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Electrochemical reaction processes attract increasing attention as a promising chemical pro-

cess alternative to achieve green and sustainable chemical manufacturing due to its property that

can produce chemical products without directly burning fossil fuels. Among various electrochem-

ical reaction processes, CO2 reduction provides a possibility to capture the CO2 gas in the atmo-

sphere and effectively relieve the global warming crisis. However, due to the complex, stochastic,

and nonlinear nature of the electrochemical reactions, modeling an electrochemical process us-

ing first-principles is very challenging. To investigate the physical-chemical phenomena of the

electrochemistry of reduction of CO2, the Laboratory of Electrochemical System Engineering at
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UCLA has developed a gastight rotating cylinder electrode (RCE) cell to decouple mass transport

phenomena from the intrinsic kinetics of the electrochemical reactions. Specifically, this RCE cell

allows manipulation of two variables, the applied potential and rotation speed of the cylindrical

electrode, which determines the mass transport profile and reaction kinetics of the electrochemi-

cal reactions, respectively. This design further enables the development of an advanced process

control system for the reactor to control the desired output states by adjusting the two key input

variables.

However, the absence of the first-principle model for the electrochemical reactor is a signif-

icant challenge to develop the process control system. To this end, considering the complexity of

the process, neural network (NN) models are developed and used in this thesis work to capture

the input-output relationship of the reactor and provide a data-based alternative to the unavailable,

first-principle models. On the other hand, in a data-driven approach, the performance of the NN

model is determined by the quality of the training data. Therefore, the inevitable noise, caused by

experimental uncertainty, can corrupt the collected data and negatively impact the NN modeling

task. Motivated by this concern, various methods, such as the Monte Carlo dropout and co-teaching

algorithm, are adopted in this thesis to improve the robustness of the NN models against noisy data.

Eventually, this dissertation demonstrates an advanced model predictive (MPC) scheme based

on experimental data-driven NN models that capture the input-output relationship of the electro-

chemical reactor. Furthermore, the Koopman operator method is adopted to perform on-line lin-

earization to the NN model to improve the computational efficiency of the MPC and enable its

real-time application to the experimental electrochemical reactor. Finally, simulations, open-, and

closed-loop experiments are conducted to demonstrate the overall implementation and successful
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performance of the proposed NN models and MPC schemes.
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Chapter 1

Introduction

1.1 Motivation

The climate change and the global warming crises are becoming one of the most significant

challenges in human history, threatening everyone. The Earth’s climate is undergoing unprece-

dented changes due to human activities, primarily the excessive release of greenhouse gases into

the atmosphere. These gases, mainly carbon dioxide (CO2), act as a blanket trapping heat from the

sun and causing a rise in global temperatures. This phenomenon, known as global warming, has

far-reaching and devastating consequences. Recently, we have witnessed clearer signs of the sig-

nificant consequences of the global warming crisis, including the melting of polar ice caps, extreme

heat waves, and more frequent and intense hurricanes and floating, posing threats to ecosystems,

agriculture, and human lives.

Unlike the classical chemical manufacturing industry, electrochemical reactions offer a promis-

ing approach to produce chemical products directly using electricity as the energy source instead of

burning fossil fuels. Simultaneously, advancements are being made in generating electricity from
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clean, green, and renewable resources [1, 8, 185]. Considering the aforementioned scenarios, the

chemical manufacturing process can reduce its reliance on fossil fuels, which account for 90% of

greenhouse gas emissions from chemical plants in Europe, according to a report in 2013 [18, 35].

Moreover, beyond the reduction of CO2 emissions, an electrochemical reactor holds the potential

to capture atmospheric CO2 and convert it back into valuable chemical products using electricity

generated from renewable resources.

However, in recent years, the operation of electrochemical reactors is still limited to the labo-

ratory scale. One of the main obstacles is the incomplete understanding of the underlying reaction

mechanisms. Electrochemical reactions often involve complex mechanisms; for example, consid-

ering the electrochemical reaction catalyzed with copper to convert CO2, multiple research works

have proposed unique explanations for the reaction mechanism [114]. Consequently, the devel-

opment of a comprehensive first principles model that accurately describes these processes is still

underway.

On the other hand, with the exponential growth of computational power and data science

technology, data-driven approaches, especially machine learning (ML) and deep learning methods,

have become increasingly accessible and vital in the field of modeling. In [64], the neural network

(NN) model is interpreted as a universal approximation to any nonlinear process. Furthermore,

[7, 169] have proposed methods to systematically analyze the generalization errors of NN models,

enhancing their accuracy and reliability. Therefore, ML and NN methods are considered reliable

and efficient options to capture critical nonlinear relationships in chemical processes, enabling the

development of process models and the investigation of the underlying chemical-physical phenom-

ena driving chemical reactions. These approaches can be used to explore electrochemical systems
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and facilitate the scaling-up of electrochemical reactors. Specifically, considering the power of

ML and NN modeling, process control systems can be developed for the electrochemical reactor

without waiting for a fully advanced first principles-based model.

The initial challenge of using ML/NN modeling lies in effectively handling noisy data, con-

sidering the stochastic nature of electrochemical reactions and the inevitable experimental errors

inherent in data collection. It is widely recognized that the quality of data significantly impacts

the performance of data-driven models. If the data is excessively noisy or contaminated by critical

experimental errors, the model may fail to accurately capture the desired relationships. Thus, the

development of robust NN models capable of handling noisy data is essential for the successful ap-

plication of data-driven methods in real-world scenarios. By addressing this challenge, data-driven

approaches can be a feasible tool towards the practical implementation and control of electrochem-

ical reactors.

Moreover, the achievement in [71] provided solid support towards designing and evaluating

a NN model-based process control scheme for an operational electrochemical reactor. Specifi-

cally, valuable experimental data collected from over-three years of experiments provided a rich

dataset to develop an NN model. Furthermore, the availability of a fully functioning rotating cylin-

der electrode (RCE) cell, capable of converting CO2 into diverse carbon-based products, enabled

the physical evaluation of the designed process control system. By implementing the NN-based

process control system in an operational reactor, many technical details, such as data flow, hard-

ware connection, delayed response, and computational time limit, which are often overlooked in

simulation-based studies, were meticulously addressed. In summary, motivated by the recent de-

velopments in computational science technology and reactor design, this work aims to conduct an
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interdisciplinary study to develop a process control system for the electrochemical reactor. Ulti-

mately, this work is expected to make a valuable contribution towards combating the climate crisis

by effectively closing the anthropogenic carbon cycle through the fusion of artificial intelligence

(AI) and electrochemistry.

1.2 Background

Recent research breakthroughs have revealed the transformative potential of electrochemical

CO2 reduction in producing valuable chemical products, such as ethylene, ethanol, acetic acid, and

n-propanol [34, 159, 160]. By harnessing this innovative method and replacing classical chemical

processes that rely on fossil fuels, a significant reduction in carbon emissions can be achieved. Tra-

ditionally, these processes contribute significantly to greenhouse gas emissions due to the burning

of fossil fuels for energy. With electrochemical CO2 reduction, the utilization of electricity as the

primary energy source offers a potential solution that will decarbonize the chemical industry [172].

As of today, copper-based catalysts are the only options for catalysts to electrochemically reduce

CO2 to C2+ products, because the CO2 gas particles need to be reduced to CO in order to trigger

the rest of the transformations that generate C2+ products [127, 188]. Furthermore, [75, 139] per-

formed techno-economic evaluations for the electrochemical conversion of CO2, which pointed

out that having the price of electricity below 0.03 $/kWh is pivotal for ensuring the economic vi-

ability of electrochemical CO2 conversion. Encouragingly, the scale of electricity generated from

renewable resources has grown significantly, with global photovoltaics for solar power increasing

by about 100 GW/year in 2020 [53] and cumulative wind power capacity reaching 589,872 MW
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worldwide in 2018 [163]. These developments are continuously driving down the price of electric-

ity generated from renewable sources. Considering the challenge and potential of this technology,

[134] proposed a four-phase approach to scale up electrochemical CO2 processes to an indus-

trial level by leveraging smart manufacturing concepts. However, [172] emphasized the issue of

low selectivity in the current electrochemical CO2 process and underscored the need for a deeper

understanding of the reaction mechanism to address this challenge effectively. Likewise, [134]

discussed the drawbacks arising from the complex and intricate nature of the complete reaction,

and they proposed the use of data-driven methods to tackle this problem.

The investigation of data-driven modeling utilizing AI techniques in chemical engineering

has been carried out continuously. Practical data-driven modeling tools have been proposed in the

20th century, such as fuzzy logic in the 1960s ([183]), expert systems in the 1980s ([90, 96]), and

ML in the 1990s ([156]). Among them, classic ML techniques demonstrated outstanding regres-

sion ability and have been widely applied to process modeling tasks. For example, [171] utilized

the support vector regression (SVR) method to model heating, ventilation, and air-conditioning

(HVAC) systems. Two SVR models were developed to fit the two outputs of the HVAC system

(e.g., room temperature and room relative humidity) using two inputs (e.g., fan speed and chilled

water valve opening), and the SVR model accurately captured the complex nonlinear input-output

relationship for the HVAC system. In [189], the Gaussian process (GP) regression method was

used to model a nonlinear vehicle system. The GP model was used to develop an MPC to perform

safety control. [16] proposed an adaptive model identification method using the Sparse Identifi-

cation of Nonlinear Dynamics (SINDy) for system identification, and ML-based feature selection

and fine-tuning. The adaptive model identification method was demonstrated to require less data
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to develop than SINDy and was applied to identify the dynamics of a Continuous Stirred Tank

Reactor (CSTR) simulation. Generally, ML models can be used to effectively capture nonlinear

relations, especially when the scale of the data set is small. However, in the case that sufficient

data is available, deep learning methods, such as artificial neural network (ANN) structures, usually

have superior performance in capturing nonlinear and complex systems.

With the significant growth in sensors, cloud computing, and database technologies, obtain-

ing enough data for ANN modeling becomes a less stringent requirement. As a result, ANNs

have been widely used in various research directions for engineering and process control. [11]

adopted a feed-forward neural network (FNN) model to predict the percentage fatty acid methyl

ester (%FAME) yield in a castor oil transesterification process using the four inputs (i.e., methanol

to oil molar ratio, catalyst amount, temperature, and time). The developed FNN model was subse-

quently used to provide insights for estimating parameters for an explicit kinetic model. Due to the

high prediction accuracy given by the NN model, researchers also used it as a “soft sensor”, which

refers to using measurable information to estimate the value of unmeasurable states in real-time.

For example, [36] developed a soft sensor using the ANN model to predict the properties of the

polymer product and used it to provide information for a feedback control system. Although the

simple FNN model has demonstrated its ability to capture complex nonlinear process systems and

its potential to be applied in process control systems, the recurrent neural network (RNN) model

is widely admitted to be more suitable for processing time-series data. Thus, the RNN is more

appropriate for process modeling.

For example, in 2018, [164] presented a study using an RNN model to develop an MPC

for pharmaceutical manufacturing. Specifically, a two-layer long short-term memory (LSTM) net-
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work model was developed to capture a non-linear system, which consisted of a single CSTR

reactor carrying out a chain of reversible reactions in pharmaceutical manufacturing. The LSTM

was shown to provide accurate predictions for the nonlinear process and was used to develop an

effective RNN-MPC model evaluated by closed-loop simulations. In 2019, [167] elaborated the

application of LSTM models to Lyapunov-based MPC, and provided a rigorous theoretical analy-

sis of its closed-loop stability. More recently, in 2023, [73] proposed using a multiple timescale

recurrent neural network (MTRNN) to account for the complex multi-timescale properties in a

nonlinear chemical system and developed an MPC based on the MTRNN model. These researches

showed that the integration of RNN modeling and MPC plays an important role in the advanced

process control area and is still an active field of research. In addition to the RNN model, [26] pro-

posed the neural ordinary differential equation (NODE) in 2018, which is considered a potentially

better method to capture dynamic physical systems as a continuous approximation method, and it

was demonstrated to be more robust to irregular sampled time-series data than RNNs [138]. The

NODE model has been applied to various engineering research. [25] utilized NODE to develop a

hybrid model which worked as the process model in MPC. Additionally, NODE was also utilized

to identify physical systems [20, 92, 117].

Although many achievements have been obtained for ML-based MPC research, there is a

critical drawback to its application in practical systems, which is the computational complexity.

Specifically, the MPC scheme requires solving an optimization problem based on the process

model to compute the optimal control actions. However, a non-linear ML model yields a non-

linear, non-convex optimization problem, which is complex and requires a clear and effective so-

lution that has not been developed as of now. One promising method to account for this problem is
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to develop a systematic way to linearize the ML model, such that the associated MPC can be sig-

nificantly simplified (into a quadratic programming problem in most cases). In [179], the Taylor

expansion method was utilized to linearize an RNN with nonlinear autoregressive exogenous ar-

chitecture (NARX RNN), which was developed to model an air-conditioning and mechanical ven-

tilation (ACMV) system. The proposed method was tested with closed-loop experiments, which

demonstrated good performance from the linearized RNN-MPC. Furthermore, [143] provided

a comprehensive review of the most recent developments and applications of MPC in the engi-

neering domain, including additional examples for the application of MPC based on a linearized

data-driven model.

1.3 Dissertation Objectives and Structure

This dissertation presents an ML-based methodology to implement advanced process control

for electrochemical reactors, which involves data mining, NN modeling, process simulation, MPC,

and experiments. The objectives of this dissertation can be summarized as follows:

1. To investigate novel NN designs that can be used to account for noisy datasets caused by

experimental uncertainty and missing measurements. Additionally, their performance was

evaluated through reliable simulations.

2. To develop a NN model capturing the input-output relationship of an operating electrochem-

ical reactor and use it to provide insights to facilitate the development of a first principles-

based model of the reactor.
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3. To present an effective MPC framework based on the linearization of the NN model, which

enabled a systematic approach to establish a practical data-driven MPC system to control

operational electrochemical reactors.

4. To demonstrate the performance of the linearized NN-based MPC system with closed-loop

experiments on an operational electrochemical reactor.

The remaining parts of this dissertation is organized as follows:

Chapter 2 presented a dropout method and a co-teaching learning algorithm that developed LSTM

models to capture the ground truth (i.e., underlying process dynamics) phenomena of a nonlinear

system from noisy data. A large-scale process simulator, Aspen Plus Dynamics, was used to

generate process data based on an industrial chemical reactor example. The generated dataset was

corrupted by sensor noise, which was determined using industrial data, to evaluate the performance

and robustness of the proposed modeling approaches. The dropout method, a widely used method

to reduce the overfitting of LSTM models, was adapted to account for noisy data. Another approach

termed the co-teaching method required training LSTM models with additional noise-free data,

which was generated from the evolution of a first principles model that employed several standard

modeling assumptions. Through open and closed-loop simulations, the improvement of the model

prediction accuracy was demonstrated.

Chapter 3 represented an approach towards developing an MPC based on the NODE, which is a

recently proposed family of deep learning models that can perform a continuous approximation of

a linear/nonlinear dynamic system by integrating the NN model with classical ordinary differential

equation solvers. In the area of using NN for process modeling tasks, RNNs have become a popular
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option and demonstrated their capability and superiority in process time-series data. RNNs have

been utilized to design model predictive control (MPC) systems in various works. However, as

a discrete approximation model, RNN requires strictly uniform step sequence data to operate,

which makes it less robust to an irregular sampling scenario, such as missing data points during

the operation due to sensor failure or other types of random errors. This chapter demonstrated

an alternative approach for developing an MPC based on this novel continuous NN model. A

chemical process example was utilized to demonstrate the performance of the NODE-based MPC.

Furthermore, the performance of the NODE-based MPC under Gaussian and non-Gaussian noise

was investigated, and the subsampling method was found to be effective against non-Gaussian

noise.

Chapter 4 demonstrated the application of an FNN model to capture the input-output relationship

of an experimental electrochemical reactor from experimental data that are obtained from easy-to-

implement sensors. This FNN model was computationally efficient and can be used in real-time

to determine energy-optimal reactor operating conditions. To account for the uncertainty of the

experimental data, inspired by the maximum likelihood estimation (MLE) method, a statistical

weighted-FNN was constructed to prevent over-fitting to uncertain data. Furthermore, an opti-

mization framework was proposed to facilitate the development of an empirical, first principles

(EFP) model using the insights from the weighted-FNN model. The weighted-FNN model de-

veloped in this chapter was used to construct a real-time optimizer (RTO) for the electrochemical

reactor.

Chapter 5 developed an MPC scheme that utilized an on-line linearization of an RNN as the

process model to implement real-time multi-input-multi-output (MIMO) control in the electro-
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chemical reactor. Specifically, an LSTM model was developed from the experimental data of the

electrochemical reactor to capture a dynamic time-series response of the electrochemical reactor.

Instead of directly using the LSTM model as the process model for an MPC, the Koopman operator

method was utilized to perform on-line linearization of the LSTM model, such that the optimiza-

tion problem in the MPC was simplified into a quadratic programming problem. The performance

of the LSTM model, Koopman-based optimization, and MPC using the linearization of the LSTM

model were evaluated with various simulations as well as open and closed-loop experiments.
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Chapter 2

Machine Learning-based Predictive Control

Using Noisy Data: Evaluating Performance

and Robustness via a Large-Scale Process

Simulator

2.1 Introduction

ML has attracted an increasing level of attention in classical engineering fields in recent years

due to its ability of analyzing big data from industrial processes. ML techniques such as neural

networks and their variants have been successfully applied in process modeling, process monitor-

ing, and fault detection, which fall into the categories of regression and classification problems.

Among many types of neural networks, recurrent neural networks (RNN), and long short-term

memory (LSTM) networks have become popular for modeling nonlinear dynamic systems from
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time-series data, and have been incorporated in model predictive control (MPC) to predict evolu-

tion of process states when first-principles process models are unavailable. While many research

works have studied neural network modeling of chemical processes using noise-free data, learn-

ing using noisy data is a practically challenging task due to the high capacity of neural network

to fit noisy data (i.e., overfitting). Considering that the sensor measurements in chemical plants

are commonly affected by noise in real-time operation, ML modeling of chemical processes using

industrial noisy data remains an important research topic.

One way to handle noisy measurements in linear dynamic systems is Kalman filtering, e.g.,

[119]. Additionally, many other methods such as moving horizon estimation and unscented Kalman

filter have been proposed to deal with data noise [119]. In the state estimation methodology, to es-

tablish a correct estimation, a model representation is generally needed and the covariance matrices

need to be tuned as well [97]. Recently, the effect of learning with raw vibration signals from a

laboratory-scale water flow system was studied using ML methods (i.e., LSTM and a feed-forward

deep neural network) and a linear statistical learning approach (i.e., projection to latent structure,

PLS) [144]. From their findings, it was found a poor performance from both ML methods and PLS

when using raw vibration data and that further treatment of the data is needed for better model

development. When exposing ML models to Gaussian noise, [180] has shown that ML models can

efficiently learn the true process dynamics due to the dominant role of the internal states during

the prediction step. However, as real-world data noise often follows a non-Gaussian distribution,

ML models may undergo performance decay if no proper treatment is taken to handle data noise

in realistic scenarios.

There are many works in the literature that study ML methods with different types of noise.
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For example, it has been pointed out in [94] that assuming independent identically distributed

(i.i.d.) noise is not realistic when modeling some chemical processes with Gaussian process (GP)

regression. For that reason, the i.i.d. condition is relaxed to heteroscedastic noise for a ML struc-

ture in [94]. In [65], a Wiener-type recurrent neural network is tested with two types of noise,

a white noise and a sinusoidal-type noise in order to evaluate robustness. In [86], the effect of

Gaussian noise in RNN modeling of chaotic systems using short time-series data has been studied.

Additionally, data preprocessing and smoothing techniques can be used to improve data quality.

For example, noisy and redundant data are removed for an ensemble-based ML approach in a

foaming control application in [6]. In order to perform data smoothing pretreatment and tackle

missing data points, a third-order polynomial is implemented to the experimental data and later

used with artificial neural networks to develop a deep reinforcement learning scheme that controls

a bioreactor [102]. In [76], a linear filter is used to denoise the measurements in data-driven soft

sensors when implemented with ML methods.

In terms of the applications of ML modeling approaches, the integration of ML models in

model predictive controllers has attracted increasing attention in recent years. ML modeling and

control of nonlinear processes under noise-free conditions have been explored in [58, 167], where

the control performance depends greatly on the model accuracy. To handle noisy data subject to

industrial data noise following a non-Gaussian distribution in ML modeling of nonlinear processes,

Monte Carlo dropout and co-teaching methods have been utilized in [170] to develop LSTM mod-

els to capture the ground truth from noisy data. Specifically, the dropout method uses noisy data

only and reduces the overfitting by randomly dropping out model weights at both training and test-

ing phases. Co-teaching method uses noise-free data generated from simulations of first-principles
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process model in addition to noisy data to improve model performance by accounting for noise-free

pattern. However, as first-principles models are imperfect representations of reality due to simpli-

fied governing equations and boundary conditions, model mismatch may arise when noise-free

data is generated based on first-principles solutions.

To evaluate the performance of the proposed machine leaning modeling approaches in the

presence of mismatch between the industrial chemical process and its first-principles model, in

this work, we consider a chemical reactor example simulated in the process simulator, Aspen

Plus Dynamics, that allows to evaluate model mismatch and controller robustness to industrially-

generated data noise. Chemical process simulators are widely used in industrial process design

to provide more accurate steady-state and dynamic solutions than first-principles models due to

their ready-to-use libraries involving thermodynamics properties, unit operations, and many other

features [44]. In general, chemical process simulators can be classified into equation-oriented

(e.g., EMSO software) and sequential modular approaches (e.g., Aspen Plus) [105]. In addition

to process design, the integration of process control systems in processes simulators has been

explored in the literature [146].

In this work, we generate noisy data using Aspen dynamic simulations, in which the pro-

cess state measurements are corrupted by industrial sensor noise. Subsequently, the reactor first-

principles model is developed in Matlab to generate noise-free data. The dropout LSTM model

is trained using noisy data only, and the co-teaching LSTM model is trained using both noisy and

noise-free data. The LSTM models are then incorporated in a Lyapunov-based model predictive

controller that optimizes process performance while maintaining closed-loop system stability. Fi-

nally, we compare the dropout and co-teaching LSTM models with the LSTM model trained using
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the standard learning algorithm and demonstrate their superiority in both open-loop and closed-

loop operations. The rest of this chapter is organized as follows: in Section 2.2, the class of non-

linear systems, long short term memory networks, and machine-learning-based model predictive

control scheme are presented. In Section 2.3, an overview of the dropout and co-teaching methods

are provided. In Section 2.4, an industrial chemical reactor example is used to demonstrate the

efficacy of the proposed ML modeling and control approaches.

2.2 Preliminaries

2.2.1 Notation

The Euclidean norm of a vector is denoted by the operator |·| and the weighted Euclidean

norm of a vector is denoted by the operator |·|Q where Q is a positive definite matrix. xT denotes

the transpose of x. The notation LfV (x) denotes the standard Lie derivative LfV (x) := ∂V (x)
∂x

f(x).

Set subtraction is denoted by “\”, i.e., A\B := {x ∈ Rn | x ∈ A, x /∈ B}.

2.2.2 Class of Systems

We consider the class of continuous-time nonlinear systems described by the following system

of first-order nonlinear ordinary differential equations:

ẋ = F (x, u) := f(x) + g(x)u, x(t0) = x0

y = x+ w

(2.1)

16



where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input vector, y ∈ Rn is the vector

of state measurements that are sampled continuously, and w ∈ Rn is the noise vector. The input

vector is constrained by u ∈ U := {umin
i ≤ ui ≤ umax

i , i = 1, ...,m} ⊂ Rm. f(·) and g(·)

are sufficiently smooth vector and matrix functions of dimensions n × 1 and n ×m, respectively

with f(0) assumed to be zero such that the origin is a steady-state of the nominal (i.e., w(t) ≡ 0)

system of Eq. 2.1 (i.e., (x∗
s, u

∗
s) = (0, 0), where x∗

s and u∗
s represent the steady-state state and input

vectors, respectively). Throughout the manuscript, we assume that the full state measurements are

continuously available at all times, and the initial time t0 is taken to be zero (t0 = 0).

2.2.3 Long Short Term Memory (LSTM) Model

Long short-term memory (LSTM) networks are a type of recurrent neural network (RNN)

capable of modeling long-term dependencies in sequence prediction problems due to the design

of three gates, i.e., the input gate, the forget gate, and the output gate, in the network structure. A

schematic of LSTM network structure is shown in Fig. 2.1 [27]. In this work, the LSTM model

is developed to predict the states of Eq. 2.1 given the control actions and the past noisy state

measurements. Specifically, given the input sequence m(k), k = 1, ..., T , where T is the number

of measured states of the sampled-data system of Eq. 2.1, the following equations are used to
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Figure 2.1: Schematic of LSTM units.

calculate the predicted output sequence x̂(k):

i(k) =σ(ωm
i m(k) + ωh

i h(k − 1) + bi) (2.2a)

f(k) =σ(ωm
f m(k) + ωh

fh(k − 1) + bf ) (2.2b)

c(k) =i(k)tanh(ωm
c m(k) + ωh

c h(k − 1) + bc) + f(k)c(k − 1) (2.2c)

o(k) =σ(ωm
o m(k) + ωh

oh(k − 1) + bo) (2.2d)

h(k) =o(k)tanh(c(k)) (2.2e)

x̂(k) =ωyh(k) + by (2.2f)
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where m(k), c(k), h(k), i(k), f(k), and o(k) are the input sequence, the cell state, the internal

state, the outputs from the input gate, the forget gate, and the output gate, respectively. x̂ ∈ Rn×T

represent the LSTM network output sequences. The weight matrices for the LSTM input vector m,

and the hidden state vector in the input gate are represented by ωm
i and ωh

i , respectively. Similarly,

the weight matrices for the input vector m and hidden state vector h in calculating the cell state c,

the forget gate f , and the output gate o are represented by ωm
c , ωh

c , ωm
f , ω

h
f , ωm

o , ω
h
o , respectively,

with bi, bf , bo, bc representing the bias terms. Finally, the LSTM predicted state is calculated using

Eq. 2.2f where ωy and by denote the weight matrix and bias vector for the output, respectively.

Since the LSTM model uses control actions and past state measurements to predict future states,

the input sequence m ∈ R(n+m)×T contains the manipulated inputs u ∈ Rm and the past measured

states x ∈ Rn within a certain period of time (i.e., T ). The LSTM model uses the sigmoid

activation function σ(·) and the hyperbolic tangent function tanh(·) as the nonlinear activation

functions. Additionally, as LSTM networks are a type of recurrent neural networks, we can also

present the LSTM model in the form of a continuous-time nonlinear system as follows:

˙̂x = Fnn(x̂, u) := Ax̂+ΘT z (2.3)

where x̂ ∈ Rn is the LSTM state vector, u ∈ Rm is the manipulated input vector, and z =

[z1 · · · zn+m+1]
T = [σ(x̂1) · · ·σ(x̂n) u1 · · ·um 1]T ∈ Rn+m+1 is a vector of both the network

states x̂ and the inputs u. σ(·) represents nonlinear activation functions in each LSTM unit, and

“1” represents the bias term. The diagonal matrix A ∈ Rn×n and the matrix Θ ∈ R(n+m+1)×n

consist of the LSTM weights that will be optimized.
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Training data can be generated from extensive open-loop simulations of the nonlinear system

of Eq. 2.1 under various initial conditions and control actions. The system inputs u are applied in

a sample-and-hold fashion, i.e., u(t) = u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆ and ∆ is the

sampling period, and the explicit Euler method is utilized with a sufficiently small integration time

step hc < ∆ to integrate the continuous-time nonlinear system of Eq. 2.1 in simulations. Then, the

LSTM model can be trained following the learning process as discussed in [167].

Remark 1. The LSTM model of Eq. 2.3 is built for the network with one hidden layer (i.e., the

network is formed with three layers: input layer, one hidden layer, and output layer). However, the

LSTM development is not restricted to one hidden layer, and can be extended to multiple hidden

layers for better approximation performance. Additionally, it should be noted that the LSTM in-

ternal states do not necessarily represent the actual process states in the first-principles model of

Eq. 2.1. In this study, as the LSTM model is developed to predict future states given the past state

measurements and manipulated inputs, the LSTM outputs correspond to the process states in the

nonlinear system of Eq. 2.1.

Remark 2. Since the sensor measurements are now corrupted by industrial noise, the evolution of

state variables can no longer rely on the current state measurement. Therefore, to reduce the de-

pendence on the current state measurement, the ML models in this work are developed accounting

for past (noisy) state measurements over a number of sampling periods to provide better predic-

tions in a noisy environment.

Remark 3. As discussed in [170], the nonlinear activation functions such as tanh and sigmoid

functions are often used between the LSTM hidden layers to introduce nonlinearities into the net-
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work. Specifically, sigmoid function is typically used for LSTM input/output/forget gates, and

tanh function is often used for the internal state and cell state. The linear unit is only used be-

tween the LSTM output layer and the last hidden layer. Since the second derivative of tanh function

decays slowly to zero, the vanishing gradient problem in the training of RNN and LSTM models

could be tackled by using tanh function. Although the saturating nonlinear activation function

(i.e., tanh) can be limiting, it just means that the gradient near the boundaries will be small, hence

taking smaller steps towards convergence; convergence is though guaranteed but at a slower pace.

However, a non-saturating activation function like ReLu might cause the LSTM model to diverge

in the training.

Remark 4. In addition to extensive open-loop simulations with different initial conditions and

control actions, we can also generate ML datasets by simulating the system of Eq. 2.1 under a

pseudo random input sequence to obtain a single continuous trajectory. Additionally, if the system

is operated around an unstable steady-state, the holding period ∆ for pseudo random input signals

should be carefully chosen to make sure that the state is bounded in the stability region at all times.

In Section 2.4, an Aspen Plus reactor example is used to demonstrate the data generation process

using pseudo random input signals.

Remark 5. It should be mentioned that in this work, the LSTM model is trained using noisy data

(i.e., the state measurements are corrupted by industrial data noise), which makes it challenging

to obtain a well-conditioned LSTM model that can capture the ground truth (i.e., the underlying

process dynamics of Eq. 2.1) using standard learning algorithms. Therefore, to handle the noisy

training data, in Section 2.3, we propose two methods to improve model performance. The dropout

21



method utilizes noisy data only and improves model performance by reducing overfitting to noisy

data. The co-teaching method improves model prediction accuracy by taking advantage of noise-

free data generated from computer simulations.

2.2.4 Model Predictive Control Using LSTM models

The LSTM model is incorporated in Lyapunov-based model predictive controller (LMPC) to

provide state predictions in solving the MPC optimization problem. The formulation of LSTM-

based MPC is presented as follows:

J = min
u∈S(∆)

∫ tk+N

tk

L(x̃(t), u(t))dt (2.4a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (2.4b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (2.4c)

V̇ (x(tk), u) ≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ\Ωρnn (2.4d)

V (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (2.4e)

where x̃, N and S(∆) are the predicted state trajectory, the number of sampling periods in the

prediction horizon, and the set of piecewise constant functions with period ∆. V̇ (x, u) in Eq. 2.4d

denotes the time-derivative of V , i.e., ∂V (x)
∂x

(Fnn(x, u)). The LMPC is implemented in a receding

horizon manner, where the first control action u∗(tk) in the optimal input sequence u∗(t), ∀ t ∈

[tk, tk+N) is applied to the system for the next sampling period. Specifically, the LMPC minimizes

the time-integral of the cost function L(x̃(t), u(t)) that achieves its minimum value at the steady-
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state (x∗
s, u

∗
s) = (0, 0) accounting for the constraints of Eqs. 2.4b-2.4e. The control objective of

LMPC is to maintain the closed-loop state in the stability region Ωρ for all times, and ultimately

bound the predicted state in the target region Ωρnn , which is a small level set of V around the origin.

Φnn(x) in Eq. 2.4d is a pre-determined control law that renders the origin of the LSTM system of

Eq. 2.3 exponentially stable. When a well-conditioned LSTM model with a sufficiently high model

accuracy can be obtained using noise-free training data, the LMPC of Eq. 2.4 guarantees closed-

loop stability of the nonlinear system of Eq. 2.1. Theoretical results on closed-loop stability can

be found in [167].

Remark 6. Due to the sample-and-hold implementation of control actions, the closed-loop system

of Eq. 2.1 cannot be stabilized exactly at the steady-state. In the formulation of MPC of Eq. 2.4, we

require the predicted states to be ultimately bounded in a small level set of Lyapunov function (i.e.,

Ωρnn in Eq. 2.4e) such that the true state will also be bounded in a small neighborhood around the

origin. If for any initial state within the stability region Ωρ, the closed-loop state remains bounded

in Ωρ for all times and ultimately converges to a small neighborhood around the origin where it

will be maintained thereafter, then we say the system is practically stable under the LSTM-based

MPC.

2.3 Dropout and Co-teaching Methods

It was demonstrated in [170] that LSTM models are able to capture the underlying process

dynamics using noisy data that is corrupted by Gaussian noise; however, a degraded model per-

formance was noticed when training LSTM models with non-Gaussian noise. To handle indus-
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trial noise that follows a non-Gaussian distribution, Monte Carlo dropout method and co-teaching

method were utilized in [170] to learn the ground truth from noisy data. In this section, we present

an overview of these two approaches and will evaluate their performance and robustness to indus-

trial data noise using a chemical reactor example in Section 2.4.

2.3.1 Dropout Method

Monte Carlo dropout (MC dropout) method treats neural network weights as random vari-

ables and drops out randomly selected weights at both training and testing stages [46, 47]. As the

neural network models using dropout method are essentially probabilistic models, an estimate of

uncertainty for the model predictions can be obtained by performing Monte Carlo simulations.

Consider the LSTM model in the general form of Eq. 2.3. Let W = {Wi}Li=1 represent

the set of weight matrices of all LSTM layers that include both the weights and the bias terms,

where Wi : R
Ki×Ki−1 is the weight matrix for the ith LSTM layer, and L is the number of layers.

The goal of MC dropout method is to obtain the posterior distribution of LSTM weights W , i.e.,

p(W), based on the training data (M,X), where M and X denote input and output data matrices.

Specifically, as discussed in [46], the weight matrix Wi is defined as follows:

Wi = Bi · diag(zi) (2.5)

where zi, i = 1, ..., L are used to represent the weights being dropped out with a certain probability

and are a set of binary variables satisfying Bernoulli distribution. Bi are the variational variables

to be optimized. After the LSTM model is trained using the MC dropout method, the predictive

24



distribution of LSTM output can be approximated by performing Monte Carlo dropout at test time.

The predictive distribution of LSTM model is obtained via multiple realizations as follows:

p(x∗ | m∗, X, M) ≈ 1

Nt

Nt∑
k=1

p(x∗ | m∗, Wk) (2.6)

where m∗ and x∗ are the LSTM input, and the corresponding output in the testing dataset, and

X, M are the LSTM inputs and outputs in the training dataset. Nt is the number of Monte Carlo

realizations at the testing phase. Since the LSTM model obtained using the MC dropout method is

a probabilistic model, the LSTM output is no longer deterministic given the same input, and needs

to be approximated using Eq. 2.6. Therefore, a probabilistic distribution is obtained from Eq. 2.6

as an estimate of uncertainty for the model predictions. Additionally, the ground-truth process

dynamics can then be approximated using the sample mean of all predictions when the training

data is corrupted by noise.

Remark 7. Note that the true process of Eq. 2.1 evolves deterministically, but our understanding

of the process dynamics through ML models using dropout method is represented in a probabilistic

manner because the training data is noisy. In fact, if we consider the additive sensor noise as an

uncertain variable in the process model of Eq. 2.1, then the Monte Carlo dropout method provides

an efficient way to model uncertain process dynamics (i.e., we can consider the LSTM model using

the MC dropout method as an uncertain process model with the dropped LSTM weights being

uncertain variables) and to predict underlying (nominal) process dynamics through a number of

stochastic forward passes.

Remark 8. Since forward prediction is one of the most time-consuming parts in solving MPC re-
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gardless of using ML models or nonlinear first-principles models [176], parallel computing can

be utilized to accelerate the computation of multiple forward passes in the Monte Carlo dropout

method. Specifically, in parallel computing, each parallel computer node runs one forward pre-

diction only and the host computer node averages the results and sends it to MPC. In [170], it

was demonstrated that the computation time of running multiple forward predictions in parallel is

significantly reduced compared to the calculation of the same number of forward predictions in se-

rial mode. Additionally, it was demonstrated in [168] that through the implementation of parallel

computing for forward predictions, the computation efficiency of the MPC optimization problem

was also improved.

2.3.2 Co-teaching Method

The co-teaching method was originally proposed to improve model accuracy in image clas-

sification problems, for which the dataset is corrupted by noise [54]. Specifically, data noise in

classification problems could cause mislabeled data (for example, an object “A” is mislabeled as

object “B”), while in regression problems, data noise could cause a deviation from its ground truth

value. In either case, it is challenging for ML model to achieve a desired model accuracy with a

noisy dataset following the standard learning algorithm. Therefore, the co-teaching method pro-

vides an alternative way to train ML models under noisy labels by taking advantage of noise-free

data and training two models at the same time [54, 178]. The intuition of co-teaching stems from

the observations that neural networks will use a simple pattern to fit training data at the early stage

of training process [54]. As a result, when assessing the loss function value under a simple pat-

tern that approximates the relationship between neural network inputs and outputs, the noisy data
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generally correspond to a larger loss function value, while noise-free data correspond to a smaller

value.

Algorithm 1: Co-teaching Algorithm
for i = 0 to Imax do

Select a mini-batch Dm from D
Obtain the small-loss data sequences from model A:
DA = {x ∈ Dm | loss(A, x) ≤ lossT}

Obtain the small-loss data sequences from model B:
DB = {x ∈ Dm | loss(B, x) ≤ lossT}

Update the weight matrix of model A: WA = WA − η∇loss(A,DB)
Update the weight matrix of model B: WB = WB − η∇loss(B,DA)

end

Fig. 2.2 shows two types of co-teaching structures (i.e., symmetric and asymmetric frame-

works) that train two networks: A and B, simultaneously. The symmetric co-teaching training

method is implemented following Algorithm 1, which is stated as follows: 1) at each training

epoch, a mini-batch Dm is selected from the original mixed dataset D. Then, each model checks

its data sequences (i.e., each pair of data labeled as input and output), and generates a small dataset

(i.e., DA and DB) with all the data that has a low loss function value (e.g., loss(A, x) ≤ lossT ),

where lossT is the threshold for identifying small-loss data sequences; 2) this new small dataset is

then sent to the peer network, and the neural network weights WA, WB are updated with a learn-

ing rate η; 3) finally, the training is resumed, and the above process is repeated until the end of the

training epochs Imax. The asymmetric co-teaching method is implemented in a similar way to train

two models simultaneously. However, under asymmetric co-teaching framework, noise-free data

is used by model A only, and noisy data is used by model B only. At each training epoch, model

A injects a subset of noise-free data sequences into model B. Note that the information flows in
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Figure 2.2: The symmetric (left) and asymmetric (right) co-teaching frameworks that train the two
networks (A and B) simultaneously.

one direction in the asymmetric co-teaching framework, i.e., from model A to model B only.

Additionally, when using co-teaching method to solve the regression problem of LSTM mod-

eling, the neural network structure needs to be carefully chosen. For example, the number of units

in each network plays a role in learning the underlying process dynamics from a mixed dataset

of both noisy and noise-free data. If a deep neural network with a large number of layers and

neurons is used, the neural network may well fit the noisy data at an early stage (i.e., over-fitting)

before effectively learning the ground truth from noise-free data. Additionally, the mixed dataset

should be constructed with an appropriate ratio of noise-free data to noisy data. If noise-free data

is insufficient, the neural networks may not be able to learn the ground truth, and may overfit the

noisy data as training evolves.

In the following section, we use a chemical process example simulated in Aspen Plus Dy-

namics to illustrate the application of dropout and co-teaching LSTM modeling approaches and

evaluate their performance and robustness. Specifically, we will discuss the following steps in this
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case study: 1) data collection using Aspen simulation and first-principles model simulation, 2)

LSTM training process, and 3) development of LSTM-based MPC that drives reactor temperature

to its desired set-point. Through open-loop and closed-loop simulations, we demonstrate that the

proposed LSTM model using dropout and co-teaching methods outperform the standard LSTM

model in terms of more accurate predictions and better closed-loop performance.

Remark 9. As both the dropout and co-teaching methods are developed for a general class of non-

linear systems, they are generally effective in improving the model accuracy that can be achieved

under the standard ML training process. However, it was observed in [170] that the improvements

of model accuracy under dropout/co-teaching methods vary depending on the noise levels. There-

fore, how much improvement the dropout and co-teaching LSTM modeling approaches can achieve

should be evaluated based on both the open-loop tests (i.e., prediction using testing dataset) and

the closed-loop simulation under MPC.

Remark 10. Preprocessing of data, optimization of network structure in terms of the number

of layers and neurons, and selection of loss functions, learning rate, and optimizers are common

techniques for optimizing neural network performance. Beyond these standard tuning methods, the

co-teaching method proposed in this work provides a guideline to improve training performance

when both noisy and noise-free data are available. It will be shown in Section 2.4 that using

the same mixed dataset with both noise-free and noisy data, the LSTM model using co-teaching

method achieves better model accuracy than the LSTM following the standard training process.
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2.4 Application to an Aspen Plus Reactor Example

We consider an irreversible, second-order, exothermic reaction using Ethylene (A) and Ben-

zene (B) to produce Ethyl benzene (EB) in a well-mixed, non-isothermal continuous stirred tank

reactors (CSTR) [77]. The CSTR reactor is fed with two Hexane solutions in the feeding flow F1

and F2. The two flows have the same inlet temperature T0, but different volumetric flowrate Fvj,in,

j = 1, 2, where j = 1, 2 denotes the feeding flow F1 and F2. The reactants A and B are contained

in each feeding flow separately with inlet molar concentration CA0 and CB0. The reactions taking

place in the CSTR are:

C2H4 + C6H6 → C8H10 (ethylbenzene) (2.7a)

C2H4 + C8H10 → C10H14 (di− ethylbenzene) (2.7b)

C6H6 + C10H14 → 2C8H10 (2.7c)

In this study, the reactor model is developed in Aspen Plus and Aspen Plus Dynamics V11.

The model is constructed and the steady-state simulations are first performed in Aspen Plus. Then,

a dynamic simulation of the reactor process is carried out in Aspen Plus Dynamics to analyze

its real-time performance. In Aspen Plus, a main flow sheet is designed with three valves and

one CSTR as shown in Fig. 2.3. The valves play a role as a connector of fluid flow and parts by

defining the pressure drop in the specific location, which is critical for generating a proper dynamic

model. Without reasonable pressure drop in the process provided, Aspen Plus Dynamics can not

identify the source making the fluid flow through the system and may result in failure of dynamic

simulation. In this model, the pressure drop at V1 and V2 are both 5 bar, and the pressure drop at
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Figure 2.3: Aspen flow sheet of chemical reactor example (steady-state set-up).

V3 is 2 bar.

Hexane is chosen as the solvent in the feeding flow F1 and F2 to ensure that the flow is in the

liquid phase under the inlet temperature. Therefore, with a constant inlet volumetric flow rate, the

amount of feeding reactants can be manipulated by adjusting the feeding concentration. Process

parameter values used in the Aspen model are listed in Table 2.1, where CA, CB, ρL, V , and T are

the concentration of ethane, the concentration of benzene, mass density, volume and temperature

of the reacting liquid in the CSTR, respectively. Cp is the mass heat capacity of the liquid mixture

and is assumed to be constant. CAs and CBs are the steady-state concentration of reactants A and

B, and CA0, CB0 are the inlet concentration of A and B.

A liquid-only CSTR equipped with a heating/cooling jacket that supplies/removes heat at a

rate Q, is considered to carry out three reactions. The initial temperature and pressure of the CSTR

are set to be 400 K and 15 bar, respectively, which can be automatically adjusted by the steady-

state simulation in Aspen. After incorporating the reactions of Eq. 2.7 in the CSTR, steady-state

simulation is performed for analysis of plant behavior.

Before exporting the steady-state model to Aspen Plus Dynamics, the reactor geometry and
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Table 2.1: Parameter values of Aspen model

T0 = 350.0 K Ts = 322.2 K

Fv1,in = 50.0m3/hr Fv2,in = 23.6m3/hr

CAs = 1.5454 kmol/m3 CBs = 4.2714 kmol/m3

CA0 = 4 kmol/m3 CB0 = 5 kmol/m3

Qs = −695.1 kJ/s Cp = 2.41 kJ/kg K

V = 60m3/s ρL = 683.7 kg/m3

Heat Transfer Option Dynamic

Medium Temperature 298K

Temperature Approach 77.33 K

Heat Capacity of Coolant 4200 J/kg K

Medium Holdup 1000 kg

thermodynamic parameters are defined in the dynamic mode of Aspen. The vessel type, head

type, and length of the CSTR in this study are vertical, flat, and 10 meters, respectively. The

thermodynamic parameter values are listed in Table 2.1. To ensure that the dynamic mode is set up

properly, we run the steady-state simulation again and complete the pressure check with the built-

in Aspen Plus Pressure Checker with no error. Subsequently, the steady-state model is exported to

Aspen Plus Dynamics with pressure driven chosen as the driven type of dynamic simulation.

2.4.1 Dynamic Model in Aspen Plus Dynamics

The flow sheet of the Apsen dynamic model is shown in Fig. 2.4. Specifically, a direct acting

level controller, where direct means the output signal increases as the input signal increases, is

added to the dynamic model to regulate the liquid level at 50 percent capacity in this study. Note

that this controller can be designed following the default setting before exporting the steady-state
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model or can be manually developed in Aspen Plus Dynamics.

Figure 2.4: Aspen flow sheet of chemical reactor example (dynamic model set-up).

After configuration of the controller, we run a steady-state simulation in Aspen Plus Dynamics

to obtain the steady-state for the dynamic model. The steady-state value of Q is −695097.0 W .

Then, the heating type of CSTR is changed to constant duty to allow the outside controllers to

manipulate Q during the dynamic simulation. Similarly, the volumetric flow rates F1 and F2 are

fixed, and a steady-state simulation is performed to ensure that the dynamic model reaches the

steady-state before collecting data.

Since the Aspen dynamic model can be considered to be a high-fidelity process model for

the CSTR, we use Aspen dynamic simulation to generate datasets for neural network training.

Industrial noise is introduced on state measurements to represent common sensor variability in

chemical plants. Fig. 2.5 shows the normalized data noise obtained from Aspen public domain

data. Fig. 2.6 shows the probability distribution of the normalized industrial noise in Fig. 2.5, from

which we verify that the noise follows a non-Gaussian distribution.

Open-loop simulation is carried out in Aspen Plus Dynamics using the pseudorandom input
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Figure 2.5: Normalized industrial noise from Aspen public domain data.

signals generated in Matlab. A local Message Passing Interface (MPI) is constructed to link Aspen

with Matlab so that the Aspen dynamic model can automatically read the input signals from Mat-

lab and apply them in the dynamic simulations. In the open-loop simulation, the manipulated input

variable Q varies within the range of [−1.0 × 106 W , −4.0 × 105 W ], and is implemented in a

sample-and-hold fashion with the value updated every five minutes of the simulation time. We run

the open-loop simulation for 15, 000 minutes (simulation time) under pseudorandom input signals

of Q with the industrial noise of Fig. 2.5 added on the temperature measurements. Specifically,

since the industrial noise in Fig. 2.5 is the normalized result from Aspen public domain data, it is

amplified by five times and then added on the temperature measurements. All the state measure-

ments (e.g., CA, CB, and T ) and input value Q are continuously recorded to build the dataset for

neural network training.
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Figure 2.6: Probability density plot of normalized industrial noise in Fig. 2.5.

2.4.2 First-Principles Model

While Aspen Plus provides an efficient way that allows engineers to simulate, troubleshoot

and optimize process performance and profitability with its high-fidelity process model, Aspen

Plus models are typically not used in controller design due to their high computational cost. To

reduce the computational time of solving the process model, first-principles models employing

simplifying assumptions can be adopted in the design of model-based controllers. Additionally,

extensive computer simulations using first-principles model is one of the most efficient data gen-

eration methods in ML.

In this study, we take advantage of the first-principles model of CSTR to generate noise-free

35



datasets for LSTM training using the co-teaching method. Although the first-principles model may

not fully capture the Aspen model dynamics under the same operating conditions, we will demon-

strate that the co-teaching method using noisy data from the Aspen model, and noise-free data

from the first-principles model solutions is still able to improve prediction accuracy of the LSTM

model. While in practice noisy data is provided by chemical plants, and noise-free data is un-

available, the implementation of co-teaching method in this case study implies that the co-teaching

LSTM modeling approach can improve prediction accuracy by using noise-free data generated

from first-principles models, which broadens its application in many process modeling problems

in industry. By applying mass and energy balances, the dynamic model of CSTR is described by

the following nonlinear ODEs:

dCA

dt
=
Fv1,in

V
(CA0 − CA)− r1 − r2 (2.8a)

dCB

dt
=
Fv2,in

V
(CB0 − CB)− r1 − r3 (2.8b)

dT

dt
=
Fv1,in + Fv2,in

V
(T0 − T ) +

−∆H1

ρLCp

r1 +
−∆H2

ρLCp

r2 +
−∆H3

ρLCp

r3 +
Q

ρLCpV
(2.8c)

r1 =k1e
− E1

RT CACB (2.8d)

r2 =k2e
− E2

RT CACEB (2.8e)

r3 =k3e
− E3

RT CBCDEB (2.8f)

where rj , j = 1, 2, 3 denote the rate of each reaction in Eq. 2.7 based on the rate law equation,

and CEB, CDEB represent the concentration of C8H10, and of C10H14, respectively. The kinetic

parameters for reactions are given in Table 2.2, where R, kj , ∆Hj , and Ej , j = 1, 2, 3 represent

ideal gas constant, pre-exponential constant, enthalpy of reaction, and activation energy of each
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reaction, respectively.

Table 2.2: Parameter values of the first-principles model of CSTR

k1 = 1.528× 106 m3/kmol s ∆H1 = −1.04× 105 kJ/kmol

k2 = 2.778× 105 m3/kmol s ∆H2 = −1.02× 105 kJ/kmol

k3 = 0.4167m3/kmol s ∆H3 = −5.50× 102 kJ/kmol

E1 = 71160 kJ/kmol R = 8.314 kJ/kmol K

E2 = 83680 kJ/kmol E3 = 62760 kJ/kmol

V = 60m3/s ρL = 683.7 kg/m3

Cp = 2.41 kJ/kg K

The manipulated input is the heat input rate Q represented in deviation variable form, i.e.,

uT = [Q−Qs]. Similarly, the process states are represented by xT = [CA−CAs CB−CBs T−Ts]

where CAs, CBs, Ts are the steady-state values of CA, CB and T . By representing all the variables in

deviation forms, the equilibrium of Eq. 2.8 is at the origin of state-space. The same pseudorandom

signals of Q applied in Aspen simulations are applied to the open-loop simulation of the first-

principles model of Eq. 2.8, where the explicit Euler method is used to integrate the nonlinear

ODEs with a sufficiently small integration time step hc = 0.05 min. The input signals are applied

in a sample-and-hold fashion with the sampling period ∆ = 5 min. In open-loop simulations,

process variables are measured every integration time step.

Fig. 2.7 compares the open-loop state profiles from Aspen simulation and first-principles

model solutions under the same input sequences. Although the state profiles are close to each other,

small deviations in the evolution of states can be noticed between the two models, which implies

the existence of a mismatch between the Aspen model and the first-principles model of Eq. 2.8.

The mismatch is caused by the difference between the balance-based first-principles equations and
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the equations adopted by Aspen Plus during the simulation. Variation of parameters, such as liquid

density, heat capacity, and the energy exchange coefficient, contribute to the model mismatch. With

noisy data from Aspen simulation and noise-free data from first-principles solutions, the simulation

study in this section provides an insight on the applicability of the co-teaching method in handling

real industrial noisy data, for which the corresponding noise-free data is generally unavailable, but

can be obtained from computer simulations using first-principles or empirical models.
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Figure 2.7: State profiles (CA − CAs, CB − CBs, T − Ts) from open-loop simulations of Aspen
model and of first-principle model, respectively, under the same input sequences of Q.

Remark 11. It should be clarified that in reality, the noisy data is from chemical plants due to

common plant variance and sensors variability, and the noise-free data is generated from compu-

tational simulations based on first-principles process models. Therefore, when an industrial noisy

dataset is available, computer simulations of the first-principles process model will only be used
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to generate noise-free datasets for the implementation of co-teaching method.

Remark 12. To further reduce the model mismatch, an accurate source of parameters can be

utilized for the first-principles model, and a real-time communication between the Aspen database

and the first-principles model can be established.

2.4.3 Dropout and Co-teaching LSTM Models

To reduce the impact of measurement noise in predicting future states, the LSTM models in

this work rely on the state measurements over a past period of time to make predictions. The LSTM

model is developed with CA, CB, T , and Q as inputs to predict the temperature T in the future time.

Specifically, when using LSTM models in MPC to predict future states, the LSTM input vector at

the current time step t = tk consists of the state measurements of CA(t), CB(t) and T (t) over

past five sampling periods, i.e., ∀t ∈ [tk−5, tk] and the heat input rate Q(t), ∀t ∈ [tk−4, tk+1]

implemented in a sample-and-hold fashion. Note that the heat input rate within the last sampling

period, i.e., ∀t ∈ [tk, tk+1] is unknown at the current time step tk as it is the variable that will be

optimized by MPC to meet the control objective. The LSTM output vector at the current time step

t = tk is the predicted temperature T (t) over t ∈ [tk−4, tk+1]. Since the temperature measurements

before the current time step are known, only the prediction of T (t) in the last sampling period, i.e.,

∀t ∈ [tk, tk+1] will be used in MPC to solve the optimization problem.

After running Aspen dynamic simulations and open-loop simulations of the first-principles

model of Eq. 2.8, we obtain a dataset with LSTM inputs and outputs and reshape it to the following

tensor dimensions: [2467,500,4] for inputs and [2467,500,1] for outputs, where the first element

represents the total number of data sequences, the second element represents the length of each
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data sequence (i.e., 500 data points correspond to five sampling periods 25min, in which the data

point is collected every integration time step hc = 0.05 min), and the last element represents the

dimension of inputs and outputs, respectively (i.e., the LSTM has four inputs: CA, CB, T , and Q,

and one output: T ). Among 2467 data sequences, 494 sets of data are used for validation, and

100 sets of data are used for testing. In the case of the co-teaching method, noiseless datasets

are obtained from first-principles solutions under the same operating conditions as performed in

Aspen simulations. The high-level application programming interface, Keras, is used to develop

the standard, dropout, and co-teaching LSTM networks under the optimization algorithm Adam.

2.4.4 Open-loop Simulation Results

We first carry out an open-loop simulation study to demonstrate the improvement of LSTM

model accuracy using dropout and co-teaching methods. Table 2.3 shows the mean squared errors

(MSE) of reactor temperature predicted by LSTM models with respect to the ground truth (i.e.,

actual temperature value of the nominal system) from testing dataset. The results for standard

LSTMs under different datasets are shown in item 1, and those for co-teaching and dropout LSTMs

are shown in items 2 and 3, respectively.

Note that all the LSTM models in Table 2.3 are developed with the same structure in terms

of the same number of neurons, layers, epochs, and the type of activation functions and of opti-

mization algorithms. We first consider three types of datasets for standard LSTM models, and the

results are reported in item 1 of Table 2.3. Specifically, in item 1a, the LSTM model is trained

following the standard training process with noisy data only (i.e., noisy data from Aspen simula-

tions in Section 2.4.1); in item 1b, the LSTM model is trained using a mixed dataset consisting of
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Table 2.3: Open-loop prediction results under industrial noise

Methods MSE T

1a) LSTM : only using noisy data 1.8217
1b) LSTM : mixed data (noise-free data from fp) 3.0357
1c) LSTM : mixed data (noise-free data from Aspen) 1.5386

2a) Co-teaching LSTM (noise-free data from fp) 0.8596
2b) Co-teaching LSTM (noise-free data from Aspen) 0.7140

3) Dropout LSTM : only using noisy data 0.8761

both noisy data from Aspen simulations and noise-free data from simulations of the first-principles

model in Section 2.4.2 (“fp” in Table 2.3 represents the first-principles model); in item 1c, we con-

sider a scenario where noise-free data is also available from Aspen simulations, thereby the LSTM

model is trained using both noisy and noise-free data from Aspen simulations. However, it should

be noted that the last scenario is considered only for comparison purposes since the noise-free data

from chemical plants (here the Aspen model can be considered as a real chemical process) are

generally unavailable. It can be seen from Table 2.3 that introducing noise-free data into brute

force learning of LSTMs (i.e., standard LSTM models) may or may not improve their prediction

accuracy. Specifically, when noise-free data from the same process (i.e., from Aspen model) is

provided with noisy data, standard LSTM achieves a lower MSE in item 1c than the standard

LSTM using noisy data only in item 1a; however, the standard LSTM using a mixed dataset with

noise-free data from the first-principles model has a larger MSE due to the mismatch between the

Aspen model (i.e., source of noisy data) and the first-principles model (i.e., source of noise-free

data). This mismatch, if not handled appropriately, may misguide LSTM training and leads to

worse prediction performance.
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Subsequently, we train LSTM models using the co-teaching method with the same two types

of mixed datasets (i.e., the noise-free data from Aspen model, and from first-principles model,

respectively). The co-teaching LSTM training is initially equipped with a noisy dataset, and as the

training evolves, noise-free data sequences are introduced into the learning process as discussed in

the co-teaching algorithm. As shown in Table 2.3, the two co-teaching LSTM models have lower

MSEs than the corresponding standard LSTM models using the same type of mixed dataset. It

is also noticed that the co-teaching LSTM using noise-free data from Aspen simulations has the

lowest MSE results among all the LSTM models in this study. Additionally, we train the dropout

LSTM model using the noisy data only. It is shown in Table 2.3 that the dropout LSTM model

(i.e., item 3) achieves lower MSE than the standard LSTM using the same noisy dataset (i.e., item

1a), which demonstrates the benefits of dropping out weights during training and testing to avoid

overfitting to noisy data.

2.4.5 Closed-loop Simulation Results

Finally, we incorporate the LSTM models in the LMPC of Eq. 2.4, and carry out a closed-

loop simulation study to demonstrate the improved closed-loop performance under dropout and

co-teaching LSTM models. The control objective of LMPC is to stabilize the reactor temperature

at its steady-state Ts by manipulating the heat input rate ∆Q. The LMPC objective function of

Eq. 2.4a is designed with the following form that has its minimum value at the steady-state:

L(x, u) = |x3|2Q1
+ |u|2Q2

(2.9)
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where Q1 and Q2 are the coefficient matrices that represent the contributions of temperature and

of control actions (both are in deviation forms) in the MPC objective function. In this example, we

choose Q1 = 1 and Q2 = 5 × 10−9 to balance the contributions of process state and manipulated

input to the objective function. The nonlinear optimization problem of LMPC is solved using the

python module of the IPOPT software package [157], named PyIpopt with the sampling period

∆ = 5 min.

Fig. 2.8 and Fig. 2.9 show the closed-loop state profiles (with noisy measurements) under

LMPC using standard LSTM, dropout LSTM, and co-teaching LSTM models for two different

initial conditions. Specifically, Fig. 2.8 shows that starting from an initial temperature T = 340K

higher than the steady-state value, all the LSTM models drive the temperature to its steady-state

within 100 minutes. However, in Fig. 2.9, with an initial temperature T = 300 K lower than

the steady-state value, the standard LSTM model takes much longer time than the dropout and

co-teaching LSTM models to stabilize the temperature at the steady-state.

To further analyze their closed-loop performances in terms of state convergence speed and en-

ergy consumption, we use the MPC objective function as an indicator of closed-loop performance

as it accounts for both state and input information. It can be seen from Eq. 2.9 that a lower objective

function value implies a faster convergence to the steady-state and less consumption of Q during

operation. Therefore, we integrate the objective function value over the closed-loop simulation

period ts, i.e., Ls =
∫ t=ts
t=0

L(x, u)dt, for each LSTM model. For the initial condition T = 340 K,

Ls is calculated to be 44963.07 for standard LSTM, 39488.3 for dropout LSTM, and 37843.28

for co-teaching LSTM; for the initial condition T = 300 K, Ls is calculated to be 120697.7 for

standard LSTM, 40636.26 for dropout LSTM, and 41083.07 for co-teaching LSTM. In both cases,
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Figure 2.8: Closed-loop state profile (x3 = T − Ts) and manipulated input profile (u = Q − Qs)
for the initial condition T = 340K under the MPC using standard LSTM, co-teaching LSTM, and
dropout LSTM, respectively.

co-teaching and dropout LSTM models have lower Ls values than standard LSTM model, which

indicates an improvement in closed-loop performance. Additionally, we test more initial condi-

tions of temperature within [300, 340]K under LMPC. It is demonstrated that for Tinitial > Ts, all

the three LSTM models can stabilize the temperature at the steady-state within a short time, while

for Tinitial < Ts, co-teaching and dropout LSTM models significantly improve the dynamic re-

sponses than standard LSTM (like the one in Fig. 2.9). For all the tested initial conditions, dropout

and co-teaching LSTM models achieve better closed-loop performances with lower values of Ls.

Remark 13. It should be noted that closed-loop stability under LMPC is not guaranteed since

a sufficiently high model accuracy as required for ML models in [167] may be unachievable for

the proposed LSTM models that receive noisy measurements to predict true states. However, from
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Figure 2.9: Closed-loop state profile (x3 = T − Ts) and manipulated input profile (u = Q − Qs)
for the initial condition T = 300K under the MPC using standard LSTM, co-teaching LSTM, and
dropout LSTM, respectively.

extensive closed-loop simulation runs, it is demonstrated that with a small noise level, the state

trajectories for all types of LSTM models successfully converge to the steady-state from different

initial conditions. As the noise level increases, the closed-loop performance gets worse for all

LSTM models in the sense that most of the state trajectories can still converge to the steady-state

but showing oscillation over time. In this case, the proposed dropout and co-teaching LSTM models

can be used to improve closed-loop performance when training with noisy data.
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Chapter 3

Model Predictive Control of Nonlinear

Processes Using Neural Ordinary

Differential Equation Models

3.1 Introduction

Model predictive control is an advanced optimization-based control strategy that has been

widely used in various industries and applications, ranging from chemical process control [15, 136]

to autonomous vehicles [21, 72, 128]. The primary objective of a model predictive controller

(MPC) is to regulate the behavior of a dynamical system by predicting its future behavior with

a mathematical model and optimizing control inputs accordingly [109]. Specifically, the MPC

repeatedly solves an optimization problem at each sampling instant, which takes into account a

prediction of the future behavior of the system over a finite time horizon, to generate a control

sequence that minimizes a chosen performance criterion over the entire prediction horizon. There-
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fore, the prediction accuracy of the process model used by the MPC is essential to the MPC’s

performance, and developing an accurate predictive model continues to be a mathematical and

scientific challenge.

First-principles models, developed based on a comprehensive understanding of the process

mechanism, are the most robust and accurate predictive models that an MPC can use. However, de-

veloping such models is usually a time-consuming task that requires physicochemical information,

which may not be available in most cases. To address this challenge, data-driven modeling methods

have been used in chemical engineering to facilitate and generalize the modeling process while re-

ducing costs. An example of a data-driven application in classical process control is the Fuzzy logic

technique developed in the 1960s [182], which has been applied in various chemical engineering

research efforts [95, 116, 177]. However, Fuzzy Logic Control (FLC) is usually implemented as

a model-free approach [140], which is conceptually different from model-based approaches such

as MPC. One advanced recent technique that is conceptually similar to the FLC is reinforcement

learning [112]. With the advent of the 21st century, ML methods, which are a subset of data-driven

techniques, have been widely used and demonstrated great success in both classification and re-

gression problems. The classical ML methods such as Gaussian process (GP) regression [59, 186]

and support vector regression [29, 171] became popular choices to model physical systems using

data for process control purposes. With the development of computer software and hardware, more

advanced and computationally intensive methods such as neural network (NN) modeling have also

become accessible in conventional engineering disciplines. Since then, various NN techniques, in-

cluding but not limited to feedforward neural network (FNN) [82, 107, 153, 181], recurrent neural

network (RNN), and convolution neural network (CNN) [56] approaches have led to significant
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innovations in process control research. In particular, RNN models trained with time-series data

have been demonstrated to be an effective method to develop predictive models for nonlinear sys-

tems to be used as the process model in MPC for chemical process control [164, 170, 173]. In

addition to NN approaches, other nonlinear methods that have been widely used in the process

systems engineering literature to model dynamical systems for process control include nonlinear

autoregressive methods [17] and sparse identification for nonlinear dynamics (SINDy) [2, 3, 4].

Recently, a novel class of neural network models, the neural ordinary differential equa-

tion (NODE), was proposed and has attracted significant attention due to their ability to learn

continuous-time dynamical systems. As stated in [26], due to its continuous nature, the NODE

model can incorporate time-series data having an arbitrary time span between each data point,

which gives it an important advantage compared to the RNN, which is a discrete approximation

of the time sequence data that requires a consistent time step size in the training set and provides

prediction having the same time step sizes. On the other hand, the performance of the SINDy

method is highly dependent on the candidate terms in the predefined bank of basis functions. Sim-

ilar to other NN methods, the NODE has a high degree of freedom in its model structure and

weight matrices, which makes it more generalizable than SINDy. Therefore, this new modeling

method has been widely tested in various areas to identify and control physical processes. For

example, [88] confirmed the feasibility of using NODE in linear and nonlinear structural identifi-

cation, demonstrating their results on several numerical and experimental systems. [20] proposed

a framework using the NODE model to extract parameters that describe the derivatives of phys-

ical states from the data. Furthermore, in [25], a knowledge-based neural ordinary differential

equation (KNODE) model that can capture a dynamic process was developed and implemented by
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designing a KNODE-based MPC for a quadrotor system. These advances illustrate the potential

of NODE-based modeling for physical systems and motivate its use in the development of MPC

for chemical processes.

Lastly, the application of all data-driven methods in a practical industrial system faces several

critical challenges, one being that data collected from the system is usually corrupted by noise.

Therefore, various researchers investigated methodologies to account for noisy data in the NN

context. One way to handle noisy data is by smoothing the data with a noise filter in the data

preprocessing step [154]. But this method usually involves averaging the measurements within a

certain time window, which introduces an undesired delay to the control system. In addition to

smoothing the data, algorithms can be used to reduce the effect of noise during the development

of the NN model. For example, [170] demonstrated the Monte Carlo dropout and co-teaching

method as effective ways to handle noisy data in LSTM models. However, [100] stated the dropout

method cannot be used with the original NODE structure. Hence, they proposed a modification on

the NODE model, namely the Stochastic Differential Equation (SDE), to allow the use of effective

regularization methods (e.g., dropout) while preserving most of the design of the NODE model.

Finally, [51] proposed an NODE-based framework to extract the ground-truth trajectory from

noisy measurements.

Motivated by the theoretical advantage of using the NODE model in modeling continuous-

time systems and the recent results supporting its implementation in physical systems, this work

aims to develop a Lyapunov-based MPC (LMPC) based on a NODE model. The NODE model

is designed to capture complex nonlinear relationships in a chemical process, so that this NODE-

based LMPC can potentially be implemented in an industrial chemical process. The rest of this
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Chapter is organized into the following sections: in Section 3.2, the mathematical notation and

background of this work will be introduced; the NODE structure, training algorithm, and tech-

nical details will be discussed in Section 3.3 and the LMPC design and stability analysis will be

addressed in the following section. In Section 3.5, a simulation case study of a chemical process

is utilized to show the implementation of NODE modeling and the development of NODE-based

LMPC. The performance of the NODE model and the NODE-based LMPC will be evaluated via

open- and closed-loop simulations, respectively. Finally, Section 3.5 further demonstrates the ap-

plication of NODE-based LMPC while considering the effect of Gaussian and non-Gaussian types

of sensor noise. This study demonstrates that the NODE modeling approach can be used as an

additional option to capture the derivative information of the state variables, which can be used in

the contractive stability constraint of the LMPC. Specifically, different from the LMPC approaches

that utilize recurrent neural network models to approximate the derivative of the state, NODE al-

lows capturing the state derivative while being trained to fit the state trajectory. Furthermore, the

continuous property of the NODE model enables using the subsampling method to account for

noisy data and deal with measurement noise more effectively compared to recurrent neural net-

work models.

3.2 Preliminaries

3.2.1 Notation

The time-derivative of x is represented by ẋ, that is, ẋ := dx
dt

. ŷ denotes the prediction of

y using a mathematical model, and V̂ (x) = V (x̂). v⊤ represents the transpose of v. “\” stands
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for subtracting one set from another, such that A\B := {x ∈ Rn|x ∈ A, x /∈ B}. A continuous

function α : [0, a) → [0,∞) belongs to class K if it is strictly increasing and achieves a value of

zero only when evaluated at zero.

3.2.2 Class of systems

The general class of continuous-time systems considered in this research can be expressed by

the following equations:

ẋ = F (x, u) (3.1a)

y = x+ v (3.1b)

x(t0) = x0 (3.1c)

where x ∈ Rn and u ∈ Rm are the state vector and the manipulated input vector, respectively. An

arbitrary nonlinear function, F : Rn+m → Rn, mapping the state and input vectors to the time-

derivative of the system, is assumed to be continuous and sufficiently smooth. v ∈ Rn represents

the sensor noise affecting the state measurement y. t0 and x0 are used to denote the initial time

and the corresponding initial state, respectively. Without loss of generality, the values of t0 and

x0 are taken to be zero. By assuming F (0, 0) = 0 and that the system is in deviation form, i.e.,

xd = x − xs;ud = u − us where subscripts d and s denote deviation variables and the steady-

state values of the state and input vectors, respectively, the steady-state of the nominal system with

v(t) = 0 is located at the origin of the state space.
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3.2.3 Defining Lyapunov-based Stability Region

To ensure that the nominal system of Eq. 3.1 can be used to construct a feasible process

control problem, we first define an open region D in the state space around a selected set-point,

which is a steady state of the system, such that the nominal system is closed-loop stable in the

sense that any instantaneous state belonging to D can be brought to the set-point under a certain

controller. Specifically, the stability criteria can be mathematically defined as the existence of

a Lyapunov function V (x) and a stabilizing controller Φ(x) such that, ∀x in the region D, the

following inequalities hold:

c1|x|2 ≤ V (x) ≤ c2|x|2 (3.2a)

V̇ (x) =
∂V (x)

∂x
F (x, ϕ(x)) ≤ −c3|x|2 (3.2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (3.2c)

where V (x) is a Lyapunov function, and c1, c2, c3, c4 are positive constants. In other words, Eq. 3.2

implies the existence of a controller that can ensure exponential stability of the state x around the

set-point. One candidate controller can be the universal Sontag controller [99]. Therefore, one can

first find a region (D) where the time-derivative of the Lyapunov function (V̇ ) is negative under

the controller Φ(x). Subsequently, we pick a subset of D, namely Ωρ, to be our stability region,

such that Ωρ := {x ∈ D | V (x) ≤ ρ} where ρ > 0 and Ωρ ⊂ D. The set of values of x that gives

V (x) equal to a positive constant ρ is the boundary of our stability region. Finally, the Lipschitz

property of F (x, u) combined with the bound on u implies the existence of positive constants
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M,Lx, L
′
x such that the following inequalities hold for all x, x′ ∈ D, u ∈ U :

|F (x, u)| ≤ M (3.3a)

|F (x, u)− F (x′, u)| ≤ Lx|x− x′| (3.3b)∣∣∣∣∂V (x)

∂x
F (x, u)− ∂V (x′)

∂x
F (x′, u)

∣∣∣∣ ≤ L′
x|x− x′| (3.3c)

3.2.4 Neural Network Approximation of Time-series Data

Most popular neural network structures, such as the RNN family (e.g., vanilla RNN, Gated

Recurrent Units (GRU), Long Short-Term Memory (LSTM) Units), compute their output using

various logistic units (or neurons) to perform nonlinear transformations on the received input and

propagate the result as the input of the next neuron. The result of the nonlinear transformations

flowing from one neuron to another is named the hidden state. In the case of using an RNN model

to capture time-series data, one of the common applications of neural network modeling in process

control, the hidden state is passed chronologically until the desired final time step. Therefore, the

RNN prediction for a time sequence state can be summarized as the following equation [26]:

h(k + 1) = h(k) + f(h(k), xrnn(k)) (3.4)

where h(k), xrnn(k), and f(·) stand for the hidden state of the RNN model for the kth recurrent

unit, the input for the kth recurrent unit, which is usually the process measurements and control

actions at time step k, and the nonlinear transformation performed on all received information

in that unit. One may find that Eq. 3.4 is similar to the numerical integration step of an explicit

53



integration scheme. Therefore, continuously adding recurrent units to an RNN model is equivalent

to using a smaller integration time step, where the nonlinear transformation within the RNN unit,

f(h(k), xrnn(k)), evaluates the right-hand side of the ordinary differential equation (ODE). The

Neural Ordinary Differential Equation (NODE) is designed based on this observation in [26]. The

structure of NODE is designed such that by fitting the output of the model to the data, the hidden

state of the NODE will fit to the time-derivative of the data. The technical details of NODE will

be discussed in Section 3.3, following the proposed workflow in [26].

3.2.5 Subsampling method

Subsampling is an effective statistical method that is used to reduce the size of the original

data set by creating a subset of the original data [57]. Subsampling is widely used to derive in-

ferences on a larger data set by using a representative subsample at a lower computational cost.

For example, subsampling was used to downsample large biomedical data sets while preserving

the distribution in [101], and computational power requirements for regression tasks were reduced

through subsampling in [33]. Two of the most important tools used in developing ML models,

train-test split and cross-validation, also belong to the subsampling family. In this work, we use

subsampling to account for noisy data based on the assumption that some of the data points are

more affected by noise than others. Therefore, by randomly selecting data points to create a subset

that will be used to develop a prediction model, the impact of measurement noise can be mitigated,

leading to the development of a better model. Subsampling has also been used in the data-driven

modeling literature to account for data noise and has shown promising results [5, 66], inspiring the

use of subsampling to handle noisy data in our work.
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3.3 Neural Ordinary Differential Equations (NODE)

3.3.1 NODE Architecture

The NODE model in our work is developed to predict the state of a dynamical system using

the following equation:

x̂(tk + tp) = ODESolver
(
x(tk), tk, tk + tp, f(x̂, u)

)
= Fnn(x0, u, tk, tk + tp, f) (3.5)

where x̂ ∈ Rn is the NODE state vector and x(tk) represents the state of the nominal system of

Eq. 3.1 at time step tk. tp stands for the time span from the initial state measurement at tk. f is the

NN model used to capture the nonlinear dynamic relationship of the system, i.e., the right-hand

side of the ODE representing the time-derivative,

˙̂x = f(x̂, u) (3.6)

Since we are working on a regression task with numerical data, an FNN model is used as the func-

tion f. For convenience, we refer to the NN model f used in the NODE as the “core model” in the

remainder of this manuscript, while Fnn is used to denote the overall NODE model, whose output

is the state prediction itself following integration. The fundamental mathematical idea behind the

NODE model is to find the optimum weight matrix θ∗ of the FNN (core) model, such that the out-

put of the FNN model can be used by the ODE solver to numerically calculate the predicted state

from an arbitrary initial state measurement x(tk). Based on the universal approximation theorem

[63, 64], the core model of a perfectly trained NODE model can capture the right-hand side of the
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ODE of the desired system. Training of the NODE model refers to the process of optimizing the

FNN weights based on the data.

The architecture of the NODE model is demonstrated in Fig. 3.1. Specifically, when using

a trained NODE model to make a prediction, the instantaneous state measurement needs to be

provided and will be used as the initial value of the ODE solver. The sequence of control inputs

also needs to be provided to the NODE model, which will be used as the input of the FNN model

to predict the “time-derivative of the state”. The ODE solver will recursively call the FNN model

to find the time-derivative and update the predicted state from the initial state value until the final

time step of the prediction is reached. Finally, the prediction computed by the NODE model can

be returned as a single value or as a vector of the state predictions at the desired time steps. If

the prediction is returned as a time sequence, the intermediate time steps in the returning sequence

need to be pre-defined and used as an argument of the prediction function. However, more in-

termediate states in the output will result in higher computational costs. Lastly, the output of the

core model can be considered the hidden state of the NODE model and has a very similar value

to the state derivative. However, although we defined and used the output of the core model in the

NODE model as the time-derivative of the states, it actually does not have any physical meaning.

Therefore, various types of regressive models can be used as the core model, but in the case of

regressing a physical system, the FNN model is a popular candidate. In contrast, for an image

classification task, for example, using a convolutional neural network (CNN) as the core model is

the most common approach.
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Figure 3.1: The architecture of the neural ordinary differential equation (NODE) model. The
NODE model contains a nonlinear core function that maps the input to its hidden state, such that
the time-series state prediction can be found by integrating the hidden state using an ODE solver.
The core function used in this work is a feedforward neural network model whose structure is
shown on the left. The blue circles in the FNN represent the input information represented in gray
in the figure on the right-hand side.

3.3.2 Back-propagation

In the last subsection, we introduced the architecture of the NODE model and the unique

characteristic of this model, which is the integration with an ODE solver within the neural net-

work model. Since the ODE solver is involved in the training of the NODE model and impacts

the backpropagation algorithm, the type of ODE solver (e.g., explicit Euler, Runge-Kutta, etc.)

becomes one of the hyperparameters to be defined before training. This design differentiates the

NODE from the common approach of training an FNN model with state time-derivatives and then

computing the state prediction by using an explicit integration method with the output of the FNN
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model. Specifically, for the second approach, time-derivatives of the state need to be included in

the training data set and used as the reference data for the model training. Thus, the state time-

derivatives have to be either measured (if measurable, e.g., velocity) or numerically approximated

from the raw data of state measurements to develop the training data set. Additionally, in the sec-

ond approach, the ODE solver is detached from the FNN model, so it is not involved in the model

training.

The NODE model used in this study is an example of a supervised learning technique, which

optimizes the parameters of a model by minimizing the difference between the model output and

a reference data set. Training a neural network model includes two major steps: forward and

backward propagation [28, 39, 132]. The forward propagation of the neural network model is a

straightforward process that propagates the input through all the layers of the neural network model

to compute the output [184]. Subsequently, the model output will be compared with the reference

data set to calculate the loss of the model with respect to the user-defined loss function. The mean

squared error (MSE) is a popular loss function for regression problems and is used in this study.

Once calculated, the loss will be propagated backward, from the output layer to the input layer, to

compute the derivative of the loss with respect to each weight parameter of the model. Finally, the

weight parameters are optimized by the gradient descent method described by Eq. 3.7a below:

Wk+1 = Wk − α
∂Loss

∂W
(3.7a)

Loss =
1

2

Nd∑
i=1

(Ŷi − Yi)
⊤(Ŷi − Yi) (3.7b)

where α is known as the learning rate, Nd denotes the number of data points in the training set,
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and W = {wi | i = 1, 2, . . . , N} is the weight matrix containing all N weight parameters in

the neural network model. ∂Loss
∂W

is the loss gradient with respect to each weight parameter, Yi =

[y1,i, y2,i, . . . , yn,i] is the ith state measurement, and Ŷ is the model prediction of Y . In an FNN

model, neurons are densely connected to each other, multiplying their respective weight values

during the propagation phases. Therefore, the loss gradient with respect to the weight parameters

can be easily computed by applying the chain rule iteratively from the output layer to the input

layer. However, in NODE, the output given by the output layer of the FNN model is not directly

used in computing the model loss. Considering the MSE of Eq. 3.7b and the NODE definition of

Eq. 3.5, the NODE prediction is computed by the ODE solver, which means the chain rule can not

be applied directly to propagate the gradient of loss.

3.3.2.1 Adjoint Sensitivity method

[26] proposed to use the adjoint sensitivity method to propagate the gradient of loss through

the ODE solver in the NODE model. The adjoint sensitivity method, proposed in [120], is a

popular method used in scientific research to efficiently compute the gradient of a model loss with

respect to model parameters (or inputs). In [42], a detailed process to develop an adjoint model

is introduced and an example of its application in meteorology demonstrated. [26] provided the

mathematical derivation and proof of applying the adjoint method in the development of NODE.

In short, an adjoint state will be created to represent any derivative information that is useful

to train the neural network model. By doing so, the time-derivative of the adjoint state can be

formulated based on the chain rule. Finally, the loss gradients can be computed by integrating the

time-derivative of the adjoint states backward in time. A detailed implementation of this training
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algorithm is demonstrated in the following steps:

1. Define adjoint states: The first step in training the NODE model is to define the adjoint

states. One can start this step by first identifying what gradient information is needed to train

their NN model. The first adjoint state is defined as the loss derivative with respect to the

NODE output, which can be represented as a = ∂Loss

∂Ŷ
. Since the loss function is usually

selected to be an explicit quantity (e.g., MSE, MAE), the gradient ∂Loss

∂Ŷ
can be computed

analytically using the model prediction Ŷ . Subsequently, considering the case of using FNN

as the core model, the second adjoint state is defined to represent the loss derivative with

respect to the FNN weight parameters, that is, aW = ∂Loss
∂W

. In this study, the ODE function

of the system is assumed to not contain any explicit term in time. Therefore, time is not

an input of the core model, but it can be included following a similar approach. Lastly, all

adjoint states are augmented into a column vector to perform the next step of the calculation.

2. Set up the time-derivative of the adjoint states: With an augmented adjoint state vector,

aaug = [a aW ]⊤, following the derivation in [26], the time-derivative of the adjoint state can

be expressed in the following form:

∂
(

∂Loss

∂Ŷ
(t)

)
∂t

=
∂a(t)

∂t
= −a(t)

∂f

∂Ŷ
(3.8a)

∂
(

∂Loss
∂W

(t)
)

∂t
=

∂aW (t)

∂t
= −a(t)

∂f

∂W
(3.8b)

Since W is the weight vector that contains all the N weight parameters in the core model,

Eq. 3.8b is a vector of N equations, which can be represented as ∂aWi
(t)

∂t
= −a(t) ∂f

∂Wi
, i =
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1, . . . , N respectively.

3. Integrate backward in time: Based on the definition of the adjoint states and their time-

derivatives in the previous steps, we can compute the numerical values of the adjoint states

by integrating Eq. 3.8 backward in time. Specifically, we denote the initial time step by t0

and the final time step by tf . Based on Eq. 3.7b, the adjoint state a(tf ) will simply be the

sum of the model predictions at the final time step for each trajectory in the training set, i.e.,∑
Ŷ (tf ). With the adjoint state a(tf ) known, if we assume aw(tf ) to be zero, the adjoint

states at t0 can be found by the following expression, where t′ is a notational substitute for

t:

a(t0) = a(tf )−
∫ t0

tf

a(t′)
∂f

∂Ŷ
dt′ (3.9a)

aW (t0) = aW (tf )−
∫ t0

tf

a(t′)
∂f

∂W
dt′ (3.9b)

which can be solved with an ODE solver by approximating the partial derivative terms in

Eq. 3.9 using the automatic differentiation method. At the end, the gradient of the loss with

respect to weights at the initial time step, aw(t0), is used to update the model based on

Eq. 3.7a.

3.3.2.2 Automatic Differentiation

Automatic differentiation (AD) is an efficient and cheap method to approximate the gra-

dient between two variables and is widely used in the development of neural network models.

The AD method is well-developed and supported in modern ML Application Programming In-

terfaces (APIs). For example, AD is provided as the autograd function in PyTorch and the
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GradientTape function in TensorFlow. Both ML APIs use a computational graph to imple-

ment the AD method. A simplified demonstration of a computational graph is a map that reflects

all the connections in a neural network model and has a database for the derivative of various

common math operations. For example, if a result (c) in a computational graph is computed by

multiplying two inputs (c = a × b), then the derivative of the output with respect to either of the

inputs is simply the other input ( ∂c
∂a

= b), and the derivative of the output with respect to all of

its inputs will be stored in the computational graph. When performing the forward propagation of

the neural network model, all necessary gradients will be computed and stored. Therefore, dur-

ing backpropagation, the loss of the gradient with respect to any parameter can be systematically

computed based on the chain rule. In this work, since we used PyTorch to develop our model, the

derivative terms in Eq. 3.9 are approximated using the autograd function.

3.4 Lyapunov-based Model Predictive Control

using NODE models

This section formulates the design of an LMPC designed using the NODE model of Eq. 3.5 to

predict the future state trajectory, and then presents a closed-loop stability analysis of the nonlinear

system of Eq. 3.1 under the proposed NODE-based LMPC. Due to the sample-and-hold implemen-

tation of the controller, the closed-loop states can only be driven to a small neighborhood around

the origin. We clarify, for the subsequent propositions and proofs, that the core model of the NODE

model represents the time-derivative of the state, i.e., ˙̂x, which is also the right-hand side of the

ODE model to be captured.
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3.4.1 Lyapunov-based control using NODE models

We assume the existence of a stabilizing feedback controller u = Φnn(x) ∈ U that renders the

origin of the core model of Eq. 3.6 exponentially stable in an open neighborhood around the origin

ϕ̂u ∈ Rn in the sense that there exist a continuously differentiable control Lyapunov function V̂ (x)

and positive constants ĉ1, ĉ2, ĉ3, ĉ4 such that the following inequalities hold for all x ∈ D̂:

ĉ1|x|2 ≤ V̂ (x) ≤ ĉ2|x|2 (3.10a)

˙̂
V (x) =

∂V̂ (x)

∂x
f(x,Φnn(x)) ≤ −ĉ3|x|2 (3.10b)∣∣∣∣∣∂V̂ (x)

∂x

∣∣∣∣∣ ≤ ĉ4|x| (3.10c)

We begin by characterizing the region ϕ̂u where the constraints of Eq. 3.10 are met under the

controller u = Φnn(x), followed by defining the closed-loop stability region of the NODE model

of Eq. 3.6 to be a level set of the Lyapunov function inside ϕ̂u: Ωρ̂ := {x ∈ ϕ̂u | V̂ (x) ≤ ρ̂}

where ρ̂ > 0. The assumptions of Eq. 3.2 and Eq. 3.10 are the stabilizability requirements of the

nonlinear system of Eq. 3.1 and the NODE model of Eq. 3.6, respectively.

As the data set for constructing the NODE model is generated via open-loop simulations with

x ∈ Ωρ and u ∈ U , we have Ωρ̂ ⊆ Ωρ. Moreover, there exist positive constants Mnn and Lnn such

that the following inequalities hold for all x, x′ ∈ Ωρ̂ and u ∈ U :

|f(x, u)| ≤ Mnn (3.11a)∣∣∣∣∣∂V̂ (x)

∂x
f(x, u)− ∂V̂ (x′)

∂x
f(x′, u)

∣∣∣∣∣ ≤ Lnn|x− x′| (3.11b)
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The following proposition is developed to demonstrate that the feedback controller u = Φnn(x)

can stabilize the nominal system of Eq. 3.1, despite the model mismatch between Eq. 3.1 and the

NODE model of Eq. 3.6, if the modeling error is sufficiently small.

Proposition 1. (c.f. proposition 2 in [167]) Under the assumption that the origin of the closed-

loop NODE system of Eq. 3.6 is rendered exponentially stable under the controller u = Φnn(x) ∈

U ∀x ∈ Ωρ̂, if there exists a positive real number γ < ĉ3/ĉ4 that constrains the modeling error

|ν| = |F (x, u)−f(x, u)| ≤ γ|x|, ∀u ∈ U and ∀x ∈ Ωρ̂, then the origin of the nominal closed-loop

system of Eq. 3.1 under u = Φnn(x) ∈ U is also exponentially stable ∀x ∈ Ωρ̂.

Proof. To prove that the origin of the nominal system of Eq. 3.1 may be rendered exponentially

stable ∀x ∈ Ωρ̂ under the controller designed using the NODE model of Eq. 3.5, we prove that

˙̂
V for the nominal system of Eq. 3.1 is still rendered negative for all x ∈ Ωρ̂ under the controller

u = Φnn(x). The time-derivative of V̂ is computed based on Eq. 3.10b and Eq. 3.10c, as follows:

˙̂
V =

∂V̂ (x)

∂x
F (x,Φnn(x))

=
∂V̂ (x)

∂x

(
f(x,Φnn(x)) + F (x,Φnn(x))− f(x,Φnn(x))

)
≤ −ĉ3|x|2 + ĉ4|x|

(
F (x,Φnn(x))− f(x,Φnn(x))

)
≤ −ĉ3|x|2 + ĉ4γ|x|2

(3.12)

By choosing the modeling error γ to satisfy γ < ĉ3/ĉ4, it can be ensured that ˙̂
V ≤ −c̃3|x|2 ≤ 0

where c̃3 = −ĉ3 + ĉ4γ > 0. Consequently, the closed-loop state of the nominal system of Eq. 3.1

converges to the origin ∀x0 ∈ Ωρ̂ under u = Φnn(x) ∈ U .

Remark 14. In this work, the terminology of “modeling error” is used to describe the difference
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between Eq. 3.1 and Eq. 3.6 because the core model of the trained NODE model is expected to

capture the right-hand-side of the ODE function of Eq. 3.1. However, the NODE model is trained

using the measured states, i.e., the solution of Eq. 3.1b, such that the output of the core model of

Eq. 3.6 is the hidden state of the NODE model. Hence, the training loss of the NODE model refers

to the error in the state, while the modeling error refers to the error in the time-derivative.

3.4.2 Sample-and-hold implementation of Lyapunov-based MPC

Since the Lyapunov-based MPC designed using the NODE model of Eq. 3.5 is implemented

in a sample-and-hold fashion, in the next two propositions, the sample-and-hold properties of the

Lyapunov-based controller u = Φnn(x) are derived. In particular, the following proposition derives

an upper bound for the error between the states calculated by the nominal system of Eq. 3.1 and

the states predicted by the NODE model of Eq. 3.5.

Proposition 2. (c.f. proposition 3 in [167]) For the nonlinear system ẋ = F (x, u) of Eq. 3.1 and

the NODE core model ˙̂x = f(x̂, u) of Eq. 3.6 with the same initial condition x0 = x̂0 ∈ Ωρ̂, there

exist a function fw(·) of class K and a positive constant κ such that the following inequalities hold

∀x, x̂ ∈ Ωρ̂:

|x(t)− x̂(t)| ≤ fw(t) :=
νm
Lx

(eLxt − 1) (3.13a)

V̂ (x) ≤ V̂ (x̂) +
ĉ4
√
ρ̂√

ĉ1
|x− x̂|+ κ|x− x̂|2 (3.13b)

Proof. The error vector between the solutions of the nonlinear system of Eq. 3.1 and the NODE

model of Eq. 3.5 is defined as e(t) = x(t) − x̂(t), whose time-derivative can be calculated as
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follows:
|ė(t)| = |F (x, u)− f(x̂, u)|

≤ |F (x, u)− F (x̂, u)|+ |F (x̂, u)− f(x̂, u)|
(3.14)

In Eq. 3.14, the first term can be bounded using Eq. 3.3b as follows:

|F (x, u)− F (x̂, u)| ≤ Lx|x(t)− x̂(t)|, ∀x, x̂ ∈ Ωρ̂, (3.15)

while the second term |F (x̂, u) − f(x̂, u)| represents the modeling error, which is bounded by

|ν| ≤ νm ∀x̂ ∈ Ωρ̂. As a result, based on Eq. 3.15 and the bounded modeling error, ė(t) is bounded

as follows:
|ė(t)| ≤ Lx|x(t)− x̂(t)|+ νm

≤ Lx|e(t)|+ νm

(3.16)

The norm of the error vector can be bounded as follows for all x(t), x̂(t) ∈ Ωρ̂ using the zero initial

condition (i.e., e(0) = 0):

|e(t)| = |x(t)− x̂(t)| ≤ νm
Lx

(eLxt − 1) (3.17)

Finally, to derive Eq. 3.13b ∀x, x̂ ∈ Ωρ̂, we derive the Taylor series expansion of V̂ (x) around x̂,

V̂ (x) ≤ V̂ (x̂) +
∂V̂ (x̂)

∂x
|x− x̂|+ κ|x− x̂|2 (3.18)

where κ is a positive real number. Using Eq. 3.10a and Eq. 3.10c, it follows that

V̂ (x) ≤ V̂ (x̂) +
ĉ4
√
ρ̂√

ĉ1
|x− x̂|+ κ|x− x̂|2, (3.19)
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which completes the proof of 2.

The final proposition below is developed to prove that the closed-loop state of the actual non-

linear system of Eq. 3.1 remains bounded in Ωρ̂ for all times, and can be ultimately bounded in a

small neighborhood around the origin, denoted by Ωρmin
, under the sample-and-hold implementa-

tion of the Lyapunov-based controller u = Φnn(x) ∈ U .

Proposition 3. Consider the nonlinear system of Eq. 3.1 under the controller u = Φnn(x̂) ∈ U

that meets the conditions of Eq. 3.10 and is designed to stabilize the NODE system of Eq. 3.6.

The controller is implemented in a sample-and-hold fashion, such that u(t) = Φnn(x̂(tk)), ∀ t ∈

[tk, tk+1), where tk+1 := tk + ∆. Furthermore, let ϵs, ϵw > 0, ∆ > 0 and ρ̂ > ρmin > ρsp > ρs

satisfy

− ĉ3
ĉ2
ρs + LnnMnn∆ ≤ −ϵs (3.20a)

− c̃3
ĉ2
ρs + L′

xM∆ ≤ −ϵw (3.20b)

and

ρsp := max{V̂ (x̂(t+∆)) | x̂(t) ∈ Ωρs , u ∈ U} (3.21a)

ρmin ≥ ρsp +
ĉ4
√
ρ̂√

ĉ1
fw(∆) + κ(fw(∆))2 (3.21b)

Based on the above assumptions, for any x(tk) ∈ Ωρ̂\Ωρs , the following inequality holds:

V̂ (x(t)) ≤ V̂
(
x(tk)

)
,∀t ∈ [tk, tk+1) (3.22)

67



and the state x(t) of the nonlinear system of Eq. 3.1 is bounded in the level set Ωρ̂ for all times and

ultimately trapped in the smaller level set Ωρmin
.

Proof. Part 1: Assuming x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs , it will be first shown that the value of the

Lyapunov function V̂ (x̂) is decreasing under the controller u(t) = Φnn(x(tk)) ∈ U ∀ t ∈ [tk, tk+1),

where x(t) and x̂(t) denote the solutions of the nonlinear system of Eq. 3.1 and the NODE system

of Eq. 3.5, respectively. The time-derivative of the Lyapunov function along the trajectory x̂(t) of

the NODE model of Eq. 3.5 can be written ∀t ∈ [tk, tk+1) as

˙̂
V (x̂(t)) =

∂V̂ (x̂(t))

∂x̂
f(x̂(t),Φnn(x̂(tk)))

=
∂V̂ (x̂(tk))

∂x̂
f(x̂(tk),Φnn(x̂(tk))) +

∂V̂ (x̂(t))

∂x̂
f(x̂(t),Φnn(x̂(tk)))

− ∂V̂ (x̂(tk))

∂x̂
f(x̂(tk),Φnn(x̂(tk)))

(3.23)

where the first term can be bounded as follows using Eq. 3.10a and Eq. 3.10b:

˙̂
V (x̂(t)) ≤− ĉ3

ĉ2
ρs +

∂V̂ (x̂(t))

∂x̂
f(x̂(t),Φnn(x̂(tk)))

− ∂V̂ (x̂(tk))

∂x̂
f(x̂(tk),Φnn(x̂(tk)))

(3.24)

In Eq. 3.24, bounding the difference using the Lipschitz condition of Eq. 3.11 with the fact that

x̂ ∈ Ωρ̂, u ∈ U , ˙̂
V (x̂(t)) can be upper-bounded ∀ t ∈ [tk, tk+1):

˙̂
V (x̂(t)) ≤− ĉ3

ĉ2
ρs + Lnn|x̂(t)− x̂(tk)|

≤ − ĉ3
ĉ2
ρs + LnnMnn∆

(3.25)

Therefore, the satisfaction of the condition of Eq. 3.20a ensures that the following inequality holds
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∀ x̂(tk) ∈ Ωρ̂\Ωρs , ∀ t ∈ [tk, tk+1):

˙̂
V (x̂(t)) ≤ −ϵs (3.26)

By integrating the aforementioned differential equation over the time interval t ∈ [tk, tk+1) with

respect to time, it can be deduced that V (x̂(tk+1)) ≤ V (x̂(tk))−ϵs∆. So far, we have demonstrated

that, for all x̂(tk) ∈ Ωρ̂\Ωρs , the closed-loop state of the NODE system of Eq. 3.5 remains confined

within the closed-loop stability region Ωρ̂ at all times and progresses towards the origin under the

controller u = Φnn(x̂) ∈ U when implemented in a sample-and-hold approach.

It should be noted that Eq. 3.26 may not hold when x(tk) = x̂(tk) ∈ Ωρs , meaning that

the state may exit Ωρs within a single sampling period. Therefore, we establish another region

Ωρsp based on Eq. 3.21a to ensure that the closed-loop state x̂(t) of the NODE model does not

depart from Ωρsp over a single sampling period, i.e., during t ∈ [tk, tk+1), ∀u ∈ U , ∀x̂(tk) ∈ Ωρs .

If the state x̂(tk+1) exits Ωρs , Eq. 3.26 is satisfied again at t = tk+1, thereby reactivating the

controller u = Φnn(x(tk+1)) and directing the state towards Ωρs during the following sampling

period. Consequently, it is demonstrated that the state approaches Ωρsp for the closed-loop NODE

system of Eq. 3.5 for all x̂0 ∈ Ωρ̂. In Part 2, we demonstrate that the closed-loop state of the actual

nonlinear process of Eq. 3.1 can also be confined within Ωρ̂ for all times and eventually contained

within a small neighborhood around the origin with the sample-and-hold implementation of the

controller u = Φnn(x) ∈ U .

Part 2: We repeat the analysis carried out for the NODE system of Eq. 3.5. First, we suppose

x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs and derive the following expression for the time-derivative of V̂ (x) for

69



the nonlinear system of Eq. 3.1:

˙̂
V (x(t)) =

∂V̂ (x(t))

∂x
F (x(t),Φnn(x(tk)))

=
∂V̂ (x(tk))

∂x
F (x(tk),Φnn(x(tk))) +

∂V̂ (x(t))

∂x
F (x(t),Φnn(x(tk)))

− ∂V̂ (x(tk))

∂x
F (x(tk),Φnn(x(tk)))

(3.27)

From Eq. 3.12, it can be inferred that ∂V̂ (x(tk))
∂x

F (x(tk),Φnn(x(tk))) ≤ −c̃3|x(tk)|2 ∀x ∈ Ωρ̂\Ωρs .

By utilizing Eq. 3.10a and the definition of Lipschitz continuity in Eq. 3.11, the following inequal-

ity can be established ∀ t ∈ [tk, tk+1) and ∀x(tk) ∈ Ωρ̂\Ωρs:

˙̂
V (x(t)) ≤− c̃3

ĉ2
ρs +

∂V̂ (x(t))

∂x
F (x(t),Φnn(x(tk)))−

∂V̂ (x(tk))

∂x
F (x(tk),Φnn(x(tk)))

≤− c̃3
ĉ2
ρs + L′

x|x(t)− x(tk)|

≤ − c̃3
ĉ2
ρs + L′

xM∆

(3.28)

Thus, if the condition of Eq. 3.20b is fulfilled, the inequality below is valid ∀x(tk) ∈ Ωρ̂\Ωρs , ∀ t ∈

[tk, tk+1):

˙̂
V (x(t)) ≤ −ϵw (3.29)

The above differential equation may be integrated in time between any two points within the fol-

lowing sampling period, i.e., [tk, tk+1) to obtain the following inequalities for the Lyapunov func-

tion V̂ for all x(tk) ∈ Ωρ̂\Ωρs:

V̂ (x(tk+1)) ≤ V (x(tk))− ϵw∆ (3.30)

V̂ (x(t)) ≤ V̂ (x(tk)), ∀ t ∈ [tk, tk+1) (3.31)
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As a result, the state of the closed-loop system of Eq. 3.1 stays within Ωρ̂ for all time. In addition,

the controller u = Φnn(x) can continue to steer the state of the nonlinear system of Eq. 3.1 toward

the origin within each sampling period. Furthermore, if the initial state x(tk) satisfies x(tk) ∈

Ωρs , then it was already demonstrated in Part 1 that the state of the NODE model of Eq. 3.5 is

confined within Ωρsp for one sampling period. Given the bounded modeling error between the

actual nonlinear system of Eq. 3.1 and the NODE model of Eq. 3.5 described by Eq. 3.13a, there

is a compact set Ωρmin
⊃ Ωρsp satisfying Eq. 3.21b such that the state of the nonlinear system of

Eq. 3.1 remains within Ωρmin
for one sampling period if the state of the NODE model of Eq. 3.5

is constricted within Ωρsp . If the state x(t) enters Ωρmin
\Ωρs , we have already demonstrated that

Eq. 3.31 holds, and thus, under u = Φnn(x), the state will be driven back towards the origin during

the next sampling period, ultimately constricting the closed-loop system to remain within Ωρmin
.

Thus, the proof of Proposition 3 is completed, having shown that for any x0 = x̂0 ∈ Ωρ̂, the

closed-loop state trajectories of the nonlinear system described by Eq. 3.1 remain within Ωρ̂ and

ultimately within Ωρmin
if the assumptions of Proposition 3 are satisfied.

3.4.3 Lyapunov-based MPC formulation

Model predictive control is an advanced process control technique that computes the con-

trol action by solving an optimization problem based on a given predictive model and feedback

measurement. A Lyapunov-based MPC is a class of MPC with additional constraints based on

the value of the Lyapunov function and its time-derivative at the current state. The optimization
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problem of LMPC can be written as follows:

J = min
u∈S(∆)

∫ tk+Nh

tk

L(x̂(t), u(t)) dt (3.32a)

s.t. x̂(t) = Fnn(x0, u, tk, tk+Nh
) (3.32b)

u(t) ∈ U, ∀ t ∈ [tk, tk+Nh
) (3.32c)

x̂(tk) = x(tk) (3.32d)

˙̂
V (x̂, u) ≤ −kV̂ (x̂), if x(tk) ∈ Ωρ\Ωρsp (3.32e)

V̂ (x̂) ≤ ρsp, ∀ t ∈ [tk, tk+Nh
), if x(tk) ∈ Ωρsp (3.32f)

where L(·) is the cost function based on the state and control input values, such that the objective of

the optimization problem is to minimize the integral of the cost function in the time span between tk

and tk+Nh
, where Nh is the prediction horizon, which is an integer multiple of ∆. S(∆) represents

the set of piecewise constant functions with a period ∆, which the input u is restricted to. Fnn

represents the NODE model, described by Eq. 3.5, that gives as its output the state prediction

x̂(t) over the prediction horizon by integrating the core model of Eq. 3.6 starting from the initial

condition of Eq. 3.32d, which is the state measurement at tk. U denotes the allowable range of the

control action u, and Ωρsp := {x ∈ ϕ(x) | V̂ (x) ≤ ρsp, ρsp < ρ} is a subset of Ωρ that defines the

process state region considered to be “close enough” to the set-point when deploying the LMPC

for set-point tracking. The goal of the LMPC is to calculate the optimal sequence of control actions

u = u∗(t), t ∈ [tk, tk+Nh
) and apply the first move of the sequence, u∗(tk), over the next sampling

period. Once the process evolves for one sampling period, the LMPC is resolved again at the next

sampling period.
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The time-derivative of the Lyapunov function depends on the design of the function V̂ (x).

Considering the design to be V̂ (x) = x⊤Px where P is a user-defined positive definite matrix,

˙̂
V (x) can be expressed as 2x⊤Pẋ. The time-derivative of the process states, ẋ, can be easily found

if an explicit ODE of the system is known. In the case of an NODE model, the time-derivative

of the process states can be approximated by the hidden state, which is the output of the core

model. Therefore, numerical approximation of the output derivative (ẋ) by methods such as finite-

differences is not necessary.

Remark 15. As we demonstrate in the application section, quadratic Lyapunov functions can be

used to effectively design the Lyapunov-based stability constraints for the LMPC. It is important

to note that the operating region is not limited by the choice of a quadratic Lyapunov function.

Non-quadratic Lyapunov functions could be considered for this task as well but they are harder to

construct. The design of Lyapunov functions is an important research area in nonlinear systems

and control; various methods have been proposed to design a Lyapunov function, for example [49,

52].

3.4.4 Closed-loop stability analysis

The LMPC formulation presented in Eq. 3.32 is used to derive the following theorem, which

guarantees recursive feasibility of the LMPC optimization problem and also closed-loop stability of

the actual nonlinear system of Eq. 3.1 under the sample-and-hold implementation of the resulting

optimal control actions.

Theorem 1. Assuming the controller Φnn(x) satisfies Eq. 3.10, the closed-loop system of Eq. 3.1
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under the LMPC of Eq. 3.32 is considered. Let ∆ > 0, ϵs > 0, and ρ̂ > ρmin > ρsp > ρs be such

that they satisfy Eq. 3.21a and 3.21b. If the conditions of Propositions 2 and 3 are met, a feasible

solution for the optimization problem of Eq. 3.32 always exists for any initial state x0 ∈ Ωρ̂.

Moreover, it is guaranteed that the LMPC of Eq. 3.32 maintains x(t) ∈ Ωρ̂ for all t ≥ 0, and that

x(t) of the closed-loop system of Eq. 3.1 eventually converges to Ωρmin
.

Proof. We begin by establishing the recursive feasibility of the optimization problem in Eq. 3.32

for all states x ∈ Ωρ̂. In particular, if at time tk, x(tk) ∈ Ωρ̂\Ωρsp , then the control action

u(t) = Φnn(x(tk)) ∈ U , t = [tk, tk+1) computed using the state measurement x(tk) satisfies

the input constraint of Eq. 3.32c and the Lyapunov-based constraint of Eq. 3.32e. Furthermore, if

x(tk) ∈ Ωρsp , the control actions obtained from Φnn(x(tk+i)), i = 0, 1, ..., Nh − 1 comply with the

input constraint of Eq. 3.32c and the Lyapunov-based constraint of Eq. 3.32f since Proposition 3

shows that the states predicted by the NODE model of Eq. 3.32b remain inside Ωρsp under the

controller Φnn(x). Hence, if x(t) ∈ Ωρ̂ for all times, the LMPC optimization problem of Eq. 3.32

is recursively feasible for all initial states x0 ∈ Ωρ̂.

We will show that ∀x0 ∈ Ωρ̂, the state of the closed-loop system of Eq. 3.1 under the LMPC

scheme of Eq. 3.32 remains bounded in Ωρ̂ ∀ t and ultimately converges to a small neighborhood

around the origin Ωρmin
as described by Eq. 3.21b.

Assume x(tk) ∈ Ωρ̂\Ωρsp at time tk. In this case, the constraint of Eq. 3.32e is activated,

and the control action u is computed to decrease the value of V̂ (x̂) based on the predicted states

obtained from the NODE model of Eq. 3.32b over the next sampling period. Furthermore, Eq. 3.31

shows that, if the constraint of Eq. 3.32e is met, then ˙̂
V (x) ≤ −ϵw holds for t ∈ [tk, tk+1) when
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applying the control action u∗(tk) to the nonlinear system of Eq. 3.1. Consequently, the value of

the Lyapunov function calculated using the state of the actual nonlinear system of Eq. 3.1, V̂ (x),

decreases within the following sampling period, implying that the closed-loop state can be driven

into Ωρsp within a finite number of sampling periods.

Once the state enters Ωρsp , the constraint of Eq. 3.32f is activated to ensure that the predicted

states of the NODE model of Eq. 3.32b remain in Ωρsp throughout the prediction horizon. While

there may exist a mismatch between the NODE model of Eq. 3.32b and the nonlinear system of

Eq. 3.1, based on the results of Proposition 3, we can guarantee that the state x(t) of the nonlinear

system of Eq. 3.1 remains bounded in Ωρmin
∀ t ∈ [tk, tk+1) as characterized by Eq. 3.21b if the

state predicted by the NODE model of Eq. 3.32b stays in Ωρsp .

Thus, at the next sampling period t = tk+1, if the state x(tk+1) is still within Ωρsp , then the

constraint of Eq. 3.32f ensures that the predicted state x̂ of the NODE model of Eq. 3.32b remains

in Ωρsp , thereby keeping the state x of the actual nonlinear system of Eq. 3.1 inside Ωρmin
. However,

if the state exits Ωρsp such that x(tk+1) ∈ Ωρmin
\Ωρsp , we can retrace the proof for x(tk) ∈ Ωρ̂\Ωρsp

to show that the state will once again be driven toward the origin since the constraint of Eq. 3.32e

will be triggered. This concludes the proof of the states of the actual nonlinear system of Eq. 3.1

being bounded under the sample-and-hold implementation of the controller u = Φnn(x) and being

ultimately driven to a small neighborhood around the origin Ωρmin
∀x0 ∈ Ωρ̂.
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Table 3.1: Parameters of the CSTR example.

T0 = 300 K k0 = 8.46× 106 m3/kmol hr
Cp = 0.231 kJ/kg K ρL = 1000 kg/m3

F = 5 m3/hr E = 5× 104 kJ/kmol
R = 8.314 kJ/kmol K

3.5 Application of NODE-based Model Predictive Control in

Chemical Process

In this section, a chemical process involving a continuous stirred tank reactor (CSTR), which

facilitates a reaction converting reactant A to product B, is utilized to demonstrate the development

and application of NODE-based LMPC in a chemical process setting. Based on mass and energy

balances, the following ODEs are used to describe the CSTR system:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A (3.33a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(3.33b)

where CA0 is the concentration of reactant A in the feed flow, while T and CA are the temperature

and the concentration of A, respectively, in the CSTR. ρL and Cp represent the density and heat

capacity of the liquid mixture in the CSTR, respectively, and are assumed to be constant. ∆H

denotes the enthalpy of the reaction. The constant parameters are listed in Table 3.1. The unstable

steady state of the system at (CA = 1.95 kmol/m3, T = 402 K) is selected as the set-point of

this example, and the control objective of the LMPC is to maintain the state of the system around

this set-point. The manipulated control variables in this example are the inlet concentration of
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reactant A and the heat duty of the coolant jacket of the CSTR, with the steady state control

actions set to CA0s = 4 kmol/m3, Qs = 0 kJ/hr. The bounds of the manipulated control variables

are CA0 ∈ CA0s ± 3.5 kmol/m3 and Q ∈ Qs ± 5× 105 kJ/hr.

3.5.1 Noise-free Example

3.5.1.1 Data Collection and Preprocessing

Training data used to develop the NODE model is obtained by performing open-loop simula-

tions. Specifically, the first step of the data collection is to define the open region D, which requires

the design of a Lyapunov function V̂ (x). In our work, the control Lyapunov function is designed

to be V̂ (x) = x⊤Px, where P is the positive definite matrix P =

1060 22

22 0.52

. Subsequently,

a level set where ρ = 375 is selected to be the closed-loop stability region Ωp, which is shown as

the ellipse in Fig. 3.2. Since the desired region of operation is Ωp, this is also chosen to be the

sampling region for data collection.

After determining the sampling region Ωρ, numerous open-loop state trajectories are obtained

by integrating Eq. 3.33 from randomly drawn initial states under random, constant control inputs

using the explicit Euler method over a time span of 0.045 hr. A very small step size (i.e., hc ≪

0.005 hr) is used in the explicit Euler method to generate the state trajectories, but since the process

is assumed to have a sampling period of 0.005 hr, the generated state trajectories are then evenly

down-sampled to have a time interval of 0.005 hr between data points. As a result, the training

data set is made up of various state trajectories generated from a wide range of initial conditions

and control inputs. Each trajectory in the training data set contains 10 samples or data points.
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Moreover, the data is generated in deviation form, x = (CA − CAs, T − Ts) and u = (CA0 −

CA0s, Q−Qs), such that the steady state is at the origin (i.e., xs = (0, 0), us = (0, 0)). Following

this method, a training data set containing 1000 trajectories was collected and found to be enough

to train the NODE model in this example.

Similar to other neural network models, data needs to be scaled prior to being used to train an

NODE model. The scaling step is a part of data preprocessing. The MaxAbs scaler, which scales

the data set by dividing each variable by the maximum absolute value of each variable in the data

set (without any subtraction), respectively, is adopted in this work to maintain the steady-state of

the scaled data set at the origin. As a result, the training data is scaled to a range between −1 and 1.

Besides scaling the data, the training data set is split into two parts, such that 80% of the trajectories

are used to train the model and the rest are used to validate the model performance. Specifically,

the model weights are updated based on the loss with respect to 80% of all trajectories and the

remaining 20%, usually named the validation set, is not included in the calculation of the loss for

the weight update but are used to compute the validation loss, which is an important metric to

ensure that the model does not overfit the training data. Lastly, there are additional 100 trajectories

that are reserved for testing the trained model’s performance, which is usually called the test set,

and these are generated in the same manner as the training data.

The data preprocessing step, including scaling and splitting the data, is handled using Scikit-

learn, a popular Python-based ML package. Specifically, conventionally, in most ML packages,

the inputs of the neural network model and the reference/output data are first augmented into two

different tensors. After that, the Scikit-learn scaler function is applied to fit and transform the input

and output tensors, respectively. However, this scaling strategy will cause a mismatch between
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the model input and first time step of the output trajectory. Specifically, the prediction of our

NODE model is designed to include the initial value of the state, which is provided by the input

tensor during the model training. Therefore, the initial value of each trajectory in the output tensor

corresponds to t0 and should be identical to the states values in the input tensor. If the tensors

are scaled separately, scaling factors (e.g., mean, maximum absolute value, etc.) will be different

for the input and the output tensors. This is because, using time-series data as an example, data

in the output tensor is evolved in time from the data in the input tensor, which is very likely to

yield different statistics for the two tensors. If the different means are subtracted from the input

and output tensors, the initial value of each trajectory corresponding to t0 will be different for

each tensor. To avoid this mismatch, the same scaling factor should be applied to the variables

representing the same physical quantities. Lastly, to ensure no information leakage occurs during

the model building process, the maximum absolute value used to scale the data should be based on

only the 80% of the training data set.

Remark 16. In practice, the knowledge of the operating region can be obtained from the process

design and operational purpose as well as past experience of operating the process. For example,

if the goal is developing a process control system for an existing chemical process, the operating

region of the process should be determined from the previous operation experience (if the objec-

tive is to update an existing control system) or from process design and simulation using reliable

software used in industry such as Aspen Hysys or Aveva PRO/II (if the objective is to develop and

implement a control system to a new process). The training data in those cases will be collected

from the past operation or process simulation, respectively.
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3.5.1.2 NODE training

In this subsection, the details of the NODE model development using PyTorch are provided.

Specifically, the core model of the NODE is chosen to be an FNN model to map neural network

inputs to the hidden state of the NODE model. The core model has two hidden layers and each

hidden layer contains 64 neurons activated by the hyperbolic tangent (tanh) function. [41] sug-

gested that the NODE model should be differentiable everywhere, but activation functions like

ReLU, which are not, have been used in NODE-based research [41, 78]. Nevertheless, to avoid

any potential failure caused by the lack of differentiability of the activation function, tanh is used

as the activation function in our core model. The Adaptive Moment Estimation (ADAM) optimizer

is used to update the weight matrices in the core model. Mini-batches are used for the gradient

descent method with a batch size of 32 trajectories. Lastly, an explicit Euler solver is used as the

ODE solver in the NODE model.

Hyperparameter tuning is a critical step in neural network development and is done via a

coarse, exploratory search followed by manual fine-tuning in this work. Specifically, we observed

that using two hidden layers in the core model can significantly improve the learning ability of the

NODE model but having more than two hidden layers did not provide any significant improvement

despite the uptick in computational resource usage. For the number of neurons to be used in the

hidden layers, we applied a two-dimensional grid search using 8, 16, 32, 64, and 128 neurons for

each hidden layer and assessed the model performance at each combination. It was found that

using more than 64 neurons did not significantly improve the model performance. Therefore, we

used 64 neurons in our hidden layer. The NODE model is trained with 300 epochs, and the testing
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loss of the trained model is 3.1×10−4. Furthermore, the mean absolute errors were 0.015 kmol/m3

and 0.8 K for the prediction of CA and T , respectively.

Remark 17. The model obtained using the aforementioned hyperparameter tuning strategy may

not be the most accurate possible model. However, due to the low dimension of our system and

the complexity of the neural network structure, further fine-tuning of the hyperparameter is not

expected to significantly improve the model performance. We note that finding the best possible

model or the most effective hyperparameter tuning strategy are not the major objectives of this

study.

Remark 18. Detailing the coding implementation of the NODE is not the objective of this study.

However, since the NODE is a recently proposed model, such that its training is not fully supported

in the commonly used ML APIs such as PyTorch and TensorFlow, we outline some key steps of

our implementation. An official NODE python package, torchdiffeq, is provided in [26]. In

our study, the intermediate steps of the data sequence are important when evaluating the loss

of the model. Therefore, the integral of the adjoint state a(t) is updated at each intermediate

observation during the backpropagation. We developed our code based on an open-source GitHub

project [152]. Modifications needed to be added to the ODE solver and the backpropagation

function to correctly handle the control actions in the neural network input.

3.5.1.3 NODE-based LMPC performance

After training the NODE model, we conduct open-loop simulations using the NODE model

and benchmark it against the first-principles (FP) equation to evaluate its prediction accuracy.

Specifically, open-loop simulations are conducted under fixed control inputs over two sampling
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periods for both the NODE model and the FP model and the state trajectories compared. The sim-

ulations start from randomly selected initial conditions inside the stability region Ωρ. Subsequently,

a random, constant control input is applied to the process for two sampling periods. Fig. 3.2 depicts

the open-loop trajectories for both the NODE model and the FP model of Eq. 3.33 under identical

input signals as described. The close agreement between the state trajectories predicted by both

models throughout the two sampling periods supports the fact that the NODE model prediction has

been trained to a high level of accuracy.

After ensuring the accuracy of the NODE model, closed-loop simulations under the LMPC

of Eq. 3.32 using the NODE process model are conducted. The objective function of the LMPC

is defined to be L(x, u) = x⊤Q̄x + u⊤Ru, where Q̄ and R are the parameter matrices of the state

and input penalty terms in the objective function, respectively. Fig. 3.3 illustrates the state and

input profiles of the CSTR in closed-loop under the NODE-based LMPC, where the process state

is brought from a randomly drawn initial state x0 = (CA = 1.6 kmol/m3, T = −64.5 K) to the

steady-state set-point and maintained within Ωρsp . Furthermore, the closed-loop performance of

the NODE-based LMPC and the FP-based LMPC are found to be very similar, indicating that the

NODE-based LMPC can perform as well as the FP-based LMPC due to the high accuracy of the

NODE model. Finally, Fig. 3.4 shows closed-loop state-space trajectories from several random

initial conditions in Ωρ under the NODE-based LMPC, all of which are found to be successfully

stabilized around the set-point.
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Figure 3.2: Open-loop state-space trajectories of the CSTR given by the first-principle model
(black line) and the trained NODE model (blue dash). The purple ellipse denotes the boundary
of the pre-defined stability region, Ωρ, of the CSTR system. Star icons are the initial state pairs
randomly drawn within the stability region.
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Figure 3.3: State and input profiles for the CSTR under the LMPC using the first-principles process
model (blue line) and the NODE process model (orange line).

Remark 19. Although changing the type of ODE solver in the NODE is not recommended, the

parameters used in the ODE solver can be changed based on the model performance without any

negative impact. For example, the integration time step in the explicit Euler solver used in this study

was tuned when developing the LMPC to balance prediction accuracy with computational cost.

Besides this, in the PyTorch framework, additional mathematical operations, such as a lambda
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Figure 3.4: NODE-based LMPC performance in closed-loop simulation. The closed-loop simula-
tion used the NODE-based LMPC to stabilize the CSTR from various initial conditions represented
by red stars. The closed-loop state trajectories under the LMPC are demonstrated in black dashed
line and compared with the state trajectories under an LMPC based on FP equation. The NODE-
based LMPC successfully bring the state to the desired region Ωρsp and having a very similar
performance comparing to the LMPC designed using FP equation.

layer, can be added to the core model after training. Specifically, a lambda layer can be designed

to ensure that the output of the core model is equal to zero when the neural network inputs are

all at the steady-state. By adding such a lambda layer after training, the NODE model can be

easily programmed to provide correct information for some critical well-known process conditions

without harming the training process (i.e., including the lambda layer during the training process

may affect the gradient descent step of the neural network model training). In this work, it is found

that adding a lambda layer to ensure zero output at the steady state did not have a significant

effect on the LMPC performance. Therefore, the simulations in this work are carried out without

involving any lambda layer.
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3.5.2 Noisy Data Example: Gaussian Noise

After showing the NODE-based LMPC is capable of controlling a noise-free system, we

further investigate if a NODE-based LMPC can be used in the case of noisy data, which is more

practical in an industrial setting. For the first scenario, we assumed that the process noise follows

a Gaussian distribution. The process noise follows the distribution, v ∼ N (0, σ2), and is added

to the clean data set reported in Section 3.5.1.1 to generate the noisy data set. Three noisy data

sets corrupted by increasing strength of process noise are generated for this study and the details

of the noise levels are listed in Table 3.2. Subsequently, each noisy data set is used to train an

NODE model having the same structure as the one developed using the clean data set. Table 3.2

also includes the testing loss of the NODE model under each noise level.

The testing loss for the model developed with noisy data is calculated using the reference

data also corrupted by the same strength of noise (e.g., if the NODE model is developed using

the data set corrupted by the weak level of noise, the testing data used to calculate its loss is also

corrupted by the weak level of noise), instead of comparing with the clean data. This is because

a clean data set is not available in a practical system with measurement noise. Therefore, the

models are compared in the sense of how well they can fit the available data. As a result, the

NODE model trained with the weak noise has a slightly higher loss than the one trained with clean

data, and the loss increases with increasing noise levels, which demonstrates the negative impact

of measurement noise on the model training.

To account for noisy measurements, the subsampling method, following the workflow shown

in Fig. 3.5, is adopted in this study. We introduce a tuning parameter for the subsampling method,
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Figure 3.5: The workflow of using subsampling method with a subsampling factor p = 0.3 to
develop neural ordinary differential equation (NODE) models. By using the subsampling method,
different training data can be created in each attempt, which allows for training of a new model.
Np in this figure is used to denotes the number of NODE models to generate in the workflow.

named subsampling factor p, which denotes the percentage of data points randomly selected to be

kept in the data set while dropping out the rest of the data. Specifically, the number of trajectories

in the training set will remain the same, but some data points in each trajectory will be dropped

out randomly to match the desired p value. Additionally, since the data points to be dropped are

randomly selected, redoing the subsampling with the same p value will result in a different training

data set each time, which leads to training a different NODE model each time. Three p values (i.e.,

30%, 50%, 80%) are used to subsample the data, and 5 NODE models are trained for each value

of p. Finally, only the lowest training loss among the 5 models is reported in Table 3.2, and the

corresponding model is used to develop an LMPC for the next step. The training loss in Table 3.2
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Figure 3.6: Open-loop simulation results for (a) concentration of reactant A in the CSTR (CA) and
(b) temperature of the CSTR (T ) using the NODE model trained with Gaussian noisy data.

shows that using the subsampling method does not have a significant impact on the NODE model

performance. Open-loop simulations are further conducted to evaluate the model performance.

Fig. 3.6 demonstrates the performance of the NODE models for different values of p by showing

the predicted state trajectories, which are overlapping with each other.

Finally, closed-loop simulations are conducted to evaluate the performance of the NODE-

based LMPC using different subsampling factors. Specifically, during the closed-loop simulations,
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Table 3.2: Training loss of NODE model using Gaussian noisy data.

Weak Noise Medium Noise Strong Noise
σCA

= 0.05 kmol/m3 σCA
= 0.15 kmol/m3 σCA

= 0.25 kmol/m3

σT = 5 K σT = 15 K σT = 25 K

p Mean Squared Error (MSE)

1 0.0076 0.0290 0.0365
0.8 0.0074 0.0320 0.0370
0.5 0.0069 0.0270 0.0370
0.3 0.0068 0.0300 0.0500

a non-zero initial state is first randomly drawn from the stability region Ωρ\Ωρsp , following which

the respective LMPC is used to bring the process to the set point, which is the origin of the state

space. Specifically, the closed-loop simulation is run for a duration of 0.3 hr with a sampling

time of 0.01 hr. Therefore, there are 30 state feedback measurements used by the LMPC in the

simulation, which are all corrupted by noise. To ensure a fair comparison between each LMPC,

the noise added to the feedback measurements must be consistent. Thus, the sensor noise is only

sampled once from a Gaussian distribution and then saved in order to be used in all the closed-loop

simulations. Fig. 3.7 compares the performance of the NODE-based LMPCs developed with four

p values in the presence of weak noise (as defined in Table 3.2). It is observed that all the LMPCs

successfully stabilized the process from the various initial conditions. However, the clean state

may not remain in the designed stability region Ωρsp under the effect of noise. Proposition 4 in

[167] derived how the region of ultimate boundary, Ωρmin
, increases as the disturbance bound and

sampling period increase. Based on the closed-loop simulations in Fig. 3.7, by using Ωρsp = 2, we

found the region of ultimate boundary expanded to Ωρmin
= 60 under weak Gaussian noise.

Finally, the LMPC performance is quantified by calculating the integral of the LMPC cost

88



function (Eq. 3.32) over the simulation duration, i.e.,
∫ t=0.3hr

t=0
L(x(τ), u(τ)) dτ . The quantified

loss shows that the subsampling model with p = 0.8 has better performance than the NODE

model without subsampling in all five closed-loop simulations. In four out of five simulations,

the NODE model with p = 0.8 gave an LMPC cost function value approximately 1% lower than

the model without subsampling, and in the fifth closed-loop simulation, the NODE model with

p = 0.8 reduced the LMPC cost function by 15% compared to the model with p = 1. The NODE

models with p = 0.5 and p = 0.3 did not have a lower LMPC cost function in all five simulations

compared to the model without subsampling, but the differences were within 3%. Therefore, the

improvement gains from using subsampling is minor in the case of Gaussian noise and possibly

even due to numerical/experimental differences between runs.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
CA CAs (kmol/m3)

100

50

0

50

100

T
T s

(K
)

sp, sp = 2
min, min = 60
, = 372

initial state
NODE MPC p=1
NODE MPC p=0.8
NODE MPC p=0.5
NODE MPC p=0.3

Figure 3.7: Closed-loop simulation results under weak Gaussian noise using LMPC based on
NODE model developed with different subsampling factors. Red stars represent the initial condi-
tion for of each closed-loop simulation and the black, blue, red, and orange dash line are the state
trajectories controlled by LMPC based on the NODE model developed with subsampling factor
p = 1, 0.8, 0.5 and 0.3, respectively.
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3.5.3 Noisy Data Example: Non-Gaussian Noise

Although the assumption of Gaussian noise is very useful in many applications, non-Gaussian

noise is another commonly observed noise distribution in the chemical sector. In this section, we

investigate how the NODE model performs under non-Gaussian noise. First, non-Gaussian noise

is extracted from an industrial data provided by Aspentech. Fig. 3.8 shows the non-Gaussian noise

distribution for CA and T , respectively. Next, to generate the non-Gaussian noisy reactor data

set, the noise value sampled from the above distribution is added to the clean data set following

a similar process as described in Section 3.5.2. Different levels of noise are added to the clean

data for a comprehensive investigation. The level of noise, O, is defined by the maximum value of

noise that can be added to the clean data set. Specifically, taking the weak non-Gaussian noise as

an example, the maximum noise that can be added to the clean data set is 0.05 kmol/m3 and 5 K

for CA and T , respectively. To add non-Gaussian noise to a single data point in the clean data set,

a noise value from −1.0 to 1.0 is first randomly sampled from the non-Gaussian distribution and

then multiplied by the maximum noise value of each variable before being added to the respective

clean data point.

Table 3.3: Training loss of NODE model using non-Gaussian noisy data.

Weak Noise Strong Noise
OCA

= 0.05 kmol/m3,OT = 5 K OCA
= 0.10 kmol/m3,OT = 5 K

p Mean Squared Error (MSE)

1 0.0025 0.0031
0.8 0.0024 0.0026
0.5 0.0018 0.0024
0.3 0.0019 0.0023
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Figure 3.8: Non-Gaussian noise distribution for (a) concentration of reactant A in the CSTR (CA)
and (b) temperature (T ) of the CSTR. The non-Gaussian noise is scaled to sit between -1.0 to 1.0
and is multiplied by the maximum noise parameter depending on the strength of the noise before
adding it to the clean data.

Subsampling with the same range of p values are used to reduce the effect of non-Gaussian

noise. The training loss for each value of p and noise level is summarized in Table 3.3. The
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maximum noise value of temperature is fixed at 5 K because having a measurement noise of 5

degrees is practically very significant. A sensor that gives a bigger measurement error can be

considered to be a dysfunctional sensor and requires maintenance or replacement. On the other

hand, the concentration sensor may have more perturbation in its measurement than 0.05 kmol/m3,

so a noise level of 0.1 kmol/m3 is included in the study as the strong noise level. Based on the

training loss values listed in Table 3.3, the subsampling method successfully improves the model

performance when the training data set is corrupted with non-Gaussian noise. The best models to

fit the noisy data are the models trained with subsampling factors of p ≤ 0.5, which reduce the

training loss by 28% and 26% for weak and strong non-Gaussian noise, respectively, but the loss

for models with p = 0.5 and p = 0.3 are, in fact, very similar and both show improvement over

models with larger p values. The open-loop simulations shown in Fig. 3.9 further demonstrates the

model improvements by using the subsampling method.

Specifically, for weak non-Gaussian noise (Fig. 3.9a), the NODE models trained with sub-

sampling method predict CA better compared to the model without subsampling, but there is no

significant difference in terms of the temperature prediction, although this may be due to the small

room for improvement for the case of the temperature prediction. For stronger noise (Fig. 3.9b),

using the subsampling method improves the predictive performance of the model for both states.

Please note that we only change the strength of the CA noise, but since the temperature and con-

centration of the CSTR are coupled, increasing the noise level for CA will also affect the model

prediction of the temperature. Closed-loop simulations similar to the Gaussian case are used to

evaluate the LMPC performance under strong noise, and the results are shown in Fig. 3.10. All

the NODE-based LMPCs successfully stabilized the process from the non-zero initial state by ul-
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Figure 3.9: Open-loop simulation results using NODE model training with (a) weak and (b) strong
non-Gaussian noisy data.
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Figure 3.10: Closed-loop simulation results under strong Gaussian noise using LMPC based on
NODE model developed with different subsampling factors. Red stars represent the initial condi-
tion for of each closed-loop simulation and the black, blue, red, and orange dash line are the state
trajectories controlled by LMPC based on the NODE model developed with subsampling factor
p = 1, 0.8, 0.5 and 0.3 respectively.

timately maintaining the states within Ωρmin
= 10. By quantifying the loss over the simulation

duration, it is found that using a subsampling factor of p = 0.3 gives better LMPC performance
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compared to the LMPC without subsampling. The largest reduction in the LMPC cost function via

subsampling was found to be 34% in closed-loop simulations.
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Chapter 4

Machine Learning-Based Operational

Modeling of an Electrochemical Reactor:

Handling Data Variability and Improving

Empirical Models

4.1 Introduction

The electrochemical transformation of carbon dioxide (CO2) into carbon-based fuels and

chemicals has received growing interest in this century because of its potential to reduce CO2 emis-

sions and facilitate the production of energy from renewable sources [108]. The biggest challenge

for research in this area is the difficulty in determining and quantifying the products that result

from the reduction of CO2. Specifically, the CO2 reduction pathways constitute a complex web

of reactions that result in the production of various alkanes, alkenes, and oxygenate species [114].
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In addition, recent small-scale experiments on this process show varying levels of experimental

uncertainty, due to the minimum measurable limit of the sensors and other inevitable experimental

errors. This can introduce a level of uncertainty into the data which can increase the probability of

over-fitting.

Although developing mathematical models, such as first-principle models, is a classic and

reliable way to describe and predict a physical process, the uncertainty and complexity of most

engineering systems make it challenging to implement. To overcome this problem, various data-

driven models as well as artificial intelligence (AI) approaches have been proposed historically.

Early on, in the 1960s, an epochal AI logic, the Fuzzy Logic, was proposed by Zadeh to approx-

imate uncertain features [183]. From then on, techniques of ML for real-time process operation

were investigated in 1990s [156], such as the expert system [90]. Additionally, the auto-regressive

model provided statistical strategies to develop data-driven models based on recorded observation.

For example, the auto-regressive-moving-average model (ARMA) proposed by Peter Whittle back

in the early 1950s [161].

With the development of open-source deep-learning libraries and availability of large datasets

from experimental electrochemical reactors (as well as other chemical reactor systems), ML mod-

eling of electrochemical reactors and other reactor systems has become a growing field of interest

within chemical engineering. Specifically, various versions of artificial neural network (ANN)

models have demonstrated their ability to address regression and classification problems in the

context of chemical process modeling [62, 103, 126, 147, 166, 167]. An ANN has many degrees

of freedom which gives it the ability to capture the complex, nonlinear relationships between an

electrochemical reactor system input and output variables. Additionally, it is a customary approach
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to combine an ANN model with an empirical, first-principles model (that is a model that is based

on chemical reaction engineering fundamentals yet its parameters are fitted to experimental data) to

investigate complex reaction mechanisms and reactor macroscopic input-output behavior [48, 111].

Over the last few years, ANNs have been used to model chemical engineering manufacturing

processes in several studies. For example, in [37], a feed-forward neural network (FNN) model

was developed to correlate the input and output variables of a SiO2 atomic layer deposition (ALD)

process to calculate optimal half-cycle times to full coverage, which is an important industrial

parameter. Additionally, in [70], a methodology was discussed wherein neural networks were used

for parameter estimation from experimental data. These research investigations provide a strong

support for using neural network models as a reliable approximation to analyze complex nonlinear

relationships from simulation/experimental data for electrochemical reactors.

Other works have applied deep learning methods to improve operational aspects of industrial

chemical processes. ANNs have been used as process models to replace traditional models to

further optimize the control and operation of chemical and industrial processes. In [13], a deep

reinforcement learning controller was used to control a hydraulic fracturing process to improve

safety and optimization of system operation. In addition, an operational model was constructed for

this process using a hybrid approach of a deep neural network and a first-principles model [12].

ANNs were further used to determine optimum operating conditions for chemical and industrial

processes [68, 69, 80, 81, 106, 131], which contributed to maximizing the feasibility of novel

processes from economic and safety perspectives.

Motivated by the above considerations, this work develops an FNN model using steady-state,

input-output experimental electrochemical reactor data by solving a nonlinear regression prob-
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lem accounting for data variability. This FNN model is computationally-efficient and can be used

in real-time to determine safe and energy-optimal electrochemical reactor operating conditions.

Specifically, the maximum likelihood estimation (MLE) concept was adopted to develop an FNN

model development algorithm to account for the uncertainty and variability of the experimental

data by determining their confidence interval and weighing each point accordingly in the FNN

model training process. Therefore, the FNN model is able to account for the data variability and

provide the statistically most likely trajectory of the experiment output over a broad set of oper-

ating conditions. This probabilistic method decreases the chance that the model will overfit to

specific training points with large variation. The key novelty of this work is the development of an

operational model for a state-of-the-art electrochemical reactor using a statistical ML method. In

addition, the insights obtained from the FNN model are used to propose specific modifications to a

classical, empirical first-principles model (EFP model) of electrochemical phenomena to improve

its prediction capability, which can contribute to the investigation of the unknown first-principle

chemical reactor equations.

The rest of this chapter is organized as follows. In Section 4.2, the experimental reactor setup

and the kinetics of the electrochemical reactions are described. In Section 4.3, the formulation

and the construction method of the FNN model are discussed. In Section 4.4, the methodology of

the maximum likelihood estimation is integrated with the FNN modeling method. In Section 4.5,

the performance of the FNN models is evaluated, and the statistical FNN model predictions and

insights are used to improve an EFP model for this reactor.
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4.2 Preliminaries

This section introduces the background of the experimental electrochemical reactor employed

in this work. Specifically, the experimental setup and basic operating reactor mode are presented

in this section. Then, an overview of the input-output behavior for this process is used to fur-

ther explain the data structure used in the neural network model. The experimental reactor and

microscopic transport diagrams are shown in Fig. 4.1.
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Figure 4.1: A diagram showing (a) the electrochemical reactor and (b) the multiple and complex
reaction and mass transfer processes involved in the transformation of CO2 to CO and further
reduced products on the poly-crystalline copper cylinder electrode.

4.2.1 Experimental Electrochemical Reactor

The reactor was designed to study the effect of mass transport on electrochemical CO2 re-

duction while keeping the electrochemical cell hermetically gas-tight for the online detection of

gas products. This is allowed by magnetic coupling where the driver magnet outside, connected

to the modulated speed rotator (MSR), transmits torque to the follower magnet inside the reactor

(Fig. 4.1). The reactor has two chambers separated by an ion-exchange membrane to prevent the
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crossover of products. One chamber contains the working electrode, which is the cathode in this

case. The other chamber contains the counter electrode (anode). The CO2 gas is directly bubbled

into both the chambers where the electrodes are submerged in 0.2 M potassium bicarbonate buffer

electrolyte. The cathode is a rotating cylinder electrode (RCE) made of polycrystalline copper.

Copper is the only known single transition metal that can reduce CO2 into hydrocarbons and oxy-

genates with more than two carbons (C2+) at an appreciable rate, and it plays a critical role as the

catalyst in the overall reaction scheme [113]. As the RCE shaft continuously stirs the electrolyte

solution, hydrodynamics formed around the electrode can be systematically controlled by setting a

rotation speed from the MSR. Finally, gas and liquid products are analyzed by gas chromatograph

(GC) and nuclear magnetic resonance (NMR) spectroscopy, respectively, to determine the product

composition under well-controlled mass transport characteristics. Further details on the reactor

design and experimental setup are newly reported [71].

The product compositions quantified using GC and NMR are then used to determine the

production rate of each species and the reaction selectivity with respect to desired products. Poly-

crystalline copper produces various products as tabulated in Table 4.1 at a quantifiable level. Here,

the competing hydrogen evolution reaction and the production of formate are excluded from the

table and from the selectivity calculation, since they do not share the same reaction pathway as

the products in Table 4.1. That is, although carbon monoxide and formate are 2-electron reduc-

tion products, carbon monoxide is the main reaction intermediate towards further reduced products

while formate can not be further reduced. Among the products sharing carbon monoxide as com-

mon intermediate, the desired products are the C2+ oxygenate species (labeled in Table 4.1) as they

are of high value and are commonly used as liquid fuels and reagents. Therefore, the selectivity
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Table 4.1: Electrochemical reactions to reduce CO2 to various products on copper.

Index Reaction Classification
1 CO2 + 6H2O + 8e− −→ CH4 + 8OH− C1 hydrocarbon (HC)
2 2CO2 + 8H2O + 12e− −→ C2H4 + 12OH− C2+ hydrocarbon (HC)
3 CO2 + 5H2O + 6e− −→ CH3OH + 6OH− C1 oxygenate (OX)
4 2CO2 + 9H2O + 12e− −→ C2H5OH + 12OH− C2+ oxygenate (OX)
5 2CO2 + 5H2O + 8e− −→ CH3COO− + 7OH− C2+ oxygenate (OX)
6 2CO2 + 8H2O + 10e− −→ (CH2OH)2 + 10OH− C2+ oxygenate (OX)
7 2CO2 + 6H2O + 8e− −→ HOCH2CHO + 8OH− C2+ oxygenate (OX)
8 2CO2 + 7H2O + 10e− −→ CH3CHO + 10OH− C2+ oxygenate (OX)
9 3CO2 + 13H2O + 18e− −→ C3H7OH + 18OH− C2+ oxygenate (OX)

10 3CO2 + 11H2O + 16e− −→ C3H5OH + 16OH− C2+ oxygenate (OX)
11 3CO2 + 11H2O + 16e− −→ CH3COCH3 + 16OH− C2+ oxygenate (OX)
12 3CO2 + 11H2O + 16e− −→ C2H5CHO + 16OH− C2+ oxygenate (OX)
13 CO2 +H2O + 2e− −→ CO + 2OH−

for this experiment is defined as the ratio of the rate of C2+ oxygenate production to the rate of

hydrocarbon production.

With respect to the reactor mode of operation, the CO2 gas dissolves into the buffer solution,

and is carried to the electrode surface by convective mass transport caused by the rotating electrode.

Subsequently, the CO2 molecules are adsorbed onto the electrode surface and reduced to oxygenate

and hydrocarbon products through consecutive proton-coupled electron injection steps. Therefore,

the surface reaction rate is determined by the electron density on the Cu surface and the adsorption

rate of CO2 molecules to the Cu surface. The electron density is dictated by the applied potential

and the adsorption rate of CO2 is the result of complex mass transport and electrode kinetics at the

electrode/electrolyte interface (Fig. 4.1).
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4.3 Development of Machine Learning Model

In this section, a neural network model is constructed to capture the steady-state behavior of

the reactor at varying applied potentials and electrode rotation speeds using experimental electro-

chemical reactor input-output data. The neural network model formulation, training process and

the data collection process are presented in the following subsections.

4.3.1 FNN Learning Algorithm

The general structure of an FNN model is shown in Fig. 4.2 and can be mathematically rep-

resented by the following equations:

Y = FNN(X) =



h
[1]
j = σ[1](

p∑
i=1

ω
[1]
ji xi + b[1])

h
[2]
j = σ[2](

p∑
i=1

ω
[2]
ji h

[1]
i + b[2])

yj = σ[l](
p∑

i=1

ω
[l]
jih

[l]
i + b[l])

(4.1)

where X = [x1, . . . , xn] ∈ Rn and Y = [ŷ1, . . . , ŷm] ∈ Rm are the input and output vectors

of the FNN model, respectively. ω
[k]
ji , i = 1, . . . , p, j = 1, . . . , p, and k = 1, . . . , l, stand

for the weights connecting the ith input from the prior layer to the jth neuron in the kth layer,

where l is the number of layers. p represents the number of neurons used in each layer. Therefore,

i = 1, . . . , n for the first hidden layer, because there are n units in the input layer. b[k] and σ[k](·)

denote the bias and activation function used in the kth layer.

In this study, a centralized two-input-multi-output FNN model is constructed to capture the

nonlinear relationship between the two input states in Table 4.2 (i.e., rotation speed and applied
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Figure 4.2: General structure of an FNN model, where subscript p is the index of neurons in the
kth hidden layer.
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potential) and the fourteen outputs listed in Table 4.3. Specifically, the input and output training

data are scaled by the maximum value of each respective state such that all the normalized states

fall in the range between 0 and 1. The input layer is densely connected to 64 neurons in the

hidden layer using the Rectified Linear Unit (ReLu) activation function, as defined in Eq. 4.2.

The hidden layer is densely connected to the output layer using the Softplus activation function,

S(x) = log(1+ex). Both the ReLu and Softplus functions are used to restrict the output predictions

to be strictly non-negative, and introduce nonlinearity to the model.

ReLu(z) =

 z for z > 0

0 for z ≤ 0
(4.2)

Remark 20. A single hidden layer is used for this model because it is the simplest structure to

sufficiently capture the data trends. Additionally, we apply a grid search for the number of neurons

in the FNN, with 64 neurons having the best prediction. Specifically, neural networks with less

than 64 neurons underfit the data, while networks with more neurons would overfit the data. In this

work, both the prediction accuracy (in terms of mean-squared-error) and the output trajectories

are considered to design the hyperparameters of the FNN model. Classical hyperparameter tuning

algorithms did not perform effectively to capture reasonable trajectories due to the difficulty of

developing an explicit formula to evaluate the prediction trends. However, hyperparameter tuning

algorithms, such as Bayesian optimization and random forest methods, are powerful tools to op-

timize the neural network structure [165]. We recommend that other users consider using those

methods to develop their ML models.
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4.3.2 Data Generation and Dataset

As listed in Table 4.3, the oxygenates considered are Outputs 3-12, and the hydrocarbons are

Outputs 1 and 2 (methane and ethylene). Therefore, the selectivity defined in the previous section

is calculated as follows:

Selectivity :=

12∑
i=3

yi

2∑
i=1

yi

(4.3)

where yi refers to the production rate of species i, as defined in Table 4.3. Data are collected

for the range of potential and rotation speed within which the reactor will operate. Specifically,

the potential is varied from -1.2 to -1.47 (V vs. the standard hydrogen electrode (SHE)), and

the rotation speed is varied from 100 revolutions per minute (rpm) to 800 rpm. For the data

collection process, the potentiostat is set to be a constant potential, and the electrode is rotated

at a constant angular speed. The reactor is allowed to operate at steady-state for twenty minutes

prior to the data collection. Then, the reactor operates continuously with product samples taken

every twenty minutes to determine the concentration of the thirteen relevant products, followed by

the calculation of selectivity from the results of each sample.

The sampling process is an 80-minute experiment which constitutes one data point for each

input and output states. The sampling is repeated three to four times to ensure the data are consis-

tent over time and to obtain the statistical information for the experimental results under the same

operating condition. Specifically, this 80-minute experiment is repeated over 100 times to generate

the data library that cover the specified range of operating conditions. Subsequently, the data are

grouped into a single data vector based on the similarity of the operating conditions to compute
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the mean and standard deviations. As a result, 21 data points with mean and standard deviation

information are collected from 2 or 5 independent experiments, depending on the availability of

experimental data.

4.3.3 Design of the Experiment

The range of potentials is limited by the overall resistance of the electrochemical cell (be-

tween the working and the counter electrode). This issue is resolved in the second generation

of the cell reported in the work [71] by removing the channel that connects the two chambers to

shorten the distance between the two electrodes and increase the surface area of the ion-exchange

membranes. However, in this work, the first generation of the reactor is used which is not able to

apply potentials more negative than -1.47 V vs SHE. The potential range is chosen to see appre-

ciable rates of product generation considering the detection limits of the sensors (GC and NMR).

The maximum rotation speed possible is 2000 rpm, as provided by the vendor of the RCE (Pine

Research Instrumentation).

On the other hand, we have restricted the maximum electrode rotation speed to 800 rpm

mainly due to the mechanical instability of the custom-machined parts of the electrochemical cell.

Additionally, the chosen range of rotation speed is appropriate for studying mass transport effects

from the perspective of mass transport characteristics around the RCE. As shown in the work [71],

the film mass-transfer coefficient decreases as the electrode rotation speed increases with a 0.59

order dependency. The further increase in the rotation of the electrode beyond 800 rpm has a

minimum effect on the mass transport properties of the cell. The lower-bound of the rotation speed

range is 100 rpm, below which the relationship between the film mass-transfer coefficient and the
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rotation speed starts to flatten out due to the convection created by the bubbling of CO2 in the bulk

of the electrochemical cell.

4.3.4 Standard FNN Training

The mean-squared-error (MSE) is used in the standard FNN training as the loss function that

minimizes the difference between the experimental data value and the model predictive value. The

MSE loss function is given below:

Loss =
1

d

1

m

d∑
i=1

m∑
j=1

∣∣yi,j − ŷi,j
∣∣2 (4.4)

where d and m are the number of data points in the training dataset and the number of output states.

Specifically, from the original 21 data points, 4 are reserved for testing and the remaining 17 are

used for training. Then, the 17 points are randomly split into training and validation sets with 80%

used for training and 20% used for validation. The testing procedure compares the mean-squared

difference between the FNN prediction and the testing data, using the loss function of Eq. 4.4 to

evaluate the model performance. During this process, the parameter vector W, which contains

all the weights and bias of the neural network, is optimized using Eq. 4.5 to minimize the loss

function.

W = W − η
Vdw√
Sdw + ϵ

(4.5)

where η is the learning rate, ϵ is a small positive number to prevent the denominator being zero.

Vdw and Sdw introduce the momentum and root-mean-square factors of the parameters gradient to

facilitate the optimization process. In practice, ϵ, Vdw, and Sdw can be set up by the ML API (e.g.
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Keras) automatically by specifying the optimizer. Tuning the value of ϵ will not have significant

impact to the model performance. Additionally, user can tune the learning rate η to improve the

model performance. Usually, it is a small positive real value in the range between 0.0 and 1.0.

Table 4.2: Input states of the FNN model.

Index Input State Units
1 Applied Potential V vs. the standard hydrogen electrode (V vs. SHE)
2 Rotation Speed rpm

Table 4.3: Output states of the FNN model.

Index Output State Chemical Formula
1 methane production rate CH4

2 ethylene production rate C2H4

3 methanol production rate CH3OH
4 ethanol production rate C2H5OH
5 acetate production rate CH3COO−

6 ethylene glycol production rate (CH2OH)2
7 glycolaldehyde production rate HOCH2CHO
8 acetaldehyde production rate CH3CHO
9 n-propanol production rate C3H7OH

10 allyl alcohol production rate C3H5OH
11 acetone production rate CH3COCH3

12 propionaldehyde production rate C2H5CHO
13 carbon monoxide production rate CO
14 selectivity
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4.4 Maximum Likelihood Estimation in Machine Learning Re-

actor Modeling

Despite the standard FNN’s capability of correlating the input and output variables of a com-

plex nonlinear process, it treats all the data points equally, which might lead to overfitting when

the data contains inconsistent levels of random error from the experimental data. To address this

issue, the MLE method, originally developed by R.A. Fisher in the 1920s, is adopted to train the

FNN model to optimize the parameter set that maximizes the likelihood function of a probabilistic

model [110]. Specifically, the likelihood function, L(·), is used to correlate an unknown param-

eter vector (θ) with a random variable set (z) based on its probability-density function, f(z, θ).

The maximum likelihood method can search for an optimum parameter set θ∗ by maximizing the

“likelihood of the sample”,
∏n

i=1 f(z, θ), and it has been proven that this method can provide a

solution to this optimization problem [67]. The MLE method assumes that the data are from a

single population with the same standard deviation. However, this section proposes a modification

that assumes each set of input parameters corresponds to a different population. Thus, each data

point with its collected standard deviation is treated as an independent random variable.

To apply this method in our study, we first consider the experimental dataset to be a pseudo-

probabilistic sample following the Gaussian distribution with an associated standard deviation.

Therefore, the FNN outputs ŷi,j need to follow the same distribution as the reference data yi,j ,

which means the joint likelihood of the neural network output is of Gaussian distribution, and can
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be expressed as follows:

L(X;W, σ) =
d×m∏
k=1

fY(yk)

=
d×m∏
k=1

(2πσ2
k)

−0.5 × exp

−1

2

d∑
i=1

m∑
j=1

∣∣∣∣∣yi,j − ŷi,j(X,W)

σi,j

∣∣∣∣∣
2
 (4.6)

where σi is the standard deviation for each data point. Subsequently, we find the optimum weight

matrix W∗ by maximizing the logarithm of the joint likelihood function:

W∗ : = argmax
W

logL(X;W, σ)

= argmax
W

−1

2

d×m∑
k=1

log(2πσ2
k)−

1

2

d∑
i=1

m∑
j=1

∣∣∣∣∣yi,j − ŷi,j(X,W)

σi,j

∣∣∣∣∣
2


= argmax
W

−
d×m∑
k=1

log(2πσ2
k)−

d∑
i=1

m∑
j=1

∣∣∣∣∣yi,j − ŷi,j(X,W)

σi,j

∣∣∣∣∣
2


(4.7)

Since the first term of Eq. 4.7 is independent of W, the maximum likelihood estimation of this

model can be further simplified into Eq. 4.8.

W∗ = argmin
W

 d∑
i=1

m∑
j=1

∣∣∣∣∣yi,j − ŷi,j(X,W)

σi,j

∣∣∣∣∣
2
 (4.8)

The maximum likelihood estimation weighted FNN model (weighted-FNN) is constructed

using the same architecture and dataset as the standard FNN. However, the weighted-FNN model

considers the standard deviation of each data point in its training process. Specifically, the sample

standard deviation is calculated for each data point. Then, the coefficient of variance (v) of each

data point is determined by the ratio of standard deviation and the respective output mean. This
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normalizes the data variability to allow for unbiased comparison between quantities of different

magnitudes. The loss function, shown as Eq. 4.9, integrates Eq. 4.4 and Eq. 4.8. Thus, the weight

matrix of the weighted-FNN is optimized to maximize both the accuracy of the prediction and the

likelihood function during the training process.

Loss =
1

d

1

m

d∑
i=1

m∑
j=1

1

v2i,j

∣∣yi,j − ŷi,j
∣∣2 (4.9)

Remark 21. In this study, error bars are constructed to represent the region of one standard

deviation of uncertainty with respect to the mean, which is approximately 70% confidence interval

for Gaussian distributed variables. Any statistic model can be used to develop a weighted-FNN

model if it can provide reasonable statistical information of the experimental observations.

Remark 22. As shown in [40, 87], the simplified log-likelihood function (Eq. 4.8) can be used

directly as the loss function of a weighted-FNN model, since it contains the sum of squared error

(SSE) in the loss function. We integrate it with Eq. 4.4 to demonstrate its similarity to the mean-

squared error (MSE) loss function.

Remark 23. Bayesian optimization is another acknowledged method to develop statistical ML

model. Similar to the MLE method, the Bayesian optimization also considers the likelihood func-

tion model, which can account for data variance. Instead of focusing on the likelihood function,

the Bayesian method implements optimization based on the posterior distribution of the ML model,

which is defined by the Bayes’ rule [145]. Therefore, the prior distribution of the parameter vec-

tor (p(θ)) and the marginal likelihood of the observed data (p(D)) can be adopted to develop the

statistical model.
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4.5 Machine Learning Model Results and Analysis

In this section, we first compare the prediction performance of the standard FNN and weighted-

FNN models. Subsequently, the weighted-FNN model’s ability to capture the physical phenomenon

behind the experiment is demonstrated through a comparison with a classical, EFP model. Addi-

tionally, we propose an algorithm to improve the empirical model performance using the neural

network model results and insights. Parameters used to generate the EFP models are described in

this section and listed in Table 4.4.

4.5.1 FNN vs. weighted-FNN

We first compare the performance of the weighted-FNN against the standard FNN. To account

for the stochastic nature during the neural network training process, a Python script is used to

train 100 FNN models in parallel with the structure discussed in Section 4.3 and with randomly

partitioned training and validation sets. The best FNN and weighted-FNN are chosen to minimize

the MSE for the training dataset. This training method ensures the selected models are trained

consistently following the same criteria. Then, the selected FNN and weighted-FNN models are

evaluated with respect to the testing dataset, using the MSE between the normalized FNN outputs

and the normalized testing set. The MSEs for the standard FNN and weighted-FNN are 0.0751

and 0.0791, respectively, which demonstrates a slight better performance of the standard FNN. It is

shown in Fig. 4.3 that both models give accurate predictions across the majority of the data points,

but the overall MSE for the weighted-FNN prediction increases, since it ignores the data points

with high variance. However, the MSE of the two methods are sufficiently small, which implies
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Table 4.4: Process parameters for EFP models with units.

Quantity Value Units
EFP model (limiting conditions)

k0 2.32× 10−12 cm · s−1

α 0.5
F 96485 C ·mol−1

R 8.314 J ·mol−1 ·K−1

T 298 K

E0′ -0.52 V
CCO2 3.40× 10−5 mol · cm−3

DCO2 1.91× 10−5 cm2 · s−1

dRCE 1.2 cm
νH2O 1.03× 10−2 cm2 · s−1

EFP model

k0,5 2.02× 10−28 mol · cm−1 · s−2

k0,6 7.47× 10−32 mol · cm−1 · s−2

k0,7 2.61× 10−13 mol−
1
2 · cm · s− 1

2

α5 0.7
α6 0.85
α7 0.665

EFP model (updated)

k0,5 7.2× 10−22 mol · cm−1s−2

k0,6 1.6× 10−17 mol
1
4 · cm 3

2 · s 5
4

k0,7 9.5× 10−23 mol · cm−1 · s−2

α5 0.42
α6 0.53
α7 0.49

that both models capture the input-output relationship well.

To further compare the performance of the two models, the predictions for CO production rate

are compared to some labeled outlier points due to a slight drift in operating conditions in Fig. 4.4.

As shown in the figure, the weighted-FNN weighs the data points with critical experimental un-

certainty less while the standard FNN overfits these points. This demonstrates the ability of the
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Figure 4.3: Comparison between the observed experimental outcome and the neural network pre-
dictions from (a) standard FNN and (b) weighted-FNN models.
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Figure 4.4: The CO production rate predictions for various applied potentials in the unit of V vs.
the standard hydrogen electrode (V vs. SHE). The solid points are labeled uncertain data as having
a drift in potential. The open point is from the testing set. (a) The CO prediction of standard FNN
model overfitted the labeled uncertain data points. (b) The weighted-FNN model successfully
learned the experimental uncertainty and provide prediction accordingly, but this feature introduce
extra error to the testing results.

weighted-FNN model to improve its prediction by accounting for data variance. The goal of MLE

method is to generate models with a higher statistical significance that are suitable to be imple-

mented with an experimental dataset. The weighted-FNN model demonstrates that it can provide
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Figure 4.5: Selectivity of oxygenate species with respect to rotation speed and applied potential
(in the unit of V vs. the standard hydrogen electrode (V vs. SHE)) as predicted by the ML model.
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an accurate approximation of the experimental data while outperforming the standard FNN in its

ability to mitigate the impact of experimental uncertainty. Therefore, to simplify the discussion,

the weighted-FNN will be used in the remainder of this section to provide comprehensive selec-

tivity predictions for the electrochemical reactor, which is shown in Fig. 4.5, and for comparison

with other models (i.e., henceforth the FNN will only refer to the weighted-FNN, and the standard

FNN will not be included).

Remark 24. The outlier points are included in the dataset, since they are valid but have higher

variability. The predictive models are developed based on the experimental observation even if

some points are less likely to be reproduced. On the other hand, invalid data points from a failed

experiment should not be included in the dataset.

4.5.2 EFP model vs. weighted-FNN

First-principles models (FP models) are a fundamental approach to describing the operation

of an electrochemical reactor according to the energy and mass balances as well as reaction ki-

netics. However, due to the complex mass transfer and reaction mechanisms of this process, it is

challenging to obtain an accurate first-principles model. As a substitute, ML modeling provides an

alternative approach to representing the physio-chemical phenomena in the reactor with a desired

prediction accuracy. In this subsection, an EFP model of a rotating electrode reactor is developed

following the derivation in [14] to determine the rate of CO production under limiting conditions.

Specifically, this model assumes that only a single, first-order reaction is occurring with no side

reactions, and the reaction occurs only on the electrode surface following Butler-Volmer kinet-

ics, which means it cannot capture the comprehensive kinetics of this experiment. The resulting
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equation is given as follows:

rCO =
kfC

∗
CO2

1 + kf/m0

(4.10)

where C∗
CO2

is the bulk concentration of CO2, kf is the kinetic rate constant, and m0 is the convec-

tive mass transfer coefficient. The rate constant kf changes based on the applied potential, and is

calculated as follows:

kf = k0 exp

[
−αF

RT

(
E − E0′

)]
(4.11)

where k0 is the standard rate constant, α is the symmetry factor, F is Faraday’s constant, R is the

gas constant, T is the temperature, E is the applied potential, and E0′ is the standard reduction

potential. The mass transfer coefficient m0 is determined based on the rotation speed of the elec-

trode, but this correlation will change depending on the type of rotating electrode. For some simple

rotating electrode geometries such as a flat disk, a mass transfer coefficient is determined analyti-

cally, assuming a linear velocity profile in the boundary layer. However, the electrode used in this

experiment has a cylindrical geometry which is more complicated, so the mass transfer coefficient

is determined experimentally from the Sherwood number correlation as follows [71]:

m0 = 0.204Re0.59RCESc
0.33DCO2

dRCE

(4.12)

where ReRCE is the Reynold’s number, Sc is the Schmidt number, D is the diffusion coefficient,

and dRCE is the diameter of the RCE. The diffusion coefficient is assumed to be the same for the

reactant and product species for simplicity. Since the Sherwood number is determined experimen-

tally, this model will be referred to as an EFP model.
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The comparison between this EFP model and the FNN prediction is shown in Fig. 4.6. As

shown, the EFP model trajectory is similar to the FNN prediction under the operating conditions

with less negative applied potentials and lower rotation speeds because the side reactions are lim-

ited at these conditions. After switching to more negative conditions, the EFP model’s assumption

becomes invalid. Therefore, these two models present different predictions after passing thresh-

old conditions. This comparison demonstrates that the neural network can correctly capture the

input-output relations from the experimental data.
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Figure 4.6: The CO production rates for the first EFP model (dashed) and the weighted-FNN model
predictions (solid) compared with the training data points over the range of (a) rotation speed, and
(b) applied potentials in the unit of V vs. the standard hydrogen electrode (V vs. SHE). This EFP
model can capture the general trend of the reactor for low applied potential and rotation speed.
However, for the more negative potential and higher rotation speed, the initial assumption of the
EFP model becomes invalid.

4.5.3 EFP Model Improvement

EFP modeling is an efficient way to find out how a number of experimental variables affect the

experimental data without requiring complete knowledge of the underlying physical phenomena
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needed for large-scale FP models [19]. Although the neural network has demonstrated its ability

to capture steady-state behavior of the electrochemical reactor, an empirical model with an explicit

form is essential to improve the reactor phenomena understanding. However, parameter tuning

and selection for an empirical model are challenging. Therefore, we propose an algorithm to use

neural network model results to improve the EFP model structure.

Specifically, we first develop an EFP model consisting of several regression problems that

predict the production rate of seven different classes of species produced in the reactor. This model

is derived utilizing the same reaction kinetics and transport phenomena considerations mentioned

in Section “EFP model vs. weighted-FNN”. As shown in Eq. 4.13, the empirical regressions of

interest are the production rate of C1 products (FNN Outputs 1 and 3 listed in Table 4.3), C2+

hydrocarbons (FNN Output 2), and C2+ oxygenates (FNN Outputs 4, 5, 6, 7, 8, 9, 10, 11, and 12),

denoted as rC1, rC2+,HC , and rC2+,OX respectively.

rC1 = k0,5CCOSh
−0.5
RCEJ

−1
HCO3

exp

(
−α5z5F

RT
E

)
rC2+,HC

= k0,6CCOSh
−0.5
RCEJ

−1
HCO3

exp

(
−α6z6F

RT
E

)
rC2+,OX

= k0,7CCOSh
−0.5
RCEJ

0.5
HCO3

exp

(
−α7z7F

RT
E

) (4.13)

The notation CCO is the concentration of carbon monoxide, and JHCO3 is the flux of bicarbonate,

both of which are calculated at the inner Helmholtz plane based on the bulk concentration, rotation

speed, and applied potential. Additionally, ShRCE is the Sherwood number of the rotating-cylinder

electrode, which relates directly to the rotation speed. The rate constants k0,i and symmetry factors

αi are obtained by linearizing the equations for rC1, rC2+,HC , and rC2+,OX with respect to the

applied potential. Furthermore, since these rate expressions each describe multiple products from
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different reaction steps, the number of electrons zi is not a single value, and a modification is

necessary for this case. Specifically the parameter αi is considered as a fitting parameter for the

exponential relationship between the potential and the rates. Thus, by fixing zi to 1, αi becomes

an arbitrary positive value that can be optimized in the regression problem.
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Figure 4.7: The production rates of (a) rC1 , (b) rC2+,HC
, and (c) rC2+,OX

from the EFP model
(dashed) and the weighted-FNN model (solid) compared with the reference data points over the
range of applied potentials in the unit of V vs. the standard hydrogen electrode (V vs. SHE).

Subsequently, the EFP model is compared with the FNN model using the testing set as de-

scribed in Section “Data Generation and dataset”. Table 4.5 shows that the FNN model outper-

forms the EFP model with significantly lower MSEs for all three rates, which implies that the

accuracy of the EFP model can be improved by minimizing the deviation between FNN prediction

and EFP model prediction. In other words, the FNN prediction can be considered as additional

reference data to improve the EFP model performance for this reactor.
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Additionally, by comparing the prediction trends from both models in Fig. 4.7, the EFP model

overestimates the effect of applied potential for higher rotation speed. Thus, the empirical model

can be improved by modifying the existing terms. The process is summarized by the following

algorithm:
Algorithm 2: Empirical, First-Principles Model Improvement Procedure
X is the input data sequence, Θ contains the regression parameters in the empirical model

to be optimized, C represents any additional system parameters that can be added to the

empirical model, E and FANN are the general equations for the empirical and FNN

models respectively, D calculates the distance, and Imax is the maximum number of

iterations.

for i = 0 to Imax do
Obtain the distance between the empirical model and the FNN model:

D(Θ, X, C) =
∑[

E(Θ, X, C)− FANN(X)
]2

if D(Θ, X, Cnew) < D(Θ, X, C) then
C = Cnew

else
C = C

end

Optimize the regression parameters to minimize the distance:

Θnew = {θi,new ∈ Θ | D(Θnew, X, C) < D(Θ, X, C)}
end

Table 4.5: Testing data MSE results of the FNN model and the empirical, first-principles model.

Rate Index FNN EFP
rC2+,OX

0.0239 0.042
rC2+,HC

0.0098 0.042
rC1 0.003 0.021

Specifically, the regression parameters, θi, can be optimized to minimize the difference be-
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Table 4.6: The non-scaled MSE for the updated and orignial EFP models.

Rate Index EFP (original) EFP (updated)
rC2+,OX

3.68E-19 9.20E-20
rC2+,HC

1.11E-18 2.32E-19
rC1 8.46E-18 5.76E-18

tween the two models using a user-defined optimization algorithm in each iteration of the proce-

dure. Additionally, new system parameters, Ci, can be introduced to further develop the empirical

model. For example, terms that describe the influence of gas pressure and flow rate on the elec-

trochemical reaction can be included to further improve the current empirical model. Therefore,

by following this procedure, the improvement of an empirical model can be represented as an

optimization problem, which can be accomplished automatically by computers.

To demonstrate this procedure, we use the FNN to tune the parameters for the proposed EFP

model. The difference between the EFP and FNN models is minimized on the range of -1.47V to

-1.30V as this is the range for the data collected to train the FNN model. The MSE between the

EFP model and FNN is calculated at intervals of 0.01V. For the model of Eq. 4.13, we apply a

grid search to find the optimum values for the parameters ki, αi, and the exponent of the flux term

JHCO3 . Specifically, we search the αi values from 0 to 1 with step sizes of 0.01, and the JHCO3

exponents from -1 to 1 with step sizes of 0.25. However, small changes in the αi and exponent

of JHCO3 can cause the ki to change by several orders of magnitude which caused problems when

attempting to use non-linear optimization packages. Therefore, the grid search for ki must cover a

large range of magnitudes from 0 to 1. To decrease the computational complexity, the grid search

for ki is split into two subsequent searches. Given that ki can be expressed in the form of A×10−B,

we first search for the optimum order of magnitude B, and then search for the optimum number A.
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Specifically, the first search follows a geometric sequence from 10−25 to 10−10 with a geometric

ratio of 10 (i.e., 10−25, 10−24, 10−23, ..., 10−10). Then, given the optimum order of magnitude B,

we search for the optimal number from 1 to 10 with step size of 0.1 (i.e., 0.1× 10−B, 0.2× 10−B,

0.3× 10−B, ..., 10.0× 10−B) for the order of magnitude B and B + 1.
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Figure 4.8: The production rates of (a) rC1 , (b) rC2+,HC
, and (c) rC2+,OX

from the updated EFP
model (dashed) and the weighted-FNN model (solid) compared with the reference data points over
the range of applied potentials in the unit of V vs. the standard hydrogen electrode (V vs. SHE).

Following this procedure, the optimum parameters are determined and listed in Table 4.4.

Then, the new EFP model is tested against the same reference data points, and its MSE results are

compared with the original EFP model listed in Table 4.6 . As a result, the MSE for rC1, rC2+,HC ,

and rC2+,OX against the reference dataset are decreases by 75%, 79%, and 32%, respectively. The

new empirical, first-principles equations are updated in Eq. 4.14 to reflect the changes made from

the procedure. Moreover, the new EFP model predictions are also shown in Fig. 4.8, which shows
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the overestimating problem is solved with the new parameters.

rC1 = k0,5CCOSh
−0.5
RCEJ

−1
HCO3

exp

(
−α5z5F

RT
E

)
rC2+,HC

= k0,6CCOSh
−0.5
RCEJ

−0.25
HCO3

exp

(
−α6z6F

RT
E

)
rC2+,OX

= k0,7CCOSh
−0.5
RCEJ

−1
HCO3

exp

(
−α7z7F

RT
E

) (4.14)

Remark 25. Minimizing the difference between the two models will not result in exactly the same

predictive model. During the optimization process, the empirical model structure derived from

physical relations should remain unaltered. Furthermore, the additional terms Ci that have not

been included in the previous empirical models should have physical meanings. In this way, the

empirical model is modified toward a lower MSE for its prediction while respecting the physics of

the experiment.

Remark 26. The experimental data is used to calculate the original EFP parameters. Specifically,

the original EFP model is determined using traditional methods to extract kinetic parameters of

αi and ki. Since the reaction rate is proportional to the exponential of the applied potential, the

relationship is linearized by plotting the natural log of reaction rate against the applied potential.

A linear regression is then used to find the slope and intercept of the observed data. The value

of αi is then extracted from the slope, and ki is extracted from the intercept. Furthermore, by

using the FNN model to propose an updated EFP model, meaningful process parameters can be

extracted from the neural network regression, which provides additional explicit values to evaluate

the neural network performance.
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Chapter 5

Machine Learning-Based Predictive Control

Using On-line Model Linearization:

Application to an Experimental

Electrochemical Reactor

5.1 Introduction

In today’s chemical manufacturing industry, fossil fuels serve as the primary energy source

for the chemical industry, leading to significant energy consumption and greenhouse gas emissions

[18]. Alternatively, there has been increasing interest in electrochemical reactions, such as con-

verting carbon dioxide (CO2) into carbon-based fuels and chemicals with electricity, as a means to

mitigate CO2 emissions. This approach holds the potential for leveraging electricity generated from

renewable resources as an energy source for large-scale chemical manufacturing, furthermore con-
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tributing to global-scale renewable energy storage and closing the anthropogenic carbon cycle [35].

Although electrochemical conversion of waste CO2 is very promising, several challenges hinder the

widespread adoption of electrochemical reactors on an industrial scale. Perhaps most importantly,

the conversion of CO2 through electrochemistry requires significant energy consumption [151].

Researchers have focused on improving energy efficiency in electrochemistry through the devel-

opment of more efficient and selective catalysts through nanostructuring, doping of transition met-

als, utilization of single-atom catalysts, etc. [23, 79, 93, 114] as well as the design of devices to

reduce the overall cell potential and address parasitic carbonation problems [130, 174, 187]. On

the other hand, discussions on process scale-up have been limited so far [134]. We have identified

another critical challenge in scaling up electrolyzers to be the absence of advanced process control

schemes for electrochemical reactors due to the complex and nonlinear nature of electrochemical

processes. Since the realization of an economically viable electrochemical process will require

optimization in process integration and cascade reactor train [43, 118, 129], the development of a

control scheme to regulate individual electrochemical reactor units is necessary.

To address this issue, [29] proposed a feedback control scheme using proportional-integral

(PI) controllers utilizing a support vector regression-based (SVR) hybrid model as a state estimator.

This approach enabled real-time state estimation for a PI controller and, subsequently, implemen-

tation of single-input-single-output (SISO) control in a gastight rotating cylinder electrode (RCE)

cell. Building on this work, [31] introduced a recurrent neural network (RNN) model as an im-

proved state estimator, surpassing the performance of the SVR model. This RNN model captured

relationships between process variables and gas product concentration and allowed for the imple-

mentation of multi-input-multi-output (MIMO) control using PI control techniques for the same
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RCE reactor. Alongside the classical control strategies, model predictive control (MPC) methods

have emerged as vital components in industrial process control design [91, 125]. MPC offers the

advantage of computing optimal control actions by anticipating future output states, making it a

powerful tool for multivariable control while considering process constraints and nonlinearities,

for example, [61].

Although the specific application of MPC in electrochemical reactors is limited, MPC has

been widely used in various research areas, including chemical reactors, battery management, and

self-driving cars. For instance, [133] provided a comprehensive discussion on implementing MPC

for a crude oil distillation unit in the petroleum industry. Furthermore, [24] explored MPC design

for a multivariable distillation column, demonstrating superior performance compared to PI-based

control through MATLAB simulations using the Wood and Berry Model. MPC has also been

applied to develop a battery management system, which is similar to the application of an elec-

trochemical reactor in the sense that both tasks involve manipulating electrochemical reactions,

even though the battery management system focuses on storing and releasing electricity instead

of generating products using electrical potential. For example, [122] proposed a nonlinear MPC

design based on the electrochemical models capturing the internal phenomena of the battery to

solve the charge unbalancing problem in lithium-ion cells connected in series. These applications

have demonstrated the ability of MPC to control systems with electrochemical reactions. Con-

sidering the advantages of MPC over classic control strategies (e.g., PI control) with respect to

explicitly handling actuator and state constraints, multivariable interactions and nonlinearities, it

is potentially practical and valuable to leverage the application of MPC to control electrochemical

reactors.
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Implementing MPC in electrochemical reactions poses two major challenges that need to be

overcome: model accuracy and computational expense. The accuracy of the model prediction is

crucial for the performance of MPC. Ideally, a first-principles-based model that accurately captures

the underlying phenomena in the electrocatalytic system would be optimal. However, such models

are often unavailable for practical cases. To this end, in our research, we focus on a data-driven ap-

proach to model the process system. Data-driven modeling offers a systematic approach that can be

applied to any process system if sufficient data quantity and quality are ensured. One of the signif-

icant examples of data-driven modeling is ML, which is a class of techniques that can be generally

applied to various systems without the need for formulating specific physical patterns discovered in

experiments [38]. Classical ML methods, including SVR, linear regression, Gaussian process re-

gression, and decision trees, have been widely utilized for modeling tasks [16, 59, 149, 171, 186].

Additionally, deep learning methods, employing neural network (NN) structures, have demon-

strated superior performance in capturing nonlinear and complex systems compared to classical

ML methods. As a result, NN modeling has drawn significant attention and has been applied in

recent research works [115, 148]. Considering the nonlinearity and complexity of the electrochem-

ical reactor and to facilitate the modeling process, a NN method is utilized to model the system,

which has been demonstrated to be an effective technique for this specific reactor in [31].

While the use of nonlinear data-driven models in MPC has shown promising performance in

various research studies, implementing MPC with a nonlinear model generally involves solving

a non-convex optimization problem. This complexity often results in high computational costs

and unstable gradient concerns. [175] demonstrated in their work that using RNN models in

MPC can be highly accurate yet intractable to solve in real-time, motivating the exploration of
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linearization approaches to improve the computational efficiency of MPC. Several techniques have

been proposed for linearizing nonlinear models, such as Taylor series, piecewise linearization,

etc. [89, 98, 141]. Specifically, the Koopman operator method is developed to be a data-driven

approach that can be applied to any nonlinear model [10, 85, 124]. [175] showed the Koopman

operator method is a type of linearization approach that can have better performance than the clas-

sical Taylor series method, particularly when linearizing over a larger domain. Furthermore, the

application of MPC using a linearized model has been studied in-depth in the chemical engineering

domain [74, 104]. These results have highlighted the potential of employing MPC with on-line lin-

earized models in practical control applications. By leveraging efficient linearization techniques,

NN-based MPC can potentially be applied to control the electrochemical reactor effectively.

Motivated by the above considerations, this study aims to develop an advanced process con-

trol scheme using MPC with suitable process models for an electrochemical CO2 reduction reactor.

Specifically, a neural network model is initially constructed using reactor data to capture the non-

linear complex input-output relation of the reactor, followed by on-line linearization of the NN

model using the Koopman operator method to reduce the computational cost of MPC. The control

design is applied experimentally to the electrochemical reactor. This chapter is organized into the

following subsections: Section 5.2 introduces the background information of this study, including

the mathematical notation used in this section, the overall design of the process, and the equip-

ment setup. Section 5.3 elaborates on the technical details for the design and development of a

NN model. Section 5.4 discusses the Koopman operator method and the procedure of using it to

linearize the NN model in real-time. Finally, Section 5.5 reports the results of this study including

simulation, open- and closed-loop experiments.
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5.2 Preliminaries

5.2.1 Notation

For a matrix M, the notation M−1 is used to represent the inverse of the matrix M and M†

denotes the pseudoinverse of matrix M. x, x̂, and u are the controlled outputs of the process control

system (i.e., the productivity of the reactor for the targeting species), the prediction of the process

output given by the process model (i.e., the NN model), and the inputs (control actions) calculated

by the process control system (i.e., applied potential, rotation speed, and current), respectively.

5.2.2 Process Overview

The overall objective of our process is to electrochemically reduce CO2 into valuable chem-

ical products and fuels. A copper electrode is used in this process because it is the only known

single-element catalyst that can reduce CO2 into C2+ hydrocarbons and alcohol products, which

are energy-dense and valuable, with a considerable production rate [121]. However, the process

of electrochemical CO2 reduction on copper is intricate, which results in the production of 17

different chemicals through a series of complex reaction pathways [114]. Among multiple factors

contributing to the complex reaction mechanisms, mass transport and reaction kinetics play critical

roles. Specifically, the transport phenomena in the diffusion boundary layer are directly related to

the residence time of the reactant CO2 and intermediates near the catalyst surface as well as the

adsorption on and desorption of the catalyst, which determine the selectivity of final products. On

the other hand, the reaction kinetics on the catalyst surface is related to the number of electrons

transferred to the surface, which can be manipulated by the applied potential. Therefore, we aim
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to control the selectivity of electrochemical CO2 reduction by controlling the aforementioned two

input factors, potential and electrode rotation speed. Applying real-time control to any process

requires on-line measurements of the process outputs. In this work, the productivity of four gas-

phase products (i.e., hydrogen (H2), carbon monoxide (CO), methane (CH4), and ethylene (C2H4))

can be monitored in real-time using a gas chromatograph (GC). The overall reaction formulas

producing these four products are summarized as follows:

2CO2 + 8H2O+ 12 e− −−→ C2H4 + 12OH− (5.1a)

CO2 +H2O+ 2 e− −−→ CO+ 2OH− (5.1b)

CO2 + 6H2O+ 8 e− −−→ CH4 + 8OH− (5.1c)

2H2O+ 2 e− −−→ H2 + 2OH− (5.1d)

Finally, the production rates of CO and C2H4 are chosen to be the control outputs to be regulated

by the process control system. These two outputs are influenced differently by the input variables;

specifically, the production rate of CO is highly correlated to the rotation speed, and the production

rate of C2H4 is strongly influenced by the applied potential [31].

5.2.3 Electrochemical Reactor Setup

The gastight RCE cell was designed to examine how mass transport and reactions kinetics

affect the electrochemical reduction of CO2 while ensuring a gastight environment for the real-

time detection of gas products [71]. As shown in Fig. 5.1, the experimental reactor consists of

two reaction chambers separated by an anion-exchange membrane preventing the crossover of
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products. The cathode is the working electrode in the cylindrical geometry carrying out the CO2

reduction reaction while the Pt foil anode works as the counter electrode. Before each experiment,

polycrystalline Cu RCE was mechanically and electrochemically polished following the procedure

described in [71] followed by roughening of the surface via electrochemical redox cycling in the

presence of chloride ions [135]. The preparation for this catalyst is the same as in our previous

work [31]. Both the working and the counter electrodes are immersed in 0.2 M potassium bi-

carbonate electrolyte solutions. During the experiment, the CO2 gas is directly bubbled into the

electrolyte in both chambers with a fixed volumetric flow rate of 20 mL/min. Subsequently, the

dissolved CO2 molecules are transported to the reacting surface on the cathode to be reduced to var-

ious products. The potentiostat manipulates the potential applied to the working electrode against

a reference Ag/AgCl electrode and records the electrical current passed between the working and

the counter electrode. The control of the mass transport properties in the reactor is made possible

by magnetically coupling the shaft where the RCE is mounted to another magnet connected to the

modulated speed rotator (MSR) outside the reactor.

Figure 5.1: The experimental setup of the gastight rotating cylinder electrode (RCE) cell.
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5.2.4 Model Predictive Control

MPC is an advanced control strategy used in various industrial processes. It involves utilizing

a dynamic mathematical model of the system to predict its future state or output behavior and op-

timize control actions by iteratively solving an optimization problem over a defined time horizon.

Specifically, MPC determines the optimal control actions to minimize a specified cost function

while satisfying system constraints. The design of the MPC in this work can be mathematically

defined as the following optimization problem:

J = min
u∈S(∆)

∫ tk+Nh

tk

L(x̂(t), u(t)) dt (5.2a)

s.t. x̂(t) = Fnn(x(t), u(t)) (5.2b)

L(x̂(t), u(t)) = (x̂(t)− xr)
⊤Q(x̂(t)− xr) + (u(t)− ur)

⊤R(u(t)− ur) (5.2c)

u(t) ∈ U, ∀ t ∈ [tk, tk+Nh
) (5.2d)

x̂(tk) = x(tk) (5.2e)

|u(tk)− u(tk−1)| ≤ uc (5.2f)

where x and u ∈ Rm are the output states and control actions (calculated by the model predictive

control system), respectively. The set U represents the control action space that defines the upper

and lower bounds of the m control actions applied to the reactor. The absolute difference between

the control actions to be applied in the next control period from the instance time u(tk) and control

action applied in the current control period u(tk−1) is bounded by the vector uc containing absolute

boundaries for m control actions (in this particular case, m = 2 as we have two manipulated inputs
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and dimension of u(tk) is 2). Furthermore, xr and ur are the reference values for the output states

and control actions. Q and R represent the weight parameters (both are positive definite matrices)

of the penalty terms for the output states and control actions, respectively, in the quadratic cost

function L(x, u). Therefore, by minimizing the cost function L with an appropriate manipulated

input trajectory, the reactor can be driven to the desired set-point given by xr by applying the first

calculated control action u(tk) at each sampling time, and then repeating this process in the next

sampling time. Finally, Fnn is the NN model, Nh is the prediction horizon, and the set S(∆)

comprises of piecewise constant functions having a period of ∆.

In this work, the outputs of the process to be regulated by the model predictive control system,

x, are the production rates of CO, C2H4, and H2. Specifically, we are aiming to get the produc-

tivity of CO and C2H4 to a certain set-point while minimizing the productivity of the side product

hydrogen from the competing hydrogen evolution reaction.

5.3 Neural Network Modeling

To account for the complexity of the electrochemical reaction mechanism and fill in the lack

of a first-principles model, a neural network (NN) model is developed to capture the dynamic

response of the output states under various input conditions. Subsequently, the trained NN model

is utilized as the process model of the MPC to estimate the output states over a certain time horizon

known as the prediction horizon Nh. This section describes the design and development of the NN

model for this purpose.
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5.3.1 Data Collection

The data set used to develop the NN model is similar to the one reported in [31], and three

types of experiments (i.e., open-loop steady input, step changes, and closed-loop experiments) are

performed to collect the data. Specifically, constant inputs (applied potential and catalyst rotation

speed) are applied to generate some portion of the training set data, which provides information

about the expectation of the steady state output values under certain input conditions in addition to

the dynamic trends while reaching respective steady states. In the second type of experiment, step-

change inputs of random amplitudes are applied, but the input actions remain in a predefined range

throughout the experiment. Finally, the closed-loop experimental results from [31] are included in

the data set. Although the controller type used in [31] is different from the one in this work, the

underlying physico-chemical phenomena are the same. Thus, including those results can help the

model to capture the dynamic behavior of the system more efficiently.

GC is used to monitor the outlet concentrations of the gas products in real-time during data

collection. Specifically, the GC takes a gas sample injection and quantifies the production rates

of the four gas-phase products every 1300 seconds during the experiment. Analyzing the injected

gas sample takes 15 minutes, and the GC needs to cool down for 400 seconds before taking the

next injection. Therefore, only four data points can be collected from a one-hour duration of the

experiment. As a result, there are a total of about 200 GC measurements collected at the end

of data generation experiments for the training, which is not enough to train a neural network

model. To address this problem, a 3rd-order polynomial regression based on three consecutive

GC measurements is applied to determine a probable output data trajectory between every GC
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measurement using the inputs measured every second. More details about this data enhancement

process are reported in [31].

5.3.2 Long Short-term Memory Networks

Among many ML methods that can be used to capture nonlinear processes, the RNN family

has been proven to be an effective modeling strategy for time-series forecasting tasks. Recently,

RNN models have become popular in the research area of process modeling and control and have

been applied in many academic and industrial works [55, 167]. The long short-term memory

network (LSTM) is one of the well-developed NN models that belongs to the RNN family. It

shares the major design of architecture with other types of RNN models that have information

flowing in two directions to capture the time-dependent relationship within the training data [132].

Furthermore, the LSTM model has its special “gates design” to store the historical information and

determine how to use it to predict the output [60].

The architecture of the LSTM model used in this work is shown in Fig. 5.2. The model is

developed to predict the output state at the next consecutive sampling time using p historical state

predictions and control actions. Therefore, there are only three outputs given by the model, which

represent production rates of CO, C2H4, and H2 (in ppm) at the p + 1 time step. Specifically, the

LSTM layer maps the time-sequence input containing the historical state prediction and control

actions to 180 hidden states. Subsequently, a dropout layer with a 30% dropout rate of the hidden

states is inserted to prevent overfitting, and the remaining hidden states are densely connected to

the output nodes.

Remark 27. The number of hidden states and percentage rate of dropout are included in the
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hyperparameters of the LSTM model. Therefore, their value can be found following the general

hyperparameter tuning process. Specifically, in this work, we performed a random search to locate

those values. More precise methods to perform the hyperparameter tuning include cross-validation

and grid search. More details about hyperparameter tuning can be found in [45].

Remark 28. In the area of ML, preventing the model from overfitting the data is an important task.

Overfitting refers to the situation where the NN model can perform well with the training data set

but fails to maintain good performance for data outside the training set. Several factors contribute

to this problem, and a critical one is when the NN model has too many weight parameters, which

can result in allowing the model to memorize the training data instead of extracting underlying

trends from it. One method to reduce overfitting is the regularization [50], with the dropout method

used in this work being one example of a regularization method [150, 158].

5.3.3 Model Training

Based on prior knowledge of the experimental reactor, the input sequence of the LSTM model

is designed to contain one hour (3600 seconds) of historical information. However, if the data is

formatted on a per-second basis, each sequence in the data set will contain 3600 elements, which

results in unnecessarily high computational costs in both time and space consumption. Therefore,

the time step of the data sequence is designed to be on a per-hundred seconds basis to reduce the

length of the input sequence to 36 elements. The time space in the input sequence is preserved in

the output sequence, and since the output sequence only contains 1 time step, the overall function

of the LSTM model is to use the one-hour historical information up to the instant to predict the
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Figure 5.2: The architecture of the LSTM model used in this work that processes the input sequence
with a LSTM layer and yields the prediction for the output states at the next time step (i.e., 100
secs later from the instantaneous point in time).

output states at 100 seconds later in the future (i.e., the output sequence has a shape of (1,3), where

3 is the number of output species).

This sliding window algorithm was employed to create a training dataset from a collection

of 35 experiments. Specifically, a window of one hour was used as the input for the training data,

and the output of the LSTM was determined to be the production rates of the target species at 100

seconds after the final time step of the input sequence. The window was systematically slid by

a stride of 100 seconds, and the first 1000 (seconds of) measurements in each experiment were

skipped to enhance the reliability of the training data. Therefore, the input of the LSTM model

has a shape of (36, 6), where 6 denotes the input features (i.e., surface potential, rotation speed,

current, and previous states of production rates for C2H4, CO, H2) measured at the respective time
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step. The sliding window algorithm is applied to 18 experimental data sets to generate the data

sequence to develop the LSTM model. When developing an NN model for time-series forecasting

problems, it is crucial to ensure that the validation data retains a certain level of independence from

the training data to avoid potential information leakage. To address this concern, we randomly

allocated results from 5 out of the total 18 experiments as the testing set, while the remaining

experiments were assigned to the training set. This training set is further divided into two parts

before the model training for ratio validation purpose, using the train-test ratio of 70:30. Finally,

the Scikit-learn Minmax Scaler was utilized to normalize the data.

In this study, the LSTM model was trained using the TensorFlow API. The model was op-

timized with the NADAM optimizer. As the data did not provide dense coverage of the overall

operating conditions, it was crucial to maintain generalization and prevent overfitting. Therefore,

we applied L2 regularization to the LSTM layer with a factor of 0.07 and perform 30% recur-

rent dropout within the LSTM cells. The mean squared error was selected to be the cost function

to evaluate the model performance. The LSTM model underwent training for 45 epochs with a

batch size of 32. Additionally, a callback function was utilized to capture the best-performing

weights based on minimization of the validation loss throughout the training process. As a result,

the training and validation loss of the trained LSTM model were found to be 0.0028 and 0.00456,

respectively.

Remark 29. The length of the input sequence (i.e., 3600 seconds) was found based on the combi-

nation of experimental observations and hyperparameter tuning. Specifically, from the experiment,

we found that the dead time of the process can vary up to 2000 secs, which meant, to capture the
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delay of the reactor, the length of the input sequence should be at least 2000 secs. Starting from

there, we tuned the length of the input sequence and found that, with the length of 3600 secs, the

LSTM model can capture well the dynamics of the process. Notably, increasing the length of the

input sequence will result in higher computational cost, and since the length of the input sequence

can be considered as a part of the hyperparameter tuning, the cross-validation method was used

in this step.

5.3.4 Model Performance

The trained model demonstrates significantly low training and validation losses, indicating

its successful training. To further assess the model’s performance, a comparison is made between

the model’s predictions, based on input data recorded from a validation experiment, and the cor-

responding output state measurements. Figure 5.3 is an example of such a comparison, with solid

curves representing the predictions made by the LSTM model and dashed curves representing

the measured trends during the experiment. The close alignment between the curves depicted in

Fig. 5.3 highlights the model’s adequate prediction capabilities.

Once the model demonstrated its proficiency in predicting the dynamic behavior of the output

state, we proceeded to evaluate its ability to accurately capture the reactor’s steady state perfor-

mance. The electrochemical reactor is an inherently stable process in the operating region of

interest, meaning that regardless of the initial output state conditions, the application of the same

constant control actions throughout a period of time should lead to the convergence of the outlet

species concentrations to the same steady state every time. The prediction results of the LSTM

model for an open-loop experiment are shown in Fig. 5.4. It can be observed that, regardless of
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Figure 5.3: LSTM predictions of C2H4, CO, and H2 concentrations compared to the reference data
in the testing set. Inputs (surface potential and electrode rotation speed) used for the prediction are
shown at the bottom.

the starting point of the trend, the predictions consistently converge to the same steady state for

all three output states under a fixed control action. However, due to the stochastic nature of the

electrochemical reaction and other experimental uncertainties, there exists a variance in the steady

state. Therefore, the steady state given by the LSTM is ideally the average of the steady state

values obtained if the experiment is repeated with the same fixed control inputs.
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Figure 5.4: Open-loop simulation using the trained LSTM model with consistent fixed inputs from
various initial states. The predicted trends for different initial states are represented in different
colors.

5.4 Koopman Operator-based Linearization of RNN Model

The motivation behind the exploration of a method to linearize the neural network model for

utilization in MPC arises from the fact that NN-based MPC involves solving a constrained opti-

mization problem with a highly nonlinear NN model. Consequently, this optimization problem

becomes a challenging nonlinear optimization task, which remains a topic of considerable math-

ematical exploration without a definitive approach for effective resolution. As a result, solving

the nonlinear optimization problem within a reasonable time frame (certainly, within the process

sampling time for real-time control purposes) might not be possible, which renders this type of

nonlinear MPC application impractical for many industrial processes. On the other hand, the de-
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velopment of an MPC framework with a linearized system is a well-established approach. By

approximating the NN model with a linear system on-line and at each sampling time, an MPC can

be formulated as a quadratic programming problem, which lends itself to efficient solution tech-

niques. This implies that if we can effectively approximate the NN model with a linear system,

the NN model-based MPC can be solved quickly and efficiently, and applied to real-world appli-

cations. This section presents the systematic process utilized in this project, drawing inspiration

from the work of [175], to linearize the RNN-based process model and integrate it into an MPC.

5.4.1 Koopman Operator Theory

[175] presented a method to linearize an RNN model based on the principles of the Koopman

operator theory. The Koopman operator theory, initially proposed by Bernard Koopman in the

19th century [83, 84], plays an important role in analyzing, modeling, and controlling nonlinear

processes. The core concept of the Koopman operator theory involves mapping inputs of a nonlin-

ear function into a higher-dimensional feature space, thereby obtaining a linear approximation of

the nonlinear system [83]. In other words, the Koopman operator can linearize an arbitrary finite-

dimensional nonlinear system at the cost of expanding its dimensionality up to infinity. Notably,

this concept is also similar to the idea of feature engineering, in the ML terminology, which serves

as a fundamental aspect in various ML models such as support vector machines (SVM) [32].

The Koopman operator can be defined mathematically with the following equations:

xk+1 = f(xk) (5.3a)
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Kg(xk)
∆
= g(f(xk)) = g(xk+1) (5.3b)

where Eq. 5.3a is the discrete representation of a nonlinear dynamical system, and the function

f captures the output state evolution of the system from an arbitrary time step k. Eq. 5.3b is the

definition of the Koopman operator K, where g(·) are a set of scalar functions named observables.

From Eq. 5.3b, it can be easily proven that K is a linear operator, which allows finding the eigen

decomposition of K and rewriting the evolution of the nonlinear system as a linear combination

based on the eigen decomposition of K as follows:

Kϕj(x) = λjϕj(x), j = 1, 2, . . . ,∞ (5.4a)

Kg(xk) =
∞∑
j=1

λjϕj(xk)vj (5.4b)

where λj , ϕj , vj are known as the eigenvalues, the eigenfunctions, and the mode of the Koopman

operator K.

The discussion about Koopman operator theory so far has been centered around an autonomous

system with time-varying inputs. However, to allow using this method in a dynamic control system

requires extending the Koopman theory to be able to handle a non-autonomous system including

time-varying control inputs. In [124], a generative Koopman with inputs and control (KIC) method

was proposed to generalize the application of Koopman operator theory to non-autonomous sys-

tems. Specifically, the KIC method defined a new representation of the Koopman operator as

follows:

xk+1 = f(xk, uk) (5.5a)
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Kg(xk, uk)
∆
= g(f(xk, uk), uk+1) = g(xk+1, uk+1) (5.5b)

where uk is the input applied at the kth time step, and Eq. 5.5a is the discrete representation of any

nonlinear system accepting external inputs. There are other works proposing different formulations

for Koopman operator with inputs [85], and the core ideas shared around those methods involve

augmenting the states x and the inputs u into the same matrix and use it to form the observables

instead of just the states, which all allow linearizing the nonlinear system using the method applied

to an autonomous system.

Remark 30. The method of constructing the observables g is an essential research area of Koop-

man operator theory, and there are significant efforts on this subject, such as using a nonlinear

function to augment the state measurements [22, 124, 137, 162]. In this work, we define the ob-

servables to be the output states of the system, such that g(x) = x.

Remark 31. The Koopman operator can also be applied to a dynamic system with continuous

representation. However, the focus of our mathematical analysis and investigation in this work

is centered on the discrete representation, as the LSTM model can be considered as a discrete

approximation of the underlying nonlinear dynamic system. Therefore, applying the Koopman

operator to a discrete nonlinear dynamic system fits better to the application of the Koopman

operator to the LSTM model.

5.4.2 Dynamic Mode Decomposition

Although the Koopman operator method suggests linearizing a nonlinear system into an

infinite-dimensional linear system, it is practical to work with a finite dimension that is high
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enough to achieve the desired accuracy. Considering this, the Dynamic Mode Decomposition

(DMD) method, first proposed in [142], is an effective method to provide a finite-dimensional ap-

proximation of the Koopman operator. Specifically, the DMD method is a data-driven method that

requires obtaining measurements to start with. We define Ok = g(xk) to be the observation of a

nonlinear system and O+
k = Ok+1 to be the observation one time-step after Ok. By performing

experiments or simulations with the nonlinear system, time-sequence data can be collected for the

observations and yield:

O = [O0, O1, . . . , Ons ], O+ = [O+
0 , O

+
1 , . . . , O

+
ns
] (5.6)

where ns is the total number of samples. Notably, the notation O1 is not necessarily the next time

step of O0. Subsequently, the DMD of the nonlinear system based on the measurements can be

found as the eigen decomposition of the linear mapping matrix A that forms the equation,

O+ = AO (5.7)

The analytical solution of Eq. 5.7 yields the matrix A as A = O+O†. Finally, the eigenvalues

and eigenvectors of A are the approximation of the eigenvalues and the mode of the Koopman

operator, respectively.

For a nonlinear system with inputs, the Dynamic Mode Decomposition with control (DMDc)

method was proposed in [123], which includes the measurements of the control actions Ou =

[u0, u1, . . . , uns ] to compute the linear mapping matrix G = O+

O

Ou


†

defined for the DMDc

method. Similarly, the singular value decomposition of G can provide a finite approximation
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of KIC. Eventually, an arbitrary non-autonomous nonlinear system defined as Eq. 5.5a can be

linearized with the DMDc method into the following system:

G = [A B] (5.8a)

xk+1 = Axk +Buk (5.8b)

yk = Cxk +Duk (5.8c)

Furthermore, the process of computing the matrix G involves solving a linear least-squares prob-

lem, which can be solved more effectively in practice with the regression method rather than find-

ing the analytical solution [85]. Therefore, the extended dynamic mode decomposition (EDMD)

method proposed in [162] introduced a regression procedure to approximate the Koopman opera-

tor.

5.4.3 Linearization of LSTM model and Performance Evaluation

The Koopman operator theory and EDMD method are utilized to linearize the LSTM model

because they are data-driven and independent of the form of the nonlinear model [9, 175]. The

first step of implementing these methods is to collect time sequence trajectories of the LSTM

model. Following the procedure of [124, 175], at the kth time step, we first define the vectors

y = [x̂k+1, x̂k+2, . . . , x̂k+Nt ]
⊤, x̂ = [x̂k, x̂k+1, . . . , x̂k+Nt−1]

⊤, and u = [uk, uk+1, . . . , uk+Nt−1]
⊤,

where Nt is the distance between the farthest time step contained in the linearization samples and

the kth time step. Notably, the historical information that is used by the LSTM model to make

predictions up to the kth time step is available at the time tk. Thus, the prediction x̂k+1 can be
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computed using the LSTM model. Furthermore, by adding the new prediction and the next control

action uk+1 while removing the first element of the LSTM input, the vector y can be obtained by

iteratively running the LSTM model.

In this work, we applied a constraint on how much the input actions can be changed from one

sampling time to the next, which is mathematically defined by the following equations:

uk = [vk, rk, ck] (5.9a)

ck = C(vk, rk) (5.9b)

ud
∆
= [vk+1 − vk, rk+1 − rk] (5.9c)

|ud| ≤ uc = [vb, rb] (5.9d)

where vi, ri, ci are the surface potential, rotation speed, and the current value given by the reactor

at the ith sampling time. The surface potential and rotation speed are the control actions that can

be manipulated during the experiment, and the current varies as a consequence of these control

actions. vb and rb are positive numbers referring to the maximum absolute step changes allowed

per time step for the potential and rotation speed and are equal to 0.01 V and 30 RPM, respectively.

The data to linearize the LSTM model is generated with respect to the constraints of Eq. 5.9.

Specifically, we first determined the number (Ns) and the length (Nt) of the time-sequence data.

Then, we randomly generate Nt control actions starting from the same initial control action u0

that obey the constraints of Eq. 5.9 and run the LSTM model to generate one time sequence of

“measurements” of y. This process is repeated Ns times to obtain Ns sequences. [155] pointed
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out that, due to the reduction of the problem into a linear regression formulation, the data set used

to perform the DMD-based method does not need to retain the sequential order of the data points

(i.e., the rows of the data matrices can be shuffled such that, for example, the last row of the target

vector y, x̂k+Nt can instead be moved to be the first row, as long as the last rows of x̂ and u, x̂k+Nt−1

and uk+Nt−1 are also moved to be their first rows, respectively). Therefore, the data matrices y, x,

and u with a shape of (Ns ×Nt) can be reshaped into three vectors containing (Ns ×Nt) elements

(also note ns = Ns ×Nt), as long as the triplets of xi, ui, and yi remains the same. With this data

structure, the linear least-square regression problem to find G can be easily solved by using the

Scikit-learn linear regression function without fitting the intercept. The pseudocode to implement

the linearization of LSTM in our work is represented in algorithm 3.

Algorithm 3: Procedure of linearizing the LSTM model.
Initial: vb ≥ 0, rb ≥ 0, NN ; // NN : the initial inputs of LSTM with shape (1, 36, 6)
Initial: xtrain , ytrain ; // Define empty arrays to store linearization samples
for i = 1 to Ns do

NNi = NN ; // Initialize the LSTM input by making a deepcopy of NN
for t = 1 to Nt do

vi = NNi[0,−2, 0] + rand(−vb, vb) ; // rand(l, h): randomly pick number
between l and h

ri = NNi[0,−2, 1] + rand(−rb, rb) ci = C(vi, ri) ; // C(·): eq. 5.9b
NNi[0,−1, : 3] = [vi, ri, ci]
x̂i,t = LSTM(NNi) ; // LSTM(·): LSTM prediction
xtrain.append(NNi[0,−1, :])
ytrain.append(x̂i,t)
NNi[0, : −1, :] = NNi[0, 1 :, :]
NNi[0,−1, 3 :] = x̂i,t

end
end
[A,B] = LG(xtrain, ytrain) ; // LG(·): Sickit-learn linear regression

The prediction given by the linearized model was compared with the original LSTM predic-
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tion. Specifically, the initial inputs to activate the LSTM model are randomly cropped from existing

experimental results and provided to algorithm 3 to generate a linearized model. Subsequently, the

linearized model was utilized to make predictions over a time span based on a sequence of control

actions randomly picked within the step change constraint and compared to the prediction given by

the original LSTM model using the same control sequence. The comparison is shown in Fig. 5.5,

where the prediction given by the original LSTM model over a time span of 800 secs is repre-

sented in the blue solid curve, while the prediction given by the linearized model is denoted in the

red dashed curve. The predictions given by the two models are close to each other, which supports

that the linearized model can approximate the LSTM model adequately.
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Figure 5.5: Comparison between the linearized model prediction (dashed curve) and the original
LSTM model prediction (solid curve) over a sampling period.
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Remark 32. Notably, for this work, the current flowing at a fixed applied potential depends on the

electrolyte solution resistance due to the Ohmic loss. The solution resistance between the work-

ing and the reference electrode is determined from the electrochemical impedance spectroscopy

(EIS) and is around 6.5 ± 0.3 Ω in the RCE cell setup when using 0.2 M potassium bicarbonate

electrolyte. Although the value is practically constant, there are slight variances from experiment

to experiment and during the experiment, while it is measured only before and after the exper-

iments [31]. Therefore, the measured current value will not be the same with the same control

action, and thus, provide additional information for our LSTM model to learn the electrochemical

reactor system better. The current value is measured and recorded during the experiment, and

those measurements are used to train the LSTM model. However, when collecting samples for the

Koopman-based linearization of the LSTM model, the value of the current needs to be approx-

imated with the correlation between ck and the control actions denoted as transformation C in

Eq. 5.9b. In simulations, this value was approximated using the average resistance obtained from

various experiments. For the closed-loop experiments, the resistance value was measured right

before starting the experiment and used to anticipate the current value in the prediction horizon.

5.5 Closed-Loop Experiments

The details of implementing the linearized NN-based MPC for the electrochemical reactor

are presented in this section. As a quick recap, referring to Eq. 5.2, the main objective of the

MPC in this work is to drive the productivity of C2H4 and CO to their specific set-points while

suppressing the productivity of H2. The set-points for C2H4 and CO are selected to be 147 ppm
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and 478 ppm, respectively, such that xr = [147, 478, 0]. Furthermore, by replacing the LSTM

model used in Eq. 5.2d with the linearized model, the overall optimization problem within the

MPC becomes a quadratic programming problem, which is convex and can be solved efficiently.

In the closed-loop experiment, the MPC is operated in a sample-and-hold manner, which means it

will give the optimum control action over a certain control period (i.e., 100 seconds in this work),

and the control action will be held fixed during the control period. The overall workflow of the

MPC is demonstrated in Fig. 5.6. Specifically, the LSTM model worked as the state estimator

throughout the experiment. When entering a new sampling time, algorithm 3 was used to compute

the linearization of the LSTM model for the specific time-instant, which was then used to find

the MPC control action by solving a QP problem. The Gurobi optimizer was used to solve the

optimization problem in this work.

Reactor

LSTM
history Entering new 

control 
period

Linearization MPC
(Gurobi)

utut

Yes [A, B]

𝒙ෝ

No

Figure 5.6: The overall workflow of the MPC in this work. The LSTM model is used as a state
estimator when the MPC is not activated. Once entering a new sampling time, the MPC is activated
and computes the control action for the reactor with the linearization of the LSTM model.
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5.5.1 Implementation of MPC in the Experimental Setup

The LSTM model (without linearization) worked as the state estimator in the closed-loop

experiments by predicting the instantaneous reactor productivity. When the processing of a new

GC measurement is finished, the LSTM model has to reinitialize its prediction, which means that

it uses the state measurements in the input of LSTM instead of the state prediction given by the

LSTM in the previous iteration. This reinitialization is expected to prevent the accumulation of

prediction errors. Specifically, the output states are estimated through 3rd-order polynomials based

on the 3 consecutive GC measurements up to the newest measurement and used as the input of

the LSTM model to predict the output state at 100 seconds after the newest GC injection made.

Note that the GC measurement has a delay of 15 minutes because it takes 15 minutes to separate

and analyze the sample taken from the injection. Therefore, through the reinitialization, the LSTM

predicted the output state 15 minutes ago again, and needs to run iteratively using the reinitialized

prediction to correct all the predictions for the previous 15 minutes. Furthermore, since this 3rd-

order polynomial’s approximation can only be activated once every 21 minutes, it can not be used

as the process model or state estimator that requires to be able to give prediction every 100 seconds.

But once the 3rd-order polynomial approximation is activated, it can estimate the output states for

the last 1 hr effectively and accurately.

The Laboratory Virtual Instrument Engineering Workbench (LabVIEW) software was utilized

to digitalize the electrochemical reactor in this work. LabVIEW is a graphical programming lan-

guage that allows a user to develop a user interface to monitor the system and develop control sys-

tems to implement the control actions in the working equipment. Although LabVIEW also allows
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users to develop simple programs (e.g., PI controller), it is technically challenging to implement

the aforementioned workflow that involves using the NN model, linearization, and optimization

in LabVIEW. Therefore, a data pipeline was developed to allow information to flow between a

Python script operating the workflow and the LabVIEW controlling the operating equipment.

The options for pipeline design include reading the data from a real-time updated csv file or

data transfer through a database. Since opening a real-time updated csv file to read data might

disturb the process of writing data, this option is not optimal. On the other hand, sending data from

LabVIEW to a database is an easy task that is already combined into our automation scheme us-

ing the Clean Energy Smart Manufacturing Innovation Institute’s (CESMII) Smart Manufacturing

Innovation Platform (SMIP) as discussed in [30]. Specifically, the SMIP can work as a database to

store and organize our data at defined endpoints for each piece of equipment, and the use of start

and end dates for query and mutation of SMIP’s data transfer protocol, GraphQL, makes it a per-

fect candidate for data transfer application. In short, this data flow is designed to use LabVIEW as

the edge device performing process control and monitor tasks, SMIP as a cloud database for data

management, and a high-performance computer running Python interpreters as a back-end server.

The data transfer protocol is shown in Fig. 5.7.

When performing an experiment, constant physical properties, such as solution resistance,

open circuit potential, etc., are measured before the electrolysis and sent to the SMIP at the be-

ginning of the experiment. Process data collected through LabVIEW, such as applied potential,

surface potential, rotation speed, and current, are mutated to the SMIP every 2 seconds. The re-

actor was put to run in open-loop for the first 7000 seconds of the experiment because, at the

beginning state of the experiment, the rector does not reach the equilibrium giving higher variance
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Figure 5.7: Data flow between the experimental setup and local Python script through SMIP for
MPC calculations.

in its productivity. Thus, data collected at this stage is expected to have a different distribution

from the rest of the experiment and is excluded from the LSTM training. Control actions applied

to the reactor at this stage are fixed to be −1.22 V for potential and 300 RPM for rotation speed.

After letting the reactor run in open-loop for the first 6298 seconds, the MPC will be activated,

and the Python script queries the last one hour of process data every 100 seconds to form the

initial input for the LSTM model. Subsequently, the LSTM was linearized to compute the first

control action, while the original LSTM model estimations along with input values are mutated to

SMIP. LabVIEW script also queries those values from the SMIP to feed the new input values to

the potentiostat and modulated speed rotator to implement the new applied potential and rotation

speed. From then on, the experiment was run in closed-loop.
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5.5.2 Closed-loop Experiments

The result of the closed-loop experiment is summarized in Fig. 5.8, where the dots are the GC

measurements collected in the experiment and the dashed curves are the approximated output states

with probable experimental trajectory method employing 3rd-order polynomials. The productivity

evolution of C2H4 and CO2 is shown in the top figure, and their set-points, which are 147 and

478 ppm, respectively, are denoted with the dotted straight lines. A reference control action ur =

[−1.28 V, 600 RPM], stated in Eq. 5.2c, was used in the MPC objective function to achieve better

control performance. The reference control action ur was found using the trained LSTM model.

As discussed above, the LSTM model is stable, such that it can be used to find the theoretical

control actions that can give the targeted steady state. The weight matrix was chosen to be Q =

diag(0.01, 0.01, 1 × 10−6) and R = diag(1 × 104, 1.0/1200). The weight parameters were tuned

based on the simulation and experiment results.

The design of the weight matrices considered scaling their importance on the cost function.

For example, when designing the matrix Q, the first two parameters are the weight of C2H4 and

CO2, respectively, which are equally important in our control scheme. The value 0.01 in the Q

matrix was used to prevent the cost value from becoming too big. On the other hand, the cost

for the H2 is much less than the other two weights because driving the outputs to the set-point

is the first priority for the control system. Reducing the productivity of the side product H2 can

maximize the energy efficiency of our reactor. However, it is physically impossible to eliminate the

H2 production, which means if the weight parameter for the H2 is too high, the MPC will allow the

two target states to be away from the set-point as the trade-off to reach the optimum defined by the
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Figure 5.8: Output responses and control actions in the closed-loop experiment controlled by the
MPC using the linearization of the LSTM model.

MPC objective function. Drawn from the understanding of the reactor, we considered the reactor

operated energy efficiently if the productivity of H2 was kept below 4000 ppm. Since the states are

squared in the objective function, using 1 × 10−6 will give a cost equal to 16 if the productivity

of H2 is at 4000 ppm, which will dominate the MPC with the outputs approaching the set-points,

and thus, the productivity of H2 was not included in the objective function. The weight matrix

R was calculated to balance the speed of the convergence of the states to the steady state and the

magnitude of the control actions.

The prediction horizon of the MPC (Nh) is 8 times steps (i.e., 800 seconds in the future), and

157



the length of the time sequence, Nt, collected for linearization is designed to be equal to Nh+2. The

number of linearization samples, Ns, is taken to be 30. Theoretically, linear regression can be more

accurate with increasing amounts of data. On the other hand, increasing Nt and Ns also requires

more time to collect the sample which makes the linearization more computationally expensive.

Notably, the sampling step can be processed in parallel, which means the computational time is

independent of the size of Ns if there are sufficient amounts of parallel processors. However, since

the processing of the time sequence is iterative, the computation time for linearization is bounded

by the size of Nt. In this work, the maximum allowable step changes in u reduces the required

number of sequences in our linearization sample. In our implementation, 30 sequences collected

with the Monte Carlo method turned out to be sufficient for the linearization task. With this choice,

the MPC successfully drives the outputs to the set-point while maintaining the H2 production rate

below 4000 ppm.

5.5.3 Model Retrain

The MPC design in this work created a feedback loop by using real-time measurements to

re-initiate the LSTM model with measurement feedback and improve closed-loop system robust-

ness. However, a correction algorithm that uses the feedback information to improve the LSTM

model was not implemented, which means the control scheme demonstrated in this work is based

on the assumption that the LSTM model can capture the real process accurately and that the pro-

cess behavior does not change significantly. However, in real-world applications, the system is

very likely to perform differently from the model prediction due to the variance of the application.

The reported control scheme in this work should be able to handle this slight variance, as long as
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the variance is not significant enough to have the steady state shifting on a very different condi-

tion. However, sometimes the process may have very different behavior than the data collected to

develop the neural network model. This problem is usually called the data (process) shift problem

(for example, due to catalyst activity variation as a new catalyst is introduced every certain number

of experiments), and more actions need to be taken to account for the data shift problem in model

update.

To this end, we introduced a model retrain procedure based on the transfer learning concept

to update the process model efficiently when the data shift problem is detected. To imitate this data

shift problem in our reactor, we changed the polycrystalline Cu RCE to a new one and followed the

same procedure to synthesize nanopores, but the resulting performance was different. Specifically,

the new catalyst was more active and had a selectivity toward the C2H4 production. Various exper-

iments were conducted with the new catalyst, which gave the result that with the control action at

−1.28 V and 600 RPM, the output for C2H4 increased to about 200 ppm but remained unchanged

for CO.

Subsequently, the LSTM model was retrained based on the data collected from the new exper-

iments. Of course, the new data set is smaller in size compared to the original data set. Therefore,

if we just train a new model after including the new data into the original data set, the newly

trained LSTM is very likely to count heavily on the old data set and represent less of the perfor-

mance of the new catalyst. To account for this, we used the idea of transfer learning, which is a

scheme to fine-tune a pre-trained model to make it fit better to a new data set. Since the underlying

physico-chemical phenomena do not change with the catalyst change, the available LSTM is a

good pre-trained model that captures the critical dynamic relations from the previous training.
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Specifically, the training of all layers in the pre-trained LSTM model except the output layer

was frozen with the assumption that the ground truth physical relationship is captured in the LSTM

layer. Subsequently, the model is trained with only the new experimental results. The model is

trained with 10 epochs because it is common in transfer learning to train the model with a small

number of epochs to prevent it from overfitting the new data, especially when the size of the new

data set is small. Eventually, the retrained model preserved a stable behavior and predicted the new

ur to be −1.26 V and 650 RPM. This result matches our expectation for the new catalyst since

the C2H4 productivity is more correlated to the applied potential while CO productivity is more

correlated to the rotation speed. Based on the experiment observation, the new ur should decrease

the potential to reduce the productivity of C2H4 to better approach the set-point. However, reducing

the potential will also reduce the productivity of CO even if it is more correlated to rotation speed.

The rotation speed then needs to be increased slightly to compensate for the loss in CO productivity.

Thus, we concluded that the transfer learning-based retrain process calibrates the LSTM model

in the correct direction and moved on to using it to perform closed-loop MPC experiments of

controlling the reactor with the new catalyst. The result of the closed-loop experiment is shown

in Fig. 5.9 which demonstrates that the MPC with the retrained model can stabilize the reactor

outputs to the desired set-points.

Remark 33. In addition to the retraining method that corrects the model off-line, on-line correc-

tion may be implemented to improve the MPC performance using real-time measurements. For
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Figure 5.9: Output responses and control actions with new catalyst controlled by the MPC using
the retrained model.

example, the extended Kalman filter method can be a good candidate to be considered for this

task. To implement this method, the Kalman correction factor should be added to the LSTM model

for real-time estimation. Furthermore, since the Koopman method can be applied to any nonlinear

model, the overall workflow of the model linearization and MPC implementation does not need to

be changed to include the Kalman filter correction. Developing this correction step for an MPC of

an electrochemical reactor is one of our future objectives.

Remark 34. The retraining correction requires collecting new data from the process, which may

introduce a certain delay to update the MPC. Consider the case where the data shift problem is
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just detected, and the collected data is not enough to retrain the process model, the MPC should be

deactivated and switched to a backup controller (e.g., classical proportional integral controller) to

ensure that the process operates safely.
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Chapter 6

Conclusions

This dissertation discussed the application of ML/AI technologies to develop an advanced

MPC scheme implementing MIMO control to an experimental electrochemical reactor that could

capture and reduce CO2 to valuable chemical products. Prior to engineering the ML/AI-based

process control system of the electrochemical reactor, various novel NN structures and algorithms

were investigated to account for the effect of noisy data. Notably here, noisy data was not only

referring to the data set that was corrupted by sensor or process noise, but also considered the

irregularly sampled data, such as missing data points in a time-series data sequence. Mathemat-

ical evaluations were performed to understand how those novel NN approaches could be used to

account for noisy data and to ensure they were suitable to be applied to chemical engineering ap-

plications. Subsequently, MPCs were developed using the novel noise-robust NN models and eval-

uated via simulations using dynamic process models and large-scale chemical process simulators

(e.g., Aspen Plus and Aspen Dynamic). Next, a weighted-FNN model was developed based on the

historical experiment data to predict the output states of the reactor at steady states. This weighted-
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FNN model also provided insights towards facilitating the development of a first principles-based

model to describe the physical-chemical phenomena of the reactor and can be used in the RTO to

compute the optimum set point. Lastly, an LSTM model was developed to capture the dynamic be-

havior of the reactor. The Koopman operator method was adopted to linearize the LSTM model in

real-time to reduce the computational cost, which made the MPC feasible to be applied in real-time

operation.

In Chapter 2, LSTM models using the Monte Carlo dropout method and co-teaching tech-

nique were developed to predict underlying process dynamics (ground truth) from noisy data. A

chemical reactor was modeled and simulated in a large-scale process simulator, Aspen Plus, to

demonstrate the application of dropout and co-teaching methods with noisy and noise-free data

generated from Aspen simulations and first principles model solutions, respectively. Then, the

closed-loop simulation of the reactor was carried out in Aspen Plus Dynamics under an LSTM-

based MPC to demonstrate the dropout and co-teaching LSTM methods were more robust to noisy

data than the standard LSTM modeling approach in terms of open-loop prediction accuracy and

closed-loop performance.

In Chapter 3, a Lyapunov-based MPC (LMPC) system using a neural ordinary differential

equation (NODE) model, which was constructed from process data, was developed. The results

demonstrated the application of the NODE as the process model in an LMPC. Specifically, the core

model of the NODE could capture the time derivatives of the states, which could be considered

an additional method to compute the derivative information other than numerical approximation

methods. The state derivatives predicted by the NODE model were used in the LMPC to en-

force the constraints and optimize the control objective. Moreover, the NODE model imposed
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fewer restrictions on the structure of the training data than RNN models, which permitted the use

of the subsampling method to account for noisy data. NODE models developed with different

subsampling factors were used to account for Gaussian and non-Gaussian measurement noise. It

was found that using subsampling could not significantly reduce the training loss under Gaussian

noise, but could reduce the LMPC cost function in closed-loop simulations by up to 15%. For non-

Gaussian noise, using subsampling reduced the training loss by up to 24% and 26% in the case of

the weak and strong noises considered in this work, respectively. As for the closed-loop simula-

tions, using subsampling improved the closed-loop performance of the LMPC under non-Gaussian

noise by up to 34% in terms of the LMPC cost function.

In Chapter 4, the application of neural network modeling to an electrochemical reactor was

demonstrated. Specifically, an FNN model was developed to model the experimental reactor data

over a broad range of operating conditions. Additionally, weighted-FNN model, inspired by the

maximum likelihood estimation method, was developed to account for the variability of experi-

mental data, and its predictive performance was demonstrated over a broad range of operating con-

ditions. Lastly, an algorithm was proposed to improve the empirical, first principles (EFP) model

by utilizing the weighted-FNN insight, which decreased the MSE of the EFP model predictions

for three reaction rates by 75%, 79%, and 32%, respectively.

In Chapter 5, a procedure to apply neural network model-based MPC to perform real-time

multivariable control for an experimental electrochemical reactor was presented; the approach in-

volved on-line linearization of the neural network model and was applicable to broad classes of

chemical processes. Specifically, an LSTM neural network model was used to capture the nonlin-

ear dynamic input-output relationship to control an electrochemical reactor. The Koopman opera-
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tor method was found to be able to linearize the LSTM model efficiently (in terms of computational

effort) and effectively (in terms of model performance). Based on that method, a systematic ap-

proach was developed to linearize a neural network model using the Scikit-learn linear regression

function, which was efficient and easy to implement. Open-loop simulations were performed to

evaluate the performance of the original LSTM and linearized LSTM models, and the MPC de-

veloped based on the linearization of the LSTM model was applied to control the experimental

electrochemical reactor. As the closed-loop results demonstrated, the MPC calculated the optimal

control actions with a reasonable computation cost and successfully drove the process outputs to

desired set-point values. Furthermore, a transfer-learning scheme was introduced to account for

the data shift problem (owing to catalyst activity variability every time a new catalyst was intro-

duced) by updating the LSTM model using new process measurement data. The transfer-learning

method was demonstrated to be able to update the original LSTM model with a limited amount

of new data and computational cost. Finally, the updated LSTM model and the resulting MPC

were demonstrated to resolve the data shift problem by driving the process outputs to the desired

set-points in a closed-loop experiment under the new experimental (catalyst) conditions.
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[9] H. Arbabi and I. Mezić. Ergodic theory, dynamic mode decomposition, and computation of

spectral properties of the Koopman operator. SIAM Journal on Applied Dynamical Systems,

16:2096–2126, 2017.
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