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Traditionally, process control systems rely on centralized control architectures uti-

lizing dedicated, wired links to measurement sensors and control actuators to regulate

appropriate process variables at desired values. While this paradigm to process con-

trol has been successful, we are currently witnessing an augmentation of the existing,

dedicated control systems, with additional networked (wired and/or wireless) actu-

ator/sensor devices which have become cheap and easy-to-install. While such an

augmentation in sensor information, actuation capability and network-based avail-

ability of data has the potential to dramatically improve control system performance,

it poses a number of new challenges in control system design that cannot be addressed

with traditional control methods.

This dissertation presents rigorous, yet practical, methods for the design of net-

worked and distributed predictive control systems. Beginning with a review of recent

results on the subject, the dissertation presents the design of model predictive con-
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trol systems via Lyapunov-based control techniques, accounting for the influence of

asynchronous and delayed measurements. Then, the dissertation focuses on the de-

velopment of a networked control architecture, which naturally augments dedicated

control systems with networked control systems and takes advantage of additional,

potentially asynchronous and delayed measurements, to maintain closed-loop stabil-

ity and significantly improve closed-loop performance. Subsequently, the dissertation

focuses on the design of distributed predictive control systems, that utilize a fraction

of the time required by the respective centralized control systems and cooperate in

an efficient fashion, to compute optimal manipulated input trajectories that achieve

desired stability, performance and robustness specifications. The control methods

are applied to nonlinear chemical process networks and wind-solar energy genera-

tion systems and their effectiveness and performance are evaluated through detailed

computer simulations.
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Chapter 1

Introduction

1.1 Motivation

Increasingly faced with the requirements of safety, environmental sustainability, and

profitability, chemical process operation is relying extensively on highly automated

control systems. This realization has motivated extensive research, over the last forty

years, on the development of advanced operation and control strategies to achieve

economically optimal plant operation by regulating process variables at appropriate

values. With respect to process control, control systems traditionally utilize ded-

icated, point-to-point wired communication links using a small number of sensors

and actuators to regulate appropriate process variables at desired values. While this

paradigm to process control has been successful, chemical plant operation could sub-

stantially benefit [111, 15, 78, 11, 116, 64] from an efficient integration of the existing,

point-to-point control networks (wired connections from each actuator or sensor to the

control system using dedicated local area networks) with additional networked (wired

or wireless) actuator or sensor devices that have become cheap and easy-to-install.

Such an augmentation in sensor information, actuation capability and network-based
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availability of wired and wireless data is now well underway in the process industries

and clearly has the potential to dramatically improve the ability of the single-process

and plant-wide model-based control systems to optimize process and plant perfor-

mance. Network-based communication allows for easy modification of the control

strategy by rerouting signals, having redundant systems that can be activated auto-

matically when component failure occurs, and in general, it allows having a high-level

supervisory control over the entire plant. However, augmenting existing control net-

works with real-time wired or wireless sensor and actuator networks challenges many

of the assumptions made in the development of traditional process control methods

dealing with dynamical systems linked through ideal channels with flawless, contin-

uous communication. In the context of networked control systems, key issues that

need to be carefully handled at the control system design level include data losses

due to field interference and time-delays due to network traffic as well as due to the

potentially heterogeneous nature of the additional measurements. In the context of

control system architectures, augmenting dedicated, local control systems with con-

trol systems that utilize real-time sensor and actuator networks gives rise to the need

to coordinate separate control systems that operate on a process. However, the rigor-

ous design of cooperative, distributed control architectures for nonlinear processes is

a challenging task that cannot be addressed with traditional process control methods

dealing with the design of centralized control systems. To design cooperative, dis-

tributed control systems, key fundamental issues that need to be addressed include the

design of the individual control systems and of their communication strategy so that

they efficiently cooperate in achieving the closed-loop plant objectives. Motivated by

the above, this dissertation presents general methods for the design of networked and

distributed predictive control systems, accompanied by their application to nonlinear

process networks.
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Figure 1.1: A traditional control system with two control loops

1.2 Networked and Distributed Control Architec-

tures

To provide concrete motivation for the control problems addressed in this dissertation,

we discuss below the general concept of networked and distributed process control

using block diagrams and a chemical process example.

1.2.1 Networked Control Architectures

Traditionally, the different components (i.e., sensor, controller and actuator) in a

control system are connected via wired, point-to-point links, and the control laws

are designed and operate based on local continuously-sampled process output mea-

surements. For a system with multiple control loops, the controllers, in general, are

designed to work in a decentralized fashion. Figure 1.1 shows a traditional control

system with two control loops. In Figure 1.1, two local control systems (i.e., LCS

1 and LCS 2) are designed based on two different continuously-sampled outputs, y1

and y2, of the system. The two controllers do not exchange information and operate

in a decentralized fashion.

Communication networks make the transmission of data much easier and provide
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Figure 1.2: A networked configuration for the system shown in Figure 1.1 (dashed lines
denote measurements and control actions transmitted via real-time communication
networks)

a higher degree of freedom in the configuration of control systems. However, new

issues arise in the design of a networked control system (NCS), for example, the in-

troduction of data losses and time-varying delays in the control loop as well as the

use of asynchronous measurements. On the other hand, additional information of

a system which previously were difficult or impossible to access because of physical

or economical reasons may be now available via networked devices like, for example,

networked sensors deployed over chemical plants. The additional information may

be used to improve the closed-loop performance and the fault tolerance of a con-

trol system. However, because of the nature of the additional sensing (for example,

concentration versus temperature measurements) and the fact that this information

is collected and transmitted through real-time wired or wireless networks, a con-

trol system should also be able to handle heterogeneous (for example, continuous,

asynchronous and delayed) measurements. In order to take advantages of the use of

networks in the transmission of information and to use the additional information

provided by networked devices, one approach is to design an NCS which takes data

losses, delays and heterogeneous measurements explicitly into account to replace the

local control loops. Figure 1.2 shows this kind of NCS design for the system shown in

Figure 1.1. In Figure 1.2, an NCS is designed to replace the two local controllers in
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Figure 1.3: An alternative networked configuration for the system shown in Figure 1.1
(dashed lines denote measurements and control actions transmitted via real-time com-
munication networks)

Figure 1.1 taking into account all the available measurements (i.e., originally avail-

able measurements y1, y2 and additional measurement y3). The key issues in the

design of such an NCS include the handling of data losses, time-varying delays and

the utilization of heterogeneous measurements.

Instead of replacing the local control loops, an alternative to the above networked

control configuration is to design an NCS to augment the local control loops to take

advantage of the additional measurements to manipulate additional control inputs or

adjust the control actions of the existing local controllers to improve the closed-loop

performance. The networked control configuration resulting in this case is shown in

Figure 1.3. The main question is how to design the NCS to maintain the closed-loop

stability achieved by the local controllers while improving the closed-loop perfor-

mance.

1.2.2 Cooperative, Distributed Control Architectures

Consider the second networked control configuration shown in Figure 1.3. In this

configuration, there is no communication between the networked controller and the

two local controllers. In this sense, the three controllers work in a decentralized
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Figure 1.4: A distributed control configuration for the system shown in Figure 1.1
(dashed lines denote information transmitted via real-time communication networks)

fashion. When the local controllers are designed via classical (e.g., proportional-

integral-derivative (PID) control), geometric or Lyapunov-based control methods for

which an explicit formula for the calculation of the control action is available, and

the networked controller is designed via model-based control methods, like model

predictive control (MPC), the coupling between the networked controller and the

local controllers may be taken into account if the networked controller is carefully

designed. However, when the local controllers are designed via MPC for which there

is no explicit controller formula to calculate the future control actions, it is necessary

to establish some, preferably small, communication between the different controllers

so that they can coordinate their actions, which leads to the design of distributed

control systems.

Figure 1.4 shows such a control configuration for the system shown in Figure 1.1.

In this distributed control system, an LCS is designed to determine u1 and u2 and an

NCS is designed to calculate u3 based on all the information available via networks. In

order to coordinate the control actions, the two controllers communicate to exchange

information which could be future input trajectories the two controllers will apply

or/and system measurements. In this case, we need to consider how the distributed

controllers should communicate, what information they need to exchange and how to
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Figure 1.5: An alternative distributed control configuration for the system shown in
Figure 1.1 (dashed lines denote information transmitted via real-time communication
networks)

coordinate their actions to achieve stability of the entire closed-loop system.

In the distributed control configuration shown in Figure 1.4, the control inputs

are distributed into the two controllers by their functionalities; that is, the LCS

determines u1 and u2 to ensure the closed-loop stability, and the NCS determines u3 to

improve the closed-loop performance. An alternative to this kind of decomposition of

the control inputs is to decompose the inputs spatially; that is, a distributed controller

is designed for each control input (or each subsystem) as shown in Figure 1.5. In the

distributed control configuration of Figure 1.5, three NCSs are designed to manipulate

the three control inputs, respectively, based on all the available measurements. The

three controllers communicate to coordinate their actions. This type of distributed

control configuration is more flexible in the control loop selection compared with the

one shown in Figure 1.4.

1.2.3 A Reactor-separator Process Example

Consider a three vessel, reactor-separator process consisting of two continuously

stirred tank reactors (CSTRs) and a flash tank separator shown in Figure 1.6. A
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Figure 1.6: Reactor-separator process with recycle

feed stream to the first CSTR F10 contains the reactant A which is converted into the

desired product B. The desired product B can then further react into an undesired

side-product C. The effluent of the first CSTR along with additional fresh feed F20

makes up the inlet to the second CSTR. The reactions A → B and B → C take

place in the two CSTRs in series before the effluent from CSTR 2 is fed to the flash

tank. The overhead vapor from the flash tank is condensed and recycled to the first

CSTR, and the bottom product stream is removed. A small portion of the overhead

is purged before being recycled to the first CSTR.

The control objective is to stabilize the process at a desired operating steady-

state and achieve an optimal level of closed-loop performance. To accomplish the

control objective, we may design three local single loop controllers to manipulate the

three heat inputs, Q1, Q2, Q3, based on continuous temperature measurements of the

three vessels. The three local controllers may be designed via proportional-integral-

derivative (PID) control. This control configuration is shown in Figure 1.7, which

is the common traditional local control system configuration for a process shown in

Figure 1.6. This local control configuration corresponds to the control architecture
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Figure 1.7: Local control configuration for the reactor-separator process

shown in Figure 1.1.

In the reactor-separator process, the additional information that we have access

to because of additionally deployed networked sensors could be the species concen-

tration measurements of each component in the three vessels. These measurements

are subject to sampling delays and network transmission data package dropouts and

they may not be available at every sampling time. To use the additional informa-

tion, we may design an NCS to replace the three local control loops. This networked

control configuration of the reactor-separator process is shown in Figure 1.8 which

corresponds to the control architecture shown in Figure 1.2.

Instead of replacing the local control loops, an alternative to the above networked

control configuration is to design an NCS to augment the local control loops to take

advantage of the additional species concentration measurements as well as of the

temperature measurements to adjust additional manipulated inputs, for instance, the

feed flow rate to the second vessel, F20. This networked control configuration of the

reactor-separator process is shown in Figure 1.9 which corresponds to the control

architecture shown in Figure 1.3.
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Figure 1.8: A networked control configuration for the reactor-separator process. In
this configuration, a networked control system is designed to replace the three local
control loops in the local control configuration
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Figure 1.9: A networked control configuration for the reactor-separator process. In
this configuration, a networked control system in addition to the three local controllers
is designed to improve the closed-loop performance
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Figure 1.10: A distributed control configuration for the reactor-separator process.
In this configuration, the two networked controllers communicate via the plant-wide
network to coordinate their actions

Figure 1.10 shows a distributed control configuration for the reactor-separator

process. In this design, two networked controllers are designed to manipulate the

three heat inputs and the feed flow rate to vessel 2, respectively, and communicate

through the plant-wide network to exchange information and coordinate their actions.

This control configuration corresponds to the one shown in Figure 1.4.

Figure 1.11 shows the alternative distributed control configuration corresponding

to Figure 1.5 for the reactor-separator process. In this design, four networked con-

trollers are designed to manipulate the four control inputs and communicate through

the plant-wide network to exchange information and coordinate their actions.
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Figure 1.11: A distributed control configuration for the reactor-separator process.
In this configuration, four networked controllers are designed to manipulate the four
control inputs and communicate via the plant-wide network to coordinate their actions
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1.3 Background

Within control theory, the study of control over networks has attracted considerable

attention in the literature (e.g. [7, 74, 67, 12, 100]) and early research focused on

analyzing and scheduling real-time network traffic (e.g. [93, 32]). Research has also

focused on the stability of network-based control systems. A common approach is to

insert network behavior between the nodes of a conventional control loop, designed

without taking the network behavior into account. More specifically, in [108], it was

proposed to first design the controller using established techniques considering the

network transparent, and then to analyze the effect of the network on closed-loop

system stability and performance. This approach was further developed in [76] using

a small gain analysis approach. In the last few years, however, several research papers

have studied control using the IEEE 802.11 and Bluetooth wireless networks, see, for

example, [113, 112, 83, 98] and the references therein. In the design and analysis of

networked control systems, the most frequently studied problem considers control over

a network having constant or time-varying delays. This network behavior is typical of

communications over the Internet but does not necessarily represent the behavior of

dedicated wireless networks in which the sensor, controller, and actuator nodes com-

municate directly with one another but might experience data losses. An appropriate

framework to model lost data, is the use of asynchronous systems [91, 96, 28]. In this

framework, data losses occur in an stochastic manner, and the process is considered

to operate in an open-loop fashion when data is lost. The most destabilizing cause of

packet loss is due to bursts of poor network performance in which case large groups

of packets are lost nearly consecutively. A more detailed description of bursty net-

work performance using a two-state Markov chain was considered in [79]. Modeling

networks, using Markov chains results in describing the overall closed-loop system as
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a stochastic hybrid system [30]. Stability results have been presented for particular

cases of stochastic hybrid systems (e.g. [61, 28]). However, these results do not di-

rectly address the problem of augmentation of dedicated, wired control systems with

networked actuator and sensor devices to improve closed-loop performance.

With respect to other results on networked control, in [44], stability and distur-

bance attenuation issues for a class of linear networked control systems subject to

data losses modeled as a discrete-time switched linear system with arbitrary switch-

ing was studied. In [33] (see also [27, 3, 19]) optimal control of linear time-invariant

systems over unreliable communication links under different communication protocols

(with and without acknowledgement of successful communication) was investigated

and sufficient conditions for the existence of stabilizing control laws were derived.

In [28], the stability properties of a class of networked control systems modeled as

linear asynchronous systems was studied. Networked control systems in which the

plant is modeled by a nonlinear system have received less attention. Limited access

systems where each unit must compete with the others for access to the network

have been studied in [107, 108, 76, 77] within a sampled-data system framework. In

these works, practical stability of the system is guaranteed if the maximum time for

which access to the network is not available is smaller than a given constant denoted

as the maximum allowable transmission interval (MATI). A common theme of the

above-mentioned works is that the controller is designed without taking into account

the network dynamics and subsequently, the robustness of the closed-loop system

in the presence of the network dynamics is studied. Furthermore, the importance of

time delays in the context of networked control systems has also motivated significant

research effort in modeling such delays and designing control systems to deal with

them, primarily in the context of linear systems (e.g., [43, 69, 109, 115, 110, 23]).
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In another recent line of work, Antsaklis and co-workers [68, 69] have proposed

a strategy based on using an estimate of the state computed via the nominal model

of the plant to decide the control input over the period of time in which feedback

is lost between consecutively received measurements. In [68, 69], this framework

was applied to optimize the bandwidth needed by a networked control system mod-

eled as a sampled-data linear system with variable sampling rate. Other relevant

works related to this approach include [72, 73], where the design of a linear output-

feedback controller to stabilize a linear networked control system in the presence of

delays, sampling and data losses was addressed. Within process control, important

recent work on the subject of networked process control includes the development of a

quasi-decentralized control framework for multi-unit plants that achieves the desired

closed-loop objectives with minimal cross communication between the plant units

[97]. In this work, the key idea is to embed in the local control system of each unit

a set of dynamic models that provide an approximation of the interactions between

a given unit and its neighbors in the plant when measurements are not transmitted

through the plant-wide network and to update the state of each model using measure-

ments from the corresponding unit when communication is re-established. In addition

to these works, fault diagnosis and fault-tolerant control methods that account for

network-induced measurement errors have been developed in [25]. Finally, it is also

important to note that within process control practice, wireless communication stan-

dards (e.g., ISA100 and WirelessHART) which are appropriate for chemical process

industry applications have been developed based on the IEEE 802.15.4 standard [64]

and applications of wireless field networks in the monitoring and control of chemi-

cal processes including heat exchangers and a phosphate fertilizer plant have been

reported [116]. Despite these efforts, the problem of designing networked control sys-

tems that explicitly account for asynchronous and delayed measurements at both the
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design and implementation stages in the context of nonlinear systems, has received

limited attention.

MPC has been widely used in the handling of measurement losses and delays

because of its ability to predict the evolution of a system with time while accounting

for the effect of data losses and delays. However, most of the available results deal

with linear systems (e.g., [34, 47]). MPC is also a natural control framework to deal

with the design of coordinated, distributed control systems because of its ability to

handle input and state constraints, and also because it can account for the actions of

other actuators in computing the control action of a given set of control actuators in

real-time. With respect to available results in this direction, several distributed MPC

(DMPC) methods have been proposed in the literature that deal with the coordination

of separate MPCs that communicate in order to obtain optimal input trajectories in a

distributed manner; see [8, 89, 92] for reviews of results in this area. More specifically,

in [16], the problem of distributed control of dynamically coupled nonlinear systems

that are subject to decoupled constraints was considered. In [90, 35], the effect of

the coupling was modeled as a bounded disturbance compensated using a robust

MPC formulation. In [105, 95], it was proven that through multiple communications

between distributed controllers and using system-wide control objective functions,

stability of the closed-loop system can be guaranteed for linear systems. In [37],

DMPC of decoupled systems (a class of systems of relevance in the context of multi-

agents systems) was studied. In [60], a DMPC algorithm was proposed under the main

condition that the system is nonlinear, discrete-time and no information is exchanged

between local controllers, and in [87], DMPC for nonlinear systems was studied from

an input-to-state stability point of view. In [59, 58], a game theory based DMPC

scheme for constrained linear systems was proposed. Previous work on MPC design

for systems subject to asynchronous or delayed feedback has primarily focused on
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centralized MPC designs [34, 47, 70, 54, 26]. In addition to these works, control

and monitoring of complex distributed systems with distributed intelligent agents

were studied in [99, 13, 82]. Despite this progress, little attention has been given to

the design of DMPC for systems subject to asynchronous or delayed measurements

except in a recent work [21] where the issue of delays in the communication between

distributed controllers was addressed.

1.4 Objectives and Organization of the Disserta-

tion

Motivated by the lack of general networked and distributed control methods for pro-

cess systems, the broad objectives of this dissertation are as follows:

1. To develop Lyapunov-based predictive control methods for nonlinear systems

that provide an explicit characterization for the closed-loop stability region and

account for the effect of asynchronous feedback and time-varying measurement

delays.

2. To present a framework for the design of networked predictive control systems

for nonlinear processes that naturally augment dedicated control systems with

networked control systems.

3. To develop distributed predictive control methods for large-scale nonlinear pro-

cess networks taking into account asynchronous measurements and time-varying

delays as well as different sampling rates of measurements.

4. To illustrate the applications of the developed networked and distributed pre-

dictive control methods to nonlinear process networks and wind-solar energy
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generation systems.

The dissertation is organized as follows. In Chapter 2, we first review some

basic results on Lyapunov-based control, model predictive control and Lyapunov-

based model predictive control (LMPC) of nonlinear systems and then present two

Lyapunov-based model predictive control designs for systems subject to data losses

and time-varying measurement delays. In order to guarantee the closed-loop stability,

in the design of the LMPCs, constraints based on Lyapunov functions are incorpo-

rated. The theoretical results are illustrated through a chemical reactor example.

In Chapter 3, we present a two-tier networked control architecture to augment

pre-existing, point-to-point control systems with networked control systems, which

take advantage of real-time wired or wireless sensor and actuator networks. Specifi-

cally, we will first present the two-tier networked control architecture for systems with

continuous and asynchronous measurements; and then extend the results to include

systems with continuous and asynchronous measurements which involve time-varying

measurement delays. Two chemical process examples are used to illustrate the appli-

cability and effectiveness of the two-tier control architecture. Moreover, the two-tier

control architecture is also applied to the optimal management and operation of a

standalone wind-solar energy generation system.

In Chapter 4, we focus on a class of distributed control problems that arise when

new control systems which may use networked sensors and actuators are added to al-

ready operating control loops designed via MPC to improve closed-loop performance.

To address this control problem, a distributed model predictive control method is

introduced where the pre-existing control system and the new control system are re-

designed/designed via LMPC. The distributed control design stabilizes the closed-loop

system, improves the closed-loop performance and allows handling input constraints.
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Furthermore, the distributed control design requires that these controllers communi-

cate only once at each sampling time and is computationally more efficient compared

to the corresponding centralized model predictive control design. The distributed

control method is extended to include nonlinear systems subject to asynchronous and

delayed measurements. The applicability and effectiveness of these distributed pre-

dictive control designs are illustrated through extensive simulations using a chemical

plant example described by a nonlinear model.

In Chapter 5, we extend the results of Chapter 4 to distributed model predictive

control of large-scale nonlinear systems in which several distinct sets of manipulated

inputs are used to regulate the system. For each set of manipulated inputs, a different

model predictive controller is used to compute the control actions, which is able to

communicate with the rest of the controllers in making its decisions. We present

two distributed control architectures designed via LMPC techniques. In the first

architecture, the distributed controllers use a one-directional communication strategy,

are evaluated in sequence and each controller is evaluated only once at each sampling

time; in the second architecture, the distributed controllers utilize a bi-directional

communication strategy, are evaluated in parallel and iterate to improve closed-loop

performance. The case in which continuous state feedback is available to all the

distributed controllers is first considered and then the results are extended to include

large-scale nonlinear systems subject to asynchronous and delayed state feedback.

The theoretical results are illustrated through a catalytic alkylation of benzene process

example.

Chapter 6 summarizes the main results of the book and discusses future research

directions in networked and distributed process control.
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Chapter 2

Lyapunov-based Model Predictive

Control

2.1 Introduction

MPC, also known as receding horizon control (RHC), is a popular control strategy

for the design of high performance model-based process control systems because of

its ability to handle multi-variable interactions, constraints on control (manipulated)

inputs and system states, and optimization requirements in a systematic manner.

MPC is an online optimization-based approach, which takes advantage of a system

model to predict its future evolution starting from the current system state along a

given prediction horizon. Using model predictions, a future control input trajectory

is optimized by minimizing a typically quadratic cost function involving penalties

on the system states and control actions. To obtain finite dimensional optimiza-

tion problems, MPC optimizes over a family of piecewise constant trajectories with a

fixed sampling time and a finite prediction horizon. Once the optimization problem is
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solved, only the first manipulated input value is implemented and the rest of the tra-

jectory is discarded; this optimization procedure is then repeated in the next sampling

step [24, 88]. This is the so-called receding horizon scheme. The success of MPC in

industrial applications (e.g. [24, 86]) has motivated numerous research investigations

into the stability, robustness and optimality of model predictive controllers [63]. One

important issue arising from these works is the difficulty in characterizing, a priori,

the set of initial conditions starting from where controller feasibility and closed-loop

stability are guaranteed. This issue motivated research on LMPC designs [65, 66]

(see also [84, 40]) which allow for an explicit characterization of the stability region

of the closed-loop system and lead to a reduced computational complexity of the con-

troller optimization problem. Despite this progress, the adoption of communication

networks in the control loops and the use of heterogeneous measurements motivate

the development of MPC schemes that take data losses (or asynchronous feedback)

and time-varying delays explicitly into account. However, little attention has been

given to these issues except for a few results on MPC of linear systems with delays

(e.g., [34, 47]).

Motivated by the above considerations, in this chapter, we adopt the LMPC frame-

work [65, 66] and introduce modifications on the LMPC design both in the optimiza-

tion problem formulation and in the controller implementation to account for data

losses and time-varying delays, respectively. The design of the LMPC is based on

uniting receding horizon control with explicit Lyapunov-based nonlinear controller

design techniques. In order to guarantee the closed-loop stability, in the design of the

LMPCs, constraints based on Lyapunov functions are incorporated in the controller

formulations. The theoretical results are illustrated through a chemical reactor ex-

ample. The results of this chapter were first presented in [70, 54], and an application

of the control methods to a continuous crystallizer can be found in [53].
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2.2 Notation

Thoughtout this dissertation, the operator | · | is used to denote the absolute value

of a scalar and the operator ∥·∥ is used to denote Euclidean norm of a vector, while

we use ∥·∥Q to denote the square of a weighted Euclidean norm, i.e., ∥x∥Q = xTQx

for all x ∈ Rn. A continuous function α : [0, a) → [0,∞) is said to belong to class

K if it is strictly increasing and satisfies α(0) = 0. A function β(r, s) is said to be a

class KL function if, for each fixed s, β(r, s) belongs to class K function with respect

to r and, for each fixed r, β(r, s) is decreasing with respect to s and β(r, s) → 0 as

s → 0. The symbol Ωr is used to denote the set Ωr := {x ∈ Rn : V (x) ≤ r} where

V is a scalar positive definite, continuous differentiable function and V (0) = 0, and

the operator ‘/’ denotes set subtraction, that is, A/B := {x ∈ Rn : x ∈ A, x /∈ B}.

The symbol diag(v) denotes a square diagonal matrix whose diagonal elements are

the elements of the vector v. The notation t0 indicates the initial time instant. The

set {tk≥0} denotes a sequence of synchronous time instants such that tk = t0 + k∆

and tk+i = tk + i∆ where ∆ is a fixed time interval and i is an integer. Similarly, the

set {ta≥0} denotes a sequence of asynchronous time instants such that the interval

between two consecutive time instants is not fixed.

2.3 System Description

Consider nonlinear systems described by the following state-space model:

ẋ(t) = f(x(t), u(t), w(t)) (2.1)

23



where x(t) ∈ Rn denotes the vector of state variables, u(t) ∈ Rm denotes the vector of

control (manipulated) input variables, w(t) ∈ Rw denotes the vector of disturbance

variables and f is a locally Lipschitz vector function on Rn × Rm × Rw such that

f(0, 0, 0) = 0. This implies that the origin is an equilibrium point for the nominal

system (i.e., system of Eq. 2.1 with w(t) ≡ 0 for all t) with u = 0.

The input vector is restricted to be in a nonempty convex set U ⊆ Rm which is

defined as follows:

U := {u ∈ Rm : ∥u∥ ≤ umax} (2.2)

where umax is the magnitude of the input constraint.

The disturbance vector is bounded, that is, w(t) ∈ W where:

W := {w ∈ Rw : ∥w∥ ≤ θ, θ > 0} (2.3)

with θ being a known positive real number. The vector of uncertain variables, w(t),

is introduced into the model in order to account for the occurrence of uncertainty

in the values of the process parameters and the influence of disturbances in process

control applications.

Remark 2.1 Note that the assumption that f is a locally Lipschitz vector function

is a reasonable assumption for most of chemical process models.

2.4 Lyapunov-based Control

We assume that there exists a feedback control law u(t) = h(x(t)) which satisfies the

input constraint on u for all x inside a given stability region and renders the origin of

the nominal closed-loop system asymptotically stable. This assumption is essentially
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equivalent to the assumption that the nominal system is stabilizable or that there

exists a Lyapunov function for the nominal system or that the pair (A,B) in the case

of linear systems is stabilizable. Using converse Lyapunov theorems [62, 46, 38, 12],

this assumption implies that there exist functions αi(·), i = 1, 2, 3, 4 of class K and

a continuously differentiable Lyapunov function V (x) for the nominal closed-loop

system that satisfy the following inequalities:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (2.4)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(∥x∥) (2.5)∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ α4(∥x∥) (2.6)

h(x) ∈ U (2.7)

for all x ∈ O ⊆ Rn where O is an open neighborhood of the origin. We denote the

region Ωρ ⊆ O as the stability region of the closed-loop system under the control

u = h(x). Note that explicit stabilizing control laws that provide explicitly defined

regions of attraction for the closed-loop system have been developed using Lyapunov

techniques for specific classes of nonlinear systems, particularly input-affine nonlinear

systems; the reader may refer to [94, 2, 39, 12] for results in this area including results

on the design of bounded Lyapunov-based controllers by taking explicitly into account

constraints for broad classes of nonlinear systems [45, 17, 18].

By continuity, the local Lipschitz property assumed for the vector field f(x, u, w),

the fact that the manipulated input u is bounded in a convex set and the continuous

differentiable property of the Lyapunov function V , there exists positive constants
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M , Lw, Lx and L′
x such that:

∥f(x, u, w)∥ ≤M (2.8)

∥f(x, u, w)− f(x′, u, 0)∥ ≤ Lw ∥w∥+ Lx ∥x− x′∥ (2.9)∥∥∥∥∂V (x)

∂x
f(x, u, 0)− ∂V (x′)

∂x
f(x′, u, 0)

∥∥∥∥ ≤ L′
x ∥x− x′∥ (2.10)

for all x, x′ ∈ Ωρ, u ∈ U and w ∈ W . These constants will be used in characterizing

the stability properties of the system of Eq. 2.1 under LMPC designs.

Remark 2.2 Note that while there are currently no general methods for constructing

Lyapunov functions for general nonlinear systems, for broad classes of nonlinear mod-

els arising in the context of chemical process control applications, quadratic Lyapunov

functions are widely used and provide very good estimates of closed-loop stability re-

gions.

Remark 2.3 Note that the inequalities of Eqs. 2.4-2.10 are derived from the basic

assumptions (i.e., Lipschitz vector field and existence of a stabilizing Lyapunov-based

controller). The various constants involved in the upper bounds are not assumed to

be arbitrarily small.

2.5 Model Predictive Control

MPC is widely adopted in industry as an effective approach to deal with large mul-

tivariable constrained control problems. The main idea of MPC is to choose control

actions by repeatedly solving an online constrained optimization problem, which aims

at minimizing a performance index over a finite prediction horizon based on predic-
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tions obtained by a system model. In general, an MPC design is composed of three

components:

1. A model of the system. This model is used to predict the future evolution of

the system in open-loop and the efficiency of the calculated control actions of

an MPC depends highly on the accuracy of the model.

2. A performance index over a finite horizon. This index will be minimized sub-

ject to constraints imposed by the system model, restrictions on control inputs

and system state and other considerations at each sampling time to obtain a

trajectory of future control inputs.

3. A receding horizon scheme. This scheme introduces the notion of feedback into

the control law to compensate for disturbances and modeling errors.

Consider the control of the system of Eq. 2.1 and assume that the state measure-

ments of the system of Eq. 2.1 are available at synchronous sampling time instants

{tk≥0}, a standard MPC is formulated as follows [24]:

min
u∈S(∆)

∫ tk+N

tk

[
∥x̃(τ)∥Qc

+ ∥u(τ)∥Rc

]
dτ + F (x(tk+N)) (2.11)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (2.12)

u(t) ∈ U (2.13)

x̃(tk) = x(tk) (2.14)

where S(∆) is the family of piece-wise constant functions with sampling period ∆, N

is the prediction horizon, Qc and Rc are strictly positive definite symmetric weighting

matrices, x̃ is the predicted trajectory of the nominal system due to control input u
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with initial state x(tk) at time tk, and F (·) denotes the terminal penalty.

The optimal solution to the MPC optimization problem defined by Eqs. 2.11-2.14

is denoted as u∗(t|tk) which is defined for t ∈ [tk, tk+N). The first step value of u∗(t|tk)

is applied to the closed-loop system for t ∈ [tk, tk+1). At the next sampling time

tk+1, when a new measurement of the system state x(tk+1) is available, the control

evaluation and implementation procedure is repeated. The manipulated input of the

system of Eq. 2.1 under the control of the MPC of Eqs. 2.11-2.14 is defined as follows:

u(t) = u∗(t|tk), ∀t ∈ [tk, tk+1) (2.15)

which is the standard receding horizon scheme.

In the MPC formulation of Eqs. 2.11-2.14, Eq. 2.11 defines a performance index or

cost index that should be minimized. In addition to penalties on the state and control

actions, the index may also include penalties on other considerations; for example, the

rate of change of the inputs. Eq. 2.12 is the nominal model of the system of Eq. 2.1

which is used in the MPC to predict the future evolution of the system. Eq. 2.13

takes into account the constraint on the control input, and Eq. 2.14 provides the

initial state for the MPC which is a measurement of the actual system state. Note

that in the above MPC formulation, state constraints are not considered but can be

readily taken into account.

It is well known that the MPC of Eqs. 2.11-2.14 is not necessarily stabilizing. To

achieve closed-loop stability, different approaches have been proposed in the litera-

ture. One class of approaches is to use infinite prediction horizons or well-designed

terminal penalty terms; please see [6, 63] for surveys of these approaches. Another

class of approaches is to impose stability constraints in the MPC optimization prob-

lem [1, 4, 63]. There are also efforts focusing on getting explicit stabilizing MPC
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laws using offline computations [57]. However, the implicit nature of MPC control

law makes it very difficult to explicitly characterize, a priori, the admissible initial

conditions starting from where the MPC is guaranteed to be feasible and stabilizing.

In practice, the initial conditions are usually chosen in an ad hoc fashion and tested

through extensive closed-loop simulations.

2.6 Lyapunov-based Model Predictive Control

In this section, we introduce the LMPC design proposed in [65, 66] which allows for

an explicit characterization of the stability region and guarantees controller feasibility

and closed-loop stability.

For the predictive control of the system of Eq. 2.1, the LMPC is designed based

on an existing explicit control law h(x) which is able to stabilize the closed-loop

system and satisfies the conditions of Eqs. 2.4-2.7. The formulation of the LMPC is

as follows:

min
u∈S(∆)

∫ tk+N

tk

[
∥x̃(τ)∥Qc

+ ∥u(τ)∥Rc

]
dτ (2.16)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (2.17)

u(t) ∈ U (2.18)

x̃(tk) = x(tk) (2.19)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0) ≤

∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0) (2.20)

where V (x) is a Lyapunov function associated with the nonlinear control law h(x).

The optimal solution to this LMPC optimization problem is denoted as u∗
l (t|tk) which
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is defined for t ∈ [tk, tk+N). The manipulated input of the system of Eq. 2.1 under

the control of the LMPC of Eqs. 2.16-2.20 is defined as follows:

u(t) = u∗
l (t|tk), ∀t ∈ [tk, tk+1) (2.21)

which implies that this LMPC also adopts a standard receding horizon strategy.

In the LMPC defined by Eqs. 2.16-2.20, the constraint of Eq. 2.20 guarantees

that the value of the time derivative of the Lyapunov function, V (x), at time tk is

smaller than or equal to the value obtained if the nonlinear control law u = h(x)

is implemented in the closed-loop system in a sample-and-hold fashion. This is a

constraint that allows one to prove (when state measurements are available every

synchronous sampling time) that the LMPC inherits the stability and robustness

properties of the nonlinear control law h(x) when it is applied in a sample-and-hold

fashion.

One of the main properties of the LMPC of Eqs. 2.16-2.20 is that it possesses

the same stability region Ωρ as the nonlinear control law h(x), which implies that

the origin of the closed-loop system is guaranteed to be stable and the LMPC is

guaranteed to be feasible for any initial state inside Ωρ when the sampling time

∆ and the disturbance upper bound θ are sufficiently small. Note that the region

Ωρ can be explicitly characterized; please refer to Section 2.4 for more discussion

on this issue. The stability property of the LMPC is inherited from the nonlinear

control law h(x) when it is applied in a sample-and-hold fashion; please see [14, 75]

for results on sampled-data systems. The feasibility property of the LMPC is also

guaranteed by the nonlinear control law h(x) since u = h(x) is a feasible solution to the

optimization problem of Eqs. 2.16-2.20. The main advantage of the LMPC approach

with respect to the nonlinear control law h(x) is that optimality considerations can be
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taken explicitly into account (as well as constraints on the inputs and the states [66])

in the computation of the control actions within an online optimization framework

while improving the closed-loop performance of the system.

Remark 2.4 Since the closed-loop stability and feasibility of the LMPC of Eqs. 2.16-

2.20 are guaranteed by the nonlinear control law h(x), it is unnecessary to use a

terminal penalty term in the cost index (see Eq. 2.16 and compare it with Eq. 2.11)

and the length of the horizon N does not affect the stability of the closed-loop system

but it affects the closed-loop performance.

2.7 LMPC with Asynchronous Feedback

In this section, we modify the LMPC introduced in the previous section to take into

account data losses or asynchronous measurements, both in the optimization prob-

lem formulation and in the controller implementation. In this LMPC scheme, when

feedback is lost, instead of setting the control actuator outputs to zero or to the last

available values, the actuators implement the last optimal input trajectory evaluated

by the controller (this requires that the actuators must store in memory the last op-

timal input trajectory received). The LMPC is designed based on a nonlinear control

law which is able to stabilize the closed-loop system and inherits the stability and

robustness properties in the presence of uncertainty and data losses of the nonlin-

ear controller, while taking into account optimality considerations. Specifically, the

LMPC scheme allows for an explicit characterization of the stability region, guaran-

tees practical stability in the absence of data losses or asynchronous measurements,

and guarantees that the stability region is an invariant set for the closed-loop sys-

tem under data losses or asynchronous measurements if the maximum time in which
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Figure 2.1: LMPC design for systems subject to data losses. Solid lines denote point-
to-point, wired communication links; dashed lines denote networked communication
and/or asynchronous sampling/actuation

the loop is open is shorter than a given constant that depends on the parameters

of the system and the nonlinear control law that is used to formulate the optimiza-

tion problem. A schematic diagram of the considered closed-loop system is shown in

Figure 2.1.

2.7.1 Modeling of Data Losses/Asynchronous Measurements

We assume that feedback of the state of the system of Eq. 2.1, x(t), is available

at asynchronous time instants ta where {ta≥0} is a random increasing sequence of

times; that is, the intervals between two consecutive instants are not fixed. The

distribution of {ta≥0} characterizes the time the feedback loop is closed or the time

needed to obtain a new state measurement. In general, if there exists the possibility

of arbitrarily large periods of time in which feedback is not available, then it is not

possible to provide guaranteed stability properties, because there exists a non-zero

probability that the system operates in open-loop for a period of time large enough

for the state to leave the stability region. In order to study the stability properties

in a deterministic framework, we assume that there exists an upper bound Tm on the

interval between two successive time instants in which the feedback loop is closed or
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new state measurements are available, that is:

max
a
{ta+1 − ta} ≤ Tm. (2.22)

This assumption is reasonable from process control and networked control systems

perspectives [107, 108, 77, 67] and allows us to study deterministic notions of sta-

bility. This model of feedback/measurements is of relevance to systems subject to

asynchronous measurement samplings and to networked control systems, where the

asynchronous property is introduced by data losses in the communication network

connecting the sensors/actuators and the controllers.

2.7.2 LMPC Formulation with Asynchronous Feedback

When feedback is lost, most approaches set the control input to zero or to the last

implemented value. Instead, in this LMPC for systems subject to data losses, when

feedback is lost, we take advantage of the MPC scheme to update the input based on

a prediction obtained using the system model. This is achieved using the following

implementation strategy:

1. At a sampling time, ta, when the feedback loop is closed (i.e., the current system

state x(ta) is available for the controller and the controller can send information

to the actuators), the LMPC evaluates the optimal future input trajectory u(t)

for t ∈ [ta, ta +N∆).

2. The LMPC sends the entire optimal input trajectory (i.e., u(t) ∀ t ∈ [ta, ta +

N∆)) to the actuators.

3. The actuators implement the input trajectory until the feedback loop is closed

again at the next sampling time ta+1; that is, the actuators implement u(t) in
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t ∈ [ta, ta+1).

4. When a new measurement is received (a← a+ 1), go to Step 1.

In this implementation strategy, when the state is not available, or the data

sent from the controller to the actuators is lost, the actuators keep implementing

the last received optimal trajectory. If data is lost for a period larger than the

prediction horizon, the actuators set the inputs to the last implemented values or to

fixed values. This strategy is a receding horizon scheme, which takes into account that

data losses may occur. This strategy is motivated by the fact that when no feedback

is available, a reasonable estimate of the future evolution of the system is given by the

nominal trajectory. The LMPC design taking into account data losses/asynchronous

measurements, therefore modifies the standard implementation scheme of switching

off the actuators (u = 0) or setting the actuators to nominal values or to the last

computed input values. The idea of using the model to predict the evolution of the

system when no feedback is possible has also been used in the context of sampled-data

linear systems, see [68, 69, 72, 73]. The actuators not only receive and implement

given inputs, but must also be able to store future trajectories to implement them in

case data losses occur. This means that to handle data losses, not only the control

algorithms must be modified, but also the control actuator hardware that implements

the control actions.

When data losses are present in the feedback loop, the existing LMPC schemes

[65, 66, 84, 40] can not guarantee the closed-loop stability no matter whether the

actuators keep the inputs at the last values, set the inputs to constant values, or keep

on implementing the previously evaluated input trajectories. In particular, there

is no guarantee that the LMPC optimization problems will be feasible for all time,

i.e., that the state will remain inside the stability region for all time. In the LMPC
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design of Eqs. 2.16-2.20, the constraint of Eq. 2.20 only takes into account the first

prediction step and does not restrict the behavior of the system after the first step. If

no additional constraints are included in the optimization problem, no claims on the

closed-loop behavior of the system can be made. For this reason, when data losses

are taken into account, the constraints of the LMPC problem have to be modified.

The LMPC that takes into account data losses in an explicit way is based on the

following finite horizon constrained optimal control problem:

min
u∈S(∆)

∫ ta+N∆

ta

[
∥x̃(τ)∥Qc

+ ∥u(τ)∥Rc

]
dτ (2.23)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (2.24)

˙̂x(t) = f(x̂(t), h(x̂(ta + j∆)), 0),∀ t ∈ [ta + j∆, ta + (j + 1)∆) (2.25)

u(t) ∈ U (2.26)

x̃(ta) = x̂(ta) = x(ta) (2.27)

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta +NR∆) (2.28)

where x̂(t) is the trajectory of the nominal system under the nonlinear control law

u = h(x̂(t)) when it is implemented in a sample-and-hold fashion, j = 0, 1, . . . , N −1,

and NR is the smallest integer satisfying NR∆ ≥ Tm. This optimization problem does

not depend on the uncertainty and assures that the LMPC inherits the properties of

the nonlinear control law h(x). To take full advantage of the use of the nominal model

in the computation of the control action, the prediction horizon should be chosen in

a way such that N ≥ NR.
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The optimal solution to the LMPC optimization problem of Eqs. 2.23-2.28 is

denoted as u∗
a(t|ta) which is defined for t ∈ [ta, ta +N∆). The manipulated input of

the system of Eq. 2.1 under the LMPC of Eqs. 2.23-2.28 is defined as follows:

u(t) = u∗
a(t|ta), ∀t ∈ [ta, ta+1) (2.29)

where ta+1 is the next time instant in which the feedback loop will be closed again.

This is a modified receding horizon scheme which takes advantage of the predicted

input trajectory in the case of data losses.

In the design of the LMPC of Eqs. 2.23-2.28, the constraint of Eq. 2.25 is used to

generate a system state trajectory under the nonlinear control law u = h(x) imple-

mented in a sample-and-hold fashion; this trajectory is used as a reference trajectory

to construct the Lyapunov-based constraint of Eq. 2.28 which is required to be satis-

fied for a time period which covers the maximum possible open-loop operation time

Tm. This Lyapunov-based constraint allows one to prove the closed-loop stability in

the presence of data losses in the closed-loop system.

Remark 2.5 The LMPC of Eqs. 2.23-2.28 optimizes a cost function, subject to a set

of constraints defined by the state trajectory corresponding to the nominal system in

closed-loop. This allows us to formulate an LMPC problem that does not depend on

the uncertainty and so it is of manageable computational complexity.

2.7.3 Stability Properties

The LMPC of Eqs. 2.23-2.28 computes the control input u applied to the system

of Eq. 2.1 in a way such that in the closed-loop system, the value of the Lyapunov

function at time instant ta (i.e., V (x(ta))) is a decreasing sequence of values with
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a lower bound. Following Lyapunov arguments, this property guarantees practical

stability of the closed-loop system. This is achieved due to the constraint of Eq. 2.28.

This property is summarized in Theorem 2.1 below. To state this theorem, we need

the following propositions.

Proposition 2.1 Consider the nominal sampled trajectory x̂(t) of the system of

Eq. 2.1 in closed-loop for a controller h(x), which satisfies the conditions of Eqs. 2.4-

2.7, obtained by solving recursively:

˙̂x(t) = f(x̂(t), h(x̂(tk)), 0), t ∈ [tk, tk+1) (2.30)

where tk = t0 + k∆, k = 0, 1, . . .. Let ∆, ϵs > 0 and ρ > ρs > 0 satisfy:

−α3

(
α−1
2 (ρs)

)
+ L′

xM∆ ≤ −ϵs/∆. (2.31)

Then, if ρmin < ρ where:

ρmin = max {V (x̂(t+∆)) : V (x̂(t)) ≤ ρs} (2.32)

and x̂(t0) ∈ Ωρ, the following inequality holds:

V (x̂(t)) ≤ V (x̂(tk)), ∀t ∈ [tk, tk+1), (2.33)

V (x̂(tk)) ≤ max{V (x̂(t0))− kϵs, ρmin}. (2.34)

Proof: Following the definition of x̂(t), the time derivative of the Lyapunov func-

tion V (x) along the trajectory x̂(t) of the system of Eq. 2.1 in t ∈ [tk, tk+1) is given
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by:

V̇ (x̂(t)) =
∂V (x̂(t))

∂x
f(x̂(t), h(x̂(tk)), 0). (2.35)

Adding and subtracting
∂V (x̂(tk))

∂x
f(x̂(tk), h(x̂(tk)), 0) and taking into account Eq. 2.5,

we obtain:

V̇ (x̂(t)) ≤ −α3(∥x̂(tk)∥) +
∂V (x̂(t))

∂x
f(x̂(t), h(x̂(tk)), 0)

−∂V (x̂(tk))

∂x
f(x̂(tk), h(x̂(tk)), 0).

(2.36)

From the Lipschitz property of Eq. 2.10 and the above inequality of Eq. 2.36, we have

that:

V̇ (x̂(t)) ≤ −α3

(
α−1
2 (ρs)

)
+ L′

x ∥x̂(t)− x̂(tk)∥ (2.37)

for all x̂(tk) ∈ Ωρ/Ωρs . Taking into account the Lipschitz property of Eq. 2.8 and the

continuity of x̂(t), the following bound can be written for all t ∈ [tk, tk+1):

∥x̂(t)− x̂(tk)∥ ≤M∆. (2.38)

Using the expression of Eq. 2.38, we obtain the following bound on the time derivative

of the Lyapunov function for t ∈ [tk, tk+1), for all initial states x̂(tk) ∈ Ωρ/Ωρs :

V̇ (x̂(t)) ≤ −α3(α
−1
2 (ρs)) + L′

xM∆. (2.39)

If the condition of Eq. 2.31 is satisfied, then V̇ (x̂(t)) ≤ −ϵs/∆. Integrating this

bound on t ∈ [tk, tk+1) we obtain that the inequality of Eq. 2.33 holds. Using Eq. 2.33

recursively, it is proved that, if x(t0) ∈ Ωρ/Ωρs , the state converges to Ωρs in a

finite number of sampling times without leaving the stability region. Once the state

converges to Ωρs ⊆ Ωρmin
, it remains inside Ωρmin

for all times. This statement holds
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because of the definition of ρmin in Eq. 2.32. �

Proposition 2.1 ensures that if the nominal system under the control u = h(x)

implemented in a sample-and-hold fashion with state feedback every sampling time

starts in the region Ωρ, then it is ultimately bounded in Ωρmin
. The following Propo-

sition 2.2 provides an upper bound on the deviation of the system state trajectory

obtained using the nominal model of Eq. 2.1, from the closed-loop state trajectory

of the system of Eq. 2.1 under uncertainty (i.e., w(t) ̸= 0) when the same control

actions are applied.

Proposition 2.2 Consider the systems:

ẋa(t) = f(xa(t), u(t), w(t)) (2.40)

ẋb(t) = f(xb(t), u(t), 0) (2.41)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a class K function fW (·) such

that:

∥xa(t)− xb(t)∥ ≤ fW (t− t0), (2.42)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with:

fW (τ) =
Lwθ

Lx

(
eLxτ − 1

)
. (2.43)

Proof: Define the error vector as e(t) = xa(t)− xb(t). The time derivative of the

error is given by:

ė(t) = f(xa(t), u(t), w(t))− f(xb(t), u(t), 0). (2.44)
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From the Lipschitz property of Eq. 2.9, the following inequality holds:

∥ė(t)∥ ≤ Lw ∥w(t)∥+ Lx ∥xa(t)− xb(t)∥ ≤ Lwθ + Lx ∥e(t)∥ (2.45)

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . Integrating ∥ė(t)∥ with initial condition

e(t0) = 0 (recall that xa(t0) = xb(t0)), the following bound on the norm of the error

vector is obtained:

∥e(t)∥ ≤ Lwθ

Lx

(
eLx(t−t0) − 1

)
. (2.46)

This implies that the inequality of Eq. 2.42 holds for:

fW (τ) =
Lwθ

Lx

(
eLxτ − 1

)
(2.47)

which proves this proposition. �

Proposition 2.3 below bounds the difference between the magnitudes of the Lya-

punov function of two states in Ωρ.

Proposition 2.3 Consider the Lyapunov function V (·) of the system of Eq. 2.1.

There exists a quadratic function fV (·) such that:

V (x) ≤ V (x′) + fV (∥x− x′∥) (2.48)

for all x, x′ ∈ Ωρ where:

fV (s) = α4(α
−1
1 (ρ))s+Mvs

2 (2.49)

with Mv > 0.
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Proof: Since the Lyapunov function V (x) is continuous and bounded on compact

sets, there exists a positive constant Mv such that a Taylor series expansion of V

around x′ yields:

V (x) ≤ V (x′) +
∂V (x′)

∂x
∥x− x′∥+Mv ∥x− x′∥2 , ∀ x, x′ ∈ Ωρ. (2.50)

Note that the term Mv ∥x− x′∥2 bounds the high order terms of the Taylor series of

V (x) for x, x′ ∈ Ωρ. Taking into account Eq. 2.6, the following bound for V (x) is

obtained:

V (x) ≤ V (x′) + α4

(
α−1
1 (ρ)

)
∥x− x′∥+Mv ∥x− x′∥2 , ∀ x, x′ ∈ Ωρ (2.51)

which proves this proposition. �

In Theorem 2.1 below, we provide sufficient conditions under which the LMPC

design of Eqs. 2.23-2.28 guarantees that the state of the closed-loop system of Eq. 2.1

is ultimately bounded in a region that contains the origin.

Theorem 2.1 Consider the system of Eq. 2.1 in closed-loop, with the loop closing at

asynchronous time instants {ta≥0} that satisfy the condition of Eq. 2.22, under the

LMPC of Eqs. 2.23-2.28 based on a controller h(x) that satisfies the conditions of

Eqs. 2.4-2.7. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0 and N ≥ NR ≥ 1 satisfy the

condition of Eq. 2.31 and the following inequality:

−NRϵs + fV (fW (NR∆)) < 0 (2.52)

with fV (·) and fW (·) defined in Eqs. 2.49 and 2.43, respectively, and NR being the

smallest integer satisfying NR∆ ≥ Tm. If x(t0) ∈ Ωρ, then x(t) is ultimately bounded
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in Ωρa ⊆ Ωρ where:

ρa = ρmin + fV (fW (NR∆)) (2.53)

with ρmin defined as in Eq. 2.32.

Proof: In order to prove that the closed-loop system is ultimately bounded in a

region that contains the origin, we prove that V (x(ta)) is a decreasing sequence of

values with a lower bound. The proof is divided into two parts.

Part 1: In this part, we prove that the stability results stated in Theorem 2.1 hold

in the case that ta+1− ta = Tm for all a and Tm = NR∆. This case corresponds to the

worst possible situation in the sense that the LMPC needs to operate in open-loop for

the maximum possible amount of time. In order to simplify the notation, we assume

that all the notations used in this proof refer to the final solution of the LMPC of

Eqs. 2.23-2.28 solved at time ta. By Proposition 2.1 and the fact that ta+1 = ta+NR∆,

the following inequality can be obtained:

V (x̂(ta+1)) ≤ max{V (x̂(ta))−NRϵs, ρmin}. (2.54)

From the constraint of Eq. 2.28, the inequality of Eq. 2.54 and taking into account

the fact that x̂(ta) = x̃(ta) = x(ta), the following inequality can be written:

V (x̃(ta+1)) ≤ max{V (x(ta))−NRϵs, ρmin}. (2.55)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-

sition 2.3 to obtain the following inequality:

V (x(ta+1)) ≤ V (x̃(ta+1)) + fV (∥x̃(ta+1)− x(ta+1)∥) (2.56)
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Applying Proposition 2.2, we obtain the following upper bound on the deviation of

x̃(t) from x(t):

∥x(ta+1)− x̃(ta+1)∥ ≤ fW (NR∆). (2.57)

From the inequalities of Eqs. 2.56 and 2.57, the following upper bound on V (x(ta+1))

can be written:

V (x(ta+1)) ≤ V (x̃(ta+1)) + fV (fW (NR∆)). (2.58)

Using the inequality of Eq. 2.55, we can re-write the inequality of Eq. 2.58 as follows:

V (x(ta+1)) ≤ max{V (x(ta))−NRϵs, ρmin}+ fV (fW (NR∆)). (2.59)

If the condition of Eq. 2.52 is satisfied, from the inequality of Eq. 2.59, we know that

there exists ϵw > 0 such that the following inequality holds:

V (x(ta+1)) ≤ max{V (x(ta))− ϵw, ρa} (2.60)

which implies that if x(ta) ∈ Ωρ/Ωρa , then V (x(ta+1)) < V (x(ta)), and if x(ta) ∈ Ωρa ,

then V (x(ta+1)) ≤ ρa.

Because fW (·) and fV (·) are strictly increasing functions of their arguments and

fV (·) is convex (see Propositions 2.2 and 2.3 for the expressions of fW (·) and fV (·)),

the inequality of Eq. 2.60 also implies that:

V (x(t)) ≤ max{V (x(ta)), ρa}, ∀t ∈ [ta, ta+1). (2.61)

Using the inequality of Eq. 2.61 recursively, it can be proved that if x(t0) ∈ Ωρ, then

the closed-loop trajectories of the system of Eq. 2.1 under the LMPC of Eqs. 2.23-

2.28 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, it can be proved that if
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x(t0) ∈ Ωρ, the closed-loop trajectories of the system of Eq. 2.1 satisfy:

lim sup
t→∞

V (x(t)) ≤ ρa.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa for the

case when ta+1 − ta = Tm for all a and Tm = NR∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+1 − ta ≤ Tm for all a and Tm ≤ NR∆ which implies that ta+1 − ta ≤ NR∆.

Because fW (·) and fV (·) are strictly increasing functions of their arguments and fV (·)

is convex, following similar steps as in Part 1, it can be shown that the inequality of

Eq. 2.61 still holds. This proves that the stability results stated in Theorem 2.1 hold.

�

Remark 2.6 Theorem 2.1 is important from an MPC point of view because if the

maximum time without data losses is smaller than the maximum time that the system

can operate in open-loop without leaving the stability region, the feasibility of the

optimization problem for all times is guaranteed, since each time feedback is regained,

the state is guaranteed to be inside the stability region, thereby yielding a feasible

optimization problem.

Remark 2.7 In the LMPC of Eqs. 2.23-2.28, no state constraint has been considered

but the presented approach can be extended to handle state constraints by restricting

the closed-loop stability region further to satisfy the state constraints.

Remark 2.8 It is also important to remark that when there are data losses in the

control system, standard MPC formulations do not provide guaranteed closed-loop

stability results. For any MPC scheme, in order to obtain guaranteed closed-loop

stability results, even in the case where initial feasibility of the optimization problem
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is given, the formulation of the optimization problem has to be modified accordingly

to take into account data losses in an explicit way.

Remark 2.9 Although the proof of Theorem 2.2 is constructive, the constants ob-

tained are conservative. This is the case with most of the results of the type presented

in this dissertation. In practice, the different constants are better estimated through

closed-loop simulations. The various inequalities provided are more useful as guide-

lines on the interaction between the various parameters that define the system and the

controller and may be used as guidelines to design the controller and the network.

2.7.4 Application to a Chemical Reactor

Consider a well mixed, non-isothermal continuously stirred tank reactor (CSTR)

where three parallel irreversible elementary exothermic reactions take place of the

form A → B, A → C and A → D. B is the desired product and C and D are

byproducts. The feed to the reactor consists of pure A at flow rate F , temperature

TA0 and molar concentration CA0 + ∆CA0 where ∆CA0 is an unknown time-varying

uncertainty. Due to the non-isothermal nature of the reactor, a jacket is used to

remove/provide heat to the reactor. Using first principles and standard modeling

assumptions the following mathematical model of the process is obtained [20]:

dT

dt
=

F

Vr

(TA0 − T )−
3∑

i=1

∆Hi

σcp
ki0e

−Ei

RT CA +
Q

σcpVr

(2.62)

dCA

dt
=

F

Vr

(CA0 +∆CA0 − CA) +
3∑

i=1

ki0e
−Ei

RT CA (2.63)

where CA denotes the concentration of the reactant A, T denotes the temperature of

the reactor, Q denotes the rate of heat input/removal, Vr denotes the volume of the
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Table 2.1: Process parameters of the CSTR of Eqs. 2.62-2.63

F 4.998 [m3/h] k10 3×106 [h−1]

Vr 1[m3] k20 3×105 [h−1]

R 8.314 [KJ/kmol ·K] k30 3×105 [h−1]

TA0 300 [K] E1 5×104 [KJ/kmol]

CA0 4 [kmol/m3] E2 7.53×104 [KJ/kmol]

∆H1 -5.0×104 [KJ/kmol] E3 7.53×104 [KJ/kmol]

∆H2 -5.2×104 [KJ/kmol] σ 1000 [kg/m3]

∆H3 -5.4×104 [KJ/kmol] cp 0.231 [KJ/kg ·K]

reactor, ∆Hi, ki0, Ei, i = 1, 2, 3 denote the enthalpies, pre-exponential constants and

activation energies of the three reactions, respectively, and cp and σ denote the heat

capacity and the density of the fluid in the reactor, respectively. The values of the

process parameters are shown in Table 2.1.

For Qs = 0 KJ/h (Qs is the steady-state value of Q), the CSTR of Eqs 2.62-

2.63 has three steady-states (two locally asymptotically stable and one unstable).

The control objective is to stabilize the system at the open-loop unstable steady

state Ts = 388 K, CAs = 3.59 mol/l. The manipulated input is the rate of heat

input Q. We consider a time-varying uncertainty in the concentration of the inflow

|∆CA0| ≤ 0.5 kmol/m3. The control system is subject to data losses in both the

sensor-controller and the controller-actuator links.

To demonstrate the theoretical results, we first design the nonlinear control law

h(x) as a Lyapunov-based feedback law using the method presented in [94]. The
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CSTR of Eqs. 2.62-2.63 belongs to the following class of nonlinear systems:

ẋ(t) = f(x(t)) + g(x(t))u(t) + w(x(t)) (2.64)

where xT = [T − Ts CA − CAs] is the state, u = Q− Qs is the input and w = ∆CA0

is a time varying bounded disturbance with the upper bound θ = 0.5 kmol/m3. We

consider the Lyapunov function V (x) = xTPx with:

P =

1 0

0 104

 . (2.65)

The values of the weights have been chosen to account for the different range of nu-

merical values for each state. The following feedback law [94] asymptotically stabilizes

the open-loop unstable steady-state of the nominal process:

h(x) =


−
LfV +

√
(LfV )2 + (LgV )4

LgV
if LgV ̸= 0

0 if LgV = 0

(2.66)

where LfV =
∂V (x)

∂x
f(x) and LgV =

∂V (x)

∂x
g(x) denote the Lie derivatives of the

scalar function V with respect to the vectors fields f and g in Eq. 2.64, respectively.

This controller will be used in the design of the LMPC of Eqs. 2.16-2.20 and the

LMPC of Eqs. 2.23-2.28. The stability region Ωρ is defined as V (x) ≤ 1000, i.e.

ρ = 1000.

First we have to choose an appropriate sampling time and a maximum prediction

horizon for the LMPC based on the properties of h(x). The inequalities obtained in

the main results of this section are conservative to be used to estimate an appropriate

sampling time for a given uncertainty bound and the maximum time that the system
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can operate in open-loop without leaving the stability region. In order to obtain

practical estimates, we resort to extensive off-line closed-loop simulations under the

Lyapunov-based controller of Eq. 2.66. After trying different sampling times, we

choose ∆ = 0.05 h. For this sampling time, the closed-loop system with u = h(x)

is practically stable and the performance is similar to the closed-loop system with

continuous measurements. With this sampling time, the maximum time such that

the system remains in Ωρ when controlled in open-loop with the nominal sampled

input trajectory is 5∆ (i.e., NR = 5). This value is also estimated using data from

simulations.

We implement the LMPCs presented in the previous sections using a sampling

time ∆ = 0.05 h and a prediction horizon N = NR = 5. The cost function is defined

by the weighting matrices Qc = P and Rc = 10−6. The values of the weights have

been tuned in a way such that the values of the control inputs are comparable to the

ones computed by the Lyapunov-based controller (i.e., same order of magnitude of

the input signal and convergence time of the closed-loop system when no uncertainty

or data losses are taken into account).

We will first compare the LMPC of Eqs. 2.23-2.28 with the original LMPC of

Eqs. 2.16-2.20. In this scheme no data losses were taken into account. We implement

the two LMPCs using the same strategy, that is, sending to the actuator the whole

optimal input trajectory, so in case data losses occur, the input is updated as in the

modified receding horizon scheme. The same weights, sampling time and prediction

horizon are used.

In Figure 2.2 the trajectories of both LMPCs are shown assuming no data is lost,

that is, the state x(tk) is available every sampling time. It can be seen that both

closed-loop systems are practically stable. Note that regarding optimality, for a given
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Figure 2.2: (a)(c) State and input trajectories of the CSTR of Eqs. 2.62-2.63 with
the LMPC of Eqs. 2.23-2.28 with no data losses; (b)(d) State and input trajectories
of the CSTR of Eqs. 2.62-2.63 with the LMPC of Eqs. 2.16-2.20 with no data losses
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state, the LMPC of Eqs. 2.16-2.20 (not necessarily the closed-loop trajectory) yields

a lower cost than the LMPC of Eqs. 2.23-2.28, because the constraints that define

the LMPC of Eqs. 2.16-2.20 are less restrictive (i.e., the Lyapunov-based constraint

must hold only in the first sampling time whereas in the LMPC of Eqs 2.23-2.28 it

must hold along the whole prediction horizon).

When data losses occur, the LMPC of Eqs. 2.23-2.28 is more robust. The stability

region is an invariant set for the closed-loop system if Tm ≤ N∆. That is not the case

with the LMPC of Eqs. 2.16-2.20. In Figure 2.3 the trajectories of the closed-loop

system under both LMPCs are shown for the worst case of data loss scenario with

Tm = 5∆; that is, the system receives only one measurement of the actual state every

5 samples. These trajectories account for the worst-case effect of the data losses. The

trajectories are shown in the state space along with the closed-loop stability region

Ωρ. It can be seen that the trajectory under the LMPC of Eqs. 2.16-2.20 leaves the

stability region, while the trajectory under the LMPC of Eqs. 2.23-2.28 remains inside.

When data losses are taken into account, in order to inherit the stability properties of

the Lyapunov-based controller of Eq. 2.66, the constraints must be modified to take

into account data losses as in the LMPC of Eqs. 2.23-2.28.

We now compare the LMPC of Eqs. 2.23-2.28 with the Lyapunov-based controller

of Eq. 2.66 applied in a sample-and-hold fashion following a “last available control”

strategy, i.e. when data is lost, the actuator keeps implementing the last received

input value. Note that, through extensive simulations, we have found that in this

particular example, the strategy of setting the input to zero when data losses occur,

yields worst results than the strategy of implementing the last available input. In

Figure 2.4 the worst case trajectories with Tm = 2∆ for both controllers are shown.

It can be seen that, due to the instability of the open-loop steady state, for this small
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Figure 2.3: (a)(c) Worst case state and input trajectories of the CSTR of Eqs. 2.62-
2.63 with the LMPC of Eqs. 2.23-2.28 with Tm = 5∆; (b)(d) State and input trajec-
tories of the CSTR of Eqs. 2.62-2.63 with the LMPC of Eqs. 2.16-2.20 with Tm = 5∆
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Figure 2.4: Worst case state and input trajectories of the CSTR of Eqs. 2.62-2.63
with Tm = 2∆ in closed-loop with (a) the LMPC of Eqs. 2.23-2.28 and (b) the
Lyapunov-based controller of Eq. 2.66

amount of losses, the Lyapunov-based controller is not able to stabilize the system.

This is due to the fact that this control scheme does not update the control actuator

output using the model, as the LMPC of Eqs. 2.23-2.28 does.

We have also carried out another set of simulations to demonstrate that the LMPC

of Eqs. 2.23-2.28, although inherits the same stability and robustness properties of

the Lyapunov-based controller that it employs, it does outperform the Lyapunov-

based controller of Eq. 2.66 from a performance index point of view. Table 2.2 shows

the total cost computed for 10 different closed-loop simulations under the LMPC

and the Lyapunov-based controller implemented in a sample-and-hold fashion, using

the nominal model to predict the evolution of the system when data is lost. To

carry out this comparison, we compute the total cost of each simulation based on the

performance index of the LMPC which has the form:

∫ tf

t0

[
∥x(τ)∥Qc

+ ∥u(τ)∥Rc

]
dτ (2.67)
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Table 2.2: Total performance costs along the closed-loop trajectories of the CSTR
of Eqs. 2.62-2.63 under the Lyapunov-based controller of Eq. 2.66 and the LMPC of
Eqs. 2.23-2.28

sim. Lyapunov-based controller of Eq. 2.66 LMPC of Eqs. 2.23-2.28

1 0.1262× 1012 0.0396× 1012

2 0.3081× 1012 0.2723× 1012

3 0.0561× 1012 0.0076× 1012

4 0.9622× 1011 0.2884× 1011

5 3.8176× 1011 1.3052× 1011

6 0.9078× 1011 0.0950× 1011

7 0.4531× 1012 0.2678× 1012

8 0.6752× 1011 0.5689× 1011

9 1.0561× 1011 0.6776× 1011

10 0.5332× 1012 0.3459× 1012
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where t0 = 0 is the initial time of the simulations and tf = 4 h is the end of the

simulation. For each pair of simulations (one for each controller) a different initial

state inside the stability region, a different random uncertainty trajectory and a

different data losses realization is chosen. As it can be seen in Table 2.2, the total cost

under the LMPC of Eqs. 2.23-2.28 is lower than the corresponding total cost under

the Lyapunov-based controller. This demonstrates that in this example, the LMPC

shares the same robustness and stability properties and is more optimal than the

Lyapunov-based controller, which is not designed taking into account any optimality

consideration.

The simulations have been done in MATLABr using fmincon and a Runge-Kutta

solver with a fixed integration time of 0.001h. To simulate the time-varying uncer-

tainty, a different random value w(t) has been applied at each integration step.

2.8 LMPC with Delayed Measurements

In this section, we deal with the design of LMPC for nonlinear systems subject to

time-varying measurement delays in the feedback loop. In the LMPC design that

will be presented, when measurement delays occur, the nominal model of the system

is used together with the latest available measurement to estimate the current state,

and the resulting estimate is used to evaluate the LMPC; at time instants where no

measurements are available due to the delay, the actuator implements the last optimal

input trajectory evaluated by the controller as discussed in the previous section. The

LMPC accounting for delays is also designed based on a nonlinear control law which

is able to stabilize the closed-loop system and inherits the stability and robustness

properties in the presence of uncertainty and time-varying delays of the nonlinear

control law, while taking into account optimality considerations. The closed-loop
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Figure 2.5: LMPC design for systems subject to time-varying measurement delays

system considered in this section is shown in Figure 2.5.

2.8.1 Modeling of Delayed Measurements

We assume that the state of the system of Eq. 2.1 is received by the controller at

asynchronous time instants ta where {ta≥0} is a random increasing sequence of times

and that there exists an upper bound Tm on the interval between two successive

measurements as described in Eq. 2.22. We also assume that there are delays in

the measurements received by the controller due to delays in the sampling process

and data transmission. In order to model delays in measurements, another auxiliary

variable da is introduced to indicate the delay corresponding to the measurement

received at time ta, that is, at time ta, the measurement x(ta − da) is received. In

general, if the sequence {da≥0} is modeled using a random process, there exists the

possibility of arbitrarily large delays. In this case, it is improper to use all the delayed

measurements to estimate the current state and decide the control inputs, because

when the delays are too large, they may introduce enough errors to destroy the

stability of the closed-loop system. In order to study the stability properties in a

deterministic framework, we assume that the delays associated with the measurements

are smaller than an upper bound D, that is:

da ≤ D. (2.68)
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The size of D is, in general, related to measurement sensor delays and data trans-

mission network delays. We note that for chemical processes, the delay in the mea-

surements received by a controller are mainly caused in the measurement sampling

process. We also assume that the time instant when a measurement is sampled is

recorded and transmitted together with the measurement. This assumption is practi-

cal for many process control applications and implies that the delay in a measurement

received by the controller is calculable and can be assumed to be known.

Note that because the delays are time-varying, it is possible that at a time instant

ta, the controller may receive a measurement x(ta − da) which does not provide new

information (i.e., ta − da ≤ ta−1 − da−1); that is, the controller has already received

a measurement of the state after time ta − da. We assume that each measurement is

time-labeled and hence the controller is able to discard a newly received measurement

if ta − da < ta−1 − da−1. Figure 2.6 shows part of a possible sequence of {ta≥0}. At

time ta, the state measurement x(ta − da) is received. There exists a possibility that

between ta and ta+j, with ta+j − ta = D− da and j being an unknown integer, all the

measurements received do not provide new information. Note that any measurements

received after ta+j provide new information because the maximum delay is D and the

latest received measurement was x(ta − da). The maximum possible time interval

between ta+j and ta+j+1 is Tm. Therefore, the maximum amount of time in which the

system might operate in open-loop following ta is D + Tm − da. This upper bound

will be used in the formulation of the LMPC design for systems subject to delayed

measurements below.

Remark 2.10 The sequences {ta≥0} and {da≥0} characterize the time needed to ob-

tain a new measurement in the case of asynchronous measurements or the quality of

the network link in the case of networked (wired or wireless) communications subject

56



t
ta

x(ta − da)

ta+j

x(ta − da)

ta+j+1

x(ta+j+1 − da+j+1)

D − da Tm

Figure 2.6: A possible sequence of delayed measurements

to data losses and time-varying delays. The model is general and can be used to model

a wide class of systems subject to asynchronous, delayed measurements.

2.8.2 LMPC Formulation with Measurement Delays

A controller for a system subject to time-varying measurement delays must take

into account two important issues. First, when a new measurement is received, this

measurement may not correspond to the current state of the system. This implies

that in this case, the controller has to make a decision using an estimate of the current

state. Second, because the delays are time-varying, the controller may not receive

new information every sampling time. This implies that in this case, the controller

has to operate in open-loop using the last received measurements. To this end, when

a delayed measurement is received the controller uses the nominal system model and

the input trajectory that has been applied to the system to get an estimate of the

current state and then an MPC optimization problem is solved in order to decide

the optimal future input trajectory that will be applied until new measurements are

received. This approach implies that the previous control input trajectory should

be stored in the controller. The implementation strategy for the LMPC for systems

subject to time-varying measurement delays is as follows:

1. When a measurement x(ta−da) is available at ta, the LMPC checks whether the

measurement provides new information. If ta − da > maxl<a tl − dl, go to Step
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2. Else the measurement does not contain new information and is discarded, go

to Step 5.

2. The LMPC estimates the current state of the system x̃(ta) and computes the

optimal input trajectory of u based on x̃(ta) for t ∈ [ta, ta +N∆).

3. The LMPC sends the entire optimal input trajectory to the actuators.

4. The actuators implement the input trajectory until a new measurement is re-

ceived at time ta+1.

5. When a new measurement is received (a← a+ 1), go to Step 1.

The LMPC that takes into account time-varying measurement delay in an explicit

way is based on the following constrained optimal control problem:

min
u∈S(∆)

∫ ta+N∆

ta

[
∥x̃(τ)∥Qc

+ ∥u(τ)∥Rc

]
dτ (2.69)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0),∀t ∈ [ta − da, ta +N∆) (2.70)

u(t) = u∗
d(t),∀t ∈ [ta − da, ta) (2.71)

x̃(ta − da) = x(ta − da) (2.72)

˙̂x(t) = f(x̂(t), h(x̂(ta + j∆), 0), t ∈ [ta + j∆, ta + (j + 1)∆) (2.73)

x̂(ta) = x̃(ta) (2.74)

V (x̃(t)) ≤ V (x̂(t)),∀t ∈ [ta, ta +ND,a∆) (2.75)

where u∗
d(t) indicates the actual control input trajectory that has been applied to the

system, x(ta − da) is the delayed measurement that is received at ta with delay size
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da, x̃(ta) is an estimate of the current system state, j = 0, . . . , N − 1, and ND,a is the

smallest integer satisfying ND,a∆ ≥ Tm +D − da.

The optimal solution to the LMPC optimization problem of Eqs. 2.69-2.75 is

denoted as u∗
d(t|ta) which is defined for t ∈ [ta, ta +N∆). The manipulated input of

the system of Eq. 2.1 under the control of the LMPC of Eqs. 2.23-2.28 is defined as

follows:

u(t) = u∗
d(t|ta), ∀t ∈ [ta, ta+i) (2.76)

for all ta such that ta − da > maxl<a tl − dl and for a given ta, the variable i denotes

the smallest integer that satisfies ta+i − da+i > ta − da.

In the LMPC design of Eqs. 2.69-2.75, if at a sampling time, a new measurement

x(ta − da) is received, an estimate of the current state x̃(ta) is obtained using the

nominal model of the system (the constraint of Eq. 2.70) and the control input tra-

jectory applied to the system from ta − da to ta (the constraint of Eq. 2.71) with the

initial condition x̃(ta − da) = x(ta − da) (the constraint of Eq. 2.72). The estimated

state x̃(ta) is then used to obtain the optimal future control input trajectory. The

LMPC of Eqs. 2.69-2.75 uses the nominal model to predict the future trajectory x̃(t)

for a given input trajectory u(t) ∈ S(∆) with t ∈ [ta, ta + N∆). A cost function is

minimized (Eq. 2.69), while assuring that the value of the Lyapunov function along

the predicted trajectory x̃(t) satisfies a Lyapunov-based constraint (the constraint

of Eq. 2.75) where x̂(t) is the state trajectory corresponding to the nominal system

in closed-loop with the nonlinear control law h(x) (the constraint of Eq. 2.73) with

the initial condition x̂(ta) = x̃(ta) (the constraint of Eq. 2.74). Note that the length

of the constraint ND,a depends on the current delay da so it may have different val-

ues at different time instants and has to be updated before solving the optimization

problem of Eqs. 2.69-2.75. If the controller does not receive any new measurement at
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x(t)

x̃(t)

x̃(t)

x̂(t)

Figure 2.7: A possible scenario of the measurements received by the LMPC of
Eqs. 2.69-2.75 and the corresponding state trajectories defined in the LMPC

a sampling time, it keeps implementing the last evaluated optimal trajectory. This

strategy is a receding horizon scheme, which takes time-varying measurement delays

explicitly into account.

Figure 2.7 shows a possible scenario for a system of dimension 1. A delayed

measurement x(ta − da) is received at time ta and the next new measurement is not

obtained until ta+i. This implies that at time ta we evaluate the LMPC of Eqs. 2.69-

2.75 and we apply the optimal input u∗
d(t|ta) from ta to ta+i. The solid vertical lines

are used to indicate sampling times in which a new measurement is obtained (that is,

ta and ta+i) and the dashed vertical line is used to indicate the time corresponding to

the measurement obtained in ta (that is, ta − da).

2.8.3 Stability Properties

In this subsection, we present the stability properties of the LMPC of Eqs. 2.69-2.75

for systems subject to time-varying measurement delays. Theorem 2.2 below provides

sufficient conditions under which the LMPC of Eqs. 2.69-2.75 guarantees stability of

the closed-loop system in the presence of time-varying measurement delays.
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Theorem 2.2 Consider the system of Eq. 2.1 in closed-loop, which closes at asyn-

chronous time instants {ta≥0} that satisfy the condition of Eq. 2.22, under the LMPC

of Eqs. 2.69-2.75 based on a controller h(x) that satisfies the conditions of Eqs. 2.4-

2.7. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0, N ≥ 1 and D ≥ 0 satisfy the condition

of Eq. 2.31 and the following inequality:

−NRϵs + fV (fW (ND∆)) + fV (fW (D)) < 0. (2.77)

with fV (·) and fW (·) defined in Eqs. 2.49 and 2.43, respectively, ND being the smallest

integer satisfying ND∆ ≥ Tm+D, and NR being the smallest integer satisfying NR∆ ≥

Tm. If N ≥ ND, x(t0) ∈ Ωρ and d0 = 0, then x(t) is ultimately bounded in Ωρd ⊆ Ωρ

where:

ρd = ρmin + fV (fW (ND∆)) + fV (fW (D)). (2.78)

Proof: In order to prove that the system of Eq. 2.1 in closed-loop with the LMPC

of Eq. 2.69-2.75 is ultimately bounded in a region that contains the origin, we will

prove that the Lyapunov function V (x) is a decreasing function of time with a lower

bound on its magnitude. We assume that the delayed measurement x(ta − da) is

received at time ta and that a new measurement is not obtained until ta+i. The

LMPC of Eq. 2.69-2.75 is solved at ta and the optimal input trajectory u∗
d(t|ta) is

applied from ta to ta+i.

Part 1: In this part we prove that the stability results stated in Theorem 2.2 hold

for ta+i − ta = ND,a∆ and all da ≤ D.

The trajectory x̂(t) corresponds to the nominal system in closed-loop with the

nonlinear control law u = h(x̂) implemented in a sample-and-hold fashion with initial

condition x̃(ta); please see the constraint of Eqs. 2.73 and 2.74. By Proposition 2.1,
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the following inequality can be obtained:

V (x̂(ta+i)) ≤ max{V (x̂(ta))−ND,aϵs, ρmin}. (2.79)

The constraint of Eq. 2.75 guarantees that:

V (x̃(t)) ≤ V (x̂(t)),∀t ∈ [ta, ta +ND,a∆) (2.80)

and the constraint of Eq. 2.74 guarantees that V (x̂(ta)) = V (x̃(ta)). This implies

that:

V (x̃(ta+i)) ≤ max{V (x̃(ta))−ND,aϵs, ρmin}. (2.81)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-

sition 2.3 to obtain the following inequalities:

V (x̃(ta)) ≤ V (x(ta)) + fV (∥x(ta)− x̃(ta)∥), (2.82)

V (x(ta+i)) ≤ V (x̃(ta+i)) + fV (∥x(ta+i)− x̃(ta+i)∥). (2.83)

Applying Proposition 2.2, we obtain the following upper bounds on the deviation of

x̃(t) from x(t):

∥x(ta)− x̃(ta)∥ ≤ fW (da), (2.84)

∥x(ta+i)− x̃(ta+i)∥ ≤ fW (ND∆). (2.85)

Note that the constraints of Eqs. 2.70-2.72 and the implementation procedure allow

us to apply Proposition 2.2 because it is guaranteed that the actual system state x(t)

and the state estimated using the nominal model x̃(t) are obtained using the same
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input trajectory. Note also that we have taken into account that ND∆ ≥ Tm+D−da

for all da. Using the inequalities of Eqs. 2.81-2.84, the following upper bound on

V (x(tk+j)) is obtained:

V (x(ta+i)) ≤ max{V (x(ta))−ND,aϵs, ρmin}+ fV (fW (da)) + fV (fW (ND∆)). (2.86)

In order to prove that the Lyapunov function is decreasing between two consecu-

tive new measurements, the following inequality must hold:

ND,aϵs > fV (fW (ND∆)) + fV (fW (da)) (2.87)

for all possible 0 ≤ da ≤ D. Taking into account that fW (·) and fV (·) are strictly

increasing functions of their arguments, that ND,a is a decreasing function of the delay

da and that if da = D then ND,a = NR, if the condition of Eq. 2.77 is satisfied, the

condition of Eq. 2.87 holds for all possible da and there exists ϵw > 0 such that the

following inequality holds:

V (x(ta+i)) ≤ max{V (x(ta))− ϵw, ρd} (2.88)

which implies that if x(ta) ∈ Ωρ/Ωρd , then V (x(ta+i)) < V (x(ta)), and if x(ta) ∈ Ωρd ,

then V (x(ta+i)) ≤ ρd.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of

time, the inequality of Eq. 2.88 also implies that:

V (x(t)) ≤ max{V (x(ta)), ρd}, ∀t ∈ [ta, ta+i). (2.89)
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Using the inequality of Eq. 2.89 recursively, it can be proved that if x(t0) ∈ Ωρ, then

the closed-loop trajectories of the system of Eq. 2.1 under the LMPC of Eqs. 2.69-2.75

stay in Ωρ for all times (i.e., x(t) ∈ Ωρ,∀t). Moreover, using the inequality of Eq. 2.89

recursively, it can be proved that if x(t0) ∈ Ωρ, the closed-loop trajectories of the

system of Eq. 2.1 under the LMPC of Eqs. 2.69-2.75 satisfy:

lim sup
t→∞

V (x(t)) ≤ ρd. (2.90)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρd for the

case when ta+i − ta = ND,a∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+i − ta ≤ ND,a∆. Taking into account that fV (·) and fW (·) are strictly

increasing functions of their arguments and fV (·) is convex, following similar steps

as in Part 1, it can be shown that the inequality of Eq. 2.87 holds for all possible

da ≤ D and ta+i − ta ≤ ND,a∆. Using this inequality and following the same line of

arguments as in the previous part, the stability results stated in Theorem 2.2 can be

proved. �

Remark 2.11 When time-varying measurement delays are not present and new mea-

surements of x(t) are fed into the controller every synchronous sampling time, the

LMPC of Eqs. 2.69-2.75 may be simplified to the LMPC of Eqs. 2.16-2.20. Comparing

the LMPC of Eqs. 2.16-2.20 with the one of Eqs. 2.69-2.75, the difference is that the

Lyapunov-based constraint of Eq. 2.20 has to hold only for one time step. This implies

that even if the same implementation procedure is used, and the same optimization

problem is solved (in order to estimate the current state), if the Lyapunov-based con-

straint is not changed, stability cannot be proved. This point will be illustrated in the

example in Section 2.8.4.
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Remark 2.12 In the LMPC of Eqs. 2.23-2.28 for systems with asynchronous feed-

back without delays, the Lyapunov-based constraint of Eq. 2.28 has to hold for a time

period which is equal to or bigger than the maximum time without new measurement.

This constraint makes the computed control action more conservative (and thus less

optimal) because the controller may have to satisfy the Lyapunov-based constraint over

unnecessarily large horizons. If the LMPC of Eqs. 2.23-2.28 is implemented for sys-

tems subject to time-varying delays, it will be, in general, less optimal than the LMPC

of Eqs. 2.69-2.75. This point will also be illustrated in the example in Section 2.8.4.

2.8.4 Application to a Chemical Reactor

Consider the CSTR described by Eqs. 2.62-2.63 in Section 2.7.4. We assume that the

manipulated input (the rate of heat input Q) is bounded by |Q| ≤ 105 KJ/h and

the time-varying uncertainty in the reactant concentration of the inflow is bounded

by |∆CA0| ≤ 0.2 mol/l. The control system is subject to time-varying measure-

ment delay in the measurements of the concentration of the reactant, CA, and in

the measurements of the temperature, T . Note that we do not consider the possible

different sampling rates of temperature and concentration sensors in this example.

Note also that the delay in the measurements could be regarded as the total time

needed for online sensors to get a sample, analyze the sample and transmit the data

to the controller. The same nonlinear controller of Eq. 2.66 with the same Lyapunov

function V (x) and weighting matrix P is used in the design of the LMPCs used in

the simulations. The stability region Ωρ is defined as V (x) ≤ 700, i.e. ρ = 700.

The sampling time of the LMPCs is chosen to be ∆ = 0.025 h, the maximum

allowable measurement delay is D = 6∆ = 0.15 h and the maximum interval between

two consecutive measurements is Tm = ∆ = 0.025 h which implies that there is a
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measurement available every ∆ but it may not contain new state information. The

cost function is defined by the weighting matrices Qc = P and Rc = 10−6.

We first compare the LMPC of Eqs. 2.69-2.75 with the LMPC of Eqs. 2.16-2.20 in

the case where no time-varying measurement delays are present. For this simulation,

we choose the prediction horizon of the two LMPCs N equal to 7 (N ≥ D + Tm).

We implement the LMPC of Eqs. 2.16-2.20 using the same approach employed in the

implementation of the LMPC of Eqs. 2.69-2.75, that is, the current state is estimated

using the nominal model when a delayed measurement is received and the last optimal

input is applied when no new measurement is received. In Fig 2.8, the trajectories of

the CSTR under both LMPCs are shown assuming no measurement delay is present,

that is, the state x(tk) is available every sampling time. It can be seen that both

closed-loop systems are practically stable and the trajectories remain in the stability

region Ωρ.

In order to simulate the process in the presence of measurement delay, we use a

random process to generate the delay sequence {da≥0}, and the time sequence {ta≥0}

and corresponding delay sequence {da≥0} in which the control system is subjected

to is shown in Figure 2.9. In this figure, we see the time-varying nature of the

measurement delays and the largest delays are equal to the maximum allowable delay

D = 6∆ = 0.15 h. Note that when da+1 = da+∆, the controller does not receive any

new measurement.

When time-varying measurement delays are present, the LMPC of Eqs. 2.69-

2.75 is more robust. The stability region is invariant for the closed-loop system if

D+Tm ≤ N∆. This is not the case with the LMPC of Eqs. 2.16-2.20. In Figure 2.10,

the trajectories of the closed-loop system under both controllers are shown in the

presence of measurement delay with D = 6∆ = 0.15 h. It can be seen that the LMPC
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Figure 2.8: (a)(c) State and input trajectories of the CSTR of Eqs. 2.62-2.63 with
the LMPC of Eqs. 2.69-2.75 when no measurement delay is present; (b)(d) State and
input trajectories of the CSTR of Eqs. 2.62-2.63 with the LMPC of Eqs. 2.16-2.20
when no measurement delay is present
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Figure 2.9: Time sequence {ta≥0} and corresponding delay sequence {da≥0} used in
the simulation shown in Figure 2.10

of Eqs. 2.16-2.20 can not stabilize the system at the desired open-loop unstable steady-

state and the trajectories leave the stability region, while the LMPC of Eqs. 2.69-2.75

keeps the trajectories inside the stability region. When measurement delay is present,

in order to provide stability guarantees, the constraints must be modified to take into

account the measurement delay as in the LMPC of Eqs. 2.69-2.75.

We have also carried out a set of simulations to compare the LMPC of Eqs. 2.69-

2.75 with the LMPC of Eqs. 2.23-2.28 for nonlinear systems subject to data losses from

a performance index point of view. We also implement the LMPC of Eqs. 2.23-2.28

using the same approach employed in the implementation of the LMPC of Eqs. 2.69-

2.75. Table 2.3 shows the total cost computed for 20 different closed-loop simulations

under the LMPC of Eqs. 2.69-2.75 and the LMPC of Eqs. 2.23-2.28. To carry out

this comparison, we have computed the total cost of each simulation based on the

performance index of Eq. 2.67 with the initial simulation time t0 = 0 and the final

simulation time tf = 2 h.

The prediction horizon in this set of simulations is N = 10. For each pair of

simulations (one for each controller) a different initial state inside the stability region,

a different uncertainty trajectory and a different random measurement delay sequence

is chosen. As can be seen in Table 2.3, the LMPC of Eqs. 2.69-2.75 has a cost lower

than the corresponding total cost under the LMPC designed for systems subject to

data losses in 16 out of 20 simulations (see also Remark 2.12). This illustrates that
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Figure 2.10: (a)(c) State and input trajectories of the CSTR of Eqs. 2.62-2.63 with
the LMPC of Eqs. 2.69-2.75 when D is 6∆ and Tm = ∆; (b)(d) State and input
trajectories of the CSTR of Eqs. 2.62-2.63 with the LMPC of Eqs. 2.16-2.20 when D
is 6∆ and Tm = ∆
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Table 2.3: Total performance costs along the closed-loop trajectories of the CSTR of
Eqs. 2.62-2.63 under LMPC of Eqs. 2.69-2.75 and LMPC of Eqs. 2.23-2.28

sim. LMPC of Eqs. 2.69-2.75 LMPC of Eqs. 2.23-2.28

1 1.8295× 104 2.4428× 104

2 4.2057× 104 6.0522× 104

3 3.2481× 103 1.0428× 104

4 7.4328× 102 7.3961× 102

5 1.4229× 103 2.7798× 105

6 4.9435× 104 6.1596× 104

7 3.2519× 104 3.4319× 104

8 2.7590× 104 4.7075× 104

9 9.4216× 102 9.4866× 102

10 5.4505× 102 5.4322× 102

11 1.9723× 104 3.1282× 104

12 2.7235× 104 3.8772× 104

13 1.8671× 103 1.9200× 103

14 3.7789× 104 4.0050× 104

15 2.1839× 103 2.1392× 103

16 4.2920× 104 4.4594× 104

17 1.5153× 102 1.7190× 102

18 4.9955× 103 9.9094× 103

19 3.2086× 104 4.8838× 104

20 1.5420× 103 1.5197× 103
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the LMPC of Eqs. 2.69-2.75 is, in general, more optimal. This is because the LMPC

designed for system subject to data losses requires the Lyapunov-based constraint

of Eq. 2.28 to be satisfied along the whole possible maximum open-loop operation

time (that is t ∈ [ta, ta + NR∆)) which yields a more conservative controller from a

performance point of view.

We have also carried out a set of simulations to study the dependence on the value

of the maximum delay D of the set in which the trajectory of the process under the

proposed LMPC scheme is ultimately bounded. In order to estimate the size of each

set for a given D, we start the system very close to the equilibrium state and run it

for a sufficient long time. In this set of simulations, we set ∆CA0 = 0.1 kmol/m3 and

N = 7. The simulation time is 25 h. Figure 2.11 shows the location of the states,

(CA, T ), at each sampling time and the estimated regions for D = 2∆, 4∆, 6∆. Three

ellipses are used to estimate the boundaries of the sets, and they are chosen to be as

small as possible but still include all the corresponding points indicating the states.

From Figure 2.11, we see that the size of these sets becomes larger asD increases. The

results are expected because the size of the sets is not only dependent on the system

and the controller, but it also depends on the maximum measurement delay. The

longer the size of the delay, the further the system can move away from the steady-

state which means a larger set (if the state is still in the stability region Ωρ). Note

that all the sets for D = 2∆, 4∆, 6∆ are included in the stability region of the closed

loop system under the LMPC accounting for time-varying delays (Ωρ, ρ = 700).

2.9 Conclusions

In this chapter, LMPC designs were developed for the control of a broad class of

nonlinear uncertain systems subject to data losses/asynchronous measurements and
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Figure 2.11: (a) Estimate of the set in which the state trajectories of the CSTR of
Eqs. 2.62-2.63 with the LMPC of Eqs. 2.69-2.75 are ultimately bounded when the
maximum allowable measurement delay D is 2∆; (b) Estimate of the set in which the
state trajectories of the CSTR of Eqs. 2.62-2.63 with the LMPC of Eqs. 2.69-2.75 are
ultimately bounded when the maximum allowable measurement delay D is 4∆; (c)
Estimate of the set in which the state trajectories of the CSTR of Eqs. 2.62-2.63 with
the LMPC of Eqs. 2.69-2.75 are ultimately bounded when the maximum allowable
measurement delay D is 6∆; (d) Comparison of the three sets
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time-varying measurement delays. The main idea is that in order to provide guar-

anteed stability results in the presence of data losses or time-varying measurement

delays, the constraints that define the LMPC optimization problems as well as the im-

plementation procedures have to be modified to account for data losses/asynchronous

measurements or time-varying measurement delays. The presented LMPCs possess an

explicit characterization of the closed-loop system stability regions. The applications

of the presented LMPCs were illustrated using a nonlinear CSTR example.
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Chapter 3

Networked Predictive Process

Control

3.1 Introduction

In Chapter 2, we presented two LMPC designs for networked control systems sub-

ject to feedback data losses and time-varying measurement delays. From a control

system architecture point of view, the two LMPC designs are centralized and aim

to replace existing, dedicated control systems. In this chapter, we present a two-tier

networked control architecture to augment existing, point-to-point control systems

with networked control systems, which take advantage of real-time wired or wireless

sensor and actuator networks. This two-tier control architecture is a decentralized

control architecture and involves the use of hybrid communication networks. In this

case, key issues that need to be carefully handled at the control system design level

include data losses due to field interference, and time-delays due to network traffic as

well as measurement sampling.
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The class of networked control problems considered in this chapter arises naturally

in the context of process control systems based on hybrid communication networks

(i.e, point-to-point wired links integrated with networked wired or wireless commu-

nication) and utilizing multiple heterogeneous measurements (e.g., temperature and

concentration). Assuming that there exists a lower-tier control system which relies on

point-to-point communication and continuous measurements to stabilize the closed-

loop system, we use LMPC to design an upper-tier networked control system which

profits from both continuous and asynchronous/delayed measurements as well as from

additional networked control actuators. The main idea is to formulate appropriate

constraints in the MPC optimization problem based on the existing lower-tier control

system, in a way such that the MPC inherits the robustness and stability properties

of the lower-tier controller. The two-tier control system architecture has the ability

to preserve the stability properties of the lower-tier control system while improving

the closed-loop performance. The applicability and effectiveness of the two-tier con-

trol architecture is demonstrated using two chemical process examples. Moreover,

the two-tier control architecture is also applied to the optimal management and op-

eration of a standalone hybrid wind-solar energy generation system. Specifically, we

design a supervisory control system via MPC which computes the power references

for the wind and solar subsystems at each sampling time while minimizing a suitable

cost function. The power references are sent to two local controllers which drive the

two subsystems to the requested power references. We explicitly incorporate some

important practical considerations, for example, how to extend the life time of the

equipment by reducing the peak values of inrush or surge currents, into the formu-

lation of the MPC optimization problem. We present several simulation case studies

that demonstrate the applicability and effectiveness of the supervisory predictive con-

trol architecture. The results of this chapter were first presented in [55, 56, 85].
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3.2 System Description

In this chapter, we consider nonlinear systems described by the following state-space

model:

ẋ(t) = f(x(t), us(t), ua(t), w(t)) (3.1)

ys(t) = hs(x(t)) (3.2)

ya(t) = ha(x(t)) (3.3)

where x(t) ∈ Rn denotes the vector of state variables, ys(t) ∈ Rns denotes measure-

ments that are available continuously, ya(t) ∈ Rna denotes measurements that are

sampled at asynchronous time instants, us(t) ∈ Rms and ua(t) ∈ Rma are two differ-

ent sets of possible control inputs, and w(t) ∈ Rw denotes the vector of disturbance

variables. The disturbance vector is assumed to be bounded, i.e., w(t) ∈ W where:

W := {w ∈ Rw : ∥w∥ ≤ θ, θ > 0} (3.4)

with θ being a known positive real number.

We assume that f is a locally Lipschitz vector function, hs and ha are sufficiently

smooth vector functions, f(0, 0, 0, 0) = 0, hs(0) = 0 and ha(0) = 0. This means that

the origin is an equilibrium point for the nominal system with us = 0 and ua = 0.

The system of Eqs. 3.1-3.3 has both continuous synchronous and sampled asyn-

chronous measurements. We assume that ys(t) is available for all t, while ya(t) is

sampled and only available at some time instants ta where {ta≥0} is a random in-

creasing sequence of times. Moreover, there may be time-varying measurement delays

associated with the asynchronous measurements ya(t). Please see Section 3.3 for a
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precise definition of the measurement/network model that considered in this chapter.

Remark 3.1 The two sets of inputs include both systems with multiple inputs, or

systems with a single input divided artificially into two parts; that is:

ẋ(t) = f̂(x(t), u(t), w(t)) (3.5)

with u(t) = us(t)+ua(t). This implies that the two-tier control architecture presented

in this chapter can be used to design control systems which produce adjustments to

the actions of an already operating local control system to improve the closed-loop

performance.

3.3 Modeling of Measurements

The system of Eqs. 3.1-3.3 is controlled using both continuous synchronous, ys, and

asynchronous, delayed measurements, ya. This class of systems arises naturally in

process control applications, where different process variables have to be measured

such as temperature, flow rates, species concentrations or particle size distributions.

This model is also of interest in the context of processes controlled through a hybrid

communication network in which networked wired/wireless sensors and actuators are

used to add redundancy to existing control loops (which use point-to-point wired

communication links and continuous measurements) because networked communica-

tion is often subject to data losses due to field interference (for example, in wireless

communication) and time-varying delays due to network traffic.

We assume that ys is available for all t, while delayed ya samples are received at

an asynchronous rate. We also assume that each ya measurement is time-labeled, so

the controller is able to discard non-relevant information. Delays in the computation
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and implementation of control actions can be readily lumped with the measurement

delays and are not treated separately. The time instants at which a new delayed ya

sample is received are denoted ta, where {ta≥0} is a random increasing sequence of

times. To model the time-varying delay, an auxiliary variable da is introduced to

indicate the delay corresponding to the sample received at time ta, that is, at time

instant ta, the sample ya(ta − da) = ha(x(ta − da)) is received.

In general, if the sequence {da≥0} is modeled using a random process, it is improper

to use all the delayed measurements to estimate the current state and decide the

control inputs, because when the delays are too large, they may introduce enough

errors to destroy the stability of the closed-loop system. In order to study the stability

properties in a deterministic framework, in this chapter, we only take advantage of

delayed measurements such that the delays associated with the measurements are

smaller than an upper bound D, i.e., da ≤ D, a = 0, 1 . . .. The sequence {ta≥0} only

indicates time instants in which new measurements are available with a corresponding

measurement delay smaller than or equal to D.

We assume that the measurement of the full state x can be obtained by a proper

combination of measurements ys and ya at a given time instant. Due to the asyn-

chronous nature of ya, the time interval between two consecutive state xmeasurements

is unknown, moreover, due to the time-varying measurement delay of ya, the full state

x is also subject to time-varying delays. This implies that a controller that is designed

to profit from the extra information provided by the asynchronous, delayed measure-

ments ya must take into account that between two consecutive state measurements

it has to operate in open-loop and that the received state measurements are delayed

so the real state of the system has to be estimated using the nominal model of the

system and the available measurement information.
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Figure 3.1: Lower-tier controller with dedicated point-to-point, wired communication
links and continuous sensing and actuation

Remark 3.2 The sequence {ta≥0} does not take into account time instants in which

a sample that does not provide new information or a sample that involves a delay

larger than D is received, that is, the controller discards samples with already known

information, or with a delay too large to use this sample to estimate the current state

(recall that the measurements are time-labeled).

Remark 3.3 We have considered that the delayed full state is available asynchronously

to simplify the notation. The results can be extended to controllers based on partial

state information.

3.4 Lower-tier Controller

The continuous measurements ys(t) can be used to design a continuous output feed-

back controller to stabilize the system. We term the control system based only on the

continuous measurements ys(t) as lower-tier controller. This controller does not use

the asynchronous measurements ya(t). Figure 3.1 shows a schematic of the lower-tier

control system. Following this idea, we assume that there exists an output feedback

controller us(t) = ks(ys) (where ks(ys) is assumed to be a sufficiently smooth function

of ys) that renders the origin of the nominal closed-loop system asymptotically stable

with ua(t) ≡ 0. Using converse Lyapunov theorems [62, 46, 38, 12], this assumption
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implies that there exist functions αi(·), i = 1, 2, 3, 4 of class K and a continuously

differentiable Lyapunov function V (x) for the nominal closed-loop system that satisfy

the following inequalities:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (3.6)

∂V (x)

∂x
f(x, ks(hs(x)), 0, 0) ≤ −α3(∥x∥) (3.7)∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ α4(∥x∥) (3.8)

for all x ∈ O ⊆ Rn where O is an open neighborhood of the origin. We denote

the region Ωρ ⊆ O as the stability region of the closed-loop system under the con-

troller ks(ys). In the remainder, we will refer to the controller ks(ys) as the lower-tier

controller.

The lower-tier controller ks(ys) is able to stabilize the system, however, it does not

profit from the extra information provided by ya(t). In the remainder of this chapter,

we present a two-tier control architecture that profits from this extra information to

improve closed-loop performance.

Remark 3.4 The assumption that there exists a lower-tier controller which can sta-

bilize the closed-loop system using only the continuous measurements ys(t) and the

inputs us(t) implies that, in principle, it is not necessary to use the additional in-

formation provided by the asynchronous measurements and the extra inputs ua(t) in

order to achieve closed-loop stability. However, the main objective of the two-tier con-

trol architecture is to profit from this extra information and control effort to improve

the closed-loop performance while maintaining the stability properties achieved by the

lower-tier controller.
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Remark 3.5 Note that in many application areas, specifically in chemical plants,

there are control systems that have already been implemented using dedicated, local

control networks. These control systems will not be replaced by networked control

systems. Instead, networked control systems should be designed and implemented to

augment the pre-existing control systems to maintain stability and improve closed-loop

performance. This is why we assume that there exists a pre-existing stabilizing con-

troller ks(ys) for the lower-tier control system based on the continuous measurements

ys(t).

Remark 3.6 We have considered static lower-tier controllers to simplify the nota-

tion. The formulation can be extended to dynamic lower-tier controllers. In the ex-

amples in Sections 3.5.3, 3.5.4, 3.6.3 and 3.6.4, proportional-integral (PI) controllers

are used as the lower-tier controllers.

Remark 3.7 The lower-tier controller provides some degree of robustness with re-

spect to the uncertainty w. The conditions of Eqs. 3.6-3.8 and the Lipschitz property

of f guarantee that: a) the closed-loop nominal system under the lower-tier controller

is asymptotically stable; b) the closed-loop system state under the lower-tier controller

subject to the disturbances is ultimately bounded, provided θ is sufficiently small, in

a region that contains the origin that depends on the size of the uncertainty. These

properties are made explicit in Proposition 3.1 in next section. Please see [38] for

more details.
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3.5 Two-tier Networked Control Architecture with

Continuous/Asynchronous Measurements

In this section, we consider the design of the two-tier control architecture for the sys-

tem of Eqs. 3.1-3.3 with continuous and asynchronous measurements without delays;

that is da = 0 for all time instants. The extension of the two-tier control architec-

ture for the system of Eqs. 3.1-3.3 with continuous and asynchronous measurements

involving time-varying delays (i.e., da ̸= 0) will be presented in Section 3.6.

The main objective of the two-tier control architecture is to improve the per-

formance of the closed-loop system using the information provided by ya(t) while

guaranteeing that the stability properties of the lower-tier controller are maintained.

This is done by defining a controller (upper-tier controller) based on the full state

measurements obtained from both the synchronous and asynchronous measurements

at time steps ta. In the two-tier control architecture, the upper-tier controller decides

the trajectory of ua(t) between successive samples, i.e., for t ∈ [ta, ta+1) and the lower-

tier controller decides us(t) using the continuously available measurements. Figure 3.2

shows a schematic of the two-tier control architecture. Due to the asynchronous na-

ture of ya(t), the upper-tier controller has to take into account that the time interval

between two consecutive samples is unknown and there exists the possibility of an

infinitely large interval.

Remark 3.8 Note that since the lower-tier controller has already been designed, this

controller views the input ua(t) as a disturbance that has to be rejected if the controller

that is used to manipulate ua(t) is not properly designed. Therefore, the design of the

upper-tier controller has to take into account the decisions that will be made by the

lower-tier controller to maintain closed-loop stability and guarantee improved closed-
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Figure 3.2: Two-tier networked control architecture (solid lines denote dedicated
point-to-point, wired communication links and continuous sensing and actuation;
dashed lines denote networked (wired or wireless) communication or asynchronous
sampling and actuation)

loop performance.

3.5.1 Upper-tier Networked LMPC Formulation

In order to take advantage of the model of the system and the asynchronous state

measurements, we use MPC to decide ua(t). The main idea is the following: at each

time instant ta that a new state measurement is obtained, an open-loop finite horizon

optimal control problem is solved and an optimal input trajectory is obtained. This

input trajectory is implemented until a new measurement arrives at time ta+1. If the

time between two consecutive measurements is longer than the prediction horizon,

ua(t) is set to zero until a new measurement arrives and the optimal control problem is

solved again. In order to guarantee that the resulting closed-loop system is stable, we

design the MPC via LMPC. In the LMPC designs presented in Chapter 2, the stability

constraints are defined based on a known nonlinear state feedback controller. In this

chapter, the constraint of the upper-tier networked LMPC design is based on the

lower-tier output feedback controller. The upper-tier LMPC optimization problem is
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defined as follows:

min
ua∈S(∆)

∫ ta+N∆

ta

[
∥x̃(τ)∥Qc

+ ∥us(τ)∥Rc1
+ ∥ua(τ)∥Rc2

]
dτ (3.9)

s.t. ˙̃x(t) = f(x̃(t), us(t), ua(t), 0) (3.10)

us(t) = ks(hs(x̃(t))) (3.11)

˙̂x(t) = f(x̂(t), ks(hs(x̂(t))), 0, 0) (3.12)

x̃(ta) = x̂(ta) = x(ta) (3.13)

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta +N∆) (3.14)

where x(ta) is the state obtained from both ys(ta) and ya(ta), x̃(t) is the predicted

trajectory of the two-tier nominal system with ua computed by this upper-tier LMPC,

and x̂(t) is the predicted trajectory of the two-tier nominal system for the input

trajectory ua(t) ≡ 0 for all t ∈ [ta, ta+N∆). The optimal solution to this optimization

problem is denoted u∗
a(t|ta). This signal is defined for all t ≥ ta with u∗

a(t|ta) = 0 for

all t ≥ ta +N∆.

The control inputs of the two-tier control architecture based on the above LMPC

are defined as follows:

us(t) = ks(hs(x(t))),∀t (3.15)

ua(t) = u∗
a(t|ta),∀t ∈ [ta, ta+1) (3.16)

where u∗
a(t|ta) is the optimal solution of the LMPC of Eqs. 3.9-3.14 at time step

ta. This implementation technique takes into account that the lower-tier controller
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uses the continuously available measurements, while the upper-tier controller has to

operate in open-loop between consecutive asynchronous measurements.

Note that the constraint of Eq. 3.14 in the LMPC of Eqs. 3.9-3.14 is needed to

ensure that the value of the Lyapunov function of the closed-loop system under the

two-tier control architecture is lower than or equal to the Lyapunov function of the

closed-loop system when it is only controlled by the lower-tier controller. By imposing

the constraint of Eq. 3.14, we can prove that the stability of the closed-loop system

under the two-tier control architecture with inputs determined as in Eqs. 3.15-3.16

which is shown in Section 3.5.2.

Remark 3.9 By definition, u∗
a(t|ta) = 0 for all t ≥ ta + N∆. This implies that the

upper-tier controller switches off when it has been operating in open-loop for a large

time, because in this case, the last received information is no longer useful to improve

the performance of the lower-tier controller. The two-tier networked control archi-

tecture is (by design) stable because of the lower-tier controller stability properties.

The main problem is how to improve the closed-loop performance using asynchronous

communications in a way such that the stability properties of the closed-loop system

under the lower-tier controller are not compromised. Setting the control input of the

upper-tier controller to zero after a given time is necessary to maintain the stability

properties, because after a sufficiently large time, the upper-tier input implemented in

open-loop is not improving the closed-loop performance and may act as a disturbance.

3.5.2 Stability Properties

Combining the information from a hybrid communication system may lead to losing

the stability properties of the lower-tier controller. The resulting closed-loop system

is an asynchronous system [71] and we follow a Lyapunov-based approach to study the
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stability properties of the two-tier control architecture with the upper-tier controller

design as in Eqs. 3.9-3.14. The main idea, is to compute the input ua(t) applied to the

system in a way such that it is guaranteed that the value of the Lyapunov function at

time instants ta, V (x(ta)), is a decreasing sequence of values with a lower bound. This

guarantees practical stability of the closed-loop system. This property is presented

in Theorem 3.1 below. To state this theorem, we need the following propositions.

Proposition 3.1 Consider the system of Eqs. 3.1-3.3 in closed-loop with a lower-tier

controller ks. If ks satisfies the conditions of Eqs. 3.6-3.8, there exists a KL function

β(r, s), a K function γ and a constant θmax such that if x(t0) ∈ Ωρ and ua(t) = 0 for

all t then:

V (x(t)) ≤ β(V (x(t0)), t− t0) + γ( max
τ∈[t0,t]

∥w(τ)∥) (3.17)

for all w ∈ W with θ ≤ θmax.

This proposition provides us with a bound on the trajectories of the Lyapunov

function of the state of the system of Eqs. 3.1-3.3 in closed-loop with the lower-tier

controller and ua(t) = 0. The proof of Proposition 3.1 can be found in [38].

Proposition 3.2 Consider the following state trajectories:

ẋa(t) = f(xa(t), ks(hs(xa(t))), ua(t), w(t)) (3.18)

ẋb(t) = f(xb(t), ks(hs(xb(t))), ua(t), 0) (3.19)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a class K function fW such that:

∥xa(t)− xb(t)∥ ≤ fW (t− t0) (3.20)
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with

fW (τ) =
Lwθ

L′
x

(
eL

′
xτ − 1

)
(3.21)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W .

Proof: Define the error vector as e(t) = xa(t)− xb(t). The time derivative of the

error is given by:

ė(t) = f(xa(t), ks(hs(xa(t))), ua(t), w(t))− f(xb(t), ks(hs(xb(t))), ua(t), 0). (3.22)

By the local Lipschitz property assumed for the vector field f(x, us, ua, w), there exist

positive constants Lw, Lx and Lu1 such that:

∥ė(t)∥ ≤ Lw ∥w(t)− 0∥+ Lx ∥xa(t)− xb(t)∥+ Lu1 ∥ks(hs(xa(t)))− ks(hs(xb(t)))∥

(3.23)

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . By continuity and smoothness properties of

ks and hs, there exists a positive constant Lu2 such that:

∥ks(hs(xa(t)))− ks(hs(xb(t)))∥ ≤ Lu2 ∥xa(t)− xb(t)∥ (3.24)

for all xa(t), xb(t) ∈ Ωρ. Thus the following inequality can be obtained from the

inequality of Eq. 3.23:

∥ė(t)∥ ≤ Lw ∥w(t)∥+ (Lx + Lu1Lu2) ∥xa(t)− xb(t)∥ ≤ Lwθ + (Lx + Lu1Lu2) ∥e(t)∥ .

(3.25)
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Integrating ∥ė(t)∥ with initial condition e(t0) = 0 (recall that xa(t0) = xb(t0)), the

following bound on the norm of the error vector is obtained:

∥e(t)∥ ≤ Lwθ

L′
x

(
eL

′
x(t−t0) − 1

)
(3.26)

where L′
x = Lx + Lu1Lu2. This implies that the condition of Eq. 3.20 holds for:

fW (τ) =
Lwθ

L′
x

(
eL

′
xτ − 1

)
(3.27)

which proves this proposition. �

Theorem 3.1 Consider the system of Eqs. 3.1-3.3 in closed-loop with ys available for

all t, ya available at asynchronous time instants {ta≥0} without delay (i.e., da ≡ 0) and

a lower-tier controller ks satisfying the conditions of Eqs. 3.6-3.8. Let the closed-loop

system be controlled under the two-tier control architecture with the upper-tier LMPC

of Eqs. 3.9-3.14 and control inputs determined as in Eqs. 3.15-3.16. If x(t0) ∈ Ωρ,

θ ≤ θmax, N ≥ 1, ∆ > 0 and there exist a concave function g such that:

g(x) ≥ β(x,N∆) (3.28)

for all x ∈ Ωρ, and a positive constant c ≤ ρ such that:

c− g(c) ≥ fV (fW (N∆)) (3.29)

with fV (·) defined in Eq. 2.49 and fW (·) defined in Eq. 3.21, then x(t) is ultimately

bounded in Ωρc ⊆ Ωρ where:

ρc = max{max
c

β(c,N∆) + fV (fW (N∆)), γ(θmax)}. (3.30)
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Proof: In order to prove that the closed-loop system is ultimately bounded in a

region that contains the origin, we will prove that V (x(ta)) is a decreasing sequence of

values with a lower bound for the worst possible case, that is, the upper-tier controller

always operates in open-loop for a period of time longer than N∆ between consecutive

samples, that is, ta+1 − ta > N∆ for all a. The trajectory x̂(t) corresponds to the

nominal system in closed-loop with the lower-tier controller with initial state x(ta).

Taking into account Proposition 3.1 the following inequality holds:

V (x̂(t)) ≤ β(V (x(ta)), t− ta). (3.31)

The constraint of Eq. 3.14 of the upper-tier LMPC of Eqs. 3.9-3.14 guarantees that:

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta +N∆). (3.32)

Assuming that x(t) ∈ Ωρ for all times (which is automatically satisfied when the

system is proved to be ultimately bounded below), we can apply Proposition 2.3

(presented in Chapter 2) to obtain the following inequalities:

V (x(ta +N∆)) ≤ V (x̃(ta +N∆)) + fV (∥x(ta)− x̃(ta)∥). (3.33)

Applying Proposition 3.2 we obtain the following upper bound on the deviation of

x̃(t) from x(t):

∥x(ta +N∆)− x̃(ta +N∆)∥ ≤ fW (N∆). (3.34)

Using the inequalities of Eqs. 3.31-3.34, the following upper bound on V (x(ta+N∆))

is obtained:

V (x(ta +N∆)) ≤ β(V (x(ta)), N∆) + fV (fW (N∆)). (3.35)
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Taking into account that for all t ≥ ta +N∆ the upper-tier controller is switched off,

i.e., ua(t) = 0, and only the lower-tier controller is in action, the following bound on

V (x(ta+1)) is obtained from Proposition 3.1:

V (x(ta+1)) ≤ max{V (x(ta +N∆)), γ(θmax)} (3.36)

for all w(t) ∈ W . Because function g(·) is concave, z− g(z) is an increasing function.

If there is a positive constant c ≤ ρ satisfying the condition of Eq. 3.29, then the

condition of Eq. 3.29 holds for all z > c. Taking into account that g(z) ≥ β(z,N∆)

for all z ≤ ρ, the following inequality is obtained:

z − β(z,N∆) ≥ fV (fW (N∆)) (3.37)

when c ≤ z ≤ ρ. From the inequality of Eq. 3.37 and the inequality of Eq. 3.35, we

obtain that:

V (x(ta+1)) ≤ max{V (x(ta)), γ(θmax)} (3.38)

for all V (x(tk)) ≥ c. It follows using Lyapunov arguments that:

lim sup
t→∞

V (x(t)) ≤ ρc (3.39)

where:

ρc = max{max
c

β(c,N∆) + fV (fW (N∆)), γ(θmax)}. (3.40)

�

Remark 3.10 In general the size of the region in which the state is ultimately bounded,

depends on the prediction horizon N∆. The prediction horizon N∆ sets the maximum
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Figure 3.3: Centralized networked control system

amount of time on which the upper-tier controller will be operating in open-loop.

Remark 3.11 Referring to Theorem 3.1, the assumption that there exists a concave

function g such that g(x) ≥ β(x,N∆) imposes an upper bound on N∆ and is made,

without any loss of generality, to simplify the proof of Theorem 3.1, that is, the result

of Theorem 3.1 could still be proved without this assumption but the proof would be

more involved. The assumption that there exists a positive constant c ≤ ρ such that

c − g(c) ≥ fV (fW (N∆)) guarantees that the derivative of the Lyapunov function of

the state of the closed-loop system outside the level set V (x) = c is negative under the

two-tier control architecture with the upper-tier LMPC of Eqs. 3.9-3.14.

Remark 3.12 As in all MPC schemes, it is not possible to provide quantitative re-

sults that guarantee that the performance of the closed-loop system is better than any

other controller, unless an infinite horizon is used. It makes sense that the system in

closed-loop with the two-tier control architecture has in general a better performance

because the cost function is taken into account in the optimization problem of the

upper-tier controller. The case studies in Sections 3.5.3 and 3.5.4 provide results that

demonstrate this point.

Remark 3.13 Note that in order to take advantage of the asynchronous measure-

ments, an alternative to the two-tier control architecture is to control the system
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of Eqs. 3.1-3.3 using a centralized MPC that calculate the input trajectories of both

us and ua at each asynchronous sampling time ta when a new full state measure-

ment is available by combining ys(ta) and ya(ta). Figure 3.3 shows a schematic of

this kind of state feedback centralized control system. In particular, we may use the

centralized LMPCs presented in Sections 2.7 and 2.8 of Chapter 2 which are de-

signed taking data losses or time-varying measurement delays explicitly into account,

both in the optimization problem formulations and in the controller implementations.

For the case that there is no time-varying delays in the asynchronous measurements

(i.e., ya(ta) = ha(x(ta)) with da = 0), the centralized LMPC taking into account

asynchronous measurements for the system of Eqs. 3.1-3.3 is based on the following

optimization problem:

min
ua,us∈S(∆)

∫ ta+N∆

ta

[
∥x̃(τ)∥Qc

+ ∥us(τ)∥Rc1
+ ∥ua(τ)∥Rc2

]
dτ (3.41)

s.t. ˙̃x(t) = f(x̃(t), us(t), ua(t), 0) (3.42)

˙̂x(t) = f(x̂(t), ks(hs(x̂(ta + j∆))), 0, 0),

∀t ∈ [ta + j∆, ta + (j + 1)∆) (3.43)

x̃(t) = x̂(t) = x(tk) (3.44)

V (x̃(t)) ≤ V (x̂(t)) ∀t ∈ [ta, ta +N∆) (3.45)

where the lower-tier controller ks is used to generate the reference trajectory x̂ (ks is

implemented in a sample-and-hold fashion). The optimal solution to this optimization

problem is denoted u∗
c,s(t|ta) and u∗

c,a(t|ta). These signals are defined for all t ≥ ta

with u∗
c,s(t|ta) = u∗

c,s(ta+N∆|ta) and u∗
c,a(t|ta) = u∗

c,a(ta+N∆|ta) for all t ≥ ta+N∆.
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The inputs of the closed-loop system of Eqs. 3.1-3.3 are defined as follows:

us(t) = u∗
c,s(t|ta),∀t ∈ [ta, ta+1) (3.46)

ua(t) = u∗
c,a(t|ta), ∀t ∈ [ta, ta+1). (3.47)

In Sections 3.5.3 and 3.5.4, we denote this control design as the centralized LMPC.

3.5.3 Application to a Chemical Reactor

Consider the CSTR example described by Eqs. 2.62-2.63 introduced in Section 2.7.4.

In this section, we consider a flow rate disturbance in the feed flow rate F of pure

A, ∆F , and choose the the rate of heat input or removal Q and the change of the

inlet reactant A concentration ∆CA0 as the control inputs. The control objective is

to stabilize the system at the open-loop unstable steady-state Ts = 388 K, CAs =

3.59 mol/l. The flow rate uncertainty is bounded by |∆F | ≤ 3 m3/h.

We assume that measurements of temperature T are available continuously, and

the measurements of the concentration CA are available asynchronously at time in-

stants {ta≥0}. We also assume that there exists a lower bound ∆min on the time

interval between two consecutive concentration measurements.

In order to model the time sequence {ta≥0}, we use a lower-bounded random

Poisson process. The Poisson process is defined by the number of events per unit

time W . The interval between two consecutive concentration sampling times (events

of the Poisson process) is given by ∆a = max{∆min,
−lnχ
W
}, where χ is a random

variable with uniform probability distribution between 0 and 1. For the simulations

carried out in this section we pick ∆min = 0.025 h, which is meaningful from a

practical point of view with respect to concentration measurements.
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The CSTR model of Eqs. 2.62-2.63 belongs to the class of nonlinear systems

described by the system of Eqs. 3.1-3.3 where xT = [x1 x2] = [T −Ts CA−CAs] is the

state, us = Q and ua = ∆CA0 are the manipulated inputs, w = ∆F is a time varying

bounded disturbance, ys = x1 = T − Ts is obtained from the continuous temperature

measurement T and ya = x2 = CA−CAs is obtained from the asynchronously sampled

concentration measurement CA.

First, an output feedback controller (lower-tier controller) based on the continuous

temperature measurements (i.e., x1) is designed to stabilize the process using only

the rate of heat input us = Q as the manipulated input, which is bounded by |us| ≤

105 KJ/h. In particular, the following proportional-integral (PI) control law is used

as the lower-tier controller:

us(t) = K(x1(t) +
1

Ti

∫ t

0

x1(τ)dτ) (3.48)

where K is the proportional gain and Ti is the integral time constant. To compute

the parameters of the PI controller, the linearized model ẋ = Ax+Bus of the CSTR

of Eqs. 2.62-2.63 around the equilibrium point is obtained. The proportional gain K

is chosen to be −8100. This value guarantees that the origin of ẋ = (A+BK[1 0])x

is asymptotically stable with its eigenvalues being λ1 = −1.06× 105 and λ2 = −4.43.

A quadratic Lyapunov function V (x) = xTPx with:

P =

0.024 5.21

5.21 1.13× 103

 (3.49)

is obtained by solving an algebraic Lyapunov equation AT
c P + PAc + Qc = 0 for P
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with Ac = A+BK[1 0] and Qc being the following weighting matrix:

Qc =

1 0

0 104

 . (3.50)

This Lyapunov function will be used to design the upper-tier LMPC and the central-

ized LMPC. The integral time constant is chosen to be Ti = 49.6 h. For simplicity,

the Lyapunov function V (x) is determined on the basis of the closed-loop system

under the proportional (P) term of the PI controller only; the effect of the integral

(I) term is very small for the specific choice of the controller parameters used in the

simulations. The state and input trajectories of the CSTR of Eqs. 2.62-2.63 starting

from x0 = [370 3.41]T under the PI controller are shown in Fig. 3.4. From Fig. 3.4,

we see that the PI controller of Eq. 3.48 stabilizes the temperature and concentration

of the CSTR of Eqs. 2.62-2.63 at the equilibrium point in about 0.1 h and 0.4 h,

respectively.

Next, we implemented the presented two-tier control architecture to improve the

performance of the closed-loop system. In this set of simulations, the PI controller of

Eq. 3.48 is used as the lower-tier controller. Instead of abandoning the less frequent

concentration measurement, we take advantage of both the continuous measurements

of the temperature T and the asynchronous concentration measurements CA together

with the nominal model of the system of Eqs. 2.62-2.63 to design the upper-tier

LMPC of Eqs. 3.9-3.14. The inlet concentration change ∆CA0, which is bounded

by |∆CA0| ≤ 1 kmol/m3, is the manipulated input for the upper-tier LMPC. In

the design of the upper-tier LMPC, the performance index is defined by Qc given in

Eq. 3.50 and Rc1 = Rc2 = 0. The values of the weights in Qc have been chosen to

account for the different range of numerical values for each state. The sampling time
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Figure 3.4: State and input trajectories of the CSTR of Eqs. 2.62-2.63 under the
lower-tier PI control of Eq. 3.48
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Figure 3.5: Concentration sampling times, +: sampling times generated withW = 30,
×: sampling times generated with W = 20

of the LMPC is ∆ = 0.025 h; the prediction horizon is N = 11 so that the prediction

captures most of the dynamic evolution of the process.

The two-tier control architecture is implemented as discussed in Section 3.5.1. The

lower-tier controller uses the continuous temperature measurements to control us(t).

When the measurements of T and CA are obtained at time instant ta, x(ta), is ob-

tained from the two measurements. Based on the state x(ta), the LMPC optimization

problem of Eqs. 3.9-3.14 is solved and an optimal input trajectory u∗
a(t|ta) is obtained.

This optimal input trajectory is implemented until a new concentration measurement

is obtained at time ta+1 (note that a indexes the number of concentration samples

received, not a given sampling time). Note that because a PI controller is used in the

lower-tier, we need to predict the controller dynamics (the control effects generated

by the integral part) in the optimization problem of the LMPC.

The stability and robustness of the two-tier control architecture have been studied

with two different initial conditions x(0) = [370 3.41]T and x(0) = [375 3.46]T asso-

ciated with two different concentration measurement sequences {ta≥0} (see Fig. 3.5)

generated withW = 30 andW = 20, respectively. The average time intervals between

two consecutive sampling times are 0.0625 h for W = 30 and 0.0833 h for W = 20. In

addition, two different disturbance trajectories of w(t) with a random value at each

simulation step are added to the closed-loop system. The state and inputs trajectories
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Figure 3.6: State and input trajectories of the CSTR of Eqs. 2.62-2.63 under the two-
tier control architecture when W = 30 (solid curves) and W = 20 (dashed curves)

of the CSTR of Eqs. 2.62-2.63 under the two-tier control architecture are shown in

Fig. 3.6. From Fig. 3.6, we see that the two-tier control architecture stabilizes the

temperature and concentration of the system in about 0.1 h and 0.05 h respectively.

This implies that the resulting closed-loop system response is faster compared with

the speed of the closed-loop response under the PI controllers. Moreover, the cost

associated with the resulting closed-loop trajectories is lower.

Another set of simulations was carried out to compare the two-tier control ar-
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chitecture with the lower-tier PI control system from a performance point of view.

Table 3.1 shows the total cost computed for 20 different closed-loop simulations under

the two-tier control architecture and the PI control. To carry out this comparison,

we have computed the total cost of each simulation based on the performance index

defined as follows: ∫ tf

t0

∥x(τ)∥Qc
dτ (3.51)

where t0 = 0 is the initial time and tf = 0.5 h is the length of the simulations. For

this set of simulations W is chosen to be 10. For each pair of simulations (one for

each control scheme) a different initial state inside the stability region, a different

uncertainty trajectory and a different random concentration measurement sequence

are chosen. As it can be seen in Table 3.1, the two-tier control architecture has a cost

lower than the corresponding total cost under the PI controller in all the simulations.

We have also carried out another set of simulation to compare the presented two-

tier scheme with a controller using the measurements of T and CA to decide both

control inputs us and ua in the centralized LMPC of Eqs. 3.41-3.45; see Remark 3.13.

This implies that this approach does not take full advantage of the continuous mea-

surement of T . The LMPC of Eqs. 3.41-3.45 optimizes the future sampled input

trajectory ua(t), us(t) with sampling time ∆. When at a time instant ta, both the

measurements of T and CA are available (a state measurement is available), this

optimization problem is evaluated and two optimal input trajectories u∗
c,s(t|ta) and

u∗
c,a(t|ta) are obtained and implemented until the next measurement of both T and

CA are available.

For this set of simulations, the centralized LMPC of Eqs. 3.41-3.45 uses the same

parameters as the ones of the two-tier control architecture. The same initial con-

ditions, concentration sampling times (see Fig. 3.5) and disturbance trajectories are
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Table 3.1: Total performance costs along the closed-loop trajectories of the CSTR of
Eqs. 2.62-2.63 under the local PI controller of Eq. 3.48 and the two-tier control with
the upper-tier LMPC of Eqs. 3.9-3.14

sim. Two-Tier PI sim. Two-Tier PI

1 203.92 704.54 11 224.03 831.63

2 188.74 815.47 12 203.78 738.47

3 198.33 922.87 13 265.44 617.15

4 221.76 640.87 14 210.58 704.95

5 240.44 656.47 15 190.68 723.05

6 226.44 847.43 16 209.66 695.60

7 199.19 779.03 17 205.90 808.71

8 233.40 736.65 18 211.29 749.24

9 200.45 702.26 19 214.79 737.62

10 198.74 753.25 20 217.13 813.70
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Figure 3.7: State and input trajectories of the CSTR of Eqs. 2.62-2.63 under the
centralized LMPC of Eqs. 3.41-3.45 with concentration sampling times generated
with W = 30 (solid curves) and W = 20 (dashed curves)
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used in this set of simulations. The state and inputs trajectories of the closed-loop

system under the LMPC of Eqs. 3.41-3.45 are shown in Fig. 3.7. From Fig. 3.7, it

can be seen that the centralized LMPC stabilizes the system (solid curves) when the

time intervals between two consecutive measurements are small (0.0625 h), but loses

stability and can not stabilize the system (dashed curves) when these time intervals

get bigger (0.0833 h). The centralized LMPC of Eqs. 3.41-3.45 does not profit from

the continuous measurements of the temperature, thus, the stability region of the

closed-loop system is in general reduced to a much smaller one compared to that

obtained under the two-tier control architecture.

Remark 3.14 The performance index considered in this example penalizes only the

closed-loop system state and not the control action because the two-tier control archi-

tecture utilizes different manipulated inputs from the lower-tier PI controller and this

would complicate the comparison if penalty on the control action is included in the

cost. Since the performance index has only penalty on the closed-loop system state,

we have included an input constraint on the upper-tier manipulated input, ∆CA0, to

avoid computation of unnecessarily large control actions by the upper-tier controller

(i.e., |ua| ≤ 1 kmol/m3).

Remark 3.15 Note that in this particular example, the improvement in the closed-

loop performance is achieved due to the extra control input ua which is guided by the

LMPC of Eqs. 3.9-3.14 that uses all available measurements. Since PI controller is

used as the lower-tier controller, the extra available asynchronous measurements would

not have changed the closed-loop performance achieved by the lower-tier controller

because the PI controller cannot use the extra measurements. This is also the case

for the all the examples discussed in this chapter.
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3.5.4 Application to a Reactor-separator Process

Consider the reactor-separator process shown in Fig. 1.6 described in Section 1.2.3.

Under the assumption that the three vessels have static holdup and other standard

modeling assumptions, the dynamic equations describing the behavior of the system,

obtained through material and energy balances, are given below [20]:

dxA1

dt
=

F10

V1

(xA10 − xA1) +
Fr

V1

(xAr − xA1)− k1e
−E1

RT1 xA1 (3.52)

dxB1

dt
=

F10

V1

(xB10 − xB1) +
Fr

V1

(xBr − xB1) + k1e
−E1

RT1 xA1 − k2e
−E2

RT1 xB1 (3.53)

dT1

dt
=

F10

V1

(T10 − T1) +
Fr

V1

(T3 − T1) +
−∆H1

Cp

k1e
−E1

RT1 xA1 +
−∆H2

Cp

k2e
−E2

RT1 xB1

+
Q1

ρCpV1

(3.54)

dxA2

dt
=

F1

V2

(xA1 − xA2) +
F20

V2

(xA20 − xA2)− k1e
−E1

RT2 xA2 (3.55)

dxB2

dt
=

F1

V2

(xB1 − xB2) +
F20

V2

(xB20 − xB2) + k1e
−E1

RT2 xA2 − k2e
−E2

RT2 xB2 (3.56)

dT2

dt
=

F1

V2

(T1 − T2) +
F20

V2

(T20 − T2) +
−∆H1

Cp

k1e
−E1

RT2 xA2 +
−∆H2

Cp

k2e
−E2

RT2 xB2

+
Q2

ρCpV2

(3.57)

dxA3

dt
=

F2

V3

(xA2 − xA3)−
Fr + Fp

V3

(xAr − xA3) (3.58)

dxB3

dt
=

F2

V3

(xB2 − xB3)−
Fr + Fp

V3

(xBr − xB3) (3.59)

dT3

dt
=

F2

V3

(T2 − T3) +
Q3

ρCpV3

(3.60)
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The model of the flash tank separator was derived under the assumption that the rel-

ative volatility for each of the species remains constant within the operating tempera-

ture range of the flash tank. This assumption allows calculating the mass fractions in

the overhead based upon the mass fractions in the liquid portion of the vessel. It has

also been assumed that there is a negligible amount of reaction taking place in the

separator. The following algebraic equations model the composition of the overhead

stream relative to the composition of the liquid holdup in the flash tank:

xAr =
αAxA3

αAxA3 + αBxB3 + αCxC3

(3.61)

xBr =
αBxB3

αAxA3 + αBxB3 + αCxC3

(3.62)

xCr =
αCxC3

αAxA3 + αBxB3 + αCxC3

. (3.63)

The definitions for the variables used in Eqs. 3.52-3.63 and the corresponding pa-

rameter values used in this example can be found in Tables 3.2 and 3.3, respectively.

Note that the reactions A → B and B → C are referred to as reactions 1 and 2,

respectively.

Each of the tanks in the process has an external heat input. The manipulated

inputs to the system are the heat inputs to the three vessels, Q1, Q2 and Q3, and the

feed stream flow rate to vessel 2, F20.

We assume that the measurements of temperatures T1, T2 and T3 are available

continuously, and the measurements of mass fractions xA1, xB1, xA2, xB2, xA3 and

xB3 are available asynchronously at time instants {ta≥0}. The same method used in

the example in Section 3.5.3 is used in this example to generate the time sequence

{ta≥0}.

For each set of steady-state inputs Q1s, Q2s, Q3s and F20s corresponding to a
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Table 3.2: Process variables of the reactor-separator process of Eqs. 3.52-3.63

xA1, xA2, xA3 mass fractions of A in vessels 1, 2, 3

xB1, xB2, xB3 mass fractions of B in vessels 1, 2, 3

xC1 mass fraction of C in vessel 3

xAr, xBr, xCr mass fractions of A, B, C in the recycle

T1, T2, T3 temperatures in vessels 1, 2, 3

T10, T20 feed stream temperatures to vessels 1, 2

F1, F2 effluent flow rate from vessels 1, 2

F10, F20 feed stream flow rates to vessels 1, 2

Fr, Fp flow rates of the recycle and purge

V1, V2, V3 volumes of vessels 1, 2, 3

E1, E2 activation energy for reactions 1, 2

k1, k2 pre-exponential values for reactions 1, 2

∆H1, ∆H2 heats of reaction for reactions 1, 2

αA, αB, αC relative volatilities of A, B, C

Q1, Q2, Q3 heat inputs into vessels 1, 2, 3

Cp, R, ρ heat capacity, gas constant and solution density
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Table 3.3: Process parameters of the reactor-separator process of Eqs. 3.52-3.63

T10 300 [K] k1 2.77×103 [s−1]

T20 300 [K] k2 2.5×103 [s−1]

F10 5.04 [m3/h] ∆H1 -6×104 [KJ/kmol]

Fr 50.4 [m3/h] ∆H2 -7×104 [KJ/kmol]

Fp 5.04 [m3/h] αA 3.5

V1 1.0 [m3] αB 1

V2 0.5 [m3] αC 0.5

V3 1.0 [m3] Cp 4.2 [KJ/kg ·K]

E1 5×104 [KJ/kmol] R 8.314 [KJ/kmol ·K]

E2 6×104 [KJ/kmol] ρ 1000 [kg/m3]

different operation condition, the system of Eqs. 3.52-3.63 has one stable steady-state

xT
s . In this example, we will study two different operating conditions corresponding to

two different steady-states xs1 and xs2. The parameters of the steady-state operation

points and the values of the two steady-states are given in Table 3.4 and Table 3.5.

The control objective is to steer the system to the steady-states from the initial state:

x(0)T = [0.890 0.110 388.732 0.886 0.113 386.318 0.748 0.251 390.570]. (3.64)

The system of Eqs. 3.52-3.63 belongs to the class of nonlinear systems described

by the system of Eqs. 3.1-3.3 where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 −

xA1s xB1−xB1s T1−T1s xA2−xA2s xB2−xB2s T2−T2s xA3−xA3s xB3−xB3s T3−T3s]

is the state, uT
s = [us1 us2 us3] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s] and ua = F20 − F20s

are the manipulated inputs, yTs = [ys1 ys2 ys3] = [x3 x6 x9] is obtained from the

continuous temperature measurements and yTa = [x1 x2 x4 x5 x7 x8] is obtained
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Table 3.4: Steady-state operation parameters of xs1 and xs2 of the reactor-separator
process of Eqs. 3.52-3.63

xs1 xs2

Q1s 12.6×105 [KJ/h] Q1s 12.6×105 [KJ/h]

Q2s 16.2×105 [KJ/h] Q2s 13.32×105 [KJ/h]

Q3s 12.6×105 [KJ/h] Q3s 11.88×105 [KJ/h]

F20s 5.04 [m3/h] F20s 5.04 [m3/h]

Table 3.5: Steady-states xs1 and xs2 of the reactor-separator process of Eqs. 3.52-3.63

xA1s xB1s T1s xA2s xB2s T2s xA3s xB3s T3s

xs1 0.383 0.581 447.8 0.391 0.572 444.6 0.172 0.748 449.6

xs2 0.605 0.386 425.9 0.605 0.386 422.6 0.346 0.630 427.3
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Table 3.6: Control parameters for steady-states xs1 and xs2 of the reactor-separator
process of Eqs. 3.52-3.63

xs1 xs2

K1 -5000 K1 -5000

K2 -5000 K2 -5000

K3 -5000 K3 -5000

Ti 5 [h] Ti 5 [h]

from the asynchronously sampled mass fraction measurement. Time varying bounded

process noise was added to the simulations.

Based on the continuous temperature measurements (i.e., ys), three PI controllers

(lower-tier controllers) are first designed following the Eq. 3.48 to stabilize the system

of Eqs. 3.52-3.63 from the initial state x(0) to the steady-state xs using only the heat

inputs as the manipulated inputs, which are bounded by |Qi| ≤ 2 × 106 KJ/h (i =

1, 2, 3). Using the same method as described in Section 3.5.3, the parameters of the PI

controllers are obtained as shown in Table 3.6; and two different quadratic Lyapunov

functions are obtained, one for each steady state xs1, xs2. The two Lyapunov functions

are used to design the upper-tier LMPC controller and the centralized LMPC of

Eqs. 3.41-3.45. The state and input trajectories of the system of Eqs. 3.52-3.63 under

the lower-tier PI control are shown in Figures 3.8 and 3.9. From Figure 3.8, we see

that the PI control law stabilizes the temperatures and mass fractions in the three

vessels in about 0.7 h for both steady-states.

We design next the upper-tier LMPC of Eqs. 3.9-3.14 and the corresponding two-

tier control architecture. The feed flow rate to vessel 2, ua = F20 − F20s, is the

manipulated input for the upper-tier LMPC, which is bounded by 1 ≤ F20 ≤ 9 m3/h.
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Figure 3.8: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
lower-tier control law for steady-state xs1 (solid curves) and steady-state xs2 (dashed
curves)

0 0.2 0.4 0.6 0.8 1 1.2
1

1.25

1.5

1.75
x 10

6

Q
1 [K

J/
h]

0 0.2 0.4 0.6 0.8 1.0 1.2
1

1.25

1.5

1.75

2
x 10

6

Q
2 [K

J/
h]

0 0.2 0.4 0.6 0.8 1.0 1.2
1

1.25

1.5

1.75
x 10

6

t [h]

Q
3 [K

J/
h]

0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

t [h]

F
20

 [m
3 /h

]

Figure 3.9: Inputs trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
lower-tier control law for steady-state xs1 (solid curves) and steady-state xs2 (dashed
curves)
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Figure 3.10: Mass fractions sampling times generated with W = 1 (+) and W = 0.5
(×)

The performance index is defined by Qc being the following weighting matrix:

Qc = diag

([
104 104 1 104 104 1 104 104 1

])
(3.65)

and Rc1 = Rc2 = 0. The sampling time of the LMPC is ∆ = 0.025 h and the

prediction horizon is N = 15.

Two different simulations have been carried out with different mass fraction mea-

surement sequences {ta≥0} (see Figure 3.10) generated with W = 1 and W = 0.5

for steady-states xs1 and xs2, respectively. The average time intervals between two

consecutive sampling times are 0.188 h for W = 1 and 0.375 h for W = 0.5. The

state and input trajectories of the reactor-separator process of Eqs. 3.52-3.63 under

the two-tier control architecture are shown in Figures 3.11 and 3.12. Figure 3.11

shows that the two-tier control architecture stabilizes the temperatures and the mass

fractions of the system in about 0.3 h. This implies that the resulting closed-loop

system response is faster relative to the speed of the closed-loop response under the

low-tier PI controllers.

Another set of simulations was also carried out to compare the two-tier control

architecture with the lower-tier controller from a performance point of view. Table 3.7

shows the total cost computed for 10 different closed-loop simulations under the two-
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Figure 3.11: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the two-tier control architecture when W = 1 (solid curves) and W = 0.5 (dashed
curves)
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Figure 3.12: Inputs trajectories of the reactor-separator process of Eqs. 3.52-3.63
under the two-tier control architecture when W = 1 (solid curves) and W = 0.5
(dashed curves)
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Table 3.7: Total performance costs along the closed-loop trajectories of the reactor-
separator process of Eqs. 3.52-3.63 under the local PI controller and the two-tier
control with the upper-tier LMPC of Eqs. 3.9-3.14

sim. Two-Tier PI sim. Two-Tier PI

1 1.179×105 2.760×105 6 1.560×105 3.742×105

2 1.164×105 2.795×105 7 1.645×105 3.951×105

3 1.273×105 2.991×105 8 1.701×105 4.107×105

4 1.351×105 3.177×105 9 1.962×105 4.408×105

5 1.364×105 3.240×105 10 1.848×105 4.492×105

tier control architecture and the lower-tier controller. To carry out this comparison,

we have computed the total cost of each simulation based on the performance index

defined in Eq. 3.51 with Qc given in Eq. 3.65 with different operation conditions in a

simulation length of tf = 0.75 h. For this set of simulations W is 1. As it can be seen

in Table 3.7, the two-tier control architecture has a cost lower than the corresponding

total cost under the lower-tier controller in all the simulations.

We have also carried out another set of simulations to compare the computational

time needed to evaluate the upper-tier LMPC of Eqs. 3.9-3.14 with that of the cen-

tralized LMPC of Eqs. 3.41-3.45. For these simulations, the centralized LMPC uses

the same parameters as the ones of the upper-tier LMPC in the present example.

The simulations have been carried out using MATLABr in a PENTIUMr 3.20G Hz.

The nonlinear optimization problem has been solved using the function fmincom. To

integrate the system model of Eqs. 3.52-3.63, both in the simulations and in the op-

timization algorithm, an Euler method with a fixed integration time of 0.001 h has

been implemented in C programming language. The mean time to solve the LMPC
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optimization problem of this set of simulations is 23.24 s for the upper-tier LMPC

and 37.59 s for the centralized LMPC. From this set of simulations, we see that the

computational time needed to solve the centralized LMPC optimization problem is

substantially larger even though the closed-loop performance in terms of the total

performance cost is comparable to the one of the two-tier control architecture. This

is because the centralized LMPC has to optimize both the inputs us and ua.

3.6 Two-tier Networked Control Architecture with

Continuous/Delayed Measurements

In this section, we extend the design of two-tier networked control architecture pre-

sented in the previous section for the system of Eqs. 3.1-3.3 with continuous and

asynchronous measurements involving time-varying delays (i.e., da ̸= 0).

3.6.1 Upper-tier Networked LMPC Formulation

At each time instant ta when a new asynchronous measurement ya(ta−da) is received,

a delayed state measurement x(ta − da) is obtained by combining this measurement

with the previously received synchronous measurement ys(ta− da). Based on this de-

layed state measurement x(ta− da), the nominal model of the system of Eqs. 3.1-3.3,

the continuous measurements ys(t) and the control inputs applied from ta − da to ta,

an estimate of the current state x̃(ta) is computed. Note that this implies that the

upper-tier controller has to store its past control input trajectory, know the explicit

expression and parameters of the lower-tier controller and use the continuous mea-

surements ys(t) to predict the control inputs carried out by the lower-tier controller.

The estimated state x̃(ta) is then used to obtain the optimal future control input
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trajectory of ua by means of an LMPC optimization problem. This input trajectory

is implemented until a new measurement arrives at time ta+1. If the time between

two consecutive measurements is longer than the prediction horizon, ua is set to zero

until a new measurement arrives and the optimal control problem is solved again.

Specifically, the upper-tier LMPC optimization problem taking into account delays

in asynchronous measurements is defined as follows:

min
ua∈S(∆)

∫ ta+N∆

ta

[
∥x̃(τ)∥Qc

+ ∥us(τ)∥Rc1
+ ∥ua(τ)∥Rc2

]
dτ (3.66)

˙̃x(t) = f(x̃(t), us(t), ua(t), 0), ∀t ∈ [ta − da, ta +N∆) (3.67)

us(t) = ks(hs(x̃(t))) (3.68)

ua(t) = u∗
a(t), ∀t ∈ [ta − da, ta) (3.69)

x̃(ta − da) = x(ta − da) (3.70)

˙̂x(t) = f(x̂(t), ks(hs(x̂(t))), 0, 0), t ∈ [ta, ta +N∆) (3.71)

x̂(ta) = x̃(ta) (3.72)

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta +N∆) (3.73)

where u∗
a(t) indicates the actual input trajectory of ua that has been applied to the

system, x(ta−da) is the state obtained combining both the measurements of ys(ta−da)

and ya(ta − da), and x̃(ta) is an estimate of the current system state. The optimal

solution to this optimization problem is denoted u∗
d(t|ta). This signal is defined for

all t ≥ ta with u∗
d(t|ta) = 0 for all t ≥ ta +N∆.

The control inputs of the two-tier control architecture based on the above LMPC
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are defined as follows:

us(t) = ks(hs(x(t))), ∀t (3.74)

ua(t) = u∗
d(t|ta),∀t ∈ [ta, ta+1) (3.75)

where u∗
d(t|ta) is the optimal solution of the LMPC of Eqs. 3.66-3.73 at time step ta.

Remark 3.16 In the LMPC of Eqs. 3.66-3.73 both the estimation of x(ta) from

x(ta − da) and the evaluation of the future optimal input trajectory in [ta, ta+1) are

carried out at the same time. First, the constraints of the problem guarantee that

x̃(ta) has been estimated using the nominal model (the constraint of Eq. 3.67) and the

actual inputs applied to the system (the constraint of Eq. 3.69) from the initial state

x(ta−da) (the constraint of Eq. 3.70). Once the current state is estimated, the future

input trajectory is optimized to minimize the cost function taking into account the

actions of the lower-tier controller (the constraint of Eq. 3.71) while guaranteing that

a Lyapunov-based constraint is satisfied (the constraint of Eq. 3.73). The optimiza-

tion problem of Eqs. 3.66-3.73 has been presented in order to get a compact controller

formulation. It is possible to decouple the observer and the LMPC optimization prob-

lem as long as the observer provides an upper bound on the estimation error of x(ta).

For example, a high-gain observer can be used to estimate x(ta) from the continuous

measurements and the applied inputs, and then use this estimated state to define the

LMPC optimization problem.

Remark 3.17 The constraints of Eqs. 3.67 and 3.73 are a key element of the two-tier

control architecture. In general, guaranteeing closed-loop stability of a decentralized

control system is a difficult task because of the interactions between the different con-

trollers and can only be done under certain assumptions (see, for example, [89, 8]).
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Figure 3.13: Possible worst scenario of the delayed measurements received by the
networked controller and the corresponding state trajectories defined in the LMPC
of Eqs. 3.66-3.73

The constraint of Eq. 3.67 guarantees that the upper-tier controller takes into account

the effect of the lower-tier controller to the applied inputs (recall that the lower-tier

controller is designed without taking ua into account). The constraint of Eq. 3.73 is

used to guarantee that the value of the Lyapunov function is a decreasing sequence of

time with a lower bound.

3.6.2 Stability Properties

In this subsection, we prove the stability result of the two-tier control architecture

with the upper-tier LMPC of Eqs. 3.66-3.73.

Theorem 3.2 Consider the system of Eqs. 3.1-3.3 in closed-loop with ys available

for all t, ya available at asynchronous time instants {ta≥0} involving time-varying

delays such that da ≤ D for all a ≥ 0 and a lower-tier controller ks satisfying the

conditions of Eqs. 3.6-3.8. Let the closed-loop system be controlled under the two-tier

control architecture with the upper-tier LMPC of Eqs. 3.66-3.73 and control inputs

determined as in Eqs. 3.74-3.75. If x(t0) ∈ Ωρ, θ ≤ θmax, N ≥ 1, ∆ > 0 and there

116



exist a concave function g such that:

g(x) ≥ β(x+ fV (fW (D)), N∆) (3.76)

for all x ∈ Ωρ, and a positive constant c ≤ ρ such that:

c− g(c) ≥ fV (fW (D +N∆)) (3.77)

with fV (·) defined in Eq. 2.49 and fW (·) defined in Eq. 3.21, then x(t) is ultimately

bounded in Ωρd ⊆ Ωρ where:

ρd = max{max
c

β(c+ fV (fW (D)), N∆) + fV (fW (D +N∆)), γ(θmax)}. (3.78)

Proof: In order to prove that the system of Eqs. 3.1-3.3 in closed-loop under the

two-tier control architecture with the upper-tier LMPC of Eqs. 3.66-3.73 is ultimately

bounded in a region that contains the origin, we will prove that the value of the

Lyapunov function at times {ta≥0}, V (x), is a decreasing sequence of values with a

lower bound on its magnitude for the worst possible case from a communication point

of view, and hence for all possible sequences of measurement times and delays. The

worst possible case from the communications point of view is that the measurements

used to evaluate the upper-tier LMPC are always received with the maximum delay

D; that is da = D for all a, and that the upper-tier LMPC always operates in open-

loop for a period of time longer than N∆ between consecutive sampling times, that

is, ta+1 − ta > N∆ for all a. If the measurements are received with a smaller delay

or more often, the LMPC has more precise information of the state of the system.
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Figure 3.13 shows the worst case scenario for a system of dimension 1. Solid

vertical lines are used to indicate the times at which new measurements are obtained

(ta and ta+1) and when the upper-tier controller switches off at time ta + N∆. The

dashed vertical line indicates the time corresponding to the measurement obtained at

ta (that is, ta − D). In this figure, three different state trajectories are shown. The

actual state trajectory of the system of Eqs. 3.1-3.3 (including the uncertainty) is

denoted as x(t). The estimated state trajectory from ta −D to ta and the predicted

sampled trajectory under the two-tier control architecture with the upper-tier LMPC

of Eqs. 3.66-3.73 along the prediction horizon with initial state the estimated state

are denoted as x̃(t). The nominal trajectory under the lower-tier controller ks with

ua ≡ 0 along the prediction horizon with initial state the estimated state x̃(ta) is

denoted as x̂(t). The state trajectories x̃(t) and x̂(t) are obtained using the nominal

model as defined in the LMPC optimization problem of Eqs. 3.66-3.73.

The trajectory x̂(t) corresponds to the nominal system in closed-loop with the

lower-tier controller with initial state x̃(ta). Taking into account Proposition 3.1 the

following inequality holds:

V (x̂(t)) ≤ β(V (x̃(ta)), t− ta). (3.79)

The constraint of Eq. 3.73 guarantees that:

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta +N∆). (3.80)
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Taking into account the constraints of Eqs. 3.67 and 3.70 and that the closed-loop

trajectories are defined by the following equation:

ẋ(t) = f(x(t), ks(hs(x(t))), ua(t), w(t)), (3.81)

we can apply Proposition 3.2 to obtain the following upper bounds on the deviation

of x̃(t) from x(t):

∥x(ta)− x̃(ta)∥ ≤ fW (D) (3.82)

∥x(ta +N∆)− x̃(ta +N∆)∥ ≤ fW (τf +D). (3.83)

Note that in Eqs. 3.82-3.83, Proposition 3.2 is used to obtain a bound on the difference

between x̃ and x from ta− da to ta to simplify the notation and the proof. Note that

from ta − da to ta, the real trajectory of us is applied to evaluate x̃, so a tighter

bound on the difference between x̃ and x can be obtained. As mentioned before, the

estimation of x(ta) can be done using any observer which provides a bound on the

estimation error.

From Proposition 2.3 and the above inequalities, we obtain the following inequal-

ities:

V (x̃(ta)) ≤ V (x(ta)) + fV (fW (D)) (3.84)

V (x(ta +N∆) ≤ V (x̃(ta +N∆)) + fV (fW (D +N∆)). (3.85)
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From the inequalities of Eqs. 3.79-3.85, the following upper bound on V (x(ta+N∆))

is obtained:

V (x(ta +N∆)) ≤ β(V (x(ta)) + fV (fW (D)), N∆) + fV (fW (D +N∆)). (3.86)

Taking into account that for all t > ta +N∆ the upper-tier controller is switched off,

i.e., ua(t) = 0, and only the lower-tier controller is in action, the following bound on

V (x(ta+1)) is obtained from Proposition 3.1:

V (x(ta+1)) ≤ max{V (x(ta +N∆)), γ(θmax)} (3.87)

for all w(t) ∈ W . Because function g(·) is concave, z− g(z) is an increasing function.

If there is a constant c0 ≤ c ≤ ρ satisfying the condition of Eq. 3.77, then the condition

of Eq. 3.77 holds for all z > c. Taking into account that g(z) ≥ β(z+fV (fW (D)), N∆)

for all z ≤ ρ, the following inequality is obtained:

z − β(z + fV (fW (D)), N∆) ≥ fV (fW (D +N∆)) (3.88)

when c ≤ z ≤ ρ. From this inequality and the inequality of Eq. 3.87, we obtain that:

V (x(ta+1)) ≤ max{V (x(ta)), γ(θmax)} (3.89)

for all V (x(ta)) ≥ c. It follows using Lyapunov arguments that:

lim sup
t→∞

V (x(t)) ≤ ρd (3.90)
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where:

ρd = max{max
c

β(c+ fV (fW (D)), N∆) + fV (fW (D +N∆)), γ(θmax)}. (3.91)

�

3.6.3 Application to a Chemical Reactor

Consider the CSTR of Eqs. 2.62-2.63 discussed in Sections 2.7.4 and 3.5.3. In the

current section, we assume that ys = x1 = T − Ts is obtained from the continuous

temperature measurements T , and ya = x2 = CA − CAs is obtained at time instants

{ta≥0} from the asynchronously sampled concentration measurement CA subject to

time-varying measurement delays. We also have a lower bound Tmin = 0.15 h on

the time interval between two consecutive concentration measurements and an upper

bound D on the size of the delay; both will be computed via simulations even though

conservative estimates could be computed from the theoretical results.

We use a lower-bounded Poisson process to model the time sequence {ta≥0} as

discussed in Section 3.5.3. In order to model the delay size sequence {da≥0}, the

size of delay associated with the concentration measurement at ta is modeled by an

upper-bounded random process given by da = min{D,ϕH}, where ϕ is a uniformly

distributed variable between 0 and 1, and H = ta− ta−1 + da−1 is the size of the time

interval between current time ta and the time corresponding to the last concentration

measurement ta−1 − da−1. This generation method guarantees that da ≤ D for all a.

We assume that the initial state is known; that is, d0 = 0 and t0 = 0.

We use the lower-tier PI controller of Eq. 3.48 which is based on the continuous

temperature measurements, and the same Lyapunov function V (x) = xTPx. We
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implemented the two-tier control architecture with the LMPC of Eqs. 3.66-3.73 to

improve the performance of the closed-loop system obtained under PI-only control.

For the simulations carried out in this subsection, we pick the delay of each measure-

ment to be da = D = 0.15 h for all a. These settings correspond to the worst-case

effect from a communication point of view. For the other simulation settings, we

use the ones used in Section 3.5.3 except that the prediction horizon is chosen to be

N = 6. Note that the minimum time interval between two consecutive concentration

measurements Tmin is fixed by the system dynamics and the prediction horizon is set

be equal to the minimum time interval between two consecutive ya measurements,

that is N∆ = Tmin.

The two-tier control architecture is implemented as discussed in the previous sec-

tion. The lower-tier controller uses the continuous temperature measurements to

decide us(t). When a new measurement of CA is obtained at time instant ta with

delay D, an estimate of the state of the CSTR, x(ta −D), is obtained by combining

the concentration measurement and the previously received continuous measurement

of the temperature T . Based on the state x(ta−D), the model of the process and the

control actions applied, an estimate of the current state x̃(ta) is obtained. Based on

this state estimate x̃(ta), the LMPC of Eqs. 3.66-3.73 is solved and an optimal input

trajectory of ua is obtained. This optimal input trajectory is implemented until a

new concentration measurement is obtained at time ta+1.

A simulation of the closed-loop system under the two-tier control architecture

with the same initial condition x(0) = [370 3.41]T has been carried out. The sampling

sequence {ta≥0} generated withW = 1 and delay size sequence {da≥0} with simulation

length of 0.5 h are the following:

{ta≥0} = {0 0.198 0.395 0.500} h, (3.92)
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Figure 3.14: Worst case state and input trajectories of the CSTR of Eqs. 2.62-2.63
under the two-tier control architecture with the networked LMPC of Eqs. 3.66-3.73
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{da≥0} = {0 0.150 0.150 0.150} h. (3.93)

The state and input trajectories of the CSTR under the two-tier control architec-

ture with the upper-tier LMPC of Eqs. 3.66-3.73 are shown in Figure 3.14. From

Figure 3.14, we see that the two-tier control architecture stabilizes the temperature

and concentration of the system at the desired equilibrium point in about 0.1 h and

0.05 h, respectively. This implies that the resulting closed-loop system response is

faster for this particular simulation. Moreover, the cost associated with the resulting

closed-loop trajectories is lower. This result has been validated by extensive simula-

tions.

We also carried out a set of simulations to compare the two-tier control architec-

ture with the lower-tier PI control system from a performance point of view. Table 3.8

shows the total cost computed for 20 different closed-loop simulations under the two-

tier control architecture with the LMPC of Eqs. 3.66-3.73 and the PI controller. To

carry out this comparison, we have computed the total cost of each simulation based

on the performance index defined in Eq. 3.51 from the initial time to the end of the

simulation tf = 0.5 h. For each pair of simulations (one for each control scheme) a

different initial state inside the stability region, a different uncertainty trajectory and

a different random concentration measurement sequence with random delay size se-

quence are generated. As it can be seen in Table 3.8, the two-tier control architecture

has a cost lower than the corresponding total cost under the PI controller in all the

closed-loop system simulations.
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Table 3.8: Total performance costs along the closed-loop trajectories of the CSTR of
Eqs. 2.62-2.63 under the PI controller of Eq. 3.48 and the two-tier control architecture
with the upper-tier LMPC of Eqs. 3.66-3.73

sim. Two-Tier PI sim. Two-Tier PI

1 107.60 557.06 2 124.98 1090.29

3 188.53 1392.73 4 169.06 403.82

5 143.07 376.15 6 179.22 1330.25

7 202.28 1252.36 8 152.23 749.93

9 141.84 732.20 10 157.99 1049.38

3.6.4 Application to a Reactor-separator Process

Consider the reactor-separator process of Eqs. 3.52-3.63 introduced in Sections 1.2.3

and 3.5.4 with the parameter values given in Table 3.3. We assume that the measure-

ments of temperatures T1, T2 and T3 are available continuously, and the measurements

of mass fractions xA1, xB1, xA2, xB2, xA3 and xB3 are available asynchronously at time

instants {ta≥0} and are subject to time-varying measurement delay. We also assume

that there exists a lower bound Tmin = 0.2 h on the time interval between two con-

secutive measurements of the mass fractions. The same method used in the previous

examples in this chapter is used in the present example to generate the time sequence

{ta≥0}. The control objective is to steer the system from the initial state:

x(0)T = [0.890, 0.110, 388.7, 0.886, 0.113, 386.3, 0.748, 0.251, 390.6] (3.94)

to the steady-state:

xT
s = [0.383, 0.581, 447.8, 0.391, 0.572, 444.6, 0.172, 0.748, 449.6] (3.95)
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Table 3.9: Steady-state values of manipulated inputs of the reactor-separator process
of Eqs. 3.52-3.63

Parameters V alues

Q1s 12.6×105 [KJ/hr]

Q2s 16.2×105 [KJ/hr]

Q3s 12.6×105 [KJ/hr]

F20s 5.04 [m3/hr]

corresponding to the operating condition shown in Table 3.9.

In the present example, we assume that yTs = [ys1 ys2 ys3] = [x3 x6 x9] is obtained

from the continuous temperature measurements and yTa = [x1 x2 x4 x5 x7 x8] is

obtained from the sampled asynchronous, delayed mass fraction measurements. We

use the same performance index defined in Eq. 3.51 with Qc given in Eq. 3.65. We also

use the same lower-tier PI controllers as used in Section 3.5.4 which are designed based

on the continuous temperature measurements (i.e., ys(t)). The same PI controller

parameters and Lyapunov function V (x) as in the example of Section 3.5.4 are also

used.

We design the upper-tier LMPC of Eqs. 3.66-3.73 based on the three PI controllers.

The feed flow rate to vessel 2, ua = F20−F20s, is the manipulated input for the LMPC,

which is bounded by 1 ≤ F20 ≤ 9 m3/h. The sampling time of the LMPC is chosen

to be ∆ = 0.025 h; the prediction horizon is chosen to be N = 8. For the simulations

carried out in this subsection, we set the prediction horizon N∆ to be equal to the

minimum time interval between two consecutive ya measurements, Tmin, and the

delay associated with each measurement to be da = D = 0.2 h for all a which also

corresponds to the worst-case effect of measurement delays.
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Figure 3.15: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the two-tier control architecture with the networked LMPC of Eqs. 3.66-3.73
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Figure 3.16: Input trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the two-tier control architecture with the networked LMPC of Eqs. 3.66-3.73
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The mass fraction measurement sequence {ta≥0} (generated with W = 1) and the

delay size sequence {da≥0} with a simulation length 0.75 h are shown below:

{ta≥0} = {0, 0.248, 0.495, 0.868, 1.000} h, (3.96)

{da≥0} = {0, 0.200, 0.200, 0.200, 0.200} h. (3.97)

The state and input trajectories of the reactor-separator process of Eqs. 3.52-3.63

under the two-tier control architecture with the upper-tier LMPC of Eqs. 3.66-3.73

are shown in Figures 3.15 and 3.16. Figure 3.15 shows that the two-tier control archi-

tecture drives the temperatures and the mass fractions in the closed-loop system close

to the equilibrium point in about 0.25 h. This implies that the resulting closed-loop

system response is faster relative to the speed of the closed-loop response under the

lower-tier PI controllers. For the same simulation length of tf = 1 h, the performance

cost associated with the resulting closed-loop trajectories is 8.658×104 which is much

smaller than that of the closed-loop system under the lower-tier PI control system

(2.105× 105).

Moreover, we carried out a set of simulations to compare the two-tier control

architecture with the lower-tier PI control system with the same parameters from a

performance point of view. Table 3.10 shows the total cost computed for 10 different

closed-loop simulations under the two-tier control architecture and the lower-tier PI

control system. To carry out this comparison, we have computed the total cost of

each simulation based on the performance index defined in Eq. 3.51 with different

operating conditions. The length of each simulation is tf = 0.75 h. For this set of

simulations W is chosen to be 1. For each pair of simulations (one for each control

scheme) a different initial state inside the stability region, a different noise trajectory
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Table 3.10: Total performance costs along the closed-loop trajectories of the reactor-
separator process of Eqs. 3.52-3.63 under the PI controller and the two-tier control
architecture with the upper-tier LMPC of Eqs. 3.66-3.73

sim. Two-Tier PI

1 1.006×104 2.148×104

2 2.046×104 3.123×104

3 3.621×104 6.310×104

4 1.148×104 4.440×104

5 3.103×104 6.052×104

6 7.141×104 1.631×105

7 1.389×104 6.961×104

8 1.928×104 2.770×104

9 1.872×104 8.538×104

10 1.417×104 7.260×104

and a different random mass fraction measurement sequence with random delay size

sequence are generated. As can be seen in Table 3.10, the two-tier control architecture

has a cost lower than the corresponding total cost under the lower-tier PI control

system in all the simulations.

Finally, we studied the effect of input constraints on the performance of the

closed-loop system under the two-tier control architecture. Specifically, in this set

of simulations, we take into account input constraints in the lower-tier controller ma-

nipulated inputs us, namely |Q1| ≤ 1.48 × 105 KJ/h, |Q2| ≤ 1.83 × 105 KJ/h and

|Q3| ≤ 1.48×105 KJ/h. The same simulation settings (initial condition, target state,

lower-tier controller design, upper-tier controller design, mass fraction measurement

sequence and delay size sequence) as in the previous simulations are used.
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Figure 3.17: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 sub-
ject to input constraints under the lower-tier PI controller
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Figure 3.18: Input trajectories of the reactor-separator process of Eqs. 3.52-3.63 sub-
ject to input constraints under the lower-tier PI controller
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Figure 3.19: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 sub-
ject to input constraints under the two-tier control architecture with the networked
LMPC of Eqs. 3.66-3.73

The state and input trajectories under the lower-tier PI controllers are shown in

Figures 3.17 and 3.18. From Figure 3.17, we see that the PI controllers stabilize

the system at the target steady-state in about 0.8 h which is a little slower than

the corresponding closed-loop response without input constraints (in such a case the

closed-loop system is stabilized in about 0.7 h). From Figure 3.18, we see that the

three heat inputs Q1, Q2 and Q3 operate at their maximum allowable values for about

0.15 h. The corresponding accumulated performance cost is 2.180× 105.

The state and input trajectories under the two-tier control architecture with the

upper-tier LMPC of Eqs. 3.66-3.73 are shown in Figures 3.19 and 3.20. Figure 3.19

shows that the two-tier control architecture drives the temperatures and the mass

fractions of the closed-loop system close to the equilibrium point in about 0.3 h which

is a little slower than the closed-loop system response without input constraints (in

this case the closed-loop system stabilizes in about 0.25 h). From Figure 3.20, we see

that the heat inputs Q1, Q2 and Q3 also operate at their maximum allowable values
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Figure 3.20: Input trajectories of the reactor-separator process of Eqs. 3.52-3.63 sub-
ject to input constraints under the two-tier control architecture with the networked
LMPC of Eqs. 3.66-3.73

for about 0.15 h. The corresponding accumulated performance cost is 9.443 × 104

which is much smaller than the cost obtained under the lower-tier control system

(2.180×105). From this set of simulations, we see that the two-tier control architecture

maintains the property of improving the performance of the closed-loop system when

input constraints are present. It is also important to note that advanced anti-windup

schemes could be used in conjunction with the lower-tier PI controller to mitigate

the effect of integrator wind-up and improve the closed-loop system performance;

however, the basic conclusion of this part of the study would not change.

Remark 3.18 In some applications, when input constraints are present, the stability

of the closed-loop system under the lower-tier controller may be lost because of satu-

ration of the control inputs. To avoid loosing stability, the lower-tier controller in the

two-tier control architecture can be detuned to primarily take care of the closed-loop

system stability by sacrificing closed-loop performance. Thus, when input constraints

are present, the lower-tier controller can be potentially detuned to satisfy the input
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constraints (or saturate for less time) and the upper-tier controller can be used to

recover the loss of closed-loop performance.

3.7 Application to a Wind-solar Energy Genera-

tion System

In this section, we apply the two-tier control architecture to develop a supervisory

predictive control method for the optimal management and operation of a wind-solar

energy generation system. We design a supervisory control system via MPC which

computes the power references for the wind and solar subsystems at each sampling

time while minimizing a suitable cost function. The power references are sent to

two local controllers which drive the wind and solar subsystems to the desired power

reference values. We discuss how we can incorporate practical considerations (for

example, how to extend the life time of the equipments by reducing the peak values

of inrush or surge currents) into the formulation of the MPC optimization problem

by determining an appropriate cost function and constraints. We will present several

simulation case studies that demonstrate the applicability and effectiveness of the

proposed supervisory predictive control architecture.

3.7.1 Wind-solar System Description

The wind-solar energy generation system considered in this section is based on the

models developed in [104, 102, 101]. A schematic of the system is shown in Figure 3.21.

In this system, there are three subsystems: wind subsystem, solar subsystem and a

lead-acid battery bank which is used to overcome periods of scarce generation.

First, we describe the modeling of the wind subsystem. In the wind energy gen-
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Figure 3.21: Wind-solar energy generation system

eration subsystem, there is a windmill, a multipolar permanent-magnet synchronous

generator (PMSG), a rectifier, and a DC/DC converter to interface the generator

with the DC bus. The converter is used to control indirectly the operating point of

the wind turbine (and consequently its power generation) by commanding the voltage

on the PMSG terminals.

The mathematic description of the wind subsystem written in a rotor reference

frame is as follows [104]:

i̇q = −Rs

L
iq − ωeid +

ωeϕm

L
− πvbiquw

3
√
3L
√
i2q + i2d

(3.98)

i̇d = −Rs

L
id − ωeiq −

πvbiduw

3
√
3L
√

i2q + i2d

(3.99)

ω̇e =
P

2J

(
Tt −

3

2

P

2
ϕmiq

)
(3.100)

where iq and id are the quadrature current and the direct current in the rotor reference

frame, respectively; Rs and L are the per phase resistance and inductance of the stator

windings, respectively; ωe is the electrical angular speed; ϕm is the flux linked by the
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stator windings; vb is the voltage on the battery bank terminals; uw is the control

signal (duty cycle of the DC/DC converter (DC/DC Converter 1 in Figure 3.21)), P

is the PMSG number of poles, J is the inertial of the rotating parts and Tt is the

wind turbine torque. The wind turbine torque can be written as:

Tt =
1

2
Ct(λ)ρARv2 (3.101)

where ρ is the air density, A is the turbine-swept area, R is the turbine radius, v is

the wind speed, and Ct(λ) is a nonlinear torque coefficient which depends on the tip

speed ratio (λ =
Rωm

v
with ωm =

2ωe

P
being the angular shaft speed).

Based on Eqs. 3.98-3.100, we can express the power generated by the wind sub-

system and injected into the DC bus as follows:

Pw =
πvb

2
√
3

√
i2q + i2duw. (3.102)

The model of the wind subsystem can be rewritten in the following compact form:

ẋw = fw(xw) + gw(xw)uw (3.103)

where xw = [iq id ωe]
T is the state vector of the wind subsystem and fw = [fw1 fw2 fw3]

T ,

gw = [gw1 gw2 gw3]
T are nonlinear vector functions whose explicit form is omitted for

brevity.

Next, we describe the modeling of the solar subsystem. In the solar subsystem,

there is a photo-voltaic (PV) panel array and a half-bridge buck DC/DC converter.

The solar subsystem is connected to the DC bus via the DC/DC converter. In this

subsystem, similar to the wind subsystem, the converter is used to control the oper-
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ating point of the PV panels.

The mathematic description of the solar subsystem is as follows [102]:

v̇pv =
ipv
C
− is

C
upv (3.104)

i̇s = − vb
Lc

+
vpv
Lc

upv (3.105)

ipv = npIph − npIrs

e

q(vpv + ipvRs)

nsAcKT − 1

 (3.106)

where vpv is the voltage level on the PV panel array terminals, is is the current

injected on the DC bus, C and Lc are electrical parameters of the buck converter

(DC/DC Converter 2 in Fig 3.21), upv is the control signal (duty cycle), ipv is the

current generated by the PV array, ns is the number of PV cells connected in series,

np is the number of series strings in parallel, K is the Boltzman constant, Ac is the

cell deviation from the ideal p − n junction characteristic, Iph is the photocurrent,

and Irs is the reverse saturation current. The power injected by the PV solar module

into the DC bus can be computed by:

Ps = isvb. (3.107)

Note that this power indirectly depends on the control signal upv.

The model of the solar subsystem can be rewritten in the following compact form:

ẋs = fs(xs) + gs(xs)upv (3.108)

hs(xs) = 0 (3.109)
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where xs = [vpv is]
T is the state vector of the solar subsystem and fs = [fs1 fs2]

T ,

gs = [gs1 gs2]
T are nonlinear vector functions and hs(xs) is a nonlinear scalar function

whose explicit form is omitted for brevity.

The DC bus collects the energy generated by both wind and solar subsystems and

delivers it to the load and, if necessary, to the battery bank. The voltage of the DC

bus is determined by the battery bank which comprises of lead-acid batteries.The

load could be an AC or a DC load. In the case under consideration in this section,

it is assumed to be an AC load; therefore, a voltage inverter is required. We also

assume that the future load of the system for certain length of time is known, that is

the total power demand is known.

Because all subsystems are linked to the DC bus, their concurrent effects can be

easily analyzed by considering their currents in the common DC side. In this way,

assuming an ideal voltage inverter, the load current can be referred to the DC side

as an output variable current iL. Therefore, the current across the battery bank can

be written as:

ib =
π

2
√
3

√
i2q + i2duw + is − iL, (3.110)

where iL is assumed to be a known current.

The lead-acid battery bank may be modeled as a voltage source Eb connected in

series with a resistance Rb and a capacitance Cb. Based on this simple model and

Eq. 3.110, the DC bus voltage expression can be written as follows:

vb = Eb + vc +

(
π

2
√
3

√
i2q + i2duw + is − iL

)
Rb, (3.111)
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where vc is the voltage in capacitor Cb and its dynamics can be described as follows:

v̇c =
1

Cb

(
π

2
√
3

√
i2q + i2duw + is − iL

)
. (3.112)

The model of the battery bank can also be rewritten in the following compact form:

v̇c = fc(xw, xs, vc). (3.113)

where fc(xw, xs, vc) is a nonlinear scalar function.

The dynamics of the generation system can be written in the following compact

form:

ẋ = f(x) + g(x)u (3.114)

h(x) = 0 (3.115)

where x = [xT
w xT

s vc], u = [uw upv], f(x) and g(x) are suitable composition of fw, fs,

gw, gs and fc, and h(x) = hs(xs). The explicit forms of f(x) and g(x) are omitted for

brevity.

Note that the maximum power that can be drawn from the wind and solar sub-

systems is determined by the maximum power that can be generated by the two

subsystems. When the two subsystems are not sufficient to complement the genera-

tion to satisfy the load requirements, the battery bank can discharge to provide extra

power to satisfy the load requirements. However, when the power limit that can be

provided by the battery bank is surpassed, the load must be disconnected to recharge

the battery bank and avoid damages. In this section, we do not consider the power

needed to charge the battery bank explicitly. However, this power can be lumped
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Figure 3.22: Supervisory control of a wind-solar energy generation system

into the total power demand. In the reminder of this section, we refer to the total

power demand as PT .

3.7.2 Control Problem Formulation and Controller Design

We consider two control objectives of the wind-solar energy generation system. The

first and primary control objective is to compute the operating points of the wind

subsystem and of the solar subsystem together to generate enough energy to satisfy

the load demand. The second control objective is to optimize the operating points to

reduce the peak value of surge currents. With respect to the second control objective,

specifically, we consider that there are maximum allowable increasing rates of the

generated power of the two subsystems and that frequent discharge and charge of the

battery bank should be avoided to maximize battery life. Note that the constraints

on the maximum increasing rates impose indirect bounds on the peak values of inrush

or surge currents to the two subsystems.

The control system is shown in Figure 3.22 in which the supervisory control sys-

tem optimizes the power references Pw,ref and Ps,ref (operating points) of the wind

and solar subsystems, respectively. The two local controllers (wind subsystem con-

troller and the solar subsystem controller) manipulate uw and upv to track the power
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references, respectively.

Remark 3.19 Note that we consider wind-solar energy generation systems that al-

ready operate in normal generating conditions, and do not address the issues related to

system startup or shut down. Moreover, we focus on the application of the supervisory

control system and do not provide specific conditions (and detailed theoretical deriva-

tion) under which the stability of the closed-loop system is guaranteed. We also note

that, in the case of an energy generation system containing several solar and wind

subsystems, the supervisory control approach can be extended to control the system in

a conceptually straightforward manner by letting the supervisory controller determine

the power references of all the subsystems.

Wind Subsystem Controller Design

For the wind subsystem controller, the objective is to track the power reference com-

puted by the supervisory predictive controller.

In order to proceed, we introduce the maximum power that can be provided by a

wind subsystem, Pw,max, first. Pw,max depends on a few turbine parameters and on a

simple measurement of the angular shaft speed as follows [104]:

Pw,max = Pw,max(x) = Koptω
3
m −

3

2

(
i2q + i2d

)
rs (3.116)

where Kopt =
Ct(λopt)ρAR

3

2λ2
opt

and λopt is the tip speed ratio at which the coefficient

Cp(λ) = Ct(λ)λ reaches its maximum [104], and Ct(·) is the torque coefficient of the

wind turbine.

We follow the controller design proposed in [103]. Specifically, the controller is
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designed as follows:

uw =

 uw1 if Pw,ref < Pw,max

uw2 if Pw,ref ≥ Pw,max

(3.117)

where:

uw1 = −[6rs(iqfw1 + idfw2)− 3ϕsr(ωefw1 + iqfw3) + 2(γ ∥sw1(xw)∥

+ξmax ∥∂sw1/∂xw∥)sign(sw1(xw))]/(6rs(iqgw1 + idgw2)− 3ϕsrωegw1)(3.118)

and

uw2 = −fw1/gw1 + 2Koptωefw3/(ϕsrgw1)− iqfw3/(gw1ωe) + 2(γ ∥sw2(xw)∥

+ξmax ∥∂sw2/∂xw∥)sign(sw2(xw))/(3ϕsrωegw1) (3.119)

with γ = 1000 and ξmax = 0.02 being design constants and

∥∥∥∥∂sw1

∂xw

∥∥∥∥ =
3

2

√
4r2s(i

2
q + i2d) + ϕ2

sr(ω
2
e + i2q)− 4rsϕsrωeiq (3.120)

and

∥∥∥∥∂sw2

∂xw

∥∥∥∥ =

√
(
3

2
ϕsrωe)2 + (3Koptω2

e −
3

2
ϕsriq)2. (3.121)

In the control design shown in Eq. 3.117, sw1 = Pw,ref − Pw and sw2 = Pw,max are

the the sliding surfaces. When the power reference is less than the maximum power

that can be provided by the wind subsystem, the control law uw1 will operate the

subsystem to generate the desired power; when the power reference is greater than

the maximum power that can be provided by the wind subsystem, the control law
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uw2 will drive the subsystem to operate at points in which the subsystem provides

the maximum power.

Solar Subsystem Controller Design

The objective of the solar subsystem controller is to force the subsystem to track

the power reference computed by the supervisory controller. The maximum power

operating point (MPOP) of the solar subsystem can be computed, in principle, by

the following expression [102]:

∂Ppv

∂vpv
=

∂ipv
∂vpv

vpv + ipv = 0 (3.122)

The maximum solar power provided, Ppv,max, is computed numerically through direct

evaluation of the following expression [102] in the region where Eq. 3.122 is close to

zero:

Ppv,max = Ppv,max(x) = −
∂ipv
∂vpv

v2pv
∼= −

∆ipv
∆vpv

v2pv. (3.123)

We follow the controller design proposed in [102] to design the solar subsystem

controller. Specifically, this controller is designed as follows:



ifPpv,max ≥ Ps,ref upv =

 1 if h1 ≥ 0

0 if h1 < 0

ifPpv,max < Ps,ref upv =

 0 if h2 ≥ 0

1 if h2 < 0

(3.124)

where h1 = Ps,ref − isvb and h2 = ∂ipv/∂vpv + ipv/vpv.
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Supervisory Controller Design

The objective of the supervisory control system is to determine the power references

of the wind and solar subsystems. We will design the supervisory controller via MPC.

By using MPC, we can take optimality considerations into account as well as handle

different kinds of constraints. As stated before, the primary control objective is to

manipulate the operating points of the wind subsystem and of the solar subsystem

together to generate enough energy to satisfy the load demand. This control objective

will be considered in the design of the cost function for the MPC optimization problem

(please see Section 3.7.3). The second control objective is to optimize the operating

points to reduce the peak value of surge currents. In order to take into account

this control objective, we will incorporate hard constraints in the MPC optimization

problem to restrict the maximum increasing rates of the generated power of the two

subsystems as well as a term in the cost function to avoid frequent discharge and

charge of the battery bank.

We consider the case where the future load of the system for certain length of time

is known, that is the total power demand, PT (t), is known. The main implementation

element of supervisory predictive control is that the supervisory controller is evaluated

at discrete time instants tk = t0 + k∆, k = 0, 1, . . ., with t0 the initial time and ∆

the sampling time, and the optimal future power references, Pw,ref and Ps,ref , for a

time period (prediction horizon) are obtained and only the first part of the references

are sent to the local control systems and implemented on the two units. In order to

design this controller, first, a proper number of prediction steps, N , and a sampling

time, ∆, are chosen.
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The MPC design for the supervisory control system is described as follows:

min
Pw,ref ,Ps,ref∈S(∆)

∫ tk+N

tk

L(x̃(τ), Pw,ref (τ), Ps,ref (τ))dτ (3.125)

s.t. Pw,ref (t) ≤ min
t
{Pw,max(t)}, t ∈ [tk+j, tk+j+1) (3.126)

Ps,ref (t) ≤ min
t
{Ppv,max(t)}, t ∈ [tk+j, tk+j+1) (3.127)

Pw,ref (tk+j+1)− Pw,ref (tk+j) ≤ dPw,max (3.128)

Ps,ref (tk+j+1)− Ps,ref (tk+j) ≤ dPs,max (3.129)

˙̃x(t) = f(x̃(t)) + g(x̃(t))u(t) (3.130)

h(x̃(t)) = 0 (3.131)

x̃(tk) = x(tk) (3.132)

Pw,max(t) = Pw,max(x̃(t)) (3.133)

Ppv,max(t) = Ppv,max(x̃(t)) (3.134)

where x̃ is the predicted future state trajectory of the wind-solar energy generation

system, L(x, Pw,ref , Ps,ref ) is a positive definite function of the state and the two power

references that defines the optimization cost, dPw,max and dPs,max are the maximum

allowable increasing values of Pw,ref and Ps,ref in two consecutive power references,

N is the prediction horizon, j = 0, . . . , N − 1 and x(tk) is the state measurement

obtained at time tk. We denote the optimal solution to the optimization problem of

Eqs. 3.125-3.134 as P ∗
w,ref (t|tk) and P ∗

s,ref (t|tk) which are defined for t ∈ [tk, tk+N).

The power references of the two subsystems generated by the supervisory con-
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troller of Eqs. 3.125-3.134 are defined as follows:

Pw,ref (t) = P ∗
w,ref (t|tk),∀t ∈ [tk, tk+1) (3.135)

Ps,ref (t) = P ∗
s,ref (t|tk),∀t ∈ [tk, tk+1) (3.136)

In the optimization problem of Eqs. 3.125-3.134, Eq. 3.125 defines the optimization

cost that needs to be minimized, which will be carefully designed in the simulations

in Section 3.7.3. Because the MPC optimizes the two power references in a discrete

time fashion and the references are constants within each sampling interval, the con-

straints of Eqs. 3.126-3.127 require that the computed power references should be

smaller than the minimal of the maximum available within each sampling interval,

which means the power references should be achievable for the wind and solar sub-

systems. Constraints of Eqs. 3.128-3.129 impose constraints on the increasing rate of

the two power references. In order to estimate the maximum available power of the

two subsystems along the prediction horizon, the model of the system (Eq. 3.130),

the current state (Eq. 3.131) and the equations expressing the relation between the

maximum available power and the state of each subsystem (Eq. 3.133 and Eq. 3.134)

are used. Note that in the MPC optimization problem, in order to estimate the fu-

ture maximum available power of each subsystem, we assume that the environmental

conditions such as wind speed, insolation and temperature remain constant. When

the sampling time is small enough and the prediction horizon is short enough, along

with high-frequency wind variations caused by gusts and turbulence being reasonably

neglected, this assumption makes physical sense [101].

In the remainder of this section, the sampling time and the prediction horizon of

the MPC are chosen to be ∆ = 1 s and N = 2. The maximum increasing values of
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the two power references are chosen to be dPw,max = 1000 W and dPs,max = 500 W ,

respectively. Note that the choice of the prediction horizon is based on the fast

dynamics of the generation system, the uncertainty associated with long-term future

power demand and is also made to achieve a balance between the evaluation time

of the optimization problem of the supervisory MPC and the desired closed-loop

performance.

3.7.3 Simulation Results

In this subsection, we carry out several sets of simulations to demonstrate the ef-

fectiveness and applicability of the designed MPC when the control objectives are

taken into account. Note that in all the simulations, standard numerical methods,

e.g., Runge-Kutta, are used to carry out the numerical integration of the closed-loop

system.

Constraints on the Maximum Increasing Rates of Pw,ref and Ps,ref

In this set of simulations, the control objective is to operate the wind-solar energy

generation system to satisfy the total power demand, PT , subject to constraints on the

rate of change of Pw,ref and Ps,ref . Because the constraints on the maximum increasing

rates of Pw,ref and Ps,ref are considered as hard constraints in the formulation of the

MPC (i.e., constraints of Eqs. 3.128-3.129), in the cost function, we only penalize the

total power demand. The cost function designed for these control objectives is shown

as follows:

L(x, Pw,ref , Ps,ref ) = α(PT − Pw,ref − Ps,ref )
2 + βP 2

s,ref (3.137)

where α = 1 and β = 0.01 are constant weighting factors. The first term, α(PT −

Pw,ref −Ps,ref )
2, in the cost function penalizes the difference between the power gen-

146



erated by the wind-solar system and the total power demand, which drives the wind

and solar subsystems to satisfy the total demand to the maximum extent. Because

there are infinite combinations of Pw,ref and Ps,ref that can minimize the first term,

in order to get a unique solution to the optimization problem, we also put a small

penalty on Ps,ref . This implies that the wind subsystem is operated as the primary

generation system and the solar subsystem is only activated when the wind subsys-

tem alone can not satisfy the power demand. In the simulation, we assume that the

environmental conditions remain constant with wind speed v = 12 m/s, insolation

λl = 90 mW/cm2 and PV panel temperature T = 65 ◦C.

Figure 3.23 shows the results of the simulations. From Figure 3.23, we see that at

t = 4 s there is a demand power increase from 2100 W to 4000 W (Figure 3.23(a)),

and that because of the constraints on the maximum increasing rates of Pw,ref and

Ps,ref , the wind-solar system cannot supply sufficient power (Figure 3.23(b)-(c)) and

the shortage of power is made up by the battery bank (Figure 3.23(a)).

Note that we assume that the future power demand for a short time period is

known to the MPC. Because of this, at t = 8 s, when the MPC supervisory controller

receives information about a power demand increase at t = 9 s, and having informa-

tion of the limits on the power generation of the two subsystems, it coordinates the

power generations of the wind and solar subsystems to best satisfy the power demand

by reducing the power generation of the wind subsystem and activating the solar sub-

system in advance at t = 8 s. This coordination renders the two subsystems able to

approach as much as possible to the total power demand requirement at t = 9 s

(even though they cannot fully meet this requirement due to operation constraints of

the wind and solar subsystems) by boosting their power production at the maximum

possible rate, i.e., about 1, 500 W boost in power production from t = 8 s to t = 9 s.
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Figure 3.23: Power trajectories with constraints on the maximum increasing rates
of Pw,ref and Ps,ref . (a) Generated power Pw + Ps (solid line), total power demand
PT (dashed line) and power provided by battery bank Pb (dotted line); (b) Power
generated by wind subsystem Pw (solid line), wind power reference Pw,ref (dash-
dotted line) and maximum wind generation Pw,max (dashed line); (c) Power generated
by solar subsystem Ps (solid line), solar power reference Ps,ref (dash-dotted line) and
maximum solar generation Ps,max (dashed line)
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On the other hand, if there is no information of the future power demand increase

that is fed to the MPC, the wind-solar system would not increase its production as

fast to approach the total power demand requirement because the solar subsystem

would stay dormant up to t = 9 s (the power demand requirement at t = 8 s can

be fully satisfied by the wind subsystem only) and the presence of a hard constraint

on the rate of change of power generated by the solar subsystem would not allow to

boost its production enough to meet the total power demand requirement at t = 9 s

(in this case, the total power demand requirement cannot be achieved by operation

of the wind subsystem only); as a result the boost in total power production in this

case would be only 1, 200 W .

Suppression of Battery Power Fluctuation

In this set of simulations, we modify the cost function of Eq. 3.137 to take into account

the fluctuation of the battery power in order to avoid frequent battery charge and

discharge. The cost function is modified as follows:

L(x, Pw,ref , Ps,ref ) = α(PT − Pw,ref − Ps,ref )
2 + βP 2

s,ref + ζ∆P 2
b (3.138)

where ∆Pb is the change of the power provided by the battery bank between two

consecutive steps and ζ = 0.4 is a weighting factor. Note that this newly added term

requires that we store the trajectory of Pb. In this set of simulations, the environ-

mental conditions are set with wind speed v = 11 m/s, insolation λl = 90 mW/cm2

and PV panel temperature T = 65 ◦C.

Figure 3.24 shows the simulation results. From Figure 3.24, we see that there is

a power demand decrease at t = 3 s, and though the wind and solar subsystems are

able to provide enough power to satisfy the demand, the supervisory controller will
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Figure 3.24: Power trajectories taking into account suppression of battery power
fluctuation. (a) Generated power Pw+Ps (solid line), total power demand PT (dashed
line) and power provided by battery bank Pb (dotted line); (b) Power generated by
wind subsystem Pw (solid line), wind power reference Pw,ref (dash-dotted line) and
maximum wind generation Pw,max; (c) Power generated by solar subsystem Ps (solid
line), solar power reference Ps,ref (dash-dotted line) and maximum solar generation
Ps,max; (d) Generated power Pw + Ps (solid line), total power demand PT (dashed
line) and power provided by battery bank Pb (dotted line)

150



not reduce the power generated by the battery to 0 immediately at t = 3 s; instead,

the supervisory controller operates the system to make the power provided by the

battery bank decrease slower and reach its recharge state at t = 5 s (Figure 3.24(a)).

Figure 3.24(d) shows the power trajectory of the battery bank if no penalty on the

change of the power provided by the battery bank is applied.

Varying Environmental Conditions

In this part, we carry out simulations under varying environmental conditions. Time

evolution of wind speed, PV panel temperature and insolation are shown in Fig-

ure 3.25(a)-(c). Figure 3.25(d) shows the trajectory of total power demand.

It can be seen from Figure 3.26(a) that the wind/solar/battery powers coordi-

nate their behavior to meet the load demand. Time evolution of output power and

maximum available power from the wind subsystem and solar subsystem are plotted

in Figure 3.26(b)-(c). When sufficient energy supply can be extracted from the two

subsystems such as during 0 ∼ 60 s, 100 ∼ 140 s and 160 ∼ 173 s, the battery is

being recharged. In other periods, load demand is relatively high and the weather

condition, which determines the maximum available generation capacity of the two

subsystems, cannot permit sufficient energy supply. Thus, the supervisory controller

drives wind/solar parts to their instant maximum capacity and calls the battery bank

for shortage compensation.

Consideration of High-frequency Disturbance of Weather Conditions

In the preceding scenaria, we assumed that the variation of weather-related parame-

ters, like wind speed and insolation, within each sampling time interval is negligible.

While this assumption is reasonable in most cases, additional attention for robust sys-
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Figure 3.25: Environmental conditions and load current. (a) Wind speed v; (b)
insolation λl; (c) PV panel temperature T ; (d) load current iL
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Figure 3.26: Power trajectories under varying environmental conditions. (a) Gen-
erated power Pw + Ps (solid line), total power demand PT (dashed line) and power
provided by battery bank Pb (dotted line); (b) Power generated by wind subsystem
Pw (solid line), wind power reference Pw,ref (dash-dotted line) and maximum wind
generation Pw,max (dashed line); and (c) Power generated by solar subsystem Ps (solid
line), solar power reference Ps,ref (dash-dotted line) and maximum solar generation
Ps,max (dashed line)
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tem operation should be given under even harsher conditions where high frequency

disturbances that influence the values of wind speed and insolation are present. This

scenario is possible when the wind turbine encounters turbulent flow [80], or when

insolation is affected by abrupt changes in atmospheric turbidity [31].

To study this case from a control point of view and evaluate the robustness of the

control system in this case, we introduce disturbances in two parameters; specifically,

10% variation in the wind speed and 5% variation in the insolation. The profiles

of the wind speed and insolation are shown in Figures 3.27(a) and (b). We have

used the system model to establish that the control system operating on the wind

subsystem can tolerate the wind disturbance and no additional measures are needed

to be taken to secure its reliability. However, for the solar subsystem, which is

characterized by faster dynamics, in order to maintain its closed-loop stability we

need to use a more conservative estimate of the insolation (i.e., 95% of the value of

the measured insolation) in the evaluation of the power reference. This conservative

estimate of insolation ensures that the predicted maximum power delivered by the

solar subsystem does not exceed what the weather permits.

The closed-loop profiles of power generation are displayed in Figure 3.28(a)-(c).

Again, the entire energy generation system operates reliably, thereby yielding positive

results for the robustness of the control system with respect to abrupt variations in

wind speed and insolation. Both maximum power generation capabilities of the two

subsystems are perturbed as a result of the weather disturbance, but both the wind

subsystem and the solar subsystem operate in a robust fashion and the total power

demand is met.
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Figure 3.27: Environmental conditions and load current. (a) Wind speed with high
frequency disturbance v; (b) Insolation with high frequency disturbance λl; (c) PV
panel temperature T ; (d) load current iL
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Figure 3.28: Power trajectories under varying environmental conditions with high
frequency disturbance. (a) Generated power Pw+Ps (solid line), total power demand
PT (dashed line) and power provided by battery bank Pb (dotted line); (b) Power
generated by wind subsystem Pw (solid line), wind power reference Pw,ref (dash-dotted
line) and maximum wind generation Pw,max (dashed line); and (c) Power generated
by solar subsystem Ps (solid line), solar power reference Ps,ref (dash-dotted line) and
maximum solar generation Ps,max (dashed line)
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3.8 Conclusions

In this chapter, we presented a two-tier networked control architecture for process con-

trol problems that involve nonlinear processes and heterogeneous measurements con-

sisting of continuous measurements and asynchronous measurements (with or without

delays). The presented architecture consists of: a) a lower-tier control system, which

relies on point-to-point communication and continuous measurements, to stabilize the

closed-loop system, and b) an upper-tier networked control system, designed using

LMPC theory, that profits from both the continuous and the asynchronous, delayed

measurements as well as from additional networked control actuators to improve the

closed-loop system performance. The applicability and effectiveness of the methods

were demonstrated using two chemical process examples.

In addition, the two-tier control architecture was also applied to the supervisory

control of a standalone wind-solar energy generation system. Specifically, we fo-

cused on the development of a supervisory predictive control method for the optimal

management and operation of wind-solar energy generation systems. We designed a

supervisory control system designed via MPC which computes the power references

for the wind and solar subsystems at each sampling time while minimizing a suitable

cost function. The power references are sent to two local controllers which drive the

two subsystems to the power references. We discussed how to incorporate practical

considerations, for example, how to reduce the peak values of inrush or surge cur-

rents, into the formulation of the MPC optimization problem. Simulation results

demonstrated the effectiveness and applicability of the presented approach.
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Chapter 4

Distributed Model Predictive

Control: Two-controller

Cooperation

4.1 Introduction

In Chapter 3, we presented a two-tier networked control architecture for nonlinear

processes, shown in Figure 3.2. In this architecture, the pre-existing local control

system (LCS) uses continuous sensing and actuation and an explicit control law (for

example, the local controller is a classical controller, like a proportional-integral-

derivative controller, or a nonlinear controller designed via geometric or Lyapunov-

based control methods for which an explicit formula for the calculation of the control

action is available). On the other hand, the networked control system (NCS) uses

networked (wired or wireless) sensors and actuators and has access to heterogeneous,

asynchronous measurements that are not available to the LCS. The NCS is designed
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via LMPC. An important feature of the two-tier networked control architecture of

Figure 3.2 is that there is no communication between the LCS and NCS since the

networked LMPC can estimate the control actions of the local controller using the

explicit formula of this controller, and thus, it can take into account the actions

of the local controller in the computation of its optimal input trajectories. In this

sense, the two-tier networked control architecture of Figure 3.2 can be thought of as

a decentralized control system. This lack of communication is an appealing feature

because the addition of the NCS does not lead to any modification of the pre-existing

LCS and improves the overall performance and robustness of the combined NCS/LCS

architecture (i.e., the achievable closed-loop performance is invariant to disruptions

in the communication between the NCS and LCS).

Despite this progress, there are important controller design problems that remain

unresolved in the broad context of networked control systems. For example, when the

LCS is a model predictive control system for which there is no explicit controller for-

mula to calculate its future control actions, it is necessary to re-design both the NCS

and the LCS and establish some level of (preferably small) communication between

them so that they can coordinate their actions. To this end, we will adopt in this

chapter a distributed MPC (DMPC) approach to the design of the NCS and LCS,

as shown in Figure 4.1. It is important to remark at this point that an alternative

approach to address the integrated design of the NCS and LCS would be to design a

fully centralized MPC to decide the manipulated inputs of all the control actuators

(i.e., both u1 and u2 in Figure 4.1). However, the computational complexity of MPC

grows significantly with the increase of optimization (decision) variables, which may

prohibit certain on-line centralized MPC applications with a large number of decision

variables.
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Figure 4.1: Distributed MPC control architecture for networked control system design

Specifically, in this chapter, we present a DMPC design where both the pre-

existing local control system and the networked control system are designed via

LMPC. The DMPC design that will be presented - see Figure 4.1 - uses a hierarchical

control architecture in the sense that the LCS is able to stabilize the closed-loop sys-

tem and the NCS takes advantage of additional control inputs and coordinates with

the LCS to improve the closed-loop performance. This hierarchical DMPC design is

different from previous DMPC designs which decompose a centralized control problem

spatially. In particular, the proposed design provides the potential of maintaining sta-

bility and performance in the face of new/failing actuators, (for example, the failure

of the actuator of the NCS (zero input) in Figure 4.1 does not affect the closed-loop

stability). Working with general nonlinear models of chemical processes and assum-

ing that there exists a nonlinear controller that stabilizes the nominal closed-loop

system using only the pre-existing control loops (LCS), two separate Lyapunov-based

model predictive controllers will be designed that coordinate their actions in an effi-

cient fashion. Specifically, the DMPC design preserves the stability properties of the

nonlinear controller, improves the closed-loop performance and allows handling input

constraints. In addition, the distributed control design requires reduced communi-

cation between the two distributed controllers since it requires that these controllers

communicate only once at each sampling time and is computationally more efficient

compared to the corresponding centralized MPC design.
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In addition, we will extend the results to include nonlinear systems subject to asyn-

chronous and delayed measurements. In the case of asynchronous feedback, under the

assumption that there exists an upper bound on the interval between two successive

state measurements, distributed controllers that utilize one-directional communica-

tion and coordinate their actions to ensure that the state of the closed-loop system is

ultimately bounded in a region that contains the origin will be designed. In the case

of asynchronous measurements that also involve time-delays, under the assumption

that there exists an upper bound on the maximum measurement delay, a DMPC

system that utilizes bi-directional communication between the distributed controllers

and takes the measurement delays explicitly into account to enforce practical sta-

bility in the closed-loop system will be designed. These DMPC designs also possess

explicitly characterized sets of initial conditions starting from where they are guar-

anteed to be feasible and stabilizing. The theoretical results will be demonstrated

through a chemical process example. The results of this chapter were first presented

in [51, 52, 10].

4.2 System Description

In this chapter, we consider nonlinear systems described by the following state-space

model:

ẋ(t) = f(x(t), u1(t), u2(t), w(t)) (4.1)

where x(t) ∈ Rn denotes the vector of state variables, u1(t) ∈ Rm1 and u2(t) ∈ Rm2 are

two different sets of control inputs and w(t) ∈ Rw denotes the vector of disturbance

variables. The two sets of control inputs are restricted to be in two nonempty convex

sets U1 ⊆ Rm1 and U2 ⊆ Rm2 and the disturbance vector is bounded, i.e., w(t) ∈ W

161



where:

W := {w ∈ Rw : ∥w∥ ≤ θ, θ > 0} (4.2)

with θ being a known positive real number.

We assume that f is a locally Lipschitz vector function and f(0, 0, 0, 0) = 0. This

means that the origin is an equilibrium point for the nominal system of Eq. 4.1 with

u1 = 0 and u2 = 0.

Remark 4.1 In general, distributed control systems are formulated based on the as-

sumption that the controlled systems are decoupled or partially decoupled. However,

we consider a fully coupled process model with two sets of possible manipulated inputs;

this is a very common occurrence in chemical process control as we will illustrate in

the example of Section 4.4.3. It is important to note that even though we have mo-

tivated the control problem of Eq. 4.1 by the augmentation of LCS with NCS, the

same control formulation could be used when a new control system which may use a

local control network is added to a process that already operates under an MPC; see

example in Section 4.4.3.

4.3 Lyapunov-based Control

We assume that there exists a nonlinear state feedback control law u1(t) = h(x(t))

which satisfies the input constraint on u1 for all x inside a given stability region

and renders the origin of the nominal closed-loop system asymptotically stable with

u2(t) = 0. Using converse Lyapunov theorems, this assumption implies that there

exist functions αi(·), i = 1, 2, 3, 4 of class K and a continuous differentiable Lya-

punov function V (x) for the nominal closed-loop system that satisfy the following
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inequalities:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (4.3)

∂V (x)

∂x
f(x, h(x), 0, 0) ≤ −α3(∥x∥) (4.4)∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ α4(∥x∥) (4.5)

h(x) ∈ U1 (4.6)

for all x ∈ O ⊆ Rn where O is an open neighborhood of the origin. We denote the

region Ωρ ⊆ O as the stability region of the closed-loop system under the control

u1 = h(x) and u2 = 0.

By continuity, the local Lipschitz property of the vector field f(x, u1, u2, w) and

the fact that the manipulated inputs u1 and u2 are bounded in convex sets, there

exists a positive constant M such that:

∥f(x, u1, u2, w)∥ ≤M (4.7)

for all x ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and w ∈ W . In addition, by the continuous

differentiable property of the Lyapunov function V , there exist positive constants Lx,

Lw and L′
x such that:

∥f(x, u1, u2, w)− f(x′, u1, u2, 0)∥ ≤ Lw ∥w∥+ Lx ∥x− x′∥ (4.8)∥∥∥∥∂V (x)

∂x
f(x, u1, u2, w)−

∂V (x′)

∂x
f(x′, u1, u2, 0)

∥∥∥∥ ≤ L′
w ∥w∥+ L′

x ∥x− x′∥ (4.9)

for all x, x′ ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and w ∈ W . These constants will be used to
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characterize the stability properties of the system of Eq. 4.1 under the DMPC designs.

4.4 DMPC with Synchronous Measurements

In this section, we present a DMPC design for the system of Eq. 4.1 with synchronous

measurements. In Sections 4.5 and 4.6, we will extend the results presented in this

section to include systems subject to asynchronous measurements without and with

time-varying delays, respectively.

Specifically, in the current section, we assume that measurements of the system

state x are available at synchronous sampling times {tk≥0} with tk = t0 + k∆, k =

0, 1, . . . where t0 is the initial time and ∆ is the sampling time.

4.4.1 DMPC Formulation

In this section, we design two separate LMPCs to compute u1 and u2 and refer to the

LMPC computing the trajectories of u1 and u2 as LMPC 1 and LMPC 2, respectively.

Figure 4.1 shows a schematic of the distributed control method discussed in this

section. The implementation strategy of the distributed control architecture is as

follows:

1. At tk, both LMPC 1 and LMPC 2 receive the state measurement x(tk) from

the sensors.

2. LMPC 2 evaluates the optimal input trajectory of u2 based on the x(tk) and

sends the first step input value of u2 (i.e., u2 ∈ [tk, tk+1)) to its corresponding

actuators and the entire optimal input trajectory of u2 (i.e., u2 ∈ [tk, tk+N) with

N the prediction horizon of the LMPCs) to LMPC 1.
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3. Once LMPC 1 receives the entire optimal input trajectory of u2 from LMPC 2,

it evaluates the future input trajectory of u1 based on x(tk) and the entire

optimal input trajectory of u2.

4. LMPC 1 sends the first step input value of u1 (i.e., u1 ∈ [tk, tk+1)) to its corre-

sponding actuators.

5. When a new measurement is received (k ← k + 1), go to Step 1.

First we define the optimization problem of LMPC 2. This optimization problem

depends on the latest state measurement x(tk), however, LMPC 2 does not have

any information about the value that u1 will take. In order to make a decision,

LMPC 2 must assume a trajectory for u1 along the prediction horizon. To this end,

the nonlinear control law u1 = h(x) is used. In order to inherit the stability properties

of this control law, u2 must satisfy a Lyapunov-based constraint that guarantees a

given minimum decrease rate of the Lyapunov function V . The design of LMPC 2 is

based on the following optimization problem:

min
u2∈S(∆)

∫ tk+N

tk

[
∥x̃(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

]
dτ (4.10)

s.t. ˙̃x(t) = f(x̃(t), u1(t), u2(t), 0) (4.11)

u1(t) = h(x̃(tk+j)),∀t ∈ [tk+j, tk+j+1), j = 0, ..., N − 1 (4.12)

u2(t) ∈ U2 (4.13)

x̃(tk) = x(tk) (4.14)

∂V (x(tk))

∂x
f(x(tk), h(x(tk)), u2(tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0, 0) (4.15)
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where Qc, Rc1 and Rc2 are positive definite weighting matrices, x̃ is the predicted

trajectory of the nominal system with u2 being the input trajectory computed by

this LMPC and u1 being the nonlinear control law h(x) applied in a sample-and-hold

fashion. The optimal solution to this optimization problem is denoted by u∗
2(t|tk)

which is defined for t ∈ [tk, tk+N). This information is sent to LMPC 1.

The constraint of Eq. 4.13 defines the constraint on the control input u2 and

the Lyapunov-based constraint of Eq. 4.15 guarantees that the value of the time

derivative of the Lyapunov function at the initial evaluation time, if u1 = h(x(tk))

and u2 = u∗
2(tk|tk) are applied, is lower than or equal to the value obtained when

u1 = h(x) and u2 = 0 are applied.

The optimization problem of LMPC 1 depends on the latest state measurement

x(tk) and the decision taken by LMPC 2 (i.e., u∗
2(t|tk)). This allows LMPC 1 to

compute an input u1 such that the closed-loop performance is optimized, while guar-

anteeing that the stability properties of the nonlinear control law h(x) are preserved.

Specifically, LMPC 1 is based on the following optimization problem:

min
u1∈S(∆)

∫ tk+N

tk

[
∥x̃(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

]
dτ (4.16)

s.t. ˙̃x(t) = f(x̃(t), u1(t), u2(t), 0) (4.17)

u1(t) ∈ U1 (4.18)

u2(t) = u∗
2(t|tk) (4.19)

x̃(tk) = x(tk) (4.20)

∂V (x(tk))

∂x
f(x(tk), u1(tk), u

∗
2(tk|tk), 0)
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≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), u

∗
2(tk|tk), 0) (4.21)

where x̃ is the predicted trajectory of the nominal system with u2 being the optimal

input trajectory u∗
2(t|tk) computed by LMPC 2 and u1 being the input trajectory

computed by LMPC 1. The optimal solution to this optimization problem is denoted

by u∗
1(t|tk) which is defined for t ∈ [tk, tk+N).

The constraint of Eq. 4.18 defines the constraint on the control input u1 and

the Lyapunov-based constraint of Eq. 4.21 guarantees that the value of the time

derivative of the Lyapunov function at the initial evaluation time, if u1 = u∗
1(tk|tk)

and u2 = u∗
2(tk|tk) are applied, is lower than or equal to the value obtained when

u1 = h(x(tk)) and u2 = u∗
2(tk|tk) are applied.

Once both optimization problems are solved, the inputs of the DMPC design

based on the above LMPC 1 and LMPC 2 are defined as follows:

u1(t) = u∗
1(t|tk),∀t ∈ [tk, tk+1) (4.22)

u2(t) = u∗
2(t|tk),∀t ∈ [tk, tk+1). (4.23)

Remark 4.2 At Step 2 of the presented implementation strategy, the whole optimal

input trajectory of LMPC 2 is sent to LMPC 1. From the stability point of view,

it is unnecessary to send the whole optimal input trajectory. Only the first step of

the optimal input trajectory of LMPC 2 is needed to send to LMPC 1 in order to

guarantee the stability of the closed-loop system under the DMPC (please see Section

4.4.2 for the proof of the closed-loop stability). Thus, the communication between

the two LMPCs can be minimized by only sending the first step of an optimal input

trajectory without loss of the closed-loop stability. However, the transmission of the
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whole optimal trajectory at a sampling time can, to some extend, improve the closed-

loop performance because LMPC 1 has more information on the possible future input

trajectory of LMPC 2.

Remark 4.3 The key idea of the DMPC formulation is to impose a hierarchy on the

order in which the controllers are evaluated in order to guarantee that the resulting

control actions stabilize the system. In this section, we assume flawless communica-

tions and synchronous state measurements at each sampling time without delay. If

data losses and delays are taken into account, the control method has to be modified

because at each time step coordination between both LMPCs is not guaranteed; these

issues are addressed in Sections 4.5 and 4.6.

Remark 4.4 Since the computational burden of nonlinear MPC methods is usually

high, the DMPC design only requires LMPC 2 and LMPC 1 to “talk” once every

sampling time (that is, LMPC 2 sends its optimal input trajectory to LMPC 1) to

minimize the communication between the two LMPCs. This strategy is more robust

when communication between the distributed MPCs can be subject to disruptions. Note

also that the computational complexities of the LMPC optimization problems of the

DMPC design can be further reduced by appropriately reducing the dimension of the

system model used in the formulation of optimization problems; the reader may refer

to [36, 41] for discussion on model reduction via two-time-scale techniques.

Remark 4.5 The constraints of Eqs. 4.15, 4.19 and 4.21 are a key element of the

DMPC design. In general, guaranteeing closed-loop stability of a distributed control

system is a difficult task because of the interactions between the distributed controllers

and can only be done under certain assumptions (see, for example, [89, 8]). The

constraint of Eq. 4.19 guarantees that LMPC 1 takes into account the effect of LMPC 2
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to the applied inputs (recall that LMPC 2 is designed without taking LMPC 1 into

account). The constraints of Eqs 4.15 and 4.21 together with the hierarchical control

strategy (i.e., LMPC 2 is solved first and LMPC 1 is solved second) guarantee that

the value of the Lyapunov function of the closed-loop system is a decreasing sequence

of time with a lower bound.

Remark 4.6 Note that the stability properties of the closed-loop system are inherited

from the nonlinear control law u1 = h(x). Once the Lyapunov-based constraints of

Eqs. 4.15 and 4.21 are satisfied, closed-loop stability is guaranteed. The main purpose

of LMPC 1 and LMPC 2 is to optimize the inputs u1 and u2 to improve performance.

Thus, during the evaluation of the optimal solutions of LMPC 1 and LMPC 2 within

a sampling period, we can terminate the optimization (i.e., limit the number of itera-

tions in the process of searching for the optimal solutions) to obtain sub-optimal input

trajectories without losing the stability properties. An extreme application of this idea

is when the optimization process is terminated at the beginning of every optimization

process which gives the inputs: u1(t) = h(x(tk)) and u2(t) = 0 for t ∈ [tk, tk+1), which

guarantees stability of the closed-loop system but not optimal performance.

Remark 4.7 In the DMPC design of Eqs. 4.10-4.21, LMPC 2 and LMPC 1 are

evaluated in sequence, which implies that the minimal sampling time of the system

should be greater than or equal to the sum of the evaluation times of LMPC 2 and

LMPC 1. In order to to solve both optimization problems in parallel, LMPC 1 can

use old input trajectories of LMPC 2, that is, at tk, LMPC 1 uses u∗
2(t|tk−1) to define

its optimization problem. This strategy, however, may introduce extra errors in the

optimization problem and may not guarantee closed-loop stability.

Remark 4.8 The Lyapunov-based constraints of Eqs. 4.15 and 4.21 guarantee that

the choice of u2 cannot render LMPC 1 infeasible. In addition, the two constraints
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guarantee that the DMPC design inherits the stability region of the nonlinear control

law h(x).

4.4.2 Stability Properties

In this subsection, we present the stability properties of the DMPC of Eqs. 4.10-4.21.

The DMPC of Eqs. 4.10-4.21 computes the inputs u1 and u2 applied to the system of

Eq. 4.1 in a way such that the value of the Lyapunov function at time instant tk (i.e.,

V (x(tk))) is a decreasing sequence of values with a lower bound. This is achieved due

to the Lyapunov-based constraints of Eqs. 4.15 and 4.21. This property is presented

in Theorem 4.1 below.

Theorem 4.1 Consider the system of Eq. 4.1 in closed-loop with x available at syn-

chronous sampling time instants {tk≥0} under the DMPC of Eqs. 4.10-4.21 based on

a control law u1 = h(x) that satisfies the conditions of Eqs. 4.3-4.6. Let ϵw > 0,

∆ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3(α
−1
2 (ρs)) + L′

xM∆+ L′
wθ ≤ −ϵw/∆. (4.24)

If x(t0) ∈ Ωρ, ρmin ≤ ρ and N ≥ 1 where:

ρmin = max{V (x(t+∆)) : V (x(t)) ≤ ρs}, (4.25)

then the state x(t) of the closed-loop system is ultimately bounded in Ωρmin
.

Proof: The proof consists of two parts. We first prove that the optimization

problems of Eqs. 4.10-4.15 and 4.16-4.21 are feasible for all states x ∈ Ωρ. Then we

prove that, under the DMPC of Eqs. 4.16-4.15, the state of the system of Eq. 4.1 is
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ultimately bounded in a region that contains the origin.

Part 1: We first prove the feasibility of LMPC 2 of Eqs. 4.10-4.15, and then the

feasibility of LMPC 1 of Eqs. 4.16-4.21. All input trajectories of u2(t) such that

u2(t) = 0,∀t ∈ [tk, tk+1) satisfy all the constraints (including the input constraint

of Eq. 4.13 and the Lyapunov-based constraint of Eq. 4.15), thus the feasibility of

LMPC 2 is guaranteed. The feasibility of LMPC 1 follows because all input trajec-

tories u1(t) such that u1(t) = h(x(tk)), ∀t ∈ [tk, tk+1) are feasible solutions to the

optimization problem of LMPC 1 since all such trajectories satisfy the input con-

straint of Eq. 4.18; this is guaranteed by the closed-loop stability property of the

nonlinear control law h(x) and the Lyapunov-based constraint of Eq. 4.21.

Part 2: From the conditions of Eqs. 4.3-4.6 and the constraints of Eqs. 4.15 and

4.21, if x(tk) ∈ Ωρ it follows that:

∂V (x(tk))

∂x
f(x(tk), u

∗
1(tk|tk), u∗

2(tk|tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), u

∗
2(tk|tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0, 0)

≤ −α3 (∥x(tk)∥) . (4.26)

The time derivative of the Lyapunov function along the actual state trajectory

x(t) of the system of Eq. 4.1 in t ∈ [tk, tk+1) is given by:

V̇ (x(t)) =
∂V (x(t))

∂x
f(x(t), u∗

1(tk|tk), u∗
2(tk|tk), w(t)). (4.27)
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Adding and subtracting
∂V (x(tk))

∂x
f(x(tk), u

∗
1(tk|tk), u∗

2(tk|tk), 0) and taking into ac-

count the conditions of Eq. 4.4, we obtain the following inequality:

V̇ (x(t)) ≤ −α3(∥x(tk)∥) +
∂V (x(t))

∂x
f(x(t), u∗

1(tk|tk), u∗
2(tk|tk), w(t))

− ∂V (x(tk))

∂x
f(x(tk), u

∗
1(tk|tk), u∗

2(tk|tk), 0). (4.28)

From the conditions of Eqs. 4.3-4.6, 4.9 and Eq. 4.28, the following inequality is

obtained for all x(tk) ∈ Ωρ/Ωρs :

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + L′

x ∥x(t)− x(tk)∥+ L′
w ∥w∥ . (4.29)

Taking into account Eq. 4.7 and the continuity of x(t), the following bound can be

written for all t ∈ [tk, tk+1):

∥x(t)− x(tk)∥ ≤M∆. (4.30)

Using this expression, we obtain the following bound on the time derivative of the

Lyapunov function for t ∈ [tk, tk+1), for all initial states x(tk) ∈ Ωρ/Ωρs :

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + L′

xM∆+ L′
wθ. (4.31)

If the condition of Eq. 4.24 is satisfied, then there exists ϵw > 0 such that the following

inequality holds for x(tk) ∈ Ωρ/Ωρs :

V̇ (x(t)) ≤ −ϵw/∆ (4.32)
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in t ∈ [tk, tk+1). Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V (x(tk+1)) ≤ V (x(tk))− ϵw (4.33)

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1) (4.34)

for all x(tk) ∈ Ωρ/Ωρs . Using Eqs. 4.33-4.34 recursively it is proved that, if x(t0) ∈

Ωρ/Ωρs , the state converges to Ωρs in a finite number of sampling times without

leaving the stability region. Once the state converges to Ωρs ⊆ Ωρmin
, it remains

inside Ωρmin
for all times. This statement holds because of the definition of ρmin. This

proves that the closed-loop system under the DMPC of Eqs. 4.10-4.21 is ultimately

bounded in Ωρmin
. �

Remark 4.9 Referring to Theorem 4.1, the condition of Eq. 4.24 guarantees that

if the state of the closed-loop system at a sampling time tk is outside the level set

V (x(tk)) = ρs but inside the level set V (x(tk)) = ρ, the derivative of the Lya-

punov function of the state of the closed-loop system is negative under the DMPC

of Eqs. 4.10-4.21.

Remark 4.10 For continuous-time systems under continuous control implementa-

tion, a sufficient condition for set invariance is that the derivative of a Lyapunov

function is negative on the boundary of a set. For systems with continuous-time dy-

namics and sample-and-hold control implementation, this condition is not sufficient

because the derivative may become positive during the sampling period and the system

may leave the set before a new sample is obtained. Referring to Theorem 4.1, ρmin

is the maximum value that the Lyapunov function can achieve in a time period of

length ∆ when x(tk) ∈ Ωρs. Ωρmin
defines an invariant set for the state x(t) under

sample-and-hold implementation of the inputs of the DMPC of Eqs. 4.10-4.21.
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Remark 4.11 To take advantage of both sets of manipulated inputs u1 and u2, one

option is to design a centralized MPC. In order to guarantee robust stability of the

closed-loop system, such a centralized MPC must include a set of stability constraints.

To do this, we may use the LMPC of Eqs. 2.16-2.20 introduced in Chapter 2. This

LMPC guarantees practical stability of the closed-loop system, allows for an explicit

characterization of the stability region and yields a reduced complexity optimization

problem. The LMPC for the system of Eq. 4.1 based on a nonlinear control law

h(x) satisfying the conditions of Eqs. 4.3-4.6 is based on the following optimization

problem:

min
u1,u2∈S(∆)

∫ tk+N

tk

[
∥x̃(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

]
dτ (4.35)

s.t. ˙̃x(t) = f(x̃(t), u1(t), u2(t), 0) (4.36)

u1(t) ∈ U1 (4.37)

u2(t) ∈ U2 (4.38)

x̃(tk) = x(tk) (4.39)

∂V (x(tk))

∂x
f(x(tk), u1(tk), u2(tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0, 0) (4.40)

where x̃ is the predicted trajectory of the nominal system for the input trajectory

computed by this centralized LMPC.

The optimal solution to the optimization problem of Eqs. 4.35-4.40 is denoted by

u∗
c1(t|tk) and u∗

c2(t|tk). The manipulated inputs of the closed-loop system under the
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Figure 4.2: Centralized LMPC control architecture

above centralized LMPC are defined as follows

u1(t) = u∗
c1(t|tk),∀t ∈ [tk, tk+1) (4.41)

u2(t) = u∗
c2(t|tk),∀t ∈ [tk, tk+1). (4.42)

In what follows, we refer to this controller as the centralized LMPC. Figure 4.2 shows

a schematic of this kind of control system.

Remark 4.12 The DMPC design presented in this section can be extended to in-

clude multiple MPCs using two different approaches. One approach is to use a one-

directional sequential communication strategy (i.e., LMPC j sends information to

LMPC j − 1) and by letting each LMPC send along with its trajectory, all the trajec-

tories received from previous controllers to its successor LMPC (i.e., LMPC j sends

both its trajectory and the trajectories received from LMPC j +1 to LMPC j − 1). A

schematic of this approach is shown in Figure 5.1 and it will be discussed in Chapter

5. Another approach is to have one master controller which communicates with all

the other controllers using one-directional communication, which is a hierarchical type

DMPC. More discussions of this type of DMPC and the corresponding approaches for

handling communication disruptions in the DMPC can be found in [29].
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4.4.3 Application to a Reactor-separator Process

The example considered in this section is the reactor-separator process of Eqs. 3.52-

3.63 described in Sections 1.2.3 and 3.5.4 with the parameter values given in Table 3.3.

The manipulated inputs to the system are the heat inputs to the three vessels, Q1,

Q2 and Q3, and the feed stream flow rate to vessel 2, F20.

The reactor-separator process of Eqs. 3.52-3.63 was numerically simulated using

a standard Euler integration method. Process noise was added to the right-hand

side of each ordinary differential equation in the process model to simulate distur-

bances/model uncertainty and it was generated as autocorrelated noise of the form

wk = ϕwk−1+ξk where k = 0, 1, . . . is the discrete time step of 0.001 h, ξk is generated

by a normally distributed random variable with standard deviation σp, and ϕ is the

autocorrelation factor and wk is bounded by θp, that is ∥wk∥ ≤ θp. Table 4.1 contains

the parameters used in generating the process noise.

We assume that the measurements of the temperatures T1, T2, T3 and the measure-

ments of the mass fractions xA1, xB1, xA2, xB2, xA3, xB3 are available synchronously

and continuously at time instants {tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where

t0 is the initial time and ∆ is the sampling time. For the simulations carried out

in this section, we pick the initial time to be t0 = 0 and the sampling time to be

∆ = 0.02 h = 1.2 min.

The control objective is to regulate the system to a stable steady-state xs corre-

sponding to the operating point defined by Q1s, Q2s, Q3s of u1s and F20s of u2s. The

steady-state values for u1s and u2s and the values of the steady-state are given in

Table 4.2 and Table 4.3, respectively. Taking this control objective into account, the
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Table 4.1: Noise parameters

σp ϕ θp

xA1 1 0.7 0.25

xA2 1 0.7 0.25

xA3 1 0.7 0.25

xB1 1 0.7 0.25

xB2 1 0.7 0.25

xB3 1 0.7 0.25

T1 10 0.7 2.5

T2 10 0.7 2.5

T3 10 0.7 2.5

process model of Eqs. 3.52-3.63 belongs to the following class of nonlinear systems:

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(t) (4.43)

where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 − xA1s xB1 − xB1s T1 − T1s xA2 −

xA2s xB2−xB2s T2−T2s xA3−xA3s xB3−xB3s T3−T3s] is the state, u
T
1 = [u11 u12 u13] =

[Q1 −Q1s Q2 −Q2s Q3 −Q3s] and u2 = F20 − F20s are the manipulated inputs which

are subject to the constraints |u1i| ≤ 106 KJ/h (i = 1, 2, 3) and |u2| ≤ 3 m3/h, and

w = wk is a time varying bounded noise. The process of Eqs. 3.52-3.63 with the

DMPC of Eqs. 4.10-4.21 is shown in Figure 4.3.

To illustrate the theoretical results, we first design the nonlinear control law u1 =
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Figure 4.3: Reactor-separator process with distributed control architecture

Table 4.2: Steady-state values for u1s and u2s of the reactor-separator process of
Eqs. 3.52-3.63

Q1s 12.6×105 [KJ/h] Q3s 11.88×105 [KJ/h]

Q2s 13.32×105 [KJ/h] F20s 5.04 [m3/h]

Table 4.3: Steady-state values for xs of the reactor-separator process of Eqs. 3.52-3.63

xA1s 0.605 xA2s 0.605 xA3s 0.346

xB1s 0.386 xB2s 0.386 xB3s 0.630

T1s 425.9 [K] T2s 422.6 [K] T3s 427.3 [K]
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h(x) which can stabilize the closed-loop system as follows [94]:

h(x) =


−
LfV +

√
(LfV )2 + (Lg1V )4

(Lg1V )2
Lg1V if Lg1V ̸= 0

0 if Lg1V = 0

(4.44)

where LfV =
∂V (x)

∂x
f(x) and Lg1V =

∂V (x)

∂x
g1(x) denote the Lie derivatives of

the scalar function V (x) with respect to the vector fields f and g1, respectively. We

consider a Lyapunov function V (x) = xTPx with P being the following weight matrix:

P = diag

(
5.2× 1012

[
4 4 10−4 4 4 10−4 4 4 10−4

])
. (4.45)

The values of the weights in P have been chosen in a way such that the control law of

Eq. 4.44 stabilizes the closed-loop system globally (note that xs is the only closed-loop

system steady-state) and provides good closed-loop performance.

Based on the control law of Eq. 4.44, we design the centralized and the distributed

LMPCs. In the simulations, the same parameters are used for both control designs.

The prediction step is the same as the sampling time, that is ∆ = 0.02 h = 1.2 min;

the prediction horizon is chosen to be N = 6; and the weight matrices for the LMPC

designs are chosen as:

Qc = diag

([
2 · 103 2 · 103 2.5 2 · 103 2 · 103 2.5 2 · 103 2 · 103 2.5

])
,

(4.46)

Rc1 = diag

([
5 · 10−12 5 · 10−12 5 · 10−12

])
and Rc2 = 100.

The state and input trajectories of the process of Eqs. 3.52-3.63 under the DMPC

179



0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

x A
1 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

x B
1 

0 0.2 0.4 0.6 0.8 1
380

400

420

440

T
1 [K

]

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

x A
2 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

x B
2 

0 0.2 0.4 0.6 0.8 1
380

400

420

440

T
2 [K

]

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x A
3 

t [h]
0 0.2 0.4 0.6 0.8 1

0

0.5

1
x B

3 

t [h]
0 0.2 0.4 0.6 0.8 1

380

400

420

440

T
3 [K

]

t [h]

Figure 4.4: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.10-4.21 (solid lines) and centralized LMPC of Eqs. 4.35-4.40
(dashed lines)
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(dashed lines)
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of Eqs. 4.10-4.21 and the centralized LMPC of Eqs. 4.35-4.40 from the initial state:

x(0)T = [0.890 0.110 388.7 0.886 0.113 386.3 0.748 0.251 390.6]. (4.47)

are shown in Figures 4.4 and 4.5. Figure 4.4 shows that both the distributed and the

centralized LMPC designs provide a similar closed-loop performance and drive the

temperatures and the mass fractions in the closed-loop system close to the desired

steady-state in about 0.3 h and 0.5 h, respectively.

We have also carried out a set of simulations to compare the DMPC of Eqs. 4.10-

4.21 with the centralized LMPC of Eqs. 4.35-4.40 with the same parameters from a

performance point of view. Table 4.4 shows the total cost computed for 15 different

closed-loop simulations under the DMPC of Eqs. 4.10-4.21 and the centralized LMPC

of Eqs. 4.35-4.40. To carry out this comparison, we have computed the total cost of

each simulation with different operating conditions (different initial states and process

noise) as follows:

∫ tM

t0

[
∥x(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

]
dτ (4.48)

where t0 is the initial time of the simulations and tM = 1 h is the end of the simula-

tions. As we can see in Table 4.4, the DMPC of Eqs. 4.10-4.21 has a cost lower than

the centralized LMPC of Eqs. 4.35-4.40 in 10 out of 15 simulations. This illustrates

that in this example, the closed-loop performance of the DMPC of Eqs. 4.10-4.21 is

comparable to the one of the centralized LMPC of Eqs. 4.35-4.40.

Remark 4.13 Table 4.4 shows that both controllers yield a similar performance for

this particular process, but in general there is no guarantee that the total performance

cost along the closed-loop system trajectories of either control scheme should be better
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Table 4.4: Total performance costs along the closed-loop trajectories of the reactor-
separator process of Eqs. 3.52-3.63 under the DMPC of Eqs. 4.10-4.21 and the LMPC
of Eqs. 4.35-4.40

sim. DMPC of Eqs. 4.10-4.21 LMPC of Eqs. 4.35-4.40

1 65216 70868

2 70772 73112

3 57861 67723

4 62396 70914

5 60407 67109

6 83776 66637

7 61360 68897

8 47070 66818

9 79658 64342

10 65735 72819

11 62714 70951

12 76348 70547

13 49914 66869

14 89059 72431

15 78197 70257
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Figure 4.6: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.10-4.21 without communication between the two LMPCs (solid
lines) and with communication between the two LMPCs (dashed lines)

than the other because the solution provided by the centralized LMPC of Eqs. 4.35-

4.40 and the DMPC of Eqs. 4.10-4.21 are proved to be feasible and stabilizing but the

convergence of the cost under DMPC of Eqs. 4.10-4.21 to the one under the centralized

LMPC of Eqs. 4.35-4.40 is not established. This is because the communication between

the two distributed MPCs is limited to one directional and moreover, the controllers

are implemented in a receding horizon scheme and the prediction horizon is finite. In

addition, there are disturbances modeled by stochastic noise in the simulations which

introduce uncertainty in the results.

Moreover, we have studied the importance of communicating optimal input tra-

jectories of LMPC 2 of Eqs. 4.10-4.15 to LMPC 1 of Eqs. 4.16-4.21. We have carried

out a set of simulations in which both LMPC controllers operate in a decentralized
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Figure 4.7: Input trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.10-4.21 without communication between the two LMPCs (solid
lines) and with communication between the two LMPCs (dashed lines)

manner; that is, LMPC 2 does not send its optimal input trajectory to LMPC 1 each

sampling time (there is no communication between the two LMPCs). In order to

evaluate its control input, LMPC 1 assumes that LMPC 2 applies the steady-state

input F20s; that is u2 = 0. The same parameters as in previous sets of simulations are

used for the controllers. Figures 4.6 and 4.7 show the results under this decentralized

LMPC scheme. From Figure 4.6, we can see that for this particular example, this

control scheme can not stabilize the system at the required steady-state. This result

is expected because when there is no communication between the two distributed

controllers, they can not coordinate their control actions and each controller views

the input of the other controller as a disturbance that has to be rejected.

We have also carried out a set of simulations to compare the computation time

needed to evaluate the distributed LMPCs (i.e., LMPC 1 of Eqs. 4.16-4.21 and

LMPC 2 of Eqs. 4.10-4.15) with that of the centralized LMPC of Eqs. 4.35-4.40.

The simulations have been carried out using MATLABr in a PENTIUMr 3.20 GHz

processor. The optimization problems have been solved using the built-in function
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fmincom of MATLABr. To solve the ordinary differential equations in the process

model, an Euler method with a fixed integration time of 0.001 h has been imple-

mented in C programming language. For 50 evaluations, the mean time to solve

the centralized LMPC of Eqs. 4.35-4.40 is 9.40 s; the mean times to solve LMPC 1

of Eqs. 4.16-4.21 and LMPC 2 of Eqs. 4.10-4.15 are 3.19 s and 4.53 s, respectively.

From this set of simulations, we see that the computation time needed to solve the

centralized LMPC of Eqs. 4.35-4.40 is larger than the sum of the values for LMPC 1

of Eqs. 4.16-4.21 and LMPC 2 of Eqs. 4.10-4.15 even though the closed-loop perfor-

mance in terms of the total performance cost is comparable to the one of the DMPC

of Eqs. 4.10-4.21. This is because the centralized LMPC of Eqs. 4.35-4.40 has to

optimize both the inputs u1 and u2 in one optimization problem and the DMPC of

Eqs. 4.10-4.21 has to solve two smaller (in terms of decision variables) optimization

problems.

Following Remark 4.6, we have also carried out a set of simulations to illustrate

that the optimization processes of LMPC 1 of Eqs. 4.16-4.21 and LMPC 2 of Eqs. 4.10-

4.15 can be terminated at any time to get sub-optimal solutions without loss of

the closed-loop stability. In this set of simulations, we assume that the allowable

evaluation times of LMPC 1 and LMPC 2 at each sampling time are 1 s and 2 s,

and we terminate the two optimization processes when they have been carried out

for 1 s and 2 s, respectively. The closed-loop state and input trajectories under the

DMPC of Eqs. 4.10-4.21 with limited and unconstrained computation time are shown

in Figures 4.8 and 4.9. From Figure 4.8, we see that the DMPC of Eqs. 4.10-4.21 with

limited evaluation time can stabilize the closed-loop system but the state responses

are slower, leading to a higher cost (57778) compared with the one (47117) obtained

under the DMPC of Eqs. 4.10-4.21 with unconstrained computation time.
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Figure 4.8: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.10-4.21 with limited (solid lines) and unconstrained (dashed
lines) evaluation time
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Figure 4.9: Input trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.10-4.21 with limited (solid lines) and unconstrained (dashed
lines) evaluation time
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4.5 DMPC with Asynchronous Measurements

In this section, we design DMPC for the system of Eq. 4.1 subject to asynchronous

measurements. In Section 4.6, we will extend the results to systems subject to delayed

measurements.

4.5.1 Modeling of Asynchronous Measurements

We assume that the state of the system of Eq. 2.1, x(t), is available asynchronously

at time instants ta where {ta≥0} is a random increasing sequence and the interval

between two consecutive time instants is bounded by Tm; that is, the time sequence

satisfies the condition of Eq. 2.22. This assumption is reasonable from a process

control point of view.

4.5.2 DMPC Formulation

In Section 4.4, we introduced a DMPC design under the assumption of continu-

ous, synchronous measurements. It was proved that the proposed control scheme

guarantees practical stability of the closed-loop system and has the potential to

maintain the closed-loop stability and performance in the face of new or failing

controllers/actuators and to reduce computational burden in the evaluation of the

optimal manipulated inputs compared with a centralized LMPC controller. However,

when asynchronous measurements are present, the results obtained in Section 4.4 no

longer hold. In order to simplify (but without loss of generality) the notations and

description of the DMPC for system subject to asynchronous measurements (as well

as asynchronous and delayed measurements discussed in Section 4.6), we will adopt

the same strategy used in Section 4.4, that is, to design two LMPCs and coordinate
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Figure 4.10: DMPC design for systems subject to asynchronous measurements

their actions. The LMPC controllers computing the input trajectories of u1 and u2 are

still referred to as LMPC 1 and LMPC 2, respectively. In this section, we extend the

results of Section 4.4 to take into account asynchronous measurements explicitly, both

in the constraints imposed on the LMPC designs and in the implementation strategy.

A schematic diagram of the considered closed-loop system is shown in Figure 4.10.

In the presence of asynchronous measurements, the controllers need to operate in

open-loop between successive state measurements. We take advantage of the MPC

scheme to update the inputs based on a prediction obtained by the model. This is

achieved by having the control actuators to store and implement the last computed

optimal input trajectories. The implementation strategy is as follows:

1. When a measurement is available at ta, LMPC 2 computes the optimal input

trajectory of u2.

2. LMPC 2 sends the entire optimal input trajectory to its actuators and also

sends the entire optimal input trajectory to LMPC 1.

3. Once LMPC 1 receives the entire optimal input trajectory for u2, it evaluates

the optimal input trajectory of u1.

4. LMPC 1 sends the entire optimal input trajectory to its actuators.

5. When a new measurement is received (a← a+ 1), go to Step 1.
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We first design the optimization problem of LMPC 2 for systems subject to asyn-

chronous measurements. This optimization problem depends on the latest state mea-

surement x(ta). In order to make a decision, LMPC 2 must assume LMPC 1 applies

the nonlinear control law u1 = h(x). The LMPC 2 is based on the following opti-

mization problem:

min
u2∈S(∆)

∫ ta+N∆

ta

[
∥x̃(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

]
dτ (4.49)

s.t. ˙̃x(t) = f(x̃(t), u1(t), u2(t), 0) (4.50)

u1(t) = h(x̃(ta + j∆)),∀t ∈ [ta + j∆, ta + (j + 1)∆) (4.51)

u2(t) ∈ U2 (4.52)

˙̂x(t) = f(x̂(t), h(x̂(ta + j∆)), 0, 0),∀t ∈ [ta + j∆, ta + (j + 1)∆)(4.53)

x̃(ta) = x̂(ta) = x(ta) (4.54)

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta +NR∆) (4.55)

where x̃ is the predicted trajectory of the nominal system with u2 being the input

trajectory computed by the LMPC of Eqs. 4.49-4.55 (i.e., LMPC 2) and u1 being the

nonlinear control law h(x) applied in a sample-and-hold fashion with j = 0, ..., N −1,

x̂ is the predicted trajectory of the nominal system with u1 being h(x) applied in

a sample-and-hold fashion and u2 = 0, and NR is the smallest integer that satisfies

the inequality Tm ≤ NR∆. To take full advantage of the nominal model in the

computation of the control action, we take N ≥ NR. The optimal solution to this

optimization problem is denoted by u∗
a2(t|ta) which is defined for t ∈ [ta, ta + N∆).

Once the optimal input trajectory of u2 is available, it is sent to LMPC 1 as well as
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to its corresponding control actuators.

Note that the constraints of Eqs. 4.53-4.54 generate a reference state trajectory

(i.e., a reference Lyapunov function trajectory) of the closed-loop system; and the

constraint of Eq. 4.55 ensures that the predicted decrease of the Lyapunov function

from ta to ta + NR∆, if u1 = h(x) and u2 = u∗
a2(t|ta) are applied, is at least equal

to the one obtained from the constraint of Eq. (4.53). By imposing the constraint

of Eq. 4.55 (as well as the constraint of Eq. 4.62), we can prove that the distributed

control system inherits the stability properties of the nonlinear control law h(x) when

it is implemented in a sample-and-hold fashion. Note also that we have considered

input constraints (see Eq. 4.52).

The optimization problem of LMPC 1 for systems subject to asynchronous mea-

surements depends on x(ta) and the decision taken by LMPC 2 of Eqs. 4.49-4.55 (i.e.,

u∗
a2(t|ta)). This allows LMPC 1 to compute a u1 such that the closed-loop performance

is optimized, while guaranteeing that the stability properties of the nonlinear control

law h(x) are preserved. Specifically, LMPC 1 is based on the following optimization

problem:

min
u1∈S(∆)

∫ ta+N∆

ta

[
∥x̌(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

]
dτ (4.56)

s.t. ˙̌x(t) = f(x̌(t), u1(t), u2(t), 0) (4.57)

˙̃x(t) = f(x̃(t), h(x̃(ta + j∆)), u2(t), 0),

∀t ∈ [ta + j∆, ta + (j + 1)∆) (4.58)

u2(t) = u∗
a2(t|ta) (4.59)

u1(t) ∈ U1 (4.60)
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x̌(ta) = x̃(ta) = x(ta) (4.61)

V (x̌(t)) ≤ V (x̃(t)),∀t ∈ [ta, ta +NR∆) (4.62)

where x̌ is the predicted trajectory of the nominal system if u2 = u∗
a2(t|ta) and

u1 computed by the LMPC 1 of Eqs. 4.56-4.62 are applied, and x̃ is the predicted

trajectory of the nominal system if u2 = u∗
a2(t|ta) and the nonlinear control law

h(x) are applied in a sample-and-hold fashion with j = 0, . . . , N − 1. The optimal

solution to this optimization problem is denoted by u∗
a1(t|ta) which is defined for

t ∈ [ta, ta +N∆). The constraint of Eq. 4.62 guarantees that the predicted decrease

of the Lyapunov function from ta to ta+NR∆, if u1 = u∗
a1(t|ta) and u2 = u∗

a2(t|ta) are

applied, is at least equal to the one obtained when u1 = h(x) and u2 = u∗
a2(t|ta) are

applied. Note that the trajectory x̃(t) predicted by the constraint of Eq. 4.58 is the

same as the optimal trajectory predicted by LMPC 2 of Eqs. 4.49-4.55. This trajectory

will be used in the proof of the closed-loop stability properties of the controller. The

manipulated inputs of the distributed control scheme of Eqs. 4.49-4.62 are defined as

follows:

u1(t) = u∗
a1(t|ta),∀t ∈ [ta, ta+1) (4.63)

u2(t) = u∗
a2(t|ta),∀t ∈ [ta, ta+1). (4.64)

Note that, as explained before, the actuators apply the last evaluated optimal input

trajectories between two successive state measurements.
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4.5.3 Stability Properties

In this subsection, we prove that the distributed control scheme of Eqs. 4.49-4.62

inherits the stability properties of the nonlinear control law h(x) implemented in a

sample-and-hold fashion. This property is presented in Theorem 4.2 below.

Theorem 4.2 Consider the system of Eq. 4.1 in closed-loop with x available at asyn-

chronous sampling time instants {ta≥0}, satisfying the condition of Eq. 2.22, under

the DMPC of Eqs. 4.49-4.62 based on a control law u1 = h(x) that satisfies the con-

ditions of Eqs. 4.3-4.6. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0 and N ≥ NR ≥ 1

satisfy the condition of Eq. 2.31 and the following inequality:

−NRϵs + fV (fW (NR∆)) < 0 (4.65)

with fV (·) and fW (·) defined in Eqs. 2.49 and 2.43, respectively, and NR being the

smallest integer satisfying NR∆ ≥ Tm. If x(t0) ∈ Ωρ, then x(t) is ultimately bounded

in Ωρa ⊆ Ωρ where:

ρa = ρmin + fV (fW (NR∆)) (4.66)

with ρmin defined in Eq. 4.25.

Proof: In order to prove that the closed-loop system is ultimately bounded in a

region that contains the origin, we prove that V (x(ta)) is a decreasing sequence of

values with a lower bound.

Part 1: In this part, we prove that the stability results stated in Theorem 4.2 hold

in the case that ta+1 − ta = Tm for all a and Tm = NR∆. This case corresponds to

the worst possible situation in the sense that LMPC 1 of Eqs. 4.56-4.62 and LMPC 2

of Eqs. 4.49-4.55 need to operate in open-loop for the maximum possible amount of
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time. In order to simplify the notation, we assume that all the variables used in

this proof refer to the different optimization variables of the problems solved at time

step ta; that is, x̂(ta+1) is obtained from the nominal closed-loop trajectory of the

system of Eq. 4.1 under the Lyapunov-based controller u1 = h(x) implemented in a

sample-and-hold fashion and u2 = 0 starting from x(ta). By Proposition 2.1 and the

fact that ta+1 = ta +NR∆, the following inequality can be obtained:

V (x̂(ta+1)) ≤ max{V (x̂(ta))−NRϵs, ρmin}. (4.67)

From the constraints of Eqs. 4.55 and 4.62 in LMPC 2 and LMPC 1, the following

inequality can be written:

V (x̌(t)) ≤ V (x̃(t)) ≤ V (x̂(t)),∀t ∈ [ta, ta +NR∆). (4.68)

From inequalities of Eqs. 4.67 and 4.68 and taking into account that x̂(ta) = x̃(ta) =

x̌(ta) = x(ta), the following inequality is obtained:

V (x̌(ta+1)) ≤ max{V (x(ta))−NRϵs, ρmin}. (4.69)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-

sition 2.3 to obtain the following inequality:

V (x(ta+1)) ≤ V (x̌(ta+1)) + fV (∥x̌(ta+1)− x(ta+1)∥). (4.70)

Applying Proposition 2.2 we obtain the following upper bound on the deviation of

x̌(t) from x(t):

∥x(tk+1)− x̌(tk+1)∥ ≤ fW (NR∆). (4.71)
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From the inequalities of Eqs. 4.70 and 4.71, the following upper bound on V (x(tk+1))

can be written:

V (x(ta+1)) ≤ V (x̌(ta+1)) + fV (fW (NR∆)). (4.72)

Using the inequality of Eq. 4.69, we can re-write the inequality of Eq. 4.72 as follows:

V (x(ta+1)) ≤ max{V (x(ta))−NRϵs, ρmin}+ fV (fW (NR∆)). (4.73)

If the condition of Eq. 4.65 is satisfied, from the inequality of Eq. 4.73, we know that

there exists ϵw > 0 such that the following inequality holds:

V (x(ta+1)) ≤ max{V (x(ta))− ϵw, ρa} (4.74)

which implies that if x(ta) ∈ Ωρ/Ωρa , then V (x(ta+1)) < V (x(ta)), and if x(ta) ∈ Ωρa ,

then V (x(ta+1)) ≤ ρa.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̌ is a strictly increasing function of

time (see Proposition 2.2 and Proposition 2.3 for the expressions of fW (·) and fV (·)),

the inequality of Eq. 4.74 also implies that:

V (x(t)) ≤ max{V (x(ta)), ρa},∀t ∈ [ta, ta+1). (4.75)

Using the inequality of Eq. 4.75 recursively, it can be proved that if x(t0) ∈ Ωρ, then

the closed-loop trajectories of the system of Eq. 4.1 under the DMPC of Eqs. 4.49-

4.62 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, using the inequality of

Eq. 4.74 recursively, it can be proved that if x(t0) ∈ Ωρ, the closed-loop trajectories
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of the system of Eq. 4.1 under the DMPC of Eqs. 4.49-4.62 satisfy:

lim sup
t→∞

V (x(t)) ≤ ρa. (4.76)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa for the

case when ta+1 − ta = Tm for all a and Tm = NR∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+1 − ta ≤ Tm for all a and Tm ≤ NR∆ which implies that ta+1 − ta ≤ NR∆.

Because fV (·) and fW (·) are strictly increasing functions of their arguments and fV (·)

is convex, following similar steps as in Part 1, it can be shown that the inequality of

Eq. 4.73 still holds. This proves that the stability results stated in Theorem 4.2 hold.

�

4.5.4 Application to a Reactor-separator Process

Consider the reactor-separator process of Eqs. 3.52-3.63 described in Section 1.2.3

with the parameter values given in Table 3.3. As in the simulations carried out in

Section 4.4.3, in this section, the process was also numerically simulated using a

standard Euler integration method, and bounded process noise was added to all the

simulations to simulate disturbances/model uncertainty. The manipulated inputs to

the system are the heat inputs, Q1, Q2 and Q3, and the feed stream flow rate to vessel

2, F20. For each set of steady-state inputs Q1s, Q2s, Q3s and F20s corresponding to a

different operating condition, the process has one stable steady-state xs. The control

objective is to steer the process from the initial state:

xT
0 = [0.89 0.11 388.7 0.11 386.3 0.75 0.25 390.6] (4.77)
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to the steady-state:

xT
s = [0.61 0.39 425.9 0.61 0.39 422.6 0.35 0.63 427.3] (4.78)

which is the steady-state corresponding to the operating condition: Q1s = 12.6× 105

KJ/h, Q3s = 11.88× 105 KJ/h, Q2s = 13.32× 105 KJ/h and F20s = 5.04 m3/h.

The process belongs to the following class of nonlinear systems:

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(t) (4.79)

where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 − xA1s xB1 − xB1s T1 − T1s xA2 −

xA2s xB2−xB2s T2−T2s xA3−xA3s xB3−xB3s T3−T3s] is the state, u
T
1 = [u11 u12 u13] =

[Q1 −Q1s Q2 −Q2s Q3 −Q3s] and u2 = F20 − F20s are the manipulated inputs which

are subject to the constraints |u1i| ≤ 106 KJ/h (i = 1, 2, 3) and |u2| ≤ 3 m3/h, and

w is a bounded noise.

We use the same design of h(x) as in Eq. 4.44, and we consider the same Lyapunov

function V (x) = xTPx with P = diag (5.2× 1012[4 4 10−4 4 4 10−4 4 4 10−4]) as in

Section 4.4.3.

For the simulations carried out in this section, it is assumed that the state mea-

surements of the process are available asynchronously at time instants {ta≥0} with

an upper bound Tm = 3∆ on the maximum interval between two successive asyn-

chronous state measurements, where ∆ is the controller and sensor sampling time

and is chosen to be ∆ = 0.02 h = 1.2 min. Based on the Lyapunov-based controller

h(x), we design LMPC 1 and LMPC 2. The prediction horizons of both LMPC 1 of

Eqs. 4.56-4.62 and LMPC 2 of Eqs. 4.49-4.55 are chosen to be N = 6 and NR is chosen

to be 3 so that NR∆ ≥ Tm. The weighting matrices for the LMPCs are chosen in a
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Figure 4.11: Asynchronous measurement sampling times {ta≥0} with Tm = 3∆: the
x-axis indicates {ta≥0} and the y-axis indicates the size of the interval between ta and
ta−1

way such that the DMPC of Eqs. 4.10-4.21 presented in Section 4.4 and the DMPC

of Eqs. 4.49-4.62 can both stabilize the closed-loop system with state measurements

obtained at each sampling time. Specifically, the weighting matrices are chosen as

follows:

Qc = diag
(
103[2 2 0.0025 2 2 0.0025 2 2 0.0025]

)
, (4.80)

Rc1 = diag ([5× 10−12 5× 10−12 5× 10−12]) and Rc2 = 100.

To model the time sequence {ta≥0}, we use an upper bounded random Poisson pro-

cess. The Poisson process is defined by the number of events per unit time W . The

interval between two successive concentration sampling times (events of the Pois-

son process) is given by ∆a = min{−lnχ/W, Tm}, where χ is a random variable

with uniform probability distribution between 0 and 1. This generation ensures that

max
a
{ta+1 − ta} ≤ Tm. In this example, W is chosen to be W = 20. The generated

time sequence {ta≥0} for a simulation length of 1.0 h is shown in Figure 4.11 and the

average time interval between two successive time instants is 0.046 h.

In this set of simulations, when the system operates in open-loop, all the control

designs to be tested use their last evaluated optimal input trajectories. The state and

input trajectories of the process of Eqs. 3.52-3.63 in closed-loop under the DMPC
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Figure 4.12: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.49-4.62 (solid lines) and the DMPC of Eqs. 4.10-4.21 (dashed
lines) in the presence of asynchronous measurements

of Eqs. 4.49-4.62 taking into account asynchronous measurements explicitly and the

DMPC of Eqs. 4.10-4.21 are shown in Figures 4.12 and 4.13. In Figure 4.12, it can

be seen that the DMPC of Eqs. 4.49-4.62 provides a better performance and is able

to stabilize the process at the desired steady state in about 0.5 h; the DMPC of

Eqs. 4.10-4.21 fails to drive the state of the process to the desired steady state within

1 h because it does not account for the asynchronous measurements.

4.6 DMPC with Delayed Measurements

In this section, we consider DMPC of systems subject to asynchronous measurements

involving time-varying delays.
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Figure 4.13: Input trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.49-4.62 (solid lines) and the DMPC of Eqs. 4.10-4.21 (dashed
lines) in the presence of asynchronous measurements

4.6.1 Modeling of Delayed Measurements

We assume that the state of the system of Eq. 4.1 is received by the controllers at

asynchronous time instants ta where {ta≥0} is a random increasing sequence of times

and that there exists an upper bound Tm on the interval between two successive

measurements. In order to model delays in measurements, another auxiliary variable

da is introduced to indicate the delay corresponding to the measurement received at

time ta, that is, at time ta, the measurement x(ta − da) is received. We assume that

the delays associated with the measurements are smaller than an upper bound D. As

explained in Section 2.8.1, the maximum amount of time the system might operate

in open-loop following ta is D + Tm − da; please also see Figure 2.6 for a possible

sequence of delayed measurements. This upper bound will be used in the formulation

of the DMPC design for systems subject to delayed measurements below.
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Figure 4.14: DMPC design for systems subject to delayed measurements

4.6.2 DMPC Formulation

As in Sections 2.8 and 3.6, we take advantage of the system model both to estimate

the current system state from a delayed measurement and to control the system

in open-loop when new information is not available. Specifically, when a delayed

measurement is received, the controllers use the system model and the manipulated

inputs that have been applied to the system to get an estimate of the current state

and then an MPC optimization problem is solved in order to decide the optimal future

input trajectory that will be applied until new measurements are received. However,

in the distributed schemes previously presented (see Figure 4.10), LMPC 2 does not

know the input trajectory which has been implemented by LMPC 1 because there

is only one-directional communication from LMPC 2 to LMPC 1. In order to get a

good estimate of the current state from a delayed measurement, the DMPC structure

shown in Figure 4.10 needs to be modified to have bi-directional communication so

that LMPC 1 can send its optimal input trajectory to LMPC 2. A schematic of

the DMPC scheme for systems subject to asynchronous and delayed measurements

considered in this section is shown in Figure 4.14. When at ta, a delayed measurement

x(ta−da) is received, the information sent from LMPC 1 to LMPC 2 allows LMPC 2

to estimate the current state by using the system model of Eq. 4.1 and the input
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trajectories u1(t) (which has received from LMPC 1) and u2(t) (which LMPC 2 has

stored in memory) applied in t ∈ [ta − da, ta). The implementation strategy in the

presence of delayed measurements is as follows:

1. When a measurement x(ta− da) is available at ta, LMPC 2 checks whether the

measurement provides new information. If ta − da > maxl<a tl − dl, go to Step

2. Else the measurement does not contain new information and is discarded, go

to Step 6.

2. LMPC 2 estimates the current state of the system x̃(ta) and computes the

optimal input trajectory of u2 based on x̃(ta).

3. LMPC 2 sends its entire optimal input trajectory to its actuators and also sends

x̃(ta) and its entire optimal input trajectory to LMPC 1.

4. Once LMPC 1 receives x̃(ta) and the entire optimal input trajectory for u2, it

evaluates the optimal input trajectory of u1 based on x̃(ta).

5. LMPC 1 sends its entire optimal input trajectory to its actuators and LMPC 2.

6. When a new measurement is received (a← a+ 1), go to Step 1.

The LMPC 2 for systems subject to delayed measurements is based on the follow-

ing optimization problem:

min
u2∈S(∆)

∫ ta+N∆

ta

[
∥x̃(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

]
dτ (4.81)

s.t. ˙̃x(t) = f(x̃(t), u1(t), u2(t), 0), ∀t ∈ [ta − da, ta +N∆) (4.82)

u1(t) = u∗
d1(t), ∀t ∈ [ta − da, ta) (4.83)

u2(t) = u∗
d2(t), ∀t ∈ [ta − da, ta) (4.84)
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u1(t) = h(x̃(ta + j∆)), ∀t ∈ [ta + j∆, ta + (j + 1)∆) (4.85)

u2(t) ∈ U2 (4.86)

x̃(ta − da) = x(ta − da) (4.87)

˙̂x(t) = f(x̂(t), h(x̂(ta + j∆)), 0, 0),

∀t ∈ [ta + j∆, ta + (j + 1)∆) (4.88)

x̂(ta) = x̃(ta) (4.89)

V (x̃(t)) ≤ V (x̂(t)),∀t ∈ [ta, ta +ND,a∆) (4.90)

where j = 0, . . . , N − 1, and ND,a is the smallest integer satisfying ND,a∆ ≥ Tm +

D−da and u∗
d1(t), u

∗
d2(t) are the latest input trajectories sent by the controllers to the

actuators. The optimal solution to this optimization problem is denoted by u∗
d2(t|ta)

which is defined for t ∈ [ta, ta + N∆). Once this optimal input trajectory of u2 is

available, it is sent to the control actuators controlled by LMPC 2 and to LMPC 1

together with the estimate of the current state x̃(ta).

There are two types of calculations in the optimization problem of Eqs. 4.81-4.90.

The first type of calculation is to estimate the current state x̃(ta) based on the delayed

measurement x(ta−da) and input values that have applied to the system from ta−da

to ta (the constraints of Eqs. 4.82, 4.83, 4.84 and 4.87). The second type of calculation

is to evaluate the optimal input trajectory of u2 based on x̃(ta) while satisfying the

input constraint of Eq. 4.86 and the constraint of Eq. 4.90. The constraint of Eq. 4.90

is required to ensure the practical closed-loop stability. Note that the length of the

constraint ND,a depends on the current delay da, so it may have different values at

different time instants and has to be updated before solving the optimization problem
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of Eqs. 4.81-4.90.

The LMPC 1 for systems subject to delayed measurements depends on x̃(ta) and

u∗
d2(t|ta). Specifically, it is based on the following optimization problem:

min
u1∈S(∆)

∫ ta+N∆

ta

[
∥x̌(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

]
dτ (4.91)

s.t. ˙̃x(t) = f(x̃(t), h(x̃(ta + j∆)), u2(t), 0),

∀t ∈ [ta + j∆, ta + (j + 1)∆) (4.92)

˙̌x(t) = f(x̌(t), u1(t), u2(t), 0) (4.93)

u2(t) = u∗
d2(t|ta) (4.94)

u1(t) ∈ U1 (4.95)

x̌(ta) = x̃(ta) (4.96)

V (x̌(t)) ≤ V (x̃(t)),∀t ∈ [ta, ta +ND,a∆) (4.97)

The optimal solution to the optimization problem of Eqs. 4.91-4.97 is denoted as

u∗
d2(t|ta) which is defined for t ∈ [ta, ta +N∆) and it is sent to the control actuators

controlled by LMPC 1 and LMPC 2. Note that LMPC 1 gets x̃(ta) from LMPC 2,

so it does not need to estimate the current state and only needs to evaluate the

optimal input trajectory of u1 based on x̃(ta) while satisfying the input constraint

of Eq. 4.95 and the constraint of Eq. 4.97. The constraint of Eq. 4.97 is required to

ensure closed-loop practical stability.
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The manipulated inputs of the DMPC of Eq. 4.81-4.97 for systems subject to

asynchronous and delayed measurements are defined as follows:

u1(t) = u∗
d1(t|ta),∀t ∈ [ta, ta+i) (4.98)

u2(t) = u∗
d2(t|ta),∀t ∈ [ta, tk+i). (4.99)

for all ta such that ta − da > maxl<a tl − dl and for a given ta, the variable i denotes

the smallest integer that satisfies ta+i − da+i > ta − da.

4.6.3 Stability Properties

In this subsection, we present the stability property of the distributed control scheme

of Eqs. 4.81-4.97. This property is presented in Theorem 4.3 below.

Theorem 4.3 Consider the system of Eq. 4.1 in closed-loop with x available at

asynchronous sampling time instants {ta≥0} involving time-varying delays such that

da ≤ D for all a ≥ 0, satisfying the condition of Eq. 2.22, under the DMPC of

Eqs. 4.81-4.97 based on a control law u1 = h(x) that satisfies the conditions of

Eqs. 4.3-4.6. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0, N ≥ 1 and D ≥ 0 sat-

isfy the condition of Eq. 2.31 and the following inequality:

−NRϵs + fV (fW (ND∆)) + fV (fW (D)) < 0 (4.100)

with fV (·) and fW (·) defined in Eqs. 2.49 and 2.43, respectively, ND the smallest

integer satisfying ND∆ ≥ Tm+D, and NR the smallest integer satisfying NR∆ ≥ Tm.

If N ≥ ND, x(t0) ∈ Ωρ and d0 = 0, then x(t) is ultimately bounded in Ωρd ⊆ Ωρ
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where:

ρd = ρmin + fV (fW (ND∆)) + fV (fW (D)) (4.101)

with ρmin defined in Eq. 4.25.

Proof: We assume that at ta, a delayed measurement containing new information

x(ta − da) is received, and that the next measurement with new state information is

not received until ta+i. This implies that ta+i − da+i > ta − da and that the DMPC

of Eqs. 4.81-4.90 is evaluated at ta and the optimal input trajectories u∗
d1(t|ta) and

u∗
d2(t|ta) are applied from ta to ta+i (see the input trajectories defined in Eqs. 4.98-

4.99). We follow a similar approach as before; that is, to prove that V (x(ta)) is a

decreasing sequence of values with a lower bound.

Part 1: In this part we prove that the stability results stated in Theorem 4.3 hold

for ta+i − ta = ND,a∆ and all da ≤ D. By Proposition 2.1, the following inequality

can be obtained:

V (x̂(ta+i)) ≤ max{V (x̂(ta))−ND,aϵs, ρmin}. (4.102)

From the constraints of Eqs. 4.90 and 4.97 in LMPC 2 of Eq. 4.90 and LMPC 1 of

Eq. 4.97, the following inequality can be written:

V (x̌(t)) ≤ V (x̃(t)) ≤ V (x̂(t)),∀t ∈ [ta, ta +ND,a∆). (4.103)

From the inequalities of Eqs. 4.102, 4.103 and taking into account that x̂(ta) = x̌(ta) =

x̃(ta), the following inequality is obtained:

V (x̌(ta+i)) ≤ max{V (x̃(ta))−ND,aϵs, ρmin}. (4.104)
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When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-

sition 2.3 to obtain the following inequalities:

V (x̃(ta)) ≤ V (x(ta)) + fV (∥x(ta)− x̃(ta)∥) (4.105)

V (x(ta+i)) ≤ V (x̌(ta+i)) + fV (∥x(ta+i)− x̌(ta+i)∥). (4.106)

Applying Proposition 2.2 we obtain the following bounds on the deviation of x̃(t) and

x̌(t) from x(t):

∥x(ta)− x̃(ta)∥ ≤ fW (da) (4.107)

∥x(ta+i)− x̌(ta+i)∥ ≤ fW (ND∆). (4.108)

Note that Proposition 2.2 can be applied because the constraints of Eqs. 4.82, 4.83,

4.84, 4.87 and the implementation procedure guarantee that x̃(ta) and x̌(ta+i) have

been estimated using the same inputs applied to the system. We have also taken

into account that ND∆ ≥ ND,a + da for all da. Using the inequalities of Eqs. 4.104,

4.105-4.106 and 4.107-4.108, the following upper bound on V (x(ta+i)) is obtained:

V (x(ta+i)) ≤ max{V (x(ta))−ND,aϵs, ρmin}+ fV (fW (ND∆)) + fV (fW (da)). (4.109)

In order to prove that the Lyapunov function is decreasing between two consecutive

new measurements, the following inequality must hold:

ND,aϵs > fV (fW (ND∆)) + fV (fW (da)) (4.110)
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for all possible 0 ≤ da ≤ D. Taking into account that fW (·) and fV (·) are strictly

increasing functions of their arguments, that ND,a is a decreasing function of the delay

da and that if da = D then ND,a = NR, if the condition of Eq. 4.100 is satisfied, the

condition of Eq. 4.110 holds for all possible da and there exists ϵw > 0 such that the

following inequality holds:

V (x(ta+i)) ≤ max{V (x(ta))− ϵw, ρd} (4.111)

which implies that if x(ta) ∈ Ωρ/Ωρd , then V (x(ta+i)) < V (x(ta)), and if x(ta) ∈ Ωρd ,

then V (x(ta+i)) ≤ ρd.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̌ is a strictly increasing function of

time, the inequality of Eq. 4.111 also implies that:

V (x(t)) ≤ max{V (x(ta)), ρd}, ∀t ∈ [ta, ta+i). (4.112)

Using the inequality of Eq. 4.112 recursively, it can be proved that if x(t0) ∈ Ωρ, then

the closed-loop trajectories of the system of Eq. 4.1 under the DMPC of Eqs. 4.81-

4.97 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, using the inequality of

Eq. 4.111 recursively, it can be proved that if x(t0) ∈ Ωρ, the closed-loop trajectories

of the system of Eq. 4.1 under the DMPC of Eqs. 4.81-4.97 satisfy:

lim sup
t→∞

V (x(t)) ≤ ρd. (4.113)

This proves that x(t) ∈ Ωρ for all times and that x(t) is ultimately bounded in Ωρd

when ta+i − ta = ND,a∆ for all a.
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Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+i − ta ≤ ND,a∆. Taking into account that fV (·) and fW (·) are strictly

increasing functions of their arguments and following similar steps in Part 1, it is

easy to prove that the inequality of Eq. 4.110 holds for all possible da ≤ D and

ta+i − ta ≤ ND,a∆. Using this inequality and following the same line of argument as

in the previous part, the stability results stated in Theorem 4.3 can be proved. �

Remark 4.14 The sufficient conditions presented in Theorem 4.3 state that in or-

der to guarantee practical stability, V (x(ta)) must be a decreasing sequence of values

with a lower bound for the worst possible case from a feedback control point of view;

that is, the measurements are received every Tm (maximum time between successive

measurements) with a delay equal to the maximum delay D.

Remark 4.15 In this section, we do not explicitly consider delays introduced in the

system by the communication network or by the time needed to solve each of the LMPC

optimization problems. Such delays are usually small (particularly in the context of

DMPC) compared to the measurement delays and can be modeled as part of an overall

measurement delay.

4.6.4 Application to a Reactor-separator Process

We consider the reactor-separator process of Eqs. 3.52-3.63 described in Section 1.2.3

with the parameter values given in Table 3.3. In this subsection, we compare the

performance of the DMPC of Eqs. 4.81-4.97 with that of the DMPC of Eqs. 4.49-

4.62 in the case where the delayed state measurements of the process are available

asynchronously at time instants {ta≥0}. The same sampling time ∆ and weighting

matrices Qc, Rc and Rc2 used in Section 4.5.4 are used. The prediction horizons of

208



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

t  [h]
a

d
 [h

]
a

(a)

t

t
0

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(b)

Figure 4.15: Asynchronous time sequence {ta≥0} and corresponding delay sequence
{da≥0} with Tm = 0.04 h and D = 0.12 h: (a) the x-axis indicates {ta≥0} and the
y-axis indicates the size of da; (b) the upper axis indicates {ta≥0}, the lower axis
indicates ta − da, each arrow points from ta − da to corresponding ta and the dashed
arrows indicate the measurements which do not contain new information

both LMPC 1 and LMPC 2 are chosen to be N = 8 in this set of simulations so that

the horizon covers the maximum possible open-loop operation interval. Note that the

same estimated current state is used to evaluate both of the controllers.

The Poisson process used in Section 4.5.4 is used to generate {ta≥0} with W = 30

and Tm = 0.04 h and another random process is used to generate the associated delay

sequence {da≥0} with D = 0.12 h. Figure 4.15 shows the time instants when new

state measurements are received, the associated delay sizes and the instants when

the received measurements do not contain new information (which are discarded).

The average time interval between two successive sampling times is 0.035 h and the

average time delay is 0.057 h.

The state and input trajectories of the process of Eqs. 3.52-3.63 in closed-loop
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Figure 4.16: State trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.81-4.97 (solid lines) and the DMPC of Eqs. 4.49-4.62 (dashed
lines) in the presence of asynchronous and delayed measurements

under the DMPC of Eqs. 4.81-4.97 and the DMPC of Eqs. 4.49-4.62 are shown in

Figures 4.16 and 4.17. In Figure 4.16, we see that the DMPC of Eqs. 4.81-4.97 is able

to stabilize the process at the desired steady state in about 0.6 h, but the control

design of Eqs. 4.49-4.62 which does not account for measurement delays fails to drive

the state to the desired steady state within 1 h.

Remark 4.16 We have also carried out simulations to evaluate the computational

time of the LMPCs. The simulations have been carried out using MATLABr in a

PENTIUMr 3.20 GHz processor. The optimization problems have been solved using

the built-in nonlinear programming function fmincom of MATLABr. For 50 evalua-

tions, the mean time to solve LMPC 2 of Eqs. 4.49-4.55 and LMPC 1 of Eqs. 4.56-4.62

are 5.52 seconds and 2.90 seconds, respectively, with the prediction horizon N = 6;
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Figure 4.17: Input trajectories of the reactor-separator process of Eqs. 3.52-3.63 under
the DMPC of Eqs. 4.81-4.97 (solid lines) and the DMPC of Eqs. 4.49-4.62 (dashed
lines) in the presence of asynchronous and delayed measurements

the mean time to solve LMPC 2 of Eqs. 4.81-4.90 and LMPC 1 of Eqs. 4.91-4.97

are 13.95 seconds and 6.83 seconds, respectively, with the prediction horizon N = 8.

These computational times can be reduced significantly by using a compiled nonlinear

programming solver implemented in C or other programming languages.

4.7 Conclusions

In this chapter, we focused on a class of nonlinear control problems that arise when

new control systems which may use networked sensors and/or actuators are added

to already operating control loops to improve closed-loop performance. To address

this control problem, a DMPC method was introduced where both the pre-existing

control system and the new control system are designed via LMPC theory. The pre-

sented DMPC design stabilizes the closed-loop system, improves the closed-loop per-

formance and allows handling input constraints. In addition, the distributed control

design requires reduced communication between the two distributed controllers since

211



it requires that these controllers communicate only once at each sampling time and

is computationally more efficient compared to the corresponding centralized model

predictive control design. In addition, the DMPC method is also extended to include

nonlinear systems subject to asynchronous and delayed measurements. Extensive

simulations using a chemical plant network example, described by a nonlinear model,

demonstrated the applicability and effectiveness of the DMPC designs.
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Chapter 5

Distributed Model Predictive

Control: Multiple-controller

Cooperation

5.1 Introduction

In Chapter 4, we presented a DMPC architecture with one-directional communica-

tion for a very broad class of nonlinear systems. In this architecture, two separate

controllers designed via LMPC were considered, in which one LMPC was used to

guarantee the stability of the closed-loop system and the other LMPC was used to

improve the closed-loop performance. In this chapter, we focus on DMPC of large-

scale nonlinear systems in which several distinct sets of manipulated inputs are used

to regulate the system. For each set of manipulated inputs, a different model pre-

dictive controller, which is able to communicate with the rest of the controllers in

making its decisions, is used to compute the control actions. Specifically, under the
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assumption that feedback of the state of the process is available to all the distributed

controllers at each sampling time and that a model of the plant is available, we present

two different DMPC architectures designed via LMPC techniques. In the first archi-

tecture, the distributed controllers use a one-directional communication strategy, are

evaluated in sequence and each controller is evaluated only once at each sampling

time; in the second architecture, the distributed controllers utilize a bi-directional

communication strategy, are evaluated in parallel and iterate to improve closed-loop

performance. In order to ensure the stability of the closed-loop system, each model

predictive controller in both architectures incorporates a stability constraint which

is based on a suitable nonlinear control law which can stabilize the closed-loop sys-

tem. We prove that the two DMPC architectures enforce practical stability in the

closed-loop system while improving performance.

Moreover, the DMPC designs will be also extended to include nonlinear systems

subject to asynchronous and delayed state feedback. In the case of asynchronous

feedback, under the assumption that there is an upper bound on the maximum in-

terval between two consecutive measurements, we first extend both the DMPC ar-

chitectures to take explicitly into account asynchronous feedback. Subsequently, we

design a DMPC scheme using bi-directional communication for systems subject to

asynchronous measurements that also involve time-delays under the assumption that

there exists an upper bound on the maximum feedback delay. Sufficient conditions

under which the proposed distributed control designs guarantee that the states of the

closed-loop system are ultimately bounded in regions that contain the origin are pro-

vided. The theoretical results are illustrated through a catalytic alkylation of benzene

process example. The results of this chapter were first presented in [49, 9, 48, 50].
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5.2 System Description

In this chapter, we consider nonlinear systems described by the following state-space

model:

ẋ(t) = f(x(t)) +
m∑
i=1

gi(x(t))ui(t) + k(x(t))w(t) (5.1)

where x(t) ∈ Rn denotes the vector of state variables, ui(t) ∈ Rmi , i = 1, . . . ,m, arem

sets of control (manipulated) inputs and w(t) ∈ Rw denotes the vector of disturbance

variables. The m sets of inputs are restricted to be in m nonempty convex sets

Ui ⊆ Rmui , i = 1, . . . ,m, which are defined as follows:

Ui := {ui ∈ Rmi : ∥ui∥ ≤ umax
i }, i = 1, . . . ,m (5.2)

where umax
i , i = 1, . . . ,m, are the magnitudes of the input constraints. The distur-

bance vector is bounded, i.e., w(t) ∈ W where:

W := {w ∈ Rw : ∥w∥ ≤ θ, θ > 0} (5.3)

with θ being a known positive real number.

We assume that f , gi, i = 1, . . . ,m, and k are locally Lipschitz vector, matrix and

matrix functions, respectively, and that the origin is an equilibrium of the unforced

nominal system (i.e., the system of Eq. 5.1 with ui(t) = 0, i = 1, . . . ,m, w(t) = 0 for

all t) which implies that f(0) = 0.

Remark 5.1 In this chapter, in order to account for DMPC designs in which the

distributed controllers are evaluated in parallel, we consider nonlinear systems with

control inputs entering the system dynamics in an affine fashion. We note that the

results presented in Sections 5.4.1 and 5.5.2 can be extended to more general nonlinear
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systems, for example, systems described by the following state-space model:

ẋ(t) = f(x(t), u1(t), . . . , um(t), w(t)). (5.4)

5.3 Lyapunov-based Control

We assume that there exists a nonlinear control law h(x) =
[
h1(x)

T · · · hm(x)
T
]T

with ui = hi(x), i = 1, . . . ,m, which renders (under continuous state feedback) the

origin of the nominal closed-loop system asymptotically stable while satisfying the

input constraints for all the states x inside a given stability region. Using converse

Lyapunov theorems, this assumption implies that there exist functions αi(·), i =

1, 2, 3, 4 of class K and a continuously differentiable Lyapunov function V (x) for the

nominal closed-loop system that satisfy the following inequalities:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (5.5)

∂V (x)

∂x

(
f(x) +

m∑
i=1

gi(x)hi(x)

)
≤ −α3(∥x∥) (5.6)

∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ α4(∥x∥) (5.7)

hi(x) ∈ Ui, i = 1, . . . ,m (5.8)

for all x ∈ O ⊆ Rnx where O is an open neighborhood of the origin. We denote the

region Ωρ ⊆ O as the stability region of the closed-loop system under the nonlinear

control law h(x).

By continuity, the local Lipschitz property assumed for the vector fields f(x),

gi(x), i = 1, . . . ,m, and k(x) and taking into account that the manipulated inputs ui,
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i = 1, . . . ,m, and the disturbance w are bounded in convex sets, there exist positive

constants M , Mgi , Lx, Lui
and Lw (i = 1, . . . ,m) such that:

∥∥∥∥∥f(x) +
m∑
i=1

gi(x)ui + k(x)w

∥∥∥∥∥ ≤M (5.9)

∥gi(x)∥ ≤Mgi , i = 1, . . . ,m (5.10)

∥f(x)− f(x′)∥ ≤ Lx ∥x− x′∥ (5.11)

∥gi(x)− gi(x
′)∥ ≤ Lui

∥x− x′∥ , , i = 1, . . . ,m (5.12)

∥k(x)∥ ≤ Lw (5.13)

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m, and w ∈ W . In addition, by the continuous

differentiable property of the Lyapunov function V (x), there exist positive constants

L′
x, L

′
ui
, i = 1, . . . ,m, and L′

w such that:

∥∥∥∥∂V (x)

∂x
f(x)− ∂V (x′)

∂x
f(x′)

∥∥∥∥ ≤ L′
x ∥x− x′∥ (5.14)

∥∥∥∥∂V (x)

∂x
gi(x)−

∂V (x′)

∂x
gi(x

′)

∥∥∥∥ ≤ L′
ui
∥x− x′∥ , i = 1, . . . ,m (5.15)

∥∥∥∥∂V (x)

∂x
k(x)

∥∥∥∥ ≤ L′
w (5.16)

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . ,m, and w ∈ W .
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5.4 Sequential and Iterative DMPC Designs with

Synchronous Measurements

The objective of this section is to design DMPC architectures including multiple

MPCs for large-scale nonlinear process systems with continuous, synchronous state

feedback. Specifically, we will discuss two different DMPC architectures. The first

DMPC architecture is a direct extension of the DMPC presented in Section 4.4 in

which different MPC controllers are evaluated in sequence, only once at each sampling

time and require only one-directional communication between consecutive distributed

controllers (i.e., the distributed controllers are connected by pairs). In the second ar-

chitecture, different MPCs are evaluated in parallel, once or more than once at each

sampling time depending on the number of iterations, and bi-directional communi-

cation among all the distributed controllers (i.e., the distributed controllers are all

interconnected) is used.

In each DMPC architecture, we will designm LMPCs to compute ui, i = 1, . . . ,m,

and refer to the LMPC computing the input trajectories of ui as LMPC i. In addition,

we assume that the state x of the system of Eq. 5.1 is sampled synchronously and

the time instants at which we have state measurement samplings are indicated by the

time sequence {tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time and

∆ is the sampling time. The results will be extended to include systems subject to

asynchronous and delayed measurements in Sections 5.5 and 5.6.

5.4.1 Sequential DMPC

A schematic of the architecture considered in this subsection is shown in Fig. 5.1.

218



Process

LMPC 1

LMPC 2

LMPC m− 1

LMPC m

Sensors

x

x

um

um−1

...

u2

u1

um

...

um, um−1

um, . . . , u3

um, . . . , u2

Figure 5.1: Sequential DMPC architecture

Sequential DMPC Formulation

We first present the implementation strategy of this DMPC architecture and then

design the corresponding LMPCs. The implementation strategy of this DMPC archi-

tecture is as follows:

1. At tk, all the LMPCs receive the state measurement x(tk) from the sensors.

2. For j = m to 1

2.1. LMPC j receives the entire future input trajectories of ui, i = m, . . . , j+1,

from LMPC j+1 and evaluates the future input trajectory of uj based on

x(tk) and the received future input trajectories.

2.2. LMPC j sends the first step input value of uj to its actuators and the

entire future input trajectories of ui, i = m, . . . , j, to LMPC j − 1.

3. When a new measurement is received (k ← k + 1), go to Step 1.

In this architecture, each LMPC only sends its future input trajectory and the

future input trajectories it received to the next LMPC (i.e., LMPC j sends input
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trajectories to LMPC j − 1). This implies that LMPC j, j = m, . . . , 2, does not

have any information about the values that ui, i = j − 1, . . . , 1 will take when the

optimization problems of the LMPCs are designed. In order to make a decision,

LMPC j, j = m, . . . , 2 must assume trajectories for ui, i = j − 1, . . . , 1, along the

prediction horizon. To this end, the nonlinear control law h(x) is used. In order

to inherit the stability properties of the controller h(x), each control input ui, i =

1, . . . ,m must satisfy a constraint that guarantees a given minimum contribution to

the decrease rate of the Lyapunov function V (x). Specifically, the design of LMPC j,

j = 1, . . . ,m, is based on the following optimization problem:

min
uj∈S(∆)

∫ tk+N

tk

[
∥x̃(τ)∥Qc

+
m∑
i=1

∥ui(τ)∥Rci

]
dτ (5.17)

s.t. ˙̃x(t) = f(x̃(t)) +
m∑
i=1

gi(x̃(t))ui (5.18)

ui(t) = hi(x̃(tk+l)), i = 1, . . . , j − 1,

∀t ∈ [tk+l, tk+l+1), l = 0, ..., N − 1 (5.19)

ui(t) = u∗
s,i(t|tk), i = j + 1, . . . ,m (5.20)

uj(t) ∈ Uj (5.21)

x̃(tk) = x(tk) (5.22)

∂V (x(tk))

∂x
gj(x(tk))uj(tk) ≤

∂V (x(tk))

∂x
gj(x(tk))hj(x(tk)) (5.23)

In the optimization problem of Eqs. 5.17-5.23, u∗
s,i(t|tk) denotes the optimal future

input trajectory of ui obtained by LMPC i of the form of Eqs. 5.17-5.23 evaluated

before LMPC j, x̃ is the predicted trajectory of the nominal system with ui = us,i,
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i = j + 1, . . . ,m, ui, i = 1, . . . , j − 1, the corresponding elements of h(x) applied in a

sample-and-hold fashion and uj predicted by LMPC j of Eqs. 5.17-5.23. The optimal

solution to the optimization problem of Eqs. 5.17-5.23 is denoted as u∗
s,j(t|tk) which

is defined for t ∈ [tk, tk+N).

The constraint of Eq. 5.18 is the nominal model of the system of Eq. 5.1, which

is used to predict the future evolution of the system; the constraint of Eq. 5.19

defines the value of the inputs evaluated after uj (i.e., ui with i = 1, . . . , j − 1); the

constraint of Eq. 5.20 defines the value of the inputs evaluated before uj (i.e., ui with

i = j + 1, . . . ,m); the constraint of Eq. 5.21 is the constraint on the manipulated

input uj; the constraint of Eq. 5.22 sets the initial state for the optimization problem;

the constraint of Eq. 5.23 guarantees that the contribution of input uj to the decrease

rate of the time derivative of the Lyapunov function V (x) at the initial evaluation

time (i.e., at tk), if uj = u∗
s,j(tk|tk) is applied, is bigger than or equal to the value

obtained when uj = hj(x(tk)) is applied. This constraint allows proving the closed-

loop stability properties of this DMPC.

The manipulated inputs of the system of Eq. 5.1 under the DMPC are defined as

follows:

ui(t) = u∗
s,i(t|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (5.24)

In what follows, we refer to this DMPC architecture as the sequential DMPC.

Remark 5.2 Note that, in order to simplify the description of the implementation

strategy presented above in this subsection, we do not distinguish LMPC m and

LMPC 1 from the others. We note that LMPC m does not receive any informa-

tion from the other controllers and LMPC 1 does not have to send information to any

other controller.
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Remark 5.3 Note also that the assumption that the full state x of the system is

sampled synchronously is a widely used assumption in the control system design. The

control system designs presented in this section can be extended to the case where only

part of the state x is measurable by designing an observer to estimate the whole state

vector from output measurements and by designing the control system based on the

measured and estimated states. In this case, the stability properties of the resulting

output feedback control systems are affected by the convergence of the observer and

need to be carefully studied.

Stability Properties

The sequential DMPC of Eqs. 5.17-5.24 computes the inputs ui, i = 1, . . . ,m, applied

to the system of Eq. 5.1 in a way such that in the closed-loop system, the value of

the Lyapunov function at time instant tk (i.e., V (x(tk))) is a decreasing sequence of

values with a lower bound. Following Lyapunov arguments, this property guarantees

practical stability of the closed-loop system. This is achieved due to the constraint

of Eq. 5.23. This property is presented in Theorem 5.1 below.

Theorem 5.1 Consider the system of Eq. 5.1 in closed-loop under the sequential

DMPC of Eqs. 5.17-5.24 based on a nonlinear control law h(x) that satisfies the

condition of Eqs. 5.5-5.8 with class K functions αi(·), i = 1, 2, 3, 4. Let ϵw > 0,

∆ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3(α
−1
2 (ρs)) + L∗ ≤ −ϵw/∆ (5.25)

where L∗ = (L′
x +

∑m
i=1 L

′
ui
umax
i )M + L′

wθ with M , L′
x, L

′
ui

(i = 1, . . . ,m) and L′
w
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defined in Eqs. 5.9-5.16. For any N ≥ 1, if x(t0) ∈ Ωρ and if ρmin ≤ ρ where:

ρmin = max{V (x(t+∆)) : V (x(t)) ≤ ρs}, (5.26)

then the state x(t) of the closed-loop system is ultimately bounded in Ωρmin
.

Proof: The proof consists of two parts. We first prove that the optimization

problem of Eqs. 5.17-5.23 is feasible for all j = 1, . . . ,m and x ∈ Ωρ. Then we

prove that, under the DMPC of Eqs. 5.17-5.24, the state of the system of Eq. 5.1 is

ultimately bounded in Ωρmin
. Note that the constraint of Eq. 5.23 of each distributed

controller is independent from the decisions that the rest of the distributed controllers

make.

Part 1: In order to prove the feasibility of the optimization problem of Eqs. 5.17-

5.23, we only have to prove that there exists a uj(tk) which satisfies the input con-

straint of Eq. 5.21 and the constraint of Eq. 5.23. This is because the constraint of

Eq. 5.23 is only enforced on the first prediction step of uj(t) and does not depend

on the values of the inputs chosen by the rest of the controllers (see Remark 5.9).

In the prediction time t ∈ [tk+1, tk+N), the input constraint of Eq. 5.24 can be easily

satisfied with uj(τ) being any value in the convex set Uj.

We assume that x(tk) ∈ Ωρ (x(t) is bounded in Ωρ which will be proved in Part

2). It is easy to verify that the value of uj such that uj(tk) = hj(x(tk)) satisfies

the input constraint of Eq. 5.21 (assumed property of h(x) for x ∈ Ωρ) and the

constraint of Eq. 5.23, thus, the feasibility of the optimization problem of LMPC j

of Eqs. 5.17-5.23, j = 1, . . . ,m, is guaranteed.
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Part 2: From the condition of Eq. 5.6 and the constraint of Eq. 5.23, if x(tk) ∈ Ωρ,

it follows that:

∂V (x(tk))

∂x

(
f(x(tk)) +

m∑
i=1

gi(x(tk))u
∗
s,i(tk|tk)

)

≤ ∂V (x(tk))

∂x

(
f(x(tk)) +

m∑
i=1

gi(x(tk))hi(x(tk))

)

≤ −α3(∥x(tk)∥). (5.27)

The time derivative of the Lyapunov function V along the actual state trajectory x(t)

of the system of Eq. 5.1 in t ∈ [tk, tk+1) is given by:

V̇ (x(t)) =
∂V (x(t))

∂x

(
f(x(t)) +

m∑
i=1

gi(x(t))u
∗
s,i(tk|tk) + k(x(t))w(t)

)
. (5.28)

Adding and subtracting
∂V (x(tk))

∂x

(
f(x(tk)) +

m∑
i=1

gi(x(tk))u
∗
s,i(tk|tk)

)
and taking

into account Eq. 5.27, we obtain the following inequality:

V̇ (x(t)) ≤ −α3(∥x(tk)∥)

+
∂V (x(t))

∂x

(
f(x(t)) +

m∑
i=1

gi(x(t))u
∗
s,i(tk|tk) + k(x(t))w(t)

)

−∂V (x(tk))

∂x

(
f(x(tk)) +

m∑
i=1

gi(x(tk))u
∗
s,i(tk|tk)

)
. (5.29)
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Taking into account Eqs. 5.5 and 5.9, the following inequality if obtained for all

x(tk) ∈ Ωρ/Ωρs from Eq. 5.29:

V̇ (x(t)) ≤ −α3

(
α−1
2 (ρs)

)
+

(
L′
x +

m∑
i=1

L′
ui
u∗
s,i(tk|tk)

)
∥x(t)− x(tk)∥+ L′

w ∥w(t)∥ .

(5.30)

Taking into account Eq. 5.9 and the continuity of x(t), the following bound can be

written for all t ∈ [tk, tk+1):

∥x(t)− x(tk)∥ ≤M∆. (5.31)

Using this expression, the bounds on the disturbance w(t) and the inputs ui, i =

1, . . . ,m, and Eq. 5.30, we obtain the following bound on the time derivative of the

Lyapunov function for t ∈ [tk, tk+1), for all initial states x(tk) ∈ Ωρ/Ωρs :

V̇ (x(t)) ≤ −α3

(
α−1
2 (ρs)

)
+

(
L′
x +

m∑
i=1

L′
ui
umax
i

)
M + L′

wθ. (5.32)

If the condition of Eq. 5.25 is satisfied, then there exists ϵw > 0 such that the following

inequality holds for x(tk) ∈ Ωρ/Ωρs :

V̇ (x(t)) ≤ −ϵw/∆ (5.33)

for t ∈ [tk, tk+1). Integrating the inequality of Eq. 5.33 on t ∈ [tk, tk+1), we obtain

that:

V (x(tk+1) ≤ V (x(tk))− ϵw (5.34)

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1) (5.35)
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for all x(tk) ∈ Ωρ/Ωρs . Using Eqs. 5.34 and 5.35 recursively it can be proved that,

if x(t0) ∈ Ωρ/Ωρs , the state converges to Ωρs in a finite number of sampling times

without leaving the stability region. Once the state converges to Ωρs ⊆ Ωρmin
, it

remains inside Ωρmin
for all times. This statement holds because of the definition

of ρmin. This proves that the closed-loop system under the sequential DMPC of

Eqs. 5.17-5.24 is ultimately bounded in Ωρmin
. �

Remark 5.4 The sequential DMPC approach can be applied to more general non-

linear systems as described in Eq. 5.4 (see Remark 5.1)by a proper redesign of the

Lyapunov-based constraints of Eqs. 5.23 (j = 1, . . . ,m) following the method used in

the design of the constraints of Eq. 4.15 and 4.21, see Section 4.4.1.

5.4.2 Iterative DMPC

An alternative architecture to the sequential DMPC architecture presented in the

previous subsection is to evaluate all the distributed LMPCs in parallel and iterate to

improve closed-loop performance. A schematic of this control architecture is shown

in Figure 5.2.

Iterative DMPC Formulation

In this architecture, each distributed LMPC must be able to communicate with all

the other controllers (i.e., the distributed controllers are all interconnected). More

specifically, when a new state measurement is available at a sampling time, each

distributed LMPC controller evaluates and obtains its future input trajectory; and

then each LMPC controller broadcasts its latest obtained future input trajectory to

all the other controllers. Based on the newly received input trajectories, each LMPC

controller evaluates its future input trajectory again and this process is repeated until
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Figure 5.2: Iterative DMPC architecture

a certain termination condition is satisfied. Specifically, the implementation strategy

is as follows:

1. At tk, all the LMPCs receive the state measurement x(tk) from the sensors and

then evaluate their future input trajectories in an iterative fashion with initial

input guesses generated by h(·).

2. At iteration c (c ≥ 1):

2.1. Each LMPC evaluates its own future input trajectory based on x(tk) and

the latest received input trajectories of all the other LMPCs (when c = 1,

initial input guesses generated by h(·) are used).

2.2. The controllers exchange their future input trajectories. Based on all the

input trajectories, each controller calculates and stores the value of the

cost function.

3. If a termination condition is satisfied, each controller sends its entire future

input trajectory corresponding to the smallest value of the cost function to its

actuators; if the termination condition is not satisfied, go to Step 2 (c← c+1).
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4. When a new measurement is received, go to Step 1 (k ← k + 1).

Note that at the initial iteration, all the LMPCs use h(x) to estimate the input

trajectories of all the other controllers. Note also that the number of iterations c

can be variable and it does not affect the closed-loop stability of the DMPC archi-

tecture presented in this subsection; a point that will be made clear below. For the

iterations in this DMPC architecture, there are different choices of the termination

condition. For example, the number of iterations c may be restricted to be smaller

than a maximum iteration number cmax (i.e., c ≤ cmax) and/or the iterations may

be terminated when the difference of the performance or the solution between two

consecutive iterations is smaller than a threshold value and/or the iterations maybe

terminated when a maximum computational time is reached.

In order to proceed, we define x̂(t|tk) for t ∈ [tk, tk+N) as the nominal sampled

trajectory of the system of Eq. 5.1 associated with the feedback control law h(x) and

sampling time ∆ starting from x(tk). This nominal sampled trajectory is obtained

by integrating recursively the following differential equation:

˙̂x(t|tk) = f(x̂(t|tk)) +
m∑
i=1

gi(x̂(t|tk))hi(x̂(tk+l|tk)),

∀τ ∈ [tk+l, tk+l+1), l = 0, . . . , N − 1. (5.36)

Based on x̂(t|tk), we can define the following variable:

un,j(t|tk) = hj(x̂(tk+l|tk)), j = 1, . . . ,m,

∀τ ∈ [tk+l, tk+l+1), l = 0, . . . , N − 1. (5.37)

which will be used as the initial guess of the trajectory of uj.
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The design of the LMPC j, j = 1, . . . ,m, at iteration c is based on the following

optimization problem:

min
uj∈S(∆)

∫ tk+N

tk

[
∥x̃(τ)∥Qc

+
m∑
i=1

∥ui(τ)∥Rci

]
dτ (5.38)

s.t. ˙̃x(t) = f(x̃(t)) +
m∑
i=1

gi(x̃(t))ui (5.39)

ui(t) = u∗,c−1
p,i (t|tk), ∀i ̸= j (5.40)

uj(t) ∈ Uj (5.41)

x̃(tk) = x(tk) (5.42)

∂V (x(tk))

∂x
gj(x(tk))uj(tk) ≤

∂V (x(tk))

∂x
gj(x(tk))hj(x(tk)) (5.43)

where x̃ is the predicted trajectory of the nominal system with uk, the input trajectory,

computed by the LMPCs of Eqs. 5.38-5.43 and all the other inputs are the optimal

input trajectories at iteration c−1 of the rest of distributed controllers (i.e., u∗,c−1
p,i (t|tk)

for i ̸= j). The optimal solution to the optimization problem of Eqs. 5.38-5.43 is

denoted as u∗,c
p,j(t|tk) which is defined for t ∈ [tk, tk+N). Accordingly, we define the

final optimal input trajectory of LMPC j (that is, the optimal trajectories computed

at the last iteration) as u∗
p,j(t|tk) which is also defined for t ∈ [tk, tk+N).

Note that in the first iteration of each distributed LMPC, the input trajectory

defined in Eq. 5.37 is used as the initial input trajectory guess; that is, u∗,0
p,j(t|tk) =

un,j(t|tk) with i = 1, . . . ,m.
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The manipulated inputs of the system of Eq. 5.1 under this DMPC design with

LMPCs of Eqs. 5.38-5.43 are defined as follows:

ui(t) = u∗
p,i(t|tk), i = 1, . . . ,m,∀t ∈ [tk, tk+1). (5.44)

In what follows, we refer to this DMPC architecture as the iterative DMPC. The

stability properties of the iterative DMPC are stated in the following Theorem 5.2.

Remark 5.5 In general, there is no guaranteed convergence of the optimal cost or

solution of an iterated DMPC to the optimal cost or solution of a centralized MPC

for general nonlinear constrained systems because of the non-convexity of the MPC

optimization problems and the fact that the DMPC does not solve the centralized

LMPC in a distributed fashion due to the way the Lyapunov-based constraint of the

centralized LMPC is broken down into constraints imposed on the individual LMPCs;

please also see Remark 5.12 below. However, with the implementation strategy of

the iterative DMPC presented in this section, it is guaranteed that the optimal cost

of the distributed optimization of Eqs. 5.38-5.43 is upper bounded by the cost of the

Lyapunov-based controller h(·) at each sampling time.

Remark 5.6 Note that in the case of linear systems, the constraint of Eq. 5.54 is lin-

ear with respect to uj and it can be verified that the optimization problem of Eqs. 5.50-

5.54 is convex. The input given by LMPC j of Eqs. 5.50-5.54 at each iteration may be

defined as a convex combination of the current optimal input solution and the previous

one, for example,

uc
p,j(t|tk) =

m,i̸=j∑
i=1

wiu
c−1
p,j (t|tk) + wju

∗,c
p,j(t|tk) (5.45)
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where
m∑
i=1

wi = 1 with 0 < wi < 1, u∗,c
p,j is the current solution given by the optimization

problem of Eqs. 5.50-5.54 and uc−1
p,j is the convex combination of the solutions obtained

at iteration c − 1. By doing this, it is possible to proved that the optimal cost of

the distributed LMPC of Eqs. 5.50-5.54 converges to the one of the corresponding

centralized control system [5, 95]. This property is summarized in Corollary 5.1 in

Section 5.4.2. We also note that in the case of linear systems, the convexity of the

distributed optimization problem also holds for all the other DMPC designs presented

in this chapter. In addition to Corollary 5.1, the reader may also refer to [8, 90, 5, 95]

for more discussions on the conditions under which convergence of the solution of a

distributed linear or convex MPC design to the solution of a centralized MPC or a

Pareto optimal solution is ensured in the context of linear systems.

Stability Properties

Theorem 5.2 Consider the system of Eq. 5.1 in closed-loop under the sequential

DMPC of Eqs. 5.38-5.44 based on a nonlinear control law h(x) that satisfies the

condition of Eqs. 5.5-5.8 with class K functions αi(·), i = 1, 2, 3, 4. Let ϵw > 0,

∆ > 0 and ρ > ρs > 0 satisfy the constraint of Eq. 5.25. For any N ≥ 1 and c ≥ 1,

if x(t0) ∈ Ωρ and if ρmin ≤ ρ where ρmin is defined as in Eq. 5.26, then the state x(t)

of the closed-loop system is ultimately bounded in Ωρmin
.

Proof: Similar to the proof of Theorem 5.1, the proof of Theorem 5.2 also consists

of two parts. We first prove that the optimization problem of Eqs. 5.38-5.43 is feasible

for each iteration c and x ∈ Ωρ. Then we prove that, under the DMPC architecture

of Eqs. 5.38-5.44, the state of the system of Eq. 5.1 is ultimately bounded in Ωρmin
.

Part 1: In order to prove the feasibility of the optimization problem of Eqs. 5.38-

5.43, we only have to prove that there exists a uj(tk) which satisfies the input con-

231



straint of Eq. 5.41 and the constraint of Eq. 5.43. This is because the constraint of

Eq. 5.43 is only enforced on the first prediction step of uj(tk) and in the prediction

time t ∈ [tk+1, tk+N), the input constraint of Eq. 5.44 can be easily satisfied with uj(t)

being any value in the convex set Uj.

We assume that x(tk) ∈ Ωρ (x(t) is bounded in Ωρ which will be proved in Part

2). It is easy to verify that the value of uj such that uj(tk) = hj(x(tk)) satisfies

the input constraint of Eq. 5.41 (assumed property of h(x) for x ∈ Ωρ) and the

constraint of Eq. 5.43 for all possible c, thus, the feasibility of LMPC j of Eqs. 5.38-

5.43, j = 1, . . . ,m, is guaranteed.

Part 2: By adding the constraint of Eq. 5.43 of each LMPC together, we have:

m∑
j=1

∂V (x(tk))

∂x
gj(x(tk))u

∗,c
p,j(tk|tk) ≤

m∑
j=1

∂V (x(tk))

∂x
gj(x(tk))hj(x(tk)). (5.46)

It follows from the above inequality and condition of Eq. 5.5 that:

∂V (x(tk))

∂x

(
f(x(tk)) +

m∑
j=1

gj(x(tk))u
∗,c
p,j(tk|tk)

)

≤ ∂V (x(tk))

∂x

(
f(x(tk)) +

m∑
j=1

gj(x(tk))hj(x(tk))

)

≤ −α3(∥x(tk)∥). (5.47)

Following the same approach as in the proof of Theorem 5.1, we know that if the

condition of Eq. 5.25 is satisfied, then the state of the closed-loop system can be proved

to be maintained in Ωρmin
under the iterative DMPC architecture of Eqs. 5.38-5.44.

�
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Corollary 5.1 Consider a class of linear time-invariant systems:

ẋ(t) = Ax(t) +
m∑
i=1

Biui(t) (5.48)

where A and Bi are constant matrices with appropriate dimensions. If we define

the inputs of the distributed LMPC of Eqs. 5.38-5.43 at iteration c as in Eq. 5.45,

then at a sampling time tk, as the iteration number c → ∞, the optimal cost of the

distributed optimization problem of Eqs. 5.38-5.43 converges to the optimal cost of the

corresponding centralized control system.

Proof: Taking into account that x(tk) and h(x(tk)) are known at tk, the constraint

of Eq. 5.43 can be written in the following linear form:

C(x(tk))uj(tk) ≤ D(x(tk)) (5.49)

where C(x(tk)) and D(x(tk)) are constants at each tk and only depend on x(tk).

This implies that the constraint of Eq. 5.43 is linear with respect to uj. For a linear

system, it is also easy to verify that the constraints of Eqs. 5.38-5.42 are convex.

Therefore, the optimization problem of Eqs. 5.38-5.43 is convex. If the inputs of

the distributed controllers at each iteration c are defined as in Eq. 5.45, then the

convergence of the cost given by the distributed optimization problem of Eqs. 5.38-

5.43 to the corresponding centralized control system can be proved following similar

strategies used in [5, 95] for time tk. �

Remark 5.7 Note that the DMPC designs have the same stability region Ωρ as the

one of the nonlinear control law h(x). When the stability of the nonlinear control law

h(x) is global (i.e., the stability region is the entire state space), then the stability of
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the DMPC designs is also global. Note also that for any initial condition in Ωρ, the

DMPC designs are proved to be feasible.

Remark 5.8 The choice of the horizon of the DMPC designs does not affect the

stability of the closed-loop system. For any horizon length N ≥ 1, the closed-loop

stability is guaranteed by the constraints of Eqs. 5.23 and 5.43. However, the choice

of the horizon does affect the performance of the DMPC designs.

Remark 5.9 Note that because the manipulated inputs enter the dynamics of the sys-

tem of Eq. 5.1 in an affine manner, the constraints designed in the LMPC optimiza-

tion problems of Eqs. 5.17-5.23 and 5.38-5.43 to guarantee the closed-loop stability

can be decoupled for different distributed controllers as in Eqs. 5.23 and 5.43.

Remark 5.10 In the sequential DMPC architecture presented in Section 5.4.1, the

distributed controllers are evaluated in sequence, which implies that the minimal time

to obtain a set of solutions to all the LMPCs is the sum of the evaluation times of all

the LMPCs; whereas in the iterative DMPC architecture presented in Section 5.4.2,

the distributed controllers are evaluated in parallel, which implies that the minimal

time to obtain a set of solutions to all the LMPCs in each iteration is the largest

evaluation time among all the LMPCs.

Remark 5.11 An alternative to the DMPC designs is to design a centralized MPC

to compute all the inputs. A centralized LMPC design for the system of Eq. 5.1 based

on the nonlinear control law h(x) is as follows (please also see Section 2.6):

min
u1...um∈S(∆)

∫ tk+N

tk

[
∥x̃(τ)∥Qc

+
m∑
i=1

∥ui(τ)∥Rci

]
dτ (5.50)

s.t. ˙̃x(t) = f(x̃(t)) +
m∑
i=1

gi(x̃(t))ui (5.51)
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ui(t) ∈ Ui, i = 1, . . . ,m (5.52)

x̃(tk) = x(tk) (5.53)

m∑
i=1

∂V (x(tk))

∂x
gi(x(tk))ui(tk)

≤
m∑
i=1

∂V (x(tk))

∂x
gi(x(tk))hi(x(tk)) (5.54)

where x̃ is the predicted trajectory of the nominal system with ui, i = 1, . . . ,m, the

input trajectory computed by this centralized LMPC. The optimal solution to this

optimization problem is denoted by u∗
ci(t|tk), i = 1, . . . ,m, which is defined for t ∈

[tk, tk+N). The manipulated inputs of the closed-loop system of Eq. 5.1 under this

centralized LMPC are defined as follows:

ui(t) = u∗
ci(t|tk), i = 1, . . . ,m, ∀t ∈ [tk, tk+1). (5.55)

In what follows, we refer to this controller as the centralized LMPC.

Remark 5.12 Note that the sequential (or iterative) DMPC is not a direct decompo-

sition of the centralized LMPC because the set of constraints of Eq. 5.23 (or Eq. 5.43)

for j = 1, . . . ,m in the DMPC formulation of Eqs. 5.17-5.23 (or Eq. 5.38-5.43) im-

poses a different feasibility region from the one of the centralized LMPC of Eqs. 5.50-

5.54 which has a single constraint (Eq. 5.54).

Remark 5.13 Note also that for general nonlinear systems, there is no guarantee

that the closed-loop performance of one (centralized or distributed) MPC architecture

discussed in this section should be superior than the others since the solutions provided

by these MPC architectures are proved to be feasible and stabilizing but the superi-

ority of the performance of one MPC architecture over another is not established.
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Figure 5.3: Process flow diagram of alkylation of benzene

This is because the MPC designs are implemented in a receding horizon scheme and

the prediction horizon is finite; and also because the different MPC designs are not

equivalent as we discussed in Remark 5.12 and because of the non-convexity property

as we discussed in Remark 5.5. In applications of these MPC architectures, espe-

cially for chemical process control in which non-convex problems is a very common

occurrence, simulations should be conducted before making decisions as to which ar-

chitecture should be used.
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5.4.3 Application to an Alkylation of Benzene Process

The process of alkylation of benzene with ethylene to produce ethylbenzene is widely

used in the petrochemical industry. Dehydration of the product produces styrene,

which is the precursor to polystyrene and many copolymers. Over the last two

decades, several methods and simulation results of alkylation of benzene with cat-

alysts have been reported in the literature. The process model developed in this

section is based on these references [22, 42, 81, 114]. More specifically, the process

considered in this work consists of four CSTRs and a flash tank separator, as shown in

Figure 5.3. The CSTR-1, CSTR-2 and CSTR-3 are in series and involve the alkylation

of benzene with ethylene. Pure benzene is fed from stream F1 and pure ethylene is fed

from streams F2, F4 and F6. Two catalytic reactions take place in CSTR-1, CSTR-2

and CSTR-3. Benzene (A) reacts with ethylene (B) and produces the desired product

ethylbenzene (C) (reaction 1); ethylbenzene can further react with ethylene to form

1,3-diethylbenzene (D) (reaction 2) which is the byproduct. The effluent of CSTR-3,

including the products and leftover reactants, is fed to a flash tank separator, in which

most of benzene is separated overhead by vaporization and condensation techniques

and recycled back to the plant and the bottom product stream is removed. A portion

of the recycle stream Fr2 is fed back to CSTR-1 and another portion of the recycle

stream Fr1 is fed to CSTR-4 together with an additional feed stream F10 which con-

tains 1,3-diethylbenzene from further distillation process that we do not consider in

this example. In CSTR-4, reaction 2 and catalyzed transalkylation reaction in which

1,3-diethylbenzene reacts with benzene to produce ethylbenzene (reaction 3) takes

place. All chemicals left from CSTR-4 eventually pass into the separator. All the

materials in the reactions are in liquid phase due to high pressure and their molar

volumes are assumed to be constants. The dynamic equations describing the behav-
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ior of the process, obtained through material and energy balances under standard

modeling assumptions, are given below:

dCA1

dt
=

F1CA0 + Fr2CAr − F3CA1

V1

− r1(T1, CA1, CB1) (5.56)

dCB1

dt
=

F2CB0 + Fr2CBr − F3CB1

V1

− r1(T1, CA1, CB1)− r2(T1, CB1, CC1)(5.57)

dCC1

dt
=

Fr2CCr − F3CC1

V1

+ r1(T1, CA1, CB1)− r2(T1, CB1, CC1) (5.58)

dCD1

dt
=

Fr2CDr − F3CD1

V1

+ r2(T1, CB1, CC1) (5.59)

dT1

dt
=

Q1 + F1CA0HA(TA0) + F2CB0HB(TB0)
A,B,C,D∑

i

Ci1CpiV1

+

A,B,C,D∑
i

(Fr2CirHi(T4)− F3Ci1Hi(T1))

A,B,C,D∑
i

Ci1CpiV1

+
−∆Hr1r1(T1, CA1, CB1)−∆Hr2r2(T1, CB1, CC1)

A,B,C,D∑
i

Ci1Cpi

(5.60)

dCA2

dt
=

F3CA1 − F5CA2

V2

− r1(T2, CA2, CB2) (5.61)

dCB2

dt
=

F3CB1 + F4CB0 − F5CB2

V2

− r1(T2, CA2, CB2)− r2(T2, CB2, CC2) (5.62)

dCC2

dt
=

F3CC1 − F5CC2

V2

+ r1(T2, CA2, CB2)− r2(T2, CB2, CC2) (5.63)

dCD2

dt
=

F3CD1 − F5CR2

V2

+ r2(T2, CB2, CC2) (5.64)

dT2

dt
=

Q2 + F4CB0HB(TB0)
A,B,C,D∑

i

Ci2CpiV2
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+

A,B,C,D∑
i

(F3Ci1Hi(T1)− F5Ci2Hi(T2))

A,B,C,D∑
i

Ci2CpiV2

+
−∆Hr1r1(T2, CA2, CB2)−∆Hr2r2(T2, CA2, CB2)

A,B,C,D∑
i

Ci2Cpi

(5.65)

dCA3

dt
=

F5CA2 − F7CA3

V3

− r1(T3, CA3, CB3) (5.66)

dCB3

dt
=

F5CB2 + F6CB0 − F7CB3

V3

− r1(T3, CA3, CB3)− r2(T3, CB3, CC3) (5.67)

dCC3

dt
=

F5CC2 − F7CC3

V3

+ r1(T3, CA3, CB3)− r2(T3, CB3, CC3) (5.68)

dCD3

dt
=

F5CD2 − F7CD3

V3

+ r2(T3, CB3, CC3) (5.69)

dT3

dt
=

Q3 + F6CB0HB(TB0)
A,B,C,D∑

i

Ci3CpiV3

+

A,B,C,D∑
i

(F5Ci2Hi(T2)− F7Ci3Hi(T3))

A,B,C,D∑
i

Ci3CpiV3

+
−∆Hr1r1(T3, CA3, CB3)−∆Hr2r2(T3, CB3, CC3)

A,B,C,D∑
i

Ci3Cpi

(5.70)

dCA4

dt
=

F7CA3 + F9CA5 − FrCAr − F8CA4

V4

(5.71)

dCB4

dt
=

F7CB3 + F9CB5 − FrCBr − F8CB4

V4

(5.72)

dCC4

dt
=

F7CC3 + F9CC5 − FrCCr − F8CC4

V4

(5.73)
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dCD4

dt
=

F7CD3 + F9CD5 − FrCDr − F8CD4

V4

(5.74)

dT4

dt
=

Q4 +
A,B,C,D∑

i

(F7Ci3Hi(T3) + F9Ci5Hi(T5))

A,B,C,D∑
i

Ci4CpiV4

+

A,B,C,D∑
i

(−MiHi(T4)− F8Ci4Hi(T4)−MiHvapi)

A,B,C,D∑
i

Ci4CpiV4

(5.75)

dCA5

dt
=

Fr1CAr − F9CA5

V5

− r3(T5, CA5, CD5) (5.76)

dCB5

dt
=

Fr1CBr − F9CB5

V5

− r2(T5, CB5, CC5) (5.77)

dCC5

dt
=

Fr1CCr − F9CC5

V5

− r2(T5, CB5, CC5)

+2r3(T5, CA5, CD5) (5.78)

dCD5

dt
=

Fr1CDr + F10CD0 − F9CD5

V5

+r2(T5, CB5, CC5)− r3(T5, CA5, CD5) (5.79)

dT5

dt
=

Q5 + F10CD0HD(TD0)
A,B,C,D∑

i

Ci5CpiV5

+

A,B,C,D∑
i

(Fr1CirHi(T4)− F9Ci5Hi(T5))

A,B,C,D∑
i

Ci5CpiV5

+
−∆Hr2r2(T5, CB5, CC5)−∆Hr3r3(T5, CA5, CD5)

A,B,C,D∑
i

Ci5Cpi

(5.80)
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where r1, r2 and r3 are the reaction rates of reactions 1, 2 and 3 respectively and Hi,

i = A, B, C, D, are the enthalpies of the reactants. The reaction rates are related

to the concentrations of the reactants and the temperature in each reactor as follows:

r1(T,CA, CB) = 0.0840e
−9502
RT C0.32

A C1.5
B (5.81)

r2(T,CB, CC) =
0.0850e

−20643
RT C2.5

B C0.5
C

(1 + kEB2CD)
(5.82)

r3(T,CA, CD) =
66.1e

−61280
RT C1.0218

A CD

(1 + kEB3CA)
(5.83)

where:

kEB2 = 0.152e
−3933
RT (5.84)

kEB3 = 0.490e
−50870
RT . (5.85)

The heat capacities of the species are assumed to be constants and the molar

enthalpies have a linear dependence on temperature as follows:

Hi(T ) = Hiref + Cpi(T − Tref ), i = A,B,C,D (5.86)

where Cpi, i = A, B, C, D are heat capacities.

The model of the flash tank separator is developed under the assumption that the

relative volatility of each species has a linear correlation with the temperature of the

vessel within the operating temperature range of the flash tank, as shown below:

αA = 0.0449T4 + 10 (5.87)
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αB = 0.0260T4 + 10 (5.88)

αC = 0.0065T4 + 0.5 (5.89)

αD = 0.0058T4 + 0.25 (5.90)

where αi, i = A, B, C,D, represent the relative volatilities. It has also been assumed

that there is a negligible amount of reaction taking place in the separator and a

fraction of the total condensed overhead flow is recycled back to the reactors. The

following algebraic equations model the composition of the overhead stream relative

to the composition of the liquid holdup in the flash tank:

Mi = k

αi(F7Ci3 + F9Ci5)
A,B,C,D∑

j

(F7Cj3 + F9Cj5)

A,B,C,D∑
j

αj(F7Cj3 + F9Cj5)

, i = A,B,C,D (5.91)

where Mi, i = A, B, C, D are the molar flow rates of the overhead reactants and

k is the fraction of condensed overhead flow recycled to the reactors. Based on Mi,

i = A, B, C, D, we can calculate the concentration of the reactants in the recycle

streams as follows:

Cir =
Mi

A,B,C,D∑
j

Mi/Cj0

, i = A,B,C,D (5.92)

where Cj0, j = A,B,C,D, are the mole densities of pure reactants. The condensation

of vapor takes place overhead, and a portion of the condensed liquid is purged back to

separator to keep the flow rate of the recycle stream at a fixed value. The temperature

of the condensed liquid is assumed to be the same as the temperature of the vessel.

The definitions for the variables used in the above model can be found in Table 5.1,

with the parameter values given in Table 5.2.
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Table 5.1: Process variables of the alkylation of benzene process of Eqs. 5.56-5.80

CA1, CB1, CC1, CD1 Concentrations of A, B, C, D in CSTR-1

CA2, CB2, CC2 ,CD2 Concentrations of A, B, C, D in CSTR-2

CA3, CB3, CC3, CD3 Concentrations of A, B, C, D in CSTR-3

CA4, CB4, CC4, CD4 Concentrations of A, B, C, D in separator

CA5, CB5, CC5, CD5 Concentrations of A, B, C, D in CSTR-4

CAr, CBr, CCr, CDr Concentrations of A, B, C, D in Fr, Fr1, Fr2

T1, T2, T3, T4, T5 Temperatures in each vessel

Tref Reference temperature

F3, F5, F7, F8, F9 Effluent flow rates from each vessel

F1, F2, F4, F6, F10 Feed flow rates to each vessel

Fr, Fr1, Fr2 Recycle flow rates

HvapA, HvapB, HvapC , HvapD Enthalpies of vaporization of A, B, C, D

HAref , HBref , HCref , HDref Enthalpies of A, B, C, D at Tref

∆Hr1, ∆Hr2, ∆Hr3 Heat of reactions 1, 2 and 3

V1, V2, V3, V4, V5 Volume of each vessel

Q1, Q2, Q3, Q4, Q5 External heat/coolant inputs to each vessel

CpA, CpB, CpC , CpD Heat capacity of A, B, C, D at liquid phase

αA, αB, αC , αD Relative volatilities of A, B, C, D

CA0, CB0, CC0, CD0 Molar densities of pure A, B, C, D

TA0, TB0, TD0 Feed temperatures of pure A, B, D

k Fraction of overhead flow recycled to the reactors
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Table 5.2: Parameter values of the alkylation of benzene process of Eqs. 5.56-5.80

F1 7.1× 10−3 [m3/s] Fr 0.012 [m3/s]

F2 8.697× 10−4 [m3/s] Fr1 0.006 [m3/s]

Fr2 0.006 [m3/s] V1 1 [m3]

F10 2.31× 10−3 [m3/s] V2 1 [m3]

HvapA 3.073× 104 [J/mole] V3 1 [m3]

HvapB 1.35× 104 [J/mole] V4 3 [m3]

HvapC 4.226× 104 [J/mole] V5 1 [m3]

HvapD 4.55× 104 [J/mole] CpA 184.6 [J/mole ·K]

HAref 7.44× 104 [J/mole] HBref 5.91× 104 [J/mole]

HCref 2.02× 104 [J/mole] HBref −2.89× 104 [J/mole]

∆Hr1 −1.536× 105 [J/mole] CpB 59.1 [J/mole ·K]

∆Hr2 −1.118× 105 [J/mole] CpC 247 [J/mole ·K]

∆Hr3 4.141× 105 [J/mole] CpD 301.3 [J/mole ·K]

CA0 1.126× 104 [mole/m3] Tref 450 [K]

CB0 2.028× 104 [mole/m3] TA0 473 [K]

CC0 8174 [mole/m3] TB0 473 [K]

CD0 6485 [mole/m3] TD0 473 [K]

k 0.8
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Table 5.3: Steady-state input values for xs of the alkylation of benzene process of
Eqs. 5.56-5.80

Q1s -4.4×106 [J/s] Q2s -4.6×106 [J/s]

Q3s -4.7×106 [J/s] Q4s 9.2×106 [J/s]

Q5s 5.9×106 [J/s] F4s 8.697×10−4 [m3/s]

F4s 8.697×10−4 [m3/s]

Each of the tanks has an external heat/coolant input. The manipulated inputs to

the process are the heat injected to or removed from the five vessels, Q1, Q2, Q3, Q4

and Q5, and the feed stream flow rates to CSTR-2 and CSTR-3, F4 and F6.

The states of the process consist of the concentrations of A, B, C, D in each

of the five vessels and the temperatures of the vessels. The state of the process is

assumed to be available continuously to the controllers. We consider a stable steady

state (operating point), xs, of the process which is defined by the steady-state inputs

Q1s, Q2s, Q3s, Q4s, Q5s, F4s and F6s which are shown in Table 5.3 with corresponding

steady-state values shown in Table 5.4.

The control objective is to regulate the system from an initial state to the steady

state. The initial state values are shown in Table 5.6.

The first distributed controller (LMPC 1) will be designed to decide the values

of Q1, Q2 and Q3, the second distributed controller (LMPC 2) will be designed to

decide the values of Q4 and Q5, and the third distributed controller (LMPC 3) will

be designed to decide the values of F4 and F6. Taking this into account, the process

model of Eqs. 5.56-5.80 belongs to the following class of nonlinear systems:

ẋ(t) = f(x) + g1(x)u1(t) + g2(x)u2(t) + g3(x)u3(t) (5.93)
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Table 5.4: Steady-state values for xs of the alkylation of benzene process of Eqs. 5.56-
5.80

CA1 9.101× 103 [mole/m3] CA2 7.548× 103 [mole/m3]

CB1 22.15 [mole/m3] CB2 23.46 [mole/m3]

CC1 1.120× 103 [mole/m3] CC2 1.908× 103 [mole/m3]

CD1 2.120× 102 [mole/m3] CD2 3.731× 102 [mole/m3]

T1 4.772× 102 [K] T2 4.77× 102 [K]

CA3 6.163× 103 [mole/m3] CA4 1.723× 103 [mole/m3]

CB3 24.84 [mole/m3] CB4 13.67 [mole/m3]

CC3 2.616× 103 [mole/m3] CC4 5.473× 103 [mole/m3]

CD3 5.058× 102 [mole/m3] CD4 7.044× 102 [mole/m3]

T3 4.735× 102 [K] T4 4.706× 102 [K]

CA5 5.747× 103 [mole/m3] CD5 1.537× 102 [mole/m3]

CB5 3.995 [mole/m3] T5 4.783× 102 [K]

CC5 3.830× 103 [mole/m3]

Table 5.5: Manipulated input constraints of the alkylation of benzene process of
Eqs. 5.56-5.80

|u11| ≤ 7.5× 105 [J/s] |u12| ≤ 5× 105 [J/s]

|u13| ≤ 5× 105 [J/s] |u21| ≤ 6× 105 [J/s]

|u22| ≤ 5× 105 [J/s] |u31| ≤ 4.93× 10−5 [m3/s]

|u32| ≤ 4.93× 10−5 [m3/s]
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Table 5.6: Initial state values of the alkylation of benzene process of Eqs. 5.56-5.80

CA1 9.112× 103 [mole/m3] CA2 7.557× 103 [mole/m3]

CB1 25.09 [mole/m3] CB2 27.16 [mole/m3]

CC1 1.113× 103 [mole/m3] CC2 1.905× 103 [mole/m3]

CD1 2.186× 102 [mole/m3] CD2 3.695× 102 [mole/m3]

T1 4.430× 102 [K] T2 4.371× 102 [K]

CA3 6.170× 103 [mole/m3] CA4 1.800× 103 [mole/m3]

CB3 29.45 [mole/m3] CB4 16.35 [mole/m3]

CC3 2.617× 103 [mole/m3] CC4 5.321× 103 [mole/m3]

CD3 5.001× 102 [mole/m3] CD4 7.790× 102 [mole/m3]

T3 4.284× 102 [K] T4 4.331× 102 [K]

CA5 5.889× 103 [mole/m3] CD5 2.790× 102 [mole/m3]

CB5 5.733 [mole/m3] T5 4.576× 102 [K]

CC5 3.566× 103 [mole/m3]
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where the state x is the deviation of the state of the process from the steady state,

uT
1 = [u11 u12 u13] = [Q1−Q1s Q2−Q2s Q3−Q3s], u

T
2 = [u21 u22] = [Q4−Q4s Q5−Q5s]

and uT
3 = [u31 u32] = [F4−F4s F6−F6s] are the manipulated inputs which are subject

to the constraints shown in Table 5.5.

In the control of the process, u1 and u2 are necessary to keep the stability of the

closed-loop system, while u3 can be used as an extra manipulated input to improve

the closed-loop performance. To illustrate the theoretical results, we first design the

nonlinear control law h(x) = [h1(x) h2(x) h3(x)]
T . Specifically, h1(x) and h2(x) are

designed as follows [94]:

hi(x) =


−
LfV +

√
(LfV )2 + (LgiV )4

(LgiV )2
LgiV if LgiV ̸= 0

0 if LgiV = 0

(5.94)

where i = 1, 2, LfV =
∂V

∂x
f(x) and LgiV =

∂V

∂x
gi(x) denote the Lie derivatives of

the scalar function V with respect to f and gi (i = 1, 2), respectively. The controller

h3(x) is chosen to be h3(x) = [0 0]T because the input set u3 is not needed to stabilize

the process. We consider a Lyapunov function V (x) = xTPx with P being the

following weight matrix:

P = diag ([1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10]) . (5.95)

The weights in P are chosen by a trail-and-error procedure. The basic idea behind

this procedure is that more weight should be put on the temperatures of the five

vessels because temperatures have more significant effect on the overall control per-

formance, and the controller h(x) should be able to stabilize the closed-loop system

asymptotically with continuous feedback and actuation.
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Figure 5.4: Trajectories of the Lyapunov function V (x) of the alkylation of benzene
process of Eqs. 5.56-5.80 under the controller h(x) of Eq. 5.94 implemented in a
sample-and-hold fashion (solid line), the centralized LMPC of Eqs. 5.50-5.54 (dashed
line), the sequential DMPC of Eqs. 5.17-5.23 (dash-dotted line) and the iterative
DMPC of Eqs. 5.38-5.43 with c = 1 (dotted line)

Based on h(x), we design the centralized LMPC of Eqs. 5.50-5.54, the sequential

DMPC of Eqs. 5.17-5.23 and the iterative DMPC of Eqs. 5.38-5.43. The sampling

time used is ∆ = 30 s and the weight matrices:

Qc = diag
([
1 1 1 1 103 1 1 1 1 103 10 10 10 10 104 1 1 1 1 103 1 1 1 1 103

])
(5.96)

and Rc1 = diag ([10−8 10−8 10−8]), Rc2 = diag ([10−8 10−8]) and Rc3 = diag ([1 1]).

First, we carried out a set of simulations which demonstrate that the nonlinear

control law h(x) and the different schemes of LMPCs can all stabilize the closed-loop

system asymptotically. Figure 5.4 shows the trajectories of the Lyapunov function

V (x) under the different control schemes. Note that because of the constraints of

Eqs. 5.54, 5.23 and 5.43, the trajectories of the Lyapunov function of the closed-loop

system under the centralized LMPC, the sequential DMPC and the iterative DMPC

are guaranteed to be bounded by the corresponding Lyapunov function trajectory

under the controller h(x) implemented in a sample-and-hold fashion with the sampling

time ∆ until V (x) converges to a small region around the origin (i.e., Ωρmin
). This
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Table 5.7: Mean evaluation time of different LMPC optimization problems for 100
evaluations

N = 1 (s) N = 3 (s) N = 6 (s)

Centralized LMPC 2.192 8.694 27.890

LMPC 1 0.472 2.358 6.515

Sequential LMPC 2 0.497 1.700 4.493

LMPC 3 0.365 1.453 3.991

LMPC 1 0.484 2.371 6.280

Iterative LMPC 2 0.426 1.716 4.413

LMPC 3 0.185 0.854 2.355

point is also illustrated in Figure 5.4.

Next, we compare the mean evaluation times of the centralized LMPC optimiza-

tion problem and the sequential and iterative DMPC optimization problems. Each

LMPC optimization problem was evaluated 100 times at different conditions. Differ-

ent prediction horizons were considered in this set of simulations. The simulations

were carried out using JAVATM programming language in a PENTIUMr 3.20 GHz

computer. The optimization problems were solved using the open source interior

point optimizer Ipopt [106]. The results are shown in Table 5.7. From Table 5.7,

we can see that in all cases, the time needed to solve the centralized LMPC is much

larger than the time needed to solve the sequential or iterative DMPCs. This is be-

cause the centralized LMPC has to solve a much larger (in terms of decision variables)

optimization problem than the DMPCs. We can also see that the evaluation time of

the centralized LMPC is even larger than the sum of evaluation times of LMPC 1,

LMPC 2 and LMPC 3 in the sequential DMPC, and the times needed to solve the
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Figure 5.5: Total performance costs along the closed-loop trajectories of the alkylation
of benzene process of Eqs. 5.56-5.80 under centralized LMPC of Eqs. 5.50-5.54 (dashed
line), sequential DMPC of Eqs. 5.17-5.23 (dash-dotted line) and iterative DMPC of
Eqs. 5.38-5.43 (solid line)

DMPCs in both sequential and iterative distributed schemes are of the same order of

magnitude.

In the following set of simulations, we compare the centralized LMPC and the two

DMPC schemes from a performance index point of view. In this set of simulations,

the prediction horizon is N = 1. To carry out this comparison, the same initial

condition and parameters were used for the different control schemes and the total

cost under each control scheme was computed as follows:

J =

∫ tM

t0

[
∥x(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

+ ∥u3(τ)∥Rc3

]
dτ (5.97)

where t0 = 0 is the initial time of the simulations and tM = 1000 s is the end of the

simulations. Table 5.8 shows the total cost along the closed-loop system trajectories

(trajectories I) under the different control schemes. For the iterative DMPC design,

different maximum number of iterations, cmax, are used. From Table 5.8, we can see

that in this set of simulations, the centralized LMPC gives the lowest performance
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Table 5.8: Total performance costs along the closed-loop trajectories I of the alkyla-
tion of benzene process of Eqs. 5.56-5.80

J (×107)

Centralized 1.8858

Sequential 1.8891

cmax 1 3 5 7 9 11 13 15

Iterative 1.8955 1.8883 1.8867 1.8863 1.8862 1.8859 1.8858 1.8858

cost, the sequential DMPC gives lower cost than the iterative DMPC when there is no

iteration (cmax = 1). However, as the iteration number c increases, the performance

cost given by the iterative DMPC decreases and converges to the cost of the one

corresponding to the centralized LMPC. This point is also shown in Figure 5.5.

Note that the above set of simulations only represents one case of many possible

cases. As we discussed in Remarks 5.5 and 5.13, there is no guaranteed convergence

of the performance of distributed MPC to the performance of a centralized MPC and

there is also no guaranteed superiority of the performance of one DMPC scheme over

the others. In the following, we show two sets of simulations to illustrate these points.

In both sets of simulations, we chose different matrices Rc1 and Rc2, and all the other

parameters (Qc, Rc3, ∆, N) remained the same as the previous set of simulations. In

the first set of simulations, we picked Rc1 = diag([5× 10−5 5× 10−5 5× 10−5]), Rc2 =

diag([5 × 10−5 5 × 10−5]). The total performance cost along the closed-loop system

trajectories (trajectories II) under this simulation setting are shown in Table 5.9.

From Table 5.9, we can see that the centralized LMPC provides a much lower cost

than both the sequential and iterative distributed LMPCs. We can also see that
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Table 5.9: Total performance costs along the closed-loop trajectories II of the alky-
lation of benzene process of Eqs. 5.56-5.80

J (×107)

Centralized 5.052

Sequential 7.039

cmax 1 3 5 6

Iterative 7.2286 7.2241 7.2240 7.2240

Table 5.10: Total performance costs along the closed-loop trajectories III of the alky-
lation of benzene process of Eqs. 5.56-5.80

J (×107)

Centralized 3.8564

Sequential 3.6755

cmax 1 3 4

Iterative 3.6663 3.6639 3.6639

253



as the number of iterations increases, the iterative distributed LMPC converges to

a value which is different from the one obtained by the centralized LMPC. In the

second set of simulations, we picked Rc1 = diag([1 × 10−4 1 × 10−4 1 × 10−4]),

Rc2 = diag([1× 10−4 1× 10−4]) and the total performance cost along the closed-loop

system trajectories (trajectories III) are shown in Table 5.10 from which we can see

that the centralized LMPC provides a higher cost than both distributed LMPCs.

5.5 Sequential and Iterative DMPC Designs with

Asynchronous Measurements

In this section, we design sequential and iterative DMPC schemes, taking into ac-

count asynchronous measurements explicitly in their designs, that provide determin-

istic closed-loop stability properties. Similarly, in each DMPC architecture, we will

design m LMPCs to compute ui, i = 1, . . . ,m, and refer to the LMPC computing the

input trajectories of ui as LMPC i. Schematic diagrams of the sequential and itera-

tive DMPC designs for systems subject to asynchronous measurements are shown in

Figs. 5.6 and 5.7.

5.5.1 Modeling of Asynchronous Measurements

We assume that the state of the system of Eq. 5.1, x(t), is available asynchronously

at time instants ta where {ta≥0} is a random increasing sequence of times. We also

assume that there exists an upper bound Tm on the interval between two successive

measurements, that is, the sequence satisfies the condition of Eq. 2.22.
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Figure 5.7: Iterative DMPC for nonlinear systems subject to asynchronous measure-
ments
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5.5.2 Sequential DMPC with Asynchronous Measurements

Sequential DMPC Formulation

For the design of the sequential DMPC for systems subject to asynchronous measure-

ments (see Figure 5.6), we take advantage of the MPC scheme when feedback is lost

to update the control inputs based on a state prediction obtained by the model and

to have the control actuators store and implement the last computed optimal input

trajectories. Specifically, the implementation strategy is as follows:

1. When a new measurement is available at ta, all the LMPCs receive the state

measurement x(ta) from the sensors.

2. For j = m to 1

2.1. LMPC j receives the entire future input trajectories of ui, i = m, . . . , j+1,

from LMPC j+1 and evaluates the future input trajectory of uj based on

x(ta) and the received future input trajectories.

2.2. LMPC j sends the entire input trajectories of uj to its actuators and the

entire input trajectories of ui, i = m, . . . , j, to LMPC j − 1.

1. When a new measurement is received (a← a+ 1), go to Step 1.

In order to make a decision, LMPC j, j = m, . . . , 2 must assume trajectories for

ui, i = j − 1, . . . , 1, along the prediction horizon since the communication is one-

directional. To this end, the controller h(x) is used. In order to inherit the stability

properties of the controller h(x), each control input ui, i = 1, . . . ,m must satisfy a

set of constraints that guarantee a given minimum contribution to the decrease rate

of the Lyapunov function V (x) in the case of asynchronous measurements. To this

end, the input trajectories, un,i(t|ta) (i = 1, . . . ,m), defined in Eq. 5.37 are used.
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Specifically, the design of LMPC j, j = 1, . . . ,m, is based on the following opti-

mization problem:

min
uj∈S(∆)

∫ ta+N∆

ta

[∥∥x̃j(τ)
∥∥
Qc

+
m∑
i=1

∥ui(τ)∥Rci

]
dτ (5.98)

s.t. ˙̃xj(t) = f
(
x̃j(t)

)
+

m∑
i=1

gi
(
x̃j(t)

)
ui(t) (5.99)

˙̂xj(t) = f
(
x̂j(t)

)
+

j∑
i=1

gi
(
x̂j(t)

)
un,i(t|ta) +

m∑
i=j+1

gi
(
x̂j(t)

)
ui(t)(5.100)

ui(t) = un,i(t|ta), i = 1, . . . , j − 1 (5.101)

ui(t) = ua,∗
s,i (t|ta), i = j + 1, . . . ,m (5.102)

us,j(t) ∈ Uj (5.103)

x̃j(ta) = x̂j(ta) = x(ta) (5.104)

V
(
x̃j(t)

)
≤ V

(
x̂j(t)

)
, ∀t ∈ [ta, ta +NR∆) (5.105)

where NR is the smallest integer satisfying Tm ≤ NR∆. The vector x̃j is the predicted

trajectory of the nominal system with uj computed by the above optimization problem

(i.e., LMPC j) and the other control inputs defined by Eqs. 5.101-5.102. The vector

x̂j is the predicted trajectory of the nominal system with uj = un,j(t|ta) and the other

control inputs defined by Eqs. 5.101-5.102. In order to fully take advantage of the

prediction, we choose N ≥ NR. The optimal solution to this optimization problem is

denoted ua,∗
s,j (t|ta) and is defined for t ∈ [ta, ta +N∆).

The constraint of Eq. 5.99 is the nominal model of the system, which is used to

generate the trajectory x̃j; the constraint of Eq. 5.100 defines a reference trajectory
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of the nominal system (i.e., x̂j) when the input uj is defined by un,j(t|ta); the con-

straint of Eq. 5.101 defines the value of the inputs evaluated after uj (i.e., ui with

i = 1, . . . , j− 1); the constraint of Eq. 5.102 defines the value of the inputs evaluated

before uj (i.e., ui with i = j + 1, . . . ,m); the constraint of Eq. 5.103 is the constraint

on the manipulated input uj; the constraint of Eq. 5.104 sets the initial state for the

optimization problem; and the constraint of Eq. 5.105 guarantees that the contribu-

tion of input uj to the decrease rate of the time derivative of the Lyapunov function

from ta to ta+NR∆, if uj = ua,∗
s,j (t|ta), t ∈ [ta, ta+NR∆) is applied, is bigger or equal

to the value obtained when uj = un,j(t|ta), t ∈ [ta, ta + NR∆) is applied. This con-

straint guarantees that the sequential DMPC design of Eqs. 5.98-5.105 maintains the

stability of the nonlinear control law h(x) implemented in a sample-and-hold fashion

and with open-loop state estimation in the presence of asynchronous measurements.

The manipulated inputs of the closed-loop system under the above sequential

DMPC are defined as follows:

ui(t) = ua,∗
s,i (t|tk), i = 1, . . . ,m, ∀t ∈ [ta, ta+1). (5.106)

Stability Properties

The sequential DMPC design of Eqs. 5.98-5.98 maintains the closed-loop stability

properties of the nonlinear control law h(x) implemented in a sample-and-hold fashion

and with open-loop state estimation in the presence of asynchronous measurements.

This property is presented in Theorem 5.3 below. To state this theorem, we need the

following corollaries.

From Proposition 2.1, we can obtain the following corollary for systems with

m sets of control inputs, entering the dynamics of the system in an affine fashion,
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which ensures that if the nominal system of Eq. 5.1 under the control ui = hi(x)

(i = 1, . . . ,m) implemented in a sample-and-hold fashion with state feedback every

sampling time starts in Ωρ, then it is ultimately bounded in Ωρmin
.

Corollary 5.2 Consider the nominal sampled trajectory x̂ of the system of Eq. 5.1

in closed-loop with a nonlinear control law ui = hi(x) (i = 1, . . . ,m), satisfying

the conditions of Eqs. 5.5-5.8 and applied in a sample-and-hold fashion, obtained by

solving recursively the following equation:

˙̂x(t) = f(x̂(t)) +
m∑
i=1

gi(x̂(t))hi(x̂(ta)), t ∈ [tk, tk+1) (5.107)

where tk = t0 + k∆, k = 0, 1, . . .. Let ∆, ϵs > 0 and ρ > ρs > 0 satisfy:

−α3(α
−1
2 (ρs)) + L′M ≤ −ϵs/∆ (5.108)

with L′ = L′
x +

∑m
i=1 L

′
ui
umax
i . Then, if ρmin < ρ where ρmin is defined as in Eq. 5.26

and x̂(0) ∈ Ωρ, the following inequality holds:

V (x̂(t)) ≤ V (x̂(tk)), ∀t ∈ [tk, tk+1), (5.109)

V (x̂(tk)) ≤ max{V (x̂(t0))− kϵs, ρmin}. (5.110)

Proof: Following the definition of x̂(t) in Eq. 5.107, the time derivative of the

Lyapunov function V (x) along the trajectory x̂(t) of the system 5.1 in t ∈ [tk, tk+1)

is given by:

V̇ (x̂(t)) =
∂V (x̂(t))

∂x

(
f(x̂(t)) +

m∑
i=1

gi(x̂(t))hi(x̂(tk))

)
. (5.111)
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Adding and subtracting
∂V (x̂(tk))

∂x

(
f(x(tk)) +

m∑
i=1

gi(x(tk))hi(x̂(tk))

)
and taking

into account Eq. 5.6, we obtain:

V̇ (x̂(t)) ≤ −α3(∥x̂(tk)∥) +
∂V (x̂(t))

∂x

(
f(x̂(t)) +

m∑
i=1

gi(x̂(t))hi(x̂(tk))

)

−∂V (x̂(tk))

∂x

(
f(x(tk)) +

m∑
i=1

gi(x(tk))hi(x̂(tk))

)
. (5.112)

From the Lipschitz property of Eqs. 5.14-5.15, the fact that the control inputs are

bounded in convex sets and the above inequality of Eq. 5.112, we have that:

V̇ (x̂(t)) ≤ −α3(α
−1
2 (ρs)) +

(
L′
x +

m∑
i=1

L′
ui
umax
i

)
∥x̂(t)− x̂(tk)∥ (5.113)

for all x̂(tk) ∈ Ωρ/Ωρs . Taking into account the Lipschitz property of Eq. 5.9 and the

continuity of x̂(t), the following bound can be written for all t ∈ [tk, tk+1):

∥x̂(t)− x̂(tk)∥ ≤M∆. (5.114)

Using the expression of Eq. 5.114, we obtain the following bound on the time deriva-

tive of the Lyapunov function for t ∈ [tk, tk+1), for all initial states x̂(tk) ∈ Ωρ/Ωρs :

V̇ (x̂(t)) ≤ −α3

(
α−1
2 (ρs)

)
+ L′M∆ (5.115)

where L′ = L′
x +

∑m
i=1 L

′
ui
umax
i . If the condition of Eq. 5.108 is satisfied, then

V̇ (x̂(t)) ≤ −ϵs/∆. Integrating this bound on t ∈ [tk, tk+1) we obtain that the inequal-

ity of Eq. 5.109 holds. Using Eq. 5.109 recursively, it is proved that, if x(t0) ∈ Ωρ/Ωρs ,

the state converges to Ωρs in a finite number of sampling times without leaving the

stability region. Once the state converges to Ωρs ⊆ Ωρmin
, it remains inside Ωρmin

for
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all times. This statement holds because of the definition of ρmin as in Eq. 5.26. �

From Proposition 2.2, we can have the following Corollary 5.3 to get an upper

bound on the deviation of the state trajectory obtained using the nominal model of

Eq. 5.1, from the real-state trajectory when the same control actions are applied for

systems with m sets of control inputs entering the dynamics of the system in an affine

fashion.

Corollary 5.3 Consider the systems:

ẋa(t) = f(xa(t)) +
m∑
i=1

gi(xa(t))ui(t) + k(xa(t))w(t)) (5.116)

ẋb(t) = f(xb(t)) +
m∑
i=1

gi(xb(t))ui(t) (5.117)

where initial states xa(t0), xb(t0) ∈ Ωρ with xb(t0) = xa(t0)+nx and ∥nx∥ ≤ θx. There

exists a function fW (·, ·) such that:

∥xa(t)− xb(t)∥ ≤ fW (θx, t− t0), (5.118)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with:

fW (θx, τ) =

(
Lwθ

L′′ + θx

)(
eL

′′τ − 1
)

(5.119)

where L′′ = Lx +
m∑
i=1

Lui
umax
i .

Proof: Define the error vector as e(t) = xa(t)− xb(t). The time derivative of the
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error is given by:

ė(t) = f(xa(t))− f(xb(x(t)))+
m∑
i=1

(gi(xa(t))− gi(xb(t)))ui(t)+ k(xa(t))w(t). (5.120)

From the Lipschitz property of Eq. 5.11-5.13 and the fact that the control inputs are

bounded in convex sets, the following inequality holds:

∥ė(t)∥ ≤ Lx ∥xa(t)− xb(t)∥+
m∑
i=1

Lui
∥xa(t)− xb(t)∥Lw ∥w(t)∥

≤

(
Lx +

m∑
i=1

Lui

)
umax
i ∥e(t)∥+ Lwθ (5.121)

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . Integrating ∥ė(t)∥ with initial condition

∥e(t0)∥ = ∥nx∥ and that ∥nx∥ ≤ θx, the following bound on the norm of the error

vector is obtained:

∥e(t)∥ ≤
(
Lwθ

L′′ + θx

)(
eL

′′(t−t0) − 1
)

(5.122)

where L′′ = Lx +
∑m

i=1 Lui
umax
i . This implies that the inequality of Eq. 5.118 holds

for:

fW (τ) =

(
Lwθ

L′′ + θx

)(
eL

′′τ − 1
)

(5.123)

which proves this corollary. �

In Theorem 5.3 below, we provide sufficient conditions under which the DMPC

of Eqs. 5.98-5.106 guarantees that the state of the closed-loop system is ultimately

bounded in a region that contains the origin.

Theorem 5.3 Consider the system of Eq. 5.1 in closed-loop with x available at asyn-

chronous sampling time instants {ta≥0}, satisfying the condition of Eq. 2.22, under

the DMPC design of Eqs. 5.98-5.106 based on a control law h(x) that satisfies the

262



conditions of Eqs. 4.3-5.8. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0 and N ≥ NR ≥ 1

satisfy the conditions of Eqs. 5.108 and the following inequality:

−NRϵs + fV (fW (0, NR∆)) < 0 (5.124)

with fV defined in Eq. 2.49 and fW defined in Eq. 5.119, and NR being the smallest

integer satisfying NR∆ ≥ Tm. If the initial state of the closed-loop system x(t0) ∈ Ωρ,

then x(t) is ultimately bounded in Ωρa ⊆ Ωρ where:

ρa = ρmin + fV (fW (0, NR∆)) (5.125)

with ρmin defined in Eq. 5.26.

Proof: In order to prove that the state of the closed-loop system is ultimately

bounded in a region that contains the origin, we prove that V (x(ta)) is a decreasing

sequence of values with a lower bound. Specifically, we focus on the time interval

t ∈ [ta, ta+1) and prove that V (x(ta+1)) is reduced compared with V (x(ta)) or is

maintained in an invariant set containing the origin.

To simplify the notation, we assume that all the signals used in this proof refer to

the different optimization problems solved at ta with the initial condition x(ta), and

the trajectory x̃j(t), j = 1, . . . ,m, is corresponding to the optimal input ua,∗
s,j+1(t|ta).

We also note that the predicted trajectories x̃j+1(t) and x̂j(t) generated in the opti-

mization problems of LMPC j + 1 and LMPC j are identical. This property will be

used in the proof.

Part 1: In this part, we prove that the stability results stated in Theorem 5.3

hold in the case that ta+1 − ta = Tm for all a and Tm = NR∆. This case corresponds

to the worst situation in the sense that the controllers need to operate in open-
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loop for the maximum possible amount of time. By Corollary 5.2 and the fact that

ta+1 = ta +NR∆, the following inequality is obtained:

V (x̂(ta+1)) ≤ max{V (x̂(ta))−NRϵs, ρmin}. (5.126)

From the constraints of Eq. 5.105 in the LMPCs, the following inequality can be

written:

V (x̃j(t)) ≤ V (x̂j(t)), j = 1, . . . ,m, ∀t ∈ [ta, ta +NR∆). (5.127)

By the fact that x̃j+1(t) and x̂j(t) are identical, the following equations can be written:

V (x̂j(t)) = V (x̃j+1(t)), j = 1, . . . ,m− 1, ∀t ∈ [ta, ta +NR∆). (5.128)

From the inequalities of Eqs. 5.127 and 5.128, the following inequalities are obtained:

V (x̃1(t)) ≤ . . . ≤ V (x̃j(t)) ≤ . . . ≤ V (x̃m(t)) ≤ V (x̂m(t)), ∀t ∈ [ta, ta +NR∆).

(5.129)

Note that the trajectory x̃1 is the nominal trajectory (i.e., x̃) of the closed-loop

system under the control of the sequential DMPC of Eqs. 5.98-5.106. Note also that

the trajectory x̂m is the nominal sampled trajectory (i.e., x̂) of the closed-loop system

defined in Eq. 5.107. Therefore, the following trajectory can be written:

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta +NR∆). (5.130)

From the inequalities of Eq. 5.126 and 5.130 and the fact that x̂(ta) = x(ta), the

following inequality is obtained:

V (x̃(ta+1)) ≤ max{V (x(ta))−NRϵs, ρmin}. (5.131)
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When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-

sition 2.3 to obtain the following inequality:

V (x(ta+1)) ≤ V (x̃(ta+1)) + fV (∥x̃(ta+1)− x(ta+1)∥). (5.132)

Applying Corollary 5.3 we obtain the following upper bound on the deviation of x̃(t)

from x(t):

∥x(ta+1)− x̃(ta+1)∥ ≤ fW (0, NR∆). (5.133)

From the inequalities of Eqs. 5.132 and 5.133, the following upper bound on V (x(ta+1))

can be written:

V (x(ta+1)) ≤ V (x̃(ta+1)) + fV (fW (0, NR∆)). (5.134)

Using the inequality of Eq. 5.131, we can re-write the inequality of Eq. 5.134 as

follows:

V (x(ta+1)) ≤ max{V (x(ta))−NRϵs, ρmin}+ fV (fW (0, NR∆)). (5.135)

If the condition of Eq. 5.124 is satisfied, from the inequality of Eq. 5.135, we know

that there exists ϵw > 0 such that the following inequality holds:

V (x(ta+1)) ≤ max{V (x(ta))− ϵw, ρa} (5.136)

which implies that if x(ta) ∈ Ωρ/Ωρa , then V (x(ta+1)) < V (x(ta)), and if x(ta) ∈ Ωρa ,

then V (x(ta+1)) ≤ ρa.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of

time (see Corollary 5.3 and Proposition 2.3 for the expressions of fV (·) and fW (·)),
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the inequality of Eq. 5.136 also implies that

V (x(t)) ≤ max{V (x(ta)), ρa}, ∀t ∈ [ta, ta+1). (5.137)

Using the inequality of Eq. 5.137 recursively, it can be proved that if x(t0) ∈ Ωρ, then

the closed-loop trajectories of the system of Eq. 5.1 under the sequential DMPC of

Eqs. 5.98-5.106 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, using the

inequality of Eq. 5.137 recursively, it can be proved that if x(t0) ∈ Ωρ, the closed-loop

trajectories of the system of Eq. 5.1 under the sequential DMPC of Eqs. 5.98-5.106

satisfy

lim sup
t→∞

V (x(t)) ≤ ρa. (5.138)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa for the

case when ta+1 − ta = Tm for all a and Tm = NR∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+1 − ta ≤ Tm for all a and Tm ≤ NR∆ which implies that ta+1 − ta ≤ NR∆.

Because fV (·) and fW (·) are strictly increasing functions of time and fV (·) is convex,

following similar steps as in Part 1, it can be shown that the inequality of Eq. 5.135

still holds. This proves that the stability results stated in Theorem 5.3 hold. �

Remark 5.14 Note that the stability results stated in Theorem 5.3 also hold when

the sequential DMPC of Eqs. 5.98-5.105 is applied to a nonlinear system described by

Eq. 5.4.
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5.5.3 Iterative DMPC with Asynchronous Measurements

Iterative DMPC Formulation

In contrast to the one-directional communication of the sequential DMPC architec-

ture, the iterative DMPC architecture utilizes a bi-directional communication strategy

in which all the distributed controllers are able to share their future input trajecto-

ries information after each iteration. In the presence of asynchronous measurements,

the iterative DMPC of Eqs. 5.38-5.44 presented in Section 5.4.2 cannot guarantee

closed-loop stability. In this subsection, we modify the implementation strategy and

the formulation of the distributed controllers to take into account asynchronous mea-

surements (see Figure 5.7). The implementation strategy is as follows:

1. When a new measurement is available at ta, all the LMPCs receive the state

measurement x(ta) from the sensors and then evaluate their future input tra-

jectories in an iterative fashion with initial input guesses generated by h(·).

2. At iteration c (c ≥ 1):

2.1. Each LMPC evaluates its own future input trajectory based on x(ta) and

the latest received input trajectories of all the other LMPCs (when c = 1,

initial input guesses generated by h(·) are used).

2.2. The controllers exchange their future input trajectories. Based on all the

input trajectories, each controller calculates and stores the value of the

cost function.

3. If a termination condition is satisfied, each LMPC sends its entire future in-

put trajectory corresponding to the smallest value of the cost function to its

actuators; if the termination condition is not satisfied, go to Step 2 (c← c+1).
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4. When a new measurement is received (a← a+ 1), go to Step 1.

The design of the LMPC j, j = 1, . . . ,m, at iteration c is based on the following

optimization problem:

min
uj∈S(∆)

∫ ta+N∆

ta

[∥∥x̃j(τ)
∥∥
Qc

+
m∑
i=1

∥ui(τ)∥Rci

]
dτ (5.139)

s.t. ˙̃xj(t) = f(x̃j(t)) +
m∑
i=1

gi(x̃
j(t))ui (5.140)

ui(t) = ua,c−1
p,i (t|ta), ∀i ̸= j (5.141)

∥∥uj(t)− ua,c−1
p,j (t|ta)

∥∥ ≤ ∆uj, ∀t ∈ [ta, ta +NR∆) (5.142)

uj(t) ∈ Uj (5.143)

x̃j(ta) = x(ta) (5.144)

∂V (x̃j(t))

∂x̃j

(
1

m
f(x̃j(t)) + gj(x̃

j(t))uj(t)

)

≤ ∂V (x̂(t|ta))
∂x̂

(
1

m
f(x̂(t|ta)) + gj(x̂(t|ta))un,j(t|ta)

)
,

∀t ∈ [ta, ta +NR∆) (5.145)

where x̃j is the predicted trajectory of the nominal system of Eq. 5.1 with uj computed

by this LMPC and all the other inputs are the optimal input trajectories at iteration

c− 1 of the rest of the distributed controllers, x̂(t|ta) and un,i(t|ta) (i = 1, . . . ,m) are

defined in Eqs. 5.36 and 5.37, respectively. The optimal solution to this optimization

problem is denoted ua,c
p,j(t|ta) which is defined for t ∈ [ta, ta + N∆). Accordingly, we

define the final optimal input trajectory of LMPC j of Eqs. 5.139-5.145 as ua,∗
p,j (t|ta)

which is also defined for t ∈ [ta, ta +N∆).
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Similar to the iterative DMPC with continuous measurements, for the first iter-

ation of each distributed LMPC, the input trajectories defined in Eq. 5.37 based on

the trajectory generated in Eq. 5.36 are used as the initial input trajectory guesses;

that is, ua,0
p,i = un,i with i = 1, . . . ,m.

The constraint of Eq. 5.142 puts a limit on the input change in two consecutive

iterations. This constraint allows LMPC j of Eqs. 5.139-5.145 to take advantage of

the input trajectories received in the last iteration (i.e., ua,c−1
p,i , ∀i ̸= j) to predict the

future evolution of the system state without introducing big errors. For LMPC j (i.e.,

uj), the magnitude of input change in two consecutive iterations is restricted to be

smaller than a positive constant ∆uj. Note that this constraint does not restrict the

input to be in a small region and as the iteration number increases, the final optimal

input could be quite different from the initial guess. The constraint of Eq. 5.145 is

used to guarantee the closed-loop stability.

The manipulated inputs of the closed-loop system under the above iterative DMPC

are defined as follows:

ui(t) = ua,∗
p,i (t|ta), i = 1, . . . ,m, ∀t ∈ [ta, ta+1). (5.146)

Stability Properties

The iterative DMPC design of Eqs. 5.139-5.146 takes into account asynchronous mea-

surements explicitly in the controller design and the implementation strategy. It

maintains the closed-loop stability properties of the nonlinear control law h(x) im-

plemented in a sample-and-hold fashion and with open-loop state estimation. This

property is presented in Theorem 5.4. To state this theorem, we need another propo-

sition.
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Proposition 5.1 Consider the systems:

ẋa(t) = f(xa(t)) +
m∑
i=1

gi(xa(t))u
c
i(t) (5.147)

ẋb(t) = f(xb(t)) +

m, i ̸=j∑
i=1

gi(xb(t))u
c−1
i (t) + gj(xb(t))u

c
j(t) (5.148)

with initial states xa(t0), xb(t0) ∈ Ωρ such that xb(t0) = xa(t0) + nx and ∥nx∥ ≤ θx.

There exists a function fX,j(·, ·) such that:

∥xa(t)− xb(t)∥ ≤ fX,j(θx, t− t0) (5.149)

for all xa(t), xb(t) ∈ Ωρ, and uc
i(t), uc−1

i ∈ Ui and
∥∥uc

i(t)− uc−1
i (t)

∥∥ ≤ ∆ui (i =

1, . . . ,m) with:

fX,j(τ) =

(
C2,j

C1,j

+ θx

)(
eC1,jτ − 1

)
(5.150)

where C1,j = Lx +

m, i ̸=j∑
i=1

Lgiu
max
i and C2,j =

m, i ̸=j∑
i=1

Mgi∆ui.

Proof: Define the error vector as e(t) = xa(t)− xb(t). The time derivative of the

error is:

ė(t) = f(xa(t))− f(xb(t)) +

m, i ̸=j∑
i=1

gi(xa(t))u
c
i(t)−

m, i̸=j∑
i=1

gi(xb(t))u
c−1
i (t). (5.151)

Adding and subtracting

m, i ̸=j∑
i=1

gi(xb(t))u
c
i(t) to/from the right-hand-side of the above

equation, we obtain the following equation:

ė(t) = f(xa(t))− f(xb(t)) +

m, i ̸=j∑
i=1

(gi(xa(t))u
c
i(t)− gi(xb(t))u

c
i(t))
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+

m, i ̸=j∑
i=1

(gi(xb(t))u
c
i(t)− gi(xb(t))u

c−1
i (t)). (5.152)

From the Lipschitz properties of Eqs. 5.10-5.12, the fact that the manipulated inputs

are bounded in convex sets and the difference between uc
i(t) and uc−1

i (t) is bounded,

the following inequality can be obtained:

∥ė(t)∥ ≤ Lx ∥xa(t)− xb(t)∥+
m, i ̸=j∑
i=1

Lui
∥xa(t)− xb(t)∥ ∥uc

i(t)∥

+

m, i ̸=j∑
i=1

∥gi(xb(t))∥
∥∥uc

i(t)− uc−1
i (t)

∥∥
≤ Lx ∥e(t)∥+

m, i ̸=j∑
i=1

Lui
umax
i ∥e(t)∥+

m, i̸=j∑
i=1

Mgi∆ui. (5.153)

Denoting C1,j = Lx +

m, i ̸=j∑
i=1

Lgiu
max
i and C2,j =

m, i ̸=j∑
i=1

Mgi∆ui, we can obtain:

∥ė(t)∥ ≤ C1,j ∥e(t)∥+ C2,j. (5.154)

Integrating ∥ė(t)∥ with initial condition ∥e(t0)∥ = ∥nx∥ (recall that xb(t0) = xa(t0) +

nx) and taking into account that ∥nx∥ ≤ θx, the following bound on the norm of the

error vector is obtained:

∥e(t)∥ ≤
(
C2,j

C1,j

+ θx

)(
eC1,j(t−t0) − 1

)
. (5.155)

This implies that Eq. 5.149 holds for:

fX,j(θx, τ) =

(
C2,j

C1,j

+ θx

)(
eC1,jτ − 1

)
. (5.156)
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�

Proposition 5.1 bounds the difference between the nominal state trajectory under

the optimized control inputs and the predicted nominal state trajectory generated in

each LMPC optimization problem. To simplify the proof of Theorem 5.4, we define

a new function fX(τ) based on fX,i, i = 1, . . . ,m, as follows:

fX(τ) =
m∑
i=1

(
1

m
L′
x + L′

ui
umax
i

)(
1

C1,i

fX,i(0, τ)−
C2,i

C1,i

τ

)
. (5.157)

It is easy to verify that fX(τ) is a strictly increasing and convex function of its

argument. In Theorem 5.4 below, we provide sufficient conditions under which the it-

erative DMPC of Eqs. 5.139-5.146 guarantees that the state of the closed-loop system

is ultimately bounded in a region that contains the origin.

Theorem 5.4 Consider the system of Eq. 5.1 in closed-loop with x available at asyn-

chronous sampling time instants {ta≥0}, satisfying the condition of Eq. 2.22, under

the DMPC design of Eqs. 5.139-5.146 based on a control law h(x) that satisfies the

conditions of Eqs. 4.3-5.8. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0 and N ≥ NR ≥ 1

satisfy the conditions of Eqs. 5.108 and the following inequality:

−NRϵs + fX(NR∆) + fV (fW (0, NR∆)) < 0 (5.158)

with fX defined in Eq. 5.157, fV defined in Eq. 2.49, fW defined in Eq. 5.119, and NR

being the smallest integer satisfying NR∆ ≥ Tm. If the initial state of the closed-loop

system x(t0) ∈ Ωρ, then x(t) is ultimately bounded in Ωρb ⊆ Ωρ where:

ρb = ρmin + fX(NR∆) + fV (fW (0, NR∆)) (5.159)
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with ρmin defined in Eq. 5.26.

Proof: We follow a similar strategy to the one in the proof of Theorem 5.3. In

order to simplify the notation, we assume that all the signals used in this proof refer

to the different optimization variables of the problems solved at ta with the initial

condition x(ta). This proof also includes two parts.

Part I: In this part, we prove that the stability results stated in Theorem 5.4 hold

in the case that ta+1 − ta = Tm for all a and Tm = NR∆. The derivative of the

Lyapunov function of the nominal system of Eq. 5.1 under the control of the iterative

DMPC of Eqs. 5.139-5.146 from ta to ta+1 is expressed as follows:

V̇ (x̃(t)) =
∂V (x̃(t))

∂x

(
f(x̃(t)) +

m∑
i=1

gi(x̃(t))u
a,∗
p,i (t|ta)

)
, ∀t ∈ [ta, ta +NR∆). (5.160)

Adding the above equation and the constraints of Eq. 5.145 in each LMPC together,

we can obtain the following inequality for t ∈ [ta, ta +NR∆):

V̇ (x̃(t)) ≤ ∂V (x̃(t))

∂x

(
f(x̃(t)) +

m∑
i=1

gi(x̃(t))u
a,∗
p,i (t|ta)

)

+
∂V (x̂(t|ta))

∂x

(
f(x̂(t|ta)) +

m∑
i=1

gi(x̂(t|ta))un,i(t|ta)

)

−∂V (x̃1(t))

∂x

(
1

m
f(x̃1(t)) + g1(x̃

1(t))ua,∗
p,1(t|tk)

)
− · · ·

−∂V (x̃m(t))

∂x

(
1

m
f(x̃m(t)) + gm(x̃

m(t))ua,∗
p,m(t|ta)

)
. (5.161)
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Reworking the above inequality, the following inequality can be obtained for t ∈

[ta, ta +NR∆):

V̇ (x̃(t)) ≤ ∂V (x̂(t|ta))
∂x

(
f(x̂(t|ta)) +

m∑
i=1

gi(x̂(t|ta))un,i(t|ta)

)

+
∂V (x̃(t))

∂x

(
1

m
f(x̃(t)) + g1(x̃)u

a,∗
p,1(t|ta)

)

−∂V (x̃1(t))

∂x

(
1

m
f(x̃1(t)) + g1(x̃

1(t))ua,∗
p,1(t|ta)

)
+ · · · (5.162)

+
∂V (x̃(t))

∂x

(
1

m
f(x̃(t)) + gm(x̃)u

a,∗
p,m(t|ta)

)

−∂V (x̃m(t))

∂x

(
1

m
f(x̃m(t)) + gm(x̃

m(t))ua,∗
p,m(t|ta)

)
. (5.163)

By the continuity and locally Lipschitz properties of Eqs. 5.14-5.15, the following

inequality can be obtained for t ∈ [ta, ta +NR∆):

V̇ (x̃(t)) ≤ V̇ (x̂(t|ta)) +
(

1

m
L′
x + L′

u1
ua,∗
p,1(t|ta)

)∥∥x̃(t)− x̃1(t)
∥∥+ · · ·

+

(
1

m
L′
x + L′

um
ua,∗
p,m(t|ta)

)
∥x̃(t)− x̃m(t)∥ . (5.164)

Applying Proposition 5.1 to the above inequality of Eq. 5.164, we obtain the following

inequality:

V̇ (x̃(t)) ≤ V̇ (x̂(t|ta)) +
(

1

m
L′
x + L′

u1
umax
1

)
fX,1(0, t− ta) + · · ·

+

(
1

m
L′
x + L′

um
umax
m

)
fX,m(0, t− ta). (5.165)
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Integrating the inequality of Eq. 5.165 from t = ta to t = ta+ = NR∆ and taking

into account that x̃(ta) = x̂(ta) and ta+1− ta = NR∆, the following inequality can be

obtained:

V (x̃(ta+1)) ≤ V (x̂(ta+1))

+

(
1

m
L′

x + L′
u1
umax
1

)(
1

C1,1

fX,1(0, NR∆)− C2,1

C1,1

NR∆

)
+ . . .

+

(
1

m
L′

x + L′
um

umax
m

)(
1

C1,m

fX,m(0, NR∆)− C2,m

C1,m

NR∆

)
.(5.166)

From the definition of fX(·), we have

V (x̃(ta+1)) ≤ V (x̂(ta+1)) + fX(NR∆). (5.167)

By Corollaries 5.2 and 5.3 and following similar calculations to the ones in the proof

of Theorem 5.3, we obtain the following inequality

V (x(ta+1)) ≤ max{V (x(ta))−NRϵs, ρmin}+ fX(NR∆) + fV (fW (0, NR∆)). (5.168)

If the condition of Eq. 5.158 is satisfied, we know that there exists ϵw > 0 such that

the following inequality holds:

V (x(ta+1)) ≤ max{V (x(ta))− ϵw, ρb} (5.169)

which implies that if x(ta) ∈ Ωρ/Ωρb , then V (x(ta+1)) < V (x(ta)), and if x(ta) ∈ Ωρb ,

then V (x(ta+1)) ≤ ρb.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of
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time, the inequality of Eq. 5.169 also implies that:

V (x(t)) ≤ max{V (x(ta))− ϵw, ρb}, ∀t ∈ [ta, ta+1]. (5.170)

Using the inequality of Eq. 5.170 recursively, it can be proved that if x(t0) ∈ Ωρ,

then the closed-loop trajectories of the system of Eq. 5.1 under the iterative DMPC

design stay in Ωρ for all times (i.e., x(t) ∈ Ωρ for all t). Moreover, if x(t0) ∈ Ωρ, the

closed-loop trajectories of the system of Eq. 5.1 under the iterative DMPC design

satisfy:

lim sup
t→∞

V (x(t)) ≤ ρb. (5.171)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρb for the

case when ta+1 − ta = Tm for all a and Tm = NR∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case,

that is, ta+1 − ta ≤ Tm for all a and Tm ≤ NR∆ which implies that ta+1 − ta ≤ NR∆.

Because fV , fW and fX are strictly increasing functions of time and fX , fV are convex,

following similar steps as in Part 1, it can be shown that the inequality of Eq. 5.168

still holds. This proves that the stability results stated in Theorem 5.4 hold. �

Remark 5.15 Referring to the design of the LMPC of Eqs. 5.139, the constraint

of Eq. 5.142 ensures that the deviation of the predicted future state evolution (using

input trajectories obtained in the last iteration) from the actual system state evolution

is bounded. It also ensures that the results stated in Theorem 5.4 do not depend on

the iteration number c which means the iterations of the DMPC can be terminated

at any iteration and the stability properties stated in Theorem 5.4 continue to hold.

The constraint of Eq. 5.142 can be also imposed as the termination condition of the

iterative DMPC; that is, the DMPC stops iterating when
∥∥up,i(t)− ua,c−1

p,i (t|ta)
∥∥ ≤
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∆ui, i = 1, . . . ,m, for all t ∈ [ta, ta + NR∆). In this case, however, the stability

properties stated in Theorem 5.4 have dependance on the iteration number c in a way

that they hold only after the termination condition of Eq. 5.142 is satisfied.

5.5.4 Application to an Alkylation of Benzene Process

Consider the alkylation of benzene with ethylene process of Eqs. 5.56-5.80 described

in Section 5.4.3. The control objective is to drive the system from the initial condi-

tion as shown in Table 5.6 to the desired steady-state as shown in Table 5.4. The

manipulated inputs are the heat injected to or removed from the five vessels, Q1, Q2,

Q3, Q4 and Q5, and the feed stream flow rates to CSTR-2 and CSTR-3, F4 and F6,

whose steady-state input values are shown in Table 5.3. We design three distributed

LMPCs to manipulate the 7 inputs. Similarly, the first distributed controller (LMPC

1) will be designed to decide the values of Q1, Q2 and Q3, the second distributed

controller (LMPC 2) will be designed to decide the values of Q4 and Q5, and the

third distributed controller (LMPC 3) will be designed to decide the values of F4 and

F6. The deviations of these inputs from their corresponding steady-state values are

subject to the constraints shown in Table 5.5. We use the same design of h(x) as in

Section 5.4.3 with a quadratic Lyapunov function V (x) = xTPx with P being the

following weight matrix:

P = diag ([1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]) . (5.172)

Based on h(x), we design the sequential DMPC of Eqs. 5.98-5.106 and the iterative

DMPC of Eqs. 5.139-5.146 with the following weighting matrices:

Qc = diag
([
1 1 1 1 103 1 1 1 1 103 10 10 10 10 3000 1 1 1 1 103 1 1 1 1 103

])
(5.173)
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and Rc1 = diag ([1× 10−8 1× 10−8 1× 10−8]), Rc2 = diag ([1× 10−8 1× 10−8]) and

Rc3 = diag ([10 10]). The sampling time of the LMPCs is chosen to be ∆ = 30 sec.

For the iterative DMPC of Eqs. 5.139-5.146, ∆ui is chosen to be 0.25umax
i for all the

distributed LMPCs and maximum iteration numbers (i.e., c ≤ cmax) are applied as

the termination conditions. In all the simulations, bounded process noise is added

to the right hand side of the ordinary differential equations of the process model to

simulate disturbances/model uncertainty.

We consider that the state of the process of Eqs. 5.56-5.80 is sampled asyn-

chronously and that the maximum interval between two consecutive measurements

is Tm = 75 s. The asynchronous nature of the measurements is introduced by the

measurement difficulties of the full state given the presence of several species con-

centration measurements. We will compare the sequential and iterative DMPC for

systems subject to asynchronous measurements with a centralized LMPC which takes

into account asynchronous measurements explicitly as presented in Section 2.7. The

centralized LMPC uses the same weighting matrices, sampling time and prediction

horizon as used in the DMPCs. To model the time sequence {ta≥0}, we apply an upper

bounded random Poisson process. The Poisson process is defined by the number of

events per unit time W . The interval between two successive state sampling times is

given by ∆a = min{−lnχ/W, Tm}, where χ is a random variable with uniform proba-

bility distribution between 0 and 1. This generation ensures that max
a
{ta+1−ta} ≤ Tm.

In the simulations, W is chosen to be 30 and the time sequence generated by this

bounded Poisson process is shown in Figure 5.8. For this set of simulations, we choose

the prediction horizon of all the LMPCs to be N = 3 and choose NR = N so that

NR∆ ≥ Tm.

We first compare the DMPC designs for systems subject to asynchronous mea-
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Figure 5.8: Asynchronous measurement sampling times {ta≥0} with Tm = 75 s: the
x−axis indicates {ta≥0} and the y−axis indicates the size of the interval between ta
and ta−1

surements with the centralized LMPC from a stability point of view. Figure 5.9 shows

the trajectory of the Lyapunov function V (x) under these control designs. From Fig-

ure 5.9, we see that the DMPC designs as well as the centralized LMPC design are

able to drive the system state to a region very close to the desired steady state. From

Figure 5.9, we can also see that the sequential DMPC, the centralized LMPC and the

iterative DMPC with cmax = 5 give very similar trajectories of V (x). Another impor-

tant aspect we can see from Figure 5.9(b) is that at the early stage of the closed-loop

system simulation, because of the strong driving force related to the difference be-

tween the set-point and the initial condition, the process noise/disturbance has small

influence on the process dynamics, even though the controller(s) has/have to operate

in the presence of asynchronous measurements. When the states are getting close

to the set-point, the Lyapunov function starts to fluctuate due to the domination of

noise/disturbance over the vanishing driving force. However, the DMPC designs are

able to maintain practical stability of the closed-loop system and keep the trajectory

of the Lyapunov function in a bounded region (V (x) ≤ 250) very close to the steady

state.

Next, we compare the evaluation times of the LMPCs in these control designs.

The simulations are carried out by JAVATM programming language in a PENTIUMr

3.20 GHz computer. The optimization problems are solved by the open source interior
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Figure 5.9: Trajectories of the Lyapunov function of the alkylation of benzene process
of Eqs. 5.56-5.80 under the nonlinear control law h(x) implemented in a sample-and-
hold fashion and with open-loop state estimation, the iterative DMPC of Eqs. 5.139-
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Log(V (x))
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point optimizer Ipopt [106]. We evaluate the LMPC optimization problems for 100

runs. The mean evaluation time of the centralized LMPC is about 23.7 sec. The mean

evaluation time for the sequential DMPC scheme, which is the sum of the evaluation

times (1.9 sec, 3.6 sec and 3.2 sec) of the three LMPCs, is about 8.7 sec. The mean

evaluation time of the iterative DMPC scheme with one iteration is 6.3 sec which is

the largest evaluation time among the evaluation times (1.6 sec, 6.3 sec and 4.3 sec)

of the three LMPCs. The mean evaluation time of the iterative DMPC architecture

with four iterations is 18.7 sec with the evaluation times of the three LMPCs being

6.9 sec, 18.7 sec and 14.0 sec. From this set of simulations, we see that the DMPC

designs lead to a significant reduction in the controller evaluation time compared with

a centralized LMPC design though they provide a very similar performance.

5.6 Iterative DMPC Design with Delayed Mea-

surements

In this section, we consider the design of DMPC for systems subject to delayed mea-

surements. In Chapter 4, we pointed out that in order to obtain a good estimate of the

current system state from a delayed state measurement, a DMPC design should have

bi-directional communication among the distributed controllers. Consequently, we

focus on the design of DMPC for nonlinear systems subject to delayed measurements

in an iterative DMPC framework.

5.6.1 Modeling of Delayed Measurements

We assume that the state of the system of Eq. 5.1 is received by the controllers at

asynchronous time instants ta where {ta≥0} is a random increasing sequence of times
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Figure 5.10: Iterative DMPC for nonlinear systems subject to delayed measurements

and that there exists an upper bound Tm on the interval between two successive

measurements. We also assume that there are delays in the measurements received

by the controllers due to delays in the sampling process and data transmission. In

order to model delays in measurements, another auxiliary variable da is introduced

to indicate the delay corresponding to the measurement received at time ta, that is,

at time ta, the measurement x(ta − da) is received. In order to study the stability

properties in a deterministic framework, we assume that the delays associated with

the measurements are smaller than an upper bound D.

5.6.2 Iterative DMPC Formulation

As in the DMPC designs for systems subject to asynchronous measurements, we take

advantage of the system model both to estimate the current system state from a

delayed measurement and to control the system in open-loop when new information

is not available. To this end, when a delayed measurement is received, the distributed

controllers use the system model and the input trajectories that have been applied to

the system to get an estimate of the current state and then based on the estimate,
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MPC optimization problems are solved to compute the optimal future input trajectory

that will be applied until new measurements are received. A schematic of the iterative

DMPC for systems subject to delayed measurements is shown in Figure 5.10. The

implementation strategy for the iterative DMPC design is as follows:

1. When a measurement x(ta−da) is available at ta, all the distributed controllers

receive the state measurement and check whether the measurement provides new

information. If ta − da > maxl<a tl − dl, go to Step 2. Else the measurement

does not contain new information and is discarded, go to Step 3.

2. All the distributed controllers estimate the current state of the system xe(ta)

and then evaluate their future input trajectories in an iterative fashion with

initial input guesses generated by h(·).

3. At iteration c (c ≥ 1):

3.1. Each controller evaluates its own future input trajectory based on xe(ta)

and the latest received input trajectories of all the other distributed con-

trollers (when c = 1, initial input guesses generated by h(·) are used).

3.2. The controllers exchange their future input trajectories. Based on all the

input trajectories, each controller calculates and stores the value of the

cost function.

4. If a termination condition is satisfied, each controller sends its entire future

input trajectory corresponding to the smallest value of the cost function to its

actuators; if the termination condition is not satisfied, go to Step 3 (c← c+1).

1. When a new measurement is received (a← a+ 1), go to Step 1.
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In order to estimate the current system state xe(ta) based on a delayed measure-

ment x(ta − da), the distributed controllers take advantage of the input trajectories

that have been applied to the system from ta − da to ta and the system model of

Eq. 5.1. Let us denote the input trajectories that have been applied to the system

as u∗
d,i(t), i = 1, . . . ,m. Therefore, xe(ta) is evaluated by integrating the following

equation:

ẋe(t) = f(xe(t)) +
m∑
i=1

gi(x
e(t))u∗

d,i(t),∀t ∈ [ta − da, ta) (5.174)

with xe(ta − da) = x(ta − da).

Before going to the design of the iterative DMPC, we need to define another

nominal sampled trajectory x̌(t|ta) for t ∈ [ta, ta+N∆), which is obtained by replacing

x̂(t|ta) with x̌(t|ta) in Eq. 5.36 and then integrating the equation with x̌(ta|ta) =

xe(ta). Based on x̌(t|ta), we define a new input trajectory as follows:

ue
n,j(t|ta) = hj(x̌(ta + l∆|ta)), j = 1, . . . ,m,

∀t ∈ [ta + l∆, ta + (l + 1)∆), l = 0, . . . , N − 1 (5.175)

which will be used in the design of the LMPC to construct the stability constraint

and used as the initial input guess for iteration 1 (i.e., u∗,0
d,i = ue

n,i for i = 1, . . . ,m).

Specifically, the design of LMPC j, j = 1, . . . ,m, at iteration c is based on the

following optimization problem:

min
uj∈S(∆)

∫ ta+N∆

ta

[∥∥x̃j(τ)
∥∥
Qc

+
m∑
i=1

∥ui(τ)∥Rci

]
dτ (5.176)

s.t. ˙̃xj(t) = f(x̃j(t)) +
m∑
i=1

gi(x̃
j(t))ui(t) (5.177)
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ui(t) = u∗,c−1
d,i (t|ta), ∀i ̸= j (5.178)

∥∥uj(t)− u∗,c−1
d,j (t|ta)

∥∥ ≤ ∆uj, ∀τ ∈ [ta, ta +ND,a∆) (5.179)

uj(τ) ∈ Uj (5.180)

x̃j(ta) = xe(ta) (5.181)

∂V (x̃j(t))

∂x̃j

(
1

m
f(x̃j(t)) + gj(x̃

j(t))uj(t)

)

≤ ∂V (x̌(t|ta))
∂x̌

(
1

m
f(x̌(t|ta)) + gj(x̌(t|ta))ue

n,j(t|ta)
)
,

∀τ ∈ [ta, ta +ND,a∆) (5.182)

where ND,a is the smallest integer satisfying ND,a∆ ≥ Tm + D − da. The optimal

solution to this optimization problem is denoted u∗,c
d,j(a|ta) which is defined for t ∈

[ta, ta + N∆). Accordingly, we define the final optimal input trajectory of LMPC j

of Eqs. 5.176-5.182 as u∗
d,j(t|tk) which is also defined for t ∈ [ta, ta+N∆). Note again

that the length of the constraint ND,a depends on the current delay da, so it may

have different values at different time instants and has to be updated before solving

the optimization problems.

The manipulated inputs of the closed-loop system under the above iterative DMPC

for systems subject to delayed measurements are defined as follows:

ui(t) = u∗
d,i(t|ta), i = 1, . . . ,m,∀t ∈ [ta, ta+q) (5.183)

for all ta such that ta − da > maxl<a tl − dl and for a given ta, the variable q denotes

the smallest integer that satisfies ta+q − da+q > ta − da.
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5.6.3 Stability Properties

The stability properties of the iterative DMPC of Eqs. 5.176-5.183 are stated in the

following theorem.

Theorem 5.5 Consider the system of Eq. 5.1 in closed-loop with x available at

asynchronous sampling time instants {ta≥0} involving time-varying delays such that

da ≤ D for all a ≥ 0, satisfying the condition of Eq. 2.22, under the iterative DMPC

of Eqs. 5.176-5.183 based on a control law u = h(x) that satisfies the conditions of

Eqs. 5.5-5.8. Let ∆, ϵs > 0, ρ > ρmin > 0, ρ > ρs > 0, N ≥ 1 and D ≥ 0 satisfy the

condition of Eq. 5.108 and the following inequality:

−NRϵs + fX(ND∆) + fV (fW (0, ND∆)) + fV (fW (0, D)) < 0 (5.184)

with fV defined in Eq. 2.49, fW defined in Eq. 5.119, ND being the smallest integer

satisfying ND∆ ≥ Tm +D and NR being the smallest integer satisfying NR∆ ≥ Tm.

If the initial state of the closed-loop system x(t0) ∈ Ωρ, N ≥ ND and d0 = 0, then

x(t) is ultimately bounded in Ωρd ⊆ Ωρ where:

ρd = ρmin + fX(ND∆) + fV (fW (0, ND∆)) + fV (fW (0, D)) (5.185)

with ρmin defined in Eq. 5.26.

Proof: We assume that at ta, a delayed measurement x(ta − da) containing new

information is received, and that the next measurement with new state information

is not received until ta+i. This implies that ta+i−da+i > ta−da and that the iterative

DMPC of Eqs. 5.176-5.183 is solved at ta and the optimal input trajectories u∗
d,i(t|ta),

i = 1, . . . ,m, are applied from ta to ta+i. In this proof, we will refer to x̃(t) for

286



t ∈ [ta, ta+i) as the state trajectory of the nominal system of Eq. 5.1 under the control

of the iterative DMPC of Eqs. 5.176-5.183 with x̃(ta) = xe(ta).

Part I: In this part, we prove that the stability results stated in Theorem 5.5 hold

for ta+i − ta = ND,a∆ and all da ≤ D. By Corollary 5.2 and taking into account that

x̌(ta) = xe(ta), the following inequality can be obtained:

V (x̌(ta+i)) ≤ max{V (xe(ta))−ND,aϵs, ρmin}. (5.186)

By Corollary 5.3 and taking into account that xe(ta−da) = x(ta−da), x̃(ta) = xe(ta)

and ND∆ ≥ ND,a∆+ da, the following inequalities can be obtained:

∥xe(ta)− x(ta)∥ ≤ fW (0, da) (5.187)

∥x̃(ta+i)− x(ta+i)∥ ≤ fW (0, ND∆). (5.188)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-

sition 2.3 to obtain the following inequalities:

V (xe(ta)) ≤ V (x(ta)) + fV (fW (0, da)), V (x(ta+i))

≤ V (x̃(ta+i)) + fV (fW (0, ND∆)). (5.189)

From Eqs. 5.186 and 5.189, the following inequality is obtained:

V (x̌(ta+i)) ≤ max{V (x(ta))−ND,aϵs, ρmin}+ fV (fW (0, da)). (5.190)
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By Proposition 5.1 and following similar steps as in the proof of Theorem 5.4, the

following inequality can be obtained:

V (x̃(ta+i)) ≤ V (x̌(ta+i)) + fX(ND,a∆). (5.191)

From Eqs. 5.189, 5.190 and 5.191, the following inequality is obtained:

V (x(ta+i)) ≤ max{V (x(ta))−ND,aϵs, ρmin}+ fV (fW (0, da))

+fV (fW (0, ND∆)) + fX(ND,a∆). (5.192)

In order to prove that the Lyapunov function is decreasing between two consecutive

new measurements, the following inequality must hold:

ND,aϵs > fV (fW (0, da)) + fV (fW (0, ND∆)) + fX(ND,a∆) (5.193)

for all possible 0 ≤ da ≤ D. Taking into account that fW , fV and fX are strictly

increasing functions of time, ND,a is a decreasing function of the delay da and that if

da = D then ND,a = NR, then if the condition of Eq. 5.184 is satisfied, the condition

of Eq. 5.193 holds for all possible da and there exists ϵw > 0 such that the following

inequality holds:

V (x(ta+i)) ≤ max{V (x(ta))− ϵw, ρd} (5.194)

which implies that if x(ta) ∈ Ωρ/Ωρd , then V (x(ta+i)) < V (x(ta)), and if x(ta) ∈ Ωρd ,

then V (x(ta+i)) ≤ ρd.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̃ is a strictly increasing function of
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time, the inequality of Eq. 5.194 also implies that:

V (x(t)) ≤ max{V (x(ta)), ρd}, ∀t ∈ [ta, ta+i). (5.195)

Using the inequality of Eq. 5.195 recursively, it can be proved that if x(t0) ∈ Ωρ,

then the closed-loop trajectories of the system of Eq. 5.1 under the iterative DMPC

of Eqs. 5.176-5.183 stay in Ωρ for all times (i.e., x(t) ∈ Ωρ,∀t). Moreover, using the

inequality of Eq. 5.195 recursively, it can be proved that if x(t0) ∈ Ωρ, the closed-loop

trajectories of the system of Eq. 5.1 under the iterative DMPC of Eqs. 5.176-5.183

satisfy:

lim sup
t→∞

V (x(t)) ≤ ρd. (5.196)

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρd when

ta+i − ta = ND,a∆.

Part 2: In this part, we extend the results proved in Part 1 to the general case, that

is, ta+i− ta ≤ ND,a∆. Taking into account that fV , fW and fX are strictly increasing

functions of time and following similar steps as in Part 1, it can be readily proved

that the inequality of Eq. 5.193 holds for all possible da ≤ D and ta+i − ta ≤ ND,a∆.

Using this inequality and following the same line of argument as in the previous part,

the stability results stated in Theorem 5.5 can be proved. �

5.6.4 Application to an Alkylation of Benzene Process

Consider the alkylation of benzene with ethylene process of Eqs. 5.56-5.80 described

in Section 5.4.3. We set up the simulations as described in Section 5.5.4.

We consider that the state of the process of Eqs. 5.56-5.80 is sampled at asyn-

chronous time instants {ta≥0} with an upper bound Tm = 50 s on the interval between
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Figure 5.11: Asynchronous time sequence {ta≥0} and corresponding delay sequence
{da≥0} with Tm = 50 s and D = 40 s: the x−axis indicates {ta≥0} and the y−axis
indicates the size of da

two successive measurements. Moreover, we consider that there are delays involved in

the measurement samplings and the upper bound on the maximum delay is D = 40 s.

The delays in measurements can naturally arise in the context of species concentra-

tion measurements. We will compare the iterative DMPC of Eqs. 5.176-5.183 with

a centralized LMPC which takes into account delayed measurements explicitly as

presented in Section 2.8. The centralized LMPC uses the same weighting matrices,

sampling time and prediction horizon as used in the DMPC. In order to model the

sampling time instants, the same Poisson process as used in Section 5.5.4 is used to

generate {ta≥0} with W = 30 and Tm = 50 s and another random process is used to

generate the associated delay sequence {da≥0} with D = 40 s. For this set of simu-

lations, we also choose the prediction horizon of all the LMPCs to be N = 3 so that

the horizon covers the maximum possible open-loop operation interval. Figure 5.11

shows the time instants when new state measurements are received and the associated

delay sizes. Note that for all the control designs considered in this subsection, the

same state estimation strategy shown in Eq. 5.174 is used.

Figure 5.12 shows the trajectory of the Lyapunov function V (x) under different

control designs. From Figure 5.12, we see that both the iterative DMPC for systems

subject to delayed measurements and the centralized LMPC accounting for delays
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Figure 5.12: Trajectories of the Lyapunov function of the alkylation of benzene
process of Eqs. 5.56-5.80 under the nonlinear control law h(x) implemented in a
sample-and-hold fashion and with open-loop state estimation, the iterative DMPC of
Eqs. 5.176-5.183 with cmax = 1 and cmax = 5 and the centralized LMPC accounting
for delays: (a) V (x); (b) Log(V (x))
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Figure 5.13: Total performance costs along the closed-loop trajectories of the alkyla-
tion of benzene process of Eqs. 5.56-5.80 under the centralized LMPC accounting for
delays (dashed line) and iterative DMPC of Eqs. 5.176-5.183 (solid line)

are able to drive the system state to a region very close to the desired steady state

(V (x) ≤ 250); the trajectories of V (x) generated by the iterative DMPC design are

bounded by the corresponding trajectory of V (x) under the nonlinear control law

h(x) implemented in a sample-and-hold fashion and with open-loop state estimation.

From Figure 5.12, we can also see that the centralized LMPC and the iterative DMPC

with cmax = 5 give very similar trajectories of V (x).

In the final set of simulations, we compare the centralized LMPC and the iterative

DMPC from a performance index point of view. To carry out this comparison, the

same initial condition and parameters were used for the different control schemes and

the total cost under each control scheme was computed as follows:

J =

∫ tf

0

[
∥x(τ)∥Qc

+ ∥u1(τ)∥Rc1
+ ∥u2(τ)∥Rc2

+ ∥u3(τ)∥Rc3

]
dτ (5.197)

where tf = 1500 s is the final simulation time. Figure 5.13 shows the total cost along

the closed-loop system trajectories under the iterative DMPC of Eqs. 5.176-5.183 and
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the centralized LMPC accounting for delays. For the iterative DMPC design, differ-

ent maximum numbers of iterations, cmax, are used. From Figure 5.13, we can see

that as the iteration number c increases, the performance cost given by the iterative

DMPC design decreases and converges to a value which is very close to the cost of

the one corresponding to the centralized LMPC. However, we note that there is no

guaranteed convergence of the performance of iterative DMPC design to the perfor-

mance of a centralized MPC because of the non-convexity of the LMPC optimization

problems, and the different stability constraints imposed in the centralized LMPC

and the iterative DMPC design.

5.7 Conclusions

In this chapter, we designed sequential and iterative DMPC schemes for large-scale

nonlinear systems. In the sequential DMPC architecture, the distributed controllers

adopt a one-directional communication strategy and are evaluated in sequence and

once at each sampling time; in the iterative DMPC architecture, the distributed con-

trollers utilize a bi-directional communication strategy, are evaluated in parallel and

iterate to improve closed-loop performance. We considered three cases for the design

of the sequential and iterative DMPC schemes: systems with continuous, synchronous

state measurements, systems with asynchronous measurements and systems with de-

layed measurements. For all the three cases, appropriate implementation strategies,

suitable Lyapunov-based stability constraints and sufficient conditions under which

practical closed-loop stability is ensured, were provided. Extensive simulations using

a catalytic alkylation of benzene process example were carried out to compare the

DMPC architectures with existing centralized LMPC algorithms from computational

time and closed-loop performance points of view.
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Chapter 6

Conclusions

This dissertation presented approaches to networked and distributed predictive con-

trol of nonlinear process systems via model predictive control and Lyapunov-based

control techniques. Following an introduction to the motivation and objectives of this

dissertation, Lyapunov-based predictive control methods for nonlinear systems which

provide an explicit characterization for the closed-loop stability region and account for

the effect of asynchronous feedback and time-varying measurement delays were first

developed. Then, a two-tier framework for the design of networked predictive control

systems for nonlinear processes that naturally augment dedicated control systems

with networked control systems was presented. Subsequently, distributed predictive

control methods for large-scale nonlinear process networks taking into account asyn-

chronous measurements and time-varying delays as well as different sampling rates

of measurements were presented. Throughout the dissertation, the effectiveness and

performance of the control approaches were illustrated via applications to nonlinear

process networks and wind-solar energy generation systems.

Specifically, in Chapter 2, two LMPC designs for nonlinear systems subject to

data losses and time-varying measurement delays were presented. In order to pro-
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vide guaranteed closed-loop stability results in the presence of data losses and/or

time-varying measurement delays, the constraints that define the LMPC optimiza-

tion problems as well as the implementation procedures were modified to account

for data losses/asynchronous measurements and time-varying measurement delays.

The presented LMPCs possess an explicit characterization of the closed-loop system

stability regions. Using a nonlinear CSTR example, it was demonstrated that the

presented LMPC approaches are robust to data losses and measurement delays.

In Chapter 3, a two-tier networked control architecture, which naturally aug-

ments pre-existing, point-to-point control systems with networked control systems,

was presented. The two-tier networked control architecture is a decentralized control

architecture which is able to take advantage of asynchronous and delayed measure-

ments and additional actuation capabilities provided by real-time wired or wireless

sensor and actuator networks. Using a nonlinear CSTR example and a nonlinear

reactor-separator example, the two-tier control architecture was demonstrated to be

more optimal compared with conventional control systems and to be more robust

compared with centralized predictive control systems. The two-tier control archi-

tecture was also applied to the problem of optimal management and operation of a

standalone wind-solar energy generation system.

In Chapter 4, a DMPC design involving two controllers was presented where the

pre-existing LCS and the new NCS were redesigned/designed via LMPC. This DMPC

design uses a hierarchical control architecture in the sense that the LCS stabilizes

the closed-loop system and the NCS takes advantage of additional control inputs to

improve the closed-loop performance and provide the potential of maintaining the de-

sired closed-loop stability and performance levels in the face of new/failing actuators.

The extensions of this DMPC architecture to account for asynchronous and delayed
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measurements were also discussed. Using a nonlinear reactor-separator example, the

stability, performance and robustness of the DMPC designs were illustrated.

In Chapter 5, sequential and iterative DMPC designs for large-scale nonlinear

systems in which several distinct sets of manipulated inputs are used to regulate the

overall system were presented. In the sequential DMPC architecture, the distributed

controllers communicate via a one-directional communication network and are eval-

uated in sequence; in the iterative DMPC architecture, the distributed controllers

communicate via a bi-directional communication network, are evaluated in parallel

and iterate to improve closed-loop performance. Sequential and iterative DMPC de-

signs accounting for asynchronous and delayed measurements were also considered. In

addition, an approach to handle communication disruptions and data losses between

the distributed controllers was discussed in the framework of the hierarchical DMPC

architecture of Chapter 4. Using a nonlinear catalytic alkylation of benzene process

example, the DMPC designs were compared with the corresponding centralized MPC

designs from stability, evaluation time, and convergence points of view.

Future research in networked and distributed predictive process control as well as

related areas includes the development of general methods for the handling of broad

types of communication disruptions between distributed controllers, the design of

distributed state estimation systems which provide fast and guaranteed convergence

and the development of distributed plant monitoring and fault-tolerant control sys-

tems. The reader may refer to [11, 89, 92] for more discussions on the related open

problems.
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[71] D. Muñoz de la Peña and P. D. Christofides. Stability of nonlinear asynchronous
systems. Systems and Control Letters, 57:465–473, 2008.

[72] P. Naghshtabrizi and J. Hespanha. Designing an observer-based controller for
a network control system. In Proceedings of the 44th IEEE Conference on
Decision and Control and the European Control Conference 2005, pages 848–
853, Seville, Spain, 2005.

[73] P. Naghshtabrizi and J. Hespanha. Anticipative and non-anticipative controller
design for network control systems. Networked Embedded Sensing and Control,
Lecture Notes in Control and Information Sciences, 331:203–218, 2006.

[74] G. N. Nair and R. J. Evans. Stabilization with data-rate-limited feedback:
Tightest attainable bounds. Systems and Control Letters, 41:49–56, 2000.

[75] D. Nešić, A Teel, and P. Kokotovic. Sufficient conditions for stabilization of
sampled-data nonlinear systems via discrete time approximations. Systems and
Control Letters, 38:259–270, 1999.
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[98] M. Tabbara, D. Nešić, and A. R. Teel. Stability of wireless and wireline net-
worked control systems. IEEE Transactions on Automatic Control, 52:1615–
1630, 2007.

[99] E. Tatara, A. Cinar, and F. Teymour. Control of complex distributed systems
with distributed intelligent agents. Journal or Process Control, 17:415–427,
2007.

[100] Y. Tipsuwan and M. Chow. Control methodologies in networked control sys-
tems. Control Engineering Practice, 11:1099–1111, 2003.

[101] F. Valenciaga and P. F. Puleston. Supervisor control for a stand-alone hybrid
generation system using wind and photovoltaic energy. IEEE Transactions on
Energy Conversion, 20:398–405, 2005.

[102] F. Valenciaga, P. F. Puleston, and P. E. Battaiotto. Power control of a pho-
tovoltaic array in a hybrid electric generation system using sliding mode tech-
niques. IEE Proceedings - Control Theory and Applications, 148:448–455, 2001.

[103] F. Valenciaga, P. F. Puleston, and P. E. Battaiotto. Variable structure system
control design method based on a differential geometric approach: application
to a wind energy conversion subsystem. IEE Proceedings - Control Theory and
Applications, 151:6–12, 2004.

[104] F. Valenciaga, P. F. Puleston, P. E. Battaiotto, and R. J. Mantz. Passiv-
ity/sliding mode control of a stand-alone hybrid generation system. IEE Pro-
ceedings - Control Theory and Applications, 147:680–686, 2000.

[105] A. N. Venkat, J. B. Rawlings, and S. J. Wright. Stability and optimality of
distributed model predictive control. In Proceedings of the 44th IEEE Confer-
ence on Decision and Control and the European Control Conference ECC 2005,
pages 6680–6685, Seville, Spain, 2005.

305
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