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In modern times, the main driver behind most technological and societal advances is the im-

provement and further integration of semiconductor computer chips. This results in two types of

growing demand: one for higher quality semiconductor devices, and another for more semiconduc-

tor chips. Thus, there is a need to optimize and innovate semiconductor fabrication techniques that

can produce complex, nanoscale structures and high quality thin films at a fast rate. Atomic layer

etching (ALE) and atomic layer deposition (ALD) are two common processes seen in the semicon-

ductor fabrication method, as they help ensure a high product quality. However, there is a lack of

research on how process control systems can be used to improve their manufacturing throughput.

This is especially apparent as the advent of data-driven and machine-learning models has opened

up many novel areas of how these new high-speed models can be integrated into manufacturing

processes. To that end, this dissertation first investigates the development and implementation

of a first-principles multiscale model for an ALD reactor. Then, various simulations are carried

out to determine the feasibility of using data-driven methods to predict key process characteristics

such as kinetic activity and reaction completion. The predictor model is then incorporated into a

real-time endpoint controller, and its interactions with a run-to-run controller are investigated. The

ii



process predictor is also applied to industrial process data to predict process outcomes and opti-

mize manufacturing efficiency by reducing the usage rate of metrology measurement tools. The

models showcased in this dissertation show that data-driven models can offer novel enhancements

in manufacturing efficiency from more precise process control to reducing measurement steps. As

more semiconductor manufacturing methods are developed and implemented, even more efficient

data-driven models can be created, leading to a positive feedback loop of manufacturing efficiency.
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Chapter 1

Introduction

1.1 Background

The pace of bleeding edge modern technological advancements is closely correlated to the

growth of the semiconductor chip industry. This is especially so with the case of machine learning

and AI products, where the improved processing power of modern semiconductor chips has played

a key role in their viability [87]. The usefulness of semiconductor logic chips has also disseminated

into the ubiquity of everyday life; everything from medical products, entertainment devices, and

vehicles depend on the utility provided by semiconductor chips [76].

The advancement of high-power semiconductor chips is mainly driven by Moore’s Law, which

refers to the trend that the transistor density on semiconductor chips will roughly double every

two years [2]. In recent times, this trend has been realized through the development of advanced

semiconductor processes such as extreme ultraviolet lithography (EUV) [95], atomic layer etching

(ALE), atomic layer deposition (ALD) [22, 34], and area-selective processes [48]. These processes

allow for an extreme level of precision in chip fabrication and the creation of complex, 3 Dimen-

sional silicon structures such as FinFETS and GAAs [56].

On top of advancements in the precision and quality of semiconductor manufacturing, many
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strides in improving the throughput and manufacturing efficiency have also been made. For exam-

ple, Seagate has used data-driven and machine learning techniques to reduce the number of mea-

surement steps in their process flow, which allows them to produce more product with a shorter

lead time [106].

And yet, these advancements are not enough to satisfy the demand for high-quality semicon-

ductor chips. Computer chips in the automobile and health industries continue to face higher

demand than supply availability [66]. And on the side of quality, the advent of Graphical Process-

ing Unit-intensive machine learning artificial intelligence software has created even more drive to

further push the processing power of semiconductor chips. Thus, there remains a large space for

research and development in increasing both the raw capabilities of semiconductor manufacturing

and its overall efficiency.

1.2 Atomic Layer Processes

Compared to other cutting-edge fabrication processes, such as EUV that was only recently

incorporated into manufacturing process flows [95], ALD and ALE are relatively mature pro-

cesses that have been used for many years now [22, 34]. Thus, there is a large body of already-

existing research on characterizing and understanding the mechanics of common ALE and ALE

processes [82, 102]. This lends itself toward research focused on further optimizing these pro-

cesses, either for fabricating complex semiconductor devices with tight tolerances or for higher

manufacturing efficiency.

The general idea behind atomic layer processes is that they are composed of 2 self-limiting

half-reactions. The first half-reaction generally modifies the surface of the substrate in preparation

for the second half-reaction, which either etches or deposits the desired material on the substrate to

finish the process. These half-reactions are described as self-limiting because the reaction cannot

proceed beyond the single mono-atomic layer at the top of the substrate [34]. This causes all of
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the half-reactions to slow down as the top layer approaches completion with all kinetic activity

halting once the entire layer has finished reacting. Then, by cycling back and forth between the 2

half-reactions, an extremely precise amount of substrate can be etched or deposited as desired.

The bulk of this focuses on the atomic layer etching of aluminum oxide, Al2O3, from a silicon

oxide substrate, SiO2, due to the wide applications of this process [102]. In the first half-reaction,

shown below, gaseous hydrofluoric acid (HF) fluorinates the Al2O3 substrate into AlF3.

Al2O3 (s) + 6HF (g) → 2AlF3 (s) + 3H2O (g) (Reaction A)

Then, in the second half-reaction, gaseous TMA etches away the fluorinated ALF3 surface created

in the first half-reaction, releasing a gaseous byproduct of dimethylaluminum fluoride (DMAF)

[102].

2AlF3 (s) + 4Al(CH3)3 (g) → 6AlF(CH3)2 (g) (Reaction B)

Thus, when a full cycle is completed, the overall equation is:

Al2O3 (s) + 6HF (g) + 4Al(CH3)3 (g) → 3H2O (g) + 6AlF(CH3)2 (g)

where HF and TMA are the 2 main reagents used to etch away the Al2O3.

A typical reaction progression of a self-limiting reaction can be seen in Fig. 1.1. As defined,

the main benefit of self-limiting reactions are that they slow down as they approach completion.

However, this slowing effect causes the reaction rate to be highly nonlinear and difficult to predict.

In other words, while overprocessing is not a concern, it is difficult to end reactions at the optimal

time due to the nonlinear reaction rates.

Thus, there is a need for powerful control systems that can consistently drive ALE processes to

the minimum required process time without underprocessing the wafer.
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Figure 1.1: Example of the reaction progression through time. Coverage is the fraction of the
substrate surface that has finished reacting; a coverage of 1.0 means that the entire surface has
finished reacting.

1.3 Multiscale Modeling

While it is critical to continue researching these semiconductor processes, running these reac-

tions is very expensive and often includes the usage of toxic reagents [20, 73]. One way to mini-

mize both the costs and environmental impacts is to employ highly accurate simulations. By em-

ploying both first-principles and data-driven methods, accurate simulations of these novel atomic

layer processes can be derived and used to offer insight into which process control systems are best

suited for them.

The main simulation structure used in this dissertation is that of the multiscale simulation. This

method conjoins 2 simulations: a macroscopic Computational Fluid Dynamics (CFD) simulation

and a mesoscopic kinetic Monte Carlo (kMC) simulation. Because of the vast timescale differences

between them, the pressure fields derived by the CFD simulation can be used as static conditions

for the kMC simulation, which calculates the mass source flux caused by the reactions. Since the

reaction only occurs on the surface of the wafer, these source terms are used to define the boundary
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Figure 1.2: Flow diagram of the multiscale model. At each timestep, the CFD model uses the
source terms calculated by the kMC model to evaluate the pressure and temperature profiles across
the reactor. Then, the kMC model uses the surface pressure and temperature to calculate the source
terms for the next timestep.

conditions of the CFD simulation at each timestep. The information flow of the multiscale model

is shown in Fig. 1.2.

By running a macroscopic CFD and a mesoscopic kMC simulation together, the multiscale

model is able to obtain accurate insights into the mesoscopic reaction kinetics with computational

speeds on the order of macroscopic simulations. The accuracy of the simulation is verified by

comparing the time it takes to saturate the surface of the wafer with experimental results.

1.4 Data-driven Methods

While the first-principles multiscale model is well-developed and optimized to complete its

simulations as quickly and accurately as possible, the simulations are still on the order of hours

while the actual process completes within seconds. Thus, it is infeasible to use the multiscale

model in any process controller setup, and there is a need for a model that can be computed more
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Figure 1.3: The general structure of the Feedforward Neural Network (FNN) is shown here. The
hidden layer neurons take a weighted sum from the input layer or the previous hidden layer, which
is then activated by nonlinear functions. The output layer takes the weighed sum from the last
hidden layer to output the result.

quickly. Data-driven models are ideal at filling this gap because they are both simpler than classic

first-principles models and because they can take advantage of the large processing power of a

Graphical Processing Unit (GPU) [78]. They can also be applied to industrial process data and

extract insights on their reliability. In particular, this dissertation explores the usage of neural

networks and transformers to create data-driven models that can quickly predict process outcomes

and be used in real-time feedback process controllers.

Neural networks are models that use a certain set of inputs that are multiplied by weights in

a hidden layer to predict a certain set of outputs [30]. By training the weights on a large dataset,

neural networks can accurately grasp the behavior of nonlinear systems across a large domain of

inputs, making them ideal for model-based process controllers.

A general neural network structure is shown in Fig. 1.3. In it, the inputs are entered from the

input layer. Then, each neuron in the first hidden layer takes a weighted sum of the inputs, applies a

non-linear activation function, and then passes the result to the next layer. The sigmoid function is

6



often used as the activation function because of its superior performance in classifier models [106].

Subsequent hidden layers take a weighted sum of the previous hidden layer instead of the inputs.

The final output layer is essentially a hidden layer with as many neurons as outputs.

In addition to neural networks, a novel deep learning model, the transformer, has emerged in

recent years and rapidly gained significant attention in the field of natural language processing [46].

Transformers have also shown equally impressive performances in computer vision tasks such as

image classification and object detection [47]. Additionally, one of the most popular and advanced

examples of Artificial Intelligence (AI) is in creating large language models such as ChatGPT and

BERT [110]. In terms of process data, the transformer structure outperforms feedforward neural

networks (FNNs) when it comes to processing time-series data. The former’s ability to process

long strings of text also allows them to contextualize time-series data within the overall data and

capture long-term trends that FNNs struggle with.

The transformer’s defining structure is an encoder-decoder architecture that handles sequen-

tial data. A multi-head self-attention mechanism [86] is used within each block to compute the

relevance of each element in the sequence relative to every other element. This approach enables

the model to effectively capture patterns and relations across the entirety of the sequence. It does

this with the attention mechanism, which calculates attention scores for each pair of elements and

then normalizes them using a softmax function to aggregate their attention values. This process

allows the transformer to maintain a comprehensive understanding of the relationships within the

data sequence, surpassing the capabilities of traditional FNN networks [16, 86].

1.5 Process Control Methods

The ultimate goal of creating accurate and efficient models of these atomic layer processes is

to apply them to advanced process control systems. These systems are a vital aspect of advanced

manufacturing methods as they improve process reliability and the manufacturing efficiency by
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Figure 1.4: The structure of the Transformer model is shown here. Input data is embedded by
a dense layer, undergoes positional encoding, and then is fed into 2 identical multi-head encoder
blocks. The output of the encoders are combined by concatenation pooling and then fed into the
final FNN, which outputs the final reaction coverage.
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minimizing the impact of process disturbances on sensitive semiconductor processes.

There are many common disturbances, and they can be sorted into 2 broad categories: drifts

and shifts. In drift disturbances, a process variable changes monotonically at a set rate, causing the

key process variable to steadily drift away from its target setpoint [54]. For an ALE process, one

common drift disturbance is sidewall deposition, where byproducts accumulate on the sides of the

reactor walls and disturb the kinetic activity within the reactor. As more product is run, the sidewall

deposition becomes thicker and causes a larger disturbance. The other type of disturbance is shift,

where a process variable changes in a one-time event, causing the key process variable to suddenly

shift away from its target setpoint. This commonly manifests as equipment malfunctions that

suddenly and drastically change the key process variable. The main impact of these disturbances

is causing key process variables to deviate from their set targets; for an ALE process, this would

be the etch per cycle (EPC). If the EPC deviates too far from the target setpoint, the product may

have to be thrown away, resulting in wasted resources and time.

For processes like atomic layer etching that have fast reaction dynamics and sensitive responses

to disturbances, continuous feedback process control is desired. These online process controllers

are able to ensure that the targeted control variable is tightly controlled [80]. However, to enable

feedback control, the control variable must be quickly and easily measurable so that the controller

can apply control actions in real time. Otherwise, it will be impossible to practically implement

the controller. Thus, when a process like ALE has a key process parameter like EPC, solely relying

on real-time controllers is not enough.

Another popular control strategy is ex-situ control, which operates on a batch-to-batch basis.

These controllers adjust process parameters after a run by using the measured output values from

the previous run as feedback, unlike real-time feedback controllers, which make continuous ad-

justments [54]. While this control method can adjust difficult to measurer parameters such as EPC,

one major limitation of R2R control is that adjustments only occur after the completion of an etch-

ing cycle. If there is a sudden process shift, then the initially impacted products may have to be
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scrapped due to the lack of adjustment for them [29].

1.6 Motivation

This dissertation aims to develop and showcase the possibilities of integrating data-driven mod-

els into the existing infrastructure of semiconductor fabrication plants with the atomic layer etch-

ing of Al2O3 on SiO2 as an example. First, a multiscale model of the atomic layer process is

established. This entails the development and optimization of a macroscopic Computational Fluid

Dynamics simulation of the overall Discrete Feed Reactor and a mesoscopic kinetic Monte Carlo

simulation of the reaction kinetics on the substrate surface. Then, this multiscale model is used to

generate a large amount of process data to train a Transformer model. Specifically, time-series data

of the average surface pressure on the substrate is collected and used to predict the kinetic activity

on the substrate surface. Finally, this model structure is applied in two ways. First, it is incor-

porated into a real-time Endpoint Feedback Controller and an ex-situ Run-to-Run Controller that

adjust the process time in response to the measured surface pressure of the wafer and the measured

etch per cycle. Secondly, it is used with industrial process data to create a process predictor that

estimates the likelihood a process will complete successfully given certain process knowledge.

1.7 Dissertation Structure

This dissertation proposes novel uses of data-driven predictors in the semiconductor fabrication

industry. In doing so, multiple inquiries into what the best method to acquire the necessary process

data to train these models and how to integrate them into existing process control systems are

made. The core questions that this dissertation seeks to answer are:

1. How much fidelity is preserved when data-driven models are trained with process data ob-

tained from first-principles models?
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2. How can the shortcomings of classic controllers be overcome with data-driven models?

3. How effectively can industrial process data, which is often skewed and noisy, be used to

create data-driven models?

4. How robust are process controllers that use data-driven models, and how sensitive to process

disturbances are they?

The subsequent sections are organized as follows:

Chapter 2 establishes the multiscale simulation method for an Area-Selective Atomic Layer

Deposition reaction in a Discrete Feed Reactor. First, the reaction is modeled on an atomistic

level where the thermophysical and structural properties of the reactions are determined. Then, the

macroscopic model of the reactor is constructed in Ansys Fluent, a computational fluid dynamics

software. Once both the atomistic and the macroscopic models are complete, they are combined

into a multiscale model and then subsequently analyzed to determine the optimal reactor geometry

that results in the smallest process time.

Chapter 3 studies the development of a process predictor model that uses time-series sur-

face pressure data to predict whether the process is complete or not. First, a multiscale model

of an atomic layer etching process is used to generate large amounts of process data. This data

is separated into subsets with different reaction kinetic levels to represent different process flows.

Transformer models are trained on various combinations of these subsets to explore the effects of

data aggregation on improving the robustness of the predictor model and the model’s performance

on specific datasets.

Chapter 4 explores the interactions between a real-time Endpoint Feedback Controller that

uses the data-driven predictor model created in Chapter 3 and a classical Run-to-Run Controller.

The Endpoint Controller functions by collecting time-series pressure data and using the predictor

model to estimate whether the process is complete or not. If it is, then the process ends; if not,

the process continues. This simple logic enables it to control the process time in response to real-
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time measurement of a process variable. Then, this data-driven controller is tested in conjunction

with an ex-situ Run-to-Run controller that is also trying to minimize the process time to elucidate

whether they interact constructively or destructively.

Chapter 5 applies the data-driven methods described in Chapter 3 to industrial data to create

a process predictor. Specific care is given to clean the industrial process data to remove incorrect

measurements and invalid data points before it is used to train process predictor models. Addi-

tionally, process data from different tools are aggregated together to improve the process predictor

model for specific tools, and a heuristic to choose which datasets to aggregate to maximize perfor-

mance on a singular tool is also explored.
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Chapter 2

Multiscale Computational Fluid Dynamics

Modeling of an Area-Selective Atomic

Layer Deposition Process Using a Discrete

Feed Method

2.1 Introduction

In a growing industrial world comprised of high-performance electronic devices, there exist

many challenges in the production of semiconductor devices, which are vital to the innovation of

modern-day electronics. The global dependency on semiconductors is appreciable in many indus-

tries, particularly so for smart technology, gaming and computing, biomedical technology [8], and

communication. However, this technological dependence has also spawned numerous challenges

related to consistently manufacturing high-performance semiconductor devices; in part, these chal-

lenges stem from the stringent design specifications common for modern semiconductor devices.

Additionally, as the rudimentary projections of Moore’s Law [53] for the densification of transistor
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materials predicted, the miniaturization of transistor length scales has further reduced the capabili-

ties of chip production. Particularly, the continual reduction in transistor size has magnified short-

channel effects, which degrade the computing power and power efficiency of transistors [67]. To

resolve this issue, complex transistor designs, such as gate-all-around (GAA), have been developed

to address various design flaws including power and current losses, thereby optimizing the perfor-

mance of the transistors [108]. However, transistor fabrication, especially at the nanoscale level,

are difficult to implement in large-scale applications [99]. Thus, there is a growing motivation to

improve the accuracy and efficiency of the production method of these semiconducting materials.

One method to achieve this is to optimize the process by gathering a large amount of data by ex-

amining chemical processes and then developing reactor models that enable process scale-up. This

chapter will study the development of a three-dimensional reactor with a discrete feed mechanism

for an area-selective atomic layer deposition process.

In atomic layer deposition (ALD) processes, precursor reagents are deposited onto the sub-

strate surface to enable thin-layer growth in a bottoms-up fabrication method [107]. Despite ALD

being practical in most industrial applications, the process generally introduces alignment issues

that are attributed to nonuniform surfaces and growth on non-growth areas, sections of the sub-

strate that do not require deposition, as depicted in Fig. 2.1. Thus, atomic layer etching (ALE)

processes were developed to improve the film surface quality in a top-down fabrication approach,

but this results in additional processing time, which reduces the overall product throughput. A

manufacturing solution, known as area-selective atomic layer deposition (AS-ALD), is an alterna-

tive procedure that deposits precursor reagents that only bind to the growth areas of the substrate

due to the addition of a chemoselective inhibition step that hinders precursor adsorption on non-

growth areas [59]. AS-ALD is desirable in industrial contexts due to its usage of self-aligned

structures that facilitate transistor stacking and densification [36]. To ensure the efficacy of AS-

ALD and to enable this process in industrial applications, optimal operating conditions must be

determined through experimental data, which is time-consuming. Thus, this chapter proposes an
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in silico multiscale modeling framework to sufficiently characterize the AS-ALD of an Al2O3/SiO2

(non-growth/growth area) substrate and design a reactor configuration to allow for the scale-up of

this process in relevant industrial settings.

(a) (b)

Figure 2.1: Nonideal atomic layer deposition generating (a) nonuniform surface uniformity in the
growth area and (b) growth in the non-growth area of the substrate.

The development of multiscale models for thin-layer deposition processes are beneficial to the

generation of large datasets, but they require a complex cross-platform programming network that

couples various simulations into a single framework [50]. Multiscale models apply a combination

of atomistic modeling through ab initio quantum mechanics computations to evaluate molecu-

lar and kinetic property data, mesoscopic modeling to characterize the stochastic surface kinetics

through kinetic Monte Carlo methods, and macroscopic modeling to study the spatiotemporal be-

havior of fluids through computational fluid dynamics. This type of in silico modeling framework

is beneficial towards studying the behavior of the AS-ALD process through various time and length

scales and towards optimizing reactor configurations with large datasets. This chapter will study

the effects of the reactor geometry by examining various discrete feed reactor configurations with

the goal of determining the optimal delivery system to produce a high-quality thin film with mini-

mal processing time.

This chapter is organized as follows: Section 2.2 examines the atomistic modeling of struc-

tural, electronic, and thermophysical properties and the mesoscopic modeling of surface scale

kinetics, Section 2.3 discusses the development of the macroscopic CFD model of an AS-ALD

reactor through Ansys Fluent, Section 2.4 elucidates the multiscale modeling methodology used to

conjoin the atomistic-mesoscopic and macroscopic simulations, and Section 2.5 analyzes the mul-
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tiscale simulation results to determine the optimal reactor geometry that yields minimal process

time for achieving full coverage and surface uniformity.

2.2 Atomistic and Mesoscopic Modeling

A vital component to understanding the AS-ALD process lies in the kinetics of the surface re-

actions. In this chapter, a kinetic Monte Carlo model (kMC) is used to characterize the stochastic

nature of surface reactions and determine their dependency on pressure and temperature. This pro-

cedure is conducted by first using atomistic modeling techniques via ab initio quantum mechanics

simulations to derive the reaction rates of possible surface reactions. Then, a kMC algorithm is

developed that replicates surface kinetics through a user-defined grid that represents a larger swath

of the wafer surface and determines probable reaction pathways for each site on the grid.

The mesoscopic model is one of two integral components in the overall multiscale simulation.

Based on the partial pressures and temperature on the surface of the wafer, the extents of reaction in

one integration timestep, 0.001 s, are simulated. From this information, the macroscopic model can

calculate how much reagent is consumed and how much product is produced, which is accounted

for in subsequent timesteps.

2.2.1 Reaction Rate Calculations

The AS-ALD process examined in this chapter comprises three steps: (A) inhibition, (B) pre-

cursor adsorption, and (C) oxidation cycle. This chapter studies the AS-ALD of an Al2O3/SiO2

substrate using acetylacetone (Hacac) as a small molecule and gaseous inhibitor for Step A, bis(di-

ethylamino)silane (BDEAS) as a gaseous precursor for Step B, and ozone (O3) as a gaseous oxidant

for Step C. To characterize all three steps of the AS-ALD process, this chapter simplifies the com-

plex reaction mechanisms by concentrating on rate-limiting reaction steps determined through in

silico modeling works [49, 52, 101] and considering each reaction step as an elementary reaction.
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All the reactions involved in the AS-ALD process can be classified into two types: adsorption

and nonadsorption. Adsorption reactions can be modeled as bimolecular reactions, and as a result,

their reaction rate constants, kads,s, for an adsorbate s, can be calculated through Collision Theory

of gases. The aforementioned pressure and temperature-dependent formulation is described as

follows:

kads,s =
PsAsiteσs

Zs

√
2πmskBT

(2.1)

where Ps is the partial pressure of the gaseous reagent s, Asite is the surface area of a single

active site, σs is an experimentally determined sticking coefficient unique to the reagent s, Zs is

the coordination number of the gas s, ms is the atomic mass of the gaseous reagent s, kB is the

Boltzmann constant, and T is the absolute temperature of the ambient environment.

The reaction rate constants of the nonadsorption reactions, knonad, are calculated with the

temperature-dependent Arrhenius equation, as defined by the following equation:

knonad =
kBT

h
exp

(
−Eact

RT

)
(2.2)

where h is the Planck constant, Eact is the activation energy of the reaction, R is the universal gas

constant, and T is the absolute temperature of the reaction. The pre-exponential factor is calculated

using Transition-State Theory (TST) by assuming that the ratio of the partition functions for the

transition state and the reactants is unity [31]. This assumption was validated with experimentally

determined process times for observing full surface coverage by [52]. The activation energy is

found by first using ab initio quantum mechanics computations to optimize molecular and crys-

talline structures via Density Functional Theory (DFT). Then, the activation energies between the

reactants and products are determined through Nudged Elastic Band (NEB) calculations. The

aforementioned computations were conducted through the open-source electronic-structure opti-

mization software Quantum ESPRESSO (QE) in a previous work by [101]. It is notable that all of

these k values are the reaction rates for a single active site and have units of s−1.
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2.2.2 Surface Kinetics Modeling

The kMC algorithm is a stochastic method that uses a set of randomly generated numbers

to simulate the random nature of mesoscopic surface reactions in a spatiotemporal manner [7].

The algorithm used in this chapter is based on the BKL formulation created by Bortz, Kalos, and

Lebowitz [4] and has been modified to provide additional insight into the process when the process

has larger reaction times relative to the timestep of the overall multiscale simulation.

Algorithm 1 contains the critical steps of the kMC methodology employed in this chapter,

which is performed alongside many functions that allow the program to communicate with the

macroscopic simulation. Specifically, there are functions that use the macroscopic pressure and

temperature data to calculate the reaction rates, which are used as inputs for the kMC algorithm.

Additionally, after the algorithm is completed for a given timestep, the new grid data is converted

into the change in coverage, which is then used to calculate the generation and consumption source

terms for the reactants and products.

There are two major concerns that the modified kMC algorithm must address. The first appears

when one of the reactions has a k value magnitudes smaller than that of any other reaction; i.e., the

rate-limiting step is substantially slower compared to the remaining reactions. A consequence of

this order-of-magnitude difference is that reactions that are more rate-determining will contribute

more to the overall processing time. For instance, in line 19 of Algorithm 2, which is the algorithm

of the BKL kMC method, the size of the time advancement is directly proportional to 1/k. Thus,

when 1/k is larger relative to ∆t, the large time advancements will generate incomplete data in the

form of a step-wise appearance due to how the algorithm will advance major portions of the grid

all at once whenever the rate-limiting step is the only available step.

The second area of concern is the memory usage. The BKL method employs a spatiotem-

poral approach to study the evolution and conversion of active sites that characterize the surface

morphology of the substrate. For example, [15] simulated epitaxial growth using a kMC grid to

study the surface morphology after each epitaxial cycle but observed computational constraints
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Algorithm 1: Modified kMC algorithm implemented in UDF.

Parameters: P (x, y, t), T (x, y, t) ▷ Determined from CFD

Input: Grid data, kads,s(P, T ), knonad(T ) ▷ Calculated from Parameters

Output: Grid data, ∆t

1 δt = 0

2 while δt < ∆t do ▷ Running algorithm until kMC timestep is as large as CFD timestep

3 Randomly select a site on the grid

4 ▷ Let there be L possible reactions for the selected site and let ki represent the ith

reaction

5 ktot =
∑L

i=1 ki

6 Randomly select γ1, γ2 ∈ (0, 1]

7 for j in 1 : L do ▷ Going through each possible reaction to randomly select one

8 if
∑j−1

i=1 ki < γ1ktot ≤
∑j+1

i=1 ki then

9 Execute reaction j

10 ▷ Steric hindrance for Step B is not shown here

11 Determine n, the number of active sites from grid data

12 δt = δt− ln (γ2)/(nktot) ▷ Advancing kMC timestep
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that limited the grid sizing to an L× L grid. In a prior work [105], the kMC algorithm was imple-

mented through an external Python program and conjoined with the macroscopic computational

fluid dynamics simulation in Ansys Fluent through a Linux Bash script. For this chapter, the kMC

algorithm was directly implemented in Fluent through custom user-defined functions (UDFs) writ-

ten in the C programming language [1]. While this provides a major increase in computational

performance, this method also comes with more restrictions for the new code. The main restriction

when implementing UDFs in Fluent is the memory storage, where a maximum of 500 variables

can be safely stored for each integration timestep [1]. However, each kMC grid is defined by a

300×300 lattice in this chapter for a total of 90,000 sites. Thus, the data of each kMC grid must

be stored differently so that it can be represented by less than 500 variables.

To rectify the two issues presented, the kMC algorithm used in this chapter was modified to

evaluate the time required for a single active site to react, whereas the BKL algorithm evaluates

how the entire grid progresses in a given timeframe [4]. This difference is implemented in the form

of three distinctive changes, which are summarized as follows:

1. The arrangement of occupied sites is neglected by employing a Markov chain in which only

one site on the entire grid advances with each step as conducted by [37].

2. The time advancement computation includes the number of unoccupied sites on the grid,

where a reduction in unoccupied sites increases the time progression as employed by [25]

and [41].

3. Grid data is stored as a single integer variable that counts the number of each species, rather

than as an array.

The first two modifications resolve the first concern regarding small k values, and the last mod-

ification resolves the second concern regarding memory storage. These adjustments to the BKL

formulation are further examined and verified in Section 2.2.2.
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Algorithm 2: BKL kMC algorithm implemented in Python.

Parameters: P (x, y, t), T (x, y, t) ▷ Determined from CFD

Input: Grid data, kads,s(P, T ), knonad(T ) ▷ Calculated from Parameters

Output: Grid data, ∆t

1 ▷ Let there be X grid rows and Y grid columns

2 ▷ Let there be R reactions in the process, and let ki represent the ith reaction

3 δt = 0

4 while δt < ∆t do ▷ Running algorithm until kMC timestep is as large as CFD timestep

5 for each species do

6 if number of species in grid = 0 then

7 Set the appropriate ki value(s) to 0 ▷ Removing impossible reactions

8 ktot =
∑R

i=1 ki

9 for j in 1 : X do

10 for k in 1 : Y do

11 ▷ Randomly determining if a reaction occurs for each site on the X × Y grid

12 Randomly select γ1 ∈ (0, 1]

13 for r in 1 : R do

14 if
∑r−1

i=1 ki < γ1ktot ≤
∑r

i=1 ki then

15 if reaction r is possible then

16 Execute reaction r

17 ▷ Steric hindrance for Step B is not shown here.

18 Randomly select γ2 ∈ (0, 1]

19 δt = δt− ln (γ2)/ktot ▷ Advancing kMC timestep
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Derivation of the Modified kMC Algorithm

To properly make the necessary modifications to the BKL kMC algorithm, it is first important

to understand what the kinetic rate represents. Intuitively, the parameter reflects the number of

reactions for a given reaction that occurs every second at an active site, which is a region on

the substrate surface that is able to undergo a chemical reaction. In other words, the kinetic rate

is a measure of the probability that such an event is happening. Additionally, these events can

be assumed to follow a Poisson distribution, to react independently of other sites, and to react

independently of other possible reactions [9]. As such, probability theory allows the reaction rate

to be decomposed into two independent events [24], as shown in Eq. (2.3). First, there is the

probability that the site is in a state where the reaction can proceed, P(possible). Second, there is

the probability that the reaction actually proceeds, P(proceed). This decomposition is expressed

as follows:

krxn = P(reaction)

krxn = P(possible) · P(proceed) (2.3)

where krxn is the reaction rate of a given reaction for a single active site as calculated in Sec-

tion 2.2.1 and P(reaction) is the probability of that reaction taking place in one second.

A similar expression for the reaction rate of the entire grid can be derived by using the number

of sites rather than the probability of a site being able to undergo the desired reaction. This expan-

sion is also based on the assumption that these two events are mutually exclusive, yielding:

kgrid = N (possible) · P(proceed) (2.4)

where kgrid is the average reaction rate for a given kMC grid and N (possible) is the number of

sites that can undergo the desired reaction.

Because of the assumption that each site on the grid is independent of the others, P(possible)
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can be related to N (possible) as follows:

N (possible) = n · P(possible) (2.5)

where n is the number of active sites on the grid. With this relationship, kgrid can be related to krxn

as follows:

kgrid = N (possible) · P(proceed)

kgrid = n · P(possible) · P(proceed)

kgrid = n · krxn (2.6)

where kgrid is the average reaction rate of a given reaction for the entire grid, krxn is the reaction

rate for a single active site, and n is the number of actives sites on the grid.

When there are multiple possible reactions, it is necessary to determine ktot, which is the prob-

ability of an unspecified reaction occurring each second. Because it is assumed that the probability

of each k is independent of other reactions, the probability that one of two reactions will take place

can be found through the following calculation:

P(ki ∪ kj) = P(ki) + P(kj) + P(ki ∩ kj)

where P(ki ∪ kj) is the probability that either reaction i or reaction j will take place, P(ki) is

the probability that reaction i will occur, P(kj) is the probability that reaction j will occur, and

P(ki ∩ kj) is the probability that both reaction i and reaction j will occur. This equation can be

simplified by noting that Pi = ki as shown in Eq. (2.3) and that P(ki ∩ kj) = 0 because the two

reactions are mutually exclusive, which yields:

P(ki ∪ kj) = ki + kj
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If there are R total possible reactions, these additional reactions can be summed into P(ki ∪ kj) to

obtain the probability that an unspecified reaction occurs as all of these reactions are independent

and mutually exclusive. The expression for this possibility is:

P(ktot) = ktot =
R∑

z=1

kz (2.7)

where ktot is the possibility of an unspecified reaction occurring and kz represents the possibility

for a specific reaction to occur. Note that, when evaluating an active site in isolation, kz = krxn;

similarly, when evaluating an active site in the context of the entire grid, kz = kgrid. Thus, to

evaluate the time progression for a single active site at a time, ktot,grid can be represented as follows:

ktot,grid =
R∑

z=1

kgrid

=
R∑

z=1

n · krxn

= n ·
R∑

z=1

krxn

= n · ktot,rxn

where ktot,grid is the possibility that an unspecified reaction will occur anywhere on the kMC grid,

ktot,rxn is the possibility that an unspecified reaction will occur at a singular active site, and n is

the number of active sites on the kMC grid. This formula is employed in line 12 of Algorithm 1.

The other modification made to the kMC method presented in [101] is the reduction of memory

usage as necessitated by the restrictions of Ansys Fluent. The total data stored in between each

timestep must be reduced from 90,000 integers for a 300 × 300 grid to less than 500 integers. This

was done by taking advantage of the fact that the kMC algorithm does not use any positional data;

i.e., the simulation is not concerned about the location of the site in the grid, but rather only the

state of the site for each timestep. Thus, instead of using an array with 90,000 entries, the amount
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of each intermediate species was counted and saved in its own variable. For example, in Step C

of the AS-ALD cycle, there are 3 species: V4, V6, and V8. The old method would have 90,000

entries, each one representing a site and tracking whether it is in state V4, V6, or V8. The new

method has 3 variables, which are defined as buckets that represent the number of V4 sites, the

number of V6 sites, and the number of V8 sites. By discarding the unnecessary positional data of

the sites, this bucket method is able to store the relevant information of all the kMC grids in 50

variables.

However, the reaction mechanism for Step B is more complicated than the other two reactions,

as steric hindrance plays an essential role in the kinetics of that process. The specific details of

the effects of steric hindrance on the BKL formulation can be found in [101], but a summary is

as follows. Each site has two adjacent neighbors that apply two conditions on the surface reaction

mechanism. The first extra condition is that a site is restricted from certain reactions if a bulky

molecule has adsorbed to either neighboring site. Physically, these molecules hinder the primary

site from reacting. The second condition is attributed to the final surface reaction, which requires 2

adjacent sites to bond and for both sites to reach the final state. Thus, it is possible for situations to

arise where it is impossible for a site to fully react if both of its neighbors have reached completion

by bonding with other sites. As a result, these sites must be deactivated so that the kMC algorithm

can reach completion.

To implement the first condition described above, the modified kMC algorithm creates buckets

that represent the number of adjacent sites that are blocking it. Because each site has two sterically

relevant neighboring sites, there are 3 block status buckets: unblocked, one-block, and two-block.

While both the one-block and two-block status represent the target site being unable to undergo

certain surface reactions, distinguishing between the two allows us to preserve more positional

data about the grid. Now, during the kMC algorithm, whenever the algorithm needs to determine

whether the site it randomly selected is blocked, it will do so by randomly selecting a block status.

The second condition is actually an extra step that takes place after each kMC event. To prop-
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erly deactivate sites, the following procedure is taken after each iteration of Algorithm 1. By

Algorithm 3: Step B steric hindrance locking algorithm.

Variables:

V4: Completely reacted site

IC: Site that will never reach completion

LK: 2 adjacent V4s that cannot trap an unfinished site

1 ▷ Let there be N total sites

2 ▷ Let Si represent the species of site i

3 for j in 1 : N do ▷ Going through each site on the grid

4 Randomly select a species Sj

5 ▷ Let Sadj1, Sadj2 be two randomly selected sites that represent the sites adjacent to Sj

6 if Sj ̸= V4 AND Sadj1 = V4 AND Sadj2 = V4 then

7 Sj −→ IC

8 else if Sj = V4 AND (Sadj1 = V4 OR Sadj2 = V4) then

9 Sj −→ LK

10 V 4 −→ LK ▷ This represents the adjacent V4 turning into LK

running Algorithm 3, the number of trapped sites that are unable to reach the final V4 state can

be accurately represented even after discarding all positional data. After implementing both mod-

ifications discussed in this section, the kMC model is able to simulate the surface reactions with

greater resolution and obtain high quality results for all the reactions in the AS-ALD process.

Verification of the Modified kMC Algorithm

To verify that the results of the modified kMC algorithm are accurate and valid, comparisons

between Algorithms 1 and 2 were examined for both cases with slow reactions (Step B) and cases

without slow reactions (Steps A and C).
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Figure 2.2: Comparison of the original and modified kMC algorithms for Steps (a) A, (b) B, and
(c) C. The original kMC processing times to reach full coverage for Steps A, B, and C are 1.018,
2.796, and 1.418 s, respectively. The modified kMC processing times to reach full coverage for
Steps A, B, and C are 0.969, 2.793, and 1.487 s, respectively.

2.3 Computational Fluid Dynamics Modeling

Computational fluid dynamics (CFD) simulations describe the macroscopic behavior of fluids

in larger time and length scales, which enables the scale-up of processes. The integration of CFD

is applicable to characterizing the spatiotemporal flow of reagents on the substrate surface, which

experiences surface reactions that consume the reagents and generate byproducts. The develop-
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ment of a CFD model requires the construction of a computer-aided design (CAD) model for a

three-dimensional (3D) discrete feed reactor system, the performing of a meshing procedure on

the CAD model, and the creation of the CFD simulation of the AS-ALD process in the discrete

feed reactor model.

2.3.1 Reactor Design

An abundance of reactor models have been investigated to discuss the uniformity of reagent

coverage on the substrate surfaces and to improve the productivity of the process. For exam-

ple, [103] proposed a cross-flow reactor to control the behavior of flow in the azimuthal direction

of the substrate for an atomic layer etching process. Additionally, [17] and [18] suggested using

showerhead reactors to improve the uniformity of fluid flow in the radial direction. By considering

the challenges attributed to low product throughput, [105] proposed spatial reactor configurations

where the reagent is delivered perpendicular to the substrate in a continuous feeding mechanism

for atomic layer etching and area-selective atomic layer deposition processes, respectively. While

the aforementioned reactor models have effectively yielded valuable results in improving product

quality and yield, this chapter characterizes the impact of steric collisions generated from bulky

molecular species including Hacac and BDEAS, which introduces challenges associated with sur-

face uniformity. Thus, there is motivation to develop a reactor that minimizes steric hindrance

induced by screening effects.

This chapter adopts a previously designed discrete feed reactor [83] inspired by the work of [45]

through Ansys DesignModeler, which delivers reagent perpendicularly to the substrate surface in

discrete pulses through an injection plate. The employment of discrete feeding with cut-in purging

allows the byproduct species that inhibit adsorption of Hacac and BDEAS on the substrate surface

to be regularly removed. The discrete feed reactor, illustrated in Fig. 2.3, situates a showerhead

divider that is below and parallel to the injection plate to facilitate the transport of reagents in the

radial directions of the substrate, thereby maximizing the exposure of the substrate to the reagent
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in minimal pulse times. The gap distance between the injection to the showerhead plate is 3 mm,

and the gap distance between the showerhead plate to the 200-mm diameter substrate surface is 5

mm. These gap distances are necessary to minimize the volume required to maintain laminar flow

behavior [38]. A summary of the reactor dimensions are summarized in Table 2.1.

Figure 2.3: Schematic of the discrete feed reactor model for the AS-ALD reaction.

The injection plate has a substantial impact on the mass transport of reagents in the radial di-

rection. Thus, various injection plate geometries, which are illustrated in Fig. 2.4, were previously

proposed by [83] to observe their impact on the fluid dynamics on the substrate surface. Re-

sults from the aforementioned work provided valuable information about the role of characteristic

lengths on the rate of mass transfer in the radial direction. This chapter extends prior macroscopic

modeling work for each reactor injection plate geometries by studying their effect on the spa-

tiotemporal coverage and process time required to reach complete surface coverage.

2.3.2 Meshing

Following the construction of the reactor model, a discretization process is conducted to pro-

duce conformal meshes that balance computational efficiency and accuracy when performing the
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Table 2.1: Dimensions for the reactor configurations.

Reactor Dimension Value

Plate Diameter 290 mm

Ring Inlet Outer Diameter 170 mm

Ring Inlet Inner Diameter 130 mm

Round Inlet Diameter 20 mm

Round Outlet Diameter 4 mm

Showerhead Diameter 250 mm

Showerhead Pores Diameter 10 mm

Showerhead Thickness 0.5 mm

Showerhead-Wafer Gap Distance 5 mm

Inlet-Showerhead Gap Distance 3 mm

Wall Sector Angle 40◦

(a) (b) (c) (d)

Figure 2.4: Various feed distributor geometries for (a) Single, (b) Ring, (c) Multi, and (d) Com-
bined reactor configurations.

finite element method. Meshes for each reactor model are produced from “Meshing Mode,” a fea-

ture of the multiphysics software, Ansys Fluent, in a prior work [83]. The aforementioned meshes

were generated by optimizing mesh quality parameters based on the tetrahedral geometries of the

discretized cells, which include the orthogonality, aspect ratio, and skewness [1]. To maximize

each reactor configuration mesh, optional remeshing tools were then applied to the irregular sur-
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face and volume cells. In additional to maintaining balanced mesh quality, this chapter aims to

minimize the number of cells required to produce the 3-D meshes to reduce the complexity of the

computational fluid dynamics simulation, where each reactor configuration comprises 1.1 to 1.2

million cells.

2.3.3 Computational Fluid Dynamics Simulation Framework

The macroscopic CFD simulation is constructed by defining boundary, operating, and solver

conditions that are specific to the AS-ALD process. This simulation will employ a strategy for

solving the mass, momentum, and energy transport equations, which are described as follows:

∂ρ

∂t
+∇ · (ρ−→v ) = Sm (2.8)

∂

∂t
(ρ−→v ) +∇ · (ρ−→v −→v ) = −∇P +∇ · (τ) + ρ−→g +

−→
F (2.9)

∂

∂t
(ρE) +∇ (−→v (ρE + P )) = −∇

(
Σhj

−→
J j

)
+ Sh (2.10)

where the mass transport equation in Eq. (2.8) is related to the gas-phase species flux, which is

represented by the product of the gas-phase species density, ρ, and the velocity of the species, −→v ,

and is related to the species source generation and consumption flux rate, Sm. The momentum

transport equation in Eq. (2.9) relates the rate of momentum per unit volume to the convection,

pressure, viscous, and gravitational forces where P is the operating pressure of the reactor, τ is

the normal two-rank stress tensor, −→g is the gravitational acceleration constant, and
−→
F is the force

acting on the system. The energy transport equation defined in Eq. (2.10) describes the relation

of the accumulated rate of system energy, E, with the convective, conductive, and energy source

generation or consumption, Sh, rates, where hj and
−→
J j is the sensible enthalpy and mass diffusion

flux, respectively, of the gas species j.

Ansys Fluent contains multiple fluid dynamics models that can be used to describe the behav-
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ior of the fluid flow. Due to the small reactor sizes and observance of laminar behavior from prior

research [83], a laminar fluid model is defined in the simulation. The mass transport is simulated

by specifying gas-phase reagent and byproduct species that are present in the Ansys ChemKin

database and thermophysical property data generated from experimental works and ab initio quan-

tum mechanics calculations discussed in Section 2.2. The source generation and consumption flux

rate terms are evaluated through the kMC simulation and defined as boundary conditions on the

wafer surface through user-defined functions (UDFs). Additionally, this simulation considered

the role of ozone decomposition within the reactor and surface of the wafer. The reactor is also

operated under isothermal and isobaric conditions by assuming that a temperature control system

is used to maintain the temperature on the wafer surface and that a vacuum pump is effectively

applied to regulate the pressure within the reactor chamber.

A pressure-based coupled solver method is integrated into this chapter to simultaneously solve

the momentum and pressure-based continuity equations in a parallelized algorithm to reduce com-

putation time at a cost of increased memory requirement. To circumvent this issue, CPU-based

(central processing unit) nodes were integrated into this chapter comprising 48 and 36 cores with

512 GB and 384 GB of dynamic random-access memory (DRAM), respectively, and executed

through text-user interface (TUI) commands to minimize graphical power. Additionally, a fixed

timestep method of step size 0.001 s is defined, which is within the Courant number threshold

recommended by the default settings for the program. Lastly, under-relaxation factors of 0.5 were

assigned to all gas-phase species involved in the mass transport calculations to minimize the po-

tential for divergent or oscillatory residual responses that could potentially be generated from the

source flux rate terms evaluated from the kMC simulation.
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Table 2.2: Operating conditions for each reactor geometry.

Temperature
(K)

Pressure
(Pa)

Mole Fraction Mass Flow Rate
(kg/s)Reactor

Hacac BDEAS Ozone

Single 573 300 0.50 0.50 0.20 2.00×10−5

573 300 0.50 0.50 0.20 2.00×10−5Ring

573 300 0.50 0.50 0.20 Each Inlet: 4.00×10−6Multi

573 300 0.50 0.50 0.20
Single: 1.00×10−5

Combined
Ring: 1.00×10−5

2.4 Multiscale Modeling

The efficacy and impact that simulations can have naturally depends on their accuracy and

precision. Generally speaking, the accuracy of a simulation can always be improved by increasing

the computational costs; for example, lowering the integration timestep when numerically solving

a differential equation will improve the accuracy of the final answer while increasing the number

of calculations that must be made to reach that final answer. Thus, one of the driving motivations

for this chapter is finding an optimal balance between the accuracy and the computational cost of

the simulation.

One commonly used method to improve simulation accuracy without an expensive computa-

tional cost is multiscale simulation [94]. This method comprises two simulations that run concur-

rently and interact with each other: a mesoscopic kMC model that simulates the surface kinetics

of the wafer as a function of the pressure and temperature, and a macroscopic CFD model that

simulates how the pressure fields within a reactor evolve with time. These two interacting mod-

els improve the overall accuracy of the simulation because their domains are intrinsically linked.

The surface reactions on the wafer generate and consume products and reagents, which affects the

overall pressure fields in the reactor, which affects the reaction rate on the wafer surface. Thus, to

improve simulation accuracy, the two models are integrated together in a multiscale framework as
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shown in Fig. 2.5.

Figure 2.5: Illustration of the multiscale CFD modeling framework. The wafer is partitioned into
40 sections in the CFD simulation to produce a collection of 40 surface pressure and temperature
datasets that are used to calculate the reaction rate constants in user-defined functions (UDFs). The
kMC simulation, which is performed in the UDF calculates the surface coverage and source flux
rate terms that are transmitted to the CFD simulation.

At each integration timestep, ∆t = 0.001 s, the CFD model takes the generation and consump-

tion terms calculated by the kMC model in the previous timestep into account when calculating

the pressure fields in the reaction. Then, the kMC model receives information about the species

pressure and temperature at the surface of the wafer and uses that to calculate the extent of any

surface kinetics, as well as the resulting consumption and generation of species. After repeating

this step for multiple timesteps, the multiscale simulation offers a comprehensive understanding of

how the wafer surface reactions evolve as time progresses inside the reactor. With the computa-

tional resources and numerical simulation specifications stated above, the computing time ranged
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from 4 to 6 hours for a process time of 3.5 seconds for the 48-core and 36-core nodes, which allows

for effective data production.

2.5 Multiscale Simulation Results and Discussion

The aim of the multiscale CFD simulation is to give a quantitative understanding of how various

reactor designs affect the process efficiency of the AS-ALD reactions, which is directly tied to

the process time. Due to the self-limiting nature of AS-ALD, the process is naturally resistant

to over-deposition. Rather, the only drawbacks of overprocessing are unneeded consumption of

the reagents and a decreased product throughput. Thus, there is a large economic incentive to

minimize the process time as this will both reduce the reagent consumption and increase production

capabilities.

To evaluate the overall process efficiency, two main criteria are taken into account: the min-

imum process time and surface coverage uniformity. The minimum process time is the time at

which the substrate achieves full coverage for the surface-terminated product, which is directly

dependent on the reagent dosage time. On the other hand, the surface coverage uniformity is

a measure of how the standard deviation of the coverage on the substrate surface changes with

time. Naturally, the lower the overall standard deviation, the less reagent is wasted, and the reverse

implies greater reagent wastage. These two criteria are positively correlated, as a low standard

deviation distribution implies an effective usage of the reagent, which then implies that the process

will be completed quickly.

Fig. 2.6 illustrates the temporal progression of coverage for Steps A, B, and C for each reac-

tor configuration. Generally, the ring-shaped reactor geometry under-performs due to the vacuum

pressure forces and steric screening effects from byproducts that result in a lack of fluid trans-

port toward the center of the wafer. Meanwhile, the single and multi-shaped injection plates are

conducive towards achieving full surface coverage in minimal processing times by concentrating

35



the reagent toward the center of the wafer. With smaller characteristic lengths, especially for the

combined reactor geometry, the injection flow rate is unable to overcome the effects of the vac-

uum pressure forces. Thus, an initial delay in coverage is observed for the coverage profiles of

the combined model when compared to those of the single and multi feed reactors. Table 2.3 also

summarizes the processing times required to achieve full surface coverage for each reactor config-

uration and each step in the AS-ALD ABC cycle, where the single and multi reactor models were

observed to have the fastest processing times.
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Figure 2.6: Reactor configuration comparison of the temporal progression of the average surface
coverage for (a) Step A, (b) Step B, and (c) Step C.
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Table 2.3: Process times required to obtain full surface coverage .

Process Time (s) Total Process
Time (s)

Reactor
Step A Step B Step C

Single 0.466 1.431 1.783 3.680

Ring 2.310 4.586 2.596 9.492

Multi 0.453 1.448 1.737 3.638

Combined 0.509 1.508 1.755 3.772

The reactor design with the smallest minimum process time can be quickly determined by

examining the average coverage progression across the wafer as a function of time, as shown

in Fig. 2.6. From Table 2.3, it can be seen that the multi-shaped reactor performed the best overall

with a total minimum process time of 3.638 s. However, to understand why this reactor design

performed the best, it is necessary to examine more specialized data, such as the standard deviation

progression as a function of time and contour plots of the coverage at specific points in time.

The multi-shaped reactor, which has the smallest process times, also consistently has the lowest

standard deviation for all points in time. However, the single and combined-shaped reactors have

similar standard deviation curves for all three reactions, but the single-shaped reactor consistently

outperforms the combined-shaped reactor in terms of process time. This shows that while a well-

designed reactor implies a low standard deviation curve, the reverse is not necessarily true. Thus,

it is not a good criterion to focus on when designing reactors.

Meanwhile, the contour coverage plots directly reflect the progress of the surface reactions.

From Eqs. (2.1) and (2.2), it can be seen that, in an isothermal reactor, the reaction rates are only

a function of pressure. Thus, the progress of the surface reaction at a particular point is related

to the pressure which that particular point has experienced since the start of the reaction. This

means that the contour coverage plots effectively represent how ideal the pressure distribution of

a given reactor design is. In Fig. 2.8, all the reactor designs have a high coverage value in the
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Figure 2.7: Reactor configuration comparison of the temporal progression of the standard devia-
tion, σ, in surface coverage for (a) Step A, (b) Step B, and (c) Step C.

areas directly underneath the precursor dispensers. However, the most valuable information from

these contour graphs are the areas with low coverages; these areas represent sections far from the

inlet, where the reactor design plays a major role in how high the precursor pressure necessary for

carrying out the reactions is. For example, the ring-shaped reactor design has a large area in the

center with 0 coverage, which means that almost no precursor is flowing there. This matches the

results in [83], which found that the pressure in the center is very low for the ring-shaped reactor.

Meanwhile, out of the single, multi, and combined-shaped reactors, the multi-shaped reactor has
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the best coverage contour plot in that its outer edges have the highest coverage. Even though

the coverage at the outer edge is the same for both the single and combined-shaped reactors, the

coverage at the middle of the reactor, r = (12, 16) cm, is higher for the single-shaped reactor.

This means that the single-shaped reactor design has a better pressure distribution in the middle

section of the wafer, rendering it superior to the combined-shaped reactor design. The results of

the contour plots show that the multi-shaped reactor design is the best, followed by the single,

combined, and the ring-shaped in that order. Similarly, the contour plots for steps B and C, as

shown in Figs. 2.9 and 2.10, demonstrate that the multi-shaped reactor performed the best with

the other three reactor designs following in the order described above. This correlates with the

performances noted in Table 2.3, which shows that contour plots are a good metric for identifying

efficient reactor designs. Specifically, they are able to compare and determine what reactor design

has a better transient pressure profile.

It is also important to point out that the contour plots provide an important insight; there is

a significant difference between the developed pressure profiles at 3 s and the initial pressure

profiles for each reactor design. The former pressure profiles were examined in a previous work,

which concluded that the combined-shaped reactor was the best reactor due to its optimal pressure

fields [83]. However, the results presented in Table 2.3 differ substantially, as they show that the

multi-shaped reactor is the best reactor with the shortest minimum process time. One explanation

that accounts for both of these observances is that the pressure fields at the initial stages of the

process play a pivotal role in the overall efficacy of the reactor design. The coverage evolution

at the fringes of the substrate, which plays the greatest role in determining the minimum process

time, is a function of the entire pressure profile evolution. Thus, it is important for the ideal reactor

design to also quickly reach these fringe areas. While the combined-shaped reactor may have more

even pressure profiles, the multi-shaped reactor evidently distributes the reagent quicker.

The minimum process time for each reactor design is defined as the time required to reach

99.9% coverage for each individual reaction. Overall, the multi-shaped reactor has the best results
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(a) (b)

(c) (d)

Figure 2.8: Comparison of contour plots of various reactor configurations, (a) Single, (b) Ring, (c)
Multi, and (d) Combined, to study the spatial behavior of the surface coverage of the terminated
Step A product for a 40-partitioned substrate at a time of 0.3 s.
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(a) (b)

(c) (d)

Figure 2.9: Comparison of contour plots of various reactor configurations, (a) Single, (b) Ring, (c)
Multi, and (d) Combined, to study the spatial behavior of the surface coverage of the terminated
Step B product for a 40-partitioned substrate at a time of 0.8 s.
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(a) (b)

(c) (d)

Figure 2.10: Comparison of contour plots of various reactor configurations, (a) Single, (b) Ring,
(c) Multi, and (d) Combined, to study the spatial behavior of the surface coverage of the terminated
Step C product for a 40-partitioned substrate at a time of 1.0 s.
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with a total minimum process time of 3.638 s. To understand why this reactor design performs

the best, the contour plot is instrumental in revealing the fact that this design spread the precursor

to the remote parts of the wafer the quickest out of the examined designs. This detail explains

why, even though the combined-shaped reactor has the most even pressure profiles, it ranks third

in terms of minimum process time.

2.6 Conclusions

In this chapter, a multiscale computational fluid dynamics (CFD) model of an area-selective

atomic layer deposition (AS-ALD) reactor was developed to study the spatiotemporal progression

of surface coverage to allow the scale-up of AS-ALD processes. To improve the accuracy of the

multiscale CFD model, this chapter expanded on the mesoscopic, kinetic Monte Carlo (kMC) al-

gorithm by considering the role of the number of unoccupied atomic sites on the time progression

computation. Findings suggested that surface coverage temporal progressions were similar to re-

sults conducted in prior work and were able to resolve the ambiguity of surface coverage from prior

kMC methodology. Additionally, various reactor injection geometries for the macroscopic CFD

simulation were constructed to enhance the mass transfer of reagent on the surface of a semicon-

ductor substrate and study their impact on the process time required to obtain full surface coverage

and the uniformity of the surface coverage with respect to time. Results indicated that two reactor

models, the multi and the single, required minimal processing time and were characterized by ho-

mogeneous, temporal surface coverage.
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Chapter 3

Data-Driven Machine Learning Predictor

Model for Optimal Operation of a Thermal

Atomic Layer Etching Reactor

3.1 Introduction

The past two decades has observed technological innovations in high-performance electronics

that possess favorable characteristics including reduced feature sizes, computing speed, and en-

ergy efficiency [44]. However, this continued advancement is facing hurdles attributed to a vital

and necessary component of electronic devices: semiconductors. Per Moore’s Law, a semicon-

ductor chip will improve in performance by strategic designing and downscaling of transistors

that facilitate stacking and densification [2]; however, the manufacturing of these products is time

consuming and inconsistent at maintaining overall quality in nanoscale dimensions. In terms of

productivity, the overall semiconductor fabrication process comprises around 500 processing steps

from raw materials to the finished product that are exclusive to the product material and design [79].

Additionally, some components of the finished product have stringent design criteria [60]. For ex-
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ample, the nanowire, a critical component of transistors that enables current transport between the

source and drain of complementary metal-oxide transistor (CMOS) technology [3, 111], demands

oxide film thicknesses in the nanoscale. These nanoscale dimensions are reproducible through se-

quential cycles of thin-layer deposition and etching processes that are intended to add or remove

monolayers of substrate material by exhibiting self-limiting characteristics. However, it is difficult

to streamline a high quality fabrication method for this process at an industrial setting due to the

inherent limitations in process- and operation-dependent techniques. One way to help meet the

growing demand for both semiconductor chip throughput and quality is by developing models that

can accurately predict the process quality as a function of real-time process data.

Digital twin modeling is an effective tool intended to replicate real-world processes through

computational modeling with feedback validation to ensure the efficacy of the model. For example,

Shao et al. (2019) discussed the prevalence of digital twin modeling in the semiconductor manufac-

turing industry with applications to smart manufacturing, which enables process optimization and

advanced process control by extending data sets across wider ranges of operating conditions [74].

Besides a single process, Moyne et al. (2020) hypothesized the potential for expanding beyond a

singular process (i.e., across processes with slightly dissimilar characteristics) through simulated

modeling [55]. Kanarik et al. (2023) also entertained the idea of implementing artificial intel-

ligence to construct data-driven and predictive models to enable process optimization [35]. The

aforementioned works discuss clever approaches for integrating a network of simulated models

that is applicable for this study.

With the growing complexity of semiconductor manufacturing processes, manually measuring

wafer quality has become increasingly time-consuming and labor-intensive [51]. For instance,

a quartz crystal microbalance is traditionally employed to measure the thickness of deposited or

etched films on wafers in industry, thereby assessing the etch coverage and quality of the product in

an off-line analysis manner. However, the use of a quartz microbalance requires careful operation,

bears a low sampling rate, and has significant expenses [33]. To address these challenges, soft
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sensing methods have emerged in recent years [32]. A soft sensor functions like a traditional sensor

by utilizing models that interpret process data that is easier and less expensive to obtain, to predict

product properties such as the etch coverage across the wafer. The performance of a soft sensor

is highly dependent on the accuracy of its prediction model. Deep learning methods, including

Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), and Transformers,

have gathered significant attention for this purpose due to their superior performance and wide

applications [81].

In industry, large fabrication plants often have multiple product flows that share the same etch

process [6]. For example, multiple product flows that each create a specific semiconductor device

may all use the same 1000 Å Al2O3/SiO2 etch process. Subtle differences between these product

flows, such as the underlying substrate geometry, often cause their respective substrates to exhibit

different kinetic behaviors for the same process recipe. Thus, a predictor model trained on one

specific product line and reactor is not guaranteed to perform similarly for other product lines or

reactors, which is why most such predictor models thus far have been focused on a specific process

on a specific tool [106].

However, with the increasing demand for more semiconductor products, fabrication plants must

output numerous semiconductor chips. This has led to an increased number of both processing

tools and process flows [12]. As the number of tools and flows in a fabrication plant increases, the

number of predictor models needed will increase dramatically, leading to numerous unique process

datasets. Thus, it is important to explore if data aggregation techniques can be used to create a

general predictor model that performs well for a set of process flows. And as the number of unique

process datasets continues to increase, it will also become important to create a methodology to

determine which datasets should be aggregated for the training of a predictor model.

Modern ALE processes operate quickly, taking less than 10 minutes to complete a single cy-

cle [34]. However, to capture the inherent process variability for a specific product flow and reactor,

process data must be collected from multiple runs. Thus, if the required process data were to be
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gathered experimentally at an academic scale, it may take months or even years to collect enough

data to train an accurate predictor model. An alternative method is to use simulated process data.

Simulated process data offers the convenience of being able to directly manipulate kinetic param-

eters, which drastically decreases the number of runs required to collect enough process data to

train a predictor model. With simulated data, valuable insights into the efficacy and optimization

of data aggregation techniques within the purview of creating predictor models for semiconductor

manufacturing processes can be found.

This work investigates the development of a cross-operation and cross-design predictive model

of a two-step thermal ALE procedure to fabricate an aluminum oxide (Al2O3) film by utilizing a

precursor trimethylaluminum (TMA) and an etching reagent hydrogen fluoride (HF) under high

operating temperatures that volatize all the reactants and products. This process is simulated by

a computational model with a multiscale framework that intersects features from various time

and length domains for atomic, molecular, kinetic, and fluidic properties, all of which govern the

kinetics of this etching process. In the Ångstrom and picosecond length and time scales, respec-

tively, atomistic modeling is relevant for discussing the electronic, thermophysical, and kinetic

properties of the materials involved in the ALE process by employing ab initio molecular dynam-

ics simulations such as density functional theory (DFT) and nudged elastic band (NEB) methods.

Additionally, the spontaneity or tendency for a reaction to occur is characterized through elemen-

tary reaction pathways that are defined using a statistical mechanics via collision theory (CT) and

the Arrhenius model. To establish this stochastic behavior of reaction in a larger length and time

scales of micrometers and milliseconds, respectively, a mesoscopic approach through a kinetic

Monte Carlo (kMC) method is beneficial for this purpose. Lastly, ALE is dependent on the fluid

dynamics when the substrate is exposed to reagents and byproducts that affect the composition

and characterization of the substrate surface. Computational fluid dynamics (CFD) is utilized to

study the effects of fluid transfer on the substrate surface, in which CFD is not bounded by a max-

imum length- and timescale exemplified by atomistic and mesoscopic models. The conjunction

47



of these three simulations establish a multiscale model that can (1) resemble realistic experiments

conducted in vitro, (2) produce synthetic data at an efficient rate, and (3) enable optimization of

process operation and design by conducting numerous case studies for similar systems defined by

quantifiable variables.

Traditional model reduction methods like proper orthogonal decomposition and approximate

inertial manifold techniques work well for the construction of low-dimensional models for transport-

reaction processes modeled by one- or two-dimensional parabolic partial differential equations

(PDEs) and can lead to low-order models for controller design; however, this chapter deals with

the development of input/output models capturing nonlinear relationships between process oper-

ating variables as inputs (e.g., input flow rates and pressure) and product metrics as outputs (e.g.,

film spatial uniformity, coverage) that cannot be captured by the traditional model reduction meth-

ods for PDEs [96]. Furthermore, the model of the ALE process considered in this chapter is a

multiscale CFD model whose complexity makes the implementation of traditional model reduc-

tion methods very challenging given the use of different continuum (e.g., dynamic conservation

equations) in the gas phase and discrete (e.g., kinetic Monte-Carlo models) on the film surface.

Thus, this chapter explores using neural network models and the associated statistical analysis as

an efficient way to develop predictive operational models for these complex processes.

In summary, this chapter investigates the application of a machine learning-based soft sensor

for predicting ALE etch rates using process data that can be realistically collected in real-time

during the process. The necessary process data were generated through multiscale simulations of

an ALE process in a discrete feed reactor, wherein kinetic parameters were adjusted to represent

different process flows. To enhance model performance, a data aggregation approach is proposed,

which increases the volume of training data by integrating multiple datasets. This chapter is orga-

nized by first describing the overall structure of what datasets are generated and aggregated, and

how they are compared. The subsequent section goes into detail regarding the multiscale modeling

simulations that were used to generate process data. The following section describes how the pre-
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dictor model was developed and trained. The last section analyzes the performance of the models

trained on different datasets and their implications.

3.2 Process Description and Data Generation Methods

The effectiveness of data aggregation depends greatly on the data being aggregated. To that

end, this chapter seeks to elucidate the possible benefits of aggregating data and explore methods

of choosing which datasets should be aggregated by focusing on a specific fabrication process. The

ideal process would be one that is relatively simple, has at least two sources of variance, and would

benefit from a robust predictor model. One semiconductor manufacturing process that meets all

three of the aforementioned criteria is Atomic Layer Etching (ALE).

Specifically, this chapter explores data aggregation in the context of using ALE to etch away

Al2O3 while preserving the underlying SiO2 substrate. This process is simple in that it is only com-

posed of two half reactions, whereas other processes such as area-selective atomic layer deposition

may consist of three or more [92]. The two half-reactions are shown and described below.

Al2O3 (s) + 6HF (g) → 2AlF3 (s) + 3H2O (g) (Reaction A)

In Reaction A, gaseous HF prepares the Al2O3 surface for etching.

2AlF3 (s) + 4Al(CH3)3 (g) → 6AlF(CH3)2 (g) (Reaction B)

In Reaction B, gaseous trimethylaluminum (TMA) etches away the prepared ALF3 surface created

in Reaction A, releasing a byproduct of dimethylaluminum fluoride (DMAF). These etching reac-

tions were chosen due to their high selectivity towards Al2O3 rather than SiO2. To ensure that all

the reagents are in a gaseous form, the process temperature is 573 K and the process pressure is

300 Pa. Additionally, the process consists of Reaction A and Reaction B cycling back and forth;
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to reduce reagents from the other half-reaction mixing, a purge step is taken before and after each

reaction. Specifically, N2 is pumped into the chamber until all reagent is removed. For Reaction

A, 1e-5 kg/s of gas with a mole fraction of 0.1 HF and 0.9 N2 is pumped into the chamber for

1.2 s and then purged with N2 for 0.8 s. For Reaction B, 1e-5 kg/s of gas with a mole fraction

of 0.5 TMA and 0.5 N2 is pumped into the chamber for 1.5 s and then purged with N2 for 0.5 s.

From experimental testing, these conditions with no disturbances result in complete reactions for

both half-reactions [100]

To simulate these reactions, both half-reactions can be decomposed into multiple intermediate

reactions, as detailed in Yun et al. (2021) [100]. These intermediate reactions can be classified into

two types: adsorption and nonadsorption. By varying the kinetic parameters of these intermediate

reactions, variance can be naturally introduced into the process. These varied parameters represent

differences in the substrates, such as the device geometry or substrate material [54]. They exist

because multiple product flows and devices share process recipes along the manufacturing pipeline,

and one of the goals of this chapter is to demonstrate that aggregating process data will result in

improved model performance despite the fact that the data originate from different sets, each with

their own unique kinetic parameters.

For the final criterion, a robust predictor model would, at a minimum, be able to improve

manufacturing efficiency by eliminating inspection steps. These inspection steps are conducted at

state-of-the-art fabrication centers, where each wafer is inspected after an etch step to ensure that

the product specifications and quality standards are met. However, with a robust predictor model,

this step could be omitted (or at least executed less frequently) for a majority of processed wafers,

greatly increasing overall manufacturing efficiency.

After selecting a process, the next step is to gather data for that process. Generally, most

machine learning processes improve in performance when trained on larger datasets. Thus, each

data subset needs to be large enough to produce a functioning model to properly compare the

effects of data aggregation. To generate all the requisite data, it would take months, if not years,

50



to do so with industrial data. An alternative method is to use simulations to generate the requisite

data. By constructing a reactor model and using advanced simulation methods, it is possible to

accurately represent an ALE reactor and the reaction kinetics occurring within it [92]. Additionally,

simulation runs are much faster to execute than their physical counterparts; with powerful computer

processors, it is possible to complete over 16 unique process runs in a single day, for example [84].

Thus, all the datasets analyzed in this chapter are generated through simulations.

3.2.1 Multiscale Computational Fluid Dynamics Modeling

All simulations must balance accuracy and computational efficiency while generating data at

a sufficient rate. Generally speaking, the more accurate a simulation is, the more computational

power it takes to carry out that simulation. Because the simulated data is meant to be used as

training data for a machine learning algorithm, the simulations must be fast while sacrificing the

least amount of accuracy.

To meet these requirements, this chapter carried out two-dimensional (2D) multiscale CFD

simulations of an ALE system in a discrete feed reactor. The discrete feed reactor is a stationary

reactor with a single inlet at the top, two outlets on the sides, the wafer substrate at the bottom,

and a showerhead plate between the wafer and the inlet to promote ideal reagent distribution as

shown in Fig. 3.1. The reactor operates by first purging the chamber with N2 gas, then injecting

a reagent gas into the chamber for a preset process time, and finally purging the chamber with N2

gas once again. This configuration makes it easy to optimize reagent usage while maintaining etch

uniformity, which ensures that the end product reaches process specifications [83]. The simulation

was bound to 2D geometry to reduce the computational complexity and is valid because both the

substrate and reactor have radial symmetry. Multiscale CFD simulations decrease computational

complexity (with respect to carrying out a microscopic simulation for the entire process domain)

while preserving accuracy by simultaneously carrying out macroscopic and microscopic simula-

tions that constantly communicate between each other (Wang 2024). Specifically, the simulation,
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shown in Fig. 3.1, takes place within the multiphysics software, ANSYS Fluent, which simulates

the macroscopic mass and energy dynamic balances within the reactor, which is represented by the

left, red section in Fig. 3.1. At each integration timestep of the gas-phase continuum model, custom

user-defined functions simulate the mesoscopic reaction kinetics on the wafer surface through a ki-

netic Monte Carlo (kMC) simulation scheme over several locations on the wafer surface, which is

represented in the right, blue section in Fig. 3.1. Additionally, the macroscopic simulation receives

information regarding how much reagent is consumed and product is produced at each point on the

wafer, which is the green box at the bottom of Fig. 3.1, while the kMC simulation receives infor-

mation regarding the partial pressures at each point of the wafer, which is the orange box at the top

of Fig. 3.1. These two simulations are carried out simultaneously through user-defined functions

(UDFs) in ANSYS Fluent that enable customizable features applicable to multiscale modeling,

and by working in tandem, they improve the overall accuracy of the ALE simulation.

Figure 3.1: figure showing the flow of information between the macroscopic simulation in ANSYS
Fluent and the mesoscopic simulation executed through the UDFs.

While the macroscopic simulation takes place inside ANSYS Fluent, the reactor was designed

in ANSYS SpaceClaim, a 3D CAD software. The discrete feed reactor has a cylindrical shape
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and consists of a wafer plate at the bottom, an inlet plate in the middle to ensure even reagent

distribution, an inlet hole at the top for reagents to enter, and 2 outlet holes at the sides for the

etch byproducts and purge gas to exit from. In a previous work, it was found that the efficacy of

these reactors mainly depends on 2 factors: the gap distance and inlet plate geometry [83]. Based

on previous research into reactor optimization, the reactor used in this chapter has a gap distance

of 5 mm and an inlet plate of 13 equally spaced holes with a diameter of 10 mm [92]. A visual

representation can be seen below.

Figure 3.2: Schematic of the reactor model. For Reaction A, a mixture of HF and N2 enters from
the inlet, and HF, H2O, and N2 are purged through the outlet. For Reaction B, a mixture of TMA
and N2 enters from the inlet, and DMAF and N2 are purged through the outlet.

To observe the different reaction rates across the wafer surface while minimizing excessive

calculations, the wafer surface was separated into 5 equidistant sections. Each section has its own

kMC simulation, which takes in the average partial pressures of that wafer section and returns the

mass fluxes of that wafer section. This allows each section to progress on their own and ultimately
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allows for analysis of the etching uniformity across the wafer.

The macroscopic simulation evaluates the spatiotemporal behavior of the fluid transport within

the reactor by numerically solving the characteristic mass, momentum, and energy transport equa-

tions, which are respectively described as follows:

∂ρ

∂t
+∇ · (ρ−→v ) = Sm (3.1)

∂

∂t
(ρ−→v ) + ρ (−→v · ∇)−→v = −∇P +∇ · (τ) + ρ−→g +

−→
F (3.2)

∂

∂t
(ρE) +∇ (−→v (ρE + P )) = −∇

(
Σhj

−→
J j

)
+ Sh (3.3)

where ρ is the gas-phase species density, −→v is the velocity of said species, Sm is the source gen-

eration and consumption flux of that species, P is the operating pressure of the reactor, τ is the

normal two-rank stress tensor, −→g is the gravitational acceleration constant,
−→
F is the force acting

on the system, E is the accumulated rate of system energy, Sh is the energy source generation or

consumption, hj is the sensible enthalpy flux of gas species j, and
−→
J j is the mass diffusion flux

of gas species j. Eqs. (3.1) to (3.3) are numerically solved at each integration timestep of 0.001

s. The integration time step used for the solution of the continuum gas-phase dynamic model,

0.001 s, is small enough to ensure stable numerical integration and high simulation accuracy while

keeping the computational burden at an affordable cost. Smaller integration time steps have been

tested, and they lead to the same numerical results even though the computational burden is in-

creased. Increasing the integration time step to higher values will speed up the calculations but

may compromise numerical stability and reduce accuracy, and as the computational burden under

the 0.001 s time step is computationally affordable, there is no reason to do so. Clearly, there is

an upper bound on the time step that maintains numerical stability of the simulation, but 0.001 s is

well within this upper bound.

The only reactions occurring within the reactor take place on the wafer surface. Thus, all
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boundaries are defined as impermeable walls, save for a few exceptions: the inlet hole at the top

is defined as an inlet with a mass flowrate of 1e-5 kg/s, the outlet holes at the sides are defined

as outlets with a dynamic pressure of -200 Pa, and the wafer surface is defined as a reaction zone

where the molecular species flux calculated in the kMC section are implemented. More details

about the macroscopic simulation can be found in [83].

The mesoscopic simulation recives the partial pressures calculated in the macroscopic simula-

tion and returns the mass flux of products and reactants. This computation is conducted through

a kMC algorithm that simulates the reaction rates of the nonadsorption reactions on the wafer as

a function of the kinetic rate constants. For this ALE process, two general types of reactions are

considered: adsorption/desorption reactions and nonadsorption reactions. The rate constant of the

former is calculated through Collision Theory, and that of the latter is calculated with the Arrhe-

nius equation, which are respectively shown below.

kads,d =
2PdAsiteσ

Zd

√
2πmdkBT

(3.4)

where kads,d is the reaction rate constant for gas species d to adsorb onto the wafer surface, Pd

is the partial pressure of gas species d, Asite is the surface area of the binding site, σs is the

experimentally determined sticking coefficient of gas species d, Z is the coordination number of

gas species d, md is the atomic mass of gas species d, kB is the Boltzmann constant, and T is the

absolute temperature of the wafer surface.

knads = ν exp

(
−Ea

RT

)
, ν =

kBTQ
‡

hQ
(3.5)

where knads is the reaction rate constant for a nonadsorption reaction, ν is the pre-exponential fac-

tor, Ea is the activation energy, R is the universal gas constant, T is the absolute temperature of the

wafer surface, and h is the Planck constant. Note that when calculating ν, the ratio of the partition

functions Q‡, Q is assumed to be unity [31]. This assumption was validated by comparing the
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resulting simulation results to experimental results. Additionally, all the other kinetic properties,

such as σ, Ea, and ν, for both half-reactions of the ALE process were also determined in that same

work [100].

The kMC algorithm uses a grid with 300×300 sites to represent a larger swath of the wafer sur-

face and randomly generated numbers to represent the stochastic nature of the ALE half-reactions.

In a previous work, it was found that this grid size allowed for accurate simulations for a low com-

putational cost [100]. At each integration timestep of the macroscopic CFD simulation, the kMC

algorithm calculates the rate constants of each possible reaction with Eqs. (3.4) and (3.5) and then

uses them to update the 300× 300 grid.

The basic steps of the algorithm are as follows:

1. Randomly select a site on the grid.

2. Randomly select 2 random numbers, γ1, γ2 ∈ (0, 1].

3. Sum up all possible reaction rate constants into ktot.

4. Select a reaction by comparing γ1 to ktot.

5. Calculate the time evolution as δt = −ln(γ2)/(nktot), where n is the number of active sites

on the grid.

6. Terminate when (
∑
δt) ≥ tint, where tint is the integration timestep of 0.001 s.

Note that both γ1 and γ2 are randomly selected from a uniform distribution of (0, 1] as they rep-

resent the stochastic nature of atomistic surface reactions. Additionally, For Step 3, the reaction

rate constants are calculated with Eqs. (3.4) and (3.5) and the atomistic constants found in [100].

Eq. (3.4) is dependent on the partial pressure of the reactant species, which means that all the re-

action rate constants must be recalculated at each time step as the partial pressures of each species

cannot be guaranteed to be constant.

56



Steps 1, 2, 3, 5, and 6 are relatively simple, but Step 4 requires a more in-depth explanation.

To select a reaction, the following expression is evaluated for each possible reaction:

r−1∑
i=1

ki < γ1ktot ≤
r∑

i=1

ki (3.6)

where r is the reaction the expression is being evaluated for, ki is the ith reaction, γ1 is a randomly

selected number created in Step 2, and ktot is as described in Step 3. Additionally, for all grid sites

and a selected γ1, Eq. (3.6) will only be true for a single, unique reaction, which is the selected

reaction. A more detailed explanation of the kMC algorithm, including pseudocode, can be found

in a previous work [92].

At the end of the multiscale simulation, the reaction coverage across the wafer can be estimated

by examining the 300×300 of the kMC simulation. As the coverage is a fraction of how much of

the surface has completed the reaction, it is simply the number of sites that have reached the final

product divided by the total number of grid sites. The coverage can then be converted into the etch

rate by multiplying by 0.46 Å/cycle, as that is the amount of Al2O3 that would be etched away if

the wafer reached full coverage in both half-reactions [100].

With the simulation settings described above, the accuracy of the simulations is uncompro-

mised while the computational efficiency remains high. When run on powerful CPU-based (cen-

tral processing unit) nodes with 24 and 48 cores with 384 GB and 512 GB of DRAM (dynamic

random-access memory), respectively, a full simulation of both half-reactions took approximately

8 hours. Thus, by using 4 such nodes, simulating 100 process runs can be completed in 200 hours.

3.2.2 Process Datasets

For this project, two types of datasets were created: one that represents a process, and one

that imitates raw industrial data. The main difference between these two dataset types is that the

former datasets are meant to be compact datasets that represent many years of process data. Their
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Table 3.1: Kinetic parameter ranges for each process.

fσ fν

CT [0.5,1.5] —
TST — [0.5,1.5]
MIX [0.5,1.3] [0.5,1.5]
INV [0.5,1.3] [1.5,0.5]

kinetic parameters are set to a specific number within a range and do not include any noise; thus,

they will be called process-specified datasets. The latter dataset, which is used to compare model

performances, is intended to represent a series of process runs. The kinetic parameters for each

run are randomly selected from a Gaussian distribution that represents a specific process, which

introduces variation into each process run. Thus, this dataset will be called the random-run dataset.

To train and validate the predictor models, four separate process-specified datasets with varying

kinetic parameters were created. The varied kinetic parameters were chosen to represent common

process shifts in a manufacturing environment, such as deposition of reactants to reactor side-

walls affecting the nonadsorption reactions or complex device geometries affecting sticking coef-

ficients [97].

The four process datasets are differentiated by their kinetic constants, which have been uniquely

modified for each dataset. Specifically, the sticking coefficients (σ) and pre-exponential factors (ν),

are multiplied by a constant ranging from 0.5 to 1.5. The four processes are listed in Table 3.1.

where fσ is the constant that the sticking coefficient (σ) found in Eq. (3.4) is multiplied by and fν

is the constant for the pre-exponential factor (ν) found in Eq. (3.5). Furthermore, in CT, only fσ is

varied; in TST, only fν is varied; in MIX, fσ and fν share the same value; finally, in INV, fσ and

fν are inversely correlated such that their sum is always 2. For example, the dataset that represents

MIX consists of 25 simulations, where the values of fν and fσ are represented as:

fν,i = fσ,i = 0.47 + 0.03 · i
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Figure 3.3: Histogram of the average etch rate across the entire wafer for each run in the random-
run dataset.

where i is the ith simulation. By carrying out a similar procedure for the CT, TST, and INV

processes, 4 unique datasets comprising 25 simulations each are generated, making for a total of

100 simulations. These datasets are then aggregated in various combinations before being used to

generate a prediction model.

To analyze the performance of the prediction models generated with the process-specified

datasets, each model will be used to estimate the etch rate of a random-run dataset comprising

60 process runs. The kinetic parameters for each run will be randomly selected from a Gaussian

distribution that has an average of 1 and a standard deviation of 0.1. To consider both the average

etch rate and the standard deviation of the etch rate across the wafer, the etch rate is measured at 5

inspection points across the wafer that correspond to the 5 wafer sections described in the “Multi-

scale Modeling” section. The resulting etch rate mean and spread for the random-run dataset are

illustrated in Figs. 3.3 and 3.4, respectively.

Note that the etch rate distribution is not Gaussian, as the process metric of etch rate does not

vary linearly with respect to the kinetic parameters. As both ALE half-reactions are naturally self-
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Figure 3.4: Histogram of the standard deviation of the etch rate across the wafer as a percentage of
the average etch rate for each run in the random-run dataset.

limiting, high kinetic parameters that increase the reaction rate of each half-reaction will minimally

impact the overall etch rate [100]. Thus, the etch rate distribution is skewed.

Besides measuring the performance of each model as a predictor, it is also possible to convert

them to classifiers and measure their efficacy in that regard. This approach is accomplished by

adding a filter to both the random-run dataset and the model output that analyzes the etch rate

mean and standard deviation and classifies it as either a “Pass” or “Fail.” The specific pass/fail

metrics were chosen such that the fail rate is around 2% for a process with kinetic parameters with

a mean of 1 and standard deviation of 0.1. This means that, for the etch rate mean and etch rate

standard deviation, if either process variable is more than 2 standard deviations from the mean, the

run has failed. For the random-run dataset, this means that a run fails if the etch rate mean is less

than 0.444 or if the etch rate standard deviation is greater than 2% of the mean. When applied to

the random-run dataset, these criteria result in a fail rate of 2.3%. This fail rate is consistent with

industrial datasets the authors have worked with.
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3.3 Transformer Model Training Method

The optimal model training method will differ for each process, depending on what process

data are readily available and able to be collated into datasets. For the purposes of this chapter,

we aim to train a transformer model that takes real-time process data as an input and outputs the

expected etch rate.

3.3.1 Input Variables for Model Training

For an ALE reactor operating in an industrial environment, pressure and temperature are crit-

ical process variables that can be measured at high frequencies with low latency, enabling the

generation of comprehensive time-series datasets for process modeling. To ensure consistency and

simplicity, the wafer temperature and reactor operating pressure are maintained at near constant

values by feedback control systems. Then, the surface pressure of the wafer, measured in Pascals,

is recorded every 0.1 s, which aligns with the limitations of real-life industrial sensors. However,

to prevent information loss, because the simulation is conducted with an integration timestep of

0.001 s, the pressure data is also extracted at every integration timestep. Prior studies on the ALE

of Al2O3 in discrete feed reactors indicate that a 2 s period is sufficient for achieving full wafer

coverage under most conditions [83]. Consequently, the pressure measurement period is limited to

2 s for each half-cycle, resulting in a maximum of 20 points of time-series wafer surface pressure

data per half-cycle. Each data point contains 5 pressure readings, which are sampled from the 5

different inspection points on the wafer surface described in the “Multiscale Modeling” section.

The time-series pressure data collected for both the HF and TMA half-cycles are then concatenated

into a complete dataset for a single ALE run.
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3.3.2 Output Variables for Model Training

The output variable of the ALE process for the soft sensor is the etch coverage calculated for

each of the previously described inspection points at the end of the overall process. This mea-

surement offers valuable information about both the overall etch rate and the etch rate uniformity

across the wafer. The total coverage after two half-cycles is defined by:

covi = covHF,i · covTMA,i, i ∈ {1, 2, 3, 4, 5} (3.7)

where covi is the total coverage at the end of the process on inspection point i, covHF,i is the

coverage at the end of HF half-cycle on inspection point i, and covTMA,i is the coverage at the end

of TMA half-cycle on inspection point i. Each half-cycle is programmed to end at t = 2.0 s, where

t is the processing time.

The true total coverages are obtained through multiscale simulations as described in the pre-

vious section and then compiled into datasets consisting of their respective input and output data.

When effectively trained, the soft sensor model is expected to output the coverage data with mini-

mal absolute percentage error compared to the true values.

3.3.3 Development of the Predictor Model

Introduction to Time-Series Modeling

To develop a prediction model based on time-series input data, deep learning methods such

as Recurrent Neural Networks (RNN) and Long-Short Term Memory (LSTM) neural networks

have been widely explored and applied across various fields, including chemical engineering [70].

These neural networks are capable of processing long sequences of data and learning about the

information between each element. This results in the models learning about the correlations

within the data sequence. This capability enables RNNs and LSTMs to better understand and fit
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time-series data compared to traditional feedforward neural networks (FNN).

A novel deep learning model, the transformer, has emerged in recent years and rapidly gained

significant attention in the field of natural language processing (NLP) due to its outstanding and

record-breaking performance on most NLP tasks [46]. The transformer network structure has also

demonstrated equally impressive performance in computer vision tasks such as image classifica-

tion and object detection [47]. Additionally, one of the most popular and advanced examples of

Artificial Intelligence (AI), the large language model (LLM), which includes products such as

ChatGPT and BERT, employs the transformer architecture. By utilizing billions of training data

points and model parameters, LLMs are capable of generating human-like responses and solving a

wide range of problems, offering substantial potential for future applications [110].

The transformer model employs an encoder-decoder architecture to handle a sequence of time-

series data. A multi-head self-attention mechanism [86] is used within each block to compute

the relevance of each element in the sequence relative to every other element. This approach

enables the model to effectively capture intercorrelations across the entire sequence of time-series

data. The attention mechanism calculates attention scores for each pair of elements, which are

then normalized using a softmax function to aggregate the attention values. This process allows

the transformer to maintain a comprehensive understanding of the relationships within the data

sequence, surpassing the capabilities of traditional LSTM networks [16, 86].

LSTM networks, while effective in handling time-series data and addressing the vanishing gra-

dient problem occur in simpler recurrent neural networks (RNNs), can still suffer from memory

loss over long data sequences. This limitation arises because LSTMs process data sequentially,

which struggles to capture long-range dependencies. In contrast, the self-attention mechanism of

the transformer allows it to simultaneously consider all positions in the sequence, ensuring that

long-term dependencies are preserved and effectively learned. This ability to maintain a global

perspective on the data sequence makes the transformer particularly well-suited for tasks that re-

quire a deep understanding of a long sequence of time-series data.
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Figure 3.5: Comparison between RNN (left), LSTM (center), and Transformer (right) models.
Two datasets of real-time process data were considered: a mixed dataset from multiple processes
that was used for both training and validation (blue), and a dataset from a single process that was
only used for validation (orange).

In Fig. 3.5, a Transformer, Recurrent Neural Network (RNN), and Long-Short Term Memory

(LSTM) model are compared to demonstrate their respective effectiveness at training models. The

number of optimized parameters for the three tested models are intentionally selected to have sim-

ilar values for the purpose of comparison. Both the RNN and LSTM networks have one recurrent

layer with 24 neurons, and the output vectors of each recurrent unit are concatenated together and

fed to a FNN network with one hidden layer that contains 32 neurons to generate the output vec-

tor. Fig. 3.5 shows that the Transformer model outperforms the other two models in terms of both

learning efficiency on the blue training dataset and median percentage error on the orange unseen

test dataset, which has a different disturbance from the training dataset. Thus, the ability of the

transformer model to maintain a general, global perspective on the data sequence makes it particu-

larly well-suited for tasks that require a deep understanding of a long sequence of time-series data.

Transformer Soft Sensor Structure

The overall structure of the transformer soft sensor for the ALE process is shown in Fig. 3.6.

Following the input layer, a dense layer, or embedding layer, is used to linearly encode the input
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Figure 3.6: Structure of the Soft Sensor Transformer Network. Pressure data is embedded by
a dense layer with dimension 8, undergoes positional encoding, and then is fed into 2 identical
multi-head encoder blocks. Inside the encoder block, there is an internal FNN with a hidden layer
of 64 neurons. The output of the encoders are combined by concatenation pooling and then fed
into the final FNN, which has 2 layers of 64 neurons each, and it outputs the reaction coverage.
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data into a suitable format for the transformer encoder blocks. The applied transformer network

consists solely of encoder blocks, as the task only involves regression and does not require the

model to generate a series of future predictions.

Positional encoding is added to the input sequence of the embedded vector of wafer surface

pressure time-series data because the transformer blocks do not inherently recognize the order of

the input elements. This encoding layer provides the necessary information regarding the order of

the input elements to the transformer encoder blocks. The positional encoding equations have the

following form:

PE(pos, 2i) = sin
( pos

100002i/dmodel

)
(3.8)

PE(pos, 2i+ 1) = cos
( pos

100002i/dmodel

)
(3.9)

where PE is the positional encoding value, i is the index indicator within a single vector in the

sequence that defines the pressure measurement vector at a specific time, 2i represents an even

index position in the vector, 2i + 1 corresponds to an odd index position, pos is the index number

of the vector in the sequence, and dmodel is the embedded vector dimension.

The encoder block employs the principle of residual learning and includes a single-layer neural

network to process the output data from the transformer encoder blocks. Subsequently, a con-

catenation pooling operation is applied, which connects and aggregates the outputs from all the

transformer blocks from each element in the sequence to prevent information loss. This pooled

data is then fed into a final FNN to produce the total wafer coverage values. The hyperparameters

of the soft sensor transformer model are summarized in Table 3.2.
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Table 3.2: Hyperparameters for the transformer model.

Model Hyperparameter Value

Input Dimension 5

Embedding Dimension 8

Number of Heads 2

FNN Neurons 64

Dropout Ratio 0.25

Encoder Layer Number 2

Final FNN Layer Number 2

Final FNN Neurons 64

Output Dimension 5

Transformer Model Training

The data is separated into two parts: 80% of the data is used for training, while the remain-

ing 20% is used for validation testing. The training-testing split is conducted randomly using the

dataset splitting module from the scikit-learn package. The Mean Squared Error (MSE) loss func-

tion is applied as the loss criterion, and the ADAM optimizer is employed for model parameter

updates. The loss value on the validation dataset is recorded at each training epoch, and the model

with the lowest MSE on the validation dataset is saved as the most up-to-date candidate model.

The training hyperparameters, including batch size, number of training epochs, learning rate, and

initialization algorithm, are all optimized using a trial-and-error method based on the model per-

formance on the validation dataset. This approach is feasible and time efficient both because the

dataset size is not large and because the transformer architecture is well suited for parallel com-

puting and training. The final optimized hyperparameters for the model included a batch size of

64, 700 total training epochs, a learning rate of 0.001, and the Xavier initialization method. The

random seeds used in data splitting and model training were also fixed to improve reproducibility.
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3.4 Heuristic Analysis Method

One method to guarantee creating the most optimal model is to simply create models for every

possible combination of process-specified datasets. By doing so, and then comparing their Mean

Squared Errors (MSE), it is trivial to pick out the model with the best performance. However, this

process becomes increasingly inefficient as the number of possible datasets increase. Specifically,

there will be n! possible models for n datasets. And in industry, where there are often hundreds of

datasets for a particular etch process, it is unrealistic to exhaustively search through every single

dataset combination. Thus, there is a motivation to create a heuristic that determines which datasets

should be aggregated.

3.4.1 Statistical Methods Introduction

A well-designed heuristic is essentially a distillation of the intrinsic statistical characteristics of

a dataset. One way to extract this statistical information is to train models on exactly one process-

specified dataset and then compare their performances on the overall dataset that is the combination

of all process-specified datasets. This method reduces the number of models that must be trained

to determine the most optimal model, changing it to scale linearly with the number of datasets.

The ideal datasets to aggregate are ones that are different from one another. Training the model

on a wide variety of data will allow it to better understand and predict edge-case scenarios, which

are oftentimes when the run fails. This selection criteria for dataset aggregation can be translated

into selection criteria for the models trained on single process-specified datasets: aggregate datasets

whose representative models are complementary to each other. If one model performs sufficiently

on Dataset B and poorly on Dataset C, then the ideal dataset to aggregate it with would be one

whose representative model performs well on Dataset C and poorly on Dataset B.

Two statistical methods of capturing this relationship are explored in this chapter: covariance

and the Pearson Correlation Coefficient (PCC). The covariance measures the general strength of
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the relationship between any 2 datasets, and the PCC measures the level of linear correlation be-

tween any 2 datasets. Thus, both statistical methods will be used to create heuristics that evaluate

which datasets should be aggregated. Then, by comparing those results to that of the brute-force

exhaustive search, the better heuristic will be determined.

3.4.2 Heuristic Evaluation Method

First, a model is trained on each process-specified dataset as specified in the “Process Datasets”

section. Then, these single-process models are run on an aggregate dataset consisting of all 4

process-specified datasets to create a set of 4 MSE datapoints for each single-process model. Fi-

nally, covariance and PCC is calculated between each pair of models for their MSE datapoints.

Covariance is specifically calculated with the formula below:

CovarX,Y =

∑N
i=1(xi − x̄)(yi − ȳ)

N − 1
(3.10)

where X, Y represent any two models, xi is MSE of model X for dataset i, x̄ is the average MSE

of model X , yi is MSE of model Y for dataset i, ȳ is the average MSE of model Y , and N is the

number of datasets. In this case, N = 4. The PCC is similarly calculated with the formula below.

ρX,Y =
CovarX,Y

σXσY
(3.11)

where CovarX,Y is the covariance between any two models X, Y as calculated in Eq. (3.10), σX

is the standard deviation of model X , and σY is the standard deviation of model Y .

Finally, for any given model trained on aggregated datasets, we can determine the heuristic

value of that model by averaging the covariance or PCC values for the composite pairs of the

aggregated dataset. For example, if the aggregated dataset contains datasets X, Y, Z, then the

composite pairs are every unique pair: (X, Y ); (X, Y ); (Y, Z). Then, the covariance heuristic
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value of a model trained on datasets X, Y, Z can be found with:

hc(M(X, Y, Z)) =
CovarX,Y + CovarX,Z + CovarY,Z

3
(3.12)

where hc is a function that returns the covariance heuristic value of a model, M(X, Y, Z) is the

model trained on datasets X, Y, Z, and CovarX,Y is the covariance as defined in Eq. (3.10). Simi-

larly, the PCC heuristic value is defined as:

hρ(M(X, Y, Z)) =
ρX,Y + ρX,Z + ρY,Z

3
(3.13)

where hρ() is a function that returns the PCC heuristic value of a model and ρX,Y is the PCC as

defined in Eq. (3.11). With Eqs. (3.12) and (3.13), we can now calculate heuristic values for any

model based on the datasets used to train that model.

3.5 Predictor Model Results and Discussion

As shown in Table 3.1, there are 4 process-specified datasets. This means that there are 15

possible dataset combinations that can be used to train a model: 4 models are trained on only 1

dataset, 6 models are trained on 2 datasets, 4 models are trained on 3 datasets, and 1 model is

trained on all 4 datasets. There are 2 methods to evaluate the performance of these 15 models.

The first is to examine the MSE of the model when it is run on the validation portion of the

process-specified datasets, and the second is to examine the accuracy of the model when run on the

random-run dataset described in the “Process Datasets” section. The full results of the MSE test

are shown in Table 3.3.

where the columns represent the validation dataset the model was run on, the rows represent

the training datasets of the model, and the values in the table are the resulting MSE. The MSE

values are colored such that low MSE scores are green and high MSE scores are red.
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Table 3.3: MSE of each model for each validation dataset.

Processes Tested on
CT INV MIX TST All

CT 0.03 0.63 2.46 1.82 1.24

INV 0.63 0.03 2.46 1.69 1.20

MIX 2.36 2.60 0.05 0.18 1.67

TST 3.35 3.69 2.21 0.18 2.36

CT+INV 0.05 0.04 2.46 1.95 1.12

CT+MIX 0.21 0.95 0.32 1.75 0.81

CT+TST 0.08 1.02 2.31 0.13 0.89

INV+MIX 1.38 0.31 0.37 1.66 0.93

INV+TST 0.75 0.25 2.41 0.33 0.94

MIX+TST 2.16 2.41 0.24 0.24 1.26

CT+INV+MIX 0.13 0.15 0.16 1.78 0.56

CT+INV+TST 0.11 0.12 2.26 0.15 0.66

CT+MIX+TST 0.13 1.07 0.17 0.18 0.39

INV+MIX+TST 1.15 0.08 0.10 0.11 0.36

Pr
oc

es
se

s
Tr

ai
ne

d
O

n

All 0.16 0.15 0.17 0.17 0.16

3.5.1 Multi-Process Model Performance

From Table 3.3, the model with the best performance across all 4 processes is the one trained

on all 4, with an MSE of 0.16. However, it is difficult to grasp why just by examining the complete

tabulated results. To better compare the 4 datasets, we begin by examining the degree of indepen-

dence between them. In other words, we want to know if it is possible to create a strong model for

a dataset without training the model on that very same dataset.

To answer this question, we compared the average performances of the models trained on a

particular process to the performance of the best model not trained on the process. Figs. 3.7a

to 3.7d are bar charts showing this comparison for each process.

Figs. 3.7a to 3.7d demonstrates that, for all processes, the model performance is drastically im-

proved whenever the model is trained on the corresponding dataset of the process. This illustrates
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(a) CT Process (b) TST Process

(c) MIX Process (d) INV Process

Figure 3.7: These subfigures measure model performance by comparing their mean squared errors
when tested on the validation dataset of the stated process. The left bar is the average performance
of all models trained on the stated process, and the right bar represents the best model that was not
trained on the stated process.
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that the failure mechanism for each dataset is unique. Thus, if a model is missing any one dataset,

it will perform badly for the validation portion of that dataset. On the other hand, if there was a

process that was not independent, then the dataset of that process can be excluded from the training

dataset for the best performing model.

To demonstrate this point, let pd be a process that is not independent; that is to say, there must

be a model mnd that is trained on the processes pi, pj but performs as well as a model trained on

pd. As other independent process datasets are aggregated on, any models whose training datasets

include pi, pj and omit pd will still perform well on the pd. Thus, the model that performs best on

the union of all the process datasets can omit pd as long as pi, pj is included. By repeating this

procedure, all the non-independent processes can be omitted to yield the ideal training dataset.

So, for a manufacturing environment that spans the full range of all the individual process

datasets, the best predictor model will be trained on an aggregated dataset that includes the dataset

of all independent processes. This environment is equivalent to one where the process runs have

relatively high fail rates due to volatile processing conditions.

3.5.2 Single-Process Model Performance

It is also important to understand how to best optimize a model for performance on a single

process, which is more representative of a low variance process than multiple processes. This

is found by examining Table 3.3 and determining which model has the smallest MSE in each

column. The best model for each process is the model trained only that process, except for TST;

the best model for that process was trained on CT+TST. This demonstrates that adding the data

of other processes into the training data dilutes the amount of representative process data for that

process, which generally causes the model performance to decrease. To gain more insight into how

aggregating data affects the model performance on a single process, Figs. 3.8a to 3.8d illustrate the

MSE of the best performing model as a function of the number of datasets used to train it.

Figs. 3.8b to 3.8d demonstrate that, generally, the performance of a model on a single process
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(a) CT Process (b) TST Process

(c) MIX Process (d) INV Process

Figure 3.8: These subfigures measure model performance by comparing their mean squared errors
when tested on the validation dataset of the stated process. From left to right, the number of
datasets used to train the model increases from 1 to 4 as stated in the x-axis, with the stated process
dataset always being included. Each bar represents the highest performing model for that number
of datasets.
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decreases as data from other processes is aggregated into the training dataset. This holds true for

both the CT and INV processes, but the MIX and TST processes deviate from the other 2 processes.

While the general trend for MIX as shown in Fig. 3.8c is that the single-process model perfor-

mance decreases with increasing aggregation, the model trained on 2 datasets performs unexpect-

edly poorly. This can be attributed to the fact that MIX is the most independent process. In the

previous section, MIX had the highest MSE when looking at models not trained on the process.

This means that MIX cannot be represented well by an aggregation of the other process datasets.

So in the case of single-process models trained on 2 datasets, MIX will be diluted the most com-

pared to the other 3 processes, which causes it to have an outlier in terms of performance.

TST actually demonstrates the inverse of the expected response where the single-process model

performance increases with increasing aggregation. This is likely due to the fact that TST had the

highest MSE when looking at models trained on that process among Figs. 3.7a to 3.7d. Because

even the models trained on the TST process dataset had mediocre performances on the TST vali-

dation dataset, it demonstrates that the Transformer method struggles to create a good model for

this dataset. But as more datasets are aggregated into the model, the model performance improves.

This demonstrates that data aggregation can also help improve model performance for processes

that are difficult to model with just their own process data.

From the multi-process and single-process analyses, it is seen that the ideal amount of data

aggregation depends on not just the characteristics of the process datasets, but also on the process

environment. If there are multiple processes with poor controls and large variability in between

runs, then the model should be trained on as many independent datasets as possible. For single pro-

cess models, while there is a general pattern for how data aggregation affects model performance

on single processes, there are enough exceptions that the pattern cannot be used to determine what

datasets will yield the model with the best performance. Thus, to further improve manufacturing

efficiency, there needs to be a method to choose which datasets to aggregate together to train a

predictor model for low-variance processes.
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Figure 3.9: Comparison of the Pearson Correlation Coefficient (PCC) values for each pair of pro-
cesses. The datasets used to calculate the PCC are the MSE values of a single-process model for
each process.

3.5.3 Heuristic-based Assessment of Datasets

Another way to analyze model performance for low-variance processes is to observe their per-

formance on the random-run dataset as described in the “Process Datasets” section. These datasets

represent a process environment where runs are expected to pass and where most runs have sim-

ilar kinetic parameters. Additionally, we will explore the heuristics described in the “Heuristic

Analysis Method” section to see if they can predict which datasets should be aggregated for a low-

variance process environment. The 2 proposed heuristics of covariance and PCC are examined,

and the values of the statistical methods for each pair of single-process models are shown below.

Note that the sign of the heuristic represents whether the relationship between the 2 datasets

is positively or negatively correlated. This relationship is not important, as we are only concerned

with how strong the correlation between 2 datasets is, not the direction of said correlation. Thus,

we are only interested in the magnitude of the calculated covariance and PCC. So, for each dataset,

we find the covariance and PCC between it and all the other datasets, which is shown in Tables 3.4
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Figure 3.10: Comparison of the covariance values for each pair of processes. The covariance is
calculated with the same datasets used to calculate the PCC.

and 3.5. Each entry is colored such that lower values are green and higher values are red.

Table 3.4: Average absolute covariance values for each dataset.

CT INV MIX TST

CT 1.00 1.87 0.57 0.72

INV 1.87 1.00 0.64 0.78

MIX 0.57 0.64 1.00 0.12

TST 0.72 0.78 0.12 1.00

Table 3.5: Average absolute PCC values for each dataset.

CT INV MIX TST

CT 1.00 0.95 0.43 0.81

INV 0.95 1.00 0.43 0.79

MIX 0.43 0.43 1.00 0.18

TST 0.81 0.79 0.18 1.00

With Tables 3.4 and 3.5, we can predict what the covariance and PCC will be for a model

trained on multiple datasets by following the procedure described in the “Heuristic Evaluation
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Method” section. Note that it is desired for the predicted heuristic value to be low. The lower the

predicted value, the less overlap there is between each constituent dataset, making that combination

of datasets more likely to better represent the overall process.

To test the performance of the two proposed heuristics, we created and ran four models on the

random-run dataset described earlier. Then, we evaluated the covariance and PCC heuristic for

each model to see how well they predict the ranking of the models. The results are summarized

in Table 3.6. The first 2 columns represent the true prediction ability of the model, the 3rd repre-

sents the true classification ability of the model, the 4th represents the predicted performance by

the PCC heuristic, and the 5th represents the predicted performance by the covariance heuristic.

Table 3.6: Ranking of 4 models.

Etch MSE Median SD% MSE Median Acc. Corr CoV

CT+INV+MIX 4.87× 10−7 1.95× 10−2 95.00% 0.603 1.027

CT+INV+TST 5.22× 10−7 2.41× 10−2 96.67% 0.850 1.123

CT+MIX+TST 5.30× 10−7 3.55× 10−2 96.67% 0.473 0.470

INV+MIX+TST 4.95× 10−7 2.42× 10−2 98.33% 0.467 0.513

Tr
ai

ne
d

O
n

All 1.78× 10−6 4.15× 10−2 93.33% 0.598 0.783

The true performance of each model shown in Table 3.6 is represented in the Acc. column.

From it, we can see that the model trained on the INV, MIX, and TST process datasets per-

formed the best. The PCC heuristic predicts this correctly, assigning it the lowest score. How-

ever, the covariance heuristic failed to do so, instead predicting that the model trained on the CT,

MIX, and TST process datasets would perform the best. Another point of comparison is to see

which heuristic makes the most correct predictions. The PCC heuristic correctly predicts that

CT+INV+MIX is ranked 4th, incorrectly predicts that CT+INV+TST is ranked 5th, correctly pre-

dicts that CT+MIX+TST is ranked 2nd, correctly predicts that INV+MIX+TST is ranked 1st, and

incorrectly predicts that All is ranked 3rd. Overall, it made 3 correct predictions. On the other

hand, the covariance heuristic correctly predicts that CT+INV+MIX is ranked 4th, incorrectly
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predicts that CT+INV+TST is ranked 5th, incorrectly predicts that CT+MIX+TST is ranked 1st,

incorrectly predicts that INV+MIX+TST is ranked 2nd, and incorrectly predicts that All is ranked

3rd for a total of only 1 correct prediction. For both metrics, the PCC heuristic outperformed the

covariance heuristic. Thus, these results demonstrate that the PCC heuristic is more accurate at

predicting the performance of aggregated dataset models than the covariance heuristic.

3.6 Conclusion

To supplement the growing need for increased semiconductor manufacturing efficiency, a novel

real-time etch rate predictor model was created with simulated process data. A multiscale method

that encompasses both the macroscopic and mesoscopic domains was used to simulate the real-time

evolution of atomic layer etching of aluminum oxide. With this method, four different, unique pro-

cess datasets were created with varying kinetic parameters. Then, predictor models were trained on

various combinations of these datasets. It was found that, for systems with high process variance,

aggregating all the datasets resulted in the best performance, but for systems with low process

variance, aggregating all the datasets would not result in the best performance. Because most man-

ufacturing environments strive for low process variance, it is thus necessary to determine a way

to estimate which datasets to aggregate for low process variance environments. We proposed two

possible heuristics to choose datasets to aggregate: covariance and the Pearson Correlation Coef-

ficient (PCC). After comparing model performances on a dataset of consecutive process runs, it

was found that the PCC heuristic was the best predictor of performance for models trained on ag-

gregated data. Further research into other possible heuristics, the many applications of an accurate

real-time predictor model, and the scalability of these findings to larger groups of datasets is still

needed, but the initial results indicate that such models can be effectively and easily created. In

another forthcoming work, we have demonstrated the approach presented in the present chapter

using industrial data.
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Chapter 4

Integration of On-Line Machine

Learning-Based Endpoint Control and

Run-to-Run Control for an Atomic Layer

Etching Process

4.1 Introduction

Electronic devices are an integral part of our modern society. They are used in everything

from personal computers and mobile devices to smart vehicles and medical equipment. While

there are many different types of electronic devices, all of them share a key feature: they are

all made of densely connected integrated circuits, which are in turn composed of semiconductor

transistors. Besides just the growing demand for the raw quantity of semiconductor chips, these

chips are also becoming more and more compact [76, 87]. Moore’s Law continues to hold true as

the semiconductor chips used in these electronic devices shrink and become more sophisticated [2].

Many new semiconductor device architectures, such as the gate-all-around structure, require the
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development of novel, high-precision manufacturing processes [56].

A major factor in the industry’s ability to continuously manufacture more and more sophis-

ticated chips is the usage of advanced equipment and processes, including extreme ultraviolet

(EUV) lithography [89]. Additionally, other critical process steps necessitate 3D, nanoscale preci-

sion, contributing to the ongoing semiconductor supply shortages [87]. Other processes capable of

achieving this high level of precision are Atomic Layer Etching (ALE) and Atomic Layer Deposi-

tion (ALD). These two processes are similar to traditional etching and deposition processes, except

they use half-reactions to etch or deposit a single atomic layer of material at a time [22, 34]. This

is an extremely high precision process, which is required to manufacture modern semiconductor

devices with tight process specifications [2, 75, 85]. For the purposes of this chapter, the ALE

of bulk Al2O3 is considered. This process consists of two steps: first, a precursor of hydrogen

fluoride (HF) is used to prepare the Al2O3 surface by fluorinating it. Then, an etching reagent of

trimethylaluminum (TMA) is used to etch the fluorinated surface [23, 42]. This cycle removes a

single layer of the Al2O3 substrate and can be repeated to remove multiple layers with a high level

of precision.

Besides advanced manufacturing methods, advanced process control methods are also vital in

the improvement of the manufacturing efficiency of semiconductor chips due to the high sensi-

tivities of these processes. For older etch processes, such as plasma-enhanced etch, a popular,

high-precision feedback control method that is still used today is endpoint (EP) detection [71, 88].

By measuring the ratio of gases in the outlet stream or the voltage of the plasma, the end time

of the process can be automatically determined in real time. The advantages of EP-based process

control are twofold: product quality is maximized, as an accurate EP control system ensures that

the reaction is carried out to completion. Secondly, reagent wastage is minimized, as the process

will terminate soon after the reaction is completed. This is also an in-situ feedback control system,

which means that there are no ex-situ variables that require several iterations to tune [54]. An-

other popular control strategy is Run-to-Run (R2R) control, which is a widely used ex-situ control
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method and has been actively studied in the context of ALE processes [103]. R2R controllers oper-

ate on a batch-to-batch basis, adjusting process parameters between batches by using the measured

output values from previous runs as feedback, unlike real-time feedback controllers, which make

continuous adjustments. Rather, this batch-based approach enables consistent process optimiza-

tion, helping to manage variations and disturbances that may arise during production.

While EP control systems are common for standard semiconductor etch processes, they have

yet to be implemented for ALE processes. Most likely, this can be attributed to the high difficulty

in relating a real-time measurable parameter to the completion of the process and the fact ALE

processes focus on manufacturing cutting-edge devices that make traditional endpoint detection

methods difficult to implement [80]. In a previous work, the authors demonstrated that machine-

learning methods can be used in conjunction with process simulations to train a transformer model

that uses real-time wafer surface pressure data as an input to predict whether a wafer is fully

processed as an output for the ALE process described above [91]. This chapter continues on by

using this transformer as a basis for a real-time endpoint feedback controller.

To minimize the financial and time-based costs of real-world testing, multiscale computational

fluid dynamics simulations are widely used to model semiconductor manufacturing processes, in-

cluding plasma-enhanced chemical vapor deposition [13, 109], atomic layer deposition [63], and

atomic layer etching [103]. In this chapter, a multiscale simulation approach is applied, which

combines macroscopic CFD simulations of a discrete feed reactor with mesoscopic kinetic Monte

Carlo simulation. This integrated method provides a detailed and accurate representation of the

actual physical processes.

This chapter explores the integration of both a real-time endpoint (EP) feedback control sys-

tem and an ex-situ run-to-run (R2R) controller to ensure the optimal operation of an atomic layer

etching (ALE) process in an industrial manufacturing environment with process disturbances.

First, Section 4.2 summarizes the ALE process and how the process is simulated. Next, Sec-

tion 4.3 describes the formulation and implementation of the EP control system. Section 4.4 does
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the same for the R2R control system. Finally, Sections 4.5 and 4.6 analyze how effective various

combinations of EP and R2R controllers are at mitigating the effects of a kinetic process distur-

bance across multiple process runs.

4.2 Process Description

4.2.1 Atomic Layer Etching

Atomic layer etching (ALE) is a modern semiconductor fabrication technique that uses two

alternating half-reactions to achieve atomic-level control over the etching process [34]. Crucially,

both of these half-reactions are self-limiting; this means that the reaction naturally slows down as

it approaches completion. For a well-designed ALE process, overprocessing will only result in

wasted reagents and will not misprocess the wafer.

The specific ALE process that this chapter examines is the etching of Al2O3 by the following

reactions:

Al2O3 (s) + 6HF (g) → 2AlF3 (s) + 3H2O (g) (Reaction A)

2AlF3 (s) + 4Al(CH3)3 (g) → 6AlF(CH3)2 (g) (Reaction B)

In Reaction A, the gaseous hydrofluoric acid (HF) precursor fluorinates the Al2O3 surface. Then,

in Reaction B, the gaseous trimethylaluminum (TMA) precursor etches away the fluorinated ALF3

surface created in Reaction A, releasing a gaseous byproduct of dimethylaluminum fluoride

(DMAF) [42].

The two half-reactions can each be split into multiple elementary reactions [100]. Generally

speaking, these elementary reactions can be sorted into one of two categories: adsorption/desorption

reactions and nonadsorption reactions. The kinetic rate constant of the former is modeled by the

Collision Theory equation shown in Eq. (4.1) and that of the latter is modeled by the Transition
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State Theory equation shown in Eq. (4.2).

kads(Pa, T ) =
σaPaAsite

Za

√
2πmakBT

(4.1)

where a is the adsorbate (HF, TMA), σa is the sticking coefficient between the adsorbate and the

Al2O3 surface, Pa is the adsorbate’s partial pressure on the wafer surface, Asite is the surface area

of a single Al2O3 binding site, Z is the adsorbate’s coordination number, ma is the adsorbate’s

atomic mass, kB is the Boltzmann constant, and T is the surface temperature of the wafer.

knonads(T ) = ν exp

(
−EA

RT

)
, ν =

kBT

h
(4.2)

where ν is the pre-exponential factor, h is Planck’s constant, EA is the activation energy, and R is

the ideal gas constant.

With a kinetic rate constant equation for each elementary reaction, the overall reaction progres-

sion can be simulated with a kinetic Monte Carlo (kMC) algorithm. The algorithm takes place in

a 300×300 grid that represents a larger reaction zone. Each point on the grid represents a reaction

site, and the algorithm evaluates how the 90,000 reaction sites progress through time. The specifics

of the kMC simulation method can be found in an earlier work by the authors, but a brief summary

of the algorithm’s implementation is given below [92].

1. Randomly select a reaction site

2. Calculate ktot =
∑n

i−1 ki

3. Find j such that
∑j−1

i=1 ki ≤ γ1ktot ≤
∑j

i=1 ki

4. Calculate δtk =
− ln γ2
ktotA

where n is the number of possible reactions for the selected reaction site, ki is a reaction rate

constant for a possible reaction, ktot is a site-specific constant, j is the selected reaction, γ1, γ2
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are randomly generated numbers that are evenly distributed within the range (0, 1], A is the total

number of active sites, and δtk is the time elapsed for that reaction. Another way to interpret

Steps 2 and 3 is that they are randomly selecting a reaction for the site selected in Step 1, with the

probability of each possible reaction being weighted by the reaction rate constant of that reaction.

And Step 4 is calculating how long the reaction takes to occur within the context of the entire grid,

with δtk∼1e-6 s. Thus, as the kMC algorithm is repeated, it will simulate the surface reaction

progression at a very fine resolution.

4.2.2 Discrete Feed Reactor

The ALE process takes place inside a Discrete Feed Reactor (DFR), pictured in Fig. 4.1. This

reactor operates at a constant temperature and pressure, and it allows reagents to continually flow

into the reactor and byproducts to be flushed from the reactor. These characteristics all help ensure

precise control over the process, which enables the process control techniques discussed later in

this chapter. The precursor for the reaction, along with a carrier gas of N2, enters the reactor from

the inlet at the top. These gases are dispersed by a showerhead plate, which improves the precursor

distribution on the wafer at the bottom of the reactor. Finally, any unused precursor and byproducts

evacuate the chamber through the outlet at the sides [92].

The reactor is simulated through a Computational Fluid Dynamics (CFD) software called

ANSYS Fluent, which calculates the unsteady-state pressure evolutions within the reactor. All

the boundaries of the reactor are simulated as inert walls, except for three areas that are shown

in Fig. 4.1: the inlet has a set mass flowrate as its boundary condition, the outlet has a set nega-

tive pressure differential as its boundary condition, and the wafer surface is modeled as a reaction

zone where the mass source fluxes are calculated by the mesoscopic kMC simulation described

in Section 4.2.1. Of note, the wafer surface is separated into 5 sections as shown in Fig. 4.2; this

allows the collected process data to contain information regarding the reaction progression across

the wafer itself, which is a crucial process metric. Given these boundary conditions, the fluid vol-
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Figure 4.1: 3D representation of the discrete feed reactor and its components.

ume of the reactor is then divided into a mesh so that the characteristic mass, momentum, and

energy transport equations shown in Eqs. (4.3) to (4.5) can be solved numerically.

∂ρ

∂t
+∇ · (ρ−→v ) = Sm (4.3)

∂

∂t
(ρ−→v ) +∇ · (ρ−→v −→v ) = −∇P +∇ · (τ) + ρ−→g +

−→
F (4.4)

∂

∂t
(ρE) +∇ (−→v (ρE + P )) = −∇

(
Σhj

−→
J j

)
+ Sh (4.5)

where ρ is the gas-phase species density, −→v is the velocity of said species, Sm is the source gen-

eration and consumption flux of that species, P is the operating pressure of the reactor, τ is the

normal two-rank stress tensor, −→g is the gravitational acceleration constant,
−→
F is the force acting

on the system, E is the accumulated rate of system energy, Sh is the energy source generation or

consumption, hj is the sensible enthalpy flux of gas species j, and
−→
J j is the mass diffusion flux of

gas species j.
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Figure 4.2: Top-down view of the various reaction zones considered in the overall simulation.

The simulation is run with an integration timestep of 0.001 s, which is how often Eqs. (4.3)

to (4.5) are solved. Additionally, it was found that the operating conditions listed in Table 4.1 result

in both half-reactions being fully processed within 2 s [100].

Table 4.1: Operating conditions used for all the ALE simulations in this chapter.

Variable Value
Operating Temperature 573 K

Operating Pressure 300 Pa
Inlet Mass Flowrate 1e-5 kg/s

Outlet Pressure -200 Pa
Reaction A HF Inlet Mole Fraction 0.1

Reaction B TMA Inlet Mole Fraction 0.5

4.2.3 Multiscale Model

Due to the self-limiting nature of the ALE half-reactions, the reaction rate is not constant;

it gradually slows down as the reaction approaches completion. Thus, the mesoscopic kMC and

macroscopic CFD simulations cannot be run independently as the former affects the latter, and vice
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versa. To link the two simulations and increase the accuracy of the overall simulation, a multiscale

framework is used.

The multiscale coupling method that conjoins the CFD and kMC simulations is shown in

Fig. 4.3. The simulation starts by loading a a steady-state simulation of the CFD model where

the input is pure N2; as there is no reagent, the kMC simulation is inactive. Then, the unsteady-

state CFD model with the inlet parameters listed in Table 4.1 is ran for a single timestep of 0.001 s.

Once the CFD simulation converges, the partial pressures and temperature at each wafer section

are sent to their own kMC simulation, which makes for 5 independent kMC simulations. Each

simulation then calculates the reaction rate constants and extents of reaction for the next 0.001 s

that the CFD simulation is about to simulate. These extents of reaction are converted into mass

source generation and consumption fluxes, Sm, and used in the CFD simulation of the following

timestep. This constant flow of information persists throughout the entire multiscale simulation to

ensure both an accurate macroscopic CFD simulation and an accurate mesoscopic kMC simula-

tion.

Each simulation represents a full process of a half-reaction, producing two important time-

series datasets: the absolute pressure on the wafer surface, and the reaction completion percentage,

or coverage, on the wafer surface. Both datasets consist of 5 data points at each timestep due to

the 5 reaction zones, and an example of the former is shown in Fig. 4.4b. However, the latter is

processed to yield the coverage mean and the coverage standard deviation, as seen in Fig. 4.4a,

because these two metrics directly determine if a wafer was successfully processed or not.
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Figure 4.3: Graphical representation of the information flow in the multiscale model.

4.3 Endpoint Controller Methods

4.3.1 Endpoint Controller Description

Due to the sensitive nature of bleeding edge manufacturing techniques, process control meth-

ods are inherent assumptions. For example, proportional-integral (PI) controllers are commonly

used to control the temperature and pressure of etching and deposition reactors [61]. While PI con-

trollers work well for on-line measurable process variables to drive them to the requested setpoints,

they are not suitable when the primary control objective is to control a key process parameter that

cannot be measured in real-time. For example, the reaction coverage is one such parameter that can

only be measured once the processing step is complete. Rather, a common process control method

for well-characterized processes such as plasma-enhanced etch is endpoint (EP) control [71]. An
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(a)

(b)

Figure 4.4: Example of the coverage progression data (a) and the wafer surface pressure progres-
sion data (b).
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EP controller uses some sort of signal, such as a voltage change, as a flag to end the desired pro-

cess. However, for the ALE process examined in this chapter, there is no such indicator. Rather,

this chapter uses a data-driven transformer model to act as the indicator common in other EP con-

trollers. Specifically, real-time pressure data is fed to the transformer model, which uses it to

predict whether the process is complete. If the process is complete, then a termination signal is

sent, and the process ends; if the process is not complete, then no signal is sent, and the process

continues. This control system is entirely dependent on the accuracy of the transformer model and

its predictions. Thus, it is vital that the transformer model is properly optimized and implemented.

The real-time endpoint detector developed in this chapter is based on a binary classifier model

that uses real-time pressure data to determine whether the given ALE half-reaction has reached

completion. If so, the controller ends the reaction and initiates chamber purging; otherwise, the

process continues. The endpoint controller is activated 0.5 s into the process, as it is impossible

for the reaction to finish any earlier than this. Once the termination signal is received, the end-

point controller is also deactivated as the reaction cannot be restarted. An optimal detector will

ensure full wafer processing without wasting any precursors or time, enhancing cost-effectiveness

and efficiency. However, creating such a detector is challenging, as its performance depends on

accurately correlating inputs to outputs. Due to inherent limitations of the process data, it may not

achieve perfect control under all conditions, leading to trade-offs discussed in later sections.

4.3.2 Transformer Model Description

To train the transformer model for the classification task described above, a total of 240 pro-

cess runs with unique run conditions were simulated. Each dataset can be defined by a naming

scheme with three components: Reaction, Variable, and Number. There are two possible choices

for Reaction: Reaction A or Reaction B. Variable describes the general category of process con-

dition the run was simulated under. For example, “TST” affects the pre-exponential factor, or ν,

of Eq. (4.2); “CT” refers to the sticking coefficient, or σ, of Eq. (4.1); “INV” has σ and ν in an
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inverse relationship; “PRESS” refers to the operating pressure inside the reactor. Finally, Number

describes the exact process conditions according to Table 4.2. Each range consists of 40 points,

which evenly span the range of each process condition denoted in the columns. σ represents the

sticking coefficient found in Eq. (4.1), ν represents the pre-exponential factor in Eq. (4.2), and P

is the operating pressure. When taken all together, “A_CT_23” refers to a process run for Reaction

A with run parameters of σ = 1.05, ν = 1.0, P = 300.

Table 4.2: List of the ranges for each variable.

Variable σ Range ν Range P Range
TST [1.0,1.0] [0.5,1.475] [300,300]
MIX [0.5,1.475] [0.5,1.475] [300,300]
INV [1.5,0.525] [0.5,1.475] [300,300]

PRESS [1.0,1.0] [1.0,1.0] [200,395]

Finally, each process run is broken down into smaller input sequences, which is simply the

pressure dataset fed to the transformer model. These input sequences represent the variable-length

nature of the actual data that the EP controller is to be used on. Because each process run is

simulated for 3.0 s, multiple input sequences can be extracted per process run for the purpose

of model training. Specifically, the entire 3.0 s run can be separated into 26 input sequences of

varying length that evenly span from 0.5 s to 3.0 s. Note that the first input sequence considered is

for t = 0.5 s because it is considered impossible for either reaction to reach full coverage before

then. Each of these variable-length input sequences have an associated output of whether the run

is complete or not. In this manner, two transformer models are trained, one for each reaction, each

on 1920 input sequences.

The ultimate goal of the EP controller is to take in input sequences of variable-length, time-

series data and output a binary classification of whether the process is complete. There are a

variety of data-driven machine learning model architectures that can handle this task, such as re-

current neural networks (RNNs), long short term memory (LSTM) networks, and transformers. In
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a previous work, it was found that transformers perform the best when handling time-series in-

put data [91]. While both RNNs and LSTM networks can handle time-series data through proper

padding and masking operations, they still have their own challenges. RNNs cannot contextualize

data across a long time period, “forgeting” about earlier data. On the other hand, LSTM networks

can only process data in a sequential manner, making it impossible to form any long-term corre-

lations. In comparison, the transformer’s encoder/decoder structure allows it to retain information

across long time periods and extract complex relationships. Transformer networks are also trained

faster, as they have a parallel structure that naturally lends itself towards graphical processing units

(GPUs). As RNNs and LSTM networks have sequential structures, they cannot take advantage of

a GPU’s powerful processing capabilities. Thus, the EP controller’s process model is based on a

data-driven transformer.

4.3.3 Transformer Model Training

Before discussing the transformer architecture, it is important to understand the data used to

train it. The input data sequence is the variable-length, time-series pressure profile described

in Section 4.2.3, and the output data is whether that pressure profile would result in a completed

reaction. While the output data is stable, the raw input data has large, sudden spikes that are a

natural result of the numerical solving process, as seen in Fig. 4.5. These spikes occur because the

numerical solution method is trying to minimize the overall error of the entire reactor’s pressure

profile, not just that of the wafer surface pressure. While a transformer model can still be trained

on such data, it is obviously nonideal as the noise will reduce the model’s predictive ability.

To clean the wafer pressure input data, two steps are taken. First, all outliers are dropped. For

this problem, the pressure is generally confined to 200 ± 1 Pa; thus, all pressure spikes/drops of

more than 1 Pa were labeled as outliers and dropped from the data. As an example, after this step

is taken, the raw input data shown in Fig. 4.5 becomes the data shown in Fig. 4.6a. Second, the

data is further smoothed by applying a rolling average. A window of 3 data points was used to
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Figure 4.5: Example of the raw wafer surface pressure input data. The large pressure spikes and
sharp changes make it nonideal for training a transformer model

avoid removing critical information, and the results can be seen in Fig. 4.6b. Once the input data

sequence is successfully cleaned, it can be used to train and test the transformer model.

The EP controller examined in this chapter uses a transformer model, and its encoder-decoder

architecture is used to correlate the wafer surface pressure to process completion. The overall struc-

ture of the transformer is shown in Fig. 4.7. Specifically, each block has a multi-head self-attention

mechanism [86] that relates each element of the input sequence data to each other element; this

allows the model to capture process behavior that varies over time. The real-time pressure data is

fed into the model through an input layer. Following that, it is embedded by a dense layer with di-

mension 8 that performs a positional encoding operation that provides information regarding how

the time-series elements are ordered. Inside the encoder block, there is an internal FNN with a

hidden layer of 64 neurons. Two encoder blocks with multi-head attentions are stacked together

in a serial manner. The outputs of the last encoder block are combined through a global average

pooling operation that makes the output vector have the same dimension regardless of the length

of the input sequence. This output is then fed into the final FNN, which has 2 layers of 64 neurons
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(a)

(b)

Figure 4.6: Example of the wafer surface pressure input data after points more than 0.5 Pa have
been removed (a) and a rolling average of 3 points is implemented (b).
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Figure 4.7: Structure of the Soft Sensor Transformer Network.
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each, and it outputs the final decision with a sigmoid activation function. The hyperparameters of

the soft sensor transformer model are summarized in Table 4.3.

Table 4.3: Hyperparameters for the transformer model.

Model Hyperparameter Value
Input Dimension 5
Embedding Dimension 8
Number of Heads 2
FNN Neurons 64
Dropout Ratio 0.1
Encoder Layer Number 2
Final FNN Layer Number 2
Final FNN Neurons 64
Output Dimension 1

4.4 Run-to-Run Controller Methods

4.4.1 Run-to-Run Controller Description

The Run-to-Run (R2R) controller is an ex-situ controller, which means that it can only apply

control actions after a process run is completed. Though it lacks real-time precision, it has access

to higher-quality process data. For the ALE process, while the endpoint controller uses surface

pressure as input, the R2R controller can use the final coverage as its input; this is the most impor-

tant process metric, which allows the R2R controller to make finer adjustments.

Because the R2R controller only takes place after the process is completed, the final coverage

that it uses as its input is actually the product of Reaction A’s coverage and Reaction B’s coverage;

this final coverage represents the percentage of the wafer that is fully processed (underwent both

Reaction A and Reaction B). While there are many parameters that the R2R controller can adjust,

one of the goals of this chapter is to evaluate its efficacy when used in conjunction with the EP
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controller described in Section 4.3. Thus, all the R2R controllers examined in this chapter only

adjust the process time in response to the final coverage.

4.4.2 Run-to-Run Process Model

The R2R controller’s control actions are generally based on a process model that describes the

relationship between the process outcome and the control variable. Most such models assume a

linear relationship between the outcome and the control variable, as this assumption is generally

valid for small control actions. Such a linear model has the following general form:

y = a · x+ b

where y represents the target output, x is the control variable, a is the slope, and b is the intercept.

Note that a and b are parameters that relate the behavior of the control variable to the output

variable.

In this chapter, both the mean and the standard deviation (std.) of the final coverage must be

controlled, as uniformity is a critical process metric in semiconductor manufacturing. Thus, there

are two R2R controllers, one for each process metric. However, the calculation of the process

time, which is the input, requires some nuance. Because the final coverage is a process metric

that is indicative of whether both half-reactions were successfully completed, it is impossible for

the R2R controller to independently adjust the two half-reactions’ process times. Thus, the R2R

controllers’ process models use a process time offset term, δ, as a shared input that determines the

process times for both half-reactions.

Another challenge for implementing R2R control of ALE processes is that both the mean and

std. profiles exhibit highly nonlinear behavior, which poses a challenge for traditional linear control

models. A poor process model can cause the model may deviate significantly from the actual

physical process and result in poor control performance [104]. A solution to this issue involves
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applying nonlinear transformations to the input and output parameters so that the transformed input

and output have a more linear relationship. Thus, the two models will both have the form shown

below.

ψc = αc · χc + βc, c = m, s (4.6)

where c is a subscript that can be either m for the final coverage mean or s for the final coverage

std., ψc is the transformed output metric c of the process, αc is the slope for process metric c, χc is

the transformed input for the process metric c, and βc is the intercept for process metric c.

This study uses a median effect function [104] to transform the final coverage mean and a

simple exponential function to transform the final coverage std. It was empirically determined that

these transformed ouputs are linearly related to ln δm and δs, respectively. The equations of the

transformed terms are shown below:

ψm = ln
covm

1− covm
, χm = ln(δm + 0.75) (4.7a)

ψs = ln covs, χs = δs + 0.75 (4.7b)

where covm is the final coverage mean, covs is the final coverage std., δm is the process time offset

for the final coverage mean equation, and δs is the process time offset for the final coverage std.

equation. Both the nonlinear and linear fits for the final coverage mean are shown in Figs. 4.8a

and 4.8b, and the fits for the final coverage std. are shown in Figs. 4.8c and 4.8d. The R2 score

of the fitting for the final coverage mean and final coverage std. are 0.997 and 0.96, respectively.

These scores show that the fitted curve is highly accurate and can be used to build a process model.

The kink in Fig. 4.8c is a result of the difference in magnitude of the kinetic rate constants. For

the HF reaction, there is one surface reaction that is 1000 times larger than the rest. Thus, when

the substrate reaches that step, large parts of the wafer will effectively pause at the slow reaction

while the remainder finishes reacting. This causes the standard deviation to momentarily increase
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(a) Final coverage mean, Nonlinear Space (b) Final coverage mean, Linear Space

(c) Final coverage std., Nonlinear Space (d) Final coverage std., Linear Space

Figure 4.8: Nonlinear fittings of the two coverage criteria vs. process time. The orange line is the
predicted coverage, and the blue line is the actual coverage.
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before settling back down.

4.4.3 Estimated Weight Moving Average Method

Even with a highly accurate process model, inherent noise within the system or process distur-

bances that shift the process model may affect the R2R controller’s ability to maintain the system

at the desired setpoint. One widely used methodology to mitigate these challenges is the Exponen-

tially Weighted Moving Average (EWMA) method, which updates the αc, βc tuning parameters

in Eq. (4.6) by taking the exponentially weighted moving average of its past values. This effectively

gives the controller information regarding its past error, which allows it to adjust and overcome the

above challenges.

In real-world applications, the slope αc is typically assumed to remain constant, even under

various disturbances, while the intercept βc is set to be adjustable [28]. Thus, the updating mecha-

nism for the intercept β for process metric c is defined by the following equation [14]:

βc,i+1 = (1− λ)βc,i + λ(ψc,i − αcχc,i) (4.8)

where βc,i+1 is the updated intercept, βc,i is the intercept used in the previous run, ψc,i is the

transformed output of the previous run, αc is the slope, and χc,i is the transformed input of the

previous run. As all of the terms for the previous run are already known, βc,i+a can be easily

solved for each controller as follows.

βm,i+1 = (1− λ)βm,i + λ

(
ln

covm,i

1− covm,i

− αm ln (δm,i + 0.75)

)
βs,i+1 = (1− λ)βs,i + λ (ln covs,i − αs(δs,i + 0.75))

Then, βc,i+1 can be plugged into Eqs. (4.6) and (4.7) to find χc,i and subsequently δc,i+1.
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The exact solution for the final coverage mean (c = m) is shown below.

ln
covm,d

1− covm,d

= αmγ + βm,i+1, γ = ln (δm,i+1 + 0.75) (4.10a)

γ =

(
ln

covm,d

1− covm,d

− βm,i+1

)
/αm

δm,i+1 = eγ − 0.75 (4.10b)

where Eq. (4.10a) is the full form of Eq. (4.6) with the nonlinearm terms from Eq. (4.7) substituted

in, Eq. (4.10b) is the final equation that the R2R controller uses to find the process time offset,

covm,d is the desired final coverage mean, γ is a placeholder variable as defined in Eq. (4.10a), and

δm,i+1 is the process time offset for the next run as determined by the final coverage mean R2R

controller. Similarly, the exact solution for the final coverage std. (c = s) is as follows:

ln covs,d = αs(δs,i+1 + 0.75) + βs,i+1 (4.11a)

δs,i+1 =
ln covs,d − βs,i+1

αs

− 0.75 (4.11b)

where Eq. (4.11a) is the full form of Eq. (4.6) with the nonlinear s terms from Eq. (4.7) substituted

in, Eq. (4.11b) is the final equation that the R2R controller uses to find the process time offset,

covs,d is the desired final coverage std., and δs,i+1 is the process time offset for the next run as

determined by the final coverage mean R2R controller.

Once both controllers have found their respective δc, the final δf is set as the largest of the two

to minimize underprocessing.

δf,i+1 = max(δm,i+1, δs,i+1)

where δf,i+1 is the final process time offset that is used to determine the process times of the next

run, δm,i+1 is the process time offset found by the final coverage mean controller, and δs,i+1 is the

process time offset found by the final coverage std. controller. Then, Eq. (4.12) is used to find the
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process times for the next run.

tA,i+1 = tA,0 + δf,i+1 (4.12a)

tB,i+1 = tB,0 + δf,i+1 (4.12b)

where tA,i+1 is the process time of the next HF reaction, tA,0 is the initial process time for the HF

reaction, tB,i+1 is the process time of the next TMA reaction, and tB,0 is the initial process time for

the TMA reaction.

4.5 Endpoint Controller Results and Analysis

4.5.1 Endpoint Controller Testing Dataset

The EP controller’s main objective is to accurately stop the process. To evaluate its ability to

do so, the EP control system is tested on complete runs with different parameters from the training

simulations; these runs are called testing runs to differentiate them from the training/validation

data used to develop the transformer model. The main difference between the testing data and the

training/validation data is that the testing data is examined in real time rather than separated into

multiple input sequences. Specifically, every 0.1 s, the EP controller receives the real-time wafer

surface pressure data and makes a decision about whether to terminate or continue the process.

The point at which the EP controller first decides to terminate the process is referred to as tep,

and it represents the end time as determined by the EP controller. For the sake of analysis, each

process run is simulated to 3.0 s regardless of the tep. This is so that the optimal end time, ttr, can

be determined and compared to tep.

An important note is that undershooting the predicted end time (tep < ttr) is much worse than

overshooting (tep > ttr). When the model overshoots, it effectively makes the process run longer

than what is necessary. While this wastes some reagent and time, the wafer is still successfully
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Figure 4.9: The blue line represents the final coverage mean throughout the run, the green line is
the final coverage std., the vertical dotted red line is tep, and the vertical dotted purple line is ttr.

104



processed. Conversely, when the model undershoots, the wafer is underprocessed and will most

likely have to be thrown away. Thus, undershooting is much worse than overshooting. For this

reason, the error metric is weighted so that undershooting is more heavily penalized.

e =

 |tep − ttr| if tep > ttr

2|tep − ttr| otherwise
(4.13)

where e is the error metric used to evaluate the EP system’s performance, tep is the end time

predicted by said model, and ttr is the optimal end time. For example, in Fig. 4.9, the predicted

end time is 1.4 s while the true end time is 1.7 s. Thus, the error associated with this run is 0.6.

Section 4.5.1 will be used to evaluate the EP controller’s efficacy at mitigating various process

disturbances in two ways: first is its robustness, or how changing the training data themselves

affects the model performance. Then, the controller is evaluated on its consistency, which is how

noise in the training data affects the EP control system.

4.5.2 Robustness

To understand how the training data affects the model performance when under various distur-

bances, multiple EP controller are first trained on the datasets described in Section 4.3.2 that have

datasets with either pure kinetic, pure pressure, or both kinetic and pressure disturbances. Note that

the kinetic disturbance is directly applied to the reaction rate k rather than to any individual con-

stant, which was the case for the training data. Then, each EP controller is run on testing datasets

with the same set of disturbances, and the error as described in Section 4.5.1 is calculated for each

run. The results for Reaction A are shown in Table 4.4 and the results for Reaction B are shown

in Table 4.5.

Generally speaking, the EP controller improves when it is trained on the types of disturbances

that it is tested on. For example, when the system is trained on a kinetic disturbance from Reaction
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Table 4.4: Error comparison for Reaction A with a Kinetic/Pressure spread.

Training Data Validation Data
Kinetic Pressure Both

Kinetic 0.467 1.060 0.915
Pressure 0.593 0.313 0.285

Both 0.613 0.413 0.440

Table 4.5: Error comparison for Reaction B with a Kinetic/Pressure spread.

Training Data Validation Data
Kinetic Pressure Both

Kinetic 0.153 1.707 1.790
Pressure 0.733 0.164 0.250

Both 0.373 0.267 0.310

A, it performs better on the kinetic test (e = 0.467) compared to the pressure test (e = 1.060),

and vice versa. Of note, while it is vital to train the model on the disturbances it is expected

to face, the pressure disturbance has a much larger impact than the kinetic disturbance. For both

Reaction A and Reaction B, when examining the column where the validation data has both kinetic

and pressure disturbances, the model trained on only pressure disturbance data outperforms all

others. This indicates that the pressure disturbance plays a much larger role in the model’s ability

to understand the process than the kinetic disturbance, to the point where a model trained on only

the pressure disturbance outperforms a model trained on both, even when validated on a dataset

with both disturbances. This shows that the optimal strategy for training an EP controller is to

simply use training data similar to what the model will be used on. In industry, this is trivial as

each process has many years of data [106].

It is worth mentioning that the impact of the pressure disturbances may not come from it af-

fecting the actual kinetics of the reactions; usually, kinetic disturbances have a greater effect on the

actual reaction rates and ttr. Rather, this phenomenon is most likely due to how the model uses the

surface pressure of the wafer as its input. Additionally, the range of the surface pressure, ±5 Pa, is
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relatively narrow for each run compared to the scale of pressure disturbance, ±100 Pa. This means

that a good model must necessarily adapt to the wide range of pressure disturbances. This explains

the poor performance of the models trained on kinetic data that are tested on runs with pressure

disturbances; the pressure disturbances shifts the wafer surface pressure far beyond the pressure

range that the model is used to, which makes all the input sequence’s values seem abnormal.

4.5.3 Consistency

It is also important to understand how well the EP controller can handle noise, which is referred

to as its consistency. Each reaction was run ten times, each with a randomly selected ν and σ, which

are the same variables used in Table 4.2, and no other process disturbances. The value of these two

variables were selected from a Gaussian distribution centered around 1.0 with a standard deviation

of 0.1 because this distribution follows the industrial standard of an average fail rate of 2%. The

results of the twenty total runs are shown in Tables 4.6 and 4.7.

Table 4.6: Evaluation of Reaction A with no disturbances and moderate noise. Average error is
0.47.

No. ν σ ttr tep Error
Run 1 0.939 1.020 1.3 1.3 0.00
Run 2 1.120 0.969 1.0 1.5 0.50
Run 3 0.922 1.030 1.0 1.5 0.50
Run 4 0.930 0.999 1.1 2.1 1.00
Run 5 0.947 0.923 1.1 1.7 0.60
Run 6 1.010 0.910 1.0 1.5 0.50
Run 7 1.160 0.938 1.8 2.0 0.20
Run 8 1.150 0.819 1.1 1.5 0.40
Run 9 0.934 1.140 1.2 2.1 0.90

Run 10 0.888 0.882 1.2 1.3 0.10

Reaction A has a higher average error (e = 0.46) compared to Reaction B (e = 0.08), which

suggests that the model for Reaction A is not as accurate as the model for Reaction B. This result
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Table 4.7: Evaluation of Reaction B with no disturbances and moderate noise. Average error is
0.08.

No. ν σ ttr tep Error
Run 1 1.080 0.916 1.2 1.2 0.00
Run 2 0.979 0.856 1.4 1.3 0.20
Run 3 1.090 1.050 1.2 1.3 0.10
Run 4 1.070 1.070 1.2 1.3 0.10
Run 5 0.877 1.000 1.4 1.6 0.20
Run 6 0.954 1.230 1.3 1.3 0.00
Run 7 1.060 1.080 1.2 1.3 0.10
Run 8 0.964 0.913 1.3 1.3 0.00
Run 9 0.946 0.995 1.3 1.4 0.10

Run 10 1.170 1.090 1.2 1.2 0.00

is corroborated by Tables 4.4 and 4.5, as the average error of a model when tested on the same

dataset it was trained on is 0.407 for Reaction A and 0.209 for Reaction B. Both average errors

are comparable to the ones in Tables 4.6 and 4.7; thus, the EP controller for Reaction A performs

worse than that of Reaction B. But regardless of the model’s baseline prediction ability, the results

for Reaction B show that the EP method is resistant to noise when the model is trained on datasets

where those parameters are varied.

4.6 Run-to-Run Controller Results and Analysis

4.6.1 Run-to-Run Environment

The EP controller shows great potential for mitigating common disturbances in an industrial

manufacturing environment. However, the controller may not be possible to implement for all

processes, as the controller for Reaction A was not as consistent as that of Reaction B even though

they were trained on similar datasets. Thus, there is still motivation to design more complex control

schemes for processes that are hard for data-driven machine learning models to learn.
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A common control system for ALE processes is ex-situ run-to-run (R2R) control, which adjusts

process parameters after directly measuring the process outcome after the process is complete.

Thus, this section examines how EP and R2R control systems can work together under various

frameworks. Specifically, all the control systems will be tested under the same conditions; the

process will experience a sudden shift where all the kinetic activity is lowered by 40%. This is a

relatively large in comparison to the shifts examined for the pure EP controller, and any failure to

account for this shift will result in scrapped material and wasted time. The ideal combination of

control systems will quickly adjust the process time so that the final coverage criteria are met with

minimal over-processing.

The control systems will be evaluated on how many runs they take to return to the target final

coverage criteria and how much overprocessing occurs. Because there are two final coverage

criteria, a total of three error calculations are made:

ϵm =
L∑
i=1

cm,i ·
|covm,i − 0.96|

L
, where cm,i =

 1 if covm,i ≥ 0.96

2 if covm,i < 0.96
(4.14a)

ϵs =
L∑
i=1

cs,i ·
|covs,i − 0.02|

L
, where cs,i =

 1 if covs,i ≤ 0.02

2 if covs,i > 0.02
(4.14b)

ϵt =
L∑
i=1

0.01 · tA,i + tB,i

L
(4.14c)

where ϵm is the error term associated with the final coverage mean criterion, cm,i is a scaling factor

based on if the final coverage mean criterion was met for run i, covm,i is the final coverage mean

of run i, L is the number of process runs, ϵs is the error term associated with the final coverage

std. criterion, cs,i is a scaling factor based on if the final coverage std. criterion was met for run i,

covs,i is the final coverage std. of run i, ϵt is the error term associated with overprocessing, tA,i is

the process time for the HF reaction for run i, and tB,i is the process time for the TMA reaction for
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run i. The final, comprehensive error term is found by simply summing up the three error terms

of Eq. (4.14) as shown below:

ϵf = ϵm + ϵs + ϵt (4.15)

where ϵf is a comprehensive error term used to evaluate the various control systems presented in

this chapter.

Of these control systems, first is a standalone EWMA-R2R system that is meant to establish a

baseline expectation for the following control systems. Second, the EP system will be evaluated

on its own to better compare real-time and ex-situ controllers. Finally, combined systems will be

examined: an EP+SCC system, and an EP+EWMA system. “SCC" stands for Standard Case Cor-

rector, which is a newly developed R2R ex-situ controller. All of these systems will be compared

through two metrics. First and foremost, they will be evaluated on how many wafers are scrapped,

or thrown away; this occurs when the final coverage criteria is insufficient. If two control systems

have the same number of scrapped wafers, then they will be evaluated on how much time they

waste on overprocessing. With these metrics, the best control system among the aforementioned

four systems can be determined.

4.6.2 Pure EWMA Controller

The EWMA-R2R controller processes coverage data by first converting the measured mean

and standard deviation to nonlinear forms, then applying the EWMA algorithm to determine the

process time. While Eqs. (4.10) and (4.11) describe how the EWMA-R2R controller updates the

run parameters after each run, they do not describe the initial starting point of the process system.

In this chapter, the initial process times, tA,0 = 0.75s and tB,0 = 1.05s, are set to achieve a final

coverage whose mean is over 96% and std. is less than 2% when there are no disturbances. Al-

though the ALE process has two half-reactions, only the final etch per cycle (EPC) is measurable,

preventing the R2R controller from adjusting each half-reaction individually. Instead, both tA and
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tB are updated simultaneously using a process time offset δ, adjusted by the controller as shown

in Eq. (4.12) and restated here.

tA = tA,0 + δ

tB = tB,0 + δ

where tA and tB are the process times for the HF and TMA reactions, respectively, tA,0 and tB,0

are their initial process times, and δ is the time offset determined by the R2R controller.

The performance of the EWMA-R2R controller depends on two factors: the accuracy of the

process model used in Eq. (4.6), and the value of λ in Eq. (4.8), which is a tunable factor that de-

termines how much weight is given to recent measurements. A larger λ value makes the controller

more responsive to recent batches, enabling quicker, more aggressive corrections, while a smaller

λ emphasizes historical data, leading to a more conservative, stable response. Although aggressive

settings can correct shifts faster, conservative settings reduce the risk of oscillations or divergence.

This study uses λ values of 0.7 for aggressive and 0.3 for conservative control.

Performance results for two pure EWMA-R2R controllers with λ = 0.3, 0.7 are shown in

Figs. 4.10a and 4.10b. These plots show that the EWMA-R2R controller can drive the system back

to the desired setpoint even with a large process shift, where all kinetic rates are reduced by 40%.

The more aggressive λ = 0.7 controller in Fig. 4.10b results in fewer scrapped wafers compared to

the conservative λ = 0.3 controller in Fig. 4.10a because the aggressive EWMA controller reaches

the final coverage criteria faster, indicating that it is better suited for this ALE process. This is also

supported by the ϵf criterion, as the more aggressive EWMA has a lower ϵf of 0.061 compared

to the conservative controller’s 0.074. However, even though the aggressive EWMA controller

performs well, it still has a key limitation in its inefficiency at the initial stages; several wafers are

misprocessed before the process fully corrects.
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(a) Pure EWMA, λ = 0.3; 8 scrapped wafers, ϵf = 0.074

(b) Pure EWMA, λ = 0.7; 5 scrapped wafers, ϵf = 0.061

Figure 4.10: Control results of the EWMA-R2R controller. The blue line is the mean coverage,
the orange line is the std. coverage, the high red dashed line is the mean coverage target, and the
low red dashed line is the std. coverage target.
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4.6.3 Pure Endpoint Controller

The EP controller is a real-time controller, which means that there is no parameter updating

or changing in the controller in between each run. Thus, the process times are represented by the

following equations:

tA = EPA

tB = EPB

where tA and tB are the process times for the HF and TMA reactions, respectively, and EPA and

EPB are the process times as determined by the EP controller for the HF and TMA reactions,

respectively.

Rather, all the differences in between the runs stem from the stochastic nature of the multiscale

simulations and the Transformer model in the EP controller. The EP controller used for this sim-

ulation is the same one described in Section 4.3, but the threshold of the final sigmoid function is

adjusted; this represents the transformer’s confidence that the process has terminated. Two thresh-

olds were considered: a conservative EP controller with a sigmoid threshold of 0.96 for Reaction

A and 0.99 for Reaction B, and an aggressive EP controller with a threshold of 0.5 for both reac-

tions. Fig. 4.11a shows the performance of the conservative EP controller and Fig. 4.11b that of

the aggressive controller.disturbances.

The conservative and aggressive pure EP controllers in Figs. 4.11a and 4.11b both resulted in

0 scrapped wafers. However, the conservative EP controller consistently resulted in large amounts

of overprocessing, causing its ϵf of 0.099 to be above even that of the pure EWMA controllers. In

comparison, the aggressive EP controller has the lowest ϵf of all four controller systems at 0.056.

This means that it is best suited for handling sudden, large process shifts, and its performance here

highlights its ability to reduce precursor usage and improve manufacturing efficiency.

Both EP controllers have some overprocessing, but they are still able to prevent all mispro-
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(a) Conservative EP Controller, Threshold = 0.95 (HF)/0.99 (TMA); 0 scrapped
wafers, ϵf = 0.099

(b) Aggressive EP Controller, Threshold = 0.5 (HF)/0.5 (TMA); 0 scrapped
wafers, ϵf = 0.056

Figure 4.11: Control results for pure EP controllers. The lines are the same as in Figs. 4.10a
and 4.10b
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cesses, even when the disturbance first appeared. In comparison, the pure EWMA-R2R controller

requires several batches to adjust to the disturbance before there are no more misprocesses. Despite

its advantages, the pure EP controller also has other weaknesses; it relies on time-series pressure

profiles, which are influenced by the stochastic nature of surface reactions and noise in the measur-

ing equipment. This causes it to predict different endpoint times even when the process conditions

are identical. Thus, combining EP and R2R controllers can make up for their individual short-

comings. For the combined control systems shown next, the aggressive EP controller is used as it

performed better than the conservative EP controller.

4.6.4 Standard Case Corrector

As both the EP and R2R controllers use the process time as their control variable, there are

many ways to combine the two systems. As mentioned earlier, while the EP controller does prevent

misprocessing, it can be volatile when used for multiple runs. Thus, one combined EP+R2R

method is to use a Standard Case Corrector (SCC) Controller. This controller assumes that the

process time required to adjust one set of coverage criteria to another is the same regardless of if

there are any disturbances.

As illustrated in Fig. 4.12, after each run, the SCC controller uses the final coverage mean

and std. progression curves of a standard case without any disturbances to find two key values

for each curve: t0, which is the time needed to reach the target set point, and tm, which is the

time needed to reach the measured output of the most recent run. The controller then calculates

the sum td = tm − t0. Like βf,i+1 in Eq. (4.12), the final td is the maximum between the one

calculated from the final coverage mean curve and the one calculated from the final coverage std.

curve. Additionally, the fitted progression curves of Section 4.4.2 are used as the standard case

examples. This is because the smoother curves prevent the controller from forming any offsets.

If the true final coverage criteria progression curves were used, their non-monotonic nature could

cause issues in the SCC controller. When a disturbance is sensed, the system is “reset” with a run
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Figure 4.12: Representation of how the SCC Controller calculated td for the final coverage mean.

that only uses the endpoint controller. This effectively sets tA,0 = EPA and tB,0 = EPB. Then,

the process time continues to be updated by modifying Eq. (4.12) as follows:

td = tm − t0 (4.18a)

tA,i+1 = tA,i + td (4.18b)

tB,i+1 = tB,i + td (4.18c)

where td is the value found in Fig. 4.12, tA,i and tB,i are the most recent process times for reactions

A and B, and tA,i+1 and tB,i+1 are the next set of process times for reactions A and B. Note that,

unlike the EWMA-R2R controller, the SCC-R2R controller does not rely on a linear model. Thus,

it avoids using any nonlinear transformations, making it easier to implement.

The result of combining the EP and SCC controllers is shown in Fig. 4.13. Run 0 is where the

disturbance is first introduced, resulting in a misprocess. Run 1 is the pure EP run, and Runs 2 and

onwards are the SCC-controlled runs as defined by Eq. (4.18). Even though the EP+SCC control

system results in a scrapped wafer in Run 0, it successfully brings the process back within control
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Figure 4.13: Control results for the EP+SCC controller; 6 scrapped wafers, ϵf = 0.057.

by Run 1 and continues to tightly control the final coverage criteria around the target set point due

to the unstable nature of the process. Thus, the EP+SCC is insufficient to control the process.

While the EP+SCC controller may be worse than the pure EP controller when it comes to sud-

den, unexpected process disturbances, that is not always the case. In manufacturing environments,

it is common practice to have qualifying test runs after a major equipment cleaning in order to

detect any process shifts. In this scenario, Runs 0 and 1 of the EP+SCC controller can be thought

of as qualifying runs that do not count towards the misprocessing rate. In that case, the ϵf should

only span Runs 2-20. When evaluated in this context, the EP+SCC controller’s ϵf becomes 0.047,

which is lower than the aggressive EP controller’s ϵf of 0.056. Thus, in the right circumstances,

the EP+SCC controller can outperform the pure EP controller.

4.6.5 EWMA and EP controller

While the EP+SCC controller has a better performance than either of the controllers on their

own in a controlled manufacturing environment, many of the batch runs did not meet the final cov-
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Figure 4.14: Control results for the EP+EWMA controller; 4 scrapped wafers, ϵf = 0.060.

erage criteria. Thus, the combined controller can still be improved upon, and other combinations

of R2R and EP controllers must be explored. In this section, the EWMA-R2R controller in Sec-

tion 4.6.2 is combined with the EP controller in Section 4.6.3 to create another hybrid approach.

While both the EWMA-R2R and EP controllers use the process time as their control variable,

there is no issue as the combined controller functions similarly to the SCC controller; once a

disturbance is detected, the process times are reset after a run that only has an EP controller.

Once that run is completed, the control system reverts to the classical EWMA-R2R equations

of Eqs. (4.10) to (4.12). The results of combining a EWMA-R2R controller with λ = 0.7 and an

aggressive EP controller are shown in Fig. 4.14. Run 0 is where the disturbance is first introduced,

resulting in a misprocess. Run 1 is the pure EP run, and Runs 2 and onwards are controlled by the

same EWMA-R2R controller discussed earlier in Section 4.6.2.

Like the EP+SCC controller, the EP+EWMA controller system performs worse than the pure

EP system when it comes to reacting to a sudden process shift. However, when evaluated in a

well-controlled manufacturing environment, its ϵf becomes = 0.049. While this is still larger than
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the EP+SCC controller’s ϵf of 0.047, which indicates that the EP+SCC controller is ideal, it is

nonetheless higher than the pure EP controller’s ϵf of 0.056.

The final results of all the different control systems are summarized in Table 4.8. For manufac-

turing environments that are poorly controlled with a potential for unexpected process shifts, the

pure EP control system is the best option as it has the lowest ϵf when all the runs are considered.

However, for a manufacturing environment that is well controlled and where process shifts only

occur at known events, the combined systems are better. Of the two, the EP+SCC controller has a

slightly lower ϵf when only Runs 2-20 are considered. Thus, the pure EP controller is best suited

for poorly controlled manufacturing environments, and the EP+SCC controller is best suited for

well controlled environments.

Table 4.8: Summary of the R2R evaluation criteria.

ϵf , Runs 0-20 ϵf , Runs 2-20
EWMA, λ = 0.3 0.074 -
EWMA, λ = 0.7 0.061 -

EP, aggressive 0.056 -
EP, conservative 0.099 -

EP+SCC 0.057 0.047
EP+EWMA 0.060 0.049

4.7 Conclusions

This chapter presents an integrated control strategy combining a real-time endpoint (EP) feed-

back controller, based on a transformer machine learning architecture, with an ex-situ Run-to-Run

(R2R) controller for an Al2O3 atomic layer etching (ALE) process. The EP controller was trained

with simulated process data and then tested on a different set of simulated process data for two

different metrics: robustness and consistency. This novel controller enables real-time detection of

process indicators for the ALE process, effectively handling kinetic and pressure disturbances. For

R2R control, this chapter introduced a new EWMMA strategy involving nonlinear transformations
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to create a linear relationship and a novel standard case corrector (SCC) simplified the overall im-

plementation by eliminating the need for complex nonlinear modeling.

Various combinations of EP and R2R controllers were applied to the ALE process under a

severe negative kinetic disturbance. Two manufacturing environments were considered: a poorly

controlled environment where process shifts occur randomly and without warning, and one where

process shifts are expected (e.g., after maintenance is done on the etching tool). For the former

case, the pure EP controller performed best, as it had the lowest error metric, ϵf = 0.056, when

considering all runs, including the initial disturbance run. But for the latter case, only Runs 2-20

are used to calculate ϵf as Runs 0 and 1 are considered to be qualifying test runs used to adjust

the process parameters. In that case, the EP+SCC controller performed the best as it had the best

performance of ϵf = 0.047 at maintaining the system at the desired setpoint after the kinetic distur-

bance was implemented. This hybrid approach leverages the strengths of both controllers, offering

a significantly improved performance over the traditional pure EWMA and pure EP controllers.

The controllers developed in this chapter only use the surface wafer pressure in their machine-

learning models, but in reality, the amount and variety of process data that is available in a high-

volume manufacturing environment is many times larger. Whether it be incorporating multiple

data streams, aggregating these large datasets, or using bleeding edge machine-learning models,

industrial manufacturing represents a space with abundant opportunities for innovation.
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Chapter 5

Industrial Data-Driven Machine Learning

Soft Sensing for Optimal Operation of

Etching Tools

5.1 Introduction

In the current decade, there has been a world-wide surge in demand for electronic products.

This has in turn dramatically increased the manufacturing demand for related commodities such

as microelectronics, hard drives, and integrated circuits [58]. The innovations of modern-day elec-

tronics and their rising demand is in part owed to the rising density of transistors in semiconductor

chips, which improves the computing performance of these chips [5]. This increased demand has

resulted in recurring shortages of electronics and has hurt the global economy, which now depends

on the manufacturing of electronic devices. Thus, there is a growing need to pursue innovation

in the manufacturing sectors [57]. Smart manufacturing and Industry 4.0 concepts were proposed

in the mid-2000s for developing smart plants and factories that utilize network communications,

Information Technology (IT), Internet of Things (IoT) and big data [10, 21]. Industry 4.0 aims to
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achieve resilient manufacturing processes that are characterized by high efficiency, high confor-

mance, and high fidelity.

Smart Manufacturing, or Industry 4.0, necessitates holistic and continuous sensing, monitoring,

and automation of processes that produce data in the form of quantifiable parameters. For instance,

numerous advanced sensors are employed in manufacturing processes to monitor and understand

the process parameters, and at the same time, they provide measured feedback to controllers for

process automation. These sensors directly measure physical properties to obtain process informa-

tion for monitoring and product quality assessment. For example, a quartz crystal microbalance

is commonly used in the semiconductor industry to measure film thickness, providing coverage

data for etching and deposition processes [77]. However, the operation of the measurement equip-

ment is labor-intensive, time-intensive, and costly. In some scenarios, the capital and resource

expenditures outweigh the value of the final product, one example of which is the treatment of

wastewater [90]. However, the costs of these measurement steps can be mitigated through ad-

vanced process monitoring [65]. As industrial processes become increasingly complex, the direct

measurement of key process parameters, which are often key performance indicators (KPIs), be-

comes more challenging. One process monitoring method is soft sensing, which detects critical

process parameters by leveraging the wide range and scope of operational data that is generated

in modern manufacturing processes [62]. Soft sensors use data from existing physical sensors

and prior knowledge to develop data-driven algorithms that predict specific physical quantities and

product quality, offering a more efficient, high-measuring frequency, and less labor-intensive alter-

native to traditional sensing approaches. Thus, they are particularly effective when there is a need

to capture complex physical phenomena that are not easily measured or modeled or when there

is a need for embedded fidelity that comes from years of operational experience. However, even

when vast amounts of data are generated, the sensor performance will suffer if that data does not

adequately cover the range, scope, and function of the operation relative to the sensor objectives.

In the context of modern complex manufacturing processes and the vast amounts of data they
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generate, there is a growing body of research that applies machine learning methods to develop soft

sensors for detecting process and product properties. Recent literature reviews on deep learning

methods in soft sensing [81] emphasize the significance of neural network approaches, including

Convolutional Neural Networks (CNN) [11], Recurrent Neural Networks (RNN) [43], and a com-

bination of RNN and Feedforward Neural Networks [27]. Seagate Technology also reported using

the novel transformer network to predict the PASS/FAIL of an industrial etching process with time

series data as the input [106]. Deep learning with neural networks have advantages in capturing

complex nonlinear correlations between input and output parameters, and when large amounts of

training data are available, they often outperform traditional machine learning methods [72].

While many works have investigated which models are best suited for which deep-learning

tasks, the question of if and how data aggregation can be used to supplement modeling tasks with

small data volumes remains unanswered. Thus, this chapter proposes a deep-learning-based soft

sensor developed using industrial data for detecting both binary properties (PASS/FAIL) and nu-

merical properties (oxide thickness) for several industrial etching tools from Seagate Technology

with high-dimensional input parameters. To address the problem where there is not enough data

to train a model with high performance on a single tool, this chapter proposes a novel data aggre-

gation method where datasets from other tools are combined with the dataset of a single tool to

improve model performance on that specific tool. The data aggregation approach aims to improve

the performance of the trained soft sensor model by properly (in a sense to be made clear below)

combining datasets to increase the amount and variety of training data. Specifically, this chapter

introduces a statistical method to optimize dataset selection during the aggregation process to im-

prove aggregation efficiency.

This chapter is organized as follows: Section 5.2.1 provides an overview of the industry data

used, Section 5.2.2 describes the preprocessing operations applied to the datasets, Section 5.2.3

and Section 5.2.4 describe the development of the soft sensor models, Section 5.3 demonstrates

and evaluates the performance of the trained soft sensor models, and Section 5.4 summarizes the
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findings of this chapter.

5.2 Data Processing and Modeling

This section describes the collection, processing, and contextualization of data from five in-

dustrial plasma etching tools, which are used to train two models: a classification model and a

regression model. Then, we cover a cross-process data aggregation procedure for improving the

classification model and the various loss functions used in training the regression model.

In the semiconductor fabrication industry, all products begin as a raw silicon wafer substrate.

These substrates follow a set of procedures called the process flow, which describes each process

step that the wafer must undergo. Once the wafer has gone through the entire process flow, it is

a completed product. As the fabrication process is very repetitive, each wafer will be processed

on the same tool multiple times at different process steps. This chapter examines a toolset of

five electrically-induced plasma etching tools. This toolset consists of five physically identical

chemical etching reactors that possess up to two chambers; the reactor is referred to as the “tool,”

and the chamber is referred to as a “module.” Each module can run a variety of process steps. The

process data is gathered on a per-module basis, which means that each datum is for a specific tool-

module combination. For example, an entry from T1-PM1 means that the wafer was processed

in module PM1 of tool T1. A detailed diagram explaining the overall manufacturing process is

shown in Fig. 5.1.

5.2.1 Industrial Data Generation

The process data used in this chapter was collected from four tools: T2, T4, T5, and T7. Each

tool has up to two modules: PM1 and PM2. Specifically, process data was collected from T7-

PM1, T7-PM2, T2-PM2, T5-PM2, and T4-PM1. Each data entry comes from a single run, which

is defined as a process step that starts at t = 0 and ends at a preset process time, tend. During the
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Figure 5.1: The overall manufacturing system for an industrial etching equipment. Each tool is
an etching reactor that has multiple modules and can run various processes. Wafers start as pure
silicon substrates, and after a series of production processes, they become a finished product.
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process, physical sensors track 33 numerical features, and their average is recorded down alongside

two process-specific discrete features and a time stamp. Thus, there is no time-series data. Once

the wafer has finished processing, it is referred to as the product. The dataset used in this chapter

spans from February 1st, 2018 to December 31st, 2022. The numerical features are categorized into

three classes of variables which are pressure and gas flow, electromagnetic, and other equipment

statuses and properties. The discrete features are the process name ID and substrate family ID,

which are both alphanumeric text entries. These 35 pieces of information are inputs for both the

classification and regression model.

The information that both models aim to predict is whether the process was successfully com-

pleted, and this information is gathered at a different tool. After the etch step, the product wafer

is processed at a metrology tool that measures how much substrate was etched away. As all of the

processes examined in this chapter are oxide etches, the metrology tool will measure the remaining

oxide thickness. Depending on how much the measured oxide thickness deviates from the target

oxide thickness, the run will be labeled as either a “PASS” or a “FAIL.” The classification model

uses the binary PASS/FAIL measurement as its output, and the regression model uses the target

oxide thickness as an additional input and the measured oxide thickness as its output.

5.2.2 Data Preprocessing

Data preprocessing is a crucial step to effectively train any model. A properly preprocessed

dataset allows the model to effectively learn the patterns of the data. For instance, [68] highlights

the necessity and importance of data preprocessing in several deep learning-based applications.

Preprocessing steps often include removing or filling in invalid and abnormal data as is appropriate,

encoding discrete variables, and normalizing features to avoid skewing caused by the absolute

value of variables. These steps ensure that the model receives consistent and relevant data, which

facilitate better learning and prediction ability; specifically for interpolating unseen data points

within the applied training range. The input data preprocessing procedures in this chapter are
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demonstrated in Fig. 5.2, and the procedures for output data preprocessing are shown in Fig. 5.3.

Figure 5.2: Input Data Preprocessing Step 1: Eliminate or pad missing data. Step 2: Scale the
numerical features, and encode the discrete features. Step 3: Combine numerical and discrete
features into one complete input dataset.

From a practical manufacturing standpoint, physical sensors do not function properly at all

times, and not all parameters can be measured in all processes. Thus, there are almost always

missing physical measurements in real industrial data. The data analyzed in this chapter is not

exempt from this phenomena. Some particular tool-module combinations are missing entire fea-

tures, and other features are only collected within certain time ranges. To address these issues, any

feature that has no measured value (which is recorded as N/A) is filled in with a numerical value of

0 to maintain consistency with the other data points. On the other hand, any runs (one row of data)

that are missing either of the outputs, which are the PASS/FAIL criterion and the measured oxide

thickness, are removed from the dataset. Without the true results, the input features are meaning-
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Figure 5.3: Output Data Preprocessing Step 1: Eliminate missing data. Step 2: Encode binary
output to FAIL(0) and PASS(1). Step 2-2: Scale numerical output with MinMax Scaler.

less. By applying these two methods, all the invalid and abnormal data is pared from the datasets.

As with most machine learning models, which includes neural networks, all inputs must be

numerical. Thus, it is necessary to encode any categorical or nonnumerical features if they are in-

cluded in the training process. For this chapter, the label encoder from the scikit-learn package [64]

is used to encode both the substrate family ID and the process name ID from alphanumeric features

into numerical features. To create a consistent and holistic encoder that is capable of handling all

possible cases, the encoder is trained on data that comprise the concatenation of all datasets from

all tool-modules. This step creates a complete map for the encoder, ensuring that each discrete fea-

ture is transformed into a unique number, which avoids conflicts during the training of the model.
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Additionally, for the binary PASS/FAIL output data, a 0/1 encoder is applied, which encodes PASS

as 1 and FAIL as 0. These methods ensure that all the categorical features are transformed into

numerical values so that the models can function effectively.

For neural networks, it is especially crucial to scale all numerical data to prevent the vanishing

gradient and gradient explosion phenomena from occurring during the training process [69]. This

is particularly important for input data features that vary significantly in absolute values. For

instance, the dataset examined in this chapter has features in the range of both 10−4 and 102.

A scaler normalizes the input features of the data, forcing each numerical feature to exist in a

similar range and making the training process more stable and the optimizer task easier. For the

classification task with a binary PASS/FAIL output, the numerical input features are scaled with a

standard scaler, and the output features are already encoded as 1/0. For the regression task with

numerical output features, separate MinMax scalers are applied for both the input and output data.

The standard scaler is described in Eq. (5.1), and the MinMax scaler is described in Eq. (5.2). After

the encoding process described earlier and the scaling processes described here are completed, all

the input features, including the scaled numerical features and encoded categorical features, are

concatenated into a data vector that represents a single run.

Z =
X − u

s
(5.1)

Z =
X −Min(X)

Max(X)−Min(X)
(5.2)

where Z is the output vector of a scaled numerical feature, X is the input vector of the original

feature, u is the average value of X , and s is the standard deviation of X . Note that the vectors

used here consist of all the data for a particular feature (a data column). The standard scaler

scales the original dataset around 0 for each feature in a similar range, while MinMax scaler scales

the numerical data into a range of [0,1]. There is no fixed rule to determine the best scaling
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method. Rather, scaler selection is dependent on the optimal model performance, which will be

more rigorously defined later on in Section 5.3. Specifically, both the standard scaler and the

MinMax scaler are applied to the same dataset and used to train two independent models. Then,

the scaler that yields the best performance is chosen for that task.

5.2.3 Classification Model

The goal of a classification model is to accurately determine whether future, unknown wafers

from a specific tool-module combination will pass or fail the following metrology step. The pre-

processed input data vectors are the input variables to the model, and the output variable is a binary

PASS/FAIL value. The dataset is first separated into two datasets by time: the modeling set and the

test set. The modeling set comprises all the runs from February 1st, 2018 to December 31st, 2021,

and it will be used to train the model. The test set comprises all the runs from January 1st, 2022 to

December 31st, 2022, and it is used to evaluate model performance. These datasets are separated

by time because it is necessary for the model to be generalizable across all times. From a practical

point of view, the soft sensor model can only be considered successful if it can be effectively ap-

plied on unseen data and conditions from future manufacturing processes. To prevent overfitting,

the modeling set is further separated into two more sets: the training set and the validation set.

80% of the modeling dataset is randomly chosen for the training set, and the remaining 20% is

allocated to the validation set. The model is only trained and optimized on the training set, and

the performance of each model is examined on both the training and validation sets to tune and

optimize the generalization ability of the model. Stratified sampling is also used to ensure that the

PASS/FAIL distribution is nearly identical between the training and validation datasets. With these

specifications, when the model is trained on the training set and tested on the validation set, the

candidate model is the model with the best performance on the validation set.
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Model Training

The Feedforward Neural Network (FNN) is applied to the classification model in this chapter.

The general structure of the network is shown in Fig. 5.4.

In an FNN, each neuron in the hidden layers takes a weighted sum of inputs from the input

layer or previous hidden layers, applies a non-linear activation function, and then passes the result

to the next layer. The final output layer produces the binary PASS/FAIL classification by using

the sigmoid function to transfer the input value into the [0,1] range. The sigmoid function is also

employed as the activation function in the hidden layers of classification models, due to its superior

performance in classifier models [106]. The sigmoid function is described below in Eq. (5.3):

σ(x) =
1

1 + e−x
(5.3)

The FNN has several tunable hyperparameters that need to be optimized to determine the best

network structure. These hyperparameters include the number of hidden layers, the number of

neurons in each hidden layer, the learning rate, and the L2 regularization coefficient. A grid search

method is applied in this chapter to find the proper combination of hyperparameters to optimize

the model performance on the validation set. The complete list of tuned hyperparameters and their

candidate values are shown in Table 5.1. The models are trained on powerful graphical processing

units (GPU), such as the Nvidia RTX A4000, Nvidia RTX 3060, and Nvidia RTX 4090, to facilitate

the complete grid search of hyperparameters by exploiting the high computational capabilities of

these GPUs. The selected hyperparameters are bolded in Table 5.1.

The training goal of a neural network is to minimize the loss function. For most binary clas-

sification tasks whose output values are processed by a sigmoid function, a cross-entropy loss is

typically used, as shown in Eq. (5.4):

J = − 1

N

∑
i

[yi ln(y
p
i ) + (1− yi) ln(1− ypi )] (5.4)
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Figure 5.4: The general structure of the Feedforward Neural Network (FNN) is shown here. The
hidden layer neurons take a weighted sum from the input layer or the previous hidden layer, which
is then activated by nonlinear functions. The output layer takes the weighed sum from the last
hidden layer to output the result.
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Table 5.1: Classification FNN Hyperparameters and Tuning Range.

Hyperparameters Candidate Values

Number of Layers [1,2,3]

Number of Neurons [32,64,128]

Learning Rate [0.005,0.001,0.0005,0.0001]

Dropout Rate [0,0.1,0.5]

L2 Regularizer [0,0.0001,0.0005,0.001]

where J is the loss value, yi is the true value (0 or 1) of the data point i, ypi is the predicted value

from the model within range [0,1], and N is the number of data points. However, it is important

to note that the data is imbalanced because it comes from an industrial toolset that generally runs

well with a low but still significant fail rate. All the fail rates for all five datasets are shown

in Table 5.2, and most datasets exhibit a fail rate of approximately 2.5%. T5-PM2 is a notable

exception with a significantly higher fail rate. This can be partially explained by its small dataset

volume, which causes a few FAIL data points to have a large impact on the fail rate, but TM5-

PM2’s data clearly has more fails than the other tool-module combinations, marking it as different.

Thus, by aggregating the TM5-PM2 dataset with other datasets and observing whether model

performance increases or decreases, the effects of aggregating less related datasets together can

be seen. For all other datasets, a model that always predicts “PASS” will not result in a high loss

with the normal cross-entropy loss function, and that behavior will be favored during the training

process.

However, such a model is not useful because it will have a 100% false positive rate. In other

words, the model will not be able to detect any misprocessed wafers even though it has a very low

training loss. To address this issue, a weighted cross entropy algorithm is proposed by multiplying
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Table 5.2: Overall Size and Distribution of Datasets.

Dataset Total Data Points PASS Data Points FAIL Data Points FAIL Rate

T4-PM1 39717 38836 881 2.22%

T7-PM1 23387 23057 330 1.41%

T2-PM2 36335 35461 874 2.41%

T5-PM2 771 667 104 13.49%

T7-PM2 2722 2650 72 2.65%

the weight to data points by the output distribution [106]. The weighted loss function has the form:

J = − 1

N

∑
i

wi[yi ln(y
p
i ) + (1− yi) ln(1− ypi )] (5.5)

where wi is the weight and N is the total number of data points. The weights for binary classifica-

tion are calculated as follows:

wi =


N

n0

if yi = 0

N

n1

if yi = 1

(5.6)

wherewi is the ith weight, n0 is the number of FAIL data points, and n1 is the number of PASS data

points. The weights applied in the loss function emphasizes minority instances to favor models

with more comprehensive and balanced performances, thereby mitigating the potential bias that

can arise from imbalanced datasets.

The Adam optimizer is applied throughout the entire model training process due to its excellent

performance in handling various deep learning tasks [40]. Adam combines the advantages of other

optimizers such as AdaGrad and RMSProp to enhance convergence speed and model performance.

Model training is conducted over 1000 epochs, with the validation set loss continuously monitored

after each epoch. The model with the lowest validation loss up to that epoch is then saved as

the best model until the end of the training process. This approach ensures that the model with
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best generalization ability is retained, effectively reducing the risk of overfitting and improving the

model’s generalization capabilities. After the training process, the model is tested on future data

of the test set to evaluate its performance.

To further reduce variability in the training and testing process, a cross-validation method is

applied. This approach can greatly reduce model variance and improve the reliability of the model

performance by averaging the performance of multiple models that are trained on different sections

of the original data [39]. First, the modeling dataset is randomly divided into five segments. Then,

a segment is chosen as the validation set with the other four segments becoming the training set.

By repeating this five times in total, once for each segment, five models are trained. Finally, each

model is individually run on the test dataset, and the average of the five scores from the five models

is used as the final test score for that dataset. This method enhances the robustness of the model

evaluation by ensuring that the performance is consistent across different subsets of the data.

Data Aggregation

Deep learning models, with their complex architectures and numerous parameters, can effec-

tively capture intricate patterns within large datasets, leading to superior performance in most

tasks [72]. As a result, deep learning networks have a distinct advantage over traditional machine

learning methods, especially when working with training data at the industrial scale. However, in-

dustrial datasets often vary significantly in size between different tool-module combinations. For

example, in this chapter, as shown in Table 5.2, T7-PM2 and T5-PM2 have dramatically smaller

datasets with less than 3000 points compared to T4-PM1, T7-PM1, and T2-PM2, which have more

than 20000 points. This variation in dataset size implies that models trained using limited data

from a particular tool-module combination for that specific combination will have considerably

worse training results compared to tool-module combinations with larger datasets. Additionally,

when the validation dataset is limited in size, it can lead to bias in the model, decreasing its abil-

ity to generalize because the validation set might no longer accurately represent the general data
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distribution. Moreover, even for the three tool-module combinations with large datasets, dataset

aggregation will increase the variational and operational coverage of the training data and generally

improve model performance. Consequently, maximizing high-quality training data volume is nec-

essary to improve model performance. However, it is not enough to simply merge a large dataset

and a small dataset, as that would merely result in a model that predicts the average behavior of the

two aggregated datasets. Rather, multiple datasets from various tool-module combinations should

be aggregated into a superset of varied data. When trained on this superset, the model performance

improves as the larger volume of data better represents the overall process, increases the opera-

tional scope, and has more comprehensive information regarding process failures. A large amount

of varied training data points that can only be obtained from aggregating data from multiple tool-

module combinations refines the model, reduces overfitting, and enhances the robustness of the

predictions.

To provide more data to train a model for each tool-module dataset, a data aggregation method

is developed and tested that combines multiple datasets, significantly increasing the amount and

variety of training data and improving model performance. During this process, the candidate

datasets for aggregation must be selected carefully, making the analysis and selection process a

critical data processing step. If the chosen tool-module dataset is very different from the current

dataset, then the model will likely be misdirected by the new data and fail to retain the distribution

of the original dataset. One method to guarantee optimal data aggregation is to exhaustively test

all possible dataset combinations, but that is only feasible when there are only a few datasets. The

number of possible dataset combinations increases exponentially with the number of datasets; n

datasets have 2n − 1 unique combinations, making it impractical to exhaustively test all possible

combinations when there are many tools and datasets.

To address this issue, this chapter develops an indexing method to evaluate the similarities and

differences between datasets. It was then used to select candidate datasets for aggregation, ones

that are most similar to the dataset of interest. The indexing method is a point-biserial correlation
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analysis, which is a statistical method that measures the relationship between a continuous variable

and a binary variable. In this chapter, the point-biserial correlation analysis is conducted on each

numerical feature in the dataset with respect to the output binary variables, which provides infor-

mation about the contribution of each feature to the binary outcome (PASS/FAIL). The analysis

involves calculating the correlation coefficient as shown in Eq. (5.7).

rbis =
Ȳ1 − Ȳ0
sy

√
N0N1

N(N − 1)
(5.7)

where rbis is the correlation score between a specific feature and the output, Ȳ1 is the average value

of the feature for all PASS data points, Ȳ0 is the average value of the feature for all FAIL data

points, sy is the standard deviation of the feature for all data points, N0 is the number of FAIL

data points, N1 is the number of PASS data points, and N is the total number of data points. After

the correlation coefficients are calculated for each feature, they are assembled into a characteristic

vector. Each dataset has its own characteristic vector, and the difference score between any two

datasets is calculated by finding the mean absolute error (MAE) between their characteristic vectors

as shown in Eq. (5.8).

d = AV G(|c⃗1 − c⃗2|) (5.8)

where d is the difference score between the two datasets, AV G is an operation that takes the

average value of all elements in a vector, c⃗1 is the characteristic vector of first dataset, and c⃗2 is

the characteristic vector of second dataset. After the difference scores are calculated between the

current analyzed dataset and all other datasets, the one with the smallest difference score is chosen

as the candidate dataset for aggregation. The statistical analysis of the datasets themselves does not

require any model training until the candidate datasets for aggregation are selected. This approach

significantly reduces the number of models that need to be trained and tested, saving a substantial

amount of time and computational resources.
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5.2.4 Regression Model

This chapter also explores machine-learning models that quantitatively predict the measured

oxide thickness of processed wafers. This model, also called a regression model, is another FNN,

though one with a different structure better suited for non-binary outputs. The preprocessed input

data for the regression models are the same as that of the classification models, but with the addi-

tion of the target oxide thickness as an input feature. This feature is included as the target oxide

thickness for each process must be known before the run starts. The model output is the measured

oxide thickness, which spans a wide numerical range, from 0 to over 5000 Å, depending on the

process and product.

Regression models generally require more data than classification models as the output of the

latter is more complex. Thus, this chapter only focuses on training regression models with large

datasets [72]. Specifically, T2-PM2, T4-PM1, and T7-PM1 are used to train regression mod-

els while T5-PM2 and T7-PM2 are not. The latter two datasets cannot support the training of a

complex regression model because the limited data volume can induce problems such as severe

overfitting and high variance results. Due to a lack of feasible datasets, data aggregation, which

was explored for the classification task, is not conducted for the regression task because there are

only three applicable datasets for regression. The available multi-dataset combinations are lim-

ited; specifically there are three two-set aggregations and one three-set aggregation. This small

sample size means that any conclusions reached through the statistical analysis may be biased.

Lastly, regression models do not require any data stratification like classification models because

random selection and chronological selection can easily create artificial differences in fail rates

between the training and validation sets due to the natural imbalance of the datasets. Because only

datasets with substantial data volumes are selected, which effectively reduces the variance in the

input features between different time segments, the training-validation split is organized solely by

time. Specifically, the first 80% of the total training-validation dataset, sorted chronologically, is

used for training, and the remaining 20% is reserved for validation. This approach aims to enhance
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model performance by selecting for the regression model that best predicts future data points.

Regression Model Training

The Feedforward Neural Network (FNN) for the oxide thickness regression task applies the

ReLU (Rectified Linear Unit) activation function to provide nonlinearity for the model, which is

described by the following equation:

ReLU(x) = max(0, x) (5.9)

The ReLU function is chosen because of its promising performance on various training tasks, abil-

ity to avoid gradient vanishing problem, and increase in the speed of the training process [93, 98].

In addition, due to how complex it is to train regression models and the need to save computational

resources during the hyperparameter grid search, the neural network is designed such that each

subsequent hidden layer has half the neurons of the previous layer. This approach helps manage

model complexity, reduces the risk of overfitting, and ensures efficient feature extraction. Similar

to the classification task case, the tunable hyperparameters and their range of interests are shown

in Table 5.3, and the selected hyperparameters are bolded.

Table 5.3: Regression FNN Hyperparameters and Tuning Range.

Hyperparameters Candidate Values

Number of Layers [2,3]

First hidden layer Neurons [32,6,128]

Learning Rate [0.0001,1E-5,5E-6,2E-6]

Dropout Rate [0,0.1,0.25]

L2 Regularizer [0,0.0001,0.0005,0.001]

A small learning rate and many training epochs (100,000 in this chapter) are essential for train-

ing regression models due to the wide range of output values and the highly complex nonlinear
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correlations between the 37 input/output features. These conditions ensure that the training pro-

cess reaches an optimum. Without the small learning rate, the model is sensitive to improper

convergence, which causes the training process to jump around the optima or even diverge. By

contrast, a small learning rate allows for more precise adjustments to the weights during backprop-

agation. The extensive number of training epochs ensures that the model has sufficient iterations

to learn these complex relationships thoroughly, ultimately leading to better generalization and

performance on future data.

Because the output has such a wide range of numerical values, two kinds of loss functions

are tested in this chapter: the mean squared error (MSE) and the mean absolute percentage error

(MAPE). The MSE loss function is given below:

J =
1

N

∑
i

(ypi − yi)
2 (5.10)

And the MAPE is described as follows:

J =
1

N

∑
i

|ypi − yi|
yi + 1

(5.11)

where J is the loss function value, N is the total number of data points, ypi is the predicted output

value by the regression model, and yi is the true output value. The plus one term in the MAPE

equation prevents the equation from dividing by zero and also avoids ridiculously high loss values

when the true output is close to zero. The loss functions are applied to the normalized data scaled

by the MinMax Scaler, which keeps small data values that are close to 0 still close to 0 and scales

large data values close to 1. As the original data’s minimum value is retained, the data normalized

by the MinMax scaler also retains the properties of the original dataset, which improves the ulti-

mate performance of the model. When applied, these two loss functions intrinsically favor very

different modeling patterns. MSE measures the average of the squares of the errors, treating all
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errors equally regardless of the magnitude of the true values. This results in data points with low

true values having high percentage errors, as the model may focus more on minimizing absolute

errors, which can disproportionately affect smaller values. Conversely, MSE can result in lower

percentage errors for data points with high true values, as the absolute errors tend to be relatively

smaller in proportion to the larger true values. This can be advantageous when precision for higher

value predictions is critical. MAPE, on the other hand, measures the average absolute percentage

error, ensuring that the model minimizes the percentage error across all data points. This results

in a more uniform percentage error distribution, which is beneficial when the relative accuracy of

predictions is more important. Each loss function has its benefits and drawbacks, which is why this

chapter uses both to train the model. Using both MSE and MAPE allows for a holistic review of the

data and the modeling process. This dual approach provides a more comprehensive understanding

of the model’s potential across the entire range of output values.

5.3 Results and Analysis

5.3.1 Classification Model Performance

The performance of the classification models proposed in Section 5.2.3 are ideally evaluated

within the context of a manufacturing environment. With the classifier model, there are four possi-

ble process outcomes: a pass is classified as a pass (true positive), a pass is classified as a fail (false

negative), a fail is classified as a fail (true negative), and a fail is classified as a pass (false positive).

Of these outcomes, the true positive and true negative outcomes are trivially good outcomes, as the

classifier model is correct. The false negative, while not ideal, can be mitigated by manufacturing

procedures. If all runs classified as fails are reevaluated at the metrology machine and manually

measured to determine whether they truly failed, then the false negatives will be caught and cor-

rectly reclassified as passes. Thus, the main manufacturing concern is false positives, as there is no
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easy way to identify them; manually measuring all passes in addition to all fails would make the

classifier model superfluous.

Generally speaking, most false positives will be eventually caught at future metrology steps

or at the final metrology and reliability testing of the end product, which means that they will

ultimately have little effect on product quality [19]. The main impact of misidentifying a mispro-

cessed wafer is that, as the misprocessed wafer moves through the process flow, it wastes resources

and time. Thus, a high-performing classification model will have a low false positive rate as that

minimizes wasted manufacturing resources, and any metrics used to analyze these models must be

an indication of their false positive rates.

However, each model does not have a singular, representative false positive rate. Specifically,

each model can be tuned to be more aggressive in flagging misprocessed wafers, lowering the

false positive rate and increasing the false negative rate, or more conservative, which does the

opposite. While confusion matrices are often used to evaluate classifier model performances, they

are insufficient to evaluate the overall model performance, as a confusion matrix reflects the results

of a single tuning approach. It cannot capture the model’s performance across all possible tuning

configurations. Other traditional criteria for evaluating classification model performance, such

as overall accuracy, are also unsuitable because the binary outputs of all the datasets are highly

imbalanced. As previously mentioned, a model that only predicts PASS may have a high accuracy

but it will have a 100% false positive rate, rendering it meaningless in actual industrial applications.

The Receiver Operating Characteristic (ROC) analysis offers a more robust evaluation method by

examining the true positive rate (TPR) and false positive rate (FPR) of the model’s predictions on

test data at different thresholds. The output from the sigmoid function in the model’s last layer

is a continuous value in the range of [0,1]. Although a fixed threshold of 0.5 is traditionally used

that classifies values higher than 0.5 as pass and those lower as fail, this threshold can be set to

any value within the [0,1] range. With different thresholds, different TPR and FPR values are

produced. For instance, setting the threshold to 0 (all pass) results in a TPR of 100% and an
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FPR of 100%. Conversely, setting the threshold to 1 (all fail) yields a TPR of 0% and an FPR of

0%. Thus, selecting an appropriate threshold involves balancing model sensitivity (TPR) and false

acceptance rates (FPR).

In this context, the model’s performance is evaluated using the Area Under the Curve (AUC)

score. The AUC score is defined as the area under the ROC curve, which plots TPR on the y-axis

and FPR on the x-axis across different thresholds. Ideally, a perfect model would achieve a TPR

of 100% (max sensitivity) and an FPR of 0% (zero false alarms), resulting in an AUC score of 1.

Conversely, a model that makes random guesses would have a TPR of 50% and an FPR of 50%,

resulting in an AUC score of 0.5. The ROC-AUC score provides a comprehensive measure of

model performance across all possible thresholds, making it particularly useful and widely applied

for evaluating models on imbalanced datasets [26].

Single Dataset Model Performances

The model is first trained on single tool-module datasets to evaluate if the training method

is effective at making predictions that are significantly better than random guessing, which would

have an AUC score of 0.5. For each dataset, five models are created via the cross-validation training

process as described in Section 5.2.3. The average AUC score is defined as the mean value of the

test scores for each trained model. Note that all ROC graphs are of the model whose performance

best matches that of the average of the five models; this is the representative model. The scores for

each tool-module combination are shown in Table 5.4. The ROC-AUC plot of the representative

model for all five datasets is shown in Fig. 5.5. The single dataset training results in Fig. 5.5

demonstrate that the amount of training data is a key factor in model performance. The two smaller

datasets, T5-PM2 and T7-PM2, show unacceptable performance close to near-random guesses

(AUC scores of around 0.5). In contrast, the three larger datasets have AUC scores significantly

above 0.5, indicating successful model training and effective classification of the PASS/FAIL status

of the product. For these three tool-module combinations, the models can achieve a FPR rate of
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Figure 5.5: ROC plot for all five datasets. The performance of the models trained on datasets T5-
PM2 and T7-PM2 is similar to random guesses, while the models based on the other three datasets
have superior performances.
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Table 5.4: Single Dataset Training AUC Score.

Dataset Name Average AUC Score

T4-PM1 0.73

T7-PM1 0.73

T2-PM2 0.80

T5-PM2 0.48

T7-PM2 0.52

about 35% to 40% when the TPR is around 80%. This means that, if 10000 wafers are processed

with 200 fails and 9800 passes (2% failrate), then 1960 wafers would be false negatives (20% of

9800 passes) and 70 wafers would be false positives (35% of 200 fails). This means that the overall

rate of missed fails is less than 1% of the overall product throughput, which is considered high-

performing. The single dataset cases suggest that data volume is crucial to model performance;

with enough data, the models are able to effectively classify runs between PASS/FAIL. And with

even more data, the AUC score can be further improved and the FPR reduced.

Multi Dataset Model Performances

To validate the efficacy of data aggregation in enhancing model performance, the process is

first investigated within each module (PM1, PM2). Specifically, this involves forming each unique

superset between T4-PM1 and T7-PM1 for PM1 and each superset between T2-PM2, T5-PM2,

and T7-PM2 for PM2. This results in three two-set supersets for PM2 and one two-set superset for

PM1. PM2 also has the option to aggregate all three datasets. The optimal AUC score for a given

tool-module combination is defined as the best AUC score among all the possible supersets that

contain that tool-module combination, and the optimal AUC score for each tool-module combina-

tion is illustrated in Fig. 5.6. This analysis aims to determine whether combining datasets from

different tools within the same module can lead to improved predictive performance, as measured
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by the AUC score.

Figure 5.6: Best possible AUC score for all five tool-module combinations. Model performances
improve substantially as data increases for all five cases.

From the same-module data aggregation results shown in Fig. 5.6, the AUC score for the T7-

PM2 model trained on only the T7-PM2 dataset is just above 0.5, which is an unacceptable per-

formance. However, for the best-case two- or three-set supersets, the AUC score improves past

0.6. The results for T5-PM2 are even better. In the case of T2-PM2, it is clear that the base T2-

PM2 dataset contributes the most to the model and that the model receives little benefit when it

is aggregated with the other smaller datasets. However, the contribution that the T2-PM2 dataset

makes in the orange and green bars of the T7-PM2 and T5-PM2 models demonstrates substantial

performance improvement for Tools 05 and 07, which have smaller datasets. Generally, data ag-

gregation substantially improves model performance for tool-module combinations with smaller

datasets, such as T5-PM2. Furthermore, the three-set aggregation in PM2 allows the models to

achieve a FPR of around 50% with a TPR of about 80%, as shown in the ROC plot in Fig. 5.7.

For the base model trained on only one dataset, an 80% TPR would correspond to an 80% FPR,
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Figure 5.7: ROC plots of the representative models of T5-PM2 and T7-PM1, which were trained
by aggregating all available datasets in the module. The performances are noticeably better than
that of random guessing and single-set models. The FPR values for an 80% TPR value have also
significantly improved.

which would result in an overall missed fail rate of 1.6% given a 2% fail rate. However, the model

trained with multi-dataset aggregation would have a missed fail rate of 1%, a significant improve-

ment. Additionally, even the tool-module combinations that have the largest datasets improve with

data aggregation. Compared to their single-set results in Fig. 5.6, the AUC scores of the aggre-

gated models reach over 0.8 for both T2-PM2 and T7-PM1, as shown in Fig. 5.6. These results

underscore the effectiveness of data aggregation in bolstering model accuracy, especially for tool-

module combinations with limited datasets.

Candidate Dataset Selection Method

While the previous section shows that data aggregation improves model performance, it does

not explain how it should be conducted. Additionally, there is no easy way to evaluate a model’s

performance without actually developing and testing the model. Even in Fig. 5.6, the displayed
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datasets had varying levels of improvement. Thus, to minimize the presence of false positives, it

is necessary to examine how to optimally aggregate datasets together. To that end, five datasets

(T4-PM1, T7-PM1, T2-PM2, T5-PM2, T7-PM2) are examined to assess the effectiveness of the

indexing method explained in Section 5.2.3 that is used to select ideal datasets to aggregate with

the base dataset, also called candidate datasets. The difference scores for each dataset pair as

calculated with Eq. (5.8) are shown in Table 5.5:

Table 5.5: Difference score between each pair of datasets.

T4-PM1 T7-PM1 T2-PM2 T5-PM2 T7-PM2

T4-PM1 N/A 0.019 0.017 0.083 0.037

T7-PM1 0.019 N/A 0.011 0.083 0.032

T2-PM2 0.017 0.011 N/A 0.080 0.029

T5-PM2 0.083 0.083 0.080 N/A 0.101

T7-PM2 0.037 0.032 0.029 0.101 N/A

The candidate dataset selection criterion for a given dataset is to choose the paired dataset with

the smallest difference score. For example, to improve the T4-PM1 model, the T4-PM1 dataset

should be aggregated with the T2-PM2 dataset, as the T4-PM1/T2-PM2 pair has the smallest dif-

ference score (0.017) compared to the T4-PM1/T7-PM1 (0.019), T4-PM1/T5-PM2 (0.083), and

T4-PM1/T7-PM2 (0.037) pairs. For the same reason, the candidate datasets for T5-PM2 and T7-

PM2 are both T2-PM2; the T5-PM2/T2-PM2 (0.080) pair is the smallest amongst all the T5-PM2

pairings, and the same holds for the T7-PM2/T2-PM2 pair. Note that the candidate dataset relation-

ship is not necessarily true in reverse. While the candidate dataset for T5-PM2 may be T2-PM2, the

candidate dataset for T2-PM2 is not necessarily T5-PM2. From Table 5.5, it can be seen that the

candidate dataset for T2-PM2 is actually T7-PM1, with a difference score of 0.011. Additionally,

to aggregate three datasets, or when choosing the second candidate dataset, the difference score

has to be recalculated between the current two-set superset and all the other datasets. For example,
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to determine the candidate dataset for the T4-PM1/T2-PM2 superset (SS1), the difference scores

for the SS1/T7-PM1, SS1/T5-PM2, and SS1/T7-PM2 pairs must be recalculated.

To further assess the effectiveness of this data aggregation metric, four datasets are examined

in a case study: all three PM2 datasets and T4-PM1. It is still possible to exhaustively test the 15

possible unique supersets formed from these four datasets, which will allow us to evaluate both

the idea that data aggregation generally improves model performance and the effectiveness of the

candidate dataset selection method. First, the best possible AUC score for each tool-module com-

bination is found by exhaustively creating a model for every possible superset and then selecting

the superset that yields the highest AUC score for that tool-module. The best possible AUC score

at each superset size is shown in Fig. 5.8. Then, the best possible AUC score is compared to the

AUC score obtained by aggregating candidate datasets, and this is shown in Fig. 5.9 for two-set

supersets and Fig. 5.10 for three-set supersets.

Figure 5.8: Best possible AUC score as a function of how many datasets are aggregated among the
four datasets. Model performance improves significantly for all tool-modules as data aggregation
increases.
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Figure 5.9: Comparison between the best AUC score for a two-set superset and the AUC score for
the superset proposed by the candidate dataset selection method. Proposed AUC scores conform
with the best-case scores for most tool-modules.

Fig. 5.8 validates the idea that data aggregation generally improves model performance because

the best possible AUC scores for all four tool-module combinations increase as more datasets are

aggregated. Additionally, in Fig. 5.9 for two-set aggregation and Fig. 5.10 for three-set aggre-

gation, the AUC scores of the proposed data aggregation strategy based on statistical analysis

methods aligns with the best possible score, with T7-PM2 being an exception in both cases. The

exception of T7-PM2 can be explained by examining the difference score between its historical

data and its future data. In Table 5.6, the difference score between the historical data used to train

models and the future data used to test models is displayed for five tool-module combinations.

Notably, the difference score for T7-PM2 is the largest of the examined datasets, which implies

that there is significant variability between the modeling set and testing set that may impact data

aggregation effectiveness as the data aggregation strategy is purely based on the historical dataset.

This indicates that the proposed statistical analysis methods are effective for this case study and
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Figure 5.10: Comparison between the best AUC score for a three-set superset and the AUC score
for the superset proposed by the candidate dataset selection method. Proposed AUC scores con-
form with the best-case scores for most tool-modules.

can be considered as a preliminary solution for selecting candidate datasets for aggregation.

Table 5.6: Historical and Future Data Difference Score.

Dataset Name Difference Score

T4-PM1 0.089

T7-PM1 0.052

T2-PM2 0.082

T5-PM2 0.090

T7-PM2 0.093

One of the most important applications of the candidate dataset selection method is to address

scenarios where numerous tool-module combinations are involved. In these situations, it is im-

practical to exhaustively test all possible combinations of data aggregation to determine the ideal

superset for each tool-module combination. To further test the capabilities of the candidate dataset
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selection method, the five datasets in Table 5.5 are reexamined. For this analysis, not all possible

superset combinations are tested. Instead, only the supersets proposed by the candidate dataset

selection method are examined. The resulting AUC scores are then evaluated to validate the effec-

tiveness of the proposed aggregation method that was previously demonstrated to work well for the

four dataset case study. This approach aims to show that the aggregation strategy will continue to

be feasible even as the number of datasets increases and prove that statistical analysis methods can

identify the ideal candidate dataset without training numerous models. Among the five datasets,

the candidate dataset for T2-PM2 is T7-PM1 as this pair has the lowest difference score (0.011),

and the remaining datasets have the same candidate datasets as in the previous case study. The

aggregation AUC scores are shown in Fig. 5.11, and a specific example is shown in Fig. 5.12.

Figure 5.11: AUC scores for the models trained on the supersets proposed by the candidate dataset
selection method. The AUC scores for all the tool-module combinations improve as more datasets
are aggregated into the modeling set.

Fig. 5.11 illustrates a noticeable improvement in the performance for all the tool-module mod-

els. Specifically, T2-PM2 and T7-PM1 achieve AUC scores of 0.87 and 0.88, respectively, which
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Figure 5.12: ROC plots for model performance on T2-PM2 and T7-PM1, which are trained by
aggregating three datasets. The performances are noticeably better than the models trained on
single datasets. The FPR values at 80% TPR are improved from good (around 40%) to perfect
(around 20%).
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is considered high performing. As shown in Fig. 5.12, the ROC plots for T2-PM2 and T7-PM1

indicate that aggregating data has lowered the FPR from between 35%-40% to 20% at 80% TPR,

representing a significant improvement.

Fig. 5.11 also demonstrates the importance of data volume and how data aggregation can sup-

plement datasets with small volumes. This is especially in the case of T7-PM2, which previously

underperformed in the four dataset case study. Table 5.2 states that it has a small volume of data of

2722 compared to T4-PM1, T7-PM1, and T2-PM2, which have dataset sizes in the tens of thou-

sands. For the cases where only one or two datasets are used, the T7-PM2 model performs poorly,

with an average ROC-AUC score of 0.5, which is the same as randomly guessing. However, by

aggregating three datasets, it achieved an AUC score close to 0.7 and an FPR of about 40% with a

TPR of around 80%. This demonstrates the effectiveness of the data aggregation strategy based on

statistical analysis methods at enhancing model performance, particularly in scenarios where there

are so many datasets that it is impractical to exhaustively test all possible combinations.

While data aggregation is certainly powerful, it also has its own limitations. The two tool-

module combinations with the smallest datasets, T5-PM2 and T7-PM2, cannot attain a FPR of

20% at a TPR of 80% like T2-PM2, a tool-module with a large dataset. This is because the

original dataset is simply too limited. Although data aggregation can greatly increase the amount

of training data by combining similar datasets, the newly added data will never perfectly follow

the distribution of the original data, or in other words, data aggregation dilutes the “identity” of

the original dataset. This forms a complex balance between data aggregation increasing the data

volume, which improves model performance, and data aggregation diluting the identity of the

original dataset, which decreases model performance. Additionally, the improvement effect from

increased data volume experiences diminishing returns as seen in Fig. 5.11; T7-PM1’s performance

experiences a sizable increase when moving from one to two datasets, but its performance only

experiences a minor boost when moving from two to three datasets. Thus, the diminishing returns

of increased data volume and the cost of identity dilution implies that there exists an optimum
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where further data aggregation would lead to decreased rather than increased model performance.

This optimum will also differ for each individual classification problem and dataset. For exam-

ple, complex problems naturally require larger datasets in comparison to simpler problems, which

reduces the diminishing returns effect of increased data volume. Additionally, the dilution extent

of the original dataset’s identity is dependent on the potential candidate datasets; if the datasets

to be aggregated are very similar, then the dilution effect will be weak whereas if the datasets

to be aggregated are very different, the dilution effect will be strong. Nonetheless, the improved

AUC scores and reduced FPRs highlight the efficacy of data aggregation at limiting the number of

missed misprocessed wafers. A key part to data aggregation is the candidate dataset method and

its ability to search for ideal datasets that optimize model accuracy and efficiency when dealing

with extensive datasets as randomly selecting datasets will result in minor improvements if not

decreases in performance. It should be mentioned that the point-biserial analysis and difference

scores are not guaranteed to nominate the ideal candidate dataset. Nevertheless, the results of this

chapter demonstrate that the proposed data aggregation method can still significantly improve the

performance of industrial classification models, validating the practicality and effectiveness of the

approach in real-world applications.

5.3.2 Regression Model Performance

The regression model is evaluated with the median percentage error metric. Percentage error

is chosen as it is commonly used in industrial settings for numerical data that spans a wide range

from 0 to over 5000 Å, and it is calculated with the following equation:

Jpercentage =
|ypred − ytrue|

ytrue
(5.12)

where Jpercentage is the percentage error, ypred is the predicted oxide thickness, and ytrue is the

measured oxide thickness. ytrue spans from 0 to 5000 Å, and some values are close to 0 Å, e.g.
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0.001 Å. The percentage error for these data points with small ytrue values will be abnormally

large despite their small absolute error. To minimize the influence of these outliers, the median,

rather than the mean, is used to represent the overall percentage error as it is a more robust and

representative measure of model performance. The R2 criterion is not applied here because of

the imbalanced data distribution; the data points are dense around a low target region (from 0 to

200) and sparse at a high target region (from 200 to over 5000). A model that mostly focuses

on the dense, low target region can still receive a good R2 score even if it performs badly on the

sparse, high target region. Thus, the median percentage error is a better criterion for evaluating

the overall model performance on all ranges of data. As previously stated, the regression task is

more complex than the classification task, so only the T2-PM2, T4-PM1, and T7-PM1 datasets

are analyzed. Furthermore, since the training, validation, and test datasets for the regression task

are all sorted by time rather than randomly selected as was the case for the classification task, the

median percentage error of all three datasets is an informative metric and will be shown.

Since the target oxide thickness is always known, a benchmark model can be constructed.

Specifically, the benchmark model is defined as a model that always predicts the measured ox-

ide thickness to be the same as the target oxide thickness; it always guesses that the product will

pass metrology. Then, by calculating the median percentage error of this benchmark model on the

validation set, it can act as a baseline for performance evaluation. The minimum requirement for

an acceptable regression model is to outperform the benchmark model. By comparing the perfor-

mance of various regression models against this benchmark, we can better assess the regression

model’s accuracy at predicting the measured oxide thickness, especially in an industrial context

where reliability is crucial.

MAPE Training Results

The results for all the models trained with the Mean Absolute Percentage Error (MAPE) loss

function for the three specified datasets split by the training, validation and test datasets are shown
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is shown in Fig. 5.13. Fig. 5.13 shows that, although the trained regression model outperforms the

Figure 5.13: The median percentage error after training with the MAPE loss function, compared
to the benchmark model. Each tool-module labeled on the x-axis has three groups of bars, which
represent the training, validation and test sets, respectively. Within each groups of bars, the blue
bar is the median percentage error of the trained regression model, and the orange bar is the median
percentage error of the benchmark model. Fig. 5.14 to Fig. 5.18 have the same formatting.

benchmark model on the training and validation datasets for T2-PM2, the regression model still

underperforms in comparison to the benchmark model on the test set. For T4-PM1, the trained

regression model even fails to outperform the benchmark model on the validation set. Moreover,

for T7-PM1, the trained model does not outperform the benchmark model on any of the dataset.

Overall, it is evident that any regression models trained with the MAPE loss function cannot sur-

pass the benchmark model when evaluated over the entire dataset.

Even when the data is divided into runs with a target oxide thickness value lower than 200 Å (low

target) and runs with a target oxide thickness higher than 200 Å (high target) as shown in Fig. 5.14

and Fig. 5.15, the previous conclusion remains consistent. The regression model trained with the

MAPE loss function does not outperform the benchmark model on either the low target or the
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high target test sets. The designation of “low” and “high” targets is arbitrarily determined by the

real-world behavior of the tool-module combinations. Specifically, the runs with a target below

200 Å and those above 200 Å have very different behaviors. By splitting up the data and analyzing

it in detail, it gives a more detailed and comprehensive sense of the overall model performance by

examining the model performance in different applications.

Figure 5.14: Comparison of the median percentage error between various regression models
trained with the MAPE loss function for the training, validation and test sets and the benchmark
model on runs with target oxide thicknesses of less than 200 Å.

MSE Training Results

The results for all the models trained with the Mean Square Error (MSE) loss function for the

three specified datasets split by the training, validation and test datasets are shown in Fig. 5.16.

Fig. 5.16 shows that the median percentage error of the regression model trained with the MSE

loss function is worse than that of the regression model trained with the MAPE loss function. This

is expected as the MAPE loss better aligns with the evaluation criterion. The regression models
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Figure 5.15: Comparison of the median percentage error between various regression models
trained with the MAPE loss function for the training, validation and test sets and the benchmark
model on runs with target oxide thickess of over 200 Å.

trained with the MSE loss function perform worse than the benchmark model for all three tool-

module combinations across the training, validation, and test sets. This trend is also evident in

the model’s performance on low target data points, as shown in Fig. 5.17. Due to the intrinsic

properties of the MSE loss function, which treats absolute errors on the high and low target data

points the same, the median percentage error on runs with low targets is even higher than the

median percentage error on all runs. Conversely, this means that the model performs exceptionally

well on runs with high targets, as shown in Fig. 5.18. When only examining the runs with high

targets, the median percentage error of the trained regression models is significantly lower than

those of the benchmark model across the training, validation, and test datasets.

The results shown in Figs. 5.16 to 5.18 prove that the MSE loss function can achieve excep-

tional performance in terms of median percentage error for runs with high targets. Nevertheless, if

the runs with high targets only constitute a negligible portion of the overall dataset, then the good
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Figure 5.16: The median percentage error after training with the MSE loss function, compared to
the benchmark model. For all tool-module combinations and all datasets, the trained regression
model performance is worse than that of the benchmark model.

performance of the regression model in this category is not particularly noteworthy. In this chap-

ter, however, the high target data points contribute significantly to the overall dataset, as shown in

Table 5.7. For instance, over one-third of the data points in the test sets of T2-PM2 and T4-PM1

Table 5.7: Percentage of runs with High Targets in each dataset.

Tool-Module Training Validation Testing

T2-PM2 20% 17% 38%

T4-PM1 21% 39% 38%

T7-PM1 8% 18% 11%

have high target oxide thicknesses.

Given this substantial representation, although the model trained with the MSE loss function

cannot be confidently used in all cases, it holds a distinct advantage in predicting the measured

oxide thickness when the target oxide thickness is high. Since the target value is always known
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Figure 5.17: Comparison of the median percentage error between various regression models
trained with the MSE loss function for the training, validation and test sets and the benchmark
model on runs with low target oxide thicknesses. The performance of the regression model here is
even worse than in Fig. 5.16.
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Figure 5.18: Comparison of the median percentage error between various regression models
trained with the MSE loss function for the training, validation and test sets and the benchmark
model on runs with high target oxide thicknesses. The performance of the regression model is
better than that of the benchmark model on all examined runs for all three training, validation and
test datasets.
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before processing, this characteristic can be strategically utilized to employ the model in areas

where it shows strong performances.

The poor performance of the regression models for both the MSE and MAPE loss functions,

compared to that of the benchmark model, can primarily be attributed to the exceptionally high

pass rate, which reaches 98% in some datasets. In industry, a common pass criterion is for the

result to be within a specified threshold of the target value. This high pass rate indicates that most

runs are successfully etched and that their measured oxide thickness is very close to the target

thickness, resulting in the benchmark model having a very low median percentage error in most

cases. However, this means that it is very difficult to train a regression model that outperforms

the benchmark model across all target values. This stands in stark contrast to the results of the

classification model, where the favorable ROC-AUC curves in Fig. 5.12 show that the trained

models can and do outperform a benchmark model that randomly guesses the outcome.

The reason for the different results stems from the difference in complexity between the tasks.

The available process data contains enough information to train a high-performing classification

model that simply allocates the results into two classes. However, the regression model must

predict the exact oxide thickness value from a wide range of possible values. As the regression

task is many times more complex than the classification task, a high-performing regression model

requires process data that contains deep insight into the process itself. Thus, the reason why the

regression models do not outperform the benchmark model is because the process data does not

contain enough information regarding the process. To improve the performance of the regression

models, more complex process data, such as time-series data, must be incorporated into the training

process. In conclusion, machine learning-based soft sensors are powerful at predicting the physical

properties of the process, but only if the model is trained on sufficiently insightful process data

collected from physical sensors.
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5.4 Conclusion

This chapter describes machine learning-based soft sensors trained on process data from five

industrial etching reactors for two tasks: PASS/FAIL classification and oxide thickness regression.

A data aggregation method is proposed to improve the model performance for the predictive clas-

sification task. In addition, for the regression task of predicting measured oxide thickness, both

MSE and MAPE losses are tested for model training. The results presented in this chapter val-

idate the hypothesis that data aggregation and statistical analyses can significantly enhance the

binary PASS/FAIL prediction accuracy and robustness of feed forward neural network models on

industrial etching reactors. This is done by aggregating datasets using point-biserial correlations

and difference scores as metrics to choose candidate datasets for aggregation, particularly for tools

with initially small data volumes. The two datasets with the smaller number of data points im-

proved from a score barely above random guessing (AUC ≈ 0.5) when trained on a single dataset

to a significantly better performance (AUC ≈ 0.65) with a 40% false positive rate (FPR) at a

80% true positive rate (TPR) when trained on an aggregation of three datasets out of five possible

datasets. The other datasets with relatively larger datasets still benefited from data aggregation;

their model performance improved from AUC ≈ 0.8 to AUC ≈ 0.9, and the FPR improved

from around 35% at 80% TPR to to 20%. The statistical analyses accurately chose the best candi-

date dataset for aggregation, aligning with the results shown by exhaustively testing every possible

dataset combination. These results confidently show the effectiveness of data aggregation and us-

ing statistical methods as an aggregation strategy. Additionally, for regression models that predict

oxide thicknesses, while the MAPE loss function was more effective for overall percentage error

minimization, the trained model could not outperform the benchmark model that always predicted

the measured oxide thickness to be the target thickness. Although the model trained with the MSE

loss function did not yield satisfactory predictions across all data points, it exhibited exceptional

performance for runs with high target oxide thickness with target values of over 200 Å. This finding
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is useful for specific processes with high target values, as these target values are typically known

in industrial settings. Consequently, the strategic use of MSE for processes with high target values

can enhance regression model performance in these specific scenarios.
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Chapter 6

Conclusion

This dissertation discussed the challenges and emerging solutions faced in the semiconductor

fabrication industry with a particular focus on the atomic layer etching process. In manufacturing

environments, there is a wealth of process data that can be used to train powerful prediction mod-

els and control systems. However, the infrastructure and methods needed to effectively implement

these cutting edge manufacturing techniques is missing. Thus, this dissertation uses first-principles

multiscale modeling to produce process data and simulate the impacts and effects that data-driven

modeling can bring to the semiconductor manufacturing industry. This effort was successful as

the data-driven models were able to effectively learn the information contained within the first-

principles models and predict future states more quickly. This increased simulation speed allowed

data-driven models to be used to predict key process variables that are classically difficult to mea-

sure, such as kinetic reaction rates. Even with noisy industrial data, as long as proper care is taken

to clean and correct the data, highly effective data-driven models can be established. Finally, these

data-driven models can be made more robust by aggregating process data from different sources to

improve the models’ ability to adapt to disturbances and industrial noise.

Key contributions were made toward the usage of data-driven models in the industrial manu-

facturing space. Specifically, data aggregation methods for improving data-driven models’ perfor-
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mances were proposed and have since been adopted within Seagate. Future work on the research

subject presented in this dissertation includes adjusting process recipes based on data from earlier

processes, advanced model-based control methods, and self-updating process models.

Chapter 2 examined the optimal reactor design for an Area-Selective Atomic Layer Depo-

sition reaction in a Discrete Feed Reactor and its impacts on conformal thin film deposition. A

multiscale model was used to evaluate the efficacy of certain showerhead plates and determine

optimal design criteria. It was found that a key step in conformal film growth is a focus on high

initial concentration of reagent due to a statistically improbable precursor adsorption step. Thus,

the combined-inlet reactor model completed the overall deposition process in the shortest process

time.

Chapter 3 investigated the development of a process predictor model from aggregated process

data. Four unique process datasets with varying kinetic parameters were generated with a first-

principles multiscale model. Then, predictor models were trained on various combinations of

these datasets and tested on unseen data with process noise to determine their efficacy. It was

found that, for noisy datasets, the predictor model’s performance improved when a broad range

of process datasets were aggregated together. In contrast, when the test datasets were clean with

little noise, the predictor model’s performance was best when process datasets were not aggregated

together.

Chapter 4 explored how a real-time Endpoint Feedback Controller and a classical Run-to-Run

Controller interact when they are both trying to control the process time. The two systems were

able to communicate through a β bias term. This bias term was applied to the Endpoint Controller

and extended the process time by that amount after the controller determined that the process was

complete. And in between each run, β is updated with an exponentially weighted moving average

of a nonlinear model of the process through the Run-to-Run controller. The combination of both

controllers outperformed either alone as the combination both minimized the immediate impact of

process disturbances and efficiently drove the process to the target setpoint.
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Chapter 5 investigated how to best create a data-driven process predictor for industrial process

data collated from different tools in the same toolset. It also created a data aggregation method

focusing on point-biserial correlations. It was found that tools with small datasets benefited greatly

from data aggregation, with a total of three datasets being aggregated together yielding the best

predictor model performance. Even for the largest datasets, aggregation still improved model

performance, though to a lesser extent. Additionally, analyzing the various datasets by correlating

them to each other with point-biserial correlations offered insights into the similarity of the two

datasets. It was found that this correlation generally, but not always, let to data aggregation that

improved model performance.
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