of the process statéiyucan be written

as a function of the valve layer statg through Eq. 3.21 and thus the objective function includes
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both process and valve model states). The solution to thenmattion problem of Eq. 5.11 at time
ty is denoted aﬁl;km(ﬂtk), i=21....mt=tqtki1,...,tkin_1-

In Eq. 5.11, the predicted statgis restricted to the se®, (Eq. 5.11d; Qy bounds the
process-valve state vector as noted in Section 4.2), arfdreaanipulated inputiy; is restricted
to the setUnj, i = 1,...,m (Eq. 5.11e) (note that the predicted valuesugf are restricted by
Eq.5.11d and Eq. 3.21). In addition to such constraints ettuation of each valve, the use of the
detailed stiction model within the MPC allows additionatréctions to be placed on the actuation
magnitude, including the equality and inequality consiiain Egs. 5.11f-5.11¢, to prevent the
MPC from calculating undesirable or non-physical set-fsig,; (these constraints were written
with the states and inputs as arguments, though they arédos®fa(t), Fo(t), c(t), andFa(t),
using the simplification noted in Section 5.2.2.5 th@t), Fo(t), c(t), andFa(t) will be functions
of the states and inputs when they are explicitly definedHerdiven valve). Input rate of change
constraints can also be added, as in Eqs. 5.11h-5.11i, teceedctuator wear as described in
Chapter 2. The input rate of change constraints are writtdnr@spect to the controlldy,; but for
a givenggesired these constraints constrain the rates of chaugg(ty) — U (tk_1|tk—1)| < Edesired
and [Um;j(tj) — Um;(tj—1)| < €desires | =K+ 1,....k+N—1, when a sufficiently small sampling
period A and an appropriate value efare chosen (from Theorem 2.1, which is placed within
the notation of the process-valve system through Propos8i3 below). Egs. 5.11j and 5.11k
represent general equality and inequality constrainspeetively, for the process-valve states and
valve output flow rate set-points described by functigigsc1 anddupc 2 that can be added to
the optimization problem to achieve desired performan@sgoAs stated in Section 5.2.2.5, we
require that the constraints in Egs. 5.11f-5.11g and $511]k be constraints defined point-wise in
space (they only depend on the current states and inputscdioth past values of these variables).

In addition to the constraints designed to improve procesfopnance in the presence of
stiction, the Lyapunov-based constraints in Eqs. 5.1114% have been added to prove feasibility
and closed-loop stability of the proposed MPC formulatidhese constraints define two modes

of operation of the MPC. When the constraint of Eq. 5.11I tsvagcMode 1 of the MPC is active
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Figure 5.3: Proposed architecture for MPC incorporatirigesdynamics and actuation magnitude
constraints for stiction compensation. For simplicity oégentation, the only force on the valve
presented is one which is calculated by the linear controlle

and the process performance is optimized to the maximummegtessible within a subset of the
stability region,Qp, C Qp, which is defined such that if the MPC is initialized at titgefrom
any state withirQ,,, the state at timé 1 is still within Q,. This Mode 1 constraint is specific
to Lyapunov-based economic model predictive contfahe goal of which is to maximize the
process profit to the maximum extent possible using dynamécation in Mode 1. In Mode 2,
the contractive constraint in Eq. 5.11m drives the state n@ighborhood of the origin. Mode
1 and Mode 2 are activated by either the location of the medssiate in state-space, or by the
current time (' denotes the time at which process operation switches fromeMoto Mode 2).
For tracking MPC, the Mode 2 constraint would be active fotiales (i.e.,t’ = 0 and the MPC
formulation in Eq. 5.11 is like that proposed as Lyapunosdaamodel predictive control (LMPC)

in3o).

Remark 5.5. Due to the generality of the proposed MPC formulation, itesgible for a different
stabilizing formulation, such as a terminal cost with a térai region constraint319°3 terminal
state constraint/- %" or an infinite horizorf* to be used in place of Egs. 5.111-5.11m (see%i$8°
and the references therein for more information on varigyemes of constraints that can be used
in MPC and EMPC). However, due to the ease of establishingtiie-space points from which
feasibility and closed-loop stability are guaranteed gskgs. 5.111-5.11m and the fact that these
properties can be proven for the process under the MPC wittse¢hconstraints without any
assumptions on the cost function structure, we choose &blest feasibility and stability of the

proposed method in this chapter by using the stability qaigts in Egs. 5.111-5.11m.
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Remark 5.6. In a practical setting, the parameters of the stiction madaly change with time as
stiction worsens. Thus, it may be desirable to re-identify parameters of the stiction model at
various points in time. In addition, it may be necessary tturee'® %8 146the linear controller of
the valve as the valve dynamics change due to stiction. fidrerean assumption of the proposed

design is that one can successfully detect and identify@tiand re-tune the controller as desired.

Remark 5.7. As commonly noted in the literature, the negative impactabfesstiction cannot
be fully remedied unless valve maintenance is perforfAddowever, there are circumstances in
which maintenance is not performed on sticky valves untlbamed process shutdown, which is
often infrequent (every 6 months to 3 yed®)If MPC is used to control a process-valve system
for stiction compensation purposes, it may also aid in alf@walve maintenance to be performed
before a planned shutdown through an actuator preventivet@aance strategy using MPC like

that developed i§®

5.3.2 Analysis of MPC Formulation

The power of the proposed stiction compensation strateggyiti its flexibility. Because of the
incorporation of the stiction dynamics in the MPC, a con&gineer can adjust the cost function
and the constraints to minimize the negative impacts ofistic To clarify this point, we present
a number of remarks that exemplify how the proposed MPC cbeldhodified to counter various
control loop issues due to stiction. Though the controliéeckure considered in this chapter is that
from Fig. 5.3, we will address the case that the flow contraienot present in Remarks 5.9-5.10

below for completeness.

Remark 5.8. The linear controller for the valve can be used to speed tBpoase of the valve
to a valve output flow rate set-point change, even a valveubdiipw rate set-point change in the
direction opposite to previous set-point changes (i.e etap®int change that causes the valve to
stick). If the controller is aggressive, it can cause thetoarnput to the valve to quickly overcome
the deadband, reducing set-point tracking issues arisiognfstiction (if the aggressiveness does

not cause oscillations).
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Remark 5.9. The MPC cost function could include a penalty on deviatiohthe valve output
from a target value throughout time (e.g., a quadratic obyjexfunction). Because the MPC
incorporates a model of the stiction dynamics and thus isravlaat the valve will slip and by
how much, this penalty would encourage the MPC to choose waltput flow rate set-points that
bring the valve output to or close to the target (this was ghtmbe beneficial, for example, in the

compensated case of Fig. 3.4).

Remark 5.10. If the proposed method is implemented with an economiosebatsjective function,
the proposed method could be used to choose valve output dlenset-points that are more
economically optimal than if the MPC was unaware of the pssaynamics. Even if the response
is not that of the ideal case with no valve dynamics, the sexpief valve output flow rate set-points
would still be the most economically optimal method for agiag the system (given limitations
such as the sampling period and prediction horizon lengtladdition to the valve dynamics)
because the MPC included the effect of the valve dynamids idetermination of the optimal

valve output flow rate set-points.

Remark 5.11. Some stiction compensation methods such as constant rnfent and the
knocker that add signals to the output of the controller gesent to the valve are cited as sources
of valve wear and tear, which makes these methods shortgehations3%8 Several stiction
compensation strategies have been developed to addressrbliuding an optimization-based
stiction compensation method that minimizes a cost fumatioluding a term representing the
degree of movement of the valve to seek compensating sigraald to the valve controller output
that will minimize the valve moveméri. The MPC stiction compensation method proposed in this
chapter is flexible and could include similar penalties ia tbjective function (in addition to input
rate of change constraints) if valve wear and tear is a concdihis flexibility to add penalties on
valve variability to the objective function may be partay beneficial in cases where it may not

be obvious what value @fin Eq. 5.11 provides an acceptable level of variability of thalve.

Remark 5.12. A major contribution of the proposed method is that it acdedar changes in the

range of valve outputs that can be achieved with the givenadicin energy as stiction worsens.
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MPC strategies previously developed for stiction compeosdave not explicitly addressed the
change in constraints that results as the valve outputatain magnitude dynamics change,
though® 152.1533ddress valve output saturation. The proposed method sfctiapter, however,
introduces actuation magnitude constraints in Eqgs. 53.1ftg to constrain the valve actuation
magnitude and prevent the process-valve model from pradicton-physical values for such
forces. A benefit of these constraints is that if they are dhasehard limitations of the valve
actuators, they may not need to be updated over time ever ¥dlve model parameters are
updated due to changes, for example, in the friction foraratteristics. This will be further

clarified in Section 5.4.

5.3.3 Feasibility and Stability

In this section, we prove that the optimization problem of kq1 is feasible for all times and
that the closed-loop system of Eq. 5.4 is stable under the MPEY. 5.11 when a sufficiently
small sampling period is used. We first re-state two promwsstfrom Chapter 2 in terms of
the process-valve states and the notation of this chaptgr &gs. 5.7-5.9) to define parameters
and equations that will be used in the feasibility and sityfyiroof. We then state the results of
Theorem 2.1 as a proposition in terms of the notation of thagpter to motivate the introduction
of a constraint that we will impose ahin the feasibility and stability proof. Finally, we combine

the results of the propositions to prove feasibility andb#its of the proposed MPC.

Proposition 5.1. (c.f.”2 119 Consider the systems

Ga(t) = fq(da(t), Uma(t), .., umm(t), w(t)) (5.122)

Ob(t) = fq(ab(t), Uma(t), ..., Umm(t),0) (5.12b)
with initial states g(tg) = gp(tg) € Qp. There exists a#” function fw(-) such that
Ga(t) — Ab(t)] < fw(t —to) (5.13)
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for all ga(t), go(t) € Qp and all Wt) € W with

G

fw(7) (" — 1) (5.14)

Proposition 5.2. (c.f.”%119 Consider the Lyapunov function} of the nominal system of Eq. 5.4

under the controller i(q). There exists a quadratic functidiy (-) such that

V(q) V() +fv(ja—d) (5.15)

forall q,q € Qp with

fu(s) = aa(ay (p))s+ M’ (5.16)
whereM, is a positive constant.

Proposition 5.3. Consider the system of Eq. 5.4 in closed-loop with the MPCqofaELlL. If a
Lyapunov-based controller,fg) that meets the assumptions of Egs. 5.5 and 5.6 exists, teen th

constraints of EQs. 5.11h-5.11i ensure that for a gigghiireg

|Um;i (tk) — Um;i (tk—1tk—1)| < Edesired (5.17)

and
|Um7i(tj) — Um7i(tjfl)| < &gesired ] =K+1,...,k+N-1 (5.18)

whenA < A; ande in Egs. 5.11h-5.11i are chosen such that

2¢€ + LyMA < &gesired (5.19)

Proof. The proof follows that of Theorem 2.1. Specifically, from th@und in Eqg. 5.10 and the
Lipschitz continuity ofhy;(q) in Eq. 5.6,

Ihvi(a(tk)) — hyi(a(te_1))| < Lvla(te) — q(t_1)| < LyMA (5.20)
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and

Iy (6(t)) — hyi(G(tj—1))| < Lv[6i(t;) — 6(tj—1)| < L\MA (5.21)

for q(tx),6(tj),q(tj—1) € Qp for j =k+1,....k+N—1 and a sufficiently smalh < A; that
maintainsq(t) within Q, at all times for the MPC of Eq. 5.11 (the conditions under ahig
exists such thafA < A; maintainsq(t) € Q, whenq(tp) € Q, for the system of Eqg. 5.4 under
the MPC of Eg. 5.11 are given in the theorem below). Combitimgwith Egs. 5.11h-5.11i and

following steps similar to those in Eqgs. 2.27-2.28, it iswhdhat
|Umi (ti) — Upni (- 1[tc—1)| < 26+ LyMA (5.22)
and
|Umi(t)) — Umi(tj—1)| < 2&+L,MA (5.23)

forj=k+1,....k+N—1,andi=1,...,m. Thus, the desired constraints in Egs. 5.17 and 5.18 are

Theorem 5.1. Consider the system of Eq. 5.4 in closed-loop under the ME@def Eqg. 5.11
based on a controllerJ{q) that satisfies the conditions of Egs. 5.5-5.6 and assumeitfitty) =

hi(X(tp)),i=1,...,m. Let&, >0,A> 0,60 > 0, p > pe > Ps > 0 satisfy

pe < p — Ty (fw(D)) (5.24)
—as(ay (Bs)) + LMA + L0 < — (5.25)

and
2& + LyMA < Egesired (5.26)

If q(to) € Qp, Ps < Pmin, and N> 1 where

Pmin = max{V(q(t+4)) : V(q(t)) < ps} (5.27)
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then the state () of the closed-loop system is always bounde@jrand is ultimately bounded in

Qf)min'

Proof. Feasibility of the proposed formulation will be proven byosling that when the
Lyapunov-based controlldx,(q) exists that satisfies the constraints in Egs. 5.5-5.6, iféasible
solution for the MPC optimization problem at all timesofft) € Q, for all times. The proof of
closed-loop stability of the proposed method follows tiné? and will not be repeated here, but it
shows that the proposed MPC of Eq. 5.11 can maintain thesstatiein the regiorf,, for all times

if a sampling period\ < Az is used, wherd\; is the largest value ak that causes Egs. 5.24-5.25
and 5.27 to be satisfied. The proofiralso shows that ify > t/, the state is driven int®z,_
(defined by Eq. 5.27 whemgt) represents the state of Eq. 5.4 under any sample-and-holcbto
actionsum;j € Unj, i = 1,...,m, which is similar to the definition used forin Section 2.2.4).
Closed-loop stability of a process under the proposed MR6ws from’® with the only bounds
on A being those coming from Egs. 5.24-5.25 and 5.27. In thisrémapin order to obtain the
desired rates of change in Egs. 5.17-5.18, we also add tleatent from Proposition 5.3 that
Eg. 5.26 must be satisfied as well; however, this is not requior closed-loop stability to be
proven.

The feasibility of the state, input, Lyapunov-based, angutnrate of change constraints
will be addressed wheom;(t) = hyi(q(t)) and umi(t;) = hyi(§(tj)), j = k+1,...k+N—1,
i=1,...,m andq(ty),q(t) € Qp. Due to the definition of the stability regidd,, which included
the requirement that it be a region within which all state stoaints are satisfied, the state
constraint in Eq. 5.11d is satisfied for all states withip. Also, by Eq. 5.5dum,;(tk) = hyi(q(tk))
and um;(t;) = hyi(d(tj)), j =k+1,...k+N-1,i=1,...,m, satisfy the input constraints in
Egs. 5.11e-5.11g and 5.11j-5.11k. Furthermore, by dedigimeed_yapunov-based constraints and
whenA < Aq, Umi(tk) = hyi(a(tk)) andum;(tj) = hyi(G(tj)), j =k+1,...k+N-1,i=1,....m,
satisfy the Lyapunov-based constraints in Eqgs. 5.111+8.1This is because Eq. 5.11m is trivially
satisfied byumi(ty) = hyi(Q(tk)) andumi(tj) = hyi(4(tj)), j =k+1,...,k+N-1,i=1....m,
and when Egs. 5.25 and 5.27 are met, it can be shbWi that umi(t) = hyi(q(ts)) and
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Umi(t) = hvi(G(t;)), j =k+1...k+N—1,i=1,...m wil causeV(g(t)) < V(q(t)) for

t € [tk, tks1) such that Eq. 5.111 is therefore satisfied by those contt@@s Finally, by design of
the input rate of change constraints in Egs. 5.11h-5.1T mei$pect to the Lyapunov-based control
law, um;i(tk) = hyi(q(t)) andum;i(tj) = hyi(G(t;)), j =k+1,....k+N—-1,i=1,...,m, also satisfy

those equations. Thus, feasibility of the proposed MPC et sampling time is ensured. [

5.4 Application to a Chemical Process Example

In this section, we present a case study that shows how an ké&Cpiorating stiction dynamics
and actuation magnitue constraints may be designed forafispehemical process example. For
this study, we focus on EMPC because EMPC can dictate a dgrgmerating policy, which has
interesting implications for the constraints that needa@tided to the EMPC for effective stiction
compensation in this example, and thus helps to illustfeecbnsiderations that may go into the

design of the MPC in Eq. 5.11 to ensure that it adequatelygotsithe negative effects of stiction.

5.4.1 Dynamic Model Development

We first define the valve and process models that will be usédsrexample.

5.4.1.1 Nonlinear Process Model

We consider control of the catalytic oxidation of ethyleneai continuous stirred tank reactor
(CSTR) for which the reactions in Egs. 2.39-2.41 occur. Tineedisionless material and energy
balances for this process frotf? which use reaction rate equations fréfnform the following

nonlinear process model of the system, which has the forngoBE5 but with a single inpuiy

as follows:
% = Ua(1—X1X) (5.28a)
d
d—)f[z = Ua(Ce — XoXg) — AleXF(g) (Xoxa)*® — Azexfif)(xzﬂ)o'% (5.28b)
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dx
2 = —Uaxoa+ ArexH L) (ox4)® — Agexi( L) (x5x4) 0 (5.28¢)
X4 X4
dx 1
d—’i“ = o (Ua(1 =) + Blexr(%)(xzm)o"r’ + Bzexq%)(xzm)o'z‘rur

(5.28d)
Baexp( ) (x5x)°° — Ba(xa — To))
wherexy, X, X3, andxy4 are the dimensionless quantities from Section 2.3.1.4d#sedensity in
the reactor, the reactor ethylene and ethylene oxide ctratiems, and the reactor temperature).
The process input (valve output) is the dimensionless volumetric flow rate of the feed. The
dimensionless concentration of ethylene in the f&&jignd the dimensionless coolant temperature
T; are set to their values corresponding to an open-loop astioally stable steady-state of the
reactor atiXys Xps Xas X4s] = [0.998 0424 0032 1002 whenugs = 0.35,C. = 0.5, andT; = 1.0).

The other parameters in Eq. 5.28 are taken f¥rand are noted in Table 2.1.

5.4.1.2 Nonlinear Valve Model

In this section, we describe the model of the valve dynanocgHe valve that adjusts,. Due
to their prevalence in industry, we model a pneumatic spdiagphragm sliding-stem globe valve
using the values for the valve parameters frénwith the exception that the time units of all
parameters are changed to the dimensionless time4uioit consistency with the time units in the
process model of Eq. 5.28, and are given in Table 3.1 (but svitplaced byty). The valve is
modeled as a pressure-to-close valve with no pressuralipiipplied by the pneumatic actuation
at the fully open valve position. The valve stem can travelaximum of 0.1016m from the
fully open valve position (which corresponds to the flow rage= 0.7042) to the fully closed
position (with corresponding flow rate, = 0). Figures 5.4-5.5 depict the fully open and fully
closed valve positions; however, these are not detaileglidgs of the valve interior and are meant
only for clarification of how the stem’s location is relatemthe valve opening. In accordance
with,33 72.°lyye assume that the differential equations in Egs. 3.27-&28ufficient for describing
the stem position and velocity for the valve adjustingi.e., as in>> % °1we neglect additional

forces known to be present in sliding-stem globe valvesh siscthe additional force required to
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move the valve plug into the seat and the force due to the ymeslkop of the fluid as it moves
through the valve). The actuator applies a pres§udetermined from the linear controller for
the valve to the valve diaphragm, and a spring opposes themment of the diaphragm when
pressure is applied. We associate the fully open positidghefalve with the equilibrium spring
positionx, = 0m, and we associate the fully closed valve position with th&mam stem position
Xy = Xymax = 0.1016m.

To determine the value of the friction fordg in Eg. 3.28 at each time instant, we use
the LuGre® friction model due to its relative simplicity (it is a dynaemodel with only one
differential equation) and ability to qualitatively deter many of the effects of friction (e.g.,
presliding displacement, hysteresis in the friction fosih velocity changes in the sliding regime,
and a lowering of the force required for breakaway as theiegfibrce increases more quicki§;
also seé for information on the ability of a valve simulated using theGre model and the valve
parameters in this paper to qualitatively exhibit the bétragxpected when subjected to valve
tests developed by the Instrumentation, Systems, and Aattom(ISA) Society). The LuGre

model describes friction using the differential and algébequations in Eq. 3.29 aré:

dt Y og(w)

(5.29)

wheready, 01, ando, are model parameterz;, is an internal state variable of the friction model, and
g(w) is a nonlinear function of the valve stem velocity. ThoughltuGre model is fundamentally
a set of equations that can dynamically capture the effddisction through the introduction of
an appropriately formulated state variabjea somewhat physical interpretationzpfarises if one
imagines asperity junctions to behave like contactingtlesshat bend against one another until
they slip, with stiffnesy and damping coefficiend;, andz; representing the average deflection
of the bristles. The last term of the friction force is for tscous friction, with viscous friction

coefficientg,. The functiong(w,) aids in defining the Stribeck effect and the friction-vetgci
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Flow Direction
>

Figure 5.4: Schematic depicting a pressure-to-close pagarsliding-stem globe valve in the
open position. In this chapter, it is considered that noguresis being applied to the valve initially
when it is in this position, and the stem position is con®deo be at, = 0 m from the valve’s

equilibrium, fully open position.
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Flow Direction
>

Figure 5.5: Schematic depicting a pressure-to-close pagarsliding-stem globe valve in the
closed position. In this chapter, the stem position for tlesexd valve is,max = 0.1016m from
the valve’s equilibrium, fully open position, and is maimid in this position by the application

of pressure to the valve diaphragm.
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characteristics at constant velocity, and for consistavitty 26 "2will be taken to be:
1 - (W/v)
o(w) = = |Fe+ (Fs— Foje (5.30)

where ¢ is the Coulomb friction coefficientis is the static friction coefficient, and; is the
Stribeck velocity. The parameters of the friction model oBE3.29 and 5.29-5.30 are defined in

Table 3.1. The notation in these equations follows that is. BgL8-3.19.

Remark 5.13. The LuGre model is used in this example because its sinyphcikes it more
suitable for use in MPC than some of the more complex stigtiodels. Despite its relative
simplicity and ability to qualitatively represent a numbarfriction effects, the LuGre model is
neither the most accurate nor the most current friction madeilable (see, for exampf&, for

a criticism of its ability to model stiction when an oscillag force with magnitude less than the
Coulomb friction level is applied after breakaway, afftifor a criticism of some of its hysteresis
features in presliding, as well as®*° for more detailed friction models). For the purposes of
the example in this chapter, which demonstrates the germrdigdts that stiction may have on a
chemical process and how the incorporation of the dynanmi@model predictive controller can
reduce the undesirable effects of stiction, a stiction ity shows qualitatively correct behavior

for many scenarios is sufficient.

5.4.1.3 Relating Valve Position and Valve Output

We assume that the valve has a linear installed charaaté?isb that the valve output is linearly

related to the stem position in the sense that Eq. 3.31 holds.

Remark 5.14. The assumption of a linear installed characteristic was enddr simplicity

of presentation for this example. A variety of other valvarabteristics are possible (for
example, an equal percentage or quick opening inherenewaiaracteristic, or an installed valve
characteristic affected by the pressure drop across thee)af- 38 101. 13 owever, the focus of this

example is the valve behavior in the presence of stictidhgrathan the relationship between the
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flow and the stem position, so the assumption of a linearliestaalve characteristic is considered
sufficient. For more information on inherent valve charaistics and how valve installation may

affect these characteristics, s€e38 130

5.4.1.4 Linear Controller Model

In this example, we use a PI controller to regulate the valuput u, to the set-pointy, set by
the EMPC. The PI controller determines the pressure thatdhlve pneumatic actuation element

should apply according to the following equations, whicliéhtlhe form given in Eq. 5.2:

P =Ps+689476 (Kc (“m_ ”a) + &Z) (5.31)
a,max T
d¢ (um— ua)
= 5.32
dt Ua,max ( )

whereK; = —12 andt) = 0.01 are the controller gain and integral time, chosen for avialve

response to a set-point change even with the deadband didiersmodel used in this example.
Ps is the steady-state value of the control signal. To enswEtichanges in the correct direction
and to prevent the integral error from the previous set{doam impacting the approach to a new
set-point once the set-point is changed, wePs¢b the last applied value ¢t and the value of

(wherel denotes the internal state of the Pl controller in this eXairp O at a set-point change.
Combining Egs. 3.27-3.29, 3.31, and 5.28-5.32, we obtainrabined process-valve dynamic

model as in Eq. 5.4, with stag= [x1 X2 X3 X4 Xy W Zt Z]T and inputuy,, which we define as

q == fq(X17X27X37X47XV7 VV7 Zf ) Z7 Um)

5.4.2 Motivation for Actuation Magnitude Constraints

When the process of Egs. 3.27-3.29, 3.31, and 5.28-5.32nisatied using EMPC, the EMPC
will output a set-poinuy, for the valve that controls, for each sampling period. The set-point

umn will be used in Egs. 5.31-5.32 to determine the pressurestihatild be applied to the valve
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to bring it to the requested set-point. Because the dynab&tseenu,, Uy, andP are critical to
the EMPC'’s choice of the value of its optimization variab}g it is necessary that the dynamics
be understood and appropriately constrained to avoid mysipal situations. This concept will
be made clear in this section, which will show that the effafcstiction on the valve dynamics
requires the introduction of additional constraints toEMPC with the form of Egs. 5.11f-5.119.

To demonstrate the manner in which stiction changes therdisa we first examine the
relationship between,, andP for the open-loop valve in the presence of low stiction anthia
presence of significant stiction (the open-loop valve issadered because the parametegandr,
in Egs. 5.31-5.32 for the closed-loop valve can be adjusteddth the low stiction and significant
stiction cases to cause the closed-loop response of the waaltput to a set-point change to be
rapid). A valve with low stiction can be modeled using thegpaeters listed in Table 3.1, with the
exception that the values 6t andFs in the table are both replaced by.48 kg- m/tg. This low
stiction valve will be referred to as having “vendor” parders, in keeping with the terminology
used in’? The valve parameters listed in Table 3.1 are referred to@simal” valve parameters

To determine a relationship betweegR andP that can be used to determine the pressure to
apply to the open-loop valve to bring to uy,, we start by determining the steady-state relationship
between the valve output and the applied pressure for thdovevalve. This relationship is
determined by ramping the pressure applied to the valve dpdawn between (kg/m-tg and
82737kg/m-t3 in increments of 6%g/m-t3 every 05tq and recording the value of at the end
of every 0514, using the Explicit Euler numerical integration methodhan integration time step
of 10-%t4. The resulting plot of the steady-state valueigf/ersus input pressure is almost linear,
as shown in Fig. 5.6. If we assume thg{~ u, for the valve because stiction is low so the valve
output should track its set-point well, we obtain the foliog/relationship betweeun,, andP for
the vendor valve using a least-squares optimization oneghdar valve data (neglecting the initial

transient) shown in Fig. 5.6:
U _ 0.05864
M 689476

+P+0.70391 (5.33)

We now assume that we have a series of desired set-pgink&at we would like to achieve for
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Figure 5.6: Comparison of steady-state relationship betwg andP for the vendor and nominal
valve parameters.
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the open-loop valve with significant stiction (nominal \&lv We investigate whether thg, — P
relationship developed for the vendor valve is applicabtetlie nominal valve by developing the
Uy — P relationship when the pressure value calculated from B&.iS.applied to the nominal valve
to attempt to achieve the desired valuaigf Accordingly, we ramp the set-poiagt, up and down
between 0.1042 and 0.7042 in increments of 0.01 evérfy@nd record the value af, at the end
of every 05 tg, again using the Explicit Euler numerical integration nogtlwith an integration
time step of 10° t4 (the Explicit Euler numerical integration method with ateigration time step
of 1078ty was used for all simulations of the nominal valve in Sectigh®. The resultingiy — P
relationship can no longer be described as one linear ealakiut two that depend on whether
the pressure is being increased or decreased, and the dedaatba velocity change is visible in
Fig. 5.6. In addition, it can be observed from the figure tleiause of the effect of stiction on the
ua — P relationship, there are certain flow rates that can be aetlieith a positive pressure for the
vendor valve that would require a negative pressure for timeimal valve, which is physically not
possible to achieve. This is the first hint that to compengatstiction, additional constraints of
the form of Egs. 5.11f-5.11g will need to be added to the EM&@révent physically unrealizable
set-points from being requested.

As shown in Fig. 5.6, the linear relationship betweagnandP developed in Eq. 5.33 is not
sufficient to control a valve subject to stiction. Furtheidewce of this comes from ramping the
set-pointu, of the nominal open-loop valve up and down between 0.1042afG#2 in increments
of 0.01 every sampling period of length= 0.2 ty and determining the pressure to apply to the
valve from Eq. 5.33. The dynamic response (i.e., not stesaaly; this is the reason for the step-like
quality of the trajectories) of the valve output to theseps@ht changes is shown in Figs. 5.7-5.8.
Fig. 5.7 shows the insufficiency of Eq. 5.33 to determine ttesgure value that should be applied
to the valve for a desiregl, because it shows that for this sticky valug,does not effectively track
Un (theua — up plot in Fig. 5.7 is not linear). This is further emphasized-ig. 5.8, which also
shows the deadband whep, begins to change in the opposite direction to that in whichas

changing previously. This demonstrates that a differdaticsship between, andP is needed
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Figure 5.7: Open-loop values of anduy, for the nominal valve.

to control the nominal valve than that provided by Eq. 5.38risure good set-point tracking.

In the proposed method, the linear controller of Eqgs. 5.3P-% used to improve the set-point
tracking performance afy. To demonstrate that this does indeed improve the set-fraicking,
we ramp the set-pointi, to the nominal valve in closed-loop with the linear conolin
Egs. 5.31-5.32, again ramping it up and down between 0.160d2&042 in increments of 0.01
everyA = 0.2ty. The dynamic response of the valve is shown in Figs. 5.9bHi6h show that the
Ua — U relationship is close to linear under the linear controbeid that, is able to closely track
Um in time and is quickly able to overcome the deadband causetidiijon. However, despite its
benefit in providing good set-point tracking performanbe,ise of Eqgs. 5.31-5.32 does not ensure
that the value oP requested will not become negative. This is demonstratédgs. 5.11-5.12,
which plot the dynamic response of the closed-loop valvagbteset-point changesu = 0.35,
0.2,0.35,0.2,0.3, 0.4, 0.5, and 0.6) each held¥er 0.2 ty when initialized from the fully open
position (i.e.u; = 0.7042,P;=0 kg/m~t§, Xy =0 m, vy = 0m/ty, z = O minitially). The results
in Fig. 5.11 again show that the PI control law developed is.E31-5.32 helps the valve to

effectively track its set-points even when there is deadlimtause the direction of the valve stem
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Figure 5.8: Open-loop values of anduy, with time for the nominal valve.

movement changes. However, the results of Fig. 5.12 shointhibagood set-point tracking can
only be achieved when the pressure is able to adjust as rmegessluding becoming negative,
which is physically impossible. From Figs. 5.11-5.12 it da deduced that if the pressure is
saturated at &g/ m-tg when a lower pressure is requested, the valve output woulthenable

to reach all of the set-points in this simulation. This irad&s that when the control law of
Egs. 5.31-5.32 is used, the constraints of the EMPC needdorerihat the pressure does not

become negative at the set-points it requests, becauseritreldaw itself does not ensure this.

Remark 5.15. The constrain®® > 0 kg/m-tg (whereP signifies the prediction of the pressure
from the pneumatic actuation based on the process-valveinads developed for the EMPC in
this section to ensure that the set-points calculated byEREC are physically realizable (i.e.,

that they do not require the pressure to become negativefoo meet w). Based on the plots

presented in this section, other methods for handling tbénario could be considered as well.
For example, based on Fig. 5.6, another method for prevgmtegative pressures for this example
may be to decrease the range of allowable values@sistiction worsens such that the allowable

values of @, always correspond to positive pressures. However, it magliffieult to determine
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Figure 5.9: Closed-loop values af anduy, for the nominal valve under PI control. The plot
depicts thau, increases with increasing, and decreases with decreasimgwhen the value of
Unm is changed by 0.01 evedy. The arrow in the lower left corner of the plot shows the dimt

in which the increasing and decreasing steps in the plotaversed.
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Figure 5.10: Closed-loop values f anduy, with time for the nominal valve under Pl control.
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Figure 5.12: Closed-loop values of the pressure with timeHe nominal valve under PI control
for several set-point changes.
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what the new bound on,ushould be without doing an off-line test to generate data tiat in
Fig. 5.6, and the valve stiction may continue to worsen viitte} meaning that new ranges fap u
may need to be determined throughout time. In addition, beeahe profit from EMPC may be
improved by allowing operation over a larger region of stagace, it is not desirable to choose
extremely conservative bounds of to avoid the calculation of set-points that would require
negative pressures because that may lower profit below thethweould be realized. Finally, the
steady-state 4— P data in Fig. 5.6 may not be sufficient for determining an ajpiate bound
on uy because it does not show the transient behavior (e.g., uth@elinear controller, 4 may
overshoot w before settling to ). Motivated by these considerations, for the EMPC in this
example, we set the constraint of Eq. 5.11g in our propose@ Mé&mpensation strategy to be a

constraint that the actuator pressure must never becomativeg

Remark 5.16. We note that the basic relationships betwegnu, and P presented in this section
are well-known; for example, one can find plots similar tos#én Figs. 5.6-5.8 if® 7291 |n
addition, it is well-known that control of the valve positimay help to improve the response of
a valve in the presence of valve nonlinearities (for exarfplsuggests a control law to bring
the valve position to its set-point in the presence of stigtand3® states that valve positioners
are often able to improve a valve’s response if it exhibitadbeand). The results in this section
are novel, however, because they present the dynamic pldke mpen and closed-loop valve
responses as an analysis tool useful for the design of an MRCagpropriate constraints for
stiction compensation and show how this analysis can belermwut using plots of this type.
Furthermore, this discussion is not meant to be applicablg to this example, but to suggest the
type of thinking and analysis that may need to go into thegtesf the proposed MPC for other

processes.

Remark 5.17. Fig. 5.6 and Fig. 3.6 can be compared. Fig. 5.6 relatgand P for a low-stiction
valve and a valve experiencing more significant stictionrupwreasing and decreasing the
pressure applied to the valve stem and holding it for some tipon each increase or decrease;

however, only the final values of and P at the end of each hold time are plotted, such that the
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transient response ofyuo the P changes is not shown. Furthermore, the ramping optessure

in Fig. 5.6 is performed for the valve in open-loop in the seti@t no controller is computing the
values of the pressure to be applied to the stem, but theymegsbeing independently increased
and decreased. These features of the plotin Fig. 5.6 cantiits the features of the plot in Fig. 3.6,
for which a controller is assumed to be an important part & dlynamic plot (it is the label on the
x-axis); therefore, coupling between the controller, @es, and valve dynamics for a system for
which such a plot is obtained may play a role in the responsented and there is a potential that
the plots may look different for the same valve when a diftazentroller or process is present in
the loop. For example, a plot of,wersus P for the level control problem without flow control in
Fig. 3.3 would not have a significant moving phase becausedhgoller begins to seek to move

the valve stem back in the direction from which it just mowshsafter the valve slips.

5.4.3 Proposed MPC Formulation

In this section, we describe the performance of an EMPC ftatimn meeting the form of
our proposed MPC stiction compensation strategy in Eq. Witll the process-valve model of
Egs. 3.27-3.29, 3.31, and 5.28-5.32 and the constrainPthad kg/m-t3 at all times.

The control objective is to maximize the yield of the prodatitylene oxide. The yield of
ethylene oxide between the initial and final times of the ptgreration {p andts) is defined by
Eq. 4.6. However, we assume that the volumetric flow rateefritet stream is bounded such that
betweerty andts, the integral in Eq. 4.7 holds. Combining Egs. 4.6-4.7, thiective of the EMPC
becomes the maximization of the time integral of the stage logpc, WhereLypc is defined as

follows:

Lmpc = Ua(T)X3(T)Xa(T) (5.34)

The inputu, is physically bounded between the flow rates at the maximutnnainimum valve
openings as follows:

Ua,min < Ua < Uamax (5.35)
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With Ugmin = O (valve fully closed) andiy max = 0.7042 (valve fully open). The value af, is
computed using the actuator layer equations in Eqs. 329-3.31, and 5.29-5.32.

We assume that the only data available to aid in choosingliheable range of valve set-points
Un that the EMPC calculates is the vendor data in Fig. 5.6. Tiuesassume that the bounds
developed for the EMPC include set-points that can only bewita negative pressures by the
nominal valve, though they can be met with positive presshyethe vendor valve. The set-points
Um are thus restricted as follows:

Ummin < Um < Ummax (5.36)

With Uy min = 0.0704 andummax = 0.7042 (the minimum value dfi, is greater than O because
we assume that we want to avoid fully closing the valve fos firiocess). Physically, the pressure
applied to the valve diaphragm cannot drop belokg;&ntg.

For this example, the optimization varialhlg does not have a large effect on the process
economics. Thus, we emphasize that the choice to use EMP@i®example is primarily
driven, as previously noted, by the ability of EMPC to promdime-varying operation such
that it computes set-points at the bounds of what is phygigalssible to maximize the process
profit and thus effectively illustrates the advantages ofuding the constraint on the actuation
magnitude (pressure). Furthermore, the profitability of EBover steady-state operation for
a variety of processes has been well-documented in thatliter (see, for exampl&, and?),
including for the present example when two actuators are asein®* and is not the focus of
this chapter. However, it is noted that the process in theratss of stiction or valve dynamics
has a steady-state yield of 6.63% over 49&8nd a yield of 32.22% over g when initiated from
(X1 X2 X3 X4]T = [0.997 1264 Q209 1004T. This shows that for the two operating periods
considered in this study, the effect of the transient is &trgng because the average steady-state
yield is much larger over thetg considered in this study than it is after a longer time period

To achieve the above objectives while countering stictior, develop an EMPC, termed
EMPC—A, that incorporates actuator dynamics to aid in stictionjgensation and maximizes the

yield of ethylene oxide subject to the integral materialstosint and constraints on the allowable
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values of the valve output, valve set-point, and actuattpuduo prevent non-physical situations.

This EMPC solves the following optimization problem:

i N (1)1 (1) (5.372)
min — Ua(T)X3(T T)at ofa
Lmin = [ sk

st G(t) = fq(6(t), um(t)) (5.37b)

G(t) = at) (5.37¢)

0 < Ga(t) < 0.7042 ¥/t € [ty, s n] (5.370)

0.0704< Un(t) < 0.7042 V/t € [ty, tisn) (5.37€)

P(t) > 0, Vt € [ti, tien] (5.37f)

/tkwk Ga(r)dr-l—/fk ux(T)dt = 0173, (5.379)
t (-1t Ce

where the cost function in Eg. 5.37a represents the totddl yo&é ethylene oxide throughout
the prediction horizon when the material constraint is naetg Eq. 5.37g is the method for
implementing the integral material constraint by consirag the value oli; to meet the material
constraint in each operating period. Eg. 5.37g states Heatitne-average value of the sum of
the predicted valve outpug, plus the previously applied valve outpuismust be no greater than
(1&775 over thej —th operating periodj(= 1,2,...). A shrinking prediction horizon is used, such
that the prediction horizoiNy = 5 at the beginning of an operating period of length= 1 tq

(A =0.2ty) but is decremented by 1 at each subsequent sampling tirhe operating period. The
use of this shrinking horizon allows the integral mater@straint of Eq. 4.7 to be implemented in
Eq. 5.37g. The state constraints in Egs. 5.37d and 5.37ferdogced every two integration steps.
Because this process has an asymptotically stable st¢atgyasmid no closed-loop stability issues
were encountered during the simulations, the Lyapunoedasnstraints of Egs. 5.111-5.11m
were not considered. The dynamic equation in Eqg. 5.37b wagrated within the EMPC using
the Explicit Euler numerical integration method with areigtation step ofia = 106 t4. Centered

finite difference approximations of derivatives requiredthe solution of the optimization problem
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were obtained by perturbing the optimization variables 6y°1
For comparison witie MPC— A, we also introduce an EMPC that does not include the valve

dynamics, which will be referred to &VIPC— B, formulated as follows:

n [ %00 (5.382)
min  — Um(T)%3(T)%4(T) dT .38a
um(t)eS(A) tk m St

st K1) = f(K(t),um(®)) (5.38b)
K(t) = X(t) (5.38¢)

0.0704< Un(t) < 0.7042 Vt € [t tipn) (5.38d)

{ !
/HNK um(r)err/k Un(T)dT = 01735 (5.38e)
t (i—Dtp Ce

where the notation in Eq. 5.38b signifies thatin Egs. 5.28a-5.28d is replaced by, in the
model used to predict the process states wiEWPC— B. Numerical integration of the dynamic
equations in Eq. 5.38b was performed using the Explicit Bukethod with an integration time step
of hg = 10~ t4. Centered finite difference approximations of derivatiregguired for the solution
of the optimization problem were obtained by perturbingdpgmization variables by 1.

A third EMPC,EMPC—C, was also developed with the form BMPC— B but with rate of

change constraints added, for reasons that will be clatigolw. EMPC— C solves the following
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optimization problem:

L min /t: N Un(T)%a(T)Ra(T) dT (5.39a)
st K(t) = f(K(L), Um(t)) (5.39b)
X(tk) = X(tk) (5.39¢)

0.0704< Un(t) < 0.7042 V't € [ty, tiin) (5.39d)

/tkmk Um(T)dT + /tk Ui (T)dT = 0.175p (5.39)

i (i—)tp Ce
|Um(tk) — Un(tk-1fte-1)| < v (5.39f)
|Um(tj) — Um(tj—1)| < v j =K+1,.... k+Ne—1 (5.39g)

wherey in Egs. 5.39f-5.39g is a constant that defines the changg,ithat will be accepted
between sampling periods. In the following simulatiops: 0.1. Eqg. 5.39b was numerically
integrated using the Explicit Euler numerical integratroethod with an integration step size of
hc = 10~* t4. Centered finite difference approximations of derivatireguired for the solution of
the optimization problem were obtained by perturbing thignoigation variables by 10*.

Outside ofEMPC— A, EMPC— B, andEMPC—C, the actual process was simulated using
Eqgs. 3.27-3.29, 3.31, and 5.28-5.32 with an Explicit Euléegration step size &f= 10-° ty, with
the pressure saturated atd@y m-tg if a lower pressure was requesteg Wwould have been saturated
at Ua min OF Uamax if those values were exceeded, but neither of these extraraesviolated in
these simulations). All three EMPC'’s usigd= 114, A = 0.2t4, and simulated the results for two
operating periods. They were initiated from the pajnt [0.997 1264 0209 1004 0051 2000x
10761.426x 10°° 0], where the process states are dimensionless and the stétesactuator
layer have Sl units except for a dimensionless time unit, taednitial value of the steady-state
pressure i€s= 63713kg/m~t§. All optimizations were performed using the open-souradinear
interior point optimization solver Ipopt® and were coded in the C++ programming language. The

Ipopt convergence tolerance for optimization terminati@s set to 101° for EMPC— A, and to
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10-8 for EMPC— B andEMPC—C. Simulations were carried out on a 2.40 GHz Intel Core 2
Quad CPU Q6600 on a 64-bit Windows 7 Professional operatisigs) with 4.00 GB of RAM.
Figs. 5.13-5.14 show the values wf, u,, andP for the valve with time when the system of
Egs. 3.27-3.29, 3.31, and 5.28-5.32 is controlledBMPC— A andEMPC— B. These figures
show that the inclusion of valve dynamics and actuation ritade constraints in EMPC causes
EMPC— Ato calculate lower set-points th&MPC— B, which allows the valve output to track the
EMPC-requested set-points throughout the two operatingge even when the pressure drops,
becauseEMPC — A is aware of the limitations of the pneumatic actuation angstbalculates
set-points that the valve output can reach (it is noted tiexetare two small set-point changes in
Fig. 5.13 thau, for EMPC— A does not track; the reason for this will be explained furthelow,
but the overall trend that, tracksumy, well underEMPC— A can be deduced from Fig. 5.13).
Figs. 5.13-5.14 show that when the actuator dynamics arenchtded in EMPC and stiction
develops with time such that the pressure-flow rate relahignis altered, the valve output is not
able to track thee MPC— B set-points becauseMPC — B calculates set-points for which the
pressure would need to drop to negative values to allow the\ta move enough to reach them
(because this is physically impossible, the pressure uBd4&PC— B saturates at its minimum
value of Okg/m-tg for four sampling periods, though the pressure urelstPC— A does not
because the set-points calculatedBdPC— A are reachable). The inability of the valve to reach
the set-points calculated ByMPC — B causes th& MPC — B optimization problem to become
infeasible in the last two sampling periods of each opegapieriod and causdsMPC— B to be
unable to meet the integral constraint (it cannot use allaba material; the value of the integral
constraint in Eq. 4.7 calculated for each operating peried petweer{j — 1)t, andjtp, j = 1,2,
instead of betweety andts) is approximately 0.133, which is 24% less than the requuadde
of 0.175). The yield oEMPC— A throughout two operating periods according to Eq. 4.6 is
32.4%, while that oEMPC— B according to Eq. 4.6 is 35.1%. This at first appears to suggest
thatEMPC— B out-perform€E MPC— A economically; however, becauB&PC— B did not meet

a hard constraint of the process, the yield that it achieviéldowt meeting this constraint cannot
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Figure 5.13: Valve output set-pointg, (solid trajectories) and actual valve outputs(dashed
trajectories) throughout two operating periodsEmMPC— A, EMPC— B, andEMPC—-C.

be compared with the yield of a process that did meet the @nst Thus, no further discussion
of yields under the various EMPC’s will be pursued, and trsewsion will focus on the degree
to which the various formulations ensure that the processtcaints are satisfied. In contrast to
EMPC-— B, EMPC— Aiis feasible in both operating periods.

Despite the advantages of usiB§IPC— A rather tharEMPC— B to ensure that all process
constraints are met, the computational burderE®MPC — A due to the enforcement of the
constraints on the pressure andwugrat every other integration stép = 10° tq within the EMPC
is much larger than that fd&E MPC— B. In an actual plant, this computation time increase could
prohibit the use o0EMPC— A if the process has fast dynamics such that a short sampliagdpe
is required for effective control. However, the input rafecbange constraints discussed in this
chapter for the design of an MPC incorporating nonlineaveralynamics may be considered for
use iInEMPC— B to minimize the large jumps ioy, that causee MPC— B to be unable to meet
the material constraint at the end of the operating periedsvithout adding much computation
time. Thus, we demonstrate the use of input rate of changstreants and how they affect the

trajectories ofiy, Uy, andP usingEMPC—C. Figs. 5.13-5.14 show these trajectories and show that
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Figure 5.14: Actuator pressure applied to valve stem thmoug two operating periods for
EMPC— A (solid trajectory) EMPC— B (dashed trajectory), arfiIMPC— C (dotted trajectory).
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the addition of the input rate of change constraint& WPC— B to form EMPC— C significantly
improves the set-point tracking performance compard@NtPC— B. In contrast tcEMPC— B,

for which four of the set-points were not reachable and chssgnificant offset, there is only
one set-point calculated lyMPC— C in Fig. 5.13 for which offset is observed, and the offset is
much smaller than those f&@MPC— B. In addition, the pressure in Fig. 5.14 only saturates at
its minimum value for one sampling period undeMPC— C, instead of the four during which

it saturates undeEMPC— B. ThoughEMPC— C is infeasible for three sampling periods (the
last two sampling periods of the first operating period aredl#ist sampling period of the second
operating period) and the integral constraint is not mehatend of either operating period, the
degree to which the integral constraint is violated is digantly less than undégeMPC— B (the
integral constraint is 0.171 at the end of the first opergtergod and 0.172 at the end of the second
underEMPC—C, such that in each operating period, it is only about 2% |kas the required
value of 0.175). In addition, the computation timeed1PC—C is, as forEMPC— B, much lower
than that forEMPC— A owing to the use of a lower-order model theMPC— A. The rate of
change constraints were addedetol PC— C in anad hocfashion and are not guaranteed to reduce
the negative effects of stiction on the controller perfonee but the positive impact that they had
on the process performance does indicate the breadth ofrains that could be considered to
combat the effects of stiction with both the proposed MPCalad with MPC'’s for processes that
cannot fully incorporate the proposed method due to contipatéime constraints.

Figs. 5.15-5.16 show the closed-loop process and actuayer Istates undee MPC — A,
EMPC-—B, andEMPC—C. Fig. 5.15 shows that the process state trajectories arerastically
affected by the differences between the trajectoriesupfunder the three EMPC’s, which
contributes to the fact that the focus of this example is mothe profitability of the proposed
EMPC compared to the other methods, but rather on its alidityneet the constraints of the
process when the valve is affected by stiction. The plot ef ¢bntroller statef in Fig. 5.16
shows the manner in which the integral term of the contrafieaffected by the different EMPC

formulations. INEMPC— B, the integral term becomes large in the sampling periodshichv
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Figure 5.15: Closed-loop process staigs xo, X3, and x4 throughout two operating periods
underEMPC— A (solid trajectories) EMPC— B (dashed trajectories), arelMPC— C (dotted
trajectories).

the EMPC cannot reach its set-points. This plot also shoed#nefits of re-setting the value
of { to zero at each set-point change so that, for example, thee wdl{ for EMPC— B at the
beginning of the second operating period is not large froenitibegration of this state at the end
of the first operating period. In addition, the plot showd tha inclusion of the actuator dynamics
and constraints on the pressurdeiNPC— A and rate of change constraintsEMPC— C prevent
the integral term from becoming large because they ensatélth set-points can be met or (in the
case oEMPC—C) reached closely enough so that the integral term does ach targe values. In
addition, the increase g at a direction change of the velocity to allow the pressurev&ercome
the deadband is visible in this plot as well.

The trajectories in Figs. 5.13-5.14 and 5.16 show the meiatiips between the physical states
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Figure 5.16: Closed-loop actuator layer statgsw, z, and{ throughout two operating periods
underEMPC— A (solid trajectories) EMPC— B (dashed trajectories), arelMPC— C (dotted
trajectories).
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Xy andvy of the valve and the valve output and pressure applied toahe Yor the process under
EMPC— A EMPC— B, andEMPC—C. Because the value af, is an explicit function ofx,
changes inuy occur wherx, changes. A comparison of the trajectoriexpndu, with the values

of P for EMPC— A shows the deadband where the pressure is increasing bultres\ofx, and

Ua do not change much because the error (and fjus not large enough to cause much stem
movement for the small set-point changes toward the endedirdt and second operating periods
of the EMPC. The set-point changesEMPC— B andEMPC— C are all significant enough that
the deadband is overcome within a sampling period. The itglog for all three EMPC's is
non-zero wherx, and thusu, are changing, but is zero wheg reachesiy, and the friction force
balances the pressure and spring forces on the valve.

The trajectories af; in Fig. 5.16 show that when deadband is encountered, theezgtigtdriven
through zero. This is consistent with the physical viswlon ofzs suggested by the authors of the
LuGre modek® which related it to the average deflection of theoreticath#s on two contacting
surfaces, whose bending caused friction. It would be expitiat bristles would be deflected from
an equilibrium (zero) location corresponding to the stargposition of the valve when the stem
position first begins to move in a given direction. In additid is necessary for continuity of the
friction force in Eq. 3.29 that the value af approach this zero value in a dynamic fashion, rather
than abruptly. The passing af through zero at a change in the direction of set-point chenge
allows the friction force of Eqg. 3.29 to change direction sattit continues to be in the direction
opposite the applied force.

We now address the fact th&tMPC — A calculated set-points that are not reachable (see
Fig. 5.13) though it could predict the dynamics of the valvthwespect to the set-point changes.
Stiction is often noticeable when pressure is applied toheeydut the valve stem does not move
because the opposing friction force is significant. Thisnameenon is exhibited during the two
set-point changes fd&E MPC— A that the valve output does not track. Due to the small seaitpoi
reversals inuy, requested b MPC— A at the end of the first and second operating periods, the

value of the pressure applied to the valve according to E@4.-5.32 does not change quickly
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since the error betwean, andu, (and thu<() is low. However, though the valve is considered to
be stuck at this time, as the pressure changes, the dynanticsi 3.27-3.29, 3.31, and 5.28-5.32
cause the stem position and velocity (in additiorzgbto continue to change, though slowly. It
is because of this effect thBMPC— A calculates set-points that it cannot reach; it does so to
manipulate the numerical results such that the valve stehthars output would move just enough
in the sampling periods in which unreachable set-pointsaleulated to allow all constraints to
be met, including the integral constraint. While this suggg¢hat the results are dependent on the
friction model used, it also shows that including the foctimodel within the EMPC allows the
EMPC to make smart set-point choices that are not necessdtiltive.

To demonstrate the robustness of the proposed approactstirbdinces and plant-model
mismatch, the process of Egs. 3.27-3.29, 3.31, and 5.2ZB¥%a3 controlled byeMPC— A and
was simulated with different levels of bounded Gaussiartevhoise in the process and actuator
states, and the closed-loop stability of the process uBddPC— A was found to be robust
with respect to the different noise levels. In addition, witae process was simulated with
noise in the process states with standard deviatigr= [0.1 300 60 04 0 0 0 Q7 and bound
6=10.390018012000QT (this standard deviation and bound on the noise were chaszube
they provided a meaningful perturbation to the procesgstahen added to the right-hand side of

Egs. 5.28a-5.28d), the integral material constraint wasimigoth operating periods.

Remark 5.18. In the example of this section, the addition of input ratelwdrgge constraints to
an MPC was shown to be beneficial for valve behavior compemsaand in Chapter 2, such
constraints were suggested to help prevent actuator wéahduld be noted, however, that input
rate of change constraints may cause issues for effecto@eps control if stiction is present in the
control loop and the constraints are not carefully designedr example, returning to the results
in Fig. 3.4 for the sticky valve without flow control of EQs28B-3.32, we see that the valve does
not move due to friction if the changes in the valve output fede set-point y, are not significant
enough to increase the pressure to a level that overcomestdtie friction force. If input rate of

change constraints are included in an MPC that accounts fierdtiction dynamics in this case,

184



they may preventifrom changing enough to cause the level to move in some saggeriods.
However, for the example in this chapter, because the valweder flow control, the pressure
applied to the valve can change throughout a sampling pdfied it is not fixed by ¢ but can be
adjusted even for a fixedby the flow controller). Therefore, when the magnitudepfwi; is
large in Egs. 3.24-3.25, the magnitude of P may become leggalting in the actuation magnitude
saturation seen in this example. The input rate of changstcaimts can thus be beneficial in this
case because they are not bounding P directly (i.e., P cdhasljust as required to causeau
to reach , if the pressure does not saturate), but they are insteadaiedithe flexibility that the
controller has to change the valve output flow rate set-pminalues that would cause the value of
P to saturate. This emphasizes the need to carefully desidlRC for stiction compensation with
the understanding developed in Chapter 3 that the effect$icifon are closed-loop effects and
therefore different MPC constraint designs may be neededifferent control loop architectures,

for example.

5.5 Conclusions

In this chapter, we showed that MPC can be used to comperwmathef effects of stiction by
including detailed valve dynamics for sticky valves in auofi to constraints on the rate of change
of inputs and the actuation magnitude. The flexibility of MEC-based stiction compensation
strategy, which allows it to incorporate a variety of costdtions or constraints to reduce tracking
offset in control loops, was discussed. In addition, cleeg stability and feasibility of the MPC
optimization problem including Lyapunov-based stabitibnstraints were proven for a sufficiently
small sampling period. Using a chemical process examplesivseved how constraints can be
developed for the MPC for stiction compensation and dennatest that this MPC can result in
better valve layer set-point tracking and constraint tattgon than an MPC that does not account

for stiction.
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Chapter 6

Conclusion

This dissertation developed a framework for accountingfuator constraints and nonlinearities
for control loops with various control designs, rangingifrstate-of-the-art control methods such
as EMPC to classical control designs like PI control.

Chapter 2 discussed methods of accounting for actuator theamgh input rate of change
constraints in EMPC. It was demonstrated that the conssraan be developed within the context
of an EMPC design with Lyapunov-based stability constsinta manner that not only ensures
that the value of each implemented input differs from theugadf the last implemented value
of that input by no more than a desired valgigsireq between two sampling periods, but also
guarantees feasibility of the EMPC design and closed-|taimlgty in the sense of boundedness of
the closed-loop state within a pre-defined region of stpses for all times and uniform ultimate
boundedness of the closed-loop state within a neighborleddtie origin when a contractive
constraint in the EMPC formulation is activated for all tisnelt was also demonstrated that
the EMPC design could be formulated with a terminal constrsiich that even with input rate
of change constraints, a nonlinear process operated uhddeNPC is guaranteed to have an
economic performance at least as good as that of a Lyapuasedbcontroller implemented in
sample-and-hold on both the finite-time and infinite-timeivals. The EMPC with input rate

of change constraints was demonstrated through an ethgledation example, and the terminal
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constraint was demonstrated utilizing a CSTR.

Chapter 3 analyzed valve nonlinearities from a fundamenghematical perspective and also
through simulation. It was shown that the interactions agnthre states describing the process
model and the valve model are nonlinear and coupled, andessili, the negative impacts of valve
nonlinearities such as stiction on control loop perforneasbould be analyzed in a closed-loop
context. A level control example was used to illustrate Byisiemonstrating the set-point tracking
issues occurring in the control loop containing a stickywgakhen the tank level is controlled by
either a PI controller or an MPC. The closed-loop insightsmied were then utilized to place
some of the stiction compensation literature for systenteumrlassical linear control designs
in a closed-loop context, and to demonstrate via the levetrobexample how a flow control
compensation method and an integral term modification nakithprove the closed-loop response
when the sticky valve is in the loop.

In Chapter 4, the closed-loop perspective on valve nonlityeeompensation was utilized to
propose model predictive control methodologies with erogirand first-principles process-valve
models for making state predictions as valve nonlineatygensation methodologies. A level
control example and an ethylene oxidation example dematesktthe effectiveness of making the
MPC aware of the valve dynamics through the process modetamstraints. Finally, Chapter 5
extended the developments of Chapter 4 to focus specifioallyIPC for stiction compensation.
It demonstrated that special considerations (e.g., aotuaagnitude or input rate of change
constraints) may be beneficial for preventing the MPC frohewdating unreachable set-points
for the valve output flow rates due to changes in the valve ialyogthat arise due to stiction. An
ethylene oxidation example motivated the use of the actnatiagnitude constraints and showed
that an EMPC that does not account for the valve dynamicsdrpthcess model and pneumatic
actuation in the constraints may cause the input trajeg@omputed by the EMPC to violate hard
process constraints, whereas accounting for the valve thyemics in the EMPC can allow the
resulting input trajectories to cause the constraints tmbée

In conclusion, this dissertation has provided a framewark d&ccounting for actuator
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dynamics/constraints in classical control designs, MP@,EBVIPC by adjusting the process model

and constraints to improve set-point tracking and redutigasar wear.
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