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Currently, there is an increasing need to improve semiconductor manufacturing

process operation and yield. This need has arisen due to the increased complexity and

density of devices on the wafer, which is the result of increased wafer size and smaller

device dimensions. Within this manufacturing environment, thin film microstructure,

including thin film surface roughness and amount of internal film defects, has emerged

as an important film quality variable, which strongly influences the electrical and

mechanical properties of micro- electronic devices. On one hand, surface roughness

of thin films controls the interfacial layer and properties between two successively

deposited films. On the other hand, the amount of internal defects, usually expressed

xxx



as film porosity, plays an important role in determining the thin film microstructure.

At this stage, previous research efforts have exclusively focused on control of thin

film surface roughness and have not addressed the challenging issue of simultaneously

regulating film surface roughness, porosity, and thickness while reducing run-to-run

film variability.

This dissertation presents a unified and practical framework for modeling and con-

trol of film porosity, surface roughness, and thickness in thin film growth. Specifically,

we will present novel definitions for describing film porosity, and stochastic modeling

and parameter estimation techniques for constructing dynamic models for roughness,

porosity, and film thickness. We will also present state/output feedback covariance

control and model predictive control problem formulations and solutions which lead

to a balanced trade-off in the closed-loop system between the three, possibly conflict-

ing, control objectives of surface roughness, film thickness, and porosity regulation.

The application of the proposed modeling and control methods to complex thin film

deposition and sputtering processes will be discussed and simulation results will be

shown to demonstrate the resulting closed-loop system performance and robustness.
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Chapter 1

Introduction

1.1 Background on modeling and control of thin

film microstructure

Currently, there is an increasing need to improve thin film semiconductor manufac-

turing process operation and yield due to its crucial role in a wide range of industries

such as microelectronics, communications, optical electronics, and solar cells. Par-

ticularly in the industry of microelectronics, to fabricate thin film semiconductor de-

vices with high and consistent performance, it is desirable that the operation of thin

film preparation processes can be tightly controlled so that the increasingly stringent

industrial requirements on the quality of such films can be satisfied. Within this man-

ufacturing environment, thin film microstructure (in particular, thin film thickness,

surface roughness, and amount of internal defects) has emerged as an important film
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quality variable which strongly influences the electrical and mechanical properties of

microelectronic devices [2, 54]. On one hand, surface roughness of thin films controls

the interfacial layer and properties between two successively deposited films. On the

other hand, the amount of internal defects, usually expressed as film porosity strongly

influences film electrical properties since the vacancies in microscopic structure of a

thin film provide free sites for undesired electrical static charge, high leakage current

and longer latency, thereby lowering transistor operating speed. For example, low-k

dielectric films of high porosity are being used in current interconnect technologies

to meet resistive-capacitive delay goals and minimize cross-talk. However, increased

porosity negatively affects the mechanical properties of dielectric films, increasing the

risk of thermo-mechanical failures [48]. Furthermore, in the case of gate dielectrics,

it is important to reduce thin film porosity as much as possible and eliminate the

development of holes close to the interface.

Thus, real-time feedback control of thin film growth conditions, based on math-

ematical models, has become increasingly important in order to meet the stringent

requirements on the quality of thin films and reduce thin film variability. In previous

works, deposition uniformity and composition control has been accomplished on the

basis of continuum-type distributed parameter models (see, for example, [3, 84, 19]

for results on rapid thermal processing (RTP) and [5, 72] for results on plasma-

enhanced chemical vapor deposition (PECVD)). However, precise control of thin film

microstructure requires stochastic distributed models that predict how the film state
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on the microscopic level is affected by changes in the controllable process parameters.

In thin film growth processes, the film microstructure is directly shaped by micro-

scopic processes, which are stochastic processes. Therefore, the stochastic nature of

thin film growth processes must be fully considered in the modeling and control of the

thin film microstructure of such processes. Furthermore, the development of modern

surface roughness measurement techniques provides the opportunity to obtain surface

roughness measurements in real-time using spectroscopic ellipsometry techniques [96],

grazing-incidence small-angle X-ray scattering (GISAXS) [76] or by combination of

on-line measurement techniques for measuring gas phase compositions with off-line

measurement techniques for measuring surface roughness. An implementation of the

latter approach can be found in [72], where it was used to measure carbon composition

of thin films in plasma-enhanced chemical vapor deposition using combination of opti-

cal emission spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS). Also,

experimental methods have been developed to perform scanning tunneling microscopy

(STM) measurements of the surface during epitaxial growth of semiconductor layers

[89]. The desire to understand and control thin film microstructure has motivated

extensive research on fundamental mathematical models describing the microscopic

features, which include: 1) kinetic Monte Carlo (kMC) methods [35, 32, 79, 75], and

2) stochastic partial differential equations (PDEs) [31, 91, 26, 53].

KMC models were initially used to develop a methodology for feedback control

of thin film surface roughness [57, 58, 21]. Specifically, in the context of surface
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roughness control and optimization, a methodology for feedback control of surface

roughness using kMC models was developed in [57, 58]. The methodology led to

the design of (a) real-time roughness estimators by using multiple small lattice kMC

simulators, adaptive filters and measurement error compensators, and (b) feedback

controllers based on the real-time roughness estimators. The method was success-

fully applied to control surface roughness in a GaAs deposition process model [59].

Moreover, kMC methods were also used to study dynamics of complex deposition

processes including multiple components with both short-range and long-range inter-

actions and to perform predictive control design to control final surface roughness in

[70]. However, the fact that kMC models are not available in closed-form makes it

very difficult to use them for system-level analysis and the design and implementation

of model-based feedback control systems. To achieve better closed-loop performance,

it is desirable to design feedback controllers on the basis of deposition process mod-

els. An approach was reported in [81, 8] to identify linear deterministic models from

outputs of kMC simulators and design controllers using linear control theory. This

approach is effective in controlling macroscopic variables which are low statistical

moments of the microscopic distributions (e.g., surface coverage, which is the zeroth

moment of species distribution on a lattice). In this direction, other results also in-

clude the construction of linear/nonlinear deterministic models from input/output

data using system identification techniques [27, 77, 93].

However, to control higher statistical moments of the microscopic distributions,
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such as the surface roughness (the second moment of height distribution on a lattice)

or even the microscopic configuration (such as the surface morphology), deterministic

models may not be sufficient. This is because the effect of the stochastic nature of the

microscopic processes becomes very significant in these cases and must be addressed

in both the model construction and controller design. From a modeling point of view,

closed-form process models, in the form of linear or nonlinear stochastic PDEs, can

be derived based on the microscopic details and the corresponding master equation

(e.g., [31, 86, 91, 26, 53]). Stochastic PDEs contain the surface morphology informa-

tion of thin films, and thus, they may be used for the purpose of feedback controller

design. For example, it has been experimentally verified that the Kardar-Parisi-

Zhang (KPZ) equation [45] can describe the evolution of the surface morphology of

gallium arsenide (GaAs) thin films which is consistent to the surface measured by

atomic force microscopy (AFM) [11, 44]. The availability of stochastic PDE mod-

els for certain deposition and sputtering processes has motivated recent research on

the development of a method for covariance feedback control of surface roughness

based on linear stochastic PDE process models [61, 60]. This method involves re-

formulation of the linear stochastic PDE into a system of infinite linear stochastic

ordinary differential equations (ODEs) by using modal decomposition, derivation of

a finite-dimensional approximation that captures the dominant mode contribution

to the surface roughness, and state feedback controller design based on the finite-

dimensional approximation. Furthermore, based on the fact that kMC simulations
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provide realizations of a stochastic process which are consistent with the master equa-

tion that describes the evolution of the probability distribution of the system being at

a certain micro-configuration, a method to construct reduced-order approximations

of the master equation was reported in [33]. Finally, novel, computationally-efficient

optimization schemes for multiscale models were recently developed based on the con-

cept of in-situ adaptive tabulation [85], based on the concept of coarse time-steppers

[7, 13], and based on the concept of funneling [64, 65].

Furthermore, although stochastic PDE models are suitable for model-based con-

troller design, the construction of stochastic PDE models for thin film growth and

sputtering processes directly based on microscopic process rules is, in general, a very

difficult task. This motivates the development of system identification methods for

stochastic PDEs. Compared to deterministic systems, modeling and identification of

dynamical systems described by stochastic ODEs/PDEs has received relatively lim-

ited attention and most of the results focus on stochastic ODE systems. Theoretical

foundations on the analysis, parametric optimization, and optimal stochastic control

for linear stochastic ODE systems can be found in the early work by Astrom [1].

More recently, likelihood-based methods for parameter estimation of stochastic ODE

models have been developed [14, 50]. These methods determine the model parameters

by solving an optimization problem to maximize a likelihood function or a posterior

probability density function of a given sequence of measurements of a stochastic pro-

cess. For many thin film growth or sputtering processes, kMC models are available,
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which can be conveniently used to generate multiple independent observations of the

same stochastic process. Consequently, statistical moments of the state such as the

expected value (first order moment), covariance (second order moment), and even

higher-order moments, can be obtained from the data set generated by kMC sim-

ulations. Since the dynamics of the state moments of a stochastic process may be

described by deterministic differential equations, the issues of parameter estimation of

stochastic models could be addressed by employing parameter estimation techniques

for deterministic systems. Following this idea, a systematic identification approach

was developed for linear stochastic PDEs [60] and a method for construction of linear

stochastic PDE models for thin film growth using first principles-based microscopic

simulations was developed and applied to construct linear stochastic PDE models for

thin film deposition processes in two-dimensional lattices [71].

However, nonlinearities exist in many material preparation processes in which

surface evolution can be modeled by stochastic PDEs. A typical example of such

processes is the sputtering process whose surface evolution is described by the non-

linear stochastic Kuramoto-Sivashinsky equation (KSE). In a simplified setting, the

sputtering process includes two types of surface micro-processes, erosion and diffu-

sion. The nonlinearity of the sputtering process originates from the dependence of

the rate of erosion on a nonlinear sputtering yield function [26]. Available methods

for identification and construction of linear stochastic PDEs require the analytical

solutions of state covariances [60, 71], which prevent their direct applications to non-
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linear stochastic PDEs. This motivates research on the development of methods for

parameter estimation of nonlinear stochastic PDE process models.

Model predictive control (MPC) is widely used in chemical process control due to

its capability to handle input and state constraints, to tolerate model uncertainty and

suppress external disturbances, and to force the closed-loop system to follow a target

trajectory using optimal control action (see References [34, 4, 74, 78] for surveys of

results and references in this area). In MPC, the control action is obtained by solving

repeatedly, on-line, a finite horizon constrained open-loop optimal control problem.

Recent efforts on predictive control of distributed parameter systems have focused

on predictive control of deterministic parabolic PDEs including linear systems with

distributed [30] and boundary [28] control and nonlinear systems with distributed

control [29]. However, results on predictive control of stochastic distributed parameter

systems, to the best of our knowledge, are not available.

In the context of modeling of thin film porosity, kMC models have been widely

used to model the evolution of porous thin films in many deposition processes, such

as the molecular beam epitaxial (MBE) growth of silicon films and copper thin film

growth [56, 97]. Both monocrystalline and polycrystalline kMC models have been de-

veloped and simulated [55, 92]. The influence of the macroscopic parameters, i.e., the

deposition rate and temperature, on the porous thin film microstructure has also been

investigated using kMC simulators of deposition processes. With respect to porosity

modeling for control, deterministic and stochastic ODE models of film porosity were
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recently developed [40] to model the evolution of film porosity and its fluctuation

and design MPC algorithms to control film porosity to a desired level and reduce

run-to-run porosity variability. In MPC, the optimal manipulated input is obtained

from the solution of an on-line optimization problem which minimizes a cost function

that penalizes the errors from the set-points at designated finite horizons. MPC is

widely used in the control of many chemical processes due to its capability to handle

input and state constraints and its robustness against model uncertainty and external

disturbances [69, 24]. At this stage, a careful look of the existing literature indicates

that the simultaneous control of film surface roughness, thickness and porosity and

reduction of fluctuations remains still an unresolved issue.

1.2 Dissertation objectives and structure

Motivated by the above considerations in Section 1.1, this dissertation focuses on the

modeling and the control of film surface morphology and microstructural defects in

thin film growth processes. Kinetic Monte Carlo models are developed to simulate the

thin film growth processes on the basis of lattice structures. Surface height profile,

surface roughness, film thickness, and film porosity are defined and computed from

the kMC simulation data and are used to characterize the surface morphology and

microstructure of the thin films. Stochastic and deterministic differential equation

models are introduced to describe the evolution of the thin film surface morphology

and internal microstructure and are used as the basis for the feedback control design.
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The model parameters of the dynamic equation models can be estimated on the basis

of the kMC simulation data using least-square methods. State and output feedback

control algorithms and MPC algorithms are developed to regulate and stabilize the

thin film surface roughness, film thickness, and film porosity at desired levels. Simul-

taneous control of these variables under a unified framework is addressed using MPC.

The proposed control algorithms are successfully applied to the kMC models of the

thin film growth processes under consideration through numerical simulations. This

dissertation has the following structure:

Chapter 2 focuses on dynamic output feedback covariance control of stochastic

PDEs subject to sensor noise. A linear dissipative stochastic KSE is considered in

this chapter. A finite-dimensional approximation is initially obtained on the basis of

the infinite stochastic ODE system that captures the dominant modal contribution to

the surface covariance profile (e.g., surface roughness). A state feedback controller and

a Kalman-Bucy filter are then designed on the basis of the finite-dimensional approxi-

mation. The dynamic output feedback covariance controller is subsequently obtained

by combining the state feedback controller and the state estimator with a theoretical

analysis performed to obtain the estimate of the closed-loop infinite-dimensional sys-

tem. Applications of the linear and nonlinear dynamic output feedback controllers are

presented to the both the linearized and the nonlinear stochastic KSEs are presented.

Chapter 3 focuses on model parameter estimation and model-based output feed-

back control of surface roughness in a sputtering process. Specifically, this sputtering
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process involves two surface micro-processes (atom erosion and surface diffusion) and

is simulated using a kMC simulation method and its surface height evolution can

be adequately described by the stochastic KSE. First, the four parameters of the

stochastic KSE are estimated for the best prediction of surface roughness profile in

a least-square sense to the profile of the kMC simulation. This model parameter

estimation process is performed by formulating the nonlinear stochastic KSE into a

system of infinite nonlinear stochastic ODEs and constructing a finite-dimensional

approximation that captures the dominant mode contribution to the state and the

evolution of the state covariance. Subsequently, the finite-dimensional approximation

and the estimated model parameters are used to design state and output feedback

controllers and are applied to the kMC model of the sputtering process. Extensive

closed-loop system simulations demonstrate that the controllers successfully reduce

the expected surface roughness compared to the open-loop simulation results.

Chapter 4 focuses on the development of MPC algorithms for the control of sur-

face roughness. Specifically, a method is developed for MPC of nonlinear stochastic

PDEs to regulate the state variance (surface roughness) to a desired level. The MPC

algorithm is formulated on the basis of the finite-dimensional approximation of the

stochastic PDE that describes the evolution of the thin film surface profile. A linear

closed-loop structure is introduced by applying the nonlinear state feedback controller

developed in Chapter 3. In this way, the future state variance can be predicted in

a computationally efficient way and is compared to a pre-calculated reference tra-
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jectory. The optimization algorithm in the MPC formulation solves for the optimal

pole placement which minimizes the deviation of the prediction from the reference

trajectory. To demonstrate the method, the model predictive controller is applied to

the stochastic KSE and to the kMC model of a sputtering process to regulate the

surface roughness at a desired level.

In Chapters 5, 6, and 7, film porosity, an important thin film property that re-

quires stringent monitoring and control together with the other thin film properties,

is considered. The film porosity is first obtained from a thin film deposition process

modeled on a triangular lattice, which allows vacancies and overhangs to develop.

Appropriate definitions of film site occupancy ratio (SOR), i.e., fraction of film sites

occupied by particles over total number of film sites, and its fluctuation are introduced

to describe film porosity. In Chapter 5, deterministic and stochastic ODE models are

derived to describe the time evolution of film SOR and its fluctuation. The coeffi-

cients of the ODE models are estimated on the basis of data obtained from the kMC

simulator of the deposition process using least-square methods and their dependence

on substrate temperature is determined. The developed dynamic models for the film

SOR are used as the basis for the design of MPC algorithms to regulate the expected

value of film SOR at a desired level and reduce run-to-run fluctuations by manipu-

lating the substrate temperature. Simulation results demonstrate the applicability

and effectiveness of the proposed film porosity modeling and control methods in the

context of the deposition process under consideration.
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Chapters 6 and 7 further extend the systematic methodology of stochastic mod-

eling and MPC algorithm design to simultaneous regulation of film thickness, surface

roughness, and film porosity, the latter of which is represented by film SOR intro-

duced in Chapter 5. An Edward-Wilkinson (EW)-type equation and a deterministic

ODE model are postulated to describe the dynamics and the time evolution of the

surface height profile and of the film SOR. The coefficients of the dynamic equations

of surface height and of film SOR are estimated on the basis of the deposition pro-

cess data for a variety of operating conditions. In Chapter 6, the MPC algorithm

simultaneously regulates the surface roughness and film porosity, and thus, the cost

function includes penalty on the relative deviation of surface roughness square and

film SOR from their respective set-point values. In Chapter 7, the deposition rate is

used as the manipulated input for simultaneous regulation of film porosity, roughness,

and thickness. Since the film thickness is essential in determining the electrical and

mechanical properties of the thin films, a desired minimum value of the film thickness

is included in the MPC formulation together with the desired surface roughness and

film SOR. Simulation results demonstrate the applicability and effectiveness of the

proposed modeling and control approach. It is also demonstrated in the closed-loop

simulations that, when simultaneous control is carried out, a balanced trade-off is

obtained in the closed-loop system between the three control objectives (porosity,

surface roughness, and thickness) depending on the penalty weighting configuration

in the MPC formulation.
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Finally, Chapter 8 summarizes the contributions of this dissertation.
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Chapter 2

Output Feedback Covariance

Control of Surface Roughness

2.1 Introduction

The recent efforts on feedback control and optimization of thin film growth processes

to achieve desired material micro-structure (see, for example, [18, 20, 21] and the

references therein) have been motivated by the fact that the electrical and mechanical

properties of thin films strongly depend on microstructural features such as interface

width, island density and size distributions [2, 54], which significantly affect device

performance. To fabricate thin film devices with high and consistent performance, it

is desirable that the operation of thin film growth processes is tightly controlled.

However, so far, only state feedback covariance controllers have been developed
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for stochastic partial differential equations (PDEs) and used for the control of the

thin film growth process that can be described by the stochastic PDEs [70, 62]. In

the design of a state feedback controller, it is assumed that the full state of the

PDE can be measured in real-time at all positions and times. This assumption is

not practical in many applications, where process output measurements are typically

available from a finite (usually small) number of measurement sensors. Therefore,

there is a strong motivation to develop dynamic output feedback covariance control

methods for stochastic PDEs, which couple a state feedback control law to a dynamic

state-observer that utilizes information from few measurement sensors. The observer-

based covariance control structure for linear stochastic ODE systems was proposed in

[37, 43], in which a Kalman filter is used as a state estimator and the estimated state is

used by the feedback controller. However, the problem of output feedback covariance

control for nonlinear systems and infinite-dimensional systems has not been studied.

In this chapter, a method is developed for dynamic output feedback covariance

control of the state covariance of linear dissipative stochastic PDEs. Spatially dis-

tributed control actuation and sensor measurements with noise are considered when

designing the dynamic output feedback controller. We initially formulate the stochas-

tic PDE into a system of infinite stochastic ODEs by using modal decomposition and

construct a finite-dimensional approximation to capture the dominant mode contri-

bution to the surface covariance of the height profile. Subsequently, a state feedback

controller and a Kalman-Bucy filter are designed on the basis of the finite-dimensional
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approximation. The dynamic output feedback controller is obtained by combining the

state feedback controller and the state estimator. Analysis of the closed-loop stability

and the steady-state surface covariance under the dynamic output feedback controller

are provided for the finite-dimensional approximation and the infinite-dimensional

system. Applications of the linear dynamic output feedback controller to both the

linearized and the nonlinear stochastic Kuramoto-Sivashinsky equation (KSE) are

presented. We also present nonlinear state feedback controller and nonlinear output

feedback controller designs and apply them to the nonlinear stochastic KSE [38].

2.2 Preliminaries

2.2.1 Stochastic PDEs with distributed control

We focus on linear dissipative stochastic PDEs with distributed control of the follow-

ing form:

∂h

∂t
= Ah +

p∑
i=1

bi(x)ui(t) + ξ(x, t) (2.1)

subject to homogeneous boundary conditions and the initial condition h(x, 0) = h0(x),

where x ∈ [−π, π] is the spatial coordinate, t is the time, h(x, t) is the state of the

PDE which corresponds to the height of the surface in a thin film growth process

at position x and time t, A is a dissipative, self-adjoint spatial differential operator,

ui(t) is the ith manipulated input, p is the number of manipulated inputs, and bi(x)

is the ith actuator distribution function, which determines how the control action
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computed by the ith control actuator, ui(t), is distributed (e.g., point or distributed

actuation) in the spatial interval [−π, π]. ξ(x, t) is a Gaussian white noise with the

following expressions for its mean and covariance:

〈ξ(x, t)〉 = 0,

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x− x′)δ(t− t′),

(2.2)

where σ is a real number, δ(·) is the Dirac delta function, and 〈·〉 denotes the expected

value. Note that although 〈·〉 is used to denote the expected value in literature (see,

for example, [45, 91, 53, 66]), an alternative notation, E(·), is also commonly used

(see, for example, [37, 12]). Throughout this work, we use 〈·〉 to denote the expected

value.

Gaussian white noise is chosen as the noise term in the stochastic PDE. The

Gaussian white noise is a natural choice and works well in many process models. For

example, stochastic PDEs with Gaussian white noise are reported in the modeling of

surface height evolution of many microscopic processes, such as random deposition

with surface relaxation, ballistic deposition and sputtering processes [31, 26, 53].

Our objective is to control the surface covariance of the process, Covh, which is

represented by the expected value of the standard deviation of the surface height from

the desired height and is given as follows:

Covh(t) =

〈∫ π

−π

[h(x, t)− hd]
2dx

〉
(2.3)
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where hd(t) is the desired surface height.

To study the dynamics of Eq. (2.1), we initially consider the eigenvalue problem of

the linear spatial differential operator of Eq. (2.1) subject to the operator homogenous

boundary conditions, which takes the form:

Aφ̄n(x) = λnφ̄n(x), n = 1, 2, . . . , (2.4)

where λn and φ̄n denote the nth eigenvalue and eigenfunction, respectively. To sim-

plify our development and motivated by most practical applications, we consider

stochastic PDEs for which A is a highly dissipative, self-adjoint operator (i.e., a

second-order or fourth-order linear self-adjoint operator) and has eigenvalues which

are real and satisfy λ1 ≥ λ2 . . . and the sum
∞∑

i=1,λi 6=0

∣∣∣∣
1

λi

∣∣∣∣ converges to a finite pos-

itive number. Furthermore, the eigenfunctions {φ̄1(x), φ̄2(x), . . . } form a complete

orthonormal set.

To present the method for feedback controller design, we initially formulate Eq. (2.1)

into an infinite-dimensional stochastic ODE system using modal decomposition. To

this end, we first expand the solution of Eq. (2.1) into an infinite series in terms of

the eigenfunctions of the operator A as follows:

h(x, t) =
∞∑

n=1

αn(t)φ̄n(x) (2.5)

where αn(t) (n = 1, 2, . . . ,∞) are time-varying coefficients. Substituting the above
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expansion for the solution, h(x, t), into Eq. (2.1) and taking the inner product with

φ̄n(x), the following system of infinite stochastic ODEs is obtained:

dαn

dt
= λnαn +

p∑
i=1

bn
i ui(t) + ξn(t), n = 1, . . . ,∞ (2.6)

where

bn
i =

∫ π

−π

φ̄n(x)bi(x)dx (2.7)

and

ξn(t) =

∫ π

−π

ξ(x, t)φ̄n(x)dx (2.8)

The covariance of ξn
α(t) can be computed by using the following result:

Result 1 If (1) f(x) is a deterministic function, (2) η(x) is a random variable with

〈η(x)〉 = 0 and covariance 〈η(x)η(x′)〉 = σ2δ(x−x′), and (3) ε =
∫ b

a
f(x)η(x)dx, then

ε is a real random number with 〈ε〉 = 0 and covariance 〈ε2〉 = σ2
∫ b

a
f 2(x)dx [1].

Using Result 1, we obtain 〈ξn(t)ξn(t′)〉 = σ2δ(t− t′).

In this chapter, the controlled variable is the surface covariance defined in Eq. (2.3).

Without loss of generality, we pick hd(t) = 0. Therefore, Covh(t) can be rewritten in

terms of αn(t) as follows [61]:

Covh(t) =

〈∫ π

−π

[h(x, t)− 0]2dx

〉
=

〈∫ π

−π

[
∞∑

n=1

αn(t)φ̄n(x)]2dx

〉

=

〈 ∞∑
n=1

α2
n(t)

〉
=

∞∑
n=1

〈
α2

n(t)
〉
.

(2.9)
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Eq. (2.9) provides a direct link between the surface covariance and the state covariance

of the system of infinite stochastic ODEs of Eq. (2.6).

2.2.2 Model reduction

Owing to its infinite-dimensional nature, the system of Eq. (2.6) cannot be directly

used as a basis for feedback controller design that can be implemented in practice

(i.e., the practical implementation of such a controller will require the computation

of infinite sums which cannot be done by a computer). Instead, we will use finite-

dimensional approximations of the system of Eq. (2.6) for the purpose of model-based

output feedback controller design. Specifically, we rewrite the system of Eq. (2.6) as

follows:
dxs

dt
= Λsxs + Bsu + ξs,

dxf

dt
= Λfxf + Bfu + ξf

(2.10)

where

xs = [α1 . . . αm]T , xf = [αm+1 αm+2 . . . ]T ,

Λs = diag [λ1 . . . λm] , Λf = diag [λm+1 λm+2 . . . ] ,

ξs = [ξ1 . . . ξm]
T

, ξf = [ξm+1 ξm+2 . . . ]
T

,

(2.11)
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and

Bs =




b1
1 . . . b1

p

...
. . .

...

bm
1 . . . bm

p




, Bf =




bm+1
1 . . . bm+1

p

bm+2
1 . . . bm+2

p

...
...

...




. (2.12)

Note that the xs subsystem is mth-order and the xf subsystem is infinite-dimensional.

The expression of Covh in Eq. (2.9) can be rewritten in the following form:

Covh(t) =
m∑

n=1

〈
α2

n(t)
〉

+
∞∑

n=m+1

〈
α2

n(t)
〉

= Tr[Ps(t)] + Tr[Pf(t)]

(2.13)

where Ps and Pf are covariance matrices of the xs and xf which are defined as Ps =

〈xsx
T
s 〉 and Pf = 〈xfx

T
f 〉, respectively. Tr[·] denotes the trace of a matrix.

Neglecting the xf subsystem, the following finite-dimensional approximation is

obtained:

dx̃s

dt
= Λsx̃s + Bsu + ξs (2.14)

and the surface covariance of the infinite-dimensional stochastic system, Covh, can

be approximated by C̃ovh, which is computed from the state of the finite-dimensional

approximation of Eq. (2.14) as follows:

C̃ovh(t) = Tr[P̃s(t)] (2.15)

where the tilde symbol denotes that the variable is associated with the finite-dimensional
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system. See [23, 83, 19] for further results on model reduction of dissipative PDEs.

2.2.3 State feedback control

When the state of the finite-dimensional system of Eq. (2.14) is available, a linear

state feedback controller can be designed to regulate the surface covariance. The

closed-loop finite-dimensional system takes the following form:

dx̃s

dt
= Λsx̃s + Bsu + ξs,

u = Gx̃s,

(2.16)

where G is the gain matrix, which should be carefully designed so as to stabilize

the closed-loop finite-dimensional system and obtain the desired closed-loop surface

covariance. Note that the linear state feedback controller of Eq. (2.16) has been used

to control the surface covariance in both thin film growth and ion-sputtering processes

[61, 60].

Since the above state feedback control assumes a full knowledge of the states of

the process at all positions and times, which may be a restrictive requirement for

certain practical applications, we proceed to design output feedback controllers by

combining the state feedback control law and a state observer.
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2.3 Output feedback control

In this section, we design linear output feedback controllers by combining the state

feedback control law of Eq. (2.16) and a dynamic state observer which estimates the

state of the finite-dimensional system of Eq. (2.14) using the measured process output

with sensor noise. First, a dynamic state observer is developed using a Kalman-Bucy

filter approach, which yields an optimal estimate of the state of the finite-dimensional

system by minimizing the mean square estimation error. The dynamic state observer

is then coupled to the state feedback controller of Eq. (2.16) to construct a dynamic

output feedback controller. For the special case where the number of measurement

sensors is equal to the order of the finite-dimensional system, a static output feedback

controller may be designed by following a static state estimation approach proposed

in [10, 22].

2.3.1 Measured output with sensor noise

The state feedback controller of Eq. (2.16) requires the availability of the state x̃s,

which implies that the value of the surface height profile, h(x, t), is available at any

location and time. However, from a practical point of view, measurements of the

surface height profile are only available at a finite number of locations. Motivated by

this, we design an output feedback controller that uses measurements of the surface

height at distinct locations to enforce a desired closed-loop surface covariance. The

sensor noise is modeled as a Gaussian white noise and is added to the surface height
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measurements. Specifically, the measured process output is expressed as follows:

y(t) =
[
h(x1, t) + ξ1

y(t) h(x2, t) + ξ2
y(t) . . . h(xq, t) + ξq

y(t)
]T (2.17)

where xi (i = 1, 2, . . . , q) denotes a location of a point measurement sensor and q is

the number of measurement sensors. ξ1
y(t), ξ2

y(t), . . . , ξq
y(t) are independent Gaussian

white noises with the following expressions for their means and covariances:

〈ξi
y(t)〉 = 0, i = 1, 2, . . . q,

〈ξi
y(t)ξ

j
y(t

′)〉 = ς2δijδ(t− t′), i = 1, 2, . . . q, j = 1, 2, . . . q,

(2.18)

where ς is a constant and δij is the Kronecker delta function. Note that the sensor

noises are independent of the system noises, ξs and ξf .

Using Eq. (2.5), the vector of measured outputs, y(t), can be written in terms of

xs and xf as follows:

y(t) =




∞∑
n=1

αn(t)φn(x1) + ξ1
y(t)

∞∑
n=1

αn(t)φn(x2) + ξ2
y(t)

...
∞∑

n=1

αn(t)φn(xq) + ξq
y(t)




= Csxs(t) + Cfxf(t) + ξy(t)

(2.19)
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where

Cs =




φ1(x1) φ2(x1) . . . φm(x1)

φ1(x2) φ2(x2) . . . φm(x2)

...
...

. . .
...

φ1(xq) φ2(xq) . . . φm(xq)




,

Cf =




φm+1(x1) φm+2(x1) . . .

φm+1(x2) φm+2(x2) . . .

...
...

. . .

φm+1(xq) φm+2(xq) . . .




,

(2.20)

and

ξy(t) =
[
ξ1
y(t) ξ2

y(t) . . . ξq
y(t)

]T
. (2.21)

Consequently, the system of Eq. (2.10) with the measured process output vector

can be written as follows:

dxs

dt
= Λsxs + Bsu + ξs,

dxf

dt
= Λfxf + Bfu + ξf ,

y = Csxs + Cfxf + ξy.

(2.22)

Neglecting the xf subsystem, the following finite-dimensional stochastic ODE sys-
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tem can be obtained:
dx̃s

dt
= Λsx̃s + Bsu + ξs,

ỹ = Csx̃s + ξy,

(2.23)

where the tilde symbols in x̃s and ỹ denote the correspondence to a reduced-order

system. The system of Eq. (2.23) is used as the basis for output feedback controller

design.

2.3.2 Dynamic output feedback control

To design a dynamic output feedback controller, we first construct a dynamic state

estimator using information from the measured output vector. Specifically, a Kalman-

Bucy filter is designed for the optimal estimation of the state of the finite-dimensional

system of Eq. (2.23) as follows [37]:

dx̂s

dt
= Λsx̂s + Bsu + K(y − Csx̂s), x̂s(0) = x̂s0 (2.24)

where x̂s is the estimate of the state and K is a gain matrix, which is computed as

follows [37]:

K = QCT
s V −1

y (2.25)

where Vy is the sensor noise intensity matrix and satisfies

〈ξy(t)ξy(t
′)T 〉 = Vyδ(t− t′) (2.26)
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and Q is the covariance matrix for the state estimation error and is defined as follows:

Q = lim
t→∞

〈ẽ(t)ẽ(t)T 〉 (2.27)

where ẽ(t) is the estimation error

ẽ = x̃s − x̂s. (2.28)

The covariance matrix for the state estimation error, Q, is the unique nonnegative-

definite solution of the following algebraic Riccati equation [37]:

ΛsQ + QΛs −QCT
s V −1

y CsQ + Vs = 0 (2.29)

where Vs is the noise intensity matrix of the ξs and satisfies

〈ξs(t)ξs(t
′)T 〉 = Vsδ(t− t′). (2.30)

The dynamic output feedback controller is designed by combining the state feed-

back controller of Eq. (2.16) and the state estimator of Eq. (2.24) and takes the

following form:

dx̂s

dt
= Λsx̂s + Bsu + K(y − Csx̂s), x̂s(0) = x̂s0,

u = Gx̂s.

(2.31)
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By applying the dynamic output feedback controller of Eq. (2.31) to the finite-

dimensional system of Eq. (2.23), the following closed-loop finite dimensional system

can be obtained as follows:

dx̃s

dt
= Λsx̃s + Bsu + ξs,

ỹ = Csx̃s + ξy,

dx̂s

dt
= Λsx̂s + Bsu + K(ỹ − Csx̂s),

u = Gx̂s.

(2.32)

The closed-loop finite dimensional system of Eq. (2.32) can be written in terms of x̃s

and e using Eq. (2.28) as follows:

dx̃s

dt
= (Λs + BsG)x̃s −BsGẽ + ξs,

dẽ

dt
= (Λs −KCs)ẽ + ξs −Kξy.

(2.33)

The stability of the closed-loop finite-dimensional system of Eq. (2.33) depends on

the stability properties of the matrices (Λs + BsG) and (Λs − KCs). Specifically,

the stability of (Λs + BsG) depends on the appropriate design of the state feedback

controller and the stability of (Λs −KCs) depends on the appropriate design of the

Kalman-Bucy filter. Owing to its cascaded structure, the system of Eq. (2.33) is

asymptotically stable if both (Λs + BsG) and (Λs − KCs) are stable matrices. A

stable matrix is a matrix whose eigenvalues have all negative real parts. This results

in the existence of a steady-state covariance matrix (e.g., a covariance matrix as
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t → ∞) of the closed-loop stochastic system [37]. To investigate the steady-state

covariance matrix of the closed-loop system of Eq. (2.33), we rewrite Eq. (2.33) as

follows:

d

dt




x̃s

ẽ


 =




Λs + BsG −BsG

0 Λs −KCs







x̃s

ẽ


 +




Is 0

Is −K







ξs

ξy


 (2.34)

where Is is a mth-order elementary matrix and 0 denotes a zero matrix with an

appropriate size.

The steady-state covariance matrix of the system of Eq. (2.34) is defined as follows:

P̃ = lim
t→∞

〈



x̃s(t)

ẽ(t)




[
x̃s(t)

T ẽ(t)T
]
〉

=




P̃s P̃se

P̃es P̃e


 (2.35)

where P̃s, P̃e, P̃se and P̃es are covariance matrices of the following form:

P̃s = lim
t→∞

〈x̃s(t)x̃s(t)
T 〉,

P̃e = lim
t→∞

〈ẽ(t)ẽ(t)T 〉,

P̃se = P̃ T
es = lim

t→∞
〈x̃s(t)ẽ(t)

T 〉,

(2.36)

where P̃ is the unique positive-definite solution of the following Lyapunov equation
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[37]:




Λs + BsG −BsG

0 Λs −KCs


 P̃ + P̃




Λs + BsG −BsG

0 Λs −KCs




T

+




Is 0

Is −K







Vs 0

0 Vy







Is 0

Is −K




T

= 0.

(2.37)

When the solution of P̃ is available, the surface covariance of the finite-dimensional

system, C̃ovh, can be obtained by using only P̃s.

Remark 2.1 The surface covariance of the closed-loop finite-dimensional system,

C̃ovh under the linear output feedback controller of Eq. (2.31), can be solved from

the Lyapunov equation of Eq. (2.37) with gain matrices G and K obtained from the

separate designs of the state feedback control law of Eq. (2.16) and of the Kalman-

Bucy filter of Eqs. (2.25) and (2.29). However, for a set-point regulation problem with

a pre-specified desired surface covariance, C̃ovd, the above procedure is not directly

applicable. Instead, an iterative procedure can be adopted to design the matrices G

and K to approach a desired set-point in the closed-loop system. Specifically, the state

feedback controller can be first designed so that the set-point value can be achieved

when the full state of the finite-dimensional system is accessible by the controller (see

Section 3.2 in [60] for more details on the state feedback gain design). This design

will result in a control gain matrix, G1 in the state feedback controller. Then, a
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Kalman filter can be designed separately to compute the Kalman filter gain matrix,

K1, by solving the Riccati equation. Subsequently, the surface covariance under the

resulting output feedback controller (K1, G1), C̃ovh,1, can be obtained by solving the

Lyapunov equation of Eq. (2.37). Due to the fact that less information of the surface

state is used in the output feedback controller compared to the corresponding state

feedback controller, estimation error always exists. Therefore, the closed-loop surface

covariance, C̃ovh,1, will be different from the set-point value, C̃ovd. To enable the

use of an iterative procedure to improve upon C̃ovh,1, a second set-point value for

surface covariance, C̃ovd,2, is used to solve for another pair of gain matrices G2

and K2. A new C̃ovh,2 under the output feedback controller with gain matrices G2

and K2 is then obtained, which results in a different closed-loop surface covariance,

C̃ovh,2. With the two sets of data as initial guesses, we can start an iterative procedure

using, for example, Secant’s method to solve for Ki, Gi that result in a closed-loop

surface covariance, C̃ovh,i sufficiently close to the desired surface covariance, C̃ovd.

The iterative procedure terminates when the difference between the closed-loop finite-

dimensional surface covariance under output feedback control is sufficiently close to

the desired value C̃ovd.

2.3.3 Analysis of closed-loop infinite-dimensional system

We now proceed to characterize the accuracy with which the surface covariance in the

closed-loop infinite-dimensional system is controlled by the finite-dimensional linear
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dynamic output feedback controller. By applying the controller of Eq. (2.31) to the

infinite-dimensional system of Eq. (2.10) and substituting the estimation error in

Eq. (2.28), the infinite-dimensional closed-loop system takes the following form:

dxs

dt
= (Λs + BsG)xs −BsGe + ξs,

de

dt
= (Λs −KCs)e−KCfxf + ξs −Kξy,

ε
dxf

dt
= Λfεxf + ε(BfGxs −BfGe) + εξf ,

(2.38)

where e is the estimation error from the full-order system and is defined as e = xs−x̂s,

ε =
|λ1|
|λm+1| , and Λfε = εΛf is an infinite-dimensional stable matrix.

The infinite-dimensional system of Eq. (2.38) is then a singularly-perturbed system

driven by white noise. We now proceed to characterize the accuracy with which

the surface covariance is controlled in the closed-loop infinite-dimensional system.

Theorem 2.1 provides a characterization of the surface covariance enforced by the

dynamic output feedback controller in the closed-loop infinite dimensional system.

Theorem 2.1 Consider the surface covariance of the finite-dimensional system of

Eq. (2.33), C̃ovh,

P̃s = lim
t→∞

〈x̃s(t)x̃s(t)
T 〉, C̃ovh = Tr{P̃s}, (2.39)
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and the surface covariance of the infinite-dimensional system of Eq. (2.38), Covh,

x =




xs

xf


 , P = lim

t→∞
〈x(t)x(t)T 〉, Covh = Tr{P}, (2.40)

where 〈·〉 denotes the expected value. Then, there exists ε∗ > 0 such that if ε ∈ (0, ε∗],

C̃ovh and Covh satisfy:

Covh = C̃ovh + O(
√

ε). (2.41)

Proof of Theorem 2.1. The proof of Theorem 2.1 includes several steps. First, we

prove that the closed-loop infinite-dimensional system of Eq. (2.38) is exponentially

stable for sufficiently small ε. Second, we prove that the contribution to the surface

covariance from the xf subsystem of Eq. (2.38) is O(ε), i.e.,

Covhf = Tr{Pf} = O(ε) (2.42)

where Covhf is the contribution to the surface covariance from the xf subsystem of

Eq. (2.38) and Pf is the covariance matrix defined as:

Pf = lim
t→∞

〈xf(t)xf(t)
T 〉. (2.43)

Then, we prove that the contribution to the surface covariance from the xs subsystem
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of Eq. (2.38) is as follows:

Covhs = Tr{Ps} = C̃ovh + O(
√

ε) (2.44)

where C̃ovh, defined in Eq. (2.15), is the surface covariance of the closed-loop finite-

dimensional system of Eq. (2.33), and Ps is the covariance matrix of xs in Eq. (2.38),

which is defined as:

Ps = lim
t→∞

〈xs(t)xs(t)
T 〉. (2.45)

Finally, the proof of Theorem 2.1 is completed by proving Eq. (2.41) based on the

results in Eqs. (2.42) and (2.44).

Closed-loop infinite dimensional system stability. Referring to the closed-loop

infinite-dimensional system of Eq. (2.38), we note that the fast subsystem (obtained

by re-writing the system of Eq. (2.38) in the fast time scale τ = t/ε and setting ε = 0)

takes the form:

dx̄f

dτ
= Λfεx̄f . (2.46)

Due to the eigenspectrum of the linear operator of Eq. (2.1), all eigenvalues of Λfε

have negative real parts. Thus, the system of Eq. (2.46) is exponentially stable.

Setting ε = 0 in the system of Eq. (2.38), the closed-loop finite dimensional system

is obtained:
dx̃s

dt
= (Λs + BsG)x̃s −BsGẽ + ξs,

dẽ

dt
= (Λs −KCs)ẽ + ξs −Kξy,

(2.47)
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which is exponentially stable since the matrices (Λs +BsG) and (Λs−KCs) are stable

matrices by design. Therefore, there exists (following similar arguments to Theorem

A.1 in [49, p. 361]) a positive real number ε̂ such that ∀ε ∈ (0, ε̂] the zero solution of

the closed-loop infinite-dimensional system of Eq. (2.38) is exponentially stable.

Proof of Eq. (2.42). We first note that the terms in the right-hand-side of the xf

subsystem of Eq. (2.38) constitute an O(ε) approximation to the term Λfεxf . Consider

also the following linear system:

ε
dx̄f

dt
= Λfεx̄f + εξf

(2.48)

which is exponentially stable. The exponential stability of the closed-loop infinite-

dimensional system of Eq. (2.38) ensures that the zero solution of the xf subsystem of

Eq. (2.38) is exponentially stable, which guarantees that as t →∞, Covhf converges

to a finite value. Now, we follow a similar approach to the one employed in the

proof of Theorem A.1 in [49, p. 361] to compute the theoretical estimate of Covhf .

Specifically, we have that there exists an ε̂∗ > 0 such that if ε ∈ (0, ε̂∗], we have that:

xf(t) = x̄f(t) + O(
√

ε). (2.49)

Therefore, we have the following estimate for 〈‖xf(t)‖2
2〉:

〈‖xf(t)‖2
2〉 = 〈‖x̄f(t) + O(

√
ε)‖2

2〉 ≤ 2〈‖x̄f(t)‖2
2〉+ O(ε) (2.50)
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where 〈·〉 denotes the expected value and ‖ · ‖2 is the standard Euclidean norm. Note

that 〈‖xf(t)‖2
2〉 and 〈‖x̄f(t)‖2

2〉 are equal to the traces of the covariance matrices of xf(t)

and x̄f(t), i.e., 〈xf(t)xf(t)
T 〉 = Pf(t) and 〈x̄f(t)x̄f(t)

T 〉 = P̄f(t), respectively. Finally,

as t → ∞, Pf(t) and P̄f(t) converge to Pf and P̄f , respectively (both Pf and P̄f are

bounded quantities which follows from closed-loop stability). Because Λfε is a stable

diagonal matrix, the trace of matrix P̄f can be computed as follows [60]:

Tr{P̄f} =
ε

2

∞∑
i=1

∣∣∣∣
1

λεi

∣∣∣∣ (2.51)

where λεi (i = 1, 2, . . . ,∞) are the eigenvalues of the matrix Λfε in Eq. (2.48). Due

to the structure of the eigenspectrum of the linear operator of Eq. (2.4),
∞∑
i=1

∣∣∣∣
1

λεi

∣∣∣∣
converges to a finite positive number, and thus, there exists a positive real number

kfε such that

Tr{P̄f} <
ε

2
kfε. (2.52)

Therefore, it follows that

Tr{P̄f} = 〈‖x̄f(∞)‖2
2〉 = O(ε). (2.53)

According to Eq. (2.50), it follows that the contribution to the surface covariance

from the state xf of the infinite-dimensional system of Eq. (2.38) is O(ε), i.e.,:

Covhf = Tr{Pf} = Tr{P̄f}+ O(ε) = O(ε) + O(ε) = O(ε). (2.54)
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This completes the proof of Eq. (2.42). ¤

Proof of Eq. (2.44). We now focus on the xs subsystem and the equation for the

estimation error, e, in Eq. (2.38).

d

dt




xs

e


 =




Λs + BsG −BsG

0 Λs −KCs







xs

e




+




0

−KCf


 xf +




Is 0

Is −K







ξs

ξy


 .

(2.55)

Let k1s be a positive real number satisfying k1s > ‖KCf‖2 and we have the following:

‖KCfxf‖2 < ‖KCf‖2 · ‖xf‖2 < k1s‖xf‖2. (2.56)

From Eq. (2.49), we have the following estimate for ‖xf‖2 for t ≥ tb (where tb is the

time needed for ‖x̄f(t)‖2 to approach zero and tb → 0 as ε → 0):

‖xf(t)‖2 = O(
√

ε). (2.57)

This implies that we have the following estimate for KCfxf(t) for t ≥ tb:

KCfxf(t) = O(
√

ε). (2.58)
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Furthermore, the exponential stability of the closed-loop infinite-dimensional system

of Eq. (2.38) ensures that the zero solution of the Eq. (2.55) is exponentially stable.

Therefore, as t → ∞, Covhs converges to a finite value. We now proceed to provide

a theoretical estimate for Covhs. We first consider the equations for the estimation

errors in both Eqs. (2.33) and (2.38). The estimation error of the finite-dimensional

system of Eq. (2.33), ẽ, is described by the following equation:

dẽ

dt
= (Λs −KCs)ẽ + ξs −Kξy. (2.59)

The estimation error of the infinite-dimensional system of Eq. (2.38), e, is as follows:

de

dt
= (Λs −KCs)e−KCfxf + ξs −Kξy. (2.60)

According to Eq. (2.58), the solution of Eq. (2.59) consists an O(
√

ε) approximation

of the solution of Eq. (2.60) [49, Theorem A.1, p. 361]. In particular, there exists an

ε̂∗∗ > 0 such that for all ε ∈ (0, ε̂∗∗], it holds that:

e(t)− ẽ(t) = O(
√

ε). (2.61)

Based on Eq. (2.61), the right-hand-side of the x̃s system of Eq. (2.33) constitutes

an O(
√

ε) approximation to the right-hand-side of the xs subsystem of Eq. (2.38).

Therefore, the solution for x̃s of Eq. (2.33) consists an O(
√

ε) approximation of the
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solution for the xs of Eq. (2.38) [49, Theorem A.1, p. 361]. In particular, there exists

an ε̂∗∗∗ > 0 such that for all ε ∈ (0, ε̂∗∗∗], it holds that:

xs(t)− x̃s(t) = O(
√

ε) (2.62)

and

‖xs(t)‖2
2 − ‖x̃s(t)‖2

2 = (‖xs(t)‖2 − ‖x̃s(t)‖2) · (‖xs(t)‖2 + ‖x̃s(t)‖2) = O(
√

ε). (2.63)

Because ‖xs(t)‖2 and ‖x̃s(t)‖2 are bounded for all t > 0, 〈‖xs(t)‖2
2〉 and 〈‖x̃s(t)‖2

2〉 are

equal to the traces of the covariance matrices of xs(t) and x̃s(t), i.e., 〈xs(t)xs(t)
T 〉 =

Ps(t) and 〈x̃s(t)x̃s(t)
T 〉 = P̃s(t), respectively. Immediately, it follows that:

Covhs = Tr{Ps} = Tr{P̃s}+ O(
√

ε) = C̃ovh + O(
√

ε). (2.64)

This completes the proof of Eq. (2.44). ¤

Proof of Eq. (2.41) in Theorem 2.1. The surface covariance from the closed-loop

infinite-dimensional system of Eq. (2.38), Covh, includes contributions from both xs

and xf subsystems of Eq. (2.38). Therefore, we have the following equation for Covh:

Covh = Covhs + Covhf (2.65)

where Covhf and Covhs are defined in Eqs. (2.42) – (2.45). Using Eqs. (2.42) and

40



(2.44), we immediately have:

Covh = C̃ovh + O(
√

ε) + O(ε). (2.66)

Since as ε → 0, it holds that:

O(ε)

O(
√

ε)
→ 0. (2.67)

Therefore, the O(ε) term in Eq. (2.66) is very small relative to the term O(
√

ε) and

can be neglected. There exists an ε∗ = min(ε̂, ε̂∗, ε̂∗∗, ε̂∗∗∗) such that if ε ∈ (0, ε∗], then

Covh = C̃ovh + O(
√

ε). (2.68)

This completes the proof of Theorem 2.1. ¥

Remark 2.2 The minimum number of sensors required for the operation of the

Kalman-Bucy filter is the number that satisfies the observability requirement of the

system, which is typically a small number. If more measurement sensors are avail-

able, it may result in improved state estimation and closed-loop performance since

more information of the surface profile is available for state estimation. However,

a small number of measurement sensors is favorable in many applications when the

cost and complexity of the overall control system is a concern. Further discussion

regarding the selection of measurement sensors is provided in Section 2.4.

Remark 2.3 In the special case where the number of sensors is equal to the order of
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the xs subsystem, i.e., q = m, a static output feedback controller can be designed, by

following the state estimation method developed in [10, 22, 19], to estimate the state

of the finite-dimensional system, x̃s, directly from the measured output, y, and the

resulting static output feedback controller takes the form:

x̂s = C−1
s y,

u = Gx̂s.

(2.69)

Note that the same state feedback control law of Eq. (2.16) is used in the static output

feedback controller of Eq. (2.69).

2.4 Simulation results

In this section, we first present applications of the proposed linear output feedback

covariance controller to the linearized stochastic KSE to demonstrate the effective-

ness of the proposed output feedback covariance controllers. Then, both linear and

nonlinear covariance control of the nonlinear stochastic KSE are considered. A non-

linear output feedback covariance controller is first developed by combining the linear

state feedback control law and a nonlinear state observer and is applied to the nonlin-

ear stochastic KSE. Finally, nonlinear state feedback controller and nonlinear output

feedback controller designs are presented and applied to the nonlinear KSE.
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2.4.1 Linearized stochastic KSE

The stochastic KSE is a fourth-order nonlinear stochastic PDE that describes the

evolution of the height fluctuation for surfaces in a variety of material preparation

processes including surface erosion by ion sputtering [26, 53], surface smoothing by

energetic clusters [42] and ZrO2 thin film growth by reactive ion beam sputtering

[73]. The linearized stochastic KSE around the zero solution (h(x, t) = 0) takes the

following form:

∂h

∂t
= −∂2h

∂x2
− κ

∂4h

∂x4
+

p∑
i=1

bi(x)ui(t) + ξ(x, t),

y(t) =
[
h(x1, t) + ξ1

y(t) h(x2, t) + ξ2
y(t) . . . h(xq, t) + ξq

y(t)
]T

,

(2.70)

subject to periodic boundary conditions (PBCs):

∂jh

∂xj
(−π, t) =

∂jh

∂xj
(π, t), j = 0, 1, 2, 3, (2.71)

and the initial condition h(x, 0) = h0(x), where x ∈ [−π, π] is the spatial coordinate

and κ > 0 is the instability parameter of the stochastic KSE.
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The eigenvalue problem of the linear operator of Eq. (2.70) takes the form:

Aφ̄n(x) = −d2φ̄n(x)

dx2
− κ

d4φ̄n(x)

dx4
= λnφ̄n(x),

djφ̄n

dxj
(−π) =

djφ̄n

dxj
(π),

j = 0, 1, 2, 3, n = 1, 2, . . . ,∞.

(2.72)

A direct computation of the solution of the above eigenvalue problem yields λ0 = 0

with ψ0 = 1/
√

2π, and λn = n2 − κn4 (λn is an eigenvalue of multiplicity two) with

eigenfunctions φn = (1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞. Note

that the φ̄n in the general eigenvalue problem formulation of Eq. (2.4) denotes either

φn or ψn. From the expression of the eigenvalues, it follows that for a fixed value of

κ > 0, the number of unstable eigenvalues of the operator A in Eq. (2.72) is finite

and the distance between two consecutive eigenvalues (i.e., λn and λn+1) increases as

n increases.

For 0 < κ < 1, the operator of Eq. (2.4) possesses unstable eigenvalues. Thus, the

zero solution of the open-loop system of Eq. (2.70) is unstable, which implies that

the surface covariance increases with time due to the open-loop instability of the zero

solution. An appropriately designed feedback controller is necessary to regulate the

surface covariance to a desired value.

Using modal decomposition, the linearized stochastic KSE is formulated into an
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infinite-dimensional stochastic ODE system as follows:

dαn

dt
= (n2 − κn4)αn +

p∑
i=1

biαnui(t) + ξn
α(t), n = 1, . . . ,∞,

dβn

dt
= (n2 − κn4)βn +

p∑
i=1

biβnui(t) + ξn
β (t), n = 0, 1, . . . ,∞.

(2.73)

A finite-dimensional approximation of Eq. (2.73) can be then derived by neglecting

the fast modes (i.e., modes of order (m + 1) and higher) and a system of the form of

Eq. (2.14) is obtained for covariance controller design.

A linear state feedback controller is initially designed on the basis of the finite-

dimensional approximation by following the method proposed in [60], which takes the

following form:

u = B−1
s (Λcs − Λs) x̃s (2.74)

where the matrix Λcs contains the desired poles of the closed-loop system; Λcs =

diag[λcβ0 λcα1 . . . λcαm λcβ1 . . . λcβm]. λcβ0, λcαi and λcβi (i = 1, . . . ,m) are desired

poles of the closed-loop finite-dimensional system, which satisfy Re{λcαi} < 0 for

i = 1, . . . , m and Re{λcβi} < 0 for i = 0, 1, . . . ,m. By applying the controller in

Eq. (2.74), the dynamics of the closed-loop finite-dimensional system is fully described

by the matrix Λcs.

To simplify the development, we assume that p = 2m + 1 (i.e., the number of

control actuators is equal to the dimension of the finite dimensional system) and pick
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the actuator distribution functions, bi(x), to have the following form:

bi(x) =





1√
2π

, i = 1,

1√
π

sin[(i− 1)x], i = 2, . . . , m + 1,

1√
π

cos[(i−m− 1)x], i = m + 2, . . . , 2m + 1.

(2.75)

Note that the actuator distribution functions are selected such that B−1
s exists. The

following parameters are used in the simulation:

κ = 0.1, σ = 1, ς = 0.1, m = 5. (2.76)

We design the linear state feedback controller such that all the desired poles in Λcs

are equal to −10. The surface covariance of the infinite-dimensional system under

the state feedback controller is 0.55. The method to determine the values of the

closed-loop poles to regulate the surface covariance to a set-point value can be found

in [60] and is omitted here for brevity.

Eleven measurement sensors are used and are evenly placed on the spatial domain

[−π, π]. A flat initial surface is assumed and zero initial state estimates are used for

all simulations.

h0(x) = 0, xs(0) = x̂s(0) = 0, xf(0) = 0. (2.77)

A 50th order stochastic ODE approximation of Eq. (2.70) is used to simulate the
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process. The stochastic ODEs are solved using Euler-Maruyama approximation with

time discretization size of ∆t = 10−4. The choices of the truncation order and time

discretization size lead to the convergence of the solution. Since it is a stochastic

process, the surface covariance profile is obtained by averaging the results of 1000

independent simulation runs using the same parameters to produce a smooth profile

of surface covariance evolution.

Remark 2.4 In this chapter, the sensors are uniformly placed in the whole spatial

domain and the simulation results show that this is a good choice in the sense that

the placement results in good closed-loop performance under output feedback control.

In general, the optimal sensor placement should be determined so that the state esti-

mation error is minimized. A systematic solution for the problem for optimal sensor

placement for stochastic distributed parameter systems is currently lacking but is out-

side of the scope of the current work.

2.4.2 Linear dynamic output feedback control of linearized

stochastic KSE

In the closed-loop simulation under linear dynamic output feedback control, a Kalman-

Bucy filter is designed to estimate the state of the finite-dimensional system. The gain

matrix K is obtained from the solution of the algebraic Riccati equation of Eqs. (2.25)

and (2.29). C̃ovh is the surface covariance of the closed-loop finite-dimensional system

under the finite-dimensional output feedback covariance controller and is the solution
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of the Lyapunov equation of Eq. (2.37). According to Theorem 2.1, C̃ovh is an O(
√

ε)

approximation of the closed-loop surface covariance of the infinite-dimensional sys-

tem, Covh, i.e., the closed-loop surface covariance of the infinite-dimensional system

is an O(
√

ε) approximation of the desired value. To regulate the surface covariance

to a desired value, the ε should be sufficiently small, which can be achieved by appro-

priately selecting the size of the finite-dimensional approximation used for covariance

controller design. In this design, when m = 5, ε = 0.01, which is a sufficiently small

number compared to the desired closed-loop surface covariance.

Since we use 11 measurement sensors, q = 2m+1 and the observer gain matrix is a

square matrix. The desired surface covariance is 1.1347. Based on this desired surface

covariance, the gain matrices for both the state observer, K, and the state feedback

control law, G, are determined via the iterative procedure of Remark 2.1. Note that

because of the existence of the sensor noise, the surface covariance under the output

feedback covariance controller is higher than the one under state feedback control

where the same gain matrix, G is used and the full state of the surface is accessible.

The closed-loop simulation result under the dynamic output feedback controller with

11 measurement sensors is shown in Figure 2.1. The controller successfully drives

the surface covariance of the closed-loop infinite-dimensional system to a level which

is within the range of the theoretical estimate of Theorem 2.1, i.e.,
√

ε ' 0.1 and

Covh = C̃ovh + O(0.1). The result shown in Figure 2.1 also confirms that the surface

covariance contribution from the xf subsystem is negligible and that the contribution
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Figure 2.1: The closed-loop surface covariance under linear dynamic output feedback
control using 11 measurement sensors. The horizontal dashed lines represent the
range in which the surface covariance Covh is expected to be based on the theoretical
estimates of Theorem 2.1.

from the xs subsystem is dominant. Therefore, the design of the output feedback

covariance controller based on the xs subsystem can regulate the surface covariance

of the infinite-dimensional closed-loop system to the desired level.

For dynamic output feedback control design, the number of the measurements is

not needed to be equal to the dimension of the finite-dimensional system. A number

of measurement sensors that is larger than the dimension of the finite-dimensional

system results in a more accurate state estimation from the Kalman-Bucy filter.

Therefore, the closed-loop surface covariance can be closer to the set-point value

compared to the one in which the number of measurement sensors is equal to the

dimension of the finite-dimensional system. On the other hand, when the number
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of the measurement sensors is smaller than the dimension of the finite-dimensional

system but is equal to or larger than the number of unstable modes of the system, it

is still possible to design a stable Kalman-Bucy filter for state estimation. Figure 2.2

shows the comparison of closed-loop simulation results when different numbers of

measurement sensors are used for state estimation. The feedback control law is the

same for all simulations. Specifically, Figure 2.2 shows results from three closed-loop

simulation runs with 7, 11 and 15 measurement sensors. It is clear that the control

system which uses a larger number of measurement sensors is capable of controlling

the surface covariance to a lower level. On the other hand, since the dimension of the

finite-dimensional system is 11, it is possible to stabilize the surface covariance to a

finite value when the number of measurement sensors is smaller than the dimension

of the finite-dimensional system.

However, there is a minimum number of measurement sensors required by the

dynamic output feedback controller to stabilize the system. In this study, a minimum

of 7 measurement sensors are required. When the number of measurement sensors is

fewer than the minimum number, 7, the output feedback controller cannot stabilize

the closed-loop system. In Figure 2.3, we show the closed-loop simulation result

under a linear dynamic output feedback controller using 6 measurement sensors. The

surface covariance of the closed-loop system under such a controller is not stabilized

to a finite value.
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Figure 2.2: Comparison of the surface covariance under linear dynamic output feed-
back controllers with 7, 11 and 15 measurement sensors.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Time

S
ur

fa
ce

 C
ov

ar
ia

nc
e

Linearized Stochastic KSE

 

 

Figure 2.3: The closed-loop profile of the surface covariance under linear dynamic
output feedback control with 6 measurement sensors.
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2.4.3 Dynamic output feedback control of nonlinear stochas-

tic KSE

In this subsection, the application of dynamic output feedback controllers to the non-

linear stochastic KSE is considered. We first formulate the nonlinear stochastic KSE

into an infinite-dimensional nonlinear stochastic ODE system and a finite-dimensional

approximation is derived as a basis for controller design. In addition to the linear

output feedback controller, a nonlinear dynamic output feedback controller is also

designed by combining a nonlinear state feedback controller developed in [62] and

an appropriate nonlinear state estimator. Both linear and nonlinear dynamic output

feedback controllers are applied to the nonlinear stochastic KSE and the closed-loop

performance under both controllers is compared.

The nonlinear stochastic KSE with distributed control and measured output with

sensor noise takes the following form:

∂h

∂t
= −∂2h

∂x2
− κ

∂4h

∂x4
+

(
∂h

∂x

)2

+

p∑
i=1

bi(x)ui(t) + ξ(x, t),

y(t) =
[
h(x1, t) + ξ1

y(t) h(x2, t) + ξ2
y(t) . . . h(xq, t) + ξq

y(t)
]T

,

(2.78)

subject to PBCs:

∂jh

∂xj
(−π, t) =

∂jh

∂xj
(π, t), j = 0, 1, 2, 3, (2.79)

and the initial condition:

h(x, 0) = h0(x). (2.80)
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The variables are defined in the same way as those in Eq. (2.70). Following a sim-

ilar approach to the one presented in Section 2.4.1, the following system of infinite

nonlinear stochastic ODEs with distributed control can be obtained:

dαn

dt
= (n2 − κn4)αn + fnα +

p∑
i=1

biαnui(t) + ξn
α(t), n = 1, 2, . . . ,∞,

dβn

dt
= (n2 − κn4)βn + fnβ +

p∑
i=1

biβnui(t) + ξn
β (t), n = 0, 1, . . . ,∞,

(2.81)

where

fnα =

∫ π

−π

φn(x)

( ∞∑
j=1

αj(t)
dφj

dx
(x) +

∞∑
j=0

βj(t)
dψj

dx
(x)

)2

dx,

fnβ =

∫ π

−π

ψn1(x)

( ∞∑
j=1

αj(t)
dφj

dx
(x) +

∞∑
j=0

βj(t)
dψj

dx
(x)

)2

dx.

(2.82)

The system of Eq. (2.81) can be rewritten in the following form with the measured

output:

dxs

dt
= Λsxs + fs(xs, xf) + Bsu + ξs,

dxf

dt
= Λfxf + ff(xs, xf) + Bfu + ξf ,

y = Csxs + Cfxf + ξy.

(2.83)

Note that the dimension of the xs subsystem is 2m + 1 and the xf subsystem is

infinite-dimensional.

In the closed-loop simulation of the nonlinear stochastic KSE, we use the same

actuator distribution functions, same value of the model parameter, κ, and same ini-
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Figure 2.4: The closed-loop surface covariance profile of the nonlinear stochastic
KSE under linear dynamic output feedback control with 11 measurement sensors.
The horizontal dashed lines represent the range in which the surface covariance Covh

is expected to be based on the theoretical estimates of Theorem 2.1.

tial conditions as those used in the closed-loop simulation of the linearized stochastic

KSE. The linear dynamic output feedback controller developed in Section 2.4.2 is

applied to the nonlinear stochastic KSE using 11 measurement sensors. A 50th order

stochastic ODE approximation of Eq. (2.70) is used to simulate the nonlinear process.

The closed-loop simulation result of the nonlinear stochastic KSE under the linear

dynamic output feedback controller is shown in Figure 2.4. The surface covariance

is stabilized to a finite-value under the linear output feedback covariance controller,

since the controller is designed to stabilize the linear part of the system of Eq. (2.22).

Therefore, when we apply the linear controller to the nonlinear system, the closed-
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loop system is locally stable. Although the nonlinear system is stabilized, there is

a relatively big error between the closed-loop surface covariance and the set-point

value, C̃ovh. As shown in Figure 2.4, this error is outside of the approximation

error boundaries, O(
√

ε), and thus it is not due to the use of a finite-dimensional

approximation of the stochastic KSE for control design. This error is due to the

nonlinearity of the system, which is not explicitly accounted for in the controller

design. Therefore, a nonlinear controller is necessary to improve the closed-loop

performance.

Nonlinear state feedback control design

In this subsection, the goal is to design a nonlinear output feedback controller which

explicitly accounts for the nonlinearity of the stochastic KSE model of Eq. (2.78).

Neglecting the xf subsystem, the following 2m-dimensional system is obtained:

dx̃s

dt
= Λsx̃s + fs(x̃s, 0) + Bsu + ξs

(2.84)

where the tilde symbol denotes that the state variable is associated with a finite-

dimensional system.

Following the method proposed in [62], a nonlinear state feedback controller is

first designed on the basis of the finite-dimensional approximation of Eq. (2.84) as

follows:

u = B−1
s {(Λcs − Λs)x̃s − fs(x̃s, 0)} . (2.85)

55



Note that the nonlinear term, fs(x̃s, 0), is explicitly accounted for in the nonlinear con-

troller design. The choice of Λcs is similar to the choice in Eq. (2.74) and determines

the dynamics of the closed-loop finite-dimensional system.

Under the nonlinear state feedback controller, the closed-loop finite-dimensional

system is an approximate (O(
√

ε) approximation) linear stochastic system (see the

proof of Theorem 2.1 in [62]). The steady-state surface covariance of the closed-

loop finite-dimensional system under the nonlinear state feedback controller can be

obtained by following the method presented in Section 2.3.1. An analysis of the

performance of the closed-loop nonlinear infinite-dimensional system enforced by the

nonlinear state feedback controller of Eq. (2.85) can also been found in [62]. To show

the effectiveness of the nonlinear state feedback controller, we apply both the linear

state feedback controller of Eq. (2.74) and the nonlinear state feedback controller of

Eq. (2.85) to the nonlinear stochastic KSE. The results are presented in Figure 2.5.

Both the linear and nonlinear state feedback controllers stabilize the surface covari-

ance to a finite value. However, the steady state surface covariance under the non-

linear controller is much closer to the set-point value compared to the one under the

linear controller. The nonlinear state feedback controller successfully drives the sur-

face covariance of the closed-loop infinite-dimensional system of nonlinear KSE to the

set-point value C̃ovh, which is within the range of the theoretical estimate (for the

theoretical estimation of the surface covariance of the closed-loop infinite-dimensional

nonlinear system under the nonlinear state feedback controller, see Theorem 1 in [62]).
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Figure 2.5: Comparison of the closed-loop surface covariance profiles of the nonlinear
stochastic KSE under linear and nonlinear state feedback control. The horizontal
dashed lines represent the range in which the surface covariance Covh is expected to
be based on the theoretical estimates of Theorem 1 in [62].

The surface covariance under the linear state feedback controller falls outside of the

range of the theoretical estimate. The improved performance of the nonlinear state

feedback controller is due to the fact that the nonlinearity of the process model is

explicitly accounted for in the controller design.

Nonlinear dynamic output feedback control of nonlinear stochastic KSE

In this subsection, we design a nonlinear dynamic output feedback controller by com-

bining the nonlinear state feedback controller of Eq. (2.85) and a dynamic nonlinear
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state estimator. An appropriate nonlinear state estimator considered of the form:

dx̂s

dt
= Λsx̂s + fs(x̂s, 0) + Bsu + K(y − Csx̂s) (2.86)

where the gain matrix, K, is determined by using Eq. (2.25).

The resulting nonlinear dynamic output feedback controller takes then the form:

dx̂s

dt
= Λsx̂s + fs(x̂s, 0) + Bsu + K(y − Csx̂s), x̂s(0) = x̂s0,

u = B−1
s {(Λcs − Λs)x̂s − fs(x̂s, 0)} .

(2.87)

Figure 2.6 shows the surface covariance profiles of the closed-loop system under

nonlinear dynamic output feedback control with different numbers of measurement

sensors. For comparison, the closed-loop surface covariance under the nonlinear state

feedback controller is also shown in Figure 2.6. There are differences between the

steady-state surface covariance under the nonlinear dynamic output feedback con-

troller and under the state feedback controller. A higher number of measurement

sensors leads to a smaller difference since more information of the surface is available

to the state estimator. This is consistent with the fact that a higher number of mea-

surement sensors is capable of achieving a lower closed-loop surface covariance under

output feedback covariance control. Note that the state feedback controller gives the

lowest steady-state surface covariance since there is no estimation error involved in

its implementation.
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Figure 2.6: The surface covariance of nonlinear KSE under nonlinear dynamic output
feedback controllers with different numbers of measurement sensors.

2.5 Conclusions

In this chapter, we developed a method for dynamic output feedback covariance con-

trol of the state covariance of linear dissipative stochastic PDEs using spatially dis-

tributed control actuation and sensing with measurement noise. The stochastic PDE

was initially formulated into a system of infinite stochastic ODEs by using modal

decomposition. A finite-dimensional approximation was then obtained to capture the

dominant mode contribution to the surface roughness profile (i.e., the covariance of

the surface height profile). Subsequently, a state feedback controller and a Kalman-

Bucy filter were designed on the basis of the finite-dimensional approximation. The

resulting linear dynamic output feedback controller is the one that couples the state
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feedback controller and the state estimator. The steady-state expected surface co-

variance under the linear dynamic output feedback controller was then estimated on

the basis of the closed-loop finite-dimensional system. An analysis was performed

to obtain an estimate of the expected surface covariance of the closed-loop infinite-

dimensional system. Applications of the linear dynamic output feedback controller

to the linearized and nonlinear stochastic Kuramoto-Sivashinsky equations were pre-

sented. Finally, nonlinear state feedback controller and nonlinear output feedback

controller designs were also presented and applied to the nonlinear KSE.
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Chapter 3

Parameter Estimation for a

Stochastic PDE Model of a

Sputtering Process

3.1 Introduction

Following upon the state/output feedback covariance control design for linear and

nonlinear stochastic PDEs of Chapter 2, this chapter focuses on a specific thin film

manufacturing process (sputtering) and develops a method for the parameter estima-

tion of nonlinear stochastic partial differential equation (PDE) systems. Sputtering

processes are widely used in the thin film and semiconductor fabrication to remove

materials from the surface of solids through the impact of energetic particles. In many
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cases sputtering is used to smooth out surface features. The surface morphology of

thin films after sputter erosion strongly depends on conditions such as incident ion

energy, sputtered substrate temperature and material composition [66]. In a sput-

tering process, the surface is directly shaped by microscopic surface processes (e.g.,

erosion, diffusion and surface reaction), which are stochastic processes. Therefore,

the stochastic nature of sputtering processes must be fully considered in the mod-

eling and the parameters of the stochastic models need to be estimated from the

simulation data or experimental data of such processes.

In this chapter, the sputtering process model involves two surface micro-processes:

atom erosion and surface diffusion. This sputtering process is simulated using a kMC

simulation method and its surface height evolution can be adequately described by the

stochastic Kuramoto-Sivashinsky equation (KSE), a fourth-order nonlinear stochas-

tic PDE. First, we estimate the four parameters of the stochastic KSE so that the

expected surface roughness profile predicted by the stochastic KSE is close (in a

least-square sense) to the profile of the kMC simulation of the sputtering process.

To perform this model parameter estimation task, we initially formulate the nonlin-

ear stochastic KSE into a system of infinite nonlinear stochastic ODEs. A finite-

dimensional approximation of the stochastic KSE is then constructed that captures

the dominant mode contribution to the state and the evolution of the state covari-

ance of the stochastic ODE system is derived. Then, a kMC simulator is used to

generate representative surface snapshots during process evolution to obtain values
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of the state vector of the stochastic ODE system. Subsequently, the state covariance

of the stochastic ODE system that corresponds to the sputtering process is computed

based on the kMC simulation results. Finally, the model parameters of the nonlin-

ear stochastic KSE are obtained by using least-squares methods so that the state

covariance computed from the stochastic KSE process model matches that computed

from kMC simulations. Subsequently, we use appropriate finite-dimensional approxi-

mations of the computed stochastic KSE model to design state and output feedback

controllers, which are applied to the kMC model of the sputtering process. Extensive

closed-loop system simulations demonstrate that the controllers reduce the expected

surface roughness by 55% compared to the corresponding values under open-loop

operation.

3.2 Preliminaries

3.2.1 Process description

We consider a one-dimensional (1-D) lattice representation of a crystalline surface of

a sputtering process, which includes two surface micro-processes, atom erosion and

surface diffusion. The solid-on-solid assumption is made which means that no defects

or overhangs are allowed to be developed in the film. The microscopic rules under

which atom erosion and surface diffusion take place are as follows: a site, i, is first

randomly picked among the sites of the whole lattice and the particle at the top of
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this site is subject to: a) erosion with probability 0 < f < 1, or b) diffusion with

probability 1− f .

If the particle at the top of site i is subject to erosion, the particle is removed

from the site i with probability PeY (φi). Pe is determined as
1

7
times the number

of occupied sites in a box of size 3 × 3 centered at the site i, which is shown in

Figure 3.1. There are a total of nine sites in the box. The central one is the particle

to be considered for erosion (the one marked by •). Among the remaining eight

sites, the site above the central site of interest must be vacant since the central site

is a surface site. Therefore, only seven of the eight sites can be occupied and the

maximum value of Pe is 1. Y (φi) is the sputtering yield function defined as follows:

Y (φi) = y0 + y1φ
2
i + y2φ

4
i (3.1)

where y0, y1 and y2 are constants. Following [26], the values of y0, y1 and y2 can

be chosen such that Y (0) = 0.5, Y (
π

2
) = 0 and Y (1) = 1 , which corresponds to

y0 = 0.5, y1 = 1.0065, and y2 = −0.5065. The local slope, φi, is defined as follows:

φi = tan−1

(
hi+1 − hi−1

2a

)
(3.2)

where a is the lattice parameter and hi+1 and hi−1 are the values of surface height at

sites i + 1 and i− 1, respectively.

If the particle at the top of site i is subject to diffusion, one of its two nearest
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Figure 3.1: Schematic of the rule to determine Pe. Pe is defined as
1

7
times the number

of occupied sites in a box of size 3 × 3 centered at the particle on the top of site i;

Pe = 1 in the left figure and Pe =
4

7
in the right figure, where the particle marked by

• is on the top of site i.

neighbors, j (j = i + 1 or i− 1) is randomly chosen and the particle is moved to the

nearest neighbor column with transition probability wi→j as follows:

wi→j =
1

1 + exp (β∆Hi→j)
(3.3)

where ∆Hi→j is the energy difference between the final and initial states of the move,

β =
1

kBT
and H is defined through the Hamiltonian of an unrestricted solid-on-solid

model as follows:

H =

(
J

an

) N∑

k=1

(hk − hk+1)
n (3.4)

where J is the bond energy, N is the total number of sites in the lattice and n is

a positive number. In the simulations presented in this chapter, we use n = 2 and

βJ = 2 [80].
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3.2.2 KMC model of the sputtering process

To carry out kMC simulations of this sputtering process, the rates of surface micro-

processes should be computed [32, 87]. The rates of both erosion and diffusion are

site specific and can be obtained based on the process description as follows:

re(i) =
f

τ
Pe(i)Y (φi) , i = 1, 2, . . . , N,

rd(i, j) =
1− f

2τ
wi→j , i = 1, 2, . . . , N,

(3.5)

where re(i) is the erosion rate at site i and rd(i, j) is the rate at which a surface

particle hops from site i to site j. For the sputtering process considered, only nearest

neighbor hopping is allowed, so j = i±1. Pe(i) is determined by the box rule shown in

Figure 3.1, Y (φi) is defined in Eqs. (3.1) and (3.2), and wi→j is defined in Eqs. (3.3)

and (3.4). τ is defined as the time scale [53] and is fixed at 1/sec for open-loop

simulations.

After the rates of surface micro-processes are determined, kMC simulations can

be carried out using an appropriate algorithm. In general, there are two groups of

kMC algorithms which have been developed to simulate dynamical processes governed

by the master equation: (a) the null-event algorithm [98], and (b) the continuous-

time Monte Carlo method [88]. The null-event algorithm tries to execute Monte

Carlo events on randomly selected sites with certain probabilities of success, while

the continuous-time Monte Carlo method selects an event before the selection of the

site on which the event is going to be executed. Upon a successful event, the time
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passed during the event is computed based on the total rates of all the micro-processes

in both the null-event algorithm and the continuous-time Monte Carlo algorithm [75].

A review and analysis on complexities and efficiencies of these algorithms can

be found in [75]. Although the continuous-time Monte Carlo algorithms with lists

of neighbors and local update are often used for simulating the dynamics of com-

plex processes, they are not appropriate for the sputtering process considered in this

chapter. The continues-time Monte Carlo method requires the construction of a set

of classes for possible Monte Carlo events and associated surface sites so that the

events in each class have exactly the same transition probabilities. Typically, the

transition probabilities depend on the surface micro-environment of the surface site

considered. The continues-time Monte Carlo method is efficient to simulate systems

such as surface reactions and thin film growth processes in which the dependence of

the transition probabilities on the surface micro-environment is simply the number of

nearest neighbors. This type of dependence of the transition probability on surface

micro-environment results in a small number of classes needed to run the simulation.

For the sputtering process considered in this chapter, the dependence of both the

erosion and diffusion rates on the surface micro-environment is very complex and es-

sentially all surface sites have different erosion and diffusion rates. If a set of classes

are constructed so that each class contains exactly the same transition probability,

a large number of classes are required, which will result in an inefficient simulation

scheme. With these considerations, we decide to simulate the sputtering process in
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this chapter by using the null-event algorithm [98] so that the complex dependence

of the transition probabilities on the surface micro-configuration in the sputtering

process can be handled in an efficient way.

The following kMC simulation algorithm is used to simulate the sputtering process:

• The first integer random number, ζ1 (0 < ζ1 ≤ N , where ζ1 is an integer and N

is the total number of surface sites) is generated to pick a site, i, among all the

sites on the 1-D lattice.

• The second real random number, ζ2 in the (0, 1) interval, is generated to decide

whether the chosen site, i, is subject to erosion (ζ2 < f) or diffusion (ζ2 > f).

• If the chosen site is subject to erosion, Pe and Y (φi) are computed. Specifically,

Pe is computed by using the box rule shown in Figure 3.1 where the center of the

box is the surface particle on site i and Y (φi) is computed by using Eqs. (3.1) and

(3.2). Then, another real random number ζe3 in the (0, 1) interval is generated.

If ζe3 < PeY (φi) the surface particle on site i is removed. Otherwise, no event

is executed.

• If the chosen site is subject to diffusion, a side neighbor, j, (j = i + 1 or i − 1

in the case of a 1-D lattice) is randomly picked and the hopping rate, wi→j, is

computed by using Eq. (3.3). Then, another real random number ζd3 in the

(0, 1) interval is generated. If ζd3 < wi→j, the surface atom is moved to the new

site. Otherwise no event is executed.
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• Upon the execution of an event, a time increment, δt is computed by using the

following expression:

δt = − ln ζ4

f

τ

N∑
i=1

[Pe(i)Y (φi)] +
1− f

2τ

N∑
i=1

[wi→i+1 + wi→i−1]

(3.6)

where ζ4 is a real random number in the (0, 1) interval.

All random numbers, ζ1, ζ2, ζ3 and ζ4, follow a uniform probability distribution

in their domains of definition.

Periodic boundary conditions (PBCs) are used in the kMC model of the sputtering

process. Using PBCs, a particle that diffuses out of the simulation lattice at one

boundary enters into the simulation lattice from the opposing side. Limited by the

currently available computing power, the lattice size of a kMC simulation is much

smaller than the size of a real process. Therefore, PBCs are widely used in molecular

level simulations so that the statistical properties of a large scale stochastic process

can be appropriately captured by kMC simulations carried out on a small simulation

lattice [67].

Remark 3.1 Note that the probability f in Eq. (3.5) is dependent on the operating

conditions of the sputtering process. Based on the process description, the value of f

affects the ratio of erosion and diffusion events on the surface. Since an erosion event

is a direct consequence of the bombardment by incoming particles, a higher bombard-
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ment rate will result in a higher erosion rate, which implies a larger f . On the other

hand, the surface diffusion rate, rd in Eq. (3.5), should not depend on the bombard-

ment rate of incoming particles. When spatially distributed control is implemented,

the surface bombardment rate is a spatially distributed variable. Consequently, f is a

spatially distributed variable that can be computed based on the surface bombardment

rate.

3.2.3 Stochastic PDE model of the sputtering process

The sputtering process is a stochastic process. The height fluctuations of the surface

in this sputtering process can be adequately described by the stochastic KSE, which is

a fourth order, nonlinear stochastic PDE [26]. The stochastic KSE takes the following

form:

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

λ

2

(
∂h

∂x

)2

+ ξ(x, t) (3.7)

subject to PBCs:

∂jh

∂xj
(−π, t) =

∂jh

∂xj
(π, t), j = 0, . . . , 3 (3.8)

and the initial condition:

h(x, 0) = h0(x) (3.9)

where ν, κ, and λ are parameters related to surface mechanisms [53], x ∈ [−π, π] is

the spatial coordinate, t is the time, h(x, t) is the height of the surface at position

x and time t. The PBCs are used so that the treatment of surface boundaries is
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consistent to that of the kMC model where PBCs are also used. ξ(x, t) is a Gaussian

noise with the following expressions for its mean and covariance:

〈ξ(x, t)〉 = 0,

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x− x′)δ(t− t′),

(3.10)

where σ is a constant, δ(·) is the Dirac function, and 〈·〉 denotes the expected value.

To study the dynamics of Eq. (3.7), we initially consider the eigenvalue problem

of the linear operator of Eq. (3.7), which takes the form:

Aφ̄n(x) = −ν
d2φ̄n(x)

dx2
− κ

d4φ̄n(x)

dx4
= λnφ̄n(x),

djφ̄n

dxj
(−π) =

djφ̄n

dxj
(π),

j = 0, 1, 2, 3, n = 1, 2, . . . ,∞,

(3.11)

where λn denotes an eigenvalue and φ̄n denotes an eigenfunction. A direct computa-

tion of the solution of the above eigenvalue problem yields λ0 = 0 with ψ0 = 1/
√

2π,

and λn = νn2 − κn4 (λn is an eigenvalue of multiplicity two) with eigenfunctions

φn = (1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞. Note that the

φ̄n in Eq. (3.11) denotes either φn or ψn. From the expression of the eigenvalues, it

follows that for fixed values of ν > 0 and κ > 0, the number of unstable eigenvalues

of the operator A in Eq. (3.11) is finite and the distance between two consecutive

eigenvalues (i.e., λn and λn+1) increases as n increases.

To present the method that we use to estimate the parameters of the stochastic

71



KSE of Eq. (3.7) and design controllers, we first derive a nonlinear stochastic ODE

approximation of Eq. (3.7) using Galerkin’s method. To this end, we first expand the

solution of Eq. (3.7) in an infinite series in terms of the eigenfunctions of the operator

of Eq. (3.11) as follows:

h(x, t) =
∞∑

n=1

αn(t)φn(x) +
∞∑

n=0

βn(t)ψn(x) (3.12)

where αn(t), βn(t) are time-varying coefficients. Substituting the above expansion

for the solution, h(x, t), into Eq. (3.7) and taking the inner product with the adjoint

eigenfunctions, φ∗n(z) = (1/
√

π) sin(nz) and ψ∗n(z) = (1/
√

π) cos(nz), the following

system of infinite nonlinear stochastic ODEs is obtained:

dαn

dt
= (νn2 − κn4)αn + λfnα + ξn

α(t), n = 1, 2, . . . ,∞,

dβn

dt
= (νn2 − κn4)βn + λfnβ + ξn

β (t), n = 0, 1, . . . ,∞,

(3.13)

where

fnα =
1

2

∫ π

−π

φ∗n(x)

( ∞∑
j=1

αj(t)
dφj

dx
(x) +

∞∑
j=0

βj(t)
dψj

dx
(x)

)2

dx,

fnβ =
1

2

∫ π

−π

ψ∗n(x)

( ∞∑
j=1

αj(t)
dφj

dx
(x) +

∞∑
j=0

βj(t)
dψj

dx
(x)

)2

dx,

(3.14)
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and

ξn
α(t) =

∫ π

−π

ξ(x, t)φ∗n(x)dx,

ξn
β (t) =

∫ π

−π

ξ(x, t)ψ∗n(x)dx.

(3.15)

Using Result 1, we obtain 〈ξn
α(t)ξn

α(t′)〉 = σ2δ(t−t′) and 〈ξn
β (t)ξn

β (t′)〉 = σ2δ(t−t′).

The surface roughness of the process is a variable of interest from a control point

of view. The surface roughness, r, is represented by the standard deviation of the

surface from its average height and is computed as follows:

r(t) =

√
1

2π

∫ π

−π

[h(x, t)− h̄(t)]2dx (3.16)

where h̄(t) =
1

2π

∫ π

−π

h(x, t)dx is the average surface height. According to Eq. (3.12),

we have h̄(t) = β0(t)ψ0. Therefore, 〈r2(t)〉 can be rewritten in terms of αn(t) and

βn(t):

〈r2(t)〉 =
1

2π

〈∫ π

−π

(h(x, t)− h̄(t))2dx

〉

=
1

2π

〈∫ π

−π

[ ∞∑
i=1

αi(t)φi(x) +
∞∑
i=0

βi(t)ψi(x)− β0(t)ψ0

]2

dx

〉

=
1

2π

〈∫ π

−π

∞∑
i=1

[
α2

i (t)φi(x)2 + β2
i (t)ψi(x)2

]
dx

〉

=
1

2π

〈 ∞∑
i=1

(α2
i (t) + β2

i (t))

〉
=

1

2π

∞∑
i=1

[〈α2
i (t)〉+ 〈β2

i (t)〉
]
.

(3.17)

Eq. (3.17) provides a direct link between the state covariance of the infinite stochastic
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ODEs of Eq. (3.13) and the expected surface roughness of the sputtering process.

Remark 3.2 The stochastic PDE model and the kMC model of the sputtering process

are consistent. The stochastic PDE model for the sputtering processes can be derived

based on the corresponding master equation, which describes the evolution of the prob-

ability that the surface is at a certain configuration (see, for example, [53, 90]). The

kMC model is a first-principle model in the sense that the microscopic events that

directly form the surface are explicitly considered in the model. Mathematically, kMC

simulation methods provide an unbiased realization of the master equation. There-

fore, the evolution of the surface configuration predicted by the closed-form stochastic

PDE model is consistent to that predicted by the kMC model. As a result, a controller

designed based on the stochastic PDE process model can be applied to the kMC model

of the same process [61, 60, 71, 62]. However, the parameters of the stochastic KSE

derived based on the corresponding master equation need to be carefully estimated.

A continuum limit is used in the derivation of the stochastic KSE from the master

equation, which requires an infinite number of lattice sites in the kMC model. From a

practical point of view, a kMC model with a finite number of lattice sites is, however,

used for the simulation of the sputtering process, thereby leading to a mismatch be-

tween the stochastic KSE and the kMC model. Therefore, it is necessary to estimate

the parameters of the stochastic KSE based on the kMC data directly to ensure that

the KSE model predictions are close to the ones of the kMC model.
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3.2.4 Model reduction

Owing to its infinite-dimensional nature, the system of Eq. (3.13) cannot be directly

used as a basis for either parameter estimation or feedback controller design that

can be implemented in practice (i.e., the practical implementation of such algorithms

will require the computation of infinite sums which cannot be done by a computer).

Instead, we will use finite-dimensional approximations of the system of Eq. (3.13).

Specifically, we rewrite the system of Eq. (3.13) as follows:

dxs

dt
= Λsxs + λfs(xs, xf) + ξs,

dxf

dt
= Λfxf + λff(xs, xf) + ξf ,

(3.18)

where

xs = [α1 . . . αm β1 . . . βm]T ,

xf = [αm+1 βm+1 αm+2 βm+2 . . . ]T ,

Λs = diag [λ1 . . . λm λ1 . . . λm] ,

Λf = diag [λm+1 λm+1 λm+2 λm+2 . . . ] ,

fs(xs, xf) = [f1α(xs, xf) . . . fmα(xs, xf) f1β(xs, xf) . . . fmβ(xs, xf)]
T ,

ff(xs, xf) =
[
f(m+1)α(xs, xf) f(m+1)β(xs, xf) f(m+2)α(xs, xf) . . .

]T
,

ξs =
[
ξ1
α . . . ξm

α ξ1
β . . . ξm

β

]T
,

ξf =
[
ξm+1
α ξm+1

β ξm+2
α ξm+2

β . . .
]T

.

(3.19)
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The dimension of the xs subsystem is 2m and the xf subsystem is infinite-dimensional.

We note that the subsystem xf in Eq. (3.18) is infinite-dimensional. Neglecting

the xf subsystem, the following 2m-dimensional system is obtained:

dx̃s

dt
= Λsx̃s + λfs(x̃s, 0) + ξs

(3.20)

where the tilde symbol in x̃s denotes that this state variable is associated with a

finite-dimensional system.

3.3 Parameter estimation of the nonlinear stochas-

tic PDE model

While the parameters of stochastic PDE models for several deposition and sputtering

processes can be derived based on the corresponding master equation, which describes

the evolution of the probability that the surface is at a certain configuration; for all

practical purposes, the stochastic PDE model parameters should be estimated by

matching the prediction of the stochastic PDE model to that of kMC simulations due

to the approximations made in the derivation of the stochastic PDE model from the

master equation [36, 60].

In this section, we present a method to estimate the parameters of the nonlinear

stochastic KSE model of the sputtering process by using data from the kMC simula-
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tions of the process. The parameter estimation algorithm is developed on the basis

of the finite dimensional system of Eq. (3.20).

3.3.1 System of deterministic ODEs for state covariance

The system of Eq. (3.20) is a finite-dimensional nonlinear stochastic ODE system

including all four parameters, ν, κ, λ, and σ2 of the stochastic KSE of Eq. (3.7).

We first derive the system of deterministic ODEs that describes the dynamics of the

covariance matrix of the state vector of Eq. (3.20), xs, which is defined as Ps = 〈xsx
T
s 〉.

Consider the evolution of the state of Eq. (3.20) in a small time interval, [t, t+∆t]

as follows [47, 25]:

xs(t + ∆t) = (Is + ∆tΛs) xs(t) + ∆tλfs(xs(t), 0) + ∆tξs(t) (3.21)

where Is is a 2m× 2m identity matrix. To study the dynamics of Ps, we approximate

the Dirac function, δ(·) involved in the covariances of ξs by
1

∆t
, and neglect the terms

of order ∆t2. When Eq. (3.21) is used to compute the numerical solution of xs(t), it

is clear that xs(t) is only dependent on ξs(τ) (for τ ≤ t −∆t). Since ξs(t) and ξs(τ)

are mutually independent according to the definition of Gaussian noise of Eq. (3.10)

and Result 1, ξs(t) is also independent of xs(t). We, therefore, have 〈ξs(t)x
T
s (t)〉 = 0

and 〈xs(t)ξ
T
s (t)〉 = 0. Consequently, the following equation for Ps can be obtained
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from Eq. (3.21):

Ps(t + ∆t) = Ps(t) + ∆t{ΛsPs(t) + Ps(t)Λ
T
s }

+∆t{λ 〈
xs(t)fs(xs(t), 0)T + fs(xs(t), 0)xs(t)

T
〉

+ Rs}
(3.22)

where Rs is the intensity of ξs and Rsδ(t − t′) = 〈ξs(t)ξ
T
s (t)〉. In this chapter, Rs =

σ2I2m×2m.

By bringing Ps(t) to the left hand side of Eq. (3.22), dividing both sides by ∆t

and setting ∆t → 0, we obtain the following nonlinear system of deterministic ODEs

for the state covariance of the system of Eq. (3.18):

dPs(t)

dt
= ΛsPs(t) + Ps(t)Λ

T
s + Rs + λ

〈
xs(t)fs(xs(t), 0)T + fs(xs(t), 0)xs(t)

T
〉
. (3.23)

Note that the linear part of Eq. (3.23) is the Lyapunov equation used in covariance

controller design for linear systems [37]. We will use this deterministic ODE system

as the basis for parameter estimation.

3.3.2 Parameter estimation

The four parameters of the stochastic PDE process model of Eq. (3.7) can be es-

timated from Eq. (3.23). Specifically, the parameters ν and κ are included in the

matrix Λs of Eq. (3.23) and the parameter λ is associated with the nonlinear term

of Eq. (3.23). To this end, we need to obtain Ps(t) and
〈
xs(t)fs(t)

T + fs(t)xs(t)
T
〉
,
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which are both functions of xs, to perform the parameter estimation.

The data of xs = [α1(t) . . . αm(t) β1(t) . . . βm(t)]T can be obtained from kMC

simulations of the sputtering process. Once xs is obtained, fs(xs, 0) = [f1α(xs, 0) . . .

fmα(xs, 0) f1β(xs, 0) . . . fmβ(xs, 0)]T can be computed as follows:

fnα(xs(t), 0) =
1

2

∫ π

−π

φ∗n(x)

(
m∑

j=1

αj(t)
dφj

dx
(x) +

m∑
j=0

βj(t)
dψj

dx
(x)

)2

dx,

fnβ(xs(t), 0) =
1

2

∫ π

−π

ψ∗n(x)

(
m∑

j=1

αj(t)
dφj

dx
(x) +

m∑
j=0

βj(t)
dψj

dx
(x)

)2

dx,

n = 1, 2, . . . , m.

(3.24)

To compute the expected values for xs(t)xs(t)
T and xs(t)fs(xs, 0)T + fs(xs, 0)xs(t),

multiple kMC simulation runs for the sputtering process should be performed and

the profiles of xs(t)xs(t)
T and xs(t)fs(xs, 0)T + fs(xs, 0)xs(t) should be averaged to

obtain the expected values.

The time derivative of Ps(t) can be computed by the first-order approximation

(O(∆t)) of the time derivative as follows:

dPs(t)

dt
=

Ps(t + ∆t)− Ps(t)

∆t
(3.25)

where ∆t is a small time interval.

When the values of dPs(t)/dt, Ps(t) and 〈xs(t)fs(xs, 0)T +fs(xs, 0)xs(t)
T 〉 are ob-

tained through kMC simulation runs at a set of discrete time instants (t = t1, t2, . . . , tk),
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Eq. (3.23) becomes a system of linear algebraic equations for the four unknown model

parameters. When the number of equations is larger than the number of parameters

to be estimated, the least-squares method can be used to determine the model pa-

rameters.

Since Ps is a diagonally dominant matrix (see simulation part for a numerical

verification), to make the parameter estimation algorithm insensitive to round-off

errors, we propose to formulate the system of algebraic equations for least-squares

fitting of the model parameters by using only the diagonal elements of the system of

Eq. (3.23). The system of ODEs corresponding to the diagonal elements of Eq. (3.23)

is as follows:

d〈α2
n(t)〉
dt

= 2(νn2 − κn4)〈α2
n(t)〉+ 2λ〈αn(t)fnα(t)〉+ σ2, n = 1, . . . , m,

d〈β2
n(t)〉
dt

= 2(νn2 − κn4)〈β2
n(t)〉+ 2λ〈βn(t)fnβ(t)〉+ σ2, n = 1, . . . , m.

(3.26)

The system of Eq. (3.26) is a linear system with respect to ν, κ, λ and σ2 and it

is straightforward to reformulate Eq. (3.26) in the form of the following linear system

to estimate ν, κ, λ and σ2 using the least-squares method:

b = Aθ (3.27)
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where θ = [ν κ λ σ2]T ,

A =




12 × 2〈α2
1(t1)〉 14 × 2〈α2

1(t1)〉 2〈α1(t1)f1α(t1)〉 1

...
...

...
...

m2 × 2〈α2
m(t1)〉 m4 × 2〈α2

m(t1)〉 2〈αm(t1)fmα(t1)〉 1

12 × 2〈β2
1(t1)〉 14 × 2〈β2

1(t1)〉 2〈β1(t1)f1β(t1)〉 1

...
...

...
...

m2 × 2〈β2
m(t1)〉 m4 × 2〈β2

m(t1)〉 2〈βm(t1)fmβ(t1)〉 1

...
...

...
...

12 × 2〈α2
1(tk)〉 14 × 2〈α2

1(tk)〉 2〈α1(tk)f1α(tk)〉 1

...
...

...
...

m2 × 2〈α2
m(tk)〉 m4 × 2〈α2

m(tk)〉 2〈αm(tk)fmα(tk)〉 1

12 × 2〈β2
1(tk)〉 14 × 2〈β2

1(tk)〉 2〈β1(tk)f1β(tk)〉 1

...
...

...
...

m2 × 2〈β2
m(tk)〉 m4 × 2〈β2

m(tk)〉 2〈βm(tk)fmβ(tk)〉 1




, (3.28)

and

b =
[
bT
1 bT

2 . . . bT
k

]T
(3.29)

where

bi =

[
d〈α2

1(ti)〉
dt

. . .
d〈α2

m(ti)〉
dt

d〈β2
1(ti)〉
dt

. . .
d〈β2

m(ti)〉
dt

]T

, i = 1, 2, . . . , k.

(3.30)
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Note that all elements in b and A can be obtained through the kMC simulations

of the thin film growth or sputtering process. The least-squares fitting of the model

parameters can be obtained as follows:

θ̂ = (AT A)−1AT b. (3.31)

Remark 3.3 Different values of m are used in parameter estimation and controller

design. For parameter estimation, the value of m should be large enough so that

the finite-dimensional system of Eq. (3.27) includes all representative modes of the

system. While for controller design, the value of m depends on the process and the

requirement on the closed-loop performance. Specifically, m should be equal or larger

than the number of unstable modes of the process to ensure closed-loop stability. Fur-

thermore, according to Theorem 1 in [62], m should be large enough to have a suf-

ficiently small ε so that the closed-loop surface roughness of the infinite-dimensional

system is sufficiently close to the set-point value. However, a very large m should be

avoided, since it requires a large number of actuators which may not be practical from

a practical implementation point of view..

Remark 3.4 Note that it is important to appropriately collect the data set of surface

snapshots from kMC simulations for parameter estimation. The data set should be

representative so that the dynamics of the stochastic process can be adequately captured

by the data set and reliable parameter estimation results can be obtained. Specifically,
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the condition number of the square matrix AT A of Eq. (3.31) should be used as an

indicator of the quality of the data set. The matrix A is constructed by using the data

derived from the surface snapshots. The condition number measures the sensitivity of

the solution to the perturbations in A and b. There is stochastic noise contained in

the data used to construct the matrix A and the vector b in Eq. (3.31). This noise

will perturb A and b from their true values. A low condition number of the square

matrix AT A will ensure that the perturbations in A and b introduced by the noise will

not result in significant errors in the estimated model parameters. According to the

simulations, a low condition number between 10 to 20 can be achieved by appropriately

selecting snapshots while a large condition number could be over 1000. Another good

and practical criterion for a given situation is to compare the profiles of the expected

surface roughness of the process and the stochastic PDE with estimated parameters.

If they are matched consistently, the condition number of AT A is considered as a low

number for that particular problem. The sampling time and the number of surface

snapshots should be carefully selected so that the condition number of the square matrix

AT A is small. Another effective way to decrease the condition number is to acquire as

many representative surface snapshots of the process as possible, e. g., with different

initial conditions.

Remark 3.5 Note that this chapter does not intent to develop a new model for the

sputtering process and validate the model against experimental data from a process.

Instead, the focus of this chapter is to estimate the parameters of a stochastic PDE
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model and compare the model output against that from a kMC model, which is consid-

ered as a more accurate process model. Therefore, if the kMC model for the sputtering

process can capture the roughness evolution of a real process, our method results in a

closed-form stochastic PDE model that possesses a very similar modeling capability.

There is a large body of literature available for kMC simulations of various sputtering

and thin film growth processes. This work can be readily extended to a variety of real

world processes to construct stochastic PDE process models provided that an accurate

kMC model is available for the process of interest.

3.4 Feedback control of surface roughness

In this section, we design a linear output feedback controller based on the stochastic

KSE process model to regulate the expected surface roughness of the sputtering pro-

cess to a desired level. A state feedback controller is initially designed by following the

method developed in [60]. Then, a static state estimation scheme is constructed and

the output feedback controller design is completed by combining the state feedback

control law and the state estimation scheme.
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3.4.1 Distributed control problem formulation

We consider the stochastic KSE with distributed control in the spatial domain [−π, π]:

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

λ

2

(
∂h

∂x

)2

+

p∑
i=1

bi(x)ui(t) + ξ(x, t) (3.32)

subject to PBCs:

∂jh

∂xj
(−π, t) =

∂jh

∂xj
(π, t), j = 0, 1, 2, 3, (3.33)

and the initial condition:

h(x, 0) = h0(x) (3.34)

where ui is the ith manipulated input, p is the number of manipulated inputs and

bi is the ith actuator distribution function (i.e., bi determines how the control action

computed by the ith control actuator, ui, is distributed (e.g., point or distributed

actuation) in the spatial interval [−π, π]). The variables are defined in the same way as

in Eq. (3.7) of Section 3.2.3. Following similar derivations to the ones of Section 3.2.3,

the following system of infinite nonlinear stochastic ODEs with distributed control

can be obtained:

dαn

dt
= (νn2 − κn4)αn + λfnα +

p∑
i=1

biαnui(t) + ξn
α(t), n = 1, . . . ,∞,

dβn

dt
= (νn2 − κn4)βn + λfnβ +

p∑
i=1

biβnui(t) + ξn
β (t), n = 1, . . . ,∞,

(3.35)
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where fnα and fnβ are defined in Eq. (3.14) and ξn
α(t) and ξn

β (t) are defined in

Eq. (3.15). biαn and biβn are defined as follows:

biαn =

∫ π

−π

φ∗n(x)bi(x)dx,

biβn =

∫ π

−π

ψ∗n(x)bi(x)dx.

(3.36)

The system of Eq. (3.35) can be rewritten in the following form:

dxs

dt
= Λsxs + fs(xs, xf) + Bsu + ξs,

dxf

dt
= Λfxf + ff(xs, xf) + Bfu + ξf ,

(3.37)

where xs, xf , Λs, Λf , fs(xs, xf), ff(xs, xf), ξs and ξf are defined in Eq. (3.19), and

Bs =




b1α1 . . . bpα1

...
. . .

...

b1αm . . . bpαm

b1β1 . . . bpβ1

...
. . .

...

b1βm . . . bpβm




, Bf =




b1αm+1 . . . bpαm+1

b1βm+1 . . . bpβm+1

b1αm+2 . . . bpαm+2

b1βm+2 . . . bpβm+2

...
...

...




. (3.38)

Note that the dimension of the xs subsystem is 2m and the xf subsystem is infinite-

dimensional. Neglecting the xf subsystem, the following 2m-dimensional system is
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obtained:

dx̃s

dt
= Λsx̃s + λfs(x̃s, 0) + Bsu + ξs

(3.39)

where the tilde symbol in x̃s denotes that this state variable is associated with a

finite-dimensional system.

We note here that the accuracy of the finite-dimensional system can be improved

by including a finite-number of the xf modes using the concept of approximate inertial

manifolds [23, 6].

Remark 3.6 Note that in practice, the control action, ui, can be implemented by

manipulating the gas composition across the surface in either a deposition process

or a sputtering process. Spatially controllable CVD reactors have been developed to

enable across-wafer spatial control of surface gas composition during deposition [18].

In such a control problem formulation, the rate that particles land on the surface or

the rate that surface particles are eroded is spatially distributed and is computed by the

controller. The parameters of the stochastic KSE model of Eq. (3.32) depend on both

the temperature and the rate that particles land on the surface or that surface particles

are eroded [53]. In this chapter, the temperature is assumed to be a constant. The

rate that particles land on the surface or the rate that surface particles are eroded used

to compute the stochastic KSE model parameters corresponds to that under open-loop

operation, and thus, it is also a constant. The contribution of the spatially distributed

rate that particles land on the surface or the rate that surface particles are eroded to
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the fluctuations of the surface height profile (e.g., the surface roughness) is captured

by the term

p∑
i=1

bi(x)ui(t). This control problem formulation is further supported by

our simulation results which demonstrate that the controller designed on the basis of

the stochastic KSE model of a sputtering process can be successfully applied to the

kMC model of the same sputtering process to control the surface roughness to desired

levels (see simulation results in Section 3.5).

3.4.2 State feedback control

Following the method presented in [60], we design a linear state feedback controller

on the basis of the linearization of Eq. (3.39) around its zero solution. To simplify our

development, we assume that p = 2m (i.e., the number of control actuators is equal

to the dimension of the finite-dimensional system) and pick the actuator distribution

functions such that B−1
s exists. The linear state feedback control law then takes the

form:

u = B−1
s (Λcs − Λs)x̃s

(3.40)

where the matrix Λcs contains the desired poles of the closed-loop system; Λcs =

diag[λcα1 . . . λcαm λcβ1 . . . λcβm], λcαi and λcβi (1 ≤ i ≤ m) are desired poles of the

closed-loop finite-dimensional system, which satisfy Re{λcαi} < 0 and Re{λcβi} < 0

for (1 ≤ i ≤ m) and can be determined from the desired closed-loop surface roughness

level.
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3.4.3 Output feedback control

The state feedback controller of Eq. (3.40) was derived under the assumption that

measurements of the states x̃s are available, which implies that measurements of the

surface height profile, h(x, t), are available at all positions and time. However, from a

practical point of view, measurements of the surface height profile are only available

at a finite number of spatial positions. Motivated by this practical consideration,

we address in this section the synthesis of an output feedback controller that uses

measurements of the thin film surface height at distinct locations to enforce a desired

surface roughness in the closed-loop kMC simulation model. The measured surface

height profile can be expressed as follows:

y(t) = [h(x1, t) h(x2, t) . . . h(xq, t)]
T (3.41)

where xi (i = 1, 2, . . . , q) denotes a location of a point measurement sensor and q is

the number of measurement sensors. Since the height profile h(x, t) can be expanded

into an infinite series as shown in Eq. (3.12), the vector of output measurements of

Eq. (3.41) can be written in terms of the state of the infinite-dimensional system, xs
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and xf , as follows:

y(t) =




∞∑
n=1

αn(t)φn(x1) +
∞∑

n=1

βn(t)ψn(x1) + β0(t)ψ0

∞∑
n=1

αn(t)φn(x2) +
∞∑

n=1

βn(t)ψn(x2) + β0(t)ψ0

...
∞∑

n=1

αn(t)φn(xq) +
∞∑

n=1

βn(t)ψn(xq) + β0(t)ψ0




= Cs




β0(t)

xs(t)


 + Cfxf(t)

(3.42)

where

Cs(t) =




ψ0 φ1(x1) φ2(x1) . . . φm(x1) ψ1(x1) ψ2(x1) . . . ψm(x1)

ψ0 φ1(x2) φ2(x2) . . . φm(x2) ψ1(x2) ψ2(x2) . . . ψm(x2)

...
...

...
. . .

...
...

...
. . .

...

ψ0 φ1(xq) φ2(xq) . . . φm(xq) ψ1(xq) ψ2(xq) . . . ψm(xq)




(3.43)

and

Cf(t) =




φm+1(x1) ψm+1(x1) φm+2(x1) ψm+2(x1) . . .

φm+1(x2) ψm+1(x2) φm+2(x2) ψm+2(x2) . . .

...
...

. . .

φm+1(xq) ψm+1(xq) φm+2(xq) ψm+2(xq) . . .




. (3.44)
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Neglecting the xf component in the system of Eq. (3.37) and Eq. (3.42) and lin-

earizing the resulting finite-dimensional system around its zero solution, the following

linearized finite-dimensional system is obtained:

dx̃s

dt
= Λsx̃s + Bsu + ξs,

ỹ = Cs




β̃0(t)

x̃s(t)


.

(3.45)

The system of Eq. (3.45) is used for the static output feedback control design. The

general form of the output feedback control laws is as follows:

u = F(y) (3.46)

where F(y) is a vector function and y is the vector of measured outputs. The syn-

thesis of the controller of Eq. (3.46) will be achieved by combining the state feedback

controller of Eq. (3.40) with a procedure proposed in [22] for obtaining estimates for

the states of the approximate ODE model of Eq. (3.45) from the measurements. To

this end, we need to impose the following requirement on the number of measure-

ments in order to obtain estimates of the states xs of the finite-dimensional system

of Eq. (3.39) from the measurements y.

Assumption 3.1 q = 2m+1, and the inverse of Cs exists, so that [β̂0 x̂T
s ]T = C−1

s y.

We note that the requirement that the inverse of Cs exists can be achieved by
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appropriate choice of the location of the measurement sensors. When point measure-

ment sensors are used, this requirement can be verified by checking the invertibility

of the matrix.

The output feedback control law of Eq. (3.46) is designed on the basis of Eq. (3.45)

as follows:

u = F(y) = B−1
s (Λcs − Λs) [0 Is] C

−1
s y (3.47)

where [0 Is] is used to extract estimated states xs from




β̂0(t)

x̂s(t)


, 0 is a 2m× 2m

zero matrix and Is is a 2m× 2m elementary matrix.

Remark 3.7 Note that although the stochastic KSE model of Eq. (3.7) for which we

computed the parameters is a nonlinear model for the sputtering process, the state

feedback controller of Eq. (3.40) and the output feedback controller of Eq. (3.47) are

linear controllers that are designed based on a linearization of the stochastic KSE

around its zero solution. Our decision to identify the nonlinear stochastic KSE model

of the sputtering process but design the output feedback controller based on a linearized

process model is made based on two considerations. First, from a modeling point of

view, the sputtering process is a nonlinear process and a linear model is not sufficient

to represent the time evolution of the surface height profile. Specifically, due to the

existence of unstable eigenvalues of the linear operator of Eq. (3.11), the expected

surface roughness predicted by a linear stochastic PDE model will go to infinity as t →

∞, which is not true for the sputtering process due to the un-modeled nonlinearities
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of the process. Therefore, it is important to model the sputtering process using a

nonlinear stochastic PDE model to appropriately capture the process dynamics. On

the other hand, since the instability of the spatially uniform steady state comes from

the linear part of the model, and the nonlinear part of the stochastic KSE helps bound

the surface roughness, for control purposes, we only need to focus on the stabilization

of the linear part of the stochastic KSE. This argument can be further supported by our

simulation results, which demonstrate the effectiveness of the linear output feedback

controller designed in this chapter.

Remark 3.8 We note that a full-scale model of a sputtering process would consist

of a two-dimensional lattice representation of the surface. Although we developed the

method for output feedback control design based on a one-dimensional lattice represen-

tation of the surface, it is possible to extend the proposed method to control the surface

roughness of material preparation processes taking place in two-dimensional domains.

In a two-dimensional in space process, the feedback control design will be based on

a two-dimensional extension of the model of Eq. (3.37). Moreover, Eq. (3.37) will

be obtained by solving the eigenvalue/eigenfunction problem in the two-dimensional

spatial domain subject to appropriate boundary conditions; this can be achieved in a

similar way to that followed for the one-dimensional spatial domain (see the work by

Ni and Christofides [71] for results on the solution of the eigenvalue/eigenfunction

problem for a two-dimensional spatial domain). Once the modal representation of

Eq. (3.37) corresponding to the two-dimensional stochastic PDE model is obtained,
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the method proposed in this chapter for controller design can be applied to control the

surface roughness.

3.5 Numerical simulations

In this section, we present applications of the proposed model parameter estimation

method and both of the state feedback and output feedback controllers to the kMC

model of a sputtering process to demonstrate the effectiveness of the algorithms.

Specifically, the model parameters of the stochastic KSE process model are first es-

timated by using data of surface snapshots obtained form kMC simulations. The

identified KSE model is linearized and is consequently used as a basis for both state

feedback control and output feedback control design. The controllers designed based

on the stochastic KSE model are applied to the kMC model of the sputtering process

to reduce the expected surface roughness to desired levels.

In all simulations, we consider a sputtering process that takes place on a lattice

containing 200 sites. Therefore, a = 0.0314. The sputtering yield function, Y (φi) is a

nonlinear function of φi, which takes the form of Eq. (3.1). y0, y1 and y2 are chosen

such that Y (0) = 0.5, Y (π/2) = 0 and Y (1) = 1 [26].
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3.5.1 Model parameter estimation

We first compute the profiles of the state covariance and the expected values for αnfnα

and βnfnβ from kMC simulations of the sputtering process. Upon the execution of an

event, the state of the stochastic KSE model (αn or βn) is updated. If the executed

event is erosion, αn or βn can be updated as follows [60, 62]:

αnew
n = αold

n +
a [ψ(n, zi − a/2)− ψ(n, zi + a/2)]

n
,

βnew
n = βold

n +
a [φ(n, zi + a/2)− φ(n, zi − a/2)]

n
.

(3.48)

If the executed event is diffusion from site i to site j, αn or βn are updated as follows:

αnew
n = αold

n +
a [ψ(n, zi − a/2)− ψ(n, zi + a/2)]

n

−a [ψ(n, zj − a/2)− ψ(n, zj + a/2)]

n
,

βnew
n = βold

n +
a [φ(n, zi + a/2)− φ(n, zi − a/2)]

n

−a [φ(n, zj + a/2)− φ(n, zj − a/2)]

n
,

(3.49)

where a is the lattice parameter and zi is the coordinate of the center of site i.

The terms αnfnα and βnfnβ are computed by using Eq. (3.24) with m = 10 for

n = 1, 2, . . . , 10. The expected profiles are the averages of profiles obtained from

10000 independent kMC simulation runs. The covariance profiles of α1, α3, α5, α7,

and α9 are shown in Figure 3.2 and the profiles for the expected values of α1f1α,

α3f3α, α5f5α, α7f7α, and α9f9α are shown in Figure 3.3. Similar profiles are observed
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Figure 3.2: Profiles of the state covariance 〈α2
n(t)〉 for n = 1, 3, 5, 7, and 9.

for the covariance of βn and βnfnβ, and are omitted here for brevity.

Since we use m = 10, the first 2m = 20 modes are used for parameter estimation.

The three-dimensional profile of the covariance matrix for the first 20 states at the

end of a simulation run is plotted in Figure 3.4. It is clear that the covariance

matrix is diagonally dominant. Therefore, it is appropriate to use just the diagonal

elements of the system of Eq. (3.23) for parameter estimation so that the estimation

algorithm is insensitive to round-off errors. To formulate the least-squares fitting

problem, d〈α2
n(t)〉/dt, d〈β2

n(t)〉/dt, 〈α2
n(t)〉, 〈β2

n(t)〉, 〈αn(t)fnα(t)〉, and 〈βn(t)fnβ(t)〉

are evaluated at the first 150 available discrete time instants in the data obtained from

kMC simulations. Therefore, in the least-squares fitting formulations of Eqs. (3.27)

and (3.31), A is a 3000 × 4 matrix, b is a 3000 × 1 vector and θ = [ν κ λ σ2]T . The
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Figure 3.3: Profiles of the expected value for αnfnα(t) for n = 1, 3, 5, 7, and 9.

values of the four parameters obtained from least-squares fitting are ν = 2.76× 10−5,

κ = 1.54× 10−7, λ = 3.06× 10−3, and σ2 = 1.78× 10−5.

To validate the parameter estimation method, we first compute the expected open-

loop surface roughness from the stochastic KSE model of Eq. (3.7) with the computed

parameters. Then, the profile from the stochastic KSE with computed parameters is

compared to that from the kMC model. The expected surface roughness is computed

from the simulations of the stochastic KSE and the kMC model by averaging surface

roughness profiles obtained from 100 and 10000 independent runs, respectively. The

simulation result is shown in Figure 3.5. It is clear that the computed model param-

eters result in consistent expected surface roughness profiles from the stochastic KSE

model of Eq. (3.7) and from the kMC simulator of the sputtering process. There
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Figure 3.4: The covariance matrix for the first 20 states: a diagonally dominant
matrix.

is observable difference between the two profiles, which indicates the existence of a

slight mismatch of the identified model with the kMC model of the sputtering pro-

cess. The mismatch between the profiles originates from the fact that the KSE model

is derived from the master equation of the sputtering process with an assumption of

infinitesimal lattice size, while in the kMC simulation a 200-lattice (finite-numbered)

model is used.

3.5.2 Closed-loop simulation under state feedback control

We design a state feedback controller for the sputtering process based on the 2m

order approximation of the stochastic ODE and apply the controller to the kMC

model of the sputtering process to control the surface roughness to the desired level.
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Figure 3.5: Comparison of the open-loop profile of the expected surface roughness
of the sputtering process from the kMC simulator and that from the solution of the
stochastic KSE using the estimated parameters.

The state feedback controller is designed using the computed KSE model parameters

and Λcs = diag[−0.01 −0.01 . . . −0.01]. 2m control actuators are used to control the

system. The ith actuator distribution function is taken to be:

bi(z) =





1√
π

sin(iz), i = 1, . . . , m,

1√
π

cos[(i−m)z], i = m + 1, . . . , 2m.

(3.50)

The controller is implemented by manipulating the probability that a randomly

selected site is subject to the erosion rule, f . From a practical point of view, a spatially

distributed erosion probability can be realized by varying the gas composition across

the substrate. Specifically, the bombardment rate of each surface site under feedback
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control is 1/τ = 1 + (
2m∑
j=1

bj(zi)uj(t))/a. Since the variation of the bombardment rate

does not change the surface diffusion rate, according to the discussion in Remark 3.1,

the f of site i should relate to the surface bombardment rate in a way that (1− f)/τ

is a constant. Since in open-loop operation, f̄ = 0.5 and 1/τ̄ = 1, we have (1−f)/τ =

(1− f̄)/τ̄ = 0.5. Therefore, f under feedback control is determined according to the

following expression:

f(i) =

f̄ +

(
2m∑
j=1

bj(zi)uj(t)

)
/a

1 +

(
2m∑
j=1

bj(zi)uj(t)

)
/a

(3.51)

where f̄ = 0.5 is the probability a selected surface site is subject to erosion, and

1/τ̄ = 1 is the bombardment rate of each surface site in open-loop operation.

The simulation algorithm used to run the kMC simulations for the closed-loop

system is similar to the one for the open-loop system except that once an event is

executed, the first 2m states (α1, . . . , αm and β1, . . . , βm) are updated and new control

actions are computed to update the value of f (defined in Eq. (3.51) for each surface

site

The dimension of the reduced-order model, 2m, needs to be appropriately de-

termined. It should be large enough so that all unstable modes are included. The

number of unstable modes is 26 according to the estimated model parameters of the

sputtering process considered in this chapter. When 2m ≥ 26 and the desired closed-

loop poles are negative, the linearized closed-loop system under the state feedback
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control is stable. This is demonstrated by the simulation result with 2m = 40.

The closed-loop system simulation result under the state feedback controller de-

signed on the basis of a 40th-order approximation is shown in Figure 3.6 (the dash-

dotted line labeled with m = 20). The other profiles in Figure 3.6 are under con-

trollers of different orders and will be discussed later. The initial surface roughness

is around 0.5. The expected surface roughness is computed by averaging the surface

roughness profiles obtained from 100 independent runs. It is clear from Figure 3.6

that the state feedback controller effectively reduces the expected surface roughness

and stabilizes it at about 0.3. For the purpose of comparison, an expected open-loop

surface roughness profile, which is obtained by averaging 100 independent open-loop

simulation runs, is shown in Figure 3.7. Under open-loop operation, the final steady-

state surface roughness is around 0.7. Therefore, the state feedback controller reduces

the expected surface roughness by 55%. This demonstrates the effectiveness of the

state feedback control law. A snapshot of the surface configuration at the end of the

closed-loop simulation is shown in Figure 3.9.

However, even when the size of the reduced-order system is smaller than the

number of the unstable modes, the state feedback control law still reduces the surface

roughness compared to the open-loop value. This is due to the nonlinearity of the

stochastic KSE, which bounds the unstable linear terms and prevents the expected

surface roughness from going to infinity. To demonstrate this and show that m = 20 is

appropriate for the state feedback controller design, we compare several state feedback
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Figure 3.6: Closed-loop surface roughness profiles in the sputtering process under
state feedback controllers of different order, m: initial surface roughness is 0.5.
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Figure 3.7: Profiles of the expected open-loop surface roughness of the sputtering
process.
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controllers based on the reduced-order systems with different dimensions, m = 1,

5, 10, 15 as well as m = 20. For each controller, the number of actuators is the

same with the dimension of the reduced-order system and Λcs = diag[−0.01 −0.01

. . . −0.01]. The expected surface roughness is the average of the surface roughness

profiles obtained from 100 independent runs. The initial surface roughness for the

close-loop simulation is fixed at 0.5 and 0, separately.

The closed-loop simulation results are shown in Figure 3.6 and Figure 3.8. Despite

the use of different initial conditions, the expected surface roughness profiles of the

closed-loop systems under the various state feedback controllers are stabilized at

the same values, for the same m. It is also clear that all final expected closed-loop

surface roughness values are lower compared to the open-loop simulation. The surface

roughness is further reduced as m increases. However, there is no significant difference

between the expected roughness of m = 15 and m = 20. Higher order controllers

will not result in further reduction of the surface roughness. So it is concluded that

m = 20 is an appropriate dimension of the reduced-order system for the state feedback

controller.

3.5.3 Closed-Loop simulation under output feedback control

We also apply the output feedback controller of Eq. (3.47) to the kMC model of

the sputtering process. The output feedback controller is designed based on the same

order stochastic ODE approximation used in the design of the state feedback controller
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Figure 3.8: Closed-loop surface roughness profiles in the sputtering process under
state feedback controllers of different order m: initial surface roughness is 0 (flat
initial surface).

Figure 3.9: A snapshot of the surface configuration at the end of the closed-loop
simulation under the 40th order state feedback controller: initial surface roughness is
0.5.
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in Section 3.5.2. The positions of point measurements are evenly distributed on the

surface lattice. The same control actuators are used to control the system as defined

in Eq. (3.50).

The closed-loop system simulation result under the 40th order output feedback

controller is shown in Figure 3.10. (the dash-dotted line labeled with m = 20).

The expected surface roughness is the average of surface roughness profiles obtained

from 100 independent runs. The initial surface roughness is fixed at 0.5. Similar to

the closed-loop simulation result under state feedback control, the output feedback

controller also reduces the expected surface roughness by 55% compared to the corre-

sponding open-loop simulation value. A snapshot of the surface configuration at the

end of the closed-loop simulation is shown in Figure 3.12.

For output feedback control, m = 20 is also an appropriate dimension for the

reduced-order system. Simulations under output feedback control with different di-

mensions of the reduced-order system are compared in Figure 3.10 and Figure 3.11

with different initial surface conditions similarly to the comparison of the state feed-

back controller in Section 3.5.2. In these figures, we can see that the output feedback

controllers stabilize the expected surface roughness, but are not as effective as the

state feedback controllers, especially when the dimension, m, is relatively small. In

Figure 3.10, the output feedback controller with m = 1 drives the expected surface

roughness to a value which is higher than the one obtained under open-loop operation

(see Figure 3.7). In Figure 3.10, we also observe that as the dimension (and thus the
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Figure 3.10: Closed-loop surface roughness profiles in the sputtering process under
output feedback controllers of different order, m: initial surface roughness is 0.5.

number of sensors) of the model used for controller design increases, the difference

between the output feedback controllers and the state feedback controllers decreases.

This is due to the decreased error of the estimated state as the number of measure-

ments increases. We therefore conclude that m = 20 is an appropriate value for the

output feedback controller design.

3.6 Conclusions

In this chapter, we developed a method to estimate the parameters of the nonlinear

stochastic KSE model and designed model-based state and output feedback controllers

for a sputtering process, which includes two surface micro-processes and is simulated
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Figure 3.11: Closed-loop surface roughness profiles in the sputtering process under
output feedback controllers of different order, m: initial surface roughness is 0 (flat
initial surface).

Figure 3.12: A snapshot of the surface configuration at the end of the closed-loop
simulation under the 40th order output feedback controller: initial surface roughness
is 0.5.
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by a kMC model. Both parameter estimation and feedback control design began with

formulation of the stochastic KSE into a system of infinite stochastic ODEs by us-

ing modal decomposition. A finite dimensional approximation was then obtained to

capture the dominant mode contribution to the surface roughness profile. For param-

eter estimation purposes, a deterministic ODE model of the evolution of the state

covariance was derived to eliminate the influence of fluctuations from the stochas-

tic processes. Subsequently, a kMC simulator of the sputtering process was used to

generate surface snapshots at different time instants during the process evolution to

obtain the state and the state covariance of the stochastic ODE system. Finally, the

model parameters of the nonlinear stochastic KSE were obtained using least-squares

methods and validated by comparing the KSE open-loop simulation results with the

kMC simulation results. With respect to feedback controller design, two schemes were

developed and applied to the sputtering process: state feedback control and output

feedback control. Both control laws were demonstrated to effectively reduce the ex-

pected surface roughness of the kMC simulation of the sputtering process compared

to the open-loop operation.
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Chapter 4

Model Predictive Control of

Surface Roughness

4.1 Introduction

In this chapter, model predictive control (MPC) algorithms are developed on the ba-

sis of the identified stochastic PDE models for the thin film growth process to achieve

desired surface morphology and film microstructure. First, a method for model pre-

dictive control of nonlinear stochastic PDEs is developed. The control objective is

to regulate the state variance of the PDE, e.g., the roughness of a surface in a thin

film growth process, to a desired level. To present this method, a nonlinear stochastic

PDE is first formulated into a infinite-dimensional nonlinear stochastic ODE system

by using Galerkin’s method. A finite-dimensional approximation is then constructed
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to capture the dominant mode contribution to the state variance. A model predictive

control problem is formulated based on the finite-dimensional approximation. In the

closed-loop system under the model predictive control, the control action is computed

by minimizing an objective cost function, which includes both transient and termi-

nal state penalty. An analysis of the closed-loop nonlinear infinite-dimensional sys-

tem is performed to characterize the closed-loop performance enforced by the model

predictive controller. Subsequently, numerical simulations are performed using the

stochastic Kuramoto-Sivashinsky equation (KSE) to demonstrate the effectiveness of

the proposed predictive controller. In addition, we consider the problem of surface

roughness regulation in a one-dimensional ion-sputtering process described by a kMC

model. We first demonstrate that the spatially distributed control configuration is

more effective for surface roughness regulation compared to the spatially invariant

control configuration. Then, a model predictive controller, which is designed based

on an identified stochastic KSE surface model, is applied to the kMC model of the

sputtering process and is demonstrated to successfully regulate the expected surface

roughness to a desired level [63].
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4.2 Nonlinear model predictive controller design

4.2.1 Preliminaries

We consider nonlinear dissipative stochastic PDEs with distributed control of the

following form:

∂h

∂t
= Ah + F(h) +

p∑
i=1

bi(x)ui(t) + ξ(x, t) (4.1)

subject to homogeneous boundary conditions and the initial condition h(x, 0) = h0(x),

where x ∈ [−π, π] is the spatial coordinate, t is the time, h(x, t) is the height of the

surface at position x and time t, A is a dissipative spatial differential operator, F is a

nonlinear function, ui(t) is the ith manipulated input, p is the number of manipulated

inputs and bi(x) is the ith actuator distribution function (i.e., bi(x) determines how

the control action computed by the ith control actuator, ui(t), is distributed (e.g.,

point or distributed actuation) in the spatial interval [−π, π]). ξ(x, t) is a Gaussian

white noise with the following expressions for its mean and covariance:

〈ξ(x, t)〉 = 0,

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x− x′)δ(t− t′),

(4.2)

where σ is a real number, δ(·) is the Dirac delta function, and 〈·〉 denotes the expected

value.
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The eigenvalue problem for A is defined as

Aφj = λjφj, j = 1, 2, . . . ,∞, (4.3)

where λj and φj denote the jth eigenvalue and eigenfunction, respectively. To simplify

our development and motivated by most practical applications, we consider stochastic

PDEs for which A is a highly dissipative operator (i.e., a second-order or fourth-

order linear self-adjoint operator) and has eigenvalues which are real numbers. The

eigenspectrum of A, σ(A), is defined as the set of all eigenvalues of A, i.e., σ(A) =

{λ1, λ2, . . . }. Assumption 4.1 states that the eigenspectrum of A can be partitioned

into a finite-dimensional part consisting of m slow eigenvalues and a stable infinite-

dimensional complement containing the remaining fast eigenvalues, the separation

between the slow and fast eigenvalues of A is large, and that the infinite sum of
∞∑
i=1

1

|λi| converges to a finite positive number.

Assumption 4.1 [23]: The eigenvalues of A satisfy the following:

1. λ1 ≥ λ2 ≥ . . ..

2. σ(A) can be partitioned as σ(A) = σ1(A) + σ2(A), where σ1(A) consists of the

first m (with m finite) eigenvalues, i.e., σ1(A) = {λ1, λ2, . . . , λm}. λm+1 < 0

and
|λ1|
|λm+1| = O(ε) where ε < 1 is a small positive number.

3. There exists a positive number, γ > 0, such that
∞∑
i=1

1

|λi| < γ.
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Note that the eigenvalue problem of the stochastic PDE of Eq. (4.1) is formulated

in the same way as that of deterministic PDEs. The assumption of finite number

of unstable eigenvalues and discrete eigenspectrum are always satisfied for parabolic

PDE systems defined in finite spatial domains [19], while the assumption of existence

of only a few dominant modes that capture the dominant dynamics of the stochastic

parabolic PDE system and the convergence of the infinite sum
∞∑
i=1

1

|λi| to a finite

positive number are usually satisfied by the majority of materials processes (see the

example of the sputtering process described by the stochastic KSE in the Section 4.3).

The inner product and norm in the Hilbert space H are defined as

(ω1, ω2) =

∫

Ω

(ω1(z), ω2(z))Rndz, ‖ω1‖2 = (ω1, ω1)
1/2, (4.4)

where ω1, ω2 are two elements of H, Ω is the domain of definition of the process, and

the notation (·, ·)Rn denotes the standard inner product in Rn.

4.2.2 Model reduction

We apply Galerkin’s method (see [19] for a detailed discussion on the standard

Galerkin’s method) to the system of Eq. (4.1) to derive an approximate finite-dimensional

system. First, the solution of Eq. (4.1) is expanded into an infinite series in terms of
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the eigenfunctions of the operator of Eq. (4.3) as follows:

h(x, t) =
∞∑

n=1

αn(t)φn(x) (4.5)

where αn(t) are time-varying coefficients. Substituting the above expansion for the

solution, h(x, t), into Eq. (4.1) and taking the inner product with the adjoint eigen-

functions, φ∗n(x), the following system of infinite nonlinear stochastic ODEs is ob-

tained:

dαn

dt
= λnαn + fnα +

p∑
i=1

biαnui(t) + ξn
α(t), n = 1, . . . ,∞, (4.6)

where

biαn =

∫ π

−π

φ∗n(x)bi(x)dx, ξn
α(t) =

∫ π

−π

ξ(x, t)φ∗n(x)dx, (4.7)

and

fnα =

∫ π

−π

φ∗n(x)F(h)dx. (4.8)

Using Result 1, the covariance of ξn
α(t) can be obtained as 〈ξn

α(t)ξn
α(t′)〉 = σ2δ(t−

t′).

Owing to its infinite-dimensional nature, the system of Eq. (4.6) cannot be di-

rectly used for the design of controllers that can be implemented in practice (i.e., the

practical implementation of controllers which are designed on the basis of this system

will require the computation of infinite sums which cannot be done by a computer).

Instead, we will base the controller design on a finite-dimensional approximation of
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this system. Subsequently, we will show that the resulting controller will enforce the

desired control objective in the closed-loop infinite-dimensional system. Specifically,

we rewrite the system of Eq. (4.6) as follows:

dxs

dt
= Asxs + Fs(xs, xf) + Bsu + ξs,

dxf

dt
= Afxf + Ff(xs, xf) + Bfu + ξf ,

(4.9)

where xs = [α1 α2 . . . αm]T , xf = [αm+1 αm+2 . . . ]T , As = diag[λ1

λ2 . . . λm], Af = diag [λm+1 λm+2 . . . ], Fs(xs, xf) = [f1α(xs, xf) f2α(xs, xf)

. . . fmα(xs, xf)]
T , Ff(xs, xf) = [ fm+1α(xs, xf) fm+2α(xs, xf) . . . ]T , u = [u1 u2

. . . up], ξs = [ξ1
α . . . ξm

α ], ξf = [ξm+1
α ξm+2

α . . . ],

Bs =




b1α1
. . . bpα1

...
. . .

...

b1αm
. . . bpαm




, and Bf =




b1αm+1
. . . bpαm+1

b1αm+2
. . . bpαm+2

...
...

...




. (4.10)

The standard Galerkin’s method is to approximate the solution h(x, t) of the

system of Eq. (4.1) by x̃s(t), which is given by the following m−dimensional system:

dx̃s

dt
= Asx̃s + Fs(x̃s, 0) + Bsu + ξs

(4.11)

where the tilde symbol in x̃s denotes that this state variable is associated with a finite-

dimensional system. We note that there are a variety of other methods/concepts
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available for model reduction of nonlinear distributed parameter systems. For ex-

ample, the concept of approximate inertial manifolds [23, 19, 6] can be employed to

obtain improved approximations of the finite-dimensional system of Eq. (4.11) and

proper orthogonal decomposition (POD) [9, 6] can be used to derive empirical eigen-

functions based on process model solutions which can be employed as basis functions

in Galerkin’s method.

4.2.3 Model predictive controller design

In this section, we design a nonlinear model predictive controller based on the finite-

dimensional stochastic ODE system of Eq. (4.11). In our development, we will need

the following notation for the full state, X = [xT
s xT

f ]T = [α1 α2 . . . αm αm+1 . . . ]T .

The variances of xs, xf and X are defined as:

var(xs(t)) = [〈α2
1(t)〉 . . . 〈α2

m(t)〉]T ,

var(xf(t)) =
[〈α2

m+1(t)〉 〈α2
m+2(t)〉 . . .

]T
,

var(X(t)) =
[
var(xs(t))

T var(xf(t))
T
]T

,

(4.12)

where 〈·〉 denotes the expected value. The 2-norms of a finite-dimensional vector,

ys(t) = [y1(t) y2(t) . . . ym(t)]T and an infinite-dimensional vector, yf(t) = [y1(t) y2(t)

. . . ]T are defined as follows:

‖ys(t)‖ =

√√√√
m∑

j=1

y2
j (t), ‖yf(t)‖ =

√√√√
∞∑

j=1

y2
j (t). (4.13)
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Accordingly, we have the following for the norms of the vectors var(xs), var(xf) and

var(X):

‖var(xs(t))‖2 =
m∑

j=1

〈α2
j (t)〉2,

‖var(xf(t))‖2 =
∞∑

j=m+1

〈α2
j (t)〉2,

‖var(X(t))‖2 =
∞∑

j=1

〈α2
j (t)〉2.

(4.14)

MPC formulation based on the infinite-dimensional system

In this section, we consider the problem of control of the norm of the state vari-

ance of the nonlinear stochastic infinite-dimensional system of Eq. (4.1) to a desired

level. This problem will be addressed within a model predictive control framework,

where the control, at a time t and state x(t), is obtained by solving a finite-horizon

optimal control problem. Since the system of infinite stochastic ODEs of Eq. (4.9)

is mathematically equivalent to the stochastic PDE of Eq. (4.1), the MPC problem

is formulated based on the system of infinite stochastic ODEs of Eq. (4.9) in the

following form:

min
u
{J(X(t), t, u(·))|u(·) ∈ S}

subject to

dxs

dt
= Asxs + Fs(xs, xf) + Bsu + ξs,

dxf

dt
= Afxf + Ff(xs, xf) + Bfu + ξf ,

(4.15)
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where S = S(t, Tp) is the family of piecewise functions, with period ∆, mapping

[t, t + Tp] into U = {u(t) ∈ Rl} and Tp is a specified prediction horizon. The control

u(·) in S is characterized by the sequence u[k], where u[k] = u(t + k∆) and satisfies

that u(t) = u[k] for all t ∈ [t+k∆, t+(k+1)∆]. Note that by selecting an appropriate

S, input constraints can be readily included in the control problem formulation. The

objective function, J(X(t), t, u(·)) is, in general, given by:

J(X, t, u(·)) =

∫ t+Tp

t

Q‖var(Xu(τ))− var(X∗(τ))‖2dτ

+Qf‖var(X(t + Tp))− var(X∗(t + Tp))‖2

(4.16)

where var(X∗(τ)) is the reference trajectory describing the variance of the desired

state for the infinite-dimensional system, var(Xu(τ)) denotes the variance of the

state X that is due to the control u(t), with initial state X(t) at a time t in the

closed-loop system of Eq. (4.1), Q and Qf are positive real numbers, and Tp is the

prediction horizon. We note that the cost function of Eq. (4.16) does not include a

penalty on the control action. Yet, we do impose an implicit penalty on the con-

trol action by imposing appropriate bounds on the eigenvalues of the closed-loop

system (see optimization formulation of Eq. (4.21) below). The minimizing control

u0(·) = {u(t), u(t + ∆), u(t + 2∆), . . . } ∈ S is then applied to the system over the

interval [t, t + ∆] and the procedure is repeated at t + ∆ until a terminal time is
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reached. This defines an implicit model predictive control law as follows:

u(t) = M(X(t)) = u0(∆; X(t), t) (4.17)

in which M(x(t)) denotes the nonlinear map between the state and control.

MPC formulation and solution based on the reduced-order model

Note that the predictive control formulation shown in Eq. (4.15) is developed on the

basis of an infinite-dimensional stochastic system. Therefore, it leads to a predictive

controller that is of infinite order and cannot be realized in practice. To address this

issue, we provide a predictive control formulation that is on the basis of the finite-

dimensional system of Eq. (4.11) and computes the control action by minimizing an

objective function including the distance between the predicted state variance and a

reference trajectory and a terminal penalty.

Consider a vector of reference trajectories describing the desired trajectories for

each element of the variance of xs, var(x∗s (t)) = [〈x∗1(t)2〉 . . . 〈x∗m(t)2〉]T . The control

action, u(t), can be obtained by solving, in a receding horizon fashion, the following
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optimization problem:

min
u

∫ t+Tp

t

Q‖var(x̃u
s )− var(x∗s )‖2dτ + Qf‖var(x̃u

s (t + Tp))− var(x∗s (t + Tp))‖2

subject to

dx̃s

dt
= Asx̃s + Fs(x̃s, 0) + Bsu + ξs

(4.18)

where x̃u
s is the solution of Eq. (4.11) that is due to the control u(τ), with an initial

condition x̃s(t) at a time t.

A challenge for the design of a predictive controller for a stochastic process is to

predict the state variance, var(xs(t)), in a computationally efficient way. Although a

realization of the future evolution of state variance can be solved through numerical

integrations of the stochastic process model of Eq. (4.18), due to the stochastic nature

of the process, numerical solutions from different simulation runs of the same stochas-

tic process are not identical. The state variance should be computed by averaging the

numerical solutions of the stochastic process from a large number of individual simu-

lation runs. The prediction of state variance using brute force numerical integration

of a nonlinear stochastic system is, therefore, extremely computationally expensive

and is not appropriate for the design of predictive controllers to be implemented in

real-time.

As an alternative, an analytical solution of the state variance based on the pro-

cess model, if available, provides a feasible way for MPC design and implementation.

For linear stochastic PDEs, the analytical solution of the state variance is readily
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available, which results in efficient design of a model predictive controller for sur-

face variance regulation [71]. However, analytical solutions of the state variance for

nonlinear stochastic PDEs are, in general, not available. To this end, we focus on

the construction of a nonlinear feedback controller that can induce a linear structure

in the closed-loop finite-dimensional stochastic system of Eq. (4.11). Therefore, the

analytical solution of the state variance under the proposed controller structure can

be obtained. Consequently, the control action is computed by solving an optimization

problem in a receding horizon fashion and computationally efficient way.

Specifically, under the assumption that the number of control actuators is equal

to the dimension of the x̃s-subsystem and the matrix Bs is invertible, the control law

takes the following form:

u(t) = B−1
s {(Acs(t)−As) x̃s(t)−Fs(x̃s(t), 0)} (4.19)

where Acs(t) = diag[λc1(t) . . . λcm(t)] and λci(t), i = 1, 2, . . . , m, are time-varying,

desired poles of the closed-loop finite-dimensional system. Note that in the proposed

controller structure of Eq. (4.19), the desired poles are not fixed values but will be

computed in real-time by solving an on-line optimization problem in a receding hori-

zon fashion. This is a fundamental difference from the nonlinear feedback controller

proposed in [62].

Replacing the u of Eq. (4.11) by Eq. (4.19), we have the following closed-loop

121



system:

dx̃s(t)

dt
= Acs(t)x̃s(t) + ξs

(4.20)

In this control problem formulation, the computation of the control action, u(t), is

equivalent to the computation of Acs(t), or the values of λci(t) for i = 1, 2, . . . ,m, by

solving the following optimization problem:

min
Acs(t)

∫ t+Tp

t

Q‖var(x̃s)− var(x∗s )‖2dτ + Qf‖var(x̃s(t + Tp))− var(x∗s (t + Tp))‖2

subject to

dx̃s

dt
= Acs(t)x̃s + ξs,

ai < λci(t) < bi < 0, i = 1, 2, . . . , m.

(4.21)

Note that in the optimization problem of Eq. (4.21), Acs(t) does not change during

the optimization time interval t < τ < t + Tp. Therefore, the optimization problem

of Eq. (4.21), which does not include penalty on the control action, is a quadratic

problem with linear constraints for which the existence of the optimal solution is

guaranteed and unique. The control action, u, is computed using Eq. (4.19), in

which Acs(t) is obtained from the solution of the constrained optimization problem

of Eq. (4.21). Since the poles of the closed-loop finite dimensional system, λci(t),

are constrained, u is not explicitly included in the objective function. The analytical
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solution of the state variance of Eq. (4.20) can be obtained as follows:

x̃n(τ) = eλcn(τ−t)x̃n(t) +

∫ τ

t

eλcn(t+Tp−µ)ξn
s (µ)dµ, n = 1, 2, . . . ,m. (4.22)

The expected value (the first stochastic moment) and the variance (the second

stochastic moment) of the state of Eq. (4.20) can be computed as follows [60, 71]:

〈x̃n(τ)〉 = eλcn(τ−t)x̃n(t), n = 1, 2, . . . , m,

〈x̃n(τ)2〉 =
e2λcn(τ−t) − 1

2λcn

+ 〈x̃n(t)〉2, n = 1, 2, . . . , m.

(4.23)

Eq. (4.23) also gives the analytical solution of var(x̃s(t)) in the closed-loop finite-

dimensional system of Eq. (4.11). Using Eq. (4.23), the optimization problem of

Eq. (4.21) can be subsequently formulated as a minimization of a nonlinear alge-

braic equation, which can be readily solved by using standard unconstrained or con-

strained multidimensional nonlinear minimization algorithms (for example, Nelder-

Mead method or golden section search [16, 52]). The computational cost of these

optimization algorithms grows with the number of variables and the computation

involves only standard numerical operations such as function evaluation and com-

parison. The optimization problems can be solved fast relative to the time scale of

process evolution using currently available computing power.

Remark 4.1 Note that input and state constraints could be incorporated into the

predictive control formulation of Eq. (4.18). In a stochastic process, the value of
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either the input or the state at a specific time is not predictable and its evolution can

only be described by its statistical moments. Therefore, the state constraints should

be incorporated into the predictive control formulation in the form of their statistical

moments. Of particular interest are their second-order moments (covariance) because

the state covariance represents the expected surface roughness of a thin film [60, 61]

and the input covariance can be related to control energy [82]. However, systematic

handling of input and/or state constraints in predictive control of stochastic PDEs

also requires an efficient way to compute the state and/or input covariance, which is,

in general, very challenging for nonlinear stochastic PDEs and is outside of the scope

of the present work.

4.2.4 Analysis of the closed-loop infinite-dimensional system

In this section, we analyze the state variance of the infinite dimensional system un-

der the predictive controller of Eq. (4.21). To ensure exponential stability of the

closed-loop finite-dimensional system, the upper-bounds of the closed-loop poles in

Eq. (4.21), bi, i = 1, 2, . . . , m, are all negative. Under this condition, a Lyapunov

function can be constructed to prove the exponential stability of the closed-loop

finite-dimensional system with time-varying matrix Acs(t) in Eq. (4.21) (note that

Acs(t) is a diagonal matrix). To this end, we can design the predictive controller

of Eq. (4.21) to successfully drive the variance of x̃s of the system of Eq. (4.20) to

the desired value, e.g., ‖var(xs(t))‖2 = ‖var(x∗s (t))‖2. By applying the controller of
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Eqs. (4.19) and (4.21) to the infinite-dimensional system of Eq. (4.9), and using that

ε =
|λ1|
|λm+1| , the closed-loop system takes the form:

dxs

dt
= Acsxs + (Fs(xs, xf)−Fs(xs, 0)) + ξs,

ε
dxf

dt
= Afεxf + εBfB−1

s (Acs −As) x̃s

+εFf(xs, xf)− εBfB−1
s Fs(x̃s, 0) + εξf ,

(4.24)

where λ1 and λm+1 are the first and the (m + 1)th eigenvalues of the linear operator

in Eq. (4.9), and Afε = diag[λε1 λε2 . . . ] is an infinite-dimensional matrix defined as

Afε = εAf .

We now proceed to characterize the accuracy with which the variance of x =

[xT
s xT

f ]T is controlled in the closed-loop infinite-dimensional system. Theorem 4.1

provides estimates of the variances of xs and xf of the closed-loop system of Eq. (4.24)

and a characterization of the variance of x enforced by the controller of Eqs. (4.19)

and (4.21) in the closed-loop infinite dimensional system. The proof of Theorem 4.1

is given below.

Theorem 4.1 Consider the infinite-dimensional closed-loop system of Eq. (4.24) and

the definition of ‖var(xs)‖2, ‖var(xf)‖2, and ‖var(X)‖2 shown in Eq. (4.14). Then,

there exist µ∗ > 0 and ε∗ > 0 such that if ‖xf0‖ + ‖xs0‖ ≤ µ∗ and ε ∈ (0, ε∗],
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‖var(xs(tf))‖2, ‖var(xf(tf))‖2, and ‖var(x(tf))‖2 satisfy:

‖var(xf(t))‖2 = O(ε), (4.25)

‖var(xs(t))‖2 = ‖var(x∗s (t))‖2 + O(
√

ε), (4.26)

‖var(X(t))‖2 = ‖var(x∗s (t))‖2 + O(
√

ε), (4.27)

where xf0 and xs0 are the initial conditions for xf and xs in Eq. (4.24), respectively.

Proof of Theorem 4.1. The proof of Theorem 4.1 includes several steps. First,

we prove that the closed-loop infinite-dimensional system is asymptotically stable for

a sufficiently small ε. Second, we compute the ‖var(xf)‖2 using the xf subsystem of

Eq. (4.24) and prove Eq. (4.25) in Theorem 4.1. Then, we compute ‖var(xs)
2‖ using

the xs subsystem of Eq. (4.24) and prove Eq. (4.26) in Theorem 4.1. Finally, the proof

of Theorem 4.1 is completed by proving Eq. (4.27) based on the results in Eqs. (4.25)

and (4.26).

Closed-loop infinite-dimensional system stability. Let u(t) = M(xs) be the general

expression of the control law corresponding to the predictive control formulation of

Eq. (4.18). The infinite-dimensional closed-loop system of Eq. (4.24) can be re-written
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as follows:
dxs

dt
= Asxs + Fs(xs, xf) + BsM(xs) + ξs,

ε
dxf

dt
= Afεxf + εFf(xs, xf) + εBfM(xs) + εξf ,

(4.28)

where xf subsystem is a fast subsystem due to the eigenspectrum of Afε. Rewriting

the system of Eq. (4.28) in the fast-time-scale τ = t/ε and setting ε = 0, the xf

subsystem of Eq. (4.28) takes the form:

dx̄f

dτ
= Afεx̄f (4.29)

where x̄f denotes the state of the xf subsystem after neglecting the three terms.

According to Assumption 4.1 for the eigenspectrum of the linear operator A, all

eigenvalues of Afε have negative real parts. Thus, the system of Eq. (4.29) is expo-

nentially stable. Setting ε = 0 in the system of Eq. (4.28), the following closed-loop

finite-dimensional system is obtained:

dx̃s

dt
= Asx̃s + Fs(x̃s, 0) + BsM(x̃s) + ξs

= Acsx̃s + ξs

(4.30)

which is locally exponentially stable by the design of the predictive controller of

Eq. (4.21). Therefore, there exists a positive real number ε̂ such that ∀ε ∈ (0, ε̂], the

zero solution of the closed-loop infinite-dimensional system of Eq. (4.24) is locally

asymptotically stable.
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Proof of Eq. (4.25) in Theorem 4.1. Consider the closed-loop system of Eq. (4.24)

and note that the terms in the right-hand-side of the xf subsystem constitute an

O(ε) approximation to the term Afεxf . Consider also the following linear stochastic

system:

ε
dx̄f

dt
= Afεx̄f + εξf . (4.31)

Following a similar approach to the one employed in the proof of Theorem A.1 in [49,

p. 361], we have that there exists an ε̂∗ > 0 such that for all ε ∈ (0, ε̂∗], we have that:

xf(t) = x̄f(t) + O(
√

ε). (4.32)

Based on the definition of ‖var(xf)‖2 in Eq. (4.14), we have the following estimate for

‖var(xf(t))‖2:

‖var(xf(t))‖2 = ‖var(x̄f(t) + O(
√

ε))‖2 ≤ 2‖var(x̄f(t))‖2 + O(ε). (4.33)

Furthermore, ‖var(xf(t))‖2 and ‖var(x̄f(t))‖2 are equal to the traces of the covariance

matrices of xf(t) and x̄f(t), Pf(t) = 〈xf(t)xf(t)
T 〉 and P̄f(t) = 〈x̄f(t)x̄f(t)

T 〉, respec-

tively. Finally, for t > tb (where tb is the time needed for Pf(t) and P̄f(t) to converge

to their stead-state values and tb → 0 as ε → 0), Pf(t) and P̄f(t) converge to Pf(∞)

and P̄f(∞), respectively (both Pf(∞) and P̄f(∞) are bounded quantities which follows

from closed-loop stability). Because Afε is a diagonal matrix, the trace of matrix P̄f
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can be computed as follows [60]:

Tr{P̄f} =
ε

2

∞∑
i=1

∣∣∣∣
1

λεi

∣∣∣∣ (4.34)

where λεi (i = 1, 2, . . . ,∞) are the eigenvalues of the matrix Afε in Eq. (4.31). Ac-

cording to Assumption 4.1,
∞∑
i=1

∣∣∣∣
1

λεi

∣∣∣∣ converges to a finite positive number, and thus,

there exists a positive real number kfε such that

Tr{P̄f} <
ε

2
kfε. (4.35)

Therefore, it follows that

Tr{P̄f} = ‖var(x̄f)‖2 = O(ε). (4.36)

According to Eq. (4.33), it follows that the ‖var(xf)‖2 is O(ε). This completes the

proof of Eq. (4.25) in Theorem 4.1. ¤

Proof of Eq. (4.26) in Theorem 4.1. Consider the xs subsystem of the closed-loop

system of Eq. (4.24). First, we note that there exists a positive real number k1s such

that [23, 19]

‖Fs(xs, xf)−Fs(xs, 0)‖ < k1s‖xf‖ (4.37)

where the definition of the vector norm can be found in Eq. (4.13). From Eq. (4.32),

we have the following estimate for ‖xf‖ for t ≥ tb (where tb is the time needed for
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‖x̄f(t)‖ to approach zero and tb → 0 as ε → 0):

‖xf(t)‖ = O(
√

ε). (4.38)

This implies that we have the following estimate for ‖Fs(xs, xf)−Fs(xs, 0)‖ for t ≥ tb:

‖Fs(xs, xf)−Fs(xs, 0)‖ = O(
√

ε). (4.39)

Therefore, the solution of the following system consists an O(
√

ε) approximation of

the xs of Eq. (4.24) [49, Theorem A.1, p. 361]:

dx̄s

dt
= Acsx̄s + ξs. (4.40)

In particular, there exists an ε̂∗∗ > 0 such that for all ε ∈ (0, ε̂∗∗], it holds that:

xs(t)− x̄s(t) = O(
√

ε) (4.41)

and

‖var(xs(t))‖2 − ‖var(x̄s(t))‖2 = 〈‖xs(t)‖2 − ‖x̄s(t)‖2〉

= 〈(‖xs(t)‖ − ‖x̄s(t)‖)(‖xs(t)‖+ ‖x̄s(t)‖)〉

= O(
√

ε).

(4.42)

Note that it is assumed that the controller of Eqs. (4.19) and (4.21) can successfully
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drive the norm of the variance of xs of the system of Eq. (4.20) to track the reference

trajectory, which means the following equation holds:

‖var(x̄s(t))‖2 = ‖var(x∗s (t))‖2 (4.43)

Based on Eqs. (4.42) and (4.43), we immediately have that in the closed-loop infinite-

dimensional system of Eq. (4.24), the following holds:

‖var(xs(t))‖2 = ‖var(x∗s (t))‖2 + O(
√

ε). (4.44)

This completes the proof of Eq. (4.26) in Theorem 4.1. ¤

Proof of Eq. (4.27) in Theorem 4.1. According to Eq. (4.14), we have the following

equation for ‖var(x(t))‖2 in Eq. (4.24):

‖var(X(t))‖2 = ‖var(xs(t))‖2 + ‖var(xf(t))‖2. (4.45)

Using Eqs. (4.25) and (4.26), we have:

‖var(X(t))‖2 = ‖var(x∗s (t))‖2 + O(
√

ε) + O(ε). (4.46)

Since as ε → 0, it holds that:

O(ε)

O(
√

ε)
→ 0. (4.47)
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The O(ε) term in Eq. (4.46) is very small relative to the term O(
√

ε) and can be

neglected. Thus, there exists an ε∗ = min(ε̂∗, ε̂∗∗) such that if ε ∈ (0, ε∗], then

‖var(X(t))‖2 = ‖var(x∗s (t))‖2 + O(
√

ε). (4.48)

This completes the proof of Theorem 4.1. ¥

4.3 Simulation results

In this section, we present applications of the proposed model predictive controller to

both the stochastic PDE model and the kinetic Monte Carlo model of a sputtering

process. Since the physical interpretation of the state variance of a stochastic PDE

is the expected roughness of the surface modeled by the stochastic PDE, we will use

the expected surface roughness as the control objective in the simulation study. By

applying the MPC to the stochastic KSE, we demonstrate that the nonlinear MPC

is able to regulate the expected surface roughness of the process modeled by the

stochastic KSE to a desired level and the proposed predictive controller possesses good

robustness properties against model uncertainties. To demonstrate the applicability

of the proposed predictive control method to control surfaces directly formed by

microscopic events, we also apply the predictive controller to the kinetic Monte Carlo

model of a sputtering process to demonstrate that the controller designed based on

the stochastic KSE model of the process can regulate the surface roughness of the
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kinetic Monte Carlo model of the same process to a desired level.

4.3.1 Model predictive control of the stochastic Kuramoto-

Sivashinsky equation

In this section, we present applications of the proposed predictive controller to a

stochastic KSE. The stochastic KSE is a fourth-order nonlinear stochastic partial dif-

ferential equation that describes the evolution of the height fluctuation for surfaces in

a variety of material preparation processes including surface erosion by ion sputtering

[26, 53] and surface smoothing by energetic clusters [42]. We consider the following

stochastic KSE with spatially distributed control:

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

λ

2

(
∂h

∂x

)2

+

p∑
i=1

b̂i(x)ui(t) + ξ′(x, t) (4.49)

where ui is the ith manipulated input, p is the number of manipulated inputs, b̂i is the

ith actuator distribution function (i.e., b̂i determines how the control action computed

by the ith control actuator, ui, is distributed (e.g., point or distributed actuation) in

the spatial interval [−π, π]), ν = 1.975 × 10−4, κ = 1.58 × 10−4, λ = 1.975 × 10−4,

x ∈ [−π, π] is the spatial coordinate, t is the time, h(x, t) is the height of the surface

at position x and time t and ξ′(x, t) is a Gaussian white noise with zero mean and

unit covariance:

〈ξ′(x, t)ξ′(x′, t′)〉 = δ(x− x′)δ(t− t′). (4.50)
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Eq. (4.49) is subject to periodic boundary conditions (PBCs):

∂jh

∂xj
(−π, t) =

∂jh

∂xj
(π, t), j = 0, 1, 2, 3, (4.51)

and the initial condition h(x, 0) = 0. The parameters of the KSE are selected such

that κ < ν so that there is one positive eigenvalue of the linear operator and the zero

solution of the open-loop system is unstable. Note that although a uniform initial con-

dition is used in this simulation, non-uniform initial conditions can be handled by the

MPC formulation proposed in this chapter in the same way. A 200th order stochastic

ODE of Eq. (4.49) obtained via Galerkin’s method is used to simulate the process

(the use of higher-order approximations led to identical numerical results, thereby

implying that the following simulation runs are independent of the discretization).

The Dirac delta function involved in the covariances of ξn
α and ξn

β is approximated by

1

∆t
, where ∆t is the integration time step.

Eigenvalue problem

To study the dynamics of Eq. (4.49), we initially consider the eigenvalue problem of

the linear operator of Eq. (4.49), which takes the form:

Aφ̄n(x) = −ν
d2φ̄n(x)

dx2
− κ

d4φ̄n(x)

dx4
= λnφ̄n(x),

djφ̄n

dxj
(−π) =

djφ̄n

dxj
(π),

j = 0, 1, 2, 3, n = 1, 2, . . . ,∞,

(4.52)
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where λn denotes an eigenvalue and φ̄n denotes an eigenfunction. A direct computa-

tion of the solution of the above eigenvalue problem yields λ0 = 0 with ψ0 = 1/
√

2π,

and λn = νn2 − κn4 (λn is an eigenvalue of multiplicity two) with eigenfunctions

φn = (1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞. Note that the

φ̄n in Eq. (4.52) denotes either φn or ψn. From the expression of the eigenvalues, it

follows that for fixed values of ν > 0 and κ > 0, the number of unstable eigenvalues

of the operator A in Eq. (4.52) is finite and the distance between two consecutive

eigenvalues (i.e., λn and λn+1) increases as n increases.

We then derive nonlinear stochastic ODE formulations of Eq. (4.49) using Galerkin’s

method. By substituting the expansion of h(x, t) in terms of the eigenfunctions into

Eq. (4.49) and taking the inner product with the adjoint eigenfunctions, the following

system of infinite nonlinear stochastic ODEs is obtained:

dαn

dt
= (νn2 − κn4)αn + fnα +

p∑
i=1

biαnui(t) + ξn
α(t), n = 1, 2, . . . ,∞,

dβn

dt
= (νn2 − κn4)βn + fnβ +

p∑
i=1

biβnui(t) + ξn
β (t), n = 0, 1, . . . ,∞.

(4.53)

The control objective is the expected value of the surface roughness, r, which is

modeled by the stochastic KSE and is represented by the standard deviation of the

surface from its average height and is computed as follows:

〈r2(t)〉 =

〈
1

2π

∫ π

−π

[h(x, t)− h̄(t)]2dx

〉
(4.54)
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where h̄(t) =
1

2π

∫ π

−π

h(x, t)dx is the average surface height. The expected surface

roughness, 〈r2(t)〉 can be rewritten in terms of αn(t) and βn(t) as follows:

〈r2(t)〉 =
1

2π

〈∫ π

−π

(h(x, t)− h̄(t))2dx

〉

=
1

2π

〈∫ π

−π

[ ∞∑
i=1

αi(t)φi(x) +
∞∑
i=0

βi(t)ψi(x)− β0(t)ψ0

]2

dx

〉

=
1

2π

〈∫ π

−π

∞∑
i=1

[
α2

i (t)φi(x)2 + β2
i (t)ψi(x)2

]
dx

〉

=
1

2π

〈 ∞∑
i=1

(α2
i (t) + β2

i (t))

〉
=

1

2π

∞∑
i=1

[〈α2
i (t)〉+ 〈β2

i (t)〉
]
.

(4.55)

Therefore, the control problem of the expected surface roughness is equivalent to

the state covariance control of the stochastic KSE. The proposed predictive control

method can be applied to regulate the expected surface roughness.

Open-loop dynamics of the stochastic KSE

In the first simulation, we compute the expected value of open-loop surface roughness

profile from the solution of the stochastic KSE of Eq. (4.49) by setting ui(t) = 0

for i = 1, . . . , p. For ν = 1.975 × 10−4 and κ = 1.58 × 10−4, the stochastic KSE

possesses one positive eigenvalue. Therefore, the zero solution of the open-loop system

is unstable. Surface roughness profiles obtained from 100 independent simulation runs

using the same parameters are averaged and the resulting surface roughness profile is

shown in Figure 4.1. The value of the open-loop surface roughness increases due to the
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Figure 4.1: Comparison of the open-loop expected surface roughness profile computed
by averaging 100 independent simulation runs (solid line) and that from a single
simulation run (dotted line) of the stochastic KSE of Eq. (4.49).

open-loop instability of the zero solution. On the other hand, due to the existence of

the nonlinear term, the open-loop surface roughness does not increase exponentially

but it is bounded.

Model reduction

Following the same way of model reduction of Eq. (4.9), we rewrite the system of

Eq. (4.53) as follows:

dxs

dt
= Λsxs + fs(xs, xf) + Bsu + ξs,

dxf

dt
= Λfxf + ff(xs, xf) + Bfu + ξf ,

(4.56)
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where xs = [α1 . . . αm β1 . . . βm]T , xf=[αm+1 βm+1 . . . ]T , Λs=diag[λ1 . . . λm λ1

. . . λm], Λf = diag[λm+1 λm+1 λm+2 λm+2 . . . ], fs(xs, xf) = [f1α(xs, xf) . . . fmα(xs, xf)

f1β(xs, xf) . . . fmβ(xs, xf)]
T , ff(xs, xf) = [fm+1α(xs, xf) fm+1β(xs, xf) . . . ]T , u = [u1

. . . up], ξs = [ξ1
α . . . ξm

α ξ1
β . . . ξm

β ], and ξf = [ξm+1
α ξm+1

β . . . ],

Bs =




b1α1
. . . bpα1

...
. . .

...

b1αm
. . . bpαm

b1β1
. . . bpβ1

...
. . .

...

b1βm
. . . bpβm




, Bf =




b1αm+1
. . . bpαm+1

b1βm+1
. . . bpβm+1

b1αm+2
. . . bpαm+2

b1βm+2
. . . bpβm+2

...
...

...




. (4.57)

We note that the subsystem xf in Eq. (4.56) is infinite-dimensional. Neglecting the

xf subsystem, the following 2m-dimensional system is obtained:

dx̃s

dt
= Λsx̃s + fs(x̃s, 0) + Bsu + ξs

(4.58)

where the tilde symbol in x̃s denotes that this state variable is associated with a

finite-dimensional system.
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Nonlinear predictive control of the stochastic KSE

In this closed-loop simulation, we design a predictive controller based on a 10th order

stochastic ODE approximation constructed by using the first 10 eigenmodes of the

system of Eq. (4.49). Ten control actuators are used to control the system. The ith

actuator distribution function is taken to be:

bi(z) =





1√
π

sin(iz), i = 1, . . . , 5,

1√
π

cos[(i− 5)z], i = 6, . . . , 10.

(4.59)

Under this control problem formulation, m = 5 and the value of ε = |λ1|/|λ11| =

4.21× 10−4. Our desired expected value of the surface roughness is 4.28. A reference

trajectory for the expected surface roughness is constructed and is shown by the dot-

ted line in Figure 4.2. Closed-loop simulations are performed to study the evolution

of the expected value of the surface roughness under predictive control. To further

simplify the computation, the predictive controller is solved by assuming that all the

closed-loop poles of the finite-dimensional system are equal to each other. Closed-loop

surface roughness profiles obtained from 100 independent simulation runs using the

same simulation parameters are averaged and the resulting surface roughness profile

is shown in Figure 4.2 (solid line) and it is compared with the reference trajectory

(dotted line). We can see that the controller successfully drives the surface roughness

to the desired level, which is lower than that corresponding to open-loop operation

(ui(t) = 0, i = 1, . . . , 10) shown in Figure 4.1.

139



0 50 100 150
0

1

2

3

4

5

6

Time (s)

S
ur

fa
ce

 r
ou

gh
ne

ss

Expected roughness
Reference trajectory

Figure 4.2: The closed-loop profile of the expected value of the surface roughness of
the nonlinear KSE under predictive control (solid line) versus the reference trajectory.

Robustness properties of the predictive controller

In this subsection, we demonstrate the good robustness properties of the model predic-

tive controller against parameter uncertainties of the stochastic KSE process model.

To this end, we consider significant uncertainty in the parameters of the stochastic

KSE process model. Specifically, the controller is designed based on the stochastic

KSE model with the following parameters, νm = 1.975 × 10−4, κm = 1.58 × 10−4,

and λm = 1.975 × 10−4, where the subscript m denotes that the parameter is used

by the model predictive controller design. However, the parameters of the stochastic

KSE to which the predictive controller is applied are, ν = 1.5νm, κ = 0.5κm, and

λ = 1.2λm, which correspond to a 50% uncertainty associated with ν and κ and a

20% uncertainty associated with λ. Both the proposed predictive controller and the
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pole placement covariance controller proposed in [62] are applied to the stochastic

KSE model with the model uncertainties, and the simulation results are shown in

Figure 4.3. It is clear that the pole placement covariance controller developed in [62]

fails to regulate the expected surface roughness to the desired level, but the predictive

controller successfully regulates the expected surface roughness to the desired level in

the presence of significant model uncertainties.

Remark 4.2 Note that in the pole placement covariance controller [62], the closed-

loop poles are determined based on the stochastic KSE model and the desired expected

surface roughness through an off-line design procedure. When there are model errors,

the errors will propagate to the closed-loop poles of the controller which results in a

deteriorated closed-loop performance. In the proposed predictive controller, the closed-

loop poles are computed by solving an on-line optimization problem. The on-line so-

lution of the optimization problem provides a feedback mechanism which compensates

for the effect of model errors on the performance of the closed-loop system.

4.3.2 Model predictive control of an ion-sputtering process

In this section, we apply the MPC algorithm to an ion-sputtering process, of which the

dynamics can be described by the stochastic KSE. The detailed process description

of the sputtering process is given in Section 3.2.1 in Chapter 3.
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Figure 4.3: Comparison of the expected closed-loop surface roughness of the nonlinear
KSE under the proposed predictive controller (top figure) and under the nonlinear
pole placement controller developed in [62] (bottom figure). Effect of model uncer-
tainty.
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Necessity of spatially distributed control

Both spatially distributed control configuration [61, 60, 62] and spatially invariant

control configuration [57, 58, 71] could be used to control the surface roughness of var-

ious material preparation processes. However, the selection of control configurations

in the previous works was largely arbitrary and was not guided by the characteristics

of the specific process considered. In this section, we investigate the necessity and

effectiveness of spatially distributed control configuration in the context of control of

processes described by nonlinear stochastic PDEs.

For the ion-sputtering process considered in this section, we consider the manip-

ulated input as either the surface bombardment rate or the substrate temperature.

We will demonstrate through the kMC simulation of the sputtering process that a

desired expected surface roughness value, 0.3, cannot be achieved by manipulating

either the substrate temperature or the surface bombardment rate as a spatially in-

variant process input, but can be achieved by manipulating the surface bombardment

rate as a spatially distributed process input.

In the first set of simulation runs, we compute the expected surface roughness

profiles of the sputtering process during the erosion of the first 1000 monolayers under

different substrate temperature. In all simulation runs, f = 0.5 and βJ = J/kBT

changes from 0.05 to 5. Note that in each simulation run, the substrate temperature

is spatially invariant and constant. The surface roughness is calculated as the standard

deviation of the surface height profile. In the kMC simulation, the formula to compute
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the surface roughness is as follows

r =

√√√√ 1

L

L∑
i=1

(hi − h̄)2 (4.60)

where L denotes the number of the lattice sites on the lateral direction and h̄ denotes

the averaged value of the surface height among all lattice sites.The expected surface

roughness is the average of surface roughness profiles obtained from 100 independent

runs.

Figure 4.4 shows a comparison of the expected surface roughness profiles under

different temperatures. It is clear that although the expected surface roughness can

be reduced by decreasing the temperature (or increasing the value of βJ), the reduc-

tion is quite limited. Furthermore, it can be observed that the minimum expected

surface roughness that can be achieved by manipulating the substrate temperature

as a spatially invariant process input is around 0.5, which is much higher than the

desired surface roughness of 0.3 in this case study.

In the second set of simulation runs, we compute the expected surface roughness

profiles of the sputtering process during the erosion of the first 1000 monolayers under

different values of the erosion probability, f . In all simulation runs, the substrate tem-

perature is fixed such that βJ = 2 and the probability that a selected surface particle

is subjected to erosion, f , changes from 0.1 to 0.6. Note that in each simulation run,

the value of f is fixed. The erosion probability can be changed by varying the surface
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Figure 4.4: Comparison of the open-loop profile of the expected surface roughness
from the kMC simulator when f = 0.5 and βJ varies from 0.05 to 5.

bombardment rate [39]. In this study, the change of f from 0.1 to 0.6 corresponds to

the change of surface bombardment rate from 0.1 s−1site−1 to 1.5 s−1site−1.

Figure 4.5 shows the comparison of the expected surface roughness profiles under

different values of f . Again, although the expected surface roughness can be reduced

by decreasing the value of f , the reduction is quite limited. It can be observed that

the minimum expected surface roughness that can be achieved by manipulating the

surface bombardment rate as a spatially invariant process input is around 0.5, which

is higher than the desired surface roughness of 0.3 in this case study.

Finally, we consider a case where f is spatially invariant but is time-varying.

Specifically, for each monolayer eroded, f = 0.1 for the first half monolayer and f =

0.6 for another half monolayer. We compute the expected surface roughness profiles
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Figure 4.5: Comparison of the open-loop profile of the expected surface roughness
from the kMC simulator when βJ = 2 and f varies from 0.1 to 0.6.

of the sputtering process during the erosion of the first 800 monolayers under this

time-varying erosion probability, f . In all simulation runs, the substrate temperature

is fixed such that βJ = 2. Figure 4.6 shows the profile of the expected surface

roughness under this operation. The profile is also compared to those under fixed

values of f (f = 0.1 and f = 0.6). It can be observed that when f is time-varying

between 0.1 and 0.6, the resulted expected surface roughness profile is between the

profiles obtained under fixed values of f = 0.1 and f = 0.6. Although time-varying

inputs are useful for surface processing in certain applications, they are not effective

in reducing the surface roughness of the sputtering process considered in this chapter.

The surface roughness obtained from this time-varying input is around 0.5 and is also

higher than the desired surface roughness of 0.3.
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Figure 4.6: Comparison of open-loop profiles of the expected surface roughness from
the kMC simulator when βJ = 2 and f is 1) f = 0.6, 2) f = 0.1, and 3) time-varying.

Based on the simulation results shown in this subsection, it can be concluded that

reduction of the expected surface roughness of the sputtering process by manipulation

either of the substrate temperature or of the surface bombardment rate as a spatially

invariant process input is very limited, and, in the case studies, the desired surface

roughness which is 0.3, cannot be achieved. In the following subsection, we will

demonstrate that this limitation can be overcome by the proposed nonlinear controller

designed based on the stochastic KSE process model, which uses spatially distributed

control actuation. To this end, we consider a sputtering process with fixed substrate

temperature (βJ = 2) and control the expected surface roughness to the desired

value by manipulating the spatially distributed surface bombardment rate across the

surface.
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Remark 4.3 Note that we focus on the predictive control of surface roughness in

processes that can be modeled by nonlinear stochastic PDEs so that a pre-specified

surface roughness can be achieved. For a specific material preparation process, the

desired surface roughness should be determined based on the process characteristics

and the product specifications. Detailed discussion on the selection of desired surface

roughness for a variety of existing thin film deposition and sputtering processes is

beyond the scope of this work.

The stochastic KSE model with spatially distributed control

In the remainder of this section, a stochastic KSE model will be identified using

surface snapshots generated by the kMC simulation of the sputtering process and

the spatially distributed control action will be computed using the proposed model

predictive controller designed on the basis of the identified stochastic KSE model.

The equation for the height fluctuations of the surface in this sputtering process

was derived in [53] and is a stochastic KSE of the form of Eq. (4.61):

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

λ

2

(
∂h

∂x

)2

+ ξ(x, t) (4.61)

where x ∈ [−π, π] is the spatial coordinate, t is the time, h(x, t) is the height of the

surface at position x and time t, and ξ(x, t) is a Gaussian noise with zero mean and

covariance:

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x− x′)δ(t− t′) (4.62)
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where σ is a constant. We note that this stochastic KSE representation for the surface

morphological evolution in sputtering processes is limited to surface morphologies that

do not involve re-entrant features; the re-entrant features could arise under certain

sputtering conditions and are catastrophic for the surface. The values of the four

parameters are obtained via least-squares fitting methods presented in Chapter 3:

ν = 2.76× 10−5, κ = 1.54× 10−7, λ = 3.06× 10−3, and σ2 = 1.78× 10−5.

Model predictive control with distributed control action

In the closed-loop simulation, we design a predictive controller based on a 20th order

stochastic ODE approximation constructed by using the first 20 eigenmodes of the

linearized (around zero solution) stochastic PDE of Eq. (4.61). First we design a

linear state feedback controller as follows:

u(t) = B−1
s {(Acs(t)−As) x̃s(t)} (4.63)

where Acs(t) = diag[λc1(t) . . . λcm(t)]. λci(t), i = 1, 2, . . . , m are time-varying, desired

poles of the closed-loop finite-dimensional system and the poles λci(t) are computed
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by solving the following optimization problem:

min
Acs(t)

∫ t+Tp

t

Q‖var(xs)− var(x∗s )‖2dτ + Qf‖var(xs(t + Tp))− var(x∗s (t + Tp))‖2

subject to

dxs

dt
= Acs(t)xs + ξs,

ai < λi < bi < 0, i = 1, 2, . . . ,m.

(4.64)

Twenty control actuators are used to control the system. The ith actuator distribution

function is taken to be:

bi(z) =





1√
π

sin(iz), i = 1, . . . , 10,

1√
π

cos[(i− 10)z], i = 11, . . . , 20.

(4.65)

Under this control problem formulation, m = 10 and the value of ε = |λ1|/|λ21| = 0.02.

Our desired expected value of the surface roughness is 0.3. To further simplify the

computation, the predictive controller is solved by assuming that all the closed-loop

poles of the finite-dimensional system are equal to each other. Note that the predictive

controller of Eqs. (4.63) – (4.64) is the linearization around the zero solution of the

predictive controller of Eqs. (4.19) – (4.21).

Then, we apply the designed predictive controller to the kMC model of the sput-

tering process to control the surface roughness to the desired level. In this simulation,

the initial surface roughness is about 0.5 and the microstructure of the initial surface

is shown in Figure 4.7. The controller is implemented by manipulating the probability
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Figure 4.7: Surface micro-configuration at the beginning of the closed-loop simulation
run. The initial surface roughness is 0.5.

that a randomly selected site is subject to erosion rule, f . Specifically, the f of site i

is determined according to the following expression:

f(i) =

f̄ +

(
20∑

j=1

bj(zi)uj(t)

)
/a

1 +

(
20∑

j=1

bj(zi)uj(t)

)
/a

. (4.66)

Closed-loop surface roughness profiles obtained from 100 independent simulation

runs using the same simulation parameters are averaged and the resulting expected

surface roughness profile is shown in Figure 4.8. We can see that the predictive con-

troller drives the surface roughness very close to the desired level, which is lower than

the surface roughness that can be achieved by manipulating the surface bombardment

151



0 50 100 150 200 250 300 350 400 450 500
0.3

0.35

0.4

0.45

0.5

0.55
kMC: Model Predictive Control

Eroded Layers

E
xp

ec
te

d 
R

ou
gh

ne
ss

Figure 4.8: The closed-loop profile of the expected value of the surface roughness
under predictive control.

rate in a spatially invariant manner.

The microstructure of the surface at the end of the closed-loop system simulation

run is shown in Figure 4.9. It is clear that the proposed model predictive control

results in a smoother closed-loop surface.

Remark 4.4 Note that although the stochastic KSE model of Eq. (4.61) is a nonlin-

ear model for the sputtering process, the linearization of the stochastic KSE around

its zero solution is used to design the predictive controller of Eqs. (4.63) – (4.64).

This is based on the following argument. Since the instability of the spatially uniform

steady state comes from the linear part of the model, and the nonlinear part of the

stochastic KSE helps bound the surface roughness, for control purposes, we only need
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Figure 4.9: Surface micro-configuration at the end of the closed-loop simulation run
under predictive control. The final surface roughness is around 0.3.

to focus on the stabilization of the linear part of the stochastic KSE. This argument

is further supported by our simulation results, which demonstrate the effectiveness of

the predictive controller designed in this chapter.

4.4 Conclusions

In this chapter, we presented a method for model predictive control of nonlinear

stochastic PDEs to regulate the state variance to a desired level. Initially, a sys-

tem of infinite nonlinear stochastic ODEs was derived from the nonlinear stochastic

PDE by using Galerkin’s method. To capture the dominant mode contribution, a

finite-dimensional approximation of the stochastic ODE system was then derived. A

model predictive control problem was formulated based on the approximation. This
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enabled computationally efficient prediction of state variance of the finite-dimensional

system. The control action was computed by minimizing an objective penalty func-

tion. To characterize the closed-loop performance enforced by the model predictive

controller, an analysis of the closed-loop nonlinear infinite-dimensional system was

provided. The predictive controller was initially applied to the stochastic KSE and

resulted in successful control of the norm of the state variance to a desired level in

the presence of significant model parameter uncertainties. In addition, the problem

of surface roughness regulation in a one-dimensional ion-sputtering process including

two surface micro-processes, diffusion and erosion, was considered. We established,

through kMC simulations, that the spatially distributed control configuration was

more effective for surface roughness regulation compared to the spatially invariant

control configuration for this process. Then, we designed a model predictive con-

troller based on an identified stochastic KSE surface model to control the surface

roughness of the sputtering process by manipulating the surface bombardment rate

in a spatially distributed manner. The predictive controller successfully regulated

the expected surface roughness to a desired level in the kMC model of the sputtering

process.
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Chapter 5

Modeling and Control of Film

Porosity

5.1 Introduction

In the previous chapters, our research work has focused on modeling and control of

surface roughness (surface covariance). In this chapter, systematic methodologies are

developed for modeling and control of film porosity in thin film deposition processes.

Initially, a thin film deposition process which involves atom adsorption and migration

is introduced and is modeled using a triangular lattice-based kMC simulator which

allows porosity, vacancies and overhangs to develop and leads to the deposition of a

porous film. Subsequently, appropriate definitions of film site occupancy ratio (SOR),

i.e., fraction of film sites occupied by particles over total number of film sites, and
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its fluctuations are introduced to describe film porosity. Then, deterministic and

stochastic ODE models are derived that describe the time evolution of film SOR and

its fluctuation. The coefficients of the ODE models are estimated on the basis of

data obtained from the kMC simulator of the deposition process using least-square

methods and their dependence on substrate temperature is determined. The devel-

oped ODE models are used as the basis for the design of model predictive control

(MPC) algorithms that include penalty on the film SOR and its variance to regulate

the expected value of film SOR at a desired level and reduce run-to-run fluctuations.

Simulation results demonstrate the applicability and effectiveness of the proposed

film porosity modeling and control methods in the context of the deposition process

under consideration.

5.2 Thin film deposition process description and

modeling

This section presents the description of the kMC algorithm of a thin film deposition

process. Two microscopic processes are considered; atom adsorption and surface

migration. Vacancies and overhangs are allowed in the kMC model to introduce

porosity during the thin film growth. Substrate temperature and deposition rate are

the macroscopic parameters which control the deposition process.
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5.2.1 On-lattice kinetic Monte Carlo model of film growth

The thin film growth process considered in this chapter includes two microscopic

processes: an adsorption process, in which particles are incorporated into the film from

the gas phase, and a migration process, in which surface particles move to adjacent

sites [56, 55, 92, 95]. Solid-on-solid (SOS) deposition models, in which vacancies and

overhangs are forbidden, are frequently used to model thin film deposition processes

[70, 62] and investigate the surface evolution of thin films. However, vacancies and

overhangs must be incorporated in the process model to account for film porosity.

Since SOS models are inadequate to model the evolution of thin film internal micro-

structure, a deposition process taking place in a triangular lattice is considered.

Specifically, the thin film growth model used in this chapter is an on-lattice kMC

model in which all particles occupy discrete lattice sites. The on-lattice kMC model

is valid for temperatures T < 0.5Tm, where Tm is the melting point of the crystal. At

high temperatures (T . Tm), the particles cannot be assumed to be constrained on the

lattice sites and the on-lattice model is not valid. In this chapter, a triangular lattice

is selected to represent the crystalline structure of the film, as shown in Figure 5.1. All

particles are modeled as identical hard disks and the centers of the particles deposited

on the film are located on the lattice sites. The diameter of the particles equals the

distance between two neighboring sites. The width of the lattice is fixed so that the

lattice contains a fixed number of sites in the lateral direction. The new particles

are always deposited from the top side of the lattice where the gas phase is located;
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Figure 5.1: Thin film growth process on a triangular lattice.

see Figure 5.1. Particle deposition results in film growth in the direction normal to

the lateral direction. The direction normal to the lateral direction is thus designated

as the growth direction. The number of sites in the lateral direction is defined as

the lattice size and is denoted by L. The lattice parameter, a, which is defined as

the distance between two neighboring sites and equals the diameter of a particle (all

particles have the same diameter), determines the lateral extent of the lattice, La.

The number of nearest neighbors of a site ranges from zero to six, the coordina-

tion number of the triangular lattice. A site with no nearest neighbors indicates an

unadsorbed particle in the gas phase (i.e., a particle which has not been deposited
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on the film yet). A particle with six nearest neighbors is associated with an interior

particle that is fully surrounded by other particles and cannot migrate. A particle

with one to five nearest neighbors is possible to diffuse to an unoccupied neighboring

site with a probability that depends on its local environment. In the triangular lat-

tice, a particle with only one nearest neighbor is considered unstable and is subject to

instantaneous surface relaxation. Details of particle surface relaxation and migration

will be discussed in Section 5.2.2 and 5.2.3 below.

In the simulation, a bottom layer in the lattice is initially set to be fully packed and

fixed, as shown in Figure 5.1. There are no vacancies in this layer and the particles

in this layer cannot migrate. This layer acts as the substrate for the deposition and

is not counted in the computation of the number of the deposited particles, i.e., this

fixed layer does not influence the film porosity (see Section 5.3 below).

Two types of microscopic processes (Monte Carlo events) are considered, an ad-

sorption process and a migration process. These Monte Carlo events are assumed to

be Poisson processes. All events occur randomly with probabilities proportional to

their respective rates. The events are executed instantaneously upon selection and

the state of the lattice remains unchanged between two consecutive events.

5.2.2 Adsorption process

In an adsorption process, an incident particle comes in contact with the film and is

incorporated onto the film. The microscopic adsorption rate, W , which is in units
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of layers per unit time, depends on the gas phase concentration. The layers in the

unit of adsorption rate are densely packed layers, which contain L particles. With

this definition, W is independent of L. In this chapter, the macroscopic adsorption

rate, W , is treated as a process parameter. For the entire deposition process, the

microscopic adsorption rate in terms of incident particles per unit time, which is

denoted as ra, is related to W as follows:

ra = LW (5.1)

The incident particles are initially placed at random positions above the film

lattice and move toward the lattice in random directions, as shown in Figure 5.1. The

initial particle position, x0, which is the center of an incident particle, is uniformly

distributed in the continuous domain, (0, La). The incident angle, θ, is defined as

the angle between the incident direction and the direction normal to the film, with

a positive value assigned to the down-right incident direction and a negative value

assigned to the down-left incident direction. Probability distribution functions of the

incident angle may vary from a Dirac delta function to a cosine function, for different

deposition processes. In this chapter, the probability distribution of the angle of

incidence is chosen to be uniform in the interval (−0.5π, 0.5π).

The procedure of an adsorption process is illustrated in Figure 5.2. After the

initial position and incident angle are determined, the incident particle, A, travels
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Figure 5.2: Schematic of the adsorption event with surface relaxation. In this event,
particle A is the incident particle, particle B is the surface particle that is first hit
by particle A, site C is the nearest vacant site to particle A among the sites that
neighbor particle B, and site D is a stable site where particle A relaxes.

along a straight line toward the film until contacting the first particle, B, on the film.

Upon contact, particle A stops and sticks to particle B at the contacting position; see

Figure 5.2. Then, particle A moves (relaxes) to the nearest vacant site, C, among the

neighboring sites of particle B. Surface relaxation is conducted if site C is unstable,

i.e., site C has only one neighboring particle, as shown in Figure 5.2. When a particle

is subject to surface relaxation, the particle moves to its most stable neighboring

vacant site, which is defined as the site with the most nearest neighbors. In the case

of multiple neighboring vacant sites with the same number of nearest neighbors, a

random one is chosen from these sites with equal probability as the objective of the

particle surface relaxation process. Note that particle surface relaxation is consid-

ered as part of the deposition event, and thus, it does not contribute to the process

simulation time. There is also only one relaxation event per incident particle.

161



5.2.3 Migration process

In a migration process, a particle overcomes the energy barrier of the site and jumps

to its vacant neighboring site. The migration rate (probability) of a particle follows

an Arrhenius-type law with a pre-calculated activation energy barrier that depends

on the local environment of the particle, i.e., the number of the nearest neighbors of

the particle chosen for a migration event. The migration rate of the ith particle is

calculated as follows:

rm,i = ν0 exp

(
−niE0

kBT

)
(5.2)

where ν0 denotes the pre-exponential factor, ni is the number of the nearest neighbors

of the ith particle and can take the values of 2, 3, 4 and 5 (rm,i is zero when ni = 6

since this particle is fully surrounded by other particles and cannot migrate), E0

is the contribution to the activation energy barrier from each nearest neighbor, kB

is the Boltzmann’s constant and T is the substrate temperature of the thin film.

Since the film is thin, the temperature is assumed to be uniform throughout the film

and is treated as a time-varying but spatially invariant process parameter. In this

chapter, the factor and energy barrier contribution in Eq. (5.2) take the following

values ν0 = 1013 s−1 and E0 = 0.6 eV, which are appropriate for a silicon film [46].

When a particle is subject to migration, it can jump to either of its vacant neigh-

boring sites with equal probability, unless the vacant neighboring site has no nearest

neighbors, i.e., the surface particle cannot jump off the film and it can only migrate
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on the surface.

5.2.4 Simulation algorithm

After the rates of surface micro-processes are determined, kMC simulations can be

carried out using an appropriate algorithm. A comparison between two basic Monte

Carlo simulation algorithms, the null-event algorithm [98] and the continuous-time

Monte Carlo method [88], can be found in [75]. The null-event algorithm tries to

execute Monte Carlo events on randomly selected sites with certain probabilities,

while the continuous-time Monte Carlo (CTMC) method selects an event before the

selection of the site on which the event is going to be executed. The existence of null

tests makes the null-event algorithm inefficient compared to the CTMC algorithm,

especially when the rates of the events are close to zero. From this chapter, the CTMC

method is chosen as the kMC algorithm. With the assumption that all microscopic

processes are Poisson processes, the time increment upon the execution of a successful

event is computed based on the total rates of all the micro-processes, which can be

listed and calculated from the current state of the lattice. To further improve the

computational efficiency, a grouping algorithm is also used in the selection of the

particle that is subject to migration [68]. In the grouping algorithm, the events are

pre-grouped to improve the execution speed. The layer of the film emerges as a

natural grouping criterion, i.e., all particles in the same layer are considered to be

part of one group.
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With these considerations, the following kMC simulation algorithm is used to

simulate the deposition process:

1. A triangular lattice of lateral extent La, is created to represent the crystalline

structure of the film. All particles in the film are constrained to be on the

discrete sites of the lattice. A substrate layer, which is fully packed and fixed, is

added at the bottom of the lattice at the beginning (t = 0 s) of the simulation.

2. A list of events is created (or updated) for all possible events including adsorp-

tion and migration. The rate for each event is calculated based on the process

parameters, i.e., the substrate temperature and the deposition rate.

3. A random number ζ1 ∈ (0, ra +
N∑

i=1

rm,i) is generated to determine whether

the next event is an adsorption event (0 < ζ1 < ra) or a migration event

(ra < ζ1 < ra +
N∑

i=1

rm,i), where N is the total number of deposited particles on

the lattice at the specific time instant. Note that the particles being present in

the substrate layer are not counted as deposited particles.

4. If the next event is an adsorption event, an incident particle initiates from

the gas phase above the film. Two random numbers, ζ21 ∈ (0, La) and ζ22 ∈

(−0.5π, 0.5π), are generated following a uniform probability distribution to de-

termine the initial particle position and incident angle, respectively. The in-

cident particle is incorporated into the film following the microscopic rules for

adsorption events discussed in Section 5.2.2.

164



5. If the next event is a migration event, a random number ζ3 ∈ (0,
N∑

i=1

rm,i) is

generated to determine which particle is subject to migration. The migrating

particle is found from the following rule:
n−1∑
i=1

rm,i < ζ3 <

n∑
i=1

rm,i, where n

indicates the nth particle that is subject to migration. The migrating particle

jumps to its neighboring vacant site following the microscopic rules for migration

events discussed in Section 5.2.3.

6. Upon the execution of an event, a time increment, δt, is computed by using the

following expression:

δt = − ln ζ4

ra +
N∑

i=1

rm,i

(5.3)

where ζ4 is a real random number in the (0, 1) interval.

7. If t exceeds a preset deposition duration time, td, the kMC simulation is termi-

nated. Otherwise the kMC algorithm is repeated starting from Step 2.

To simulate the process with limited-size lattice and reduce the boundary effects,

periodic boundary conditions (PBCs) are applied to the kMC model of the deposition

process. Note that PBCs are widely used in molecular level simulations, e.g.,[67], so

that the statistical properties of a large scale stochastic process can be appropriately

captured by kMC simulations carried out on a finite-size lattice.
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5.3 Open-loop simulations

In this section, simulations of the kMC model of a silicon thin film growth process

using the methodology described in the previous section are presented with the process

parameters being kept constant (i.e., open-loop simulation). Appropriate definitions

of film SOR are also introduced to describe the film porosity and its fluctuation.

5.3.1 Definition of film site occupancy ratio

Since film porosity is the main objective of modeling and control design of this chapter,

a new variable, film SOR, is introduced to represent the extent of the porosity inside

the thin film as follows:

ρ =
N

LH
(5.4)

where ρ denotes the film SOR, N is the total number of deposited particles on the

lattice, L is the lattice size (i.e., number of sites in one layer) and H denotes the

number of deposited layers. Note that the deposited layers are the layers that contain

deposited particles and do not include the initial substrate layer. The concept of

packing density, which represents the occupancy ratio of space for a specific packing

method, is not the same as the film SOR defined in Eq. (5.4), and thus, it cannot be

used to characterize the evolution of film porosity.

Figure 5.3 gives an example showing how film SOR is defined. Since each layer

contains L sites, the total number of sites in the film is LH. Film SOR is the ratio
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Figure 5.3: Illustration of the definition of film SOR of Eq. (5.4).

between the number of deposited particles, N , and the total number of sites, LH.

With this definition, film SOR ranges from 0 to 1. Specifically, ρ = 1 denotes a

film whose sites are fully occupied and has a flat surface. At the beginning of the

deposition process when there are no particles deposited on the lattice and only the

substrate layer is present, N and H are both zeros and the ratio N/(LH) is not

defined, and thus, a zero value is assigned to the film SOR at this state.

Due to the stochastic nature of kMC models of thin film growth processes, the

film SOR, ρ, fluctuates about a mean value, 〈ρ〉, at all times. A quantitative measure

of the SOR fluctuations is provided by the variance of the film SOR as follows:

Var(ρ) =
〈
(ρ− 〈ρ〉)2

〉
(5.5)
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where 〈·〉 denotes the average (mean) value.

5.3.2 Film site occupancy ratio evolution profile

In this subsection, the thin film deposition process is simulated according to the al-

gorithm described in Section 5.2. The evolution of film SOR and its variance are

computed from Eqs. (5.4) and (5.5), respectively. The lattice size L is equal to 100

throughout this chapter. The choice of lattice size is determined from a balance be-

tween statistical accuracy and reasonable requirements for computing power. 1000

independent simulation runs are carried out to obtain the expected value and the

variance of the film SOR. The simulation time is 1000 s. All simulations start with

an identical flat initial condition, i.e., only a substrate layer is present on the lat-

tice without any deposited particles. Figure 5.4 shows the evolution profiles of the

expected value and the variance of the film SOR during the deposition process for

the following process parameters: T = 600 K and W = 1 layer/s. In Figure 5.4, the

film SOR is initially 0 and as particles begin to deposit on the film, the film SOR

increases with respect to time and quickly reaches a steady-state value. Snapshots of

the thin film microstructure at different times, t = 100 s, 400 s, 700 s, and 1000 s, of

the open-loop simulation are shown in Figure 5.5.

In the snapshots of the microstructure, columnar structures are observed, which

is due to the effect of nonlocal shadowing of the existing particles, which prevents

incident particles from adsorbing to the film sites that are blocked by the particles
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Figure 5.4: Mean value (solid lines) and variance (dashed line) of the complete film
SOR versus time for a 1000 s open-loop deposition process with substrate temperature
T = 600 K and deposition rate W = 1 layer/s.

at higher positions. Such columnar structures are also observed both in the experi-

ments and in simulations with similar microscopic rules [56, 55, 92, 97]. Within the

columnar structure, there exist small pores in the microstructure that contribute to

the film porosity. Such a structure (columns with few pores) is the result of certain

deposition conditions, i.e., the substrate temperature and the adsorption rate con-

sidered. Different conditions may result in different microstructure. For example, at

the low-temperature region (below 500 K), the deposited thin film shows a tree-like

structure with a large number of small pores.

The evolution profile of the variance starts at zero and jumps to a peak, after

which the variance decays with respect to time. The variance is used to represent the

extent of fluctuation of the film SOR at a given time. Since all simulations start at the
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Figure 5.5: Snapshots of the film microstructure at t = 100 s, 400 s, 700 s, and 1000
s of the open-loop deposition process with substrate temperature T = 600 K and
deposition rate W = 1 layer/s.
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same initial condition, the initial variance is zero (by convention) at time t = 0 s. As

particles begin to deposit on the film, the variance of the film SOR, Var(ρ), increases

at short times and it subsequently decreases to zero at large times. Note that the

film SOR is a cumulative property since it accounts for all the deposited layers and

particles on the film. In other words, the film SOR from each individual simulation run

approaches its expected value at large times. Thus, at large times, SOR fluctuations

decrease as more layers are included into the film. It is evident from Figure 5.4

that the SOR variance decays and approaches zero at large times. Figure 5.6 shows

the probability distribution functions of the film SOR at different time instants. It

can be clearly seen in Figure 5.6 that, as time increases, the probability distribution

functions become sharper and closer to its mean value, which shows the fact that the

fluctuation of film SOR is diminishing (i.e., smaller variance) at large times. Thus,

the film SOR of Eq. (5.4) and its variance of Eq. (5.5) are not suitable variables for

the purposes of modeling and control of film porosity fluctuations. Another variable

must be introduced to represent the fluctuation of the film porosity.

5.3.3 Partial film site occupancy ratio

In this subsection, a new concept of film SOR is introduced, termed partial film SOR,

which is the film SOR calculated by accounting only for the top Hp layers of the film.
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Figure 5.6: Probability distribution functions (PDF) of film SOR at t = 100 s, 400 s,
700 s, and 1000 s of the open-loop deposition process.

Mathematically, the partial film SOR is defined as follows:

ρp =
Np

LHp

(5.6)

where ρp denotes the partial film SOR and Np denotes the number of particles in

the top Hp layers and Hp denotes the number of top layers of the film included in

the computation of the partial film SOR. The definition of the partial film SOR is

shown schematically in Figure 5.7. To calculate the partial film SOR of Eq. (5.6),

the number of top Hp layers must first be determined. As shown in Figure 5.7, the

top Hp layers start from the top layer of the lattice and include the (Hp − 1) layers
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Figure 5.7: Illustration of the definition of partial film SOR of Eq. (5.6).

below the top layer. The number of particles in the top Hp layers is denoted by Np.

The partial film SOR, ρp, is then calculated as the ratio between Np and the total

number of sites in the top Hp layers, LHp. Similar to ρ, ρp is ranging from 0 to 1.

ρp = 1 denotes fully occupied top Hp layers.

The choice of Hp affects the value of the partial film SOR, ρp, and furthermore,

it results in different modeling results and controller performance. Specifically, the

partial film SOR cannot be correctly calculated without the existence of Hp layers

in the film. This problem is bypassed by assuming the existence of Hp fully-packed

substrate layers in the film before the deposition process begins. These substrate

layers are used in the calculation of ρp when H < Hp. This assumption does not

affect the deposition process since the particles in the substrate layers neither migrate
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nor affect the adsorption or migration processes of the deposited particles. Therefore,

at the beginning of deposition, the partial film SOR starts from unity since all Hp

layers are substrate layers and are fully occupied. There also exist alternative choices

of Hp at the beginning of deposition, e.g., equating Hp with H and hence having

ρp = ρ when H < Hp. Different choices of Hp affect the computation of ρp at the

initial stages and result in different initial values. However, the main dynamics of the

partial film SOR remains unchanged, especially at large times.

Although complete film SOR and partial film SOR are defined similarly, they are

different variables, which are used to describe different aspects of the film. The most

notable difference is the denominator of the fractions. In the complete film SOR,

the denominator of the ratio is the number of the sites in the entire deposited film,

and thus, it increases with respect to time, due to the deposition of new particles.

This cumulative property of the complete film SOR averages the fluctuations of the

porosity from different layers of the film and results in the decay of the variance of

the complete film SOR to zero with respect to time. For the partial film SOR, on the

contrary, the denominator of the ratio is fixed at LHp, and thus, ρp only accounts for

the porosity of the newly deposited Hp layers of the film. Another difference lies in

the mechanism of the deposition process. Due to particle migration, particles in the

film interior have a higher probability of achieving closed packed configurations than

particles in the top layers. However, newly deposited particles in the top layers have

not experienced enough migration events and are more active for migrating. For the
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above reasons, the fluctuation of ρp does not decay with respect to time and is much

larger than the fluctuation of ρ at large times. Thus, the variance of ρp is selected to

represent the porosity fluctuations and is used for modeling and control design. The

partial film SOR variance, Var(ρp), is computed by the following expression

Var(ρp) =
〈
(ρp − 〈ρp〉)2

〉
. (5.7)

The evolution profiles of the expected partial film SOR and the variance of partial

film SOR are shown in Figure 5.8 for the same process parameters as in Figure 5.4.

The top 100 layers are chosen in the calculation of the partial film SOR, i.e., Hp = 100

in Eq. (5.6). The choice of Hp depends on the process requirements. Too few layers

result in dramatic fluctuations of the partial film SOR. For a deposition process of

about 1000 deposited layers, it is found through extensive simulation tests that 100

top layers constitute a suitable choice for modeling and control design. The magnitude

of the variance of the partial film SOR depends on the choice of Hp. For problems

with different lattice sizes, a different Hp may be selected to produce a representative

magnitude of the variance.

As shown in Figure 5.8, the mean partial film SOR, 〈ρp〉, starts from 1 as a result

from the use of the initial substrate layer. Then, 〈ρp〉 decreases with respect to time

and reaches a steady-state value at large times. Compared to the expected film SOR

in Figure 5.4, the expected partial film SOR is smaller at steady state, since the top
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Figure 5.8: Profiles of mean value (solid line) and variance (dashed line) of the partial
film SOR in a 1000 s open-loop deposition process with substrate temperature T =
600 K and deposition rate W = 1 layer/s.

layers of the film are newly formed and are more active for particle migration than

the bulk layers, which are already deposited for a longer time and are stabilized.

The evolution profile of the variance of partial film SOR, Var(ρp), is different from

the one of the complete film SOR, Var(ρ), which decays to zero at large times. Similar

to the evolution of Var(ρ), Var(ρp) starts from zero due to an identical deterministic

initial condition applied to all simulations. However, Var(ρp) does not decay to zero

with respect to time, but reaches a steady-state non-zero value. This steady-state

non-zero value can be seen from Figure 5.9, which shows the probability distribution

functions of the partial film SOR at different time instants. As time increases, the

probability distribution function of the partial film SOR remains steadily shaped
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Figure 5.9: Probability distribution functions (PDF) of partial film SOR at t = 100
s, 400 s, 700 s, and 1000 s of the open-loop deposition process.

(i.e., steady-state value of variance) instead of becoming sharper as the one of the

film SOR shown in Figure 5.8. Therefore, the variance of partial film SOR is chosen

as the representation of the run-to-run fluctuation of film porosity. Finally, we note

that a careful inspection of Figures 5.4 and 5.8 indicates that the variances of the film

SOR are two orders of magnitude less than the corresponding mean values, i.e., the

mean value of the film SORs ∼ O(1) and the variance of the film SORs ∼ O(10−3).
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5.4 Construction of ODE models for complete and

partial film site occupancy ratio

For control purposes, dynamic models are required that describe how the film porosity

expressed in terms of complete and partial film SOR varies with respect to potential

manipulated input variables like temperature and deposition rate. In this section,

deterministic and stochastic linear ODE models are derived to describe the evolution

of film SOR. The derivation of these ODE models and the computation of their

parameters is done on the basis of data obtained from the kMC model of the deposition

process.

5.4.1 Deterministic dynamic model of complete film site oc-

cupancy ratio

From the open-loop simulation results, the dynamics of the expected value of the

complete film SOR evolution can be approximately described by a first-order ODE

model. Therefore, a linear first-order deterministic ODE is chosen to describe the

dynamics of the complete film SOR as follows:

τ
d 〈ρ(t)〉

dt
= ρss − 〈ρ(t)〉 (5.8)
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where t is the time, τ is the time constant and ρss is the steady-state value of the

complete film SOR. The deterministic ODE system of Eq. (5.10) is subject to the

following initial condition:

〈ρ(t0)〉 = ρ0 (5.9)

where t0 is the initial time and ρ0 is the initial value of the complete film SOR. Note

that ρ0 is a deterministic variable, since ρ0 refers to the expected value of the complete

film SOR at t = t0. From Eqs. (5.8) and (5.9), it follows that

〈ρ(t)〉 = ρss + (ρ0 − ρss) e−(t−t0)/τ . (5.10)

The model parameters, τ and ρss, depend on substrate temperature. This depen-

dence will be mathematically expressed in Section 5.4.3 below.

5.4.2 Stochastic dynamic model of partial film site occu-

pancy ratio

To regulate the variance of the partial film SOR, a stochastic model must be used.

For simplicity, a linear stochastic ODE is used to model the dynamics of the partial

film SOR. Similarly to the deterministic ODE model for the expected complete film

SOR of Eq. (5.8), a first-order stochastic ODE is chosen for the computation of the
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partial film SOR as follows:

τp
dρp(t)

dt
= ρss

p − ρp(t) + ξp(t) (5.11)

where ρss
p and τp are the two model parameters which denote the steady-state value

of the partial film SOR and the time constant, respectively, and ξp(t) is a Gaussian

white noise with the following expressions for its mean and covariance:

〈ξp(t)〉 = 0,

〈ξp(t)ξp(t
′)〉 = σ2

pδ(t− t′),

(5.12)

where σp is a parameter which measures the intensity of the Gaussian white noise

and δ(·) denotes the standard Dirac delta function. The model parameters ρss
p , τp

and σp are functions of the substrate temperature. We note that ξp(t) is taken to be

a Gaussian white noise because the values of ρp obtained from 10, 000 independent

kMC simulations of the deposition process at large times are in closed accord with a

Gaussian distribution law: see Figure 5.10 for the histogram of the partial film SOR

at t = 1000 s.

The stochastic ODE system of Eq. (5.11) is subject to the following initial condi-

tion:

ρp(t0) = ρp0 (5.13)

where ρp0 is the initial value of the partial film SOR. Note that ρp0 is a random
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Figure 5.10: Histogram from 10000 simulation runs of the partial film SOR at the end
(t = 1000 s) of the open-loop deposition process with substrate temperature T = 600
K and deposition rate W = 1 layer/s.

number, which follows a Gaussian distribution.

The following analytical solution to Eq. (5.11) can be obtained from a direct

computation as follows:

ρp(t) = ρss
p +

(
ρp0 − ρss

p

)
e−(t−t0)/τp +

∫ t

t0

e−(s−t0)/τpξpds. (5.14)

In Eq. (5.14), ρp(t) is a random process, the expected value of which, 〈ρp(t)〉, can

be obtained as follows:

〈ρp(t)〉 = ρss
p +

(〈ρp0〉 − ρss
p

)
e−(t−t0)/τp . (5.15)
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The analytical solution to Var(ρp) can be obtained from the solution of Eq. (5.14)

using Result 1 as follows:

Var(ρp(t)) =
τpσ

2
p

2
+

(
Var(ρp0)−

τpσ
2
p

2

)
e−2(t−t0)/τp (5.16)

where Var(ρp0) is the variance of the partial film SOR at time t = 0 s, which is

calculated as follows:

Var(ρp0) =
〈
(ρp0 − 〈ρp0〉)2

〉
. (5.17)

A new model parameter, Varss
p , is introduced to simplify the solution of Var(ρp)

in Eq. (5.16) as follows:

Varss
p =

τpσ
2
p

2
(5.18)

where Varss
p stands for the steady-state value of the variance of the partial film SOR.

With the introduction of this new model parameter, the solution of the variance of

the partial film SOR, Var(ρp), can be rewritten in the following form:

Var(ρp(t)) = Varss
p +

(
Var(ρp0)− Varss

p

)
e−2(t−t0)/τp . (5.19)

5.4.3 Parameter estimation and dependence

Referring to the deterministic and stochastic ODE models of Eqs. (5.8) and (5.11), we

note that they include five parameters, ρss, τ , ρss
p , τs and Varss

p . The five parameters
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describe the dynamics of the film SOR accounting for the effect of fluctuations. These

parameters must be estimated by comparing the predicted evolution profiles from the

ODE models and the ones from the kMC simulation of the deposition process. Least-

square methods are used to estimate the model parameters so that the ODE model

predictions are close in a least-square sense to the kMC simulation data.

Parameter estimation

Since the ODE models of Eqs. (5.8) and (5.11) are linear, the five parameters, ρss,

τ , ρss
p , τp and Varss

p , can be estimated from the solutions to Eqs. (5.10) and (5.15).

Specifically, the parameters ρss
p and τp are estimated using Eq. (5.10) and the parame-

ters ρss
p , τp and Varss

p are estimated using Eq. (5.15), solving two separate least-square

problems. Specifically, the two least-square problems can be solved independently to

obtain the first four model parameters. The steady-state variance, Varss
p , is obtained

from the values of the variance evolution profiles at large times.

The parameters ρss and τ are estimated by minimizing the sum of the squared

difference between the evolution profiles from the ODE model prediction and the

kMC simulation at different time instants as follows:

min
ρss,τ

m∑
i=1

[〈ρ(ti)〉 −
(
ρss + (ρ0 − ρss) e−(t−t0)/τ

)]2
(5.20)

where m is the number of the data pairs, (ti, 〈ρ(ti)〉), from the kMC simulations.

Similarly, ρss
p and τp can be obtained by solving the following least-square optimization

183



problem expressed in terms of the expected partial film SOR:

min
ρss
p ,τp

m∑
i=1

[〈ρp(ti)〉 −
(
ρss

p +
(
ρp0 − ρss

p

)
e−(t−t0)/τp

)]2
. (5.21)

The data used for the parameter estimation are obtained from the open-loop kMC

simulation of the thin film growth process. The process parameters are fixed during

each open-loop simulation so that the dependence of the model parameters on the

process parameters can be obtained for fixed operation conditions. The complete film

SOR and the partial film SOR are calculated on the basis of the deposited film at

specific time instants. Due to the stochastic nature of the process, multiple indepen-

dent simulation runs are performed to obtain the expected values of the complete film

SOR and of the partial film SOR as well as of the variance of the partial film SOR.

The above parameter estimation process is applied to the open-loop simulation

results. First, the open-loop evolution profiles of the complete film SOR and of the

partial film SOR are obtained from 1000 independent kMC simulation runs with

substrate temperature T = 600 K and deposition rate W = 1 layer/s. Subsequently,

the deterministic and stochastic ODE models of Eqs. (5.8) and (5.11) are compared

with the open-loop kMC simulation data to compute the model parameters using

least square methods. Figures 5.11 and 5.12 show the open-loop profiles and the

predicted profiles of 〈ρ〉, 〈ρp〉 and Var(ρp) from the ODE models with the estimated
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Figure 5.11: Profiles of the expected complete film SOR (solid line) and of the ex-
pected partial film SOR (dashed line) in a 1000 s open-loop deposition process and
predictions from the deterministic ODE model (solid line with ‘+’) and the stochastic
ODE model (dashed line with ‘+’) with estimated parameters; T = 600 K, W = 1
layer/s.

parameters as follows:

ρss = 0.8178, τ = 1.6564 s,

ρss
p = 0.6957, τp = 77.2702 s, Varss

p = 1.6937× 10−3.

(5.22)

The predictions from the ODE models are very close to the open-loop kMC simu-

lation profiles, which indicates that the dynamics of the film SOR can be adequately

described by first-order ODEs. There is, however, some mismatch of the predicted

ODE-based profiles from the kMC data, especially for the expected value of the com-

plete film SOR. This is because the dynamics of the complete film SOR depend on

the total height of the film. A film at initial stages is very thin and the complete

film SOR changes significantly as more layers are deposited, while a film at large
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Figure 5.12: Variance of the partial film SOR with respect to time for a 1000 s open-
loop deposition process (solid line) and the estimated steady-state level (dashed line);
T = 600 K, W = 1 layer/s.

times is much thicker and the complete film SOR is relatively insensitive to the newly

deposited layers. Since a first-order ODE model is used to capture the dynamics of

the complete film SOR, the time constant, τ , is chosen to strike a balance between

the initial and final stages of the film growth. Therefore, the predictions from the

ODE model cannot match the open-loop profiles, obtained from the kMC models,

perfectly at all times. Overall, the computed first-order ODE models approximate

well the dynamics of the film SOR and its fluctuation, and thus, they can be used

for the purpose of feedback control design. The closed-loop system simulation results

using these first-order models will be discussed in Section 5.5.3 below.

The lattice size dependence of the steady-state value of the complete film SOR

is shown in Figure 5.13. It can be clearly seen that the film SOR depends on the
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lattice size. To achieve near lattice-size independence, a very large lattice size is

required and cannot be simulated using the available amount of computing power.

The purpose of the proposed modeling method is to identify the film SOR models

from the output of the given deposition process, which can be from either a kMC

simulator or experimental deposition process data. Note that the applicability of the

proposed modeling method is not limited to any specific lattice size. In this chapter,

a model with lattice size of 100 captures the film SOR dynamics and allows obtaining

sufficient statistical accuracy in terms of computing expected values and variances of

film SORs.

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lattice size, L

ρss

 

 

T=400
T=500

Figure 5.13: Dependence of steady-state values of film SOR, ρss, on the lattice size
for different temperatures.
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Dependence of model parameters on process parameters

The model parameters of the ODE models of Eqs. (5.8) and (5.11) depend on two

process parameters, temperature and deposition rate. This dependence is used in the

formulation of the model predictive control design in the next section when solving

the optimization problem. Thus, parameter estimation from open-loop kMC sim-

ulation results of the thin film growth process for a variety of process parameters

is performed to obtain the relationship between the model parameters and the pro-

cess parameters. In this chapter, the deposition rate for all simulations is fixed at

1 layer/s and the only manipulated input considered is the substrate temperature,

T . The range of T is between 300 K and 800 K, which is from room temperature

to the upper limit of the allowable temperature for a valid on-lattice kMC model of

silicon film. The dependence of the model parameters on the substrate temperature is

shown in Figures 5.14, 5.15 and 5.16. In these figures, it can be clearly seen that the

dependence of the model parameters on temperature is highly nonlinear. For most

model parameters, there are asymptotes at the low temperature region due to the

limited surface migration rates at low temperatures. However, at high temperatures,

ρss and ρss
p approach unity, which corresponds to a fully packed film, i.e., all film sites

are occupied by particles.
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5.5 Model predictive control design

In this section, we design model predictive controllers based on the deterministic

and stochastic ODE models of Eqs. (5.8) and (5.11) to simultaneously control the

complete film SOR of the deposition process to a desired level and minimize the

variance of the partial film SOR. State feedback controllers are considered in this

chapter, i.e., the values of the complete film SOR and of the partial film SOR are

assumed to be available for feedback control. Real-time film SOR can be estimated

from in situ thin film thickness measurements [17] in combination with off-line film

porosity measurements.
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5.5.1 Regulation of complete film site occupancy ratio

Since the film porosity is the main control objective in this chapter, we first consider

the problem of regulation of the expected complete film SOR to a desired level, ρset,

within a model predictive control framework. The substrate temperature is used as

the manipulated input and the deposition rate is fixed at a certain value, W0, during

the entire closed-loop simulation. To account for a number of practical considerations,

several constraints are added to the control problem. First, there is a constraint on

the range of variation of the substrate temperature. This constraint ensures validity

of the on-lattice kMC model. Another constraint is imposed on the rate of change of

the substrate temperature to account for actuator limitations.

We note that classical control schemes like proportional-integral (PI) control can-

not be designed to explicitly account for input/state constraints, optimality consid-

erations and the batch nature of the deposition process, and thus, their use will not

be pursued. Furthermore, dynamic open-loop optimization may be used but it does

not provide robustness against the model inaccuracies and the fluctuations in the

deposition process. In the case where feedback porosity control cannot be attained,

dynamic optimization may be used instead; this is naturally included in the proposed

model predictive control framework.

The control action, at a time t and state ρ, is obtained by solving a finite-horizon

optimal control problem. The optimal temperature profile is calculated by solving a

finite-dimensional optimization problem in a receding horizon fashion. Specifically,
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the MPC problem is formulated based on the deterministic ODE of Eq. (5.8) as

follows:

min
T1,...,Ti,...,Tp

J(ρ(t)) =

p∑
i=1

qsp,i [ρset − 〈ρ(t + i∆)〉]2

subject to

〈ρ(t + i∆)〉 = ρss(Ti,W0) + (〈ρ(t + (i− 1)∆)〉 − ρss(Ti,W0)) e−∆/τ(Ti,W0),

Tmin < Ti < Tmax,

∣∣∣∣
Ti+1 − Ti

∆

∣∣∣∣ ≤ LT,

i = 1, 2, . . . , p,

(5.23)

where t is the current time, ∆ is the sampling time, p is the number of prediction

steps, p∆ is the specified prediction horizon, Ti, i = 1, 2, . . . , p, is the substrate

temperature at the ith step (Ti = T (t + i∆)), respectively, W0 is the fixed deposition

rate, qsp,i, i = 1, 2, . . . , p, are the weighting penalty factors for the error of the

complete film SOR at the ith prediction step, Tmin and Tmax are the lower and upper

bounds on the substrate temperature, respectively, and LT is the limit on the rate of

change of the substrate temperature. In the MPC formulation of Eq. (5.23), J is the

cost function, which contains penalty on the squared difference between the desired

value of the complete film SOR, ρset, and the predicted values of this variable at all

time steps.

The dynamics of the expected value of the complete film SOR are described by

the deterministic first-order ODE of Eq. (5.10). The dependence of model parameters

on process parameters is obtained from the parameter estimation at a variety of

192



conditions. Due to the availability of analytical solutions of the linear ODE model

of Eq. (5.10), these analytical solutions can be used directly in the MPC formulation

of Eq. (5.23) for the prediction of 〈ρ(t)〉. The system state, ρ(t), is the complete

film SOR at time t. Note that ρ(t), which is obtained directly from the simulation

in real-time, is considered as the expected complete film SOR and can be used as

an initial condition for the solution of the deterministic ODE of Eq. (5.10). In the

closed-loop simulations, the instantaneous values of ρ and ρp are made available

to the controller at each sampling time; however, no statistical information, e.g.,

the expected value of complete/partial film SOR, is available for feedback. The

optimal set of control actions, (T1, T2, . . . , Tp), is obtained from the solution of the

multi-variable optimization problem of Eq. (5.23), and only the first value of the

manipulated input trajectory, T1, is applied to the deposition process during the time

interval (t, t + ∆). At time t + ∆, a new measurement of ρ is received and the MPC

problem of Eq. (5.23) is solved for the next control input trajectory.

5.5.2 Fluctuation regulation of partial film site occupancy

ratio

Reduction of run-to-run variability is another goal in process control of a thin film

growth process. In this chapter, the fluctuation of film SOR is represented by the

variance of partial film SOR, Var(ρp). Ideally, a zero value means no fluctuation

from run to run. However, it is impossible to achieve zero variance of partial film
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SOR due to the stochastic nature of the thin film growth process. Thus, the control

objective of fluctuation regulation is to minimize the variance by manipulating the

process parameters.

In this chapter, the fluctuation is included into the cost function together with

the error of the complete film SOR. Specifically, the MPC formulation with penalty

on the error of the expected complete film SOR and penalty on the variance of the

partial film SOR is given as follows:

min
T1,...,Ti,...,Tp

J(ρ(t)) =

p∑
i=1

{
qsp,i [ρset − 〈ρ(t + i∆)〉]2 + qvar,iVar[ρp(t + i∆)]

}

subject to

〈ρ(t + i∆)〉 = ρss(Ti,W0) + (〈ρ(t + (i− 1)∆)〉 − ρss(Ti,W0)) e−∆/τ(Ti,W0),

Var(ρp(t + i∆)) = Varss
p (Ti,W0)

+
(
Var [ρp(t + (i− 1)∆)]− Varss

p (Ti,W0)
)
e−2∆/τp(Ti,W0),

Tmin < Ti < Tmax,

∣∣∣∣
Ti+1 − Ti

∆

∣∣∣∣ ≤ LT,

i = 1, 2, . . . , p,

(5.24)

where qsp,i and qvar,i, i = 1, 2, . . . , p, are weighting penalty factors on the error

of the complete film SOR and of the variance of the partial film SOR, respectively.

Other variables in Eq. (5.24) are defined similar to the ones in Eq. (5.23). The same

constraints as in Eq. (5.23) are imposed on the MPC formulation of Eq. (5.24). Due

to the unavailability of statistical information of the partial film SOR in real-time, the
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initial condition of the partial film SOR is regarded as a deterministic variable and

the initial condition for Var(ρp(t)) is considered to be zero in the MPC formulation.

5.5.3 Closed-loop simulations

In this section, the model predictive controllers of Eqs. (5.23) and (5.24) are applied

to the kMC model of the thin film growth process described in Section 5.2. The

value of the substrate temperature is obtained from the solution to the problem of

Eqs. (5.23) and (5.24) at each sampling time and is applied to the closed-loop system

until the next sampling time. The complete film SOR and the partial film SOR are

obtained directly from the kMC model of the thin film at each sampling time as the

state of the system and are fed into the controllers. The sampling time is fixed in

all closed-loop simulations to be ∆ = 5 s, which is in the same order of magnitude

of the time constant of the dynamics of the complete film SOR, τ . The optimization

problems in the MPC formulations of Eqs. (5.23) and (5.24) are solved using a local

constrained minimization algorithm.

The constraint on the rate of change of the substrate temperature is imposed

onto the optimization problem, which is realized in the optimization process in the

following way:

∣∣∣∣
Ti+1 − Ti

∆

∣∣∣∣ ≤ LT ⇒ |Ti+1 − Ti| ≤ LT∆ ⇒ Ti − LT∆ ≤ Ti+1 ≤ Ti + LT∆,

i = 1, 2, . . . , p.

(5.25)
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The desired value (set-point) for the complete film SOR in the closed-loop simulations

is 0.9. The number of prediction steps is 5. The deposition rate is fixed at 1 layer/s

and all closed-loop simulations are initialized with an initial temperature of 300 K.

The maximal rate of change of the temperature is 10 K/s. Expected values and

variances are calculated from 1000 independent simulation runs.

Regulation of complete film site occupancy ratio

First, the closed-loop simulation results of complete film SOR regulation using the

model predictive control formulation of Eq. (5.23) are provided. In this MPC formu-

lation, the cost function contains only penalty on the difference of the complete film

SOR from the set-point value. Specifically, the optimization problem is formulated to

minimize the difference between the complete film SOR set-point and the prediction

of the expected complete film SOR at the end of each prediction step. All weighting

penalty factors, qsp,i, i = 1, 2, . . . , p, are assigned to be equal. Figure 5.17 shows

the profiles of the expected value of the complete film SOR in the closed-loop system

simulation. The profiles of the complete film SOR and of the substrate temperature

from a single simulation run are also included in Figure 5.17.

In Figure 5.17, the substrate temperature increases linearly at the initial stages

due to the constraint on the rate of change, and it approaches to a value around 650

K, which is calculated from the optimization problem based on the current complete

film SOR. The expected complete film SOR reaches the value of 0.87 at the end
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Figure 5.17: Closed-loop profiles of the complete film SOR (solid line) and of the ex-
pected value of the complete film SOR (dotted line) under the controller of Eq. (5.23).
The profile of the substrate temperature is also included (dash-dotted line).

of the simulation. There is a difference of 0.03 from the set point, which is due to

the fact that the first-order ODE model is not an exact description of the film SOR

dynamics, but rather an approximation. However, for the purpose of control design,

the first-order ODE model is acceptable. Another reason for the difference is the

cumulative nature of the complete film SOR. Since the initial temperature, 300 K, is

far below the optimal temperature for the desired film SOR, it takes some time for

the substrate temperature to reach the optimal temperature. The initial condition

of the substrate temperature results in a period of low temperature at the initial

stages. In this period, layers with higher porosity are deposited onto the film and,

as a result, the complete film SOR is lowered. Thus, it takes longer time for the

complete film SOR to reach its steady-state value. The difference between the set-
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point and the closed-loop steady-state value can be overcome by pre-setting a higher

initial substrate temperature. Another possible method to improve the closed-loop

performance is to replace the quadratic cost function that penalizes the deviation of

the SORs from the desired values with other functions, since quadratic terms slow

down the convergence speed in the vicinity of the set point. Snapshots of the film

microstructure at different times, t = 100 s, 400 s, 700 s, and 1000 s, of the closed-loop

simulation are shown in Figure 5.18.

Fluctuation regulation of partial film site occupancy ratio

To reduce the run-to-run variability of the film porosity, the variance of the partial film

SOR is added into the cost function in the model predictive controller of Eq. (5.24).

There are two weighting factors, qsp,i and qvar,i, which represent the weights on the

complete film SOR and on the variance of the partial film SOR prediction, respec-

tively. Figure 5.19 shows the profiles of the expected complete film SOR and of

the substrate temperature in the closed-loop simulation, with the following values

assigned to the weighting factors:

qsp,i = 1, qvar,i = 10, i = 1, 2, 3, 4, and 5. (5.26)

As shown in Figure 5.19, the complete film SOR and the substrate temperature

evolve similarly as in Figure 5.17. However, with the cost function including penalty

on the variance of the partial film SOR, the optimal temperature is higher than the
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Figure 5.18: Snapshots of the film microstructure at t = 100 s, 400 s, 700 s, and
1000 s of the closed-loop simulation under the feedback controller of Eq. (5.23) with
qsp,i = 1, i = 1, . . . , 5.
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Figure 5.19: Closed-loop profiles of the complete film SOR (solid line) and of the ex-
pected value of the complete film SOR (dotted line) under the controller of Eq. (5.24).
The profile of the substrate temperature is also included (dash-dotted line).

one in Figure 5.17, since a higher substrate temperature is in favor of decreasing run-

to-run fluctuations. Figure 5.20 shows a comparison of the variance of the partial

film SOR between the two model predictive controllers with qvar,i = 0 and qvar,i = 10,

i = 1, 2, 3, 4, and 5. It can be seen that the variance of the partial film SOR is lowered

with penalty on this variable included into the cost function of the MPC formulation.

Snapshots of the film microstructure at different times, t = 100 s, 400 s, 700 s, and

1000 s, of the closed-loop simulation are shown in Figure 5.21.
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5.6 Conclusions

In this chapter, systematic methodologies were developed for modeling and control

of film porosity in thin film deposition. A thin film deposition process which involves

atom adsorption and migration was introduced and was modeled using a triangular

lattice-based kMC simulator which allows porosity, vacancies and overhangs to de-

velop and leads to the deposition of a porous film. Appropriate definitions of film

SOR and its fluctuation were introduced to describe film porosity. Deterministic and

stochastic ODE models were derived that describe the time evolution of film SOR

and its fluctuation. The coefficients of the ODE models were estimated on the basis

of data obtained from the kMC simulator of the deposition process using least-square

methods and their dependence on substrate temperature was determined. The de-
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Figure 5.21: Snapshots of the film microstructure at t = 100 s, 400 s, 700 s, and
1000 s of the closed-loop simulation under the feedback controller of Eq. (5.24) with
qsp,i = 1, qvar,i = 10, i = 1, . . . , 5.
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veloped ODE models were used as the basis for the design of MPC algorithms that

include penalty on the film SOR and its variance to regulate the expected value of

film SOR at a desired level and reduce run-to-run fluctuations. The applicability and

effectiveness of the proposed modeling and control methods were demonstrated by

simulation results in the context of the deposition process under consideration.
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Chapter 6

Simultaneous Regulation of

Surface Roughness and Porosity

6.1 Introduction

This chapter further focuses on stochastic modeling and simultaneous regulation of

surface roughness and film porosity in a porous thin film deposition process modeled

via kMC simulation on a triangular lattice. The microscopic model of the thin film

growth process includes adsorption and migration processes. Vacancies and over-

hangs are allowed inside the film for the purpose of modeling thin film porosity. The

definition of surface height profile is first introduced for a porous thin film deposition

taking place in a triangular lattice. The dynamics of surface height of the thin film

are described by an Edward-Wilkinson (EW)-type equation, which is a second-order
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linear stochastic PDE model. The root mean square (RMS) surface roughness is cho-

sen as one of the controlled variables. Subsequently, an appropriate definition of film

site occupancy ratio (SOR) is introduced to represent the extent of porosity inside

the film and is chosen as the second to-be-controlled variable. A deterministic ODE

model is postulated to describe the time evolution of film SOR. The coefficients of

the EW equation of surface height and of the deterministic ODE model of film SOR

are estimated on the basis of data obtained from the kMC simulator of the deposition

process using least-square methods and their dependence on substrate temperature is

determined. The developed dynamic models are used as the basis for the design of a

model predictive control algorithm that includes penalty on the deviation of surface

roughness square and film SOR from their respective set-point values. Simulation

results demonstrate the applicability and effectiveness of the proposed modeling and

control approach in the context of the deposition process under consideration.

6.2 Thin film deposition process

6.2.1 Description and modeling

The thin film growth process considered in this chapter is similar to the deposition

process introduced in Chapter 5, which includes an adsorption process and a migration

process. However, a vertical incidence in the adsorption process is considered in this

chapter for the purposes of modeling and control of surface height profile and surface
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Figure 6.1: Thin film growth process on a triangular lattice with vertically incident
particles from gas phase.

roughness. The deposition process with vertical incident particles is shown in in

Figure 6.1.

In the adsorption process, an vertically incident particle is incorporated on the

film; as illustrated in Figure 6.2. After the initial position is determined, the incident

particle, A, travels along a straight line vertically towards the film until contacting

the first particle, B, on the film. Upon contact, particle A stops and sticks to particle

B at the contacting position; see Figure 6.2. Then, particle A moves (relaxes) to the

nearest vacant site, C, among the neighboring sites of particle B. Surface relaxation

is conducted if site C is unstable, i.e., site C has only one neighboring particle, as

shown in Figure 6.2. When a particle is subject to surface relaxation, the particle

moves to its most stable neighboring vacant site, which is defined as the site with
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Figure 6.2: Schematic of the adsorption event with surface relaxation. In this event,
particle A is the vertically incident particle, particle B is the surface particle that is
first hit by particle A, site C is the nearest vacant site to particle A among the sites
that neighbor particle B, and site D is a stable site where particle A relaxes.

the most nearest neighbors. In the case of multiple neighboring vacant sites with

the same number of nearest neighbors, a random one is chosen from these sites with

equal probability as the objective of the particle surface relaxation process. Note that

particle surface relaxation is considered as part of the deposition event, and thus, it

does not contribute to the process simulation time. There is also only one relaxation

event per incident particle.

In the migration process, a particle overcomes the energy barrier of the site and

jumps to its vacant neighboring site. The migration rate of the ith particle follows

an Arrhenius-type law as follows:

rm,i = ν0 exp

(
−niE0

kBT

)
. (6.1)

In this chapter, the same factor and energy barrier contribution in Eq. (6.1), ν0 = 1013
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s−1 and E0 = 0.6 eV, are used as in Chapter 5.

6.2.2 Definitions of surface morphology and film porosity

Utilizing the continuous-time Monte Carlo algorithm, simulations of the kMC model

of a porous silicon thin film growth process are carried out. Snapshots of film mi-

crostructure, i.e., the configurations of particles within the triangular lattice, are

obtained from the kMC model at various time instants during process evolution. To

quantitatively evaluate the thin film microstructure, two variables, surface roughness

and film porosity, are introduced in this subsection.

Surface roughness, which measures the texture of thin film surface, is represented

by the root mean square (RMS) of the surface height profile of the thin film. Deter-

mination of surface height profile is different in the triangular lattice model compared

to a SOS model. In the SOS model, the surface of a thin film is naturally described

by the positions of the top particles of each column. In the triangular lattice model,

however, due to the existence of vacancies and overhangs, the definition of film surface

needs further clarification. Specifically, taking into account practical considerations

of surface roughness measurements, the surface height profile of a triangular lattice

model is defined based on the particles that can be reached in the vertical direction,

as shown in Figure 6.3. In this definition, a particle is considered as a surface particle

only if it is not blocked by the particles of both of its neighboring columns. There-

fore, the surface height profile of a porous thin film is the line that connects the sites
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Figure 6.3: Definition of surface height profile. A surface particle is a particle that is
not blocked by particles from both of its neighboring columns in the vertical direction.

that are occupied by the surface particles. With this definition, the surface height

profile can be treated as a function of the spatial coordinate. Surface roughness, as a

measurement of the surface texture, is defined as the standard deviation of the sur-

face height profile from its average height. The mathematical expression of surface

roughness is given later in Section 6.3.1.

In addition to film surface roughness, the film SOR is introduced to represent the

extent of the porosity inside the thin film. The mathematical expression of film SOR

is defined as follows:

ρ =
N

LH
(6.2)

where ρ denotes the film SOR, N is the total number of deposited particles on the
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lattice, L is the lattice size, and H denotes the number of deposited layers. Note

that the deposited layers are the layers that contain only deposited particles and do

not include the initial substrate layers. The variables in the definition expression of

Eq. (6.2) can be found in Figure 5.3. Since each layer contains L sites, the total

number of sites in the film that can be contained within the H layers is LH. Thus,

film SOR is the ratio of the occupied lattice sites, N , over the total number of available

sites, LH. Film SOR ranges from 0 to 1. Specifically, ρ = 1 denotes a fully occupied

film with a flat surface. The value of zero is assigned to ρ at the beginning of the

deposition process since there are no particles deposited on the lattice.

It is important to note that film surface roughness and porosity are correlated

to some extent in the deposition process. A film with lower porosity tends to have

a smoother surface, since the conditions to produce a dense film (higher substrate

temperature or lower adsorption rate) also help reduce the surface roughness and

vice versa. However, even though they are related to each other, roughness and

porosity are separate variables that describe different aspects of the thin film. Films

with same film SORs may have different surface roughness.
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6.3 Dynamic models construction and parameter

estimation

6.3.1 Edward-Wilkinson-type equation of surface height

An EW-type equation, a second-order stochastic PDE, can be used to describe the

surface height evolution in many microscopic processes that involve thermal balance

between adsorption (deposition) and migration (diffusion). An EW-type equation is

chosen to describe the dynamics of the fluctuation of surface height (the validation

of this choice will be made clear below):

∂h

∂t
= rh + ν

∂2h

∂x2
+ ξ(x, t) (6.3)

subject to PBCs:

h(−π, t) = h(π, t),
∂h

∂x
(−π, t) =

∂h

∂x
(π, t), (6.4)

and the initial condition:

h(x, 0) = h0(x) (6.5)

where x ∈ [−π, π] is the projected spatial coordinate, t is the time, rh and ν are the

model parameters, and ξ(x, t) is a Gaussian white noise with the following expressions
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for its mean and covariance:

〈ξ(x, t)〉 = 0,

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x− x′)δ(t− t′),

(6.6)

where σ2 is a parameter which measures the intensity of the Gaussian white noise and

δ(·) denotes the standard Dirac delta function. To validate the choice of ξ(x, t) as

Gaussian white noise, uncorrelated in both time and space, we present in Figures 6.4

and 6.5 the histograms of surface height, obtained from 10000 independent open-

loop simulation runs at sufficiently large simulation times, at different positions and

times. Specifically, Figure 6.4 shows the histogram of surface height at different sites

(x = 0a, 25a, 50a, 75a) at t = 400 s, and Figure 6.5 shows the histogram of surface

height at x = 50a for different time instants (t = 100 s, 200 s, 300 s, 400 s). It

can be clearly seen in Figures 6.4 and 6.5 that the surface height follows Gaussian

probability distribution at sufficiently large times and that the noise is uncorrelated

in both time and space, which indicates that the choice of white noise is a reasonable

one.

To proceed with model parameter estimation and control design, a stochastic

ODE approximation of Eq. (6.3) is first derived using Galerkin’s method. Consider
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Figure 6.4: Histogram of surface height at t = 400 s for different sites (x = 0a, 25a,
50a, 75a).
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Figure 6.5: Histogram of surface height at x = 50a for different time instants (t = 100
s, 200 s, 300 s, 400 s).
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the eigenvalue problem of the linear operator of Eq. (6.3), which takes the form:

Aφ̄n(x) = ν
d2φ̄n(x)

dx2
= λnφ̄n(x),

φ̄n(−π) = φ̄n(π),
dφ̄n

dx
(−π) =

dφ̄n

dx
(π),

(6.7)

where λn denotes an eigenvalue and φ̄n denotes an eigenfunction. A direct computa-

tion of the solution of the above eigenvalue problem yields λ0 = 0 with ψ0 = 1/
√

2π,

and λn = −νn2 (λn is an eigenvalue of multiplicity two) with eigenfunctions φn =

(1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞. Note that the φ̄n in

Eq. (6.7) denotes either φn or ψn. For a fixed positive value of ν, all eigenvalues

(except the zeroth eigenvalue) are negative and the distance between two consecutive

eigenvalues (i.e., λn and λn+1) increases as n increases.

To this end, the solution of Eq. (6.3) is expanded in an infinite series in terms of

the eigenfunctions of the operator of Eq. (6.7) as follows:

h(x, t) =
∞∑

n=1

αn(t)φn(x) +
∞∑

n=0

βn(t)ψn(x) (6.8)

where αn(t), βn(t) are time-varying coefficients. Substituting the above expansion

for the solution, h(x, t), into Eq. (6.3) and taking the inner product with the adjoint

eigenfunctions, φ∗n(x) = (1/
√

π) sin(nx) and ψ∗n(x) = (1/
√

π) cos(nx), the following
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system of infinite stochastic ODEs is obtained:

dβ0

dt
=

√
2πrh + ξ0

β(t),

dαn

dt
= λnαn + ξn

α(t), n = 1, . . . ,∞,

dβn

dt
= λnβn + ξn

β (t), n = 1, . . . ,∞,

(6.9)

where

ξn
α(t) =

∫ π

−π

ξ(x, t)φ∗n(x)dx,

ξn
β (t) =

∫ π

−π

ξ(x, t)ψ∗n(x)dx.

(6.10)

Using Result 1, we obtain 〈ξn
α(t)ξn

α(t′)〉 = σ2δ(t−t′) and
〈
ξn
β (t)ξn

β (t′)
〉

= σ2δ(t−t′).

Since the stochastic ODE system is linear, the analytical solution of state variance

can be obtained from a direct computation as follows:

〈
α2

n(t)
〉

=
σ2

2νn2
+

(〈
α2

n(t0)
〉− σ2

2νn2

)
e−2νn2(t−t0), n = 1, 2, . . . ,∞,

〈
β2

n(t)
〉

=
σ2

2νn2
+

(〈
β2

n(t0)
〉− σ2

2νn2

)
e−2νn2(t−t0), n = 1, 2, . . . ,∞,

(6.11)

where 〈α2
n(t0)〉 and 〈β2

n(t0)〉 are the state variances at time t0. The analytical solution

of state variance of Eq. (6.11) will be used in the parameter estimation and the MPC

design in sections 6.3.3 and 6.4.2

When the dynamic model of surface height profile is determined, surface roughness

of the thin film is defined as the standard deviation of the surface height profile from
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its average height and is computed as follows:

r(t) =

√
1

2π

∫ π

−π

[h(x, t)− h̄(t)]2dx (6.12)

where h̄(t) =
1

2π

∫ π

−π

h(x, t)dx is the average surface height. According to Eq. (6.8),

we have h̄(t) = β0(t)ψ0. Therefore, 〈r2(t)〉 can be rewritten in terms of 〈α2
n(t)〉 and

〈β2
n(t)〉 as follows:

〈r2(t)〉 =
1

2π

〈∫ π

−π

(h(x, t)− h̄(t))2dx

〉

=
1

2π

〈∫ π

−π

[ ∞∑
i=1

αi(t)φi(x) +
∞∑
i=0

βi(t)ψi(x)− β0(t)ψ0

]2

dx

〉

=
1

2π

〈∫ π

−π

∞∑
i=1

[
α2

i (t)φ
2
i (x) + β2

i (t)ψ
2
i (x)

]
dx

〉

=
1

2π

〈 ∞∑
i=1

(α2
i (t) + β2

i (t))

〉
=

1

2π

∞∑
i=1

[〈
α2

i (t)
〉

+
〈
β2

i (t)
〉]

.

(6.13)

Thus, Eq. (6.13) provides a direct link between the state variance of the infinite

stochastic ODEs of Eq. (6.9) and the expected surface roughness of the thin film. Note

that the model parameter rh does not appear in the expression of surface roughness,

since the zeroth state, β0, is only affected by rh but this state is not included in the

computation of the expected surface roughness square of Eq. (6.13).
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6.3.2 Deterministic dynamic model of film site occupancy

ratio

Since film porosity is another control objective, a dynamic model is necessary in the

MPC formulation to describe the evolution of film porosity, which is represented by

the film SOR of Eq. (6.2). The dynamics of the expected value of the film SOR

evolution are approximately described by a linear first-order deterministic ODE as

follows [40]:

τ
d 〈ρ(t)〉

dt
= ρss − 〈ρ(t)〉 (6.14)

where t is the time, τ is the time constant and ρss is the steady-state value of the film

SOR. The deterministic ODE system of Eq. (6.14) is subject to the following initial

condition:

〈ρ(t0)〉 = ρ0 (6.15)

where t0 is the initial time and ρ0 is the initial value of the film SOR. Note that ρ0 is

a deterministic variable, since ρ0 refers to the film SOR at t = t0. From Eqs. (6.14)

and (6.15), it follows that

〈ρ(t)〉 = ρss + (ρ0 − ρss) e−(t−t0)/τ . (6.16)

The choice of a deterministic linear ODE for 〈ρ(t)〉 in Eq. (6.14) made based on

open-loop process data and it adequately describes the dynamics of the film SOR.
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Validation of the linear model of Eq. (6.14) is provided in Chapter 5.

6.3.3 Parameter estimation

Referring to the EW equation of Eq. (6.3) and the deterministic ODE model of

Eq. (6.14), there are several model parameters, ν, σ2, ρss and τ , that need to be

determined as functions of the substrate temperature. These parameters describe

the dynamics of surface height and of film SOR and can be estimated by comparing

the predicted evolution profiles for roughness and SOR from the dynamic models of

Eq. (6.3) and Eq. (6.14) and the ones from the kMC simulation of the deposition

process. Least-square methods are used to estimate the model parameters so that

the model predictions are close in a least-square sense to the kMC simulation data.

Since surface roughness is a control objective, we choose the expected surface

roughness square as the output for the parameter estimation of the EW equation of

Eq. (6.3). Thus, the model coefficients, ν and σ2 can be obtained by solving the

problem of minimizing the prediction of the expected surface roughness square of

Eq. (6.13) to the one from the kMC simulation at different time instants as follows:

min
ν,σ2

n1∑

k=1

[
〈
r2(tk)

〉− 1

2π

∞∑
i=1

(〈
α2

i (tk)
〉

+
〈
β2

i (tk)
〉)

]2

(6.17)

where n1 is the number of the data samplings of surface height profile and sur-

face roughness from the kMC simulations. The predictions of model state variance,
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〈α2
i (tk)〉 and 〈β2

i (tk)〉, can be solved from the analytical solution of Eq. (6.11).

With respect to the parameters of the equation for film porosity, since the ODE

model of Eq. (6.14) is linear, ρss and τ can be estimated from the solutions of Eq. (6.16)

by minimizing the sum of the squared difference between the evolution profiles from

the ODE model prediction and the kMC simulation at different time instants as

follows:

min
ρss,τ

n2∑

k=1

[〈ρ(tk)〉 −
(
ρss + (ρ0 − ρss) e−(k−t0)/τ

)]2
(6.18)

where n2 is the number of the data pairs, (tk, 〈ρ(tk)〉), from the kMC simulations.

The data used for the parameter estimation are obtained from the open-loop kMC

simulation of the thin film growth process. The process parameters are fixed during

each open-loop simulation so that the dependence of the model parameters on the

process parameters can be obtained. Due to the stochastic nature of the process,

multiple independent simulation runs are performed to obtain the expected values of

surface roughness and film SOR.

The above parameter estimation process is applied to the open-loop simulation

results with 100 lattice size. First, the open-loop evolution profiles of surface rough-

ness and film SOR are obtained from 1000 independent kMC simulation runs with

substrate temperature T = 600 K and deposition rate W = 1 layer/s. Model coeffi-

cients are estimated by solving the least square problems of Eqs. (6.17) and (6.18) as
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follows:

ρss = 0.9823, τ = 2.9746 s, ν = 2.6570× 10−4, σ2 = 0.1757. (6.19)

The EW-type equation with parameters estimated under time-invariant operating

conditions is suitable for the purpose of MPC design. This is because the control input

in the MPC formulation is piecewise, i.e., the manipulated substrate temperature

remains constant between two consecutive sampling times, and thus, the dynamics of

the microscopic process can be predicted using the dynamic models with estimated

parameters. Eventually, the validation of the constructed models is demonstrated via

closed-loop simulations (where the controller which utilizes the approximate models

is applied to the kMC simulation of the process) which demonstrate that the desired

control objectives are achieved. The simulation results will be shown in Section 6.5

below.

The dependence of the model coefficients on substrate temperature is used in the

formulation of the model predictive controller in the next section. Thus, parameter

estimation from open-loop kMC simulation results of the thin film growth process

for a variety of operation conditions is performed to obtain the dependence of the

model coefficients on substrate temperature. In this chapter, the deposition rate for

all simulations is fixed at 1 layer/s. The range of T is between 300 K and 800 K,

which is from room temperature to the upper limit of the allowable temperature for a
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Figure 6.6: Dependence of ln(ν) and σ2 on the substrate temperature with deposition
rate W = 1 layer/s.

valid on-lattice kMC model of silicon film. The dependence of the model parameters

on the substrate temperature is shown in Figures 6.6 and 6.7. In these figures, it

can be clearly seen that the dependence of the model parameters on temperature

is highly nonlinear. Specifically, as substrate temperature increases, the migration

rate becomes larger due to the Arrhenius type dependence of the migration rate on

temperature. Thus, higher temperature tends to result in a thin film with less pores

(higher film SOR) and a smoother surface (lower surface roughness).
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6.4 Model predictive control

In this section, we design a model predictive controller based on the dynamic models

of surface roughness and film SOR to simultaneously control the expected values of

roughness square and film SOR to a desired level. The dynamics of surface roughness

of the thin film are described by the EW equation of the surface height of Eq. (6.3)

with appropriately computed parameters. Film SOR is modeled by a first-order

deterministic ODE model. State feedback control is considered in this chapter, i.e.,

the surface height profile and the value of film SOR are assumed to be available to

the controller and no sensor noise is introduced. Measurements of the film may be

obtained in real-time through a combination of real-time gas phase measurements

and empirical models that predict film porosity from gas phase measurements.
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6.4.1 MPC formulation for regulation of roughness and poros-

ity

We consider the problem of regulation of surface roughness and of film SOR to de-

sired levels within a model predictive control framework. Since surface roughness and

film SOR are stochastic variables, the expected values, 〈r2(t)〉 and 〈ρ〉, are chosen as

the control objectives. The substrate temperature is used as the manipulated input

and the deposition rate is fixed at a certain value, W0, during the entire closed-loop

simulation. To account for a number of practical considerations, several constraints

are added to the control problem. First, there is a constraint on the range of variation

of the substrate temperature. This constraint ensures validity of the on-lattice kMC

model. Another constraint is imposed on the rate of change of the substrate temper-

ature to account for actuator limitations. The control action at time t is obtained

by solving a finite-horizon optimal control problem. The cost function in the optimal

control problem includes penalty on the deviation of 〈r2〉 and 〈ρ〉 from their respec-

tive set-point values. Different weighting factors are assigned to the penalties of the

surface roughness and of the film SOR. Surface roughness and film SOR have very

different magnitudes, (〈r2〉 ranges from 1 to 102 and 〈ρ〉 ranges from 0 to 1). There-

fore, relative deviations are used in the formulation of the cost function to make the

magnitude of the two terms comparable. The optimization problem is subject to the

dynamics of the surface height of Eq. (6.3) of and of the film SOR of Eq. (6.14). The

optimal temperature profile is calculated by solving a finite-dimensional optimization
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problem in a receding horizon fashion. Specifically, the MPC problem is formulated

as follows:

min
T1,...,Ti,...,Tp

J =

p∑
i=1

{
qr2,i

[
r2
set − 〈r2(ti)〉

r2
set

]2

+ qρ,i

[
ρset − 〈ρ(ti)〉

ρset

]2
}

subject to

∂h

∂t
= rh + ν

∂2h

∂x2
+ ξ(x, t),

τ
d 〈ρ(t)〉

dt
= ρss − 〈ρ(t)〉,

Tmin < Ti < Tmax,

∣∣∣∣
Ti+1 − Ti

∆

∣∣∣∣ ≤ LT,

i = 1, 2, . . . , p,

(6.20)

where t is the current time, ∆ is the sampling time, p is the number of prediction

steps, p∆ is the specified prediction horizon, ti, i = 1, 2, . . . , p, is the time of the

ith prediction step (ti = t + i∆), respectively, Ti, i = 1, 2, . . . , p, is the substrate

temperature at the ith step (Ti = T (t + i∆)), respectively, W0 is the fixed deposition

rate, qr2,i and qρ,i, i = 1, 2, . . . , p, are the weighting penalty factors for the deviations

of 〈r2〉 and 〈ρ〉 from their respective set-points at the ith prediction step, Tmin and

Tmax are the lower and upper bounds on the substrate temperature, respectively, and

LT is the limit on the rate of change of the substrate temperature.

The optimal set of control actions, (T1, T2, . . . , Tp), is obtained from the solution

of the multi-variable optimization problem of Eq. (6.20), and only the first value of

the manipulated input trajectory, T1, is applied to the deposition process (i.e., kMC
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model) during the time interval (t, t + ∆). At time t + ∆, new measurements of ρ

are received and the MPC problem of Eq. (6.20) is solved for the next control input

trajectory.

6.4.2 MPC formulation based on reduced-order model

The MPC formulation proposed in Eq. (6.20) is developed on the basis of the EW

equation of surface height and the deterministic ODE model of the film SOR. The

EW equation, which is a distributed parameter dynamic model, contains infinite

dimensional stochastic states. Therefore, it leads to a model predictive controller of

infinite order that cannot be realized in practice (i.e., the practical implementation of

such a control algorithm will require the computation of infinite sums which cannot

be done by a computer). To this end, a finite dimensional approximation of the EW

equation of order 2m is used; this approximation is obtained by using the first 2m

modes in Eq. (6.9).

Due to the structure of the eigenspectrum of the linear operator of the EW equa-

tion of Eq. (6.3), the dynamics of the EW equation are characterized by a finite

number of dominant modes. By neglecting the high-order modes (n ≥ m + 1), we

rewrite the system of Eq. (6.9) into a finite-dimensional approximation as follows:

dαn

dt
= λnαn + ξn

α(t), n = 1, . . . , m,

dβn

dt
= λnβn + ξn

β (t), n = 1, . . . , m.

(6.21)
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Using the finite-dimensional system of Eq. (6.21), the expected surface roughness

square, 〈r2(t)〉, can be approximated with the finite-dimensional state variance as

follows:

〈
r̃2(t)

〉
=

1

2π

m∑
i=1

[〈
α2

i (t)
〉

+
〈
β2

i (t)
〉]

(6.22)

where the tilde symbol in 〈r̃2(t)〉 denotes its association with a finite-dimensional

system.

Thus, the MPC formulation on the basis of the finite-dimensional system of

Eq. (6.21) and of the expected film SOR of Eq. (6.16) is shown as follows:

min
T1,...,Ti,...,Tp

J =

p∑
i=1

{
qr2,i

[
r2
set − 〈r̃2(ti)〉

r2
set

]2

+ qρ,i

[
ρset − 〈ρ(ti)〉

ρset

]2
}

subject to

〈
α2

n(ti)
〉

=
σ2

2νn2
+

(〈
α2

n(ti−1)
〉− σ2

2νn2

)
e−2νn2∆,

〈
β2

n(ti)
〉

=
σ2

2νn2
+

(〈
β2

n(ti−1)
〉− σ2

2νn2

)
e−2νn2∆,

〈ρ(ti)〉 = ρss + (〈ρ(ti−1)〉 − ρss) e−∆/τ ,

Tmin < Ti < Tmax,

∣∣∣∣
Ti+1 − Ti

∆

∣∣∣∣ ≤ LT,

n = 1, 2, . . . , m, i = 1, 2, . . . , p.

(6.23)

In the MPC formulation based on the reduced-order model of Eq. (6.23), the expected

value of film SOR, 〈ρ〉, and the variance of the modal states, 〈α2
n(t)〉 and 〈β2

n(t)〉, are

needed to calculate the variables included in the cost over the prediction horizon. In

the closed-loop simulations, the instantaneous values of ρ, α2
n(t) and β2

n(t) are made
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available to the controller at each sampling time; however, no statistical information,

e.g., the expected value and variances, is available for feedback. Therefore, these

instantaneous values at the sampling times, which are obtained directly from the

simulation in real-time, are considered as the expected value of film SOR and surface

height and the variances of the modal states and can be used as an initial conditions

for the solution of the dynamic models employed in the MPC formulation of Eq. (6.23).

Specifically, α2
n(t) and β2

n(t) are computed from the surface height profile by taking

the inner product with the adjoint eigenfunctions as follows:

αn(t) =

∫ π

−π

h(x, t)φ∗n(x)dx, n = 1, 2, . . . , m,

βn(t) =

∫ π

−π

h(x, t)ψ∗n(x)dx, n = 1, 2, . . . , m,

(6.24)

where h(x, t) is obtained at each sampling time from the kMC simulation.

6.5 Simulation results

In this section, the proposed model predictive controller of Eq. (6.23) is applied to the

kMC model of the thin film growth process described in Section 6.2. The value of the

substrate temperature is obtained from the solution of the problem of Eq. (6.23) at

each sampling time and is applied to the closed-loop system until the next sampling

time. The optimization problem in the MPC formulation of Eq. (6.23) is solved via

a local constrained minimization algorithm using a broad set of initial guesses.
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The constraint on the rate of change of the substrate temperature is imposed

onto the optimization problem, which is realized in the optimization process in the

following way:

∣∣∣∣
Ti+1 − Ti

∆

∣∣∣∣ ≤ LT ⇒ |Ti+1 − Ti| ≤ LT∆ ⇒ Ti − LT∆ ≤ Ti+1 ≤ Ti + LT∆,

i = 1, 2, . . . , p.

(6.25)

The desired values (set-point values) in the closed-loop simulations are r2
set = 10

and ρset = 0.95. The order of finite-dimensional approximation of the EW equation

in the MPC formulation is m = 20. The deposition rate is fixed at 1 layer/s and

an initial temperature of 600 K is used. The variation of temperature is from 400

K to 700 K. The maximum rate of change of the temperature is LT = 10 K/s. The

sampling time is fixed at ∆ = 1 s. The number of prediction steps is set to be p = 5.

The closed-loop simulation duration is 1000 s. All expected values are obtained from

1000 independent simulation runs.

The estimated parameters and the dependence of the parameters on substrate

temperature is used in the model predictive control design, which is applied to the

kMC simulations with the same lattice size, L = 100. We note that 100 lattice size

in the kMC simulations is small compared to real wafers in the deposition process.

However, it is not possible with currently available computing power to simulate

molecular processes covering a realistic wafer size. However, developing modeling

and control techniques for regulating thin film microstructure (surface roughness and
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porosity) is an important research area because we need to understand how to regulate

film surface roughness and porosity in industrial systems. The proposed modeling and

control methods can be applied to any lattice size. Furthermore, the dynamic models

used in the controller can be constructed directly from experimental surface roughness

and porosity measurements.

Closed-loop simulations of separately regulating film surface roughness and poros-

ity are first carried out. In these control problems, the control objective is to regulate

one of the control variables, i.e., either surface roughness or film SOR, to a desired

level. The cost functions of these problems contain only penalty on the error of the

expected surface roughness square or of the expected film SOR from their set-point

values. The corresponding MPC formulations can be realized by assigning different

values to the penalty weighting factors, qr2,i and qρ,i.

In the roughness-only control problem, the weighting factors take the following

values: qr2,i = 1 and qρ,i = 0, i = 1, 2, . . . , p. Figures 6.8 and 6.9 show the closed-loop

simulation results of the roughness-only control problem. From Figure 6.8, we can

see that the expected surface roughness square is successfully regulated at the desire

level, 10. Since no penalty is included on the error of the expected film SOR, the final

value of expected film SOR at the end of the simulation, t = 1000 s, is 0.988, which

is far from the desired film SOR, 0.95.

In the SOR-only control problem, the weighting factors are assigned as: qr2,i = 0

and qρ,i = 1, i = 1, 2, . . . , p. Figures 6.10 and 6.11 show the closed-loop simulation
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Figure 6.8: Profiles of the expected values of surface roughness square (solid line) and
of the film SOR (dash-dotted line) under closed-loop operation with cost function
including only penalty on surface roughness.
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Figure 6.9: Profile of the instantaneous values of substrate temperature under closed-
loop operation with cost function including only penalty on surface roughness.
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Figure 6.10: Profiles of the expected values of surface roughness square (solid line)
and of the film SOR (dash-dotted line) under closed-loop operation with cost function
including only penalty on the film SOR.

results of the SOR-only control problem. Similar to the results of the roughness-only

control problem, the desired value of expected film SOR, 0.95, is approached at large

times. However, since the error from the expected surface roughness square is not

considered in the cost function, 〈r2〉 reaches a very high level around 125 at the end

of the simulation.

Finally, closed-loop simulations of simultaneous regulation of surface roughness

and film SOR are carried out by assigning non-zero values to both penalty weighting

factors. Specifically, qr2,1 = qr2,2 = · · · = qr2,p = 1 and qρ,1 = qρ,2 = · · · = qρ,p = qSOR

and qSOR varies from 1 to 104. Since substrate temperature is the only manipulated

input, the desired-values of r2
set and ρset cannot be achieved simultaneously. With

different assignments of penalty weighting factors, the model predictive controller of
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Figure 6.11: Profile of the instantaneous value of substrate temperature under closed-
loop operation with cost function including only penalty on the film SOR.

Eq. (6.23) evaluates and strikes a balance between the two set-points. Figure 6.12

shows the expected values of r2
set and ρset at the end of closed-loop simulations of the

simultaneous control problem with respect to different weighting factors. It is clear

from Figure 6.12 that as the weighting on expected film SOR increases, the expected

film SOR approaches its set-point value of 0.95, while the expected surface roughness

square deviates from its set-point value of 10.

Snapshots of the film microstructure at the end of the simulations (i.e., t = 1000 s)

under open-loop and closed-loop operations are shown in Figure 6.13. The open-loop

simulation is carried out at fixed process parameters of substrate temperature of 500

K and adsorption rate of 1 layer/s. The thin film obtained at the end of the open-loop

simulation has higher surface roughness and film porosity, with the expected values of

surface roughness square at 106 and film SOR at 0.78. Columnar/pillar structures can
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Figure 6.12: Profiles of the expected values of surface roughness square (solid line)
and of the film SOR (dash-dotted line) at the end of the closed-loop simulations
(t = 1000 s) with the following penalty weighting factors: qr2,i fixed at 1 for all i and
for different values of qSOR.

be seen in the film microstructure in the open-loop simulation (Figure 6.13). Similar

columnar structures have been also reported by other researchers in kMC simulations

with triangular lattice and similar microscopic rules as well as in experimental works

[95, 94, 56].

In the closed-loop simulations shown in Figure 6.13, three control schemes are com-

pared: roughness-only control (I), SOR-only control (II) and simultaneous regulation

of both roughness and porosity (III). As it was demonstrated by the evolution profiles

of surface roughness and film SOR of the closed-loop simulations in Figures 6.8 and

6.10, the film microstructure under roughness-only control (I) has the lowest surface

roughness square, which is close to the set-point value of 10, but the corresponding

film SOR is 0.99, which is far from the desired value of 0.95. On the other hand, the
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Figure 6.13: Snapshots of film microstructure at t = 1000 s of simulations under
open-loop and closed-loop operations. Open-loop simulation is carried out at T = 500
K and W = 1 layer/s. Closed-loop simulations are carried out under three different
control schemes: (I) roughness-only control; (II) SOR-only control; (III) simultaneous
regulation of surface roughness and film SOR with qr2,i = 1 and qSOR = 104.
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film SOR under SOR-only control (II) is lower than under roughness-only control (I)

and reaches the set-point of 0.95, which can be also seen by comparing the porosity of

the thin film under closed-loop control (I) and (II) in Figure 6.13. However, the sur-

face roughness square under SOR-only control (II) is much higher than the set-point

value of 10 since no penalty is included on the deviation of surface roughness square

from the set-point value in this case, and thus, the snapshot of the film microstructure

has the roughest surface. Finally, under the control scheme (III), surface roughness

and film porosity strike a balance from their respective set-points by including penalty

on both deviations of surface roughness square and film SOR.

6.6 Conclusions

In this chapter, stochastic modeling and simultaneous regulation of surface roughness

and film porosity was studied for a porous thin film deposition process modeled via

kMC simulation on a triangular lattice with two microscopic processes. The defini-

tion of surface height profile of a porous thin film in a triangular lattice was first

introduced. An EW-type equation was used to describe the dynamics of surface

height and the evolution of the RMS surface roughness, which is one of the controlled

variables. Subsequently, an appropriate definition of film SOR was introduced to

represent the extent of porosity inside the film and was used as the second to-be-

controlled variable. A deterministic ODE model was postulated to describe the time

evolution of film SOR. The coefficients of the EW equation of surface height and of
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the deterministic ODE model of the film SOR were estimated on the basis of data

obtained from the kMC simulator of the deposition process using least-square meth-

ods and their dependence on substrate temperature was determined. The developed

dynamic models were used as the basis for the design of a model predictive control

algorithm that includes penalty on the deviation of surface roughness square and

film SOR from their respective set-point values. Simulation results demonstrated the

applicability and effectiveness of the proposed modeling and control approach in the

context of the deposition process under consideration. When simultaneous control of

surface roughness and porosity was carried out, a balanced trade-off was obtained in

the closed-loop system between the two control objectives of surface roughness and

porosity regulation.
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Chapter 7

Simultaneous Regulation of Film

Surface Roughness, Porosity, and

Thickness Using Deposition Rate

7.1 Introduction

In Chapters 5 and 6, substrate temperature was used as the manipulated variable

to regulate surface roughness and film porosity in the thin film deposition process.

However, the weak dependence of the film thickness on the substrate temperature

does not allow regulation of the film thickness at the end of the deposition process

by manipulation of the substrate temperature. A good manipulated input candidate

for the control of film thickness [58] (and for film surface roughness and porosity as
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well) is the deposition rate, which has a direct influence on the growth rate of the

film. Motivated by this consideration, this chapter focuses on distributed control

of film thickness, surface roughness and porosity in a porous thin film deposition

process using the deposition rate as the manipulated input. The deposition process

includes adsorption and migration processes and it is modeled via kinetic Monte Carlo

simulation on a triangular lattice with vacancies and overhangs allowed to develop

inside the film. A distributed parameter (partial differential equation) dynamic model

is derived to describe the evolution of the surface height profile of the thin film

accounting for the effect of deposition rate. The dynamics of film porosity, evaluated

as film site occupancy ratio (SOR), are described by an ordinary differential equation.

The developed dynamic models are then used as the basis for the design of a model

predictive control algorithm that includes penalty on the deviation of film thickness,

surface roughness and film porosity from their respective set-point values. Simulation

results demonstrate the applicability and effectiveness of the proposed modeling and

control approach in the context of the deposition process under consideration.

7.2 Preliminaries

7.2.1 On-lattice kinetic Monte Carlo model of film growth

The deposition process is simulated using an on-lattice kMC model which is con-

structed on a two-dimensional triangular lattice (one dimensional on the growth di-
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rection) [41], as shown in Figure 6.1. The on-lattice kMC model is valid for a low

temperature region, T < 0.5Tm (Tm is the melting point of the crystalline material),

where the particles can be assumed to be constrained on the lattice sites [56]. The

lattice contains a fixed number of sites in the lateral direction. The new particles

are always deposited from the gas phase which is located above the lattice; see Fig-

ure 6.1. The growth direction, along which the thin film keeps growing, is normal to

the lateral direction. The number of sites in the lateral direction is defined as the

lattice size and is denoted by L.

The number of nearest neighbors of a site ranges from zero to six, (six is the

coordination number of the triangular lattice). A site with no nearest neighbors

indicates an unadsorbed particle in the gas phase, i.e., a particle which has not been

deposited on the film yet. A particle with six nearest neighbors is associated with

an interior particle that is fully surrounded by other particles and cannot migrate.

A particle with one to five nearest neighbors is possible to diffuse to an unoccupied

neighboring site with a probability that depends on its local environment. In the

triangular lattice, a particle with only one nearest neighbor is considered unstable

and is subject to instantaneous surface relaxation.

In the simulation, a bottom layer in the lattice is initially set to be fully packed and

fixed, as shown in Figure 6.1. There are no vacancies in this layer and the particles

in this layer cannot migrate. This layer acts as the substrate for the deposition and

is not counted in the computation of the number of the deposited particles, i.e.,
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this fixed layer does not influence the film porosity (see Section 7.2.2 below). Two

types of microscopic processes (Monte Carlo events) are considered in the kMC model

[56, 55, 92, 95]: an adsorption process, in which particles are incorporated into the

film from the gas phase, and a migration process, in which surface particles move

to adjacent sites. These Monte Carlo events are assumed to be Poisson processes.

All events occur randomly with probabilities proportional to their respective rates.

The events are executed instantaneously upon selection and the state of the lattice

remains unchanged between two consecutive events.

In the adsorption process, an incident particle comes in contact with the film and

is incorporated onto the film, subject to instantaneous surface relaxation when the

lattice site is unstable. The macroscopic adsorption rate (deposition rate), W , which

is in units of layers per unit time, depends on the gas phase concentration. The layers

in the unit of adsorption rate are densely packed layers, which contain L particles.

With this definition, W is independent of L and is treated as a process parameter

and will be used as the manipulated input. For the entire deposition process, the

microscopic adsorption rate (deposition rate) in terms of incident particles per unit

time, which is denoted as ra, is related to W as follows:

ra = LW (7.1)

The incident particles are initially placed at random positions above the film lattice
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and move toward the lattice in the vertical direction. The random initial particle

position, x0, which is the center of an incident particle, follows a uniform probability

distribution in the continuous spatial domain. Note that different distributions of the

incident angle may be selected, e.g., a uniform or cosine distribution, for different film

growth processes [40, 94].

In the migration process, a particle overcomes the energy barrier of the site and

jumps to its vacant neighboring site. The migration rate (probability) of a particle

follows an Arrhenius-type law with a pre-calculated activation energy barrier that

depends on the local environment of the particle, i.e., the number of the nearest

neighbors of the particle chosen for a migration event. The migration rate of the ith

particle is calculated as follows:

rm,i = ν0 exp

(
−niE0

kBT

)
(7.2)

where ν0 denotes the pre-exponential factor, ni is the number of the nearest neighbors

of the ith particle and can take the values of 2, 3, 4 and 5 (rm,i is zero when ni = 6

since this particle is fully surrounded by other particles and cannot migrate), E0 is

the contribution to the activation energy barrier from each nearest neighbor, kB is

the Boltzmann’s constant and T is the substrate temperature of the thin film. Since

the film is thin, the temperature is assumed to be uniform throughout the film and is

treated as a time-varying but spatially-invariant process parameter. The factor and

energy barrier contribution in Eq. (7.2) take the following values ν0 = 1013 s−1 and
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E0 = 0.9 eV. These values are appropriate for a silicon film [46]. Here we note that the

contributions to the activation energy barrier from the second nearest neighbors are

added into the contributions from the nearest neighbors. When a particle is subject to

migration, it can jump to either of its vacant neighboring sites with equal probability,

unless the vacant neighboring site has no nearest neighbors, i.e., the surface particle

cannot jump off the film and it can only migrate on the surface.

7.2.2 Definitions of thin film microstructure

Utilizing the continuous-time Monte Carlo algorithm, simulations of the kMC model

of a porous silicon thin film growth process can be carried out. Snapshots of film

microstructure, i.e., the configurations of particles within the triangular lattice, are

obtained from the kMC model at various time instants during process evolution. To

quantitatively evaluate the thin film microstructure, two variables, surface roughness

and film porosity, are introduced in this subsection.

Surface roughness, which measures the texture of thin film surface, is represented

by the root mean square (RMS) of the surface height profile of the thin film. Deter-

mination of surface height profile is slightly different in the triangular lattice model

compared to a solid-on-solid (SOS) model. In the SOS model, the surface of thin

film is naturally described by the positions of the top particles of each column. In

the triangular lattice model, however, due to the existence of vacancies and over-

hangs, the definition of film surface needs further clarification. Specifically, taking
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into account practical considerations of surface roughness measurements, the surface

height profile of a triangular lattice model is defined based on the particles that can

be reached in the vertical direction, as shown in Figure 6.3. In this definition, a

particle is considered as a surface particle only if it is not blocked by the particles in

the neighboring columns. Therefore, the surface height profile of a porous thin film

is the line that connects the sites that are occupied by the surface particles. With

this definition, the surface height profile can be treated as a function of the spatial

coordinate. Surface roughness, as a measurement of the surface texture, is defined

as the standard deviation of the surface height profile from its average height. The

definition expression of surface roughness is given later in Section 7.3.1.

In addition to film surface roughness, the film SOR is introduced to represent the

extent of the porosity inside the thin film. The mathematical expression of film SOR

is defined as follows:

ρ =
N

LH
(7.3)

where ρ denotes the film SOR, N is the total number of deposited particles on the

lattice, L is the lattice size, and H denotes the number of deposited layers. Note

that the deposited layers are the layers that contain only deposited particles and do

not include the initial substrate layers. The variables in the definition expression of

Eq. (7.3) can be found in Figure 5.3. Since each layer contains L sites, the total

number of sites in the film that can be contained within the H layers is LH. Thus,

film SOR is the ratio of the occupied lattice sites, N , over the total number of available
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sites, LH. Film SOR ranges from 0 to 1. Specifically, ρ = 1 denotes a fully occupied

film with a flat surface. The value of zero is assigned to ρ at the beginning of the

deposition process since there are no particles deposited on the lattice.

The definition of film SOR is different from the concept of packing density which is

used to denote the fraction of a volume filled by a given collection of solids, and thus,

packing density cannot be used to characterize the evolution of the porosity. Another

important point is the correlation of film surface roughness and film porosity. These

two properties of thin films are correlated to some extent in the deposition process.

The conditions that produce a dense film, i.e., higher substrate temperature or lower

deposition rate, also generate a smoother surface. However, even though there is

correlation between the film surface roughness and porosity, films with the same

surface roughness may have quite different film SORs.

7.3 Dynamic model construction and parameter

estimation

7.3.1 Edwards-Wilkinson-type equation of surface height us-

ing deposition rate as manipulated input

An Edwards-Wilkinson (EW)-type equation, a second-order stochastic partial differ-

ential equation (PDE), can be used to describe the surface height evolution in many
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microscopic processes that involve thermal balance between adsorption (deposition)

and migration (diffusion) [61]. An EW-type equation is chosen to describe the dy-

namics of the fluctuation of surface height (the validation of this choice will be made

clear below) of the form:

∂h

∂t
= rh + ν

∂2h

∂x2
+ ξ(x, t) (7.4)

subject to PBCs:

h(−π, t) = h(π, t),
∂h

∂x
(−π, t) =

∂h

∂x
(π, t), (7.5)

and the initial condition:

h(x, 0) = h0(x) (7.6)

where x ∈ [−π, π] is the spatial coordinate, t is the time, rh and ν are the model

parameters, and ξ(x, t) is a Gaussian white noise with the following mean and covari-

ance:

〈ξ(x, t)〉 = 0,

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x− x′)δ(t− t′),

(7.7)

where σ2 is a parameter which measures the intensity of the Gaussian white noise and

δ(·) denotes the standard Dirac delta function. We note that the parameters rh, ν

and σ2 are functions of the deposition rate, W , and this dependence will be estimated

and discussed in Section 7.3.3 below.

To proceed with model parameter estimation and control design, a stochastic ODE
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approximation of Eq. (7.4) is first derived using model decomposition. Consider the

eigenvalue problem of the linear operator of Eq. (7.4), which takes the form:

Aφ̄n(x) = ν
d2φ̄n(x)

dx2
= λnφ̄n(x),

φ̄n(−π) = φ̄n(π),
dφ̄n

dx
(−π) =

dφ̄n

dx
(π),

(7.8)

where λn denotes an eigenvalue and φ̄n denotes an eigenfunction. A direct computa-

tion of the solution of the above eigenvalue problem yields λ0 = 0 with ψ0 = 1/
√

2π,

and λn = −νn2 (λn is an eigenvalue of multiplicity two) with eigenfunctions φn =

(1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞. Note that the φ̄n in

Eq. (7.8) denotes either φn or ψn. For a fixed positive value of ν, all eigenvalues

(except the zeroth eigenvalue) are negative and the distance between two consecutive

eigenvalues (i.e., λn and λn+1) increases as n increases.

The solution of Eq. (7.4) is expanded in an infinite series in terms of the eigen-

functions of the operator of Eq. (7.8) as follows:

h(x, t) =
∞∑

n=1

αn(t)φn(x) +
∞∑

n=0

βn(t)ψn(x) (7.9)

where αn(t), βn(t) are time-varying coefficients. Substituting the above expansion

for the solution, h(x, t), into Eq. (7.4) and taking the inner product with the adjoint

eigenfunctions, φ∗n(x) = (1/
√

π) sin(nx) and ψ∗n(x) = (1/
√

π) cos(nx), the following
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system of infinite stochastic ODEs is obtained:

dβ0

dt
=

√
2πrh + ξ0

β(t),

dαn

dt
= λnαn + ξn

α(t), n = 1, . . . ,∞,

dβn

dt
= λnβn + ξn

β (t), n = 1, . . . ,∞,

(7.10)

where

ξn
α(t) =

∫ π

−π

ξ(x, t)φ∗n(x)dx, ξn
β (t) =

∫ π

−π

ξ(x, t)ψ∗n(x)dx. (7.11)

The covariances of ξn
α(t) and ξn

β (t) can be obtained: 〈ξn
α(t)ξn

α(t′)〉 = σ2δ(t − t′)

and
〈
ξn
β (t)ξn

β (t′)
〉

= σ2δ(t − t′). Due to the orthogonality of the eigenfunctions of

the operator in the EW equation of Eq. (7.4), ξn
α(t) and ξn

β (t), n = 0, 1, . . ., are

stochastically independent.

Since the stochastic ODE system is linear, the analytical solution of state variance

can be obtained from a direct computation as follows:

〈
α2

n(t)
〉

=
σ2

2νn2
+

(〈
α2

n(t0)
〉− σ2

2νn2

)
e−2νn2(t−t0) n = 1, 2, . . . ,∞,

〈
β2

n(t)
〉

=
σ2

2νn2
+

(〈
β2

n(t0)
〉− σ2

2νn2

)
e−2νn2(t−t0) n = 0, 1, . . . ,∞,

(7.12)

where 〈α2
n(t0)〉 and 〈β2

n(t0)〉 are the state variances at time t0. The analytical solution

of state variance of Eq. (7.12) will be used in the parameter estimation and the MPC

design.
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When the dynamic model of surface height profile is determined, surface roughness

of the thin film is defined as the standard deviation of the surface height profile from

its average height and is computed as follows:

r(t) =

√
1

2π

∫ π

−π

[h(x, t)− h̄(t)]2dx (7.13)

where h̄(t) =
1

2π

∫ π

−π

h(x, t)dx is the average surface height. According to Eq. (7.9),

we have h̄(t) = β0(t)ψ0. Therefore, 〈r2(t)〉 can be rewritten in terms of 〈α2
n(t)〉 and

〈β2
n(t)〉 as follows:

〈r2(t)〉 =
1

2π

〈∫ π

−π

(h(x, t)− h̄(t))2dx

〉

=
1

2π

〈 ∞∑
i=1

(α2
i (t) + β2

i (t))

〉
=

1

2π

∞∑
i=1

[〈
α2

i (t)
〉

+
〈
β2

i (t)
〉]

.

(7.14)

Thus, Eq. (7.14) provides a direct link between the state variance of the infinite

stochastic ODEs of Eq. (7.10) and the expected surface roughness of the thin film.

Note that the parameter rh does not appear in the expression of surface roughness,

since only the zeroth state, β0, is affected by rh but this state is not included in the

computation of the expected surface roughness square of Eq. (7.14).

Film thickness, which is represented by the average of surface height, h̄, is another

control objective here. The dynamics of the expected value of average surface height

can be obtained from the analytical solution of the zeroth state, β0, from Eq. (7.10),
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as follows:

d
〈
h̄
〉

dt
= rh (7.15)

subject to the initial condition

〈
h̄(t0)

〉
=

1

2π

∫ π

−π

h(x, t0)dx. (7.16)

Here we need to point out that full knowledge of surface height profile throughout

the spatial domain is necessary for the computation of the initial values of the film

thickness,
〈
h̄(t0)

〉
.

Eq. (7.15) implies that h̄ can be directly controlled by manipulating the deposition

rate. Finally, the analytical solution of expected value of film thickness,
〈
h̄
〉
, which

will be used for parameter estimation (rh dependence on W ) and control purposes

below, can be obtained directly from Eq. (7.15) as follows:

〈
h̄(t)

〉
=

〈
h̄(t0)

〉
+ rh(t− t0). (7.17)

7.3.2 Dynamic model of film site occupancy ratio

Film SOR is used to characterize film porosity. According to the definition of film SOR

of Eq. (7.3), film SOR accounts for all deposited layers during the entire deposition

process. Thus, film SOR is a cumulative property, the evolution of which can be

characterized by an integral form. Before further derivation of the dynamic model of
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film SOR, a concept of instantaneous film SOR of the film layers deposited between

time t and t + ∆t, denoted by ρd, is first introduced as the spatial derivative of the

number of deposited particles in the growing direction as follows:

ρd =
dN

d(HL)
. (7.18)

In Eq. (7.18), the lattice size L is a constant and the derivative dH can be written

as a linear function of time derivative dt as follows:

dH = rHdt (7.19)

where rH is the growth rate of the thin film from the top layer point of view. Note

that rH is different from the model coefficient rh in Eq. (7.4). Thus, the expressions

of N and H can be obtained by integrating Eqs. (7.18) and (7.19) as follows:

N(t) = L

∫ t

0

ρdrHds,

H(t) =

∫ t

0

ρdds.

(7.20)

With the definition of ρ of Eq. (7.3) and the expressions of N and H of Eq. (7.20,

the film SOR of Eq. (7.3) can be rewritten in an integral form as follows:

ρ =

∫ t

0
ρdrHds∫ t

0
rHds

. (7.21)
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To simplify the subsequent development and develop an SOR model that is suit-

able for control purposes, we assume (this assumption will be verified in the closed-

loop simulation results below where the performance of the controller will be evalu-

ated) that the dynamics of the instantaneous film SOR, ρd, can be approximated by

a first-order process, i.e.:

τ
dρd(t)

dt
= ρss

d − ρd(t) (7.22)

where τ is the time constant and ρss
d is the steady-state value of the instantaneous

film SOR. We note that the first-order ODE model of Eq. (7.22) was introduced and

justified with numerical results in [40] for the modeling of the partial film SOR, which

is defined to characterize the evolution of the film porosity of layers that are close

to the film surface. In this chapter, the instantaneous film SOR is a similar concept

to the partial film SOR, because it also describes the contribution to the bulk film

porosity of the newly deposited layers. Therefore, the first-order ODE model is a

suitable choice to describe the evolution of the instantaneous film SOR.

From Eq. (7.21), it follows that at large times as ρd approaches ρss
d , the steady-

state film SOR (ρss) approaches the steady-state value of the instantaneous film SOR

(i.e., ρss = ρss
d ). The deterministic ODE system of Eq. (7.22) is subject to the following

initial condition:

ρd(t0) = ρd0 (7.23)

where t0 is the initial time and ρd0 is the initial value of the instantaneous film SOR.
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From Eqs. (7.22) and (7.23) and the fact that ρss = ρss
d at large times, it follows that

ρd(t) = ρss + (ρd0 − ρss) e−(t−t0)/τ . (7.24)

For controller implementation purposes, the expression of the film SOR can be derived

as follows:

ρ(t) =

∫ t0
0

ρdrHds +
∫ t

t0
ρdrHds

∫ t0
0

rHds +
∫ t

t0
rHds

,

=
ρ(t0)H(t0) +

∫ t

t0
ρdrHds

H(t0) +
∫ t

t0
rHds

,

(7.25)

where t0 is the current time, ρ(t0) and H(t0) are film SOR and film height at time t0,

respectively.

Substituting the solution of ρd of Eq. (7.24) into Eq. (7.25) and assuming that rH

is constant for t > τ > t0, which is taken to be the case in the parameter estimation

and the MPC formulations below, the analytical solution of film SOR at time t can

be obtained as follows:

ρ =
ρ(t0)H(t0) + rH

[
ρss(t− t0) + (ρss − ρ(t0))τ(e−(t−t0)/τ − 1)

]

H(t0) + rH(t− t0)
(7.26)

which is directly utilized in the model predictive control formulation of Eq. (7.29)

below.
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7.3.3 Parameter estimation

In the dynamic models of Eqs. (7.4), (7.15) and (7.22), there are five model param-

eters that need to be obtained from kMC data of the deposition process. These

model parameters can be estimated on the basis of the open-loop simulation data

at fixed operation conditions, i.e., substrate temperature and deposition rate, from

the kMC model introduced in Section 7.2 by using least square methods [40, 41]. In

the parameter estimation, the predicted evolution profiles from the dynamic models

and the ones from the kMC simulation of the deposition process are compared in a

least-square sense to find the best model parameters.

Different operating conditions strongly affect the deposition process and result in

different dynamics of the surface height profile and of the film SOR. Thus, the model

parameters are functions of the operating conditions. In this chapter, we choose the

deposition rate, W , as the manipulated input and keep the substrate temperature

fixed at T = 850 K. The dependence of the model parameters on the deposition rate,

W , can be obtained by performing the parameter estimation procedure discussed

above for a variety of deposition rate values (ranging from 0.1 to 1 layer/s); see

Figures 7.1, 7.2 and 7.3 for the dependence of the model parameters on the deposition

rate. Simulation results from 1000 independent simulation runs are used for the

parameter estimation under each deposition rate condition. It can be clearly seen that

the model parameters are strong functions of the deposition rate and this dependence

is the basis for using W to simultaneously control film thickness, roughness and
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Figure 7.1: Dependence of ν and σ2 on the deposition rate with substrate temperature
T = 850 K.

porosity.

7.4 Model predictive controller design

In this section, a model predictive controller is designed based on the dynamic models

of surface height and film SOR to regulate the expected values of surface roughness

and film SOR to desired levels by manipulating the deposition rate. A desired mini-

mum of film thickness is also included in the cost function in the MPC formulation. A

reduced-order model of EW equation is used in the MPC formulation to approximate

the dynamics of the surface roughness. The surface height profile and the value of

film SOR are assumed to be available to the controller. In practice, these data can
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be obtained from in situ gas phase and thin film surface measurements (on-line film

porosity may be obtained by a model that links the off-line film porosity and in situ

gas phase measurements).

With respect to the choice of MPC for the controller design, we note that classical

control schemes like proportional-integral (PI) control cannot be designed to explicitly

account for input/state constraints, optimality considerations and the batch nature

of the deposition process. Furthermore, dynamic open-loop optimization may be used

but it does not provide robustness against model inaccuracies and fluctuations in the

deposition process. In the case where feedback control cannot be attained, dynamic

open-loop optimization may be used instead to regulate W ; this is naturally included

in the MPC framework employed here. The robustness of the MPC approach against

model parameter uncertainty can be also improved by including adaptation schemes;

see [15, 51] for results on adaptive control of PDEs.

7.4.1 Reduced-order model for surface roughness

In model predictive control formulation, the expected surface roughness is computed

from the EW equation of Eq. (7.4). The EW equation, which is a distributed pa-

rameter dynamic model, contains infinite dimensional stochastic states. Therefore,

it leads to a model predictive controller of infinite order that cannot be realized in

practice (i.e., the practical implementation of a control algorithm based on such an

system will require the computation of infinite sums which cannot be done by a com-
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puter). To this end, a reduced-order model of the infinite dimensional ODE model

of Eq. (7.10) is instead included and is used to calculate the prediction of expected

surface roughness in the model predictive controller.

Due to the structure of the eigenspectrum of the linear operator of the EW equa-

tion of Eq. (7.4), the dynamics of the EW equation are characterized by a finite

number of dominant modes. By neglecting the high-order modes (n ≥ m + 1), the

system of Eq. (7.10) can be approximated by a finite-dimensional system as follows:

dαn

dt
= λnαn + ξn

α(t), n = 1, . . . , m,

dβn

dt
= λnβn + ξn

β (t), n = 1, . . . , m.

(7.27)

Note that the ODE for the zeroth state is also neglected, since the zeroth state does

not contribute to surface roughness.

Using the finite-dimensional system of Eq. (7.27), the expected surface roughness

square, 〈r2(t)〉, can be approximated with the finite-dimensional state variance as

follows:

〈
r̃2(t)

〉
=

1

2π

m∑
i=1

[〈
α2

i (t)
〉

+
〈
β2

i (t)
〉]

(7.28)

where the tilde symbol in 〈r̃2(t)〉 denotes its association with a finite-dimensional

system.
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7.4.2 MPC formulation

We consider the control problem of film thickness, surface roughness and film porosity

regulation by using a model predictive control design. The expected values,
〈
h̄
〉
,

〈r2〉 and ρ, are chosen as the control objectives. The deposition rate is used as the

manipulated input. The substrate temperature is fixed at a certain value, T0, during

all closed-loop simulations. We note here that the proposed modeling and control

methods do no depend on the specific number of the manipulated variables and can

be easily extended to the case of multi-inputs. To account for a number of practical

considerations, several constraints are added to the control problem. First, there is

a constraint on the range of variation of the deposition rate. This constraint ensures

validity of the on-lattice kMC model. Another constraint is imposed on the rate of

change of the deposition rate to account for actuator limitations. The control action

at time t is obtained by solving a finite-horizon optimal control problem.

The cost function in the optimal control problem includes penalty on the deviation

of 〈r2〉 and ρ from their respective set-point values. Since the manipulated variable

is the deposition rate and the film deposition process is a batch operation (i.e., the

film growth process is terminated within a certain time), a desired minimum of the

film thickness is also required to prevent an undergrown thin film at the end of the

deposition process. The minimal film thickness is regarded as the set-point value of

the film thickness in the MPC formulation, i.e., the deviation of the film thickness from

the minimum is included in the cost function. However, only the negative deviation
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(when the film thickness is less than the minimum) is counted; no penalty is imposed

on the deviation when the thin film exceeds the minimal thickness. Different weighting

factors are assigned to the penalties on the deviations of the surface roughness and

of the film SOR (and of the film thickness as well). Relative deviations are used in

the formulation of the cost function to make the magnitude of the different terms

used in the cost comparable for numerical calculation purposes. The optimization

problem is subject to the dynamics of the reduced-order model of surface roughness

of Eq. (7.27), the dynamics of the film thickness of Eq. (7.15), and the dynamics of

the film SOR of Eq. (7.21). The optimal profile of the deposition rate is calculated

by solving a finite-dimensional optimization problem in a receding horizon fashion.
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Specifically, the MPC problem is formulated as follows:

min
W1,...,Wi,...,Wp

J =

p∑
i=1

(qr2,iFr2,i + qh,iFh,i + qρ,iFρ,i)

subject to

Fr2,i =

[
r2
set − 〈r̃2(ti)〉

r2
set

]2

,

Fh,i =





[
hmin −

〈
h̄(ti)

〉

hmin

]2

, hmin >
〈
h̄(ti)

〉
,

0, hmin ≤
〈
h̄(ti)

〉
,

Fρ,i =

[
ρset − ρ(ti)

ρset

]2

,

〈
α2

n(ti)
〉

=
σ2

2νn2
+

(〈
α2

n(ti−1)
〉− σ2

2νn2

)
e−2νn2∆,

〈
β2

n(ti)
〉

=
σ2

2νn2
+

(〈
β2

n(ti−1)
〉− σ2

2νn2

)
e−2νn2∆,

〈
h̄(ti)

〉
=

〈
h̄(ti−1)

〉
+ rh∆,

ρ(ti) =

{
ρ(ti−1)

〈
h̄(ti−1)

〉
+ rh

[
ρss∆ + (ρss − ρ(ti−1))τ(e−∆/τ − 1)

]}
〈
h̄(ti−1)

〉
+ rh∆

,

Wmin < Wi < Wmax,

∣∣∣∣
Wi+1 −Wi

∆

∣∣∣∣ ≤ LW,

n = 1, 2, . . . , m, i = 1, 2, . . . , p,

(7.29)

where t is the current time, ∆ is the sampling time, p is the number of prediction

steps, p∆ is the specified prediction horizon, ti, i = 1, 2, . . . , p, is the time of the ith

prediction step (ti = t+i∆), respectively, Wi, i = 1, 2, . . . , p, is the deposition rate at

the ith step (Wi = W (t+ i∆)), respectively, qr2,i, qh,i, and qρ,i, i = 1, 2, . . . , p, are the
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weighting penalty factors for the deviations of 〈r2〉 and ρ from their respective set-

points r2
set and ρset, and

〈
h̄
〉

from its desired minimum, hmin, at the ith prediction step,

Wmin and Wmax are the lower and upper bounds on the deposition rate, respectively,

and LW is the limit on the rate of change of the deposition rate. Note that we choose

〈
h̄
〉
, rh and ρ(t0) to replace H, rH and ρd0 in the MPC formulation of Eq. (7.29),

respectively.

The optimal set of control actions, (W1, W2, . . . , Wp), is obtained from the solution

of the multi-variable optimization problem of Eq. (7.29), and only the first value

of the manipulated input trajectory, W1, is applied to the deposition process from

time t until the next sampling time, when new measurements are received and the

MPC problem of Eq. (7.29) is solved for the computation of the next optimal input

trajectory.

The dependence of the model parameters, rh, ν, σ2, ρss, and τ , on the deposition

rate, W , is used in the formulation of the model predictive controller of Eq. (7.29).

The parameters estimated under time-invariant operating conditions are suitable for

the purpose of MPC design because the control input in the MPC formulation is

piecewise constant, i.e., the manipulated deposition rate remains constant between

two consecutive sampling times, and thus, the dynamics of the microscopic process

can be predicted using the dynamic models with estimated parameters.
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7.5 Simulation results

In this section, the proposed model predictive controller of Eq. (7.29) is applied to

the kMC model of the thin film growth process described in Section 7.2. The value

of the deposition rate is obtained from the solution of the problem of Eq. (7.29) at

each sampling time and is applied to the closed-loop system until the next sampling

time. The optimization problem in the MPC formulation of Eq. (7.29) is solved via

a local constrained minimization algorithm using a broad set of initial guesses. Since

the state variables of the system are accessed or measured only at the sampling times

in the closed-loop simulations, no statistical information, e.g., the expected complete

film SOR, is available for feedback control. Thus, instantaneous values of the surface

height profile and film SOR are used as the initial conditions for the dynamic models

in the MPC formulation of Eq. (7.29).

The desired values (set-point values) in the closed-loop simulations are r2
set = 100

layer2 and ρset = 0.96, with a desired minimum of film thickness of hmin = 1000

layer. The substrate temperature is fixed at 850 K and the initial deposition rate is

0.2 layer/s. The variation of deposition rate is from 0.1 layer/s to 1 layer/s. The

maximum rate of change of the deposition rate is LW = 10 layer/s2. All penalty

factors, qr2,i, qh,i, and qρ,i, are set to be either zero or one. The number of prediction

steps is set to be p = 5. The prediction horizon of each step is fixed at ∆ = 200

s. The time interval between two samplings is 5 s. The computational time that is

used to solve the optimization problem with the current available computing power
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is negligible (within 10 milliseconds) with respect to the sampling time interval. The

closed-loop simulation duration is 1500 s. All expected values are obtained from 1000

independent simulation runs.

7.5.1 Regulation of surface roughness with/without constrained

film thickness

Closed-loop simulations of separately regulating film surface roughness with desired

minimum of film thickness (roughness control problem) are first carried out. In these

control problems, the control objective is to regulate the expected surface roughness

square to the desired value (100 layer2) with a desired minimum of expected film

thickness (1000 layers). Thus, the cost functions of these problems contain penalties

on the deviations of the expected surface roughness square from the set-point value

and of the expected film thickness from its desired minimum.

Figure 7.4 shows the closed-loop simulation results of the roughness-thickness

control problem. From Figure 7.4, it can be seen that the model predictive controller

drives the expected surface roughness square close to the desired value, 100 layer2, at

the end of the simulation. However, due to the existence of desired minimum of film

thickness, 1000 layers, the controller computes a higher deposition rate, and thus, it

results in a higher expected surface roughness square at the end of the closed-loop

simulation. The effect of the minimum of film thickness can be observed by comparing

Figure 7.4 to Figure 7.5, which shows the closed-loop simulation results without
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Figure 7.4: Profiles of the expected values of surface roughness square (solid line)
and of the expected values of the film thickness (dash-dotted line) under closed-loop
operation; roughness control problem with desired minimum of film thickness.

desired minimum of film thickness. It can be clearly seen that, without penalty on

the deviation of film thickness, the expected surface roughness square approaches the

set-point value at the end of the simulation, while the expected film thickness falls

under the desired minimum. Figure 7.6 shows the comparison between the profiles of

deposition rate with and without desired minimum of film thickness included in the

cost function. In Figure 7.6, it can be seen that the thickness constraint results in a

higher deposition rate so that the desired minimum of film thickness can be achieved

at the end of the closed-loop simulations.
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Figure 7.5: Profiles of the expected values of surface roughness square (solid line)
and of the film thickness (dash-dotted line) under closed-loop operation; roughness
control problem without desired minimum of film thickness.
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ation with (solid line) and without (dashed line) desired minimum of film thickness;
roughness control problem.
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7.5.2 Regulation of film porosity by manipulating deposition

rate

In this subsection, film SOR is the control objective (porosity control problem). In

the porosity control problem, the cost function in the MPC formulation includes only

penalty on the deviation of the film SOR from the set-point value, 0.96. Figure 7.7

shows the evolution profile of the film SOR from the closed-loop simulation of the

porosity control problem. The model predictive controller successfully drives the

expected film SOR to the set-point value and stabilizes it at the steady state. There

is no offset from the set-point at large times compared to the closed-loop simulation

results under a model predictive controller that utilizes a deterministic linear ODE

model for the film SOR [40]. The elimination of offset demonstrates that the dynamic

models of Eqs. (7.21) and (7.22), which are postulated in Section 7.3.2, are suitable

for the purpose of porosity control. The corresponding profile of the deposition rate

W is also shown in Figure 7.7 (dash-dotted line).

7.5.3 Simultaneous regulation of surface roughness and film

porosity with constrained film thickness

Finally, closed-loop simulations of simultaneous regulation of film thickness, surface

roughness and film SOR are carried out. Since the deposition rate is the only ma-

nipulated input, the desired values of r2
set and ρset cannot be achieved simultaneously,
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Figure 7.7: Profiles of the expected values of film SOR (solid line) and of the deposi-
tion rate (dash-dotted line) under closed-loop operation; porosity-only control.

i.e., the corresponding adsorption rates for the desired surface roughness and film

thickness are not the same. Therefore, a trade-off between the two set-points is made

by the controller. Figures 7.8 and 7.9 show the simulation results. The expected

values of both surface roughness square and film SOR approach their corresponding

set-points with the minimal film thickness achieved. The simulation profiles of ex-

pected surface roughness square and film thickness are close to the profiles from the

roughness control problem in Section 7.5.1. The close profiles are due to the fact that

the film SOR is not sensitive to the variation of the deposition rate, and thus, the

controller tries to regulate the surface roughness square to its set-point.

Figures 7.10 and 7.11 show the instantaneous values of surface roughness square

and film SOR in the closed-loop simulation. The instantaneous values are obtained
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Figure 7.8: Profiles of the expected values of surface roughness square (solid line)
and of the film thickness (dash-dotted line) under closed-loop operation; simultaneous
regulation of film thickness, roughness and porosity.
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Figure 7.9: Profiles of the expected values of film SOR (solid line) and of the deposi-
tion rate (dash-dotted line) under closed-loop operation; simultaneous regulation of
film thickness, roughness and porosity.
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Figure 7.10: Profiles of the instantaneous values of surface roughness square (solid
line) and of the film thickness (dash-dotted line) under closed-loop operation; simul-
taneous regulation of film thickness, roughness and porosity.

from a single simulation run, and thus, different runs may result in different profiles.

The manipulated deposition rate is also shown in Figure 7.11. At the beginning, the

controller saturates the deposition rate at the upper bound of 1 layer/s to achieve

the minimal film thickness. Surface roughness square and film SOR also increase

from 0 towards their respective set-points. At about 700 s, surface roughness square

reaches its set-point, and soon after that, the optimal deposition rate drops fast close

to the lower bound so as to keep the surface roughness square at the set-point and to

increase the film thickness close to the minimal value.
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Figure 7.11: Profiles of the instantaneous values of film SOR (solid line) and of the de-
position rate (dash-dotted line) under closed-loop operation; simultaneous regulation
of film thickness, roughness and porosity.

7.6 Conclusions

Distributed control of film thickness, surface roughness, and porosity was developed

for a porous thin film deposition process. The deposition process was modeled via

kinetic Monte Carlo simulation on a triangular lattice. As a batch process, film thick-

ness is an important target variable for the thin film growth process. The deposition

rate was thus selected as the manipulated input due to its direct influence on the film

thickness. To characterize the evolution of film surface roughness and account for the

stochastic nature of the deposition process, a distributed parameter dynamic model

was derived to describe the evolution of the surface height profile of the thin film

accounting for the effect of deposition rate. The dynamics of film porosity, evaluated
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as film SOR, were described by an ordinary differential equation. The developed dy-

namic models were then used as the basis for the design of a model predictive control

algorithm that includes penalty on the deviation of film thickness, surface roughness

and film porosity from their respective set-point values. A reduced-order model of the

film surface height was included in the MPC formulation to calculate the prediction

of expected surface roughness to meet the requirement of computational efficiency

for real-time feedback control calculations. Simulation results demonstrated the ap-

plicability and effectiveness of the proposed modeling and control approach in the

context of the deposition process under consideration. We found out that the film

thickness requirement essentially places a lower bound on the deposition rate, and

thus, it limits the range of achievable film porosity.
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Chapter 8

Conclusions

Motivated by the increasing importance of thin film microstructure in semiconduc-

tor manufacturing, this dissertation developed a systematic methodology of modeling

and control of thin film surface roughness, porosity, and film thickness within a uni-

fied framework. Kinetic Monte Carlo (kMC) methods and stochastic/deterministic

differential equation models were constructed to account for the stochastic nature of

the thin film growth/sputtering processes and were used as the basis for controller

design.

Specifically, in Chapter 2, a dynamic output feedback covariance controller was ini-

tially introduced, which includes a state feedback controller and a Kalman-Bucy-type

filter as the state estimator. The output feedback controller was designed to regu-

late the surface covariance (e.g., surface roughness) of a stochastic dissipative partial

differential equation (PDE) subject to measurement sensor noise. Both theoretical
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analysis and numerical simulations were performed to demonstrate the accuracy and

effectiveness of the proposed output feedback covariance controller.

Subsequently, Chapter 3 presented a novel method of parameter estimation of a

stochastic PDE model, the stochastic Kuramoto-Sivashinsky equation (KSE), for a

sputtering process. The parameters of the stochastic KSE were estimated for the best

prediction of the surface roughness profile of the kMC simulations in a least-square

sense. Using the estimated parameters, a model-based output feedback controller was

designed on the basis of the stochastic KSE to regulate surface roughness and was

successfully applied to the kMC model of the sputtering process.

Chapter 4 focused on the development of model predictive control (MPC) algo-

rithms for surface roughness regulation. Specifically, in Chapter 4, an MPC formu-

lation was developed to regulate the state variance of nonlinear stochastic PDEs. A

linear structure in the closed-loop was introduced in the MPC formulation by apply-

ing a nonlinear state feedback controller to the finite-dimensional approximation of

the stochastic PDE. The optimization algorithm in the MPC formulation then solved

for the optimal pole placement structure that leads to the closest prediction to the

roughness reference trajectory.

The modeling and control of film porosity, another important film property that

cannot be captured by the surface height profile, was addressed in Chapters 5, 6, and

7 of the dissertation. Film porosity was obtained from a thin film deposition process

modeled on a triangular lattice. In Chapter 5, deterministic/stochastic ODE models
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were derived to describe the time evolution of film SOR and its fluctuation. The

developed dynamic models for the film SOR were used as the basis for the design of

MPC algorithms to regulate the film porosity at a desired level and reduce run-to-run

fluctuations by manipulating the substrate temperature.

Finally, Chapters 6 and 7 further extended the methods of stochastic modeling

and MPC algorithm design presented in Chapter 5 to simultaneous regulation of film

thickness, surface roughness, and film porosity. In Chapter 6, the MPC algorithm

simultaneously regulated the surface roughness and film porosity with appropriate

penalty weighting schemes. While in Chapter 7, we chose the deposition rate as the

manipulated input to include the film thickness as the controlled variable in the si-

multaneous control problem of Chapter 6. As an essential thin film property that

determines the electrical and mechanical properties, film thickness usually has a de-

sired minimum value instead of a set-point. Thus, a one-sided penalty was imposed on

the deviation of the thin film in the cost function in the MPC formulation. Simulation

results successfully demonstrated the applicability and effectiveness of our approach

of simultaneously regulating thin film porosity, surface roughness, and thickness.
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