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ABSTRACT OF THE DISSERTATION
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In chemical process industries, maintenance costs may comprise of up to 20− 30%

of the operating budget, and therefore, improving maintenance practices can significantly

impact plant economics and reduce production losses. Developing so-called “Smart” pre-

ventive maintenance policies/systems of key manufacturing components, especially those

that may cause process upsets, losses and downtime, is therefore an important task. A

high percentage of the day-to-day preventive maintenance tasks in the chemical process

industry deals with control actuators and measurement sensors employed by process con-

trol systems. Motivated by these considerations, the first part of this dissertation focuses

on the development of methods for integrating the on-line preventive maintenance of ac-

tuators and sensors with advanced process control system design. To accomplish these

preventive maintenance tasks, economic model predictive control (EMPC), that optimizes

economic process performance over an operating horizon by employing a dynamic process

model to predict the evolution of the process, is employed to maintain stable operation of

ii



a process while dictating an economically optimal operating policy with respect to varying

numbers of control actuators and measurement sensors. Novel EMPC schemes are devel-

oped that explicitly account for scheduled preventive control actuator/sensor maintenance

programs, process economics and feedback control. In the second part of this disserta-

tion, EMPC of transport-reaction processes is considered for the first time. Compared with

lumped-parameter processes, no work has been done on the problem of designing EMPC

for transport-reaction processes modeled by partial differential equations (PDEs). The the-

sis proposes EMPC schemes those are formulated on the basis of suitable reduced-order

models to ensure input and state constraint satisfaction and economics optimization for

both parabolic and hyperbolic PDEs. Finally, the thesis concludes with the presentation

of multiscale, computational fluid dynamics modeling framework for an industrial-level

steam methane reforming unit.
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Chapter 1

Introduction

1.1 Economic Model Predictive Control

A recent theoretical development within the process control community is the establish-

ment of a theoretical basis for economic model predictive control (EMPC), an optimization-

based control methodology with a structure based on that of traditional tracking model

predictive control (MPC) but with a cost function that represents the process economics.

EMPC optimizes economic process performance over an operating horizon by employing

a dynamic process model to predict the evolution of the process.4, 5, 34, 45, 60, 65, 71, 72, 106, 118

Thus, the control actions computed by EMPC will, ideally, force the process operation to

remain economically optimal throughout time.

Some of the recent developments on EMPC include: a reformulation of EMPC based

on a Lyapunove-based controller design with two switching operation modes,65 proof of

asymptotic stability of EMPC formulated without terminal constraints,60 proposition of an

EMPC scheme with a self-tuning terminal cost,106 an EMPC formulation that can account

for explicitly time-varying parameters in the cost function,45 asymptotic average perfor-

mance bounds for EMPC using a self-tuning terminal cost or a generalized terminal region

1



constraint,107 performance and stability analysis for EMPC without terminal costs or con-

straints,61 the use of event-triggering to initiate EMPC evaluations and reduce computation

requirements,143 an output feedback EMPC scheme with robust moving horizon estima-

tion,49 and a fast EMPC scheme by employing nonlinear programming sensitivities77 (see,

also, the review48 for more recent results on EMPC).

1.2 Preventive Maintenance in Chemical Industries

Smart Manufacturing has been deemed by many manufacturing experts as the next fron-

tier of manufacturing that will revolutionize future manufacturing.16, 22, 28, 32, 124 Objectives

put forth by the proponents of Smart Manufacturing can be summarized as the design,

development, and deployment of integrated systems to achieve a significant step-change

in overall manufacturing intelligence.22, 32 One example of the challenge problems next-

generation manufacturing faces is being able to successfully manage the trade-off between

sustainability and profitability.124 In the current manufacturing paradigm, many individual

components or phases of the manufacturing process are optimized and/or operate indepen-

dently of other components (e.g., planning/scheduling, control, plant-wide optimization,

etc.) and thus, the aforementioned challenge problem cannot be handled in the context of

traditional manufacturing paradigms. One of the key components of Smart Manufactur-

ing is to unite individual components into a completely integrated platform.32 The results

of making these interconnections have the potential to transform operations from a reac-

tive or corrective environment to a proactive or preventive setting yielding major economic

benefit.16 Identifying the interconnections between components and systems has been the

subject of recent research.

Specifically, in the context of process operations, maintenance programs and policies

are a vital part of maintaining operations, reliability, and safety of manufacturing processes
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(e.g., Refs12, 92). Maintenance tasks can be divided into two main categories: (1) corrective

and (2) preventive.137 Corrective maintenance deals with repairing or replacing a failed

component of the process; while, preventive maintenance consists of tasks or measures

taken to prevent component failure. The scope and scale of the latter maintenance program

varies in the process industries. At one end of the scale, scheduled preventive maintenance

may only consist of a spreadsheet containing a schedule and historical log of the preven-

tive maintenance tasks which has been compiled from past experience. Another simple

approach to preventive maintenance could be to utilize existing process identification tools

or alarms used to assess safety and operability performance of processes. For example,

preventive maintenance action may be taken when tools identify near-misses which are

considered to be precursors to abnormal events.111 On the other hand, more complex,

model-based and optimization-based approaches to preventive maintenance have been ex-

plored (e.g., Refs12, 19, 20, 132, 137). In fact, extensive literature exists on the mathematical

theory of reliability which is a key metric in most complex preventive maintenance pro-

grams.12 Examples of optimization-based approaches to preventive maintenance include:

developing a framework for preventive maintenance optimization to solve the so-called

opportunistic maintenance problem by combining Monte Carlo simulation with a genetic

algorithm,132 integrating statistical process control techniques with optimization of preven-

tive maintenance policies which was demonstrated to yield a reduction in operation costs

over only using a control chart or preventive maintenance policy,19 determining the optimal

maintenance policy by constructing an optimization problem which includes maximizing

the expected revenue minus the maintenance costs subject to a (steady-state) process model

and maintenance model,137 and developing an integrated model to coordinate maintenance

planning and production scheduling.20

Preventive maintenance is of interest in the context of the Smart Manufacturing given

the direct connection between the objectives of the two. Furthermore, maintenance costs
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can be significant. In the context of the literature on maintenance policies, an often cited

statistic on maintenance costs is that it may comprise of up to 20-30% of the operating

budget of a chemical plant,120 and therefore, improving maintenance practices can impact

maintenance costs and production losses.132 Developing so-called “Smart” maintenance

policies/systems through unifying manufacturing components especially those that reduce

process upset, loss, and downtime like preventive maintenance programs is an important

task given the possibility of significant cost-savings.

A high percentage of the small-scale, day-to-day preventive maintenance tasks for the

chemical process industry is for process control systems (e.g., actuators, sensors, etc.).132

In the context of process operation, sensor and actuator maintenance programs and policies

can greatly impact the process reliability, manufacturing safety and process economic per-

formance. Among modern maintenance programs for process manufacturing, preventive

maintenance of sensors and actuators in real-time can significantly mitigate the damage

from production losses, process upsets and downtime based on specific routine regula-

tions.55 To accomplish these preventive maintenance tasks, the ability of a control system

to maintain stable operation of the process while dictating an economically optimal oper-

ating policy with respect to the available control actuators and process sensors is desirable

and can be considered within the scope of the Smart Manufacturing paradigm.

In terms of control actuators, potential defects, excess wear and refurbishment becomes

a priority to routinely conduct preventive maintenance on the control actuators of the pro-

cess in an attempt to avoid/prevent a process upset caused by a failed or unreliable actua-

tor.132 Preventive maintenance on control actuators in the context of control system design

can achieve these objectives by taking adequate control measures to minimize the negative

impact of pre-arranged control actuator maintenance on process operation.16 It accounts

for a future potential fault on the actuator before it happens and sets up the reconfiguration

of the control system to avoid the production loss due to the potential fault and ensure a
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smooth transition to the post-fault control system. Ideally, process operators would like

to maintain process operation during any maintenance task to prevent production losses as

long as operators are able to sustain safe process operation with fewer control actuators.

It is also highly desirable to operate the process in an economically optimal fashion by

accounting for the process economics and the fact that fewer actuators are available.120

Therefore, the preventive maintenance on actuators requires that the control system be able

to adjust to a change in the number of manipulated inputs that it controls. Also, from the

viewpoint of closed-loop stability, once the actuator number changes in the actuator pre-

ventive maintenance program, the available control energy changes which may lead to a

change in the region of stable operation. Consequently, the change in the number of ac-

tuators requires a change in the region of operation as actuators are taken off-line/brought

back on-line, which poses unique theoretical and implementation challenges.

On the other hand, sensor preventive maintenance programs are also very important

in the chemical processing industry,56 e.g., sensors working under severe conditions need

to be frequently replaced since they may not withstand their working environment and

consequently result in inaccurate readings.30 From a maintenance logistics point of view,

sensors present a challenge because they are widely dispersed throughout a manufacturing

plant. During a maintenance procedure when no redundant sensors are available, sensor

replacement will directly result in sensor data losses which may cause significant process

performance degradation under continuous operation. For example, when conducting the

maintenance of some important sensors, vital machinery may be affected and bring pro-

cess operation to a halt which makes large production losses unavoidable. Consequently,

control system designs accounting for sensor data losses have received a lot of attention

lately.81, 101, 105, 121 More specifically, in,101 a sensor reconfiguration-based method was

proposed through characterizing stability regions for different control configurations utiliz-

ing different numbers of sensors to ensure stability after a sensor is taken off-line. In,105
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a Lyapunov-based model predictive control (LMPC) system was designed to explicitly

account for sensor data losses and implement the last computed optimal input trajectory

(when sensor measurements are available for the last time) when sensor data is not avail-

able. However, in the context of smart manufacturing, integrating preventive sensor main-

tenance and process economic optimization becomes an important problem to avoid un-

necessary plant shutdown.28, 32

Up to this point, however, little work has been done on preventive maintenance prac-

tice in the context of chemical process control, despite recent calls for moving into this

direction.16 To complete the preventive maintenance tasks on sensors and actuators in

real-time, it is necessary to design a control system that can simultaneously compute eco-

nomically optimal control actions for a process and maintain process closed-loop stability

even as the number of sensors or actuator is varied. Considering all of the above require-

ments and objectives, EMPC is one natural approach to accomplish these tasks. EMPC

was first presented as a control methodology to overcome some of the challenges faced

with integrating real-time optimization (RTO) and regulatory control, but a consequence

of the unique formulation of EMPC (i.e., control methodology that accounts directly for

the process economics) is that it can be integrated into other systems as part of the Smart

Manufacturing paradigm (e.g., preventive maintenance programs). However, EMPC can-

not be applied directly because the optimization problem dimensionality, cost function, and

constraints change as a result of the changing number of control inputs (i.e., actuators) and

state inputs (i.e., state measurements).

1.3 Control of Transport-Reaction Processes

Transport-reaction processes are characterized by significant spatial variations and nonlin-

earities due to the underlying diffusion and convection phenomena and complex reaction
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mechanisms, respectively. Currently, the approach followed for the solution of the control

problem of transport-reaction processes is essentially determined by the well-known clas-

sification of partial differential equations (PDEs) into hyperbolic, parabolic, or elliptic.128

Specifically, processes whose convective mechanisms dominate over diffusive ones can be

adequately described by systems of quasi-linear hyperbolic PDEs. However, the diffu-

sive phenomena also play a prominent role in the dynamic models of several industrially-

important transport-reaction processes, e.g., tubular, fluidized bed and packed-bed reac-

tors and should be accounted for. These processes are typically modeled by quasi-linear

parabolic PDEs whose spatial differential operators can be characterized by a spectrum that

can be partitioned into a finite (possibly unstable) slow part and an infinite dimensional sta-

ble fast complement.31

The development of computationally efficient control methods for PDEs has been a

major research topic in the past 30 years (e.g., Ref25). The design of feedback control sys-

tems for PDEs is usually achieved on the basis of finite-dimensional systems (i.e., sets of

ordinary differential equations (ODEs) in time) obtained by applying a variety of spatial

discretization and/or order reduction methods to the PDEs. The traditional approach to the

control of quasi-linear parabolic PDEs involves the application of eigenfunction expansion

techniques to the PDEs to derive systems of finite-dimensional ordinary differential equa-

tions (ODEs) that accurately describe the dynamics of the dominant (slow) modes of the

PDEs. In detail, the solution of the original PDEs is initially expanded as the sum of an

infinite series of the eigenfunctions of the spatial differential operator with time-varying

coefficients. This expansion is used to derive an infinite set of ODEs for the coefficients of

the expansion. Then, a finite-dimensional ODE model is derived by discarding an infinite

set of equations. The finite-dimensional ODE model is subsequently used as the basis for

the synthesis of finite-dimensional controllers (e.g., Refs9, 23, 119). A potential drawback of

this approach is that the number of modes that should be retained to derive an ODE system

7



which yields the desired degree of approximation may be very large. To overcome these

controller synthesis and implementation problems, research efforts focused on taking ad-

vantage of the concept of inertial manifolds (IM) (e.g., Ref133) and approximate inertial

manifolds (AIMs) (e.g., Refs27, 53, 54) for the construction of low-order ODE systems of

desired accuracy. Based on this, significant work over the last twenty years has focused on

the synthesis of low-order controllers for quasi-linear parabolic PDEs on the basis of low-

order nonlinear ODE models derived through a combination of Galerkin’s method (using

analytical or empirical basis functions) with the concept of approximate inertial manifolds

(e.g., Refs8, 27, 44 and the book25 for results and references in this area).

In terms of the basis functions used in Galerkin’s method for model reduction of parabolic

PDEs, analytical eigenfunctions is the most common type which can be obtained by solv-

ing the eigenvalue/eigenfunctions problem of the parabolic operator in the original PDEs.

However, the solution of the eigenvalue/eigenfunctions problem of the parabolic operator is

not guaranteed due to various boundary conditions of the PDEs. Considering this possible

limitation for using analytical basis functions and to improve the ROM accuracy, empiri-

cal eigenfunctions as the basis functions for the Galerkin’s method is another option. The

empirical eigenfunctions may be constructed by applying Karhunen-Loève (K-L) expan-

sion (e.g., Refs69, 127). By collecting an ensemble of the system solution data from process

historical data or simulation data, the K-L expansion method considers the presence of

the dominant spatial patterns in the solution of the parabolic PDEs and results in a more

comprehensive and accurate ROM than a ROM based on analytical basis functions. This

data-based construction of the basis functions for order reduction to systems of PDEs has

been widely adopted in the recent years in the context of model-based control problems

for parabolic PDEs (e.g., Refs6, 8, 11, 113, 134, 136). However, to achieve high accuracy of the

ROM derived from the empirical eigenfunctions of the original system of PDEs, the POD

method usually needs a large ensemble of solution data (snapshots) to contain as much local
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and global process dynamics as possible. Constructing such a large ensemble of snapshots

becomes a significant challenge from a practical point of view; because currently, there is

no general way to realize a representative ensemble. Based on this consideration, an adap-

tive proper orthogonal decomposition (APOD) methodology was proposed to recursively

update the ensemble of snapshots and compute on-line the new empirical eigenfunctions

in the on-line closed-loop operation of PDEs (e.g., Refs115, 116, 126, 136). While the APOD

methodology of136 and115 demonstrated its ability to capture the dominant process dy-

namics by a relatively small number of snapshots which reduces the overall computational

burden, these works did not address the issue of computational efficiency with respect to

optimal control action calculation and input and state constraint handling. Moreover, the

ROM accuracy is limited by the number of the empirical eigenfunctions adopted for the

ROM; in practice, when a process faces state constraints, the accuracy of the ROM based

on a limited number of eigenfunctions may not be able to allow the controller to avoid a

state constraint violation.

However, for hyperbolic PDEs (e.g., convection-reaction processes where the convec-

tive phenomena dominate over diffusive ones), it is common that the eigenvalues of the

spatial differential operator cluster along vertical or nearly vertical asymptotes in the com-

plex plane, and thus, many modes are required to construct finite-dimensional models of

desired accuracy.25 Considering this, Galerkin’s method would be computationally expen-

sive for this case compared to finite-difference method utilizing a sufficient large number

of discretization points.51 The orthogonal collocation method is another weighted residual

method which has also been used for the control of hyperbolic PDEs.73 The orthogonal

collocation method is based on the collocation points chosen as roots of a series of spe-

cific orthogonal polynomial functions. Although the collocation method is easy to apply,

its accuracy can be promised only if the collocation points are judiciously chosen which

has been a general difficulty for its wide application.52 With respect to controller design
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for systems of hyperbolic PDE , many researchers have proposed various control methods

(e.g., Refs3, 21, 64, 103, 104), and several works (e.g., Refs39, 40, 57, 73, 123) have been done on

the application of (tracking) MPC to chemical processes modeled by hyperbolic PDEs.

Specifically, MPC is a popular control method for handling constraints (both on manip-

ulated inputs and state variables) within an optimal control setting. In the past ten years,

significant work has been done on the application of MPC to distributed parameter sys-

tems. Contributions include analyzing the predictive control problem on the basis of the

infinite-dimensional system using control Lyapunov functionals,76 the use of finite differ-

ence method to derive approximate ODE models for MPC design,42 the methodology of

model predictive control design for highly dissipative PDEs,36 and the application of MPC

to a catalytic reverse flow reactor (RFR).41 Furthermore, computationally efficient predic-

tive control algorithms for nonlinear parabolic and hyperbolic PDEs with state and control

constraints have been proposed in.37–39

EMPC has been extensively studied recently in the context of finite dimensional sys-

tems (e.g., Refs24, 34, 65, 67, 68 for results and references in this area). Most of the research

in the area of EMPC, however, has focused on lumped-parameter processes modeled by

ODE systems. Compared with lumped-parameter systems, no work has been done on the

problem of designing EMPC for distributed parameter systems modeled by PDEs for both

hyperbolic and parabolic PDEs. Moreover, operation of transport-reaction processes typi-

cally requires that the state of the closed-loop system be maintained within certain bounds

to achieve acceptable performance like requiring the temperature of a tubular reactor not

to exceed a certain limit, and is also limited by the finite capacity of control actuators and

constraints on reactant availability. Therefore, EMPC of distributed parameter systems

modeled by PDEs is an important theoretical problem with practical importance.
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1.4 Dissertation Objectives and Structure

Motivated by the above considerations, this dissertation focuses on the development of

methods for integrating on-line preventive maintenance of actuators and sensors with EMPC

system design and the application of EMPC to transport-reaction processes modeled as ei-

ther parabolic PDEs or hyperbolic PDEs. Lyapunov-based economic model predictive con-

trol (LEMPC) methods that can maintain stability while also, dictating an economically

optimal dynamic operating policy and dealing with preventive maintenance of actuators

and sensors are proposed. A proactive fault-tolerant model predictive controller (MPC)

designed via Lyapunov-based techniques for nonlinear systems capable of taking proac-

tive measures to minimize the effect of a future control actuator fault is also formulated.

EMPC formulations with various reduced-order models for transport-reaction processes

modeled by parabolic PDEs are also proposed and are evaluated with respect to computa-

tional efficiency, model accuracy and process economic performance. The dissertation has

the following structure:

Chapter 2 focuses on the development of a Lyapunov-based economic model predictive

control (LEMPC) method that can maintain stability while also dictating an economically

optimal dynamic operating policy with a changing number of manipulated inputs as a result

of control actuators being taken off-line for preventive maintenance or placed back on-line

after the maintenance work has been completed. To deal with the closed-loop stability

challenge, a novel integration of EMPC with preventive maintenance is proposed. The sta-

bility for a LEMPC scheme capable of handling these objectives is formulated and proved.

The proposed LEMPC is applied to a process network used for the alkylation of benzene to

demonstrate that the LEMPC is able to maintain stability of the process, perform success-

ful reconfiguration of the control system accounting for a variable number of manipulated

inputs, and operate the process in an economically-optimal fashion.
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Chapter 3 presents a control system scheme of handling scheduled preventive sensor

maintenance via the EMPC system design. A RMHE scheme is developed that accom-

modates a varying number of sensors to continuously supply accurate state estimates to

an EMPC system. In detail, the overall scheme integrates the real-time preventive sensor

maintenance, process economics optimization and control system reconfiguration. The

LEMPC combined with RMHE is proved to be stabilizing under certain observability

and stabilizability assumptions. Then, a chemical process example utilizing the proposed

RMHE-based LEMPC is presented for which the controller maintains the process stability,

accomplishes control system reconfiguration under a changing number of on-line sensors,

and achieves minimal economic performance degradation by adjusting the optimization

problem as the number of on-line sensors changes.

Chapter 4 proposes a proactive fault-tolerant MPC designed via Lyapunov-based tech-

niques for nonlinear systems capable of taking proactive measures to minimize the effect

of a future known control actuator fault. This approach to proactive fault-tolerant con-

trol combines the unique stability and robustness properties of LMPC as well as explicitly

accounting for future known control actuator faults in the formulation of the MPC. These

theoretical results are applied to a chemical process example, and different case studies with

various types of actuator faults were simulated to demonstrate that the proposed proactive

fault-tolerant model predictive control method can achieve practical stability after a control

actuator fault.

Chapter 5 focuses on the development of EMPC systems for transport-reaction pro-

cesses that are described by nonlinear parabolic PDEs. Through the application of Galerkin’s

method, finite-dimensional ordinary differential equation models are first derived that cap-

ture the dominant dynamics of the parabolic PDEs. The reduced-order models are then

used to formulate finite-dimensional EMPC systems of varying dimension depending on

the type of state constraints imposed. The EMPC systems are applied to a non-isothermal

12



tubular reactor, described by two nonlinear parabolic PDEs, where a second-order chemical

reaction takes place. A state constraint that bounds the reactor temperature as well as an

input constraint that bounds the available reactant material over a fixed period of operation

are considered in the formulations of the EMPC systems which use the average reaction rate

along the length of the reactor as the economic cost function. Closed-loop simulations are

conducted where a low-order EMPC system and a high-order EMPC system are separately

applied to a high-order discretization of the reactor PDEs model, and they demonstrate that

the EMPC systems operate the process in a time-varying fashion to improve the economic

cost over steady-state operation and meet input and state constraints.

Chapter 6 focuses on the formulation and comparison of several EMPC systems with

different reduced order models to a non-isothermal tubular reactor where a second-order

chemical reaction takes place. First, an output feedback EMPC formulation is presented.

Second, a reduced-order model (ROM) of the PDEs is constructed on the basis of histor-

ical data-based empirical eigenfunctions by applying Karhunen-Loève expansion to for-

mulate a computationally efficient EMPC system. Several EMPC systems each using a

different ROM (i.e., different number of modes and derived from either using analytical

sinusoidal/cosinusoidal eigenfunctions or empirical eigenfunctions) are applied to the non-

isothermal tubular reactor example. The model accuracy, computational time and closed-

loop economic performance of the closed-loop tubular reactor under the different EMPC

systems is compared and discussed.

Chapter 7 focuses on the development of an EMPC scheme with model reduction tech-

nology and a standard discretization method to deal with state estimation accuracy and

computational efficiency. First, the APOD method is applied to systems of parabolic PDEs

by considering process control system computational efficiency and some specific con-

straints imposed on the process (i.e., state and input constraints), and then a novel EMPC

design integrating APOD method with a high-order finite-difference method is proposed
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to improve the EMPC scheme’s performance on dealing with hard state constraint over

the traditional EMPC scheme with APOD method only. The proposed EMPC method is

applied to a non-isothermal tubular reactor where a second-order chemical reaction takes

place and the computational efficiency, state and input constraint satisfaction, and closed-

loop economic performance are evaluated.

Chapter 8 focuses on the development of both state and output feedback EMPC sys-

tems that account for both manipulated input and state constraints for first-order hyperbolic

PDEs. When measurements of the state variables are available only at a finite number

of spatial positions, a pole placement-based state observer technique is adopted to get esti-

mates of the full spatial state profile. The EMPC system is applied to a non-isothermal plug

flow reactor whose first-principles model consists of two quasi-linear first-order hyperbolic

PDEs. EMPC systems utilizing different numbers of output measurement points and dif-

ferent prediction horizons are applied to this plug flow reactor process. Various results of

state estimation accuracy, process economic performance, and computational efficiency are

presented and compared.

Chapter 9 focuses on the development of a CFD model of an industrial level reformer

including both furnace and process sides. Firstly, the CAD geometry of the objective indus-

trial level reformer is designed. Then, to develop the full-size CFD model of the reformer,

a single reforming tube CFD model is developed to simulate the steam methane reforming

reactions within porous media. Secondly, we construct a small-scale reformer model with

all key characteristics of the full-size reformer and then develop its CFD model considering

both the combustion in the furnace side and the reforming reactions in the process side as

designed in the single reforming tube CFD model. Finally, the successful CFD modeling

development method of the small-scale reformer model is applied to the full-size reformer.

For the CFD simulation, ANSYS ICEM-CFD is adopted as the mesh generation platform,

and ANSYS Fluent is used as the CFD simulation platform.
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Finally, Chapter 10 summarizes the contributions of this dissertation.
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Chapter 2

Smart Manufacturing: Handling

Preventive Actuator Maintenance and

Economics using Model Predictive

Control

2.1 Introduction

This chapter addresses the task of accounting for scheduled actuator maintenance via the

control system design. Specifically, the focus of this chapter is to develop a Lyapunov-

based economic model predictive control (LEMPC) method that can maintain stability

while also dictating an economically optimal dynamic operating policy with a changing

number of manipulated inputs as a result of control actuators being taken off-line for pre-

ventive maintenance or placed back on-line after the maintenance work has been com-

pleted. To deal with the closed-loop stability challenge, a novel integration of EMPC with

preventive maintenance is proposed. The stability for a LEMPC scheme capable of han-
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Figure 2.1: Integrated approach to preventive control actuator maintenance, process con-
trol, and real-time economic process performance optimization.

dling these objectives is formulated and proved. The proposed LEMPC is applied to a

process network used for the alkylation of benzene to demonstrate that the LEMPC is able

to maintain stability of the process, perform successful reconfiguration of the control sys-

tem accounting for a variable number of manipulated inputs, and operate the process in an

economically-optimal fashion.

2.2 Preliminaries

2.2.1 Notation

The following notation will be used in this work. The operator |·| denotes the Euclidean

norm of a vector. A continuous function α : [0,a) is said to belong to class K if it is

strictly increasing and is equal to zero when evaluated at zero (i.e., α(0) = 0). A level set

(level surface) of a scalar function V : Rn → R is denoted as Ωr := {x ∈ Rn : V (x)≤ r}.

The symbol \ denotes the standard relative complement, that is, the relative complement

of A with respect to B is denoted as B\A = {x ∈ B : x /∈ A}. The symbol diag(v) denotes a
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diagonal matrix with diagonal elements equal to the elements of the vector v.

2.2.2 Class of Nonlinear Process Systems

In the present work, the class of nonlinear process systems considered for the design of an

economic model predictive control scheme for handling preventive maintenance of the j-th

control actuator are of the form:

ẋ(t) = f (x(t),u(t),w(t)) (2.1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and w ∈ Rl is the disturbance

vector. The amount of available control energy is bounded in a convex set. A scheduler or

decision-maker schedules a preventive maintenance task on the j-th actuator that effectively

takes the j-th actuator off-line at tr. In other words, the set of available control actions with

all actuators on-line is given by

U0 = {u ∈ Rm : |ui| ≤ umax
i , i = 1, . . . , m}

for t ∈ [t0, tr). After the j-th actuator is taken off-line at tr, the set becomes

U j =
{

u ∈ Rm : |ui| ≤ umax
i , i = 1, . . . , j−1, j+1, . . . , m, u j = 0

}
until the maintenance task is completed, and the j-th actuator is brought back on-line at t ′r.

The vector function f is assumed to be a locally Lipschitz vector function of its arguments.

The disturbance vector is considered to be bounded in a set, i.e.,:

W =
{

w ∈ Rl : |w| ≤ θ
}
.
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The state vector of the continuous-time system of Eq. 2.1 is assumed to be measured at

sampling instances: tk = t0 + k∆, k = 0, 1, . . . where ∆ is the sampling period.

With respect to the system of Eq. 2.1, a time-invariant cost function that describes the

real-time process economics is assumed to be available of the form le(x,u). The economi-

cally optimal steady-state for the system with respect to the economic cost for the system

with all available actuators on-line is denoted as i = 0 and for the system with the j-th

actuator off-line is denoted as i = j and are defined as

x∗s,i = argmax
xs∈Xs

{le(xs,us) : f (xs,us,0) = 0, us ∈Ui} , i = 0, j (2.2)

where the set Xs is the set of admissible steady-states.

2.2.3 Stabilizability Assumption

Additional assumptions must be placed on the system of Eq. 2.1 to guarantee that the

closed-loop system can be stabilizable with all available control actuators and with m− 1

control actuators (i.e., the j-th actuator is off-line). Specifically, the existence of two ex-

plicit Lyapunov-based controllers hi(x̄i) for i = 0, j that render the steady-state x∗s,i of the

nominal system of Eq. 2.1 asymptotically stable under continuous implementation is as-

sumed. The notation x̄i is the deviation of the state from the corresponding steady-state

(i.e., x̄i = x− x∗s,i). Using converse theorems,79, 97 the existence of Lyapunov functions

Vi(x̄i) for i = 0, j for the closed-loop system with all m actuators and with m− 1 actua-

tors, respectively, follows from the stabilizability assumption. The closed-loop Lyapunov

functions under the Lyapunov-based controllers satisfy the following conditions:

α1,i(|x̄i|)≤Vi(x̄i)≤ α2,i(|x̄i|) , (2.3a)
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∂Vi(x̄i)

∂x
f (x̄i + x∗s,i,hi(x̄i),w)≤−α3,i(|x̄i|) , (2.3b)∣∣∣∣∂V (x̄i)

∂x

∣∣∣∣≤ α4,i(|x̄i|) , (2.3c)

hi(x̄i) ∈Ui, i = 0, j (2.3d)

for x̄i ∈ Di where Di is an open neighborhood of the origin for i = 0, j. This assumption

is similar to assuming that the pair (A,B) is stabilizable for linear systems. The stability

regions Ωρi ⊆ Di for i = 0, j can be estimated for the closed-loop system of Eq. 2.1 under

the explicit stabilizing controllers h0(x−x∗s,0) and h j(x−x∗s, j) by taking these regions to be

a level set of the Lyapunov function where the Lyapunov function is decreasing along the

closed-loop state trajectory. Since Ωρi is taken to be a level set of Vi, it is a compact (closed

and bounded) set. For the remainder of this work, a state x is said to be contained in the set

Ωρi if the deviation state (x̄i = x− x∗s,i) is contained in Ωρi . A variety of control laws have

been developed using Lyapunov techniques for various classes of nonlinear systems (see

Refs29, 82 and the references therein).

Additionally, certain conditions must be satisfied to ensure that it is possible to force

the closed-loop state from any point in the stability region Ωρ0 to the stability region Ωρ j in

preparation for taking the j-th control actuator off-line for maintenance. These conditions

must also ensure that it is possible to force the closed-loop state back to the stability region

Ωρ0 from any point in Ωρ j after the maintenance task is completed and the j-th actuator is

ready to be placed back on-line. To establish these conditions, the closed-loop properties

of the Lyapunov-based controllers applied in a sample-and-hold fashion to the system of

Eq. 2.1 are presented below.

First, some basic properties of the closed-loop system are needed. By the Lipschitz

property of the vector field f , the continuous differentiability property of the Lyapunov

function, and the compactness of Ωρi , there exists positive constants Lx,i, Lw,i, L′x,i, and L′w,i
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for i = 0, j such that the following inequalities hold:

∣∣ f (x,u,w)− f (x′,u,0)
∣∣≤ Lx,i

∣∣x− x′
∣∣+Lw,i |w| (2.4)∣∣∣∣∂Vi

∂x
f (x,u,w)− ∂Vi

∂x
f (x′,u,0)

∣∣∣∣≤ L′x,i
∣∣x− x′

∣∣+L′w,i |w| (2.5)

for all (x− x∗s,i), (x
′− x∗s,i) ∈ Ωρi , u ∈Ui, w ∈W for i = 0, j. By continuity, the bound on

the inputs and the aforementioned Lipschitz properties, a positive constant Mi can be found

to bound the vector field:

| f (x,u,w)| ≤Mi (2.6)

that holds for all (x− x∗s,i) ∈Ωρi , u ∈Ui, w ∈W for i = 0, j.

The main stability result of applying a Lyapunov-based controller in a sample-and-hold

fashion in the presence of disturbances is provided below without proof for the sake of

brevity. The interested reader is referred to Ref105 for a complete discussion and proof of

the main result on the Lyapunov-based controller. The following proposition establishes

practical stability of the Lyapunov-based controller when applied to the system of Eq. 2.1.

Proposition 2.1 (c.f. Ref105) Consider the closed-loop system of Eq. 2.1 under the con-

troller h(x̄i) that satisfies the conditions of Eq. 2.3 when the controller h(x̄i) is imple-

mented in a sample-and-hold fashion with sampling period ∆ > 0. Let ∆ > 0, ρi > ρs,i > 0,

ρmin,i ≤ ρi and εs,i > 0 satisfy

−α3,i(α−1
2,i (ρs,i))+L′x,iMi∆+L′w,iθ ≤−εs,i/∆ (2.7)

for each i = 0, j. Then, the Lyapunov function Vi(x− x∗s,i) will decrease over the sampling

period ∆:

V (x(tk+1)− x∗s,i)≤V (x(tk)− x∗s,i)− εs,i (2.8)
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for any (x(tk)− x∗s,i) ∈ Ωρi \Ωρs,i . Furthermore, if (x(t0)− x∗s,i) ∈ Ωρi , then (x(t)− x∗s,i) is

ultimately bounded in Ωρmin,i where

ρmin,i = max
τ∈[t,t+∆)

{
Vi(x(τ)− x∗s,i) : Vi(x(t)− x∗s,i)≤ ρs,i

}
(2.9)

Under the Lyapunov-based controller, the closed-loop system will converge to a neigh-

borhood of the steady-state for a sufficiently small sampling period and bound on the dis-

turbance. Applying Eq. 2.8 recursively, one can show that the state converges to Ωρs,i in

a finite number of sampling periods. Once the state converges to Ωρs,i , it is maintained in

Ωρmin,i as a result of the definition of Ωρmin,i (Eq. 2.9). This implies that one can find a suffi-

ciently long (finite-time) horizon such that the closed-loop state will converge to Ωρmin,i by

the end of the horizon for any initial state (x(t0)− x∗s,i) ∈Ωρi . With the stability properties

of the Lyapunov-based controllers, conditions are imposed on x∗s, j which will be used in

the design of an economic model predictive controller for handling actuator maintenance

and is stated in the following assumption. Assumption 2.1 can be satisfied by imposing

appropriate constraints in the steady-state optimization problem constructed to solve for

x∗s, j.

Assumption 2.1 The steady-state x∗s, j is chosen so there exists a region Ωρ∗j with ρ∗j ≥

ρmin, j such that Ωρ∗j ⊆ Ωρ0 . Furthermore, the stability region Ωρ j contains a region Ωρ∗0

where ρ∗0 ≥ ρmin,0.

Applying the results of Proposition 2.1 and the conditions of Assumption 2.1, a suffi-

ciently long operating horizon denoted as tN∗0 can be found such that the closed-loop state

can be forced to Ωρ j starting from any initial state in Ωρ0 because the closed-loop state can

be forced into Ωρ∗0 ⊆ Ωρ j in a finite number of sampling periods. Similar arguments can

be applied to define a sufficiently long horizon tN∗j , such that any initial state in the stability

region Ωρ j can be forced into the stability region Ωρ0 by the end of the horizon. Thus, an
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operating horizon tN∗ defined as

N∗ = max
{

N∗0 ,N
∗
j
}

(2.10)

can be found which is a horizon that guarantees that the closed-loop state under the Lyapunov-

based controller h0(x− x∗s,0) implemented in a sample-and-hold fashion satisfies (x(tN∗)−

x∗s, j)∈Ωρ j for any state starting (x(t0)−x∗s,0)∈Ωρ0 , and for all initial states (x(t0)−x∗s, j)∈

Ωρ j , the closed-loop state under the Lyapunov-based controller h j(x−x∗s, j) implemented in

a sample-and-hold fashion satisfies (x(tN∗)− x∗s, j) ∈Ωρ0 .

Remark 2.1 The main idea of accounting for control actuator maintenance in the control

system is to maintain operation of the process while an actuator is taken off-line to be re-

paired or replaced. To accomplish this, the control system must be able to first force the

process into a region where the m−1 remaining actuators can maintain stability of the sys-

tem and is robust to the influence of disturbances and uncertainty. The next priority would

be to operate the process in an economically optimal way with the m−1 available actua-

tors. Assumption 2.1, while it may restrict the feasible set of the admissible steady-states

for computing the economically optimal steady-state with m−1 actuators, reflects this hi-

erarchical level of objectives of the control system. Instead of imposing Assumption 2.1,

one could assume the existence of an input trajectory that can force the closed-loop state

from the stability region Ωρ0 to the stability region Ωρ j and then, force the state back to

Ωρ0 after the maintenance is completed. However, this assumption is difficult, in general,

to verify.
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2.2.4 Lyapunov-based Economic Model Predictive Control

Utilizing the properties presented above, a Lyapunov-based EMPC (LEMPC) inspired by

the results in Ref65 will be used to design an EMPC scheme that explicitly accounts for

control actuator maintenance. A brief review of the formulation of LEMPC is provided

below. LEMPC is characterized by the following optimization problem:

max
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ))dτ (2.11a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.11b)

x̃(tk) = x(tk) (2.11c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (2.11d)

V (x̃(t))≤ ρ̃, ∀ t ∈ [tk, tk+N)

if V (x(tk))< ρ̃ (2.11e)

∂V
∂x

f (x(tk),u(tk),0)≤
∂V
∂x

f (x(tk),h(x(tk)),0),

if V (x(tk))≥ ρ̃ (2.11f)

where the decision variable of the optimization problem is the piecewise constant input tra-

jectory over the finite-time prediction horizon tk to tk+N . Within this context, the economic

cost function, which describes the process economics, is optimized over the finite predic-

tion horizon, S(∆) denotes the family of piecewise constant functions and x̃ denotes the

predicted state trajectory of the system with the input trajectory computed by the LEMPC.

To predict the state trajectory under the computed input trajectory, the nominal dynamic

model of the process system is used (Eq. 2.11b) with an initial condition provided by a

measurement of the current state (Eq. 2.11c). The constraint of Eq. 2.11d is the bound on

the available control actuation. The remaining two Lyapunov-based constraints are used to
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ensure that the closed-loop state is always maintained in the stability region Ωρ and defines

a two mode control strategy. Mode 1 operation of the LEMPC is active (i.e., the constraint

of Eq. 2.11e is imposed on the optimization problem) when the current state is within Ωρ̃

where Ωρ̃ is a subset of the stability region Ωρ . The size of Ωρ̃ is a function of the stability

properties of the system. Under mode 1 operation of the LEMPC, the LEMPC allows for

dynamic operation to optimize the economic cost function while maintaining the predicted

evolution in Ωρ̃ . If the current state x(tk) ∈Ωρ \Ωρ̃ , mode 2 is active (i.e., the constraint of

Eq. 2.11f is imposed). Under mode 2 operation of the LEMPC, the LEMPC optimizes the

input trajectory with respect to the economic cost while enforcing that the computed control

action decreases the Lyapunov function by at least the rate given by the Lyapunov-based

controller for the first sampling period of the prediction horizon. With the two Lyapunov-

based constraints, stability under LEMPC is defined as maintaining the closed-loop state in

the stability region Ωρ (i.e., the set Ωρ is an invariant set for the closed-loop system under

LEMPC) and is guaranteed for any initial state x(t0) ∈ Ωρ (see Ref65 for details on this

point).

Remark 2.2 Without loss of generality, the origin of the unforced system (i.e., f (0,0,0) =

0) is assumed to be the equilibrium of the model of Eq. 2.11b and thus, the Lyapunov-based

constraints are formulated with a Lyapunov function with respect to the origin. The origin

is typically also taken to be the economically optimal steady-state. Specifically, in conven-

tional MPC schemes and in EMPC formulated with a terminal constraint, the target state

or set-point that is used in these MPC schemes is usually the economically optimal steady-

state. In LEMPC, the Lyapunov-based constraints of Eqs. 11e and 11f do not necessarily

need to be formulated with the economically optimal steady-state since the LEMPC may en-

force a dynamic operating policy that is better than operating at the economically optimal

steady-state. Therefore, the Lyapunov-based constraints could be formulated with a Lya-
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punov function for some other steady-state. This steady-state can be chosen, for instance,

as a steady-state that yields a large estimate of the stability region. This steady-state can be

chosen, for instance, as the steady-state that yields a large estimate of the stability region

or a steady-state whose corresponding stability region is a region in state-space where pro-

cess constraints (e.g., input and state constraints) are satisfied. Throughout the theoretical

developments of an LEMPC scheme for handling control actuator maintenance, the eco-

nomically optimal steady-states (i.e., x∗s,0 when all m actuators are available and x∗s, j when

m− 1 actuators are available) will be used for the sake of consistency between LEMPC

and EMPC formulated with a terminal constraint where the terminal constraint is typically

taken to be the economically optimal steady-state.5

2.3 Proposed Lyapunov-based Economic Model Predictive

Control Scheme for Handling Actuator Maintenance

In this section, the design of the LEMPC for explicitly handling control actuator main-

tenance is presented. First, the implementation strategy and formulation of the proposed

LEMPC is provided. Subsequently, the main theoretical contribution of this work is given.

2.3.1 Implementation and Formulation

The implementation strategy is similar to the implementation strategy of LEMPC65 that

does not handle actuator maintenance. The main difference in the implementation strategy

occurs during the period of time where the LEMPC proactively transitions from the control

configuration with all available m actuators to the control configuration with m− 1 actua-

tors before the j-th actuator is taken off-line and vice versa when the actuator is brought

back on-line after the maintenance task is completed. Much like Ref,65 subsets of the sta-
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bility region whereby dynamic operation is allowed are defined to make the sets Ωρ0 and

Ωρ j invariant in the presence of disturbances and uncertainties. The two sets are denoted

Ωρ̃0 ⊂ Ωρ0 and Ωρ̃ j ⊂ Ωρ j and are explicitly characterized in the “Closed-loop Stability

Analysis” subsection below. The main advantage of using EMPC (LEMPC) over other sta-

bilizing controllers is to take advantage of the unique ability of EMPC to optimize dynamic

operation (inherently transient) with respect to the process economics during the transition

to the new control configuration.

The actuator is to be taken off-line at tr which has been scheduled by a maintenance

scheduler. The actuator will be put back on-line at t ′r after the maintenance task has been

completed and the actuator is ready to be put back on-line. Prior to tr and t ′r, it is desirable

from a stability point-of-view to transition to the next control configuration (i.e., m available

actuators to m− 1 actuators and vice versa). To do this, the stability region of the next

control configuration is used in the formulation of the LEMPC. More specifically, the state

must converge to the set Ωρ j by tr and be maintained in Ωρ j for t ∈ [tr, t ′r). Similarly, the

state must converge to the set Ωρ0 by t ′r.

To accomplish the above control objectives, the proposed LEMPC scheme for handling

control actuator maintenance (i.e., taking the j-th control actuator off-line at tr) is as follows
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max
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ))dτ (2.12a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0), x̃(tk) = x(tk) (2.12b)

u(t) ∈U0,∀ t ∈ [tk, tr) (2.12c)

u(t) ∈U j, ∀ t ∈ [tr, tk+N) (2.12d)

V0(x̃(t)− x∗s,0)≤ ρ̃0, ∀ t ∈ [tk, tk+N)

if V0(x(tk)− x∗s,0)< ρ̃0 and tr /∈ [tk, tk+N) (2.12e)

∂V0

∂x
f (x(tk),u(tk),0)≤

∂V0

∂x
f (x(tk),h0(x(tk)− x∗s,0),0),

if
(
V0(x(tk)− x∗s,0)≥ ρ̃0 and tr /∈ [tk, tk+N)

)
or
(
V j(x(tk)− x∗s, j)≥ ρ j and tr ∈ [tk, tk+N)

)
(2.12f)

where the notation is similar to that of the LEMPC of Eq. 2.11. When tr /∈ [tk, tk+N), the

Lyapunov-based constraints that define mode 1 and mode 2 operation of the LEMPC are

identical to the constraints used in the LEMPC of Eq. 2.11. If the time the actuator is taken

off-line is within the prediction horizon (i.e., tr ∈ [tk, tk+N)) and the current state is outside

Ωρ j , the mode 2 constraint is active to force the closed-loop state closer to Ωρ∗0 ⊆ Ωρ j .

Once the state converges to the region Ωρ j , the Lyapunov-based constraints of the LEMPC
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switches to

max
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ))dτ (2.13a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0), x̃(tk) = x(tk) (2.13b)

u(t) ∈U0,∀ t ∈ [tk, tr) (2.13c)

u(t) ∈U j, ∀ t ∈ [tr, tk+N) (2.13d)

Vj(x̃(t)− x∗s, j)≤ ρ̃ j, ∀ t ∈ [tk, tk+N)

if V j(x(tk)− x∗s, j)< ρ̃ j (2.13e)

∂Vj

∂x
f (x(tk),u(tk),0)≤

∂Vj

∂x
f (x(tk),h j(x(tk)− x∗s, j),0),

if Vj(x(tk)− x∗s, j)≥ ρ̃ j (2.13f)

based on the Lyapunov function and the Lyapunov-based controller with m− 1 control

actuators. However, the LEMPC can utilize all m actuators until tr when the j-th actuator

is taken off-line. In this fashion, the actuator maintenance is proactively accounted for via

the control system. Owing to the fact that the control configuration is switching from m

available actuators to m−1 available actuators, the LEMPC of Eq. 2.13 will be feasible if

the closed-loop state converges to the region Ωρ j before tr because a solution with u j(t) = 0

for t ∈ [tk, tr) is a feasible solution to the optimization problem (this point will be discussed

further in the “Closed-loop Stability Analysis” subsection below).

Once the actuator is ready to be brought back on-line, the state must converge to the

set Ωρ0 by t ′r. The LEMPC for this case is similar to Eq. 2.12 until the closed-loop state

converges to Ωρ0 when the LEMPC switches to a formulation similar to Eq. 2.13. The

formulations for each of these phases of operation are the same as Eqs. 2.12-2.13 except

for the following notation modifications: 0→ j, j→ 0, and tr→ t ′r. Another difference in

the implementation strategy when switching from m−1 available actuators to m available
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actuators is that after the closed-loop state has converged to Ωρ0 no guarantee can be made

that m−1 actuators can maintain the closed-loop state in Ωρ0 . However, this presents little

practical complications as the time t ′r most likely can be treated as a soft constraint. In other

words, t ′r can be treated as the time the closed-loop state converges to Ωρ0 because the tran-

sition from m−1 actuators to m actuators will likely only be activated after the maintenance

task has been successfully completed. If the time t ′r is a hard constraint, one could force

the LEMPC to operate in mode 2 (based on the Lyapunov function and Lyapunov-based

controller for m−1 actuators) to enforce the system to converge to Ωρ∗j ⊆Ωρ0 and maintain

it there until t ′r when the actuator is ready to be brought back on-line.

The proposed LEMPC scheme for handling scheduled control actuator maintenance

(consisting of switching constraints) is implemented in a receding horizon fashion. The

optimal solution, obtained at each sampling period, to the optimization problem (either

Eq. 2.12 or Eq. 2.13 depending on the phase of operation) is denoted as u∗(t) which is de-

fined for t ∈ [tk, tk+N). The LEMPC sends the control action computed for the first sampling

period to the actuators to be implemented in a sample-and-hold fashion which is denoted

as u∗(tk).

A summary of the implementation strategy for the transition from m to m−1 actuators

is provided below:

1. At the current sampling instance tk, the LEMPC receives a state measurement x(tk).

2. If tk+N < tr, go to Step 2.1. If tr ∈ [tk, tk+N) and (x(tk)− x∗s, j) /∈ Ωρ j , go to Step 2.2.

Else, go to Step 2.3.

2.1 If (x(tk)− x∗s,0) ∈ Ωρ̃0 , the LEMPC (Eq. 2.12) operates in mode 1. Else, the

LEMPC (Eq. 2.12) operates in mode 2. Go to Step 3.

2.2 The LEMPC (Eq. 2.12) operates in mode 2 to enforce convergence to Ωρ j . Go

to Step 3.
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2.3 If (x(tk)− x∗s, j) ∈ Ωρ̃ j , the LEMPC (Eq. 2.13) operates in mode 1. Else, the

LEMPC (Eq. 2.13) operates in mode 2. Go to Step 3.

3. The LEMPC computes its optimal input trajectory over the horizon t ∈ [tk, tk+N).

4. The LEMPC sends the optimal control action, u∗(tk) over the first sampling period

(t ∈ [tk, tk+1)) to the control actuators to be implemented in a sample-and-hold fash-

ion.

5. Go to Step 1 (k← k+1).

The implementation strategy for the transition from m−1 to m actuators is the same with

the following notation changes: 0→ j, j→ 0, and tr → t ′r and the control configuration

switches from m−1 to m available actuators once the closed-loop state converges to Ωρ0 .

Remark 2.3 An issue that is not within the scope of the present work is developing an

EMPC scheme that accounts for an explicitly time-varying economic cost. With traditional

real-time optimization (RTO) and MPC frameworks, the economically optimal steady-state

is re-computed as the process economics are updated in such a case . This will lead to

different regions of operation and updated stability regions in the case of LEMPC. The

interested reader is referred to Ref45 for further details on constructing a larger estimate of

the stability region and explicitly handling the time-dependent economic parameters in the

cost function. For the case when the estimate of the stability region is large as is often times

the case when the steady-state is open-loop asymptotically stable, it may be sufficient in

terms of achievable closed-loop performance to use the stability region Ωρ corresponding

to one particular steady-state in the formulation of the LEMPC when the economic cost

parameters change with time.

31



2.3.2 Closed-loop Stability Analysis

In this subsection, sufficient conditions are presented such that the closed-loop state re-

mains bounded in Ωρ0 and Ωρ j depending on the control configuration. Previously estab-

lished results of Ref105 are first presented for completeness of presentation. The interested

reader is referred to these works for the details of these results.

Two propositions that have been previously established in Ref105 are presented. The

first proposition bounds the difference between the nominal closed-loop trajectory (w(t)≡

0) and the actual closed-loop trajectory over one sampling period; while, the second propo-

sition bounds the difference between the Lyapunov function values of two states in Ωρi for

i = 1, j.

Proposition 2.2 (c.f. Ref105) Consider the systems

˙̂x(t) = f (x̂(t),u(t),0),

ẋ(t) = f (x(t),u(t),w(t))
(2.14)

for any initial states (x̂(t0)− x∗s,i) = (x(t0)− x∗s,i) ∈ Ωρi and u(t) ∈Ui for i = 0, j. There

exists two class K functions γe,i(·) such that

|x̂(t +∆)− x(t +∆)| ≤ γe,i(∆), (2.15)

for all (x̂(t +∆)− x∗s,i), (x(t +∆)− x∗s,i) ∈Ωρi and all w(t) ∈W with

γe,i(∆) =
Lw,iθ
Lx,i

(
eLx,i∆−1

)
(2.16)

for i = 0, j.

Proposition 2.3 (c.f. Ref105) Consider the Lyapunov function Vi(·) of the system of Eq. 2.1
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(with u ∈Ui). There exists quadratic functions αV,i(·) such that

Vi(x− x∗s,i)≤Vi(x̂− x∗s,i)+αV,i(|x− x̂|) (2.17)

for all (x− x∗s,i), (x̂− x∗s,i) ∈Ωρi with

αV,i(s) = α4,i(α−1
1,i (ρ))s+MV,is2 (2.18)

where MV,i is a positive constant for i = 0, j.

The following theorem provides sufficient conditions for closed-loop stability in the

sense of boundedness of the closed-loop state in a compact set.

Theorem 2.1 Consider the system of Eq. 2.1 in closed-loop under the proposed LEMPC

design (Eqs. 2.12-2.13) based on a controllers h0(x−x∗s,0) and h j(x−x∗s, j) that satisfies the

conditions of Eq. 2.3 for i = 0, j. Let the conditions of Assumption 2.1 hold and let εw,i > 0,

∆ > 0, ρi > ρ̃i ≥ ρs,i > 0 satisfy

ρ̃i ≤ ρi−αV,i(γe,i(∆)) (2.19)

and

−α3,i(α−1
2,i (ρs,i))+L′x,iMi∆+L′w,iθ ≤−εw,i/∆ (2.20)

for i = 0, j where MV,i is positive constant. If (x(t0)− x∗s,0) ∈Ωρ0 , tN ≤ tr, tr + tN < t ′r, and

N ≥ N∗ > 0, then, the closed-loop state is bounded in Ωρ0 ∪Ωρ j for t ≥ t0.

Proof 2.1 The proof consists of two main parts. First, the feasibility of the LEMPC is

demonstrated for all times. Second, the main stability result (i.e., boundedness of the

closed-loop state in Ωρ0 ∪Ωρ j) is proven which is broken up into multiple subparts. The
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proof proceeds on the basis of the transition from m to m−1 actuators (i.e., the j-th actu-

ator is taken off-line at tr). Similar arguments can be made to prove similar results for the

transition from m−1 to m actuators.

Part 1. When tr /∈ [tk, tk+N), the Lyapunov-based constraints of the LEMPC follow the

formulation for the first phase of operation (Eq. 2.12). Under this phase, feasibility for

any initial state (x(tk)− x∗s,0) ∈ Ωρ0 is guaranteed because the input trajectory obtained

from the Lyapunov-based controller (u(ti) = h0(x̃(ti)−x∗s,0) for i = k, k+1, . . . , k+N) is a

feasible solution to the optimization problem for both mode 1 or mode 2 operation of the

LEMPC as it satisfies the input and Lyapunov-based constraints. When tr ∈ [tk, tk+N) and

(x(tk)−x∗s, j) /∈Ωρ j , the LEMPC with the constraints of Eq. 2.12 operates in mode 2. Again,

the input trajectory obtained from the Lyapunov-based controller (u(ti) = h0(x̃(ti)− x∗s,0)

for i = k, k+1, . . . , k+N) is a feasible solution to the optimization problem as it satisfies

the constraints. Lastly, if the state converges to Ωρ j by tr, then feasibility of the optimization

problem (Eq. 2.13) is guaranteed because the input trajectory obtained from the Lyapunov-

based controller for the control configuration with the m− 1 actuators (u(ti) = h j(x̃(ti)−

x∗s, j) for i = k, k+1, . . . , k+N) is a feasible solution. Feasibility of the proposed LEMPC

scheme for handling scheduled actuator maintenance hinges on boundedness inside Ωρ0

before the j-th actuator is taken off-line and convergence of the closed-loop state to Ωρ j by

at least the time tr which is proven below.

The basic idea of feasibility of the proposed LEMPC scheme is displayed in Fig. 2.2.

Starting from x1, one feasible input trajectory that will force the closed-loop state trajec-

tory by tr is the input trajectory obtained by the Lyapunov-based controller. The closed-loop

state under the Lyapunov-based control input trajectory is the dashed gray line in Fig. 2.2.

However, the LEMPC forces the state to follow a trajectory (solid gray line) different be-

cause it accounts for both the process economics and the need to force the closed-loop

state to Ωρ j . A similar situation is observed in the illustration for the case when the control
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Figure 2.2: Illustration of the feasibility of the proposed LEMPC scheme for handling
scheduled actuator maintenance.

configurations changes from m−1 to m actuators (starting from x2 in Fig. 2.2).

Part 2.1. The proof proceeds by exploring the stability properties of mode 1 operation

of the LEMPC (Eq. 2.12) which occurs when tr /∈ [tk, tk+N) and (x(tk)− x∗s,0) ∈ Ωρ̃0 . If

(x(tk)− x∗s,0) ∈ Ωρ̃0 , then the predicted state at the next sampling period (x̃(tk+1)− x∗s,0) ∈

Ωρ̃0 as a consequence of the constraint of Eq. 2.12e. By Propositions 2.2-2.3, the following

bound on the Lyapunov function can be written:

V0(x(tk+1)− x∗s,0)≤V0(x̃(tk+1)− x∗s,0)+αV,0(γE,0(∆)) (2.21)

Since V (x̃(tk+1)−x∗s,0)≤ ρ̃0 and if ρ̃0 is chosen sufficiently small such that the condition of

Eq. 2.19 is satisfied for i = 0, then V0(x(tk+1)− x∗s,0)≤ ρ0 or (x(tk+1)− xs,0) ∈Ωρ0 .

Part 2.2. If (x(tk)− xs,0) ∈ Ωρ0 \Ωρ̃0 or tr ∈ [tk, tk+N) and (x(tk)− xs, j) ∈ Ωρ j , the
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LEMPC operates in mode 2 (Eq. 2.12) and computes a control action that satisfies:

∂V0

∂x
f (x(tk),u∗(tk),0)≤

∂V0

∂x
f (x(tk),h0(x(tk)− x∗s,0),0) (2.22)

The time derivative of the Lyapunov function along the state trajectory for τ ∈ [tk, tk+1) is

V̇0(x(τ)− x∗s,0) =
∂V0

∂x
f (x(τ),u∗(tk),w(τ)) (2.23)

Adding and subtracting V̇0(x(tk)−x∗s,0) to and from the derivative of the Lyapunov function

(Eq. 2.23) and accounting for Eq. 2.3b, the time derivative of the Lyapunov function can

be upper bounded over the sampling period:

V̇0(x(τ)− x∗s,0)≤−α3,0(|x(tk)− x∗s,0|)+
∂V0

∂x
f (x(τ),u∗(tk),w(τ))

− ∂V0

∂x
f (x(tk),u∗(tk),0) (2.24)

for τ ∈ [tk, tk+1). Utilizing the Lipschitz property of Eq. 2.5 and the bound on the distur-

bance, the derivative of the Lyapunov function becomes:

V̇0(x(τ)− x∗s,0)≤−α3,0(|x(tk)− x∗s,0|)+L′x,0 |x(τ)− x(tk)|+L′w,0θ (2.25)

Taking into account | f (x,u,w)| ≤M0 and continuity of x(t), |x(τ)− x(tk)| can be bounded

for τ ∈ [tk, tk+1) by

|x(τ)− x(tk)| ≤M0∆ (2.26)

Since (x(tk)−x∗s,0)∈Ωρ0 \Ωρ̃0 and if ρ̃0 ≥ ρs,0, the following bound on the deviation of the
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actual state and the steady-state can be derived from Eq. 2.3a:

|x(tk)− x∗s,0| ≥ α−1
2,0 (ρs,0) (2.27)

Combining Eqs 2.26-2.27 with Eq. 2.25, the result is

V̇0(x(τ)− x∗s,0)≤−α3,0(α−1
2,0 (ρs,0))+L′x,0M0∆+L′w,0θ (2.28)

for τ ∈ [tk, tk+1). If the condition of Eq. 2.20 holds for i = 0, then the Lyapunov function is

decreasing along the state trajectory over the sampling period:

V̇0(x(τ)− x∗s,0)≤−εw,0/∆, ∀τ ∈ [tk, tk+1) (2.29)

Integrating the above bound, it is shown that

V0(x(tk+1)− x∗s,0)≤V0(x(tk)− x∗s,0)− εw,0 (2.30)

for all (x(tk)−x∗s,0)∈Ωρ0 \Ωρ̃0 . Using the result of Eq. 2.30 recursively, the state converges

to Ωρ̃0 without leaving Ωρ0 in a finite number of sampling periods.

Part 2.3. If tr ∈ [tk, tk+N) and (x(tk)− xs, j) /∈ Ωρ j , the LEMPC operates in mode 2

for any initial state (x(tk)− x∗s,0) /∈ Ωρ j . Applying the result of Eq. 2.30 recursively, if the

prediction horizon is chosen such that N ≥ N∗, and if tN ≤ tr (i.e., tN = t0 +N∆), then the

state will converge to the set Ωρ j by at least tr. This statement holds because recursively

enforcing the constraint of Eq. 2.12f on the computed control action will lead to successive

decrease in the Lyapunov function value over each sampling period (Eq. 2.30) until the

state converges to Ωρmin,0 ⊆Ωρ j (if the conditions of Assumption 2.1 hold).

Part 2.4 Once the state converges to the Ωρ j , the Lyapunov-based constraints switch to
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the form of Eq. 2.13. Applying similar steps as Part 2.1 and Part 2.2, one can show that the

closed-loop is maintained in Ωρ j if the conditions of Eqs. 2.19-2.20 hold for i = j. Also,

the arguments can be repeated for the case when the control configuration switches from

m−1 to m actuators. Therefore, the closed-loop state is maintained in Ωρ0 ∪Ωρ j over the

length of operation.

Remark 2.4 The closed-loop stability properties presented here depend on a sufficiently

long prediction horizon to ensure that it is feasible to force the closed-loop state to the sta-

bility region of the next control configuration by the time the control configuration changes

(i.e., the number of available actuators changes). This may lead to a computationally

challenging problem to be solved on-line (i.e., possibly non-convex, nonlinear optimiza-

tion problem to be solved over a long horizon). To alleviate the computational burden,

one could impose additional constraints on the computation of the optimal steady-state

x∗s, j such that it is chosen to be close to x∗s,0 so that large overlap exists between the two

stability regions. If this is not desirable to impose such additional constraints in the compu-

tation of x∗s, j from a closed-loop performance perspective, one could employ, for instance,

a two-layer LEMPC architecture like the one presented in Ref46 to ease the computational

burden.

Remark 2.5 The closed-loop results can be extended to the case with multiple actuators

taken off-line by making similar assumptions about the control configuration resulting after

multiple actuators are taken off-line.

Remark 2.6 If it is desirable to enforce convergence to the optimal steady-state, one can

impose the Lyapunov-based constraints of either Eq. 2.12f or Eq. 2.13f depending on the

phase of operation (i.e., the number of control actuators on-line) to enforce convergence to

the optimal steady-state. Within this context, the provable stability is practical stability of

the optimal steady-state; please refer to Ref65 for complete details on this point.
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Remark 2.7 Potentially, one could extend EMPC formulated with a terminal constraint to

handle actuator maintenance. Before the actuator is taken off-line, the terminal constraint

would be the optimal steady-state xs,0. After the actuator is taken off-line, the terminal

constraint would be the optimal steady-state xs, j for the control system with only m− 1

available actuators. When the time the actuator is taken off-line is within the prediction

horizon of the EMPC, the terminal constraint of the EMPC would switch from xs,0 to xs, j.

The resulting controller would have a similar closed-loop stability property (boundedness

of the closed-loop state) assuming recursive feasibility of the EMPC could be guaranteed

and the stability region of the EMPC would be the feasible region of the controller. To

accomplish recursive feasibility in the presence of bounded disturbances (like we consider

in the present work), modifications to the EMPC may be needed (e.g., use of a terminal

region constraint instead of a terminal constraint, add a terminal cost, etc.). Assuming

these modifications can be made to guarantee recursive feasibility, one must carefully con-

sider recursive feasibility during the transition between the two control configurations.

The feasible region of EMPC formulated with a terminal constraint is difficult to explicitly

characterize especially for processes with many states and inputs such as the example con-

sidered in the present work. Also, the feasible region depends on the prediction horizon.

Therefore, it is difficult to guarantee that for any initial state starting in the feasible region

of the first controller configuration, the state can be forced to the feasible region of the sec-

ond configuration. With the proposed LEMPC, an explicit characterization of the stability

region (feasible region) can be completed and it does not depend on the prediction horizon

length.
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2.4 Application to the Alkylation of Benzene Process

The proposed LEMPC for handling actuator maintenance is applied to a chemical process

network example. Specifically, a process network of industrial importance used to produce

ethylbenzene through the alkylation of benzene is considered. Ethylbenzene is an important

chemical for the chemical process industries because it is an intermediate chemical in the

production of polystyrene and other styrene-based plastics. The process flow and first-

principles model of the alkylation of benzene process was first presented in Ref96 which

was adapted from Refs.58, 91, 112, 142

2.4.1 Description of the Alkylation of Benzene Process

A process flow diagram of the alkylation of benzene process is displayed in Fig. 2.3. In

Fig. 2.3, the notation Fi corresponds to the volumetric flow rate of the i-th stream and the

other notation will be introduced below. The process consists of five vessels: four con-

tinuously stirred tank reactors (CSTRs) and one flash tank separator (SEP-1). Benzene

and ethylene, which are denoted as component A and B, respectively, are fed to CSTR-1;

while, CSTR-2 and CSTR-3 are only fed with a fresh ethylene feedstock. Within CSTR-1,

CSTR-2 and CSTR-3, benzene reacts with ethylene to form the desired product, ethylben-

zene, which is denoted as component C. Ethylbenzene can subsequently undergo further

alkylation to form a byproduct 1,3-diethylbenzene (component D). The outlet stream of

the three reactors (F7) is fed to a flash separator to separate the desired product contained

in the liquid bottoms of the separator and recover unreacted product. The overhead vapor

stream containing mostly unreacted benzene of the separator is condensed and split. A

portion of the condensed overhead stream is recycled back to CSTR-1. The remainder is

send to CSTR-4. Within CSTR-4, a catalyzed transalkylation reaction occurs where 1,3-

diethylbenzene reacts with benzene to produce ethylbenzene. Further alkylation of ethyl-
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Figure 2.3: Process flow diagram of alkylation of benzene.

benzene to 1,3-diethylbenzene also occurs in CSTR-4. To simply the notation, the index

j = 1, 2, 3 is used to denote CSTR-1, CSTR-2, and CSTR-3, respectively, j = 4 denotes

SEP-1, and j = 5 denotes CSTR-4.

The three reactions described above are considered to be the dominant reactions of the
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benzene alkylation process network and are summarized below:

A+B→C, ∆HR1 =−1.5×105, J/mol (R1)

B+C→ D, ∆HR2 =−1.1×105, J/mol (R2)

A+D→C, ∆HR3 = 4.1×105, J/mol (R3)

where R1 and R2 are exothermic and take place in CSTR-1, CSTR-2, and CSTR-3; while,

R2 and R3 (R3 is endothermic) take place in CSTR-4. The rate expression of each reaction

is given by:

r1 = 0.084e−9502/RTC0.32
A C1.5

B (2.31)

r2 =
0.085e−20640/RTC2.5

B C0.5
C(

1+0.015e−3933/RTCD
) (2.32)

r3 =
237.8e−61280/RTC1.0218

A CD

1+0.490e−50870/RTCA
(2.33)

where Ci is the concentration of component i (i = A, B,C, D), R is the gas constant, and T

is the absolute temperature in Kelvin.

Applying the modeling assumptions detailed in Ref,96 a first-principles model can be

constructed describing the dynamic behavior of the process network which includes 25

states (e.g., temperatures and component concentrations). Owing to the complex reaction

mechanisms (Eqs. 2.31-2.33) and the recycle streams, the resulting system of coupled or-

dinary differential equations (ODEs) is a nonlinear system of the form of Eq. 2.1. Eight

manipulated inputs are considered for the process network which include the heat rate

supplied and/or removed to each of the vessels and the inlet flow volumetric rates of the

ethylene feedstock to CSTR-1, CSTR-2, and CSTR-3. The states and inputs of the process

and the notation used to denote them are summarized in Table 2.1. The available control
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Table 2.1: Process state and input variables.

CA1, CB1, CC1, CD1 Concentrations of A, B, C, D in CSTR-1
CA2, CB2, CC2 ,CD2 Concentrations of A, B, C, D in CSTR-2
CA3, CB3, CC3, CD3 Concentrations of A, B, C, D in CSTR-3
CA4, CB4, CC4, CD4 Concentrations of A, B, C, D in SEP-1
CA5, CB5, CC5, CD5 Concentrations of A, B, C, D in CSTR-4
T1, T2, T3, T4, T5 Temperatures in each vessel
F2, F4, F6 Ethylene feedstock flow rates
Q1, Q2, Q3, Q4, Q5 External heat supply/removal to each vessel

energy is Qi ∈ [−7.2,−0.8]×106 J/s for i = 1, 2, 3, Qi ∈ [1.6, 14.4]×106 J/s for i = 4, 5,

and Fi ∈ [2.0, 18.0]×10−4 m3/s for i = 2, 4, 6.

2.4.2 Control Objectives and Process Economics

For the benzene alkylation process, we assume that it is a priority to routinely conduct pre-

ventive maintenance on the control actuators of the process in an attempt to avoid/prevent

a process upset caused by a failed or unreliable actuator. Ideally, process operators would

like to maintain process operation during any maintenance task to prevent production loss

as long as operators are able to sustain safe process operation with fewer control actu-

ators. The next objective would be to operate the process network in an economically

optimal fashion by accounting for the process economics and the fact that fewer actuators

are available. These operating objectives are considered to be control objectives in addition

to traditional control objectives (i.e., maintain process stability, robustness to disturbances,

etc.).

For the process network, the process economics are assumed to be adequately described

by the summation of four terms:

le(x,u) = L1 +L2 +L3 +L4 (2.34)

43



where L1 =A1(r1,1+r1,2+r1,3)/(r2,1+r2,2+r2,3) is the weighted instantaneous selectivity

of reaction R1 over reaction R2 in CSTR-1, CSTR-2, and CSTR-3 (the notation ri, j denotes

the i-th reaction rate in the j-th vessel), L2 = A2r3,4 is the weighted production rate of C

through R3 in CSTR-4, L3 = A3F8CC4 is the weighted (instantaneous) molar flow rate of

the desired product out of the separator, and L4 is given by the following expression:

L4 = A4

3

∑
i=1

Qi−A5

5

∑
i=4

Qi (2.35)

which penalizes energy consumption and removal from the process network. The

coefficients Ak, k = 1, 2, 3, 4, 5 are positive weighing factors with the following values:

A1 = 1.00, A2 = 1.50, A3 = 0.50, A4 = 1.25×10−6, and A5 = 2.00×10−6. The reason for

the difference between the weight values A4 and A5 is associated with the difference in cost

of removing heat from a vessel and cost of supplying heat to a vessel.

Additionally, the amount of ethylene that may be fed to each CSTR over the operating

horizon t f is constrained to be equal to an average amount:

1
t f

∫ t0+t f

t0
Fi(τ)CBi0 dτ = Favg,iCBi0, i = 2, 4, 6 (2.36)

where CBi0 denotes the concentration of ethylene in the i-th stream (i = 2, 4, 6) and Favg,i

is the average flow rate amount of the i-th stream. In the example below, Favg,i is taken to

be a steady-state flow rate. The three economics-oriented constraints formed from Eq. 2.36

allow for the LEMPC to distribute ethylene in a non-uniform fashion (with respect to time)

to each reactor if it is economically desirable. However, the LEMPC must compute an

input profile that uses the same amount of ethylene as the amount used when ethylene is

distributed (fed) uniformly with time.
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2.4.3 Lyapunov-based EMPC Design

A control scheme that can achieve the control objectives outlined above is the proposed

LEMPC for handling preventive maintenance of control actuators for the benzene alkyla-

tion process network. In this subsection, the design of the LEMPC is detailed and subse-

quently, applied to the benzene alkylation process network. The benzene alkylation process

network is an input-affine nonlinear system, that is the vector field f of Eq. 2.1 has a spe-

cific form:

f (x̄(t),u(t),0) = f̄ (x̄(t))+
8

∑
j=1

ḡi(x̄(t))ui(t) (2.37)

where f̄ : R25→R25 and ḡi : R25→R25 for i = 1, . . . , 8. For simplicity of presentation, we

assume that after converting the system of Eq. 2.37 into appropriate deviation variables, the

origin is the steady-state of Eq. 2.37 and we drop the ·̄ notation for the remainder. To design

a Lyapunov-based controller for the process network, the input vector is partitioned on the

basis of the input type: u = [uh u f ]
T where uh denotes a vector with the heat rate inputs (Qi,

i= 1, 2, 3, 4, 5) and u f denotes a vector with the flow rate inputs (Fi, i= 2, 4, 6). The reason

for partitioning the input vector in this fashion is because the heat rate inputs are considered

to have the most influence on maintaining process stability and the flow rates are essentially

additional degrees of freedom that can be used to optimize the process economics and/or be

used to compensate for fewer on-line actuators. The Lyapunov-based controller designed

to asymptotically stabilize the origin of the nonlinear system is designed element-wise to

reflect the difference in responsibilities of the heat rate inputs and the flow rate inputs. For

the heat rate inputs, the following feedback control law129 is used:

hhi(x) =


−L f V+

√
(L f V )2+(LgiV )4

(LgiV )2 LgiV if LgiV ̸= 0

0 if LgiV = 0
(2.38)
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Table 2.2: Steady-state input values for the benzene alkylation process network.

Q1s, Q2s, Q3s −4.0×106 J/s
Q4s, Q5s 8.0×106 J/s
F2s, F4s, F6s 1.0×10−3 m3/s

for i = 1, . . . , 5 where L fV = ∂V
∂x f (x) and LgiV = ∂V

∂x gi(x) denote the Lie derivatives of

V with respect to the vector fields f and gi, respectively. For the flow rate inputs, the

Lyapunov-based controller elements are h f (x) = [000]T . Thus, the resulting Lyapunov-

based controller is h(x) = [hT
h (x) hT

f (x)]
T .

To characterize the stability region Ωρ̃0 , a steady-state is iteratively selected so that it

is within the acceptable operating range and its corresponding stability region is a region

in state-space where state and input constraints are satisfied. The steady-state denoted as

xs,0 that satisfies these conditions corresponds to the steady-state input values contained in

Table 2.2. Upon converting to appropriate deviation variables, xs,0 is taken to be the origin

in the deviation state-space coordinates. A quadratic Lyapunov function (i.e., V (x) = xT Px

where P is a positive definite matrix) is considered with

P = diag([1 10 1 1 100 1 10 1 1 100 1 10 1 1 100 1 10 1 1 100 1 10 1 1 100])

which has been selected such that the closed-loop alkylation benzene process network un-

der the Lyapunov-based controller h(x) gives a desirable closed-loop response with respect

to traditional control objectives (i.e., speed of response, fewer oscillations, etc.). Given that

the steady-state xs,0 is open-loop asymptotically stable, the stability region Ωρ̃0 is estimated

to be a large region in state-space with ρ̃0 = 1.0×108.

Nominal operation (w(t) ≡ 0) of the benzene alkylation process is considered below

for the case studies. Therefore, only mode 1 operation of the LEMPC is used, and the

Lyapunov-based constraint of the LEMPC is formulated on the basis of the steady-state
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Table 2.3: Optimal steady-state input values with respect to the economic cost function of
Eq. 2.34.

Q∗1s −8.0×105 J/s Q∗5s 9.4×106 J/s
Q∗2s −8.1×105 J/s F∗2s 5.5×10−4 m3/s
Q∗3s −8.0×105 J/s F∗4s 3.2×10−4 m3/s
Q∗4s 3.1×106 J/s F∗6s 2.6×10−4 m3/s

xs,0. The sampling time of the LEMPC is chosen to be ∆ = 20 s and the operating period

that the material constraint of Eq. 2.36 is enforced is t f = 1800 s = 30 min. To solve the

optimization problem of the LEMPC at each sampling period, Ipopt139 is employed.

Before we proceed with applying the LEMPC to demonstrate its capability of han-

dling actuator maintenance, we apply it to the process network to show its applicability on

closed-loop economic performance improvement over operating the process network at the

economically optimal steady-state. Specifically, the steady-state optimization problem is

solved using the steady-state model. The steady-state optimization problem is given by:

max
xs,us

le(xs,us) (2.39a)

s.t. f (xs)+
8

∑
j=1

gi(xs)us = 0 (2.39b)

us ∈U0 (2.39c)

xs ∈ Xs (2.39d)

V (xs)≤ ρ̃0 (2.39e)

where le(xs,us) is the economic cost function of Eq. 2.34 and f (xs,us,0) = 0 is the steady

state process model for the benzene alkylation process network. The optimal steady-state,

denoted as x∗s,0 corresponds to the steady-state input u∗s,0 given in Table 2.3.

In the optimization problem of Eq. 2.39, the constraint of Eq. 2.39c is the available

control energy with all available actuators on-line. The constraint of Eq. 2.39d enforces that
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the computed optimal steady-state be in the set of admissible steady-states and is defined

through five temperature constraints:

∣∣Tjs−Tjs,0
∣∣≤ 0.1Tjs,0 (2.40)

for j = 1, . . . , 5 where Tjs is the steady-state temperature of the j-th vessel (i.e., a decision

variable of Eq. 2.39) and Tjs,0 is the steady-state temperature of the j-th vessel correspond-

ing to the steady-state xs,0. Lastly, the constraint of Eq. 2.39e is a Lyapunov-based con-

straint to ensure the optimal steady-state is contained in the stability region Ωρ̃0 . Given that

Ωρ̃0 is a large region in state space that satisfies process constraints, this region will be used

in the LEMPC formulation. For a fair comparison between the closed-loop performance

under LEMPC and steady-state operation, the optimal steady-state must be a reachable

steady-state when the LEMPC is operated in LEMPC mode 1. The Lyapunov-based con-

straint of the LEMPC (Eq. 2.11e) that enforces the predicted state be inside of Ωρ̃0 , which

is formulated with the steady-state xs,0 (i.e., not necessarily the optimal steady-state), must

therefore contain the optimal steady-state x∗s,0.

We compare the closed-loop performance of the benzene alkylation process under

LEMPC (mode 1 operation of the LEMPC only) and steady-state operation over one period

of operation (operating window of 30 min). The material constraint of Eq. 2.36 is added

to formulation of the LEMPC of Eq. 2.11 and the optimal flow rates are used as Favg,i (i.e.,

Favg,i = F∗is for i = 2, 4, 6). The benzene alkylation process is initialized at the economi-

cally optimal steady-state x∗s,0. For the case of steady-state operation, the total economic

cost is computed by maintaining operation at the steady-state over the period of operation

considered. The total economic cost is defined as

J =
∫ t f

0
le(x(τ),u(τ))dτ (2.41)
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where le(·, ·) is the economic cost function of the benzene alkylation process of Eq. 2.34.

The following prediction horizons of the LEMPC were considered: N = 2,4,6,8,10.

Figs. 2.4-2.5 display the temperature, heat rate, and flow rate profiles of the closed-

loop benzene alkylation process under LEMPC with a prediction horizon of N = 2 and

N = 6, respectively. For the cases with N > 6, no significant performance improvement

was observed with respect to the total economic cost of Eq. 2.41 over the case with N = 6.

With N = 2, LEMPC operates the process network in a cyclic operating pattern (Fig. 2.4)

and exhibits three phases of operation over the operating window which is observed in the

temperature profiles of Fig. 2.4a. The first phase from approximately t = 0 to t = 80 s is

caused by the effect of initial condition; the second phase from approximately t = 80 s to

t = 1400 s is a cyclic operating pattern; the last phase results from the material constraint

since it needs to be satisfied over the operating window (refer to Fig. 2.4c). With N = 6

(Fig. 2.5), a similar, albeit chaotic-like, behavior is observed. The chaotic-type operation

is mainly associated with the computed input profiles Q4 and Q5 which could be due to

the interaction between the two inputs (i.e., different Q4 and Q5 combinations yield similar

economic cost values) and/or the cost is not particularly sensitive to these inputs. However,

it is important to point out that the operation pattern enforced by the computed input profile

of the LEMPC is not truly chaotic since repeated simulations with N = 6 yielded the same

closed-loop profiles.

For the benzene alkylation process under the LEMPC with N = 2, the total economic

cost is 12.01% over steady-state operation; while, the total economic cost is 15.92% greater

under the LEMPC with N = 6 compared to steady-state. From this analysis, non-uniform

(with respect to time) distribution of ethylene to the benzene alkylation process network

yields greater total economic cost than uniform in time distribution of ethylene to the pro-

cess network. Even though the benzene alkylation process is operated in a chaotic-like

dynamic operating pattern, N = 6 was selected as the appropriate prediction horizon of the
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Figure 2.4: Closed-loop (a) temperature, (b) heat rate, and (c) flow rate profiles under
LEMPC with N = 2.
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Figure 2.5: Closed-loop (a) temperature, (b) heat rate, and (c) flow rate profiles under
LEMPC with N = 6.
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Figure 2.6: Average economic cost and EMPC computational time under different predic-
tion horizons.

LEMPC to use in the case studies considered below.

Furthermore, we compared the impact of the prediction horizon on the economic per-

formance and the computational efficiency for N = 2,4,6,8,10 in Fig. 2.6. Since no sig-

nificant benefit on economic performance was observed for N = 8 and N = 10 while the

computational burden increases a lot, using N = 6 is desirable from the trade-off between

the computational efficiency and economic performance optimization.

Remark 2.8 If one deemed the operating pattern enforced by the LEMPC with N = 6 is

undesirable, one could potentially add penalty terms in the cost function of the LEMPC

penalizing the rate of change of the inputs (i.e., add a quadratic term of the form (u(tk+1)−
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Table 2.4: Optimal steady-state input values with respect to the economic cost function of
Eq. 2.34 with the Q4 actuator taken off-line.

Q∗1s −6.4×105 J/s Q∗5s 6.7×106 J/s
Q∗2s −12.3×105 J/s F∗2s 3.1×10−4 m3/s
Q∗3s −8.0×105 J/s F∗4s 6.8×10−4 m3/s
Q∗4s 8.0×106 J/s F∗6s 4.5×10−4 m3/s

u(tk))T Rc(u(tk+1)− u(tk)) to the cost where Rc is a positive definite matrix) so that the

LEMPC computes a smoother input profile.

2.4.4 LEMPC for Handling Actuator Maintenance

We apply the proposed LEMPC (Eqs. 2.12-2.13) to the benzene alkylation process net-

work. The ethylene material constraint (Eq. 2.36) is added as a constraint in the LEMPC of

Eq. 2.11 based on the optimal flow rates Favg,i = F∗is for i = 2, 4, 6 which are given in Ta-

ble 2.3. For the following case studies, we consider preventive maintenance in the actuator

supplying heat to the separator. We assume that the Q4 actuator loses its ability to change

and becomes fixed at its steady-state value (Q4s = 8.0× 106 J/s). To motivate the practi-

cal scenario for this, the heat supplied to the separator could be provided through a steam

jacket and the maintenance is scheduled for the flow control valve that controls the steam

pressure. To perform the maintenance task, we assume that another (uncontrolled) steam

line can provide steam to the jacket at a constant rate. As a consequence, the steady-state

when all available actuators are on-line and when the Q4 actuator is taken off-line are the

same. Furthermore, for stability and constraint satisfaction reasons mentioned above, the

steady-state and level set value used in the formulation of the mode 1 Lyapunov-based con-

straint of the LEMPC are xs,0 (i.e., the one corresponding to the steady-state input values

contained in Table 2.2) and ρ̃0 = 1.0×108, respectively.
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Case I: Prediction Horizon Effect on Process Stability

We apply different values of the prediction horizon, N, i.e., N = 2,4,6 to the proposed

LEMPC mode 1 of Eqs. 2.12-2.13 to see the effect of the prediction horizon length on

the process stability performance. The Lyapunov function values of these simulations are

demonstrated in Fig.2.7. As we mentioned in Section 2.3.2, a sufficiently long prediction

horizon is needed to ensure that it is feasible to force the closed-loop state to the stability

region of the next control configuration by the time the control configuration changes. From

Fig.2.7, we can see a LEMPC mode 1 of Eqs. 2.12-2.13 with prediction horizon, N = 2

fails to decrease its Lyapunov function value below ρ̃1, j by the time the j-th actuator is

removed at tr = 400 sec (we only plot the Lyapunov function trajectory by the time, tr

since the following trajectory is meaningless) which means it can’t drag the system into the

stability region of the new economically optimal steady state, xs1, j; for a LEMPC mode 1

of Eqs. 2.12-2.13 with prediction horizon, N = 4, it successfully drives the process into the

stability region of xs1, j by the time tr = 400 sec as shown in Fig.2.7; however, in the end

of this operation period, its Lyapunov function value violates the Lyapunov function level,

ρ̃1, j since the reactant material integral constraints on u f 1, u f 2 and u f 3 narrows the optimal

manipulated input scope of the proposed LEMPC of Eqs. 2.12-2.13 and consequently affect

the state trajectories to be deviated more far away from xs1, j which increases the Lyapunov

function value; if we increase the prediction horizon to be N = 6, the simulation results

as shown in Fig.2.7 demonstrate that LEMPC mode 1 of Eqs. 2.12-2.13 with this length

of prediction horizon can avoid both of the above infeasibility problems in the situation of

LEMPC with N = 2 and LEMPC with N = 4. Based on the above results, we can see a

sufficiently long prediction horizon is required to ensure the process stability by the time

of control system reconfiguring and also avoid infeasibility in the end of operation period

when the control energy is constrained. Therefore, using N = 6 is not only desirable from
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Figure 2.7: Prediction horizon’s impact on process stability.

the perspective of computational efficiency and process performance, but also necessary

from the point of process stability.

Case II: Actuator Taken Off-line for Preventive Maintenance

In the first case, we consider a preventive maintenance task will be completed on the ac-

tuator that manipulates the amount of heat supplied to the separator Q4. The actuator is

scheduled to be shut-down at tr = 400 s for a preventive maintenance task to be completed

on it. The closed-loop temperature and input profiles are given in Fig. 2.8. To demonstrate

the benefit of integrating actuator maintenance, process economics, and process control in

a unified system, we compare the closed-loop behavior of the benzene alkylation process
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under the proposed LEMPC (Eqs. 2.12-2.13) with two other cases under different LEMPC

formulations. In the first case, denoted as LEMPC-A, the LEMPC uses the input constraint

with all available control actuators on-line until the sampling period tr = 400 s where the

input constraint switches to the remaining available actuators. For this case, LEMPC-A

cannot proactively prepare for when the Q4 actuator will be taken off-line since LEMPC-A

does not account for the control system change until after the actuator is taken off-line.

However, it is unlikely that current control systems even have the ability to easily change

from m to m− 1 actuators. Therefore, a second case, denoted as LEMPC-B, was consid-

ered where the LEMPC continues to compute control actions for all the inputs even after

the Q4 actuator is taken off-line. This second case may be considered as the worst case

scenario. The closed-loop profiles of the process network under LEMPC-A are also shown

in Fig. 2.8 as the dashed profiles. The most noticeable difference between the two profiles

is that the temperature for CSTR-4 (T5) under the proposed LEMPC is less than that the

one under LEMPC-A when Q4 is taken off-line. Comparing the total economic cost of the

three scenarios, the total economic cost under the proposed LEMPC is 2.17% higher than

that of the process under LEMPC-A; the total economic cost under the proposed LEMPC

is 5.38% greater than that under LEMPC-B.

To demonstrate that the LEMPC can maintain stability of the process regardless of the

time the actuator is taken off-line (i.e., the choice of tr is arbitrary), we perform another

simulation where the Q4 actuator is taken off-line at tr = 1400 s. The closed-loop profiles

of this case are shown in Fig. 2.9. The LEMPC is able to maintain boundedness of the

closed-loop state as observed from the temperature profile of Fig. 2.9a.

Remark 2.9 The concepts presented in the present work could be extended to distributed

MPC although a rigorous theoretical treatment and presentation of proposed distributed

MPC algorithms for handling actuator maintenance are outside the scope of the present
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Figure 2.8: Closed-loop (a) temperature, (b) heat rate, and (c) flow rate profiles under
the proposed LEMPC for handling actuator maintenance (solid line) and under LEMPC-A
(dashed line). The Q4 actuator is taken off-line at tr = 400 s.
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Figure 2.9: Closed-loop (a) temperature, (b) heat rate, and (c) flow rate profiles under the
proposed LEMPC (Eqs. 2.12-2.13 with mode 1 only). The Q4 actuator is taken off-line at
tr = 1400 s.
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work. It is important to point out that for the present chemical process example, the sim-

ulations were carried out on a desktop PC and the computational time required for the

computation of the control action by the centralized LEMPC was within the sampling time

thereby ensuring that this controller can be implemented in real-time, so for this specific

example, a distributed MPC strategy may not be needed.

Remark 2.10 Integrating scheduling and control is an important research topic especially

in the context of Smart manufacturing albeit outside the scope of the present work. Fur-

thermore, integrating scheduling and control is more complex than rational extensions to

existing optimal control problems (e.g., model predictive control (MPC) or economic MPC)

owing to the fact that there may be discrete variables in the scheduling optimal control

problem making the resulting optimal control problem which integrates scheduling and

control a mix-integer nonlinear program (MINLP) and in general, the control horizon (i.e.,

the prediction horizon of MPC) is shorter than the scheduling horizon.

Case III: Actuator Briefly Taken Off-line for Inspection

Another important part of scheduled preventive maintenance is routine inspection of oper-

ating equipment. For this case, we consider that the Q4 actuator is briefly taken off-line for

a routine inspection. The time the actuator is taken off-line is tr = 400 s and after the in-

spection is completed, the actuator is brought back on-line at t ′r = 1200 s. The temperature

and input profiles of this closed-loop simulation are displayed in Fig. 2.10. Again, stability

throughout the simulation is maintained under the LEMPC.

Remark 2.11 Regarding potential delay in the actuator replacement, by the time the actu-

ator is taken off-line, the closed-loop state is forced to a region in state-space where stabil-

ity (i.e., boundedness of the closed-loop state) can be maintained thereafter, so regardless

of the time the actuator is brought back on-line closed-loop stability will be maintained.
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Figure 2.10: Closed-loop (a) temperature, (b) heat rate, and (c) flow rate profiles under
the proposed LEMPC (Eqs. 2.12-2.13 with mode 1 only). The Q4 actuator is briefly taken
off-line for inspection from tr = 400 s to t ′r = 1200 s.
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Case IV: Multiple Actuators Taken Off-line for Inspection

The ability to maintain stability after multiple actuators are taken off-line is more of a con-

cern with the controllability of the system. For this case, we consider that the Q4 actuator

is taken off-line for a routine inspection between tr1 = 400 s and t ′r1 = 800 s; and the Q5

actuator is taken off-line for a routine inspection just after the Q4 actuator is brought back

on-line at tr2 = t ′r1 = 800 s and be available again at t ′r2 = 1200 s after its repair. The temper-

ature and input profiles of this closed-loop simulation are displayed in Fig. 2.11. Stability

of the closed-loop system was maintained throughout.

Remark 2.12 Within the context of hybrid or switched systems minimum dwell time is

important as sufficiently fast switching between modes of operation may cause the closed-

loop system to become unstable. Within the context of the present work, the issue of stability

after taking an actuator off-line has more to do with the controllability of the system and

not the time the actuators are taken off-line. In other words, before any actuator is taken

off-line, the closed-loop state trajectory is forced to a set in state-space where stability

(i.e., boundedness of the closed-loop state) can be maintained with the remaining actuators

which is imposed through the constraints of the proposed LEMPC. If the closed-loop state

cannot be forced to this region in state-space with the available control energy or if no

such region exist (i.e., when multiple actuators are off-line), one may adopt a maintenance

policy where only one actuator can be taken off-line for maintenance at a time. One would

expect that this type of maintenance policy would not pose many practical restrictions

considering the limited availability of resources to accomplish these maintenance tasks

such as maintenance personnel.
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Figure 2.11: Closed-loop (a) temperature, (b) heat rate, and (c) flow rate profiles under
the proposed LEMPC (Eqs. 2.12-2.13 with mode 1 only). The Q4 actuator is briefly taken
off-line for inspection from tr1 = 400 s to t ′r1 = 800 s and the Q5 actuator is briefly taken
off-line for inspection from tr2 = 800 s to t ′r2 = 1200 s.
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Case V: Actuators Inspection Under Time-Varying Economic Cost

In industry, the per unit heat supply/removal cost changes frequently which may result

from electricity price fluctuation caused by changes in electric power demand. Based on

this consideration, for this case, we conduct a more realistic case where the process goes

through a 24− hour periodic operation considering the time-varying per unit heat supply

cost (i.e., time-varying economic cost function). Following the realistic electricity price

trend in a single day,130 we assume the parameter, A5 increases 3.33% per half an hour for

the first 12 hours and then decreases 3.33% per half an hour for the second 12 hours. We

still set the length of each operation period to be t f = 1800 s = 30 min. We assume the

Q4 actuator is taken off-line for a routine inspection between tr = 11.5 hr and t ′r = 12.0 hr.

The temperature and input profiles of this closed-loop simulation are displayed in Fig. 2.12.

Stability of the closed-loop system was still maintained throughout and the time-varying

economic cost functions brings a dynamic operation for the process.

2.5 Conclusions

This work focused on the development of a Lyapunov-based economic model predictive

controller (LEMPC) to integrate preventive maintenance of control actuators, process eco-

nomic performance, and process control. During a scheduled preventive maintenance task

on the j-th control actuator, the actuator is effectively taken off-line. In general, the steady-

state with all available control actuators and with actuators taken off-line to perform a

scheduled preventive maintenance task may be different (i.e., the former may not even be

a steady-state of the latter scenario). To address this point, the proposed LEMPC was de-

signed to ensure that the closed-loop state will be forced from the stability region of the

steady-state of all m actuators to the stability region with m−1 actuators on-line before the
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Figure 2.12: Closed-loop (a) temperature, (b) heat rate, and (c) flow rate profiles under
the proposed LEMPC (Eqs. 2.12-2.13 with mode 1 only under time-varying economic cost
function). The Q4 actuator is briefly taken off-line for inspection from tr1 = 11.5 hr to
t ′r1 = 12.0 hr.
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j-th control actuator was taken off-line. Closed-loop stability in the sense of boundedness

of the closed-loop state was proved. The LEMPC capable of handling preventive main-

tenance was applied to a benzene alkylation process which yielded improved closed-loop

economic performance over steady-state operation and demonstrated its ability to handle

changing number of on-line actuators.
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Chapter 3

Real-Time Preventive Sensor

Maintenance Using Robust Moving

Horizon Estimation and Economic

Model Predictive Control

3.1 Introduction

This chapter presents the EMPC system design handling scheduled preventive sensor main-

tenance. A RMHE scheme is developed that accommodates a varying number of sensors

to continuously supply accurate state estimates to an EMPC system. Fig. 3.1 illustrates the

overall scheme integrating the real-time preventive sensor maintenance, process economics

optimization and control system reconfiguration. The Lyapunov-based EMPC (LEMPC)

combined with RMHE is proved to be stabilizing under certain observability and stabi-

lizability assumptions. Then, a chemical process example utilizing the proposed RMHE-

based LEMPC is presented for which the controller maintains the process stability, accom-
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Figure 3.1: Logic sequence for real-time preventive sensor maintenance, incorporating
maintenance events, economic optimization, and process control.

plishes control system reconfiguration under a changing number of on-line sensors, and

achieves minimal economic performance degradation by adjusting the optimization prob-

lem as the number of on-line sensors changes. These results are mainly based on Ref.88

3.2 Preliminaries

3.2.1 Notation

The Euclidean norm of a vector is denoted by |·|, and the notation |·|Q denotes the weighted

Euclidean norm with weighting matrix Q. A scalar-valued function V : Rn→ R is positive

definite if it evaluates to a positive scalar for all vectors x ∈ Rn in its domain except that

V (0) = 0. The level set of a positive definite scalar-valued function is denoted Ωr :=

{x : V (x)≤ r}. A continuous, strictly increasing function α : [0,a)→ [0,∞) with α(0) = 0
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is said to be a class K function. The relative complement of A with respect to B is denoted

as B \A := {x ∈ B : x /∈ A}. diag(v) signifies a diagonal matrix with the elements of the

vector v on the diagonal. The sequence {tk≥0} denotes a synchronous partitioning of R+

where tk := k∆ for k = 0, 1, . . . and ∆ > 0 is the sampling period.

3.2.2 Class of Nonlinear Process Systems

The control methodology that accounts for preventive sensor maintenance, as presented in

this work, is developed for nonlinear systems of the following form:

ẋ(t) = f (x(t))+g(x(t))u(t)+ l(x(t))w(t)

y(t) = h(x(t))+ v(t)
(3.1)

where the vector of states is x∈Rn, the vector of manipulated inputs is u∈Rm, the vector of

disturbances is w∈Rl , the vector of measured outputs is y∈Rq, the vector of measurement

noise is v ∈ Rq, and f , g, l and h are sufficiently smooth vector or matrix functions of their

arguments. Without loss of generality, we assume that f (0) = 0 (the origin is assumed to

be the equilibrium of the unforced system) and the initial time t0 = 0. It is assumed that the

bounds on the available control energy restrict its allowable values to a convex set:

U=
{

u ∈ Rm : umin
i ≤ ui ≤ umax

i , i = 1, . . . , m
}
. (3.2)

The disturbance and measurement noise vectors are also assumed to be bounded:

W =
{

w ∈ Rl : |w| ≤ θw

}
(3.3)

V = {v ∈ Rq : |v| ≤ θv} (3.4)
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where θw and θv are positive constants that bound the disturbance and measurement noise

vectors, respectively. The output measurement vector y of the system is assumed to be

continuously available. It is assumed that the instantaneous value of the real-time process

economics of the system of Eq. 3.1 can be modeled with a time-invariant, scalar-valued

cost function Le(x,u).

The real-time preventive sensor maintenance schedule is defined as the change of the

sensor group used in the EMPC system in real-time from the i-th sensor group with qi

number of sensors functioning well to the j-th sensor group with q j number of sensors

functioning well. This change in the number of on-line sensors occurs at the time t = tm

determined by a scheduler or decision-maker, at which time one or more sensors are taken

off-line for preventive maintenance. As a result, the measurement vector changes from

yi(t) = hi(x(t))+ vi(t) ∈ Rqi to y j(t) = h j(x(t))+ v j(t) ∈ Rq j (qi and q j are less than or

equal to q). The state estimation structure will change to the j-th group of sensors (y j(t))

from the original i-th group of sensors (yi(t)).

3.2.3 Stabilizability Assumption under State Feedback Control

A state feedback controller u = k(x) that can asymptotically (and locally exponentially)

stabilize the origin of the system of Eq. 3.1 when no disturbances are applied (the nominal

closed-loop system, with w(t) ≡ 0) is assumed to exist. It is further assumed that this

controller k(x) meets all input constraints (k(x) ∈ U) for all the initial states inside a given

compact set containing the origin. These assumptions ensure the existence of class K

functions αi(·), i = 1,2,3,4 and of a continuously differentiable Lyapunov function V (x)
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for the closed-loop nominal system under the feedback control law k(x) that satisfy:29, 79, 94

α1(|x|)≤V (x)≤ α2(|x|)
∂V (x)

∂x
( f (x)+g(x)k(x))≤−α3(|x|)∣∣∣∣∂V (x)

∂x

∣∣∣∣≤ α4(|x|)

(3.5)

These inequalities hold for all x ∈ D⊆ Rn where D is an open neighborhood of the origin.

The region of attraction of the nominal closed-loop system under the controller k(x) is

estimated as a level set of a Lyapunov function V (x) for this closed-loop system (Ωρ ⊆ D)

and is termed the “stability region.”

3.2.4 Lyapunov-based Economic Model Predictive Control

This section describes the mathematical formulation of Lyapunov-based economic model

predictive control (LEMPC),65 a control strategy that will be used in this work to develop

the structure and stability properties of a controller that can account for real-time preventive

sensor maintenance. LEMPC is an optimization-based control methodology that calculates
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an input trajectory based on the following optimization problem:

max
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ))dτ (3.6a)

s.t. ˙̃x(t) = f (x̃(t))+g(x̃(t))u(t) (3.6b)

x̃(tk) = x(tk) (3.6c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.6d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if V (x(tk))≤ ρe (3.6e)

∂V
∂x

( f (x(tk))+g(x(tk))u(tk))≤
∂V
∂x

( f (x(tk))+g(x(tk))k(x(tk))),

if V (x(tk))> ρe (3.6f)

The LEMPC maximizes the economics-based objective function in Eq. 3.6a to find the

optimal value of the input u within the set S(∆), which denotes the set of all piecewise

constant input trajectories with period ∆. The input u must be maintained in the set of

allowable inputs U per Eq. 3.6d, and also must cause the predicted state trajectory x̃ (from

Eq. 3.6b) to satisfy the stability constraints of Eqs. 3.6e and 3.6f. Eqs. 3.6e and 3.6f define

two modes of operation of the LEMPC, depending on the measured value x(tk) (Eq. 3.6c)

of the actual process system state at time tk, the time at the beginning of a sampling period

∆. The first mode (mode 1) maintains the state within the level set Ωρe of the Lyapunov

function V , where Ωρe ⊂Ωρ . The set Ωρe is a region within which, if the process state at the

beginning of a sampling period is within Ωρe , the process state at the end of the sampling

period will still be within Ωρ even if bounded process noise is present. If the process

state is not in Ωρe at the beginning of a sampling period, the constraint of Eq. 3.6f, which

represents mode 2, is activated. This constraint forces the time derivative of the Lyapunov

function V along the trajectories of the nominal closed-loop system under LEMPC at the
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time tk to decrease by at least as much as the time derivative of the Lyapunov function along

the trajectories of the closed-loop system under the controller k(x) at time tk. The constraint

of Eq. 3.6f is guaranteed to drive the closed-loop system state under LEMPC from Ωρ\Ωρe

into Ωρe in finite time.

LEMPC is a receding-horizon strategy, which means that it receives a measurement of

the process state x at the current time tk, solves the optimization problem of Eq. 3.6 for

the trajectory of u throughout the (finite) N sampling periods in the prediction horizon, and

then only implements u∗(tk), the value of u for the first sampling period (sample-and-hold

implementation). At the beginning of the next sampling period, the LEMPC receives a new

state measurement and is re-solved. The two-mode LEMPC design maintains stability of

the closed-loop system in the sense that the state trajectories are always within Ωρ for any

initial condition within this stability region.65

3.2.5 Observability Assumption

For both the i-th and j-th state estimation structures, it is assumed that there exists a de-

terministic observer that takes the following general form (to facilitate the presentation,

the subscript i/ j is used to denote that an observer, which is required to satisfy specific

assumptions given below, is defined for both the i-th and the j-th groups of sensors):

żi/ j(t) = Fi/ j(εi/ j,zi/ j,yi/ j) (3.7)

where zi/ j(t) are the observer states which are estimates of the actual system states, yi/ j is

the output measurement vector and εi/ j are positive parameters. When the state feedback

controller u = k(x) uses state estimates from the observers, it becomes an output feedback

controller: żi/ j = F(εi/ j,zi/ j,yi/ j), u = k(zi/ j). The following assumptions are made:

Assumption 3.1 (c.f.49)
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(1) there exist positive constants θ ∗w, θ ∗vi/ j such that for each pair {θw,θvi/ j} with θw ≤

θ ∗w, θvi/ j ≤ θ ∗vi/ j, there exist 0 < ρ1i/ j < ρ , em0i/ j > 0, ε∗Li/ j > 0, ε∗Ui/ j > 0 such that

if x(0) ∈ Ωρ1i/ j , |zi/ j(0)− x(0)| ≤ em0i/ j and εi/ j ∈ (ε∗Li/ j,ε
∗
Ui/ j), the trajectories of

the closed-loop system are bounded in Ωρ for all t ≥ 0;

(2) and there exists e∗mi/ j > 0 such that for each emi/ j ≥ e∗mi/ j, there exists tbi/ j(εi/ j) such

that |zi/ j(t)− x(t)| ≤ emi/ j for all t ≥ tbi/ j(εi/ j).

An example of an observer for which these assumptions hold is a high-gain observer.2

To increase the speed of estimation error convergence, the observer parameter εi/ j should be

chosen as small as possible; however, when the parameter εi/ j is too small (i.e., the observer

gain is too large), it will make the observer state estimate very sensitive to measurement

noise. Thus, the observer parameter εi/ j must be picked to be small enough so that the

estimation error is reduced as quickly as possible, but not so small that the state estimates

are corrupted by the noise. In the remainder of this work, the estimate given by the observer

Fi/ j will be denoted as zi/ j.

Remark 3.1 Assumption 3.1 defines a state region (i.e., Ωρ1i/ j) from which the closed-loop

system will be bounded in the stability region Ωρ for all initial conditions in Ωρ1i/ j and a

required time length (i.e., tbi/ j) which the observer needs to converge the state estimates to

the actual process state values.

3.3 State Estimation with Varying Number of Sensors

In this section, to compute the state estimates for both the i-th and j-th state estimation

structures, the robust moving horizon estimation (RMHE) method is adopted with a deter-

ministic observer used to calculate a confidence region. One of the deterministic observer
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designs is the high-gain observer formulation for multiple-input multiple-output systems.80

For the sake of brevity, only the RMHE formulation is provided below.

3.3.1 Robust Moving Horizon Estimation

To achieve considerable convergence speed of the state observer while significantly re-

ducing its sensitivity to measurement noise, a robust moving horizon estimation (RMHE)

scheme95 is adopted with the following formulation:

min
X̃(tk)

k−1

∑
i=k−Ne

|w(ti)|2Q−1 +
k

∑
i=k−Ne

|v(ti)|2R−1 +VT (tk−Ne) (3.8a)

s.t. ˙̃x(t) = f (x̃(t))+g(x̃(t))u(t)+ l(x̃(t))w(t), (3.8b)

v(t) = y(t)−h(x̃(t)), ∀ t ∈ [tk−Ne, tk], (3.8c)

w(t) ∈W, v(t) ∈ V, x̃(t) ∈Ωρ (3.8d)

ż = F(ε,z,y) (3.8e)

z(tk−1) = x̂∗RMHE(tk−1) (3.8f)

|x̃(tk)− z(tk)| ≤ κ |y(tk)−h(z(tk))| (3.8g)

X̃(tk) := x̃(tk−Ne), . . . , x̃(tk) (3.8h)

where Ne is the estimation horizon, κ is a positive adjustable parameter, Q is the covariance

matrix for w, and R is the covariance matrix for v. The function VT (tk−Ne) is an arrival cost,

which is a function that contains information on past process states, x̃ is the prediction

of state x which follows the dynamic model in Eq. 3.8b, y(tk) is the vector of measured

outputs at time tk, and z(tk) is the estimate of the process states from the deterministic state

observer of Eq. 3.8e at time tk based on continuous measurement of the output vector y(t).

The value of the observer state at tk−1 is initialized with the optimal estimate of the state
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x̂∗RMHE(tk−1) from the RMHE at time tk−1 (Eq. 3.8f). This RMHE scheme is implemented

with a finite horizon by approximating w(t) and v(t) as piecewise constant functions with

sampling period ∆.

The RMHE is evaluated at time instants {tk≥0}. It explicitly uses distribution/boundedness

information on w, v, and x by considering that the most recent Ne measurements and past

measurements are accounted for in the arrival cost VT (tk−Ne). The RMHE scheme opti-

mizes the state estimate within a confidence region by maintaining the difference between

the predicted and observer states within the region specified by Eq. 3.8g. In this way, the

RMHE inherits the robustness properties of the deterministic observer and gives estimates

with bounded errors. The solution to the optimization problem gives the optimal estimate

of the current state which is denoted by:

x̂∗RMHE(tk) = x̃∗(tk) (3.9)

3.4 Preventive Sensor Maintenance via RMHE-based LEMPC

We assume that the process operates under the RMHE-based LEMPC system with qi sen-

sors on-line (i-th state estimation structure); at tm, one or more sensors are taken off-line

for preventive maintenance and subsequently, the RMHE-based LEMPC system with q j

sensors ( j-th state estimation structure) is used. We note that the case that the sensors are

brought back on-line could also be handled within this framework. In this section, the de-

tails are provided for the RMHE-based LEMPC design that facilitates preventive sensor

maintenance, and in addition, stability of the process of Eq. 3.1 in closed-loop with such a

controller is proved under the assumptions to be given below.
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3.4.1 RMHE-based LEMPC Design

As a result of the considered bounded process noise and uncertainties in the state esti-

mation, subsets of the stability region Ωρ will be used to bound the process states in the

design of the RMHE-based LEMPC. Specifically, the sets are defined as follows: Ωρei is

the subset of Ωρ for the state estimation based on the i-th group of sensors and Ωρe j is the

subset of Ωρ under the state estimation based on the j-th group of sensors. To deal with

the process uncertainty and measurement noise when the sensor state estimation structure

changes from the i-th group of sensors to the j-th group of sensors, we need to ensure that

the process state is driven into the new operation region Ωρe j by the time the available sen-

sor group changes at t = tm. Specifically, the RMHE-based LEMPC drives the process state

into the suitable operation region Ωρe j by the time the q j sensors are used to determine the

measurement y j(t). Once the j-th group of sensors is active, the RMHE method based on

the new observer denoted as Fj using the j-th group of sensors and the corresponding new

state measurement vector, y j(t), is used to provide the optimal state estimate x̂∗RMHE(tk) to

the RMHE-based LEMPC. To facilitate practical implementation, we assume that tbi/ j is an

integer multiple of the sampling time, ∆, and tm ≥ tbi/ j so that the process state estimation

can converge before the available number of sensors changes.

The proposed RMHE-based LEMPC scheme can incorporate these issues that arise
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from real-time preventive sensor maintenance by solving the following

max
u∈S(∆)

∫ tk+N

tk
Le(x̃(τ),u(τ))dτ (3.10a)

s.t. ˙̃x(t) = f (x̃(t))+g(x̃(t))u(t), (3.10b)

x̃(tk) =


zi(tk), if tk < tbi

x̂∗RMHEi(tk), if tbi ≤ tk < tm

(3.10c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.10d)

V (x̃(t))≤ ρei, ∀ t ∈ [tk, tk+N)

if V (x̂(tk))≤ ρei and tk < tm− ts (3.10e)

∂V
∂x

( f (x̂(tk))+g(x̂(tk))u(tk))≤
∂V
∂x

( f (x̂(tk))+g(x̂(tk))k(x̂(tk))),

if V (x̂(tk))> ρei or tk ≥ tm− ts (3.10f)

where the notation follows that in Eq. 3.6. When t < tbi, state estimates, zi(t), are pro-

vided by an observer denoted as Fi using the i-th group of sensors. When tbi ≤ t < tm, the

robust moving horizon estimation based on the observer Fi is utilized to provide the state

estimate, which is denoted x̂∗RMHEi(t), to the RMHE-based LEMPC. After tm, the RMHE-

based LEMPC problem is defined similarly to Eq. 3.10 and is based on the observer Fj (i.e.,

for t ∈ [tm, tm + tb j), the state estimate is provided by the observer Fj and for t ≥ tm + tb j,

the state estimate is provided by the RMHE based on the observer Fj).

The mode 1 and mode 2 Lyapunov-based constraints of Eq. 3.6 are modified for the

RMHE-based LEMPC strategy to account for the changing number of sensors. The mode

2 constraint of the RMHE-based LEMPC is triggered not only if the state is outside Ωρei ,

but also when the time is between tm− ts and tm. This adjustment to the constraints is

made for stability reasons which are explained further in the “Stability Analysis” subsection
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below (i.e., ts > 0 is selected such that the RMHE-based LEMPC operates in mode 2 for

sufficiently long to ensure closed-loop stability after tm).

Remark 3.2 The objective of this work is to propose a control framework that integrates

process economic optimization, process control, and preventive sensor maintenance. Be-

cause EMPC is a control scheme that integrates economic optimization within the context

of feedback control, it has been chosen for use as the controller for this work. Also, it is

important to point out that EMPC may be considered a more general form of model pre-

dictive control (MPC) than tracking MPC, which uses a positive definite cost function with

respect to a pre-specified reference trajectory or set-point. While other MPC schemes may

be considered in place of EMPC for preventive sensor maintenance, the specific EMPC

scheme considered (Lyapunov-based EMPC) may dictate a time-varying operating policy

along with allowing for closed-loop stability guarantees. Furthermore, as the available

number of sensors that are on-line changes, the state estimation problem must change to

account for the varying number of measurements, which is not an issue of whether EMPC

or MPC is used, but rather, an issue of the estimation scheme design to account for a

varying number of measurements.

Remark 3.3 While the integration of scheduling and control has become a popular re-

search topic in the process control community, it is not immediately clear what, if any,

benefit would be achieved by integrating scheduling of sensor maintenance tasks into the

proposed control framework because it is likely that the use of a scheduler or another

decision-maker would be used in determining which sensor needs to be taken off-line for

maintenance to minimize the impact of process performance degradation. The scheduler

may be based on the life-cycle data of sensors, the observability of the process which has

one or more sensors under maintenance and the priority of different sensors. Nevertheless,

closed-loop simulations like the type performed in the example section may help to develop
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a plan/schedule for sensor maintenance based on stability and economics concerns.

3.4.2 Implementation Strategy

The implementation strategy of the preventive sensor maintenance method is illustrated

by Fig. 3.2. Specifically, the control system initially uses the i-th group of sensors where

qi (qi < n) outputs are continuously measured to compose the measurement vector, yi. A

state estimation method is utilized to obtain the state estimate based on these qi sensor

measurements by either observer Fi or robust moving horizon estimation. Initially, the

RMHE is not utilized until the state estimation error converges to a small value based on

the observability assumption (i.e., up to t = tbi only the observer is utilized to provide state

estimates to the RMHE-based LEMPC for the optimal input trajectory calculation). Then,

starting from t = tbi, the RMHE-based LEMPC takes advantage of the state estimate from

the RMHE to compute the optimal input trajectories. At the same time, since the optimal

state estimate from RMHE is expected to be more accurate after t = tbi, the current state

of the observer Fi is reset to be the optimal state estimate from RMHE at every sampling

period. A similar RMHE implementation holds using Fj after the sensor group changes at

tm.

LEMPC is the proposed control framework for this preventive sensor maintenance

problem because of its ability to economically optimize the process even while switch-

ing constraints as the on-line sensor groups are varied. The RMHE-based LEMPC is a

receding horizon control strategy like the LEMPC of Eq. 3.6. The following algorithm de-

scribes the logic for the implementation of the RMHE-based LEMPC, including the change

in the state estimation structure:

1. Initialize the observer Fi with zi(0) and implement the observer Fi continuously based

on the continuous output measurement yi(t).
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LEMPCi

ProcessSensors

HGOi

Actuators

RMHEi

i-th Sensor Group

t<tmjdaj 

LEMPCj

ProcessSensors

HGOj

Actuators

RMHEj

j-th Sensor Group

t>tmjdaj 

Figure 3.2: RMHE-based LEMPC system reconfiguration diagram for real-time preventive
sensor maintenance (LEMPCi denotes the LEMPC scheme with the i-th sensor group based
on the state estimates from the RMHE denoted as RMHEi and the HGO denoted as HGOi;
the same holds for LEMPC j but with i replaced by j).
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2. At the current sampling instance tk, if tk < tbi or tk ∈ [tm, tm+ tb j), go to Step 2.1; else

if tk ∈ [tbi, tm) or tk ≥ tm + tb j, go to Step 2.2.

2.1 The RMHE-based LEMPC receives the state estimate from the deterministic

observer of Eq. 3.7; then go to Step 3.

2.2 Based on the state estimate provided by the state observer of Eq. 3.7 and the

output measurements at the current and previous sampling instants, the RMHE

of Eq. 3.8 calculates the optimal state estimate x̂∗RMHE(tk) which is sent to the

RMHE-based LEMPC; then go to Step 3.

3. If x(tk) /∈Ωρei and tk ∈ [0, tm− ts), or if x(tk) /∈Ωρe j and tk ≥ tm, or if tk ∈ [tm− ts, tm),

go to Step 3.1. Else, go to Step 3.2.

3.1 The RMHE-based LEMPC operates in mode 2. Go to Step 4.

3.2 The RMHE-based LEMPC operates in mode 1. Go to Step 4.

4. The RMHE-based LEMPC calculates N vectors of control actions, one for each sam-

pling period in the prediction horizon t ∈ [tk, tk+N), and sends the control action

u∗(tk) to the actuators for sample-and-hold implementation for one sampling period

(t ∈ [tk, tk+1)).

5. Go to Step 2 (k← k+1).

Remark 3.4 Variations of the maintenance schedule outside of the schedule considered in

the paper can be handled by the proposed RMHE-based LEMPC scheme and are a concep-

tually straightforward extension of the present work. For example, a sensor maintenance

schedule where some sensors are taken off-line at time tm, but only a few are brought back

on-line at a later time can be handled. For simplicity of presentation and notation, we have

only presented the most (conceptually) challenging case where sensors are taken off-line
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at a time for preventive sensor maintenance. Nevertheless, all of the arguments could be

repeated to handle the case where (some) sensors are being brought on-line through re-

defining the notation (e.g., tm now becomes the time at which the sensors are being brought

back on-line). From a stability and observability perspective, the stabilizability and ob-

servability assumptions must be satisfied for the new sensor group, which may require the

design of an additional deterministic observer and RMHE scheme for this sensor group.

Remark 3.5 From a practical perspective, when sensors are being brought back on-line or

taken off-line and the estimation problem changes, the estimation error may be sufficiently

small such that one may use the RMHE to provide state estimates to the LEMPC starting at

tm (i.e., applying the deterministic observer from tm to tm + tb j may not be required). This

is the case in the chemical process example presented in this work.

Remark 3.6 For output feedback-based control of nonlinear systems, typically what is re-

quired to prove closed-loop stability is that the estimation error converges sufficiently fast

relative to the time-scale of the process dynamics (i.e., there is a time-scale separation be-

tween the estimation error dynamics and the process dynamics). This means that it takes

very little time for the estimation error to converge. Therefore, there is little, if not no, limi-

tation to conducting sensor maintenance after the state estimation problem has converged.

For the case that a sensor is taken off-line before the estimation error has converged, one

may simply disregard the measurements of the sensor(s) that will be taken off-line and

formulate the estimation problem at t = 0 utilizing the measurements of sensors that will

remain on-line. Moreover, for the proposed RMHE-based LEMPC scheme to work in ei-

ther case (whether the sensor is taken off-line before the estimation error converges or the

sensor is taken off-line after the state estimator has converged), the same assumptions need

to be satisfied. We note that when the state estimation problem converges, it converges to a

neighborhood of the actual state value (i.e., the estimated state never becomes identically
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equal to the actual state).

3.4.3 Stability Analysis

This section addresses the stability of the system of Eq. 3.1 when controlled by the RMHE-

based LEMPC of Eq. 3.10. We first present several propositions and then summarize the

main results in a theorem. Proposition 3.1 characterizes the continuity property of the

Lyapunov function V . Proposition 3.2 characterizes the effects of bounded state estima-

tion error and process noise. The proofs of these statements can be found in the sources

referenced for each.

Proposition 3.1 (c.f.102, 105) Consider the Lyapunov function V (·). There exists a quadratic

function fV (·) such that

V (x)≤V (x̂)+ fV (|x− x̂|) (3.11)

for all x, x̂ ∈Ωρ with

fV (s) = α4(α−1
1 (ρ))s+Mvs2 (3.12)

where Mv is a positive constant.

Proposition 3.2 (c.f.49) Consider the systems

ẋa(t) = f (xa)+g(xa)u(t)+ l(xa)w(t)

ẋb(t) = f (xb)+g(xb)u(t)
(3.13)

with initial states |xa(0)− xb(0)| ≤ δxi/ j. There exists a function fW (·, ·) such that

|xa(t)− xb(t)| ≤ fW (δxi/ j, t) (3.14)
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for all xa(t),xb(t) ∈Ωρ and u ∈ U, w ∈W with:

fW (s,τ) :=
(

s+
Mlθw

L f +Lgumax

)
e(L f+Lgumax)τ − Mlθw

L f +Lgumax (3.15)

where L f , Lg, Ml are positive constants associated with functions f , g, l.

If the system is initialized using either the i-th sensor group or j-th sensor group and

the sensor group does not change on-line throughout the length of operation, then closed-

loop stability follows if certain conditions hold.49 The following result provides sufficient

conditions such that the closed-loop state under the RMHE-based LEMPC of Eq. 3.10 will

be bounded in Ωρ for the case that the available sensors do not change on-line.

Proposition 3.3 (49) Consider the system of Eq. 3.1 in closed-loop under the RMHE-based

LEMPC of Eq. 3.10 based on an observer satisfying Assumption 3.1 (formulated for either

the i-th sensor group or the j-th sensor group) and a controller that renders the origin of

the closed-loop system asymptotically (and locally exponentially) stable under state feed-

back and continuous implementation. Let θw ≤ θ ∗w, θvi/ j ≤ θ ∗vi/ j, εi/ j ∈ (ε∗Li/ j,ε
∗
Ui/ j) and

|zi/ j(0)−x(0)| ≤ em0i/ j. Also, let εw > 0, ∆ > 0 and ρ > ρ1i/ j > ρei/ j > ρmin,i/ j > ρsi/ j > 0

and κi/ j ≥ 0 satisfy the following conditions:

ρei/ j ≤ ρ−max{ fV ( fW (δxi/ j,∆))+ fV (δxi/ j),Mtbi/ jα4(α−1
1 (ρ))}, (3.16)

−α3(α−1
2 (ρsi/ j))+

(
L f

V +Lg
V umax

)
(M∆+δxi/ j)+Ml

V θw ≤−εw/∆ (3.17)

where δxi/ j = (κi/ jLhi/ j +1)emi/ j +κi/ jθvi/ j, Lhi/ j, L f
V , Lg

V are Lipschitz constants associ-

ated with hi/ j,
∂V
∂x f , and ∂V

∂x g, respectively, M is a constant that bounds the time derivative

of x (i.e., |ẋ| ≤M) and Ml
V is a constant that bounds

∣∣∣∂V
∂x l
∣∣∣ for x∈Ωρ . Then, if x(0)∈Ωρei/ j ,

then x(t) ∈Ωρ for all t ≥ 0. Moreover, if after some time, the RMHE-based LEMPC oper-

84



ates in mode 2 only then the state is ultimately bounded in Ωρmin,i/ j .

To cope with the changing number of sensors at tm, the state needs to be forced to

a compact set containing the origin (i.e., Ωρe j) in preparation for the switch from sensor

group i to sensor group j. This is addressed by enforcing the mode 2 constraint in the

RMHE-based LEMPC of Eq. 3.10 from tm− ts to tm. If x(tm) ∈ Ωρe j , we can apply the

results of Proposition 3.3 and thus, guarantee that the closed-loop state is bounded in Ωρ .

This result is stated in the following theorem.

Theorem 3.1 Let ρmin,i ≤ ρe j (Ωρmin,i ⊆ Ωρe j), emi ≤ em0 j, and the assumptions of Propo-

sition 3.3 be satisfied for the i-th and j-th sensor groups. If ts > 0 is sufficiently large

and x(0) ∈ Ωρei , then the closed-loop state under the RMHE-based LEMPC of Eq. 3.10 is

bounded in Ωρ for t ≥ 0.

Proof 3.1 It is necessary to show that the estimation error is less than em0 j at tm and that

the RMHE-based LEMPC drives the state of the closed-loop system into Ωρe j by tm. If both

of these can be shown, Proposition 3.3 states that the closed-loop trajectory for t > tm will

remain bounded in Ωρ .

After tbi (i.e., after the deterministic observer Fi has converged), the estimation error

is bounded by emi owing to the properties of the deterministic observer (Assumption 3.1).

If the deterministic observer Fj is initialized at tm with the state estimate computed by the

RMHE for the i-th sensor group at tm, then the initial error when Fj takes over at tm is

bounded by |z(tm)− x(tm)| ≤ emi ≤ em0 j if emi ≤ em0 j. Thus, the estimation error is less

than em0 j at tm.

It is possible for the RMHE-based LEMPC with mode 2 operation only, in a finite

but sufficiently long time interval, to drive the state from any initial condition in Ωρ into

Ωρmin,i and maintain the state within that set (i.e., Ωρmin,i is forward invariant under the
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RMHE-based LEMPC). This follows from the fact that the state is ultimately bounded in

Ωρmin,i (Proposition 3.3) if the RMHE-based LEMPC operates exclusively in mode 2 and

no changes are made to the sensors throughout the length of operation (see, also, the

proof of [49, Theorem 1] for a complete proof of this fact). If ρmin,i ≤ ρe j, then there exists

N∗ ∈ I+ such that under the RMHE-based LEMPC of Eq. 3.10 operating under mode 2 only

x(N∗∆) ∈ Ωρmin,i ⊆ Ωρe j for all x(0) ∈ Ωρei . If ts ≥ N∗∆, then x(tm) ∈ Ωρmin,i ⊆ Ωρe j under

the RMHE-based LEMPC of Eq. 3.10. From Proposition 3.3, boundedness of the closed-

loop state in Ωρ under the RMHE-based LEMPC when the available sensors change at tm

follows.

Remark 3.7 In terms of the relationship between tbi/ j and Ne∆, we note here that when t ≥

tbi/ j, the RMHE is activated and its horizon length is chosen as min{ tbi/ j
∆ , Ne} considering

the assumption that tbi/ j is a integer multiple of ∆. Based on this choice, after the RMHE is

activated (i.e., t ≥ tbi/ j) it is possible for the process to have a time-varying horizon length

for several sampling times if tbi/ j ≤ Ne∆.

3.5 Application to a Chemical Process Network

3.5.1 Description of the Chemical Process Network

The chemical process network from47 is used to illustrate the design of the proposed

RMHE-based LEMPC and its usefulness when sensor preventive maintenance is sched-

uled. The process consists of three vessels: two continuously stirred tank reactors (CSTRs)

in series, and a flash tank that receives the effluent from the second CSTR. The process

is depicted by the process flow diagram of Fig. 3.3. A second-order reaction with rate r

occurs in the CSTRs:

A r→ B

86



Both CSTRs (CSTR-1 and CSTR-2) receive fresh feeds of the reactant A in an inert solvent

C at flow rates F10 and F20 with concentrations CA10 and CA20, respectively. In addition,

to recover unreacted A, CSTR-1 receives recycled condensed vapor at flow rate Fr from

the flash tank (SEP). The desired product B is obtained from the liquid that exits the flash

tank. The temperature in the vessels is adjusted by controlling the heating/cooling rate

Q j, j = 1,2,3 to each of the vessels. It is assumed that the heat of reaction and heat

capacity are constant in the temperature range considered and that the liquid has constant

density such that all three vessels have static holdup. In the separator, the reaction rate of

the reaction A r→ B is negligible. Material and energy balances were used to derive the

following dynamic equations for the system:

dT1

dt
=

F10

V1
(T10−T1)+

Fr

V1
(T3−T1)+

−∆H
ρCp

ke
−E
RT1 C2

A1 +
Q1

ρCpV1
(3.18a)

dCA1

dt
=

F10

V1
(CA10−CA1)+

Fr

V1
(CAr−CA1)− ke

−E
RT1 C2

A1 (3.18b)

dCB1

dt
=
−F10

V1
CB1 +

Fr

V1
(CBr−CB1)+ ke

−E
RT1 C2

A1 (3.18c)

dT2

dt
=

F1

V2
(T1−T2)+

F20

V2
(T20−T2)+

−∆H
ρCp

ke
−E
RT2 C2

A2 +
Q2

ρCpV2
(3.18d)

dCA2

dt
=

F1

V2
(CA1−CA2)+

F20

V2
(CA20−CA2)− ke

−E
RT2 C2

A2 (3.18e)

dCB2

dt
=

F1

V2
(CB1−CB2)−

F20

V2
CB2 + ke

−E
RT2 C2

A2 (3.18f)

dT3

dt
=

F2

V3
(T2−T3)−

∆HvapFrm

ρCpV3
+

Q3

ρCpV3
(3.18g)

dCA3

dt
=

F2

V3
(CA2−CA3)−

Fr

V3
(CAr−CA3) (3.18h)

dCB3

dt
=

F2

V3
(CB2−CB3)−

Fr

V3
(CBr−CB3) (3.18i)

where the temperatures of vessels j = 1,2,3, corresponding to CSTR-1, CSTR-2, and SEP,

respectively, are denoted as Tj, CA j and CB j are the concentrations of species A and B in
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Table 3.1: Description of process parameters and their values for the reactor and separator
process network.47

Parameter/Value Description
F10 = 5.0 m3/h Flow rate of CSTR-1 inlet
F20 = 5.0 m3/h Flow rate of CSTR-2 inlet
Fr = 2.0 m3/h Recycle flow rate of SEP
T10 = 300 K Temperature of F10
T20 = 300 K Temperature of F20
V1 = 5.0 m3 Volume of CSTR-1
V2 = 5.0 m3 Volume of CSTR-2
V3 = 3.0 m3 Volume of SEP
k = 1.9×109 m3/(kmol h) Pre-exponential factor
E = 7.1×104 kJ/kmol Activation energy
∆H =−7.8×103 kJ/kmol Heat of reaction
∆Hvap = 4.02×104 kJ/kmol Heat of vaporization
Cp = 0.231 kJ/(kg K) Heat capacity
R = 8.314 kJ/(kmol K) Gas constant
ρ = 1000 kg/m3 Liquid solution density
αA = 3.0 Relative volatility of A
αB = 0.8 Relative volatility of B
αC = 1.0 Relative volatility of C
MA = 18 kg/kmol Molecular weight of A
MB = 18 kg/kmol Molecular weight of B
MC = 40 kg/kmol Molecular weight of C

vessel j, and the molar flow rate of the recycle stream is Fr. The parameter notation and

values are given in Table 3.1. The flow rates F1, F2, and F3 are the outlet flow rates from

CSTR-1, CSTR-2, and SEP, respectively, and their values can be obtained by setting the

sums of the flow rates into each vessel equal to the sums of the flow rates out of each vessel

because of the constant fluid density assumption used with the mass balances.

It is assumed that approximating the relative volatilities of A, B, and C as constants

results in a sufficiently accurate model for this process. Under that assumption, the flash
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Figure 3.3: Process flow diagram of the CSTR-CSTR-Separator process network from.47

separator overhead composition can be described using algebraic equations:

CC3 = (ρ−CA3MA−CB3MB)/MC (3.19a)

Cir =
αiρCi3

αACA3MA +αBCB3MB +αCCC3MC
, i = A, B, C (3.19b)

Frm = Fr(CAr +CBr +CCr) (3.19c)

where αi and Cir are the relative volatility and the overhead vapor concentration of each

species, respectively. Frm is the molar flow rate of the recycle stream.

3.5.2 Control Objectives and Process Economics

The five manipulated inputs for the process are the heat rates Q j to vessels j = 1, 2, 3

and the concentrations CA10 and CA20 of A in the fresh feeds to CSTR-1 and CSTR-2,
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respectively. These inputs are bounded as follows:

∣∣Q j
∣∣≤ 1.0×105 kJ/h, j = 1, 2 (3.20a)

2.2×106 ≤ Q3 ≤ 2.6×106 kJ/h (3.20b)

0.5≤CA j0 ≤ 7.5kmol/m3, j = 1, 2 (3.20c)

where the input vector has the form u = [Q1 Q2 Q3CA10CA20]
T = [u1 u2 u3 u4 u5]

T . In addi-

tion to the input constraints, state constraints are imposed on the operating temperature of

the two CSTRs and of the separator of the form:

370≤ Tj ≤ 395 K, j = 1, 2 , (3.21a)

380≤ T3 ≤ 400 K . (3.21b)

The control objective is to maximize the revenue per unit cost under the proposed

RMHE-based LEMPC while accounting for preventive sensor maintenance. The process

economic objective function chosen to accomplish this goal is:

L(x,u) =
PpCB3

Ph(|Q1|+ |Q2|+ |Q3|)+Pm(F10CA10 +F20CA20)
(3.22)

where the unit price of product is Pp = 10, the unit price of reactant material is Pm = 2, and

the unit price of heat supply/removal is Ph = 1.0×10−4. The same pricing is taken to apply

for both heating and cooling, but this assumption does not limit the essence of the results

of this study and can be readily relaxed.

The economically optimal steady-state is determined so that its stability region can be

used in the RMHE-based LEMPC. The economically optimal steady-state is determined
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by solving:

max
xs,us

L(xs,us) (3.23a)

s.t. f (xs)+g(xs)us = 0 (3.23b)

us ∈ U (3.23c)

xs ∈ X (3.23d)

where L(xs,us) is the revenue per unit cost that will be used as the RMHE-based LEMPC

objective (Eq. 3.22). The algebraic equation in Eq. 3.23b provides the steady-state solutions

to the nominal input-affine dynamic system of Eq. 3.18, and the constraints in Eqs. 3.23c-

3.23d correspond to the input constraints of Eq. 3.20 and the state constraints of Eq. 3.21,

respectively. The solution to this steady-state optimization problem is x∗s , which satisfies

Eq. 3.23b when paired with u∗s :

x∗s =
[

T ∗1s C∗A1s C∗B1s T ∗2s C∗A2s C∗B2s T ∗3s C∗A3s C∗B3s

]T

=

[
395 2.32 2.17 395 2.75 2.15 380 1.88 2.31

]T

,

u∗s =
[

Q∗1s Q∗2s Q∗3s C∗A10s C∗A20s

]T

=

[
−3.25×103 −1.08×103 2.2×106 0.5 0.5

]T

.

(3.24)

The units for each variable in the optimal steady-state vector x∗s and optimal steady-state

input vector u∗s are the same as for the corresponding variables in Table 3.1. The steady-

state of Eq. 3.24 is open-loop unstable.

It is assumed that the sensors in this chemical process example undergo routine sensor

preventive maintenance to prevent the potentially large economic losses that could occur
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due to the consequences of sensor failure, such as product contamination or plant shut-

down. Thus, we assume that the given process can be safely operated with the remaining

sensors when the maintenance procedures considered in this example are performed (the

process can continue to be safely operated even as certain sensors are taken off-line).

The process is outfitted with sensors that provide measurements of CA3, CB1, CB2, CB3,

T1, T2 and T3. A state estimation method is applied to the process to compute state estimates

of CA1 and CA2. There is a scheduled maintenance task on the sensor that measures CA3 at

tm = 0.3 h (i.e., for t ≥ tm, the control system will not receive any measurements from the

sensor of CA3 any longer). The sensors that provide the measurements of CB1, CB2, CB3, T1,

T2 and T3 will continue to be available to the control system and the states CA1, CA2 and CA3

need to be estimated. Thus, the first sensor group consists of all the available sensors and

the second sensor group consists of all the available sensors except the sensor that measures

CA3.

3.5.3 Deterministic Observer and RMHE Design

Here, we use a high-gain observer (HGO) as the deterministic observer in the RMHE de-

sign. We note that the HGO changes after the preventive sensor maintenance is conducted

at tm. We will use HGO-1 and HGO-2 to denote the high-gain observers formulated for the

first and second sensor groups, respectively. The design of HGO-2 (see80) is provided here,

and the design of HGO-1 follows from the design of HGO-2. The measurement vector after

the CA3 sensor is taken off-line at tm is defined as y= [h1(x) h2(x) h3(x) h4(x) h5(x) h6(x)] =

[T1 CB1 T2 CB2 T3 CB3]. To obtain the state estimates, a high-gain observer is formulated as
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follows:

dz̄1

dt
=

α1

ε
(y1− z̄1) (3.25a)

dz̄2

dt
=

α2

ε
(y2− z̄2)+ z̄3 (3.25b)

dz̄3

dt
=

α3

ε2 (y2− z̄2) (3.25c)

dz̄4

dt
=

α4

ε
(y3− z̄4) (3.25d)

dz̄5

dt
=

α5

ε
(y4− z̄5)+ z̄6 (3.25e)

dz̄6

dt
=

α6

ε2 (y4− z̄5) (3.25f)

dz̄7

dt
=

α7

ε
(y5− z̄7) (3.25g)

dz̄8

dt
=

α8

ε
(y5− z̄8)+ z̄9 (3.25h)

dz̄9

dt
=

α9

ε2 (y6− z̄8) (3.25i)

where the observer states are defined as

z̄ = T (x) = [T1 CB1 ĊB1 T2 CB2 ĊB2 T3 CB3 ĊB3]
T

and the mapping T : Rn → Rn is an appropriately chosen invertible coordinate change.

The design parameters of HGO-2 are ε , which is a small positive design parameter, and

α = [α1 · · · α9]
T . Based on the mapping z̄ = T (x) of Eq. 3.25, the estimated state, z =

[z1 · · · z9]
T , is derived as z = T−1(sat(z̄)) where sat(·) is a saturation function of the form:

sat(z̄i) :=


z̄i,m, z̄i ≥ z̄i,m

z̄i, −z̄i,m ≤ z̄i ≤ z̄i,m

−z̄i,m, z̄i ≤−z̄i,m

(3.26)
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where z̄i,m (i = 1, . . . ,9) is the saturation limit of the transformed state z̄i. The saturation

function is used to prevent the peaking phenomena.

The following design parameters for the HGOs and for the RMHE scheme of Eq. 3.8

were used in all case studies below. It was verified through extensive closed-loop simu-

lations that these parameters achieved good estimation performance. The parameters of

HGO-1 were chosen to be

[α1 α2 α3 α4 α5 α6] = [2 15 10−2 2 15 10−2] (3.27)

and ε = 0.01, and for HGO-2 :

[α1 α2 α3 α4 α5 α6 α7 α8 α9] = [1 10 10−2 1 10 10−2 1 10 10−2] (3.28)

and ε = 0.01. The design parameters of the RMHE of Eq. 3.8 were chosen as κ = 0.4 and

Ne = 8. The estimation horizon was chosen so that acceptable estimation performance was

achieved without the use of an arrival cost. In the subsequent sections, we use RMHE-1 to

denote the RMHE designed based on HGO-1 and RMHE-2 to denote the RMHE designed

based on HGO-2.

3.5.4 RMHE-based LEMPC Design Handling Real-Time Preventive

Sensor Maintenance

A Lyapunov-based controller is designed for the process that can asymptotically stabilize

the economically optimal steady-state. It will be used to define the Lyapunov-based con-

straints of the RMHE-based LEMPC. The heat rate inputs Q1, Q2, and Q3 have a larger

impact on closed-loop stability of this process system than the concentration inputs CA10

and CA20. For this reason, the inputs in vector uq (uq = [Q1 Q2 Q3]
T ) are used to stabi-
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lize the closed-loop system, while the inputs in vector uc (uc = [CA10 CA20]
T ) are primarily

used to attain better economic performance of the closed-loop process and u = [uT
q uT

c ]
T .

The Lyapunov-based controller will be designed using different control laws for the heat

rates and for the inlet concentrations. The heat rate inputs are controlled per the following

feedback control law:129

kqi(x) =


−L f V+

√
(L f V )2+(LgiV )4

(LgiV )2 LgiV if LgiV ̸= 0

0 if LgiV = 0
(3.29)

for i = 1, 2, 3 where gi denotes the i-th column of g and L fV = (∂V/∂x) f (x) and LgiV =

(∂V/∂x)gi(x) denote the Lie derivatives of V with respect to the vector fields f and gi,

respectively. The elements of uc per the Lyapunov-based strategy are kc(x) = [0.5 0.5]T .

The full Lyapunov-based control law for all five inputs is k(x) = [kT
q (x) kT

c (x)]
T .

A quadratic function (i.e., V (x) = (x− x∗s )
T P(x− x∗s )) was chosen for the Lyapunov

function of the process under the controller k(x), and extensive closed-loop simulations

under this controller facilitated the choice of the matrix P and an estimate of the stability

region of the process under the k(x) control law. The stability region estimate was made

by choosing the largest level set of V within which V̇ < 0 along the trajectories of the

closed-loop system. The positive definite matrix P is given by:

P = diag([10−3 1.5 0.5 10−3 1.5 0.5 10−3 1.5 0.5]) (3.30)

The stability region is estimated to be the level set Ωρ with ρ = 12.4. The subsets of the

stability region Ωρ are estimated to be level sets: Ωρe1 with ρe1 = 10 and Ωρe2 with ρe2 = 8.

To deal with the scheduled preventive maintenance on the sensor of CA3 at tm = 0.3 h,

the proposed RMHE-based LEMPC of Eq. 3.10 for this chemical process network has the
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following form:

max
u∈S(∆)

∫ tk+8

tk
L(x̃(τ),u(τ))dτ (3.31a)

s.t. ˙̃x(t) = f (x̃(t))+g(x̃(t))u(t), (3.31b)

x̃(tk) =


x̂HGO−1(tk), if tk < tb1 = 0.08

x̂∗RMHE−1(tk), if 0.08≤ tk < 0.30
(3.31c)

u(t) ∈ U, ∀ t ∈ [tk, tk+8) (3.31d)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+8) (3.31e)

V (x̃(t))≤ 10, ∀ t ∈ [tk, tk+8)

if V (x̂(tk))≤ 10 and tm /∈ [tk, tk+8) (3.31f)

∂V
∂x

( f (x̂(tk))+g(x̂(tk))u(tk))≤
∂V
∂x

( f (x̂(tk))+g(x̂(tk))k(x̂(tk))),

if (V (x̂(tk))> 10 and tm /∈ [tk, tk+8))

or(tm ∈ [tk, tk+8)) (3.31g)

96



which is used for t ∈ [0, tm) and

max
u∈S(∆)

∫ tk+8

tk
L(x̃(τ),u(τ))dτ (3.32a)

s.t. ˙̃x(t) = f (x̃(t))+g(x̃(t))u(t), (3.32b)

x̃(tk) = x̂∗RMHE−2(tk), if tk ≥ 0.30 (3.32c)

u(t) ∈ U, ∀ t ∈ [tk, tk+8) (3.32d)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+8) (3.32e)

V (x̃(t))≤ 8, ∀ t ∈ [tk, tk+8)

if V (x̂(tk))≤ 8 (3.32f)

∂V
∂x

( f (x̂(tk))+g(x̂(tk))u(tk))≤
∂V
∂x

( f (x̂(tk))+g(x̂(tk))k(x̂(tk))),

if V (x̂(tk))> 8 (3.32g)

which is used for t ≥ tm. For this example, tb1 is estimated to be 0.08 h. Considering that

this means tb1 = Ne∆ for this specific case, HGO-1 is utilized to provide the state estimates

of CA1 and CA2 during the first Ne sampling times. For t ≥ 0.08 h, RMHE-1 is activated

to provide the estimates of CA1 and CA2 until tm = 0.3 h. After tm = 0.3 h, RMHE-2 is

utilized to provide state estimates of not only CA1 and CA2 but also CA3 as well. RMHE-2

is immediately used at tm to provide the state estimate to the LEMPC of Eq. 3.32 because

the state estimation error is small at t = tm, which was verified through simulations (i.e.,

applying HGO-2 from tm to tm + tb2 to ensure the convergence of the estimation error to a

small value was not needed for this particular example).

The sampling time used for the RMHE-based LEMPC is ∆ = 0.01 h and the prediction

horizon used is N = 8. The optimization software Ipopt139 was used to find a local solution

to the RMHE-based LEMPC optimization problem. The simulations were carried out using

the Java programming language in a Intel R⃝ i7, 3.40 GHz processor running a Windows 7
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Professional system.

3.5.5 Case Studies

As we discussed in the introduction of this work, routine sensor replacement is necessary

to avoid potential sensor failure which may bring production loss to the process. We now

compare four case studies which a process operation manager may evaluate when weighing

the risks, costs, and benefits of conducting a sensor maintenance procedure:

I. Process operation without preventive sensor maintenance on the sensor of CA3.

II. Process operation with preventive sensor maintenance on the sensor of CA3 at tm =

0.3 h.

III. Process operation subject to faulty sensor readings of CA3 after t f = 0.5 h.

IV. Process operation with preventive maintenance of the sensor of CA3 at tm = 0.3 h

followed by preventive maintenance of the actuator of CA20 at ta = 0.6 h.

In these four case studies, the RMHE-based LEMPC formulation of Eqs. 3.31-3.32 is

applied to the process of Eq. 3.18. The state estimation accuracy between the high-gain

observer and the robust moving horizon estimation method is compared, and the RMHE-

based LEMPC’s ability to handle the preventive sensor maintenance task is demonstrated in

all four cases; the process economic performance degradation is also evaluated for different

cases under the preventive sensor maintenance.

To model the process and measurement noise, bounded Gaussian white noise is added

to the process state and measurement values, respectively, with a zero mean and standard

deviation σw,CA =σw,CB = 0.05, σw,T = 5.0, σv,CA =σv,CB = 0.03 and σv,T = 5.0, and subject

to the bounds θw,CA = θw,CB = 0.1 kmol/m3, θw,T = 10.0 K, θv,CA = θv,CB = 0.05 kmol/m3
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and θv,T = 5.0 K. For each case study, the same realization of the noise was used to compare

the various control strategies.

Case I: RMHE vs HGO - No Preventive Sensor Maintenance

In the first case, we compare the state estimation performance between the RMHE method

(Eq. 3.8) and the HGO method (HGO-1) for the process network of Eq. 3.18. For this case,

no preventive sensor maintenance is completed. The RMHE method consists of the output

feedback RMHE-based LEMPC of Eq. 3.31 with tm→ ∞, while the HGO method consists

of the output feedback RMHE-based LEMPC of Eq. 3.31 with tm→ ∞ and tb1→ ∞ (i.e.,

HGO-1 provides the state estimate to the LEMPC for all time).

HGO-1 for both the RMHE and HGO methods is initialized such that initially there

is non-zero estimation error (i.e., it is initialized with an initial condition not equal to the

actual state value). The estimated state and closed-loop state profiles under the HGO and

RMHE methods are shown in Figs. 3.4-3.5. From Fig. 3.4, the HGO initially computes

a state estimate close to the actual values of CA1 and CA2. After RMHE-1 is activated at

0.08 h in the RMHE method (Fig. 3.4a), it computes state estimates of CA1 and CA2 very

close to the actual state values throughout the length of operation.

When comparing the estimated state profiles of CA3, CB, and T , the HGO is more sen-

sitive to the measurement noise (e.g., compare Fig. 3.5a with Fig. 3.5b). Thus, the RMHE

method provides better state estimation performance and robustness to measurement noise

when compared with the HGO method. In addition, the closed-loop economic performance

under the RMHE method is 14.8% greater than that under steady-state operation for the one

hour operation period.
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Figure 3.4: The estimated reactant concentration profiles (dashed lines) compared to the
closed-loop reactant concentration profiles (solid lines) of the process network of Eq. 3.18
under (a) the RMHE-based output feedback LEMPC and (b) the HGO-based output feed-
back LEMPC for Case I (no sensor maintenance).
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Figure 3.5: The estimated product concentration and temperature profiles (dashed lines)
compared to the closed-loop product concentration and temperature profiles (solid lines) of
the process network of Eq. 3.18 under (a) the RMHE-based output feedback LEMPC and
(b) the HGO-based output feedback LEMPC for Case I (no sensor maintenance).
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Case II: RMHE vs HGO - Preventive Sensor Maintenance

In this case study, we consider that preventive sensor maintenance on the sensor of CA3

will be conducted as scheduled at tm = 0.3 h. Again, we compare the RMHE method

with the HGO method, but here the RMHE method is applied according to the output

feedback RMHE-based LEMPC strategy of Eqs. 3.31-3.32, and the HGO method is applied

using HGO-1 and HGO-2 to provide state estimates to the output feedback-based LEMPC

schemes of Eqs. 3.31-3.32 before and after tm, respectively.

We compare the estimated state profiles from the RMHE and HGO methods with the

actual closed-loop state profiles in Figs. 3.6-3.7. From Fig. 3.6a, we can see that the es-

timated CA3 trajectory from the RMHE method is nearly overlapping with the actual state

trajectories after the CA3 sensor is taken off-line at tm = 0.3 h. However, the state estimate

for CA3 from the HGO method significantly deviates from the actual state profile as shown

by Fig. 3.6b. From Fig. 3.6b, the state estimates of CA1 and CA2 from the HGO are also

affected by its sensitivity to the measurement noise and the removal of the measurement of

CA3. Fig. 3.7 displays the T and CB profiles of the process under the RMHE and HGO meth-

ods. The inaccurate estimation of CA3 from the HGO decreases the estimation accuracy of

the estimated profiles of CB and T as shown in Figs. 3.7a-3.7b. These results demonstrate

the advantage of the RMHE method for state estimation when the measurements are cor-

rupted by noise since it provides accurate state estimates within a small neighborhood of

the actual process states. They also show that the proposed RMHE-based LEMPC is able

to smoothly deal with the preventive sensor maintenance task without leading to poor per-

formance and process shut-down.
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Figure 3.6: The estimated reactant concentration profiles (dashed lines) compared to the
closed-loop reactant concentration profiles (solid lines) of the process network of Eq. 3.18
under (a) the RMHE-based output feedback LEMPC and (b) the HGO-based output feed-
back LEMPC for Case II where preventive maintenance is conducted on the CA3 sensor
making it unavailable at 0.3 h.
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Figure 3.7: The estimated product concentration and temperature profiles (dashed lines)
compared to the closed-loop product concentration and temperature profiles (solid lines) of
the process network of Eq. 3.18 under (a) the RMHE-based output feedback LEMPC and
(b) the HGO-based output feedback LEMPC for Case II where preventive maintenance is
conducted on the CA3 sensor making it unavailable at 0.3 h.
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Figure 3.8: The estimated reactant concentration profiles (dashed lines) compared to the
closed-loop reactant concentration profiles (solid lines) of the process network of Eq. 3.18
under the RMHE-based output feedback LEMPC for Case III where no preventive mainte-
nance is completed on the CA3 sensor and the sensor provides faulty readings at 0.5 h.

Case III: RMHE vs Faulty Sensor Readings

The state profiles of the third case are shown in Figs. 3.8-3.9. The third case with the

faulty sensor illustrates the consequences of not performing sensor maintenance and then

having a sensor fault. It is developed by using the output feedback RMHE-based LEMPC

of Eq. 3.31, except that this LEMPC is used for all times and it does not account for the

faulty sensor readings.

To model the faulty sensor, random noise is added to the process measurements starting

at time t f .

From Fig. 3.8, the faulty reading from the sensor of CA3 causes large deviations of the

estimated states from the actual closed-loop states.

The different estimated state values, which are provided to the RMHE-based LEMPC

system of Eqs. 3.31-3.32, result in a different computed input trajectory for Case III than

for Cases I and II as shown in Fig. 3.9. Specifically, the input profiles from the process

with preventive maintenance on the sensor of CA3 are close to those from the process with-
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Figure 3.9: Manipulated input profiles from the RMHE-based LEMPC of Eqs. 3.31-3.32
when sensor maintenance is completed on the CA3 sensor at 0.3 h (dashed lines in (a)),
when the CA3 sensor provides faulty readings of CA3 after 0.5 h (dashed lines in (b)). For
a comparison, the manipulated input profiles from the RMHE-based LEMPC when the
sensor of CA3 is available and functioning well for all times are given as the solid lines.

out preventive sensor maintenance on the sensor of CA3 due to the accurate state estimate

of CA3, while for the process with a faulty sensor reading of CA3, the controller requires

increased energy consumption than that actually required due to the inaccurate state esti-

mates.

In terms of the economic cost of Eq. 3.22, the average revenue per unit cost over the

one hour operation period for the process with faulty sensor readings decreases 5.18 %

when compared with the process using state feedback without sensor maintenance and

with fully functional sensors. However, the process economic performance degradation

for the process conducting the preventive sensor maintenance work based on the proposed

output feedback RMHE-based LEMPC is only 1.27 % due to the accurate state estimates

provided by the RMHE method and the control system reconfiguration of the LEMPC

scheme of Eqs. 3.31-3.32 when t approaches tm. In particular, the RMHE-based LEMPC
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takes full advantage of the estimation performance from the RMHE method.

Remark 3.8 Sensor faults can come in a variety of forms. For the purposes of the Case III

comparison made in this paper, the sensor fault type simulated demonstrates that sensor

faults can be more costly than removing a sensor for preventive maintenance using the

proposed control strategy. If the faulty sensors have more severe problems, such as constant

or drifting signals, the process economic performance degradation will likely be much

larger than that demonstrated in Case III.

Case IV: Integrating Actuator and Sensor Maintenance

The chemical processing industry is concerned not only with maintenance of sensors, but

also with preventive maintenance of actuators. It is possible to consider the situation that

the maintenance work for the sensor and actuator is scheduled in sequence. To address this

problem, we apply a LEMPC scheme handling preventive maintenance on both sensors and

actuators to the chemical process network based on the LEMPC design handling preventive

actuator maintenance86 and the LEMPC handling the preventive sensor maintenance of

Eqs. 3.31-3.32.

In this case, the preventive sensor maintenance on CA3 is scheduled at tm = 0.3 h, and we

assume the actuator of CA20 is taken off-line at ta = 0.6 h when it is no longer available to the

LEMPC. In Fig. 3.10, closed-loop state and estimated state profiles under the RMHE-based

LEMPC are compared. From Fig. 3.10, we can see that the proposed RMHE-based LEMPC

still provides accurate state estimates even after the actuator of CA20 is taken off-line (i.e.,

control system reconfiguration caused by the loss of the actuator of CA20). Based on the

manipulated input profiles shown in Fig. 3.11, the manipulated input value of CA20 is set to

be 0 when its actuator is taken off-line for maintenance at ta = 0.6 h. The process economic

performance following Eq. 3.22 decreases 2.63% compared to the situation shown in Case
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Figure 3.10: The closed-loop state (solid lines) and estimated state (dashed) profiles for
the process network of Eq. 3.18 under the RMHE-based LEMPC for handling sensor and
actuator maintenance where the sensor of CA3 is unavailable after tm = 0.3 h and actuator
of CA20 is unavailable after ta = 0.6 h.

II where the actuator maintenance is not conducted over this one hour operation but sensor

maintenance is performed. This Case IV simulation run demonstrates that the integration

of the method proposed in the present manuscript and the results of86 produces a control

scheme capable of handling both sensor and actuator maintenance in a single framework.

3.6 Conclusions

This paper establishes a novel robust moving horizon estimation scheme that accommo-

dates a varying number of sensors to continuously supply accurate state estimates to a

LEMPC system. It was shown that the proposed RMHE-based LEMPC scheme can main-
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Figure 3.11: Manipulated input profiles with the sensor of CA3 unavailable after tm = 0.3 h
and the actuator of CA20 unavailable after ta = 0.6 h under the RMHE-based LEMPC for
handling both sensor and actuator preventive maintenance.
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tain process closed-loop stability under standard observability and stabilizability assump-

tions. Then, the proposed RMHE-based LEMPC was applied to a chemical process; the

simulation results exhibited its ability to accomplish control system reconfiguration un-

der a changing number of on-line sensors and to achieve minimal economic performance

degradation by operating the process in an economically optimal fashion, while preserving

closed-loop stability.
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Chapter 4

Proactive Fault-Tolerant Model

Predictive Control

4.1 Introduction

This chapter presents the formulation of a proactive fault-tolerant model predictive con-

troller (MPC) designed via Lyapunov-based techniques for nonlinear systems capable of

taking proactive measures to minimize the effect of a future known control actuator fault.

This approach to proactive fault-tolerant control combines the unique stability and robust-

ness properties of Lyapunov-based MPC (LMPC) as well as explicitly accounting for fu-

ture known control actuator faults in the formulation of the MPC. We apply our theoretical

results to a chemical process example, and different case studies with various types of actu-

ator faults were simulated to demonstrate that the proposed proactive fault-tolerant model

predictive control method can achieve practical stability after a control actuator fault.

111



4.2 Preliminaries

4.2.1 Notation

The operator |·| is used to denote the Euclidean norm of a vector and |·|Q denotes the square

of the weighted Euclidean norm of a vector (i.e., |·|Q = xT Qx). A continuous function

α : [0,a)→ [0,∞) belongs to class K functions if it is strictly increasing and satisfies

α(0) = 0. We use Ωρ to denote the level set Ωρ := {x ∈ Rnx |V (x)≤ ρ}. The symbol

diag(v) denotes a square diagonal matrix with diagonal elements equal to the vector v.

4.2.2 Class of Nonlinear Systems

In this work, we consider a class of input-affine nonlinear systems described by the follow-

ing state-space model

ẋ(t) = f (x(t))+G1(x(t))(u(t)+ ũ(t))+G2(x(t))w(t) (4.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the manipulated input vector, ũ(t) ∈ Rm

is the control actuator fault vector, and w(t) ∈W ⊂ Rw is the disturbance vector that is

bounded by |w(t)| ≤ wp. We consider that u+ ũ is bounded in a nonempty convex set

U ⊆Rm defined as U := {u∈Rm | |ui + ũi| ≤ umax
i , i = 1, . . . ,m}. We assume that f : Rn→

Rn, G1 : Rn→ Rn×Rm and G2 : Rn→ Rn×Rw, are locally Lipschitz vector and matrix

functions, respectively. We use j = 0 to denote the fault-free system and j = 1, . . . ,m to

denote the system with a fault in the jth control actuator.

We assume that the nominal system of Eq. 4.1 (ũ ≡ 0) has an equilibrium point at the

origin. We also assume that the state x of the system is sampled synchronously and contin-

uously and the time instants where the state measurements become available is indicated

by the time sequence {tk≥0} with tk = t0+k∆, k = 0,1, . . . where t0 is the initial time and ∆
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is the sampling time.

4.2.3 Lyapunov-based Controller

We assume that there exists a Lyapunov-based controller u(t) = h0(x) which renders the

origin of the fault-free closed-loop system asymptotically stable under continuous imple-

mentation. This assumption is essentially a stabilizability requirement for the system of

Eq. 4.1. Furthermore, we assume after the jth control actuator fails that there exists an-

other Lyapunov-based controller u(t) = h j(x) that renders the origin of the resulting faulty

closed-loop system asymptotically stable. Using converse Lyapunov theorems,79, 97, 100 this

assumption implies that there exist functions αi, j(·), i = 1,2,3,4, j = 0,1,2, . . . ,m of class

K and continuous differentiable Lyapunov functions Vj(x) for the closed-loop system that

satisfy the following inequalities:

α1, j(|x|)≤V j(x)≤ α2, j(|x|) (4.2)

∂Vj(x)
∂x

( f (x)+G1(x)h j(x))≤−α3, j(|x|) (4.3)∣∣∣∣∂Vj(x)
∂x

∣∣∣∣≤ α4, j(|x|) (4.4)

h j(x) ∈U j (4.5)

for all x ∈ D ⊆ Rn where D is an open neighborhood of the origin. We denote the region

Ωρ j ⊆D as the stability region of the closed-loop system under the control u = h j(x). Note

that explicit stabilizing control laws that provide explicitly defined stability regions Ωρ j for

the closed-loop system have been developed using Lyapunov techniques for input-affine

nonlinear systems (see29, 82, 93).

We assume that after some known time t f the jth control actuator fails. We note that
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there exists a horizon t f − t0 sufficiently large such that the controller h0(x) can force the

system into the stability region Ωρ j by the time t f starting from any initial state x(t0) ∈Ωρ0

(more precisely, it will drive the system to the intersection between Ωρ j and Ωρ0). We also

assume that V0 =V1 = · · ·=Vm =V .

By continuity and the local Lipschitz property assumed for the vector fields, the manip-

ulated input u is bounded in a convex set, and the continuous differentiable property of the

Lyapunov function V , there exists positive constants M, Lx, and Lw such that

| f (x)+G1(x)(u+ ũ)+G2(x)w| ≤M (4.6)∣∣∣∣∂V
∂x

( f (x)+G1(x)(u+ ũ)+G2(x)w(t))−
∂V
∂x

(
f (x′)+G1(x′)(u+ ũ)

)∣∣∣∣
≤ Lx

∣∣x− x′
∣∣+Lw |w| (4.7)

for all x,x′ ∈Ωρ j , u+ ũ ∈U , and w ∈W .

Remark 4.1 For input-affine nonlinear systems arising in the context of chemical process

control applications, weighted Euclidean norm Lyapunov functions (i.e., V (x)= xT (t)Px(t))

have been widely used (see29 and the references therein). See the “Application to a chemi-

cal process example” section for an example.

Remark 4.2 The assumption that there exists a controller h j(x) that stabilizes the faulty

system is a necessary requirement. Typically, this can be accomplished in chemical process

control in one of two ways: (1) the principle of redundancy is used in fault-tolerant systems

to ensure stability after a fault (i.e., if a control actuator fails, there is another actuator

that can be used to maintain stability), and (2) many chemical processes are designed to

be open-loop asymptotically stable so the failure of a control actuator does not affect the

stability of the closed-loop system.
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Remark 4.3 We note that there is no guarantee that the stability region Ωρ j of the faulty

system is a subset of the fault-free stability region Ωρ0 because the controllers h0(x) and

h j(x) can be different. We do know that the two regions intersect in a neighborhood of the

origin and it is this intersection that we use in our design of the proactive fault-tolerant

controller.

4.3 Proactive Fault-Tolerant MPC

In this section, we introduce the proposed proactive fault-tolerant Lyapunov-based model

predictive controller and prove practical stability of the closed-loop system of Eq. 4.1 with

the proactive fault-tolerant LMPC.

4.3.1 Implementation Strategy

The implementation strategy of the proposed proactive fault-tolerant LMPC is represented

by Fig. 4.1. Specifically, from t0 to t f , the LMPC with sampling period ∆ and prediction

horizon N starts from an initial condition in the stability region Ωρ0 and recomputes optimal

control actions at every sampling period by solving an on-line optimization problem while

accounting for the actuator fault that occurs at t f . It does so by working to drive the system

into the stability region Ωρ j by the time t f (the time of the fault). After the fault renders

the jth actuator inactive, the proactive fault-tolerant LMPC drives the system to the origin

using its available (remaining) m− 1 actuators. The implementation strategy steps of the

proposed proactive fault-tolerant LMPC can be summarized as follows:

1. At tk, the proactive fault-tolerant LMPC receives the process state from the sensors;

2. If tk+1 < t f (the time of the fault), go to Step 2.1; otherwise go to Step 2.2;
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Ωρ0

Ωρj

x(t0)

x(tf)
xs

Figure 4.1: Conceptual diagram of the implementation strategy of proactive fault-tolerant
LMPC. The proactive fault-tolerant LMPC works to drive the system into the stability
region Ωρ j by the time t f and uses the remaining m−1 actuators to drive the system to the
origin after the fault renders the jth actuator inactive.

2.1. Compute control actions that account for the fault at t f and drive the system to

the stability region Ωρ j by t f ; go to Step 3;

2.2. Drive the system to the origin with the remaining m−1 control actuators; go to

Step 3;

3. Go to Step 1, tk := tk+1.

By comparing the time of the fault with the next sampling time (tk+1), the proactive fault-

tolerant LMPC completes control system reconfiguration before the fault.

With this implementation strategy, we point out that the key difference between this

proactive approach to dealing with actuator faults and traditional reactive fault tolerant

control is that when there is a known fault it may be necessary to adjust the control energy

to drive the system to the stability region Ωρ j before the jth control actuator fails compared

to a controller which does not account for an upcoming fault. This guarantees that the

remaining m− 1 control actuators can stabilize the system after the fault occurs. This
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strategy differs from reactive fault tolerant control that cannot proactively drive the system

to a region whereby stability is guaranteed after the jth actuator fails. After a fault occurs

and has been identified with reactive fault-tolerant control, the closed-loop system may lose

stabilizability of the origin with the remaining control actuators if the closed-loop state is

outside the stability region Ωρ j .

4.3.2 Formulation

We formulate an LMPC based on the conceptual framework proposed in100, 105 for use as a

proactive fault-tolerant controller. The LMPC is based on the Lyapunov-based controllers

h0(x) and h j(x) because the controllers are used to define a stability constraint for the

LMPC which guarantees that the LMPC inherits the stability and robustness properties

of the Lyapunov-based controllers. The proactive fault-tolerant LMPC is based on the

following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
[|x̃(τ)|Qc

+ |u(τ)|Rc
]dτ (4.8a)

s.t. ˙̃x(t) = f (x̃(t))+G1(x̃(t))(u(t)+ ũ(t)), (4.8b)

u(t) ∈U, (4.8c)

ũ j(t) =


0, if t < t f ,

−u j(t), if t ≥ t f ,

(4.8d)

x̃(tk) = x(tk), (4.8e)

∂V
∂x

( f (x(tk))+G1(x(tk))u(tk))≤
∂V
∂x

( f (x(tk))+G1(x(tk))h0(x(tk))) , if tk+1 < t f , (4.8f)

∂V
∂x

( f (x(tk))+G1(x(tk))u(tk))≤
∂V
∂x

( f (x(tk))+G1(x(tk))h j(x(tk))) , if tk+1 ≥ t f (4.8g)

117



where S(∆) is the family of piece-wise constant functions with sampling period ∆, N is the

prediction horizon of the LMPC, ũ(t) is the known actuator fault trajectory, x̃(t) is the state

trajectory predicted by the nominal model (w(t)≡ 0) with manipulated input u(t) computed

by the LMPC. The optimal solution of the optimization problem of Eq. 4.8 is denoted by

u∗(t|tk) and is defined for t ∈ [tk, tk+N).

In the optimization problem of Eq. 4.8, the first constraint of Eq. 4.8b is the nonlinear

system of Eq. 4.1 used to predict the future evolution of the system. The constraint of

Eq. 4.8c defines the control energy available to all manipulated inputs. The constraint

of Eq. 4.8d is the complete fault of the jth control actuator that cause the actuator to be

unusable for t ≥ t f . The constraint of Eq. 4.8e is the initial condition of the optimization

problem. The constraints of Eq. 4.8f and 4.8g ensure that over the sampling period t ∈

[tk, tk +∆) the LMPC computes a manipulated input that decreases the Lyapunov function

by at least the rate achieved by the Lyapunov-based controllers h0(x) when tk+1 < t f and

h j(x) when tk+1 ≥ t f when the Lyapunov-based controllers are implemented in a sample-

and-hold fashion. We note that in the optimization problem of Eq. 4.8 the time instance that

is used to determine which Lyapunov-based constraint to use is tk+1 to account for a fault

that may occur between two sampling times. In this manner, the controller is proactively

regulating the closed-loop system trajectory.

4.3.3 Stability Analysis

In this section, we provide sufficient conditions whereby the proactive fault-tolerant con-

troller of Eq. 4.8 guarantees practical stability of the closed-loop system. Theorem 1 below

provides sufficient conditions such that the proactive fault-tolerant LMPC guarantees that

the state of the closed-loop system is always bounded and is ultimately bounded in a small

region containing the origin.
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Theorem 4.1 Consider the system in closed-loop under the proactive fault-tolerant LMPC

design of Eq. 4.8 based on controllers h j(x), j = 0,1, . . . ,m that satisfies the conditions of

Eqs. 4.2-4.5. Let ∆ > 0, ε0 > 0, ρ0 > ρs,0 > 0, ε j > 0, and ρ j > ρs, j > 0 satisfy:

−α3,0(α−1
2,0 (ρs,0))+LxM∆+Lwwp ≤−ε0/∆ (4.9)

−α3, j(α−1
2, j (ρs, j))+LxM∆+Lwwp ≤−ε j/∆ (4.10)

If x(t0)∈Ωρ0 , ρmin ≤ ρ j and t f − t0 is sufficiently large such that x(t f )∈Ωρ j , then the state

x(t) of the closed-loop system is always bounded and is ultimately bounded in Ωρmin where

ρmin = max{V (x(t +∆)) : V (x(t))≤ ρs, j}.

Proof 4.1 The proof consists of three parts. We first prove that the optimization problem

is feasible. Subsequently, we prove that, under the LMPC design, the closed-loop state of

the system is always bounded and will converge to a small set containing the origin after a

finite number of sampling periods. Finally, we prove that under the LMPC, the closed-loop

state of the system is ultimately bounded in the set Ωρmin .

Part 1: When x(t) is maintained in Ωρ0 for t < t f and in Ωρ j for t ≥ t f (which will

be proved in Part 2), the feasibility of the LMPC follows because the input trajectory

u(t) = h j(x(tk+q)), ∀t ∈ [tk+q, tk+q+1) with q = 0, . . . , N−1 ( j = 0 for t < t f ) is a feasible

solution to the optimization problem since such trajectory satisfies the input constraint and

the Lyapunov-based constraints. This is guaranteed by the closed-loop stability property

of the Lyapunov-based controllers h0(x) and h j(x).

Part 2: We prove that if x(tk) ∈ Ωρ0 \Ωρs,0 and tk+1 < t f , then V (x(tk+1)) < V (x(tk))

and after a finite time, either the system will converge to the set Ωρs,0 which is contained in

the set Ωρ j or it will converge to the set Ωρ0 ∪Ωρ j by t f .

When x(tk) ∈ Ωρ0 \Ωρs,0 and tk+1 < t f , from the last constraint of the LMPC of Eq.

4.8 and accounting for Eq. 4.3, the derivative of the Lyapunov function along the system
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trajectory at tk is

∂V (x(tk))
∂x

( f (x(tk))+G1(x(tk))u∗(tk))≤
∂V (x(tk))

∂x
( f (x(tk))+G1(x(tk))h0(x(tk)))

≤−α3,0(|x(tk)|) (4.11)

The time derivative of the Lyapunov function along the computed optimal trajectories u∗

for ∀τ ∈ [tk, tk+1) can be written as follows

V̇ (x(τ)) =
∂V (x(τ))

∂x
( f (x(τ))+G1(x(τ))u∗(tk)+G2(x(τ))w(t)) (4.12)

Adding and subtracting the term ∂V (x(tk))
∂x ( f (x(tk))+G(x(tk))u∗(tk)) to/from the above equa-

tion and considering the bound of Eq. 4.11, we have

V̇ (x(τ))≤−α3,0(|x(tk)|)−
∂V
∂x

( f (x(tk))+G1(x(tk))u∗(tk))

+
∂V
∂x

( f (x(τ))+G1(x(τ))u∗(tk)+G2(x(τ))w(τ)) (4.13)

From the Lipschitz property of Eq. 4.7 and accounting for the bounded disturbance, we

can write

V̇ (x(τ))≤−α3,0(|x(tk)|)+Lx |x(τ)− x(tk)|+Lwwp (4.14)

Taking into account Eq. 4.6 and the continuity of x(t), the following bound can be written

for all τ ∈ [tk, tk+1)

|x(τ)− x(tk)| ≤M∆ (4.15)

Using the bound of Eq. 4.15 and since x(tk) ∈Ωρ0 \Ωρs,0 , the bound of Eq. 4.14 becomes

V̇ (x(τ))≤−α3,0(α−1
2,0 (ρs,0))+LxM∆+Lwwp (4.16)
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If the condition of Eq. 4.9 is satisfied, then there exists ε0 > 0 such that the following

inequality holds for x(tk) ∈Ωρ0 \Ωρs,0

V̇ (x(t))≤−ε0/∆, ∀t = [tk, tk+1) (4.17)

Integrating this bound on t ∈ [tk, tk+1), we obtain that

V (x(tk+1))≤V (x(tk))− ε0

V (x(t))≤V (x(tk)), ∀t ∈ [tk, tk+1) (4.18)

for all x(tk)∈Ωρ0 \Ωρs,0 . Using Eq. 4.18 recursively, it is proved that, if x(tk)∈Ωρ0 \Ωρs,0 ,

the state converges to Ωρs,0 ⊂Ωρ j in a finite number of sampling times without leaving the

stability region Ωρ0 .

The horizon (t f −t0) is chosen to be sufficiently large such that starting from any x(t0)∈

Ωρ0 , the state will be driven into the set Ωρ j by t f . Similar arguments as above can be used

to show that after t f , operation is always maintained in the set Ωρ j and converges to the set

Ωρs, j ⊂ Ωρ j after some finite number of sampling periods if the conditions of Eq. 4.10 are

satisfied.

Part 3: We prove that if x(tk) ∈ Ωρ j for tk ≥ t f , then the system state will ultimately

be bounded in an invariant set Ωρmin . From Part 2, we proved that if x(t0) ∈ Ωρ0 , the

state converges to Ωρ j before t f and after a finite number of sampling times, the system

will be driven to the set Ωρs, j . Once the state converges to Ωρs, j , it remains inside Ωρmin

for all times. This statement holds because of the definition of ρmin. This proves that the

closed-loop system state under the LMPC of Eq. 4.8 is ultimately bounded in Ωρmin .

Remark 4.4 We note that in many realistic actuator faults a fault is initially gradual mean-

ing that the maximum available actuator output decreases slowly with time until the max-
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imum output begins to drastically decrease (sigmoid relationship). In this manner, the

bounds on the available actuator output become time-dependent. This is a mild extension

of what is covered in the stability proof. As long as the evolution of the constraint set is a

known function of time a priori, the time-dependent bound may be used in the LMPC for-

mulation. From a stability point of view, the goal of the proactive fault-tolerant controller

is to drive the closed-loop system to the stability region without the faulty control actuator

Ω j by the time the fault starts whether that fault is abrupt or gradual. If this is accom-

plished at the time of the fault, then we can guarantee closed-loop stability. This follows

from a simple argument that if we can stabilize the system with m− 1 actuators, we can

also stabilize with m−1 plus the gradually decaying one. This remark refers to case B in

our application of this theory to a chemical process, where this type of fault is implemented

and handled.

4.4 Application to a Chemical Process

Consider a three vessel, reactor-separator chemical process consisting of two CSTRs in

series followed by a flash tank separator as shown in Fig. 4.2. Two parallel first-order

reactions occur in each of the reactors that have the form:

A
r1→ B

A
r2→C

Each reactor is supplied with a fresh stream of the reactant A contained in an inert

solvent D. A recycle stream is used to recover unreacted A from the overhead vapor of

the flash tank and feed it back to the first CSTR. Some of the overhead vapor from the

flash tank is condensed, and the bottom product stream is removed. All three vessels are
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Figure 4.2: Process flow diagram of the reactor and separator chemical process.

assumed to have static holdup and are equipped with a jacket to supply/remove heat from

the vessel. The dynamic equations describing the behavior of the system, obtained through

material and energy balances under standard modeling assumptions, are given below:
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dT1

dt
=

F10

V1
(T10−T1)+

Fr

V1
(T3−T1)+

−∆H1

ρCp
k1e

−E1
RT1 CA1 +

−∆H2

ρCp
k2e

−E2
RT1 CA1 +

Q1

ρCpV1

(4.19)

dCA1

dt
=

F10

V1
(CA10−CA1)+

Fr

V1
(CAr−CA1)− k1e

−E1
RT1 CA1− k2e

−E2
RT1 CA1 (4.20)

dCB1

dt
=
−F10

V1
CB1 +

Fr

V1
(CBr−CB1)+ k1e

−E1
RT1 CA1 (4.21)

dCC1

dt
=
−F10

V1
CC1 +

Fr

V1
(CCr−CC1)+ k2e

−E2
RT1 CA1 (4.22)

dT2

dt
=

F1

V2
(T1−T2)+

F20

V2
(T20−T2)+

−∆H1

ρCp
k1e

−E1
RT2 CA2 +

−∆H2

ρCp
k2e

−E2
RT2 CA2 +

Q2

ρCpV2

(4.23)

dCA2

dt
=

F1

V2
(CA1−CA2)+

F20

V2
(CA20−CA2)− k1e

−E1
RT2 CA2− k2e

−E2
RT2 CA2 (4.24)

dCB2

dt
=

F1

V2
(CB1−CB2)−

F20

V2
CB2 + k1e

−E1
RT2 CA2 (4.25)

dCC2

dt
=

F1

V2
(CC1−CC2)−

F20

V2
CC2 + k2e

−E2
RT2 CA2 (4.26)

dT3

dt
=

F2

V3
(T2−T3)−

HvapFrm

ρCpV3
+

Q3

ρCpV3
(4.27)

dCA3

dt
=

F2

V3
(CA2−CA3)−

Fr

V3
(CAr−CA3) (4.28)

dCB3

dt
=

F2

V3
(CB2−CB3)−

Fr

V3
(CBr−CB3) (4.29)

dCC3

dt
=

F2

V3
(CC2−CC3)−

Fr

V3
(CCr−CC3) (4.30)

where the notation is defined in Table 4.1 and the process parameter values are given in

Table 4.2.

To model the separator, we assume that the relative volatility of each species remains

constant within the operating temperature range of the flash tank and that the amount of

reacting material in the separator is negligible. The following algebraic equations model
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Table 4.1: Notation used for the process parameters and variables

CA j0 Concentration of A in the feed stream to vessel j, j = 1,2
Ci, j Concentration of species i, i = A,B,C in vessel j, j = 1,2,3
Ci,r Concentration of species i, i = A,B,C in the recycle stream
Tj0 Temperature of the feed stream to vessel j, j = 1,2
Tj Temperature in vessel j, j = 1,2,3
Tr Temperature in the recycle stream
Fj0 Flow rate of the feed stream to vessel j, j = 1,2
Fj Flow rates of the effluent stream from vessel j, j = 1,2,3
Fr Flow rate of the recycle stream
Fp Flow rate of the purge stream
V j Volumes of vessel j, j = 1,2,3
Ek Activation energy of reaction k, k = 1,2
kk Pre-exponential factor of reaction k, k = 1,2
∆Hk Heat of reaction k, k = 1,2
Hvap Heat of vaporization
αi Relative volatilities of species i, i = A,B,C,D
MWj Molecular weights of species i, i = A,B,C,D
Cp Heat capacity
R Gas constant

Table 4.2: Process parameter values.

T10 = 300, T20 = 300 K
F10 = 5, Fr = 1.9, Fp = 0 m3/hr
CA10 = 4, CA20 = 3 kmol/m3

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5×104, E2 = 5.5×104 kJ/kmol
k1 = 3×106, k2 = 3×106 1/hr
∆H1 =−5×104, ∆H2 =−5.3×104 kJ/kmol
Hvap = 5 kJ/kmol
Cp = 0.231 kJ/kg−K
R = 8.314 kJ/kmol−K
ρ = 1000 kg/m3

αA = 2, αB = 1, αC = 1.5, αD = 3 unitless
MWA = MWB = MWC = 50, MWD = 18 kg/kmol
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the composition of the overhead stream of the separator:

CAr =
αACA3

K
, CBr =

αBCB3

K
, CCr =

αCCC3

K
(4.31)

K = αACA3
MWA

ρ
+αBCB3

MWB

ρ
+αCCC3

MWC

ρ
+αDxDρ (4.32)

Frm =
Fr

MWD
[ρ−CA3MWA−CB3MWB−CC3MWC

+(CA3 +CB3 +CC3)MWD] (4.33)

where xD is the mass fraction of the solvent in the flash tank liquid holdup and Frm is the

recycle molar flow rate.

The process has four manipulated input variables: the heat supplied/removed for each

vessel and the inlet flow rate F20 to the second reactor. The available control energy is

|Qi| ≤ 3×105 kJ/hr, i = 1, 2, 3 and 0≤ F20 ≤ 10m3/hr. The control objective we consider

is to drive the system to the unstable steady-state:

xT
s =

[
T1 CA1 CB1 CC1 T2 CA2 CB2 CC2 T3 CA3 CB3 CC3

]
=

[
370 3.32 0.17 0.04 435 2.75 0.45 0.11 435 2.88 0.50 0.12

]

while proactively accounting for an incipient fault under the various simulated control ac-

tuator faults.

To design the Lyapunov-based controller h(x), we consider a quadratic Lyapunov func-

tion V (x) = xT Px with P = diag([20 103 103 103 10 103 103 103 10 103 103 103]) and de-

sign the controller h(x) as three PI controllers with proportional gains Kp1 = 5000, Kp2 =

7000, Kp3 = 7000 and integral time constants τI1 = τI2 = τI3 = 10 based on the devi-

126



ation of temperature measurements of T1, T2, and T3 from their respective steady-state

temperature values. The feed flow rate into the second reactor is set to be a constant

F20 = 5 kmol/m3 in the controller h(x). The auxiliary controller h(x) is used in the de-

sign of a proactive fault-tolerant LMPC of Eq. 4.8 with weighting matrices chosen to be

Qc = P, R = diag([5× 10−12 5× 10−12 5× 10−12 100]), prediction horizon N = 6, and

sampling period ∆ = 0.005 hr = 18 sec.

We implement the proactive fault-tolerant LMPC on the reactor-separator chemical

process of Eqs. 4.19 - 4.33. To compare the proactive fault-tolerant controller with the

closed-loop system without proactive fault-tolerant control, we implement another LMPC

that does not account for the fault. The reactor-separator system is initialized at the stable

steady-state T1 = T2 = T3 = 301 K, CA1 = 3.58, CA2 = 3.33, CA3 = 3.50, CB1 =CB2 =CB3 =

0, and CC1 = CC2 = CC3 = 0. The simulations were carried out using Java programming

language in a Intel R⃝ CoreTM i7, 3.40 GHz computer. The optimization problems were

solved using the open source interior point optimization software Ipopt.139

In terms of fault/failure, they can be classified by its degree and action time so we

introduce different types of actuator faults in the system. In case study A, we conduct a

simulation for a fault in Q2, which is a complete fault in the corresponding actuator. To

simulate a realistic gradual actuator fault, we model a fault in Q2 as a logistic function in

case B as well as introduce process noise into the system. In case C, we simulate process

recovery from the faulty system back to the fault-free system with the proposed proactive

fault-tolerant controller after the faulty actuator is repaired. The following case studies

were completed to simulate these scenarios and demonstrate the practical stability of the

closed-loop system of Eqs. 4.19 - 4.33 with the proposed proactive fault-tolerant LMPC.

127



4.4.1 Complete Fault on the Q2 Actuator

We consider a fault in the heat supplied to/removed from CSTR2 that renders Q2 = 0 for

t ≥ 0.0545 hr. The results of two one-hour closed-loop simulations are shown in Fig. 4.3

and Fig. 4.4. Fig. 4.3 shows the closed-loop process evolution with LMPC but without

accounting for the fault and Fig. 4.4 shows the closed-loop process evolution with the

proposed proactive fault-tolerant LMPC. Fig. 4.5 shows a plot of the manipulated input

trajectories for (a) the closed-loop process without accounting for the fault and (b) the

closed-loop process with the proposed proactive fault-tolerant LMPC from t = 0 hr to

t = 0.3 hr to better highlight the differences between the two types of controllers.

From Fig. 4.5, we observe that the proactive fault-tolerant LMPC feeds less cold re-

actant by reducing the inlet feed F20 into CSTR2 leading up to the fault compared to the

closed-loop process without proactive fault-tolerant control. Before the fault, CSTR2 is

rich with the reactant A and the temperature in the reactor is less than the desired set-

point. Considering that the reaction is exothermic and the initial temperature of inlet feed

F20, T20 is colder relative to the desired temperature of CSTR2, the proactive fault-tolerant

controller take advantages of the heat generated from the exothermic reaction to heat the

contents of CSTR2. Furthermore, we see that the proactive fault-tolerant controller shuts

off the manipulated input Q2 at the sampling time before the fault occurs and uses only the

feed flow F20 into CSTR2 to bring the temperature and species concentrations of CSTR2

close to the desired set-points with Q2 = 0. From Figs. 4.3 and 4.4, the post-fault behav-

ior of these two control strategies is observed. The closed-loop process without proactive

fault-tolerant control settles on an offsetting steady-state; whereas, the closed-loop process

with the proposed proactive fault-tolerant LMPC settles at the desired steady-state.

To check how our proactive fault-tolerant LMPC works, we compared the controller

performance indices: the process control cost with the proposed proactive fault-tolerant
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Figure 4.3: The closed-loop process state and manipulated input trajectories (solid lines)
and set-points (dashed lines): (a) vessel temperatures, (b) species concentrations, (c)
manipulated inputs without proactive fault-tolerant control applied. The fault renders
Q2(t) = 0 for t ≥ 0.0545 hr.
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Figure 4.4: The closed-loop process state and manipulated input trajectories (solid lines)
and set-points (dashed lines): (a) vessel temperatures, (b) species concentrations, (c) ma-
nipulated inputs with proactive fault-tolerant control applied. The fault renders Q2(t) = 0
for t ≥ 0.0545 hr.

130



0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

F 20

[m
3 /h

r]

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4
Q

1 x
10

5

[k
J/

hr
]

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

Q
2 x

10
5

[k
J/

hr
]

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

Time [hr]

Q
3 x

10
5

[k
J/

hr
]

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

F 20

[m
3 /h

r]

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

Q
1 x

10
5

[k
J/

hr
]

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

Q
2 x

10
5

[k
J/

hr
]

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

Time [hr]

Q
3 x

10
5

[k
J/

hr
]

(b)

Figure 4.5: The closed-loop input trajectories: (a) without proactive fault-tolerant control
and (b) with the proposed proactive fault-tolerant LMPC. The fault renders Q2(t) = 0 for
t ≥ 0.0545 hr.

LMPC is 2.35× 104 which is much smaller than 1.99× 105, that without accounting for

the fault. The proposed proactive fault-tolerant LMPC take advantages of the known fault

and adjust the control performance to adapt to the future fault.

4.4.2 Gradual Fault on the Q2 Actuator with Bounded Process Noise

In certain cases, an actuator may fail gradually. Based on the empirical function of the

reliability of process components, the maximum available output of the faulty actuator

usually decreases exponentially on the basis of its original maximum available output.43

Thus, in this case, we use a logistic function to represent the maximum available output of

the faulty actuator for the heat input/removal to CSTR2. The logistic function has a general

formula as follows:138

|Umax(t)|=
a

1+ exp
(
−(t−c)

b

) ∣∣Umax,0
∣∣ (4.34)
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Figure 4.6: The plot of the logistic function for the normalized maximum output of the
faulty actuator. At t = 0.1 hr, the maximum output of the faulty actuator becomes very
close to 0% of its fault-free output value.

where a, b and c are parameters, |Umax(t)| is the maximum available control energy of the

jth faulty control actuator, and
∣∣Umax,0

∣∣ is the maximum available output of the actuator

under fault-free conditions. Fig. 4.6 shows a plot of the logistic function of Eq. 4.34 used

to model a gradual fault in Q2 with parameters: a = 1, b = −0.01 hr and c = 0.055 hr.

From the plot, we can observe that the maximum available output value decreases slowly

at the beginning, but the derivative of this function decreases quickly which is characteristic

of a realistic actuator fault. For this particular function, the maximum available output of

the faulty actuator becomes very close to 0% of its fault-free output at t = 0.1 hr.

Instead of switching the control problem from 4 control actuators to the 3 remaining

control actuators at the beginning of the gradual fault, the proactive fault-tolerant LMPC

accounts for the faulty actuator of Q2 whose maximum available output decreases following
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the above logistic function. In this case, the gradual fault begins at t = 0.0545 hr and the

proactive fault-tolerant LMPC regards t = 0.1545 hr as the time to reconfigure the control

system from 4 available control actuators to the 3 remaining control actuators. This time

has been chosen as 0.1 hr after the beginning of the gradual fault because the maximum

available output of the faulty actuator at this time is almost 0% of its fault-free output.

We also consider the effect of bounded process noise on the process. Process noise is

added to each of the 12 states and modeled as bounded Gaussian white noise with 0 mean,

unit variance, and bounds given by wp = [2 0.25 0.05 0.05 2 0.25 0.05 0.05 2 0.25 0.05 0.05].

The results of two one-hour closed-loop simulations are shown in Fig. 4.7 and Fig. 4.8.

Fig. 4.7 shows the closed-loop process evolution with LMPC, but without accounting for

the fault and Fig. 4.8 shows the closed-loop process evolution with the proposed proactive

fault-tolerant LMPC. Fig. 4.5b shows a plot of the manipulated input trajectories for (a)

the closed-loop process without accounting for the fault and (b) the closed-loop process

with the proposed proactive fault-tolerant LMPC from t = 0 hr to t = 0.3 hr to better high-

light the differences between the two types of controllers. The maximum available control

energy in the faulty actuator of Q2 follows the logistic function of Eq. 4.34 with the param-

eters a = 1, b =−0.01 hr and c = 0.055 hr. The gradual fault begins at t = 0.0545 hr.

From Fig. 4.9b, we observe that the proactive fault-tolerant controller chooses a sim-

ilar strategy as in case A. Specifically, by accounting for the gradual fault that limits the

available maximum output of Q2, the proactive fault-tolerant controller feeds less reactant

material A into CSTR2 leading up to the fault and maintains the temperature T2 at the de-

sired steady-state as the maximum output of Q2 decreases. The closed-loop process without

proactive fault-tolerant control (Fig. 4.9a) feeds more feedstock into CSTR2 while demand-

ing more heat removed to decrease the temperature T2 to the desired steady-state after the

fault. However, the fault has rendered the Q2 actuator inactive and therefore, cannot remove

heat from CSTR2. The effect of feeding more material without removing heat causes the
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Figure 4.7: The closed-loop process state and manipulated input trajectories (solid lines)
and set-points (dashed lines): (a) vessel temperatures, (b) species concentrations, (c) ma-
nipulated inputs without proactive fault-tolerant control applied. The maximum available
control energy in the faulty actuator of Q2 follows the logistic function; the gradual fault
starts at t = 0.0545 hr.
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Figure 4.8: The closed-loop process state and manipulated input trajectories (solid lines)
and set-points (dashed lines): (a) vessel temperatures, (b) species concentrations, (c) ma-
nipulated inputs with proactive fault-tolerant control applied. The maximum available con-
trol energy in the faulty actuator of Q2 follows the logistic function; the gradual fault starts
at t = 0.0545 hr.
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Figure 4.9: The closed-loop input trajectories: (a) without proactive fault-tolerant control
and (b) with the proposed proactive fault-tolerant LMPC. The maximum available control
energy in the faulty actuator of Q2 follows the logistic function of Eq. 4.34 with parameters:
a = 1, b =−0.01 hr and c = 0.055 hr; the gradual fault starts at t = 0.0545 hr.

reactions to runaway because the reactions are highly exothermic. The post-fault behavior

of these two control strategies is observed in Fig. 4.7 and Fig. 4.8. The process under the

proactive fault-tolerant controller brings the process states to the desired steady-state. The

process without the proposed proactive LMPC settles on an offsetting steady-steady.

Also, we compared the controller performance indices: the process control cost with the

proposed proactive fault-tolerant LMPC is 2.55× 104 which is much smaller than 3.76×

105, that without accounting for the gradual fault. The proposed proactive fault-tolerant

LMPC take advantages of the known fault and adjust the control performance to adapt to

the future fault.

4.4.3 Process Recovery from 3-input Control System to Fault-Free 4-

input Control System

In this case, we demonstrate that with the proposed proactive LMPC we can successfully

recover back to the full, fault-free system after an actuator fault has been rectified or re-
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placed. Fig. 4.10 shows the closed-loop evolution of the process with the proactive fault

tolerant controller with the same gradual fault in the Q2 actuator as in case study B. We

consider t = 0.625 hr is the time the faulty actuator has been fixed and added back. From

Fig. 4.10, the controller is able to achieve practical stability both after the fault and after

the faulty actuator has been fixed and added back to the system.

4.5 Conclusions

In this work, we proposed a proactive fault-tolerant Lyapunov-based MPC that can account

for a known future fault and work for complete fault rejection. We proved practical sta-

bility of a closed-loop nonlinear system with the proposed proactive fault-tolerant LMPC.

The proposed controller was demonstrated through a chemical process consisting of two

CSTRs in series followed by a flash separator. The simulated process demonstrated that

the proactive fault-tolerant LMPC was able to achieve practical stability of the closed-loop

system. However, sensor faults or even process abnormal events which are very often en-

countered in practice, also have a significant effect on the controller performance. Thus we

plan to explore these types of faults in a future work.
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Figure 4.10: The closed-loop process state and manipulated input trajectories (solid lines)
and set-points (dashed lines): (a) vessel temperatures, (b) species concentrations and (c)
manipulated inputs with the proposed proactive fault-tolerant LMPC. The maximum avail-
able control energy in the faulty actuator of Q2 follows the logistic function with the given
parameters. At t = 0.625 hr, the proactive fault-tolerant controller adds the repaired Q2
actuator back to the closed-loop system.
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Chapter 5

Economic Model Predictive Control of

Transport-Reaction Processes

5.1 Introduction

This chapter presents the development of economic model predictive control (EMPC)

systems for transport-reaction processes that are described by nonlinear parabolic par-

tial differential equations (PDEs). Through the application of Galerkin’s method, finite-

dimensional ordinary differential equation models are first derived that capture the domi-

nant dynamics of the parabolic PDEs. The reduced-order models are then used to formu-

late finite-dimensional EMPC systems of varying dimension depending on the type of state

constraints imposed. The EMPC systems are applied to a non-isothermal tubular reactor,

described by two nonlinear parabolic PDEs, where a second-order chemical reaction takes

place. A state constraint that bounds the reactor temperature as well as an input constraint

that bounds the available reactant material over a fixed period of operation are considered

in the formulations of the EMPC systems which use the average reaction rate along the

length of the reactor as the economic cost function. Closed-loop simulations are conducted
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where a low-order EMPC system and a high-order EMPC system are separately applied

to a high-order discretization of the reactor model of PDEs, and they demonstrate that the

EMPC systems operate the process in a time-varying fashion to improve the economic cost

over steady-state operation and meet input and state constraints.

5.2 Preliminaries

5.2.1 Class of Parabolic PDE Systems

In this work, we consider parabolic partial differential equation systems with a state-space

representation of the following form:

∂ x̄
∂ t

= A
∂ x̄
∂ z

+B
∂ 2x̄
∂ z2 +Wu(t)+ f (x̄(z, t)) (5.1)

subject to the boundary conditions:

∂ x̄
∂ z

= g0x̄, z = 0;

∂ x̄
∂ z

= g1x̄, z = 1;
(5.2)

and the initial condition:

x̄(z,0) = x̄0(z) (5.3)

where x̄(z, t) = [x̄1(z, t) · · · x̄nx(z, t)]
′ denotes the state vector of the system, the notation

x̄′ denotes the transpose of x̄, f (x̄(z, t)) denotes a nonlinear vector function, z ∈ [0,1] is

the spatial coordinate, t ∈ [0,∞) is the time, A,B,W,g0 and g1 are matrices and vectors of

appropriate dimensions, u(t) denotes the nu-dimensional manipulated input vector and is
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subject to the following input constraints:

umin ≤ u(t)≤ umax (5.4)

where umin and umax are the lower and upper bound vectors of the manipulated input u(t).

Moreover, the system states are also subject to the following constraints:

xmin ≤
∫ 1

0
rx(z)x̄(z, t)dz≤ xmax (5.5)

where xmin and xmax are the lower and upper state constraint, respectively. The function

rx(z) ∈ L2(0,1) is the state constraint distribution function used to describe how the state

constraint is enforced in the spatial domain [0,1] and L2(0,1) is used to denote the space of

measurable functions that are square-integrable on the interval [0,1].

5.2.2 Galerkin’s Method

To present our results, we first formulate the system of PDEs as an infinite dimensional

system in the Hilbert space H ([0,1]; IRnx), with H being the space of measurable vector

functions defined on [0,1], with inner product and norm:

(ω1,ω2) =
∫ 1

0
(ω1(z),ω2(z))IRnx dz,

∥ω1∥2 = (ω1,ω1)
1
2

(5.6)

where ω1,ω2 are two elements of H ([0,1]; IRnx) and the notation (·, ·)IRnx denotes the

standard inner product in IRnx . The state function x(t) on the state-space H is defined as

x(t) = x̄(z, t), t > 0, 0≤ z≤ 1, (5.7)
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and the operator A is defined as

A x = A
dx̄
dz

+B
d2x̄
dz2 , 0≤ z≤ 1. (5.8)

Then, the system of Eq. 5.1 takes the following infinite-dimensional quasi-linear form:

ẋ(t) = A x(t)+Bu(t)+F (x(t)), x(0) = x0 (5.9)

where x0 = x̄0(z), Bu(t) =Wu(t) and F (x(t)) is a nonlinear vector function in the Hilbert

space. For the operator A , the eigenvalue problem takes the form

A ϕk = λkϕk, k = 1, . . . , ∞ (5.10)

subject to
dϕk

dz
(0) = g0ϕk(0),

dϕk

dz
(1) = g1ϕk(1)

(5.11)

where ϕk is an eigenfunction corresponding to the k-th eigenvalue and ϕ̄k is an adjoint

eigenfunction of the operator A .

Assumption 5.1 below characterizes the class of parabolic PDEs considered in this

work and states that the eigenspectrum of operator A can be partitioned into a finite part

consisting of m slow eigenvalues which are close to the imaginary axis and a stable infinite

complement containing the remaining fast eigenvalues which are far in the left-half of the

complex plane, and that the separation between the slow and fast eigenvalues of A is

large. We also note that the large separation of slow and fast modes of the spatial operator

in parabolic PDEs ensures that a controller which exponentially stabilizes the closed-loop

ODE system, also stabilizes the closed-loop infinite-dimensional system.9 This assumption
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is satisfied by the majority of diffusion-convection-reaction processes.25

Assumption 5.1

1. Re(λ1) ≥ Re(λ2) ≥ ·· · ≥ Re(λ j) ≥ ·· · , where Re(λ j) denotes the real part of the

eigenvalue, λ j.

2. The eigenspectrum of A , σ(A ), is defined as the set of all eigenvalues of A , i.e.

σ(A ) = {λ1,λ2, · · ·}. σ(A ) can be portioned as σ(A ) = σ1(A )∪σ2(A ), where

σ1(A ) consists of the first m finite eigenvalues, i.e. σ1(A ) = {λ1, · · · ,λm}, and

|Re(λ1)|/|Re(λm)|= O(1).

3. Re(λm+1)< 0 and |Re(λ1)|/|Re(λm+1)|= O(ε) where ε < 1 is a small positive num-

ber.

Next, we apply standard Galerkin’s method to the infinite-dimensional system of Eq. 5.9

to derive a finite-dimensional system. Let Hs and H f be modal subspaces of A defined

as Hs = span{ϕ1,ϕ2, . . . ,ϕm} and H f = span{ϕm+1,ϕm+2, . . .}. The existence of Hs and

H f follows from the properties of A . Defining the orthogonal projection operators, Ps

and Pf , which projects the state x onto the subspaces Hs and H f of A , respectively (i.e.,

xs = Psx ∈Hs and x f = Pf x ∈H f ), the state x of the system of Eq. 5.9 can be decomposed

as

x = xs + x f = Psx+Pf x (5.12)

Applying Ps and Pf to the system of Eq. 5.9 and using the above decomposition for x, the

system of Eq. 5.9 can be re-written in the following equivalent form:

ẋs(t) = Asxs(t)+Fs(xs(t),x f (t))+Bsu(t), xs(0) = Psx(0) = Psx0

ẋ f (t) = A f x f (t)+F f (xs(t),x f (t))+B f u(t), x f (0) = Pf x(0) = Pf x0

(5.13)
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where As = PsA , Bs = PsB, A f = Pf A , B f = Pf B, F f = Pf F , Fs = PsF . In the

above system, As = diag{λ j}, j = 1, . . . , m is a diagonal matrix of dimension m×m and

may contain unstable eigenvalues (i.e., Re(λ j) > 0). The operator A f is an unbounded

exponentially stable differential operator. Neglecting the fast modes, the resulting ODE

system is

ẋs(t) = Asxs(t)+Fs(xs(t),0)+Bsu(t), xs(0) = Psx0 (5.14)

which is a finite-dimensional system that describes the slow (dominate) dynamics of the

PDEs of Eq. 5.1 and may be used for standard model-based control synthesis

Remark 5.1 Whenever the eigenfunction ϕ j of the operator A cannot be calculated ana-

lytically, one can still use Galerkin’s method to perform model reduction by using empiri-

cal eigenfunction of the system of PDEs as basis functions in Hs and H f (such empirical

eigenfunctions can be extracted from detailed numerical simulations of the system of PDEs

using Karhunen-Loeve expansion; see Ref69)

5.3 Economic Model Predictive Control Problem Formu-

lation

We consider the application of economic model predictive control (EMPC) to the infinite-

dimensional system of Eq. 5.9 to optimize an economic measure. We assume that the

EMPC receives state measurements continuously and synchronously at sampling periods
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denoted as tk = k∆ with k = 0, 1, . . . . The EMPC optimization problem has the form

max
u∈S(∆)

∫ ttk+N

tk
L(x̃(τ),u(τ))dτ (5.15a)

s.t. ˙̃x(t) = A x̃(t)+F (x̃(t))+Bu(t) (5.15b)

x̃(tk) = x(tk) (5.15c)

umin ≤ u(t)≤ umax, ∀ t ∈ [tk, tk+N) (5.15d)

xmin ≤ (rx, x̃(t))≤ xmax, ∀ t ∈ [tk, tk+N) (5.15e)

where ∆ is the sampling period, S(∆) is the family of piecewise constant functions with

sampling period ∆, N is the prediction horizon, x̃(t) is the predicted state function evolu-

tion with input u(t) computed by the EMPC and x(tk) is the state measurement. In the

optimization problem of Eq. 5.15, the cost function of Eq. 5.15a defined as L(x̃(τ),u(τ))

is formulated to directly account for the economics of the system of PDEs. The constraint

of Eq. 5.15b is the system of PDEs in the Hilbert space used to predict the future evolu-

tion of the system of PDEs with the initial condition of Eq. 5.15c obtained through state

feedback. The constraints of Eq. 5.15d-5.15e are the available control energy and state con-

straints, respectively. The optimal solution to this optimization problem is u∗(t|tk) defined

for t ∈ [tk, tk+N). The EMPC applies the control action computed for the first sampling

period to the system in a sample-and-hold fashion for t ∈ [tk, tk+1). The EMPC is resolved

at the next sampling period, tk+1, after receiving a new state measurement, x(tk+1). The

infinite dimensional nature of the controller of Eq. 5.15 in this case, however, renders it

unsuitable for the purpose of practical implementation.
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5.3.1 Low-order Economic Model Predictive Control Formulation

In this formulation, a Lyapunov-based EMPC (LEMPC) system (see Ref65 for results on

LEMPC) is designed on the basis of the low-order, finite-dimensional slow subsystem of

Eq. 5.14 describing the evolution of xs (the fast subsystem is neglected). The low-order

EMPC law is obtained by solving, in a receding horizon fashion, the following finite-

dimensional optimization problem:

max
u∈S(∆)

∫ ttk+N

tk
L(x̃s(τ),u(τ))dτ (5.16a)

s.t. ˙̃xs(t) = Asx̃s(t)+Fs(x̃s(t),0)+Bsu(t) (5.16b)

x̃s(tk) = Psx(tk) (5.16c)

umin ≤ u(t)≤ umax, ∀ t ∈ [tk, tk+N) (5.16d)

xmin ≤ (rx, x̃s(t))≤ xmax, ∀ t ∈ [tk, tk+N) (5.16e)

(x̃s(t),Px̃s(t))≤ ρ̄ , ∀ t ∈ [tk, tk+N) (5.16f)

The constraints of Eq. 5.16b-5.16c are used to predict the future evolution of the slow

subsystem with the initial condition given in Eq. 5.16c. The constraints of Eq. 5.16d-5.16e

are the available control energy and the state constraints, respectively. The constraint of

Eq. 5.16f is a quadratic Lyapunov function (P is an m×m dimensional positive definite

matrix) of the slow subsystem and ensures that the predicted state trajectory is restricted

inside a predefined stability region which is a level set of the Lyapunov function (see Ref65

for a complete discussion of this issue).

Remark 5.2 The reduced-order EMPC formulation may achieve suboptimal solutions com-

pared to the infinite dimensional EMPC problem, but it is not possible to quantify how sub-

optimal the solution obtained via the reduced-order formulation is (due to the inability to

compute the solution of the infinite-dimensional problem).
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Remark 5.3 To improve the accuracy of the slow finite-dimensional xs-subsystem, the

finite-dimensional approximation of the system of Eq. 5.14 may be obtained through com-

bination of Galerkin’s method with approximate inertial manifolds. This approach can be

used to further reduce the dimension of the xs-subsystem and ensure that it is of an ap-

propriately low-order suitable for controller design and on-line controller implementation

system.25

5.3.2 High-order Economic Model Predictive Control Formulation

Accounting for the evolution of the fast subsystem is important for the purpose of satisfying

state constraints. To formulate a finite dimensional EMPC optimization problem, the fast

subsystem is truncated at the l-th fast state (i.e., the l + 1, l + 2, . . . states are discarded).

The notation ·̂ is used to denote the finite-dimensional truncation of the fast subsystem.

The computational complexity associated with accounting for the fast subsystem could

be eased by neglecting the nonlinearity in the dynamic model of the fast modes, while

retaining the nonlinear dynamics of the slow modes (so as to not adversely effect the task

of stabilization). The term ˆA f behaves like 1/ε (in Assumption 5.1), where ε is a small

parameter. Therefore, ˆA f is much greater than F̂ f and F̂ f can be neglected from the

equation (see Ref25 for more discussion and analysis of this approximation). Using this
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approximation, the EMPC formulation takes the following form:

max
u∈S(∆)

∫ ttk+N

tk
L(x̃(τ),u(τ))dτ (5.17a)

s.t. ˙̃xs(t) = Asx̃s(t)+Fs(x̃s(t), x̂ f (t))+Bsu(t) (5.17b)

˙̂x f (t) = ˆA f x̂ f (t)+ B̂ f u(t) (5.17c)

x̃s(tk) = Psx(tk), x̂(tk) = P̂f x(tk) (5.17d)

x̌(t) = x̃s(t)+ x̂ f (t) (5.17e)

umin ≤ u(t)≤ umax, ∀ t ∈ [tk, tk+N) (5.17f)

xmin ≤ (rx, x̌(t))≤ xmax, ∀ t ∈ [tk, tk+N) (5.17g)

(x̌(t),Px̌(t))≤ ρ̄ (5.17h)

In the optimization problem of Eq. 5.17, the constraint of Eq. 5.17c is the finite-dimensional

truncation of the fast subsystem (nonlinear part of the dynamics being neglected) which is

used to predict the evolution of the fast subsystem states, and x̌(t) is used to denote the

vector of all the states (i.e., both the slow subsystem and fast subsystem states). The cost

function and the remaining constraints are similar to Eq. 5.16.

Remark 5.4 We choose a certain number of modes of the dynamic system of Eqs. 5.17b-

5.17c for the synthesis of the high-order EMPC formulation to make sure that further in-

crease in the number of modes leads to identical numerical results.

Remark 5.5 State constraints arise either due to the necessity to keep the process state

variables within acceptable ranges to avoid, for example, runaway reactions (in which

case they need to be enforced at all times and treated as hard constraints) or due to the

desire to maintain process state variables within desirable bounds dilated by performance

considerations (in which case they may be relaxed, and treated as soft constraints). In the
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Figure 5.1: A tubular reactor with reaction A→ B.

formulations presented in this work, we consider state constraints that are hard constraints

but could also be treated as soft ones; for predictive controller formulations where the state

constraints are handled as soft constraints, see, e.g., Refs.100, 122

5.4 Application To A Tubular Reactor

In this section, we apply the low-order and high-order EMPC systems to a transport-

reaction chemical process example. First, we present the model of the transport-reaction

process which is a tubular reactor. Second, we apply Galerkin’s method to the chemical

process example to construct a reduced-order model in modal space. Finally, we present

a series of simulations with EMPC systems formulated with various state and input con-

straints to assess the performance of the closed-loop system under the EMPC.

5.4.1 Reactor Description

We consider a non-isothermal tubular reactor shown in Fig. 5.1, where an irreversible

second-order reaction of the form A → B takes place. The reaction is exothermic and

a cooling jacket of constant temperature is used to remove heat from the reactor. Under the

standard assumptions of constant density (ρ) and heat capacity (Cp) of the reacting fluid,

and constant axial fluid velocity (v), the dynamic model of the process can be derived from

mass and energy balances and takes the following form:

149



∂T
∂ t

= −v
∂T
∂ z

+
k

ρCp

∂ 2T
∂ z2 +

(
−∆Hk0

ρCp

)
exp
(
−E
RT

)
C2

A−
hAs

ρCp
(T −TC)

∂CA

∂ t
= −v

∂CA

∂ z
+DA

∂ 2CA

∂ z2 − k0 exp
(
−E
RT

)
C2

A

(5.18)

where T and CA denote the temperature and concentration of species A in the reactor, re-

spectively, k and DA are the thermal conductivity and mass diffusivity of the reacting fluid,

respectively, k0, E and (−∆H) represent the pre-exponential constant, activation energy,

and the heat of the reaction, respectively, h is the heat transfer coefficient between the re-

actor and the cooling jacket, As is the surface area of the reactor walls, and Tc is the jacket

temperature. The system is subject to the boundary conditions:

z = 0 :
∂T
∂ z

=
ρCpv

k
(T −Tf ),

∂CA

∂ z
=

v
DA

(CA−CA f );

z = L :
∂T
∂ z

= 0,
∂CA

∂ z
= 0;

(5.19)

where Tf and CA f denote the inlet temperature and concentration of species A in the reactor

and L is the length of the reactor. In this case, we choose the inlet concentration of species

A, CA f as the manipulated input. In order to simplify the presentation of our results, we

introduce the following dimensionless variables:

t̄ =
tv
L
, z̄ =

z
L
, Pe1 =

ρCpvL
k

, Pe2 =
vL
DA

,

x̄1 =
T −T0

T0
, x̄2 =

CA−CA0

CA0
, u =

CA f −CA0

CA0
, γ =

E
RT0

,

Ts =
Tc−T0

T0
, Ti =

Tf −T0

T0
, βT =

hAsL
ρCpv

, BT =
−(∆H)CA0

ρCpT0
,

BC =
k0CA0e−E/RT0L

v

(5.20)
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where T0 and C0 are reference temperature and concentration, respectively, to write the

system of Eqs. 5.18-5.19 in the following form:

∂ x̄1

∂ t̄
= −∂ x̄1

∂ z̄
+

1
Pe1

∂ 2x̄1

∂ z̄2 +BT BC exp
(

γ x̄1

1+ x̄1

)
(1+ x̄2)

2 +βT (Ts− x̄1)

∂ x̄2

∂ t̄
= −∂ x̄2

∂ z̄
+

1
Pe2

∂ 2x̄2

∂ z̄2 −BC exp
(

γ x̄1

1+ x̄1

)
(1+ x̄2)

2

(5.21)

subject to the following boundary conditions:

z̄ = 0 :
∂ x̄1

∂ z̄
= Pe1(x̄1−Ti),

∂ x̄2

∂ z̄
= Pe2(x̄2−u);

z̄ = 1 :
∂ x̄1

∂ z̄
= 0,

∂ x̄2

∂ z̄
= 0;

(5.22)

Furthermore, in order to simplify the computation of the eigenvalues and eigenfunctions

of the spatial differential operator which will be used in our calculations, we insert the non-

homogeneous part of the boundary conditions of Eq. 5.22 into the differential equation and

obtain the following nonlinear PDEs for the process (we suppress the bar notation for t̄ and

z̄):119

∂ x̄1

∂ t
= −∂ x̄1

∂ z
+

1
Pe1

∂ 2x̄1

∂ z2 +δ (z−0)Ti +BT BC exp
(

γ x̄1

1+ x̄1

)
(1+ x̄2)

2 +βT (Ts− x̄1)

∂ x̄2

∂ t
= −∂ x̄2

∂ z
+

1
Pe2

∂ 2x̄2

∂ z2 +δ (z−0)u−BC exp
(

γ x̄1

1+ x̄1

)
(1+ x̄2)

2

(5.23)

where δ is the standard Dirac function, subject to the following transformed boundary

conditions:

z = 0 :
∂x1

∂ z
= Pe1x1,

∂x2

∂ z
= Pe2x2;

z = 1 :
∂x1

∂ z
= 0,

∂x2

∂ z
= 0;

(5.24)

Finally, we present the solution to the eigenvalue problem of the spatial differential
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operator of the process, i.e.,:

−
dϕi j

dz
+

1
Pei

d2ϕi j

dz2 = λi jϕi j, (5.25)

subject to

z = 0 :
dϕi j

dz
= Peiϕi j;

z = 1 :
dϕi j

dz
= 0;

(5.26)

for i = 1, 2, j = 1, . . . , ∞. The index i is used to denote the ith partial differential equation

and the index j is used to denote the j-th eigenmode. The solution of the eigenvalue

problem of the spatial differential operator of the i-th partial differential equation can be

obtained by utilizing standard techniques from linear operator theory and is of the form:

λi j =−
ā2

i j

Pei
− Pei

4
,

ϕi j(z) = Bi j exp
(

Pei
z
2

)(
cos(āi jz)+

Pei

2āi j
sin(āi jz)

)
,

ϕ̄i j(z) = exp(−Peiz)ϕi j(z),

(5.27)

for i = 1, 2, j = 1, . . . , ∞ where λi j, ϕi j and ϕ̄i j denote the eigenvalues, eigenfunctions

and adjoint eigenfunctions of the spatial differential operator of the i-th partial differential

equation, respectively. The parameters Bi j and āi j can be calculated from the following

formulas:

Bi j =

[∫ 1

0

(
cos(āi jz)+

Pei

2āi j
sin(āi jz)

)2

dz

]−1/2

,

tan āi j =
Peiāi j

ā2
i j− (Pei/2)2 ,

(5.28)

for i = 1, 2, j = 1, . . . , ∞.

The following typical values are given to the process parameters: Pe1 = 7, Pe2 = 7,

152



BT = 2.5, BC = 0.1, βT = 2, Ts = 0, Tf = 0 and γ = 10. In all simulations reported be-

low, the second-order finite-difference method was used to discretize, in space, the two

parabolic PDEs describing the tubular reactor and obtain a 400th-order set of ODEs in time

describing the tubular reactor behavior; this discretized model was used to describe the pro-

cess dynamics in all simulations. We note that further increase on the order of the process

model led to identical open-loop and closed-loop simulation results.

Remark 5.6 The Péclet numbers (Pe1 and Pe2) essentially quantify the ratio of convec-

tive transport phenomena to diffusive transport phenomena. If these numbers are large,

convective transport phenomena dominate over the diffusive transport phenomena. If it is

small, diffusive transport phenomena dominate over the convective transport phenomena.

For processes with Pe1 = Pe2 = c where c is a constant on the order of 1, both transport

mechanisms are significant and the diffusive and convective phenomena are comparable in

importance for both the mass and heat transfer. In this work, we are considering processes

where both the diffusive and convective phenomena play an important role like in most

industrially-important transport-reaction processes. The choice of Pe1 = Pe2 = 7 reflects

this point: mass and heat transport are fully coupled (i.e., no time scale separation where

the assumption can be made that one of the two equations is at steady-state) and both the

diffusive and convective phenomena have to be accounted for.

However, this choice of Péclet numbers is not a limitation of our approach as we

can still construct a model on the basis of separation of time scales in the modal space.

As pointed out below, the first four eigenvalues (for each partial differential equation) of

the spatial differential operator are λ11 = λ21 = −2.36, λ12 = λ22 = −4.60, λ13 = λ23 =

−9.14, and λ14 = λ24 = −16.29. From this analysis, we observe a separation in magni-

tudes of the first two eigenvalues from the second two eigenvalues. Following our previous

work (e.g., Ref25), the error associated with the reduced-order model constructed with the

153



first two eigenvalues will have error on the order of ε = |λ1|/|λ3| = O(0.1). Please see

the “Case 3: High-order Economic Model Predictive Control Formulation With Both State

and Input Constraints” subsection which contains a closed-loop simulation with Pe1 = 1

and Pe2 = 7.

5.4.2 Galerkin’s Method

To simplify the presentation of the results, we will work with the amplitudes of the eigen-

modes of the PDEs. To reduce the PDEs of Eq. 5.23 into an ODE model, we take advantage

of the orthogonality property of the eigenfunctions. Specifically, using Galerkin’s method,

we first derive a high-order ODE system for each of the PDEs that describes the tempo-

ral evolution of the amplitudes corresponding to the first li eigenmodes. The state x̄i(z, t)

for i = 1, 2 can be written as the sum of the amplitudes and eigenfunctions of the first li

eigenmodes:

x̄i(z, t) =
li

∑
j=1

ai j(t)ϕi j(z) (5.29)

where ai j(t) and ϕi j(z) are the amplitude and eigenfunction associated with the j-th eigen-

value of spatial differential operator of the i-th partial differential equation. Substituting the

right-hand side of Eq. 5.29 into the i-th partial differential equation and taking inner prod-

uct of the resulting system with the adjoint eigenfunction, we can construct the temporal

evolution of the amplitudes of the i-th PDE:

ȧs,i(t) = As,ias,i(t)+Fs,i(as(t),a f (t))+Bs,iu(t),

ȧ f ,i(t) = A f ,ia f ,i(t)+Ff ,i(as(t),a f (t))+B f ,iu(t),
i = 1, 2 (5.30)

where as,i(t) = [as,i1(t), as,i2(t), · · · , as,i j(t), · · · , as,imi ]
′ with elements as,i j(t) ∈ IR associ-

ated with the amplitudes of the first mi eigenmodes and a f ,i is a vector of similar structure

to as,i(t) and is associated with the next mi +1 to li eigenmodes. The notation as(t), a f (t),
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and a(t) is used to denote the following vectors:

as(t) =

 as,1(t)

as,2(t)

 , a f (t) =

 a f ,1(t)

a f ,2(t)

 , a(t) =

 as(t)

a f (t)

 (5.31)

The matrix As,i = diag{λi j} is a mi ×mi matrix (i.e, j = 1, . . . , mi), the matrix A f ,i =

diag{λi j} is a (li−mi)× (li−mi) matrix (i.e, j = mi +1, . . . , li), and the matrices Bs,i and

B f ,i and the nonlinear vector fields Fs,i and Ff ,i can be constructed through the appropriate

inner product, e.g.,

Bs,i =



(ϕ̄i1(z), δ (z−0))

(ϕ̄i2(z), δ (z−0))
...

(ϕ̄imi(z), δ (z−0))


(5.32)

The initial conditions of the ODEs in Eq. 5.30 are

as,i(0) =



(ϕ̄i1(z), x̄(z,0))

(ϕ̄i2(z), x̄(z,0))
...

(ϕ̄imi(z), x̄(z,0))


, a f ,i =



(ϕ̄i(mi+1)(z), x̄(z,0))

(ϕ̄i(mi+2)(z), x̄(z,0))
...

(ϕ̄ili(z), x̄(z,0))


(5.33)

After truncating the fast subsystem of Eq. 5.30, we can construct a low-order finite-

dimensional model for the first j = 1, . . . , mi eigenmodes of each partial differential equa-

tion:

ȧs,i(t) = As,ias,i(t)+Fs,i(as(t),0)+Bs,iu(t), i = 1, 2 (5.34)

with initial conditions constructed using a similar procedure as in Eq. 5.33. Using Eq. 5.27,

the first four eigenvalues of the spatial operator of the i-th partial differential equation are

λ11 = λ21 = −2.36, λ12 = λ22 = −4.60, λ13 = λ23 = −9.14, λ14 = λ24 = −16.29. These
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values indicate that the eigenspectrum exhibits a two-time-scale property. Therefore, we

consider the first 2 eigenvalues, namely m1 = m2 = 2, as the dominant/slow eigenmodes

and the remaining infinite eigenmodes as the fast ones. We will refer to ODE system of

Eq. 5.34 with m1 = m2 = 2 as the low-order model.

We can also account for the fast subsystem by retaining the first li eigenmodes of each

partial differential equation. As described previously in the “High-order Economic Model

Predictive Control Formulation” subsection, the nonlinear part of the fast subsystem can be

neglected to improve the computational efficiency. The resulting ODE system is given by

ȧs,i(t) = As,ias,i(t)+Fs,i(as(t),a f (t))+Bs,iu(t), i = 1, 2

ȧ f ,i(t) = A f ,ia f ,i(t)+B f ,iu(t), i = 1, 2
(5.35)

To determine the amount of eigenmodes to retain, a series of open-loop and closed-loop

simulations were preformed. Based on these simulation results, the same open-loop and

closed-loop results are obtained with a 400th-order discretization, obtained by Galerkin’s

method (m1 = m2 = 2 and l1 = l2 = 200), of the two parabolic PDEs as with the 400-th

order set of ODEs obtained through the second-order finite-difference method. We will

refer to the ODE system of Eq. 5.35 with m1 = m2 = 2 and l1 = l2 = 200 simply as the

high-order model.

Remark 5.7 In this example, the same number of eigenmodes for each of the two PDEs

are retained. However, this is not necessary, in general, and hence, the need for the index

i.

5.4.3 Implementation of EMPC to a Tubular Reactor

We now proceed with the description and implementation of the EMPC formulations. To

solve the EMPC optimization problem at each sampling period, the open-source interior
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point solver Ipopt139 was used. To numerically integrate the finite-dimensional ODE model

of the transport-reaction process, explicit Euler’s method was used with an interation step

of 10−5. For the EMPC formulations, we consider a quadratic Lyapunov function of form

V (a) = a′(t)Pa(t) (5.36)

where P is an mi by mi and li by li identity matrix for the low-order and high-order model,

respectively and ρ̄ = 3 which has been chosen through closed-loop simulations of the PDE

system of Eq. 5.23 with the low-order EMPC formulated below as an estimate of the closed-

loop stability region. The control objective that we consider is to maximize the total reac-

tion rate along the length of the reactor and over one process operation period for t f = 1.

The economic measure used to accomplish this objective is

L(x,u) =
∫ 1

0
r(z, t)dz (5.37)

where r(z, t) = k0 exp(−E
RT )C2

A is the reaction rate in the tubular reactor.

The control input is subject to constraints as follows: −1 ≤ u ≤ 1. We also consider

that there is limitation on the amount of reactant material which can be used over the period

t f . Specifically, the control input trajectory of u should satisfy the following constraint:

1
t f

∫ t f

0
u(τ)dτ = 0.5 (5.38)

This constraint means that the total amount of reactant during one period is fixed. We will

refer to Eq. 5.38 as the reactant material constraint or the integral input constraint. Since the

EMPC is evaluated at discrete-time instants during the closed-loop simulation, the reactant
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material constraint is enforced as follows:

M−1

∑
i=0

u(ti) =
t f

2∆
(5.39)

where M = t f /∆. Moreover, to ensure that the reactant material constraint is satisfied

through the period t f , the EMPC utilizes the previously computed input u(ti), i= 0, 1, . . . , (k−

1) to constrain the control input trajectory u(t) t ∈ [tk, tk+N) at the current sampling time tk:

M
2
+
(

M− tk
∆
−N

)
umin ≤

k−1

∑
i=0

u∗(ti)+
N+k

∑
j=k

u(t j)≤
M
2
+
(

M− tk
∆
−N

)
umax (5.40)

where M/2 is the total amount of material that can be supplied to the reactor over one

operating period, M is the total number of sampling periods over each operating period,

and tk/∆ is the number sampling periods since the beginning of the operating period. To

simplify the notation, we use the notation u ∈ g(tk) to denote this constraint.

In terms of the state constraint, we consider that the temperature T along the length of

the reactor is subject to the following constraint:

x1,min ≤ x1(z, t)≤ x1,max (5.41)

where x1,min = −1 and x1,max = 3 are the lower and upper limits, respectively. Since the

models used in the formulations of the EMPC optimization problems are the low-order and

high-order models, we cast the state constraint in terms of the amplitudes of the eigenmodes

to prevent unnecessary computation required to convert from the modal space back to state

space when solving the optimization problem at each sampling period:

−1≤
200

∑
j=1

a1 j(t)ϕ1 j(z)≤ 3 (5.42)
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Remark 5.8 The operating period t f is chosen to be on the order of the time-scale of the

process dynamics and is used for imposing the integral input constraint (i.e., the avail-

able amount of reactant material over one operating period is fixed). Since the reaction is

second-order, the optimal strategy to maximize the reaction rate (without the integral con-

straint) would be to feed the maximum allowable amount of reactant material to the reactor

for all time. From a practical (economic) perspective, it is more important to address the

case where the available reactant material is fixed. For this case, the EMPC determines the

optimal distribution method of the reactant material to the reactor to maximize the reaction

rate. As the results of the first simulation case (input constraint only) demonstrate, for a

fixed amount of reactant material over some finite-time operating window, it is better, from

an economic stand-point, to distribute the material in a periodic fashion as this distribution

method yields greater average production rates over each operation period compared to

uniform in time distribution of the reactant material to the reactor.

We also note that the input and integral constraints are imposed for two fundamentally

different reasons. The input constraint is imposed as a result of the physical limitations of

the control actuator or available control actuation (e.g., the limits on available actuation

with a flow valve are fully closed or fully open). As pointed out above, the integral material

constraint is an economic or practical constraint that the EMPC must satisfy. For example,

consider the case where the integral constraint and input constraint are imposed on the

EMPC (no state constraint). If the integral constraint was imposed, but not the input con-

straints, the EMPC would choose to feed in all the material over the first sampling period

to maximize the reaction rate which is not practical and most likely not physically possible

due to control actuator limitations. If we imposed the input constraint, but not the integral

constraint, the EMPC would feed in the maximum allowable material for all time which is

not as practical as considering the best method to distribute a fixed amount of reactant ma-

terial to the reactor over time. Therefore, the input and integral constraints taken together
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are not overlapping.

5.4.4 Case 1: Low-order Economic Model Predictive Control Formu-

lation with Input Constraint

In the first set of simulations, we propose a low-order EMPC formulation using the low-

order model of Eq. 5.34 and considering only input constraints which takes the following

form for the tubular reactor example:

max
u∈S(∆)

1
N∆

∫ tk+N

tk

(∫ 1

0
r(z,τ)dz

)
dτ (5.43a)

s.t. ȧs,i(t) = As,ias,i(t)+Fs,i(as(t),0)+Bs,iu(t), i = 1, 2 (5.43b)

as,i j(tk) = (ϕ̄s,i j(z), x̄i(z, tk)), i = 1, 2, j = 1, 2 (5.43c)

−1≤ u(t)≤ 1, ∀ t ∈ [tk, tk+N) (5.43d)

u ∈ g(tk) (5.43e)

a′s(t)Pas(t)≤ ρ̄ (5.43f)

where g(tk) is the control input constraint to make the computed input profile over the

entire operating period, t f , satisfy the integral reactant material constraint. The economic

cost function of Eq. 5.43a that the EMPC works to maximize is the reaction rate in the

tubular reactor. The EMPC of Eq. 5.43 is implemented with a prediction horizon N = 3

and sampling time ∆ = 0.01.

For an initial condition x(z,0) = 0, the manipulated input and closed-loop state profiles

under the EMPC controller of Eq. 5.43 are shown in Fig. 5.2 and Figs. 5.3-5.4, respectively.

It has been pointed out (e.g., Refs17, 117, 125) that by periodic operation through switching

between the upper and lower bound on the reactant material feed concentration, the average

production rate can be improved owing to the second-order dependence of the reaction rate

160



0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

t

u(
t)

 

 

Low−Order EMPC
Finite−Difference EMPC
Uniform Input Distribution

Figure 5.2: Manipulated input profiles under the EMPC formulation of Eq. 5.43 (solid red
line), under uniform in time distribution of the reactant material (dotted black line), and
under the finite-difference EMPC (dotted blue line) over one operation period. The input
profiles of the two EMPCs (solid red line and dotted blue line) are overlapping.

Figure 5.3: Closed-loop profile of x1 under the low-order EMPC formulation of Eq. 5.43
over one operation period.
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Figure 5.4: Closed-loop profile of x2 under the low-order EMPC formulation of Eq. 5.43
over one operation period.

on reactant concentration. Thus, to achieve the maximum reaction rate over one operation

period, the EMPC feeds the maximum allowable amount of reactant material to the reactor

at the beginning of the process operation period. After a while, the EMPC needs to satisfy

the reactant material constraint so it decreases the amount of reactant material fed to the

reactor to the lowest allowable amount as displayed in Fig. 5.2. We also completed a

simulation where the reactant material is fed to the reactor uniformly in time distribution

of the reactant material and the input profile is given in Fig. 5.2 (dotted black line). The

corresponding closed-loop evolution of the state profiles are given in Figs. 5.5-5.6.

In order to confirm that the economic measure from the manipulated input profile under

the low-order EMPC formulation is better than that from uniform in time distribution of

the reactant material, we compare the reaction rate values along the length of the reactor

from these two input distribution profiles in Fig. 5.7. The average reaction rate along the

length of the reactor (i.e., J = 1
L
∫ L

0 r(z, t)dz) under the low-order EMPC formulation of

Eq. 5.43 increases much faster than that from uniform in time distribution of the reactant
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Figure 5.5: Closed-loop profile of x1 under uniform in time distribution of the reactant
material over one operation period.

Figure 5.6: Closed-loop profile of x2 under uniform in time distribution of the reactant
material over one operation period.
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Figure 5.7: Average reaction rate J along the length of the reactor (i.e., J = 1
L
∫ L

0 r(z, t)dz)
under the low-order EMPC formulation of Eq. 5.43 over one operation period (solid line)
and under uniform in time distribution of the reactant material (dashed line).

material because of the second-order reaction and the EMPC input distribution. Over this

one operation period, the total reaction rate from the system under the EMPC formulation

is about 15.45% higher than that from the closed-loop system under flat input distribution.

To verify the accuracy of the low-order EMPC, we formulate an EMPC with the 400-

order finite-difference method, which we refer to as the finite-difference EMPC, to compare

the closed-loop evolution obtained under the finite-difference EMPC with the low-order

EMPC. The manipulated input profile under the finite-difference method is also shown

in Fig. 5.2. From this simulation, the same input profile is computed by the high-order

finite-difference EMPC as the low-order EMPC. However, the low-order model uses four

ODEs to predict the future evolution of the system of PDEs; while, the high-order finite-

difference EMPC uses 400 ODEs. From Fig. 5.8, we observe a significant computational

improvement with using the low-order EMPC. Furthermore, if we formulate an EMPC
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Figure 5.8: Computational time required to solve the low-order EMPC optimization prob-
lem and the finite-difference EMPC optimization problem over one operation period.

with a fourth-order model obtained through the finite-difference method and apply it to the

system of PDEs, the resulting EMPC does not compute the optimal trajectory as it cannot

accurately predict the future evolution of the system.

Since chemical reactors are typically operated continuously over long periods of time,

we conduct another simulation of multiple (twenty) consecutive periods of operation. The

reactant material constraint is enforced over each of the 20 consecutive operating periods

where the system at the beginning of each period starts from a different initial condition.

Fig. 5.9 displays the manipulated input profiles under the EMPC controller of Eq. 5.43

and Figs. 5.10-5.11 depict the closed-loop evolution of the two states under the low-order

EMPC formulation of Eq. 5.43, respectively. After two operation periods in the twenty-

period operation simulation under the low-order EMPC of Eq. 5.43, the closed-loop eco-

nomic measure becomes constant over each operation period as shown in Fig. 5.12. The

total reaction rate over each operation period under the low-order EMPC after two opera-
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Figure 5.9: Twenty-period operation manipulated input profile under the low-order EMPC
formulation of Eq. 5.43.

tion periods is still 3.89% greater than that of the case under uniform in time distribution

of the reactant material.

Remark 5.9 Regarding the oscillations (e.g., Figs. 5.9-5.12 where the evolution of the

tubular reactor is simulated over 20 operating intervals and the process evolution appears

to be oscillatory), we point out that this is not open-loop periodic behavior or a numerical

issue. This behavior is enforced by the EMPC to maximize the cost over many periods. We

refer the interested reader to any of the literature on periodically operated reactors (e.g.,

Refs17, 125) for more commentary on this issue.

5.4.5 Case 2: High-order Economic Model Predictive Control Formu-

lation With State and Actuator Constraints

Secondly, we consider the addition of a state constraint and use the high-order EMPC for-

mulation of Eq. 5.17 with the high-order model of Eq. 5.35; the average reactant material
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Figure 5.10: Twenty-period operation closed-loop profile of x1 under the low-order EMPC
formulation of Eq. 5.43.

Figure 5.11: Twenty-period operation closed-loop profile of x2 under the low-order EMPC
formulation of Eq. 5.43.
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Figure 5.12: Average reaction rate along the length of the reactor J (i.e., J = 1
L
∫ L

0 r(z, t)dz)
under the low-order EMPC formulation of Eq. 5.43 over a twenty-period operation (solid
line) and under uniform in time distribution of the reactant material (dashed line).

constraint is removed. The high-order EMPC formulation for this chemical process exam-

ple has the following form:

max
u∈S(∆)

1
N∆

∫ tk+N

tk

(∫ 1

0
r(z,τ)dz

)
dτ (5.44a)

s.t. ȧs,i(t) = As,ias,i(t)+Fs,i(as(t),a f (t))+Bs,iu(t), i = 1, 2 (5.44b)

ȧ f ,i(t) = A f ,ia f ,i(t)+B f ,iu(t), i = 1, 2 (5.44c)

as,i j(tk) = (ϕ̄s,i j(z), x̄i(z, tk)), i = 1, 2, j = 1, 2 (5.44d)

a f ,i j(tk) = (ϕ̄ f ,i j(z), x̄i(z, tk)), i = 1, 2, j = 3, . . . , 200 (5.44e)

−1≤
200

∑
j=1

a1 j(t)ϕ1 j(z)≤ 3 (5.44f)

−1≤ u(t)≤ 1, ∀ t ∈ [tk, tk+N) (5.44g)

a′(t)Pa(t)≤ ρ̄ (5.44h)
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The EMPC of Eq. 5.44 is implemented with a prediction horizon N = 5 and sampling time

∆= 0.02. The prediction horizon N and sampling time ∆ are greater than Case 1 to increase

the overall prediction horizon length which helps to guarantee that the temperature does not

violate its upper or lower limit. For this case, the initial condition is the steady state of the

system under uniform input distribution, u = 0.5, as shown in the Figs. 5.5-5.6.

The manipulated input and closed-loop state profiles under the high-order EMPC of

Eq. 5.44 are shown in Fig. 5.13 and Figs. 5.14-5.15, respectively. Fig. 5.14 and Fig. 5.15

show the closed-loop evolution of the states under the EMPC formulation of Eq. 5.44. From

Fig. 5.13, the EMPC initially feeds in more reactant material to the reactor to increase the

reaction rate. Since the reaction is exothermic, the temperature in the reactor also increases.

When the temperature approaches the maximum allowable temperature, the input reactant

concentration decreases to avoid the temperature in the reactor from exceeding x1,max = 3.

After this phase, the high-order EMPC maintains operation at a steady-state associated with

the maximum temperature in the reactor being equal to the maximum allowable tempera-

ture. For this simulation, the corresponding maximum temperature in the reactor trajectory

is shown in Fig. 5.16.

We compare the closed-loop evolution of the tubular reactor under the high-order EMPC

and under the high-order finite-difference EMPC formulated with the state constraint (no

integral input constraint). The manipulated input profile computed by the finite-difference

EMPC is shown in Fig. 5.13 (dotted blue line) along with the profile of the high-order

EMPC. The closed-loop state trajectories under the finite-difference EMPC is shown in

Figs.5.17-5.18. The overall difference between the two input trajectories is small as shown

in Fig. 5.13 and as a result, the closed-loop states under the high-order EMPC and under

the finite-difference EMPC evolve in a similar fashion. Since both EMPCs use a 400-order

model albeit obtained through different methods, the computational time required to solve

the EMPC optimization problems are comparable.
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Figure 5.13: Manipulated input profile under the high-order EMPC formulation of Eq. 5.44
(solid red line) and under the finite-difference EMPC (dotted blue line) over one operation
period.

Figure 5.14: Closed-loop profile of x1 under the high-order EMPC formulation of Eq. 5.44
over one operation period.
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Figure 5.15: Closed-loop profile of x2 under the high-order EMPC formulation of Eq. 5.44
over one operation period.
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Figure 5.16: Closed-loop profile of the maximum value of x1 along the length of the reactor
under the high-order EMPC formulation of Eq. 5.44 over one operation period.
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Figure 5.17: Closed-loop profile of x1 under the finite-difference EMPC formulation with
the state constraint over one operation period.

Figure 5.18: Closed-loop profile of x2 under the finite-difference EMPC formulation with
the state constraint over one operation period.
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5.4.6 Case 3: High-order Economic Model Predictive Control Formu-

lation With Both State and Input Constraints

Finally, we add the reactant material constraint into the high-order EMPC formulation and

thus, the high-order EMPC formulation considering both the state and input constraints for

this chemical process example has the following form:

max
u∈S(∆)

1
N∆

∫ tk+N

tk

(∫ 1

0
r(z,τ)dz

)
dτ (5.45a)

s.t. ȧs,i(t) = As,ias,i(t)+Fs,i(as(t),a f )+Bs,iu(t), i = 1, 2 (5.45b)

ȧ f ,i(t) = A f ,ia f ,i(t)+B f ,iu(t), i = 1, 2 (5.45c)

as,i j(tk) = (ϕ̄s,i j(z), x̄(z, tk)), i = 1, 2, j = 1, 2 (5.45d)

a f ,i j(tk) = (ϕ̄ f ,i j(z), x̄i(z, tk)), i = 1, 2, j = 3, . . . , 200 (5.45e)

−1≤
200

∑
j=1

a1 j(t)ϕ1 j(z)≤ 3 (5.45f)

−1≤ u(t)≤ 1, ∀ t ∈ [tk, tk+N) (5.45g)

u ∈ g(tk) (5.45h)

a′(t)Pa(t)≤ ρ̄ (5.45i)

We consider the prediction horizon N = 5 and sampling time ∆ = 0.02. For this case, the

initial condition is the steady-state of the system under uniform input distribution, u = 0.5,

as shown in the Figs. 5.5-5.6.

Fig. 5.19 and Fig. 5.20 show the closed-loop evolution of the states under the EMPC for-

mulation of Eq. 5.45. The corresponding manipulated input profiles are given in Fig. 5.21

(solid line). Here, again, the EMPC initially feeds in the maximum allowable reactant ma-

terial until the maximum allowable temperature in the reactor is reached and the EMPC

feeds less reactant material to the reactor to maintain operation at the maximum allowable
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Figure 5.19: Closed-loop profile of x1 under the high-order EMPC formulation of Eq. 5.45
over one operation period.

Figure 5.20: Closed-loop profile of x2 under the high-order EMPC formulation of Eq. 5.45
over one operation period.
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Figure 5.21: Manipulated input profile under the high-order EMPC formulation of Eq. 5.45
over one operation period.
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Figure 5.22: Closed-loop profile of the maximum value of x1 along the length of the reactor
under the high-order EMPC formulation of Eq. 5.45 over one operation period.
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Reaction Rate Profile Under High−Order EMPC

Reaction Rate Profile Under Uniform Input Distribution

Figure 5.23: Average reaction rate along the length of the reactor J (i.e., J = 1
L
∫ L

0 r(z, t)dz)
under the high-order EMPC formulation of Eq. 5.45 over one operation period (solid line)
and under uniform in time distribution of the reactant material (dashed line).

temperature. In the beginning, the optimal input trajectory follows a similar path to Case 2

since the input constraint has no effect on the choice of the optimal input value. After some

time, the reactant material constraint needs to be satisfied so the input reactant concentra-

tion decreases at t = 0.8 to satisfy the constraint. The corresponding highest temperature

in the reactor also decreases when the input is limited by the reactant material constraint as

shown in Fig. 5.22.

For this case study, in order to confirm that the economic measure from the control input

profile under the high-order EMPC formulation is better than that from the system under

uniform in time distribution of the reactant material, we compare the reaction rate along the

length of the reactor from these two input distribution profiles, shown in Fig. 5.23. Since

the initial condition for this case study is the steady-state of the system under uniform input

distribution, the overall reaction rate is a constant throughout the operation period when
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the reactant material is distributed uniformly in time to the reactor. On the other hand, the

average reaction rate along the length of the reactor, J, under the EMPC formulation of

Eq. 5.45 increases dramatically because of the second-order reaction and after some time,

it reaches a steady state when the input is held constant. Lastly, it drops to zero since

the reactant material constraint needs to be satisfied over one operation period. Over this

one operation period, the total reaction rate from the system under the EMPC formulation

is still 6.91% higher than that from the system under uniform in time distribution of the

reactant material.

To demonstrate that the EMPC performance is not associated with the specific process

parameters, we conduct another simulation were Pe1 = 1. This represents the case where

the time-scales of heat diffusive and convective phenomena are roughly equivalent and the

heat convective phenomena are slower than the mass convective phenomena compared to

the case where Pe1 = 7. As a result of the slower heat convection, the temperature does

not increase as much over the course of the one operating period simulation compared to

the case with Pe1 = 7. To demonstrate the ability of the high-order EMPC to satisfy state

constraint, we set the maximum allowable temperature to be x1,max = 2. The manipulated

input and closed-loop state profiles are shown in Fig. 5.24-5.26, respectively. Over the one

operation period (with Pe1 = 1), the total reaction rate from the system under the high-

order EMPC is 7.09%. For the case of x1,max = 3 and Pe1 = 1, we have also verified that

the EMPC will compute the same input profile as Case 1 because the upper bound on the

temperature is never reached over the course of one operating period.

Remark 5.10 While the argument can be made that the optimal operating policy of the first

simulation (the EMPC formulated with an input constraint only) can be determined through

physical intuition owing to the second order reaction rate, our motivation for performing

this simulation is to demonstrate that the EMPC, formulated with a low-order model (in
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Figure 5.24: Closed-loop profile of x1 under the high-order EMPC formulation of Eq. 5.45.
For this case, the heat transfer Péclet number is Pe1 = 1.

Figure 5.25: Closed-loop profile of x2 under the high-order EMPC formulation of Eq. 5.45.
For this case, the heat transfer Péclet number is Pe1 = 1.
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Figure 5.26: Manipulated input profile under the high-order EMPC formulation of Eq. 5.45.
For this case, the heat transfer Péclet number is Pe1 = 1.

this case, the model is constructed with the first four (2× 2) modes only), can return the

optimal operating strategy. In the subsequent simulation studies, we demonstrate the abil-

ity of EMPC to determine more complex optimal operating strategy in real-time while also

accounting for other process constraints. Specifically, the EMPC is able to return the opti-

mal operating strategy by considering a state constraint that limits the maximum allowable

operating temperature in the reactor.

5.5 Conclusion

In this work, we developed low-order and high-order finite-dimensional economic model

predictive (EMPC) systems, through the application of Galerkin’s method and involvement

of singular perturbation arguments, for transport-reaction processes described by nonlin-

ear systems of parabolic PDEs. The formulated EMPC systems were applied to a tubular
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reactor example described by two nonlinear parabolic PDEs, where the average reaction

rate along the length of the reactor was used as the cost function. Closed-loop simula-

tions demonstrated that in the absence of state constraint, the low-order EMPC system is

sufficient to meet the constraint on the availability of the reactant material over one oper-

ation period, and yields improved closed-loop economic performance compared to when

the reactant material is fed uniformly in time to the reactor by requesting a suitable time-

varying reactor operation. On the other hand, when a state constraint on the maximum

value of the temperature along the length of the reactor is imposed, the use of a high-order

(yet computationally efficient) EMPC system allows to account for the process dynamics

with sufficient accuracy and meet both the input and state constraints simultaneously while

improving the economic cost over uniform in time feeding of the reactant material.
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Chapter 6

Economic Model Predictive Control of

Parabolic PDE Systems: Addressing

State Estimation and Computational

Efficiency

6.1 Introduction

This chapter presents several EMPC systems which are formulated and applied to a non-

isothermal tubular reactor where a second-order chemical reaction takes place. First, an

output feedback EMPC formulation is presented. Second, a reduced-order model (ROM)

of the PDEs is constructed on the basis of historical data-based empirical eigenfunctions

by applying Karhunen-Loève expansion to formulate a computationally efficient EMPC

system. Several EMPC systems each using a different ROM (i.e., different number of

modes and derived from either using analytical sinusoidal/cosinusoidal eigenfunctions or

empirical eigenfunctions) are applied to the non-isothermal tubular reactor example. The
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model accuracy, computational time and closed-loop economic performance of the closed-

loop tubular reactor under the different EMPC systems is compared and discussed.

6.2 Preliminaries

6.2.1 Parabolic PDEs

We consider quasi-linear parabolic PDEs with measured outputs of the form:

∂ x̄
∂ t

= A
∂ x̄
∂ z

+B
∂ 2x̄
∂ z2 +Wu(t)+ f (x̄(z, t)) (6.1)

y j(t) =
∫ 1

0
c j(z)x̄(z, t)dz (6.2)

for j = 1, . . . , p, with the boundary conditions:

∂ x̄
∂ z

∣∣∣∣
z=0

= g0x̄(0, t),
∂ x̄
∂ z

∣∣∣∣
z=1

= g1x̄(1, t) (6.3)

for t ∈ [0,∞) and the initial condition:

x̄(z,0) = x̄0(z) (6.4)

where z∈ [0,1] is the spatial coordinate, t ∈ [0,∞) is the time, x̄′(z, t) = [x̄1(z, t) · · · x̄nx(z, t)]

is the vector of the state variables (x̄′ denotes the transpose of x̄), f (x̄(z, t)) denotes a nonlin-

ear vector function, y j(t) is the j-th measured output, and c j(z) are known smooth functions

of z ( j = 1, . . . , p) whose functional form depends on the type of the measurement sensor.

The notation A, B, W , g0 and g1 is used to denote (constant) matrices of appropriate di-

mensions. The control input vector is denoted as u(t) ∈ IRnu and is subject to the following
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constraints:

umin ≤ u(t)≤ umax (6.5)

where umin and umax are the lower and upper bound vectors of the manipulated input vector,

u(t). Moreover, the system states are also subject to the following state constraints:

xi,min ≤
∫ 1

0
rxi(z)x̄i(z, t)dz≤ xi,max, i = 1, . . . , nx (6.6)

where xi,min and xi,max are the lower and upper state constraint for the i-th state, respectively.

The function rxi(z) ∈ L2(0,1) where L2(0,1) is the space of measurable, square-integrable

functions on the interval [0,1] is the state constraint distribution function.

6.2.2 Galerkin’s Method

We first formulate the system of PDEs of Eqs. 6.1-6.4 as an infinite dimensional system in

the Hilbert space H ([0,1]; IRnx), with H being the space of measurable vector functions

defined on [0,1], with inner product and norm:

(ω1,ω2) =
∫ 1

0
(ω1(z),ω2(z))IRnx dz,

∥ω1∥2 = (ω1,ω1)
1
2

(6.7)

where ω1, ω2 are two elements of H ([0,1]; IRnx) and the notation (·, ·)IRnx denotes the

standard inner product in IRnx . The state function x(t) on the state-space H is defined as

x(t) = x̄(z, t), t > 0, 0≤ z≤ 1, (6.8)
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and the operator A is defined as

A x = A
dx̄
dz

+B
d2x̄
dz2 , 0≤ z≤ 1. (6.9)

and the measured output operator is defined as:

C x(t) = [(c1(·), x̄(·, t)), · · · , (cp(·), x̄(·, t))]′ (6.10)

Then, the system of Eqs. 6.1-6.4 takes the following form:

ẋ(t) = A x(t)+Bu(t)+F (x(t)), x(0) = x0 (6.11)

y(t) = C x(t) (6.12)

where x0 = x̄0(z), Bu(t) =Wu(t) and F (x(t)) is a nonlinear vector function in the Hilbert

space. The eigenvalue problem for A takes the form

A ϕk = λkϕk, k = 1, . . . , ∞ (6.13)

subject to
dϕk

dz

∣∣∣∣
z=0

= g0ϕk(0),
dϕk

dz

∣∣∣∣
z=1

= g1ϕk(1) (6.14)

where ϕk is an eigenfunction corresponding to the k-th eigenvalue λk and ϕ̄k is an adjoint

eigenfunction of the operator A .

Assumption 6.1 below characterizes the class of parabolic PDEs considered in this

work and states that the eigenspectrum of operator A can be partitioned into a finite part

consisting of m slow eigenvalues which are close to the imaginary axis and a stable infinite

complement containing the remaining fast eigenvalues which are far in the left-half of the
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complex plane, and that the separation between the slow and fast eigenvalues of A is

large. We also note that the large separation of slow and fast modes of the spatial operator

in parabolic PDEs ensures that a controller which exponentially stabilizes the closed-loop

ODE system, also stabilizes the closed-loop infinite-dimensional system.9 This assumption

is satisfied by the majority of diffusion-convection-reaction processes.25

Assumption 6.1

1. Re(λ1) ≥ Re(λ2) ≥ ·· · ≥ Re(λ j) ≥ ·· · , where Re(λ j) denotes the real part of the

eigenvalue, λ j.

2. The eigenspectrum of A , σ(A ), is defined as the set of all eigenvalues of A , i.e.

σ(A ) = {λ1,λ2, · · ·}. σ(A ) can be partitioned as σ(A ) = σ1(A )∪σ2(A ), where

σ1(A ) consists of the first m finite eigenvalues, i.e. σ1(A ) = {λ1, · · · ,λm}, and

|Re(λ1)|/|Re(λm)|= O(1).

3. Re(λm+1)< 0 and |Re(λ1)|/|Re(λm+1)|= O(ε) where ε < 1 is a small positive num-

ber.

Next, we apply standard Galerkin’s method119 to the infinite-dimensional system of

Eqs. 6.11-6.12 to derive a finite-dimensional subsystem. Let Hs and H f be modal sub-

spaces of A defined as Hs = span{ϕ1,ϕ2, . . . ,ϕm} and H f = span{ϕm+1,ϕm+2, . . .}, where

ϕi, i = 1, . . . , ∞ are the eigenfunctions of A . Using the orthogonal projection operators,

Ps and Pf , which project the state x onto the subspaces Hs and H f of A , respectively

(xs = Psx ∈Hs and x f = Pf x ∈H f ), the state x of the system of Eq. 6.11 can be written as

x = xs + x f = Psx+Pf x (6.15)

Applying Ps and Pf to the system of Eqs. 6.11-6.12 and using the above decomposition for
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Figure 6.1: A tubular reactor with reaction A→ B.

x, Eqs. 6.11-6.12 can be re-written as:

ẋs(t) = Asxs(t)+Asx f (t)(≡ 0)+Fs(xs(t),x f (t))+Bsu(t), xs(0) = Psx0,

ẋ f (t) = A f x f (t)+A f xs(t)(≡ 0)+F f (xs(t),x f (t))+B f u(t), x f (0) = Pf x0,

y(t) = Csxs(t)+C f x f (t)
(6.16)

where As = PsA , Bs = PsB, A f = Pf A , B f = Pf B, F f = Pf F , Fs = PsF , Cs =

C Ps, and C f = C Pf . Specifically, As = diag{λ j}, j = 1, . . . , m is a diagonal matrix of

dimension m×m and may contain unstable eigenvalues (i.e., Re(λ j)> 0). Note that since

the sunspace of A are spanned by eigenfunctions of A , then Asx f (t)≡ 0 and A f xx(t)≡ 0

based on the fact that the eigenfunctions are orthogonal to each other. The operator A f

is an unbounded exponentially stable differential operator. The first subsystem (i.e., first

equation) of Eq. 6.16 is referred to as the slow subsystem; while, the second subsystem is

referred to as the fast subsystem. Neglecting the fast subsystem, we obtain the ODE system

describing the dominant dynamics of the PDEs:

ẋs(t) = Asxs(t)+Fs(xs(t),0)+Bsu(t), xs(0) = Psx0

y(t) = Csxs(t)
(6.17)

6.2.3 Tubular Reactor Example

A chemical process example of industrial importance of the form of Eq. 6.1 is used to

demonstrate the EMPC systems formulated in this work. Specifically, consider a tubular
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reactor shown in Fig. 6.1, where an exothermic, irreversible second-order reaction of the

form A→ B takes place. A cooling jacket of constant temperature is used to remove heat

from the reactor. The states of the tubular reactor are temperature and concentration of

A in the reactor, and the input is the inlet concentration of A. In order to simplify the

presentation of our results below, we use dimensionless variables and obtain the following

nonlinear model of parabolic PDEs for the process (details and model notation can be found

in85 and119):

∂ x̄1

∂ t
= −∂ x̄1

∂ z
+

1
Pe1

∂ 2x̄1

∂ z2 +BT BC exp
(

γ x̄1

1+ x̄1

)
(1+ x̄2)

2

+βT (Ts− x̄1)+δ (z−0)Ti

∂ x̄2

∂ t
= −∂ x̄2

∂ z
+

1
Pe2

∂ 2x̄2

∂ z2 −BC exp
(

γ x̄1

1+ x̄1

)
(1+ x̄2)

2 +δ (z−0)u

(6.18)

where δ is the standard Dirac function, subject to the following boundary conditions:

z = 0 :
∂ x̄1

∂ z
= Pe1x̄1,

∂ x̄2

∂ z
= Pe2x̄2;

z = 1 :
∂ x̄1

∂ z
= 0,

∂ x̄2

∂ z
= 0;

(6.19)

The following typical values are given to the process parameters: Pe1 = 7, Pe2 = 7,

BT = 2.5, BC = 0.1, βT = 2, Ts = 0, Tf = 0 and γ = 10. In all simulations reported below,

second-order finite-difference method was used to discretize, in space, the two parabolic

PDEs of Eq. 6.18 to be two 101th-order set of ODEs (further increase on the order of

discretization led to identical open-loop and closed-loop results); this discretized model

was used to describe the process dynamics. The following simulations were carried out

using Java programming language in a Intel Core i7,3.40 GHz computer with a 64-bit

Windows 7 Professional operating system.
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6.3 Methodological Framework for Output Feedback EMPC

for Systems of PDEs

6.3.1 State-Estimation Using Output Feedback Methodology

The objective of this section is to propose state estimation-based EMPC formulations that

make use of a finite number, p, of measured outputs y j(t) ( j = 1, · · · , p) to compute es-

timates of xs and x f . The state estimation scheme is based on a direct inversion of the

measured output operator to obtain estimates of the slow modes, x̂s(t) and the concept of

the approximate inertial manifolds to obtain estimates of the fast modes, x̂ f (t) in the sys-

tem of Eq. 6.16. To develop this estimation scheme, we must impose an assumption on

the number of measured outputs. We assume that the number of measured outputs is equal

to the number of slow modes (i.e., p = m) and the distribution functions of the measured

outputs are chosen such that C−1
s exists. Under this assumption, an estimate of the slow

subsystem state, x̂s(t) can be obtained as follows:

x̂s(t) = C−1
s y(t) (6.20)

where x̂s(t) is an estimate of xs(t).

Since the accuracy of the estimated modes through the reconstruction of the spatially

distributed partial differential equation states is limited by the number of available measure-

ment points, we introduce the derivation of the estimation for the fast subsystem state, x f (t)

to achieve additional accuracy of the state estimation scheme. In the infinite-dimensional

system described by Eq. 6.16, the fast dynamics, ẋ f (t) can be ignored compared with that

of the slow dynamics, ẋs(t) given that A f includes eigenvalues with large negative real

part25 (A f is exponentially stable). Thus, the equation of the fast state, x f (t) can be ap-
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proximately expressed as the following equality:

A f x f (t)+B f u(t)+F f (xs(t),x f (t)) = 0 (6.21)

The fast state x f is equal to zero at its quasi-steady-state (we note that x̄(z, t) = 0 is a

steady-state of the nominal system of PDEs with u(t) ≡ 0). Accounting for the fact that

A f includes eigenvalues with large negative real parts, we can neglect the fast subsystem

state, x f (t) in the nonlinear term, F f (xs,x f ). Using the estimated slow subsystem state, x̂s

to calculate the approximate fast subsystem state, Eq. 6.21 becomes

A f x̂ f (t)+B f u(t)+F f (x̂s(t),0) = 0 (6.22)

where x̂ f (t) is the estimated fast state. An explicit form for the estimated fast state can be

derived:

x̂ f (t) =−A −1
f [B f u(t)+F f (x̂s(t),0)] (6.23)

Remark 6.1 The accuracy of the finite-dimensional ODE model with m slow modes is

of order ε = |Re{λ1(A )}|/|Re{λm+1(A )}| (O(ε)). This means under state feedback the

closeness of the closed-loop system state of PDEs to the closed-loop system state of ODEs

is O(ε). Closed-loop stability under output feedback works not only for the slow and fast

modes but also the real state as long as the estimation error is negligible. This occurs

when m is chosen to be sufficiently large such that ε is sufficiently small. Specifically, to

achieve the same level of closeness for the output feedback case (O(ε)), the number of

measurements must be equal to the number of slow modes (i.e., p = m). When there are

more available measurement points than the slow modes, i.e.,p > m, one can pick m mea-

surement points from the all p points and use them in the reduced order model. However,

the discrepancy between the closed-loop partial differential equation state under output
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feedback with more than m measurements and the one of the closed-loop partial differen-

tial equation state under output feedback with m measurements will be indistinguishable

since the achieved closed-loop system performance is limited by the number of slow modes

(m) used in the design of the EMPC. In this work, from both the open-loop and closed-loop

system simulation, we have good state estimation accuracy by picking m sufficiently large

and choosing the measurement points such that the inverse of the matrix Cs exists.

6.3.2 Output Feedback Economic Model Predictive Control Formula-

tion

Utilizing the estimates x̂s and x̂ f of Eq. 6.20 and Eq. 6.23, respectively, we formulate a

state estimation-based Lyapunov-based EMPC for the system of Eq. 6.16 to dynamically

optimize an economic cost function. We assume that the output measurements are available

continuously and synchronously at sampling instants denoted as tk = k∆ with k = 0, 1, . . . .

Accounting for x f is important for increasing state estimation accuracy of PDEs and satisfy-

ing state constraints. To formulate a finite-dimensional EMPC problem, the fast subsystem

is truncated at the l-th fast state. With the estimated slow and fast modes, of Eq. 6.20 and
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Eq. 6.23, respectively, the EMPC formulation takes the following form:

max
u∈S(∆)

∫ ttk+N

tk
L(x̌(τ),u(τ))dτ (6.24a)

s.t. ˙̃xs(t) = Asx̃s(t)+Fs(x̃s(t), x̃ f (t))+Bsu(t) (6.24b)

x̃s(tk) = C−1
s y(tk) (6.24c)

x̃ f (t) =−A −1
f [B f u(t)+ f f (x̃s(t),0)] (6.24d)

x̌(t) = x̃s(t)+ x̃ f (t) (6.24e)

umin ≤ u(t)≤ umax, ∀ t ∈ [tk, tk+N) (6.24f)

xi,min ≤ (rxi , x̌i(t))≤ xi,max, i = 1, . . . , nx, ∀ t ∈ [tk, tk+N) (6.24g)

x̌′(t)Px̌(t)≤ ρ̄ (6.24h)

where ∆ is the sampling period, S(∆) is the family of piecewise constant functions with

sampling period ∆, N is the prediction horizon, x̃s(t) and x̃ f (t) are the predicted evolution

of the slow subsystem state and fast subsystem state, respectively, with input u(t) computed

by the EMPC and y(tk) is the output measurement at the sampling time tk.

In the optimization problem of Eq. 6.24, the objective function of Eq. 6.24a describes

the dynamic economics of the process which the EMPC maximizes over a horizon tN . The

constraint of Eq. 6.24b is used to predict the future evolution of the slow subsystem with

the initial condition given in Eq. 6.24c (i.e., the estimate of xs(tk) computed from the output

y(tk)). The constraint of Eq. 6.24d is the finite-dimensional truncation of the fast subsystem

which is used to predict the evolution of the fast subsystem states. The symbol x̌(t) is used

to denote the finite dimensional truncated state vector (i.e., both the slow subsystem and

the fast subsystem states). The constraints of Eq. 6.24f-6.24g are the available control

action and the state constraints, respectively. Finally, the constraint of Eq. 6.24h ensures

that the predicted state trajectory is restricted inside a predefined stability region which is
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a level set of the Lyapunov function (see65 for a complete discussion of this issue). The

optimal solution to this optimization problem is u∗(t|tk) defined for t ∈ [tk, tk+N). The

EMPC applies the control action computed for the first sampling period to the system in

a sample-and-hold fashion for t ∈ [tk, tk+1). The EMPC is resolved at the next sampling

period, tk+1, after receiving a new output measurement, y(tk+1).

Remark 6.2 In the formulation of the state estimation-based Lyapunov-based EMPC of

Eq. 6.24, Eq. 6.24h defines a stability region of the closed-loop system. This stability

region is typically characterized with an explicit stabilizing state feedback controller.65, 66

To account for the fact that additional uncertainty may be introduced by using an output

feedback controller over a state feedback controller due to the estimation error, the stability

region, computed using an explicit stabilizing state feedback controller, may be reduced

for the output feedback case and a sufficiently large number of slow modes m (as well as

number of output measurements p) can always be found to ensure that closed-loop stability

under output feedback is accomplished.

6.3.3 Implementation of Output Feedback EMPC

The output feedback EMPC is applied to the tubular reactor. To solve the EMPC prob-

lem, the open-source interior point solver Ipopt139 was used. Explicit Euler’s method was

used with an sufficiently small integration step of 1× 10−4 to numerically integrate the

finite-dimensional ODE model of the transport-reaction process. The cost function that

we consider is to maximize the overall reaction rate along the length of the reactor. The

economic cost that the EMPC works to maximize over the prediction horizon is

L(x̄,u) =
∫ 1

0
r(z, t)dz (6.25)
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where

r(z, t) = BC exp
(

γ x̄1

1+ x̄1

)
(1+ x̄2)

2 (6.26)

is the reaction rate.

Regarding input and state constraints, the manipulated input is subject to constraints as

follows: −1 ≤ u ≤ 1. Owing to economic considerations, the amount of reactant material

available over the period t f is fixed. Specifically, the input trajectory should satisfy:

1
t f

∫ t f

0
u(τ)dτ = 0.5 (6.27)

where t f = 1.0. To simplify the notation, we use the notation u ∈ g(tk) to denote this

constraint. Constraints on the minimum and maximum temperatures along the length of

the reactor are considered as state constraints, Namely, the temperature along the length of

the reactor must satisfy the following inequalities:

x1,min ≤ x̄1(z, t)≤ x1,max (6.28)

for all z ∈ [0,1] where x1,min = −1 and x1,max = 3 are the lower and upper limits, respec-

tively.

Since the system of PDEs of Eq. 6.18 consists of two PDEs, the index i (i = 1, 2) is

used to denote the i-th partial differential equation of Eq. 6.18. We assume the tubular

reactor has p1 + p2 sensors where the first p1 sensors measures the temperature (i.e., the

state corresponding to the first partial differential equation of Eq. 6.18) at measurement

points zs,1 j ∈ [0,1] for j = 1, 2, . . . , p1, and the next p2 sensors measures the concentration

of A (i.e., the second state) at measurement points zs,2 j ∈ [0,1] for j = 1, 2, . . . , p2. Thus,

the output measurements consist of the state measurements at a finite number of points in
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the spatial domain (i.e., x′i(tk) = [xi(zs,i1, tk) · · · xi(zs,ipi, tk)]) and can be written as

yi j(tk) = x̄i(zs,i j, tk), i = 1, 2, j = 1, 2, . . . , pi

where the output measurement vector, y′(tk) = [y′1(tk)y′2(tk)] and

y′i(tk) = [yi1(tk) · · · yipi(tk)], i = 1, 2 .

We assume the number of measurements satisfies pi = mi where mi refers to the number

of total slow modes retained from the i-th partial differential equation in the construction

of the model of Eq. 6.24b. Since point-wise measurements are considered, the following

measurement distribution function is used:

ci j(z) = δ (z− zs,i j), i = 1, 2, j = 1, 2, . . . , pi (6.29)

where δ is the standard Dirac function. Each measurement point, zs,i j in the spatial domain

is assumed to be at zs,i j = ( j−1)/(pi−1). The choice of measurement points satisfies the

assumption that C−1
s,i exists.

The state x̄i(z, t) can be decomposed into the sum of the amplitudes and the eigenfunc-

tions of the first li eigenmodes:

x̄i(z, t)≈
li

∑
j=0

ai j(t)ϕi j(z), i = 1, 2 (6.30)

where ai j(t) and ϕi j(z) is the amplitude and eigenfunctions associated with the j-th eigen-

value of the spatial operator A . Utilizing the decomposition of Eq. 6.30, the estimated

slow mode vector, a′s,i(tk) = [as,i1(tk) · · · as,ipi(tk)] (recall that mi = pi) can be written in the
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following form:

yi(tk)=Cs,ixi(tk)=Cs,ias,i(tk)=



ϕi1(zs,i1) ϕi2(zs,i1) . . . ϕip(zs,i1)

ϕi1(zs,i2) ϕi2(zs,i2) . . . ϕip(zs,i2)

...
... . . . ...

ϕi1(zs,ipi) ϕi2(zs,ipi) . . . ϕip(zs,ipi)





as,i1(tk)

as,i2(tk)
...

as,ipi(tk)


(6.31)

for i = 1, 2. The estimated slow modes are:

âs,i(tk) =C−1
s,i yi(tk) =



ϕi1(zs,i1) ϕi2(zs,i1) . . . ϕip(zs,i1)

ϕi1(zs,i2) ϕi2(zs,i2) . . . ϕip(zs,i2)

...
... . . . ...

ϕi1(zs,ipi) ϕi2(zs,ipi) . . . ϕip(zs,ipi)



−1

x̄i(zs,i1, tk)

x̄i(zs,i2, tk)
...

x̄i(zs,ipi, tk)


(6.32)

where âs,i(tk) is an estimate of as,i(tk) from the output measurement, y(tk).

Since the decomposition of Eq. 6.30 provides a simplified method for describing the

temporal evolution of the system of PDEs, the reduced-order model used in the EMPC

(Eq. 6.24b and Eq. 6.24d) is written in terms of the temporal evolution of the amplitudes of

each eigenmode. After applying the decomposition of Eq. 6.30 to Eq. 6.16 and multiplying

both sides by the adjoint eigenfunction, the resulting reduced-order model has the following

form:
ȧs(t) = Asas(t)+Fs(as(t),a f (t))+Bsu(·)

ȧ f (t) = A f a f (t)+Ff (as(t),a f (t))+B f u(·)

y(t) = Csas(t)+C f a f (t)

(6.33)

which is used as the reduced-order model in the EMPC systems. Note that As = diag{λ j},

j = 1, . . . , m is a diagonal matrix of dimension l1× l1 and A f = diag{λ j}, j = l1+1, . . . , l2

is a diagonal matrix of dimension (l2− l1)× (l2− l1). Therefore, the quadratic Lyapunov
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function of Eq. 6.24h is also written in terms of the amplitudes and has the form:

V (a(t)) = a′(t)Pa(t) (6.34)

where a(t) denotes a vector consisting of the amplitudes of all retained eigenmodes (i.e.,

both as(t) and a f (t)) for each partial differential equation, P is an (l1 + l2)× (l1 + l2) iden-

tity matrix and ρ̄ = 3 is used in the formulations of the EMPC systems below.

Case 1: Low-order Output Feedback EMPC System

In this set of simulations, a low-order output feedback EMPC system of the form of Eq. 6.24

(the fast modes are neglected) is formulated for the tubular reactor with the economic cost

function of Eq. 6.25, the input constraint of Eq. 6.27 and the state constraint of Eq. 6.28.

The low-order output feedback EMPC is given by the following optimization problem:

max
u∈S(∆)

1
N∆

∫ tk+N

tk

(∫ 1

0
r(z,τ)dz

)
dτ (6.35a)

s.t. ˙̃as,i(t) = As,iãs,i(t)+Fs,i(ãs(t),0)+Bs,iu(t), i = 1, 2 (6.35b)

ãs,i(tk) =C−1
s yi(tk), i = 1, 2 (6.35c)

−1≤ u(t)≤ 1, ∀ t ∈ [tk, tk+N) (6.35d)

u(t) ∈ g(tk) (6.35e)

−1≤
m1

∑
j=1

ãs,1 j(t)ϕ1 j(z)≤ 3 (6.35f)

ã′s(t)Pãs(t)≤ ρ̄ (6.35g)

where the notation ãs denotes the predicted temporal evolution of the amplitudes of the slow

modes, the prediction horizon is N = 3 and the sampling time is ∆ = 0.01. The constraint

of Eq. 6.35e is the integral input constraint of Eq. 6.27 formulated for the sampling time
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Figure 6.2: Closed-loop profile of x1 of the tubular reactor under the low-order output
feedback EMPC system of Eq. 6.35 based on 21 slow modes over one operation period.

tk to ensure that the integral input constraint is satisfied over the window t f = 1.0. The

tubular reactor is initialized with a transient state profile (i.e., not the steady-state profile

corresponding to the steady-state input us = 0.5). For the reactor, two EMPC systems are

formulated with the following low-order model of the system of PDEs:

1. The low-order model based on 11 slow modes only (i.e., m1 = m2 = 11).

2. The low-order model based on 21 slow modes only (i.e., m1 = m2 = 21).

where the measured output points consists of the state measurements at m1 = 11 or m1 =

21 points which are evenly spaced in the spatial domain. Additionally, the reactor under

uniform in time distribution of the reactant material over t f = 1.0 is also considered for

comparison purposes.

The closed-loop state profiles of the reactor over one period t f = 1.0 under the output

feedback EMPC formulated with the low-order model based on 21 slow modes is displayed
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Figure 6.3: Closed-loop profile of x2 of the tubular reactor under the low-order output
feedback EMPC system of Eq. 6.35 based on 21 slow modes over one operation period.
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Figure 6.4: Manipulated input profiles of the low-order output feedback EMPC systems of
Eq. 6.35 based on 11 and 21 slow modes, respectively, and uniform in time distribution of
the reactant material over one operation period.
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Figure 6.5: Maximum temperature x1, profiles of the tubular reactor under the low-order
output feedback EMPC systems of Eq. 6.35 based on 11 and 21 slow modes, respectively,
over one operation period.

in Figs. 6.2-6.3. The computed manipulated input profiles from the low-order output feed-

back EMPC systems formulated based on 11 and 21 slow modes, respectively, over one

period are shown in Fig. 6.4. From Fig. 6.4, the output feedback EMPC system based

on 21 slow modes computes a smoother manipulated input profile than that of the output

feedback EMPC system based on 11 slow modes. The maximum temperature profiles of

the tubular reactor under the EMPC systems are shown in Fig. 6.5. Since the temperature

directly influences the reaction rate, the optimal operating strategy is to operate the reac-

tor at the maximum allowable temperature. From Fig. 6.5, both EMPC systems operate

the tubular reactor with a maximum temperature less than the maximum allowable which

is a consequence of the error associated with the low-order models. Since the low-order

model based on 21 slow modes is able to more accurately compute the state profile, the

output feedback EMPC system formulated with this low-order model operates the reactor

at a greater temperature than the other EMPC system.
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Figure 6.6: Computational time profiles of the low-order output feedback EMPC system of
Eq. 6.35 based on 11 and 21 slow modes, respectively, over one operation period.

Over one period t f = 1, the total reaction rate of the process under the EMPC system

based on 21 slow modes is 5.13% greater than that of EMPC system based on 11 slow

modes and 8.45% greater than that of the system under uniform in time distribution of the

reactant material. Moreover, the computational time profiles for these two EMPC systems

of Eq. 6.35 is given in Fig. 6.6. The EMPC system based on 11 slow modes has a significant

advantage in the computational efficiency since it uses fewer modes in the reduced-order

model.

Remark 6.3 Regarding the chattering in the computed input profile (Fig. 6.4), the chat-

tering is not caused by the numerical integration. A smaller integration time step size was

tested and the same input profile was obtained.
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Case 2: High-order Output Feedback EMPC System

In the second set of simulations, a high-order output feedback EMPC system of the form

of Eq. 6.24 is formulated for the tubular reactor and has the form:

max
u∈S(∆)

1
N∆

∫ tk+N

tk

(∫ 1

0
r(z,τ)dz

)
dτ (6.36a)

s.t. ˙̃as,i(t) = As,iãs,i(t)+Fs,i(ãs(t), ã f (t))+Bs,iu(t) (6.36b)

ã f ,i(t) =−A−1
f ,i [B f ,iu(t)+Ff ,i(ãs(t),0)] (6.36c)

ãs,i(tk) =C−1
s,i yi(tk), i = 1, 2 (6.36d)

−1≤
l

∑
j=11

ã1 j(t)ϕ1 j(z)≤ 3 (6.36e)

−1≤ u(t)≤ 1, ∀ t ∈ [tk, tk+N) (6.36f)

u(t) ∈ g(tk) (6.36g)

ã′(t)Pã(t)≤ ρ̄ (6.36h)

where ãs is the predicted temporal evolution of the amplitudes of the slow modes, ã f is

the predicted temporal evolution of the amplitudes of the fast modes, and ã is a vector

consisting of both ãs and ã f . The prediction horizon of the EMPC is N = 3 and the sampling

time is ∆ = 0.01. The high-order model of Eqs. 6.36b-6.36c is based on 11 slow modes

and 19 fast modes (i.e., m1 = m2 = 11 and l1 = l2 = 30). Two other model formulations are

considered for comparison purposes:

1. The low-order output feedback EMPC system of Eq. 6.35 based on 11 slow modes.

2. A high-order EMPC system with full state feedback like in83 based on 30 modes (11

slow modes).
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Again, the system with uniform in time distribution of the reactant material over one oper-

ation period is also considered.

The closed-loop state profiles of the reactor under the high-order output feedback EMPC

of Eq. 6.36 is displayed in Figs. 6.7-6.8. The manipulated input profiles computed by the

high-order output feedback EMPC system of Eq. 6.36 is shown in Fig. 6.9; while, the input

profile computed by the high-order state feedback EMPC system is shown in Fig. 6.10.

From Fig. 6.9, chattering in the input profiles computed by the high-order output feedback

EMPC systems is observed. The additional 19 fast modes in the high-order output feed-

back EMPC system helps reduce this compared to the low-order output feedback EMPC

of Eq. 6.35. Correspondingly, the differences in the maximum temperature profiles among

the three EMPC systems is shown in Fig. 6.11. The total reaction rate over one operation

period of the process under the high-order output feedback EMPC system is 0.89% greater

than that of the process under the low-order output feedback EMPC system and only 0.73%

less than that of the process under the EMPC system with full state feedback. In summary,

the above comparison results demonstrate that the additional fast modes in Eq. 6.36 can

improve the accuracy of model prediction.

Moreover, the computational time profiles for these 3 different EMPC systems of Eq. 6.36

are given in Fig. 6.12. From Fig. 6.12, the computational efficiency of the EMPC system

of Eq. 6.36 based on 30 modes (11 slow modes) is comparable to that of the full state

feedback EMPC system based on 30 modes (11 slow modes). Based on the above results,

from a practical point of view, comparable total economic cost and computational time is

achieved while using much fewer measurement points with the high-order output feedback

EMPC system than that resulting from the full state feedback EMPC system.
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Figure 6.7: Closed-loop profile of x1 of the process under the high-order output feedback
EMPC system of Eq. 6.36 based on 30 modes (11 slow modes) over one operation period.
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Figure 6.8: Closed-loop profile of x2 of the process under the high-order output feedback
EMPC system of Eq. 6.36 based on 30 modes (11 slow modes) over one operation period.
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Figure 6.9: Manipulated input profiles of the high-order output feedback EMPC system
of Eq. 6.36 based on 30 modes (11 slow modes) and uniform in time distribution of the
reactant material over one operation period.
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Figure 6.10: Manipulated input profiles of the high-order full state feedback EMPC sys-
tem based on 30 modes (11 slow modes) and uniform in time distribution of the reactant
material over one operation period.
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Figure 6.11: Maximum temperature x2, profiles of the low-order output feedback EMPC
system of Eq. 6.35 based on 11 slow modes, the high-order output feedback EMPC system
of Eq. 6.36 based on 30 modes (11 slow modes), the high-order full state feedback EMPC
system based on 30 modes (11 slow modes) over one operation period.

Case 3: Measurement Noise Effect on Low-Order Output Feedback EMPC System

In this case, the effect of bounded measurement noise on the output measurement is consid-

ered. Process noise is added to each of the 2 states and modeled as bounded Gaussian white

noise with 0 mean, unit variance, and bounds given by wn = [0.10.05] which is 3% and 5%

of the maximum state value. The low-order output feedback EMPC system based on 11

slow modes as Case 1 adopts is applied to operate the process. The closed-loop manipu-

lated input profile of the reactor under the low-order output feedback EMPC is displayed in

Fig. 6.13. Comparing Fig. 6.13 with the manipulated input profile of the low-order output

feedback EMPC without output measurement noise in Fig. 6.4, we can see the noise results

in more serious input fluctuation phenomenon. The maximum temperature profiles of the

EMPC systems with measurement noise is shown in Fig. 6.14 and the EMPC system can

still control the reactor operating below the maximum allowable temperature and achieve
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Figure 6.12: Computational time profiles of the low-order output feedback EMPC system
of Eq. 6.35 based on 11 slow modes, the high-order output feedback EMPC system of
Eq. 6.36 based on 30 modes (11 slow modes), the high-order full state feedback EMPC
system based on 30 modes (11 slow modes) over one operation period.

robustness.

6.4 Methodological Framework for Low-Order EMPC Us-

ing Empirical Eigenfunctions

As another way to derive a reduced-order model (ROM) for the system of Eq. 6.11, empir-

ical eigenfunctions may be used as basis functions in Galerkin’s method. This method can

lead to improved computational efficiency over using analytical sinusoidal/cosinusoidal

eigenfunctions. In this section, the overall approach is summarized followed by several

closed-loop simulations of the closed-loop tubular reactor under an EMPC with a model

constructed from empirical eigenfunctions. Both state feedback and output feedback imple-

mentation of the EMPC systems formulated for the tubular reactor example are considered.
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Figure 6.13: Manipulated input profiles of the low-order output feedback EMPC system
with white noise on output measurement based on 11 slow modes and uniform in time
distribution of the reactant material over one operation period.
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Figure 6.14: Maximum temperature x1, profiles of the low-order output feedback EMPC
system with white noise on output measurement based on 11 slow modes and maximum
allowable dimensionless temperature over one operation period.
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Figure 6.15: First 4 empirical eigenfunction set for x1 from an ensemble of 2500 system
solutions.

6.4.1 Implementation of Karhunen-Loève Expansion

In order to compute the empirical eigenfunctions, we first derive and solve a high-order

and convergent discretization of the PDE of Eq. 6.18. In detail, 20 different initial condi-

tions and arbitrary (constant) input values, u(t) were applied to the process model to get the

spatiotemporal solution profiles. Consequently, from each simulation solution profile, 125

uniformly sampled solutions (which are typically called “snapshots”) were taken and com-

bined to generate an ensemble of 2500 solutions. The Karhunen-Loève (K-L) expansion

was applied to the developed ensemble of solutions to compute empirical eigenfunctions

that describe the dominant spatial solution patterns embedded in the ensemble where the

Jacobian in the K-L expansion is calculated through a finite-difference. After truncating

the eigenfunctions with relatively small eigenvalues (smaller than 1×10−5), we were left

with the first 4 eigenvalues which occupy more than 99.99% of the total energy included

in the entire ensemble. The first 4 of these empirical eigenfunctions profiles for each state
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Figure 6.16: First 4 empirical eigenfunction set for x2 from an ensemble of 2500 system
solutions.

are presented in Fig. 6.15 and Fig. 6.16. Note that in contrast to the sinusoidal/cosinusoidal

eigenfunctions, these empirical eigenfunctions are not symmetric with respect to the center

of the spatial domain owing to the nonlinear term f and the input u(t).

The methodology used to carry out the order reduction and EMPC design is summa-

rized below.

1. Initially, we form an ensemble of solutions of the PDEs of Eq. 6.1 for different values

of manipulated input variables u(t).

2. Then, we apply Karhunen-Loève (K-L) expansion to this ensemble to derive a set of

empirical eigenfunctions (dominant spatial patterns that minimize the mean square

error over all the ensemble elements).6

3. The empirical eigenfunctions are used as basis functions within a Galerkin’s model

reduction framework to transform the infinite dimensional nonlinear system of PDEs
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into a ROM in the form of a low-dimensional nonlinear ODE system.

4. Finally, an EMPC formulation is developed with the ROM and applied to the tubular

reactor example.

Remark 6.4 As a practical implementation note, we point out that even though the in-

crease of the eigenfunctions applied to the series expansion of Eq. 6.18 could improve the

accuracy of the computed approximate model, eigenfunctions that have high frequency spa-

tial profiles with small eigenvalues are discarded because of the probable round off errors.

For this case, the descending first 5 empirical eigenvalues are listed as follows: for x̄1(z, t),

λ1,1 = 2.365,λ1,2 = 1.157×10−1,λ1,3 = 4.926×10−2,λ1,4 = 9.315×10−4,λ1,5 = 7.255×

10−6 and for x̄2(z, t), λ2,1 = 9.719×10−1,λ2,2 = 1.371×10−1,λ2,3 = 5.138×10−2,λ2,4 =

9.405×10−4,λ2,5 = 8.930×10−6.

6.4.2 Galerkin’s Method with Empirical Eigenfunctions Functions

To reduce the partial differential equation model of Eq. 6.18 into an ODE model, we take

advantage of the orthogonality of the empirical eigenfunctions obtained from the K-L ex-

pansion. Specifically, using Galerkin’s method, we first derive a low-order ODE system for

each of the PDEs describing the temporal evolution of the amplitudes corresponding to the

first mi eigenfunctions. The low-order finite-dimensional model for the first j = 1, . . . , mi

eigenfunctions of the i-th partial differential equation has the following form:

ȧs,i(t) = As,ias,i(t)+Fs,i(as(t),0)+Bs,iu(t), i = 1, 2 (6.37)

where a′s,i(t) = [as,i1(t) · · · as,imi(t)] is a vector of the amplitudes of the first mi eigenfunc-

tions.

To present the effectiveness of empirical eigenfunctions in capturing the dominant
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8 Analytical Eigenfunctions
7 Analytical Eigenfunctions
4 Empirical Eigenfunctions
3 Empirical Eigenfunctions

Figure 6.17: L2 norm of the closed-loop evolution profiles of Eq. 6.18 using 4 different
ROMs with respect to the evolution profile from the higher-order discretization finite dif-
ference method.

trends that appear during closed-loop process evolution, we let the process evolve starting

from a certain initial condition and under a constant input value, u(t) = 1. Four different

ROMs are presented and compared to show the ROM accuracy in the context of EMPC

handling manipulated input and state constraints. Specifically, the following ROMs are

considered:

1. ROM using 8 analytical sinusoidal/cosinusoidal eigenfunctions (e.g., 8 eigenfunc-

tions for each partial differential equation state; 16 eigenfunctions total).

2. ROM using 7 analytical sinusoidal/cosinusoidal eigenfunctions.

3. ROM using 4 empirical eigenfunctions.

4. ROM using 3 empirical eigenfunctions.

211



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.12

0.16

0.2

0.24

0.28

t

C
om

pu
ta

tio
na

l T
im

e 
/ s

ec
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Figure 6.18: Computational time profiles of Eq. 6.18 using 4 different ROMs.

We compared the L2 norm, denoted as ||dX ||2 which is the sum of state difference at

each state measurement point, i.e., ||dX ||22 = ∑101
j=1(xi, j − x̂i, j)

2, i = 1,2 where xi, j is the

point state measurement from reduced order model and x̂i, j comes from the finite differ-

ence method, of the closed-loop evolution profile of the system under these 4 different

situations with respect to the evolution profile from the higher-order discretization finite

difference method (i.e., the two 101th-order set of ODEs obtained by discretizing, in space,

the two parabolic PDEs of Eq. 6.18) under the same initial condition and input value in

Fig. 6.17. From the Fig. 6.17, comparing the L2 norm between the ROM using 4 empirical

eigenfunctions and the ROM using 8 analytical eigenfunctions, the ROM constructed from

the empirical eigenfunctions is more accurate than the accuracy of the ROM constructed

from analytical eigenfunctions with more modes. Furthermore, we compared the computa-

tional efficiency under the above two different model reduction methods. The comparison

of the computational time corresponding to these 4 different ROMs is given in Fig. 6.18.

The ROM based on empirical eigenfunctions shows its advantage on the computational
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efficiency compared with the ROM based on the analytical sinusoidal/cosinusoidal eigen-

functions.

6.4.3 Implementation of EMPC

The implementations details of the EMPC are the same as for the output feedback case (see

the “Implementation of Output Feedback EMPC” subsection) except for two differences.

First, the availability of the full state profile across the entire spatial domain is assumed at

each sampling instance except for the third case study below and second, the reduced-order

model used in the EMPC is constructed using empirical eigenfunctions as basis functions.

Case 1: Low-order EMPC System with Input Constraints Only

In this set of simulations, we consider an EMPC formulation using the model of Eq. 6.37

and considering only input constraints which is of the form:

max
u∈S(∆)

1
N∆

∫ tk+N

tk

(∫ 1

0
r(z,τ)dz

)
dτ (6.38a)

s.t. ˙̃as,i(t) = As,iãs,i(t)+Fs,i(ãs(t),0)+Bs,iu(t) (6.38b)

ãs,i j(tk) = (ϕ̄s,i j(z), x̄i(z, tk)), j = 1, . . . , mi, i = 1, 2 (6.38c)

−1≤ u(t)≤ 1, ∀ t ∈ [tk, tk+N) (6.38d)

u ∈ g(tk) (6.38e)

ã′s(t)Pãs(t)≤ ρ̄ (6.38f)

where the notation is similar to the notation of the EMPC formulations in the previous

sections. The EMPC of Eq. 6.38 is applied with a prediction horizon N = 2 and a sampling

time ∆ = 0.01.

The closed-loop behavior of the tubular reactor under an EMPC formulated with four
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Figure 6.19: Manipulated input profiles of the EMPC formulation of Eq. 6.38 using 4
different ROMs over one operation period (profiles are overlapping).

different ROM was considered: ROMs based on 3 and 4 empirical eigenfunctions and

ROMs based on 7 and 8 analytical sinusoidal/cosinusoidal eigenfunctions. For x(z,0) = 0,

all of these 4 ROMs achieve the same manipulated input and closed-loop state profiles

under the EMPC of Eq. 6.38 which are shown in Fig. 6.19 and Figs. 6.20-6.21, respec-

tively. We emphasize here on the computational efficiency under the above two different

methods. The comparison of the computational time corresponding to these 4 different

situations is given in Fig. 6.22. The ROM based on empirical eigenfunctions shows its

advantage on the computational efficiency compared with the ROM based on the analytical

sinusoidal/cosinusoidal eigenfunctions.
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Figure 6.20: Closed-loop profile of x1 of the EMPC formulation of Eq. 6.38 using 4 differ-
ent ROMs over one operation period (profiles are overlapping).

Figure 6.21: Closed-loop profile of x2 of the EMPC formulation of Eq. 6.38 using 4 differ-
ent ROMs over one operation period (profiles are overlapping).
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Figure 6.22: Computational time profiles of the EMPC formulation of Eq. 6.38 using 4
different ROMs over one operation period.

Case 2: Low-order EMPC System With State and Input Constraints

In this case, the state constraint of Eq. 6.28 into the EMPC formulation and thus, the EMPC

formulation takes the form:

max
u∈S(∆)

1
N∆

∫ tk+N

tk

(∫ 1

0
r(z,τ)dz

)
dτ (6.39a)

s.t. ˙̃as,i(t) = As,iãs,i(t)+Fs,i(ãs(t),0)+Bs,iu(t) (6.39b)

ãs,i j(tk) = (ϕ̄s,i j(z), x̄i(z, tk)), j = 1, . . . , mi, i = 1, 2 (6.39c)

−1≤
mi

∑
j=1

ãs,1 j(t)ϕ1 j(z)≤ 3 (6.39d)

−1≤ u(t)≤ 1, ∀ t ∈ [tk, tk+N) (6.39e)

u ∈ g(tk) (6.39f)

ã′(t)Pã(t)≤ ρ̄ (6.39g)
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Figure 6.23: Closed-loop profile of x1 of EMPC formulation of Eq. 6.39 using the ROM
based on 4 empirical eigenfunctions over one operation period.

We consider a prediction horizon N = 3 and a sampling time ∆ = 0.01. For this case, the

initial condition is the steady-state of the system under uniform input distribution, u = 0.5,

as shown in the Figs. 6.23-6.24.

We compared the simulation results from the ROM based on 4 empirical eigenfunctions

(i.e., m1 = m2 = 4) and ROMs based on 8 and 12 sinusoidal/cosinusoidal eigenfunctions,

respectively, for x(z,0) equal to the steady-state of the system under constant input value,

u(t) = 0.8. Figs. 6.23-6.24 show the closed-loop evolution of the states under the EMPC

formulation of Eq. 6.39 from the ROM based on 4 empirical eigenfunctions. The manip-

ulated input profiles for the above 3 different ROMs are given in Fig. 6.25, which have

the same behavior as the ones in Case 1. For the input profile of ROM based on 4 empir-

ical eigenfunctions in Fig. 6.25 (solid line), the vibration is caused by the over-estimated

maximum temperature by the ROM in EMPC, which is also seen in Fig. 6.26 (solid line).

For this case study, we compared the integral of the reaction rate along the length of
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Figure 6.24: Closed-loop profile of x2 of EMPC formulation of Eq. 6.39 using the ROM
based on 4 empirical eigenfunctions over one operation period.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

t

u(
t)

 

 

4 Empirical Eigenfunctions
8 Analytical Eigenfunctions
12 Analytical Eigenfunctions
Uniform Input, u(t) = 0.5

Figure 6.25: Manipulated input profiles of the EMPC formulation of Eq. 6.39 using 3
different ROMs and uniform in time distribution of the reactant material profile over one
operation period.
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Maximum Allowable Dimensionless Temperature

Figure 6.26: Maximum temperature x1, profiles of the EMPC formulation of Eq. 6.39 using
3 different ROMs over one operation period.
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4 Empirical Eigenfunctions
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12 Analytical Eigenfunctions
Uniform Input, u(t) = 0.5

Figure 6.27: The integral of the reaction rate along the length of the reactor of the tubular
reactor under the EMPC formulation of Eq. 6.39 using 3 different ROMs and under uniform
in time distribution of the reactant material over one operation period.
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Figure 6.28: Computational time profiles of the EMPC formulation of Eq. 6.39 using 3
different ROMs over one operation period.

the reactor among the above 3 different ROMs and the case of the system under uniform

in time distribution of the reactant material, i.e., u(t) = 0.5, as shown in Fig. 6.27. From

Fig. 6.27, for the cases of 3 different ROMs, the average reaction rates under the EMPC

significantly increase initially because of the second-order reaction rate dependence. The

economic cost decrease since the reactant material fed to the reactor decreases to satisfy

of the reactant material constraint. Over t f , the total reaction rate from the system under

the EMPC formulation from the ROM on the basis of 4 empirical eigenfunctions is 11.25%

greater than that from the system under uniform in time distribution of the reactant material.

The total economic cost of the ROM on the basis of 4 empirical eigenfunctions is 0.79%

and 1.85% greater than that of the ROM on the basis of 8 and 12 analytical eigenfunctions,

respectively. This can be explained from the point that the empirical eigenfunctions capture

more information on the nonlinear terms and the input effect in the original model of PDEs

which is not considered by the analytical eigenfunctions.
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The comparison of the computational time corresponding to the EMPC systems based

on the above 3 different ROMs is given in Fig. 6.28. The ROM based on 4 empirical eigen-

functions shows its advantage on the computational efficiency compared with the ROM

based on both 8 and 12 analytical eigenfunctions.

Case 3: Low-order Output Feedback EMPC System With State and Input Con-

straints

In this set of simulations, a low-order output feedback EMPC system (Eq. 6.35) based on

a ROM using empirical eigenfunctions is formulated and applied to the tubular reactor.

The tubular reactor is initialized with x(z,0) equal to the steady-state of the system under

constant input value, u(t) = 0.6. For the reactor, the low-order output feedback EMPC

system based on the ROM using 4 empirical eigenfunctions is compared with the low-

order output feedback EMPC system based on 11 slow modes only (i.e., m1 = m2 = 11).

Additionally, the reactor under uniform in time distribution of the reactant material over

t f = 1.0 is also considered for comparison purposes.

We compared the simulation results from the low-order output feedback EMPCs using

the ROM based on 4 empirical eigenfunctions (i.e., m1 = m2 = 4) and ROMs based on 11

sinusoidal/cosinusoidal eigenfunctions, respectively. Figs. 6.29-6.30 show the closed-loop

evolution of the states under the EMPC formulation of Eq. 6.35 from the ROM based on 4

empirical eigenfunctions. The manipulated input profiles for the above 2 different ROMs

are given in Fig. 6.31. For the input profile of ROM based on 4 empirical eigenfunctions

in Fig. 6.31 (solid line), the vibration is caused by the over-estimated maximum tempera-

ture by the ROM in EMPC, which is also seen in Fig. 6.32 (solid line). Different from the

simulation results in Section 6.4.3, the EMPC using the ROM based on 4 empirical eigen-

functions have a higher amplitude of fluctuation on the input profile and also a much lower

maximum temperature in the reactor. This difference results from the limited number of
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Figure 6.29: Closed-loop profile of x1 of EMPC formulation of Eq. 6.35 using the ROM
based on 4 empirical eigenfunctions over one operation period.
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Figure 6.30: Closed-loop profile of x2 of EMPC formulation of Eq. 6.35 using the ROM
based on 4 empirical eigenfunctions over one operation period.
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Figure 6.31: Manipulated input profiles of the EMPC formulation of Eq. 6.35 using the
ROM based on 4 empirical eigenfunctions and the ROM based on 11 analytical eigenfunc-
tions and uniform in time distribution of the reactant material profile over one operation
period.
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Figure 6.32: Maximum temperature x1, profiles of the EMPC formulation of Eq. 6.35 using
the ROM based on 4 empirical eigenfunctions and the ROM based on 11 analytical eigen-
functions and maximum allowable dimensionless temperature over one operation period.
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Figure 6.33: The integral of the reaction rate along the length of the tubular reactor under
the EMPC formulation of Eq. 6.35 using the ROM based on 4 empirical eigenfunctions
and the ROM based on 11 analytical eigenfunctions and uniform in time distribution of the
reactant material profile over one operation period.

measurement points used with the EMPC using the ROM based on 4 empirical eigenfunc-

tions (i.e., p1 = p2 = m1 = m2 = 4) compared to the EMPC using the ROM based on 11

analytical eigenfunctions (i.e., p1 = p2 = m1 = m2 = 11).

For this case study, we also compared the integral of the reaction rate along the length

of the reactor among the above 2 different ROMs and the case of the system under uniform

in time distribution of the reactant material, i.e., u(t) = 0.5, as shown in Fig. 6.33. From

Fig. 6.33, the total reaction rate over t f from the system under the EMPC formulation from

the ROM on the basis of 4 empirical eigenfunctions is still 9.45% greater than that from the

system under uniform in time distribution of the reactant material and meanwhile, 1.46%

less than that of the ROM on the basis of 11 analytical eigenfunctions.
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6.5 Conclusions

In this work, two types of EMPC systems for quasi-linear systems of PDEs were presented:

(1) an output feedback EMPC system, and (2) an EMPC system formulated with a reduced-

order model derived using empirical eigenfunctions as basis functions. The EMPC systems

were applied to a tubular reactor of industrial importance. Through time-varying operation,

the EMPC systems yielded improved closed-loop economic performance over steady-state

operation. Additionally, constructing a ROM on the basis of historical data-based empir-

ical eigenfunctions by applying Karhunen-Loève expansion demonstrated computational

benefits over using analytical sinusoidal/cosinusoidal eigenfunctions as basis functions.
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Chapter 7

Handling State Constraints and

Economics in Feedback Control of

Transport-Reaction Processes

7.1 Introduction

This chapter presents the development of an EMPC scheme with model reduction technol-

ogy and a standard discretization method to deal with state estimation accuracy and com-

putational efficiency. First, the APOD method is applied to parabolic systems of PDEs by

considering process control system computational efficiency and some specific constraints

imposed on the process (i.e., state and input constraints), and then a novel EMPC design in-

tegrating APOD method with a high-order finite-difference method is proposed to improve

the EMPC scheme’s performance on dealing with hard state constraint over the traditional

EMPC scheme with APOD method only. The proposed EMPC method is applied to a

non-isothermal tubular reactor where a second-order chemical reaction takes place and the

computational efficiency, state and input constraint satisfaction, and closed-loop economic
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performance are evaluated. These results are mainly based on Ref.87

7.2 Preliminaries

7.2.1 Parabolic PDEs

We consider parabolic PDEs of the form:

∂x
∂ t

= A
∂x
∂ z

+B
∂ 2x
∂ z2 +Wu(t)+ f (x) (7.1)

with the boundary conditions:

∂x
∂ z

∣∣∣∣
z=0

= g0x(0, t),
∂x
∂ z

∣∣∣∣
z=1

= g1x(1, t) (7.2)

for t ∈ [0,∞) and the initial condition:

x(z,0) = x0(z) (7.3)

where z∈ [0,1] is the spatial coordinate, t ∈ [0,∞) is the time, x(z, t)= [x1(z, t) · · · xnx(z, t)]
T

∈ IRnx is the vector of the state variables (xT denotes the transpose of x), and f (x) denotes

a nonlinear vector function. The notation A, B, W , g0 and g1 is used to denote (constant)

matrices of appropriate dimensions. The control input vector is denoted as u(t) ∈ IRnu and

is subject to the following constraints:

umin ≤ u(t)≤ umax (7.4)
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where umin and umax are the lower and upper bound vectors of the manipulated input vector,

u(t). Moreover, the system states are also subject to the following state constraints:

xi,min ≤
∫ 1

0
rxi(z)xi(z, t) dz≤ xi,max (7.5)

for i = 1, . . . , nx where xi,min and xi,max are the lower and upper state constraint for the i-th

state, respectively. The function rxi(z) ∈ L2(0,1) where L2(0,1) is the space of measurable

square-integrable functions on the interval [0,1], is the state constraint distribution function.

7.2.2 Galerkin’s Method with POD-Computed Basis Functions

To reduce the model of PDEs of Eq. 7.1 into an model of ODEs, we take advantage of the

orthogonality of the empirical eigenfunctions obtained from POD (69, 127). Specifically, us-

ing Galerkin’s method (27, 53), a low-order ODE system for the PDEs of Eq. 7.1 describing

the temporal evolution of the amplitudes corresponding to the first mi eigenfunctions of the

i-th partial differential equation state in Eq. 7.1 has the following form:

ȧs(t) = Asas(t)+Fs(as(t))+Wsu(t)

xi(z, t)≈
mi

∑
j=1

ai j
s (t)ϕi j(z), i = 1, . . . ,nx

(7.6)

where as(t) = [aT
s,1(t) · · · aT

s,nx
(t)]T is a vector of the total eigenmodes, as,i(t) =

[ai1
s (t) · · · a

imi
s (t)]T is a vector of the amplitudes of the first mi eigenfunctions, ai j

s (t) is

the j− th eigenmode of i− th partial differential equation, As and Ws are constant matri-

ces, Fs(as(t)) is a nonlinear smooth vector function of the modes obtained by applying

weighted residual method to Eq. 7.1, and {ϕi j(z)} j=1:mi are the first mi dominant empirical

eigenfunctions computed from POD for the i-th PDE state, xi(z, t).
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7.3 EMPC of Systems of Parabolic PDEs with State and

Control Constraints

7.3.1 Adaptive Proper Orthogonal Decomposition

Compared with POD, APOD is a more computationally efficient algorithm because it only

needs an ensemble of a small number of snapshots in the beginning. It can complete the

recursive update of the computation of the dominant eigenfunctions, while keeping the size

of the ensemble small to reduce the computational burden of updating the ensemble once

a new process state measurement is available. Moreover, APOD can also adaptively adjust

the number of the basis eigenfunctions under a desired energy occupation requirement,

η . Out of N possible eigenvalues from the covariance matrix of the ensemble, the most

dominant m eigenvalues of the covariance matrix occupies η energy of the whole ensemble,

i.e., ∑m
j=1 λ j/∑N

j=1 λ j ≤ η . Then, the computational efficiency of the control system whose

construction is based on the ROM with the dominant eigenfunctions will be improved due

to the adaptive property of APOD.136 Since the basis eigenfunctions are updated on-line,

the initial ensemble of process snapshots may contain significantly less process solution

data than POD. More details of the APOD methodology can be found in136 and.115 The

implementation steps of the APOD methodology can be summarized as follows:

1. At t < 0, generate an ensemble of solutions of the PDE system (e.g., Eq. 7.1) for

single manipulated input value u(t) from certain initial condition;

1.1. Apply POD to this ensemble to derive a set of first mi(t0) most dominant em-

pirical eigenfunctions for each state xi, i = 1, . . . ,nx which occupy η energy

of the chosen ensemble ;6

1.2. Construct a ROM in the form of a low-dimensional nonlinear ODE system
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based on these empirical eigenfunctions within a Galerkin’s model reduction

framework from the infinite dimensional nonlinear system of PDEs;

2. The ensemble (or basis eigenfunctions) is updated based on a constant update fre-

quency with the update period, ∆ (constant). In the context of EMPC, the update pe-

riod, ∆, is equal to the sampling time in EMPC. For all k, repeat: at t = tk = k∆ > 0,

when the new process state measurements are available, update the ensemble by uti-

lizing the most important snapshots approach 115 which analyzes the contribution of

the current snapshots in the ensemble and replaces the snapshot that corresponds to

the lowest contribution of representativeness with new state measurement to keep the

size of the ensemble;

2.1. Recompute the dominant eigenvalues corresponding to the first mi(tk−1) eigen-

functions by constructing small scale matrix to reduce the computational bur-

den;

2.2. Adopt orthogonal power iteration methodology to get the (mi(tk−1)+ 1)− th

dominant eigenvalue;

2.3. Get the new size of the basis eigenfunctions, mi(tk) which should still occupy

η energy of the updated ensemble (the new size of the basis eigenfunctions,

mi(tk), may increase, decrease or keep the same compared with mi(tk−1));

7.3.2 Methodological Framework for Finite-Dimensional EMPC Us-

ing Adaptive Proper Orthogonal Decomposition

EMPC Using Adaptive POD

Utilizing the empirical eigenfunctions from APOD, we formulate a state feedback Lyapunov-

based EMPC for the system of Eq. 7.1 to dynamically optimize an economic cost function.
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We assume that the state profile across the entire spatial domain is available synchronously

at sampling instants denoted as tk = k∆ with k = 0, 1, . . . . To formulate a finite-dimensional

EMPC problem, the first mi modes of Eq. 7.6 are adopted to construct the ROM, and the

EMPC formulation takes the following form:

max
u∈S(∆)

∫ tk+N

tk
Le(τ) dτ (7.7a)

s.t. ȧs(t) = Asas(t)+Fs(as(t))+Wsu(t), (7.7b)

ai j
s (tk) =

∫ 1

0
ϕi j(z)xi(z, tk) dz,

for j = 1, . . . ,mi (7.7c)

x̂i(z, t) =
mi

∑
j=1

ai j
s (t)ϕi j(z), (7.7d)

umin ≤ u(t)≤ umax, (7.7e)

xi,min ≤
∫ 1

0
rxi(z)x̂i(z, t) dz≤ xi,max, (7.7f)

aT
s (t)Pas(t)≤ ρ̄ (7.7g)

where the constraints are enforced for all t ∈ [tk, tk+N) and i = 1, . . . ,nx, ∆ is the sampling

period, S(∆) is the family of piecewise constant functions with sampling period ∆, N is

the prediction horizon, x̂i(z, t) is the predicted evolution of state variables with input u(t)

computed by the EMPC and xi(z, tk) is the state measurement at the sampling time tk.

Since the empirical eigenfunctions derived from the APOD procedure are all self-adjoint,

i.e., {ϕ̄i j(z)} = {ϕi j(z)} (more details can be found in69, 127), we can use the empirical

eigenfunction {ϕi j(z)} directly to calculate the estimated eigenmode amplitude ai j
s (tk) by

taking advantage of the orthogonality property of the eigenfunctions in Eq. 7.7c.

In the optimization problem of Eq. 7.7, the objective function of Eq. 7.7a describes the

temporal economic cost of the process which the EMPC maximizes over a horizon N∆.
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The constraint of Eq. 7.7b is used to predict the future evolution of the subsystem based

on the first mi dominant eigenfunctions with the initial condition given in Eq. 7.7c (i.e.,

the estimate of ai j
s (tk) computed from the state measurement xi(z, tk)). The constraints of

Eq. 7.7e-7.7f are the available control action and the state constraints, respectively. Finally,

the constraint of Eq. 7.7g ensures that the predicted state trajectory is restricted inside a

predefined stability region, ρ̄ which is a level set of a quadratic Lyapunov function V (as) =

aT
s Pas where P is a positive definite matrix (see65 for a complete discussion of this issue).

The optimal solution to this optimization problem is u∗(t|tk) defined for t ∈ [tk, tk+N). The

EMPC applies the control action computed for the first sampling period to the system in a

sample-and-hold fashion for t ∈ [tk, tk+1). The EMPC is resolved at each sampling period,

tk+1, after receiving a new state measurement of each state, xi(z, tk+1) and updated basis

functions, {ϕi j(z)} from APOD.

EMPC Scheme of Integrating APOD and Finite-Difference Method to Avoid State

Constraint Violation and Improve Computational Efficiency

Although APOD only needs an ensemble of a small number of snapshots which can im-

prove the computational efficiency of the eigenfunction update calculation, smaller size of

ensemble usually results in a single or a few dominant eigenfunctions. The accuracy of

the ROM based on fewer eigenfunctions computed from an ensemble of small size is usu-

ally worse than that of the ROM constructed by adopting more eigenfunctions from a large

ensemble of snapshots. However, as pointed out in,114 eigenfunctions that have high fre-

quency spatial profiles (corresponding to small empirical eigenvalues) should be discarded

because of potentially significant round-off errors. In this situation, only a single or a few

eigenfunctions can be adopted from APOD keeping the dimension of the reduced-order

model low. So there exists the trade-off between the ROM accuracy and computational

efficiency of APOD in practical implementation. Moreover, under a dynamic operation of
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a process, the state error between the estimated state value from ROM and the actual state

value cannot be predicted (i.e., it is almost impossible to predict whether the estimated

state value will be an overestimate or an underestimate of the actual state value). From

the point of view of practical implementation, when the process faces some specific state

constraints, a controller which is constructed based on the ROM may produce an input

trajectory misleading the process to violate state constraints.

To circumvent this problem, we propose an EMPC methodology to avoid potential state

constraint violation. The methodology integrating APOD and a high-order finite-difference

method in EMPC is designed to improve the computational efficiency compared to using

EMPC with a model constructed from a high-order finite-difference method only. Before a

detailed algorithm of the methodology can be presented, we define the following notation

which will be used in the algorithm. To ensure that the state constraint is satisfied, we will

make use of the following two inequalities to define a so-called alert region:

∫ 1

0
rx,i(z)xi(z, t) dz≥ xalert

i,max, (7.8a)∫ 1

0
rx,i(z)xi(z, t) dz≤ xalert

i,min (7.8b)

where xalert
i,max < xi,max and xalert

i,min > xi,min are tuning parameters chosen to ensure that the

state constraints are always satisfied under the EMPC methodology described below. With

abuse of notation, we use xi(z, t) ∈ Ωi to denote the fact that one of the inequalities of

Eq. 7.8 is satisfied for the state profile of the i-th partial differential equation state, and we

use xi(z, t) /∈Ωi to denote that neither inequalities are satisfied. Also, Ωi is referred to as the

i-th state constraint alert region. The abbreviation EMPC-FD will denote an EMPC scheme

formulated with a model from a high-order finite-difference method, while EMPC-APOD

will be used to denote an EMPC with a model resulting from APOD. The corresponding

input trajectory from each EMPC will be denoted as uFD(t|tk) and uAPOD(t|tk), respectively.
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The algorithm is initialized with POD, that is an ensemble of solutions of the system of

PDEs of Eq. 7.1 are collected, mi is derived by applying standard POD method to the initial

ensemble for each state, and an EMPC with a model generated through POD computes the

control action for the first sampling period (i.e., from t = 0 to t = ∆). The control action

applied to the system over the first sampling period is denoted as u∗(t0) = uPOD(t0|t0) and

k = 0.

Considering that the APOD procedure (i.e., updating the empirical eigenfunctions) is

computationally expensive especially when the size of the ensemble is large, the state mea-

surement value x(z, tk) is adopted to update the basis eigenfunctions by APOD procedure

for ROM construction at t = tk+1 which is completed during the sampling time between

t = tk and t = tk+1. In other words, the APOD update is performed over the sampling pe-

riod tk to tk+1 in parallel to the EMPC calculation that is done at a sampling instance tk.

The detailed steps of EMPC system flow chart which integrates the APOD methodology

with a finite-difference method are explained as follows:

Basis Update Procedure

1. At tk, obtain a measurement of the state profile, go to Step 2.

2. Use the state profile measurement x(z, tk) to complete the APOD procedure and com-

pute the number of the basis eigenfunctions for the next sampling period, m(tk+1)

where m(tk+1) = [m1(tk+1) · · · mnx(tk+1)]
T is a vector containing the number of basis

eigenfunctions for each partial differential equation state; go to Step 3.

3. If u∗(tk) = uFD(tk), go to Step 4; otherwise, go to Step 5.

4. Enforce the number of the basis eigenfunctions to be increased by 1 for the i-th partial

differential equation state (each): mi(tk+1) = mi(tk+1)+ 1 (increase the ROM accu-

racy by using more eigenfunctions since the process enters into the state constraint
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Figure 7.1: EMPC system flow chart which integrates the APOD methodology with a
finite-difference method to increase the computational efficiency and avoid potential state
constraint violation.
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alert region) and update the basis eigenfunctions for the i-th partial differential equa-

tion state; go to Step 5.

5. k← k+1; go to Step 1.

EMPC Computational Procedure

1. Obtain a measurement of the state profile at tk; go to Step 2.

2. Solve the EMPC-APOD problem using the updated basis eigenfunctions with the

size of m(tk) and get the trial input trajectory, uAPOD(t|tk); go to Step 3.

3. If xi(z, tk) ∈Ωi, go to Step 3.1. Else, set the actual optimal input trajectory, u∗(tk) =

uAPOD(tk|tk); go to Step 4.

3.1. Apply the trial optimal input trajectory uAPOD to the finite-difference model

and compute the predicted state at the next sampling time instant, x̂(z, tk+1). If

x̂i(z, tk+1) violates the state constraints, go to Step 3.2. Else, u∗(tk)= uAPOD(tk|tk)

and go to Step 4.

3.2 Solve the EMPC-FD problem to compute new trial input trajectory, uFD(t|tk),

and set u∗(tk) = uFD(tk|tk); go to Step 4.

4. Apply the optimal control action u∗(tk) over the sampling period from t = tk to t =

tk+1 and k← k+1; go to Step 1.

Fig. 7.1 illustrates the designed EMPC system flow chart for increasing the compu-

tational efficiency and avoiding potential state constraint violation. With respect to the

APOD update cycle length, the availability of the full state profile across the entire spatial

domain is assumed at each sampling instance (i.e., t = tk = k∆) and the update cycle of

APOD is equal to the sampling time of EMPC, ∆. Based on the proposed methodology, the
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computational time of APOD procedure (Steps 2 and 3 noted as “Basis Update Procedure”

in the Fig. 7.1) is not accounted for in the total EMPC calculation time (Steps 3.1 and 3.2

noted as “EMPC Computational Procedure” in the Fig. 7.1).

Remark 7.1 We note here that in practice, the sampling time length ∆ should be longer

than the time needed to complete the APOD procedure otherwise the EMPC system will not

be able to get the updated basis eigenfunctions at the new sampling time instant t = tk+1.

On the other hand, since the state measurements are available only at every ∆, large ∆ may

result in APOD missing the appearance of new process dynamics when the process goes

through different regions in the state-space. Based on this consideration, the sampling

should be chosen properly.

Remark 7.2 By setting the state constraint alert region of state constraint, the EMPC

based on the ROM from APOD or POD method with few modes may lead to state con-

straint violation. However, the EMPC system based on a high-order discretization of the

system of PDEs by finite-difference method can provide more accurate optimal manipulated

input values to avoid potential state constraint violation.

Remark 7.3 In terms of the effectiveness of eigenfunctions, eigenfunctions that have high

frequency spatial profiles (i.e., corresponding to small eigenvalues) should be discarded be-

cause of potentially significant round-off errors. When implementing the proposed method-

ology, the eigenfunctions corresponding to eigenvalues smaller than λmin are not included

to avoid round-off errors. This consideration is implemented in Steps 1 and 2.1 of Fig. 7.1.

Furthermore, one may set the maximum number of basis functions used in APOD to avoid

using eigenfunctions with high frequency spatial profiles.

Remark 7.4 Since the energy occupation percentage η has no direct relationship with

the state prediction accuracy, to ensure the state constraint satisfaction during the whole
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Figure 7.2: A tubular reactor with reaction A→ B.

process operation, the state violation alert region Ωi should be large enough for a specific

energy occupation requirement. For the process state outside the chosen state violation

alert region Ωi, the EMPC using APOD only is assumed to not lead the process to violate

the state constraint under its ROM’s accuracy.

7.4 Application to a Tubular Reactor Modeled by a Sys-

tem of Parabolic PDEs

7.4.1 Reactor Description

We consider a tubular reactor, where an exothermic, irreversible second-order reaction of

the form A→ B takes place as displayed in Fig. 7.2. A cooling jacket of constant tem-

perature is used to remove heat from the reactor. The states of the tubular reactor are

temperature and concentration of reactant species A in the reactor, and the input is the inlet

concentration of the reactant species A. In order to simplify the presentation of our re-

sults below, we use dimensionless variables and obtain the following nonlinear model of
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parabolic PDEs for the process (details and model notation can be found in85 and119):

∂x1

∂ t
= −∂x1

∂ z
+

1
Pe1

∂ 2x1

∂ z2 +βT (Ts− x1)

+BT BC exp
(

γx1

1+ x1

)
(1+ x2)

2 +δ (z−0)Ti

∂x2

∂ t
= −∂x2

∂ z
+

1
Pe2

∂ 2x2

∂ z2

−BC exp
(

γx1

1+ x1

)
(1+ x2)

2 +δ (z−0)u

(7.9)

where δ is the standard Dirac function, subject to the following boundary conditions:

z = 0 :
∂x1

∂ z
= Pe1x1,

∂x2

∂ z
= Pe2x2;

z = 1 :
∂x1

∂ z
= 0,

∂x2

∂ z
= 0;

(7.10)

The following typical values are given to the process parameters: Pe1 = 7, Pe2 = 7,

BT = 2.5, BC = 0.1, βT = 2, Ts = 0, Ti = 0 and γ = 10. The following simulations were

carried out using Java programming language in a Intel Core i7,3.40 GHz computer with

a 64-bit Windows 7 Professional operating system.

7.4.2 Implementation of EMPC with Adaptive Proper Orthogonal De-

composition

We formulate an EMPC system like that of Eq. 7.7 for the tubular reactor with the ROM

derived from the procedure described above. Ipopt139 was used to solve the EMPC opti-

mization problem. To numerically integrate the ODE model, explicit Euler’s method was

used with an integration step of 1×10−5 (dimensionless). Central finite-difference method

was adopted to discretize, in space, the two parabolic PDEs and obtain a set of 101 ODEs in
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time for each partial differential equation state (further increase on the order of discretiza-

tion led to identical open-loop and closed-loop simulation results); this discretized model

was also used to describe the process dynamics. In the first case studies reported below,

with respect to EMPC settings, we used a prediction horizon, N = 3 and sampling time

length, ∆ = 0.01 (dimensionless) which can sufficiently capture the appearance of new pat-

terns by the newly available snapshots as the process moves through different regions in

the state-space.

The cost function of Eq. 7.7 considered involves maximizing the overall reaction rate

along the length of the reactor in the prediction horizon, tk to tk+N and over one operation

period with t f = 1. The temporal economic cost along the length of the reactor then takes

the form:

Le(t) =
∫ 1

0
r(z, t)dz (7.11)

where r(x1(z, t),x2(z, t)) = BC exp
(

γx1(z, t)
1+ x1(z, t)

)
(1+x2(z, t))2 is the reaction rate (dimen-

sionless) in the tubular reactor.

The control input is subject to constraints as follows: −1 ≤ u ≤ 1. Owing to practical

considerations, the amount of reactant material which can be fed to the tubular reactor over

the period t f is fixed. Specifically, u(t) satisfies the following constraint over the period:

1
t f

∫ t f

0
u(τ)dτ = 0.5 (7.12)

which will be referred to as the reactant material constraint. Details on the implementation

of this constraint can by found in85 and.84 Furthermore, the temperature (dimensionless)

along the length of the reactor is subject to the following constraint:

x1,min ≤min(x1(z, t)), max(x1(z, t))≤ x1,max (7.13)
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Figure 7.3: Manipulated input profiles of the EMPC system of Eq. 7.7 based on POD 1
(dotted line) and APOD using Ensemble 1 (solid line) over one operation period.

where x1,min =−1 and x1,max = 3 are the lower and upper limits, respectively.

To design the Lyapunov-based EMPC, a quadratic Lyapunov function of the following

form was adopted for the constraint of Eq. 7.7g:

V (as(t)) = aT
s (t)Pas(t) (7.14)

where P is an identity matrix of approximate dimension and ρ̄ = 3 (see65 for more details

on Lyapunov-based EMPC).
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Figure 7.4: Maximum x1(z, t) profiles of the process under the EMPC system of Eq. 7.7
based on POD 1 (dotted line), POD 2 (dash-dotted line)and APOD using Ensemble 1 (solid
line) over one operation period.
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Figure 7.5: EMPC computational time profiles for the EMPC system of Eq. 7.7 based on
POD 1 (dotted line) and APOD using Ensemble 1 (solid line) over one operation period.
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Figure 7.6: Numbers of dominant eigenfunctions based on POD 1 (solid line) and APOD
using Ensemble 2 (dotted line with circles) over one operation period.

7.4.3 Simulation Study

Case 1: APOD Compared to POD

This case study is introduced to demonstrate the effectiveness of the APOD method to

capture process dynamic information (i.e., accurate reduced order model) when compared

with the traditional POD method; this comparison is conducted under the assumption that

both APOD and POD method are applied to a large snapshot ensemble.

To compute the empirical eigenfunctions, we use the set of 101 ODEs of each partial

differential equation in Eq. 7.9 (i.e., 101 discretized points). In detail, 15 different initial

conditions and arbitrary (constant) input values, u(t) were applied to the process model

to get the spatiotemporal solution profiles with a time length of 2 (dimensionless). Con-

sequently, from each simulation solution profile, 200 uniformly sampled snapshots were

taken and combined to generate an ensemble of 3000 solutions which is noted as Ensem-
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ble 1. The POD method was applied to the developed ensemble of solutions to compute

empirical eigenfunctions that describe the dominant spatial solution patterns embedded in

the ensemble where the Jacobian in the POD method is calculated through a central finite-

difference method. After truncating the eigenfunctions with relatively small eigenvalues

(λi j < λmin = 1× 10−5), we were left with the first 4 eigenvalues for each state which

occupy more than 99.99% (i.e., η = 99.99%) of the total energy included in the entire en-

semble. These 4 eigenfunctions for each partial differential equation state are utilized for

the POD method and as the initial eigenfunctions for APOD method to construct the ROM.

To demonstrate the ability of APOD to capture the dominant trends that appear during

closed-loop process evolution as the process goes through different regions of the state-

space, we use EMPC of Eq. 7.7 based on POD using Ensemble 1 and based on APOD

using Ensemble 1 (as the starting ensemble) to the tubular reactor, respectively. For the

POD method, we constructed 2 ROMs which use the first 3 and 4 dominant eigenfunctions

of the previously constructed eigenfunctions, respectively, for the EMPC system of Eq. 7.7.

The EMPC utilizing ROM with 4 eigenfunctions is denoted as EMPC based on POD 1 and

the other is denoted as EMPC based on POD 2.

The maximum temperature (dimensionless) profiles of the tubular reactor under the

EMPC systems of Eq. 7.7 based on POD 1, POD 2 and APOD using Ensemble 1 are shown

in Fig. 7.4. Since the temperature directly influences the reaction rate (i.e., higher temper-

ature leads to higher reaction rate), the optimal operating strategy is to operate the reactor

at the maximum allowable temperature. From Fig. 7.4, the EMPC system based on POD 1

and APOD operate the tubular reactor with a maximum temperature less than the maxi-

mum allowable which is a consequence of the error associated with the ROM. However,

the process under the EMPC system based on POD 2 violates the state constraint imposed

on x1(z, t) due to fewer eigenfunctions used for constructing the ROM in the EMPC system

of Eq. 7.7. On the other hand, since the APOD is able to more accurately compute the
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state profile owing to its continuously updated dominant eigenfunctions, the EMPC sys-

tem formulated with the ROM using APOD eigenfunctions operates the reactor at a greater

temperature than the other EMPC system as demonstrated by the magnified plot in Fig. 7.4.

The computed manipulated input profiles from the EMPC systems of Eq. 7.7 based on

POD 1 and APOD using Ensemble 1, respectively, over one period are shown in Fig. 7.3.

From Fig. 7.3, the EMPC system based on APOD computes a less smooth manipulated in-

put profile than that of the EMPC system based on POD 1 due to its continuously updated

dominant eigenfunctions so that new process dynamics information is included in the dom-

inant eigenfunctions. These updated dominant eigenfunctions improved the ROM which

may be different from the previous ones when compared with the dominant eigenfunctions

POD 1 used which are kept the same during the whole operation period. Due to more ac-

curate ROMs produced by APOD method, over one period t f = 1, the total reaction rate of

the process of Eq. 7.11 under the EMPC system based on APOD is 1.18% greater than that

of the EMPC system based on POD 1.

Here, we have compared the EMPC calculation time for the EMPC systems of Eq. 7.7

based on POD 1 and APOD using Ensemble 1. As displayed in Fig. 7.5, the EMPC based

on APOD achieves 38.8% improvement on the average computational time compared with

that of the EMPC based on POD 1. As shown in Fig. 7.6, the APOD can adaptively adjust

the required minimum number of eigenfunctions to satisfy the energy occupation require-

ment for each state while the number of the eigenfunctions utilized by the POD 1 is fixed

at m1 = m2 = 4. ROM using m1 = m2 = 4 of eigenfunctions increases the computational

burden to the EMPC optimization problem based on POD 1 since the size of the dynamic

model of Eq. 7.7b is higher when compared with EMPC using APOD method. In terms

of computational time of the recursive APOD procedure for updating basis eigenfunctions,

it requires 45.2 s on the average for the case of EMPC based on APOD using Ensemble

1. We note here that the APOD is completed before the EMPC problem is solved at t = tk
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(k = 0, 1, . . . ) which follows the methodology we proposed in Fig. 7.1. Therefore, for

the EMPC calculation time in Fig. 7.5, the time of completing the APOD procedure is not

included.

Case 2: APOD with An Ensemble of Small Size

As we pointed out in Case 1, although the EMPC system based on APOD scheme us-

ing Ensemble 1 yields high state-approximation accuracy of the resulting ROM and of the

process economic performance owing to the fact that the APOD continuously updates the

dominant eigenfunctions, the APOD procedure and EMPC calculation is more computa-

tionally expensive when compared with that of the EMPC system based on a set of 101

ODEs for each partial differential equation state. The computational efficiency difference

is mainly caused by the number of the eigenfunctions adopted for constructing the ROM of

the system of PDEs. Below, we construct the EMPC scheme using the APOD method with

a small snapshot ensemble and demonstrate its advantage on computational efficiency and

ability to on-line capture dynamic process information.

Based on the above consideration, in this case, we reduce the size of the ensemble by

adopting an ensemble of 125 snapshots denoted as Ensemble 2 and apply Ensemble 2 to

the APOD procedure for EMPC system of Eq. 7.7. The required energy occupation is still

the same (η = 99.99%). Moreover, from the practical point of applying the APOD to the

process, the APOD procedure is completed by using the full state profile at t = tk−1 for

the dominant eigenfunctions at t = tk as we show in Fig. 7.1 which means the APOD can

be completed during the sampling time. In detail, as long as we update the APOD during

the sampling time, using the state value at the previous sampling time, x(tk−1), we can

complete the APOD update and this computational time has no effect on the EMPC com-

putational efficiency. The computed manipulated input profiles from the EMPC systems

of Eq. 7.11 based on APOD using Ensemble 1 and APOD using Ensemble 2, respectively,
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over one period are compared in Fig. 7.7. From Fig. 7.7, the EMPC system based on APOD

using Ensemble 2 computes a less smooth manipulated input profile than that of the EMPC

system based on APOD using Ensemble 1 due to the fact that fewer snapshots are used to

get the dominant eigenfunctions. In terms of the process economic cost of Eq. 7.11, over

one period t f = 1, the total reaction rate of the process under the EMPC system based on

APOD using Ensemble 2 is only 0.83% smaller than that of EMPC system based on APOD

using Ensemble 1 and 1.74% smaller than that of the EMPC system based on the set of 101

ODEs for each partial differential equation state.

We have compared the EMPC calculation time for the above EMPC system based on

APOD using Ensemble 1, APOD using Ensemble 2, and a model of a set of 101 ODEs

for each partial differential equation state in Fig. 7.8. As displayed in Fig. 7.8, the EMPC

calculation time for the EMPC system based on APOD using Ensemble 2 is less than

compared with that of the the EMPC system based on APOD using Ensemble 1. The

computational time of EMPC system based on Ensemble 2 is 12.5% less than that of the

EMPC system based on model of a set of 101 ODEs for each partial differential equation

state. This computational efficiency improvement of EMPC system based on APOD us-

ing Ensemble 2 comes from the fact that fewer number of dominant eigenfunctions are

adopted for constructing the ROM as compared in Fig. 7.9. We set a 99.99% energy oc-

cupation requirement for the APOD using Ensemble 1 and the corresponding number of

eigenfunctions for each state is kept at mi = 4, i = 1,2 over one operation period; while

for the EMPC based on the APOD using Ensemble 2, the corresponding number of eigen-

functions for each state adaptively changes as different process dynamics are collected and

integrated into the dominant eigenfunctions. Moreover, the APOD using Ensemble 2 which

has a much smaller size of ensemble also decreases the computational time of the APOD

update procedure to 0.24 s.

Since Ensemble 2 with a size of 125 snapshots only reflects part of process dynamics, it
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may not contain enough process dynamic behavior to guarantee the accuracy of the ROM

of the system of PDEs. Especially, when there exists a specific state constraint, the ROM

may not be a good approximation of the original system of PDEs to help the EMPC avoid

the state constraint violation due to its poor or incomplete state representation. In other

words, the ROM either from POD or APOD may overestimate or underestimate the state

value of Eq. 7.7b in the EMPC optimization problem of Eq. 7.7. For the state constraint in

this case, when the ROM underestimates the state value of x̂1(t), it may mislead the EMPC

to compute and implement a higher optimal input value to the actual process which may

result in the state constraint violation on x1(t) due to the second-order exothermic reaction

rate. Here, we constructed another ensemble of 125 snapshots from different process so-

lutions which is noted as Ensemble 3. We constructed EMPC systems using both of these

2 ensembles and applied them to the process. The maximum temperature (dimensionless)

profiles of the tubular reactor under the EMPC systems of Eq. 7.7 based on APOD using

Ensemble 2 and APOD using Ensemble 3 are shown in Fig. 7.10. From Fig. 7.10, the

EMPC system based on APOD using Ensemble 2 operates the process around the maxi-

mum allowable temperature but at some points, it is close to the state constraint. While,

from the magnified plot of Fig. 7.10, the EMPC system based on APOD using Ensemble 3

violates the state constraint around t = 0.51.

Remark 7.5 The number of snapshots affects not only the computational burden but also

the state constraint satisfaction. A large size of ensemble usually results in more dominant

eigenfunctions and at the same time, it increases the EMPC and APOD computational

time; but more eigenfunctions can improve the ROM accuracy and help the EMPC system

to avoid the state constraint violation. Therefore, the choice of the number of snapshots

(i.e., the number of the dominant eigenfunctions) is a tradeoff between the computational

efficiency and reduced order model accuracy.

248



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

t

E
M

PC
 O

pt
im

al
 I

np
ut

 V
al

ue
, u

(t
)

 

 

EMPC Using APOD of 2500 Snapshots
EMPC Using APOD of 125 Snapshots

Figure 7.7: Manipulated input profiles of the EMPC systems of Eq. 7.7 based on APOD
using Ensemble 1 (dotted line) and on APOD (solid line) using Ensemble 2 over one oper-
ation period.

1. For POD method, the ensemble must have enough snapshots which contain as much

global process dynamics as possible to help the EMPC system predict the state value

more accurately. Since POD is only conducted once, it has no effect on the EMPC

computational burden which only depends on how many modes/energy occupation is

required.

2. For APOD method, the number of snapshots depends on the model accuracy al-

though the ROM can be updated during the closed-loop operation. More snapshots

will increase the APOD computational burden. But it will help the system avoid the

state constraint violation. As long as the APOD update time is less than the sampling

time size, we can use as many snapshots as possible, but large number of snapshots

usually decreases the computational efficiency of the EMPC system.
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Figure 7.8: EMPC calculation time profiles of the process under the EMPC systems of
Eq. 7.7 based on APOD using Ensemble 1 (dotted line), on APOD using Ensemble 2 (solid
line), and a set of 101 ODEs for each partial differential equation state (dash-dotted line)
over one operation period.
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Figure 7.9: Number of dominant eigenfunctions based on APOD using Ensemble 1 (dotted
line) and on APOD using Ensemble 2 (solid line) over one operation period.
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Figure 7.10: Maximum x1 profiles of the process under the EMPC systems of Eq. 7.7 based
on APOD using Ensemble 2 (solid line) and on APOD using Ensemble 3 (dotted line) over
one operation period.

Case 3: Proposed Flow Chart of Integrating APOD with Finite-Difference Method

Based on the weakness of APOD with a small snapshot ensemble in state estimation ac-

curacy which is shown by Case 2, in this case study, the proposed method of integrating

APOD and finite differences is applied to construct the predictive models in EMPC scheme

to achieve both computational efficiency and high reduced-order model accuracy (i.e., state

estimation accuracy) so that the state constraint violation can be successfully avoided.

A set of 101 ODEs for each partial differential equation state as the result of applying

central finite-difference method to each partial differential equation state is integrated into

the EMPC scheme. An ensemble of 150 snapshots which is noted as Ensemble 4 is initially

adopted for the EMPC system based on APOD method. We still request that the dominant

eigenfunctions occupy η = 99.99% of the total energy of the ensemble. The EMPC system

of Eq. 7.7 based on the finite-difference method resulting in a set of 101 ODEs for each
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Figure 7.11: Manipulated input profiles of the EMPC system of Fig. 7.1 (solid line) and
the EMPC system of Eq. 7.7 based on the finite-difference method (dash-dotted line) over
one operation period.

partial differential equation state is taken as the comparison method for the proposed EMPC

formulation. The same prediction horizon, sampling time and integration step are adopted

as the previous case. We assume the state violation alert region, Ω1, for dimensionless

temperature, x1(z, t), is defined as:

Ω1 := {x ∈ IR | |max(x1(z, tk))− x1,max| ≤ 0.05} (7.15)

The computed manipulated input profiles over one period t f = 1.0 from the EMPC

system of Fig. 7.1 and the EMPC system of Eq. 7.7 based on the finite-difference method

over one period are shown in Fig. 7.11. From Fig. 7.11, the EMPC system of Eq. 7.7 based

on the finite-difference method computes a smoother manipulated input profile than that

of the EMPC of Fig. 7.1. The temporal economic cost profiles of the process under the
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Figure 7.12: Temporal economic cost along the length of the reactor, Le(t), of the EMPC
system of Fig. 7.1 (solid line) and the EMPC system of Eq. 7.7 based on the finite-difference
method (dash-dotted line) over one operation period.

EMPC of Fig. 7.1 and the EMPC system of Eq. 7.7 based on the finite-difference method

are shown in Fig. 7.12. From Fig. 7.12, over one period t f = 1, the total reaction rate of the

process under the EMPC of Fig. 7.1 is only 0.33% smaller than that of the EMPC system

of Eq. 7.7 based on the finite-difference model.

With respect to the performance of the EMPC optimal input value, we have compared

the maximum temperature (dimensionless) profiles of the tubular reactor under the EMPC

systems as shown in Fig. 7.13. From Fig. 7.13, we see that the EMPC system of Fig. 7.1 can

operate the process at the maximum allowable temperature and meanwhile avoid the state

constraint violation issues by adopting the integrated EMPC system based on the finite-

difference method when the process state value enters into the alert region of Eq. 7.15.

We finally have compared the calculation time of the EMPC system of Fig. 7.1 and the

EMPC system of Eq. 7.7 based on the finite-difference method in Fig. 7.14. As displayed
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Figure 7.13: Maximum x1(z, t) profiles under the EMPC system of Fig. 7.1 (solid line) and
the EMPC system of Eq. 7.7 based on the finite-difference method (dash-dotted line) over
one operation period.

in Fig. 7.14, the EMPC of Fig. 7.1 achieves 8.71% improvement compared with the EMPC

system of Eq. 7.7 based on the finite-difference method. In terms of Fig. 7.14, we point

out that when the state value enters in the violation alert region, both the EMPC based on

APOD method (to get a trial optimal input value) and the EMPC system of Eq. 7.7 based

on the finite-difference method (to get an accurate optimal input value to help the EMPC

scheme to avoid the state constraint violation if the previous optimal input value leads to

constraint violation) are conducted which results in a longer computational time.

Based on the above results and analysis, the proposed EMPC scheme of Fig. 7.1 suc-

cessfully improves the whole computational efficiency while avoiding the state constraint

violation.

Remark 7.6 We note here that the proposed EMPC scheme of Fig. 7.1 also has its draw-

backs and limitations as follows:
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Figure 7.14: EMPC computational time profiles for the EMPC system of Fig. 7.1 (solid
line) and the EMPC system of Eq. 7.7 based on the finite-difference method (dash-dotted
line) over one operation period.

1. Due to the automatic transition of the proposed EMPC scheme between APOD and

finite-difference method after the process enters into the state violation alert region,

the smoothness of the manipulated input trajectories is usually not guaranteed which

may increase fluctuations on process state and economic-index trajectories in prac-

tice (e.g., production rate). This also reflects APOD method’s limitation on capturing

the global process dynamics and application on dynamic operation because of its re-

quirement for a relatively smaller size of ensemble.

2. The proposed EMPC scheme achieves better computational efficiency compared with

EMPC based on finite-difference method. If real-time computational constraints

are not critical, EMPC based on a high-order finite-difference method which has

a higher model accuracy would be a better choice. In terms of the limitation of the

finite-difference method, if the size of the discretized model is large, EMPC based on
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this discretized model requires much more computational time compared with EMPC

based APOD method.

Remark 7.7 To deal with potentially-large fluctuations of the optimal input profile brought

by the proposed EMPC scheme of Fig. 7.1, an increase of the prediction horizon and an

addition of an input fluctuation penalty term in the economic cost function of Eq. 7.11

may be adopted; such modifications of the presented EMPC scheme have been carried out

and have demonstrated the expected benefit in reducing input fluctuations but are omitted

here due to space limitations. It is important to note that a longer prediction horizon will

definitely sacrifice the computational efficiency of EMPC and an input fluctuation penalty

cost may also lead to a degradation of the process economic performance.

7.5 Conclusion

This work focused on developing an EMPC design for a system of parabolic PDEs which

integrated the APOD method and a high-order finite-difference method to deal with control

system computational efficiency and state constraint satisfaction. EMPC systems adopting

POD, APOD, a high-order spatial discretization by central finite-difference method and

the proposed EMPC flow chart were applied to a non-isothermal tubular reactor where a

second-order chemical reaction takes place. These EMPC systems were compared with

respect to their model accuracy, computational time, APOD update requirements, state

constraint satisfaction and closed-loop economic performance of the tubular reactor. The

simulation results demonstrated the advantages of APOD on improving computational ef-

ficiency of EMPC design, but also demonstrated a potential problem on state constraint

violation. To address this issue, an EMPC scheme inheriting the high computational effi-

ciency from APOD and the high state prediction accuracy from high-order finite-difference

method was proposed; simulation results demonstrated that this EMPC scheme success-
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fully improves the computational efficiency, while avoiding state constraint violations. Fu-

ture work will focus on developing an output feedback EMPC scheme based on APOD

in which the state measurements will be limited to few discrete points along the spatial

domain.
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Chapter 8

Economic Model Predictive Control of a

System of First-Order Hyperbolic PDEs

8.1 Introduction

This chapter presents both state and output feedback EMPC systems that account for both

manipulated input and state constraints for a system of first-order hyperbolic PDEs. When

measurements of the state variables are available only at a finite number of spatial positions,

a pole placement-based state observer technique is adopted to get estimates of the full spa-

tial state profile. The EMPC system is applied to a non-isothermal plug flow reactor whose

first-principles model consists of two quasi-linear first-order hyperbolic PDEs. EMPC sys-

tems utilizing different numbers of output measurement points and different prediction

horizons are applied to this plug flow reactor process. Various results of state estimation

accuracy, process economic performance, and computational efficiency are presented and

compared.
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8.2 Preliminaries

8.2.1 Reactor Description

We focus on a non-isothermal plug flow reactor (PFR) where an irreversible and exothermic

second-order reaction of the form A→ B takes place. The process model in dimensionless

variable form consists of two quasi-linear hyperbolic PDEs. The process description details

and model notation can be found in85 (i.e., the PFR model is similar to the tubular reactor

model presented in85 except for the fact that the diffusion term used in the tubular reactor

model of85 is neglected in the PFR model below):

∂x1

∂ t
=−∂x1

∂ z
+BT BC exp

(
γx1

1+ x1

)
(1+ x2)

2

+βT (Tj− x1)

∂x2

∂ t
=−∂x2

∂ z
−BC exp

(
γx1

1+ x1

)
(1+ x2)

2

(8.1)

subject to the following boundary conditions:

x1(0, t) = Ti, x2(0, t) =CAi = u(t) (8.2)

where x1(z, t) denotes a dimensionless temperature, x2(z, t) denotes a dimensionless re-

actant concentration, z and t are the dimensionless spatial coordinate and time variables,

respectively. The following typical values are given to the process parameters: BT = 2.5,

BC = 0.1, βT = 2, Ti = 0.5, Tj = −0.5, and γ = 10. Upwind finite-difference scheme is

adopted (which can guarantee the stability of the numerical spatial discretization of the

process model59) to discretize, in space, the two hyperbolic PDEs and obtain a 101st-order

system of ODEs in time for each partial differential equation (i.e., a total of 202 ODEs in

time). Further increase of the number of discretization points led to identical results. Based
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Figure 8.1: Open-loop profile of x1 of the process model of Eq. 8.1.

on this discretized model, open-loop simulation results for a constant input of u(t) ≡ 0.0

are shown in Figs. 8.1-8.2. The state profile is initialized at the steady-state profile corre-

sponding to the steady-state input us = 0.5.

The process model of Eq. 8.1 can be formulated as follows:

∂x(z, t)
∂ t

= A
∂x(z, t)

∂ z
+ f (x(z, t))

y j(t) = C x(z, t) =
∫ 1

0
c j(z)x(z, t)dz, j = 1, . . . , p

(8.3)

subject to the boundary conditions:

x(0, t) = [Ti u(t)]′ (8.4)
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Figure 8.2: Open-loop profile of x2 of the process model of Eq. 8.1.

and the initial condition:

x(z,0) = x0(z) (8.5)

where x(z, t) = [x1(z, t)x2(z, t)]′ denotes the vector of the process state variables, the no-

tation x′ is the transpose of x, z ∈ [0,1] is the spatial coordinate, t ∈ [0,∞) is the time,

f (x(z, t)) denotes a nonlinear vector function, y j(t) is the j-th measured output (y(t) =

[y1(t) · · · yp(t)]′ is the measured output vector), c j(z) are known smooth functions of z

( j = 1, . . . , p) whose functional form depends on the type of the measurement sensors, C

is the measured output operator, A is a constant matrix of appropriate dimensions, and u(t)

denotes the manipulated input.
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8.2.2 EMPC System Constraints and Objective

For the plug flow reactor of Eq. 8.1, the input u(t) is chosen as the reactant concentration

(dimensionless) of the inlet stream at z = 0 (Eq. 8.2). We assume the manipulated input is

subject to constraints as follows:

umin ≤ u(t)≤ umax (8.6)

where umin =−1 and umax = 1 are the lower and upper bound of the manipulated input, u(t).

We assume that there is also a limitation on the amount of reactant material (dimensionless)

available over each operating period of length tp. Specifically, the control input of u(t)

should satisfy:
1
tp

∫ tp

0
u(τ)dτ = 0.5 (8.7)

which will be referred to as the reactant material integral constraint. To ensure that the

constraint of Eq. 8.7 is satisfied over the operating period of length tp when the prediction

horizon of the EMPC does not cover the entire operating period, it is implemented accord-

ing to the strategy described in.48 In the EMPC formulations below, the constraint will be

denoted as u ∈ g(tk) to simply the notation.

In terms of the state constraint, we consider that the reactor temperature (dimensionless)

is subject to:

x1,min ≤ x1(z, t)≤ x1,max (8.8)

for all z∈ [0,1] and t ≥ 0 where x1,min =−1 and x1,max = 4.5 are the lower and upper limits,

respectively.

To solve the EMPC problem, the open-source interior point solver Ipopt139 was used.

Explicit Euler’s method was used for temporal integration of the 202nd spatial discretiza-

tion of the PDE model of Eq. 8.1 with an integration step of 1× 10−3 to numerically
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integrate ODE model in EMPC. The dimensionless sampling period of EMPC is ∆ = 0.01.

To develop EMPC formulations in the subsequent sections, we use a Lyapunov function

of form

V (x) =
∫ 1

0
[x2

1(z, t)+ x2
2(z, t)]dz < ρ̄ (8.9)

where x1(z, t) and x2(z, t) are the spatial state values respectively and ρ̄ = 15 (see65 for

results on Lyapunov-based EMPC designs).

The cost function that we consider is to maximize the overall reaction rate along the

length of the reactor and over one operation period of length tp = 1. The economic cost

then takes the form:

Le(t) =
∫ 1

0
r(z, t)dz (8.10)

where r(z, t) = BC exp
(

γx1(z, t)
1+ x1(z, t)

)
(1+ x2(z, t))2 is the reaction rate (dimensionless) in

the plug flow reactor.

8.3 State Feedback EMPC

8.3.1 State Feedback Economic Model Predictive Control Formula-

tion

We consider the application of a state feedback EMPC to the system of Eq. 8.1 to optimize

an economic cost function and handle input and state constraints. Specifically, a Lyapunov-

based EMPC (LEMPC) system is designed using the results in65 with the economic cost

function of Eq. 8.10, the input constraint of Eq. 8.6, the state constraint of Eq. 8.8, and

the reactant material integral constraint of Eq. 8.7 for the plug flow reactor. The state

feedback EMPC receives the (full) state profile of x(z, tk) of the system of PDEs of Eq. 8.1

synchronously at sampling instants denoted as tk = k∆ with k = 0, 1, . . . . The state feedback
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EMPC control action is computed by solving the following finite-dimensional optimization

problem in a receding horizon fashion:

max
u∈S(∆)

∫ tk+N

tk
Le(τ)dτ (8.11a)

s.t.
∂ x̃(z, t)

∂ t
= A

∂ x̃(z, t)
∂ z

+ f (x̃(z, t)) (8.11b)

x̃(z, tk) = x(z, tk),∀z ∈ [0,1] (8.11c)

x̃1(0, t) = Ti, ∀ t ∈ [tk, tk+N) (8.11d)

x̃2(0, t) = u(t), ∀ t ∈ [tk, tk+N) (8.11e)

umin ≤ u(t)≤ umax (8.11f)

u(t) ∈ g(tk) (8.11g)

x1,min ≤ x1(z, t)≤ x1,max, ∀ z ∈ [0,1],

and ∀ t ∈ [tk, tk+N) (8.11h)

V (x̃)≤ ρ̄ (8.11i)

where Le(τ) is the economic cost, ∆ is the sampling period, S(∆) is the family of piecewise

constant functions with sampling period ∆, N is the prediction horizon, and x̃(z, t) is the

predicted state function evolution with input u(t) computed by the state feedback EMPC.

In the optimization problem of Eq. 8.11, the cost function of Eq. 8.11a accounts for the

economics of the system of PDEs (i.e., maximization of the production of product species

B). The constraint of Eq. 8.11b is used to predict the future evolution of the system of

PDEs with the initial condition given in Eq. 8.11c and the boundary conditions given by

Eqs. 8.11d-8.11e. The constraints of Eqs. 8.11f-8.11h are the available control action, the

integral input constraint, and the state constraints, respectively. The constraint of Eq. 8.11i

ensures that the predicted state trajectory is restricted inside a predefined stability region
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Figure 8.3: Closed-loop profile of x1 of the process under the state feedback EMPC system
of Eq. 8.11 over one operation period.

which is a level set of the Lyapunov function (see65 for a complete discussion of this issue).

The optimal solution to this optimization problem is u∗(t|tk) defined for t ∈ [tk, tk+N). The

state feedback EMPC applies the control action computed for the first sampling period

to the system in a sample-and-hold fashion for t ∈ [tk, tk+1). The state feedback EMPC

is resolved at the next sampling period, tk+1, after receiving a measurement of the state

profile, x(z, tk+1) for z ∈ [0,1].
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Figure 8.4: Closed-loop profile of x2 of the process under the state feedback EMPC system
of Eq. 8.11 over one operation period.
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Figure 8.5: Manipulated input profiles of the state feedback EMPC system of Eq. 8.11 and
uniform in time distribution of the reactant material over one operation period.
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Figure 8.6: Maximum x1 profiles of the process under the state feedback EMPC system of
Eq. 8.11 over one operation period.
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Figure 8.7: Economic cost, Le(t), along the length of the reactor under the state feedback
EMPC system of Eq. 8.11 and under uniform in time distribution of the reactant material
over one operation period.

269



8.3.2 Application of State Feedback EMPC System to the Tubular Re-

actor

We operate the reactor under the state feedback EMPC system of Eq. 8.11. In detail, we

choose the prediction horizon, N = 3. The plug flow reactor is initialized with a steady-state

profile (i.e., the steady-state profile corresponding to the steady-state input us = 0.5).

The closed-loop state profiles of the reactor over one period tp = 1.0 under the state

feedback EMPC of Eq. 8.11 is displayed in Figs. 8.3-8.4. The computed manipulated input

profile from the state feedback EMPC system over one period is shown in Fig. 8.5. From

Fig. 8.5, we observe that the state feedback EMPC system varies the optimal input value

u(t) in a time-varying fashion. The maximum x1 value profile of the plug flow reactor

under the state feedback EMPC system is shown in Fig. 8.6. Since the temperature directly

influences the reaction rate (i.e., the reaction is second-order and exothermic), the optimal

operating strategy is to first force the reactor to operate at the maximum allowable value

and then, decrease the input to its minimum value to satisfy the integral input constraint.

During this one operation period, tp = 1, the economic cost profile of the reactor under the

state feedback EMPC system is demonstrated in Fig. 8.7. The average economic cost over

one operating period tp = 1, which is denoted as L̄e(t), is given by

L̄e(t) =
∫ 1

0
Le(t)dt . (8.12)

Comparing the process under the state feedback EMPC system to the process under a con-

stant input, the average economic cost is 15.14% greater than that of the reactor under

uniform in time distribution of the reactant material. The state feedback EMPC system

achieves a significant advantage in maximizing the process economic performance over

one operation period through operating the process in a time-varying fashion.
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8.4 Output Feedback EMPC

8.4.1 State Estimation Using Output Feedback Methodology

In this section, we consider a state estimation technique that makes use of a finite number,

p, of measured outputs y j(t) ( j = 1, . . . , p) to estimate the state vector of the system, x(z, t)

in space and time.

This state estimation scheme is designed based on the distributed state observer design

approach presented in.26 The nonlinear state observer is designed to guarantee local expo-

nential convergence of the state estimates to the actual state values. In particular, based on

Eq. 8.3, the following state observer will be utilized:

∂ x̂(z, t)
∂ t

= A
∂ x̂(z, t)

∂ z
+ f (x̂(z, t))+K (y(t)−C x̂(z, t)) (8.13)

subject to the boundary conditions:

x̂(0, t) = [Ti u(t)]′ (8.14)

and the initial condition:

x̂(z,0) = x̄0(z) (8.15)

where x̂ is the observer state vector, x̄0(z) is the initial condition of the observer state which

is sufficiently smooth with respect to z, y(t) is the measured output vector which is assumed

to be continuously available and K is a linear operator representing the observer gain

which is designed on the basis of the linearization of the system of Eq. 8.13 so that the

eigenvalues of the operator Lo = L −K C lie in the left-half plane. By satisfying this

condition, Lo can generate an exponentially stable semigroup for x̂(t). Specifically, the

operator L is defined on the basis of the linearized form of the Eq. 8.3 at some specific
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steady-state profile, denoted as xs(z), i.e.,:

L x = A
∂x
∂ z

+B(z)x (8.16)

where

B(z) :=
(

∂ f (x)
∂x

)
x=xs(z)

(8.17)

If the operator K is chosen by satisfying the aforementioned condition that the eigen-

values of the operator Lo = L −K C lie in the left-half of the complex plane, the term

K (y(t)−C x̂) can enforce a fast decay of the discrepancy between the estimated state val-

ues and the actual state values of the system of PDEs. In practice, the design of the operator

K depends on whether the output measurements are corrupted by noise or not. Pole place-

ment is often adopted when the output measurements are free of measurement noise, while

Kalman filtering theory is often adopted when the output measurements are noisy. For

the present work, we assume there is no measurement noise on the output measurements.

Therefore, pole placement is utilized to design an appropriate state observer gain for output

feedback correction to diminish the state estimation error as fast as possible.

8.4.2 Implementation of State Estimation

We now combine the state observer with the state feedback EMPC to derive an output

feedback EMPC formulation. For the case of plug flow reactor of Eq. 8.1, we assume that

only p evenly spaced measurement points are available of the state x1 (temperature); we use

these p measurements to estimate the state values of both x1(z, t) and x2(z, t) in the whole

space and time domain by designing a state observer of the form of Eq. 8.13. Here, each

spatial measurement point, z j, is at z j = ( j− 1)/(p− 1). Since point-wise measurements
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are assumed, the measurement distribution functions are:

c j(z) = δ (z− z j) (8.18)

for j = 1, . . . , p where δ is the standard Dirac function. Consequently, each output mea-

surement point value, y j(tk), is equal to the partial differential equation state value, x1 at

the corresponding spatial point, z j, i.e.,:

y j(t) = x1(z j, t) (8.19)

and the output measurement vector is y′(t) = [y1(t) · · · yp(t)]. The operator K ∈ IR2×p is

chosen to be:  1/p . . . 1/p

1/p . . . 1/p

 (8.20)

so that the eigenvalues of the operator L0 will lie in the left-half of the complex plane.
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8.4.3 Application of Output Feedback EMPC System to the Tubular

Reactor

We consider the application of output feedback EMPC to the system of Eq. 8.3 of the form:

max
u∈S(∆)

∫ tk+N

tk
Le(τ)dτ (8.21a)

s.t.
∂ x̃(z, t)

∂ t
= A

∂ x̃(z, t)
∂ z

+ f (x̃(z, t)) (8.21b)

x̃(z, tk) = x̂(z, tk) (8.21c)

x̃1(0, t) = Ti, ∀ t ∈ [tk, tk+N) (8.21d)

x̃2(0, t) = u(t), ∀ t ∈ [tk, tk+N) (8.21e)

umin ≤ u(t)≤ umax (8.21f)

u(t) ∈ g(tk) (8.21g)

x1,min ≤ x1(z, t)≤ x1,max, ∀ z ∈ [0,1],

and ∀ t ∈ [tk, tk+N) (8.21h)

V (x̃)≤ ρ̄ (8.21i)

where Le(τ) is the economic cost of Eq. 8.10, ∆ is the sampling period, S(∆) is the family

of piecewise constant functions with sampling period ∆, N is the prediction horizon, x̃(z, t)

is the predicted state function evolution with input u(t) computed by the output feedback

EMPC and x̂(z, tk) is the state estimate of x(z, tk) obtained from state observer of Eq. 8.13

at t = tk.
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Case 1: Output Feedback EMPC System

For this case, we operate the reactor by using the output feedback EMPC system of Eq. 8.21.

In detail, we choose the prediction horizon, N = 3 and assume there are p = 11 evenly

spaced measurement points along the length of the reactor. The plug flow reactor is initial-

ized with the steady-state profile corresponding to the steady-state input us = 0.5.

The closed-loop state profiles of the plug flow reactor over one period tp = 1.0 under the

output feedback EMPC of Eq. 8.21 based on 11 measurements of x1 are shown in Figs. 8.8-

8.9. To check the effectiveness of the state observer, the profile of the state estimation error

defined as

dx(t) =
2

∑
i=1

(
101

∑
j=0

(
xi(z j, t)− x̂i(z j, t)

)2

)1/2

(8.22)

where z j, j = 1, 2, . . . , 101 is the discretized spatial coordinate and dx(t) is the metric that

defines the estimation error. The estimation error, dx(t) for this case study is shown in

Fig. 8.10. From Fig. 8.10, the state estimation error becomes small over time and con-

verges to 0 at the end of the operating period. The optimal manipulated input profile from

the output feedback EMPC system based on 11 measurements of x1 over one period is dis-

played in Fig. 8.11. The input profile of the output feedback EMPC displays chattering.

The chattering is from inaccuracies of the state estimate provided to the EMPC from the

state observer. Specifically, it is desirable from an economics perspective to operate the

PFR at the maximum temperature. However, the state observer cannot exactly estimate the

true state. When the estimated temperature is at or above the state constraint, the EMPC

decreases the amount of reactant material fed to the PFR to decrease the temperature (and

satisfy the state constraint). If the estimated state is below the state constraint, more reac-

tant material is fed to the PFR to increase the temperature and bring the temperature to the

maximum allowable temperature. The maximum x1 value profile of the plug flow reactor

under the output feedback EMPC system is demonstrated in Fig. 8.12. From Fig. 8.12,
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Figure 8.8: Closed-loop profile of x1 of the process under the output feedback EMPC
system of Eq. 8.21 with N = 3 based on 11 measurements of x1 over one operation period.

the output feedback EMPC system is able to operate the reactor at the maximum allowable

value over a period of time to maximize the economic cost while not violating the state

constraint.

The economic cost profile of the reactor under the output feedback EMPC system is

displayed in Fig. 8.13. During this one operation period, the process under the output

feedback EMPC system achieves 14.77% improvement on the average economic cost over

one operation period than that of the reactor under uniform in time distribution of the

reactant material. The output feedback EMPC system demonstrates a significant advantage

in maximizing the process economic performance through operating the process in a time-

varying fashion over one operation period.
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Figure 8.9: Closed-loop profile of x2 of the process under the output feedback EMPC
system of Eq. 8.21 with N = 3 based on 11 measurements of x1 over one operation period.
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Figure 8.10: State estimation error profile of the process under the output feedback EMPC
system of Eq. 8.21 with N = 3 based on 11 measurements of x1 over one operation period.
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Figure 8.11: Manipulated input profiles of the output feedback EMPC system of Eq. 8.21
with N = 3 based on 11 measurements of x1 and uniform in time distribution of the reactant
material over one operation period.
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Figure 8.12: Maximum x1 profiles of the process under the output feedback EMPC system
of Eq. 8.21 with N = 3 based on 11 measurements of x1 over one operation period.
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Figure 8.13: Temporal economic cost, E(t), along the length of the reactor under the output
feedback EMPC system of Eq. 8.21 with N = 3 based on 11 measurements of x1 and under
uniform in time distribution of the reactant material over one operation period.
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Case 2: Prediction Horizon Effect on EMPC Application

We operate the process under different prediction horizons (N < 10 were considered be-

cause N ≥ 10 is considered impractical based on computation time requirements to the

EMPC at each sampling instance). The number of output measurement points on x1 used

was p = 11. The closed-loop manipulated input profiles of the output feedback EMPC

system of Eq. 8.21 using the above different prediction horizons are displayed in Fig. 8.14.

From Fig. 8.14, we can see that the use of a longer prediction horizon reduces the chat-

tering of the manipulated input profiles. The corresponding average economic cost (i.e.,

L̄e(t)) profiles along the length of the reactor are displayed in Fig. 8.15. Fig. 8.15 demon-

strates that the use of a prediction horizon greater than three sampling periods does not

show a significant advantage of improving the process economic performance for the out-

put feedback EMPC system of Eq. 8.21. However, as the prediction horizon increases, the

computation time required to solve the EMPC at each sampling time increases. The ratio of

the average computation time for a given horizon to the average computation time to solve

the EMPC with N = 3 is shown in Fig. 8.16. The EMPC with N = 3 was chosen as the

comparison standard because a horizon of N > 3 did not result in a significant improvement

in the economic performance compared to N = 3. Comparing the EMPC with N = 3 and

that with N = 7, for instance, the EMPC with N = 7 computation time is approximately

six times greater than that of N = 3, while the increase in the economic performance is less

than 0.0005 (i.e., less than 0.03%).

Case 3: Different Number of Output Measurement Points

For this case, we apply the output feedback EMPC systems of Eq. 8.21 using different

numbers of available measurement points, i.e., p = 6,11,21. Operation over an operation

period of tp = 1.0 was considered. Different number of output measurement points bring in
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Figure 8.16: The ratio of the average EMPC calculation time with the specified prediction
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Figure 8.17: State estimation error profiles of the process under the output feedback EMPC
system of Eq. 8.21 with N = 3 using different numbers of measurement points, p, of x1.

different state estimation error profiles for the same output feedback control formulation of

Eq. 8.13 as shown in Fig. 8.17. From the magnified plot in Fig. 8.17, we can see that more

available measurement points can slightly increase state estimation error convergence rate.

8.5 Conclusion

This work presented both state feedback and output feedback EMPC schemes for a sys-

tem of two coupled hyperbolic PDEs arising in the modeling of a non-isothermal plug

flow reactor. Through extensive simulation studies, key metrics like economic closed-loop

performance under EMPC versus steady-state operation, impact of horizon length on com-
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putation time and economic performance, effect of number of measurement points on state

estimation and closed-loop economic performance were evaluated and discussed. Future

work will attempt to develop a theoretic framework of the presented computation algo-

rithms.
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Chapter 9

Computational Fluid Dynamics

Modeling of Industrial Level Steam

Methane Reformer

9.1 Introduction

The steam methane reforming (SMR) process, which produces bulk hydrogen gas from

methane through catalytic reactions, is the most common commercial method for indus-

trial hydrogen production. A general industrial level SMR process can be described by

the schematic of Fig. 9.1. The steam methane reformer (for simplicity, it is denoted as

“reformer” in the following context) is the core unit in a SMR process which has separate

process side and furnace side that interact through heat exchange on the reforming tubes.

In the furnace side, combustion of the furnace side feed, usually a mixture of methane,

hydrogen, carbon dioxide, carbon monoxide and air, heats the reforming tubes via radia-

tive heat exchange; in the process side, catalytic reactions take place inside the reforming

tubes converting steam and methane into hydrogen and carbon oxides (including CO and
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Figure 9.1: Steam methane reforming process diagram.110

CO2) in the reforming tubes. A traditional top-fired, co-current furnace usually includes

the top burners which are fed with the furnace side feed, the refractory walls containing the

combustion products, the flue gas tunnels transporting the flue gas out of the reformer, and

the reforming tubes.

For the last 50 years, extensive work has been performed on the development of re-

former first principles models. The mathematical modeling methodology of the complete

reformer modeling was first proposed and developed in 1960s.99 With the improving un-

derstanding of both physical and chemical phenomena inside the reformer, more compre-

hensive mathematical models have been developed considering more detailed and precise

radiation mechanisms, combustion models, flue gas flow patterns, reforming reaction kinet-
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ics and packed bed reactor models.89 However, solving these complete reformer models is

computationally expensive due to the increasing complexity of the fundamental nonlinear

differential equations describing reformer physical-chemical phenomena. Also, for large

reformers with complicated geometry, mathematical modeling becomes very difficult in

dealing with the geometry characteristics and various boundary conditions.89

On the other hand, with the dramatic development of computing power, Computational

Fluid Dynamics (CFD) modeling has become an increasingly important platform for re-

former modeling and design, combining physical and chemical models with detailed rep-

resentation of the reformer geometry. When compared with first-principles modeling, CFD

is a modeling technique with powerful visualization capabilities to deal with various ge-

ometry characteristics and boundary conditions. Moreover, CFD modeling provides more

flexibility to modify design parameters without the expense of hardware changes which

brings large economic and time savings.135

CFD technology has been successful in carrying out the simulation of industrial fur-

naces7, 63, 109, 131 and SMR tube reactors, i.e., reforming tubes modeled as packed-bed reac-

tors.13, 18, 35, 62 Although both the furnace side and the process side have been extensively

researched, no work has been done on developing a CFD model of an industrial level re-

former. An industrial level reformer usually has a relatively large size and detailed geome-

try characteristics.89 To understand the detailed coupling relationship between the process

side and the furnace side, a full-size CFD model of a reformer which includes both the fur-

nace and process sides becomes a necessity; meanwhile, it is not suitable to simulate each

side separately due to the close interaction between these two sides and the presence of

complicated geometry. With the development of commercial CFD software, like ANSYS

Fluent, CD-Adapco Star CCM+, and OpenFOAM, new modeling tools and functions are

becoming available for developing the CFD model of a complete industrial-level reformer

coupling the furnace side and the process side.
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In the area of SMR modeling, CFD can be used to design, optimize and even monitor

SMR processes. For example, flow profiles of flue gas significantly determine the total

energy efficiency of the furnace. Specifically, CFD simulation can provide comprehen-

sive information about a flow field to check flue gas maldistribution, especially in regions

where measurements are either difficult or impossible to obtain. Moreover, large-scale

configuration and high furnace temperature make furnace condition monitoring difficult.

On the other hand, CFD simulation can help reformer designers predict the temperature

distribution inside the reformer. During the normal furnace operation, the uniformity of

temperature distribution in the furnace chamber is one of the important indices for deter-

mining a reformer’s performance. In most industrial SMR furnaces, the flame temperature

could be up to 2000 K which makes radiation to be the dominant heat transfer mechanism.

For heat radiation, nonuniform temperature distribution in the furnace chamber can greatly

decrease the radiative heat transfer efficiency. In terms of the reforming tubes, the fur-

nace is required to be operated slightly below the design tube wall temperature to keep the

tube wall temperature within the safe margin and eliminate hot spots so that the potential

stress-to-rupture of tube materials can be avoided.14 Also, overheating of reforming tubes

can result in carbon formation on the catalyst surface inside the reforming tubes which can

further decrease the reaction progress and hydrogen production. Through CFD simulation,

these above critical issues can be detected and predicted, and corresponding changes can

be applied in the improved reformer design and operational parameters.

Based on the above considerations, in this work, we develop a CFD model of an indus-

trial level reformer including both furnace and process sides. Firstly, the CAD geometry

of the objective industrial level reformer is designed. Then, to develop the full-size CFD

model of the reformer, a single reforming tube CFD model is developed to simulate the

steam methane reforming reactions within porous media. Secondly, we construct a small-

scale reformer model with all key characteristics of the full-size reformer and then develop
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its CFD model considering both the combustion in the furnace side and the reforming reac-

tions in the process side as designed in the single reforming tube CFD model. Finally, the

successful CFD modeling development method of the small-scale reformer model is ap-

plied to the full-size reformer. For the CFD simulation, ANSYS ICEM-CFD is adopted as

the mesh generation platform, and ANSYS Fluent is used as the CFD simulation platform.

9.2 Steam Methane Reformer Geometry

9.2.1 Industrial Level Geometry

The reformer investigated in this work is a top-fired, co-current reformer designed by Selas

Fluid Processing Corporation.89 Figs. 9.2-9.5 are the computer aided drafting (CAD) plots

of the objective steam methane reformer designed in AutoCAD. Fig. 9.2 is an overall view

of the furnace, Fig. 9.3 is a detailed top view of the reformer, Fig. 9.4 is a detailed front

view of the reformer, and Fig. 9.5 is a detailed side view of the reformer.

The furnace contains seven rows of forty-eight tubes. The tubes have an external di-

ameter of 14.6 cm, an internal diameter of 12.6 cm, and an exposed length of 12.5 m. The

rows of tubes are separated by eight rows of twelve burners. Fuel and air enter through the

burners, and the fuel combusts over a flame length of 4.5− 6 m. The burners in the outer

lanes which are next to the furnace walls have lower fuel and air flow rates. The reason is

that the burners in the outer lanes are adjacent to only one row of tubes, and using the same

air and fuel flow rates for all these burners will cause “over-firing” in the outer lanes and

“under-firing” in the inner lanes. In detail, the burners in the outer lanes have to be supplied

only 60% as much air and fuel as the inner lanes. Correspondingly, the burners in the outer

lanes are smaller than the inner row burners as shown in Fig. 9.3.

At the bottom of the furnace, the rows of tubes are separated by the rectangular intru-
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Figure 9.2: Overall view of furnace geometry.

sions known as flue gas tunnels or coffin boxes. The flue gas tunnels extend from the front

to the back of the furnace with a height of 2.86 m from the floor that allow the furnace flue

gas to exit the furnace. Due to the size difference between the burners in the outer lanes

and burners in the inner lanes, the width or the opening of the two side flue gas tunnels

is smaller than that of the six inner ones. The furnace flue gas enters the tunnels from the

furnace chamber and then exits the furnace through the front openings of the coffin boxes,

thirty-five extraction ports are distributed in a row along the sides of each flue gas tunnel as

shown in Fig. 9.5.
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Figure 9.3: Top view of furnace geometry.
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Figure 9.4: Front view of furnace geometry.
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Figure 9.5: Side view of furnace geometry.
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9.2.2 SMR Physical Phenomena

As the process gas mixture mainly containing steam and methane flows through the reform-

ing tubes, methane and steam are converted predominantly to hydrogen and carbon dioxide

by the catalytic steam methane reforming and water-gas shift reactions. The highly en-

dothermic steam methane reforming reactions are shown in Eqs. 9.1a-9.1b, and the exother-

mic water-gas shift reaction is shown in Eq. 9.1c where Eq. 9.1c is the sum of Eqs. 9.1a-

9.1b. Specially designed nickel oxide over alpha alumina support (i.e., Ni−αAl2O) cata-

lyst particles form a packed bed within the reforming tubes to improve reaction rates. The

inside tube surface is in contact with the stationary catalyst and with the moving process

gas. The dominant modes of heat transfer inside of the tubes are conduction from the in-

ner tube walls to the network of catalyst particles, convection from the inner tube wall to

the process gas, and convection between the process gas and the catalyst particles. These

modes of heat transfer work together to transfer heat from hot regions to cold regions and

provide the required heat for the endothermic reforming reactions.

CH4(g)+H2O(g) � CO(g)+3H2(g) △H0
1 =+206 kJ/mol (9.1a)

CO(g)+H2O(g) � CO2(g)+H2(g) △H0
2 =+164.9 kJ/mol (9.1b)

CH4(g)+2H2O(g) � CO2(g)+4H2(g) △H0
3 =−41 kJ/mol (9.1c)

The heat to drive the reforming reactions originates from the combustion side of the

furnace. In the furnace, fuel and air combust over the flame length, and the combustion

products flow from the top of the furnace to the exit at the bottom through the flue gas

tunnels. The energy released by the combustion of furnace fuel can exit the furnace in three

ways: through the tube wall to the process side, through the refractory wall to the external

environment, or out of the furnace with the bulk flow of flue gas. In high-temperature
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Figure 9.6: 2D axisymmetric tube geometry.

furnaces, the dominant mode of heat transfer to the tube walls and the refractory wall

is radiation. In addition to radiative heat transfer, the flue gas transfers energy by bulk

gas motion to other regions of the furnace and by convection to the refractory wall and

tubes. The refractory wall transfers energy by conduction to the external environment, and

receives energy by radiation and by convection from the furnace flue gas. The tubes transfer

energy by conduction to the process side and receive energy by radiation and by convection

from the furnace flue gas.

9.3 Single Reforming Tube Model

9.3.1 Tube Geometry and Meshing

To develop a full-size CFD model of the reformer, we initially developed a single reform-

ing tube CFD model. Due to the axisymmetric geometry property of the reforming tube

as shown in Fig. 9.6, a two-dimensional (2D) axisymmetric tube geometry and its corre-

sponding mesh structure were employed. The 2D axisymmetric tube mesh which is shown

in Fig. 9.7 was constructed in the meshing software ICEM-CFD.

Mesh quality is the most critical issue for accurate and successful CFD modeling. The

2D axisymmetric tube mesh only contains 24690 quadrilateral nodes cells, with a 100%
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Figure 9.7: 2D axisymmetric tube mesh.

orthogonal quality. Then, the CFD simulation of the single reforming tube only uses half

of the tube mesh considering its 2D axisymmetric properties. Consequently, this 2D ax-

isymmetric tube mesh brings large computational efficiency over a three-dimensional tube

CFD model.

9.3.2 Reforming Reaction Mechanism

The rates of conversion of reactants, i.e., steam and methane, into products, i.e., hydrogen,

and the direction of the reforming reactions and the water-gas shift reaction under different

conditions (concentration, temperature and pressure) must be accurately accounted for by

using a reaction kinetics model. In a reformer, the reforming reactions and water-gas shift

reaction occur at the catalyst active sites. In the reforming tubes, reactants need to diffuse

from the bulk process gas to the surface of the catalyst and then into the catalyst pores;

after the formation of the products, products need to desorb from the catalyst cores and

reenters the bulk process gas. However, a kinetic mechanism model that provides a detailed

treatment of these catalyst-specific phenomena would be unnecessarily complex. From the

point of view of CFD modeling, the packing pattern of catalyst particles inside the packed

bed reactor is hard to describe in the packed bed geometry design.
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In this single reforming tube CFD model, an intrinsic SMR reaction kinetic mecha-

nism141 is used to describe the reactions happening inside the reforming tubes. The SMR

reaction kinetics are in Eq. 9.2 which is widely adopted in both CFD modeling and mathe-

matical modeling.

CH4(g)+H2O(g)�CO(g)+3H2(g), r1 =
k1

p2.5
H2

(
pCH4 pH2O−

p3
H2

pCO

K1

)
/DEN2

(9.2a)

CO(g)+H2O(g)�CO2(g)+H2(g), r2 =
k2

pH2

(
pCO pH2O−

pH2 pCO2

K2

)
/DEN2

(9.2b)

CH4(g)+2H2O(g)�CO2(g)+4H2(g), r3 =
k3

p3.5
H2

(
pCH4 p2

H2O−
p4

H2
pCO2

K3

)
/DEN2

(9.2c)

To realize this reaction mechanism in CFD simulation by Fluent, each reversible re-

action in Eq. 9.2 is split into two irreversible reactions. The reaction rates in Eq. 9.2 are

implemented in Fluent by designing a user defined functions (UDF) file. Since these in-

trinsic reaction kinetics do not consider the internal and external diffusion resistances onto

the catalyst particle, the reaction rates in Eq. 9.2 are multiplied by the effectiveness factor,

0.1.140

9.3.3 Compressible Gas

The process side inlet operating conditions of the reforming tubes are given in Table 9.1.

Based on the inlet conditions, the Mach number for the jets into the tube is greater than 0.3,

and therefore, the density variations due to high static pressure cannot be ignored. Based

on this consideration, the compressible ideal gas state equation is adopted to describe the

compressibility of the process side gas. From the point of view of CFD simulation, when
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Table 9.1: Process side gas inlet operating conditions.

Pressure
(kPa)

Temperature
(K)

Flow rate
(kg/s) xCH4 xH20 xCO xH2 xCO2

3038.5 887 0.1161 0.2487 0.7377 0.0001 0.0018 0.0117

Table 9.2: Reforming reaction catalyst properties.

Density, ρc Heat Capacity, Cp,c Thermal Conductivity, kc Particle Diameter, Dp
1090 kg/m3 718 J/(kg ·K) at 1100 K 2.7 w/(m ·K) at 1100 K 3.5 mm (average)

a pressure-based solver is used, like the one we chose for the simulation in this work, an

accurate gas state equation is very critical to simulation accuracy.

A pressure-based solver that enables the pressure-based Navier-Stokes solution algo-

rithm75 is chosen over the density-based type solver. It is more suited for a wider range

of physical models and features which are unavailable to the density-based solver, i.e, pre-

mixed combustion model, physical velocity formulation for porous media, and reacting

channel model. It also provides more freedom for the simulations while converging to the

same results obtained by the density-based solver.

9.3.4 Porous Zone Design

Although the physical catalyst particle is not explicitly considered in the reforming tube

modeling, a detailed porous zone model is designed to describe the effect of packing mate-

rial on the total reaction rate and the pressure drop. To describe porosity, a typical packed

bed porosity value for industrial reformers, εp = 0.609, is adopted. The property data of

one commercial catalyst, Johnson Matthey’s Katalco 23− 4Q catalyst, which we used in

this reforming tube simulation, is shown in Table 9.2.98

Pressure drop is significant in industrial SMR tubes when the process side gas flows
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through the packed bed. To estimate the pressure drop in the porous zone model in the CFD

modeling for turbulent flows, a semi-empirical expression, the Ergun equation,50 which

is applicable over a wide range of Reynolds numbers and for many packing patterns, is

adopted as follows:

∆P
L

=
150µ
D2

p

(1− εp)
2

ε3
p

v∞ +
1.75ρ

Dp

(1− εp)

ε3
p

v2
∞ (9.3)

where ∆P is the pressure drop through the porous media, L is the depth of the porous

media, µ is the viscosity of the fluid, ε is the void porosity of the porous media, v∞ is the

bulk velocity of the fluid, ρ is the density of the porous media, 150µ
D2

p

(1−εp)
2

ε3
p

is the viscous

resistance coefficient and 1.75ρ
Dp

(1−εp)

ε3
p

is the inertial resistance coefficient. To indicate the

directions for which the resistance coefficients are defined, we assume that the viscous and

inertial resistance coefficients are both defined in the same manner. In particular, their

directions are along direction vectors, v1 = [1,0] (i.e., the principal axis direction) and

v2 = [0,1] (i.e., the radius direction) in the Cartesian 2D coordinate system.

9.3.5 Turbulence and Boundary Layers

Based on the inlet conditions of the process (tube) side gas as shown in Table 9.1, the

Reynolds number is calculated to be approximately 5500. To accurately describe the turbu-

lence phenomena inside the reforming tube, we choose the standard two-equation turbulent

kinetics energy and turbulent dissipation rate (k− ε) model78, 90 which is developed from

the Reynolds-averaged Navier-Stokes (RANS) equations. The k− ε turbulent model is ap-

plicable for many flows, and relatively simple to implement and easy to converge from the

point of view of CFD simulation.

Turbulent flows are significantly affected by the walls. The near-wall modeling decides

the fidelity of numerical solutions. After all, it is in the near-wall region that the solution
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variables have large gradients, and the momentum and other scalar transports occur most

vigorously. Therefore, an accurate representation of the flow in the near-wall region de-

termines successful predictions of wall-bounded turbulent flows. For this single reforming

tube CFD model, the enhanced wall treatment function in Fluent is applied as the near wall

treatment method. The enhanced wall treatment ε-Equation is suitable for complex fluid

dynamics especially for those with lightly turbulent flow, and it only requires a few nodes

in the boundary layer when using k− ε model.74

For this reforming tube model, boundary layer design is very critical to model the heat

convection from the inner wall to the process gas and the heat conduction from the inner

wall to the catalyst particles. To get the first node height from the inner wall surface for

the boundary layer design, NASA’s Viscous Grid Spacing Calculator1 is adopted based on

a suitable Y+ value.74 For this specific single reforming tube geometry, five nodes are ap-

plied in the boundary layer at the tube inner surface as requested by the two-equation k−ε

model and the enhanced wall treatment function. The first node height is 8.26× 10−4 m,

and the node spacing ratio in the boundary layer is 1.2. The detailed mesh structure for the

boundary layer design is demonstrated in Fig. 9.7. We note here that the NASA’s Viscous

Grid Spacing Calculator1 uses fixed viscosity, pressure and temperature for the fluid prop-

erties which may not be suitable for most SMR calculations. Through a decompiling of the

calculator, a revised algorithm based on the original calculator is developed for our specific

inlet conditions of the process side gas.

9.3.6 Reforming Tube Boundary Conditions

For an industrial level reformer, the tube skin temperature is usually in the range of 1100 K

to 1148 K.89 For this single reforming tube simulation, we used a pre-defined constant tem-

perature profile for the boundary condition of the tube outer surface (process side) which is
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Figure 9.8: User defined tube skin temperature profile.

Table 9.3: Reforming tube material properties.

Density, ρt Heat Capacity, Cp,t Thermal Conductivity, kt Emissivity, εt
7720 kg/m3 502 J/(kg ·K) at 1144 K 29.58 w/(m ·K) at 1144 K 0.85 at 1144 K

shown in Fig. 9.8. Under this setting, the reforming tubes are modeled as a heat sink with a

constant boundary condition, and the heat is transferred from the outer surface to the inner

surface through heat conduction. The corresponding tube material properties are listed in

Table 9.3.33
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9.3.7 Simulation Results

CFD Model of Single Reforming Tube: Results Comparison

Using a parallel computational environment with message passing interface technology, the

single reforming tube simulation converges in about 5 minutes with the steady solver in a

4-core CPU desktop computer. The steady-state results of the simulations are displayed in

Figs. 9.9-9.16. We note here that due to the large length to diameter ratio of the reform-

ing tube, in all the simulation result plots, the radius is scaled up by 10 times which is

convenient for display purposes only. Specifically, in Fig. 9.16, the pressure profile with-

out gradients in the radial direction results from the direction definitions of the resistance

coefficients in Section 9.3.4.

Based on the wall temperature profile in Fig. 9.8, the corresponding inner wall tempera-

ture profile from the converged model is displayed in Fig. 9.17, and the corresponding heat

flux profile is shown in Fig. 9.18.

We compared the single reforming tube CFD model with a typical set of industrial

level plant data. Specifically, the typical plant data of a reforming tube outlet is with the

same process side inlet conditions, similar catalyst properties, and the same tube geometry

structure. All the mole fraction values in Table 9.4 are the area-weighted average values at

the tube outlet. We prove that our simulation result is very close to that of the plant data for

both temperature and species compositions.

Effects of Porous Media

The intrinsic reaction rates141 we adopted already account for the existence of catalyst in

the reforming tubes. Furthermore, the existence of the porous media in the CFD model is

necessary. To establish this point, we conducted two CFD model simulations, i.e., one with

the porous zone that we designed in Section 9.3.4 and the other one without the porous
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Figure 9.9: Temperature profile inside the reforming tube.

Table 9.4: Single reforming tube results comparison of tube outlets among different
sources.

CFD Result
Temperature (K) 1128.6
Pressure (kPa) 2909.1
xH2O 0.3554
xCH4 0.0467
xH2 0.4621
xCO 0.0825
xCO2 0.0533
Average Heat Flux (kW/m2 · s) 77.14
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Figure 9.10: CH4 mole fraction profile inside the reforming tube.
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Figure 9.11: H2 mole fraction profile inside the reforming tube.
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Figure 9.12: H2O mole fraction profile inside the reforming tube.
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Figure 9.13: CO mole fraction profile inside the reforming tube.
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Figure 9.14: CO2 mole fraction profile inside the reforming tube.
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Figure 9.15: Velocity magnitude profile inside the reforming tube.

312



Figure 9.16: Absolute pressure profile inside the reforming tube.
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Figure 9.17: Inner (dash-dotted line) and outer (solid line) wall temperature profiles of the
reforming tube.
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Figure 9.18: Heat flux profile of the reforming tube surface.
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zone. However, for the latter CFD model, the intrinsic reaction rates are modified by con-

sidering the porosity of the reforming bed since the intrinsic reaction rates141 are based on

unit mass of catalyst. The simulation result of the reforming tube CFD model without the

porous zone is shown in Figs. 9.19.

By considering the presence of the catalyst in the reforming tube, more heat can be

transferred from the inner wall to the catalyst network by heat conduction. Consequently, a

steady state with higher temperature and higher methane conversion rate is reached for the

CFD model with porous zones. In detail, comparing Fig. 9.19a with Fig. 9.9, we can see

that the porous zone provide much more heat to the packed bed. Moreover, the existence

of the porous zone in the reforming tube model increases the residence time of the process

side gas, and the product formation rate is increased considerably. From Fig. 9.19b and

Fig. 9.11, the H2 mole fraction at the outlet of the reforming tube without the porous zone

is 22% lower than that of the reforming tube with the porous zone due to a shorter residence

time and much less heat flux from the tube skin. On the other hand, the catalyst network

in the reforming tube increases the friction of the process side gas when it flows through

the porous zone. As shown in Fig. 9.19c, the pressure drop of the process gas flow in the

reforming tube without the porous zone is negligible. However, for the reforming tube

with the porous zone, the pressure of the process gas flow decreases from 3038.5 kPa to

2909.1 kPa as shown in Fig. 9.16 due to its viscous resistance and inertial resistance of the

catalyst particles.

Effects of Equation of State

Due to the high operating pressure of the process side inlet, the compressibility of the

process side gas cannot be ignored. To understand the compressibility’s effects on the

reforming tube, we used three different equations of state of gas, i.e., compressible ideal gas

state equation (C-I), Peng-Robinson equation (PR), and Soave-Kwong-Redlich equation
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(a) Temperature profile of the reforming tube without the porous zone.

(b) H2 mole fraction profile of the reforming tube without the porous zone.

(c) Pressure drop profile of the reforming tube without the porous zone.

Figure 9.19: Effects of porous media on the CFD model of the reforming tube.

317



Table 9.5: Single reforming tube results comparison of tube outlets under different gas state
equations.

C-I SRK PR
Pressure drop (kPa) 129.4 127.5 131.1
T (K) 1128.6 1129.4 1130.7
xH2 0.4621 0.4575 0.4561
xH2O 0.3554 0.3636 0.3667
xCH4 0.0467 0.0501 0.0513
xCO 0.0825 0.0811 0.0802
xCO2 0.0533 0.0477 0.0467
Time cost (s) 312 316 325

(SRK) in the same reforming tube model. The computational efficiency and the simulation

results are compared below.

As shown in Table 9.5, the difference of the simulation results from all these three

gas state equations of the single reforming tube simulation is negligible. In terms of the

computational efficiency of these different gas state equations, the relatively detailed gas

state equations, PR and SRK, require more time as demonstrated in Table 9.5 to get the

single reforming model converged compared with the compressible ideal gas state equation.

Based on the above comparison, the compressible ideal gas state equation is adopted in the

following simulations. By doing this, the simulation accuracy is acceptable and at the same

time, the computational efficiency of the full-size reformer can also be optimized when

three hundred and thirty-six reforming tubes are simulated.
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9.4 Small-Scale Reformer Model

9.4.1 Geometry

To model the full-size reformer, we first build a small-scale furnace model which includes

both the furnace side and the process side phenomena, as shown in Fig. 9.20. Compared

with the full-size model in Fig. 9.2, this small-scale model includes all the key elements

of the full-size furnace, i.e., three burners, four reforming tubes and three flue gas tunnels

(with flue gas ports). The geometry scales of all these components are consistent with those

in the full-size reformer in Fig. 9.2. Similarly, the outer left and right burners are smaller

than the ones in the center as requested to avoid overheating of reforming tubes.

9.4.2 Meshing

The most critical part of the CFD process is mesh generation which requires a significant

amount of time to obtain a mesh with high quality. For this relatively complex geometry,

we designed the mesh in ICEM-CFD using a structured mesh only. A structured mesh/grid

results in a smaller number of total mesh elements and better convergence performance in

CFD simulation when compared with an unstructured mesh. The generated mesh for the

model of Fig. 9.20 has about 1.48 million nodes, which include 1.34 million hexahedrons

and 0.22 million quadrilateral cells. The detailed mesh is demonstrated in Figs. 9.21-9.22.

In detail, for both the process gas inlets and furnace gas inlets, the mesh is designed

through an O-grid block splitting method, and the detailed mesh of the inlets is designed

as shown in Fig. 9.21. At the bottom of the flue gas outlet, there is a more dense mesh

designed to avoid reversed flow situations as shown in Fig. 9.22.

For this small-scale reformer, boundary layer is designed not only at the inner surface

of the reforming tubes but also at the outer surface to improve the thermal coupling at the

319



Figure 9.20: CAD geometry of small-scale furnace model.
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Figure 9.21: Top view of mesh structure of small-scale reformer model.

Figure 9.22: Front view of mesh structure of small-scale reformer model.
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Table 9.6: Furnace side inlet operating conditions.

Pressure
(kPa)

Temperature
(K)

Flow rate
(kg/s) xCH4 xH20 xCO xH2 xO2 xAr xN2

132.4 524 1.08 0.0517 0.0306 0.0211 0.0540 0.1530 0.0077 0.5793

two sides of the tube wall. Similar to the mesh generation for the single reforming tube

CFD modeling, the boundary layer settings for turbulent flow are designed by adopting the

revised algorithm based on NASA’s Viscous Grid Spacing Calculator. The outer surface

of the reforming tube has four nodes in the boundary layer with the first layer height of

6.49× 10−4 m and the layer spacing ratio of 1.2, and the boundary layer structure of the

inner surface of the reforming tube is still the same as that in the single reforming tube CFD

model.

9.4.3 Combustion Mechanism

For an industrial reformer, the furnace side gas which is usually composed of three parts,

i.e., natural gas, combustion air and tail gas from the secondary reformer is fed to the

burners as shown in Fig. 9.1. A typical composition of the furnace side gas fed to the

burners is given in Table 9.6 where CO and H2 come from the tail gas and the inert gas,

Ar, is from the combustion air. Based on the composition of the furnace side gas, the

combustion is a fuel lean process so that the fuel can be completely combusted. It is noted

here that the mass flow rate of 1.08 kg/s is set for the center burner, and as requested by

avoiding the over-firing of the left and right burners, the mass flow rate to these two burners

is only 60% of that fed to the center burner.

Based on the inlet conditions in Table 9.6, a suitable turbulent gaseous combustion

model is applied to describe the turbulence-chemistry interaction of the premixed com-
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bustion process. In the premixed flames, the reactants will burn as soon as they enter the

computational domain, upstream of the flame stabilizer. To remedy this, ANSYS Fluent

provides the finite-rate/eddy-dissipation model where both the Arrhenius reaction rates,

and eddy-dissipation reaction rates are calculated.74 The net reaction rate is taken as the

minimum of these two rates. In the eddy-dissipation model, reaction rates are assumed

to be controlled by the turbulence which is computationally efficient, and in the finite-rate

model, the Arrhenius chemical kinetic calculations are solved. In practice, once the flame

is ignited, the eddy-dissipation rate is generally smaller than the Arrhenius rate, and the

reactions are mixing limited. Also, only one or two step heat-release mechanisms should

be used for the eddy-dissipation model.

Two finite-rate chemistry models are adopted to describe this premixed flow combustion

process for CH4
108 and H2

10 respectively as shown in Eq. 9.4 and Eq. 9.5. In detail, a two-

step CH4 combustion kinetics model is used whose intrinsic reaction kinetics are described

by Eq. 9.4; and an irreversible single step H2 combustion kinetics model is applied to model

the H2 combustion with the rate of Eq. 9.5b below:

CH4 +1.5O2→CO+2H2O (9.4a)

R1 = 1015.22[CH4]
1.46[O2]

0.5217exp(−20643/T ) (9.4b)

CO+0.5O2→CO2 (9.4c)

R2 = 1014.902[CO]1.6904[O2]
1.57exp(−11613/T ) (9.4d)

CO2→CO+0.5O2 (9.4e)

R3 = 1014.349[CO2]exp(−62281/T ) (9.4f)
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Table 9.7: Refractory material properties.

Density, ρw Heat Capacity, Cp,w Thermal Conductivity, kw Emissivity, εw
3950 kg/m3 718 J/(kg ·K) at 1144 K 2.6 w/(m ·K) at 1144 K 0.65

H2 +0.5O2→ H2O (9.5a)

R4 = 1.13×1018[H2][CO2]exp(−46.37T0/T ) (9.5b)

9.4.4 Radiation

Since the dominant heat transfer mechanism is radiation, a computationally efficient and

accurate radiation model plays a significant role in the CFD modeling and simulation.

Considering the complex reformer geometry and the complicated coupling of the furnace

side and the process side, the radiation model, P-1, is used with the absorption coefficient

method of weighted sum of gray gas (WSGG) model. The P-1 model is a relatively sim-

plified radiation model which approximates the angular dependence of the radiative heat

transfer equation for a finite number of discrete solid angles. The P-1 model can easily

be applied to complicated geometries with curvilinear coordinates.74 The WSGG-domain-

based absorption method in Fluent is a variable coefficient method that uses a length scale,

based on the geometry of the model.70

To describe the radiation effects from the combustion flame and flue gas to the refrac-

tory wall, the thermal properties of the refractory wall are given in Table 9.7.15
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9.4.5 Initialization

For many complex flow problems such as multiple computational zones with large pres-

sure difference, flow convergence can be accelerated if a better initial solution is used at the

start of the calculation. The full multigrid initialization (FMG initialization) can provide an

initial and approximate solution at a minimum cost compared to the overall computational

expense.75 For this coupling process, the large pressure difference between the process gas

and furnace gas as shown in Table 9.6 and Table 9.1 can cause stability issues for the CFD

simulation. In this situation, FMG initialization helps with the solver stability when com-

pared with the standard initialization and the hybrid initialization methods. FMG initial-

ization utilizes the ANSYS Fluent full-approximation storage (FAS) Multigrid technology

to obtain the initial solution. Starting from a uniform solution (after performing standard

initialization), the FMG initialization procedure constructs the desirable number of geo-

metric grid levels using the procedure outlined in FAS Multigrid.74 However, compared

with other initialization methods, like the standard initialization and hybrid initialization,

FMG initialization is more time-consuming.

9.4.6 Simulation Results

To conduct the CFD simulation of this small-scale reformer model, we used three com-

putational nodes in UCLA’s Hoffman2 Cluster. A parallel computational environment is

utilized based on the message passing interface technology by 48 cores. The CFD simula-

tion of this small-scale reformer model converged in 4 days with 48 cores.

In the furnace side, the combustion flame shapes in the furnace chamber are demon-

strated in Fig. 9.23. From Fig. 9.23, we can see that the simulated combustion results in

flames with the length between 4.5 m (side flames) and 6 m (central flame) which matches

well with the plant data. For this fuel-lean mixing gas, the fuels, CH4, CO, and H2, are com-
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Figure 9.23: Flame shape profile (furnace side) of small-scale reformer model.

pletely combusted, and the mole fraction profiles of these species in the furnace chamber

are shown in Figs. 9.24-9.26.

The heat released by the combustion is transferred to the outer wall of the four tubes

in this small-scale model. The corresponding tube wall temperature profiles are shown in

Fig. 9.28. The maximum temperature on the tube skin, i.e., hot spot, is 1155 K which is

below the maximum allowable operating temperature of the tube material. By operating

the system at this condition without exceeding the maximum allowable temperature, the

tube skin can transfer as much heat flux as possible to the process side. The average heat

flux rate at the tube skin of these four reforming tubes is about 79 kW/m2 which is close to
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Figure 9.24: CH4 mole fraction profile (furnace side) of small-scale reformer model.
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Figure 9.25: CO mole fraction profile (furnace side) of small-scale reformer model.

328



4.86e-02

4.62e-02

4.37e-02

4.13e-02

3.89e-02

3.64e-02

3.40e-02

3.16e-02

2.92e-02

2.67e-02

2.43e-02

2.19e-02

1.94e-02

1.70e-02

1.46e-02

1.21e-02

9.72e-03

7.29e-03

4.86e-03

2.43e-03

0.00e+00
X

Z

Y

Contours of Mole fraction of h2-new
ANSYS Fluent 15.0 (3d, dp, pbns, spe, ske)

Aug 10, 2015

Figure 9.26: H2 mole fraction profile (furnace side) of small-scale reformer model.
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Figure 9.27: Tube wall temperature profile of small-scale reformer model (dashed line).

the heat flux value from the single tube modeling.

Finally, in the process side, the heat transferred from the tube skin provides the energy

for the steam methane reforming reactions. The mole fraction profile of H2 is demonstrated

in Fig. 9.29. The average mole fraction of H2 at the outlets of these four reforming tubes is

about 46.9% which is also very close to the plant data. In terms of the pressure drop, the

detailed pressure profiles inside these four reforming tubes are shown in Fig. 9.30, and the

average pressure drop of these four reforming tubes is 118.4 kPa.
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Figure 9.28: Tube wall temperature profile of small-scale reformer model.
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Figure 9.29: H2 mole fraction profile (process side) of small-scale reformer model.
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Figure 9.30: Tube interior pressure profile (process side) of small-scale reformer model.
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Table 9.8: Mesh quality of full-size reformer mesh.

Angle Aspect Ratio Determinant (3×3×3) Distortion Eriksson Skewness
25o−90o 1 - 15 0.398 - 1 0.604 - 1 0.651 - 1

9.5 Full-Size Reformer Model

9.5.1 Mesh Generation

Mesh generation is the most time-consuming part of the CFD modeling of this full-size

steam methane reformer. To reduce the computational burden and improve potential con-

vergence performance, a mesh structure of the structured mesh nodes is developed in

ICEM-CFD. An overall view of the generated mesh structure is shown in Fig. 9.31. This

mesh has about 15 million nodes which consist of almost 14 million hexahedrons and 1

million quadrilaterals. 6 million nodes are designed for the three hundred thirty-six re-

forming tubes, and the rest 9 million nodes are for the furnace chamber and burners. The

detailed mesh structures are shown in Figs. 9.31-9.33. There is no negative volume mesh

node, and the main indices of the mesh standard74 are listed in Table 9.8.

Based on the mesh quality indices shown in Table 9.8 and the detailed mesh structure

in Figs. 9.31-9.33, the generated mesh is acceptable for CFD simulation. Also, boundary

layer structures are designed for both the inner and outer surfaces of all the reforming tubes

as we do for the small-scale model.

9.5.2 Tuning Method

From the simulation of the single reforming tube, it is established that the time scale of

reforming reactions is relatively shorter when compared with that which is required to

heat up the packed bed from heat radiation of the flue gas. The time scale of the heat
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Figure 9.31: Overall view of full-size reformer mesh.

Figure 9.32: Top view of full-size reformer mesh.
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Figure 9.33: Flue gas tunnels of full-size reformer mesh.

radiation process is much larger than that of the fuel combustion process. Considering that

the predominant radiative heat transfer determines the speed of heating up the packed bed

and providing heat for reforming reactions, then for this model coupling both the process

side and the furnace side, the convergence speed is mainly constrained by the radiation

process in the furnace chamber. Namely, the heat released by the fast combustion needs

a long time to heat up all the reforming tubes and achieve the desired reaction progress.

To ensure the computational efficiency and model convergence performance for the whole

reformer simulation, an iterative convergence method is developed. In detail, after the FMG

initialization, the full-size model is running with the combustion and an approximate finite

rate form of the reforming reaction kinetics with steady solver. When the fluid variable

profiles are close to the expected results, the UDF of the reforming reaction kinetics141

is applied to modify the reaction phenomena inside the reforming tubes. Then, from that
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point, a transient solver is used to ensure the simulation convergence performance.

9.6 Conclusion

In this work, we developed a CFD model of an industrial level steam methane reformer

including both furnace and process sides. A single reforming tube CFD model was first

developed with detailed reforming reaction kinetics, porous media and fixed tube wall tem-

perature. The CFD simulation result of this single reforming tube was consistent with the

plant data of an industrial reformer. Then, the coupling of the combustion process and the

reforming reaction process inside the tubes was demonstrated in a small-scale reformer. A

detailed modeling method was proposed for the CFD model of this small-scale model, and

reasonable simulation results were achieved. Finally, the developed modeling method of

coupling combustion and reforming reaction for the small-scale reformer was applied to

the full-size reformer.
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Chapter 10

Conclusions

Motivated by the increasing importance of preventive maintenance to the reliability, safety

and economic objectives of process operation, this dissertation developed methods for in-

tegrating on-line preventive maintenance of actuators and sensors with advanced process

control system design. In addition, we developed for the first-time methods for EMPC

of transport-reaction processes and proposed a framework for multiscale modeling of an

industrial steam methane reforming unit.

Specifically, in Chapter 2, a LEMPC to integrate preventive maintenance of control

actuators, process economic performance, and process control was proposed. During a

scheduled preventive maintenance task on the j-th control actuator, the actuator is effec-

tively taken off-line. In general, the steady-state with all available control actuators and

with actuators taken off-line to perform a scheduled preventive maintenance task may be

different (i.e., the former may not even be a steady-state of the latter scenario). To ad-

dress this point, the proposed LEMPC was designed to ensure that the closed-loop state

will be forced from the stability region of the steady-state of all m actuators to the stabil-

ity region with m− 1 actuators on-line before the j-th control actuator was taken off-line.

Closed-loop stability in the sense of boundedness of the closed-loop state was proved. The
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LEMPC capable of handling preventive maintenance was applied to a benzene alkylation

process which yielded improved closed-loop economic performance over steady-state op-

eration and demonstrated its ability to handle changing number of on-line actuators.

Subsequently, in Chapter 3, a novel robust moving horizon estimation scheme that

accommodates a varying number of sensors to continuously supply accurate state esti-

mates to a LEMPC system was established. It was shown that the proposed RMHE-based

LEMPC scheme can maintain process closed-loop stability under standard observability

and stabilizability assumptions. Then, the proposed RMHE-based LEMPC was applied to

a chemical process; the simulation results exhibited its ability to accomplish control sys-

tem reconfiguration under a changing number of on-line sensors and to achieve minimal

economic performance degradation by operating the process in an economically optimal

fashion, while preserving closed-loop stability.

Chapter 4 developed a proactive fault-tolerant Lyapunov-based MPC that can account

for a known future fault and work for complete fault rejection. The practical stability of a

closed-loop nonlinear system with the proposed proactive fault-tolerant LMPC was proved.

The proposed controller was demonstrated through a chemical process consisting of two

CSTRs in series followed by a flash separator. The simulated process demonstrated that

the proactive fault-tolerant LMPC was able to achieve practical stability of the closed-loop

system. However, sensor faults or even process abnormal events which are very often

encountered in practice, also have a significant effect on the controller performance. Thus

we plan to explore these types of faults in a future work.

Also, considering that EMPC of transport-reaction processes modeled by PDEs is an

important theoretical problem of practical importance, this dissertation developed EMPC

formulations for transport-reaction processes modeled by either parabolic PDEs or hyper-

bolic PDEs.

Specifically, in Chapter 5, a low-order and high-order finite-dimensional economic
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model predictive (EMPC) systems is developed, through the application of Galerkin’s

method and involvement of singular perturbation arguments, for transport-reaction pro-

cesses described by nonlinear systems of parabolic PDE . The formulated EMPC systems

were applied to a tubular reactor example described by two nonlinear parabolic PDEs,

where the average reaction rate along the length of the reactor was used as the cost function.

Closed-loop simulations demonstrated that in the absence of state constraint, the low-order

EMPC system is sufficient to meet the constraint on the availability of the reactant material

over one operation period, and yields improved closed-loop economic performance com-

pared to when the reactant material is fed uniformly in time to the reactor by requesting a

suitable time-varying reactor operation. On the other hand, when a state constraint on the

maximum value of the temperature along the length of the reactor is imposed, the use of a

high-order (yet computationally efficient) EMPC system allows to account for the process

dynamics with sufficient accuracy and meet both the input and state constraints simulta-

neously while improving the economic cost over uniform in time feeding of the reactant

material.

Subsequently, in Chapter 6, two types of EMPC systems for systems of quasi-linear

PDEs were presented: (1) an output feedback EMPC system, and (2) an EMPC system

formulated with a reduced-order model derived using empirical eigenfunctions as basis

functions. The EMPC systems were applied to a tubular reactor of industrial importance.

Through time-varying operation, the EMPC systems yielded improved closed-loop eco-

nomic performance over steady-state operation. Additionally, constructing a reduced-order

model (ROM) on the basis of historical data-based empirical eigenfunctions by applying

Karhunen-Loève expansion demonstrated computational benefits over using analytical si-

nusoidal/cosinusoidal eigenfunctions as basis functions.

Chapter 7 developed an EMPC design for a system of parabolic PDEs which integrated

the APOD method and a high-order finite-difference method to deal with control system
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computational efficiency and state constraint satisfaction. EMPC systems adopting POD,

APOD, a high-order spatial discretization by central finite-difference method and the pro-

posed EMPC flow chart were applied to a non-isothermal tubular reactor where a second-

order chemical reaction takes place. These EMPC systems were compared with respect

to their model accuracy, computational time, APOD update requirements, state constraint

satisfaction and closed-loop economic performance of the tubular reactor. The simulation

results demonstrated the advantages of APOD on improving computational efficiency of

EMPC design, but also demonstrated a potential problem on state constraint violation. To

address this issue, an EMPC scheme inheriting the high computational efficiency from

APOD and the high state prediction accuracy from high-order finite-difference method is

proposed; simulation results demonstrated that this EMPC scheme successfully improves

the computational efficiency, while avoiding state constraint violations. Future work will

focus on developing an output feedback EMPC scheme based on APOD in which the state

measurements will be limited to few discrete points along the spatial domain.

In Chapter 8, both state feedback and output feedback EMPC schemes for a system of

two coupled hyperbolic PDEs arising in the modeling of a non-isothermal plug flow reactor

were developed. Through extensive simulation studies, key metrics like economic closed-

loop performance under EMPC versus steady-state operation, impact of horizon length

on computation time and economic performance, effect of number of measurement points

on state estimation and closed-loop economic performance were evaluated and discussed.

Future work will attempt to develop a theoretic framework of the presented computation

algorithms.

Finally, in Chapter 9, a CFD model of an industrial level steam methane reformer in-

cluding both furnace and process sides was developed. A single reforming tube CFD model

was first developed with detailed reforming reaction kinetics, porous media and fixed tube

wall temperature. The CFD simulation result of this single reforming tube was consistent
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with the plant data of an industrial reformer. Then, the coupling of the combustion process

and the reforming reaction process inside the tubes was demonstrated in a small-scale re-

former. A detailed modeling method was proposed for the CFD model of this small-scale

model, and reasonable simulation results were achieved. Finally, the developed modeling

method of coupling combustion and reforming reaction for the small-scale reformer was

applied to the full-size reformer.

In summary, this thesis developed novel EMPC schemes that explicitly account for

scheduled preventive control actuator/sensor maintenance programs, process economics

and feedback control, proposed EMPC schemes that are formulated on the basis of suitable

reduced-order models to ensure input and state constraint satisfaction and economics opti-

mization for both parabolic and hyperbolic PDEs, and proposed multiscale, computational

fluid dynamics modeling framework for an industrial-level steam methane reforming unit.
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