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The chemical industry is a vital sector of the US economy. Maintaining optimal chem-

ical process operation is critical to the future success of the US chemical industry on a

global market. Traditionally, economic optimization of chemical processes has been ad-

dressed in a two-layer hierarchical architecture. In the upper layer, real-time optimiza-

tion carries out economic process optimization by computing optimal process operation

set-points using detailed nonlinear steady-state process models. These set-points are used

by the lower layer feedback control systems to force the process to operate on these set-

points. While this paradigm has been successful, we are witnessing an increasing need

for dynamic market and demand-driven operations for more efficient process operation,

increasing response capability to changing customer demand, and achieving real-time en-

ergy management. To enable next-generation market-driven operation, economic model

predictive control (EMPC), which is an model predictive control scheme formulated with

a stage cost that represents the process economics, has been proposed to integrate dynamic

ii



economic optimization of processes with feedback control.

Motivated by these considerations, novel theory and methods needed for the design of

computationally tractable economic model predictive control systems for nonlinear pro-

cesses are developed in this dissertation. Specifically, the following considerations are

addressed: a) EMPC structures for nonlinear systems which address: infinite-time and

finite-time closed-loop economic performance and time-varying economic considerations

such as changing energy pricing; b) two-layer (hierarchical) dynamic economic process

optimization and feedback control frameworks that incorporate EMPC with other control

strategies allowing for computational efficiency; and c) EMPC schemes that account for

real-time computation requirements. The EMPC schemes and methodologies are applied

to chemical process applications. The application studies demonstrate the effectiveness of

the EMPC schemes to maintain process stability and improve economic performance under

dynamic operation as well as to increase efficiency, reliability and profitability of processes,

thereby contributing to the vision of Smart Manufacturing.
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Chapter 1

Introduction

1.1 Motivation

Optimal operation and control of dynamic systems and processes has been a subject of

significant research for many years. Important early results on optimal control of dynamic

systems include optimal control based on the Hamilton-Jacobi-Bellman equation and dy-

namic programming [18], Pontryagin’s maximum principle [150], and the linear quadratic

regulator [95]. Within the context of the chemical process industries, room for perfor-

mance improvement in process operations will always exist because operating a process

at the theoretical, globally optimal operating conditions for any substantial length of time

is almost certainly impossible. One methodology for improving process performance is to

employ the solution of optimal control problems (OCPs) on-line. In other words, control

actions for the manipulated inputs of a process are computed by formulating and solving

a dynamic optimization problem on-line that takes advantage of a dynamic process model

while accounting for process constraints. With the available computing power of modern

computers, solving complex dynamic optimization problems (e.g., large-scale, nonlinear,

and non-convex optimization problems) on-line is becoming an increasingly viable option
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to use as a control scheme to improve the steady-state and dynamic performance of process

operations.

The process performance of a chemical process refers to the process operating eco-

nomics and encapsulates many objectives: profitability, efficiency, variability, capacity,

sustainability, etc. As a result of continuously changing process economics, e.g., variable

feedstock, changing energy prices, variable customer demand, process operation objectives

and strategies need to be frequently updated to account for these changes. Traditionally, a

hierarchical strategy for planning/scheduling, optimization, and control has been employed

in the chemical process industries. A block diagram of the hierarchical strategy is shown

in Fig. 1.1 (adapted from [165]). Although the block diagram provides an overview of

the main components, it is a simplified view of modern planning/scheduling, optimization,

and control systems employed in the chemical process industry in the sense that each layer

may be comprised of many distributed and hierarchical computing units. The underlying

design principle of the hierarchical strategy invokes time-scale separation arguments be-

tween the execution/evolution of each layer (Fig. 1.1). In the highest level of the hierarchy,

enterprise-wide and/or plant-wide planning and scheduling decisions are made on the or-

der of days-months. These decisions are made on the basis of multiple operating processes

even multiple operating plants, and are out-of-scope of the current monograph.

In the next layers of the hierarchy, economic optimization and control of chemical pro-

cesses is addressed in the multi-layer hierarchical architecture, e.g., [121, 36] (Fig. 1.1).

The upper-layer, called real-time optimization (RTO), is responsible for process optimiza-

tion. Within the RTO layer, a metric, usually defining the operating profit or operating

cost, is optimized with respect to an up-to-date and rigorous steady-state process model to

compute optimal process steady-state. The computed steady-state is sent to the lower-layer

feedback process control systems, which consists of the supervisory control and regulatory

control layers. The process control system steers the process to operate at the steady-state

2



Planning and
Scheduling

Real-time
Optimization

Advanced
Process Control

Regulatory
Control

Safety
Controls/
Protection

Measurement
and Actuation

Chemical Plant

LayerTime-Scale Description

days-months

hours-days

minutes-hours

seconds-minutes

< 1 second

< 1 second

Plant/Enterprise
Decision Making

Process
Optimization

Feedback/Process
Control

Safety

Raw Materials Products

Figure 1.1: The traditional hierarchical paradigm employed in the chemical process in-

dustries for planning/scheduling, optimization, and control of chemical plants (adapted

from [165]).
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using the manipulated inputs to the process. Also, the process control system also must

work to reject disturbances and ideally guide the trajectory of the process dynamics along

an optimal path to the steady-state.

The advanced or supervisory process control layer of Fig. 1.1 consists of control al-

gorithms that are used to account for process constraints, coupling of process variables,

and processing units. In the advanced process control layer, model predictive control

(MPC), a control strategy based on optimal control concepts, has been widely imple-

mented in the chemical process industry, e.g., [125, 81, 132, 124, 155, 152]; see, also,

the books [3, 27, 118, 159, 34, 69]. MPC uses a dynamic model of the process in an

optimization problem to predict the future evolution of the process over a finite-time hori-

zon and to determine the optimal input trajectory with respect to a specified performance

index. Furthermore, MPC can account for the process constraints and multi-variable in-

teractions in the optimization problem. Thus, it has the ability to optimally control con-

strained multiple-input multiple-output nonlinear systems. The conventional or tracking

formulations of MPC use a quadratic performance index, which is a measure of the pre-

dicted squared weighted error of the states and inputs from their corresponding steady-state

values, to force the process to the (economically) optimal steady-state. The regulatory con-

trol layer is composed of mostly single-input single-output control loops like proportional-

integral-derivative (PID) control loops that work to implement the computed control actions

by the supervisory control layer, i.e., it ensures that the control actuators achieve the control

action requested by the MPC layer.

As previously mentioned, the overall control architecture of Fig. 1.1 invokes intuitive

time-scale separation arguments between the various layers. For instance, RTO is executed

at a rate of hours-days, while the feedback control layers compute control actions for the

process at a rate of seconds-minutes-hours [165]. Though this paradigm has been suc-

cessful, we are witnessing the growing need for dynamic market-driven operations which
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include more efficient and nimble process operation [9, 92, 167, 38]. To enable next-

generation or “Smart” operations/manufacturing, novel control methodologies capable of

handling dynamic optimization of process operations should be designed and investigated.

More specifically, there is a need to develop theory, algorithms, and implementation strate-

gies to tightly integrate the layers of Fig. 1.1. The benefits of such work may be to trans-

form process operations and usher in a new era of dynamic (off steady-state and demand

and market-driven) process operations.

In an attempt to integrate economic process optimization and process control as well as

realize the possible process performance improvement achieved by consistently dynamic,

transient, or time-varying operation, i.e., not forcing the process to operate at a pre-specified

steady-state, economic MPC (EMPC) has been proposed which incorporates a general cost

function or performance index in its formulation [80, 61, 156, 86, 6, 76]. The cost function

may be a direct or indirect reflection of the process economics. However, a by-product of

this modification is that EMPC may operate a system in a possibly time-varying fashion

to optimize the process economics and may not operate the system at a specified steady-

state or target. The rigorous design of EMPC systems that operate large-scale processes in a

dynamically optimal fashion while maintaining safe and stable operation of the closed-loop

process system is challenging as traditional notions of stability, e.g., asymptotic stability

of a steady-state, may not apply to the closed-loop system under EMPC. It is important

to point out that the use of OCPs with an economic cost function is not a new concept.

In fact, MPC with an economic cost is not new either (e.g., one such EMPC framework

was presented in [80]). However, closed-loop stability, performance, and computational

efficiency under EMPC has only recently been considered and proved for various EMPC

formulations.
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1.2 Objectives and Organization of the Dissertation

This dissertation considers issues related to computational efficiency of EMPC, theoreti-

cal analysis of closed-loop stability and performance under EMPC, and chemical process

applications controlled by EMPC. Specifically, the objectives of this dissertation are sum-

marized as follows:

1. To develop economic model predictive control methods that address infinite-time and

finite-time closed-loop economic performance and time-varying economic consider-

ations.

2. To develop two-layer (hierarchical) dynamic economic process optimization and

feedback control frameworks that incorporate EMPC with other control strategies

allowing for computational efficiency.

3. To address real-time computation of EMPC requirements.

4. To develop EMPC schemes for nonlinear time-delay systems that address closed-

loop stability and performance.

5. To develop control configuration techniques for EMPC.

The dissertation is organized as follows. In the subsequent section of this chapter, a

few chemical process examples that will be used to study the closed-loop properties of

EMPC are presented to motivate the need for unsteady-state process operation to improve

economic performance.

In Chapter 2, a brief overview of EMPC methods is provided. In particular, the role

of constraints imposed in the optimization problem of EMPC for feasibility, closed-loop

stability, and closed-loop performance is explained. Three main types of constraints are
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considered including terminal equality constraints, terminal region constraints, and con-

straints designed via Lyapunov-based techniques. EMPC is applied to a benchmark chem-

ical process example to illustrate the effectiveness of time-varying operation to improve

closed-loop economic performance compared to steady-state operation and to an open-

loop periodic operating policy. A few preliminary results on stabilization of sampled-data

systems and on Lyapunov-based MPC is presented.

In Chapter 3, a review of Lyapunov-based EMPC (LEMPC), presented in [76], is given

including closed-loop stability and robustness properties. The LEMPC designs that address

closed-loop performance and time-varying economic stage cost function are also addressed

in this chapter. The methods are applied to two chemical process examples.

In Chapter 4, several two-layer approaches to dynamic economic optimization and con-

trol are developed and discussed. The upper layer, utilizing an EMPC, is used to compute

economically optimal policies and potentially, also, control actions that are applied to the

closed-loop system. The economically optimal policies are sent down to a lower layer MPC

scheme which may be a tracking MPC or an EMPC. The lower layer MPC scheme forces

the closed-loop state to closely follow the economically optimal policy computed in the

upper layer EMPC. The methodologies are applied to several chemical process examples

to demonstrate their effectiveness.

In Chapter 5, closed-loop stability of nonlinear systems under real-time Lyapunov-

based economic model predictive control (LEMPC) with potentially unknown and time-

varying computational delay is considered. To address guaranteed closed-loop stability (in

the sense of boundedness of the closed-loop state in a compact state-space set), an im-

plementation strategy is developed which features a triggered evaluation of the LEMPC

optimization problem to compute an input trajectory over a finite-time prediction horizon

in advance. At each sampling period, stability conditions must be satisfied for the pre-

computed LEMPC control action to be applied to the closed-loop system. If the stability
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conditions are not satisfied, a backup explicit stabilizing controller is applied over the sam-

pling period. Closed-loop stability under the real-time LEMPC strategy is analyzed and

specific stability conditions are derived. The real-time LEMPC scheme is applied to a

chemical process network example to demonstrate closed-loop stability and closed-loop

economic performance improvement over that achieved for operation at the economically

optimal steady-state.

In Chapter 6, closed-loop stability of nonlinear time-delay systems under LEMPC is

considered. LEMPC is initially formulated with an ordinary differential equation model

and is designed on the basis of an explicit stabilizing control law. To address closed-loop

stability under LEMPC, first, we consider the stability properties of the sampled-data sys-

tem resulting from the nonlinear continuous-time delay system with state and input delay

under a sample-and-hold implementation of the explicit controller. The steady-state of the

resulting closed-loop system is shown to be practically stable. Second, conditions such that

closed-loop stability, in the sense of boundedness of the closed-loop state, under LEMPC

are derived. A chemical process example is used to demonstrate that indeed closed-loop

stability is maintained under LEMPC for sufficiently small time-delays. To cope with per-

formance degradation owing to the effect of input delay, a predictor feedback LEMPC

methodology is also discussed. The predictor feedback LEMPC design employs a predic-

tor to compute a prediction of the state after the input delay period and an LEMPC scheme

that is formulated with a differential difference model (DDE) model, which describes the

time-delay system, initialized with the predicted state. The predictor feedback LEMPC is

also applied to the chemical process example and yields improved closed-loop stability and

economic performance properties.

In Chapter 7, an input selection methodology for EMPC is developed. The method-

ology utilizes the relative degree and the sensitivity of the economic cost with respect to

an input to identify and select stabilizing manipulated inputs with the most dynamic and
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steady-state influence on the economic cost function to be assigned to EMPC. Other con-

siderations for input selection for EMPC are also discussed and integrated into an input

selection methodology for EMPC. The control configuration selection method for EMPC

is demonstrated using a chemical process example.

Chapter 8 summarizes the main results of the dissertation.

1.3 Chemical Process Examples

As discussed in the introduction, steady-state operation is typically adopted in chemi-

cal process industries, i.e., the control system is used to force a chemical process to a

pre-specified steady-state and maintain operation at this steady-state thereafter. However,

steady-state operation may not necessarily be the best operation strategy with respect to the

process economics. In fact, the chemical process control literature is rich with chemical

process examples that demonstrate performance improvement with respect to specific cost

metrics with dynamic process operation, e.g., [42, 110, 171, 189, 188, 14, 168, 166, 179,

180, 144, 146, 145, 170, 24, 114, 139, 25, 120, 169], and the numerous references therein.

To help identify systems that achieve a performance benefit from periodic operation, several

techniques have been proposed including frequency response techniques and the applica-

tion of the maximum principle [42, 11, 22, 10, 72, 179]. Periodic control strategies have

also been developed for several applications, for instance, [114, 139, 24, 166, 146].

While the periodic operating strategies listed above do demonstrate economic perfor-

mance improvement, in the case of forced periodic operation, i.e., periodic operation in-

duced by periodic switching of manipulated inputs, the periodic operating policy is identi-

fied through a low-order control parameterization, e.g., a bang-bang input profile. Owing to

recent advances in dynamic optimization (numerical solution strategies or direct methods),

it is possible that these chemical process examples previously considered in the context of

9



Table 1.1: Dimensionless process model parameters of the ethylene oxidation reactor

model. The parameters are from [144].

Parameter Value Parameter Value

A1 92.80 B3 2170.57
A2 12.66 B4 7.02
A3 2412.71 γ1 -8.13
B1 7.32 γ2 -7.12
B2 10.39 γ3 -11.07

periodic operation may achieve further economic performance improvement under EMPC

(two such example are given below). Moreover, the main advantage of EMPC is that it sys-

tematically determines, in real-time, the optimal operating strategy based on the economic

measure while accounting for operating constraints. Two chemical process examples that

benefit from time-varying operation are provided below.

1.3.1 Catalytic Oxidation of Ethylene

Consider a benchmark chemical reactor example previously studied in the context of forced

periodic operation [144, 146]. Within the reactor, ethylene oxide (C2H4O) is produced

from the catalytic oxidation of ethylene with air. Ethylene oxide is an important raw ma-

terial within the chemical industry because it is used for the synthesis of ethylene glycol

which is subsequently used to produce many materials. The reactor is modeled as a non-

isothermal continuous stirred-tank reactor (CSTR) with a coolant jacket to remove heat

from the reactor. Two combustion reactions occur that consume both the reactant and the

10



product, i.e., ethylene and ethylene oxide, respectively. The reactions are given by

C2H4 +
1
2

O2
r1→ C2H4O

C2H4 +3O2
r2→ 2CO2 +2H2O

C2H4O+
5
2

O2
r3→ 2CO2 +2H2O

where ri, i = 1,2,3 is the reaction rate of the ith reaction, and the reaction rate expressions

are

r1 = k1 exp
(−E1

RT

)
P0.5

E (1.1)

r2 = k2 exp
(−E2

RT

)
P0.25

E (1.2)

r3 = k3 exp
(−E3

RT

)
P0.5

EO (1.3)

where ki and Ei, i = 1,2,3 are the reaction rate constant and activation energy for the ith

reaction, respectively, T is the temperature, R is the ideal gas constant, and Pj is the partial

pressure of the jth component in the reactor ( j = E,EO denotes ethylene and ethylene

oxide, respectively). The reaction rate expressions are from [2] where catalytic oxidation

of ethylene using an unmodified, commercial catalyst was studied over the temperature

range 523-573 K. To model the gaseous mixture within the reactor, ideal gas is assumed

and the concentration of the jth component within the reactor, denoted by C j, is

C j =
Pj

RT
. (1.4)

A model describing the dynamic behavior of the reactor is derived through first princi-

ples under standard modeling assumptions, e.g., ideal gas and constant heat capacity. The
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dimensionless states are

x1 = ρ/ρref, x2 =CE/Cref, x3 =CEO/Cref, x4 = T/Tref

where ρ/ρref is the dimensionless vapor density in the reactor, CE/Cref is the dimensionless

ethylene concentration in the reactor, CEO/Cref is the dimensionless ethylene oxide concen-

tration in the reactor, and T/Tref is the dimensionless reactor temperature. The manipulated

inputs are

u1 = Q f /Qref, u2 =CE, f /Cref, u3 = Tc/Tref

where Q f /Qref is the dimensionless volumetric flow rate of the reactor feed, CE, f /Cref is the

dimensionless ethylene concentration of the reactor feed, and Tc/Tref is the dimensionless

coolant temperature. The model of the reactor is given by the following set of nonlinear

ordinary differential equations:

dx1

dt
= u1(1− x1x4) (1.5)

dx2

dt
= u1(u2− x2x4)−A1r̄1(x2,x4)−A2r̄2(x2,x4) (1.6)

dx3

dt
=−u1x3x4 +A1r̄1(x2,x4)−A3r̄3(x3,x4) (1.7)

dx4

dt
=

u1

x1
(1− x4)+

B1

x1
r̄1(x2,x4)+

B2

x1
r̄2(x2,x4)

+
B3

x1
r̄3(x3,x4)−

B4

x1
(x4−u3) (1.8)

where

r̄1(x2,x4) = exp(γ1/x4)(x2x4)
1/2 (1.9)

r̄2(x2,x4) = exp(γ2/x4)(x2x4)
1/4 (1.10)

r̄3(x3,x4) = exp(γ3/x4)(x3x4)
1/2 (1.11)
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and the parameters are given in Table 1.1 from [144, 146]. The maximum available control

energy is considered to be bounded in the following set:

u1 ∈ [0.0704,0.7042],

u2 ∈ [0.2465,2.4648],

u3 ∈ [0.6,1.1] .

The profitability of the reactor scales with the yield of ethylene oxide. Therefore, to

optimize the profitability or economics of the reactor, one seeks to maximize the time-

averaged yield of ethylene oxide. The time-averaged yield of ethylene oxide over an oper-

ating time t f is given by

Y =

1
t f

∫ t f

0
x3(τ)x4(τ)u1(τ) dτ

1
t f

∫ t f

0
u1(τ)u2(τ) dτ

(1.12)

which is a measure of the amount of ethylene oxide leaving the reactor relative to the

amount of ethylene fed into the reactor. For practical reasons, one may want to optimize the

yield while also ensuring that the time-averaged amount of ethylene that is fed to the reactor

be fixed, i.e., determine the method to distribute ethylene to the reactor that maximizes the

yield. Limiting the time-averaged amount of ethylene that may be fed to the reactor is

described by the following constraint:

1
t f

∫ t f

0
u1(τ)u2(τ) dτ = ṀE (1.13)

where ṀE is the time-averaged dimensionless molar flow rate of ethylene that may be fed

to the reactor. If u1,minu2,min < ṀE < u1,maxu2,max, the constraint of Eq. 1.13 prevents

one from simply considering feeding in the minimum or maximum flow rate of ethylene
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Table 1.2: Process parameters of the CSTR.

k0 8.46×106 A1 1.69×106

x20 0.050 A2 1.41×104

to the reactor over time. Within the context of EMPC, the constraint of Eq. 1.13 gives

rise to a class of economically motivated constraints which take the form of integral or

average constraints. In stark contrast to traditional or conventional control methodologies

(e.g., proportional-integral-derivative control or tracking MPC), economically motivated

constraints may be directly incorporated into EMPC.

1.3.2 Continuously-Stirred Tank Reactor with Second-order Reaction

A well-known chemical engineering example that demonstrates performance improvement

through time-varying operation is a CSTR where a second-order reaction occurs. Specif-

ically, consider the system described by the following dynamic equations given in dimen-

sionless form:

ẋ1 =−x1−A1e−1/x2x2
1 +u (1.14a)

ẋ2 =−x2 +A2e−1/x2x2
1 + x20 (1.14b)

where x1 is the dimensionless reactant concentration, x2 is the dimensionless temperature,

and A1, A2 and x20 are constant parameters. The values of the parameters are given in Ta-

ble 1.2. The input is bounded: u∈ [umin,umax] = [0.5,7.5]. The system of Eq. 1.14 describes

a non-isothermal CSTR where a second-order reaction occurs and the inlet concentration

of the reactant material is the manipulated input. The economic stage cost is

le(x,u) = k0e−1/x2x2
1 (1.15)
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which is the production rate of the desired product (k0 is a parameter). The system has an

input average constraint (dynamic constraint) given by:

1
t f

∫ t f

0
u(t) dt = uavg = 4.0 (1.16)

where t f is the length of operation. The practical motivation of the average constraint of

Eq. 1.16 is that the average amount of material that may be distributed to the reactor over

time is fixed, i.e., the constraint is economically motivated. The CSTR has an optimal

steady-state xT
s = [1.182 0.073] which corresponds to the steady-state input that satisfies

the average input constraint (us = uavg) with a production rate of 14.03.

An analysis is completed to determine if the economic performance, i.e., the average

production rate of the product, can be improved by using a time-varying operating strategy

compared to operating at the optimal steady-state. An auxiliary state is defined for the

average constraint:

x3(t) :=
1
t f

∫ t

0
(u(t)−uavg) dt (1.17)

which has dynamics:

ẋ3(t) =
1
t f
(u(t)−uavg) . (1.18)

The non-isothermal CSTR with the objective function of Eq. 1.15 is a member of a special

class of nonlinear systems:

ẋ = f̄ (x)+Bu (1.19)

where B∈Rn×Rm is a constant matrix and f̄ : Rn→Rn is a differentiable vector function.

Additionally, the stage cost only depends on the states:

le(x,u) = l̄e(x) (1.20)
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where l̄e : Rn→ R is a differentiable function. The Hamiltonian function of the system of

Eq. 1.19 and cost of Eq. 1.20 is

H(x,u,λ ) = l̄e(x)+λ
T f̄ (x)+λ

T Bu (1.21)

where λ is the adjoint variable vector that satisfies

λ̇ (t) =−Hx(x(t),u(t),λ (t)) (1.22)

where Hx denotes the partial derivative of H with respect to x. From Pontryagin’s maximum

principle [150], a necessary condition can be derived for the optimal control, i.e., the control

that maximizes the Hamiltonian:

u∗i (t) =


ui,max, if bT

i λ (t)> 0

ui,min, if bT
i λ (t)< 0

(1.23)

where bi is the i-th column of B. For this class of systems and stage costs, if some time-

varying operating policy is the optimal operating strategy, then the operating policy is a

bang-bang input policy of Eq. 1.23.

Although the analysis above significantly reduces the space of possible optimal input

trajectories, it still yields an infinite space of input trajectories. Thus, consider the following

periodic bang-bang input trajectory over one period:

u(t) =


umax if t < τ/2

umin else
(1.24)

where τ is the period and t ∈ [0,τ). The input trajectory of Eq. 1.24 satisfies the average
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Figure 1.2: Average economic performance J̄e as a function of the period length τ .
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Figure 1.3: State, input, and λ1 +λ3/τ trajectories of the CSTR under the bang-bang input

policy with period τ = 1.20.

constraint of Eq. 1.16 over each period. For the system of Eq. 1.14 with the input trajectory

of Eq. 1.24, there exists a periodic state trajectory for some τ > 0, i.e., it has the property

x(t) = x(t + τ) for all t.

Indeed, the periodic solution of the system of Eq. 1.14 with the input of Eq. 1.24

achieves better economic performance compared to the economic performance at steady-

state for some τ . Moreover, the economic performance depends on the period which is

shown in Fig. 1.2. Over the range of periods considered (0.5 to 2.4), the period τ = 1.20
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yields the best performance (Fig. 1.2). The periodic solution with the input period of

τ = 1.20 has an average cost of J̄e = 15.20 which is 8.30 percent better than the perfor-

mance at the optimal steady-state. Periods greater than 1.96 achieve worse performance

compared to that at steady-state. The state, input, and BT λ = bT
1 λ = λ1 +λ3/τ trajecto-

ries are given in Fig. 1.3 over one period. From Fig. 1.3, the input trajectory satisfies the

necessary condition of Eq. 1.23. From these results, time-varying operation is better than

steady-state operation from an economical point of view for this example. If the average

constraint of Eq. 1.16 was not imposed, the optimal operating strategy would be steady-

state operation at the steady-state corresponding to the input umax. The average constraint

plays a crucial role for this particular example.

As pointed out, the above analysis only considers economic performance. If the pe-

riodic solution depicted in Fig. 1.3 is indeed optimal or some other bang-bang policy is

the best operating strategy, feedback control is needed to force the system state from an

initial state to the optimal time-varying solution. Moreover, the control problem becomes

more complex when one considers disturbances, plant-model mismatch and other forms of

uncertainty, implementability of the computed input trajectory, i.e., bang-bang control may

not be implementable in practice, and time-varying economic objectives and constraints.

The example further motivates the inquiry and theoretical developments in the context of

EMPC systems that dictate time-varying operating policies.
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Chapter 2

Brief Overview of EMPC Methods and

Some Preliminary Results

This chapter contains a brief background on EMPC methods and some preliminary results

on sampled-data systems and Lyapunov-based MPC (LMPC). The background on EMPC

methods is meant to provide context to the EMPC design methodologies of the subsequent

chapters. However, it is not meant to be comprehensive and rigorous. For a more compre-

hensive and rigorous treatment, please refer to the reviews [157, 57] as well as the relevant

literature. The preliminary results are used in subsequent chapters.

2.1 Background on EMPC Methods

A brief overview of EMPC methods is provided in this section. The review of EMPC meth-

ods is a version of [55]. First, the notation used throughout this dissertation is presented.
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2.1.1 Notation

The set of real numbers is denoted by R, while the set of integers is denoted by I. The

symbol R≥0 (I≥0) is used to denote positive reals (integers), and Rn is an n-dimensional

real (Euclidean) space. The notation x(t) ∈ Rn represents a time-dependent vector. The

symbol | · | denotes the Euclidean norm of a vector, i.e., |x| =
√

xT x where x ∈ Rn and xT

denotes the transpose of x, and | · |2Q denotes the square of a weighted Euclidean norm of

a vector, i.e., |x|2Q = xT Qx where Q is a positive definite matrix. A square diagonal matrix

with diagonal elements equal to the elements of a vector v is written as diag(v). An infinite

sequence is denoted by {tk}k≥0, while a finite sequence is written as {ti}N
i=0 which describes

the sequence: t0, t1, . . . , tN−1, tN .

With regard to functions, a function, V : Rn → R, is said to be positive definite with

respect to x̄ if V (x) > 0 for all x ∈ Rn except for x̄ when V (x̄) = 0. When a function is

positive definite with respect to the origin (x̄ = 0), the function is simply called positive

definite and the distinction that it is positive definite with respect to the origin is omitted. A

function, V : Rn→ R, is negative definite if −V is positive definite. A continuous function

α : [0,a)→ R≥0 is said to be of class K if it is strictly increasing and α(0) = 0, and it is

of class K∞ if it is of class K , a = ∞, and α(r) as r→ ∞, i.e., it is radially unbounded.

A function β : [0,a)×R≥0 → R≥0 is said to be of class-K L if β (·, t) is of class-K

for each t ≥ 0 and β (s, ·) is monotonically decreasing to zero for each s ≥ 0. The family

of piecewise constant, right-continuous functions with period ∆ is denoted as S(∆), and

with a slight abuse of notation, we will say u(·) ∈ S(∆) (or simply, u ∈ S(∆)) when the

vector-valued function u : [0,N∆)→ Rm, u : t 7→ u(t), may be described by

u(t) = ūi, for t ∈ [i∆,(i+1)∆)

for i = 0,1, . . . ,N − 1 where ∆ > 0 is the period and ūi ∈ Rm (note that the appropriate
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domain of the function u will be implied by the context). The floor and ceiling functions,

denoted as bac and dae (a ∈ R), respectively, are the largest integer not greater than a and

the smallest integer not less than a, respectively.

The set Ωr is a level set, also referred to as a level surface or sublevel set, of a scalar-

valued positive definite function: Ωr := {x ∈ Rn : V (x)≤ r} where r > 0. A ball of radius

ν > 0 is given by Bν := {x ∈ Rn : |x| ≤ ν}. The notation B \A denotes the relative com-

plement of the set A in B, i.e., B\A = {x ∈ B : x /∈ A}. Finally, for algorithms, the notation

j← j+ 1 is used to denote that at the next time step or the next iteration of the loop, the

index j is incremented by one.

2.1.2 Class of Nonlinear Systems

The class of systems considered is described by the system of nonlinear ordinary differen-

tial equations (ODEs):

ẋ = f (x,u,w) (2.1)

where x∈X⊂Rn denotes the state vector, u(t)∈U⊂Rm denotes the manipulated (control)

input vector, and w ∈W ⊂ Rl denotes the disturbance vector. The set of admissible input

values U is assumed to be compact, and the disturbance vector is bounded in the set W :=

{w ∈ Rl : |w| ≤ θ} where θ > 0 bounds the norm of the disturbance vector. The vector

function f : X×U×W→ X is locally Lipschitz on X×U×W. A state measurement

is synchronously sampled at sampling instances denoted by the sequence {tk}k≥0 where

tk := k∆, k ∈ I≥0, and ∆ > 0 is the sampling period (the initial time is taken to be zero). The

assumption of state feedback is standard owing to the fact that the separation principle does

not generally hold for nonlinear systems. Nevertheless, some rigorous output feedback

implementations of EMPC exist, e.g., [77, 60, 201].

The system of Eq. 2.1 is assumed to be equipped with a continuous function le : X×
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U→ R, which reflects the instantaneous process/system economics. The function le(·, ·)

will be used as a stage cost in a model predictive control (MPC) framework and will be

referred to as the economic stage cost. The system of Eq. 2.1 may have additional con-

straints other than the input and state constraints. Collecting all the constraints including

the input, state, and additional constraints, the constraints may be written generally as static

constraints:

gs(x,u)≤ 0 (2.2)

where gs : X×U→ Rns and as dynamic constraints, e.g., average constraints like that of

Eq. 1.13 and Eq. 1.16 of the two examples of Chapter 1:

∫ td

0
gd(x(t),u(t)) dt ≤ 0 (2.3)

where gd : X×U→ Rnd and td is the time horizon that the constraint is imposed. The

dynamic constraints are often motivated by economic considerations. The economically

optimal steady-state and steady-state input pair is:

(x∗s ,u
∗
s ) = argmin

(xs,us)

{le(xs,us) : f (xs,us,0) = 0, gs(xs,us)≤ 0, gd(xs,us)≤ 0} . (2.4)

With the notation above, the optimal (minimizing) steady-state pair (x∗s ,u
∗
s ) is assumed to

exist and to be unique. If the minimizing pair is not unique, let (x∗s ,u
∗
s ) denote one of the

minimizing steady-state pairs. Without loss of generality, the optimal steady-state is taken

to be the origin of the unforced system ( f (0,0,0) = 0) in what follows.

2.1.3 EMPC Methods

Economic model predictive control is an MPC method that uses the economic stage cost in

its formulation. The EMPC problem, with a finite-time prediction horizon, may be broadly
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characterized by the following optimal control problem (OCP):

min
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t)) dt +Vf (x̃(tk+N)) (2.5a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.5b)

x̃(tk) = x(tk) (2.5c)

gs(x̃(t),u(t))≤ 0, ∀ t ∈ [tk, tk+N) (2.5d)∫ tk+N

tk
g̃d(x̃(t),u(t), tk) dt ≤ 0 (2.5e)

where the decision variable of the optimization problem is the piecewise constant input

trajectory over the prediction horizon, i.e., the time interval [tk, tk+N), and x̃ denotes the

predicted state trajectory over the prediction horizon. Higher-order control parameteri-

zations may also be considered. Nevertheless, sample-and-hold, i.e., zeroth-order hold,

implementation of controls is one of the most commonly employed control parameteriza-

tions. Since the input trajectory of Eq. 2.5 may be parameterized by N, m-dimensional

vectors, the optimization problem is finite dimensional.

The cost functional of Eq. 2.5a consists of the economic stage cost with a terminal

cost/penalty Vf : X→ R. The nominal dynamic model of Eq. 2.5b is used to predict the

future evolution of the system and is initialized with a state measurement of Eq. 2.5c.

When available, disturbance estimates or predictions may be incorporated in the model of

Eq. 2.5b. The constraints of Eqs. 2.5d-2.5e represent the system constraints which may

include, input, state, mixed state and input, economic, and stability constraints. The con-

straint of Eq. 2.5e may be time-varying, i.e., formulated for the sampling time tk, so that

the constraint of Eq. 2.3 is satisfied over the desired operating interval, and hence, the

notation of Eq. 2.5e is used to denote that the constraint is formulated for the sampling

time tk. For the remainder of this section, the dynamic constraints are dropped and only
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EMPC schemes of the form of Eqs. 2.5a-2.5d are considered. Thus, the constraint set is

Z := {(x,u) : x ∈ X, u ∈ U, gs(x,u)≤ 0} ⊆ X×U and Z is assumed to be compact.

EMPC is typically implemented with a receding horizon implementation to better ap-

proximate the infinite-horizon solution and to ensure robustness of the control solution

to disturbances and open-loop instabilities. At a sampling time tk, the EMPC receives a

state measurement, which is used to initialize the model of Eq. 2.5b. The OCP of Eq. 2.5

is solved on-line for a (local) optimal piecewise input trajectory, denoted by u∗(t|tk) for

t ∈ [tk, tk+N). The control action computed for the first sampling period of the prediction

horizon, denoted as u∗(tk|tk), is sent to the control actuators to be implemented over the

sampling period from tk to tk+1, i.e., sample-and-hold implementation. At the next sam-

pling time, the OCP of Eq. 2.5 is re-solved after receiving a new state measurement and by

shifting the prediction horizon into the future by one sampling period.

EMPC, which consists of the on-line solution of the OCP of Eq. 2.5 along with a re-

ceding horizon implementation, results in an implicit state feedback law u(t) = κ(x(tk))

for t ∈ [tk, tk+1). From a theoretical perspective, three fundamental issues are considered

and addressed with respect to EMPC. The first consideration is the feasibility of the opti-

mization problem (both initial and recursive feasibility are considered). Second, if Eq. 2.5

is recursively feasible, it is important to consider the stability properties of the closed-loop

system under EMPC. In general, one may not expect that EMPC will force the state to a de-

sired steady-state. The last theoretical consideration is closed-loop economic performance

under EMPC. Within the context of EMPC, closed-loop performance typically means the

average closed-loop economic performance. Over a finite-time operating interval of length

t f , the average performance is defined by the following index:

J̄e :=
1
t f

∫ t f

0
le(x(t),u(t)) dt (2.6)
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where x and u are the closed-loop state and input trajectories, respectively, and over an

infinite-time operating interval, the infinite-time (asymptotic) average economic perfor-

mance is given by:

J̄e,∞ := limsup
t f→∞

1
t f

∫ t f

0
le(x(t),u(t)) dt . (2.7)

Within the context of EMPC, the average economic performance is of interest because

EMPC may dictate a time-varying operating strategy to optimize the process/system eco-

nomics. Thus, it may not enforce convergence to the economically optimal steady-state.

While the instantaneous stage cost under EMPC at any time may be better or worse than the

stage cost at the economically optimal steady-state and steady-state input pair, the average

economic performance under the time-varying operating policy dictated by EMPC over

the length of operation may be better than that achieved by operation at the economically

optimal steady-state.

Without additional assumptions and conditions, one may easily construct examples of

systems and stage costs of the form described above where the closed-loop under EMPC

(without additional stability constraints) is unstable. Clearly, additional conditions and/or

constraints enforced in the EMPC problem may be needed to guarantee closed-loop stabil-

ity. Some theoretical investigations on EMPC that do not incorporate additional stability

constraints exist including the work of [68, 70] which require that the resulting EMPC has a

sufficiently long horizon as well as certain controllability assumptions and turnpike condi-

tions be satisfied to guarantee closed-loop stability and performance properties. Moreover,

even though EMPC optimizes the process/system economics, it does so over a finite-time

prediction horizon. Over long periods of operation, no conclusion, in general, may be

made on closed-loop performance under EMPC (without additional constraints). For prov-

able results on feasibility, closed-loop stability, and closed-loop performance under EMPC,

typically, additional stability and/or performance constraints are added to the formulation
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of EMPC. These formulations are discussed in the subsequent sections.

To address closed-loop stability, one may consider employing an infinite-horizon in the

EMPC. This may be a more appropriate prediction horizon because many chemical pro-

cesses are continuously operated over long periods of time (practically infinite time). At

least intuitively, the resulting control law will provide some form of closed-loop stability

assuming the existence of a solution to the infinite-horizon EMPC as well as the ability to

solve for a solution on-line. However, it is practically impossible to solve an OCP with

an infinite-horizon. To overcome this problem, two approaches include: (1) approximat-

ing the infinite-horizon with a sufficiently long finite-time horizon and (2) dividing the

infinite-horizon into a finite-time horizon and estimating the infinite-horizon tail through

an auxiliary control law or with modeling-based techniques, e.g., [195, 86, 39, 85, 126,

127, 143, 196, 194]. Although some of these EMPC schemes may be computationally

tractable, the use of constraints typically enables shorter prediction horizons, which may

reduce the on-line computation relative to those that require sufficiently long horizons.

Thus, infinite-horizon EMPC and EMPC without stability constraints are not discussed,

but rather, EMPC systems formulated with constraints to provide guaranteed closed-loop

properties are considered.

EMPC with an Equality Terminal Constraint

Much of the recent theoretical work on EMPC investigates the extension of stabilizing ele-

ments used in tracking MPC to EMPC such as adding a terminal constraint and/or terminal

cost (see, for instance, [124] for more details on the use of terminal constraints and/or a

terminal cost within the context of tracking MPC). Numerous EMPC formulations and the-

oretical developments which include a terminal constraint and/or terminal cost have been

proposed and studied, e.g., [158, 156, 63, 4, 39, 86, 111, 6, 134, 44, 112, 157, 5, 62, 67, 83,

135, 136, 13, 137, 191, 199]. There are two main types of EMPC with terminal constraints:
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(1) EMPC with an equality terminal constraint, and (2) EMPC with a terminal region con-

straint. In this subsection, the former type of EMPC is considered which is an EMPC that

is described by the optimization problem:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t)) dt (2.8a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.8b)

x̃(tk) = x(tk) (2.8c)

x̃(tN) = x∗s (2.8d)

gs(x̃(t),u(t))≤ 0, ∀ t ∈ [tk, tk+N) (2.8e)

where the constraint of Eq. 2.8d forces that the predicted state trajectory to converge to

the optimal steady-state at the end of the finite-time horizon. For EMPC with an equality

terminal constraint, the terminal cost is often omitted as it is not required for stability and

performance guarantees.

Feasibility. EMPC with a terminal equality constraint is (initially) feasible for any

initial state in XN ∈ Rn which denotes the feasibility region of EMPC of Eq. 2.8. The

feasible region depends on the prediction horizon, and an explicit characterization of XN is

difficult in general. Recursive feasibility, i.e., feasibility at each subsequent sampling time,

of EMPC with an equality terminal constraint is guaranteed for the nominally operated

system for any initial state x(0) ∈ XN . This follows from the fact that a feasible solution to

the EMPC may be constructed from the solution from the previous sampling time. Namely,

u(t) = u∗(t|tk−1) for t ∈ [tk, tk+N−1) and u(t) = u∗s for t ∈ [tk+N−1, tk+N) is a feasible solution

for the EMPC at tk because it satisfies the constraints and the terminal constraint of Eq. 2.8d.

However, recursive feasibility is harder to show, in general, when w(·) 6≡ 0.

Closed-loop Stability. With respect to closed-loop stability, a weak notion of stability
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follows from the EMPC with terminal constraint formulation. If the initial state is in the

feasible set, the closed-loop state trajectory remains contained in the feasible set for nom-

inal operation. For stronger stability properties, e.g., asymptotic stability of x∗s , additional

assumptions on the closed-loop system must be satisfied. To discuss this issue, nonlinear

discrete-time systems are considered that have the form:

x(k+1) = fd(x(k),u(k)) (2.9)

where fd : X×U→ X is the discrete-time state transition map and k ∈ I≥0 is the time

index. As before, the system of Eq. 2.9 is subject to mixed state and input constraints

(x,u) ∈ Z ⊆ X×U where Z is a compact set and the origin is assumed to be the op-

timal steady-state ( fd(0,0) = 0). Discrete-time systems are considered here to maintain

consistency with the literature on the topic. Nonetheless, some of these conditions and

results have been extended to continuous-time systems, e.g., [1]. One condition that leads

to stronger stability properties is the notion of dissipativity which has been extended to

EMPC. Dissipativity was originally presented in [190] for continuous-time systems and

then, extended to discrete-time systems [26].

Definition 2.1 ([6]). The system of Eq. 2.9 is strictly dissipative with respect to a supply

rate s : X×U→ R if there exist a function λ : X→ R and a positive definite function

β : X→ R≥0 such that

λ ( fd(x,u))−λ (x)≤−β (x)+ s(x,u) (2.10)

for all (x,u) ∈ Z.
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If the system of Eq. 2.9 is strictly dissipative with a supply rate:

s(x,u) = le(x,u)− le(x∗s ,u
∗
s ) (2.11)

then, the optimal steady-state is asymptotically stable for the closed-loop system under

EMPC with an equality terminal constraint [6]. Moreover, a Lyapunov function for the

closed-loop system was derived using the cost functional of the so-called rotated cost func-

tion [6]:

L(x,u) := le(x,u)+λ (x)−λ ( fd(x,u)) . (2.12)

The idea of using the rotated cost function to construct a Lyapunov function for the closed-

loop system was originally proposed in [39]. However, it relied on strong duality of the

steady-state optimization problem, which is a stronger assumption than strict dissipativity.

Closed-loop Performance. Utilizing the optimal input trajectory at tk (or time step k

in discrete-time) as a feasible solution to the EMPC at the next sampling period, one may

upper bound the difference between the cost functional value at the next sampling time

and at the current sampling time under nominal operation. The optimal input trajectory

in discrete-time is denoted u∗( j|k) for j = k, k+ 1, . . . , k+N− 1, and the optimal cost

functional value at time step k is denoted:

L∗e(x(k)) =
k+N−1

∑
j=k

le(x∗( j|k),u∗( j|k)) , (2.13)

where u∗(·|k) is the optimal input sequence (trajectory), x∗(·|k) is the corresponding state

sequence starting at x(k), and x(k) denotes the closed-loop state at time step k. Using the

bound on the difference between the two consecutive cost functional values, the closed-
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loop average economic performance may be bounded:

1
T +1

T

∑
k=0

le(x(k),u∗(k|k))≤ le(x∗s ,u
∗
s )+

L∗e(x(0))−L∗e(x(T +1))
T +1

(2.14)

where x(k) is the closed-loop state at time step k, and T < ∞ is the length of operation.

From Eq. 2.14, the effect of the second term of the right-hand side dissipates with longer

(but finite) operation. For infinite-time, the average economic performance is bounded by:

limsup
T→∞

1
T +1

T

∑
k=0

le(x(k),u∗(k|k))≤ le(x∗s ,u
∗
s ) , (2.15)

that is, the asymptotic average performance is no worse than that at the steady-state pair

(x∗s ,u
∗
s ) [6].

Remark 2.1. If the dynamic constraints of Eq. 2.3 take the form of average constraints, [6]

and [137] provide methodologies for EMPC with an equality terminal constraint to en-

sure that the average constraint is satisfied asymptotically and over finite-time operating

horizons, respectively.

EMPC with a Terminal Region Constraint

EMPC of Eq. 2.8 requires that the initial state be sufficiently close to the steady-state such

that it is possible to reach the steady-state in N sampling times. This type of constraint

may limit the feasible region [4]. Numerically computing a solution that satisfies such a

constraint exactly may also be challenging. Therefore, terminal region constraints may be

employed in EMPC.

One such method is a terminal region constraint designed via an auxiliary local control

law. The terminal region is designed to be a forward invariant set for the nonlinear system

under the local control law. The local control law can, for instance, be designed on the basis
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of the linearization of the system around the optimal steady-state. The terminal region is

denoted as X f and the resulting EMPC is given by the following problem:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t)) dt +Vf (x̃(tk+N)) (2.16a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.16b)

x̃(tk) = x(tk) (2.16c)

x̃(tN)X f (2.16d)

gs(x̃(t),u(t))≤ 0, ∀ t ∈ [tk, tk+N) (2.16e)

where Eq. 2.16d is the terminal region constraint. In general, for closed-loop stability and

performance, the terminal cost is such that Vf (·) 6≡ 0.

In [4], a procedure to design a local control law, a terminal region constraint, and a

terminal cost for EMPC satisfying the assumption below was proposed:

Assumption 2.1. There exist a compact terminal region X f ⊂ Rn, containing the point

x∗s in its interior, and control law hL : X f → U, such that (for the discrete-time system of

Eq. 2.9):

Vf ( fd(x,hL(x)))≤Vf (x)− le(x,hL(x))+ le(x∗s ,u
∗
s ) (2.17)

for all x ∈ X f .

Feasibility. For nominal operation, if the EMPC with a terminal region is initially fea-

sible, the EMPC will be recursively feasible. This may be shown by using similar recursive

arguments as those used in showing the feasibility of the EMPC with the equality terminal

constraint. If u∗(t|tk−1) for t ∈ [tk−1, tk+N−1) is the optimal input trajectory at tk−1, then at

tk, a feasible solution is u(t) = u∗(t|tk−1) for t ∈ [tk, tk+N−1) and u(t) = hL(x̃(tk+N−1)) for

t ∈ [tk+N−1, tk+N) where x̃(tk+N−1) is the predicted state at tk+N−1. For recursive feasibility
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when w(·) 6≡ 0, one EMPC methodology designed with a terminal region constraint was

presented in [15].

Closed-loop Stability. The closed-loop stability properties of EMPC with a terminal

constraint designed to satisfy Assumption 2.1 is similar to those of EMPC with an equality

terminal constraint. For nominal operation, the closed-loop state trajectory will stay in the

feasible region. If the system of Eq. 2.9 is strictly dissipative with supply rate of Eq. 2.11,

the steady-state is asymptotically stable under EMPC with a terminal region constraint [4];

see, also, [1] which extends these results to continuous-time systems.

Closed-loop Performance. If the local control law, terminal cost, and terminal region

are designed such that Assumption 2.1 is satisfied, the bound on asymptotic average per-

formance of Eq. 2.15 holds [4]. For finite-time, a similar bound to the bound of Eq. 2.14

may be derived for the closed-loop system under EMPC with a terminal cost and a terminal

region constraint.

EMPC designed with Lyapunov-based Techniques

The feasible region of EMPC with a terminal region constraint, while larger than the feasi-

ble region of EMPC with an equality terminal constraint, depends on the prediction horizon

length. Moreover, the feasible region of both EMPC formulations is difficult to character-

ize. As an alternative to overcome these challenges, one may consider designing an explicit

nonlinear control law for the nonlinear system of Eq. 2.1 and constructing a Lyapunov

function for the resulting closed-loop system consisting of the system of Eq. 2.1 under the

explicit control law. With the control law and Lyapunov function, a region constraint may

be designed to be imposed within EMPC. Because the control law and Lyapunov function

are derived for the nonlinear system of Eq. 2.1, they can be used to provide an estimate

of the region of attraction of the nonlinear system. The resulting EMPC is the so-called

Lyapunov-based EMPC (LEMPC) [76, 32, 77, 78, 79, 58, 48]. LEMPC is discussed in-
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Ωρe

Xf

xs

x(t0)

Figure 2.1: An illustration of possible open-loop predicted trajectories under EMPC for-

mulated with a terminal constraint (dotted), under EMPC formulated with a terminal region

constraint (dashed), and under LEMPC (solid).

depth in Chapter 3. However, it is important to point out that LEMPC is a dual-mode

control strategy. Under the first mode of operation, the LEMPC may dictate a time-varying

operating policy to optimize the economics within the region derived using the nonlinear

control law. If steady-state operation is desired, the second mode of operation, defined by a

contractive constraint, is used to ensure that the closed-loop state trajectory converges to a

small neighborhood of the steady-state. In contrast to the aforementioned EMPC methods,

no dissipativity requirement is needed to accomplish steady-state operation.

Comparison of the Open-loop Predicted State Trajectory

The EMPC formulations of Eq. 2.8, Eq. 2.16, and the LEMPC (described in detail in the

next chapter) may result in different open-loop predicted state trajectories which are il-

lustrated in Fig. 2.1 (Ωρe denotes the region constraint in LEMPC). Nonetheless, if the

prediction horizon is sufficiently long, the closed-loop behavior of the system under the
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various EMPC formulations would (intuitively) be expected to be similar because for a

long prediction horizon, the EMPC solution starts to closely approximate the infinite hori-

zon solution and the effect on the closed-loop behavior of the terminal conditions of the

open-loop predicted trajectory is less significant than the corresponding effect for shorter

prediction horizons.

2.2 Application of EMPC to a Chemical Process Example

To motivate the use of EMPC over conventional control methods that enforce steady-state

operation as well as periodic operation, EMPC is applied to the benchmark example of

Section 1.3.1 (these results first appeared in [51]). The reactor has an asymptotically stable

steady-state:

xT
s = [0.998 0.424 0.032 1.002] (2.18)

which corresponds to the steady-state input:

us,1 = 0.35, us,2 = 0.5 (2.19)

where throughout this study the coolant temperature is fixed to its nominal value of us,3 =

1.0. The control objective considered here is to optimize the time-averaged yield of ethy-

lene oxide by operating the reactor in a time-varying fashion around the stable steady-state.

Owing to practical considerations, the average amount of ethylene that may be fed into

the reactor over the length of operation is constrained to be equal to that when uniformly

distributing the reactant material to the reactor which is given by the following integral

constraint:
1
t f

∫ t f

0
u1(t)u2(t)dt = us,1us,2 = 0.175 (2.20)
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Figure 2.2: Design of the open-loop periodic operation strategy over one period τ .

where us,1 and us,2 are the steady-state inlet volumetric flow rate and ethylene concentra-

tion, respectively. Since the average ethylene fed to the reactor is fixed, which fixes the

denominator of the yield, the economic stage cost used in the formulation of the upper

layer LEMPC is given by:

le(x,u) =−x3x4u1 . (2.21)

For the periodic operating policy, a similar periodic control strategy as that proposed

in [144] which varies the inlet feed flow rate and feed concentration in an open-loop peri-

odic fashion as shown in Fig. 2.2. The parameters used for the periodic control strategy are

τ = 46.8, a1 = 0.073, a2 = 0.500, a3 = 0.514, and a4 = 0.941, which are similar param-

eters to the ones used in [144]. It is important to note that the periodic control strategy of

Fig. 2.2 with the aforementioned parameters satisfies the integral constraint of Eq. 2.20.

To compare steady-state operation and periodic operating strategy with the operating

policy achieved under EMPC, an EMPC is designed for the reactor system with a sampling

period of ∆ = 0.1. To enforce that the integral constraint of Eq. 2.20 be satisfied over each
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operating window of length τ = 46.8, the EMPC is formulated with a shrinking horizon,

i.e., at t = 0, the horizon is set to N0 = 468. At the next sampling time (t = 0.1), the

horizon is decreased by one (N1 = 467). At subsequent sampling times, the prediction

horizon is similarly decreased by one sampling period. At t = 46.8, the horizon is reset

to N468 = 468. For simplicity of notation, let j be the number of operating windows of

length τ = 46.8 that have elapsed and the EMPC considered in this example is given by the

following formulation:

min
u∈S(∆)

−
∫ ( j+1)τ

tk
x̃3(t)x̃4(t)u1(t) dt (2.22a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.22b)

x̃(tk) = x(tk) (2.22c)

u1(t) ∈ [0.0704,0.7042], ∀ [tk,( j+1)τ) (2.22d)

u2(t) ∈ [0.2465,2.4648], ∀ [tk,( j+1)τ) (2.22e)

1
τ

∫ ( j+1)τ

tk
u1(t)u2(t) dt+= 0.175− 1

τ

∫ tk

jτ
u∗1(t)u

∗
2(t) dt (2.22f)

where u∗1(t) and u∗2(t) denotes the inputs applied to the system over the time jτ to tk and

( j+1)τ denotes the end of the operating window.

The catalytic reactor system is initialized at

xT
0 = [0.997 1.264 0.209 1.004] (2.23)

which corresponds to an initial state on the stable limit cycle that the process with the

periodic strategy follows. Simulations are carried out with the periodic control strategy

and the EMPC of Eq. 2.22 over 10 operating windows. The evolution of the CSTR for

both cases is given in Fig. 2.3 with the open-loop periodic operation and Fig. 2.4 under
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Figure 2.3: The open-loop CSTR (a) state trajectories and (b) input trajectories with the

periodic operating strategy shown in Fig. 2.2.
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Figure 2.4: The closed-loop CSTR (a) state trajectories and (b) input trajectories with

EMPC of Eq. 2.22.
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Figure 2.5: State-space evolution in the x2− x3 phase plane of the reactor system given

with the EMPC of Eq. 2.22 and with the periodic control strategy shown in Fig. 2.2.

EMPC. The state-space evolution of the two strategies are shown in the x2−x3 phase plane

in Fig. 2.5. From these figures, the system with the two operating strategies approaches

different limit cycles. Under EMPC, the time-averaged yield over the entire time-interval

of the simulation is 9.97% compared to 7.93% with the periodic operation. If the reactor

is initialized with the same initial point and the material is instead distributed uniformly

over the length of operation, the average yield is 6.63%. On the other hand, initializing the

system at the steady-state and maintain the system at steady-state thereafter achieves a yield

of 6.41%. Therefore, operation under EMPC has a clear performance benefit compared to

steady-state operation and the open-loop periodic operating strategy.
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2.3 A Few Preliminary Results on Sampled-data Systems

and Lyapunov-based MPC

In this section, some preliminary results on nonlinear sampled-data systems and tracking

Lyapunov-based MPC is provided. This material will be used in the subsequent chapters.

Some of these results were originally presented in [59].

2.3.1 Stabilization of Nonlinear Sampled-data Systems

In the subsequent chapters, LEMPC methods are considered. LEMPC is designed with an

explicit controller that satisfies the following assumption.

Assumption 2.2. There exists a feedback controller h(x)∈U with h(0) = 0 that renders the

origin of the closed-loop system of Eq. 2.1 with u = h(x) and w ≡ 0 asymptotically stable

for all x ∈ D0 where D0 is an open neighborhood of the origin.

Applying converse theorems [123, 100], Assumption 2.2 implies that there exists a

continuously differentiable Lyapunov function, V : D→ Rn, for the closed-loop system of

Eq. 2.1 with u = h(x) ∈ U and w≡ 0 such that the following inequalities hold:

α1(|x|)≤V (x)≤ α2(|x|), (2.24a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|), (2.24b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (2.24c)

for all x ∈ D where D is an open neighborhood of the origin and αi, i = 1, 2, 3, 4 are

functions of class K . A level set of the Lyapunov function Ωρ , which defines a subset

of D (ideally the largest subset contained in D), is taken to be the stability region of the
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closed-loop system under the controller h(x). Standard techniques exist for designing a

stabilizing control law for various classes of continuous-time nonlinear systems (see, for

instance, [87, 105, 88, 101, 100, 33] as well as the references contained therein).

Currently, there are no general methods for constructing Lyapunov functions for broad

classes of nonlinear systems with constraints. However, for certain classes of systems,

there exists some general methods for constructing Lyapunov functions, e.g., Zubov’s

method [45] and the sum of squares decomposition [147]. Within the context of chemi-

cal process control, quadratic Lyapunov functions have been widely used and have been

demonstrated to be effective for estimating the region of attraction of a given equilibrium

point of a system (see, for example, the numerous examples in [33] as well as the examples

of the subsequent chapters).

The explicit controller poses a degree of robustness to disturbances/uncertainty in the

sense that when w 6≡ 0, the controller will force the closed-loop state to a small neighbor-

hood of the origin if the bound on the disturbance, θ , is sufficiently small. Moreover, since

EMPC implements control actions in a sample-and-hold fashion, we must also consider the

closed-loop stability properties of the controller h(x) applied in a sample-and-hold fashion.

When the feedback controller h(x) is applied in a sample-and-hold fashion, the resulting

closed-loop system is a nonlinear sampled-data system given by:

ẋ(t) = f (x(t),h(x(tk)),w(t)) (2.25)

for t ∈ [tk, tk+1), tk = k∆, k = 0,1, . . ., and ∆ > 0 is the sampling period. Applying standard

results on sampled-data systems, e.g., [183, 133, 108, 140, 141], it can be shown that when

the bound on the disturbances and the sampling period are sufficient small the origin is

practically stable for all initial conditions in Ωρ . More specifically, the state trajectory

of Eq. 2.25 starting in Ωρ will remain bounded in Ωρ and converge to a small compact
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set containing the origin where it will be maintained thereafter when the bound on the

disturbance and the sampling period are sufficiently small. It is important to emphasize

that asymptotic stability of the origin of Eq. 2.25 is not achieved.

To achieve asymptotic stability of the origin of sampled-data system of Eq. 2.25, a

stronger assumption is required. In the following assumption and result, no restrictions are

placed on the state and input.

Assumption 2.3. There exists a locally Lipschitz feedback controller u= h(x) with h(0)= 0

such that the vector field of the closed-loop system f (x,h(x),0) is continuously differ-

entiable on Rn. Furthermore, the origin of the nominal closed-loop system of Eq. 2.1

(w≡ 0) under the controller h(x) implemented continuously is locally exponentially stable

and globally asymptotically stable.

The following theorem characterizes the type of stability achieved when the controller

h(x) is applied in a sample-and-hold fashion with a sufficiently small hold period.

Theorem 2.1. If Assumption 2.3 holds, then given R > 0, there exist ∆∗ > 0 and M,σ > 0

such that for ∆ ∈ (0,∆∗) the nominal closed-loop sampled-data system of Eq. 2.25 with

arbitrary initial condition x(0) = x0 ∈ BR satisfies the estimate:

|x(t)| ≤M exp(−σt)|x0| (2.26)

for all t ≥ 0.

Proof. By virtue of Proposition 4.4 of [97], there exists a C1 positive definite and radially

unbounded function V : Rn→ R≥0, constants µ, ε > 0 and a symmetric, positive definite

matrix P ∈ Rn×n for the nominal closed-loop system of Eq. 2.1 under the controller h(x)
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implemented continuously such that

∂V (x)
∂x

f (x,h(x),0)≤−µ|x|2, for all x ∈ Rn, (2.27)

V (x) = xT Px, for all x ∈ Rn with |x| ≤ ε . (2.28)

Let R > 0 and define ρ̂ := max{V (x) : x ∈ BR}. By virtue of Eq. 2.28 and the compactness

of Ωρ̂ , there exist constants c1, c2 > 0 and c4 > 0 such that:

c1|x|2 ≤V (x)≤ c2|x|2, (2.29)

∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (2.30)

for all x ∈Ωρ̂ . Since f and h are locally Lipschitz mappings with f (0,0,0) = 0 and h(0) =

0, there exist constants L, M > 0 such that:

| f (x,h(z),0)− f (x,h(x),0)| ≤ L|x− z|, (2.31)

| f (x,h(z),0)| ≤M|x|+M|z| (2.32)

for all x, z ∈Ωρ̂ . Let ∆∗ > 0 be sufficiently small so that the following inequality holds:

c4L
2M∆∗ exp(M∆∗)

1−2M∆∗ exp(M∆∗)
< µ (2.33)

In order to prove of estimate of Eq. 2.26, it suffices to show that for every initial condi-

tion x(0) ∈Ωρ̂ and for every integer k ≥ 0 it holds that:

∂V (x(t))
∂x

f (x(t),h(x(tk)),0)≤−
q
2
|x(t)|2, (2.34)
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for all t ∈ [tk, tk+1) where

q := µ− c4L
2M∆∗ exp(M∆∗)

1−2M∆∗ exp(M∆∗)
> 0 . (2.35)

Using Eq. 2.29 and Eq. 2.34, local exponential stability can be established. The proof of

Eq. 2.34 is given below for k = 0 and t ∈ [0, t1). For every other interval, the proof is

similar.

If x(0) = 0, then Eq. 2.34 trivially holds (since x(t) = 0 for t ∈ [0, t1)). Therefore,

consider the case when x(0) 6= 0. The proof is made by contradiction. Suppose that there

exists t ∈ [0, t1) with

∂V (x(t))
∂x

f (x(t),h(x(0)),0)>−q
2
|x(t)|2 .

The case that x(t) is not defined for some t ∈ [0, t1) is also covered by this assumption.

Define

a := inf
{

t ∈ [0, t1) :
∂V (x(t))

∂x
f (x(t),h(x(0)),0)>−q

2
|x(t)|2

}
.

A standard continuity argument in conjunction with the fact that

∂V (x(0))
∂x

f (x(0),h(x(0)),0)≤−µ|x(0)|2 <−q
2
|x(0)|2

shows that a ∈ (0, t1) and that

∂V (x(t))
∂x

f (x(t),h(x(0)),0)≤−q
2
|x(t)|2

for all t ∈ [0,a] with (∂V (x(a))/∂x) f (x(a),h(x(0)),0) =−q
2 |x(a)|2. Moreover, for all t ∈

[0,a] the inequality of Eq. 2.34 implies that V (x(t)) ≤ V (x(0)) ≤ ρ̂ . Therefore, x(t) ∈ Ωρ̂
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for all t ∈ [0,a]. Using inequalities Eqs. 2.27, 2.30, 2.31, we obtain:

∂V (x(t))
∂x

f (x(t),h(x(0)),0)≤−µ|x(t)|2 + c4L|x(t)||x(t)− x(0)| (2.36)

for all t ∈ [0,a]. Using Eq. 2.32 and since a≤ t1 ≤ ∆∗, a bound on the difference between

x(t) and x(0) is obtained:

|x(t)− x(0)| ≤ 2M∆
∗|x(0)|+M

∫ t

0
|x(τ)− x(0)| dτ (2.37)

for all t ∈ [0,a]. Applying the Gronwall-Bellman lemma to Eq. 2.37, we obtain:

|x(t)− x(0)| ≤ 2M∆
∗ exp(M∆

∗)|x(0)| (2.38)

for all t ∈ [0,a]. Using Eq. 2.38, the triangle inequality and the fact that 2M∆∗ exp(M∆∗)<

1 (implied by Eq. 2.33), we get for all t ∈ [0,a]:

|x(t)− x(0)| ≤ 2M∆∗ exp(M∆∗)
1−2M∆∗ exp(M∆∗)

|x(t)| . (2.39)

Thus, using Eq. 2.36, Eq. 2.39 and the fact that q := µ− c4L
2M∆∗ exp(M∆∗)

1−2M∆∗ exp(M∆∗)
> 0 we

get for all t ∈ [0,a]:
∂V (x(t))

∂x
f (x(t),h(x(0)),0)≤−q|x(t)|2 . (2.40)

Consequently, we must have:

∂V (x(a))
∂x

f (x(a),h(x(0)),0)≤−q|x(a)|2 ≤−q
2
|x(a)|2 . (2.41)

Since (∂V (x(a))/∂x) f (x(a),h(x(0)),0) =−q
2 |x(a)|2, we get x(a) = 0. However, this con-

tradicts Eq. 2.38 (since Eq. 2.38 in conjunction with the fact that 2M∆∗ exp(M∆∗) < 1
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implies that |x(a)− x(0)|< |x(0)|), which completes the proof.

Explicit feedback controllers that may be designed to satisfy Assumption 2.3 include,

for example, feedback linearizing controller and some Lyapunov-based controllers [100,

101]. Owing to the input constraints, it may not be possible to design a controller h(x)

that achieves global asymptotic stability of the origin. In which case, we must modify the

assumption which is considered in the following corollary.

Corollary 2.1. Suppose there exists a locally Lipschitz feedback controller u = h(x) with

h(0) = 0 for the system of Eq. 2.1 that renders the origin of the nominal closed-loop system

under continuous implementation of the controller h(x) locally exponentially stable. More

specifically, there exist constants ρ > 0, ci > 0, i = 1,2,3,4 and a continuously differen-

tiable Lyapunov function V : Rn→ R+ such that the following inequalities hold:

c1 |x|2 ≤V (x)≤ c2 |x|2 , (2.42a)

∂V (x)
∂x

f (x,h(x),0)≤−c3 |x|2 , (2.42b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4 |x| , (2.42c)

for all x∈Ωρ . There exists ∆∗> 0 and M,σ > 0 such that for all ∆∈ (0,∆∗) the estimate of

Eq. 2.26 holds for the nominal closed-loop sampled-data system of Eq. 2.25 with arbitrary

initial condition x(0) ∈Ωρ .

Proof. The proof follows along the same lines of Theorem 2.1 and shows that V is a Lya-

punov function for the closed-loop sampled-data system and takes advantage of the com-

pactness of the set Ωρ to establish an exponentially decaying estimate for the state trajec-

tory of the closed-loop sample-data system for any initial condition x(0) ∈Ωρ .
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Remark 2.2. Sufficient conditions such that there exists a function V satisfying the inequal-

ities of Eq. 2.42 are when x = 0 is a locally exponentially stable (LES) equilibrium point

for the closed-loop system ẋ = f (x,h(x),0) and the mapping f (x,h(x),0) is continuously

differentiable on Rn. Indeed, by Lemma 8.1 in [100] the region of attraction A of x = 0

is an open, connected, invariant set. Let r > 0 be such that the set S = {x ∈ Rn : |x| ≤ r}

is contained in the region of attraction A. Then LES and compactness of S imply that an

exponential bound holds for the solutions of the closed-loop system ẋ = f (x,h(x),0) with

initial conditions x(0) ∈ S. It follows from Theorem 4.14 in [100] that there exists a Lya-

punov function V for the closed-loop system ẋ = f (x,h(x),0) that satisfies inequalities of

Eq. 2.42 for certain constants c1, c2, c3, c4 > 0 and for all x ∈ int(S) (int(S) denotes the

interior of S). Let R < r be an arbitrary positive number and define V (x) =V (Proj(x)) for

all x ∈ Rn, where Proj(x) denotes the projection on the closed ball of radius R centered at

x = 0. Then all inequalities of Eq. 2.42 hold with arbitrary ρ < c1R2.

2.3.2 Tracking Lyapunov-based MPC

To address stability of the closed-loop system with model predictive control (MPC) and

recursive feasibility, one tracking MPC technique unites the stability and robustness prop-

erties of the Lyapunov-based controller with the optimal control properties of model pre-

dictive control (MPC) [128, 129, 133, 34]. The resulting tracking MPC is called Lyapunov-
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based MPC (LMPC) and is characterized by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
lT (x̃(τ),u(τ)) dτ (2.43a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.43b)

x̃(tk) = x(tk) (2.43c)

u1(t) ∈ U, ∀ t ∈ [tk, tk+N) (2.43d)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0) (2.43e)

with

lT (x,u) = |x|2Q + |u|2R (2.44)

where Q and R are positive definite weighting matrix, x̃ is the predicted state trajectory over

the prediction horizon with the computed input trajectory by the LMPC, and N > 0 is the

number of sampling periods in the finite prediction horizon. Given that the cost function

is positive definite with respect to the origin, which is the steady-state of the system of

Eq. 2.1, the global minimum of the cost function occurs at the optimal steady-state.

In the optimization problem of Eq. 2.43, Eq. 2.43b is the nominal system of Eq. 2.1

used to predict the future evolution of the system, which is initialized with a measurement

of the state at the current sampling time (Eq. 2.43c). To ensure that the computed input

trajectory takes values within the admissible set, the input constraints are included in the

optimization problem (Eq. 2.43d).

The constraint of Eq. 2.43e ensures that the LMPC computes a control action for the

first sampling period that decreases the Lyapunov function by at least the rate achieved

by the Lyapunov-based controller at tk. The Lyapunov-based constraint of Eq. 2.43e is

a contractive constraint and ensures that Lyapunov function decays until the closed-loop

state converges to a small neighborhood of steady-state. Moreover, from the Lyapunov-
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based constraint, the LMPC inherits the closed-loop stability and robustness properties and

the stability region Ωρ of the Lyapunov-based controller in the sense that for any initial

condition x(0) ∈ Ωρ , the closed-loop system state is guaranteed to converge to a small

neighborhood of the origin and the optimization problem of Eq. 2.43 is guaranteed to be

feasible.
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Chapter 3

Lyapunov-based EMPC: Closed-loop

Stability, Robustness, and Performance

3.1 Introduction

Within chemical process industries, many chemical processes are safety critical, and main-

taining safe and stable operation is the highest priority of a control system. Given that

EMPC may operate a process/system in a consistently dynamic fashion to optimize the

economics, maintaining the closed-loop state trajectory in a well-defined state-space re-

gion, where a degree of robustness to uncertainty is achieved, is one method to achieve safe

and stable operation under EMPC. This objective is the main motivating factor in designing

Lyapunov-based EMPC (LEMPC). LEMPC is a dual-mode control strategy that allows for

time-varying operation while maintaining the closed-loop state in a compact state-space

set. If it is desirable to force the closed-loop state to a steady-state at any point over the

length of operation, the second mode of operation of the LEMPC may be used and will

steer the closed-loop state to a small neighborhood of the steady-state.

In this chapter, several LEMPC designs are developed. The LEMPC designs, which
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are capable of optimizing closed-loop performance with respect to general economic con-

siderations for nonlinear systems, address recursive feasibility of the optimization problem

at each sampling time, closed-loop stability, and closed-loop performance. The fundamen-

tal design concept employed in the LEMPC designs is based on uniting receding hori-

zon control with explicit Lyapunov-based nonlinear controller design techniques. These

techniques allow for an explicit characterization of the stability region of the closed-loop

system. Time-varying economic stage cost functions are also addressed in this chapter.

The results on LEMPC with time-varying economic stage cost functions were originally

presented in [48].

In all cases considered, sufficient conditions are derived such that the closed-loop non-

linear system under the LEMPC designs possess a specific form of closed-loop stability

and robustness to be made precise in what follows. A critical property of the sufficient

conditions derived for closed-loop stability is that they do not rely on solving the LEMPC

problem to optimality at each sampling time, i.e., suboptimal solutions also stabilize the

closed-loop system. In other words, feasibility of the solution returned by the LEMPC

and not optimality implies closed-loop stability under LEMPC (this is a property initially

investigated within the context of tracking MPC [164]). Owing to the LEMPC design

methodology, a feasible solution to the LEMPC may always be readily computed. Termi-

nal constraint design for LEMPC is also addressed. The terminal constraint imposed in the

LEMPC problem allows for guaranteed finite-time and infinite-time closed-loop economic

performance improvement over a stabilizing controller. The LEMPC methodologies are ap-

plied to chemical process examples to demonstrate, evaluate, and analyze the closed-loop

properties of the systems controlled by LEMPC. Also, the closed-loop properties are com-

pared to traditional/conventional approaches to optimization and control, i.e., steady-state

optimization and tracking MPC.
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3.2 Lyapunov-based EMPC Design and Implementation

3.2.1 Class of Nonlinear Systems

The class of nonlinear systems, described by the following state-space model, considered

is given by:

ẋ = f (x,u,w) (3.1)

where x ∈ X⊂ Rn denotes the state vector, u ∈ U⊂ Rm denotes the control (manipulated)

input vector, and w ∈W ⊂ Rl denotes the disturbance vector. The control inputs are re-

stricted to a nonempty compact set U. The disturbance is bounded, i.e., W := {w ∈ Rl :

|w| ≤ θ} where θ > 0 bounds the norm of the disturbance vector. The vector field f is

assumed to be a locally Lipschitz vector function on X×U×W. Without loss of gener-

ality, the origin is an equilibrium point of the unforced nominal system ( f (0,0,0) = 0).

State measurements of the system are assumed to be available synchronously at sampling

times denoted by the time sequence {tk}k≥0 where tk = k∆, k = 0,1, . . . and ∆ > 0 is the

sampling period. To describe the system economics, e.g., operating profit or operating cost,

the system of Eq. 3.1 is equipped with a time-invariant cost function le : X×U→R which

is a measure of the instantaneous system economics. The function le is referred to as the

economic cost function and is continuous over X×U.

3.2.2 Stabilizability Assumption

The existence of an explicit controller h : X→ U, which renders the origin of the nom-

inal closed-loop system asymptotically, is assumed. This assumption is a stabilizability

assumption for the nonlinear system of Eq. 3.1 and is similar to the assumption that the

pair (A,B) is stabilizable in the case of linear systems. Throughout the dissertation, the

explicit controller may be referred to as the stabilizing controller or the Lyapunov-based
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controller. When convenient, the notation h(x) may be used when referring to the explicit

controller. However, this notation refers to the controller itself, which is a function, and

not the value of the function h at x. Even though the explicit controller is referred to as the

Lyapunov-based controller, it may be designed using any controller design techniques and

not just Lyapunov-based techniques.

Applying converse Lyapunov theorems, e.g., [123, 103, 73, 100, 115, 184], the stabiliz-

ability assumption implies that there exists a continuously differentiable Lyapunov function

V : D→ R for the nominal closed-loop system (ẋ = f (x,h(x),0)) that satisfies the inequal-

ities:

α1(|x|)≤V (x)≤ α2(|x|) (3.2a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|) (3.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (3.2c)

for all x ∈ D ⊂ Rn where αi ∈K for i = 1,2,3,4 and D is an open neighborhood of the

origin. The region Ωρ ⊂ D such that also Ωρ ⊆ X is called the stability region of the

closed-loop system under the Lyapunov-based controller, and is an estimate of the region

of attraction of the nonlinear system of Eq. 3.1. Since the stability region depends on

the explicit controller, the choice and design of the controller plays a significant role in

the estimated region of attraction. The case that the set X represents explicit hard state

constraints is discussed further in Section 3.2.5.

3.2.3 LEMPC Formulation

In the LEMPC design, the LEMPC optimizes the economic cost function, which is used

as the stage cost in the EMPC. Lyapunov-based MPC techniques, e.g., [129, 133, 34], are

employed in the EMPC design to take advantage of the stability properties of the Lyapunov-
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based controller. The LEMPC is equipped with two operation modes. Under the first

operation mode, the LEMPC optimizes the economic cost function while maintaining the

system state within the stability region Ωρ . The LEMPC may dictate a general time-varying

operating policy under the first operation mode. Under the second operation mode, the

LEMPC optimizes the economic cost function while ensuring that the computed control

action for the closed-loop system forces the state along a path that causes the Lyapunov

function value to decay. The first and second operation mode of the LEMPC will be referred

to as mode 1 and mode 2 operation of the LEMPC, respectively, and are defined by specific

Lyapunov-based constraints imposed in the LEMPC optimization problem.

To enforce convergence of the closed-loop state to the steady-state (if desirable), the

LEMPC is formulated with a switching time ts. From the initial time (t0 = 0) to time ts,

the LEMPC may dictate a time-varying operating policy to optimize the economics while

maintaining the closed-loop state in Ωρ . After the time ts, the LEMPC operates exclusively

in the second operation mode and calculates the inputs in a way that the state of the closed-

loop system is steered to a neighborhood of the steady-state. For the sake of simplicity,

the switching time ts is an integer multiple of the sampling period (∆) of the LEMPC. This

assumption poses little practical restrictions.

LEMPC is an EMPC scheme that uses the Lyapunov-based controller to design two

regions of operation where closed-loop stability of the system of Eq. 3.1 under the LEMPC

and recursive feasibility of the optimization problem are guaranteed for operation in the
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presence of bounded disturbances. The formulation of the LEMPC optimization is:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (3.3a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.3b)

x̃(tk) = x(tk) (3.3c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.3d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if V (x(tk))≤ ρe and tk < ts (3.3e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0)

if V (x(tk))> ρe or tk ≥ ts (3.3f)

where the decision variable of the optimization problem is the piecewise constant input

trajectory over the prediction horizon and N < ∞ denotes the number of sampling periods

in the prediction horizon. The notation x̃ is used to denote the predicted (open-loop) state

trajectory. Owing to the control vector parameterization, i.e., zeroth-order hold control

parameterization is used, the optimization problem of Eq. 3.3 is finite-dimensional, i.e., the

input trajectory is parameterized by a finite number of variables. While zeroth-order hold is

assumed, higher-order control vector parameterization may also be employed. Moreover,

the theoretical analysis may also apply to the case that a higher-order parameterization is

used because zeroth-order hold may, for some methods, be considered to be a special case

of the higher-order control vector parameterization method.

The LEMPC dynamic optimization problem of Eq. 3.3 minimizes a cost functional

(Eq. 3.3a) consisting of the economic cost function, i.e., le is used as the stage cost in

the LEMPC. The nominal system model is the constraint of Eq. 3.3b and is used to predict

the evolution of the system under the computed input trajectory over the prediction horizon.
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The dynamic model is initialized with a state measurement obtained at the current sampling

period (Eq. 3.3c). The constraint of Eq. 3.3d limits the computed control actions to be in

the set of the available control actions.

Mode 1 operation of the LEMPC is defined by the constraint of Eq. 3.3e and is active

when the current state is inside a predefined subset of the stability region Ωρe ⊂ Ωρ and

tk < ts. Since an economic performance benefit may be realized when operating the system

of Eq. 3.1 in a consistently dynamic fashion compared to operating the system at the eco-

nomically optimal steady-state, i.e., a steady-state that minimizes the economic stage cost

amongst all of the admissible steady-states, mode 1 is used to allow the LEMPC to enforce

a potentially dynamic or transient operating policy. The set Ωρe is designed such that if the

current state x(tk) ∈ Ωρe and the predicted state at the next sampling time x̃(tk+1) ∈ Ωρe ,

then the actual (closed-loop) state at the next sampling time, which may be forced away

from Ωρe by a bounded disturbance/uncertainty, will be in Ωρ . The maximum size of Ωρe

depends on the bound on the disturbance and sampling period size; please refer to Eq. 3.21

of Section 3.3.1.

To maintain boundedness of the closed-loop state within a well-defined state-space set

(in this case, boundedness of the state trajectory in Ωρ ), the second mode is used, which

is defined by the constraint of Eq. 3.3f. This constraint forces the computed control action

by the LEMPC to decrease the Lyapunov function by at least the decay rate achieved by

the Lyapunov-based controller. Owing to the properties of the Lyapunov-based controller

implemented in a sample-and-hold fashion with a sufficiently small sampling period, the

Lyapunov function value under the LEMPC operating in mode 2 will decrease over the

sampling period when the constraint of Eq. 3.3f is active and when the state at tk is outside

a small compact set containing the steady-state (this set is defined as Ωρs in Theorem 3.1).

If steady-state operation is desired, i.e., enforcing the closed-loop state to a neighborhood

of the steady-state, selecting the switching time to be finite will guarantee that LEMPC
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forces the state to converge to a small forward invariant set containing the steady-state.

The two tuning parameters of LEMPC, besides the user-defined economic cost function,

are the switching time ts and the set Ωρe . If ts = 0, the LEMPC will always operate in mode

2. This may be desirable if steady-state operation is expected and/or if it is the best oper-

ating strategy. If ts→ ∞, the LEMPC may dictate a time-varying operating policy over the

entire length of operation. An intermediate choice for the switching time (ts ∈ (0,∞)) may

be used to balance the trade-off between achieving better economic performance through

time-varying operation and excessive control actuator wear required to enforce the time-

varying operating policy. The other tuning parameter of LEMPC is ρe which does not need

to be chosen so that Ωρe is the largest subset of Ωρ such that the state at the next sampling

time is guaranteed to be in Ωρ under mode 1 operation of the LEMPC. A larger set Ωρe

may allow for better closed-loop economic performance. On the other hand, a smaller set

Ωρe may allow for more robustness to uncertainty.

3.2.4 Implementation Strategy

The LEMPC is implemented in a receding horizon fashion. At each sampling time, the

LEMPC receives a state measurement x(tk), solves the optimization problem of Eq. 3.3,

and sends the control action for the first sampling period of the prediction horizon to be im-

plemented by the control actuators from tk to tk+1. At the next sampling time, the LEMPC

receives a state measurement x(tk+1) and solves the optimization problem again by rolling

the horizon one sampling period into the future. The optimal input trajectory computed by

the LEMPC at a given sampling time tk is denoted as u∗(t|tk) and is defined for t ∈ [tk, tk+N).

The control action that is sent at time tk to the control actuators to be applied over the sam-

pling period from tk to tk+1 is denoted as u∗(tk|tk). The receding horizon fashion imple-

mentation of the dual-mode LEMPC is stated formally in the following algorithm:
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1. At a sampling time tk, the controller receives the state measurement x(tk). Go to Step

2.

2. If tk < ts, go to Step 3. Else, go to Step 3.2.

3. If x(tk) ∈Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. Mode 1 operation of the LEMPC is active, i.e., Eq. 3.3e is imposed in the opti-

mization problem and Eq. 3.3f is inactive. Go to Step 4.

3.2. Mode 2 operation of the LEMPC is active, i.e., Eq. 3.3f is imposed in the opti-

mization problem and Eq. 3.3e is inactive. Go to Step 4.

4. The LEMPC of Eq. 3.3 is solved to compute an optimal input trajectory u∗(t|tk) for

t ∈ [tk, tk+N) and sends the control action u∗(tk|tk) computed for the first sampling

period of the prediction horizon to be applied to the closed-loop system over the

sampling period (from tk to tk+1). Go to Step 5.

5. Go to Step 1 (k← k+1).

The notation k← k+1 used in Step 5 of the algorithm means that k is set to k+1 for

the next time through the algorithm loop. In other words, k is set to k+ 1 before going to

Step 1.

An illustration of the possible evolution of a system under LEMPC is shown in Fig. 3.1.

At the initial time, t0, the state is outside Ωρe . The contractive constraint of Eq. 3.3f is

active to steer the state to Ωρe . Once the state is in Ωρe , the LEMPC computes control

actions using mode 1 operation, i.e., the constraint of Eq. 3.3e is active. Under this mode

of operation, the LEMPC dictates a time-varying operating policy. After some point, a

disturbance forces the state trajectory outside of Ωρe . Owing to the properties of the set

Ωρe , the state remains in Ωρ . The mode 2 constraint is active to force the state back into
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Ωρe

Ωρ

xs

x(t0)

x(t′)

Figure 3.1: An illustration of the state-space evolution of a system under LEMPC. The red

trajectory represents the state trajectory under mode 1 operation of the LEMPC, and the

blue trajectory represents the state trajectory under mode 2 operation.

Ωρe where the LEMPC operates under mode 1 operation. Finally, at t ′, the contractive

constraint (Eq. 3.3f) is imposed at all subsequent sampling times to ensure that the closed-

loop state trajectory converges to a small neighborhood of the steady-state.

3.2.5 Satisfying State Constraints

While it may not appear that hard state constraints are included in the LEMPC problem of

Eq. 3.3, hard constraints may be accounted for through the design of Ωρ , which extends

the ideas of imposing state constraints from Lyapunov-based MPC [129]. Specifically,

define the set Φu as the set in state-space that includes all the states where V̇ < 0 under

the Lyapunov-based controller h(x). Since the Lyapunov-based controller accounts for the

input constraints, the set Φu also accounts for the inputs constraints. Consider the case

where Φu ⊆X. This means that any initial state starting in the region X\Φu will satisfy the
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Φu

Ωu

X

Ωx,u

Figure 3.2: An illustration of the various state-space sets described for enforcing state

constraints with LEMPC. The case when X⊂Φu is depicted in this illustration.

state constraint. However, the time-derivative of the Lyapunov function may be positive and

thus, it may not be possible to stabilize the closed-loop system under the Lyapunov-based

controller starting from such initial conditions. Therefore, the stability region used in the

formulation of the LEMPC for this case is Ωρ = Ωx,u = {x ∈ Rn : V (x)≤ ρx,u} where ρx,u

is chosen such that Ωx,u ⊆Φu because there exists a feasible input trajectory that maintains

the state in Ωx,u for all initial conditions in Ωx,u while satisfying both the state and input

constraints. The notation ρx,u denotes that both state and input constraints are accounted

for in the design of the region Ωx,u.

Now, consider the case where X ⊂ Φu. This case is depicted in Fig. 3.2. For any

initial state starting outside X, the state constraint will be violated from the onset. Also,

for any initial state in the set X, it is not possible, in general, to guarantee that the set X

is forward invariant because there may exist a stabilizing state trajectory, i.e., a trajectory

where V̇ < 0 along this trajectory, that goes outside of the set X before it enters back into

the set X to converge to the origin. For the case with hard constraints, define the set Ωρ

as Ωρ = Ωx,u = {x ∈ Rn : V (x)≤ ρx,u} where ρx,u is such that Ωx,u ⊆ X. Since Φu cannot
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be computed in practice, the set Ωu := {x ∈ Rn : V (x) ≤ ρu} where ρu is such that V̇ < 0

for all states in Ωu under the Lyapunov-based controller h(x) which accounts for the input

constraint only may be used. An illustration of the set definitions is provided in Fig. 3.2.

On the other hand, consider the case that it is desirable to impose the state constraints

as soft constraints. This may potentially allow for a larger region (Ωρ ) at the expense that

the state constraints may not be satisfied for all time. If X ⊂ Φu, Ωρ is constructed such

that Ωρ ⊂ X, and the state constraint is always satisfied for any initial conditions in Ωρ .

From a closed-loop stability stand-point, it is not desirable to increase the size of the set

Ωρ because there may be states outside of Ωρ where V̇ > 0. Therefore, consider the more

interesting case that X ⊂ Φu. If the state constraints are imposed as soft constraints, then

one could take Ωρ = Ωu ⊆Φu. For any initial state in Ωρ , the amount of time that the state

constraint (imposed as a soft constraint) will be violated is finite. This statement holds

because for any state in Ωρ /∈ X, V̇ < 0 and therefore, the state trajectory evolves along a

path where the Lyapunov function value decays over time. Eventually, the state trajectory

will converge to a level set Ωρ ′ in finite-time that is contained in X.

The following example illustrates the above methodology to satisfy (hard) state con-

straints.

Example 3.1. Consider the scalar system:

ẋ = x+u (3.4)

which has an open-loop unstable steady-state at the origin. If the system was subject to

the following constraints on the state and input: x ∈ X = [−2,2] and u ∈ U = [−1,1].

For any initial state x0 6∈ [−1,1], the state will diverge to positive/negative infinity, i.e.,

some initial states that initially satisfy the state constraint will not continue satisfying the

state constraints over the length of operation. Following the approach detailed above, the
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nonlinear control law u = −sat(Kx) where sat(·) is the saturation function and K > 1 is a

tuning parameter renders the origin of Eq. 3.4 locally exponentially stable while satisfying

the input constraints. The quadratic function:

V (x) = x2 (3.5)

is a Lyapunov function for the closed-loop system. Moreover, the stability region, i.e.,

region where V̇ < 0, is Ωu = {x ∈ R : V (x) ≤ ρu} where ρu is chosen such that ρu < 1.

Since Ωu ⊂ X, Ωρ may be taken to be Ωu. If, instead, X = [−0.9,0.9], then X ⊂ Ωu and

Ωρ may be taken to be {x ∈ R : V (x) ≤ 0.81}, i.e., Ωρ = X. In either situation, one may

verify that for any initial state in Ωρ , the closed-loop state trajectory will remain bounded

in Ωρ and converge exponentially to the origin without violating the state constraints. If

one were to apply the LEMPC of Eq. 3.3 to the system of Eq. 3.4 designed based on the

nonlinear control law, the Lyapunov function of Eq. 3.5, and the region Ωρ , the closed-loop

state trajectory for all initial conditions in Ωρ is guaranteed to satisfy the state constraint

for all times.

3.2.6 Extensions and Variants of LEMPC

A few extensions and variants of the LEMPC formulation of Eq. 3.3 and implementations

are discussed below.

• For closed-loop economic performance reasons, terminal conditions, e.g., a termi-

nal constraint or a terminal cost, may be added to the problem of Eq. 3.3 which is

discussed in Section 3.4.

• For all t < ts, the LEMPC may dictate a time-varying operating policy. If the LEMPC

enforces that the closed-loop state trajectory evolves along a path close to the bound-
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ary of Ωρe , it is possible that the LEMPC continuously switches between mode 1

and mode 2 operation. The successive switching between mode 1 and mode 2 could

lead to closed-loop performance deterioration. For these cases, various modifications

could be made to LEMPC to avoid this behavior. First, owing to the fact that the eco-

nomic cost is user-defined, one could add penalization terms to the stage cost of the

LEMPC that penalize the closeness of the predicted state to the boundary of Ωρe .

Then, the LEMPC will ideally maintain the closed-loop state in the interior of Ωρe

preventing the state from coming out of Ωρe .

• For closed-loop stability, the constraint x̃(t) ∈ Ωρe (Eq. 3.3e) only needs to hold for

all t ∈ [tk, tk+1) under mode 1 operation, i.e., the predicted state at the next sampling

time must be contained in Ωρe . However, the constraint of Eq. 3.3e is written for all

t ∈ [tk, tk+N) owing to two reasons. First, it ensures that the predicted state trajec-

tory remains in a compact set. Second, it allows the LEMPC to optimize the input

trajectory with respect to (ideally) a better prediction of the closed-loop behavior

(recall that the closed-loop state must remain in Ωρ and under mode 1 operation, it

is desirable to maintain the closed-loop state in the interior of Ωρe to avoid contin-

uous switching between mode 1 and mode 2 operation). Nonetheless, for practical

implementation, one may consider imposing the constraint at a few time instances

along the prediction horizon, which will decrease the number of constraints relative

to imposing the constraint at every sampling time instance, for example.

• For mode 2 operation, one may need to enforce a similar constraint as the mode

1 constraint to maintain the predicted state in Ωρ , i.e., enforce x̃(t) ∈ Ωρ for t ∈

[tk, tk+N). This ensures that the predicted state trajectory is maintained in a compact

set, which guarantees existence and uniqueness of the solution as well as prevents

numerical problems when large (in a norm sense) state trajectories are computed.
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This issue is particularly relevant when the prediction horizon is long.

• The LEMPC may be modified to handle potentially asynchronous and delayed mea-

surements; see [76].

• For certain applications, one may consider driving some of the states of the system

to certain set-points and allowing the other states to evolve in a time-varying manner

to optimize the economics. For the LEMPC design of Eq. 3.3, this means that part of

the system is operated in the first operation mode and part of the system in the second

operation mode simultaneously. This is considered in the example of Section 3.3.2.

• With the formulated constraints of the LEMPC of Eq. 3.3, the optimization problem

is always feasible in the sense that there exists an input trajectory that satisfies the

constraints for all x(tk) ∈ Rn. To force the closed-loop state to converge to Ωρ when

x(tk) /∈ Ωρ , one could employ the contractive constraint of Eq. 3.3f in an attempt to

enforce that the Lyapunov function value decays (for states outside of Ωρ , it is not

guaranteed that the Lyapunov function value will decay even with such a constraint)

or use a constraint, e.g., a terminal constraint, to enforce that the predicted state

converges to Ωρ (feasibility of the resulting problem is not guaranteed). However,

no guarantee may be made that the predicted state exists or remains bounded as well

as no guarantee may be made that the state will converge to Ωρ starting from outside

Ωρ in general.

3.3 Closed-loop Stability and Robustness under LEMPC

Closed-loop stability robustness of the closed-loop system of Eq. 3.1 under the LEMPC of

Eq. 3.3. LEMPC is applied to a chemical process example to demonstrate the closed-loop

stability and robustness properties.
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To complete the closed-loop stability analysis, a few properties of the system of Eq. 3.1

are needed in the analysis. Owing to the fact that f is locally Lipschitz on X×U×W and

the sets Ωρ , U, and W are compact, there exists a positive constant M such that

| f (x,u,w)| ≤M (3.6)

for all x∈Ωρ , u∈U and w∈W. By the continuous differentiable property of the Lyapunov

function V and the Lipschitz property assumed for the vector field f , there exist positive

constants Lx, Lw, L′x and L′w such that

| f (x,u,w)− f (x′,u,0)| ≤ Lx|x− x′|+Lw|w|, (3.7)

∣∣∣∣∂V (x)
∂x

f (x,u,w)− ∂V (x′)
∂x

f (x′,u,0)
∣∣∣∣≤ L′x|x− x′|+L′w|w| (3.8)

for all x, x′ ∈Ωρ , u ∈ U, and w ∈W.

3.3.1 Synchronous Measurement Sampling

The stability properties of the LEMPC of Eq. 3.3 for the system of Eq. 3.1 is analyzed

under ideal sampling. In order to proceed, preliminary results are presented. First, for a

bounded disturbance, the difference between the state of Eq. 3.1 and the nominal state of

Eq. 3.1 (the system of Eq. 3.1 with w≡ 0) may be bounded, which is stated in the following

proposition.

Proposition 3.1. Consider the systems

ẋ(t) = f (x(t),u(t),w(t)) , (3.9)

˙̂x(t) = f (x̂(t),u(t),0) . (3.10)
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Let x(t) and x̂(t) be the solutions of Eqs. 3.9-3.10, respectively, for t ∈ [t0, t f ] (t f > t0) with

initial states x(t0) = x̂(t0)∈Ωρ and input trajectory u(t)∈U for all t ∈ [t0, t f ] where u(·) is

piecewise constant in t. The system of Eq. 3.9 is also forced by some disturbance w(t) ∈W

for all t ∈ [t0, t f ]. If x(t) ∈ Ωρ and x̂(t) ∈ Ωρ for all t ∈ [t0, t f ], then there exists a function

fw ∈K such that

|x(t)− x̂(t)| ≤ fw(t− t0) (3.11)

for all t ∈ [t0, t f ].

Proof. Consider the difference between the solutions of Eqs. 3.9-3.10, which are denoted

as x(t) and x̂(t), respectively, and let e := x− x̂. From Eq. 3.7 and the fact that w(t) ∈W

for all t ∈ [t0, t f ], the time-derivative of e may be bounded as follows:

|ė(t)|= | f (x(t),u(t),w(t))− f (x̂(t),u(t),0)| (3.12)

≤ Lx|x(t)− x̂(t)|+Lw|w(t)| (3.13)

≤ Lx|e(t)|+Lwθ (3.14)

for t ∈ [t0, t f ]. Integrating the above bound with respect to time and noting that e(0) =

x(0)− x̂(0) = 0, the following bound on the error is obtained:

|e(t)| ≤ fw(t− t0) :=
Lwθ

Lx
(eLx(t−t0)−1). (3.15)

for all t ∈ [t0, t f ] when x(t), x̂(t) ∈ Ωρ , u(t) ∈ U, and w(t) ∈W for all t ∈ [t0, t f ]. It is

straightforward to show that fw ∈K which completes the proof.

Proposition 3.2 bounds the difference between the Lyapunov function values evaluated

at two points in Ωρ .
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Proposition 3.2. Consider the Lyapunov function V (·) that satisfies Eq. 3.2. There exists a

quadratic function fV (·) such that

V (x2)−V (x1)≤ fV (|x2− x1|) (3.16)

for all x1, x2 ∈Ωρ .

Proof. Since the Lyapunov function is continuously differentiable and bounded on compact

sets, there exists a positive constant MV > 0 such that:

V (x2)≤V (x1)+

∣∣∣∣∂V (x1)

∂x

∣∣∣∣ |x2− x1|+MV |x2− x1|2 (3.17)

for all x1, x2 ∈Ωρ . From Eq. 3.2, the partial derivative of V may be bounded as follows:

∣∣∣∣∂V (x1)

∂x

∣∣∣∣≤ α4(α
−1
1 (ρ)) (3.18)

for all x1 ∈Ωρ . From Eqs. 3.17-3.18, the existence of a quadratic function fV (·) that bounds

the Lyapunov function values for any two points in Ωρ follows:

V (x2)≤V (x1)+ fV (|x2− x1|) (3.19)

where

fV (s) := α4(α
−1
1 (ρ))s+MV s2 . (3.20)

Theorem 3.1 below provides sufficient conditions that guarantee that the state of the

closed-loop system of Eq. 3.1 under the LEMPC of Eq. 3.3 is always bounded in Ωρ and

is ultimately bounded in a small region containing the origin.
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Theorem 3.1. Consider the system of Eq. 3.1 in closed-loop under the LEMPC design of

Eq. 3.3 based on the Lyapunov-based controller that satisfies the conditions of Eq. 3.2. Let

∆ > 0, N ≥ 1, εw > 0, and ρ > ρe ≥ ρmin > ρs > 0 satisfy

ρe < ρ− fV ( fw(∆)), (3.21)

−α3(α
−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆, (3.22)

and

ρmin = max
s∈[0,∆]

{V (x(s)) : V (x(0))≤ ρs}, (3.23)

If x(0) ∈ Ωρ , then the state x(t) of the closed-loop system of Eq. 3.1 is always bounded in

Ωρ for all t ≥ 0 and is ultimately bounded in Ωρmin if ts is finite.

Proof. The proof is organized into three parts. In Part 1, feasibility of the LEMPC opti-

mization problem of Eq. 3.3 is proved when the state measurement at a specific sampling

time is in Ωρ . In Part 2, boundedness of the closed-loop state in Ωρ is established. In Part

3, ultimate boundedness of the closed-loop state in a small state-space set containing the

origin is proved when the switching time is finite.

Part 1: The sample-and-hold input trajectory obtained from the Lyapunov-based con-

troller is a feasible solution to the LEMPC optimization problem of Eq. 3.3 when x(tk) ∈

Ωρ . Let x̂(t) denote the solution at time t to the nominal sampled-data system:

˙̂x(t) = f (x̂(t),h(x̂(τi)),0) (3.24)

for t ∈ [τi,τi+1) (τi := tk + i∆), i = 0,1, . . . ,N−1 with initial condition x̂(tk) = x(tk) ∈Ωρ .

Define û as the resulting input trajectory of Eq. 3.24 defined over the interval [tk, tk+N).

The input trajectory û is a feasible solution to the LEMPC problem. The input trajectory
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meets the input constraints by the formulation of the Lyapunov-based controller. For mode

2 operation, the mode 2 contractive constraint of Eq. 3.3f is trivially satisfied with this

feasible input trajectory. For mode 1 operation, the region Ωρe is forward invariant under

the Lyapunov-based controller applied in a sample-and-hold fashion when Ωρmin ⊆ Ωρe ⊂

Ωρ where Ωρmin will be explained further in Part 3.

Part 2: To show that the state is maintained in Ωρ when x(0)∈Ωρ , mode 1 and mode 2

operation of the LEMPC must be each considered. To show the desired result, it is sufficient

to show that if the state at any arbitrary sampling time is such that x(tk)∈Ωρ , then the state

at the next sampling time is in Ωρ , i.e., x(tk+1) ∈ Ωρ and the closed-loop state does not

come out of Ωρ over the sampling period. Recursive application of this result, proves that

the closed-loop state is always bounded in Ωρ for all t ≥ 0 when x(0) ∈Ωρ .

Case 1: If x(tk) ∈Ωρe and tk < ts, the LEMPC operates under mode 1 operation. From

Part 1, the LEMPC is feasible. Moreover, from the formulation of the LEMPC, the LEMPC

computes a control action such that x̃(t) ∈ Ωρe for all t ∈ [tk, tk+1). Owing to the effect of

the bounded disturbances, the closed-loop state does not evolve according to the model of

Eq. 3.3b. Nevertheless, if Eq. 3.21 is satisfied, the state at the next sampling time will be

contained in Ωρ .

To show this result, let ρe satisfy Eq. 3.21. The proof proceeds by contradiction.

Assume there exists a time τ∗ ∈ [tk, tk+1) such that V (x(τ∗)) > ρ . The case that x(t)

is not defined for some t ∈ [tk, tk+1) is also covered by this assumption. Define τ1 :=

inf{τ ∈ [tk, tk+1) : V (x(τ)) > ρ}. A standard continuity argument in conjunction with the

fact that V (x(tk)) ≤ ρe < ρ shows that τ1 ∈ (tk, tk+1), V (x(t)) ≤ ρ for all t ∈ [tk,τ1] with
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V (x(τ1)) = ρ , and V (x(t))> ρ for some t ∈ (τ1, tk+1). If ρe satisfies Eq. 3.21, then

ρ =V (x(τ1))≤V (x̃(τ1))+ fV ( fw(τ1))

≤ ρe + fV ( fw(∆))< ρ (3.25)

where the first inequality follows from Propositions 3.1-3.2 and the second inequality fol-

lows from the fact that fV ◦ fw ∈K and τ1≤∆. Eq. 3.25 is a contradiction. Thus, x(t)∈Ωρ

for all t ∈ [tk, tk+1) if Eq. 3.21 is satisfied.

Case 2: Now, consider that the LEMPC under mode 2 operation at an arbitrary sampling

time tk. If x(tk) ∈ Ωρ , the LEMPC is feasible (Part 1). The LEMPC computes a control

action that satisfies

∂V (x(tk))
∂x

f (x(tk),u∗(tk|tk),0)≤
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0)

≤−α3(|x(tk)|) (3.26)

for all x(tk) ∈ Ωρ where the inequality follows from Eq. 3.2b. Consider the time-derivate

of the Lyapunov function for τ ∈ [tk, tk+1)

V̇ (x(τ)) =
∂V (x(τ))

∂x
f (x(τ),u∗(tk|tk),w(τ))

≤−α3(|x(tk)|)+
∂V (x(τ))

∂x
f (x(τ),u∗(tk|tk),w(τ))

− ∂V (x(tk))
∂x

f (x(tk),u∗(tk|tk),0) (3.27)

for τ ∈ [tk, tk+1) where the inequality follows by adding and subtracting the left-hand side

of Eq. 3.26 and accounting for the bound of Eq. 3.26. Owing to the Lipschitz bound of
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Eq. 3.8, Eq. 3.27 may be upper bounded by:

V̇ (x(τ))≤−α3(|x(tk)|)+L′x|x(τ)− x(tk)|+L′w|w(τ)|

≤ −α3(|x(tk)|)+L′x|x(τ)− x(tk)|+L′wθ (3.28)

for τ ∈ [tk, tk+1) where the second inequality follows from the fact that w(t) ∈W = {w̄ ∈

Rl : |w̄| ≤ θ} for all t ≥ 0. Taking into account Eq. 3.6, the continuity of x and the fact that

u∗(tk|tk) ∈ U and w(τ) ∈W, the norm of the difference between the state at τ ∈ [tk, tk+1)

and the state at tk scales with ∆. More specifically, the bound of:

|x(τ)− x(tk)| ≤M∆ (3.29)

for τ ∈ [tk, tk+1) follows from Eq. 3.6. From Eqs. 3.28-3.29, the inequality follows:

V̇ (x(τ))≤−α3(|x(tk)|)+L′xM∆+L′wθ (3.30)

for τ ∈ [tk, tk+1).

If ∆ > 0 and θ > 0 are sufficiently small such that there exists a ρs > 0 and εw > 0

satisfying Eq. 3.22, then, for any x(tk) ∈Ωρ \Ωρs , the bound of

V̇ (x(τ))≤−α3(α
−1
2 (ρs))+L′xM∆+L′wθ . (3.31)

for τ ∈ [tk, tk+1) follows from Eq. 3.30 and Eq. 3.2a. If the condition of Eq. 3.22 is satisfied,

then there exists εw > 0 such that the following inequality holds for any x(tk) ∈Ωρ \Ωρs:

V̇ (x(τ))≤−εw/∆ (3.32)
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for τ ∈ [tk, tk+1). Integrating the bound of Eq. 3.33 for τ ∈ [tk, tk+1), one obtains that the

following is satisfied:

V (x(tk+1))≤V (x(tk))− εw

V (x(t))≤V (x(tk)) ∀ t ∈ [tk, tk+1)

(3.33)

for all x(tk) ∈Ωρ \Ωρs .

If x(tk) ∈ Ωρ \Ωρe where Ωρe ⊇ Ωρmin (where ρmin is defined in Eq. 3.23), then using

Eq. 3.33 recursively, it follows that the state converges to Ωρe in a finite number of sampling

times without coming out of Ωρ . If x(tk) ∈ Ωρ \Ωρs and tk ≥ ts, then again, by recursive

application of Eq. 3.33, x(t) ∈ Ωρ for all t ∈ [tk, tk+1). If x(tk) ∈ Ωρs , the state at the next

sampling time will be bounded in Ωρmin if ρmin is defined according to Eq. 3.23. Thus,

if x(tk) ∈ Ωρ , then x(τ) ∈ Ωρ for all τ ∈ [tk, tk+1) under the LEMPC when the conditions

of Eq. 3.21-3.23 are satisfied. Using this result recursively, x(t) ∈ Ωρ for all t ≥ 0 when

x(0) ∈Ωρ .

Part 3: If ts is finite and Eq. 3.23 is satisfied with ρ > ρmin > ρs > 0, the closed-loop

state is ultimately bounded in Ωρmin owing to the definition of ρmin. In detail, from Part

2, if x(tk) ∈ Ωρ \Ωρs and tk ≥ ts, then V (x(tk+1)) < V (x(tk)) and the state converges to

Ωρs in finite time. Once the closed-loop state converges to Ωρs ⊂ Ωρmin , it remains inside

Ωρmin ⊂ Ωρ for all times, which follows from the definition of ρmin. This proves that the

closed-loop system under the LEMPC of Eq. 3.3 is ultimately bounded in Ωρmin when ts is

finite.

A few notes and remarks on the results on closed-loop stability and robustness under

LEMPC are in order:

• The set Ωρ is an invariant set for the nominal closed-loop system and is also an invari-

ant set for the closed-loop system subject to bounded disturbances w, i.e., |w| ≤ θ ,

under piecewise constant control action implementation when the conditions stated
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in Theorem 3.1 are satisfied. This may be interpreted as follows: V̇ is negative ev-

erywhere in Ωρ but the origin when there are no disturbances and the control actions

are updated continuously. For sufficiently small disturbances and sampling period,

i.e., θ and ∆ are sufficiently small, V̇ of the closed-loop system will continue to be

negative for all x ∈Ωρ \Ωρs where Ωρs is a small set containing the origin.

• Solving the dynamic model of Eq. 3.3b requires a numerical integration method.

Therefore, numerical and discretization error will result. Owing to the fact that the

error of many numerical integration methods may be bounded by a bound that de-

pends on the integration step size, one may consider the numerical error as a source

of bounded disturbance. The integration step size may be selected to be small. i.e.,

much smaller than the sampling period, to decrease the discretization error. Thus,

the stability results remain valid when the discretization error is sufficiently small.

• For any state x(tk) ∈ Ωρ , the LEMPC is feasible where a feasible solution may be

readily computed from the Lyapunov-based controller. Moreover, feasibility of the

LEMPC, and not optimality of the LEMPC solution, implies closed-loop stability.

Both of these issues are important owing to practical computational considerations.

When solving the LEMPC to optimality results in significant computational time,

one could force early termination of the optimization problem solver and closed-loop

stability is still guaranteed (assuming the returned solution is feasible). If the returned

solution is infeasible or at sampling times where the computation time required to

solve the LEMPC is significant relative to the sampling period, the control action

computed from the Lyapunov-based controller may be applied to the system.
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Table 3.1: CSTR parameter values.

T0 300 K F 5.0 m3 h−1

VR 1.0 m3 E 5.0×104 kJ kmol−1

k0 8.46×106 m3 kmol−1 h−1 ∆H −1.15×104 kJ kmol−1

Cp 0.231 kJ kg−1 K−1 R 8.314 kJ kmol−1 K−1

ρL 1000 kg m−3

3.3.2 Application to a Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred-tank reactor (CSTR) where an

irreversible second-order exothermic reaction A→ B takes place (A is the reactant and B is

the desired product). The feed to the reactor consists of A in an inert solvent at flow rate F ,

temperature T0 and molar concentration CA0. A jacket is used to provide/remove heat to the

reactor. The dynamic equations describing the behavior of the system, obtained through

material and energy balances under standard modeling assumptions, are given below:

dCA

dt
=

F
VR

(CA0−CA)− k0e−E/RTC2
A (3.34a)

dT
dt

=
F
VR

(T0−T )− ∆H
ρLCp

k0e−E/RTC2
A +

Q
ρLCpVR

(3.34b)

where CA denotes the concentration of the reactant A, T denotes the temperature of the

reactor, Q denotes the rate of heat input/removal, VR represents the volume of the reactor,

∆H, k0, and E denote the enthalpy, pre-exponential constant and activation energy of the

reaction, respectively and Cp and ρL denote the heat capacity and the density of the fluid

in the reactor, respectively. The values of the process parameters used in the simulations

are given in Table 3.1. The process model of Eq. 3.34 is numerically simulated using an

explicit Euler integration method with integration step hc = 1.0×10−3 h.

The CSTR has two manipulated inputs. One of the inputs is the concentration of A in the

inlet to the reactor, CA0, and the other manipulated input is the external heat input/removal,

73



Q. The input vector is given by uT = [CA0 Q], and the admissible input values are as follows:

u1 =CA0 ∈ [0.5,7.5] kmol m−3 and u2 = Q ∈ [−50.0,50.0] MJ h−1. The CSTR, described

by the equations of Eq. 3.34, has an open-loop asymptotically stable steady-state within

the operating range of interest given by CAs = 1.18kmol m−3 and T ∗s = 440.9K with corre-

sponding steady-state input values of CA0 = 4.0kmol m−3 and Qs = 0MJ h−1. The steady-

state and the steady-state input are denoted by xT
s = [CAs Ts] and uT

s = [CA0s Qs], respec-

tively. The control objective is to regulate the process in a region around the steady-state to

maximize the production rate of B. To accomplish the desired objective, the economic cost

function considered in this example is:

le(x,u) =−k0e−E/RTC2
A (3.35)

which is equal to the negative of the instantaneous production rate of B, i.e., the production

rate should be maximized. Also, there is limitation on the amount of reactant material

which may be used over the length of operation t f . Specifically, the input trajectory of u1

should satisfy the following time-averaged constraint:

1
t f

∫ t f

0
u1(t) dt =CA0,avg =CA0s (3.36)

where t f denotes the length of operation.

One method to ensure that the average constraint of Eq. 3.36 is satisfied over the entire

length of operation is to divide the length of operation into equal-sized operating peri-

ods and to construct constraints that are imposed in the EMPC problem to ensure that the

average constraint is satisfied over each consecutive operating period. This may be accom-

plished by using an inventory balance that accounts for the total amount of input energy

available over each operating period compared to the total amount of input energy already
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used in the operating period. The main advantages of enforcing the average constraint in

this fashion are that (1) only a limited number of constraints are required to be added to the

EMPC, and (2) it ensures that the average constraint is satisfied over the length of operation.

To explain this type of input average constraint implementation, consider a general

input average constraint given by:

1
τM

∫
τM

0
u(t) dt = uavg (3.37)

where τM is the operating period length that the average input constraint is imposed, i.e.,

M = τM/∆ is the number of sampling periods in the operating period, and uavg is the average

input constraint value. Let τ j denote the jth sampling time of the current operating period

where τ0 and τM denote the beginning and ending (time) of the current operating period,

respectively. The constraint of Eq. 3.37 is enforced as follows: if the prediction horizon

covers the entire operating period, then the average constraint may be enforced directly by

imposing the following constraint in the EMPC problem:

M−1

∑
i= j

u(τi) = Muavg−
j−1

∑
i=0

u∗(τi|τi) . (3.38)

where u∗(τi|τi) denotes the input computed and applied at sampling time τi ∈ [τ0,τ j). The

integral of Eq. 3.37 may be converted to a sum in Eq. 3.38 because the input trajectory is

piecewise constant.

If the prediction horizon does not cover the entire operating period, then the remaining

part of the operating period not covered in the prediction horizon from τ j+N to τM should be

accounted for in the constraints to ensure feasibility at subsequent sampling times. Namely,
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at a sampling period τ j ∈ [τ0,τM), the following must be satisfied:

Muavg−
j+N

∑
i= j

u(τi)−
j−1

∑
i=0

u∗(τi|τi)≤max{M−N− j,0}umax , (3.39a)

Muavg−
j+N

∑
i= j

u(τi)−
j−1

∑
i=0

u∗(τi|τi)≥max{M−N− j,0}umin (3.39b)

where umin and umax denote the minimum and maximum admissible input value. Eq. 3.39

means that the difference between the total available input energy (Muavg) and the total

input energy used from the beginning of the operating period through the end of the pre-

diction horizon must be less/greater than or equal to the total input energy if the maxi-

mum/minimum allowable input was applied over the remaining part of the operating pe-

riod from τk+N to τM, which is the part of the operating period not covered in the prediction

horizon.

If the prediction horizon extends over multiple consecutive operating periods, a combi-

nation of the constraints of Eq. 3.38 and Eq. 3.39 may be employed. Let Nop = d( j+N)/Me

denote the number of operating periods covered in the prediction horizon. For the first op-

erating period in the horizon, the constraint is given by:

M−1

∑
i= j

u(τi)+
j−1

∑
i=0

u∗(τi|τi) = Muavg . (3.40)

If Nop > 2, then, the following set of constraints is imposed:

(l+1)M−1

∑
i=lM

u(τi) = Muavg, ∀ l ∈ {1,2, . . . ,Nop−2} . (3.41)
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For the last operating period covered in the horizon, the following constraint is used:

Muavg−
( j+N)−(Nop−1)M

∑
j=(Nop−1)M

u(τ j)≤max{NopM−N− j,0}umax , (3.42a)

Muavg−
( j+N)−(Nop−1)M

∑
j=(Nop−1)M

u(τ j)≥max{NopM−N− j,0}umin . (3.42b)

The index j is reset to zero at the beginning of each operating period. In the implementa-

tion of input average constraints, it may be sufficient, in terms of acceptable closed-loop

behavior, to impose the input average constraint over one or two operating periods if the

horizon covers multiple operating periods.

An LEMPC is designed and applied to the CSTR model of Eq. 3.34. Since the eco-

nomic cost does not penalize the use of control energy, the optimal operating strategy with

respect to the economic cost of Eq. 3.35 is to operate with the maximum allowable heat rate

supplied to the reactor for all time. However, this may lead to a large temperature operating

range which may be impractical or undesirable. Therefore, a modified control objective is

considered for more practical closed-loop operation of the CSTR under EMPC. The modi-

fied control objective is to maximize the reaction rate while feeding a fixed time-averaged

amount of the reactant A to the process and while forcing and maintaining operation to/at

a set-point temperature of Ts. Additionally, the temperature of the reactor contents must

be maintained below the maximum allowable temperature T ≤ Tmax = 470.0K, which is

treated as a hard constraint and thus, X= {x ∈ R2 : x2 ≤ 470.0}.

A stabilizing state feedback controller, i.e., Lyapunov-based controller, is designed for

the CSTR. The first input CA0 in the stabilizing controller is fixed to the average inlet

concentration to satisfy the average input constraint of Eq. 3.36. The second input Q is de-

signed via feedback linearization techniques while accounting for the input constraint. The
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gain of the feedback linearizing controller is γ = 1.4 (see [76] for more details regarding the

controller design). A quadratic Lyapunov function is considered of the form V (x) = x̄T Px̄

where x̄ is the deviation of the states from their corresponding steady-state values and P is

the following positive definite matrix:

P =

 250 5

5 0.2

 . (3.43)

The stability region of the CSTR under the Lyapunov-based controller is characterized

by taking it to be a level set of the Lyapunov function where the time-derivative of the

Lyapunov function along the closed-loop state trajectories is negative and is denoted as

Ωu = {x ∈R2 : V (x)≤ ρu} where ρu = 138. However, X⊂Ωu which is shown in Fig. 3.3.

Thus, the set Ωρ where ρ = 84.76 is defined to account for the state constraint. Bounded

Gaussian process noise is added to the CSTR with a standard deviation of σ = [0.35.0]T

and bound θ = [1.020.0]T . A random noise vector is generated and applied additively to

the right-hand side of the ODEs of Eq. 3.34 over the sampling period (∆ = 0.01h) and the

bounds are given for each element of the noise vector (|wi| ≤ θi for i = 1, 2). Through

extensive closed-loop simulations of the CSTR under the Lyapunov-based controller and

under the LEMPC (described below) and with many realizations of the process noise, the

set Ωρe was determined to be ρe = 59.325.

The first differential equation of Eq. 3.34 (CA) is input-to-state-stable (ISS) with respect

to T . Therefore, a contractive Lyapunov-based constraint may be applied to the LEMPC

to ensure that the temperature converges to a neighborhood of the optimal steady-state

temperature value. Namely, a Lyapunov function for the temperature ordinary differential

equation (ODE) of Eq. 3.34b is defined and is given by: VT (T ) := (T −Ts)
2. The LEMPC
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formulation is given by:

min
u∈S(∆)

−
∫ tk+N

tk
k0e−E/RT̃ (τ)C̃2

A(τ) dτ (3.44a)

s.t. ˙̃CA(t) =
F
V
(u1(t)−C̃A(t))− k0e−E/RT̃ (t)C̃2

A(t) (3.44b)

˙̃T (t) =
F
V
(T0− T̃ (t))− ∆Hk0

ρLCp
e−E/RT̃ (t)C̃2

A(t)+
u2(t)

ρLCpVR
(3.44c)

C̃A(tk) =CA(tk), T̃ (tk) = T (tk) (3.44d)

u1(t) ∈ [0.5,7.5] kmol m−3, ∀ t ∈ [tk, tk+N) (3.44e)

u2(t) ∈ [−50.0,50.0] MJ h−1, ∀ t ∈ [tk, tk+N) (3.44f)

M−1

∑
i= j

u1(τi)+
j−1

∑
i=0

u∗1(τi|τi) = MCA0s (3.44g)

MCA0s−
j+N−M

∑
j=M

u1(τ j)≤max{2M−N− j,0}u1,max , (3.44h)

MCA0s−
j+N−M

∑
j=M

u1(τ j)≥max{2M−N− j,0}u1,min . (3.44i)

T̃ (t)≤ Tmax (3.44j)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N) (3.44k)

∂VT (T (tk))
∂T

f2(x̃(tk),u(tk),0)≤
∂VT (T (tk))

∂T
f2(x̃(tk),h(x̃(tk)),0) (3.44l)

where f2(·) is the right-hand side of the ODE of Eq. 3.34b. The CSTR was initialized at

many states distributed throughout state-space including some cases where the initial state

is outside Ωu. The LEMPC described above was applied to the CSTR with an operating

period over which to enforce the average input constraint of M = 20 (τM = 0.2h) and a

prediction horizon of N = 20.

Several simulations of 50.0h length of operation were completed. In all cases, the

LEMPC was able to force the system to Ωρ and maintain operation inside Ωρ without
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Figure 3.3: Two closed-loop state trajectories under the LEMPC in state-space.

violating the state constraint. The closed-loop state trajectories over the first 1.0h are shown

in Fig. 3.3 for one initial condition starting inside Ωρ and one starting outside Ωu. From

Fig. 3.3, the LEMPC forces the temperature to a neighborhood of the temperature set-point

where it maintains the temperature thereafter. The reactant concentration trajectory varies

with time and never settles at a steady-state owing to a periodic-like forcing of the inlet

concentration.

The CSTR was simulated with the same realization of the process noise and same ini-

tial condition under the Lyapunov-based controller applied in a sample-and-hold fashion

and under a constant input equal to the steady-state input. To evaluate the average eco-

nomic cost under LEMPC and under the other two control strategies, the following index

is defined:

J̄e :=
1
t f

∫ t f

0
le(x(t),u(t)) dt (3.45)
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Table 3.2: Average economic cost over several simulations under the LEMPC, the

Lyapunov-based controller applied in a sample-and-hold fashion, and the constant input

equal to us. For the case denoted with a “*”, the system under the constant input us settled

at a different steady-state, i.e., not xs.

J̄E under LEMPC J̄E under k(x) J̄E under us

14.17 14.10 14.09
14.18 14.11 14.09
14.17 14.10 14.08
14.17 14.09 14.06
14.18 14.10 14.10
14.17 14.09 14.08
14.18 14.09 14.10
14.18 14.08 14.08
14.19 14.08 14.10
14.18 14.07 14.07
14.18 14.11 14.11
14.18 14.08 14.07
14.17 14.06 0.36*
14.19 14.06 14.10
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Figure 3.4: The closed-loop state and input trajectories of the CSTR under the LEMPC of

Eq. 3.44 for two initial conditions (solid and dashed trajectories) and the steady-state is the

dashed-dotted line.

where x and u denote the closed-loop state and input trajectories. The average economic

cost over each of these simulations is reported in Table 3.2. Owing to the fact that the simu-

lations were performed over many operating periods, the average closed-loop performance

index is essentially a measure of the asymptotic average performance. The transient perfor-

mance is also discussed below. From these results, an average of 0.6 percent closed-loop

performance benefit was observed with the LEMPC over the Lyapunov-based controller

and the constant input u∗s . It is important to note that for one of the simulations that was

initialized outside Ωu the CSTR under the constant input u∗s settled on an offsetting steady-

state which is denoted with an asterisk in Table 3.2.

Fig. 3.4 gives the state and input trajectories of the CSTR under the LEMPC of Eq. 3.44

for two initial conditions: (0.6 kmol m−3, 430.0 K), referred to as the low temperature ini-

tial condition, and (0.8 kmol m−3, 460.0 K), referred to as the high temperature initial con-
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dition. One of the most interesting results of these simulations is the asymmetric responses

about the temperature set-point dictated by the LEMPC. For the low temperature initial

condition, the heat rate input computed by the LEMPC is initially at the maximum admis-

sible value to force the temperature to the set-point as fast as possible. This behavior is

desirable with respect to the economic cost because the production rate is monotonically

increasing with temperature. On the other hand, for the high temperature initial condition,

the rate at which the computed input trajectory of the LEMPC forces the temperature to

the set-point is much slower rate than that of the case with the lower initial temperature.

Again, this type of behavior is desirable owing to the fact that the production rate of B is

greater at higher temperature.

To quantify the difference in the transient closed-loop performance under LEMPC rela-

tive to the transient closed-loop performance achieved under the Lyapunov-based controller

and under the constant input equal to us, the closed-loop economic performance over the

first operating period is used, i.e., the index J̄e with t f = 0.2h. The performance benefit

under the LEMPC relative to that achieved under the Lyapunov-based controller and under

the constant input is 12.15 percent and 20.79 percent, respectively, and a clear advantage

on transient performance is realized under LEMPC. Moreover, the asymmetric response

dictated by the LEMPC is a unique property of EMPC that addresses a potential drawback

of tracking MPC methodologies. In particular, the stage cost of tracking MPC typically

penalize positive and negative deviation from the set-point equally even though from an

economic stand-point this may not be appropriate.

3.4 Closed-loop Performance under LEMPC

Owing to the availability of the explicit stabilizing (Lyapunov-based) controller, the corre-

sponding Lyapunov function, and the stability region used to design LEMPC, a terminal
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equality constraint may be readily designed for the LEMPC problem. The terminal equality

constraint allows for guaranteed closed-loop performance properties, while maintaining the

unique recursive feasibility property of LEMPC. Nominally operated systems are consid-

ered, i.e., the system of Eq. 3.1 with w≡ 0 and with slight abuse of notation, the nominally

operated system will be written as

ẋ = f (x,u) (3.46)

where x ∈ X and u ∈ U. The system of Eq. 3.46 satisfies all of the relevant assumptions as

the system of Eq. 3.1.

An economic cost le : X×U → R is assumed for the system of Eq. 3.46 which is

continuous on X×U. The existence of a steady-state and steady-state input pair, denoted

as (x∗s ,u
∗
s ), that minimizes the economic cost in the sense that the minimum of le is attained

at the pair (x∗s ,u
∗
s ) is assumed. For simplicity, the minimizing pair is assumed to be unique.

With these assumptions, the minimizing steady-state pair is given by:

(x∗s ,u
∗
s ) = argmin

xs∈X,us∈U
{le(xs,us) : f (xs,us) = 0} .

Without loss of generality, the minimizing pair will be taken to be the origin of Eq. 3.46,

i.e., f (0,0) = 0.

3.4.1 Stabilizability Assumption

A terminal equality constraint imposed in the LEMPC optimization problem will be com-

puted at each sampling time based on the solution of the sampled-data system consisting

of the continuous-time system of Eq. 3.46 with an explicit controller applied in a sample-

and-hold fashion. To consider infinite-time closed-loop economic performance (to be made

precise below), a stronger assumption is considered on the explicit controller (Lyapunov-
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based controller). A relaxation of the assumption is discussed in a remark below.

Assumption 3.1. There exists a locally Lipschitz feedback controller h : X → U with

h(0) = 0 for the system of Eq. 3.1 that renders the origin of the closed-loop system under

continuous implementation of the controller locally exponentially stable. More specifically,

there exist constants ρ > 0, ci > 0, i = 1,2,3,4 and a continuously differentiable Lyapunov

function V : X→ R+ such that the following inequalities hold:

c1 |x|2 ≤V (x)≤ c2 |x|2 , (3.47a)

∂V (x)
∂x

f (x,h(x))≤−c3 |x|2 , (3.47b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4 |x| , (3.47c)

for all x ∈Ωρ ⊆ X.

When the controller of Assumption 3.1 is applied in a sample-and-hold (zeroth-order

hold) fashion, i.e., the controller is an emulation controller, the resulting closed-loop system

is a sampled-data system. To distinguish from the state and input trajectories of the system

under the emulation controller and the state and input trajectories of the closed-loop system

under LEMPC, z and v will be used for the former, and x and u∗ will be used for the

latter, respectively. The sampled-data system consisting of the system of Eq. 3.46 under

the sample-and-hold implementation of the explicit controller is given by:

ż(t) = f (z(t),v(t))

v(t) = h(z(tk))
(3.48)

for t ∈ [tk, tk+1) where tk = k∆ and k = 0,1, . . . with initial condition z(0) = z0 ∈Ωρ . From

Corollary 2.1, the origin of the closed-loop system of Eq. 3.48 is exponentially stable under
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sufficiently fast sampling, i.e., the sampling period, ∆, is sufficiently small. Moreover,

from the proof of Corollary 2.1, V is a Lyapunov function for the closed-loop sampled-data

system in the sense that there exists a constant ĉ3 > 0 such that

∂V (z(t))
∂ z

f (z(t),h(z(tk)))≤−ĉ3 |z(t)|2 (3.49)

for all t ∈ [tk, tk+1) and integers k ≥ 0 where z(t) is the solution of Eq. 3.48 at time t with

initial condition z(0) = x(0) ∈ Ωρ where x(0) denotes a state measurement of the system

of Eq. 3.46 at the initial time.

3.4.2 Formulation and Implementation of the LEMPC with a Termi-

nal Equality Constraint

The solution of Eq. 3.48 may be leveraged in the design of a terminal equality constraint.

Specifically, the system of Eq. 3.48 is initialized with a state measurement of the system

of Eq. 3.46 at t = 0. Using forward simulation of the system of Eq. 3.48, the state may

be computed at tk+N . The computed state is then used as a terminal constraint in LEMPC

in the sense that the predicted state of the LEMPC must converge to the state of Eq. 3.48,

i.e., x̃(tk+N) = z(tk+N). Using this design principle, the formulation of the LEMPC with a
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terminal equality constraint formulated based on z is given by the problem:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (3.50a)

s.t. ˙̃x(t) = f (x̃(t),u(t)) (3.50b)

x̃(tk) = x(tk) (3.50c)

x̃(tk+N) = z(tk+N) (3.50d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.50e)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if V (x(tk))≤ ρe and tk < ts (3.50f)

∂V (x(tk))
∂x

f (x(tk),u(tk))≤
∂V (x(tk))

∂x
f (x(tk),h(x(tk)))

if V (x(tk))> ρe or tk ≥ ts (3.50g)

where all the components of the LEMPC optimization problem of Eq. 3.50 are similar to

that of the problem of Eq. 3.3 except for the additional constraint of Eq. 3.50d. The terminal

constraint of Eq. 3.50d enforces that the computed input trajectory steers the predicted state

trajectory to the state z(tk+N) at the end of the prediction horizon. The terminal constraint

of Eq. 3.50d differs from traditional terminal equality constraints in the sense that it is not

necessarily a steady-state. However, it is important to note that the terminal constraint in

the LEMPC of Eq. 3.50 exponentially converges to the steady-state owing to the stability

properties of the explicit controller.

The implementation of the LEMPC of Eq. 3.50 is similar to that of the LEMPC of

Eq. 3.3. Before the optimization problem of Eq. 3.50 is solved, the terminal constraint,

z(tk+N), is computed by recursively solving the system of Eq. 3.48 over tk+N−1 to tk+N and

is initialized with z(tk+N−1), which corresponds to the terminal constraint at the previous

sampling time. At the initial time (t = 0), z(tN) is computed by first initializing the system
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of Eq. 3.48 with x(0) and recursively solving this system from the initial time to tN = N∆.

For added robustness, especially to numerical and discretization error, one may reinitialize

the system of Eq. 3.48 with a state measurement at each sampling time, i.e., initialize the

system of Eq. 3.48 with x(tk) and use forward simulation to compute z(tk+N). However, in

the nominal scenario considered here, numerical error is not considered.

3.4.3 Closed-loop Performance and Stability Analysis

The closed-loop stability properties of the LEMPC follows from the results of the previous

section and are stated in the following corollary.

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied. If x(0)∈Ωρ , then the closed-

loop state trajectory of the system of Eq. 3.46 under the LEMPC of Eq. 3.50 based on the

Lyapunov-based controller that satisfies Eq. 3.2 is always bounded in Ωρ for all t ≥ 0.

Moreover, the LEMPC problem of Eq. 3.50 is recursively feasible.

Proof. If similar conditions are satisfied as that of Theorem 3.1 and the LEMPC problem

of Eq. 3.50 is feasible, it follows from Theorem 3.1 that the closed-loop state is bounded in

Ωρ . Initial feasibility at t = 0 follows from the fact that the sample-and-hold input trajectory

used to compute the terminal constraint, z(tN), is a feasible solution to the optimization

problem because (1) it forces the predicted state to the terminal constraint, (2) satisfies

the input constraint, (3) maintains the state in Ωρe if x(0) ∈ Ωρe or trivially satisfies the

contractive constraint of Eq. 3.50g. For the subsequent sampling time (t =∆), the piecewise

defined input trajectory consisting of u∗(t|0) for t ∈ [∆,N∆) and u(t) = h(z(tN)) for t ∈

[N∆,(N + 1)∆) is a feasible solution to the optimization problem at t = ∆. Applying this

result recursively for all future sampling times, recursive feasibility follows.

Finite-time and infinite-time economic performance is considered. The analysis follows

closely that of [6], which analyzes closed-loop performance of EMPC formulated with an
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equality terminal constraint equal to x∗s . Let J∗e (x(tk)) denote the optimal value of Eq. 3.50a

at time tk given the state measurement x(tk). The first result gives the finite-time average

performance under the LEMPC of Eq. 3.50. Without loss of generality, take le(x,u)≥ 0 for

all x ∈Ωρ and u ∈ U.

Theorem 3.2. Consider the system of Eq. 3.48 under the LEMPC of Eq. 3.50 based on the

Lyapunov-based controller that satisfies Eq. 3.2. For any T strictly positive finite integer,

the closed-loop average economic performance is bounded by:

∫ T ∆

0
le(x(t),u∗(t)) dt ≤

∫ (T+N)∆

0
le(z(t),v(t)) dt (3.51)

where x and u∗ denote the closed-loop state and input trajectories and z and v denote the

resulting state and input trajectories of the system of Eq. 3.48.

Proof. Let u∗(t|tk) for t ∈ [tk, tk+N) be the optimal input trajectory of Eq. 3.50 at tk. The

piecewise defined input trajectory consisting of u∗(t|tk) for t ∈ [tk+1, tk+N) and u(t) =

h(z(tk+N)) for t ∈ [tk+N , tk+N+1) is a feasible solution to the optimization problem at the

next sampling time (tk+1). Utilizing the feasible solution to the problem of Eq. 3.50 at tk+1,

the difference between the optimal value of Eq. 3.50a at any two successive sampling times

may be bounded as follows:

J∗e (x(tk+1))− J∗e (x(tk))

≤
∫ tk+N+1

tk+N

le(z(t),h(z(tk+N))) dt−
∫ tk+1

tk
le(x(t),u∗(tk|tk)) dt . (3.52)

Let T be any strictly positive integer. Summing the difference of the optimal value of
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Eq. 3.50a at two subsequent sampling times, the sum may be lower bounded by:

T−1

∑
k=0

[J∗e (x(tk+1))− J∗e (x(tk))] = J∗e (x(T ∆))− J∗e (x(0))

≥−J∗e (x(0)) (3.53)

where the inequality follows from the fact that le(x,u)≥ 0 for all x ∈Ωρ and u ∈U. At the

initial time, the optimal value of Eq. 3.50a may be bounded by the cost under the explicit

controller over the prediction horizon:

J∗e (x(0))≤
∫ tN

0
le(z(t),v(t)) dt . (3.54)

Moreover, the left-hand side of Eq. 3.53 may be upper bounded as follows:

T−1

∑
k=0

[J∗e (x(tk+1))− J∗e (x(tk))]

≤
T−1

∑
k=0

(∫ tk+N+1

tk+N

le(z(t),h(z(tk+N))) dt−
∫ tk+1

tk
le(x(t),u∗(tk|tk)) dt

)
=
∫ (T+N)∆

tN
le(z(t),v(t)) dt−

∫ T ∆

0
le(x(t),u∗(t)) dt (3.55)

From Eq. 3.53 and Eq. 3.55, the closed-loop economic performance over the initial time

to T ∆ is no worse than the closed-loop performance under the explicit control from initial

time to (T +N)∆:

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ J∗e (x(0))+

∫ T ∆+N∆

tN
le(z(t),v(t)) dt

≤
∫ (T+N)∆

0
le(z(t),v(t)) dt (3.56)

where the second inequality follows from Eq. 3.54. This proves the bound of Eq. 3.51.
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The upper limit of integration of the right-hand side of Eq. 3.51, i.e., (T +N)∆, arises

from the fact that a fixed prediction horizon is used in the LEMPC of Eq. 3.50. If, instead,

T ∆ represents the final operating time of a given system, one could employ a shrinking

horizon from (T −N)∆ to T ∆ in the LEMPC and the upper limit of integration of the right-

hand side of Eq. 3.51 would be T ∆. Also, as a consequence of the performance bound of

Eq. 3.51, the average finite-time economic performance may be bounded as follows:

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt

≤ 1
T ∆

∫ T ∆

0
le(z(t),v(t)) dt +

1
T ∆

∫ (T+N)∆

T ∆

le(z(t),v(t)) dt (3.57)

for any integer T > 0. From the right-hand side of Eq. 3.57, the second term of the right-

hand side is less significant as T gets large.

To consider asymptotic average closed-loop economic performance of the system under

the LEMPC of Eq. 3.50, the asymptotic average closed-loop performance under the explicit

controller needs to be considered. Because the state and input trajectory asymptotically

converge to (x∗s ,u
∗
s ), it is straightforward to show that the asymptotic average economic

performance under the explicit controller is no worse than the economic cost at the optimal

steady-state pair, which is stated in the lemma below.

Lemma 3.1. The asymptotic average economic cost of the system of Eq. 3.48 under the

Lyapunov-based controller that satisfies Assumption 3.1 for any initial condition z(0)∈Ωρ

is

lim
T→∞

1
T ∆

∫ T ∆

0
le(z(t),v(t)) dt = le(x∗s ,u

∗
s ) (3.58)

where ∆ ∈ (0,∆∗) (∆∗ > 0 is defined according to Corollary 2.1) and z and v denote the

state and input trajectories of the system of Eq. 3.48.

Proof. Recall, the economic stage cost function le is continuous on the compact set Ωρ×U
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and z(t) ∈Ωρ and v(t) ∈ U for all t ≥ 0. Thus, the integral:

1
T ∆

∫ T ∆

0
le(z(t),v(t)) dt < ∞ (3.59)

for any integer T > 0. Since z(t) and v(t) exponentially converge to the optimal steady-

state pair (x∗s , u∗s ) as t→ ∞, the limit of the integral of Eq. 3.59 as T tends to infinity exists

and is equal to le(x∗s ,u
∗
s ). To prove the limit, it is sufficient to show that for any ε > 0, there

exists a T ∗ such that for T > T ∗, the following holds:

∣∣∣∣ 1
T ∆

∫ T ∆

0
le(z(t),v(t)) dt− le(x∗s ,u

∗
s )

∣∣∣∣< ε (3.60)

To simplify the presentation, define I(T1,T2) as the following integral:

I(T1,T2) :=
∫ T2∆

T1∆

le(z(t),v(t)) dt (3.61)

where the arguments of I are integers representing the integers of the lower and upper limits

of integration, respectively. Since z(t) and v(t) converge to x∗s and u∗s as t tends to infinity,

respectively, le(x(t),v(t))→ le(x∗s ,u
∗
s ) as t tends to infinity. Furthermore, z(t) ∈ Ωρ and

v(t) ∈ U for all t ≥ 0, so for every ε > 0, there exists an integer T̃ > 0 such that

|le(z(t),v(t))− le(x∗s ,u
∗
s )|< ε/2 (3.62)
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for t ≥ T̃ ∆. For any T > T̃ ,

|I(0,T )−T ∆le(x∗s ,u
∗
s )|= |I(0, T̃ )+ I(T̃ ,T )−T ∆le(x∗s ,u

∗
s )|

≤
∫ T̃ ∆

0
|le(z(t),v(t))− le(x∗s ,u

∗
s )| dt

+
∫ T ∆

T̃ ∆

|le(z(t),v(t))− le(x∗s ,u
∗
s )| dt

≤ T̃ M̃+(T − T̃ )ε/2 (3.63)

where

M̃ := sup
t∈[0,T̃ ∆]

{|le(z(t),v(t))− le(x∗s ,u
∗
s )|} .

For any T > T ∗ = 2T̃ (M̃− ε/2)/ε (which implies (M̃− ε/2)T̃/T < ε/2), the following

inequality is satisfied:

|I(0,T )/T − le(x∗s ,u
∗
s )| ≤ T̃ M̃/T +(1− T̃/T )ε/2

= (M̃− ε/2)T̃/T + ε/2 < ε (3.64)

which proves the limit of Eq. 3.58.

With Lemma 3.1, the asymptotic average closed-loop economic performance under the

LEMPC is no worse than the closed-loop performance at the economically optimal steady-

state.

Theorem 3.3. Consider the system of Eq. 3.48 under the LEMPC of Eq. 3.50 based on the

Lyapunov-based controller that satisfies Assumption 3.1. Let ∆ ∈ (0,∆∗) (∆∗ > 0 is defined

according to Corollary 2.1). The closed-loop asymptotic average economic performance
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is no worse than the economic cost at steady-state, i.e., the following bound holds:

limsup
T→∞

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ le(x∗s ,u

∗
s ) (3.65)

Proof. From Theorem 3.2, for any T > 0:

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ 1

T ∆

∫ (T+N)∆

0
le(z(t),v(t)) dt . (3.66)

As T increases, both sides of the inequality of Eq. 3.66 remain finite owing to the fact that

le is continuous and the state and input trajectories are bounded in compact sets. The limit

of the right-hand side as T → ∞ is equal to le(x∗s ,u
∗
s ) (Lemma 3.1). Therefore, one may

readily obtain that:

limsup
T→∞

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ le(x∗s ,u

∗
s ) (3.67)

which proves the desired result.

While the finite-time performance results of Theorem 3.2 require that the Lyapunov-

based controller be designed such that Eq. 3.2 is satisfied, the infinite-time average per-

formance results of Theorem 3.3 require that the Lyapunov-based controller satisfies the

stronger assumption (Assumption 3.1), which is required to obtain the performance bound

of Eq. 3.65. A Lyapunov-based controller that satisfies Eq. 3.2 when implemented in a

sample-and-hold fashion with a sufficiently small sampling period will force the state to

a small compact set containing the steady-state. When the LEMPC of Eq. 3.50 is de-

signed with a Lyapunov-based controller that only satisfies Eq. 3.2, a weaker result on the

asymptotic average economic closed-loop performance is obtained. Namely, the closed-
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loop asymptotic average performance may be bounded as follows:

limsup
T→∞

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ max

x,z∈Ωρmin

le(x,h(z)) (3.68)

where Ωρmin is defined as in Theorem 3.1. Note that the size of set Ωρmin may be made

arbitrarily small by making the sampling period arbitrarily small.

Remark 3.1. For systems with average constraints e.g., like that imposed in the exam-

ple of Section 3.3.2, the average constraint design methodologies for asymptotic aver-

age constraints [6] and for transient average constraints [137], which were presented for

EMPC with a terminal equality constraint equal to x∗s , may be extended to the LEMPC of

Eq. 3.50 when the average constraint is satisfied under the explicit controller. The methods

of [6, 137] go beyond imposing the average constraint over successive operating periods,

which is the method employed in Section 3.3.2.

Remark 3.2. The performance results of this section hold for any prediction horizon size

even when N = 1. The use of a short horizon may be computationally advantageous

for real-time application. Also, owing to the fact that the terminal equality constraint of

Eq. 3.50d may be a point in the state-space away from the steady-state, it is expected that

the feasible region of the LEMPC of Eq. 3.50 would be larger than the feasible region of

EMPC with a terminal equality constraint equal to the steady-state for most cases especially

when a short prediction horizon is used in the EMPC formulation.

3.5 LEMPC with a Time-varying Stage Cost

One of the unique advantages of EMPC relative to other control methodologies is the inte-

gration of economic objectives directly within a control framework. For stability purposes,

most of the EMPC schemes use a steady-state to impose constraints in the EMPC optimiza-
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tion problem to ensure closed-loop stability in their formulations, e.g., the EMPC formu-

lated with a terminal constraint described in Chapter 2 and the Lyapunov-based constraints

of Eq. 3.3e-3.3f used in the LEMPC of Eq. 3.3. Also, these EMPC schemes have been

formulated with time-invariant economic cost functions. However, when the time-scale

or update frequency of time-varying economic considerations arising from, for example,

variable energy pricing or product demand changes is comparable to the time-scale of the

process/system dynamics, it may be desirable to formulate the EMPC scheme with a time-

dependent cost function.

In this section, an LEMPC scheme is developed that may accommodate an explicitly

time-varying economic cost function. First, the formulation of the LEMPC scheme is pre-

sented. Second, closed-loop stability, in the sense of boundedness of the closed-loop state,

is proven through a theoretical treatment of the LEMPC scheme. The LEMPC scheme is

applied to a chemical process example to demonstrate that the LEMPC with time-varying

economic cost achieves closed-loop stability and results in improved closed-loop economic

performance over a conventional approach to optimization and control.

3.5.1 Class of Economic Costs and Stabilizability Assumption

Consider the class of systems described by the system of Eq. 3.1 with all of the relevant

assumptions. Instead of the time-invariant economic cost, the system of Eq. 3.1 is assumed

to be equipped with a time-dependent economic cost function, which has the following

form le(t,x,u) (the function le maps time and the state and input vectors to a scalar that is

a measure of the economics, i.e., le : [0,∞)×X×U). No restriction on the form of the cost

function is required for stability. However, some limitations to the cost function that may

be considered must be made to solve the optimization problem. From a practical point-of-

view, many of the cost functions that would be used to describe the economics of a system
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may be piecewise continuous functions of time and continuous with respect to the state and

input vectors.

In a traditional or conventional approach, if the economics change results in a change

in the optimal operating steady-state, the optimal steady-state is updated and the updated

optimal steady-state is sent down to a feedback controller, e.g., tracking MPC, to force the

system to operate at this new steady-state. To account for the various potentially operating

steady-states, the existence of a set of steady-states for the system of Eq. 3.1, which is

denoted as Γ = {xs ∈ Rn : ∃ us ∈ U s.t. f (xs,us,0) = 0} ⊂ X, is assumed for the system

of Eq. 3.1. An additional assumption is made on the set Γ to ensure that the acceptable

operating region is non-empty which is stated below. For a given system, the equilibrium

manifold Γ may be taken as the set of admissible operating steady-states, i.e., the set of

possible operating points under the conventional approach to optimization and control.

As in the case for the LEMPC formulated with a time-invariant economic stage cost, a

stabilizability assumption is needed. For each xs ∈ Γ, the existence of a Lyapunov-based

controller that renders xs of the nominal system of Eq. 3.1 asymptotically stable under

continuous implementation is assumed. More specifically, the set of Lyapunov-based con-

trollers are mappings that map the state to the set U. For simplicity of notation, the notation

h(x;xs) where xs is a parameter which is used to denote the Lyapunov-based controller with

respect to xs ∈ Γ, i.e., the control law h(x;xs) renders the steady-state xs asymptotically sta-

ble for the nominally operated closed-loop system. Also, for two points in Γ, e.g., xs,1,

xs,2 ∈ Γ, no relationship is assumed between the two controllers h(x;xs,1) and h(x;xs,2)

other than the former renders the steady-state xs,1 asymptotically stable and the latter ren-

ders the steady-state xs,2 asymptotically stable. Thus, the two controllers may be designed

utilizing different techniques.

Using converse theorems, the existence of Lyapunov functions V (·;xs) for all xs ∈ Γ

follows from the stabilizability assumption. The Lyapunov functions satisfy the following
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conditions:

α1(|x− xs|;xs)≤V (x;xs)≤ α2(|x− xs|;xs) (3.69a)

∂V (x;xs)

∂x
f (x,h(x;xs),0)≤−α3(|x− xs|;xs) (3.69b)∣∣∣∣∂V (x;xs)

∂x

∣∣∣∣≤ α4(|x− xs|;xs) (3.69c)

for (x− xs) ∈ D(xs) and each xs ∈ Γ where αi(·;xs), i = 1,2,3,4 are class K function and

D(xs) is an open neighborhood of the origin that depends on xs. Owing to the fact that there

exists a Lyapunov function for each xs, different class K function exist for each Lyapunov

function. This is captured by the parameterization of the functions αi, i = 1,2,3,4, and

αi(·;xs) denotes the ith class K function for the Lyapunov function with respect to the

steady-state xs.

For each xs ∈ Γ, the stability region Ωρ(xs) may be characterized for the closed-loop

system of Eq. 3.1 with the Lyapunov-based controller h(x;xs). The symbol Ωρ(xs) where

xs ∈ Γ⊂ Rn is a fixed parameter denotes a level set of the Lyapunov function with respect

to xs, i.e., Ωρ(xs) = {x ∈ Rn : V (x;xs) ≤ ρ(xs)} where ρ(xs) depends on xs. The union of

the stability regions is denoted as X =
⋃

xs∈Γ Ωρ(xs) and it is assumed to be a non-empty

compact set.

3.5.2 The Union of the Stability Regions

A simple demonstration of the construction of the set X is provided to embellish the con-

cept of the union set X . The stability region of a closed-loop system under an explicit

stabilizing control law may be estimated for a steady-state in Γ through the off-line com-

putation described below. After the stability regions of sufficiently many steady-states in

Γ are computed, the union of these sets may be described algebraically through various

mathematical techniques, e.g., curve fitting and convex optimization techniques. The basic
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Ωρ(xs,1)

Ωρ(xs,2)

Ωρ(xs,3)

Ωρ(xs,4)

X Γ

Figure 3.5: An illustration of the construction of the stability region X . The shaded region

corresponds to the set X .

algorithm is

1. For j = 1 to J (if Γ consists of an infinite number of points, J is a sufficiently large

positive integer).

1.1 Select a steady-state, xs, j, in the set Γ.

1.2 Partition the state-space near xs, j into I discrete points (I is a sufficiently large

positive integer).

1.3 Initialize ρ(xs, j) := ∞.

1.4 For i = 1 to I:

1.4.1 Compute V̇ (xi;xs, j) where xi denotes the i discrete point from the partition-

ing of the state-space. If V̇ (xi;xs, j) ≥ 0, go to Step 1.4.2. Else, go to Step

1.4.3.

1.4.2 If V (xi;xs, j)< ρ(xs, j), set ρ(xs, j) :=V (xi;xs, j). Go to Step 1.4.3.
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1.4.3 If i+1≤ I, go to Step 1.4.1 and i← i+1. Else, go to Step 2.

2. Save ρ(xs, j) (if necessary, reduce ρ(xs, j) such that the set Ωρ(xs, j) only includes points

where the time-derivative of the Lyapunov function is negative).

3. If j+1≤ J, go to Step 1 and j← j+1. Else, go to Step 4.

4. Approximate the union set with analytic algebraic expressions (constraints) using

appropriate techniques.

If Γ consists of a finite number of points, then J could be taken as the number of points in

Γ. If the number of points in Γ is large or infinite, J could be a sufficiently large integer.

From a practical stand-point, these numbers need to be small enough such that this type

of calculation may be implemented. Fig. 3.5 gives an illustration of the construction of

X using this procedure. The following example provides a tractable illustration of the

construction of X for a scalar system.

Example 3.2. Consider the nonlinear scalar system described by

ẋ = x−2x2 + xu (3.70)

with admissible inputs in the set U= [−100,100] and with the set of admissible operating

steady-states defined as Γ = {xs ∈ [−25, 25]}. The steady-states in Γ are open-loop unsta-

ble. For any xs ∈ Γ, the system of Eq. 3.70 may be written in the following input-affine

form:

˙̄x = f (x̄)+g(x̄)ū (3.71)

where x̄ = x− xs and ū = u−us. Consider a quadratic Lyapunov function of the form:

V (x;xs) =
1
2
(x− xs)

2 (3.72)
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for the closed system of Eq. 3.70 under the following Lyapunov-based feedback control

law [175]:

ĥ(x;xs) =


−L fV +

√
L fV 2 +LgV 4

LgV
if LgV 6= 0

0 if LgV = 0

(3.73)

for a xs ∈ Γ where L fV and LgV are the Lie derivatives of the function V with respect

to f and g, respectively (these functions depend on xs). To account for the bound on the

available control energy, the controller is formulated as

h(x;xs) = 100 sat

(
ĥ(x;xs)

100

)
(3.74)

where sat(·) denotes the standard saturation function.

For this particular case, the stability region of the system of Eq. 3.70 with the stabilizing

controller of Eq. 3.74 for the minimum and maximum steady-state in the set Γ are used to

approximate the set X . For the steady-state xs,1 = −25 with corresponding steady-state

input us,1 =−51, the largest level set of the Lyapunov function where the Lyapunov func-

tion is decreasing along the state trajectory with respect to the steady-state xs,1 is Ωρ(xs,1) =

{x ∈ R : V (x;−25) ≤ 300.25}, i.e., ρ(xs,1) = 300.25. For the steady-state xs,2 = 25 and

us,2 = 49, the level set is Ωρ(xs,2) = {x ∈ R : V (x,25) ≤ 2775.49}, i.e., ρ(xs,2) = 2775.49.

Therefore, the union of the stability region is described as X = {x ∈ [−49.5,99.5]}.

3.5.3 Formulation of LEMPC with Time-Varying Economic Cost

The formulation of the LEMPC with the time-varying economic stage cost is given in this

subsection. First, the overall methodology of employing the set X in the design of the

LEMPC is described. As a consequence of the construction method used for X , any state

in X is in a stability region of at least one steady-state. This means that there exists
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an input trajectory that satisfies the input constraint and that maintains operation in X

is guaranteed because the input trajectory obtained from the Lyapunov-based controller

with respect to the steady-state xs such that the current state x(tk) ∈ Ωρ(xs) is a feasible

input trajectory. The stability properties of X make it an attractive choice to use in the

formulation of a LEMPC. Namely, use X to formulate a region constraint that is imposed

in the optimization problem of EMPC to ensure that X is an invariant set.

In any practical setting, the closed-loop system is subjected to disturbances and uncer-

tainties causing the closed-loop state trajectory to deviate from the predicted (open-loop)

nominal trajectory. Enforcing that the predicted state to be in X is not sufficient for main-

taining the closed-loop state trajectory in X because disturbances may force the state out

of X . To make X an invariant set, a subset of X is defined and is denoted as X̂ . The

set X̂ is designed such that any state starting in X̂ , which may be forced outside of X̂

by the disturbances, will be maintained in X over the sampling period when the computed

control action is such that the predicted state is maintained in X̂ .

Any state x(tk) ∈X \ X̂ where x(tk) denotes a measurement of the state at sampling

time tk may be forced back into the set X̂ . This statement holds as a result of the method

used to construct X̂ and X . Specifically, a steady-state x̂s ∈ Γ may be found such that

x(tk) ∈ Ωρ(x̂s). Then, a contractive Lyapunov-based constraint like that of Eq. 3.3f is im-

posed in the formulation of the LEMPC to ensure that the computed control action de-

creases the Lyapunov function by at least the rate given by the Lyapunov-based controller.

This guarantees that the closed-loop state will converge to X̂ in finite-time. Here, X̂ and

X are analogous to Ωρe and Ωρ in the LEMPC design of Eq. 3.3 with a time-invariant

economic cost.

Given the overview and purposes of the sets X and X̂ , a slight clarification must be

made on the sets Γ, X , and X̂ . First, the set Γ is the set of points in state-space that

satisfies the steady-state model equation for some us ∈U , i.e., f (xs,us,0) = 0. Second, X ,
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which is the union of the stability regions Ωρ(xs) constructed for each steady-state in Γ, is

assumed to be a non-empty, compact set. Third, the set X̂ is assumed to be a non-empty

compact set with X̂ ⊂X , and it is further clarified in Section 3.5.5.

Using the sets Γ, X , and X̂ , the LEMPC formulation with an explicitly time-varying

cost is given by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
le(τ, x̃(τ),u(τ)) dτ (3.75a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.75b)

x̃(tk) = x(tk) (3.75c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.75d)

x̃(t) ∈ X̂ , ∀ t ∈ [tk, tk+N) if x(tk) ∈ X̂ (3.75e)

x̃(t) ∈X , ∀ t ∈ [tk, tk+N) if x(tk) ∈X \X̂ (3.75f)

∂V (x(tk); x̂s)

∂x
f (x(tk),u(tk),0)≤

∂V (x(tk); x̂s)

∂x
f (x(tk),h(x(tk); x̂s),0)

if x(tk) /∈ X̂ , x(tk) ∈Ωρ(x̂s) with x̂s ∈ Γ (3.75g)

where all of the notation used is similar to that used in the LEMPC formulation of Eq. 3.3.

The optimal solution of this optimization problem is denoted as u∗(t|tk) and it is defined for

t ∈ [tk, tk+N). The control action computed for the first sampling period of the prediction

horizon is denoted as u∗(tk|tk). In the optimization problem of Eq. 3.75, Eq. 3.75a defines

the time-dependent economic cost functional to be minimized over the prediction horizon.

The constraint of Eq. 3.75b is the nominal model of the system of Eq. 3.1 which is used

to predict the evolution of the system with input trajectory u(t) computed by the LEMPC.

The dynamic model is initialized with a measurement of the current state (Eq. 3.75c). The

constraint of Eq. 3.75d restricts the input trajectory take values within the admissible input

set.
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Figure 3.6: This illustration gives the state evolution over two sampling periods.
Over the first sampling period, the LEMPC, operating in mode 1, computes a control action
that maintains the predicted state x̃(tk+1) inside X̂ . However, the closed-loop state at the
next sampling time x(tk+1) is driven outside of X̂ by disturbances. The LEMPC, operating
in mode 2, ensures that the computed control action decreases the Lyapunov function based
on the steady-state x̂s over the next sampling period to force the state back into X̂ .
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Similar to the LEMPC design of Eq. 3.3, the LEMPC of Eq. 3.75 is a dual-mode con-

troller. The constraint of Eq. 3.75e defines mode 1 operation of the LEMPC and is active

when the state at the current sampling time x(tk) ∈ X̂ . It enforces that the predicted state

trajectory be maintained in X̂ . The constraint of Eq. 3.75g defines mode 2 operation of

the LEMPC and is active when the state is outside X̂ . It is used to force the state back

into the X̂ which is guaranteed for any x(tk) ∈X . The constraint of Eq. 3.75f is active

when x(tk) ∈X \X̂ and ensures the predicted state be contained in the set X . Although

Eq. 3.75f is not needed for stability, it is used to ensure that the LEMPC optimizes the input

trajectory with knowledge that the state must be contained in X , and potentially improves

the closed-loop economic performance when the LEMPC is operating under mode 2 oper-

ation compared to not imposing such a constraint. Fig. 3.6 illustrates the sets and different

operation modes of the closed-loop system under the LEMPC of Eq. 3.75.

3.5.4 Implementation Strategy

The LEMPC of Eq. 3.75 is implemented in a receding horizon fashion. The optimization

problem is repeatedly solved every sampling time after receiving state feedback from the

system. The implementation strategy may be summarized as follows:

1. At sampling time tk, the LEMPC receives a state measurement x(tk) from the sensors.

2. If x(tk) ∈ X̂ , go to Step 2.1. Else, go to Step 2.2.

2.1 LEMPC operates in mode 1: the constraint of Eq. 3.75e is active and the con-

straints of Eqs. 3.75f-3.75g are inactive, go to Step 3.

2.2 Find x̂s ∈ Γ such that x(tk) ∈Ωρ(x̂s), go to Step 2.3.

2.3 LEMPC operates in mode 2: the constraint of Eq. 3.75e is inactive and the

constraints of Eqs. 3.75f-3.75g are active, go to Step 3.
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3. The LEMPC computes the optimal input trajectory u∗(t|tk) for t ∈ [tk, tk+N), go to

Step 4.

4. The LEMPC sends the control action, u∗(tk|tk), computed for the first sampling pe-

riod of the prediction horizon to the control actuators to apply to the system in a

sample-and-hold fashion from tk to tk+1. Go to Step 5.

5. Set k← k+1. Go to Step 1.

3.5.5 Stability Analysis

In this subsection, Theorem 3.4 provides sufficient conditions for closed-loop stability,

in the sense of boundedness of the closed-loop system state inside the set X , under the

LEMPC of Eq. 3.75 for any initial condition x(0) ∈X . It follows the ideas of the analysis

of Theorem 3.1 of Section 3.3. The assumption on the set X̂ that is needed to ensure

closed-loop stability is given below.

Assumption 3.2. Let X̂ ⊂X be a compact set such that if x(0) ∈ X̂ and the constant

control û ∈ U is such that x̃(t) ∈ X̂ for all t ∈ [0,∆] where x̃(t) is the solution to

˙̃x(t) = f (x̃(t), û,0) (3.76)

for t ∈ [0,∆] and x̃(0) = x(0), then x(∆) ∈X where x(∆) denotes the closed-loop state of

Eq. 3.3 under the constant control û.

Assumption 3.2 is satisfied for the case that instead of using the mode 1 constraint of

Eq. 3.75e, the constraint x̃(t) ∈Ωρe(xs) for t ∈ [tk, tk+N) where Ωρe(xs) is designed according

to a similar condition as in Eq. 3.21 for some xs ∈ Γ such that x(tk) ∈Ωρe(xs). For this case,

X̂ may be constructed by taking the union of sets Ωρe(xs) for all xs ∈Γ where Ωρe(xs) is sim-
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ilar to the set Ωρe (for each xs ∈ Γ) in the LEMPC of Eq. 3.3. Nevertheless, Assumption 3.2

is needed to cover the more general case with the mode 1 constraint of Eq. 3.75e.

To avoid introducing convoluted notation, the sufficient conditions of the Theorem are

stated as similar conditions as Eqs. 3.22-3.23 must hold for each xs ∈ Γ. This means that

there exists positive constants: ρ , ρmin, ρs, L′x, L′w, M, and εw that satisfy similar conditions

for each xs ∈ Γ. Moreover, all of these parameters depend on xs.

Theorem 3.4. Consider the system of Eq. 3.1 in closed-loop under the LEMPC design

of Eq. 5 based on the set of controllers that satisfy the conditions of Eq. 3.69 for each

xs ∈ Γ. Let εw(xs)> 0, ∆ > 0, ρ(xs)> ρe(xs)≥ ρmin(xs)> ρs(xs)> 0 for all xs ∈ Γ satisfy

a similar condition as Eqs. 3.22 for each xs ∈ Γ and let X = ∪xs∈ΓΩρ(xs) be a non-empty

compact set and X̂ satisfy Assumption 3.2. If x(0) ∈X and N ≥ 1, then the state x(t) of

the closed-loop system is always bounded in X for all t ≥ 0.

Proof. The proof of Theorem 3.4 consists of the following parts: first, the feasibility of the

optimization problem of Eq. 3.75 is proven for any state x(tk) ∈X . Second, boundedness

of the closed-loop state trajectory x(t) ∈ X for all t ≥ 0 is proven for any initial state

starting in X .

Part 1: Owing to the construction of X , any state x(tk) ∈X is in the stability region

Ωρ(xs) of the Lyapunov-based controller designed for some steady-state xs ∈Γ. This implies

that there exists an input trajectory that is a feasible solution because the input trajectory

obtained from the Lyapunov-based controller is a feasible solution to the optimization of

Eq. 3.75 as it satisfies the constraints (refer to Theorem 3.1, Part 1 on how this input trajec-

tory is obtained). The latter claim is guaranteed by the closed-loop stability properties of

the Lyapunov-based controller (h(·;xs)).

Part 2: If x(tk) ∈X \ X̂ , then the LEMPC of Eq. 3.75 operates in mode 2. Since

x(tk) ∈X , a steady-state x̂s ∈ Γ may be found such that the current state x(tk) ∈ Ωρ(x̂s).
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Utilizing the Lyapunov-based controller h(·; x̂s), the LEMPC computes a control action that

satisfies the constraint of Eq. 3.75g:

∂V (x(tk); x̂s)

∂x
f (x(tk),u∗(tk|tk),0)≤

∂V (x(tk); x̂s)

∂x
f (x(tk),h(x(tk); x̂s),0) (3.77)

for some x̂s ∈ Γ where u∗(tk|tk) is the optimal control action computed by the LEMPC to

be applied in a sample-and-hold fashion to the system of Eq. 3.1 for t ∈ [tk, tk+1). From

Eq. 3.69b, the term in the right-hand side of the inequality of Eq. 3.77 may be upper

bounded by a class K function as follows:

∂V (x(tk), x̂s)

∂x
f (x(tk),u∗(tk),0)≤−α3(|x(tk)− x̂s|; x̂s) (3.78)

for all x(tk) ∈X and for some x̂s ∈ Γ. Following similar steps as that used in Theorem 3.4,

Part 2, one may show that the Lyapunov function value, i.e., the Lyapunov function for the

steady-state x̂s, will decay over the sampling period when a similar condition to Eq. 3.22 is

satisfied for each xs ∈ Γ.

If x(tk)∈ X̂ , then x(tk+1)∈X owing to the construction of X̂ , i.e., if Assumption 3.2

is satisfied. If x(tk) ∈X \ X̂ , then x(tk+1) ∈X because the state is forced to a smaller

level set of the Lyapunov function with respect to the steady-state x̂s ∈ Γ over the sampling

period. Both of these results together imply that x(tk+1)∈X for all x(tk) under the LEMPC

of Eq. 3.75. Using this result recursively, the closed-loop state is always bounded in X

when the initial state is in X .

Remark 3.3. The LEMPC of Eq. 3.75 does not have a switching time like the LEMPC of

Eq. 3.3 whereby the mode 2 constraint is exclusively imposed after the switching time to

enforce the closed-loop state to a specific steady-state. To ensure there exists a feasible path

from any state in X to the desired operating steady-state more conditions are needed. The

108



Table 3.3: CSTR process parameters.

Feedstock volumetric flow rate F = 5.0m3 h−1

Feedstock temperature T0 = 300K
Reactor volume VR = 5.0m3

Pre-exponential factor for reaction 1 k01 = 6.0×105 h−1

Pre-exponential factor for reaction 2 k02 = 6.0×104 h−1

Pre-exponential factor for reaction 3 k03 = 6.0×104 h−1

Reaction enthalpy change for reaction 1 ∆H1 =−5.0×104 kJ kmol−1

Reaction enthalpy change for reaction 2 ∆H2 =−5.2×104 kJ kmol−1

Reaction enthalpy change for reaction 3 ∆H3 =−5.4×104 kJ kmol−1

Activation energy for reaction 1 E1 = 5.0×104 kJ kmol−1

Activation energy for reaction 2 E2 = 7.53×104 kJ kmol−1

Activation energy for reaction 3 E3 = 7.53×104 kJ kmol−1

Heat capacity Cp = 0.231kg m−3

Density ρL = 1000kJ kg−1 K−1

Gas constant R = 8.314kJ kmol−1 K−1

interested reader may refer to [109] that provides some conditions that accomplish such a

goal. Additionally, no guarantees are made that the closed-loop state will converge to X̂

when the state is in X \ X̂ owing to the fact that the mode 2 constraint could be formu-

lated with respect to a different steady-state at each sampling time. However, enforcing

convergence to X̂ may be readily accomplished through implementation by enforcing a

mode 2 constraint formulated with respect to the same steady-state at each sampling time

until the state converges to X̂ .

3.5.6 Application to a Chemical Process Example

Consider a non-isothermal continuous stirred-tank reactor (CSTR) where three parallel re-

actions take place. The reactions are elementary irreversible exothermic reactions of the

form: A→ B, A→C, and A→D. The desired product is B; while, C and D are byproducts.

The feed of the reactor consists of the reactant A in an inert solvent and does not contain

any of the products. Using first principles and standard modeling assumptions, a nonlinear
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dynamic model of the process is obtained:

dCA

dt
=

F
VR

(CA0−CA)−
3

∑
i=1

k0,ie−Ei/RTCA (3.79a)

dT
dt

=
F
VR

(T0−T )− 1
ρLCp

3

∑
i=1

∆Hik0,ie−Ei/RTCA +
Q

ρLCpVR
(3.79b)

where CA is the concentration of the reactant A, T is the temperature of the reactor, Q is

the rate of heat supplied or removed from the reactor, CA0 and T0 are the reactor feed re-

actant concentration and temperature, respectively, F is a constant volumetric flow rate

through the reactor, VR is the constant liquid hold-up in the reactor, ∆Hi, k0,i, and Ei,

i = 1,2,3 denote the enthalpy changes, pre-exponential constants and activation energies

of the three reactions, respectively, and Cp and ρL denote the heat capacity and the density

of the fluid in the reactor. The process parameters are given in Table 3.3. The CSTR

has two manipulated inputs: the inlet concentration CA0 with available control energy

0.5kmol m−3 ≤CA0 ≤ 7.5kmol m−3 and the heat rate to/from the vessel Q with available

control energy −1.0×105 kJ h−1 ≤ Q ≤ 1.0×105 kJ h−1. The state vector is xT = [CA T ]

and the input vector is uT = [CA0 Q].

Stability Region Construction

Supplying or removing significant amount of thermal energy to/from the reactor (nonzero

Q) is considered to be undesirable from an economic perspective. Therefore, the set X

is constructed considering steady-states with a steady-state reactant inlet concentration

of CA0s ∈ [2.0, 6.0]kmol m−3 and no heat rate supplied/removed from the reactor, i.e.,

Qs = 0.0kJ h−1. The corresponding steady-states in the desired operating range form a

set denoted as Γ of admissible operating steady-states. Several of these steady-states have

been verified to be open-loop unstable, i.e., the eigenvalues of the linearization around the
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Figure 3.7: The construction of the set X for the CSTR of Eq. 3.79.

steady-states corresponding to the minimum and maximum steady-state inlet concentra-

tions are λ1,min = −1.00, λ2,min = 2.73 and λ1,max = −1.00, λ2,max = 2.10, respectively.

The set Γ covers approximately a temperature range of 50K.

A set of two proportional controllers with saturation to account for the input constraints

is used in the design of the Lyapunov-based controller:

h(x;xs) =


3.5 sat

(
K1(xs,1− x1)+u1,s−4.0

3.5

)
+4.0

105 sat
(

K2(xs,2− x2)+u2,s

105

)
 (3.80)

where K1 = 10 and K2 = 8000 are the gains of each proportional controller. The propor-

tional controller gains have been tuned to give the largest estimate of the stability region

for a given steady-state. A quadratic Lyapunov function of the form:

V (x;xs) = (x− xs)
T P(x− xs) (3.81)
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where P is a positive definite matrix is used to estimate the stability regions of many steady-

states in the set Γ, i.e., the stability region for a given steady-state in Γ is taken to be a level

set of the Lyapunov function where the Lyapunov function is decreasing along the state

trajectory. To estimate X , the procedure outlined in Section 3.5.2 is employed. To obtain

the largest estimate of the region X , several P matrices were used. The results of this

procedure are shown in Fig. 3.7. The union of these regions X was approximated with

two quadratic polynomial inequalities and three linear state inequalities given by:

1.26x2
1−19.84x1 +467.66− x2 ≥ 0

2.36x2
1−26.72x1 +428.26− x2 ≤ 0

0.4≤ x1 ≤ 7.4

x2 ≤ 434.5

(3.82)

which will be used in the formulation of the LEMPC to ensure that the state trajectories are

maintained inside X (note that x2 is lower bounded by the second inequality).

Closed-loop Simulation Results

The control objective of this chemical process example is to operate the CSTR in an eco-

nomically optimal manner while accounting for changing economic factors and maintain-

ing the system operation inside a bounded set. For this chemical process example, the

economic measure being considered is

le(t,x,u) = A1(t)u2
2 +A2(t)u1−A3r1(x)+A4(x2−395)2 (3.83)
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where r1(x) is the reaction rate of the first reaction that produces the desired product:

r1(x) = k01e−E1/Rx2x1 . (3.84)

The economic measure of Eq. 3.83 penalizes energy usage/removal, penalizes reactant ma-

terial consumption, credits the production rate of the desired product, and penalizes the

deviation of the operating temperature from the median operating temperature. The fourth

term of the economic cost is used to prevent the LEMPC from operating the CSTR at the

boundary of the allowable operating range for long periods of time which is considered un-

desirable from a practical perspective. In this fashion, the economic cost consists of terms

that are associated with the operating cost/profit (economic terms) as well as terms that

ensure that the LEMPC operates the CSTR in a practical and safe fashion.

For this study, the weights A1 and A2 are considered to vary with time; while, A3 =

278 and A4 = 0.4 are constants over the 5.0h simulated operation of the CSTR under the

LEMPC. The weight A1 is equal to 4.0×10−6 for t = 0.0h to 4.0h and 5.0×10−6 for 4.0h

to 5.0h, and the time-dependent weight A2 is given by the following piecewise constant

relationship:

A2(t) =



333 0.0h≤ t < 1.0h

167 1.0h≤ t < 2.0h

83 2.0h≤ t < 3.0h

17 3.0h≤ t < 4.0h

167 4.0h≤ t < 5.0h

(3.85)

Since the economic cost is considered to account for more than just the operating cost/profit

of the CSTR, the weights may be considered to account for more than the price of a par-

ticular resource. For instance, the variation of the weight A2 may be caused by supply
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and/or demand changes of the reactant A. While these weights may come from a higher

level information technology system, careful tuning of these weights is critical to achieve

both practical operation with LEMPC and economically optimal (with respect to the actual

operating cost) operation. For this particular study, the economic cost has been chosen to

vary on a time-scale comparable to the one of the process dynamics.

In the first set of simulations, nominal operation (w ≡ 0) is considered to understand

the operation of the CSTR under the LEMPC operating in mode 1 only. The formulation

of the LEMPC with explicitly time-varying cost function used to accomplish the desired

control objective is

min
u∈S(∆)

∫ tk+N

tk
le(τ, x̃(τ),u(τ)) dτ

s.t. ˙̃x(t) = f (x̃(t),u(t),0)

x̃(tk) = x(tk)

u(t) ∈U, ∀ t ∈ [tk, tk+N)

1.26x̃2
1(t)−19.84x̃1(t)+467.66− x̃2(t)≥ 0, ∀ t ∈ [tk, tk+N)

2.36x̃2
1(t)−26.72x̃1(t)+428.26− x̃2(t)≤ 0, ∀ t ∈ [tk, tk+N)

0.4≤ x̃1(t)≤ 7.4, ∀ t ∈ [tk, tk+N)

x̃2(t)≤ 434.5, ∀ t ∈ [tk, tk+N)

(3.86)

where the economic measure le is given in Eq. 3.83. Since no disturbances or uncertainties

are present, the set X̂ is taken to be X (X̂ = X ). The sampling period and the pre-

diction horizon of the LEMPC is ∆ = 0.1h and N = 10, respectively. These parameters

have been chosen through extensive simulations such that the total prediction horizon is

sufficiently long to yield good economic performance of the closed-loop system. To solve

the LEMPC optimization problem at each sampling period, the open-source interior point
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solver Ipopt [187] was used. A fourth-order Runge-Kutta method with integration step of

5.0×10−4 h was used to numerically solve the nonlinear ODEs of Eq. 3.79. To assess

the total economic performance of each simulation, the total economic measure over the

simulated operation of the CSTR is defined as

M−1

∑
j=0

[
A1(t j)u2

2(t j)+A2(t j)u1(t j)−A3r1(x(t j))+A4(x2(t j)−395)2] (3.87)

where M is the number of integration steps over the entire simulated time t f and t j denotes

an integration time step.

Since the exact future values of the cost weights may not be known exactly in a practical

setting, two cases were simulated: (1) the LEMPC of Eq. 3.86 is formulated with a perfect

forecast of time-varying economic weights and (2) the LEMPC of Eq. 3.86 is formulated

with constant A1 and A2 (no forecasting). The two cases are denoted as LEMPC-1 and

LEMPC-2, respectively. For LEMPC-2, the previously obtained weights A1 and A2 are

used in the optimization problem until the LEMPC receives new weight values which are

obtained at the time instance in which the weights change.

The CSTR is initialized at the initial condition of CA(0) = 2.0kmol m−3 and T (0) =

410.0K. The results of two simulations are shown in Figs. 3.8-3.9 under LEMPC-1 and

LEMPC-2, respectively. Over the course of both of these simulations, the LEMPC schemes

operate the CSTR in a time-varying (transient) fashion. If the economic weights become

fixed or if a significant time-scale separation between economic cost change and the pro-

cess dynamics existed, steady-state operation would become optimal for this particular

economic cost and nonlinear model. Also, the LEMPC in this example is not formulated

with any periodic, average, or integral input constraints, and is not formulated with any

stabilizing constraints to enforce convergence to the economically optimal steady-state.

Therefore, the reason for the time-varying operation is due to the economic cost changing
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Figure 3.8: The states and inputs of the nominally operated CSTR under LEMPC-1 (mode

1 operation only) initialized at CA(0) = 2.0kmol m−3 and T (0) = 410.0K.
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Figure 3.9: The states and inputs of the nominally operated CSTR under LEMPC-2 (mode

1 operation only) initialized at CA(0) = 2.0kmol m−3 and T (0) = 410.0K.
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Figure 3.10: The states and inputs of the CSTR under the LEMPC of Eq. 3.86 (mode 1

operation only) when the economic cost weights are constant with time (solid line) with

the economically optimal steady-state (dashed line).

with time on a time-scale comparable to the process dynamics. To demonstrate this point,

Fig. 3.10 shows the state and input trajectories under LEMPC of Eq. 3.86 (mode 1 operation

of the controller only) where the economic cost weights are constant with time. Recalling

the LEMPC does not have any constraints that enforce convergence to the steady-state,

the CSTR under the LEMPC with a prediction horizon of N = 10 settles on an offsetting

steady-state from the economically optimal steady-state, i.e., the steady-state in Γ that op-

timizes the economic cost.

The total economic cost of the CSTR under LEMPC-1 is 2.37× 104; while, the eco-

nomic cost of the CSTR under LEMPC-2 is 2.91×104. The key factor that contributes to

the performance degradation of the second simulation (as depicted in Figs. 3.8-3.9) may be

observed in the input trajectories that the two LEMPC schemes compute. For the LEMPC-1

simulation, the LEMPC knows that the cost of the reactant material decreases at the begin-

ning of each of the first four hours of operation so it waits to utilize this resource until the
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Table 3.4: The optimal steady-state variation with respect to the time-varying economic

weights.

t C∗A,s T ∗s C∗A0,s Q∗s

0.0h≤ t < 1.0h 1.77 414.1 2.30 591.5
1.0h≤ t < 2.0h 2.12 407.5 2.61 300.9
2.0h≤ t < 3.0h 2.40 402.9 2.87 151.2
3.0h≤ t < 4.0h 2.75 398.1 3.20 -80.0
4.0h≤ t < 5.0h 2.12 407.5 2.61 240.6

beginning of each of these hours when the price is less than in the previous hour. For the

LEMPC-2 simulation, the LEMPC uses the minimum amount of reactant material at the

beginning of each of these four hours. Also, the cost of the thermal energy Q increases over

the last hour of the simulated operation. In the first case, the LEMPC utilizes the thermal

energy before the price increases to increase the reactor temperature, and then, uses less

energy thereafter. In the second case, the LEMPC supplies heat to the reactor when the

cost of thermal energy has already increased. Comparing the evolution of the states in both

cases, the regions of operation in state-space between the two cases are similar.

To assess the economic performance of the CSTR under the LEMPC, a comparison

between the CSTR under the LEMPC and under a conventional approach to optimization

and control, i.e., steady-state optimization with tracking MPC, was carried out. The CSTR

is simulated under a Lyapunov-based MPC (LMPC), formulated with a quadratic cost,

where the LMPC works to drive the system to the economically optimal steady-state which

is the minimizer of
min
(xs,us)

le(t,xs,us)

s.t. f (xs,us,0) = 0

us ∈U, xs ∈ Γ

(3.88)

for a fixed t. The optimal steady-state at a given time t is denoted as x∗s (t) and the optimal
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steady-state with time for the economic weights is given in Table 3.4.

The formulation of LMPC is as follows:

min
u∈S(∆)

∫ tk+N

tk

(
|x̃(τ)− x∗s (τ)|Qc

+ |u(τ)−u∗s (τ)|Rc

)
dτ

s.t. ˙̃x(t) = f (x̃(t),u(t),0)

x̃(tk) = x(tk)

u(t) ∈U, ∀ t ∈ [tk, tk+N)

∂V (x(tk);x∗s (tk))
∂x

f (x(tk),u(tk),0)

≤ ∂V (x(tk);x∗s (tk))
∂x

f (x(tk),h(x(tk);x∗s (tk)),0)

(3.89)

where the cost function is a quadratic cost function that penalizes the deviation of states

and inputs from the optimal (time-varying) steady-state. The sampling period and pre-

diction horizon of the LMPC are chosen to be the same as the ones of the LEMPC.

The weighting matrices are Qc = diag([2788.0,0.6]) and Rc = diag([27.8,5.0× 10−7]).

A quadratic Lyapunov function of the form given in Eq. 3.81 with a positive definite matrix

P = diag([280.0,9.0]) is considered. The Lyapunov-based controller used in the formu-

lation of the Lyapunov-based constraint is a set of proportional controllers (P-controllers)

like that of Eq. 3.80 with gains K1 = 1 and K2 = 6000. The P-controllers have been tuned

less aggressively compared to the P-controllers used in the construction of the set X to

allow the LMPC more freedom in the optimization of the control action.

The CSTR was initialized at several states in state-space and was simulated with three

control strategies: (1) LEMPC-1, (2) LEMPC-2, and (3) LMPC. The total economic cost

of each simulation is given in Table 3.5. The operating trajectories of a simulation under

LMPC are also given in Fig. 3.11 to demonstrate the differences in achievable trajectories

with the conventional MPC formulation working to track the economically optimal steady-
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Table 3.5: The total economic cost of the closed-loop reactor over several simulations

with different initial states. The performance improvement is relative to the economic

performance under LMPC.

Initial State Total Economic Cost (×105) and Performance Improvement

x1(0) x2(0) LMPC LEMPC-1 Improvement LEMPC-2 Improvement

2.0 410.0 0.908 0.237 73.9% 0.291 68.0%
2.0 425.0 2.325 0.456 80.4% 0.507 78.2%
4.0 370.0 4.274 1.234 71.1% 1.075 74.8%
4.0 395.0 2.744 0.152 94.4% 0.192 93.0%
5.0 370.0 4.164 0.634 84.8% 0.643 84.6%
6.0 360.0 5.370 1.375 74.4% 1.225 77.2%
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Figure 3.11: The states and inputs of the CSTR under the LMPC of Eq. 3.89 used to track

the economically optimal steady-state (dashed line).
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Figure 3.12: The states and inputs of the nominally operated CSTR under LEMPC-1 ini-

tialized at CA(0) = 4.0kmol m−3 and T (0) = 370.0K.

state. Clearly, the operating trajectories of the EMPC cannot be obtained by a tracking

MPC, regardless of the tuning of the weighting matrices. From the results of Table 3.5, the

economic performance of the system under both of the LEMPC schemes is better than the

performance under the tracking LMPC.

For two of the initial conditions, the economic performance was better with LEMPC-

2 compared to LEMPC-1 (Table 3.5). The closed-loop evolution of the CSTR with the

two LEMPC schemes for one of these simulations is shown in Fig. 3.12-3.13. This is a

result of not having a sufficiently long prediction horizon for these two initial conditions.

More specifically, this behavior is caused by initializing the CSTR far away from the eco-

nomically optimal region to operate the process. For this prediction horizon (N = 10),

the LEMPC cannot simulate enough of the future evolution of the process to recognize

that there is an economically better region to operate the process. As a result, the state is

maintained away from this optimal region at the beginning of both simulations. For the
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Figure 3.13: The states and inputs of the nominally operated CSTR under LEMPC-2 ini-

tialized at CA(0) = 4.0kmol m−3 and T (0) = 370.0K.

LEMPC-2 simulation, the maximum allowable amount of reactant concentration is fed to

the process from 0.0h to 1.8h. This causes the rates of the three reactions to increase. Since

the heat rate supplied/removed from the reactor is penalized in the cost and the LEMPC

does not know that the price of the reactant material will decrease at 2.0h, Q and CA0 de-

crease up to about 2.0h to maintain stability. This decrease in Q and CA0 decreases the

reactant concentration in the reactor while increasing the temperature bringing the states

closer to the economically optimal region of operation. The LEMPC is then able to ob-

serve the economically optimal region of operation along its prediction horizon. Thus, it

forces the states to this region. For LEMPC-1, the LEMPC knows that the reactant price

will decrease at the beginning of each of the first four hours. Therefore, it maintains feeding

the maximum allowable reactant material to maximize the reaction rate of the first reaction,

and it supplies less heat to the reactor compared to LEMPC-2. As a result of this behavior,

process operation is maintained far enough away from the optimal region of operation.
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Figure 3.14: The states and inputs of the CSTR under the two-mode LEMPC with added

process noise; evolution with respect to time.
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Figure 3.15: The states and inputs of the CSTR under the two-mode LEMPC with added

process noise; state-space plot.
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To assess the stability and robustness properties of the LEMPC of Eq. 3.75, the size

where the LEMPC is able to operate the system in a time-varying manner to optimize the

process economic cost is reduced and the two-mode control strategy is employed. Process

noise is added to the closed-loop system and is modeled as bounded Gaussian white noise

on the inlet reactant concentration and inlet temperature which has zero mean and the

following standard deviation and bound: 0.5kmol m−3 and 1.0kmol m−3, respectively, for

the inlet concentration noise and 3.0K and 10.0K, respectively, for the inlet temperature

noise. To simulate the noise, a new random number is generated and used to add noise in

the process model over each integration step. The region X̂ is approximated through the

following constraints:

1.20x2
1−19.17x1 +460.61− x2 ≥ 0

2.59x2
1−29.14x1 +438.36− x2 ≤ 0

0.7≤ x1 ≤ 7.1

x2 ≤ 431.5

(3.90)

which has been estimated through extensive simulations with the given process model,

economic cost, and process noise as the region whereby closed-loop stability may be main-

tained. The results of a closed-loop simulation of the CSTR are displayed in Figs. 3.14-

3.15. The LEMPC does maintain the process inside the region X for the duration of the

simulation as observed in Figs. 3.14-3.15.

3.6 Conclusions

In this chapter, various LEMPC designs were developed, which are capable of optimiz-

ing closed-loop performance with respect to general economic considerations for nonlinear
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systems. Numerous issues arising in the context of chemical process control were consid-

ered including closed-loop stability, robustness, closed-loop performance, and explicitly

time-varying economic cost functions. The formulations of the LEMPC schemes were pro-

vided as well as rigorous theoretical treatments of the schemes were carried out. Closed-

loop stability, in the sense of boundedness of the closed-loop state, under the LEMPC

designs was proven. Additionally, when desirable, the LEMPC designs may be used to

enforce convergence of the closed-loop state to steady-state. Under a specific terminal con-

straint design, the closed-loop system under the resulting LEMPC scheme was shown to

achieve at least as good closed-loop performance as that achieved under an explicit stabi-

lizing controller. Demonstrations of the effectiveness of the LEMPC schemes on chemical

process examples were also provided. Moreover, the closed-loop properties of these ex-

amples under the LEMPC schemes were compared with respect to existing approaches to

optimization and control. In all cases considered, the closed-loop economic performance

under the LEMPC designs was better relative to the conventional approaches.
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Chapter 4

Two-layer EMPC Implementation

4.1 Introduction

As discussed in Chapter 1, in the traditional paradigm to optimization and control, a hierar-

chical strategy is employed using real-time optimization (RTO) to compute economically

optimal steady-states that are subsequently sent down to a tracking MPC layer. The track-

ing MPC computes control actions that are applied to the closed-loop system to force the

state to the optimal steady-state. If there is a shift in the optimal operating conditions, RTO

updates the optimal steady-state and sends the updated steady-state to the MPC layer. On

the other hand, the EMPC merges economic optimization and control, i.e., the methods dis-

cussed in Chapters 1-3, employing a one-layer approach to optimization and control. While

EMPC merges optimization and control, the extent that EMPC takes on all the responsibili-

ties of RTO remains to be seen. For example, many EMPC methods are formulated using a

steady-state, which potentially could be the economically optimal steady-state. RTO is also

responsible for other tasks besides optimization. Therefore, one may envision that future

optimization and control structures will maintain some aspects of the hierarchical approach

within the context of industrial applications. Moreover, in some applications, maintaining a
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division between economic optimization and control is suitable, especially for applications

where there is an explicit time-scale separation between the process/system dynamics and

the update frequency or time-scale of evolution of economic factors and/or other factors

that shift optimal operating conditions, e.g., disturbances.

In an industrial control architecture, which features a high degree of complexity, a hier-

archical approach to dynamic economic optimization and control may be more applicable.

Motivated by the aforementioned considerations, several two-layer approaches to dynamic

economic optimization and control are discussed in this chapter. The upper layer, utilizing

an EMPC, is used to compute economically optimal policies and potentially, also, control

actions that are applied to the closed-loop system. The economically optimal policies are

sent down to a lower layer MPC scheme which may be a tracking MPC or an EMPC. The

lower layer MPC scheme forces the closed-loop state to closely follow the economically

optimal policy computed in the upper layer EMPC.

The unifying themes of the two-layer EMPC implementations described in this chap-

ter are as follows. First, the upper layer EMPC may employ a long prediction horizon.

The long prediction horizon ideally prevents the EMPC from dictating an operating policy

based on myopic decision-making, which may lead to poor closed-loop economic perfor-

mance. Considering a one-layer EMPC approach with a long horizon, the computational

time and complexity of the resulting optimization problem (thousands of decisions vari-

ables for large-scale systems) may make it unsuitable for real-time application. Second,

the upper layer dynamic economic optimization problem, i.e., the EMPC problem, is for-

mulated with explicit control-oriented constraints which allow for guaranteed closed-loop

stability properties. This is a departure from other two-layer approaches to dynamic op-

timization and control such as those featuring dynamic-RTO, e.g. [80, 94, 122, 93, 185,

202, 92, 192, 195, 193], which may not be formulated with such constraints. Third, the

upper layer is solved infrequently in the sense that it is not solved every sampling time like
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a standard one-layer EMPC method with a receding horizon implementation. The rate that

the upper layer EMPC is solved may be considered a tuning parameter of the optimization

and control architectures. However, the upper layer does not need to wait until the system

has reached steady-state owing to the fact that a dynamic model of the process is used in

the optimization layer.

The lower layer MPC, which may be either a tracking MPC or an EMPC, may be for-

mulated with a shorter prediction horizon and potentially smaller sampling period if state

measurement feedback is available. It is used to force the closed-loop state to track the

operating policy computed by the upper layer EMPC and to ensure closed-loop stabil-

ity and robustness. Owing to the fact that the upper layer EMPC is solved infrequently

and the lower layer MPC utilizes a shorter prediction horizon, the major benefit of a two-

layer EMPC implementation is improved computational efficiency compared to a one-layer

EMPC method.

The results of this chapter originally appeared in [51, 49, 50, 46].

4.1.1 Notation

Given that this chapter deals with control elements arranged in a multi-layer configuration,

an extended amount of notation is needed to describe the control system. To aid the reader,

Table 4.1 summarizes the notation used in this chapter. Some of the notation will be made

more precise in what follows. To clarify the difference between open-loop and closed-

loop trajectories, consider a time sequence: {t̄i}k+N̄
i=k where t̄i = i∆̄, ∆̄ > 0 is a constant and

N̄ ≥ 1 is a positive integer. Given a function ū : [t̄k, t̄k+N̄)→ U, which is right-continuous

piecewise constant with constant hold period ∆̄, the open-loop predicted state trajectory

under the open-loop input trajectory ū is the solution to the differential equation:

˙̄x(t) = f (x̄(t), ū(t),0) (4.1)
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Table 4.1: A summary of the notation used to describe the two-layer EMPC structure.

Notation Description

∆E Zeroth-order hold period used for the upper layer control
parameterization

NE Number of zeroth-order hold periods in the upper layer
EMPC prediction horizon

KE Number of hold periods, ∆E , that the upper layer EMPC
is solved

t ′ Operating period length with t ′ = KE∆E
{t̂k}k≥0 Computation time sequence of upper layer with t̂k = kt ′

(k ∈ I+)
z(·|t̂k) Open-loop predicted state trajectory under an auxiliary

controller computed at t̂k
v(·|t̂k) Open-loop input trajectory computed by an auxiliary con-

troller computed at t̂k
xE(·|t̂k) Open-loop predicted state trajectory under the upper layer

MPC at t̂k
uE(·|t̂k) Open-loop input trajectory computed by the upper layer

MPC at t̂k
∆ Sampling period size of the lower layer
N Number of sampling periods in the lower layer MPC pre-

diction horizon
{t j} j≥0 Sampling time sequence of lower layer with t j = j∆ ( j ∈

I+)
x̃(·|t j) Open-loop predicted state trajectory under the lower layer

MPC at t j
u(·|t j) Open-loop input trajectory computed by the upper layer

MPC at t j
x(·) Closed-loop state trajectory under the two-layer control

structure
u∗(t j|t j) Control action applied to the closed-loop system com-

puted at t j and applied from t j to t j+1
(xs,us) Steady-state and steady-state input pair
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for t ∈ [t̄k, t̄k+N̄) with initial condition x̄(t̄k) = x(t̄k) where x(t̄k) is a state measurement of

the closed-loop system at time t̄k. In this context, existence of a solution for a given open-

loop input trajectory is assumed. In the subsequent sections, existence and uniqueness of

a solution to Eq. 4.1 is guaranteed under mild smoothness requirements on f and the fact

that ū(·) is piecewise continuous and is computed such that the solution is maintained in a

compact state-space set. The open-loop predicted state and input trajectories are denoted as

x̄(·|t̄k) and ū(·|t̄k) to make clear that both of these trajectories, which are functions of time,

have been computed at t̄k with a state measurement at t̄k.

The term closed-loop system refers to the resulting sampled-data system of Eq. 3.1

under an MPC scheme. The closed-loop state trajectory is the solution to:

ẋ(t) = f (x(t),k(x(t j)),w(t)) (4.2)

for t ∈ [t j, t j+1) with t j = j∆ for some ∆ > 0 and j = 0,1, . . .. The mapping k(·) is a state

feedback control law. In the context of MPC, the state feedback control law is implicitly

defined from the solution of an optimization problem and the receding horizon implement

ion Specifically, the MPC receives a state measurement at a sampling time t j, computes

a control action, and applies it in a sample-and-hold fashion over the sample period, i.e.,

from t j to t j+1. The notation u∗(t j|t j) is used to denote the computed control action by the

MPC scheme at sampling time t j with a state measurement x(t j). Under an MPC scheme,

the closed-loop system is written similarly to Eq. 4.2 by replacing k(x(t j)) with u∗(t j|t j).

Finally, the notation ·∗, e.g., y∗, is used to denote that the quantity, which may be a vector

with real elements or a function defined over an appropriate domain and range, is optimal

with respect to a cost function (or cost functional) and some constraints.

130



4.2 Two-Layer Control and Optimization Framework

In this section, a two-layer dynamic economic optimization and control framework featur-

ing EMPC in the upper layer and tracking MPC in the lower layer is discussed. The same

nonlinear dynamic model is used in each layer to avoid modeling inconsistencies. Control-

oriented constraints are employed in the dynamic optimization layer to ensure closed-loop

stability. A rigorous theoretical treatment of the stability properties of the closed-loop sys-

tem with the control architecture is provided. Variants and extensions of the two-layer

optimization and control framework are discussed. The two-layer optimization and control

framework is applied to a chemical process example.

4.2.1 Class of Systems

While a similar class of nonlinear systems is considered as that described by Eq. 3.1, the

manipulated inputs are split into two groups, i.e., the input vector is given by u := [u1 u2]
T

where u1 ∈ Rm1 , u2 ∈ Rm2 , and m1 +m2 = m. Loosely speaking, the inputs are partitioned

into two groups based on their main responsibility. The input u1 is directly responsible for

economic optimization and/or has the most significant impact on the closed-loop economic

performance, while the input u2 is responsible for maintaining closed-loop stability. In the

chemical process example of Section 4.2.3, the inputs are partitioned using this rationale

as a basis. Additional methods may be employed to help identify the inputs that have the

most significant impact on the economic performance such as the methods presented in

Chapter 7.

With the two sets of inputs, the following state-space model is written to emphasize the

dependence of the vector field on each group of inputs:

ẋ = f (x,u1,u2,w) (4.3)
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where x ∈ X ⊆ Rn denotes the state vector, u1 ∈ U1 ⊂ Rm1 and u2 ∈ U2 ⊂ Rm2 denote the

two manipulated input vectors or the two sets of manipulated inputs, w ∈ Rl denotes the

disturbance vector and f is assumed to be a locally Lipschitz vector function on X×U1×

U2×W. The sets U1 and U2 are assumed to be nonempty compact sets. The disturbance

is assumed to be bounded, i.e., W := {w ∈ Rl : |w| ≤ θ} where θ > 0. The origin of the

nominal unforced system of Eq. 4.3 is assumed to be an equilibrium point ( f (0,0,0,0)= 0).

The state of the system is sampled synchronously at the time instants indicated by the time

sequence {t j} j≥0 where t j = j∆, j = 0,1, . . . and ∆ > 0 is the sampling period.

As before, a stabilizability assumption is imposed on the system of Eq. 4.3 in the sense

that the existence of a stabilizing feedback control law that renders the origin of the system

of Eq. 4.3 asymptotically stable is assumed. The stabilizing feedback control law is given

by the pair:

(h1(x),h2(x)) ∈ U1×U2 (4.4)

for all x ∈ X. While the domain of the stabilizing controller is taken to be X, it renders

the origin asymptotically stable with some region of attraction that may be a subset of X.

Applying converse Lyapunov theorems [100, 123], there exists a continuous differentiable

Lyapunov function V : D→ R+ that satisfies the following inequalities:

α1(|x|)≤V (x)≤ α2(|x|) (4.5a)

∂V (x)
∂x

f (x,h1(x),h2(x),0)≤−α3(|x|) (4.5b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (4.5c)

for all x ∈ D where αi ∈K for i = 1,2,3,4 and D is an open neighborhood of the origin.

The region Ωρ ⊆ D such that Ωρ ⊆ X is the (estimated) stability region of the closed-loop
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Figure 4.1: A block diagram of the two-layer integrated framework for dynamic economic

optimization and control with EMPC in the upper layer and tracking MPC in the lower

layer. Both the upper and lower layers compute control actions that are applied to the

system.

system under the stabilizing controller.

4.2.2 Formulation and Implementation

The dynamic economic optimization and control framework consists of EMPC in the upper

layer and tracking MPC in the lower layer. A block diagram of the framework is given in

Fig. 4.1. The prediction horizons of the EMPC and the MPC may be different. This allows

for the EMPC to be formulated with a long prediction horizon. The number of sampling

periods in the prediction horizon of the EMPC is denoted as NE ∈ I≥1, and that of the

MPC is denoted as N ∈ I≥1. For simplicity, the sampling periods of the upper layer EMPC

and lower layer MPC are assumed to be the same (∆E = ∆) and ∆ will be used to denote

the sampling period. The two-layer framework may be extended to the case where the

sampling periods are not equal.
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The upper layer EMPC problem is solved infrequently, i.e., not every sampling time.

Let KE ≥ I+ be the number of sampling times that the upper layer is resolved. The time

sequence {t̂k}k≥0 denotes the time steps that the upper layer EMPC is solved. Owing to the

implementation strategy, the time sequence is not necessarily a synchronous partitioning of

time. For sake of simplicity, let N ≤NE−KE to ensure that the upper layer EMPC problem

is computed at a rate needed to ensure that the economically optimal trajectory is defined

over the prediction horizon of the lower layer tracking MPC. If this is not satisfied, one

could employ a shrinking horizon in the lower layer LMPC. While the upper layer EMPC

computes optimal input trajectories for both sets of manipulated inputs, it sends control

actions for the manipulated input u1 to the control actuators to be applied in an open-loop

fashion. The implementation strategy is described below. The optimal operating trajectory

over the prediction horizon of the EMPC is computed by the upper layer EMPC and sent to

the lower layer tracking MPC to force the closed-loop state to track the optimal operating

trajectory. The optimal operating trajectory is defined below.

Definition 4.1. Let (u∗1,E(t|t̂k),u∗2,E(t|t̂k)), which is defined for t ∈ [t̂k, t̂k+NE∆), be the opti-

mal input pair computed by the upper layer EMPC and let x(t̂k) be the state measurement at

the sampling time t̂k. The economically optimal state trajectory x∗E(t|t̂k) for t ∈ [t̂k, t̂k+NE∆)

of the system of Eq. 4.3 is the solution of

ẋ∗E(t) = f (x∗E(t),u
∗
1,E(τi|t̂k),u∗2,E(τi|t̂k),0), t ∈ [τi,τi+1) (4.6)

for i = 0,1, . . . ,NE −1 with xE(t̂k) = x(t̂k) where τi := t̂k + i∆.

The lower layer MPC is implemented with a receding horizon implementation and thus,

is solved at every sampling time. The notation t j will be reserved to denote a sampling

time that the MPC problem is solved. To provide closed-loop stability guarantees on the

resulting control framework, the upper layer EMPC is formulated as an LEMPC (Eq. 3.3)
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and the lower layer MPC is formulated as a LMPC (Eq. 2.43). The advantage of this

formulation is that the LEMPC computes a reference trajectory that the tracking LMPC

layer may force the system to track and unreachable set-points are avoided.

An assumption is needed to ensure feasibility and stability with the resulting two-layer

framework. Owing to the fact that the upper layer EMPC is solved infrequently and applies

its computed trajectory for u1 in an open-loop fashion, an assumption is needed to ensure

that it is possible to maintain stability with the input u2 in the sense that for any u1 ∈ U1 it

possible to find a u2 ∈ U2 that ensures that the time-derivative of the Lyapunov function is

negative. This is stated in the following assumption. Also, the assumption further clarifies

how the manipulated inputs are divided into the two input groups.

Assumption 4.1. For any fixed u1,E ∈U1, there exists u2 ∈U2 such that:

∂V (x)
∂x

f (x,u1,E ,u2,0)≤
∂V (x)

∂x
f (x,h1(x),h2(x),0) (4.7)

for all x ∈Ωρ .

Variations of the assumption are discussed in Section 4.2.2.

The upper layer LEMPC has a similar formulation as that of Eq. 3.3 with one mod-

ification discussed below. The upper layer LEMPC problem is given by the following
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optimization problem:

min
u1,E ,u2,E∈S(∆)

∫ t̂k+NE ∆

t̂k
le(xE(τ),u1,E(τ),u2,E(τ)) dτ (4.8a)

s.t. ẋE(t) = f (xE(t),u1,E(t),u2,E(t),0) (4.8b)

xE(t̂k) = x(t̂k) (4.8c)

u1,E(t) ∈ U1, u2,E(t) ∈ U2, ∀ t ∈ [t̂k, t̂k +NE∆) (4.8d)

V (xE(t))≤ ρe, ∀ t ∈ [t̂k, t̂k +NE∆),

if V (x(t̂k))≤ ρe and t̂k < ts (4.8e)

∂V (xE(τi))

∂x
f (xE(τi),u1,E(τi),u2,E(τi),0)

≤ ∂V (xE(τi))

∂x
f (xE(τi),h1(xE(τi)),h2(xE(τi)),0),

i = 0,1, . . . ,NE −1, if V (x(t̂k))> ρe or t̂k ≥ ts (4.8f)

where τi := t̂k + i∆. The main difference between the upper layer LEMPC formulation and

the LEMPC formulation of Eq. 3.3 is the mode 2 contractive constraint (Eq. 4.8f). In the

upper layer LEMPC formulation, the mode 2 contractive constraint is imposed at each time

instance of the prediction horizon. This ensures that the Lyapunov function value decays

over the prediction horizon and thus, the lower layer LMPC attempts to force the closed-

loop state along a reference trajectory that either converges to Ωρe if t̂k < ts or converges

to a neighborhood of the origin if t̂k ≥ ts. The optimal trajectories computed by the upper

layer LEMPC are denoted by x∗E(t|t̂k), u∗E,1(t|t̂k), and u∗E,2(t|t̂k) defined for t ∈ [t̂k, t̂k+NE∆).

The stage cost function used in the LMPC is formulated to penalize deviations of the

state and inputs from the economically optimal trajectories. Additionally, the LMPC is

equipped with dual-mode constraints similar to that imposed in LEMPC. The dual-mode
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LMPC problem is given by the following optimization problem:

min
u2∈S(∆)

∫ t j+N

t j

lT (x̃(τ),x∗E(τ|t̂k),u2(τ),u∗2,E(τ|t̂k)) dτ (4.9a)

s.t. ˙̃x(t) = f (x̃(t),u∗1,E(t|t̂k),u2(t),0) (4.9b)

x̃(t j) = x(t j) (4.9c)

u2(t) ∈ U2, ∀ t ∈ [t j, t j+N) (4.9d)

V (x̃(t))≤ ρe, ∀ t ∈ [t j, t j+N),

if V (x(t j))≤ ρe and t j < ts (4.9e)

∂V (x(t j))

∂x
f (x(t j),u∗1,E(t j|t̂k),u2(t j),0)

≤ ∂V (x(t j))

∂x
f (x(t j),h1(x(t j)),h2(x(t j)),0),

if V (x(t j))> ρe and t j ≥ ts (4.9f)

where the stage cost of LMPC is given by:

lT (x̃,x∗E ,u2,u∗2,E) = |x̃− x∗E |2Qc
+
∣∣u2−u∗2,E

∣∣2
Rc,2

(4.10)

and Qc and Rc are positive definite tuning matrices. The constraint of Eq. 4.9e defines

mode 1 operation of the LMPC and serves a similar purpose as the mode 1 constraint

of LEMPC (Eq. 3.3e). Under mode 2 operation of the LMPC, which is defined when

the constraint of Eq. 4.9f is active, the LMPC computes control actions to ensure that

the contractive Lyapunov-based constraint is satisfied. The optimal solution of Eq. 4.9 is

denoted as u∗2(t|t j) for t ∈ [t j, t j+N).

The two-layer optimization and control framework has a number of tunable parameters.

Specifically, the tuning parameters include the weighting matrices Qc and Rc, the predic-

tion horizons N and NE , the number of sampling times that the upper layer recomputes a
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solution KE , the subset of the stability region that the control framework may operate the

system in a time-varying fashion (Ωρe), the sampling period ∆ and the triple (h1,h2,V ), i.e.,

stabilizing controller design and Lyapunov function which are used in the Lyapunov-based

constraints.

If the optimal state trajectory has been computed using mode 2 operation of the LEMPC

and the current time is less than the switching time ts, it is advantageous from a performance

perspective, to recompute a new LEMPC solution using mode 1 once the state converges to

the set Ωρe . This is captured in the implementation strategy of the two-layer optimization

and control framework that is described by the following algorithm. Let the index l ∈ I+

be the number of sampling times since the last time that the upper layer LEMPC problem

has been solved and mk be the mode of operation of the LEMPC used to solve the LEMPC

problem at t̂k. To initialize the algorithm, let t̂0 = 0, k = 0, and j = 0.

1. At t̂k, the upper layer LEMPC receives a state measurement x(t̂k) and set l = 0. If

x(t̂k) ∈Ωρe and t̂k < ts, go to Step 1.1. Else, go to Step 1.2.

1.1 The mode 1 constraint (Eq. 4.8e) is active and the mode 2 constraint (Eq. 4.8f)

is inactive. Set mk = 1 and go to Step 1.3.

1.2 The mode 2 constraint (Eq. 4.8f) is active and the mode 1 constraint (Eq. 4.8e)

is inactive. Set mk = 2 and go to Step 1.3.

1.3 Solve the optimization problem of Eq. 4.8 to compute the optimal trajectories

x∗E(t|t̂k), u∗E,1(t|t̂k), and u∗E,2(t|t̂k) defined for t ∈ [t̂k, t̂k +NE∆). Send these tra-

jectories to the lower layer LMPC and go to Step 2.

2. At t j, the lower layer LMPC receives a state measurement x(t j). If x(t j)∈Ωρe , t j < ts,

and mk = 2, set t̂k+1 = t j and k← k+ 1, and go to Step 1. Else if x(t j) ∈ Ωρe and

t j < ts, go to Step 2.1. Else, go to Step 2.2.
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2.1 The mode 1 constraint (Eq. 4.9e) is active and the mode 2 constraint (Eq. 4.9f)

is inactive. Go to Step 2.3.

2.2 The mode 2 constraint (Eq. 4.9f) is active and the mode 1 constraint (Eq. 4.9e)

is inactive. Go to Step 2.3.

2.3 Solve the optimization problem of Eq. 4.9 to compute the optimal input trajec-

tory u∗(t|t j) defined for t ∈ [t j, t j+N). Apply the input pair (u∗1,E(t j|t̂k),u∗2(t j|t j))

to the system of Eq. 4.3 from t j to t j+1. Go to Step 3.

3. If l+1 = KE , set t̂k+1 = t j+1, k← j+1, and j← j+1, and go to Step 1. Else, go to

Step 2 and set l← l +1 and j← j+1.

The two-layer implementation strategy allows for computational advantages over one-

layer EMPC structures. When the LEMPC is operating in mode 1, the LEMPC problem

is only computed once every KE sampling times. The LMPC is less computationally ex-

pensive to solve than the LEMPC because the LMPC does not compute control actions

for all of the manipulated inputs. Additionally, the LMPC may use a smaller prediction

horizon than the LEMPC. Owing to these considerations, the two-layer framework is more

computationally efficient compared to one-layer EMPC structures.

It is important to point out the two limiting cases of the optimization and control frame-

work. If all the inputs are in the group u2, then the control framework is reminiscent of

current two-layer frameworks where economic optimization, which in this case is a dy-

namic optimization problem, and control are divided into separate layers. If, on the other

hand, all inputs are placed in the group u1 or the upper layer LEMPC is solved every sam-

pling time (KE = 1), then this would correspond to a one-layer implementation of LEMPC.

For the case that all inputs are in the u1 group, the LEMPC would need to be computed

every sampling time to ensure stability and robustness of the closed-loop system.
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Variants of the Two-Layer Optimization and Control Framework

While the stability results presented in Section 4.2.2 apply to the two-layer framework

described above, one may consider many variations to the two-layer framework design. A

few such variants are listed here.

1. The upper layer EMPC does not compute input trajectories for all inputs. For in-

stance, some inputs in the u2 set may have little impact on the economic perfor-

mance. For these inputs, a constant input profile, for instance, could be assumed in

the upper layer EMPC. This could further improve the computational efficiency of

the two-layer framework. The inputs that are held constant in the EMPC problem

could be used as additional degrees of freedom in the lower layer MPC to help force

the closed-loop state to track the economically optimal state trajectory.

2. The lower layer MPC computes control actions for all the inputs, i.e., the upper

layer EMPC does not apply any control actions directly to the system, but rather,

is used to compute reference trajectories for the lower layer MPC. This approach is

similar to current optimization and control structures but employs dynamic economic

optimization with explicit control-oriented constraints imposed in the optimization

layer.

3. Other assumptions to ensure feasibility and stability of the two-layer framework than

Assumption 4.1 may be considered. For example, it may be possible to consider the

input u1 as a perturbation to the system and derive the explicit stabilizing controller

on the basis of the inputs u2. Specifically, if there exists an explicit controller h2 :

X→ U2 and Lyapunov function that satisfies:

∂V (x)
∂x

f (x,u1,h2(x),0)≤−ᾱ3(|x|) (4.11)
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for all u1 ∈ U1 and x ∈ Ωρ \B where B ⊂ Ωρ is some set containing the origin and

ᾱ(·) is a class K function, then this assumption could be used to guarantee closed-

loop stability and feasibility of the control problems. This assumption is essentially

an input-to-state stability assumption of the closed-loop system of Eq. 4.3 under the

controller h2 with respect to the input u1.

4. The two-layers could use a different sampling period size. In particular, the upper

layer could use a larger sampling period than the lower layer.

5. One could use an EMPC scheme in the lower layer instead of tracking MPC. One

such variant employing this concept is presented later in this chapter (Section 4.4).

Stability Analysis

In this section, sufficient conditions are presented that guarantee that the closed-loop system

with the two-layer dynamic economic optimization and control framework is stable in the

sense that the system state remains bounded in a compact set for all times. Two propositions

are needed, which are straightforward extensions of Proposition 3.1 and Proposition 3.2,

respectively. The propositions are restated here for convenience. The first proposition

provides an upper bound on the deviation of the open-loop state trajectory, obtained using

the nominal model (Eq. 4.3 with w≡ 0), from the closed-loop state trajectory.

Proposition 4.1 (Proposition 3.1). Consider the systems

ẋa(t) = f (xa(t), u1(t), u2(t), w(t))

ẋb(t) = f (xb(t), u1(t), u2(t), 0)
(4.12)

with initial states xa(t0) = xb(t0) ∈ Ωρ and inputs u1(t) ∈ U1 and u2(t) ∈ U2 for t ≥ t0. If

the states of the two systems are maintained in Ωρ for all t ∈ [t0, t1] (t1 > t0), there exists a
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class K function αw(·) such that

|xa(t)− xb(t)| ≤ αw(t− t0), (4.13)

for all w(t) ∈W and t ∈ [t0, t1].

The following proposition bounds the difference between the Lyapunov function of two

different states in Ωρ .

Proposition 4.2 (Proposition 3.2). Consider the Lyapunov function V (·) of the system of

Eq. 4.3. There exists a quadratic function αV (·) such that:

V (x)≤V (x̂)+αV (|x− x̂|) (4.14)

for all x, x̂ ∈Ωρ .

Theorem 1 provides sufficient conditions such that the two-layer dynamic economic

optimization and control framework guarantees that the state of the closed-loop system is

always bounded in Ωρ . The result is similar to that of the closed-loop stability properties

under LEMPC.

Theorem 4.1. Consider the system of Eq. 4.3 in closed-loop under the two-layer framework

with the LEMPC of Eq. 4.8 in the upper layer and the LMPC of Eq. 4.9 in the lower layer

both based on the explicit stabilizing controller that satisfies Eqs. 4.5a-4.5c. Let εw > 0,

∆ > 0, NE ≥ 1, N ≥ 1 (N ≤ NE −KE), ρ > ρe > ρmin > ρs > 0, and L′x, L′w and M are

positive constants (the existence of these constants follows from the assumptions on the

system of Eq. 4.3) satisfy:

ρe < ρ−αV (αw(∆)), (4.15)

−α3(α
−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆ , (4.16)
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and

ρmin = max
s∈[0,∆]

{V (x(s)) : V (x(0))≤ ρs} . (4.17)

If x(0) ∈ Ωρ and Assumption 4.1 is satisfied, then the state x(t) of the closed-loop system

is always bounded in Ωρ for all t ≥ 0. Moreover, if ts is finite, the closed-loop state is

ultimately bounded in Ωρmin .

Proof. The proof is organized into three parts. In part 1, feasibility of the optimization

problems of Eq. 4.8 and Eq. 4.9 is proved when the state measurement given to each prob-

lem is in Ωρ . In part 2, boundedness of the closed-loop state in Ωρ is established. Finally,

ultimate boundedness of the closed-loop state in a small state-space set containing the ori-

gin is proved when the switching time is finite.

Part 1: When the closed-loop state is maintained in Ωρ , which will be proved in Part 2,

the sample-and-hold input trajectory obtained from the stabilizing feedback controller is a

feasible solution to the upper layer LEMPC optimization problem of Eq. 4.8. Specifically,

let x̂(t) denote the solution at time t to the system:

˙̂x(t) = f (x̂(t),h1(x̂(τi)),h2(x̂(τi)),0) (4.18)

for t ∈ [τi,τi+1) (τi := t̂k + i∆), i = 0,1, . . . ,NE−1 with initial condition x̂(t̂k) = x(t̂k) ∈Ωρ .

Defining the pair (û1(t), û2(t)) :=(h1(x̂(τi)),h2(x̂(τi))) for t ∈ [τi,τi+1), i= 0,1, . . . ,NE−1,

the input trajectory pair (û1, û2) is a feasible solution to the LEMPC problem. Specifically,

for mode 2 operation of the LEMPC, the pair (û1, û2) meets the input constraints since it

is computed from the stabilizing controller, which satisfies the input constraints (Eq. 4.4).

Also, the mode 2 contractive constraint of Eq. 4.8f is trivially satisfied with the input pair

(û1, û2). For mode 1 operation, the region Ωρe is forward invariant under the stabilizing

controller applied in a sample-and-hold fashion when Ωρmin ⊆Ωρe ⊂Ωρ where Ωρmin will
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be explained further in Parts 2 and 3.

If Assumption 4.1 is satisfied, the feasibility of the lower layer LMPC problem of

Eq. 4.9 follows because there exists an input trajectory u1(t) for t ∈ [t j, t j+N) that decreases

the Lyapunov function by at least the rate given by the Lyapunov-based controller at each

sampling time instance along the prediction horizon. Using similar arguments as that used

for feasibility of the LEMPC, mode 2 operation of the LMPC is feasible. Assumption 4.1

further implies that there exists a sample-and-hold input trajectory such that Ωρe is forward

invariant when Ωρmin ⊆Ωρe ⊂Ωρ which guarantees that mode 1 operation of the LMPC is

feasible.

Part 2: To show that the state is maintained in Ωρ when x(0) ∈ Ωρ , two cases must

be considered. The first case occurs when the state x(t j) ∈ Ωρe and t j < ts and the second

case occurs when x(t j) ∈ Ωρ \Ωρe or t j ≥ ts. It is sufficient to show that x(t) ∈ Ωρ for all

t ∈ [t j, t j+1]. Through recursive application of this result, boundedness of the closed-loop

state in Ωρ for all t ≥ 0 follows if the initial state is in Ωρ .

Case 1: If x(t j) ∈Ωρe and t j < ts, the lower layer LMPC operates in mode 1 operation.

Regardless if the upper layer LEMPC has been computed under mode 1 or mode 2, there

exists a control action û2(t j) such that when applied to the model of Eq. 4.9b in a sample-

and-hold fashion over one sampling period the state at the next sampling time will be

predicted to be in Ωρe (this follows from Part 1). However, the closed-loop system of

Eq. 4.3 does not evolve according to the model of Eq. 4.9b owing to the forcing of the

disturbance w.

Let ρe satisfy Eq. 4.15. The proof proceeds by contradiction. Assume there exists a

time τ∗ ∈ [t j, t j+1] such that V (x(τ∗)) > ρ . Define τ1 := inf{τ ∈ [t j, t j+1] : V (x(τ)) > ρ}.

A standard continuity argument in conjunction with the fact that V (x(t j))≤ ρe < ρ shows

that τ1 ∈ (t j, t j+1], V (x(t)) ≤ ρ for all t ∈ [t j,τ1] with V (x(τ1)) = ρ , and V (x(t)) > ρ for
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some t ∈ (τ1, t j+1]. If ρe satisfies Eq. 4.15, then

ρ =V (x(τ1))≤V (x̃(τ1))+αV (αw(τ1))

≤ ρe +αV (αw(∆))< ρ (4.19)

where the first inequality follows from Propositions 4.1-4.2 and the second inequality fol-

lows from the fact that αV ◦αw ∈K and τ1 ≤ ∆. Eq. 4.19 leads to a contradiction. Thus,

x(t j+1) ∈Ωρ if Eq. 4.15 is satisfied.

Case 2: When x(t j) ∈Ωρ \Ωρe or t j ≥ ts, the lower layer LMPC operates in mode 2. To

cover both possibilities, consider any x(t j) ∈Ωρ and that mode 2 operation of the LEMPC

is active. From the constraint of Eq. 4.9f and the condition of Eq. 4.5b, the computed

control action at t j satisfies:

∂V (x(t j))

∂x
f (x(t j),u∗1,E(t j|t̂k),u∗2(t j|t j),0)

≤ ∂V (x(t j))

∂x
f (x(t j),h1(x(t j)),h2(x(t j)),0)≤−α3(|x(t j)|) (4.20)

where x(t j) denotes the closed-loop state at sampling time t j. Over the sampling period

(τ ∈ [t j, t j+1)), the time derivative of the Lyapunov function of the closed-loop system is

given by:

V̇ (x(τ)) =
∂V (x(τ))

∂x
f (x(τ),u∗1,E(t j|t̂k),u∗2(t j|t j),w(τ)) (4.21)

for τ ∈ [t j, t j+1). Adding and subtracting the first term of Eq. 4.20 to/from Eq. 4.21 and

accounting for the bound of Eq. 4.20, the time-derivative of the Lyapunov function over the
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sampling period is bounded by:

V̇ (x(τ))≤−α3(|x(t j)|)+
∂V (x(τ))

∂x
f (x(τ),u∗1,E(t j|t̂k),u∗2(t j|t j),w(τ))

− ∂V (x(t j))

∂x
f (x(t j),u∗1,E(t j|t̂k),u∗2(t j|t j),0) (4.22)

for all τ ∈ [t j, t j+1).

Since the sets Ωρ , U1, U2, and W are compact, the vector field f is locally Lipschitz,

and the Lyapunov function is continuously differentiable, there exist L′x > 0 and L′w > 0

such that:

∣∣∣∣∂V (x)
∂x

f (x,u1,u2,w)−
∂V (x′)

∂x
f (x′,u1,u2,0)

∣∣∣∣≤ L′x|x− x′|+L′w|w| (4.23)

for all x, x′ ∈ Ωρ , u1 ∈ U1, u2 ∈ U2, and w ∈W. From Eq. 4.22 and Eq. 4.23 and the

fact that the disturbance is bounded in W = {w ∈ Rl : |w| ≤ θ}, the time-derivative of the

Lyapunov function over the sampling period may be bounded as follows:

V̇ (x(τ))≤−α3(|x(t j)|)+L′x
∣∣x(τ)− x(t j)

∣∣+L′wθ (4.24)

for all τ ∈ [t j, t j+1). Again, by the fact that the sets Ωρ , U1, U2, and W are compact and

the vector field f is locally Lipschitz, there exists M > 0 such that

| f (x,u1,u2,w)| ≤M (4.25)

for all x ∈ Ωρ , u1 ∈ U1, u2 ∈ U2, and w ∈W. From Eq. 4.25 and continuity of x(τ) for

τ ∈ [t j, t j+1), the difference between the state at τ and t j is bounded by:

∣∣x(τ)− x(t j)
∣∣≤M∆ (4.26)
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for all τ ∈ [t j, t j+1). From Eq. 4.24 and Eq. 4.26 and for any x(t j)∈Ωρ \Ωρs , the inequality

below follows:

V̇ (x(τ))≤−α3(α
−1
2 (ρs))+L′xM∆+L′wθ (4.27)

for all τ ∈ [t j, t j+1) where the fact that |x| ≥ α
−1
2 (ρs) for all x ∈ Ωρ \Ωρs follows from

Eq. 4.5a.

If the condition of Eq. 4.16 is satisfied, there exists εw > 0 such that the following

inequality holds for x(t j) ∈Ωρ \Ωρs

V̇ (x(τ))≤−εw/∆

for all τ ∈ [t j, t j+1). Integrating the bound for τ ∈ [t j, t j+1), the following two bounds on

the Lyapunov function value are obtained:

V (x(t j+1))≤V (x(t j))− εw (4.28)

V (x(τ))≤V (x(t j)), ∀ τ ∈ [t j, t j+1) (4.29)

for all x(t j) ∈Ωρ \Ωρs and when mode 2 operation of the lower layer LMPC is active.

If x(t j) ∈ Ωρ \Ωρe , the closed-loop state converges to Ωρe in a finite number of sam-

pling times without leaving the stability region Ωρ which follows by applying Eq. 4.28

recursively. If t j ≥ ts and x(t j) ∈Ωρ \Ωρs , the closed-lop state converges to Ωρs in a finite

number of sampling times without leaving the stability region Ωρ (again, by recursive ap-

plication of Eq. 4.28). Moreover, once the state converges to Ωρs , it remains inside Ωρmin

for all times. This statement holds by the definition of ρmin. Therefore, from Case 1 and

Case 2, the fact that the closed-loop state is bounded in Ωρ for all t ≥ 0 when x(0) ∈ Ωρ

follows.

Part 3: If ts is finite, the lower layer LMPC will switch to mode 2 operation only and

147



the closed-loop state will be ultimately bounded in Ωρmin , which follows from Part 2.

4.2.3 Application to a Chemical Process

The two-layer framework for dynamic economic optimization and process control is imple-

mented on the benchmark chemical reactor example presented in Section 1.3.1. Recall, the

nonlinear dynamic model that describes the evolution of the reactor (Eqs. 1.5-1.8) has four

states: the vapor density in the reactor (x1), the ethylene concentration in the reactor (x2),

the ethylene oxide concentration in the reactor (x3), and the reactor temperature (x4) and

three inputs: the volumetric flow rate of the reactor feed, the ethylene concentration in the

reactor feed, and the reactant coolant temperature. With abuse of notation with the notation

used to denote the two sets of inputs in Eq. 4.3, the notation u1, u2, and u3 is used to denote

the three inputs, respectively. The reactor has an asymptotically stable steady-state:

xT
s = [0.998 0.424 0.032 1.002] (4.30)

which corresponds to the steady-state input:

u1,s = 0.35, u2,s = 0.5, u3,s = 1.0 . (4.31)

The control objective considered here is to optimize the time-averaged yield of ethylene

oxide by operating the reactor in a time-varying fashion around the stable steady-state.

Owing to the fact that closed-loop stability is not an issue for this application, the opti-

mization and control framework operates with mode 1 operation only. The time-averaged
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yield of ethylene oxide over an operating length of t f is given by

Y =

∫ t f

0
x3(t)x4(t)u1(t) dt∫ t f

0
u1(t)u2(t) dt

. (4.32)

Owing to practical considerations, the average amount of ethylene that may be fed into

the process over the length of operation is constrained to be equal to that when uniformly

distributing the reactant material to the reactor which is given by the following integral

constraint:
1
t f

∫ t f

0
u1(t)u2(t)dt = u1,su2,s = 0.175 (4.33)

where u1,s and u2,s are the steady-state inlet volumetric flow rate and ethylene concentra-

tion, respectively. Since the average ethylene fed to the reactor is fixed, which fixes the

denominator of the yield (Eq. 4.32), the economic stage cost used in the formulation of the

upper layer LEMPC is

le(x,u) =−x3x4u1 . (4.34)

In the implementation of the two-layer dynamic optimization and control framework,

the manipulated inputs are partitioned into two sets. The first set of manipulated inputs

consists of the inlet flow rate and ethylene feed concentration inputs. As pointed out in

Section 2.2, periodic switching of these two inputs may improve economic performance.

Additionally, these two inputs are constrained by the integral constraint of Eq. 4.33. There-

fore, the first set of inputs is controlled by the upper layer LEMPC, i.e., the upper layer

LEMPC computes control actions for these manipulated inputs that are applied to the reac-

tor. The second set of manipulated inputs consists of the coolant temperature input that the

lower layer LMPC (Eq. 4.9) controls.

To characterize the region Ωρe , which is used in the two-layer framework design, an
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explicit stabilizing controller is designed and a Lyapunov function is constructed. Specif-

ically, the explicit controller is designed as a proportional controller for the input u3:

h2(x) = K(x3− xs,3) + us,3 with K = 0.1. A quadratic Lyapunov function is found for

the closed-loop reactor under the proportional controller, which is given by:

V (x) = (x− xs)
T P(x− xs)

where P = diag([10 0.01 10 10]). The closed-loop stability region of the reactor under the

explicit controller with the inputs u1 and u2 fixed at their steady-state values is taken to be

a level set of the Lyapunov function where the time-derivative of the Lyapunov function is

negative definite for all points contained in the level set. The constructed level set is subse-

quently taken to be Ωρe with ρe = 0.53 and in this case, Ωρ = Ωρe . The prediction horizon

of the upper layer LEMPC and lower layer LMPC are NE = 47 and N = 3, respectively,

the sampling period is ∆ = 1.0, the number of sampling times that the upper layer LEMPC

is recomputed is KE = 47, which is the same as the prediction horizon in this case, and a

shrinking horizon employed in the lower layer LMPC when the prediction horizon extends

past the time that the upper layer optimal trajectory is defined. To ensure that the integral

constraint of Eq. 4.33 is satisfied over the length of operation, the computed input trajectory

of the upper layer LEMPC must satisfy the integral constraint, i.e., it is enforced over each

operating windows of length 47 (dimensionless time). The weighting matrices of the lower

layer LMPC are Qc = P, and Rc = 0.01 which have been tuned to achieve close tracking of

the optimal trajectory. The optimization problems of upper layer LEMPC and lower layer

LMPC are solved using Ipopt [187].

In the first set of simulations, the two-layer framework is applied to the reactor with-

out disturbances or plant-model mismatch. The reactor is initialized at a transient initial
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Two Layer Framework EMPC Trajectory

Figure 4.2: The closed-loop state trajectories of the reactor under the two-layer dynamic

economic optimization and control framework (the two trajectories are overlapping).
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Figure 4.3: The closed-loop input trajectories computed by two-layer dynamic economic

optimization and control framework (the two trajectories are overlapping).

condition given by:

xT
0 = [0.997 1.264 0.209 1.004] .

The closed-loop state and input trajectories of the reactor under the two-layer optimization

and control framework are shown in Figs. 4.2-4.3, respectively. From the state trajectories

(Fig. 4.2), the lower layer LMPC is able to force the system to track the optimal state

trajectory. Recall, the sampling periods of the upper and lower layer are the same, and the

closed-loop system is not subjected to any uncertainties or disturbances. Therefore, perfect

tracking of the optimal trajectory is expected.

As described above, the main motivation for the design of a two-layer optimization and

control architecture is to achieve a computation benefit relative to a one-layer EMPC ap-

proach. To compare the computational time of the two-layer framework with a one-layer

EMPC approach, a one-layer LEMPC implementation is considered. The LEMPC is imple-

mented with mode 1 operation only and with a shrinking prediction horizon. The shrinking
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Figure 4.4: The computational time reduction of the two-layer optimization and control

framework relative to the one-layer implementation of LEMPC.

horizon implementation is described as follows: the LEMPC is initialized with a prediction

horizon of 47 (dimensionless time) and at every subsequent sampling time, the prediction

horizon is decreased by one sampling period. Every 47 sampling times, the prediction hori-

zon is reset to 47. It is important to point out that the closed-loop performance achieved

under the two-layer LEMPC and that under the one-layer LEMPC are equal owing to the

fact there is no plant-model mismatch. Also, a fixed-horizon one-layer LEMPC implemen-

tation strategy requires more computation time on average relative to the shrinking horizon

implementation.

Fig. 4.4 gives the computational time reduction achieved with the two-layer optimiza-

tion and control framework relative to the one-layer LEMPC implementation. For this

example, the lower layer LMPC computation time is insignificant compared to the compu-

tation time of the upper layer LEMPC. The two-layer framework only solves the LEMPC
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Figure 4.5: The closed-loop state trajectories of the catalytic reactor under the two-layer

dynamic economic optimization and control framework and with process noise added to

the states.
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Figure 4.6: The closed-loop input trajectories computed by two-layer dynamic economic

optimization and control framework and with process noise added to the states (the two

trajectories are nearly overlapping).

optimization problem once every 47 sampling times. Every 47 sampling times when the up-

per layer LEMPC is solved and at the end of each operating interval of length 47 when the

one-layer LEMPC horizon has decreased to a comparable length as the horizon of the lower

layer LEMPC, the computational burden of the two-layer framework compared to that of

the one-layer LEMPC is comparable, i.e., approximately a zero percent computational time

improvement is achieved (Fig. 4.4). For the other sampling times, the computation of the

LMPC which computes control actions for the set of manipulated inputs u2 is much better

than that compared to the one-layer LEMPC. For this case, an average of 89.4 percent re-

duction of the computational time with the two-layer framework was achieved relative to

that of the one-layer LEMPC implementation.

In the second set of simulations, significant process noise was added to the system

states. The noise is assumed to be bounded Gaussian white noise with zero mean and

standard deviation of 0.005, 0.03, 0.01, and 0.02 and bounds given by 0.02, 0.1, 0.03, and
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0.08 for the four states, respectively. To simulate the process noise, a new random number

is generated and applied to the process over each sampling period. The results of a closed-

loop simulation are shown in Figs. 4.5-4.6. Because of the added process noise, the lower

layer LMPC is not able to force the closed-loop state to perfectly track the economically

optimal state trajectory. The added process noise has an effect on the closed-loop economic

performance. However, this effect was minimal in the sense that the time-averaged yield

of the closed-loop system under the two-layer framework is 10.3 percent with the added

process disturbance and 10.4 percent without the added process disturbance. Even with

the process noise, the closed-loop reactor performance is better than that at the steady-state

(the yield at steady-state is 6.4 percent).

4.3 Unifying Optimization with Time-Varying Economics

and Control

In the previous section, a two-layer framework for dynamic optimization and control is

presented. However, the framework treats the economic considerations, e.g., demand, en-

ergy pricing, variable feedstock quality, and product grade changes as time-invariant. This

paradigm may be effective, especially for the applications where there is a sufficient time-

scale separation between the time constants of the process/system dynamics and the up-

date frequency of the economic parameters. However, including the time-variation of the

economic considerations in the formulation of the economic stage cost may be needed to

achieve good closed-loop performance when the time-scales are comparable. One class of

examples where there may not be such a time-scale separation is energy systems where the

energy price may change frequently.

In this section, a two-layer framework for optimization and control of systems of the
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form of Eq. 3.1 is considered where the economic stage cost may be time-dependent in

the sense that the system of Eq. 3.1 is equipped with a time-dependent economic cost

le : [0,∞)×X×U→R that is continuous over its domain. The framework design is similar

to that in the previous section. Specifically, the upper layer dynamic economic optimiza-

tion problem (EMPC) is used to generate an economically optimal state trajectory defined

over a finite-time horizon. In the lower layer, a tracking MPC is used to force the states to

track the economically optimal trajectory. However, the main differences of the two-layer

approach presented in this section compared to that of the previous section are the EMPC

is formulated with an economic stage cost that may be explicitly time-dependent, the for-

mulations of the layers are different, and the underlying theory and analysis are different.

Explicit constraints are used in the upper layer dynamic optimization problem to ensure

that the lower layer tracking MPC may force the closed-loop state to track the trajectory

computed in the optimization layer. In particular, the optimization layer is constrained

to compute an optimal trajectory that is slowly time-varying. The resulting slowly time-

varying trajectory vector is denoted as xE(t) ∈ Γ ⊂ Rn for t ≥ 0 where Γ is a compact set

and the rate of change of the reference trajectory is bounded by

|ẋE(t)| ≤ γE (4.35)

for all t ≥ 0. The deviation between the actual state trajectory and the slowly-varying

reference trajectory is defined as e := x− xE with its dynamics described by

ė = f (x,u,w)− ẋE

= f (e+ xE ,u,w)− ẋE

=: g(e,xE , ẋE ,u,w) . (4.36)
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The state e of the system of Eq. 4.36 will be referred to as the deviation state in the remain-

der of this section.

Assumption 4.2. The system of Eq. 4.36 has a continuously differentiable, isolated equi-

librium for each fixed xE ∈ Γ, i.e., there exists a û ∈ U for a fixed xE ∈ Γ to make e = 0 the

equilibrium of Eq. 4.36 (g(0,xE ,0, û,0) = 0).

In what follows, the upper layer EMPC computes a reference trajectory that evolves

according to the nominal system dynamics ẋE = f (xE ,uE ,0) while maintaining the state

trajectory to be in the set Γ where Γ is an equilibrium manifold in the sense that Γ = {xE ∈

X : ∃ uE ∈ U s.t. f (xE ,uE ,0) = 0}. Nevertheless, the theory applies to a more general case

where the following hold: |ẋE | ≤ γE , Γ is compact and Assumption 4.2 is satisfied. One

conceptually straightforward extension of the two-layer framework is to consider steady-

state optimization in the upper layer instead of dynamic optimization. Specifically, xE

could be taken as a steady-state and varied slowly to account for the time-varying economic

considerations.

4.3.1 Stabilizability Assumption

For each fixed xE ∈ Γ, there exists a Lyapunov-based controller that makes the origin of the

nonlinear system given by Eq. 4.36 without uncertainty (w≡ 0) asymptotically stable under

continuous implementation. This assumption is essentially equivalent to the assumption

that the nominal system of Eq. 3.1 is stabilizable at each xE ∈ Γ. More specifically, for each

fixed xE ∈ Γ, the existence of a mapping h : Ds×Γ→ U and a continuously differentiable

function V : Ds×Γ→ R+ is assumed that satisfies:

α1(|e|)≤V (e,xE)≤ α2(|e|), (4.37a)
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∂V (e,xE)

∂e
g(e,xE ,0,h(e,xE),0)≤−α3(|e|), (4.37b)∣∣∣∣∂V (e,xE)

∂e

∣∣∣∣≤ α4(|e|), (4.37c)

∣∣∣∣∂V (e,xE)

∂xE

∣∣∣∣≤ α5(|e|), (4.37d)

for all e ∈Ds where αi ∈K , i = 1,2,3,4,5, Ds is an open neighborhood of the origin, and

h is the Lyapunov-based controller. In this sense, the function V is a Lyapunov function for

each xE ∈ Γ. While the inequalities of Eqs. 4.37a-4.37c are similar to the inequalities of

standard Lyapunov functions, Eq. 4.37d is needed to account for the time-varying nature

of xE . More precisely, the special requirement that the inequalities hold uniformly in xE is

required to handle the perturbation, which results from the fact that xE is not constant, but

rather, a time-varying function.

For a fixed xE ∈ Γ⊂Rn, the symbol Ωρ(xE) is a level set of the Lyapunov function, i.e.,

Ωρ(xE) := {e ∈ Rn : V (e,xE)≤ ρ(xE)} where ρ(xE)> 0 depends on xE . The region Ωρ∗ is

the intersection of stability regions Ωρ(xE) of the closed-loop system under the Lyapunov-

based controller for all xE ∈ Γ.

For broad classes of nonlinear systems arising in the context of chemical process con-

trol applications, quadratic Lyapunov functions using state deviation variables, i.e., V (x) =

(x−xs)
T P(x−xs), where xs is a steady-state, have been widely used and have been demon-

strated to yield acceptable estimates of closed-loop stability regions (see [33] and the

references therein). In the example of Section 4.3.3, a quadratic Lyapunov function is

used where instead of a fixed equilibrium xs a time-varying reference trajectory xE is

used, i.e., at time t, the Lyapunov function is given by: V (e(t),xE(t)) = e(t)Pe(t) where

e(t) = x(t)− xE(t).

Remark 4.1. If the equilibrium point e = 0 of the frozen system forced by an explicit con-

troller (ė = g(e,xE ,0,h(e,xE),0)) is exponentially stable uniformly in xE and under some
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additional mild smoothness requirements, then there exists a Lyapunov function satisfying

Eqs. 4.37a-4.37d [100, Lemma 9.8].

Remark 4.2. The set Ωρ∗ is such that for any e ∈Ωρ∗, the ability to drive the state with the

Lyapunov-based controller asymptotically to any fixed xE ∈ Γ is guaranteed. This set may

be estimated in the following way: first, the set Γ is chosen. Second, the regions Ωρ(xE)

for a sufficiently large number of xE in the set Γ are estimated. The regions Ωρ(xE) may

be estimated as the level set (ideally the largest) of V for a fixed xE ∈ Γ where V̇ < 0 with

the Lyapunov-based controller. Lastly, the stability region Ωρ∗ may be constructed from

the intersection of these computed regions. It is important to point out that the design of

the upper layer EMPC does not employ Ωρ∗. Therefore, for practical design purposes, an

explicit construction of Ωρ∗ is not needed.

4.3.2 Two-layer EMPC Scheme Addressing Time-Varying Economics

In this section, the two-layer framework for dynamic economic optimization and control for

handling time-varying economics is described and the stability and robustness properties

of the closed-loop system are given.

Formulation and Implementation

To address time-dependent economics, a two-layer framework is presented. The two-layer

framework for optimization and control may be considered an intermediate approach be-

tween existing steady-state operation and one-layer EMPC schemes. A block diagram of

the two-layer control framework is given in Fig. 4.7. In this framework, optimization and

control are effectively divided into separate tasks. However, the upper optimization layer is

formulated with specific control-oriented constraints to ensure stability. In the upper layer,

an EMPC, formulated with a time-varying economic stage cost, computes economically
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Figure 4.7: A block diagram of the dynamic economic optimization and control framework

for handling time-varying economics.

optimal state and input trajectories over a finite-time horizon. The optimal trajectories are

sent down to a lower layer tracking MPC to force the system to track the economically

optimal state trajectory. For computational efficiency, the EMPC optimization problem is

solved infrequently, i.e., it does not employ a standard receding horizon implementation

strategy. Instead, the operating time is partitioned into finite-time intervals of length t ′

called operating periods. The operating period is chosen based on the time-scale of the

process dynamics and update frequency of the economic parameters in the economic cost

function, e.g., the update frequency of the energy price, product demand, or product tran-

sitions. The length of the operating period may be considered a tuning parameter of the

control architecture. At the beginning of each operating period, the EMPC problem is ini-

tialized with a state measurement and is solved. The lower layer tracking MPC is solved

every sampling time to maintain closed-loop stability and robustness and is formulated with

a stage cost that penalizes deviations from the optimal trajectory. While in the lower layer

any MPC tracking controller could be used, Lyapunov-based MPC (LMPC) is used here
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owing to its unique stability and robustness properties.

An overview of the implementation strategy is as follows (a detailed algorithm is given

below after the formulations of the control problems are given). The operating time is

divided into finite-time operating periods of length t ′ = KE∆E where KE is some integer

greater than or equal to one. At the beginning of the operating period denoted by t̂k = kt ′

where k = 0,1, . . ., the upper layer EMPC, with hold period ∆E > 0 (zeroth-order con-

trol parameterization is employed in the upper layer EMPC) and prediction horizon of

TE = NE∆E where NE ∈ I+, receives a state measurement and computes the economically

optimal state and input trajectories. The prediction horizon of the EMPC is chosen to be

sufficiently large to cover the operating period plus the transition to the next operating pe-

riod, i.e., TE ≥ t ′+T where T = N∆ is the prediction horizon of the lower layer LMPC,

∆ > 0 denotes the sampling period of the lower layer LMPC that is less than or equal to

∆E , and N ∈ I+ is the number of sampling periods in the prediction horizon of the LMPC.

Between t̂k and t̂k + t ′, the lower layer LMPC computes control actions that work to force

the closed-loop state to track the optimal trajectories.

The upper layer EMPC optimization problem is as follows:

min
uE∈S(∆E)

∫ t̂k+TE

t̂k
le(τ,xE(τ),uE(τ)) dτ (4.38a)

s.t. ẋE(t) = f (xE(t),uE(t),0) (4.38b)

xE(t̂k) = proj
Γ

(x(t̂k)) (4.38c)

uE(t) ∈ U, ∀ t ∈ [t̂k, t̂k +TE) (4.38d)

|ẋE(t)| ≤ γE , ∀ t ∈ [t̂k, t̂k +TE) (4.38e)

xE(t) ∈ Γ, ∀ t ∈ [t̂k, t̂k +TE) (4.38f)

where S(∆E) is the family of piecewise constant functions with period ∆E , le is the time-
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dependent economic measure which defines the cost function, the state xE is the predicted

trajectory of the system with the input trajectory uE computed by the EMPC and x(t̂k) is

the state measurement obtained at time t̂k. The optimal state and input trajectory computed

by the EMPC are denoted as x∗E(t|t̂k) and u∗E(t|t̂k) defined for t ∈ [t̂k, t̂k +TE), respectively.

In the optimization problem of Eq. 4.38, the constraint of Eq. 4.38b is the nominal dy-

namic model of the system (w ≡ 0) used to predict the future evolution under the sample-

and-hold input trajectory. The constraint of Eq. 4.38c defines the initial condition of the

optimization problem which is a projection of the state measurement at t̂k onto the set Γ

where the symbol projΓ(x) denotes the projection of x onto the set Γ. The constraint of

Eq. 4.38d ensures that the computed input trajectory take values in the set of admissible in-

puts. The constraint of Eq. 4.38f limits the rate of change of the economically optimal state

trajectory. Finally, the constraint of Eq. 4.38f ensures that the state evolution is maintained

in the region Γ.

The constraint of Eq. 4.38c is used to ensure that the optimization problem is feasible.

The projection operator may be any projection operator that projects the current state x(t̂k)

onto a near (ideally the nearest) point in the set Γ. In some cases, when the sampling

periods of the upper and lower layers and the bounded disturbance are sufficiently small,

it may also be sufficient to use the predicted state x∗E(t̂k|t̂k−1) derived from the solution of

the optimization problem of Eq. 4.38 that was solved at the beginning of the preceding

operating period. Another potential option is to allow for the initial condition xE(t̂k) be a

decision variable in the optimization problem by including another term in the objective

function penalizing the deviation of the computed initial condition from the current state

x(t̂k). In this sense, the framework offers a degree of flexibility in the selection of the

projection operator.

The last two constraints of the optimization problem of Eq. 4.38 are used to guarantee

closed-loop stability under the integrated framework and to ensure that the lower layer may
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force the system to track the optimal state trajectory, i.e., they are control-oriented con-

straints. This is a departure from other types of two-layer dynamic economic optimization

and control architectures featuring, for example, dynamic real-time optimization in the up-

per optimization layer. Also, the constraint imposed in the upper layer EMPC on the rate

of change of the optimal trajectory (Eq. 4.38e) does pose a restriction on the feasible set of

the optimization problem of Eq. 4.38 and could affect closed-loop economic performance

achieved under the resulting two-layer framework. However, allowing the optimal state

trajectory to have a large rate of change may be undesirable for many applications based on

practical considerations like excessive strain on control actuators as well as the difficulty

of forcing the system to track a rapidly changing reference trajectory in the presence of

disturbances.

At the lower feedback control level, LMPC is employed to force the state to track the

economically optimal state trajectory. The LMPC is implemented with a standard receding

horizon implementation, i.e., LMPC recomputes an updated input trajectory synchronously

every sampling time. Let {t j} j≥0 where t j = j∆, j = 0,1, . . . denote the sampling time

sequence of the LMPC. Also, the dynamic model used in the LMPC is that of Eq. 4.36,

which is the deviation system. The LMPC optimization problem is given by:

min
u∈S(∆)

∫ t j+T

t j

(
|ẽ(τ)|2Qc

+ |u(τ)−u∗E(τ|t̂k)|2Rc

)
dτ (4.39a)

s.t ˙̃e(t) = g(ẽ(t),x∗E(t|t̂k), ẋ∗E(t|t̂k),u(t),0) (4.39b)

ẽ(t j) = x(t j)− x∗E(t j|t̂k) (4.39c)

u(t) ∈ U, ∀ t ∈ [t j, t j +T ) (4.39d)

∂V (ẽ(t j),x∗E(t j|t̂k))
∂e

g(ẽ(t j),x∗E(t j|t̂k),0,u(t j),0)

≤ ∂V (ẽ(t j),x∗E(t j|t̂k))
∂e

g(ẽ(t j),x∗E(t j|t̂k),0,h(ẽ(t j),xE(t j|t̂k)),0) (4.39e)
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where S(∆) is the family of piecewise constant functions with sampling period ∆, N is the

prediction horizon of the LMPC, ẽ is the predicted deviation between the state trajectory

predicted by the nominal model under the input trajectory computed by the LMPC and the

economically optimal state trajectory x∗E(·|t̂k). The optimal solution of the optimization

problem of Eq. 4.39 is denoted by u∗(t|t j) defined for t ∈ [t j, t j+N).

In the optimization problem of Eq. 4.39, the constraint of Eq. 4.39b is the nominal

model of the deviation system. The constraint of Eq. 4.39c is the initial condition to the

dynamic optimization problem. The constraint of Eq. 4.39d defines the control energy

available to all manipulated inputs. The constraint of Eq. 4.39e ensures that the Lyapunov

function of the closed-loop system with LMPC decreases by at least the rate achieved by the

Lyapunov-based controller. The last constraint ensures that the closed-loop state trajectory

converges to a neighborhood of the optimal state trajectory computed by the upper layer

EMPC.

The implementation strategy of the dynamic economic optimization and control frame-

work is summarized by the following algorithm.

1. At t̂k, the EMPC receives a state measurement x(t̂k) and projects the current state

x(t̂k) onto the set Γ. Go to Step 2.

2. The EMPC computes the economically optimal state and input trajectories: x∗E(t|t̂k)

and u∗E(t|t̂k) defined for t ∈ [t̂k, t̂k +TE). Go to Step 3.

3. For t̂k to t̂k + t ′ (one operating period), repeat:

3.1 The LMPC receives a state measurement x(t j) and computes the deviation of

the current state from the optimal state trajectory. The error e(t j) is used to

initialize the dynamic model of the LMPC. Go to Step 3.2.
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3.2 The LMPC optimization problem is solved to compute an optimal input trajec-

tory u∗(t|t j) defined for t ∈ [t j, t j +T ). Go to Step 3.3.

3.3 The control action computed for the first sampling period of the prediction hori-

zon is sent to the control actuators to be applied from t j to t j+1. If t j+1 > t̂k + t ′,

go to Step 4 and let j← j+1. Else, go to 3.1 and let j← j+1.

4. Go to Step 1, k← k+1.

Stability Analysis

In this subsection, the stability properties of the two-layer control framework with the

EMPC of Eq. 4.38 in the upper layer and the LMPC of Eq. 4.39 in the lower layer when

applied the system of Eq. 3.1. Before these properties may be presented, several properties

are presented that are needed in the analysis. Owing to the fact that Ωρ∗, Γ, U, and W are

compact sets and f is locally Lipschitz, there exists Mx > 0 such that

| f (e+ xE ,u,w)| ≤Mx (4.40)

for all e ∈ Ωρ∗, xE ∈ Γ, u ∈ U, and w ∈W. From similar conditions and since the rate of

change of xE is bounded, there exists M > 0 such that

|g(e,xE , ẋE ,u,w)| ≤M (4.41)

for all e ∈ Ωρ∗, xE ∈ Γ, u ∈ U, w ∈W and |ẋE | ≤ γE . In addition, since the Lyapunov

function V is continuously differentiable (in both arguments) and the fact that f is locally

Lipschitz, there exist positive constants Le, Lw, L′e, L′E , L′′E , L′w such that

∣∣g(e,xE , ẋE ,u,w)−g(e′,xE , ẋE ,u,0)
∣∣≤ Le|e− e′|+Lw|w|, (4.42)
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∣∣∣∣∂V (e,xE)

∂e
g(e,xE , ẋE ,u,w)−

∂V (e′,x′E)
∂e

g(e′,x′E , ẋ
′
E ,u,0)

∣∣∣∣
≤ L′e|e− e′|+L′E |xE − x′E |+L′′E |ẋE − ẋ′E |+L′w|w|

(4.43)

for all e, e′ ∈Ωρ∗, xE , x′E ∈ Γ, u ∈ U, w ∈W, |ẋE | ≤ γE , and |ẋ′E | ≤ γE .

The following Lemma gives the feasibility properties of the EMPC and therefore, by

the constraint of Eq. 4.38f, the optimal state trajectory x∗E(t|t̂k) is embedded in the set Γ for

t ∈ [t̂k, t̂k+1].

Lemma 4.1. Consider the system of Eq. 4.38b over the prediction horizon. If Assump-

tion 4.2 is satisfied, the optimization problem of Eq. 4.38 is feasible and therefore, the

optimal state trajectory x∗E(t|t̂k) for t ∈ [t̂k, t̂k +TE ] computed by applying the optimal input

trajectory u∗E(t|t̂k) defined for t ∈ [t̂k, t̂k +TE) is always embedded in the set Γ.

Proof. When the EMPC optimization problem of Eq. 4.38 is solved with an initial condi-

tion satisfying xE(t̂k)∈ Γ (this is guaranteed through the projection procedure), the feasibil-

ity of the optimization problem follows if Assumption 4.2 is satisfied because maintaining

the state at the initial condition along the predicted horizon is a feasible solution to the

optimization problem as it satisfies all the constraints, i.e., there exists a constant input tra-

jectory uE(t) = ūE ∈ U for t ∈ [t̂k, t̂k +TE) that maintains the state trajectory at its initial

condition: xE(t) = projΓ(x(t̂k)) for t ∈ [t̂k, t̂k +TE). Owing to the fact that the problem is

feasible and imposing the constraint of Eq. 4.38f, the optimal state trajectory x∗E(t|t̂k) is

bounded in the set Γ for t ∈ [t̂k, t̂k +TE ].

Theorem 4.2 provides sufficient conditions such that the LMPC may track the econom-

ically optimal trajectory x∗E . More specifically, the deviation state gets small over time until

it is bounded in a small ball containing the origin.

Theorem 4.2. Consider the system of Eq. 3.1 in closed-loop under the tracking LMPC of

Eq. 4.39 based on the Lyapunov-based controller that satisfies the conditions of Eqs. 4.37a-
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4.37d with the reference trajectory x∗E computed by the upper layer EMPC of Eq. 4.38. Let

εerror > 0, µ > 0, εw > 0, ∆ > 0, ∆E > 0, N ≥ 1, NE ≥ 1, NE∆E ≥ t ′+N∆, and γE > 0

satisfy

µ > α
−1
3

(
(L′xM+L′EγE)∆+α5(α

−1
1 (ρ∗))γE +L′wθ

θ̂

)
(4.44)

for some θ̂ ∈ (0,1),

εerror = max
s∈[0,∆]

{|e(s)| : e(0) ∈ Bµ for all xE ∈ Γ} , (4.45)

and Bµ ⊂ Bεerror ⊂ Ωρ∗. If (x(0)− x∗E(0)) ∈ Ωρ∗, then the deviation state of the system of

Eq. 4.36 is always bounded in Ωρ∗ and therefore, also, the closed-loop state trajectory x

is always bounded. Furthermore, the deviation between the state trajectory of Eq. 3.1 and

the economically optimal trajectory is ultimately bounded in Bεerror .

Proof. The proof consists of two parts. First, the LMPC optimization problem of Eq. 4.39

is shown to be feasible for all deviation states in Ωρ∗. Subsequently, the deviation state is

proved to be bounded in Ωρ∗ and to be ultimately bounded in Bεerror .

Part 1: When the deviation state is maintained in Ωρ∗ (which will be proved in Part 2),

the feasibility of the LMPC of Eq. 4.39 follows because the input trajectory obtained from

the Lyapunov-based controller is a feasible solution. Specifically, define the trajectory v

such that:

ż(t) = g(z(t),x∗E(t|t̂k), ẋ∗E(t|t̂k),v(t),0)

v(t) = h(z(ti),x∗E(ti|t̂k))

for t ∈ [ti, ti+1), i = j, j + 1, . . . ,N− 1 where z(t j) = e(t j). The trajectory v is a feasible

solution to the optimization problem of Eq. 4.39 since the trajectory satisfies the input
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and the Lyapunov function constraints of Eq. 4.39. This is guaranteed by the closed-loop

stability property of the Lyapunov-based controller.

Part 2: At t̂k, the EMPC computes an optimal trajectory x∗E(·|t̂k) for the LMPC to track

for one operating period. The computed trajectory is such that x∗E(t|t̂k) and |ẋ∗E(t|t̂k)| ≤ γE

for all t ∈ [t̂k, t̂k+1] (Lemma 4.1). For simplicity of notation, let xE(τ) = x∗E(τ|t̂k), ẋE(τ) =

ẋ∗E(τ|t̂k),
∂V (τ)

∂e
:=

∂V (e(τ),xE(τ))

∂e
, and

∂V (τ)

∂xE
:=

∂V (e(τ),xE(τ))

∂xE
(4.46)

for any τ ∈ [t j, t j+1). At any sampling time t j ∈ [t̂k, t̂k + t ′) of the LMPC, consider e(t j) ∈

Ωρ∗ (recursive arguments will be applied to show this is always the case when e(0)∈Ωρ∗).

The computed control action at t j satisfies:

∂V (t j)

∂e
g(e(t j),xE(t j),0,u∗(t j|t j),0)≤

∂V (t j)

∂e
g(e(t j),xE(t j),0,h(e(t j),xE(t j)),0)

≤−α3(|e(t j)|) (4.47)

for all e(t j) ∈ Ωρ∗. For all τ ∈ [t j, t j+1), the time derivative of the Lyapunov function is

given by:

V̇ (e(τ),xE(τ)) =
∂V (τ)

∂e
ė(τ)+

∂V (τ)

∂xE
ẋE(τ) . (4.48)

Adding and subtracting the left-hand term of Eq. 4.47 and from the bound of Eq. 4.47, the

time-derivative of the Lyapunov function may be upper bounded as follows:

V̇ (e(τ),xE(τ))≤−α3(|e(t j)|)+
∂V (τ)

∂e
g(e(τ),xE(τ), ẋE(τ),u∗(t j|t j),w(τ))

− ∂V (t j)

∂e
g(e(t j),xE(t j),0,u∗(t j|t j),0)+

∂V (τ)

∂xE
ẋE(τ) (4.49)

for all τ ∈ [t j, t j+1). From Eq. 4.43, the time derivative of the Lyapunov function (Eq. 4.49)
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may be further upper bounded:

V̇ (e(τ),xE(τ))≤−α3(|e(t j)|)+L′x|e(τ)− e(t j)|+L′E |xE(τ)− xE(t j)|

+L′′E |ẋE(τ)|+L′w|w(τ)|+α5(|e(τ)|)|ẋE(τ)|

≤ −α3(|e(t j)|)+L′x|e(τ)− e(t j)|+L′E |xE(τ)− xE(t j)|

+(L′′E +α5(|e(τ)|))γE +L′wθ (4.50)

for all e(t j) ∈Ωρ∗ and τ ∈ [t j, t j+1) where the second inequality follows from the fact that

|ẋE(τ)| ≤ γE and w(τ) ∈W.

Taking into account Eq. 4.41 and the fact that |ẋE(τ)| ≤ γE and the continuity of e and

xE , the following bounds may be derived for all τ ∈ [t j, t j+1):

∣∣e(τ)− e(t j)
∣∣≤M∆ , (4.51)∣∣xE(τ)− xE(t j)
∣∣≤ γE∆ . (4.52)

From Eqs. 4.50-4.52, the following inequality is obtained:

V̇ (e(τ),xE(τ))≤−α3(|e(t j)|)+(L′xM+L′EγE)∆

+(L′′E +α5(|e(τ)|))γE +L′wθ (4.53)

for all τ ∈ [t j, t j+1).

If ∆, γE and θ are sufficiently small such that there exist θ̂ ∈ (0,1) and (µ,εerror) sat-

isfying Eqs. 4.44-4.45 with Bµ ⊂ Bεerror ⊂Ωρ∗, the following bound on the time-derivative

of the Lyapunov function follows:

V̇ (e(τ),xE(τ))≤−(1− θ̂)α3(|e(t j)|) (4.54)
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for all τ ∈ [t j, t j+1) and e(t j)∈Ωρ∗\Bµ . Integrating this bound on t ∈ [t j, t j+1), one obtains

that:

V (e(t j+1),xE(t j+1))≤V (e(t j),xE(t j))− (1− θ̂)∆α3(|e(t j)|) (4.55)

V (e(t),xE(t))≤V (e(t j),xE(t j)) ∀ t ∈ [t j, t j+1) (4.56)

for all e(t j) ∈ Ωρ∗ \Bµ . Using the above inequalities recursively, it may be proved that if

e(t j)∈Ωρ∗\Bµ , the deviation between the actual state trajectory and the economic optimal

trajectory converges to Bµ in a finite number of sampling times without going outside the

set Ωρ∗. Since the deviation state is always embedded in the set Ωρ∗ and from Lemma 4.1,

the economically optimal state trajectory is always embedded in the set Γ, the boundedness

of the closed-loop state trajectory of Eq. 3.1 under the lower layer LMPC follows because

Ωρ∗ and Γ are compact sets.

To summarize, if e(t j) ∈Ωρ∗ \Bµ , then

V (e(t j+1),xE(t j+1))<V (e(t j),xE(t j)) . (4.57)

Furthermore, the deviation between the state trajectory and the economic optimal trajec-

tory is ultimately bounded in Bεerror where satisfies Eq. 4.45 and Bµ ⊂ Bεerror ⊂ Ωρ∗. This

statement holds because if the deviation state comes out of the ball Bµ , the deviation state

is maintained within the ball Bεerror owing to Eq. 4.45. Once the deviation comes out of the

ball Bµ , the Lyapunov function becomes decreasing.

Notes and remarks on results:

• Three factors influences the time-derivative of the Lyapunov function when e(t j) ∈

Ωρ∗ \Bµ as observed in Eq. 4.53: the sampling period of the lower layer LMPC,

the bound on the disturbance, and the bound on the rate of change of the econom-
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Table 4.2: Process parameters of the CSTR of Eq. 4.58.

F 5.0 m3 h−1 ∆H −1.2×104 kJ kmol−1

VR 1.0 m3 k0 3.0×107 h−1

T0 300 K E 5.0×104 kJ kmol−1

R 8.314 kJ kmol−1 K−1 ρL 1000 kg m−3

Cp 0.231 kJ kg−1 K−1

ically optimal trajectory. While the bound on the disturbance is a property of the

system, two of the other properties may be used to achieve a desired level of track-

ing: the sampling period of the lower level control loop and the rate of change of the

economically optimal tracking trajectory.

• Theorem 4.2 clarifies how the parameter γE arises and why it is needed in the formu-

lation of the EMPC of Eq. 4.38.

• No guarantee is made that the closed-loop economic performance with the two-layer

framework is better compared to the performance using a steady-state model in the

upper layer. In some cases, it may be the case that closed-loop performance is the

same or possibly better using a steady-state model in the upper layer EMPC. In this

case, the stability result presented here may be extended to the case where the optimal

steady-state varies sufficiently slow.

4.3.3 Application to a Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where an

elementary (first-order) reaction takes place of the form A→ B. The feed to the reactor

consists of pure A at volumetric flow rate F , temperature T0+∆T0 and molar concentration

CA0 +∆CA0 where ∆T0 and ∆CA0 are disturbances. A jacket around the reactor is used

to provide/remove heat to the reactor. The dynamic equations describing the behavior
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of the system, obtained through material and energy balances under standard modeling

assumptions, are given below:

dT
dt

=
F
VR

(T0 +∆T0−T )− ∆Hk0

ρLCp
e
−E
RT CA +

Q
ρLCpVR

(4.58a)

dCA

dt
=

F
VR

(CA0 +∆CA0−CA)− k0e
−E
RT CA (4.58b)

where CA is the concentration of the reactant A in the reactor, T is the reactor temperature,

Q is the rate of heat input/removal, VR is the reactor volume, ∆H is the heat of the reaction,

k0 and E are the pre-exponential constant and activation energy of the reaction, respectively,

Cp and ρL denote the heat capacity and the density of the fluid in the reactor, respectively.

The values of the process parameters are given in Table 4.2. The state vector is x = [T CA]
T

and the manipulated inputs are the heat rate u1 = Q where u1 ∈ [−2,2]× 105 kJ h−1 and

the inlet reactant concentration u2 =CA0 where u2 ∈ [0.5,8.0] kmol m−3. The feed distur-

bances are modeled as bounded Gaussian white noise with zero mean, variances 20K2 and

0.1kmol2 m−6, and bounds given by |∆T0| ≤ 15K and |∆CA0| ≤ 1.0kmol m−3.

The control objective is to force the system to track the economically optimal time-

varying operating trajectories computed by the upper layer EMPC. The set Γ is defined

as

Γ := {x ∈ R2 : 340≤ x1 ≤ 390K, 0.5≤ x2 ≤ 3.0kmol m−3} . (4.59)

In this example, the time-varying economic stage cost penalizes energy consumption, cred-

its conversion of the reactant to the product, and penalizes the deviation of temperature from

365.0K and is given by:

le(t,x,u) = A1(t)u2
1−A2(t)

(u2− x2)

u2
+A3(t)(x1−365.0K)2 (4.60)
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where A1, A2, and A3 are the potentially time-varying weighting factors. The last term in the

economic stage cost is used to prevent the system from operating on the boundary of Γ for

long periods of time. The magnitudes of the economic weighting factors have been chosen

so that all terms in the economic cost have the same order of magnitude. For this example,

A1 and A3 are chosen to be time-varying and A2 = 10 is constant. The time-varying weight

A1(t), over four hours of operation, is given by

A1(t) =



1.0×10−7, t < 1.0h

5.0×10−8, 1.0h≤ t < 2.0h

1.0×10−8, 2.0h≤ t < 3.0h

5.0×10−8, 3.0h≤ t ≤ 4.0h

and is used to model the time-varying energy cost. The time-varying weight A3(t) is given

by

A3(t) =



1.0×10−2, t < 1.0h

7.5×10−3, 1.0h≤ t < 2.0h

5.0×10−3, 2.0h≤ t < 3.0h

7.5×10−3, 3.0h≤ t ≤ 4.0h

The rationale for varying A3 is to allow the CSTR be operated over a larger temperature

range when the energy cost decreases and thus, take advantage of the decreased energy cost.

The upper layer EMPC is implemented with a sampling period of ∆E = 36s and prediction

horizon of NE = 60 sampling periods. It is solved every 0.50h, i.e., the operating period

is chosen to be t ′ = 0.50h. The prediction horizon and operating period were chosen to

account for the update frequency of the economic weighting parameters. It was found that

defining and imposing a rate of change constraint in the upper layer EMPC, i.e., defining the

174



parameter γE , was not needed for this particular example because the closed-loop system

under the lower layer LMPC was able to achieve acceptable tracking performance without

imposing a rate of change constraint in the upper layer EMPC. The projection operator is

such that it projects the current state to the closest boundary of Γ if the current state is out-

side the set Γ, e.g., if x = [400K 2.0kmol m−3]T , then projΓ(x) = [390K 2.0kmol m−3]T .

To design the lower layer LMPC, a Lyapunov-based controller is designed for the

CSTR, which is essentially two proportional controllers that account for the input con-

straints. Specifically, the two proportional controllers are given by:

−K1(x1− x∗E,1)+us,1,

−K2(x2− x∗E,2)+us,2

(4.61)

where K1 = 8000, K2 = 0.01, and us is the steady-state input corresponding to the steady-

state x∗E , i.e., the input vector that makes the right-hand side of Eqs. 4.58a-4.58b equal to

zero with the state vector x∗E . The resulting Lyapunov-based controller design for the CSTR

is derived by accounting for the input constraints in the controller design of Eq. 4.61 as well

as for the fact that us may be written as a function of xE , i.e., the resulting Lyapunov-based

controller is a mapping h that maps the pair (e,xE) to h(e,xE) ∈ U. A quadratic Lyapunov

function of the form V (e,xE) = eT Pe is constructed for the closed-loop system under the

Lyapunov-based controller with

P =

10 1

1 100

 . (4.62)

The LMPC is implemented with a sampling time ∆ = 36s, prediction horizon N = 5, and

weighting matrices of Qc = P and Rc = diag
[

10−7 10

]
. The prediction horizon and

weighting matrices of the lower layer LMPC were tuned to achieve a close tracking of the
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optimal state trajectory.

With the nonlinear system of Eqs. 4.58a-4.58b, the Lyapunov-based controller, and the

Lyapunov function, the stability regions of the closed-system under the Lyapunov-based

controller may be estimated for a sufficiently large number of points in Γ. This procedure

was carried out as follows: fix xE ∈ Γ and compute a level set of the Lyapunov function

where V̇ < 0 for all points contained in the level set. The intersection of all these level sets

is taken to be an estimate of the closed-loop stability region Ωρ∗ of the CSTR under the

Lyapunov-based controller. In this example, Ωρ∗ is estimated to be ρ∗ = 110. Through the

Lyapunov-based constraint on the LMPC of (Eq. 4.39e), the closed-loop system with the

two-layer framework inherits the stability region Ωρ∗ .

To simulate the closed-loop system, explicit Euler method with integration step 0.36s

was used to integrate the ODEs and the open source interior point solver Ipopt [187] was

used to solve the optimization problems. Three sets of closed-loop simulations were com-

pleted. In the first set of closed-loop simulations, the stability properties of the closed-loop

system under the two-layer dynamic economic optimization and control framework are

demonstrated. Second, time-varying operation with the two-layer dynamic economic opti-

mization and control framework is analyzed. Third, the closed-loop economic performance

of the CSTR under the two-layer framework is compared to the CSTR under a conventional

approach to optimization and control.

To demonstrate the closed-loop stability properties of the proposed two-layer frame-

work, the CSTR is initialized at x0 = [400K, 0.1kmol m−3] which is outside of Γ, but

inside the stability region Ωρ∗. The projection operator of the upper layer EMPC projects

the initial state onto the state xE,0 = [390K, 0.5kmol m−3] ∈ Γ to use as an initial condi-

tion to the upper layer EMPC problem of Eq. 4.38. The evolution of the closed-loop system

under the two-layer framework and with the inlet temperature and reactant concentration

disturbance is shown in Figs. 4.8-4.9. From Fig. 4.9, the deviation of the actual closed-loop
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Figure 4.8: The closed-loop state and input trajectories of Eq. 4.58a-4.58b under the two-

layer optimization and control framework with the feed disturbances and starting from

400K and 0.1kmol m−3.
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Figure 4.9: The closed-loop state trajectory of Eq. 4.58a-4.58b under the two-layer opti-

mization and control framework with the feed disturbances and starting from 400K and

0.1kmol m−3 shown in deviation state-space.
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Figure 4.10: The closed-loop system states and inputs of Eq. 4.58a-4.58b without the feed

disturbances and starting from 400K and 3.0kmol m−3.

state and the economically optimal state is always maintained inside Ωρ∗. Moreover, the

deviation becomes small over time until it is ultimately bounded in a small ball.

Two simulations of the closed-loop system without the feed disturbances added are

shown in Figs. 4.10-4.11 with two different initial conditions to analyze the time-varying

operation with the two-layer dynamic economic optimization and process control frame-

work. The initial state in Fig. 4.10 is x0 = [400K, 3.0kmol m−3]T , while the initial state

in Fig. 4.11 is x0 = [320K, 3.0kmol m−3]T . The closed-loop evolution of the two cases

is initially different. For the CSTR starting at the larger temperature, heat should be re-

moved from the reactor and the minimum amount of reactant material should be supplied

to the reactor to decrease the temperature of the reactor. In contrast, when the CSTR is

initialized at the smaller temperature, heat should be supplied to the reactor and reactant

material should be fed to the reactor to increase the reactor temperature. After a sufficiently

long length of operation, the effect of the initial condition diminishes and the closed-loop
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Figure 4.11: The closed-loop system states and inputs of Eq. 4.58a-4.58b without the feed

disturbances and starting from 320K and 3.0kmol m−3.

evolution of the two cases becomes similar. For both of these cases, the reactor is operated

in a time-varying fashion, i.e., never converges to a steady-state.

To compare the closed-loop economic performance under the dynamic economic op-

timization and control framework and under a conventional approach to optimization and

control, the total economic cost over the length of operation is defined as

JE =
M

∑
j=0

(
A1(t j)Q2(t j)+A2

CA(t j)

CA0(t j)
+A3(T (t j)−365)2

)
(4.63)

where t0 is the initial time of the simulation and tM = 4.0h is the end of the simulation.

The conventional approach to optimization and control uses a steady-state economic op-

timization problem to compute the optimal steady-states with respect to the time-varying

economic cost weights. The optimal steady-states are used in a tracking MPC, which in

this case is an LMPC, to force the CSTR states to the optimal steady-states. The optimal
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Table 4.3: Comparison of the total economic cost, given by Eq. 4.63, of the closed-loop

system with and without the feed disturbances for four hours of operation.

Initial Conditions Total Economic Cost

T (0) K CA(0)
kmol m−3

Steady-State
Optimization

without
Disturbance

Two-layer
Framework

without
Disturbance

Cost
Decrease

Steady-State
Optimization

with
Disturbance

Two-layer
Framework

with
Disturbance

Cost
Decrease

400.0 3.0 21970.5 14531.1 51.2 % 21642.4 14130.7 53.2 %
380.0 3.0 5235.4 3409.5 53.6 % 5060.1 3037.9 66.6 %
360.0 3.0 4261.8 3308.6 28.8 % 4083.2 2997.1 36.2 %
340.0 3.0 13732.2 10997.3 24.9 % 13554.9 10882.3 24.6 %
320.0 3.0 23719.4 19315.9 22.8 % 23729.1 19210.3 23.5 %
400.0 2.5 18546.8 10062.1 84.3 % 18283.4 9691.4 88.7 %
380.0 2.5 4558.7 3163.3 44.1 % 4387.2 2811.9 56.0 %
360.0 2.5 4496.4 3335.6 34.8 % 4322.7 3030.3 42.6 %
340.0 2.5 14078.3 11034.4 27.6 % 13910.2 10928.8 27.3 %
320.0 2.5 24052.2 19293.4 24.7 % 24002.2 19193.8 25.1 %
400.0 2.0 14831.5 6774.0 118.9 % 14682.4 6412.6 129.0 %
380.0 2.0 4073.2 3085.1 32.0 % 3905.0 2739.8 42.5 %
360.0 2.0 4765.4 3431.2 38.9 % 4596.4 3139.3 46.4 %
340.0 2.0 14395.5 11162.3 29.0 % 14236.8 11068.2 28.6 %
320.0 2.0 24202.7 19241.2 25.8 % 24223.5 19146.7 26.5 %
400.0 0.1 8146.1 4360.5 86.8 % 7999.4 4025.7 98.7 %

(time-varying) steady-state from steady-state economic optimization is

x∗s (t) =



[370.0K, 2.576kmol m−3]T , t < 1.0h

[371.7K, 2.447kmol m−3]T , 1.0h≤ t < 2.0h

[375.2K, 2.205kmol m−3]T , 2.0h≤ t < 3.0h

[371.7K, 2.447kmol m−3]T , 3.0h≤ t ≤ 4.0h

with the corresponding steady-state input of

u∗s (t) =



[0.0kJ h−1, 3.923kmol m−3]T , t < 1.0h

[−0.5kJ h−1, 3.827kmol m−3]T , 1.0h≤ t < 2.0h

[0.0kJ h−1, 3.653kmol m−3]T , 2.0h≤ t < 3.0h

[−0.5kJ h−1, 3.827kmol m−3]T , 3.0h≤ t ≤ 4.0h
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An LMPC is implemented to drive the system to the time-varying optimal steady-state,

which is formulated as follows:

min
u∈S(∆)

∫ t j+N

t j

(
|x̃(τ)− x∗s (τ)|Qc

+ |u(τ)−u∗s (τ)|Rc

)
dτ

s.t. ˙̃x(t) = f (x̃(t),u(t),0),

x̃(t j) = x(t j),

−2×105 ≤ u1(t)≤ 2×105, ∀ t ∈ [t j, t j+N),

0.5≤ u2(t)≤ 8, ∀ t ∈ [t j, t j+N),

∂V (x(t j))

∂x
f (x(t j),u(t j),0)

≤ ∂V (x(t j))

∂x
f (x(t j),h(x(t j),x∗s (t j)),0)

(4.64)

where the Lyapunov function, the Lyapunov-based controller, the weighting matrices Rc

and Qc, the sampling period ∆, and the prediction horizon N are all the same as the ones

used in the tracking LMPC scheme. To make a fair comparison, the same realization of the

feed disturbances was applied to each closed-loop system simulation. The total economic

cost values of several closed-loop simulations starting from different initial conditions and

with and without the feed disturbances are given in Table 4.3. From the results of Table 4.3,

the largest economic cost decrease occurs when the CSTR is initialized at higher tempera-

ture. When the CSTR starts from a lower temperature, the amount of heat that needs to be

supplied to the reactor initially is less than the amount of heat that needs to be initially re-

moved when the CSTR starts at a higher temperature as explained above and demonstrated

in Figs. 4.10-4.11. Thus, when the CSTR starts from a higher temperature, better closed-

loop performance is achieved because less energy is required to be supplied/removed from

the reactor.
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4.4 Addressing Closed-loop Performance and Computa-

tional Efficiency

An important theoretical consideration is the closed-loop performance of systems under

EMPC because EMPC is formulated with a finite prediction horizon. The achievable

closed-loop economic performance may strongly depend on the prediction horizon length.

To address guaranteed closed-loop economic performance while formulating a computa-

tionally efficient control structure, a two-layer EMPC structure is presented in this sec-

tion. In contrast to the two-layer EMPC methodologies presented in the previous sections,

EMPC schemes are used in both layers of the two-layer EMPC structure to ensure eco-

nomic performance improvement over a tracking controller, e.g., tracking MPC.

Each layer is formulated as an LEMPC scheme. The core idea of the two-layer LEMPC

implementation is to solve the upper layer LEMPC infrequently (not every sampling pe-

riod) while employing a long prediction horizon. Then, the solution generated by the upper

layer LEMPC is subsequently used in the formulation of a lower layer LEMPC. The lower

layer LEMPC is formulated with a shorter prediction horizon and smaller sampling time

than the upper layer LEMPC and computes control actions that are applied to the closed-

loop system. The control actions of the lower layer LEMPC are constrained to maintain the

state near the economically optimal trajectories computed in the upper layer. For guaran-

teed performance improvement with the two-layer LEMPC implementation scheme, both

layers are formulated with explicit performance-based constraints computed by taking ad-

vantage of the availability of an auxiliary stabilizing controller. The performance-based

constraints, i.e., terminal constraints, are similar to that presented in Section 3.4, and guar-

antee that both the finite-time and infinite-time closed-loop economic performance under

the two-layer LEMPC scheme are at least as good as that under the stabilizing controller.

The use of the two-layer control implementation allows for the control architecture to be
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computationally efficient. The two-layer LEMPC structure is applied to a chemical process

example to demonstrate the closed-loop performance, stability, and robustness properties

of the two-layer LEMPC structure.

4.4.1 Class of Systems

In this section, nominally operated systems are considered, i.e., the system of Eq. 3.1 with

w≡ 0. Specifically, the class of continuous-time nonlinear systems considered is described

by the following state-space form:

ẋ = f (x,u) (4.65)

where the state vector is x∈X⊆Rn and the input vector is u∈U⊂Rm. The vector function

f : X×U→ X is a locally Lipschitz vector function on X×U. The set of admissible

inputs U is assumed to be a compact set, and the state is synchronously sampled at time

instances j∆ with j = 0,1,2, . . . where ∆ > 0 is the sampling period. As before, the initial

time is taken to be zero, and the notation t will be used for the continuous-time, while

the time sequence {t j} j≥0 is the discrete sampling time sequence which is a synchronous

partitioning of R+ with t j = j∆.

A time-invariant economic measure le : X×U→R is assumed for the system of Eq. 4.3

that describes the real-time system economics. The economic measure is assumed to be

continuous on X×U. The optimal steady-state x∗s and steady-state input u∗s pair with respect

to the economic cost function is computed as follows:

(x∗s ,u
∗
s ) = argmin

xs∈X,us∈U
{le(xs,us) : f (xs,us) = 0} .

The existence of a minimizing pair where the minimum is attained and such that the mini-

mizing pair lies in the interior of X×U is assumed. For the sake of simplicity, the optimal
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steady-state pair is assumed to be unique and to be (x∗s ,u
∗
s ) = (0,0).

4.4.2 Existence of a Stabilizing Controller

A stronger stabilizability-like assumption than the assumption imposed in previous sections

and chapters is needed here (stated in Assumption 4.3). In this section, the existence of a

stabilizing controller that renders the origin of the closed-loop system exponentially stable

under continuous implementation is assumed whereas, previously, the existence of a stabi-

lizing controller is assumed that renders the closed-loop system only asymptotically stable

under continuous implementation. The stronger assumption is needed to ensure that the

stabilizing controller renders the origin of the closed-loop system exponentially (and there-

fore, asymptotically) stable under sample-and-hold implementation. This will be required

to consider infinite-time closed-loop economic performance. Specifically, asymptotic con-

vergence to the origin and not just convergence to a neighborhood of the steady-state (prac-

tical stability of the origin) will be required.

Assumption 4.3. There exists a locally Lipschitz feedback controller h : X → U with

h(0) = 0 for the system of Eq. 4.65 that renders the origin of the closed-loop system under

continuous implementation of the controller locally exponentially stable. More specifically,

there exist constants ρ > 0, ci > 0, i = 1,2,3,4 and a continuously differentiable Lyapunov

function V : X→ R+ such that the following inequalities hold:

c1 |x|2 ≤V (x)≤ c2 |x|2 , (4.66a)

∂V (x)
∂x

f (x,h(x))≤−c3 |x|2 , (4.66b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4 |x| , (4.66c)
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for all x ∈Ωρ ⊆ X.

Explicit feedback controllers that may be designed to satisfy Assumption 4.3 are, for

example, feedback linearizing controller and some Lyapunov-based controllers, e.g., [100,

101]. The origin of the closed-loop system of Eq. 4.65 under the feedback controller, h(x),

implemented in a zeroth-order sample-and-hold fashion with a sufficiently small sampling

period ∆ > 0, i.e., the controller is applied as an emulation controller may be shown to be

exponentially stable (Corollary 2.1). Moreover, the proof of Corollary 2.1 shows that V is

a Lyapunov function for the closed-loop sampled-data system in the sense that there exists

a constant ĉ3 > 0 such that

∂V (x(t))
∂x

f (x(t),h(x(t j)))≤−ĉ3 |x(t)|2 (4.67)

for all t ∈ [t j, t j+1) and integers j≥ 0 where x(t) is the solution of Eq. 4.65 at time t starting

from x(t j) ∈Ωρ and with the input u(t) = h(x(t j)) for t ∈ [t j, t j+1). The stability region of

the closed-loop system under the controller is defined as Ωρ ⊆ X .

4.4.3 Two-layer EMPC Structure

A detailed description of the two-layer LEMPC structure is provided which includes de-

scriptions of the implementation strategy, the formulations of the upper and lower layer

LEMPC schemes, and the provable stability and performance properties.

Implementation Strategy

The objective of the two-layer LEMPC design is to ensure that both the finite-time and

infinite-time closed-loop economic performance of the resulting closed-loop system will

be at least as good the closed-loop performance under a stabilizing controller. To address
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Upper Layer
LEMPC

Lower Layer
LEMPC

System
ẋ = f(x, u)

Auxiliary
Controller

z(t̂k+1|t̂k)

x∗E(tj+Nj |t̂k)

u∗(tj |tj)x(tj)

x(t̂k)x(t̂k)

Figure 4.12: Block diagram of the two-layer EMPC structure addressing closed-loop per-

formance and computational efficiency.

this objective, performance-based constraints are employed in the formulation of the up-

per and lower layer LEMPC that have been computed from the stabilizing controller. The

stabilizing controller may be any controller that satisfies Assumption 4.3. For example,

the stabilizing controller may be an explicit controller that satisfies Assumption 4.3 or an

LMPC scheme, which is equipped with a contractive Lyapunov constraint designed us-

ing an explicit controller that satisfies Assumption 4.3. The formulation of such a LMPC

scheme is provided below. However, it is important to point out that the amount of com-

putation required to solve the LMPC is generally greater than that required for an explicit

controller. The stabilizing controller will be referred as the auxiliary controller for the

remainder.

A block diagram of the two-layer LEMPC is given in Fig. 4.12. In the upper layer, an

LEMPC is used to optimize dynamic operation over a long horizon while accounting for the

performance-based constraints generated from the auxiliary controller. Both the auxiliary

controller and the upper layer LEMPC compute their input trajectories at the beginning
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of some operating window, and thus, the auxiliary controller and upper layer LEMPC are

computed once each operating window for computational efficiency. In the lower layer, an

LEMPC, using a shorter prediction horizon and a smaller sampling period than the upper

layer LEMPC, computes control inputs that are applied to the process. Terminal constraints

that have been generated from the upper layer LEMPC optimal solution are used to ensure

that the lower layer LEMPC guides the system along the optimal solution computed in

the upper layer since it uses a shorter prediction horizon and a smaller sampling period.

In this manner, the lower layer LEMPC is used to improve robustness of the closed-loop

system (recomputes its optimal trajectory every sampling period to incorporate feedback)

as well as for possibly providing additional economic cost improvement over the upper

layer LEMPC solution owing to the use of a smaller sampling time.

To maintain consistency of the notation, the operating window is denoted as t ′ and is

equal to NE∆E where NE ∈ I+ is the number of hold periods in the prediction horizon

of the upper layer LEMPC and ∆E > 0 is the hold period of the piecewise constant input

trajectory computed in the upper layer (here, KE =NE). The time sequence {t̂k}k≥0 denotes

the discrete time steps that the upper layer computes a solution to its control problem where

t̂k = kt ′ and k = 0,1, . . ..

At the beginning of each operating window, the upper layer control problems are solved

in a sequential manner: first, the auxiliary controller is solved to obtain its corresponding

open-loop predicted state and input trajectories over the operating window and second, the

upper layer LEMPC is solved to obtain its corresponding open-loop predicted state and

input trajectories over the operation window. Specifically, the auxiliary controller com-

putes the open-loop (predicted) input trajectory that it would apply to the system over the

time t̂k to t̂k+1 = (k + 1)t ′ along with the open-loop state trajectory under the computed

input trajectory. If the auxiliary controller is an explicit controller, then the open-loop state

187



trajectory is computed by recursively solving:

ż(t) = f (z(t),h(z(τi))) (4.68)

for t ∈ [τi,τi+1), i= 0,1, . . . ,NE−1 where τi := t̂k+ i∆E , z(t̂k)= x(t̂k) is the initial condition,

and x(t̂k) is a state measurement obtained at t̂k. If, instead, the auxiliary controller is an

LMPC, then the open-loop state trajectory may be obtained directly from the solution of

the optimization problem. The open-loop state and input trajectories under the auxiliary

controller are denoted as z(t|t̂k) and v(t|t̂k) for t ∈ [t̂k, t̂k+1) = [kt ′,kt ′+NE∆E), respectively.

The terminal state of the open-loop state trajectory, z(t̂k+1|t̂k), is then sent to the upper level

LEMPC.

The upper layer LEMPC subsequently uses z(t̂k+1|t̂k) as a terminal equality constraint

in the optimization problem. In this framework, no restrictions are placed on the type of op-

eration achieved under the two-layer framework, i.e., it could be steady-state type operation

or some more general time-varying operating behavior. Therefore, the upper level LEMPC

is a LEMPC (Eq. 3.3) equipped with mode 1 operation only. If steady-state operation is

desirable, one could formulate the upper level LEMPC with a mode 2 constraint similar to

that of Eq. 4.8f to ensure that the optimal steady-state is asymptotically stable under the

two-layer LEMPC. However, the mode 2 constraint of LEMPC is not discussed further.

After receiving z(t̂k+1|t̂k) from the auxiliary controller and a state measurement at t̂k, the

upper layer LEMPC is solved to compute its optimal state and input trajectories over the

operating window, which are denoted as x∗E(t|t̂k) and u∗E(t|t̂k) for t ∈ [t̂k, t̂k+1), respectively.

The upper layer hold period is divided into N̄ subintervals of length ∆ (∆ = ∆E/N̄

where N̄ is a positive integer). The subintervals define the sampling period of the lower

layer LEMPC and correspond to the sampling time sequence {t j} j≥0. The lower layer

LEMPC recomputes its optimal input trajectory employing a shrinking horizon. Namely,
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x∗s
Ωρ

x(0)

z(t′|0)

z(2t′|t′)

Figure 4.13: A state-space illustration of the evolution of the closed-loop system (solid

line) in the stability region Ωρ over two operating periods. The open-loop predicted state

trajectory under the auxiliary controller is also given (dashed line). At the beginning of

each operating window, the closed-loop state converges to the open-loop state under the

auxiliary controller.

at the beginning of each hold period of the upper layer, the lower layer is initialized with

a prediction horizon N j = N̄. The lower layer LEMPC receives a state measurement, de-

noted as x(t j), as well as x∗E(t j+N j |t̂k) from the upper layer LEMPC. Using x∗E(t j+N j |t̂k) as a

terminal equality constraint in the lower layer LEMPC, the lower layer LEMPC is solved.

The optimal input trajectory computed by the lower layer LEMPC is denoted as u∗(t|t j),

t ∈ [t j, t j+N j). At the subsequent sampling period of the lower layer LEMPC, the prediction

horizon decreases by one (N j+1 = N j− 1). If decreasing the horizon results in the hori-

zon being set to zero, the prediction horizon is reset to N̄ = ∆E/∆. This happens at the

beginning of the next hold period of the upper layer LEMPC.

The implementation strategy is summarized below and an illustration of the closed-

loop system is given in Figure 4.13. The lower layer LMPC is initialized with a prediction

horizon of N0 = N̄ = ∆E/∆. To initialize the algorithm, let k = 0 and j = 0.

1. Upper layer: At t̂k, the auxiliary controller and the upper layer LEMPC are initial-
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ized with the state measurement x(t̂k). Go to Step 1.1.

1.1 The auxiliary controller computes its optimal input trajectory denoted as v(t|t̂k)

defined for t ∈ [t̂k, t̂k+1) and corresponding state trajectory denoted as z(t|t̂k)

defined for t ∈ [t̂k, t̂k+1). The terminal state z(t̂k+1|t̂k) is sent to the upper layer

LEMPC. Go to Step 1.2.

1.2 The upper layer LEMPC receives z(t̂k+1|t̂k) from the auxiliary controller and

computes its optimal input trajectory u∗E(t|t̂k) defined for t ∈ [t̂k, t̂k+1) and state

trajectory x∗E(t|t̂k) defined for t ∈ [t̂k, t̂k+1). Go to Step 2.

2. Lower layer: At t j, the lower layer LEMPC receives a state measurement x(t j) and

the terminal state x∗E(t j+N j |t̂k) from the upper layer LEMPC. Go to Step 2.1.

2.1 The lower layer LEMPC computes its optimal input trajectory u∗(t|t j) defined

for t ∈ [t j, t j+N j). Go to Step 2.2.

2.2 The control action u∗(t j|t j), which is the computed input for the first sampling

period of the lower layer LEMPC prediction horizon, is applied to the system

from t j to t j+1. If N j − 1 = 0, reset N j+1 = N̄; else, let N j+1 = N j − 1. If

t j+1 = t̂k+1, set j← j+ 1 and k← k+ 1 and go to Step 1. Else, set j← j+ 1

and go to Step 2.

Remark 4.3. Even though the lower layer LEMPC uses a shrinking horizon and nominal op-

eration is considered, recomputing the lower layer LEMPC input at every subsequent sam-

pling time is necessary regardless if the solution to the lower level LEMPC is the same or

not. The incorporation of feedback allows for stabilization of open-loop unstable systems

that cannot be accomplished with an open-loop implementation and ensures the robustness

of the control solution with respect to infinitesimally small disturbances/uncertainty. For

further explanation on this point, see, for example, [176].
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Formulation

The formulations of the two LEMPC schemes are given. For convenience, the specific for-

mulation of the LMPC needed if the auxiliary controller is chosen to be an LMPC scheme

is given first. Specifically, the LMPC is given by the following optimization problem:

min
v∈S(∆E)

∫ t̂k+1

t̂k
(|z(t)|Qc + |v(t)|Rc) dt (4.69a)

s.t. ż(t) = f (z(t),v(t)) (4.69b)

z(t̂k) = x(t̂k) (4.69c)

v(t) ∈ U, ∀ t ∈ [t̂k, t̂k+1) (4.69d)

∂V (z(τi))

∂ z
f (z(τi),v(τi))≤

∂V (z(τi))

∂ z
f (z(τi),h(x(τi)))

for i = 0,1, . . . ,NE −1 (4.69e)

where τi := t̂k + i∆E and z is the state trajectory of the system with input trajectory v

calculated by the LMPC. The Lyapunov-based constraint of Eq. 4.69e differs from the

Lyapunov-based constraint of Eq. 4.69e as it is imposed at each sampling period along the

prediction horizon of the LMPC to ensure that the state trajectory with input computed

by the LMPC converges to the steady-state. Through enforcement of the Lyapunov-based

constraint, the LMPC inherits the same stability properties as that of the explicit controller.

The optimal solution of the optimization problem of Eq. 4.69 is denoted as v∗(t|t̂k) and

is defined for t ∈ [t̂k, t̂k+1). From the optimal input trajectory, the optimal state trajectory

z∗(t|t̂k), t ∈ [t̂k, t̂k+1) may be computed for the operating window. When the LMPC is used

as the auxiliary controller, the terminal state z∗(t̂k+1|t̂k) is sent to the upper layer LEMPC.

The formulation of the upper layer LEMPC is similar to the mode 1 LEMPC formula-
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tion with a terminal equality constraint computed from the auxiliary controller:

min
uE∈S(∆E)

∫ t̂k+1

t̂k
le(xE(t),uE(t)) dt (4.70a)

s.t. ẋE(t) = f (xE(t),uE(t)) (4.70b)

xE(t̂k) = x(t̂k) (4.70c)

uE(t) ∈ U, ∀ t ∈ [t̂k, t̂k+1) (4.70d)

xE(t) ∈Ωρ , ∀ t ∈ [t̂k, t̂k+1) (4.70e)

xE(t̂k+1) = z(t̂k+1|t̂k) (4.70f)

where xE is the predicted state trajectory with the input trajectory uE computed by the up-

per layer LEMPC. To ensure the existence of an input trajectory that has at least as good

economic performance as the auxiliary LMPC input trajectory over the entire length of op-

eration, the terminal constraint of Eq. 4.70f based on the auxiliary controller is used. The

terminal constraint differs from traditional terminal equality constraints because z(t̂k+1|t̂k)

is not necessarily the steady-state. It does, however, asymptotically converge to the eco-

nomically optimal steady-state. The optimal solution to the optimization problem of the

upper layer LEMPC is denoted as u∗E(t|t̂k) and is defined for t ∈ [t̂k, t̂k+1). With the opti-

mal solution, the optimal (open-loop) state trajectory may be computed and is denoted as

x∗E(t|t̂k), for t ∈ [t̂k, t̂k+1).

The lower layer LEMPC formulation, which uses a terminal constraint computed from
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x∗E(·|t̂k), is given by:

min
u∈S(∆)

∫ t j+Nj

t j

le(x̃(t),u(t)) dt (4.71a)

s.t. ˙̃x(t) = f (x̃(t),u(t)) (4.71b)

x̃(t j) = x(t j) (4.71c)

u(t) ∈ U, ∀ t ∈ [t j, t j+N j) (4.71d)

x̃(t) ∈Ωρ , ∀ t ∈ [t j, t j+N j ] (4.71e)

x̃(t j+N j) = x∗E(t j+N j |t̂k) (4.71f)

where x̃ is the predicted state trajectory under the input trajectory u. The terminal constraint

of Eq. 4.71f is computed from the upper layer LEMPC solution, and serves the same pur-

pose as the terminal constraint of Eq. 4.70f. The optimal solution to the lower layer LEMPC

is denoted as u∗(t|t j) which is defined for t ∈ [t j, t j+N j). The control input u∗(t j|t j) is sent

to the control actuators to be applied to the system of Eq. 4.65 in a sample-and-hold fashion

until the next sampling period.

Remark 4.4. When the economic stage cost does not penalize the use of control energy,

one may consider formulating constraints in the LEMPC problems to prevent the LEMPC

from computing an input trajectory that uses excessive control energy. In particular, one

straightforward extension of the two-layer LEMPC structure is to compute the total control

energy used by the auxiliary controller over the operating window, i.e, integral of the input

trajectory v over t̂k to t̂k+1. Then, enforce that the upper and lower layer LEMPCs compute

an input trajectory that uses no more control energy than the auxiliary controller input

profile over the operating window. This approach was employed in [78].
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Closed-loop Stability and Performance

The following proposition proves that the closed-loop system state under the two-layer

EMPC structure is always bounded in the invariant set Ωρ and the economic performance

is at least as good as the closed-loop state with the auxiliary LMPC over each operating

period.

Proposition 4.3. Consider the system of Eq. 4.65 in closed-loop under the lower layer

LEMPC of Eq. 4.71. Let the terminal constraint of Eq. 4.71f computed from the upper

layer LEMPC of Eq. 4.70, which has a terminal constraint formulated from the auxiliary

controller that satisfies Assumption 4.3. Let ∆E ∈ (0, ∆∗] where ∆∗ is defined according

to Corollary 2.1, NE ≥ 1, N̄ ≥ 1, and ∆ = ∆E/N̄. If x(t̂k) ∈ Ωρ , then the state remains

bounded in Ωρ over the operating window with x(t̂k+1) = z(t̂k+1|t̂k) ∈ Ωρ , the upper and

lower LEMPCs remain feasible for all t ∈ [t̂k, t̂k+1), and the following inequality holds:

∫ t̂k+1

t̂k
le(x(t),u∗(t)) dt ≤

∫ t̂k+1

t̂k
le(z(t|t̂k),v(t|t̂k)) dt (4.72)

where x and u∗ are the closed-loop state and input trajectories and z(·|t̂k) and v(·|t̂k) denote

the open-loop predicted state and input trajectories under the auxiliary computed at t̂k.

Proof. Stability: If ∆E ∈ (0, ∆∗] and the auxiliary controller satisfies Assumption 4.3,

Eq. 4.67 implies forward invariance of the set Ωρ under the auxiliary controller. The ter-

minal constraint z(t̂k+1|t̂k) computed by the auxiliary controller is therefore in Ωρ . If the

optimization problems are feasible, boundedness of the closed-loop state in Ωρ over the op-

erating window follows when x(t̂k) ∈ Ωρ owing to the fact that the constraint of Eq. 4.71e

is imposed in the lower layer LEMPC, which is responsible for computing control action

for the closed-loop system. Also, the terminal constraint of Eq. 4.71f imposed in the lower

layer LEMPC is always in Ωρ as a result of the constraint of Eq. 4.70e imposed in the upper
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layer LEMPC.

Feasibility: Regarding feasibility of the upper layer LEMPC problem, the input trajec-

tory v(·|t̂k) obtained from the auxiliary controller is a feasible solution to the upper layer

LEMPC for any x(t̂k) ∈ Ωρ because it maintains the predicted state inside Ωρ and forces

the predicted state to the terminal constraint of Eq. 4.70f. More specifically, if the auxiliary

controller is an explicit controller that satisfies Assumption 4.3, then the input trajectory v

is obtained from recursively solving Eq. 4.68. On the other hand, if the LMPC of Eq. 4.69

is used as the auxiliary controller, then v is the solution to the optimization problem of

Eq. 4.69.

Consider any sampling time t j ∈ [t̂k, t̂k+1) such that t j = t̂k + i∆E for some i in the set

{0, . . . ,NE −1}, i.e., consider a sampling time of the lower layer LEMPC that corresponds

to the beginning of a hold time of the upper layer. Let {t̄i}NE−1
i=0 denote the sequence of

such times. The constant input trajectory u(t) = u∗E(t j|t̂k) for all t ∈ [t j, t j+N̄) where t j+N̄ =

t̄i+1 = t̂k +(i+1)∆E is a feasible solution to the optimization problem of Eq. 4.71 because

it maintains the state in Ωρ and it forces the state to the terminal constraint of Eq. 4.71f.

Owing to the shrinking horizon implementation of the lower layer LEMPC, the computed

input trajectory by the lower layer LEMPC at t j = t̄i is a feasible solution to the optimization

problem at the next sampling time (t j+1) in the sense that if u∗(t|t j) defined for t ∈ [t j, t j +

N̄∆) is the optimal solution at t j, then u∗(t|t j) for t ∈ [t j+1, t j+1 +(N̄− 1)∆) is a feasible

solution at t j+1. Using this argument recursively until the sampling time t̄i+1 = t̂k +(i+

1)∆E when the horizon is reinitialized to N̄ and then, repeating the arguments for t̄i+1, it

follows that the lower layer LEMPC is feasible.

Performance: At t̄i, the lower layer LEMPC computes an optimal input trajectory that

satisfies (by optimality):

∫ t̄i+1

t̄i
le(x∗(t|t̄i),u∗(t|t̄i)) dt ≤

∫ t̄i+1

t̄i
le(x∗E(t|t̂k),u∗E(t̄i|t̂k)) dt (4.73)
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for all i ∈ {0, . . . ,NE − 1} (recall, t̄i+1 = t̄i + N̄∆). Owing to the shrinking horizon and

the principle of optimality, the closed-loop state and input trajectories are equal to the

computed open-loop state and input trajectories computed at t̄i and thus,

∫ t̄i+1

t̄i
le(x∗(t|t̄i),u∗(t|t̄i)) dt =

∫ t̄i+1

t̄i
le(x(t),u∗(t)) dt (4.74)

where x∗(·|t̄i) and u∗(·|t̄i) denote the optimal open-loop state and input trajectories com-

puted at t̄i and x and u∗ are the closed-loop state and input trajectories. Therefore, from

Eqs. 4.73-4.74, the closed-loop performance over one operating period is bounded by:

∫ t̂k+1

t̂k
le(x(t),u∗(t)) dt =

NE−1

∑
i=0

∫ t̄i+1

t̄i
le(x(t),u∗(t|t̄i)) dt

≤
NE−1

∑
i=0

∫ t̄i+1

t̄i
le(x∗E(t|t̂k),u∗E(t|t̂k)) dt

=
∫ t̂k+1

t̂k
le(x∗E(t|t̂k),u∗E(t|t̂k)) dt . (4.75)

At t̂k, the upper layer LEMPC computes an optimal input trajectory. Owing to optimality,

the computed (open-loop) state and input trajectories of the upper layer LEMPC satisfies:

∫ t̂k+1

t̂k
le(x∗E(t|t̂k),u∗E(t|t̂k)) dt ≤

∫ t̂k+1

t̂k
le(z(t|t̂k),v(t|t̂k)) dt . (4.76)

From Eq. 4.75 and Eq. 4.76, the result of Eq. 4.72 follows.

The following theorem provides sufficient conditions such that the two-layer EMPC

structure maintains the closed-loop state inside the region Ωρ and the closed-loop economic

performance is at least as good as if the auxiliary LMPC was applied to the system of

Eq. 4.65 over the entire length of operation which may be finite or infinite.

Theorem 4.3. Consider the closed-loop system of Eq. 4.65 under the lower layer LEMPC
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of Eq. 4.71. Let the terminal constraint of Eq. 4.71f computed from the upper layer LEMPC

of Eq. 4.70, which has a terminal constraint formulated from the auxiliary controller that

satisfies Assumption 4.3, and let the assumptions of Proposition 4.3 hold. If x(0) ∈ Ωρ ,

then x(t) ∈Ωρ for all t ≥ 0 and the following inequality holds for finite-time operation:

∫ T

0
le(x(t),u∗(t)) dt ≤

∫ T

0
le(z(t),v(t)) dt (4.77)

where T = KNE∆E and K is any strictly positive integer and x and u∗ are the closed-loop

state and input trajectory and z and v are the resulting state and input trajectory from the

auxiliary controller defined over the interval [0,T ] with initial condition z(0) = x(0) ∈Ωρ .

The following inequality holds for infinite-time operation:

limsup
K→∞

1
KNE∆E

∫ KNE ∆E

0
le(x(t),u∗(t)) dt ≤ le(x∗s ,u

∗
s ) . (4.78)

Proof. Applying the results of Proposition 4.3 recursively over K operating periods, recur-

sive feasibility of the optimization problems follows, and the closed-loop state is always

bounded in Ωρ if x(0) ∈ Ωρ , and x(t̂k) = z(t̂k) for k = 1,2, . . . ,K. To show the result of

Eq. 4.77, the length of operation is divided into K operating periods and let T = KNE∆E :

∫ T

0
le(x(t),u∗(t)) dt =

∫ t̂1

0
le(x(t),u∗(t)) dt + · · ·+

∫ t̂K

t̂K−1

le(x(t),u∗(t)) dt (4.79)

where t̂K = T . By Proposition 4.3, the inequality of Eq. 4.72 holds over each operating

window when x(t̂k) = z(t̂k) for k = 1,2, . . . ,K and thus, the inequality of Eq. 4.77 follows.

Owing to the result of Eq. 4.77, the average finite-time economic cost is given by:

1
T

∫ T

0
le(x(t),u∗(t))dt ≥ 1

T

∫ T

0
le(z(t),v(t))dt (4.80)
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for T = KNE∆E where K is any strictly positive integer. Recall, the economic cost function

le is continuous on the compact set Ωρ ×U and x(t),z(t) ∈ Ωρ and u∗(t),v(t) ∈ U for all

t ≥ 0. Thus, both integrals of Eq. 4.80 are bounded for any T > 0. Owing to the fact that

the auxiliary controller satisfies Assumption 4.3 and ∆ ∈ (0,∆∗], z and v asymptotically

converge to the steady-state (x∗s ,u
∗
s ) (this follows from the inequality of Eq. 4.67).

Considering the limit of the right-hand side of Eq. 4.80 as T tends to infinity (or simi-

larly, as K tends to infinity), the limit exists and is equal to le(x∗s ,u
∗
s ) owing to the fact that

z and v asymptotically converge to optimal steady-state (x∗s ,u
∗
s ) while remaining bounded

for all t ≥ 0. To prove this limit, the definition of the limit is invoked in the sense that given

any ε > 0, the existence of a T ∗ > 0 such that for all T > T ∗, the following holds:

∣∣∣∣ 1
T

∫ T

0
le(z(t),v(t)) dt− le(x∗s ,u

∗
s )

∣∣∣∣< ε (4.81)

needs to be established.

Define I(0,T ) as the following integral:

I(0,T ) :=
∫ T

0
le(z(t),v(t)) dt (4.82)

where the arguments of I represent the lower and upper limits of integration, respec-

tively. Since z(t) and v(t) converge to x∗s and u∗s , respectively, as t tends to infinity, i.e.,

le(z(t),v(t))→ le(x∗s ,u
∗
s ) as t tends to infinity. Furthermore, z(t) ∈Ωρ and v(t) ∈ U for all

t ≥ 0, so for every ε > 0, there exists a T̃ > 0 such that

|le(z∗(t),v∗(t))− le(x∗s ,u
∗
s )|< ε/2 (4.83)
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for t ≥ T̃ . For any T > T̃ :

|I(0,T )−T le(x∗s ,u
∗
s )|=

∣∣I(0, T̃ )+ I(T̃ ,T )−T le(x∗s ,u
∗
s )
∣∣

≤
∫ T̃

0
|le(z(t),v(t))− le(x∗s ,u

∗
s )| dt

+
∫ T

T̃
|le(z(t),v(t))− le(x∗s ,u

∗
s )| dt

≤ T̃ M̃+(T − T̃ )ε/2 (4.84)

where M̃ := supt∈[0,T̃ ] {|le(z(t),v(t))− le(x∗s ,u
∗
s )|}. For any T > T ∗ where T ∗ = 2T̃ (M̃−

ε/2)/ε , the following inequality is satisfied:

|I(0,T )/T − le(x∗s ,u
∗
s )| ≤ (1− T̃/T )ε/2+ T̃ M̃/T < ε (4.85)

which proves that the asymptotic average economic cost under the auxiliary controller is

le(x∗s ,u
∗
s ).

Considering the left hand side of Eq. 4.80, the limit as K→ ∞ may not exist owing to

the possible time-varying system operation under the proposed two-layer LEMPC scheme.

Therefore, an upper bound on the asymptotic average performance under the LEMPC

scheme is considered. Since the limit superior is equal to the limit when the limit exists,

the following is obtained:

limsup
K→∞

1
KNE∆E

∫ KNE ∆E

0
le(x(t),u∗(t)) dt

≤ limsup
K→∞

1
KNE∆E

∫ KNE ∆E

0
le(z(t),v(t)) dt = le(x∗s ,u

∗
s ) (4.86)

which is the desired result of Eq. 4.78.

Remark 4.5. The finite-time result of Theorem 4.3 may be extended to any T > 0 by, for
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Figure 4.14: Process flow diagram of the reactor and separator process network.

instance, adjusting NE and/or ∆E in the last operating window.

4.4.4 Application to Chemical Process Example

Consider a three vessel chemical process network consisting of two non-isothermal con-

tinuously stirred tank reactors (CSTRs) in series followed by a flash tank separator. The

process flow diagram of the process network is shown in Fig. 4.14. In each of the reactors,

an irreversible second-order reaction of the form A→ B takes place in an inert solvent D

(A is the reactant and B is the desired product). The bottom stream of the flash tank is

the product stream of the process network. Part of the overhead vapor stream from the

flash tank is purged from the process, while, the remainder is fully condensed and recycled

back to the first reactor. Each of the vessels have a heating/cooling jacket to supply/remove

heat from the liquid contents of the vessel. The following indices are used to refer to each

vessel: i = 1 denotes CSTR-1, i = 2 denotes CSTR-2, and i = 3 denotes SEP-1. The heat

rate supplied/removed from the ith vessel is Qi, i = 1,2,3. Furthermore, each reactor is fed

with fresh feedstock containing A in the solvent D with concentration CAi0, volumetric flow

rate Fi0, and constant temperature Ti0 where i = 1,2. Applying first principles and standard
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Table 4.4: Process parameters of the reactor and separator process network.

Symbol / Value Description

T10 = 300K Temp.: CSTR-1 inlet
T20 = 300K Temp.: CSTR-2 inlet
F10 = 5.0m3 h−1 Flow rate: CSTR-1 inlet
F20 = 5.0m3 h−1 Flow rate: CSTR-2 inlet
Fr = 3.0m3 h−1 Flow rate: SEP-1 vapor
Fp = 0.5m3 h−1 Flow rate: purge stream
V1 = 1.5m3 Volume: CSTR-1
V2 = 1.0m3 Volume: CSTR-2
V3 = 1.0m3 Volume: SEP-1
k0 = 3.0×106 m3 kmol−1 h−1 Pre-exponential factor
E = 3.0×104 kJ kmol−1 Activation energy
∆H =−5.0×103 kJ kmol−1 Heat of reaction
∆Hvap = 5.0kJ kmol−1 Heat of vaporization
Cp = 0.231kJ kg−1 K−1 Heat capacity
R = 8.314kJ kmol−1 K−1 Gas constant
ρL = 1000kg m−3 Density
αA = 5.0 Relative volatility: A
αB = 0.5 Relative volatility: B
αD = 1.0 Relative volatility: D
MWA = 18.0kg kmol−1 Molecular weight: A
MWB = 18.0kg kmol−1 Molecular weight: B
MWD = 40.0kg kmol−1 Molecular weight: D
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modeling assumptions, a dynamic model of the reactor-separator process network may be

obtained (neglecting the dynamics of the condenser) and is given by the following ODEs

(see Table 4.4 for variable definitions and values):

dT1

dt
=

F10

V1
(T10−T1)+

Fr−Fp

V1
(T3−T1)

− ∆Hk0

ρLCp
e−E/RT1C2

A1 +
Q1

ρLCpV1
(4.87a)

dCA1

dt
=

F10

V1
(CA10−CA1)+

Fr−Fp

V1
(CAr−CA1)− k0e−E/RT1C2

A1 (4.87b)

dCB1

dt
=−F10

V1
CB1 +

Fr−Fp

V1
(CBr−CB1)+ k0e−E/RT1C2

A1 (4.87c)

dT2

dt
=

F20

V2
(T20−T2)+

F1

V2
(T1−T2)

− ∆Hk0

ρLCp
e−E/RT2C2

A2 +
Q2

ρLCpV2
(4.87d)

dCA2

dt
=

F20

V2
(CA20−CA2)+

F1

V2
(CA1−CA2)− k0e−E/RT2C2

A2 (4.87e)

dCB2

dt
=−F20

V2
CB2 +

F1

V2
(CB1−CB2)+ k0e−E/RT2C2

A2 (4.87f)

dT3

dt
=

F2

V3
(T2−T3)−

∆HvapFr

ρLCpV3
+

Q3

ρLCpV3
(4.87g)

dCA3

dt
=

F2

V3
CA2−

Fr

V3
CAr−

F3

V3
CA3 (4.87h)

dCB3

dt
=

F2

V3
CB2−

Fr

V3
CBr−

F3

V3
CB3 (4.87i)

and the following algebraic equations:

K =
1

ρL
∑

i∈{A,B,D}
αiCi3MWi, (4.88a)

Cir = αiCi3/K, i = A, B, D, (4.88b)

F1 = Fr−Fp +F10, F2 = F1 +F20, (4.88c)

F3 = F2−Fr . (4.88d)
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where Cir is the concentration of the ith component (i = A,B,D) in the flash separator

overhead, purge, and recycle streams. The state variables of the process network include

the temperatures and concentrations of A and B in each of the vessels:

xT =

[
T1 CA1 CB1 T2 CA2 CB2 T3 CA3 CB3

]
.

The manipulated inputs are the heat inputs to the three vessels, Q1, Q2, and Q3, and the

concentration of A in the inlet streams, CA10 and CA20:

uT =

[
Q1 Q2 Q3 CA10 CA20

]
.

The control objective is to regulate the process in an economically optimal time-varying

fashion to maximize the average amount of product B in the product stream F3. Contin-

uously feeding in the maximum concentration of A into each reactor maximizes the pro-

duction of B owing to the second-order reaction. However, this may not be practical from

an economic stand-point. Instead, the average amount of reactant material that may be fed

to each reactor is fixed motivating the use of EMPC to control the process network. In

addition, supplying/removing heat to/from the vessels is considered undesirable. To ac-

complish these economic considerations, the two-layer LEMPC structure is applied and

the upper and lower layer LEMPCs are formulated with the following economic stage cost

function and constraint, respectively:

le(x,u) =−F3CB3 +A1Q2
1 +A2Q2

2 +A3Q2
3 (4.89)

1
t ′

∫ t̂k+1

t̂k
(CA10 +CA20) dt = 8.0kmol m3 (4.90)
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where t ′ = 1.0h is the operating period length and Ai = 10−6, i = 1,2,3 are the penalty

weights for using energy. The value for the heat rate penalty has been chosen to account for

the different numerical range of the heat rate and the first term in the economic cost (molar

flow rate of B in the product stream). The economically optimal steady-state with respect

to the economic cost function of Eq. 4.89 is open-loop asymptotically stable and is the only

steady-state in the operating region of interest. Therefore, an explicit characterization of

Ωρ is not needed for the LEMPC implementation.

The two-layer LEMPC structure, formulated with the cost function and reactant mate-

rial constraint of Eqs. 4.89-4.90, respectively, is applied to the reactor-separator chemical

process network. To numerically integrate the dynamic model of Eq. 4.87, explicit Eu-

ler method is used with an integration step of 1.0×10−3 h. The auxiliary controller is

formulated as an auxiliary LMPC. The prediction horizon and sampling period of the aux-

iliary LMPC and upper layer LEMPC are NE = 10 and ∆E = 0.1h, respectively, while, the

lower layer LEMPC is formulated with a prediction horizon of N̄ = 2 and sampling period

∆ = 0.05h. Since the upper layer prediction horizon length is one hour, the reactant mate-

rial constraint is enforced over each one hour operating period. However, the lower layer

LEMPC prediction horizon does not cover the entire one hour operating window. Instead

of using the material constraint of Eq. 4.90 directly in the lower layer LEMPC, a constraint

is formulated on the basis of the upper layer LEMPC solution. Namely, over the prediction

horizon of the lower layer LEMPC, the lower layer LEMPC solution must use the same

amount of reactant material as that of the upper layer LEMPC solution over the same time

so that the material constraint is satisfied over the operating window. To solve the opti-

mization problems, Ipopt [187] was used and the simulations were completed on a desktop

PC with an Intel R© CoreTM 2 Quad 2.66 GHz processor and a Linux operating system.
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Figure 4.15: The closed-loop economic performance (JE) with the length of prediction

horizon (NE) for the reactor-separator process under the upper layer LEMPC with a termi-

nal constraint computed from an auxiliary LMPC.

Effect of Horizon Length

In the first set of simulations, the length of the prediction horizon on closed-loop perfor-

mance is considered. The closed-loop economic performance over 4.0 h is defined by the

total economic cost given by:

JE =
∫ 4.0

0

(
F3CB3−A1Q2

1−A2Q2
2−A3Q2

3
)

dt . (4.91)

In these simulations, only the upper layer LEMPC, formulated with a terminal constraint

computed from the auxiliary LMPC, is considered. Fig. 4.15 depicts the observed trend. As

the prediction horizon increases, the closed-loop economic performance increases, which

motivates the use of a long prediction horizon in EMPC.
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Figure 4.16: Closed-loop state trajectories of the reactor-separator process network with

the upper layer LEMPC formulated with a terminal constraint computed by the auxiliary

LMPC.

Effect of the Terminal Constraint

Since for any optimization problem, the addition of constraints may restrict the feasible

region of the optimization problem, a reasonable consideration is the effect of the terminal

constraint on closed-loop performance. To address this issue, consider the closed-loop sys-

tem under the upper layer LEMPC formulated with a terminal equality constraint computed

by the auxiliary LMPC and under an LEMPC (mode 1 operation only) formulated with the

economic cost of Eq. 4.89 and the material constraint of Eq. 4.90, but without terminal

constraints. Both use a prediction horizon of NE = 10 and a sampling period of ∆ = 0.01h.

Figs. 4.16-4.17 display the closed-loop state and input trajectories of the reactor-separator

process network with the upper layer LEMPC; while, Figs. 4.18-4.19 display the closed-

loop trajectories under LEMPC with no terminal constraints.

The reactor-separator process network under the LEMPC with the terminal constraint

evolves in a smaller operating range (370 K to 430 K) than the evolution under the LEMPC
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Figure 4.17: Input trajectories of the reactor-separator process network computed by the

upper layer LEMPC formulated with a terminal constraint computed by the auxiliary

LMPC.
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Figure 4.18: Closed-loop state trajectories of the reactor-separator process network with an

LEMPC formulated without terminal constraints.

without the terminal constraint (325 K to 440 K). The total economic cost with the upper

layer LEMPC (based on the auxiliary LMPC) is 151.2, while the total economic cost with

LEMPC formulated without terminal constraints is 159.3. Clearly, the terminal constraint

imposed in the LEMPC problem affects the achievable performance. However, the key ad-

vantage of the addition of this constraint is that for any system and any prediction horizon

the closed-loop economic performance under the two-layer LEMPC structure is guaran-

teed to be at least as good as a stabilizing controller for both finite-time and infinite-time

operating intervals.

Two-layer LEMPC Structure

The two-layer LEMPC structure with a terminal constraint computed from an auxiliary

LMPC is applied to the reactor-separator process network. Several closed-loop simulations

over a 4.0 h length of operation were completed. The closed-loop state and input trajecto-

ries of one of the simulations are shown in Figs. 4.20-4.21, respectively and demonstrate
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Figure 4.19: Input trajectories of the reactor-separator process network computed by an

LEMPC formulated without terminal constraints.
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Figure 4.20: Closed-loop state trajectories of the reactor-separator process network with

the two-layer LEMPC structure.
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Figure 4.21: Input trajectories of the reactor-separator process network computed by the

two-layer LEMPC structure.

Table 4.5: Total economic cost and average computational time in seconds per sampling

period for several 4.0 h simulations with: (a) the auxiliary LMPC, (b) the one-layer LEMPC

and (c) the two-layer LEMPC structure.

LMPC One-layer EMPC Two-layer EMPC

Sim. Cost CPU Time Cost CPU Time Cost

1 140.1 5.68 151.5 1.10 151.1
2 150.3 4.24 153.9 1.05 153.4
3 142.0 4.65 152.4 0.98 152.0
4 130.7 6.45 152.3 1.24 151.9
5 126.0 4.67 151.9 1.11 151.5
6 140.2 4.63 151.6 1.33 151.2
7 144.6 4.60 150.6 1.08 150.2
8 138.1 5.01 152.5 1.06 152.1
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time-varying operation of the process network. The economic performance (Eq. 4.91) is

compared to the economic performance with the auxiliary LMPC (Table 4.5). From this

comparison, an average of 10 percent benefit with the two-layer LEMPC structure was

realized over operation under the auxiliary LMPC, i.e., resulting in steady-state operation.

Additionally, a comparison between the computational time required to solve the two-

layer LEMPC system and that of a one-layer LEMPC system was completed. The one-layer

LEMPC system consists of the upper layer LEMPC with a terminal constraint computed

from the auxiliary LMPC. In the one-layer LEMPC system, the LEMPC applies its com-

puted control actions directly to the process network, and there is no lower layer LEMPC.

To make the comparison consistent, the one layer LEMPC is implemented with a prediction

horizon of NE = 20 and a sampling period of ∆E = 0.05h, which are the same sampling

period and horizon used in the lower layer LEMPC of the two-layer LEMPC system. Since

the upper and lower layer controllers are sequentially computed, the computational time

at the beginning of each operating window is measured as the sum of the computational

time to solve the auxiliary LMPC, the upper layer LEMPC, and the lower layer LEMPC

for the two-layer LEMPC system and as the sum of the time to solve the auxiliary LMPC

and the LEMPC for the one-layer LEMPC system. From Table 4.5, the one-layer LEMPC

achieves slightly better closed-loop economic performance because the one-layer LEMPC

uses a smaller sampling period than the upper layer LEMPC in the two-layer LEMPC struc-

ture. However, the computational time required to solve the one-layer LEMPC structure

is greater than the computational time of the two-layer LEMPC structure. The two-layer

LEMPC structure is able to reduce the computational time by about 75 percent on average.

Handling Disturbances

While the two-layer EMPC has been designed for nominal operation to guarantee finite-

time and infinite-time closed-loop performance as is at least as good as that achieved under
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a stabilizing controller, it may be applied to the process model in the presence of distur-

bances, plant/model mismatch, and other uncertainties with some modifications to improve

recursive feasibility of the optimization problems and to ensure greater robustness of the

controller to uncertainties. For instance, if the disturbances are relatively small, it may be

sufficient to relax the terminal constraints or treat them as soft constraints. If one were to

simply relax the terminal constraints, e.g., use a terminal region instead of a point-wise

terminal constraint, it is difficult to guarantee recursive feasibility of the optimization prob-

lem. Another potential methodology is to use the terminal state constraints in the cost

function instead of imposing them as constraints. For example, use a cost functional in the

lower layer LEMPC of the form:

α

N

(∫ t j+N

t j

le(x̃(t),u(t)) dt
)
+β

∣∣x̃(t j+N)− x∗E(t j|tk)
∣∣
Q (4.92)

where α and β are tuning parameters and Q is a positive definite weighting matrix. The

cost functional works to optimize the economic performance while ensuring the predicted

evolution is near the terminal state through the quadratic terminal cost. The resulting lower

layer LEMPC has the same stability and robustness to bounded disturbances properties as

the LEMPC (without terminal constraints), i.e., recursive feasibility and boundedness of

the closed-loop state for all initial states starting in Ωρ . While no provable performance

guarantees may be made on closed-loop performance in the presence of disturbances, the

closed-loop performance benefit may be evaluated through simulations.

The two-layer LEMPC with the lower layer LEMPC designed with the cost described

above in Eq. 4.92 and without terminal constraints is applied to the example with signif-

icant process noise added. The noise is modeled as bounded Gaussian white noise and

is introduced additively to each model state. The closed-loop state and input trajectories

are shown in Figs. 4.22-4.23, respectively. The closed-loop system performance under the

212



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

320.0

360.0

400.0

440.0

T [K
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.00

0.25

0.50

0.75

1.00

C
A

[k
m
ol
/m

3
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

2.0

4.0

6.0

8.0

t [h]

C
B

[k
m
ol
/m

3
]

 

 

CSTR-1 CSTR-2 SEP-1

Figure 4.22: Closed-loop state trajectories of the reactor-separator process network with

process noise added with the two-layer LEMPC structure.
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Figure 4.23: Input trajectories of the reactor-separator process network with process noise

added computed by the two-layer LEMPC structure.
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two-layer LEMPC is compared to the system under auxiliary LMPC with the same realiza-

tion of the process noise. The LMPC is formulated with a prediction horizon of N = 2 and

sampling period ∆ = 0.05h which is the same horizon and sampling period as the lower

layer LEMPC. The closed-loop performance under the two-layer LEMPC is 2.6 percent

better than that under the LMPC for this particular realization of the process noise.

4.5 Conclusions

In this chapter, several computationally-efficient two-layer frameworks for integrating dy-

namic economic optimization and control of nonlinear systems were presented. In the

upper layer, EMPC is used to compute economically optimal time-varying operating trajec-

tories. Explicit control-oriented constraints were employed in the upper layer EMPC. In the

lower layer, an MPC scheme is used to force the system to track the optimal time-varying

trajectory computed by the upper layer EMPC. The properties, i.e., stability, performance,

and robustness, of closed-loop systems under the two-layer EMPC methods were rigor-

ously analyzed. The two-layer EMPC methods were applied to chemical process examples

to demonstrate the closed-loop properties. In all the examples considered, closed-loop

stability was achieved, the closed-loop economic performance under the two-layer EMPC

framework was better than that achieved under conventional approaches to optimization

and control, and the total on-line computational time was better with the two-layer EMPC

methods compared to that under one-layer EMPC methods.
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Chapter 5

Real-Time Economic Model Predictive

Control of Nonlinear Process Systems

5.1 Introduction

While the two-layer EMPC structures of Chapter 4 were shown to successfully reduce

the on-line computation time relative to that required for a centralized, one-layer EMPC

scheme, EMPC optimization problems are nonlinear and non-convex because a nonlinear

dynamic model is embedded in the optimization problem, which manifests itself as nonlin-

ear equality constraints in the optimization problem. Although many advances have been

made in solving such problems and modern computers may perform complex calculations

in an efficient manner, it is possible that computation delay will occur that may approach or

exceed the sampling time. If the computational delay is significant relative to the sampling

period, closed-loop performance degradation and/or closed-loop instability may occur.

Some of the early work addressing computational delay within tracking MPC includes

developing an implementation strategy of solving the MPC problem intermittently to ac-

count for the computational delay [162] and predicting the future state after an assumed
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constant computational delay to compute an input trajectory to be implemented after the

optimization problem is solved [31, 64]. Nominal feasibility and stability has been proved

for tracking MPC subject to computational delay formulated with a positive definite stage

cost (with respect to the set-point or steady-state), a terminal cost, and a terminal region

constraint [31, 64]. Another option to handle computational delay would be to force the

optimization solver to terminate after a pre-specified time to ensure that the solver returns

a solution by the time needed to ensure closed-loop stability. This concept is typically re-

ferred to as suboptimal MPC [164] because the returned solution will likely be suboptimal.

It was shown that when the returned solution of the MPC with a terminal constraint is any

feasible solution, the origin of the closed-loop system is asymptotically stable [164].

More recently, more advanced strategies have been proposed. Particularly, nonlinear

programming (NLP) sensitivity analysis has demonstrated to be a useful tool to handle

computational delay by splitting the MPC optimization problem into two parts: (1) solv-

ing a computationally intensive nonlinear optimization problem which is completed before

state feedback is received and (2) performing a fast on-line update of the precomputed input

trajectories using NLP sensitivities (when the active-set does not change) after the current

state measurement is obtained, e.g., [192, 200]; see, also, the review [21]. If the active-

set changes, various methods have been proposed to cope with changing active-sets, e.g.,

solving a quadratic program like that proposed in [65]. In this direction, the advanced-step

MPC [200] has been proposed which computes the solution of the optimization problem

one sampling period in advance using a prediction of the state at the next sampling period.

At the next sampling period (when the precomputed control action will be applied), the op-

timal solution is updated employing NLP sensitivities after state feedback is received. The

advanced-step (tracking) MPC has been extended to handle computation spanning multiple

sampling periods [198] and to EMPC [91]. Another related approach involves a hierarchi-

cal control structure [193, 191]. The upper layer is the full optimization problem which is
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solved infrequently. In the lower layer, NLP sensitivities are used to update the control ac-

tions at each sampling period that are applied to the system. The aforementioned schemes

solve an optimization problem to (local) optimality using a prediction of the state at the

sampling time the control action is to be applied to the system.

As another way, the so-called real-time nonlinear MPC (NMPC) scheme [40] only takes

one Newton-step of the NLP solver instead of solving the optimization problem to optimal-

ity at each sampling period. To accomplish this, the structure of the resulting dynamic op-

timization program, which is solved using a direct multiple shooting method, is exploited

to divide the program into a preparation phase and a feedback phase. In the preparation

phase, the computationally expensive calculations are completed before the state feedback

is received. In the feedback phase, a state measurement is received and the remaining fast

computations of the Newton-step are completed on-line to compute the control action to

apply to the system. The advantage of such a strategy is that the on-line computation after

a feedback measurement is obtained is insignificant compared to solving the optimization

problem to optimality. The disadvantage is one would expect to sacrifice at least some

closed-loop performance as a result of not solving the problem to optimality.

Clearly, the available computing power has significantly increased since the early work

on computational delay of MPC and if this trend continues, one may expect a significant

increase in computing power over the next decade. Moreover, more efficient solution strate-

gies for nonlinear dynamic optimization problems continue to be developed (see, for exam-

ple, the overview paper [41] and the book [20] for results in this direction). However, the

ability to guarantee that a solver will converge within the time needed for closed-loop sta-

bility remains an open problem especially for nonlinear, non-convex dynamic optimization

problems and systems with fast dynamics. Additionally, EMPC is generally more compu-

tationally intensive compared to tracking MPC given the additional possible nonlinearities

in the stage cost of EMPC.
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In this chapter, a real-time implementation strategy for LEMPC, referred to as real-

time LEMPC, is developed to account for possibly unknown and time-varying computa-

tional delay. The underlying implementation strategy is inspired by event-triggered con-

trol concepts [181] since the LEMPC is only recomputed when stability conditions dictate

that it must recompute a new input trajectory. If the precomputed control action satisfies

the stability conditions, the control action is applied to the closed-loop system. If not,

a back-up explicit controller, which has negligible computation time, is used to compute

the control action for the system at the current sampling instance. This type of imple-

mentation strategy has the advantage of being easy to implement and the strategy avoids

potential complications of active-set changes because the re-computation condition is only

formulated to account for closed-loop stability considerations. Closed-loop stability un-

der the real-time LEMPC scheme is analyzed and specific stability conditions are derived.

The real-time LEMPC scheme is applied to an illustrative chemical process network to

demonstrate closed-loop stability under the control scheme. The example also demon-

strates that real-time LEMPC improves closed-loop economic performance compared to

operation at the economically optimal steady-state. The results of this chapter were first

presented in [54, 53].

5.2 Real-time Economic Model Predictive Control

In this section, the formulation and implementation strategy of the real-time LEMPC is

presented along with sufficient conditions such that the closed-loop system under the real-

time LEMPC renders the closed-loop state trajectory bounded in Ωρ . For the reader’s

convenience, the class of systems considered and the relevant assumptions are stated in the

next subsection.
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5.2.1 Class of Systems

The class of nonlinear systems considered has the following state-space form:

ẋ(t) = f (x(t),u(t),w(t)) (5.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ U⊂ Rm is the manipulated input vector, w(t) ∈

W ⊂ Rl is the disturbance vector, and f (·, ·, ·) is a locally Lipschitz vector function. The

input and disturbance vectors are bounded in the following sets:

U := {u ∈ Rm : umin,i ≤ ui ≤ umax,i, i = 1, . . . , m}, (5.2)

W := {w ∈ Rl : |w| ≤ θ} , (5.3)

where θ > 0 bounds the norm of the disturbance vector. Without loss of generality, the

origin of the unforced system is assumed to be the equilibrium point of Eq. 5.1, i.e.,

f (0,0,0) = 0.

The following stabilizability assumption further qualifies the class of systems consid-

ered and is similar to the assumption that the pair (A,B) is stabilizable in linear systems.

Assumption 5.1. There exists a feedback controller h(x) ∈ U with h(0) = 0 that renders

the origin of the closed-loop system of Eq. 5.1 with u(t) = h(x(t)) and w≡ 0 asymptotically

stable for all x ∈ D0 where D0 is an open neighborhood of the origin.

Applying converse theorems [123, 100], Assumption 5.1 implies that there exists a

continuously differentiable Lyapunov function, V : D→ Rn, for the closed-loop system of

Eq. 5.1 with u = h(x) ∈ U and w≡ 0 such that the following inequalities hold:

α1(|x|)≤V (x)≤ α2(|x|), (5.4a)
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∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|), (5.4b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (5.4c)

for all x ∈ D where D is an open neighborhood of the origin and αi, i = 1, 2, 3, 4 are

functions of class K . A level set of the Lyapunov function Ωρ , which defines a subset

of D (ideally the largest subset contained in D), is taken to be the stability region of the

closed-loop system under the controller h(x).

Measurements of the state vector of Eq. 5.1 are assumed to be available synchronously

at sampling instances denoted as tk := k∆ where ∆ > 0 is the sampling period and k =

0, 1, . . .. As described below, the EMPC computes sample-and-hold control actions and

thus, the resulting closed-loop system, which consists of the continuous-time system of

Eq. 5.1 under a sample-and-hold controller, is a sampled-data system. If the controller h(x)

is implemented in a sample-and-hold fashion, it possesses a certain degree of robustness

to uncertainty in the sense that the origin of the closed-loop system is rendered practically

stable when a sufficiently small sampling period is used and the bound θ on the disturbance

vector is sufficiently small; see, for example, [133] for more discussion on this point.

5.2.2 Real-time LEMPC Formulation

The overall objective of the real-time LEMPC is to account for the real-time computation

time required to solve the optimization problem for a (local) solution. Particularly, the case

when the average computation time, which is denoted as t̄s, is greater than one sampling

period is considered, i.e., Ns = dt̄s/∆e ≥ 1 where Ns is the average number of sampling

periods required to solve the optimization problem. During the time the solver is solving

the optimization problem, the control actions computed at a previous sampling period are

applied to the system if there are precomputed control actions available and if the stability
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conditions described below are satisfied. If no precomputed control actions are available

or the stability conditions are violated, the explicit controller h(x) is used to compute and

apply control actions during the time that the real-time LEMPC is computing. In this fash-

ion, the LEMPC is used to compute control actions to improve the economic performance

when possible.

Specifically, when the closed-loop state is in the subset of the stability region Ωρe ⊂Ωρ ,

the control actions of the precomputed LEMPC problem may be applied to the system.

When the state is outside the subset, the explicit controller is used because maintaining the

closed-loop state in Ωρ is required for guaranteeing the existence of a feasible input trajec-

tory that maintains closed-loop stability (in the sense that the closed-loop state trajectory

is always bounded in Ωρ ). To force the state back to the subset of the stability region Ωρe ,

the Lyapunov function must decrease over each sampling period in the presence of uncer-

tainty. This requires the incorporation of feedback, i.e., recomputing the control action at

each sampling period using a measurement of the current state. Owing to the computational

burden of solving the LEMPC optimization problem, it may not be possible to achieve con-

vergence of the optimization solver within one sampling period. Hence, the controller h(x)

is used when the state is outside of Ωρe .

For real-time implementation, only mode 1 of the LEMPC of Eq. 3.3 is used and the

LEMPC is solved infrequently (not every sampling period) which will be made clear when

221



the implementation strategy is discussed. The real-time LEMPC is formulated as follows:

min
u∈S(∆)

∫ t j+N

t j+1

le(x̃(t),u(t)) dt (5.5a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (5.5b)

x̃(t j) = x(t j) (5.5c)

u(t) = ũ(t j), ∀ t ∈ [t j, t j+1) (5.5d)

u(t) ∈ U, ∀ t ∈ [t j+1, t j+N) (5.5e)

V (x̃(t))≤ ρe, ∀ t ∈ [t j+1, t j+N) (5.5f)

where the notation and constraints are similar to that used in LEMPC of Eq. 3.3 except

for an additional constraint of Eq. 5.5d. This additional constraint is used because a pre-

determined control action is applied to the system over the first sampling period of the

prediction horizon. The predetermined control action is either the control action computed

by the LEMPC at a previous sampling period or the control action from the explicit con-

troller h(x), i.e., the input trajectory over the first sampling period of the prediction horizon

is not a degree of freedom in the optimization problem. The LEMPC of Eq. 5.5 may dictate

a time-varying operating policy to optimize the economic cost as long as the predicted evo-

lution is maintained in the level set Ωρe ⊂ Ωρ . The notation t j denotes the sampling time

at which the LEMPC problem is initialized with a state measurement and the solver begins

solving the resulting optimization problem. The optimal solution of the LEMPC is denoted

as u∗(t|t j) and is defined for t ∈ [t j+1, t j+N). Feasibility of the optimization problem is

considered in Section 5.2.4 below. However, it is important to point out that x(t j) ∈ Ωρe

and x̃(t j+1) ∈ Ωρe owing to the real-time implementation strategy, and thus, the real-time

LEMPC has a feasible solution (refer to the proof of Theorem 5.1).
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Receive x(tk)

x(tk) ∈ Ωρe ,
s2(k) = 1,

x̂(tk+1) ∈ Ωρe

Apply u(t) =
u∗(tk|tj) for
t ∈ [tk, tk+1)

Apply u(t) =
h(x(tk)) for
t ∈ [tk, tk+1)

Yes No

Figure 5.1: Implementation strategy for determining the control action at each sampling

period.
The notation u∗(tk|t j) is used to denote the control action to be applied over the sampling period tk
to tk+1 from the precomputed input solution of the real-time LEMPC of Eq. 5.5 solved at time step
t j.

5.2.3 Implementation Strategy

Before the implementation strategy is presented, the following discrete-time signals are

defined to simplify the presentation of the implementation strategy. The first signal is used

to keep track of whether the solver is currently solving an LEMPC optimization problem:

s1(k) =


1, solving the LEMPC

0, not solving the LEMPC
(5.6)

where k denotes the k-th sampling period, i.e., tk. The second signal keeps track if there is

a previously computed input trajectory currently stored in memory:

s2(k) =


1, previous input solution stored

0, no previous input solution stored
(5.7)

At each sampling period, a state measurement x(tk) is received from the sensors and

three conditions are used to determine if a precomputed control action from LEMPC or if
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the control action from the explicit controller h(x) is applied to the system. If the following

three conditions are satisfied the control action applied to the system in a sample-and-hold

fashion is the precomputed control action from the LEMPC: (1) the current state must

be in Ωρe (x(tk) ∈ Ωρe), (2) there must be a precomputed control action available for the

sampling instance tk, i.e., s2(k) = 1, and (3) the predicted state under the precomputed

control action must satisfy: x̂(tk+1) ∈ Ωρe where x̂(tk+1) denotes the predicted state. To

obtain a prediction of the state at the next sampling period, the nominal model of Eq. 5.1

with w≡ 0 is recursively solved with the input u(t) = u∗(tk|t j) for t ∈ [tk, tk+1) (the on-line

computation time to accomplish this step is assumed to be negligible). The control action

decision at a given sampling instance tk is summarized by the flow chart of Fig. 5.1.

A series of decisions are made at each sampling period to determine if the LEMPC

should begin resolving, continue solving, or terminate solving the optimization problem

and is illustrated in the flow chart of Fig. 5.2. The computation strategy is summarized in

the following algorithm. To initialize the algorithm at t0 = 0, get the state measurement

x(0) ∈ Ωρ . If x(0) ∈ Ωρe , begin solving the LEMPC problem with j = 0 and x(0). Set

s1(0) = 1, s2(0) = 0, and ũ(t j) = h(x(0)). Go to Step 8. Else, set s1(0) = s1(1) = s2(0) =

s2(1) = 0 and go to Step 9.

1. Receive a measurement of the current state x(tk) from the sensors; go to Step 2.

2. If x(tk) ∈Ωρe , then go to Step 2.1. Else, go to Step 2.2.

2.1 If s2(k) = 1, go to Step 3. Else, go to Step 6.

2.2 Terminate solver if s1(k) = 1, set s1(k+ 1) = 0 and s2(k+ 1) = 0, and go to

Step 9.

3. If x̂(tk+1) ∈Ωρe , go to Step 4. Else, set s2(k) = 0 and ũ(t j) = h(x(tk)); go to Step 7.

4. If s1(k) = 1, go to Step 8. Else, go to Step 5.

224



x(tk), s1(k), s2(k)

x(tk) ∈ Ωρe

s2(k) = 1

s1(k) = 1

x̂(tk+1) ∈ Ωρe

s1(k) = 1

tk+Ns < tj+N

ũ(tj) := h(x(tk)) ũ(tj) := u∗(tk|tj)

Begin solving EMPC
with x(tk) and j = k

Converge
before tk+1

s2(k) = 1,
tk+1 < tj+N

s1(k + 1) = 0,
s2(k + 1) = 1

s1(k + 1) = 1,
s2(k + 1) = 1

s1(k + 1) = 1,
s2(k + 1) = 0

Terminate Solver
s1(k + 1) = 0,
s2(k + 1) = 0

Yes

No

YesNo

Yes

No

No

ũ(tj)

No

ũ(tj)

No; set s2(k) = 0

Yes

Yes

Yes; save u∗(t|tj)No

YesNo

Yes

Figure 5.2: Computation strategy for the real-time LEMPC scheme.
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5. If tk+Ns < t j+N , set s1(k + 1) = 0 and s2(k + 1) = 1, and go to Step 9. Else, set

ũ(t j) = u∗(tk|t j); go to Step 7.

6. If s1(k) = 1, go to Step 8. Else, set ũ(t j) = h(x(tk)); go to Step 7.

7. If the solver is currently solving a problem (s1(k) = 1), terminate the solver. Begin

solving the LEMPC problem with j = k and x(t j) = x(tk). Go to Step 8.

8. If the solver converges before tk+1, then go to Step 8.1. Else, go to Step 8.2.

8.1 Save u∗(t|t j) for t ∈ [tk, t j+N). Set s1(k+1) = 0 and s2(k+1) = 1. Go to Step

9.

8.2 Set s1(k+1) = 1. If s2(k) = 1 and tk+1 < t j+N , the go to Step 8.2.1. Else, go to

Step 8.2.2.

8.2.1 Set s2(k+1) = 1. Go to Step 9.

8.2.2 Set s2(k+1) = 0. Go to Step 9.

9. Go to Step 1 (k← k+1).

In practice, Ns may be unknown or possibly time varying. If Ns is unknown, then

one may specify the number of sampling periods that the real-time LEMPC may apply a

precomputed input trajectory before it must start re-computing a new input trajectory as a

design parameter. This condition may be used instead of Step 5 of the algorithm above.

Additionally, it may be beneficial from a closed-loop performance perspective to force

the LEMPC to recompute its solution more often than prescribed by the implementation

strategy described above.

A possible input trajectory resulting under the real-time LEMPC scheme is given in

Fig. 5.3. In the illustration, the solver begins to solve an LEMPC optimization problem at

t0 and returns a solution at t5. It is assumed that the closed-loop state is maintained in Ωρe
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Figure 5.3: An illustration of an example input trajectory resulting under the real-time

LEMPC scheme.
The triangles are used to denote the time instances when the LEMPC begins to solve the optimiza-
tion problem, while the circles are used to denote when the solver converges to a solution. The solid
black trajectory represents the control actions computed by the LEMPC which are applied to the
system, the dotted trajectory represents the computed input trajectory by the LEMPC (not applied
to the system), and the solid gray trajectory is the input trajectory of the explicit controller which is
applied to the system.

from t0 to t5 so that the solver is not terminated. Over the time the solver is solving, the

explicit controller is applied to the system since a precomputed LEMPC input trajectory

is not available. The precomputed LEMPC solution is applied from t5 to t13. At t10, the

solver begins to solve a new LEMPC problem. The solver returns a solution at t13. At t16,

the stability conditions are not satisfied for the precomputed LEMPC input trajectory, so

the explicit controller computes a control action and applies it to the system.

5.2.4 Stability Analysis

In this section, sufficient conditions such that the closed-loop state under the real-time

LEMPC is bounded in Ωρ are presented which make use of the following properties. Since

f (·, ·, ·) is a locally Lipschitz vector function and the Lyapunov function V (·) is a continu-

ously differentiable function, there exist positive constants Lx, Lw, L′x, and L′w such that the
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following bounds hold:

| f (xa,u,w)− f (xb,u,0)| ≤ Lx |xa− xb|+Lw |w| (5.8)∣∣∣∣∂V (xa)

∂x
f (xa,u,w)−

∂V (xb)

∂x
f (xb,u,0)

∣∣∣∣≤ L′x |xa− xb|+L′w |w| (5.9)

for all xa, xb ∈Ωρ , u ∈ U and w ∈W. Furthermore, there exists M > 0 such that

| f (x,u,w)| ≤M (5.10)

for all x ∈ Ωρ , u ∈ U and w ∈W owing to the compactness of the sets Ωρ , U, and W and

the locally Lipschitz property of the vector field.

The following proposition bounds the difference between the actual state trajectory of

the system of Eq. 5.1 (w 6≡ 0) and the nominal state trajectory (w≡ 0).

Proposition 5.1 (c.f. Proposition 3.1). Consider the state trajectories x(t) and x̂(t) with

dynamics:

ẋ(t) = f (x(t),u(t),w(t)), (5.11)

˙̂x(t) = f (x̂(t),u(t),0), (5.12)

input trajectory u(t) ∈ U, w(t) ∈W, and initial condition x(0) = x̂(0) ∈Ωρ . If x(t), x̂(t) ∈

Ωρ for all t ∈ [0,T ] where T ≥ 0, then the difference between x(T ) and x̂(T ) is bounded by

the function γe(·):

|x(T )− x̂(T )| ≤ γe(T ) :=
Lwθ

Lx

(
eLxT −1

)
. (5.13)

Owing to the compactness of the set Ωρ , the difference in Lyapunov function values

for any two points in Ωρ may be bounded by a quadratic function which is stated in the

following proposition.
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Proposition 5.2 (c.f. Proposition 3.2). Consider the Lyapunov function V (·) of the closed-

loop system of Eq. 5.1 under the controller h(x). There exists a scalar-valued quadratic

function fV (·) such that

V (xa)≤V (xb)+ fV (|xa− xb|) (5.14)

for all xa, xb ∈Ωρ where

fV (s) := α4(α
−1
1 (ρ))s+β s2 (5.15)

and β is a positive constant.

Theorem 5.1 below provides sufficient conditions such that the real-time LEMPC ren-

ders the closed-loop state trajectory bounded in Ωρ for all times. The conditions such

that the closed-loop state trajectory is maintained in Ωρ are independent of the compu-

tation time required to solve the LEMPC optimization problem. From the perspective of

closed-loop stability, computational delay of arbitrary size may be handled with the real-

time LEMPC methodology. In the case where the computational delay is always greater

than the prediction horizon, the real-time LEMPC scheme would return the input trajectory

under the explicit controller applied in a sample-and-hold fashion.

Theorem 5.1. Consider the system of Eq. 5.1 in closed-loop under the real-time LEMPC of

Eq. 5.5 based on a controller h(x) that satisfies the conditions of Eq. 5.4 that is implemented

according to the implementation strategy of Fig. 5.1. Let εw > 0, ∆> 0 and ρ > ρe≥ ρmin >

ρs > 0 satisfy

−α3(α
−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆ , (5.16)

ρmin = max{V (x(t +∆) | V (x(t))≤ ρs} , (5.17)

and

ρe < ρ− fV (γe(∆)) . (5.18)
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If x(t0) ∈ Ωρ and N ≥ 1, then the state trajectory x(t) of the closed-loop system is always

bounded in Ωρ for t ≥ t0.

Proof. If the real-time LEMPC is implemented according to the implementation strategy

of Fig. 5.1, the control action to be applied over the sampling period either comes from

the precomputed LEMPC input trajectory or the explicit controller h(x). To prove that the

closed-loop state is bounded in Ωρ , we will show that when the control action is computed

from the explicit controller and x(tk) ∈ Ωρ , then the state at the next sampling period will

be contained in Ωρ . If the control action comes from a precomputed LEMPC solution, we

will show that if x(tk) ∈ Ωρe , then x(tk+1) ∈ Ωρ owing to the stability conditions imposed

on applying the precomputed LEMPC solution. The proof consists of two parts. In the

first part, the closed-loop properties when the control action is computed by the explicit

controller h(x) are analyzed. This part of the proof is based on the proof of [133] which

considers the stability properties of an explicit controller of the form assumed for h(x)

implemented in a sample-and-hold fashion. In the second part, the closed-loop stability

properties of the precomputed control actions by the LEMPC are considered. In both cases,

the closed-loop state trajectory is shown to be maintained in Ωρ for t ≥ t0 when x(t0)∈Ωρ .

Part 1: First, consider the properties of the control action computed by the explicit

controller h(x) applied to the system of Eq. 5.1 in a sample-and-hold fashion. Let x(tk) ∈

Ωρ \Ωρs for some ρs > 0 such that the conditions of Theorem 5.1 are satisfied, i.e., Eq. 5.16.

The explicit controller h(x) computes a control action that has the following property (from

condition of Eq. 5.4):

∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0)≤−α3(|x(tk)|)≤−α3(α
−1
2 (ρs)) (5.19)

for any x(tk) ∈ Ωρ \Ωρs . Over the sampling period, the time-derivative of the Lyapunov
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function is:

V̇ (x(t)) =
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0)+

∂V (x(t))
∂x

f (x(t),h(x(tk)),w(t))

− ∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0) (5.20)

for all t ∈ [tk, tk+1). From the bound on the time-derivative of Lyapunov function of

Eq. 5.19, the Lipschitz bound of Eq. 5.9, and the bound on the norm of the disturbance

vector, the time-derivative of the Lyapunov function is bounded for t ∈ [tk, tk+1) as follows:

V̇ (x(t))≤−α3(α
−1
2 (ρs))

+

∣∣∣∣∂V (x(t))
∂x

f (x(t),h(x(tk)),w(t))−
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0)

∣∣∣∣
≤−α3(α

−1
2 (ρs))+L′x |x(t)− x(tk)|+L′w |w(t)|

≤ −α3(α
−1
2 (ρs))+L′x |x(t)− x(tk)|+L′wθ (5.21)

for all t ∈ [tk, tk+1). Taking into account of Eq. 5.10 and the continuity of x(t), the following

bound may be written for all t ∈ [tk, tk+1):

|x(t)− x(tk)| ≤M∆ . (5.22)

From Eq. 5.21 and Eq. 5.22, the bound below follows:

V̇ (x(t))≤−α3(α
−1
2 (ρs))+L′xM∆+L′wθ (5.23)

for all t ∈ [tk, tk+1). If the condition of Eq. 5.16 is satisfied, i.e., ∆ and θ is sufficiently
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small, then there exists εw > 0 such that:

V̇ (x(t))≤−εw/∆ (5.24)

for all t ∈ [tk, tk+1). Integrating the above bound, yields:

V (x(t))≤V (x(tk)), ∀ t ∈ [tk, tk+1), (5.25)

V (x(tk+1))≤V (x(tk))− εw . (5.26)

For any state x(tk)∈Ωρ \Ωρs , the state at the next sampling period will be in a smaller level

set when the control action u(t) = h(x(tk)) is applied for t ∈ [tk, tk+1). Also, the state will

not come out of Ωρ over the sampling period owing to Eq. 5.24. Once the closed-loop state

under the explicit controller h(x) implemented in a sample-and-hold fashion has converged

to Ωρs , the closed-loop state trajectory will be maintained in Ωρmin if ρmin ≤ ρ and ρmin is

defined according to Eq. 5.17. Thus, the sets Ωρ and Ωρmin are forward invariant sets under

the controller h(x) and if x(tk) ∈Ωρ , then x(tk+1) ∈Ωρ under the explicit controller h(x).

Part 2: In this part, the closed-loop stability properties of the input precomputed by the

LEMPC for the sampling period tk to tk+1 are considered. For clarity of presentation, the

notation x̂(t) denotes the prediction of closed-loop state at time t, i.e., this prediction used

in the implementation strategy to determine which control action to apply to the system,

while the notation x̃(t) will be reserved to denote the predicted state in the LEMPC of

Eq. 5.5. The predicted state in the LEMPC of Eq. 5.5 at t j+1, which is denoted as x̃(t j+1),

satisfies x̂(t j+1) = x̃(t j+1) because both predicted states use the nominal model with the

same initial condition and same piecewise constant input applied from t j to t j+1.

First, feasibility of the optimization problem is considered. Owing to the formulation

of the LEMPC of Eq. 5.5, the optimization problem is always feasible if ρe satisfies: ρ >
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ρe ≥ ρmin. Recall, the input over the sampling period t j to t j+1 is not a degree of freedom

in the optimization problem. If this control action is precomputed from a previous LEMPC

solution, it must have the property that x̂(t j+1) = x̃(t j+1) ∈ Ωρe which is imposed as a

condition of the implementation strategy of Fig. 5.1. If the control action is computed by

the explicit controller, the control action over the sampling period t j to t j+1 will maintain

x̃(t j+1)∈Ωρe . Thus, x̃(t j+1)∈Ωρe in the LEMPC of Eq. 5.5. Feasibility of the optimization

problem follows from the fact that the input trajectory obtained from the explicit controller

h(x) over the prediction horizon is a feasible solution, that is u(t) = h(x̂(ti)) for t ∈ [ti, ti+1),

i = j+1, j+2, . . . , j+N−1 where x̂(t) is obtained by recursively solving the model:

˙̂x(t) = f (x̂(t),h(x̂(ti)),0) (5.27)

for t ∈ [ti, ti+1) and i = j + 1, j + 1 . . . , j +N − 1 with the initial condition x̂(t j+1) =

x̃(t j+1). Furthermore, the set Ωρe is forward invariant under the controller h(x) (the proof

is analogous to Part 1 where the set Ωρe is used instead of Ωρ ). Thus, the LEMPC of Eq. 5.5

is always feasible for any x(t j) ∈Ωρe .

If the LEMPC is implemented according to the implementation strategy of Fig. 5.1,

then the precomputed input for tk by the LEMPC is only used when x(tk) ∈ Ωρe and the

predicted state at the next sampling period x̂(tk+1) ∈Ωρe . When x(t) ∈Ωρ for t ∈ [tk, tk+1),

i.e., a sufficiently small sampling period is used, the following bound on the Lyapunov

function value at the next sampling period tk+1 may be derived from Propositions 5.1-5.2:

V (x(tk+1))≤V (x̂(tk+1))+ fV (γe(∆)) . (5.28)

Since x̂(tk+1) ∈Ωρe and if the condition of Eq. 5.18 is satisfied, x(tk+1) ∈Ωρ .

To summarize, if the control action to be applied over the sampling period tk to tk+1
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is u(tk) = h(x(tk)), the state at the next sampling period will be in Ωρ (x(tk+1) ∈ Ωρ ). If

the control action to be applied over the sampling period tk to tk+1 is from a precomputed

LEMPC input, the state at the next sampling period will also be contained in Ωρ which

completes the proof of boundedness of the closed-loop state trajectory x(t) ∈Ωρ under the

real-time LEMPC for t ≥ t0.

Remark 5.1. No closed-loop performance guarantees may be made because performance

constraints, e.g., terminal constraints, are not imposed on the LEMPC and the closed-loop

performance may be adversely affected with greater computation time. The latter point is

associated with the fact that the LEMPC problem allows for the input trajectory from t j+1

to t j+Ns , i.e., the time the solver converges, to be degrees of freedom in the optimization

problem. However, the actual closed-loop input trajectory applied over this period may

be different from that computed by the LEMPC over the same time period. Potentially,

one may also employ sensitivity-based corrections to the precomputed control actions after

receiving state feedback like that employed in [192, 200] to improve closed-loop perfor-

mance. However, active set changes must be handled appropriately which may introduce

additional on-line computation. It is important to point out that the computed solution

of the LEMPC may dictate a time-varying operating policy to optimize the process eco-

nomics. Even in the presence of uncertainty, the time-varying operating policy dictated by

the real-time LEMPC may be substantially better (with respect to the economic cost) than

steady-state operation which is the case for the chemical process network considered in

Section 5.3.

Remark 5.2. In the current chapter, unknown and possibly time-varying computational

delay is considered for operation affected by unknown bounded disturbance. If, instead

of the computation algorithm described above, a hard cap was placed on the solver to

terminate and return a (suboptimal) solution by a certain number of sampling times, one
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could account for the control actions that are applied to the system over the computation

time by setting the input trajectory in the LEMPC problem over the specified number of

sampling periods of the prediction horizon be equal to a predetermined input trajectory.

This potential strategy, however, does not account for the fact that the solver may return a

solution before the end of specified number of sampling periods.

Remark 5.3. From the proof of Theorem 5.1, recursive feasibility of the LEMPC in the

presence of bounded uncertainty is guaranteed if the initial state is in Ωρ . It is difficult in

general to characterize the feasible set under EMPC formulated with a terminal constraint,

i.e., the set of points where recursive feasibility is maintained in the presence of uncertainty.

Thus, it may be difficult to ensure that the closed-loop state is maintained in the feasible set

under EMPC with a terminal constraint in the presence of uncertainty and computational

delay. In this respect, LEMPC has a unique advantage for real-time implementation com-

pared to EMPC with a terminal constraint in that LEMPC maintains the closed-loop state

inside Ωρ where recursive feasibility is guaranteed.

Remark 5.4. The number of times that the explicit controller is applied to the closed-loop

system may be a factor in the closed-loop economic performance. Whether the control ac-

tion is from a precomputed LEMPC problem or the explicit controller is mainly influenced

by how close the state measurement is to the boundary of Ωρe . To decrease the number of

times that the explicit controller is applied to the system, one could potentially add penal-

ization terms to the stage cost of the LEMPC to penalize the closeness of the state to the

boundary of Ωρe .

5.3 Application to a Chemical Process Network

Consider a chemical process network consisting of two continuous stirred-tank reactors

(CSTRs) in series followed by a flash separator shown in Fig. 5.4. In each of the reactors,
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Figure 5.4: Process flow diagram of the reactor and separator process network.

the reactant A is converted to the desired product B through an exothermic and irreversible

reaction of the form A→ B. A fresh feedstock containing a dilute solution of the reactant A

in an inert solvent D is fed to each reactor. The reaction rate is second-order in the reactant

concentration. The CSTRs are denoted as CSTR-1 and CSTR-2, respectively. A flash

separator, which is denoted as SEP-1, is used to recover some unreacted A. The overhead

vapor from the flash tank is condensed and recycled back to CSTR-1. The bottom stream

is the product stream of the process network which contains the desired product B. In the

separator, a negligible amount of A is assumed to be converted to B through the reaction.

The two reactors have both heating and cooling capabilities and the rate of heat supplied

to or removed from the reactors is denoted as Q j, j = 1, 2. While the heat supplied to

or removed from the vessel contents is modeled with one variable, two different actuators

may be used in practice for supplying heat to and removing heat from each vessel. To

vaporize some contents of the separator, heat is supplied to the separator at a rate of Q3.

The liquid holdup of each vessel is assumed to be constant and the liquid density throughout

the process network is assumed to be constant.

236



Table 5.1: Process parameters of the reactor and separator process network.

Symbol / Value Description Symbol / Value Description

T10 = 300K Temp.: CSTR-1 inlet k0 = 1.9×109 m3 kmol−1 h−1 Pre-exponential factor
T20 = 300K Temp.: CSTR-2 inlet E = 7.1×104 kJ kmol−1 Activation energy
F10 = 5.0m3 h−1 Flow rate: CSTR-1 inlet ∆H =−7.8×103 kJ kmol−1 Heat of reaction
F20 = 5.0m3 h−1 Flow rate: CSTR-2 inlet ∆Hvap = 4.02×104 kJ kmol−1 Heat of vaporization
Fr = 2.0m3 h−1 Flow rate: SEP-1 vapor Cp = 0.231kJ kg−1 K−1 Heat capacity
V1 = 5.0m3 Volume: CSTR-1 R = 8.314kJ kmol−1 K−1 Gas constant
V2 = 5.0m3 Volume: CSTR-2 ρL = 1000kg m−3 Liquid solution density
V3 = 3.0m3 Volume: SEP-1 MWA = 18kg kmol−1 Molecular weight: A
αA = 3.0 Relative volatility: A MWB = 18kg kmol−1 Molecular weight: B
αB = 0.8 Relative volatility: B MWD = 40.0kg kmol−1 Molecular weight: D
αD = 1.0 Relative volatility: D
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Applying first principles, a dynamic model of the process network may be obtained

(neglecting the dynamics of the condenser and the solvent) and is given by the following

ordinary differential equations (ODEs) (see Table 5.1 for parameter notation and values):

dT1

dt
=

F10

V1
T10 +

Fr

V1
T3−

F1

V1
T1−

∆Hk0

ρLCp
e−E/RT1C2

A1 +
Q1

ρLCpV1
(5.29a)

dCA1

dt
=

F10

V1
CA10 +

Fr

V1
CAr−

F1

V1
CA1− k0e−E/RT1C2

A1 (5.29b)

dCB1

dt
=

Fr

V1
CBr−

F1

V1
CB1 + k0e−E/RT1C2

A1 (5.29c)

dT2

dt
=

F20

V2
T20 +

F1

V2
T1−

F2

V2
T2−

∆Hk0

ρLCp
e−E/RT2C2

A2 +
Q2

ρLCpV2
(5.29d)

dCA2

dt
=

F20

V2
CA20 +

F1

V2
CA1−

F2

V2
CA2− k0e−E/RT2C2

A2 (5.29e)

dCB2

dt
=

F1

V2
CB1−

F2

V2
CB2 + k0e−E/RT2C2

A2 (5.29f)

dT3

dt
=

F2

V3
(T2−T3)−

∆HvapṀr

ρLCpV3
+

Q3

ρLCpV3
(5.29g)

dCA3

dt
=

F2

V3
CA2−

Fr

V3
CAr−

F3

V3
CA3 (5.29h)

dCB3

dt
=

F2

V3
CB2−

Fr

V3
CBr−

F3

V3
CB3 (5.29i)

where Tj denotes the temperature of the j-th vessel ( j = 1 denotes CSTR-1, j = 2 denotes

CSTR-2, and j = 3 denotes SEP-1), Ci j denotes the concentration of the i-th species (i =

A, B) in the j-th vessel, and Ṁr denotes the molar flow rate of the recycle stream.

The relative volatility of each species is assumed to be constant within the operating

temperature range of the flash tank. The following algebraic equations are used to model
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the composition of the recycle stream:

CD3 = (ρL−CA3MWA−CB3MWB)/MWD (5.30a)

Cir =
αiρLCi3

∑ j∈{A,B,D}α jC j3MWj
, i = A, B, D (5.30b)

Ṁr = Fr (CAr +CBr +CDr) (5.30c)

where Cir is the overhead vapor concentration of the separator. Given the assumption of

constant liquid hold-up and constant liquid density, the volumetric flow rates are given by

the following equations:

F1 = Fr +F10 (5.31a)

F2 = F1 +F20 (5.31b)

F3 = F2−Fr (5.31c)

where Fj is the volumetric flow rate of the outlet stream of the j-th vessel.

The process network has five manipulated inputs: the three heat rates Q j, j = 1, 2, 3

and the inlet concentration of the reactant A in the feedstock to each reactor (CA10 and

CA20). The bounds on the available control action are Q j ∈ [−1.0, 1.0]× 105 kJ h−1 for

j = 1, 2, Q3 ∈ [2.2, 2.5] × 106 kJ h−1, and CA j0 ∈ [0.5, 7.5] kmol m−3 j = 1, 2. In

addition to the input constraints, the reactions take place within the temperature range from

370.0 to 395.0 K and thus, the reactors are to be operated within this temperature range.

The separation occurs at 390.0 K.

The real-time economics of the process network are assumed to be described by the

molar flow rate of desired product B leaving the process network which is denoted as ṀB3.

The time-averaged amount of reactant that may be fed to each reactor is constrained to
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an average amount of 20.0kmol h−1 which gives rise to the following two input average

constraints:
1
t f

∫ t f

t0
Fj0CA j0(t) dt = 20.0kmol h−1 (5.32)

for j = 1, 2 where t0 and t f are the initial and final time of the operation of the process

network. Since the inlet flow rates F10 and F20 are constant, the average input constraint

may be written in terms of the inlet concentration of A only such that the time-averaged

value of CA j0 must be equal to 4.0kmol m−3.

The economically optimal steady-state (which is simply referred to as the optimal

steady-state for the remainder) will be used in the design of a real-time LEMPC, i.e., the

stability region for the optimal steady-state will be used in the LEMPC formulation. Since

the reaction rate is maximized at high temperature, computing the optimal steady-state with

the exact acceptable temperature operating range will give an optimal steady-state with the

greatest acceptable reactor operating temperature. Much like current practice, the optimal

steady-state is computed with a degree of conservativeness or “back-off” introduced in

the acceptable operating temperature range, so that the reactor temperature is maintained

within the acceptable operating range over the length of operation in the presence of uncer-

tainty and disturbances (see [102] and the references therein, for instance, for more details

on the back-off methodology). Thus, the optimal steady-state must satisfy a restricted tem-

perature range of Tjs ∈ [370.0,380.0] K for j = 1, 2. The steady-state optimization problem
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is given by:

max
xs,us

F3CB3s

s.t. f (xs,us) = 0

370.0K≤ T1s ≤ 380.0K

370.0K≤ T2s ≤ 380.0K

T3s = 390.0K

−1.0×105 kJ h−1 ≤ Q1s ≤ 1.0×105 kJ h−1

−1.0×105 kJ h−1 ≤ Q2s ≤ 1.0×105 kJ h−1

2.2×106 kJ h−1 ≤ Q3s ≤ 2.5×106 kJ h−1

CA10s =CA20s = 4.0kmol m−3

(5.33)

where f (xs,us) = 0 represents the steady-state model. The optimal steady-state vector

(omitting units) is:

x∗s =
[

T ∗1s C∗A1s C∗B1s T ∗2s C∗A2s C∗B2s T ∗3s C∗A3s C∗B3s

]T

=

[
380.0 2.67 2.15 380.0 2.42 2.06 390.0 1.85 2.15

]T

, (5.34)

and the optimal steady-state input vector is

u∗s =
[

Q∗1s Q∗2s Q∗3s C∗A10s C∗A20s

]T

=

[
−4.21×103 1.70×104 2.34×106 4.0 4.0

]T

. (5.35)

The optimal steady-state is open-loop unstable.

The control objective of the process network is to optimize the economics through

real-time operation while maintaining the closed-loop state trajectory inside a well-defined
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state-space set. To accomplish this objective, the real-time LEMPC scheme is applied to the

process network. In stark contrast to traditional tracking control that forces the closed-loop

state to converge to the (optimal) steady-state, applying LEMPC to the process network

is not expected to achieve convergence to the optimal steady-state. Instead, LEMPC may

force the process network to operate in a consistently transient manner to achieve better

closed-loop performance compared to the closed-loop performance at the optimal steady-

state.

For the implementation of the LEMPC, the acceptable temperature range is not treated

as a hard constraint. Instead, the acceptable temperature range is accounted for by imposing

quadratic penalty terms in the stage cost of the LEMPC. Thus, the stage cost used in the

objective function of the LEMPC is

le(x,u) =−F3CB3 +
3

∑
i=1

Qc,i(Ti−T ∗is )
2 (5.36)

where T ∗is , i = 1, 2, 3 are the optimal steady-state temperatures. The stage cost of Eq. 5.36

includes the economics and the quadratic penalty terms for the temperature. The weight co-

efficients are Qc,1 = 0.018, Qc,2 = 0.022, and Qc,3 = 0.01 and have been tuned such that the

closed-loop temperatures are maintained near the optimal steady-state temperature. Since

no hard or soft constraints are imposed on the temperature in the LEMPC, it is emphasized

that there is no guarantee that the temperatures are maintained within the acceptable tem-

perature range described above (Tj ∈ [370.0, 395.0] K for j = 1, 2 and T3 ≈ 390.0K). In

this example, small violations over a short period are considered acceptable. If maintaining

the operation within the acceptable operating temperature range is considered critical, one

may add various modifications to the LEMPC to achieve this objective such as decreasing

the size of Ωρe , adding hard or soft constraints on the temperature in the LEMPC, or adding

a contractive constraint on the temperature ODEs.
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An explicit stabilizing controller is designed using feedback linearization techniques to

make the dynamics of the temperature ODEs linear (in a state-space region where the input

constraints are satisfied) under the explicit controller. Specifically, the temperature ODEs

are input-affine in the heat rate input and have the form:

Ṫj = f j(x)+b jQ j (5.37)

where f j(x) is a nonlinear scalar-valued function, b j is constant and j = 1, 2, 3. The

controller that makes the closed-loop temperature dynamics linear is:

Q j =−
1
b j

(
f j(x)+K j(Tj−T ∗js)

)
(5.38)

where K j denotes the controller gain. In this case, the controller gains are K1 = 5, K2 = 5,

and K3 = 7, respectively. The inlet concentration input values are fixed to the average val-

ues (4.0 kmol m−3). Through extensive closed-loop simulations under the state feedback

controller, a quadratic Lyapunov function for the process network under the feedback con-

troller h(x) was determined. An estimate of the stability region of the process network

under the feedback controller was characterized by computing the state-space points where

V̇ < 0 and taking the stability region to be a level set of the Lyapunov function containing

only state-space points where the time-derivative of the Lyapunov function is negative. The

quadratic Lyapunov function has the form:

V (x) = (x− x∗s )
T P(x− x∗s ) (5.39)

where P is the following positive definite matrix:

P = diag
[

0.001 1.5 0.05 0.001 1.5 0.05 0.001 1.5 0.05

]
. (5.40)
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The estimated stability region Ωρ is the level set of the Lyapunov function where V (x) ≤

11.0, i.e., ρ = 11.0. The subset of the stability region which defines the mode 1 constraint of

the LEMPC is ρe = 10.0 and has been determined through extensive closed-loop simulation

under LEMPC as the subset of the stability region Ωρ where the closed-loop state under

LEMPC is maintained in Ωρ .

The input average constraint is imposed over successive, finite-length operating pe-

riods. Specifically, the average constraint must be satisfied over each operating period

tM = M∆ where M is the number of sampling periods in the operating period. This ensures

that over the entire length of operation the average constraint will be satisfied. For this

example, the operating period was chosen to be tM = 2.4h which leads to better asymptotic

average economic performance under LEMPC (assuming no computational delay) than the

asymptotic average performance at the economically optimal steady-state. To solve the

dynamic optimization problem of the LEMPC, orthogonal collocation with three Radau

collocation points per sampling period is employed for discretization of the ODEs (see, for

instance, [20] for details on solving a dynamic optimization problem using a simultane-

ous approach). The open-source nonlinear optimization solver Ipopt [187] was employed

owing to its ability to exploit the high degree of sparsity of the resulting optimization prob-

lem. Analytical first and second-order derivative information was provided to the solver.

The closed-loop simulations were coded in C++ and performed on an Intel R© CoreTM 2

Quad 2.66 GHz processor running an Ubuntu Linux operating system. The sampling pe-

riod of the LEMPC used in the simulations below is ∆ = 0.01h. To simulate forward in

time the closed-loop process network, the fourth-order Runge-Kutta method was used with

a time step of 0.0001 h.

In the first set of simulations, nominal operation of the process network under LEMPC

implemented in a typical receding horizon fashion is considered under ideal computa-

tion, i.e., assuming no computational delay. The closed-loop economic performance under

244



1 10 100

45.0

50.0

55.0

60.0

N

T
o
ta
l
C
o
s
t,

J
e

Figure 5.5: The total economic cost Je over one operating window length of operation

(2.4 h) of the process network under LEMPC with the prediction horizon length.

LEMPC is assessed using the economic performance index which is defined as:

Je =
∫ t f

0
F3CB3 dt . (5.41)

Since the LEMPC does not directly optimize the molar flow rate of product out of the

process network, the stage cost index will also be considered as a measure of the closed-

loop performance and is given by:

Le =−
∫ t f

0
le(x,u) dt . (5.42)

First, the effect of the prediction horizon on the closed-loop economic performance over

one operating period (2.4 h) is considered. The closed-loop performance index of Eq. 5.41

plotted against the prediction horizon length is given in Fig. 5.5. A significant increase in

closed-loop performance is observed initially with increasing prediction horizon length un-

til the closed-loop performance becomes approximately constant. Owing to this fact, a pre-
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diction horizon of N = 200 is used in all subsequent simulations. A simulation over many

operating periods such that the effect of the initial condition on closed-loop performance

becomes negligible is performed (with N = 200). The asymptotic average closed-loop eco-

nomic performance, which is the time-averaged economic cost after the effect of the initial

condition becomes negligible, was determined from this simulation to be 25.0 kmol h−1 (in

this case, the time-averaged production rate over each operating window becomes constant

after a sufficiently long length of operation). The optimal steady-state production rate of

B is 21.5 kmol h−1. Thus, the asymptotic production rate of the process network under the

LEMPC is 16.3% better than the production rate at the economically optimal steady-state.

The effect of computational delay is considered in the next set of simulations, and two

scenarios are considered: (1) the closed-loop process network under LEMPC implemented

in a typical receding horizon fashion where the control action is subject to real-time com-

putational delay (for the sake of simplicity, this case will be referred to as the closed-loop

process network under LEMPC for the remainder) and (2) the closed-loop process network

under the real-time LEMPC scheme (also, subject to real-time computational delay). For

the former scenario, the LEMPC begins to compute a control action at each sampling in-

stance after receiving a state measurement. Owing to the computational delay, the control

action applied to the process network is the most up-to-date control action. For example, if

it takes 0.002 h to compute the control action at the sampling instance tk, then u(tk−1) is ap-

plied to the process network from tk to tk + 0.002 h (assuming u(tk−1) is available at tk) and

applies u(tk) to the process network from tk + 0.002 h to tk+1 = tk +∆. For each scenario, a

12.0 h length of closed-loop operation was simulated. For the real-time LEMPC case, the

LEMPC is forced to recompute a new solution after three sampling periods have elapsed

since the last time an LEMPC solution was computed, i.e., the solver starts computing a

new solution at the beginning of the fourth sampling period.

The average computation time required to solve the LEMPC (of scenario (1)) at each
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Figure 5.6: The closed-loop (a) state and (b) input trajectories of the nominally operated

process network under the real-time LEMPC scheme.

sampling time was 11.2 s (31.2% of the sampling period) with a standard deviation of

7.42 s. The maximum computation time over the simulation was 61.9 s which is almost

double the sampling period. The computation time exceeded the sampling period ten out

of the 1,200 sampling periods in the simulation. Over the course of both simulations, the

closed-loop state was maintained in Ωρ . The closed-loop trajectories under the real-time

LEMPC scheme are given in Fig. 5.6 (the closed-loop behavior under the LEMPC subject

to real-time computational delay was similar). The difference between the performance

index of the two cases was less than 0.5% (the performance indices for case (1) and case

(2) were 284.3 and 283.3, respectively).

While little difference between the two cases in terms of closed-loop performance was

realized, it is important to note that an a priori guarantee on closed-loop stability under

the real-time LEMPC may be made, while, under the LEMPC with computational delay, it

is difficult to guarantee closed-loop stability a priori. Also, the total on-line computation
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Figure 5.7: The number of times the LEMPC problem was solved (Comp.) as dictated by

the real-time implementation strategy compared to the sampling period (∆) over the first

0.5 h of operation.

time to solve the LEMPC over the two simulations was 3.74 h and 0.94 h, respectively. The

real-time LEMPC reduces the total on-line computation requirement by 75% compared to

LEMPC implemented in a receding horizon fashion because the real-time LEMPC does

not recompute a control action at each sampling instance, while LEMPC, implemented in a

receding horizon fashion, recomputes a control action at each sampling instance. To better

illustrate this point, Fig. 5.7 shows the frequency the LEMPC problem was solved under the

real-time implementation strategy with respect to the sampling period over the first 0.5 h

of operation. Over this time, the LEMPC optimization problem was solved at a rate of one

out of every four sampling periods. This trend continues over the remainder of the 12.0 h

length of operation and hence, the 75% reduction in total computational time.

Since the computational delay depends on many factors, e.g., model dimension, predic-

tion horizon, solution strategy used to solve the dynamic optimization problem, the nonlin-

ear optimization solver used, computer hardware, it is also important to consider compu-

tational delay greater than one sampling period to demonstrate that the real-time LEMPC

scheme may handle computation delay of arbitrary length. Therefore, another set of sim-

ulations is considered where longer computational delay is simulated. The computation

delay is modeled as a bounded uniformly-distributed random number and the maximum

computational delay is assumed to be less than 10 sampling periods. Both the LEMPC

(receding horizon implementation) and the real-time LEMPC scheme are considered. To
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Table 5.2: The performance indices of the process network under the back-up explicit con-

troller, under the LEMPC subject to computational delay, and under the real-time LEMPC

for several simulations.

Sim. Back-up Controller LEMPC Real-time LEMPC
Je Le Je Le Je Le

1 225.5 225.4 277.0 245.0 295.1 216.5
2 254.2 254.1 318.7 278.6 307.3 279.6
3 260.5 260.4 319.9 286.3 318.1 294.7
4 232.7 230.6 290.7 255.7 299.2 266.4
5 250.0 250.0 308.7 276.9 322.8 282.9

make the comparison as consistent as possible, the computational delay, at the time steps

the real-time LEMPC is solved, is simulated to be the same as the computation delay to

solve the LEMPC at the same time step (recall the real-time LEMPC is not solved at each

sampling period). Given the computational delay is much greater for this set of simulations

than in the previous set of simulations, the real-time LEMPC is forced to recompute a new

solution after 15 sampling periods have elapsed since the last time it computed a solution.

Several simulations were performed, each starting at a different initial condition, and

the performance indices of these simulations are given in Table 5.2. Applying the back-up

explicit controller h(x) implemented in a sample-and-hold fashion to the chemical process

network was also considered and the performance indices of these simulations are given

in Table 5.2 as well. The average improvement in economic performance compared to

the process network under the back-up controller was 26.1% under the real-time LEMPC

scheme and 23.9% under the LEMPC (implemented in a receding horizon). Thus, a sub-

stantial economic benefit is achieved by applying LEMPC to the process network. While

the real-time LEMPC did not always achieve better performance (either measured in terms

of the economic performance index or stage cost index) compared to the performance un-

der LEMPC, the closed-loop trajectories between the two cases are significantly different.
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Figure 5.8: The closed-loop (a) state and (b) input trajectories of process network under the

real-time LEMPC scheme where the computational delay is modeled as a bounded random

number.
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Figure 5.9: The closed-loop (a) state and (b) input trajectories of process network under

LEMPC subject to computational delay where the computational delay is modeled as a

bounded random number.

250



0.0 2.0 4.0 6.0 8.0 10.0 12.0

t

h(x)

LEMPC

Figure 5.10: A discrete trajectory depicting when the control action applied to the process

network over each sampling period was from a precomputed LEMPC solution or from the

back-up controller for the closed-loop simulation of Fig. 5.8.

Figures 5.8-5.9 give the closed-loop trajectories of simulation 2 (as labeled in Table 5.2).

The input trajectory computed by the real-time LEMPC has chattering initially over the

first operating period because of the effect of the initial condition, but after the first operat-

ing period when the effect of the initial condition dissipates, the computed input trajectory

is significantly smoother. On the other hand, chattering in the input profiles is observed

throughout the entire simulation under the LEMPC. If we compare the performance index

of operation from t = 2.4h to t = 12.0h (after the first operating period) for simulation 2,

the indices are Je = 249.8 and Le = 227.9 for operation under the real-time LEMPC and

Je = 248.5 and Le = 217.4 for operation under the LEMPC; the performance under the

real-time LEMPC is better over this period than under LEMPC.

Over the five simulations under the real-time LEMPC strategy, the explicit controller

was applied on average 19 out of 1200 sampling periods. For the simulation of Fig. 5.8, a

discrete trajectory showing when the control action applied to the process network under

the real-time LEMPC strategy was from a precomputed LEMPC solution or from the back-

up controller is given in Fig. 5.10. For this case, the back-up controller is used 31 out

of 1200 sampling periods (2.7% of the sampling periods). From Fig. 5.10, the back-up

controller is only applied over the first operating period and is not used in any subsequent

sampling period. Thus, the source of performance degradation for this case (Sim. 2 in

Table 5.2) is due to applying the explicit back-up controller to maintain the closed-loop

251



0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8

360.0

375.0

390.0

405.0

420.0

T
[K

]

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8

0.00

1.00

2.00

3.00

4.00

C
A

[k
m
o
l/
m

3
]

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8

0.0

1.0

2.0

3.0

4.0

t [h]

C
B

[k
m
o
l/
m

3
]

 

 

CSTR-1 CSTR-2 SEP-1

(a)

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8

−100.0

−50.0

0.0

50.0

100.0

Q
1

[M
J
/
h
]

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8

−100.0

−50.0

0.0

50.0

100.0

Q
2

[M
J
/
h
]

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8

2200

2300

2400

Q
3

[M
J
/
h
]

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8
0.0

2.0

4.0

6.0

8.0

C
A
1
0

[k
m
o
l/
m

3
]

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8
0.0

2.0

4.0

6.0

8.0

t [h]

C
A
2
0

[k
m
o
l/
m

3
]

(b)

Figure 5.11: The closed-loop (a) state and (b) input trajectories of process network under

the real-time LEMPC scheme with bounded process noise.

state in Ωρ . Again, it is emphasized that there is no a priori guarantee that the LEMPC

implemented in a receding horizon fashion subject to computational delay could maintain

the closed-loop state inside Ωρ .

In the last set of simulations, significant bounded Gaussian process noise with zero

mean was added to the model states. The standard deviations of the noise added to the

temperature and concentration states were 5.0 and 0.5, respectively and the bounds on the

noise were 2.0 and 15.0, respectively. Two closed-loop simulations over 12.0 h length

of operation were completed with the same realization of the process noise. In the first

simulation, the process network was controlled by the real-time LEMPC and the closed-

loop trajectories are given in Fig. 5.11 over the first two operating periods. For this case,

the back-up controller is applied 69 out of 1200 sampling periods (5.8% of the sampling

periods). In the second simulation, the process network was controlled by LEMPC subject

to computation delay (trajectories shown in Fig. 5.12).
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Figure 5.12: The closed-loop (a) state and (b) input trajectories of process network under

LEMPC subject to computational delay with bounded process noise.

From Fig. 5.12, a significant degree of chattering and bang-bang type actuation in the

input trajectory is observed. This behavior tries to combat the effect of the added process

noise and is due to not penalizing control actions in the stage cost and not imposing rate of

change constraints on the control actions. In practice, one could add one or both of these

elements to the LEMPC if the computed input trajectory is not implementable. On the

other hand, the real-time LEMPC implements a much smoother input trajectory (Fig. 5.11)

because the precomputed input trajectory of the real-time LEMPC has a degree of smooth-

ness like the closed-loop trajectory of the nominally operated process network (Fig. 5.6).

If the precomputed input trajectory satisfies the stability conditions, it will be applied to

the closed-loop process network with disturbances. The closed-loop system under the real-

time LEMPC has guaranteed stability properties, but is not recomputed at each sampling

period like the receding horizon implementation of LEMPC which will try to combat the

effect of the disturbance on performance. In both cases, the state is maintained in Ωρ .

253



The performance indices of the two cases are 301.6 under the real-time LEMPC and 295.5

under the LEMPC; the closed-loop performance under the real-time LEMPC scheme is

2.0% better than applying LEMPC without accounting for the computational delay. More-

over, the back-up controller was also applied to the process network subject to the same

realization of the process noise. The economic performance index for this case was 242.3.

For operation with process noise, the economic performance improvement over the process

network under the back-up controller was 24.4% under the real-time LEMPC strategy and

21.9% under the receding horizon LEMPC for the same initial condition.

5.4 Conclusions

In this chapter, a strategy for implementing Lyapunov-based economic model predictive

control (LEMPC) in real-time with computation delay was developed. The implementation

strategy uses a triggering condition to precompute an input trajectory from LEMPC over

a finite-time horizon. At each sampling period, if a certain stability (triggering) condition

is satisfied, then the precomputed control action by LEMPC is applied to the closed-loop

system. If the stability condition is violated, then a backup explicit stabilizing controller

is used to compute the control action for the sampling period. In this fashion, the LEMPC

is used when possible to optimize the economics of the process. Conditions such that the

closed-loop state under the real-time LEMPC is always bounded in a compact set were

derived. The real-time LEMPC scheme was applied to a chemical process network and

demonstrated that it may maintain closed-loop stability in the presence of significant com-

putation delay and process noise while also, improving the closed-loop economic perfor-

mance compared to the economic performance at the economically optimal steady-state.
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Chapter 6

EMPC of Time-Delay Systems:

Closed-loop Stability and Delay

Compensation

6.1 Introduction

Within the context of control of chemical process systems, time-delays resulting from com-

putation and communication delays are enviable albeit they may be small and insignificant

depending on the magnitude of the time-delay relative to the time-constants of the pro-

cess dynamics. From a modeling perspective, time-delays are often employed to describe

and/or to approximate the dynamics of transportation of material through the process sys-

tem, control actuator dynamics, measurement sensor dynamics, and high-order dynamic

behavior. Thus, robustness with respect to closed-loop stability and performance of control

systems to time-delays is an important consideration. Moreover, many chemical process

systems have significant nonlinear behavior owing to complex reaction mechanisms, Ar-

rhenius reaction-rate dependence on temperature, and thermodynamic relationships which
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adds additional complexity in considering the closed-loop behavior of the system resulting

from a nonlinear time-delay system under a control law.

Dynamic models of systems that involve nonlinearities and time-delays are systems of

nonlinear differential difference equations (DDEs). Systems described by DDEs are funda-

mentally different from systems described by ordinary differential equations (ODEs) (see,

for example, [74] for more details on this point). One important difference is that a dy-

namic system with an arbitrarily small delay is an infinite-dimensional system even though

the dimension of the state vector may be finite. For nonlinear DDEs, there are typically

two approaches employed to analyze stability that are analogous to Lyapunov stability the-

ory employed to assess stability of equilibria and solutions of ODEs. The first method

uses Lyapunov-Krasovski functionals, which is the direct analog to Lyapunov functions for

ODEs, and the second method uses Lyapunov-Razumikhin functions [74]. While Razu-

mikhin theorems are typically more conservative than Krasovski theorems, Razumikhin

theorems require the construction of a function which is typically less challenging than the

construction of a functional. Various extensions of stability theory for DDE systems exist

including input-to-state stability using Razumikhin-type arguments and extending the no-

tion of control Lyapunov functions to control Lyapunov-Krasovski functionals and control

Lyapunov-Razumikhin functions, e.g., [197, 182, 89, 90, 161].

One approach to design a controller for a time-delay system is to neglect the delays in

the model used for controller design and employ controller design methods used for sys-

tems described by ODEs. This may lead to acceptable closed-loop properties especially

when the time-delays are small. However, employing these methods, in general, may pose

unacceptable limitations on the achievable control quality and performance, e.g., sluggish

response, oscillations, and even instability [178]. Perhaps, one of the most well-known

results to cope with time-delay in the control input or sensor measurement is the classical

Smith predictor structure designed for linear time-delay systems which eliminates the de-
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lay from the characteristic polynomial of the closed-loop system and allows for larger con-

troller gains to be used [174]. Many extensions of the Smith predictor exist in the literature

including extensions to nonlinear systems [106, 82]. With respect to control design and/or

input delay compensation for nonlinear systems, many results exist in the literature includ-

ing state and output feedback control designs for nonlinear DDE systems [7, 8, 33, 148],

input delay compensation for nonlinear systems [107, 96], and nonlinear sampled-data sys-

tems with time-delays [183, 84, 30, 98], see, also, the reviews [71, 161] for more references

on control of time-delay systems.

In addition to nonlinearities and time-delays, other important considerations within the

context of chemical process control are process constraints and performance considera-

tions. As described in the previous chapters, EMPC may be used to control nonlinear sys-

tems in an economically optimal manner while accounting for state and control constraints.

While there has been some work completed on tracking MPC of nonlinear time-delay sys-

tems, e.g., [142, 153, 119, 160, 37], to the best of our knowledge, no work on EMPC for

time-delay systems has been completed.

In this chapter, we first consider the robustness of LEMPC, formulated with an ODE

model, for nonlinear systems with state and input delays in the sense that closed-loop sta-

bility (to be made precise below) will be maintained when the state and input delays are

sufficiently small. Since LEMPC is designed with an explicit stabilizing control law and

LEMPC is applied in a sample-and-hold fashion, we first consider the closed-loop stability

of the nonlinear sampled-data time-delay system resulting from the continuous-time delay

system under the nonlinear control law applied in a sample-and-hold fashion. Leveraging

the aforementioned results, closed-loop stability is shown for the closed-loop time-delay

system under LEMPC when the time-delays are sufficiently small. Using a chemical pro-

cess example, we demonstrate that the LEMPC maintains closed-loop stability when the

time-delays in both inputs and states are sufficiently small. To address economic perfor-
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mance deterioration due to time-delays, in the second part, we develop a predictor feedback

based LEMPC scheme, formulated with a DDE model, that compensates for the effect of

the input delay. The results of this chapter were first presented in [56].

6.2 Preliminaries

6.2.1 Notation and Preliminary Results

In this chapter, the following notation will be used. The notation x(t) ∈ Rn is a time de-

pendent vector and xd(t) : [−td,0]→ Rn is a time-dependent function where xd(t)(τ) :=

x(t + τ) for τ ∈ [−td,0]. The explicit dependence of t on x(t) and xd(t) may be omitted

and we may simply write x and xd when convenient. The symbol | · | denotes the Eu-

clidean norm of a real vector. The floor and ceiling functions, denoted as bac and dae

(a ∈ R), respectively, are the largest integer not greater than a and the smallest integer not

less than a, respectively. The symbol Bδ denotes a norm-ball of radius δ , and the symbol

Ωρ is a level set or level surface of a scalar positive definite function V : Rn→ R≥0, i.e.,

Ωρ := {x ∈ Rn : V (x)≤ ρ}. The family of piecewise constant, right-continuous functions

with period ∆ (defined over the appropriate interval) is denoted as S(∆).

A function γ : [0,a)→ R≥0 is said to be of class-G if it is a nondecreasing continu-

ous function and γ(0) = 0. The symbol C([a,b],Rn) is the Banach space of continuous

functions mapping the interval [a,b] into Rn with topology of uniform convergence and

equipped with the norm:

‖φ‖ := max
a≤s≤b

|φ(s)|,

where φ ∈C([a,b],Rn).

To present some preliminary definitions and results, consider the class of systems de-

258



scribed by functional differential equations:

ẋ(t) = f (xd(t),wd(t)), xd(t0) = ξ (6.1)

where f : C([−td,0],Rn)×C([−td,0],Rm)→ Rn with f (0,0) = 0 and the initial data is

ξ ∈C([−td,0],Rn), and w is a bounded, piecewise continuous input. For each initial data

and initial time t0 ≥ 0, we suppose there exists Tf ≥ 0 and a unique maximal solution x(·)

defined on [t0− td, t0 +Tf ]. We define the following norm:

‖xd‖t0 := sup
s≥t0
‖xd(s)‖ .

We will make use of the following definition and results on input-to-state stability of

the zero solution of the system of Eq. 6.1 from [182]. The definition and results are stated

here for the reader’s convenience.

Definition 6.1 ([182]). Let γ ∈ G , ν ∈R≥0 and ∆x,∆w ∈R≥0. The zero solution of Eq. 6.1

is said to be uniform input-to-state stable (ISS) with gain γ , offset ν , and restriction (∆x, ∆w)

if ‖xd(t0)‖< δx imply Tf = ∞ and that the following properties hold uniformly in t0: 1) for

each ε > 0 there exists δ > 0 such that ‖xd(t0)‖ ≤ δ implies ‖xd‖t0 ≤max{ε,γ(‖wd‖t0),ν}

and 2) for each ε > 0 and ηx ∈ (0,∆x) and ηw ∈ (0,∆w) there exists T > 0 such that

‖xd(t0)‖ ≤ ηx and ‖wd‖t0 ≤ ηw imply ‖xd‖t0+T ≤max{ε,γ(‖wd‖t0),ν}.

If V : [−td,∞)×Rn→ R≥0 is a continuous function, then we use V̇ (t,x(t)) to denote

the upper right-hand derivative of V along the solution of Eq. 6.1 and is defined as

V̇ (t,x(t)) := limsup
h→0+

V (t +h,x(t +h)−V (t,x(t))
h

. (6.2)

The following two results are needed:
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Lemma 6.1 ([100, 182]). Let µ ≥ 0 and α ∈K . If V (t) ≥ µ implies V̇ (t) ≤ −α(V (t)),

then there exists β ∈K L (independent of µ) with β (s,0)≥ s such that

V (t)≤max{β (V (t0), t− t0),µ} .

The following result for the system of Eq. 6.1 is from [182] which is a Razumikhin-type

theorem for input-to-state stability of functional differential equations.

Theorem 6.1 ([182, Theorem 2]). Suppose there exist a continuous function V : [−td,∞)×

Rn→ R≥0, α1, α2 ∈K∞, α3 ∈K , γx, γw ∈ G and nonnegative real numbers δ < ∆ such

that

1. α1(|x|)≤V (t,x)≤ α2(|x|);

2. |x(t)| ≥max{γx(‖xd(t)‖),γw(‖wd(t)‖)}⇒ V̇ (t,x(t))≤−α3(|x(t)|);

3. α
−1
1 ◦α2 ◦ γx(s)< s for δ < s < ∆.

Let β ∈K L be as in the conclusion of Lemma 6.1 when α = α3◦α
−1
2 . Then, the origin of

the system of Eq. 6.1 is uniformly ISS with gain γ̃w := α
−1
1 ◦α2◦γw, offset δ , and restriction

(∆x, ∆w) such that max{α−1
1 (β (α2(s1),0)), γ̃w(s2)}< ∆ when s1 < ∆x, s2 < ∆w.

6.2.2 Class of Nonlinear Time-Delay Systems

The class of nonlinear time-delay systems considered in this chapter are described by a

system of differential difference equations (DDEs), which are also commonly referred to

as delay differential equations, and have the following form:

ẋ(t) = f (x(t),x(t−d1),u(t−d2)) (6.3)
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where x(t) ∈Rn is the state, u(t) ∈U⊂Rm is the bounded control input, d1 ≥ 0 and d2 ≥ 0

are the state and input delays, respectively, and f is a locally Lipschitz vector function of

its arguments with f (0,0,0) = 0. The set that bounds the available control action is given

by U := {u ∈ Rm : |ui| ≤ umax,i, i = 1, . . . , m}. The initial time is taken to be zero (t0 = 0),

the initial data is given by the function φx where φx ∈C([−d1,0],Rn), and the initial input

function, which is denoted as φu, is defined over the interval [−d2,0], takes values in U

and is therefore, bounded. Moreover, φu is assumed to be piecewise continuous over its

domain. Full state feedback of the system of Eq. 6.3 is assumed.

We will design a controller for the system of Eq. 6.3 on the basis of the ODE model,

i.e., Eq. 6.3 with d1 = d2 = 0. We impose the following stabilizability assumption on the

system of Eq. 6.3. For the system of Eq. 6.3 with d1 = d2 = 0, we assume that there exists

a locally Lipschitz control law hc : Rn → U where hc(0) = 0 such that the origin of the

system ẋ = f (x,x,hc(x)) is asymptotically stable. This assumption implies that there exists

a continuously differentiable function V : Rn → R≥0 such that the following inequalities

hold [100]:

α1(|x|)≤V (x)≤ α2(|x|) (6.4a)

∂V
∂x

(x) f (x,x,hc(x))≤−α3(|x|) (6.4b)∣∣∣∣∂V
∂x

(x)
∣∣∣∣≤ α4(|x|) (6.4c)

for all x ∈ D⊂ Rn where D is an open neighborhood of the origin and αi ∈K , i = 1, 2, 3,

4. In the remainder, we will use the notation hc(x) when referring to the stabilizing control

law.

Remark 6.1. While we restrict our focus to nonlinear systems described by differential dif-

ference equations with constant delay, the extension of the results to systems described by

more general functional differential equations, bounded time-varying delays, and multiple
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state and input delays is conceptually possible.

6.2.3 Controller Emulation Design

Given the stability properties of the control law hc(x), one may consider designing sta-

bility constraints based on the stabilizing control law hc(x) to be imposed within a model

predictive control (MPC) framework. However, MPC is typically implemented in a sample-

and-hold fashion; that is, after receiving a state feedback measurement, a control action is

computed and applied over a finite-time interval, called the sampling period. The control

action for the next sampling period is computed from a new state measurement at the next

sampling time.

To design stabilizing constraints based on the control law hc(x) for MPC, one must first

consider the stabilizing properties of the control law hc(x) when applied to the system of

Eq. 6.3 (with time-delays) in a sample-and-hold fashion. When a controller is applied to the

continuous-time system of Eq. 6.3 in a sample-and-hold fashion, the resulting closed-loop

system is a sampled-data time-delay system and is given by:

ẋ(t) = f (x(t),x(t−d1),h∆(x, t−d2))

h∆(x, t) = hc(x(k∆)), t ∈ [k∆,(k+1)∆),

k = 0, 1, 2, . . .

(6.5)

where the ∆ > 0 is the sampling period and φx is the initial data. The initial data is assumed

to be continuous and defined over the appropriate interval. We assume that the initial input

function is determined by h∆(x,s− d2) for s ∈ [0,d2] which implies that the initial data

must be defined over a prolonged interval when ∆+d2 > d1. Provided the time-delays and

sampling rate are sufficiently small and the initial data is restricted to a ball of radius δ2, i.e.,

φx(s) ∈ Bδ2 for all s ∈ [−max{d1,∆+d2},0], it may be shown that the origin of the closed-
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loop system is uniformly ISS which is stated in the proposition below. The result follows

the ideas of [183]. Specifically, the system of Eq. 6.5 is treated as a perturbed form of

the closed-loop system ẋ = f (x,x,hc(x)). By employing Razumikhin-type arguments, we

consider solutions to the sampled-data system where the solution at time t may be bounded

by the state at time t to show that the origin of the closed-loop system is locally uniformly

ISS.

Proposition 6.1. Consider the sampled-data system of Eq. 6.5. Let t̃d = max{d1,∆+d2},

then there exists a t∗d such that for all t̃d ∈ (0, t∗d), the origin is uniformly ISS with offset δ1

and restriction δ2 where δ1 < δ2 and {x ∈ Rn : |x| ≤ δ2} ⊂ D.

Proof. The sampled-data system of Eq. 6.5 may be written as a time-delay system with

time-varying delay to account for sampling:

ẋ(t) = f (x(t),x(t−d1),hc(x(t− τ(t)))) (6.6)

where τ(t) = t −b(t − d2)/∆c∆ and τ(t) ≤ (d2/∆+ 1)∆ =: Nd∆ (Nd := (d2/∆+ 1)). In

the sampled-data system with state and input delay setting that we consider, the quantity

t − τ(t) represents the sampling time instance that feedback is received to compute the

control action applied to the system at time t. The maximum amount of time in the past

that the feedback measurement used to compute the control action applied to the system at

the current time (the maximum of τ(t)) is the sampling time, ∆, plus the input delay, d2.

The system of Eq. 6.6 may be analyzed as a perturbed form of the system without delays

and sampling, i.e., the system ẋ = f (x,x,hc(x)). In other words, consider the following

system:

ẋ(t) = f (x(t),x(t)+ξ1(t),hc(x(t))+ξ2(t))

ξ1(t) = x(t−d1)− x(t)

ξ2(t) = hc(x(t− τ(t)))−hc(x(t))

(6.7)
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We define the following: ξ T := [ξ T
1 ξ T

2 ] with ξ (t)∈D×U⊂Rn+m, td :=max{2d1,2Nd∆},

and

g(x,ξ ) := f (x,x+ξ1,hc(x)+ξ2) .

The perturbation term ξ (t) is bounded. From the triangle inequality, we have:

|ξ (t)|=
∣∣[ξ T

1 (t) 0T ]T +[0 ξ
T
2 (t)]T

∣∣≤ |ξ1(t)|+ |ξ2(t)| . (6.8)

Owing to the fact that f and hc are locally Lipschitz vector functions, there exists a γ∗1 ∈K

such that:

|ξ1(t)|=
∣∣∣∣∫ t

t−d1

f (x(s),x(s−d1),hc(x(s− τ(s)))) ds
∣∣∣∣≤ d1γ

∗
1 (‖xd(t)‖) (6.9)

where ‖xd(t)‖= maxs∈[−td ,0] |x(t + s)|. Again, by the locally Lipschitz properties assumed

for f and hc, there exist functions Lh, γ∗2 ∈K such that:

|ξ2(t)| ≤ Lh(‖xd(t)‖)|x(t− τ(t))− x(t)| ≤ Nd∆Lh(‖xd(t)‖)γ∗2 (‖xd(t)‖) . (6.10)

From the inequalities of Eqs. 6.8-6.10, there exists a γ∗ ∈K such that

|ξ (t)| ≤ t̃dγ
∗(‖xd(t)‖) (6.11)

where t̃d = max{d1,Nd∆}.

The time-derivative of V along the state trajectory of Eq. 6.5 is

V̇ =
∂V
∂x

(x(t))g(x(t),0)+
∂V
∂x

(x(t)) [g(x(t),ξ (t))−g(x(t),0)]

≤−α3(|x(t)|)+α4(|x(t)|) |g(x(t),ξ (t))−g(x(t),0)| (6.12)
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for all x(t)∈D where the inequality follows from Eq. 6.4b and Eq. 6.4c. Since g is a locally

Lipschitz vector function (this follows from the fact that f and hc are locally Lipschitz),

there exists a function Lξ ∈K such that:

V̇ ≤−α3(|x(t)|)+α4(|x(t)|)Lξ (|ξ (t)|)

≤−α3(|x(t)|)+α4(|x(t)|)Lξ (t̃dγ
∗(‖xd(t)‖)) (6.13)

where the second inequality follows from Eq. 6.11. For some pair of strictly positive real

numbers δ1 and δ2 such that δ1 < δ2 and {x ∈Rn : |x| ≤ δ2} ⊂D, there exists t∗d > 0 such

that t̃d ∈ (0, t∗d) implies:

|x(t)| ≥ α
−1
3 (α4(δ2)Lξ (t̃dγ

∗(‖xd(t)‖))/q)⇒ V̇ ≤−(1−q)α3(|x(t)|) (6.14)

for some q ∈ (0,1) and

α
−1
1 ◦α2 ◦α

−1
3

(
α4(δ2)Lξ (t̃dγ∗(s))

q

)
< s (6.15)

for all s ∈ (δ1,δ2). We note that the size of δ2, which governs the restriction on the initial

condition, and t̃d , which accounts for the magnitude of delays and the sampling period size,

are restricted to be sufficiently small so that the arguments of the inverted class K functions

in Eqs. 6.14-6.15 are within the domain of the functions. From Theorem 6.1 (taking γx(·) =

α
−1
3 (α4(δ2)Lξ (t̃d γ̃∗(·)/q)), the origin of the sampled-data time-delay system of Eq. 6.5 is

uniformly ISS with offset δ1 and restriction δ2 for all t̃d ∈ (0, t∗d).

For appropriately chosen offset δ1 and restriction δ2, one may find a level set of the

Lyapunov (or Lyapunov-Razumikhin) function, Ωρ , such that Bδ1 ⊂ Ωρ ⊆ Bδ2 and for all

initial data satisfying φx(s) ∈ Ωρ for all s ∈ [−t̃d,0] the closed-loop state trajectory of the
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system of Eq. 6.5 under the control law hc(x) applied in a sample-and-hold fashion will be

(uniformly) ultimately bounded in a ball of radius δ1. Moreover, the closed-loop state is

always bounded in Ωρ as a consequence of the construction of Ωρ and Proposition 6.1. This

gives practical stability of the origin of the system of Eq. 6.5. The set Ωρ is an estimate of

the region of attraction, and is used to design a region constraint in Lyapunov-based EMPC.

Thus, Ωρ is referred to as the stability region for the remainder.

Remark 6.2. While the system of Eq. 6.3 is autonomous and thus, explicitly referring to

the stability properties as uniform may not appear to be needed, the sampled-data system

of Eq. 6.5 is a periodically time-varying system and hence, the fact that stability holds

uniformly is needed.

6.3 Robustness of LEMPC to Small Time-Delays

In this section, the closed-loop stability of the time-delay system of Eq. 6.3 under LEMPC,

formulated with an ordinary differential equation model of the system of Eq. 6.3, is ana-

lyzed. The sequence {tk}k≥0 denotes the sequence of sampling times where tk := k∆ and

k ∈ N.

6.3.1 Formulation and Implementation

We assume that the system of Eq. 6.3 is equipped with a stage cost, le : Ωρ ×U→ R,

that is a measure of the instantaneous economic cost of Eq. 6.3. The economic stage cost

is assumed to be continuous over its domain of definition and to depend on the current

state and input, i.e., at time t, the economic stage cost is le(x(t),u(t)). We will show that

applying LEMPC similar to that of Chapter 3, formulated with an ODE model of the system

of Eq. 6.3, to the system of Eq. 6.3 will guarantee closed-loop stability (in a sense to be
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made precise below) for sufficiently small time-delays. Instead of applying the two-mode

LEMPC scheme of Eq. 3.3 directly to the time-delay system of Eq. 6.3, we consider only

mode one operation of the LEMPC. Since we only use mode one operation of LEMPC, we

drop this distinction and simply refer to this as LEMPC for the remainder of this chapter.

Given that plant-model mismatch affects the accuracy of the prediction of any MPC

scheme, a subset of Ωρ is used in the design of the LEMPC whereby the LEMPC may

dictate a time-varying operating policy. The subset of Ωρ , denoted as Ωρ̂ (Bδ1 ⊂Ωρ̂ ⊂Ωρ ),

is designed such that if the current state x(tk) ∈ Ωρ̂ and the predicted state at the next

sampling time z(tk+1) ∈Ωρ̂ (z(tk+1) denotes the predicted state at the next sampling time),

then the actual state at the next sampling time plus the input delay time will be in Ωρ . In this

case, plant-model mismatch arises from the use of an ODE model to predict the behavior

of the time-delay system of Eq. 6.3. For any state in Ωρ \Ωρ̂ , we use the stabilizing control

law hc(x) to force the state back to Ωρ̂ . However, in most practical cases, the amount

of time that the stabilizing control law is applied to the system is insignificant relative to

the amount of time that the LEMPC is applied for good closed-loop performance. It is

important to note that the LEMPC of Eq. 3.3 uses a second mode of operation to force

the state to Ωρ̂ , utilizing a contractive Lyapunov-based constraint. Potentially, one could

consider using such a contractive constraint within the context of LEMPC for time-delay

systems. Nonetheless, the closed-loop stability properties of LEMPC with a contractive

constraint for time-delay systems remains an open problem from a theoretical standpoint.

The optimal control problem that defines the LEMPC problem for time-delay systems
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is given by the following optimization problem:

min
v∈S(∆)

∫ tk+T

tk
le(z(τ),v(τ)) dτ +Vf (z(tk +T )) (6.16a)

s.t. ż(t) = f̄ (z(t),v(t)) (6.16b)

z(tk) = x(tk) (6.16c)

v(t) ∈ U, ∀ t ∈ [tk, tk +T ) (6.16d)

z(t) ∈Ωρ̂ , ∀ t ∈ [tk, tk +T ) (6.16e)

where f̄ (z,v) := f (z,z,v), T =N∆ (N ∈N) is the prediction horizon, z denotes the predicted

state trajectory over the prediction horizon, and v is the piecewise constant input trajectory

over the prediction horizon which is the decision variable of the optimal control problem.

The objective function of Eq. 6.16a consists of the economic cost functional with a

terminal cost. The design of the terminal cost is beyond the scope of this chapter because it

is not needed to prove closed-loop stability (for terminal cost design techniques for EMPC,

see, for example, [4, 116]). A model (Eq. 6.16b) of the system of Eq. 6.3 with d1 = d2 = 0

is used to predict the future behavior of the system under the input trajectory computed by

the LEMPC over the prediction horizon. The model is initialized with a state measurement

at the current sampling time (Eq. 6.16c). Eq. 6.16d constrains the computed input trajectory

to take values within the set of admissible control action values. The constraint of Eq. 6.16e

bounds the predicted state trajectory be in Ωρ̂ .

The optimal input trajectory of Eq. 6.16 at sampling time tk is denoted as v∗(t|tk) and

defined over t ∈ [tk, tk + T ). The control action computed at the kth sampling period is

u(t) = v∗(tk|tk) for t ∈ [tk, tk+1). At the next sampling time, tk+1, the LEMPC (assuming

x(tk+1) ∈ Ωρ̂ ) is reinitialized with an updated state measurement and it computes an opti-

mal input trajectory over a shifted horizon, i.e., LEMPC is applied in a standard receding
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horizon fashion. The algorithm below summarizes the implementation of LEMPC:

Algorithm 6.1. Implementation of the LEMPC of Eq. 6.16.

1. At sampling time tk, the LEMPC receives a state measurement x(tk).

2. If x(tk) ∈Ωρ̂ , go to Step 2.1. Else, go to Step 2.2.

2.1 Solve the optimal control problem of Eq. 6.16 to compute the optimal input

trajectory v∗(t|tk) defined for t ∈ [tk, tk +T ). Go to Step 3.

2.2 Compute the control action from the stabilizing control law v∗(tk|tk) = hc(x(tk))

Go to Step 3.

3. Send the control action v∗(tk|tk) to the control actuators which will be applied to the

system from tk +d2 to tk+1 +d2, i.e., u(t) = v∗(tk|tk) for t ∈ [tk, tk+1). Go to Step 4.

4. Set k← k+1 and go to Step 1.

The main tuning parameter of LEMPC is ρ̂ and does not need to be chosen so that Ωρ̂

is the largest subset of Ωρ such that the state is guaranteed to be in Ωρ under LEMPC. The

parameter ρ̂ governs the set of points (in state-space) where the LEMPC may operate the

system in a time-varying fashion to optimize the process economics. It is chosen to manage

a potential trade-off between robustness and performance of the closed-loop system. In this

case, closed-loop robustness is defined as the ability to maintain the closed-loop state inside

an invariant state-space set in the presence of uncertainty. The uncertainty considered here

is time-delay that is not included in the process model of the LEMPC. On the other hand,

operating over a larger region in state-space may improve closed-loop performance. If there

is little plant-model mismatch, i.e., the delay is small, one may take it to be almost the size

of ρ because the LEMPC may very accurately predicted the behavior of the process. If

there is significant plant-model mismatch, ρ̂ will need to be much smaller than ρ . This will

be extensively investigated further in the chemical process example of Section 6.3.3.
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6.3.2 Closed-loop Stability Analysis

In this subsection, sufficient conditions such that closed-loop stability of the time-delay

system of Eq. 6.3 under the LEMPC of Eq. 6.16 in the sense that the state trajectory is

bounded in Ωρ are derived. We will show that the state will be maintained in Ωρ when

the control action is computed by LEMPC and if the state is in Ωρ \Ωρ̂ , the state will be

converge to Ωρ̂ in finite-time when the control action is computed by the explicit stabilizing

control law.

The following proposition bounds the difference between the state trajectory of the

DDE system of Eq. 6.3 and of the ODE system of Eq. 6.3 with d1 = d2 = 0 over a finite-

time interval.

Proposition 6.2. Consider the following two systems:

ẋ(t) = f (x(t),x(t−d1),u(t−d2)) (6.17)

ż(t) = f (z(t),z(t),v(t)) (6.18)

where the initial time is t0, the initial data of Eq. 6.17 is given by ηx ∈C([t0− d1, t0],Rn)

where ηx(θ) ∈ Ωρ for θ ∈ [t0−d1, t0], u(t) ∈ U for all t ≥ t0−d2, v(t) ∈ U for all t ≥ t0,

and x(t0) = z(t0) ∈ S where S is a compact subset of Ωρ . Let t1 > 0 be such that the state

trajectories of the systems of Eqs. 6.17-6.18 are bounded in Ωρ for all t ∈ [t0, t0+ t1]. There

exists ᾱ ∈K such that

|x(t)− z(t)| ≤ ᾱ(t− t0) (6.19)

for all t ∈ [t0, t0 + t1].

Proof. Owing to the fact that f is locally Lipschitz, there exist positive constants Lx1 , Lx2 ,
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and Lu such that

| f (x,y,u)− f (z,z,v)| ≤ Lx1|x− z|+Lx2|y− z|+Lu|u− v| (6.20)

for all x, y, z∈Ωρ and u, v∈U. Consider the difference between the state, x(t), of Eq. 6.17

and the state, z(t) of Eq. 6.18, for t ∈ [t0, t0 + t1] where t1 > 0 is such that x(t) and z(t)

are bounded in Ωρ for all t ∈ [t0, t0 + t1] (the existence of t1 > 0 follows from continuity

arguments and the fact that S⊂Ωρ is compact). Let e(t) := x(t)−z(t) which has dynamics

ė(t) = ẋ(t)− ż(t). The error dynamics may be bounded using Eq. 6.20:

|ė(t)|= | f (x(t),x(t−d1),u(t−d2))− f (z(t),z(t),v(t))|

≤ Lx1|x(t)− z(t)|+Lx2|x(t−d1)− z(t)|+Lu|u(t−d2)− v(t)|

≤ Lx1|e(t)|+Lx2|x(t−d1)− x(t)+ x(t)− z(t)|+Lu|u(t−d2)− v(t)|

≤ (Lx1 +Lx2)|e(t)|+Lx2 |x(t−d1)− x(t)|+2Lu|umax| (6.21)

for all t ∈ [t0, t0 + t1] where x(t), x(t − d1), z(t) ∈ Ωρ and u(t − d2), v(t) ∈ U. The last

inequality of Eq. 6.21 follows from the triangle inequality and the fact that u(t− d2) and

v(t) are bounded in U. For all x(s) ∈ Ωρ for s ∈ [t− d1, t], we may bound the difference

between x(t−d1) and x(t):

|x(t−d1)− x(t)| ≤ d1‖xd(t)‖ ≤ d1α
−1
1 (ρ) (6.22)

where ‖xd(t)‖ is a slight abuse of notation and it denotes the max-norm of an element in the

space C([−d1,0],Rn), i.e., ‖xd(t)‖= maxθ∈[−d1,0] |x(t−θ)| where xd(t) ∈C([−d1,0],Rn)

and the last inequality follows from Eq. 6.4a. From Eqs. 6.21-6.22, the error dynamics may
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be bounded by:

|ė(t)| ≤ (Lx1 +Lx2)|e(t)|+Lx2d1α
−1
1 (ρ)+2Lu|umax| . (6.23)

The error is bounded for all t ∈ [t0, t0 + t1] which may be shown by integrating the bound

of Eq. 6.23 and noting e(t0) = 0 to derive the following bound:

|e(t)| ≤ Lx2d1α
−1
1 (ρ)+2Lu|umax|
(Lx1 +Lx2)

[exp((Lx1 +Lx2)(t− t0))−1] (6.24)

for all t ∈ [t0, t0 + t1]. Taking

ā(s) :=
Lx2d1α

−1
1 (ρ)+2Lu|umax|
(Lx1 +Lx2)

[exp((Lx1 +Lx2)s)−1] (6.25)

completes the proof.

The difference of the Lyapunov function values evaluated at any two points in Ωρ may

be bounded by a quadratic function because V is continuously differentiable and Ωρ is a

compact set. This is stated in the following proposition.

Proposition 6.3 (c.f. Proposition 6.3). For all x1, x2 ∈Ωρ , there exists β > 0 such that

V (x1)−V (x2)≤ fV (|x1− x2|) (6.26)

where the quadratic function fV (·) is given by

fV (s) := α4(α
−1
1 (ρ))s+β s2 . (6.27)

The following result gives sufficient conditions such that the closed-loop state trajectory

of the system Eq. 6.3 under the LEMPC implemented according to Algorithm 6.1 is always
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bounded in Ωρ .

Theorem 6.2. Consider the system of Eq. 6.3 under the LEMPC of Eq. 6.16 designed via a

control law that satisfies Eq. 6.4 which is implemented according to Algorithm 6.1. Let the

initial data φx ∈C([−d1,0],Rn) be such that φx(s) ∈Ωρ for all s ∈ [−d1,0] and the initial

input φu be such that the state over the interval [0,d2] is bounded in Ωρ for t ∈ [0,d2] in the

sense that x(t) ∈Ωρ for all t ∈ [0,d2]. Let t̃d ∈ (0, t∗d) and ρ̂ > 0 be such that

ρ̂ < ρ− fV (ᾱ(∆+d2)) (6.28)

and Bδ1 ⊆Ωρ̂ ⊂Ωρ ⊆ Bδ2 . If T ≥ ∆, then the closed-loop state trajectory of Eq. 6.3 under

the LEMPC is bounded in Ωρ for all t ≥ 0.

Proof. To prove the theorem, we need to show the following: (1) the LEMPC is feasible

for all x(tk) ∈ Ωρ̂ , under the LEMPC, (2) the state is bounded in Ωρ under the LEMPC,

and (3) the closed-loop state starting from Ωρ \Ωρ̂ will converge to Ωρ̂ in a finite number

of sampling times without coming out of Ωρ . To help the readability of the proof, we

divide the proof into three parts corresponding to the three results that we need to show,

respectively.

Part 1: Feasibility of the LEMPC is proved provided that the state at the current sam-

pling time is in Ωρ̂ . If t̃d ∈ (0, t∗d) (where t̃d and t∗d are defined according to Proposition 6.1),

the input trajectory computed by the stabilizing control law hc(x) applied in a sample-and-

hold fashion is a feasible solution to the optimal control problem of Eq. 6.16. Specifically,

let ẑ(t) and v̂(t) denote the solution and input trajectory, respectively, to the system:

˙̂z(t) = f̄ (ẑ(t), v̂(t))

v̂(t) = hc(ẑ( j∆)), t ∈ [t j, t j+1)
(6.29)
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for j = k, k+1, . . . , k+N−1 with the initial condition ẑ(tk) = x(tk) ∈Ωρ̂ . Owing to the

properties of the stabilizing control law hc(x), v̂(t) ∈ U for all t ∈ [tk, tk +T ). Moreover,

from Proposition 6.1, the input trajectory v̂ is a feasible input trajectory to the optimal

control problem of Eq. 6.16. This statement holds since Ωρ̂ is forward invariant for the

sampled-data system of Eq. 6.29 if Bδ1 ⊆ Ωρ̂ and if the sampling period is sufficiently

small such that Proposition 6.1 holds, i.e., the proof of forward invariance of the set Ωρ̂ for

the system of Eq. 6.29 follows that of Proposition 6.1 with d1 = d2 = 0.

Part 2: We consider boundedness of the state in Ωρ under LEMPC. The LEMPC com-

putes an input trajectory such that the predicted state will be maintained in Ωρ̂ over the

prediction horizon. However, the system of Eq. 6.3 does not evolve according to the ODE

model of Eq. 6.16b and the control actions applied to the system over the time tk to tk +d1

may be computed by either the LEMPC or the stabilizing control law at previous sampling

times. Specifically, the predicted state, z(t), over the prediction horizon will be bounded

in Ωρ̂ for all t ∈ [tk, tk + T ) under the computed input trajectory which is guaranteed by

the constraint of Eq. 6.16e. Owing to the input delay the control action computed at tk is

applied to the system from tk + d2 to tk+1 + d2. We need to show that x(t) ∈ Ωρ for all

t ∈ [tk, tk+1 +d2] when x(tk) ∈Ωρ̂ .

Let ρ̂ satisfy Eq. 6.28. We proceed by contradiction and assume there exists a time

τ∗ ∈ [tk, tk+1 + d2] such that V (x(τ∗)) > ρ (the case that x(t) is not defined for some τ ∈

[tk, tk+1 +d2] is also covered by this assumption). We define the time τ1 as follows:

τ1 := inf{τ ∈ [tk, tk+1 +d2] : V (x(τ))> ρ} . (6.30)

A standard continuity argument in conjunction with the fact that V (x(tk)) ≤ ρ̂ < ρ shows

that τ1 ∈ (tk, tk+1 +d2], V (x(t))≤ ρ for all t ∈ [tk,τ1] with V (x(τ1)) = ρ , and V (x(t))> ρ
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for some t ∈ [τ1, tk+1 +d2]. If ρ̂ satisfies Eq. 6.28, we have

ρ =V (x(τ1))≤V (z(τ1))+ fV (ᾱ(τ1))≤ ρ̂ + fV (ᾱ(∆+d2))< ρ (6.31)

where the first inequality follows from Propositions 6.2-6.3 and the second inequality fol-

lows from the fact that fV ◦ ᾱ ∈K and τ1 ≤ ∆+ d2. Eq. 6.31 leads to a contradiction.

Thus, x(tk+1 + d1) ∈ Ωρ if Eq. 6.28 is satisfied (regardless of whether the LEMPC or the

stabilizing control hc(x) is used to compute the input trajectory over tk to tk +d1).

Part 3: We prove that the state will converge to Ωρ̂ for any state starting in Ωρ \Ωρ̂ .

When the current state x(tk) ∈Ωρ \Ωρ̂ , the control action is computed from the stabilizing

control law hc(x). First, consider tk ∈ [0,d2], by assumption of the initial data and initial

input value, the past data from tk−d1 to tk is in Ωρ . The stabilizing control law will force

the state to converge to Ωρ̂ without coming out of Ωρ in finite-time if t̃d ∈ (0, t∗d). This

follows from Proposition 6.1.

Now, let us consider the case that the LEMPC previously computed the control actions

for the system. Owing to the plant-model mismatch, the state may come outside of Ωρ̂ .

From Part 2, the state will still remain bounded in Ωρ if indeed it comes outside of Ωρ̂ .

Again, once the stabilizing control law hc(x) starts to compute control actions for the sys-

tem to force the state to converge to Ωρ̂ , all the assumptions of Proposition 6.1 are satisfied

(assuming t̃d ∈ (0, t∗d)) and thus, the state will be forced back to Ωρ̂ in finite-time without

coming out of Ωρ when x(tk) ∈Ωρ \Ωρ̂ which completes the proof.

Remark 6.3. Given the generality of the class of nonlinear time-delay systems considered,

it is difficult to explicitly characterize the functions used in the analysis. The results and

conditions of this section are constructive in the sense that they provide insight into the

relationship of system parameters, e.g., nonlinearities and delay size, and design parameters

of the control system, e.g., sampling period, choice of stabilizing control law hc(x), and
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region constraint size, Ωρ̂ .

Remark 6.4. In Eq. 6.21 of the proof of Proposition 6.2, we bound |u(t − d2)− v(t)| by

2|umax| () which may appear overly conservative. Even if v(t) = u(t) for all t, the input tra-

jectories are piecewise continuous. For a given t, the control actions u(t−d2) (control ac-

tion implemented at time t) and u(t) (control action computed at time t) could be computed

at different sampling times and u(t) 6= u(t− d2). Within the context of EMPC, it is con-

ceivable that |u(t−d2)−u(t)|= 2|umax| as is the case when EMPC computes a bang-bang

input trajectory. One could consider imposing rate of change constraints within the context

of EMPC that limits how much the computed control action may change at each sampling

time, i.e., |u(tk+1)−u(tk)| ≤ δu. This may allow one to upper bound |u(t−d2)−u(t)| by

δu. Nonetheless, this may make the EMPC problem infeasible and/or may limit the achiev-

able closed-loop performance when rate of change constraints are imposed in the EMPC

problem.

Remark 6.5. Stabilization at a steady-state typically will provide a degree of robustness to

plant-model mismatch. In contrast, LEMPC may dictate a time-varying operating strategy.

While time-varying operation may lead to better closed-loop economic performance, it

may lead to a decrease in the robustness to uncertainty (see the chemical process example

of Section 6.3.3 below for a demonstration of this point).

Remark 6.6. The sampling period ∆ plays a role in stability and performance. Suffi-

ciently fast sampling is required to maintain closed-loop stability (Proposition 6.1 and The-

orem 6.2). Potentially, faster sampling may also improve closed-loop performance because

there are more degrees of freedom to optimize over. However, in the example considered

below, little performance benefit is achieved through faster sampling. From a practical

standpoint, there may also be limitations on the hardware that may limit how fast one may

sample.
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Table 6.1: Notation and parameter values of the CSTR with recycle.

Density ρL = 1.0×103 kg m−3

Heat capacity Cp = 4.18kJ kg−1 K−1

Flow rate F = 6.0m3 h−1

Reactor volume VR = 1.0m3

Heat of reaction ∆H =−7.8×104 kJ kmol−1

Activation energy E/R = 5.7×104/8.314K
Feed temperature Tf = 300.0K
Reaction rate constant k0 = 1.0×109 m3 kmol−1 h−1

Splitting fraction λ = 0.70
Concentration of chemical A CA
Reactor temperature T
Heat removal rate from reactor Q
Feed concentration CA f

6.3.3 Application to a Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred-tank reactor (CSTR) where an

irreversible, elementary second-order, and exothermic reaction takes place that converts a

reactant A to a desired product B (A→ B). A process flow diagram of the CSTR is given in

Fig. 6.1. The inlet stream of the reactor with flow rate λF (constant density of the inlet flow

stream is assumed), temperature Tf , and reactant concentration CA f feeds the reactor with

the reactant A in an inert solvent D. The outlet stream of the reactor is split with a constant

splitting fraction λ (λ ∈ [0,1]), and the fraction λ of the outlet stream is the product stream.

A recycle stream, which contains a fraction of 1−λ of the reactor outlet, is used to recover

unreacted A. A transportation lag, which is modeled as a time-delay with magnitude d1, is

considered in the recycle stream leading to a state delay in the process model. To supply

or remove thermal energy to/from the reactor, the CSTR is outfitted with a jacket. The

manipulated inputs to the CSTR are the feed concentration of the reactant CA f and the heat

rate Q supplied to/removed from the reactor.

To construct a first-principles model of the reactor, constant liquid hold-up, density, and
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Figure 6.1: Process flow diagram of the CSTR with recycle.

heat capacity are assumed. In addition to the state delay, the control actuators are assumed

to operate with dead-time which gives rise to input delay. The input delay is assumed to

model, for instance, the actuator dynamics and/or to model the possible computation delay

resulting from solving the EMPC optimization problem on-line. The dead-times of the

two manipulated inputs are assumed to be the same for simplicity of the presentation and

are denoted as d2. Using a mass balance of the reactant A and energy balance along with

standard modeling assumptions, a dynamic model may be constructed of the CSTR with

recycle and is given by the following system of DDEs:

ĊA(t) =
(1−λ )F

VR
CA(t−d1)+

λF
VR

CA f (t−d2)−
F
VR

CA(t)− k0e−E/RT (t)C2
A(t) (6.32a)

Ṫ (t) =
(1−λ )F

VR
T (t−d1)+

λF
VR

Tf −
F
VR

T (t)− ∆Hk0

ρLCp
e−E/RT (t)C2

A(t)+
Q(t−d2)

VRρLCp

(6.32b)

where the state variables are the concentration of the reactant CA in the reactor and the reac-

tor temperature T , i.e., xT = [CA T ]. The remaining notation and process parameter values

are defined and summarized in Table 6.1. The admissible input values for each input are

278



bounded in the following sets: CA0 ∈ [0.5, 7.5] kmol m−3 and Q ∈ [−80.0, 80.0] MJ h−1.

The CSTR model of Eq. 6.32 has a steady-state in the operating range of interest: xT
s :=

[CAs Ts] = [2.96kmol m−3 320.0K] corresponding to the inputs: CA0s = 4.0kmol m−3 and

Qs = 11.5MJ h−1. The steady-state xs is open-loop asymptotically stable.

The control objective is to operate the CSTR around the steady-state to maximize the

average production rate of the product B while satisfying two process constraints. The

process constraints are: (1) to maintain the closed-loop state within a bounded and well-

defined state-space set and (2) the time-averaged amount of reactant A that may be fed to

the CSTR must be equal to λFCA0s or mathematically,

1
t f

∫ t f

0
CA0(t) dt =CA0s (6.33)

where t f is the length of operation. To accomplish the control objective while satisfying the

process constraints, LEMPC is applied to the CSTR. In the closed-loop simulations of this

section, robustness of LEMPC to time-delay is demonstrated. More precisely, we illustrate

robustness in the sense that the closed-loop state trajectory of Eq. 6.32 under an LEMPC

system formulated with an ODE model of the CSTR will be maintained in a compact state-

space set (in R2) for sufficiently small time-delays.

To design an LEMPC system with the ODE model of the CSTR (Eq. 6.32 with d1 =

d2 = 0), an explicit stabilizing control law is designed and a Lyapunov function for the

closed-loop system under the control law is constructed. The explicit stabilizing control law

hc : R2→U is given component-wise with hT
c (x) = [hc,1(x) hc,2(x)] where hc,1(x) = CA0s

to satisfy the input average constraint of Eq. 6.33 and feedback linearization for h2(x).

Specifically, within the range where the input bounds are satisfied, the following nonlinear
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control law makes the evolution of T to be described by a linear model:

h̄c,2(x) =−VRρLCp

(
−λF

VR
Tf +

λF
VR

T +
∆Hk0

ρLCp
e−E/RTC2

A +K(T −Ts)

)
(6.34)

where K is the gain of the control law. To account for the bounds on the admissible input,

saturation is accounted for in hc,2 which is given by

h2(x) =


Qmin if h̄2(x)< Qmin

h̄2(x) if Qmin ≤ h̄2(x)≤ Qmax

Qmax if h̄2(x)> Qmax

(6.35)

where Qmin and Qmax is the minimum and maximum admissible heat rate value. In this

example, the gain of the controller is tuned to K = 2.0. A quadratic Lyapunov function for

the closed-loop system under the stabilizing control law is constructed, which has the form:

V (x) = (x− xs)
T P(x− xs) (6.36)

where

P =

500 20

20 1

 .

With the control law and Lyapunov function, the stability region is estimated to be a level

set of the Lyapunov function Ωρ with ρ = 1200 by taking it to be points in state-space

where V̇ < 0.

The following economic stage cost is used in the LEMPC:

le(x,u) =−k0e−E/RTC2
A +qT (T −Ts)

2 (6.37)

280



where the first term credits the production rate of B and the second term penalizes temper-

ature deviations from the steady-state temperature Ts. The justification for the second term

is the stability region of this system is large and operating over a large temperature range

may be impractical. Thus, the second term penalizes large deviations of the temperature

from the steady-state temperature. In this case, the stage cost parameter is qT = 0.05 which

has been tuned on the basis of the delay-free system such that the closed-loop temperature

is maintained near the steady-state temperature.

To integrate forward in time the DDEs of Eq. 6.32, the standard Runge-Kutta (4,5)

method was used with an absolute tolerance set at 10−7. The remaining parameters of

the LEMPC and implementation details of the LEMPC are as followed: the sampling pe-

riod is ∆ = 0.01h, the number of sampling periods in the prediction horizon is N = 70,

i.e., T = 0.70h, and the average constraint must be satisfied over each operating inter-

val of 0.65h, i.e., the average constraint of Eq. 6.33 must be satisfied every 0.65h which

guarantees that the average constraint is satisfied over the entire length of operation. For

the remainder, the operating period will refer to an interval of length 0.65h that the average

constraint is imposed. The prediction horizon and operating period length have been chosen

so that the asymptotic average closed-loop performance of the CSTR without time-delays

leads to better closed-loop performance compared to that of the operation at the steady-

state. Orthogonal collocation with three Radau collocation points per sampling period is

used to integrate the ODE model within the LEMPC optimal control problem. Ipopt [187]

was employed to solve the optimal control problem of the LEMPC at each sampling time.

Analytical first-order and second-order derivative information was supplied to the solver.

The simulations were completed on a desktop computer with an Intel R© CoreTM 2 Quad

2.66GHz processor running an Ubuntu Linux operating system. In the simulations below,

the computation time to solve the optimal control problem at each sampling time was less

than one percent of the sampling period (∆ = 0.01h = 36s) on average.
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Figure 6.2: The closed-loop trajectories of the CSTR under the LEMPC without time-

delays (d1 = d2 = 0).

In the first set of simulations, the closed-loop stability and performance properties of

the CSTR without delays under LEMPC are considered. The level set Ωρ̂ is such that ρ̂ =

1000. The closed-loop CSTR under LEMPC without delay is simulated over six operating

periods, and the closed-loop trajectories are given in Fig. 6.2. From Fig. 6.2, the LEMPC

dictates a cyclical operating policy. Throughout the length of operation, the state trajectory

is maintained in Ωρ . The asymptotic average production rate of B, i.e., average production

rate after the effect of the initial condition becomes insignificant, was 4.820kmol m−3. As

a comparison, the average production rate of B at the steady-state is 4.354kmol m−3 and

the closed-loop (asymptotic) production rate under LEMPC is 10.70 percent better than the

steady-state production rate. Moreover, we will use the average closed-loop economic stage

cost index (given and explained below) to assess the closed-loop performance of the CSTR

with time-delay. The asymptotic average economic stage cost index for this case study is

4.572, while it is 4.354 for operation at the steady-state (performance under LEMPC as

assessed through this metric is 5.01 percent better than that at the steady-state).

In the second set of simulations, we consider the effect of the time-delay on perfor-
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Figure 6.3: The state-space evolution of the closed-loop CSTR states under LEMPC with

(a) d = 0.05h and (b) d = 0.10h.

mance and stability. In all cases, the state and input delays are taken to be equal in mag-

nitude and the time-delay is denoted as d (d = d1 = d2). Fig. 6.3 shows the closed-loop

state evolution of the CSTR under the LEMPC for d = 0.05h and d = 0.10h, respectively.

With the time-delay, the CSTR is still operated in a cyclical manner, but as the time-delay

increases, the CSTR operates over a larger region of state-space. The closed-loop state is

maintained in Ωρ for d = 0.05h, but for d = 0.10h, the state is not bounded in Ωρ over the

length of operation. To assess the closed-loop performance, the average economic stage

cost performance index is used which is given by:

L̄e =
1
t f

∫ t f

0
le(x(t),u(t−d2)) dt . (6.38)

The average economic stage cost is computed with the closed-loop state and input. The

reason for using the metric of Eq. 6.38 as opposed to the average production rate of B to

assess the closed-loop performance is as the magnitude of the time-delay increases, the

CSTR operates over a larger temperature range (Fig. 6.3). The temperature is greater than
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Table 6.2: Closed-loop performance relative to the performance at the steady-state and

closed-loop stability properties of the CSTR under LEMPC.

d L̄e Diff. (%) Stability

0 4.668 7.21 Yes
0.01 4.654 6.88 Yes
0.02 4.618 6.07 Yes
0.03 4.518 3.77 Yes
0.04 4.441 1.99 Yes
0.05 4.220 -3.09 Yes
0.06 3.995 -8.26 Yes
0.07 2.763 -36.55 No
0.08 3.002 -31.06 No
0.09 1.801 -58.64 No
0.10 0.565 -87.03 No

The average stage cost index for operation at the steady-state is 4.354. The column “Diff.”
is the percent difference of the average stage cost index relative to the steady-state stage

cost index.

the steady-state temperature on average for the cases with time-delay. Since the production

rate scales with temperature, the production rate of B increases with the size of the time-

delay. Moreover, the LEMPC does not directly optimize the production rate of B, but rather

the stage cost of Eq. 6.37. Thus, we use the metric of Eq. 6.38 to assess the performance

because it also accounts for operation over a larger temperature range.

Table 6.2 summaries the closed-loop performance and closed-loop stability properties

of the CSTR under LEMPC for several closed-loop simulations each over six operating

periods with varying time-delays. Closed-loop stability is defined as the closed-loop state

remaining bounded in Ωρ over the length of the simulated operation. From Table 6.2, it fol-

lows that the closed-loop performance deteriorates as the time-delay increases. Moreover,

for time-delays greater than 0.06h, the closed-loop stability of the CSTR is not maintained.

It is important to note that the state trajectory of the closed-loop system under the stabi-

lizing control law remains bounded in Ωρ for all the magnitudes of the time-delay used
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Figure 6.4: A comparison of the closed-loop performance with the tuning parameter ρ̂ and

magnitude of the time-delay.

in Table 6.2 which suggests that steady-state-type operation, i.e., stabilization at a steady-

state, is more robust to time-delays than time-varying-type operation.

The available tuning parameter of LEMPC that may be manipulated to make the closed-

loop system more robust to uncertainty is ρ̂ , i.e., the level set where LEMPC operates. In

the last set of simulations, the effect of the size of ρ̂ on closed-loop stability and perfor-

mance is evaluated. Several closed-loop simulations were performed each over six oper-

ating periods with varying ρ̂ and d. The average economic stage cost indices for these

simulations are given in Fig. 6.4. Only the closed-loop simulations that led to a stable oper-

ation were included in Fig. 6.4. Fig. 6.4 shows that the closed-loop performance degrades

with larger time-delays. For small time-delays, the closed-loop performance is better as the

size of Ωρ̂ increases because the LEMPC may operate the system over a larger state-space

set with greater ρ̂ . For small time-delays, the ODE model may capture enough of the be-

havior of the system to improve the performance. For larger time-delays, the closed-loop

performance is worse than that achieved at the steady-state.
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Predictor LEMPC
Process

ẋ(t) = f(x(t), x(t−d1), u(t−d2))

x(tk)

x̂d(tk + d2) u∗(tk|tk − d2)

Figure 6.5: Flow diagram of the predictor feedback LEMPC scheme.

6.4 Time-delay Compensation for Improved Closed-loop

Performance

Larger time-delay may lead to significant performance degradation when the control sys-

tem does not explicitly account for the time-delays as demonstrated in the example of the

previous section. In this section, a methodological framework for compensating state and

input delay within the context of EMPC is presented. A closed-loop predictor is used to

compensate the adverse effect of the input delay, and a DDE model is used within the

EMPC to predict the behavior of the system of Eq. 6.3. We restrict our attention to nomi-

nally operated systems of the form of Eq. 6.3.

6.4.1 Predictor Feedback LEMPC Methodology and Implementation

A block diagram of the predictor feedback LEMPC methodology is shown in Fig. 6.5.

At a sampling time tk, a predictor is used to predict the state at tk + d2 utilizing the past

measurements of the state and the previously computed input trajectory over tk to tk + d2

to compensate the effect of the input delay. Then, the LEMPC system is initialized with

the predicted state and solves for the optimal control action that will be implemented on

the system from tk + d2 to tk+1 + d2. Moreover, instead of using an ODE model within

the LEMPC, the DDE model is used to account for the state delay. Thus, the predictor

must also generate the initial data used to initialize the DDE model in the LEMPC from
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tk+d2−d1 to tk+d2. The predicted state (initial data) for a given sampling time is denoted

as x̂d(tk +d2) ∈C([−d1,0],Rn).

Given that we consider nominal operation, the predictor may simply consist of solving

the DDEs forward in time which is what we employ in the example below. The predictor

is a closed-loop predictor in the sense that the predictor is reinitialized with a new state

measurement at each sampling time. The closed-loop nature of the predictor allows for the

potential use of the predictor feedback LEMPC on open-loop unstable processes as opposed

to open-loop predictors, e.g., the classical Smith predictor, which require the steady-state

solution be open-loop asymptotically stable. Other types of time-delay compensators or

predictors may potentially be used to possibly increase the robustness of the closed-loop

system to plant-model mismatch, e.g., the predictor developed in [82], but we note that

most, if not all, of time-delay compensators have been designed for systems with input-

delay only. Thus, appropriate modifications may need to be made to these other types of

time-delay compensators to account for state delay.

A shifted sampling time sequence is defined as {t̄k}k≥0 where t̄k = k∆+d2, k = 0, 1, . . .

which is a time sequence corresponding to when control actions are applied to the system,

i.e., the control action computed at tk is applied to the system from t̄k to t̄k+1. The optimal

control problem that defines the predictor feedback LEMPC is:

min
v∈S(∆)

∫ t̄k+T

t̄k
le(z(τ),v(τ)) dτ +Vf (z(t̄k +T )) (6.39a)

s.t. ż(t) = f (z(t),z(t−d1),v(t)) (6.39b)

zd(t̄k) = x̂d(t̄k) (6.39c)

v(t) ∈ U, ∀ t ∈ [t̄k, t̄k +T ) (6.39d)

z(t) ∈Ωρ̂ , ∀ t ∈ [t̄k, t̄k +T ) (6.39e)
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Figure 6.6: An illustration of the phases of the predictor feedback LEMPC scheme.

where x̂(tk) = x̂d(t̄k)(0). The main difference between the predictor feedback LEMPC

and the LEMPC of Eq. 6.16 is the DDE model, which is initialized with the initial data

computed by the predictor and provides a prediction of the future evolution of the system

in the predictor feedback LEMPC. The LEMPC of Eq. 6.16 uses an ODE model and is

initialized with a current state measurement.

An illustration of the implementation of the predictor feedback LEMPC methodology is

given in Fig. 6.6. At a sampling time tk, the predictor, i.e., prediction phase, uses past state

data and the control actions that will be applied from tk to tk +d2 (these control actions are

computed at previous sampling times) to predict the state trajectory over tk to tk+d2. In the

optimization phase, the predictor feedback LEMPC solves for the optimal input trajectory

over tk +d2 to tk +d2 +T . This implementation is summarized in the following algorithm:

Algorithm 6.2. Implementation of the predictor feedback LEMPC of Eq. 6.39.

1. At sampling time tk, the predictor receives a state measurement x(tk). Go to Step 2.

2. The predictor computes the predicted data x̂d(t̄k). Go to Step 3.

3. If x̂(t̄k) ∈Ωρ̂ , go to Step 3.1. Else, go to Step 3.2.
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3.1 Solve the optimal control problem of Eq. 6.39 to compute the optimal input

trajectory v∗(t|t̄k−d2) defined for t ∈ [t̄k, t̄k+N). Go to Step 4.

3.2 Compute the control action from the stabilizing control law v∗(t̄k|t̄k − d2) =

hc(x̂(t̄k)) Go to Step 4.

4. Send the computed control action v∗(t̄k|t̄k−d2), to the control actuators to be applied

from t̄k to t̄k+1, i.e., u(t +d2) = v∗(tk +d2|tk) for t ∈ [tk, tk+1). Go to Step 5.

5. Set k← k+1 and go to Step 1.

Remark 6.7. In the design of the LEMPC of Eq. 6.39, we leverage the results of Propo-

sition 6.1 to again design an explicit stabilizing control law and utilize it to characterize

a region constraint that is imposed in the LEMPC problem. This design methodology al-

lows for standard control techniques developed for systems described by nonlinear ordinary

differential equations be applied to design stabilizing control laws for nonlinear time-delay

systems. On the other hand, the results and size of delays that may be handled in the closed-

loop systems may be limited owing to the fact that the delays are neglected in the design of

the stabilizing control law. However, design of stabilizing control laws for nonlinear time-

delay systems is by no means a trivial task. Moreover, a complete and rigorous stability

analysis of such a closed-loop system is a challenging and potentially intractable task given

the degree of complexity, e.g., state and input delay, sampling, and nonlinearities.

Remark 6.8. It is important to point out that the extension of numerical methods used to

obtain solutions of ordinary differential equations (ODEs) to obtaining solutions of differ-

ential difference equations (DDEs) is not straightforward [17]. Thus, when selecting the

numerical method used to solve the predictor, the practitioner must be aware of potential

numerical issues, e.g., “ghost solutions”, loss of injectivity, and non-uniqueness of solution.
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6.4.2 Application to a Chemical Process Example

The predictor feedback LEMPC methodology is applied to the CSTR example of Eq. 6.32.

The LEMPC design and parameters are the same as that used in the previous section (in

all simulations below ρ̂ = 1000). To solve the DDEs of Eq. 6.32 embedded in the LEMPC

optimization problem, i.e., the constraint of Eq. 6.39b, orthogonal collocation with three

Radau collocation points per sampling period was employed (see, for example, [16, 17]

for stability and convergence analysis of collocation methods applied to DDEs). As a

qualitative comparison, a single-shooting implementation of the optimal control problem

(OCP) of Eq. 6.39 using the explicit Euler method with first-order derivatives approximated

through finite-difference and quasi-Newton method with the Broyden-Fletcher-Goldforb-

Shanno (BFGS) update method for the second-order derivatives required greater than fifty

times more time to solve the optimization problem at each sampling time compared to

the implementation with orthogonal collocation. Moreover, the average computation time

required to solve the optimal control problem with the collocation implementation was ap-

proximately two percent of the sampling period. It is important to point out that while

the success of orthogonal collocation used to solve OCPs with ODEs has been well docu-

mented [20], fewer cases of employing orthogonal collocation within the context of OCPs

formulated with DDE models have reported in the literature especially in context of the

EMPC literature.

Several closed-loop simulations were completed of the CSTR under the predictor feed-

back LEMPC with varying magnitudes of the time-delays. Fig. 6.7 gives the closed-loop

trajectories of the CSTR with d = 0.10h. In comparison to the CSTR under LEMPC for-

mulated with an ODE model (Fig. 6.3(b)), the predictor feedback LEMPC operates the

CSTR over a smaller temperature range (Fig. 6.7). To further emphasize the differences

between the evolution of the CSTR under the predictor feedback LEMPC and the LEMPC
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Figure 6.7: The closed-loop trajectories of the CSTR under the LEMPC with time-delay of

d = 0.10h. The input trajectories shown in the plots correspond to the input values applied

to the system at each time.

310.0

320.0

330.0

340.0

350.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

T
[K

]

CA [kmol m−3]

x
Ωρ

Ωρ̂

(a)

310.0

320.0

330.0

340.0

350.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

T
[K

]

CA [kmol m−3]

x
Ωρ

Ωρ̂

(b)

Figure 6.8: The state-space evolution of the closed-loop CSTR states under LEMPC with

(a) d = 0.05h and (b) d = 0.10h.
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Table 6.3: Closed-loop performance of the CSTR of Eq. 6.32 under the predictor feedback

LEMPC relative to the performance at the steady-state.

d L̄e Diff. (%)

0 4.668 7.21
0.01 4.675 7.36
0.02 4.682 7.54
0.03 4.690 7.71
0.04 4.697 7.87
0.05 4.703 8.01
0.06 4.710 8.17
0.07 4.705 8.07
0.08 4.722 8.45
0.09 4.728 8.58
0.10 4.733 8.70

The average stage cost index for operation at the steady-state is 4.354. The column “Diff.”
is the percent difference of the average stage cost index relative to the steady-state stage

cost index.

of the previous section, Fig. 6.8 gives the state space evolution of the CSTR with d = 0.05h

and d = 0.10h, respectively. Comparing the evolution of the two cases shown in Fig. 6.7,

fewer differences in the evolution between the two cases are observed compared to the two

cases of Fig. 6.3.

The closed-loop performance under the predictor feedback LEMPC is considered with

respect to the magnitude of the time-delay. Table 6.3 summarizes the average economic

stage cost of Eq. 6.38 of six operating period simulations. Interestingly, the closed-loop

performance improves with larger time-delay. The performance improvement is associated

with the state delay in the stream recycle (given that the predictor effectively deals with the

effect of the input delay on the closed-loop system). In all cases, the closed-loop perfor-

mance under the predictor feedback LEMPC was at least 7 percent better than that achieved

at the steady-state.
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6.5 Conclusion

In this chapter, closed-loop stability and performance of systems described by nonlinear

DDEs under Lyapunov-based economic model predictive control (LEMPC) was consid-

ered. First, conditions such that closed-loop stability for systems with sufficiently small

state and input delays under LEMPC, formulated with an ODE model of the system, were

derived. A chemical process example demonstrated that indeed closed-loop stability is

maintained under LEMPC for sufficiently small time-delays in both the states and the in-

puts. However, closed-loop performance significantly degraded for larger input delays.

This motivated designing a predictor feedback LEMPC methodology. The predictor feed-

back LEMPC design employs a predictor to compute a prediction of the state after the input

delay and an LEMPC scheme, formulated with a DDE model. The predicted state from the

predictor is used to initialize the DDE model. The predictor feedback LEMPC was applied

to the chemical process example and resulted in better closed-loop stability and perfor-

mance properties compared to the LEMPC, formulated with an ODE approximation of the

nonlinear time-delay system.
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Chapter 7

Selection of Control Configurations for

Economic Model Predictive Control

Systems

7.1 Introduction

Control structure design, i.e., the selection of manipulated, controlled, and measured vari-

ables has been the subject of extensive research within the process control community for

many years resulting in many methods for input-output loop pairing and control configura-

tion selection, e.g., [131, 177, 113, 173, 186, 154]. For linear systems, an important early

result was the relative gain array (RGA) which is commonly used for input-output loop

pairing [23], particularly in the context of proportional-integral-derivative (PID) control.

Several extensions and variations of the RGA have since been proposed like the exten-

sion of the RGA to non-square linear systems, i.e., systems with a different number of

inputs than the number of outputs [28] and the various extensions of RGA to nonlinear

systems [66, 130]. Two metrics are often used to evaluate conventional control structure
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configurations, e.g., control structures consisting of decentralized proportional-integral-

derivative control loops: the open-loop and/or closed-loop process economics and con-

trollability analysis [138, 29, 149, 75]. Another potentially important factor in control con-

figuration evaluation may be proper controlled variable (CV) selection. In particular, Sko-

gestad et al.[172] employed and mathematically formalized the concept of self-optimizing

control, originally proposed by Luyben in 1988 [117], which is a methodology for deter-

mining CVs such that when the selected CVs are maintained at their desired set-points,

nearly (economically) optimal steady-state operation results with an acceptable loss in the

presence of disturbances [172, 12, 43]. Many of the proposed control structure selection

methodologies use optimization-based techniques especially mixed-integer optimization

problems [149, 75, 102, 163]. One such example is the so-called back-off methodology

which consists of solving a mixed-integer optimization program using linearized steady-

state process models [75, 102, 151].

Most of the control structure selection methodologies have been developed using lin-

ear steady-state or dynamic process models with the assumption that the system is to be

operated at steady-state, i.e., the main control objective is to force the system to the de-

sired operating steady-state and maintain operation at this steady-state in the presence of

disturbances. Within the context of dynamic operation of nonlinear systems, fewer results

and methodologies on control structure selection exist that explicitly consider the process

dynamics and nonlinearities. One simple and potentially effective method for evaluating

control configurations of multivariable nonlinear systems is to employ a relative degree

analysis which may be useful since the relative degree is essentially a measure of the di-

rectness of the effect of an input on an output or the physical closeness between an input

and an output [35].

In the case of tracking model predictive control (MPC) formulated with a quadratic cost

function, i.e., xT Qcx+uT Rcu where Qc and Rc are positive definite matrices, the weighting
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matrices Qc and Rc are typically tuned such that all the inputs have a direct effect on the cost

function. However, for EMPC, not all the possible manipulated inputs must have a direct

effect on the economic cost of the EMPC since it is not derived from traditional control

objectives. Moreover, since EMPC may dictate a dynamic operating policy, the system may

be operated in a larger region of operation, i.e., the effect of nonlinearities in the process

may become significant compared to tracking control schemes which force the system to

operate in a small neighborhood of the steady-state. Thus, traditional methods that evaluate

control structures on the basis of steady-state operation using linear or linearized models

may not provide sufficient results within the context of EMPC.

Owing to the aforementioned considerations, a methodology for control configuration

selection for EMPC is developed. Treating the economic cost function as the output, a

relative degree analysis is completed to determine which inputs have the most direct dy-

namic effect on the economic cost. The choice of inputs that are controlled by EMPC are

the inputs that have a low relative degree with respect to the cost function (typically, one

or two). The remaining possible inputs are partitioned to the set of inputs controlled by

EMPC and the set of remaining inputs that are not controlled by EMPC on the basis of a

sensitivity analysis and a relative degree analysis of any known disturbances. Furthermore,

the set of inputs selected for EMPC is ensured to be a stabilizing one. The remaining inputs

not controlled by EMPC may be held constant if the control configuration selected has a

sufficient degree of robustness or they may be manipulated through other control systems,

i.e., outside of EMPC. An evaluation and analysis of the control configuration selection

methodology is provided using a chemical process example. The results of this chapter

first appeared in [52, 47].
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7.1.1 Notation

The notation L f h(x) denotes the Lie derivative of the scalar field h(x) along the vector field

f (x), that is:

L f h(x) =
∂h(x)

∂x
f (x) .

It is also important to recall the following two types of Lie derivatives:

LgL f h(x) =
∂ (L f h)

∂x
g(x) ,

Lk
f h(x) = L f

(
Lk−1

f h(x)
)
=

∂ (Lk−1
f h)

∂x
f (x)

where g(x) is a vector field.

7.1.2 Class of Nonlinear Systems

The class of input-affine nonlinear systems considered have the following state-space form:

ẋ(t) = f (x(t))+
nu

∑
j=1

g j(x(t))u j(t)+
nw

∑
i=1

wi(x(t))di(t) (7.1)

where x ∈ X ⊂ Rnx is the state vector, u ∈ U ⊂ Rnu is the input vector consisting of all

possible manipulated inputs, U is assumed to be a non-empty compact set, and d ∈W ⊂

Rnw is the disturbance vector. The disturbance vectors are bounded in the following sets:

W= {d ∈ Rnw : |d| ≤ wb} (7.2)

where wb bounds the norm of the disturbance vector. The vector functions f , g j for j =

1, . . . , nu, and wi for i = 1, . . . , nw are sufficiently smooth vector functions on X. The

existence of a time-invariant economic cost (scalar) function given by le : X×U→ R,
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le(x,u) 7→ le(x,u), which is a sufficiently smooth function of its arguments, is assumed for

the system of Eq. 7.1. For reasons explained below, we assume the economic cost function

has the following form:

le(x,u) = le,x(x)+ le,u(u) . (7.3)

This assumption may be relaxed which will be also discussed below. The state vector is

assumed to be measured synchronously at sampling times tk = t0 + k∆, k = 0,1, . . . where

t0 is the initial time and ∆ is the sampling period. Within the context of this chapter, any

EMPC methods of Chapter 2 may be used.

7.2 Input Selection for Economic Model Predictive Con-

trol

In this section, the input selection methodology for EMPC is presented. In the next four

subsections, the analysis techniques that are employed in the methodology are described

which include: determining the relative degree of the economic cost with respect to the

inputs, computing the dynamic sensitivity of the economic cost, computing the steady-

state sensitivity of the economic cost, and imposing a stabilizability requirement on the final

input selection for EMPC. The last subsection summarizes the input selection methodology.

The next three subsections develop analysis techniques to quantify the sensitivity of the

economic cost with respect to inputs. To this end, it is important to point out the differences

between EMPC and tracking MPC. Recall, quadratic stage cost functions used in tracking

MPC have the form:

lT (x,u) = |x|2Qc
+ |u|2Rc

(7.4)

where Qc and Rc are positive definite weighting matrices and thus, the stage cost function
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is sensitive to all the inputs. In other words, the decision variables of a tracking MPC

optimization problem have a direct effect on the second quadratic term of the cost function

as well as an indirect impact on the first term through the dynamic model. On the other

hand, EMPC is formulated with the economic cost function. Since the economic cost

function is typically derived from the process economics, it may not be sensitive to all the

available inputs.

Several issues may arise when the economic cost is not sensitive to some inputs. First,

the optimization problem may be more difficult to solve because, for instance, the opti-

mization problem may be ill-conditioned if an input has little effect, i.e., low sensitivity, on

the economic cost function (see, for example, [19] for challenges arising in the context of

ill-conditioned optimization problems). Second, the effect of plant-model mismatch may

be significant when the economic cost is not as sensitive to an input. For instance, large

input changes are needed to influence the cost for inputs with a modeled weak dependence.

This makes the optimal solution sensitive to plant-model mismatch (the actual sensitivity

of the economic cost with respect to the input may be significantly greater/lower). Third,

if an input does not influence the economic cost function much, it may be desirable to de-

couple this input from the EMPC problem to reduce the computational burden required for

solving the optimization problem on-line by either fixing the input to its nominal value or

economically optimal steady-state value or by computing its control action through other

control systems, e.g., proportional-integral control, or tracking MPC.

7.2.1 Relative Degree of Cost to Inputs

Motivated by the fact that EMPC optimizes the process dynamics with respect to the eco-

nomic cost which may lead to dynamic operation, one method for carrying out input se-

lection for EMPC is to consider the time evolution of the economic cost along the process

299



dynamics. Then, select the inputs that have more direct impact on the time evolution of the

economic cost. In other words, consider the time derivative of the economic cost function

dle
dt

=
∂ le,x
∂x

dx
dt

+
∂ le,u
∂u

du
dt

(7.5)

where the elements in the term ∂ le,u/∂u are non-zero for any inputs that explicitly appear

in the economic cost. Since the input trajectory is a piecewise constant function, the second

term of the right-hand side of Eq. 7.5 is neglected (with this analysis these inputs should be

placed on EMPC since they explicitly appear in the economic cost).

The vector field of Eq. 7.1 with d ≡ 0 may be substituted into Eq. 7.5 which yields:

∂ le,x(x)
∂x

(
f (x)+

nu

∑
j=1

g j(x)u j

)
=: L f le,x +

nu

∑
j=1

Lg j le,x u j(t) (7.6)

where L f le,x(x) and Lg j le,x(x) denote the Lie derivatives of le,x along vector fields f (x) and

g j(x), respectively. If Lg j le,x(x)≡ 0, the j-th input does not have a direct effect on economic

cost (in terms of the first derivative). Due to the coupled nature of the dynamics, the j-th

input may still influence the economic cost through higher-order derivatives. Therefore, we

define the relative degree or relative order r j of the economic cost with respect to the j-th

input as the smallest positive integer that satisfies:

Lg jL
k−1
f le,x(x)≡ 0, k = 1, 2, . . . , r j−1,

Lg jL
r j−1
f le,x(x) 6≡ 0

(7.7)

or r j = ∞ if no such integer exists. By convention, the relative degree of the economic cost

with respect to any input with ∂ le,u/∂u 6≡ 0 is zero. Here, the relative degree is similar to

standard input-output analysis for nonlinear systems [87, 104, 100] where the economic

cost function is treated as an output. It is important to point out that the scalar fields
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le,x(x), L f le,x(x), . . . , Lr j−1
f le,x(x) are linearly independent [104]. Since Rnx may only have

nx linearly independent elements, r j ≤ nx if r j is finite. Additionally, for disturbances that

are explicitly included in the process model, one may be able to compute the relative degree

of the economic cost with respect to these disturbances. This may be helpful in the input

selection methodology for EMPC (see Section 7.2.5 below).

Since the relative degree is essentially a measure of how fast the input affects the pro-

cess economics, the relative degree analysis allows for some intuition of how manipulating

the j-th input affects the time evolution of the economic cost. This is of particular inter-

est when EMPC dictates a time-varying or dynamic operating policy, i.e., off steady-state

operation. Using the relative degree as a basis, a systematic method for selecting the manip-

ulated inputs for which EMPC computes control actions may be developed while explicitly

accounting for the dynamics of the system. If the relative degree of the j-th input is large,

i.e., the j-th input influences high-order derivatives with respect to each input; perhaps,

third-order or higher time derivatives of the economic cost, using EMPC to compute con-

trol actions for the j-th input may not be effective with respect to the closed-loop economic

performance and/or computationally efficient.

Remark 7.1. It may be possible to consider more general cost functions other than the

ones of the assumed form, i.e., le(x,u) = le,x(x)+ le,u(u). In this case, for any inputs where

∂ le/∂u j, j = 1, . . . , nu is non-zero, i.e., any inputs explicitly appearing in the economic cost

function, these inputs have a direct effect on the economic cost. One could still determine

the relative degree of the other inputs by taking the inputs appearing in the cost function as

fixed parameters to determine the relative degree. It is important to note that one type of

cost function that possesses the assumed form is a quadratic cost function. The economic

cost functions in the examples considered in this chapter all have the assumed form. Also,

the relative degree analysis could be applied to a time-varying cost function, i.e., le(t,x,u)=
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le,x(t,x) + le,u(t,u) which is an explicit function of the time when the cost function is a

continuous or piecewise continuous function of time by generalizing the definition of Lie

derivative to time-varying vector fields.

Connection Between Relative Degree and a Directed Graph

For large-scale process networks, analytical computation of the relative degree may become

tedious. However, one may employ the directed graph method for determining the relative

degree [99, 35]. This methodology has the advantage that only structural information of

the process model is required. In the context of this chapter, the output is considered to be

the economic cost. The edges are constructed using the following modified rules based on

that of [35] to treat the economic cost as the output:

1. If ∂ fi(x)/∂xk 6≡ 0 for i = 1, . . . , nx and k = 1, . . . , nx, then there is an edge from xk to

xi.

2. If g j,k(x) 6≡ 0 for k = 1, . . . , nx and j = 1, . . . , nu, then there is an edge from u j to xk.

3. If ∂ le(x,u)/∂xi 6≡ 0 for i = 1, . . . , nx, then there is an edge from xi to le.

4. If ∂ le(x,u)/∂u j 6≡ 0 for j = 1, . . . , nu, then there is an edge from u j to le.

where fk(x) and g j,k(x) denote the k-th elements of the vector fields f (x) and g j(x), respec-

tively. If there are known disturbances, the disturbance may be treated as an input in the

above directed graph rules.

Utilizing the first main result from [35], a connection between the relative degree as

defined in Eq. 7.7 and the directed graph constructed with the rules presented above may

be made. Defining the length of the shortest path connecting the j-th input to the economic

cost, i.e., the smallest number of edges connecting the j-th input to the economic cost as

L j, the relative degree of the j-th input with respect to the economic cost is r j = L j−1. It
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is important to point out that this works for many cases. However, there are cases where

this does not work like cases where there are potential cancellations (see [35] for more

details on this point). This gives a rather intuitive understanding of how the inputs affect

the economic cost. Furthermore, it requires only limited structural understanding of the

process dynamics, i.e., not detailed process models, during the input selection phase of the

control structure design. For instance, consider the following example.

Example 7.1. Consider the following input-affine nonlinear system:

ẋ1 = f1(x2,x3)+g1,1(x)u1

ẋ2 = f2(x1,x2)

ẋ3 = f3(x1,x3)+g2,3(x)u2

(7.8)

where the vector fields are f T (x) = [ f1(x2,x3) f2(x1,x2) f3(x1,x3)], gT
1 (x) = [g1,1(x) 0 0]

and gT
2 (x) = [0 0 g2,3(x)] and the economic cost function has the following form:

le(x,u) := l̂e,x(x2)+ l̂e,u(u2) (7.9)

The relative degree of the economic cost with respect to u2 is defined to be 0 since the

economic cost is an explicit function of this input. For the input u1, the Lie derivative of

le(x,u) along the vector field g1(x) is

Lg1le =
∂ le
∂x

g1(x)≡ 0 (7.10)

Since the first Lie derivative is zero, higher order Lie derivatives are computed. The next

Lie derivative is:

Lg1L f le =
∂

∂x1

[
∂ le
∂x2

f2(x1,x2)

]
g11(x) 6≡ 0 (7.11)
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x1

x2

x3

u1

u2

le

Figure 7.1: Directed graph representing the system of Eq. 7.8.

From this analysis, the relative degree of the economic cost function with respect to the

input u1 is 2.

Applying the construction rules for the nodes and edges, the directed graph for the sys-

tem of Eq. 7.8 is displayed in Fig. 7.1. From the directed graph, one may easily determine

the relative degree. The shortest path between the input u1 and the economic cost is 3.

Therefore, the relative degree of the economic cost with respect to u1 is 2. Similarly, the

shortest path from the input u2 to the economic cost is 1, so, the relative degree is 0. The

relative degrees computed from the directed graph agree with the ones computed analyti-

cally.

7.2.2 Dynamic Sensitivity of the Economic Cost

While the relative degree is a readily computable metric that quantifies the directness of

the effect of an input on the economic cost, it is unable to capture the magnitude of the

interaction between an input and the economic cost [35]. One cannot distinguish the degree
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of the sensitivity of the economic cost with respect to inputs of the same relative degree. In

linear systems, the steady-state gain on the economic cost with respect to an input is one

metric that captures such a sensitivity. However, the steady-state gain is state-dependent

for nonlinear systems in general. Therefore, in this subsection, an analysis technique to

quantify the dynamic sensitivity of the economic cost with respect to an input is developed.

For dynamic sensitivity analysis, we consider the inputs with the same relative degree.

Let û ∈Rnr be a vector containing all inputs with relative degree r. The inputs with relative

degree not equal to r are taken as constants in this analysis set to their economically optimal

value and are incorporated in the f (x) term of the model of Eq. 7.1. To avoid potential

scaling differences of inputs which may potentially skew the sensitivity analysis, all inputs

contained in the vector û are scaled so that û j ∈ [−1,1] for j = 1, . . . , nr. The auxiliary

scalar output variable y(t) is defined as the state-dependent part of the economic cost y(t) =

le,x(x(t)). Consider a Taylor series expansion of y(t) at a time t∗:

y(t) =
∞

∑
k=0

(t− t∗)k

k!
dky(t∗)

dtk (7.12)

The k-th derivative of y for k = 0, 1, . . . , r−1 is:

dky(t∗)
dtk = Lk

f le,x(x(t∗)) (7.13)

and the r-th derivative of y is:

dry(t∗)
dtr = Lr

f le,x(x(t∗))+
nr

∑
j=1

Lg jL
r−1
f le,x(x(t∗))û j(t∗) (7.14)
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Thus, the Taylor series expansion may be written as:

y(t) =
r

∑
k=0

(t− t∗)k

k!
Lk

f le,x(x(t∗))+
(t− t∗)r

r!

nr

∑
j=1

Lg jL
r−1
f le,x(x(t∗))û j(t∗)

+
∞

∑
k=r+1

dky(t∗)
dtk

(t− t∗)k

k!
. (7.15)

The high-order (r+1 order and higher) derivatives of y are neglected to obtain an approxi-

mation of y(t):

y(t)≈
r

∑
k=0

(t− t∗)k

k!
Lk

f le,x(x(t∗))+
(t− t∗)r

r!

nr

∑
j=1

Lg jL
r−1
f le,x(x(t∗))û j(t∗) . (7.16)

Consider the difference of the output ∆y(t) = y1(t)− y2(t) with respect to a change

∆û j(t∗) = û j,1(t∗)− û j,2(t∗)

and all other inputs constant. From Eq. 7.16, the following may be derived:

∆y
∆u j

∣∣∣∣
∆uk,k 6= j

=
(t− t∗)r

r!
Lg jL

r−1
f le,x(x(t∗)) (7.17)

Therefore, the nr-dimensional vector Sr is defined with elements:

Sr, j := Lg jL
r−1
f le,x(x(t∗)) (7.18)

for j = 1, . . . , nr. The vector Sr contains elements that essentially quantify the dynamic

sensitivity of inputs with the same relative degree on the economic cost. To use the sensi-
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tivities in a comparison, they are normalized with respect to the Euclidean norm:

S̄r, j :=
S2

r, j

|Sr|2
=

S2
r, j(

∑
nr
j=1 S2

r, j

) (7.19)

and S̄r, j ∈ [0,1]. The economic cost is more sensitive to inputs whose corresponding S̄r, j

values are close to one compared to inputs with corresponding S̄r, j values close to zero.

Thus, the dynamic sensitivity analysis ranks inputs with the same relative degree on the

basis of their dynamic sensitivities. Also, S̄r, j may be computed for various points in state-

space to capture the dynamic sensitivities, i.e., sensitivity of the economic cost with respect

to inputs for states off steady-state.

Example 7.2. Consider a non-isothermal CSTR where an elementary second-order reac-

tion of the form A→ B occurs. The states of the CSTR are the reactor temperature x1

and the concentration of A in the reactor which is denoted as x2, i.e., the state vector is

xT = [x1 x2]. The evolution of the CSTR system is described by the following ordinary

differential equations in dimensionless form:

dx1

dτ
= x10− x1−β1e−1/x1x2

2 +β2 +β3u1 (7.20a)

dx2

dτ
=−x2−β4e−1/x1x2

2 +β5 +u2 (7.20b)

where the process parameters are β1 =−1.73×105, β2 = 1.44×10−3, β3 = 1.44×10−3,

β4 = 5.92×106, and β5 = 1.14. The CSTR has two candidate inputs: the heat rate u1

supplied to the reactor and the inlet concentration of species A to the reactor u2. Both inputs

have been scaled so that u j ∈ [−1,1] for j = 1, 2. The production rate of B corresponds to

the dominant factor in the operating profit of the CSTR. Thus, the economic cost function

is:

le(x,u) = e−1/x1x2
2 (7.21)
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The relative degree of the economic cost with respect to both inputs is 1, so the relative

degree analysis would not be able to discriminate between the importance of controlling

each of the inputs with EMPC. The Lie derivatives of le,x(x) = le(x,u) with respect to the

vector fields g1(x) = [β3 0]T and g2(x) = [0 1]T are

Lg1le,x(x) =
β3

x2
1

e−1/x1x2
2 , (7.22)

Lg2le,x(x) = 2e−1/x1x2 . (7.23)

From the Lie derivatives, the dynamic sensitivities may be computed. For simplicity of

presentation, the Lie derivatives are evaluated at the economically optimal steady-state

x∗1s = 0.08 and x∗2s = 0.21 and the normalized dynamic sensitivity vector for the inputs with

relative degree 1 is

S̄1 = [0.0 1.0] . (7.24)

This analysis suggests that the input u2 has a more substantial dynamic effect compared to

the input u1. In terms of input selection for EMPC, it would be more desirable in terms of

the dynamic sensitivity analysis to control the input u2 compared to the input u1. In fact,

it has been demonstrated that periodic switching of the inlet concentration achieves greater

production rates compared to a constant inlet concentration equal to the time-average in-

let concentration of the periodic switching policy (Section 3.3.2). Since the reaction rate

is concave with respect to the temperature, the maximum production rate is achieved by

supplying the maximum allowable heat rate to the reactor, i.e., little benefit with respect

to the economic cost is achieved when the heat rate is controlled by EMPC under nominal

operation.
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7.2.3 Steady-state Sensitivities of the Economic Cost

From the dynamic sensitivity analysis, the inputs with the same relative degree may be

ranked on the basis of the dynamic sensitivity of the economic cost. However, this rank-

ing is made with respect to other inputs with the same relative degree, i.e., the dynamic

sensitivity vector S̄r is normalized with the sensitivity of the other inputs. Therefore, a

procedure is needed to identify if the interaction between an input and the economic cost is

significant with respect to all the other inputs. To accomplish this, a steady-state sensitivity

is employed.

The input vector is scaled so that u j ∈ [−1,1] for j = 1, . . . , nu to remove any scaling

differences between the inputs. A steady-state of the system of Eq. 7.1, which is denoted as

xs, with its corresponding steady-state input, which is denoted as us, satisfies the following

algebraic equation:

f (xs)+
nu

∑
j=1

g j(xs)us, j = 0 . (7.25)

For a given steady-state input, the corresponding steady-state may be computed, and thus,

we may write: xs = f̄ (us) where f̄ : U→ X maps a given steady-state input to a corre-

sponding steady-state. With xs = f̄ (us), the state dependence on the steady-state economic

cost may be removed: le(xs,us) = le( f̄ (us),us)≡ l̄e(us). The steady-state sensitivity on the

economic cost to the j-th input is determined numerically by:

∂ l̄e
∂us, j

≈ 1
2δ

[
(l̄e(us,1, . . . ,us, j−1,us, j +δ ,us, j+1, . . . ,us,nu)

−l̄e(us,1, . . . ,us, j−1,us, j−δ ,us, j+1, . . . ,us,nu)
]

(7.26)

where δ > 0 is a small perturbation term. Similar to the dynamic sensitivity analysis, the
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steady-state sensitivity is normalized with respect to the other inputs:

Ŝ j =

(
∂ l̄e

∂us, j

)2/∣∣∣∣ ∂ l̄e
∂us

∣∣∣∣2 = ( ∂ l̄e
∂us, j

)2
(

nu

∑
j=1

(
∂ l̄e

∂us, j

)2
)−1

(7.27)

where Ŝ j will be approximately one for any inputs with a large steady-state sensitivity on

the economic cost and will be approximately zero for any inputs with a small steady-state

sensitivity on the economic cost.

7.2.4 Stabilizability of Control Configurations

The aforementioned analysis techniques identify the inputs that influence the economic cost

function, but they do not explicitly consider control considerations like controllability and

stabilizability. Before a final input selection for EMPC may be made, a verification of such

control considerations must be completed. Below, one stabilizability assumption is given

which is verifiable for nonlinear systems of the form of Eq. 7.1. If this assumption is satis-

fied, a specific formulation of EMPC may be applied to the closed-loop system of Eq. 7.1

and the closed-loop system will have guaranteed stability properties. Other EMPC for-

mulations that require other types of controllability/stabilizability assumptions, e.g., weak

controllability, could be used instead of the assumption and the EMPC formulation pro-

vided below.

Lyapunov-based EMPC

Without loss of generality, the origin of the system of Eq. 7.1 is assumed to be the steady-

state of the unforced system, i.e., f (0) = 0 with u≡ 0 and d ≡ 0. The following assumption

is placed on the system of Eq. 7.1 which is essentially a stabilizability assumption for

nonlinear systems.
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Assumption 7.1 (Existence of a Lyapunov-based Controller). There exists a Lyapunov-

based controller u = k(x) ∈ U that renders the origin of the nominal closed-loop system

of Eq. 7.1 under k(x) asymptotically stable. This implies that there exists a continuously

differentiable Lyapunov function V (x) [115, 100] such that the following holds:

α1(|x|)≤V (x)≤ α2(|x|) (7.28a)

∂V (x)
∂x

(
f (x)+

nu

∑
j=0

g j(x)k(x)

)
≤−α3(|x|) (7.28b)

∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (7.28c)

for x ∈ D where D is an open neighborhood of the origin where the functions αi : [0,a)→

[0,∞), i = 1, 2, 3, 4 are class K functions.

It is important to point out that in Assumption 7.1 the controller k(x) is implemented in

a continuous fashion. However, when the controller k(x) is implemented in a sample-and-

hold fashion with a sufficiently small sampling period, the origin of the closed-loop system

is rendered practically stable. The stability region under the Lyapunov-based controller is

defined as Ωρ ⊂ D and Ωρ ⊆ X which is a level set of V (x) where the time-derivative of

the Lyapunov function is negative.

Taking advantage of the explicit Lyapunov-based controller and its corresponding sta-

bility region Ωρ , the Lyapunov-based economic model predictive control (LEMPC) scheme
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is characterized by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (7.29a)

s.t. ˙̃x(t) = f (x̃(t))+
nu

∑
j=0

g j(x̃(t))u j(t) (7.29b)

x̃(tk) = x(tk) (7.29c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (7.29d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if V (x(tk))≤ ρe (7.29e)

∂V (x(tk))
∂x

(
f (x(tk))+

nu

∑
j=0

g j(x(tk))u j(tk)

)

≤ ∂V (x(tk))
∂x

(
f (x(tk))+

nu

∑
j=0

g j(x(tk))k j(x(tk))

)
,

if V (x(tk))> ρe (7.29f)

where the LEMPC is a two-mode control strategy with the two modes defined by the

Lyapunov-based constraints of Eqs. 7.29e-7.29f.

The design procedure of LEMPC is as follows: (1) an explicit stabilizing controller k(x)

is designed for the system of Eq. 7.1, (2) a Lyapunov function is derived for the closed-loop

system under the controller k(x), and (3) the stability region Ωρ of the closed-loop system

is estimated by taking it to be the (largest) level set of the Lyapunov function such that the

time-derivative of the Lyapunov function along the closed-loop state trajectory is negative.

For more details on LEMPC, please refer to Chapter 3.
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Figure 7.2: A flowchart of the input selection for EMPC methodology. Solid lines are used

to represent necessary steps and dashed lines are used to represent optional steps.
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7.2.5 Input Selection Methodology

The description of the input selection methodology is given in this subsection which is

summarized by the flow chart of Fig. 7.2. All the possible manipulated inputs to the system

of Eq. 7.1 are candidate manipulated inputs whose control action may be computed by

EMPC. For the remainder of this section, an input on EMPC will refer to an input whose

control action is computed by EMPC and an input not on EMPC will refer to an input

that is fixed or whose control action is computed through another controller. For the latter

case, explicit design of an integrated EMPC with another controller to compute control

actions for the inputs not on EMPC is beyond the scope of this chapter and thus, only the

case where the inputs not on EMPC are fixed to a constant value will be considered in the

example presented in Section 7.3.

The input selection methodology for EMPC is as follows (Fig. 7.2): the relative degree

of the economic cost with respect to each candidate input is computed. Any input with

an infinite overall relative degree should not be placed on EMPC as these inputs have no

influence on the process economics. These inputs may be set to any arbitrary value without

adversely affecting the closed-loop economic performance. For the remaining inputs, the

inputs with a low relative degree should be on EMPC. Typically, inputs with relative degree

2 or less should be placed on EMPC unless identified otherwise through the sensitivity

analysis. When the economic cost function is associated with the outlet product stream

of a process network, e.g., the economic cost is the amount of desired product leaving the

process, it may be necessary to include more inputs with relative degree greater than 2

owing to closed-loop performance, stability and robustness considerations.

Several factors may influence the decision on which of the remaining inputs, i.e., in-

puts with relative degree three or higher, should be on EMPC and to confirm that inputs

with relative degree two or lower should be on EMPC. First, the dynamic sensitivities are
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computed for inputs of the same relative degree which creates a ranking of inputs with the

same relative degree on the basis of the dynamic sensitivity of the economic cost. Second,

the steady-state sensitivities are computed. If S̄r, j and Ŝ j are close to one, the input should

be placed on EMPC since it has both a dynamic and a steady-state impact on the economic

cost. If S̄r, j and Ŝ j are close to zero, the input should not be placed on EMPC since the eco-

nomic cost is not sensitive with respect to this input. For inputs with S̄r, j close to one and Ŝ j

close to zero or vice versa, the decision to control these inputs with EMPC should be made

on the basis of the remaining two criteria, i.e., relative degree of the economic cost with

respect to the disturbances and the stabilizability requirement. It may be desirable from a

disturbance rejection standpoint to pick additional inputs that have a smaller relative degree

with respect to the cost than the known disturbances. Inputs with S̄r, j close to one and with

a low relative degree compared to the disturbances may be chosen to be placed on EMPC.

The dynamic sensitivity S̄r, j is used because it quantifies the dynamic sensitivity and EMPC

dictates a dynamic operating policy in general to optimize the process economics.

All the aforementioned factors contribute in partitioning the set of inputs controlled by

EMPC and the set of inputs not controlled by EMPC. One must try to find a stabilizing

Lyapunov-based controller k(x) with the inputs that will be placed on EMPC. This is a

verification step to ensure the selected inputs are able to achieve the stabilizability require-

ment. If no such controller exists, i.e., it is difficult to find such a controller, then the inputs

are repartitioned to include more inputs that will be on EMPC. For this step, the additional

inputs to be placed on EMPC should be inputs with the lowest relative degree and highest

sensitivity. Once a stabilizing controller is constructed for a certain set of inputs that will

be on EMPC, an LEMPC may be formulated for the system and a final verification step is

completed. In the final verification step, extensive closed-loop simulations are completed

to ensure that the LEMPC scheme has desirable closed-loop properties, e.g., performance,

stability, and robustness.
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It may be beneficial to use more available inputs as manipulated inputs in the final

EMPC control configuration than what is determined from the input selection methodology

to increase the overall robustness of the control structure to the effects of disturbances

and uncertainty. Two strategies to include more manipulated inputs are: (1) to modify the

economic cost, i.e., add quadratic terms, so that these inputs have a more direct effect on the

cost function used in the EMPC or (2) to use another controller to compute control actions

for the added manipulated inputs instead of setting them to a fixed value, e.g., proportional-

integral control may be used to compute the control actions for these inputs. In fact, the

former strategy has already been utilized in many EMPC case studies [86, 6, 50].

Remark 7.2. If there is some flexibility in the choice of economic cost and the sources of the

significant disturbances are known, i.e., how the disturbance enters into the process model

of Eq. 7.1 is known, one may determine the relative degree of the candidate economic cost

functions with respect to the disturbances. The economic cost that should be used is the one

where the disturbances have a high relative degree compared to the selected manipulated

inputs, i.e., the disturbances will have a weaker dynamic effect on the economic cost.

Remark 7.3. The potential limitations of the methodology for control structure selection

for EMPC are: (1) there is no guarantee that there will be a discrete dichotomy between

the relative degree of the economic cost and the sensitivities of economic cost with respect

to the inputs. For instance, the relative degree analysis may not result in two distinct sets

of inputs: one containing the inputs with a low relative degree and another containing the

inputs with high relative degree and similarly for the sensitivity analysis. This may make

picking the EMPC inputs solely on the basis of these tools difficult. Since the methodology

provides tools to identify which inputs to control with EMPC, (2) the final control struc-

ture configuration decision is ultimately left to the control engineer (as is the case in many

control configuration selection methodologies). Therefore, there is no guarantee that the
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Table 7.1: Process parameters of the reactor-reactor process.

Notation Value Description

T10 300.0 K CSTR-1 Inlet Temp.
T20 300.0 K CSTR-2 Inlet Temp.
F10 5.0 m3 h−1 CSTR-1 Inlet Flow Rate
F20 5.0 m3 h−1 CSTR-2 Inlet Flow Rate
V1 1.5 m3 CSTR-1 Volume
V2 1.0 m3 CSTR-2 Volume
k0 3.0×104 m3 kmol−1 h−1 Pre-exponential Factor
E 3.0×104 kJ kmol−1 Activation Energy

∆H −5.0×103 kJ kmol−1 Heat of Reaction
Cp 0.231 kJ kg−1 K−1 Heat Capacity
R 8.314 kJ kmol−1 K−1 Gas Constant
ρL 1000 kg m−3 Density

optimal input selection will be selected. However, given the possible uncertainty involved

with input selection, it may not be possible to determine the optimal input selection. Lastly,

(3) closed-loop simulations may be particularly important to select the final input selection

from many candidate control configurations. For large-scale systems with many candi-

date inputs, many simulations may need to be completed to make the final input selection

decision given the combinatorial nature of the number of possible control configurations.

7.3 EMPC Input Selection for a Chemical Process Exam-

ple

In this section, the input selection methodology for EMPC is applied to a chemical process

example. Various closed-loop simulation results and analyses are provided to demonstrate

the method. The specific example has been chosen since it is manageable to consider all

possible combinations of input pairs, while being of sufficient complexity to demonstrate

the input selection methodology.

Consider a chemical process example consisting of two continuous stirred tank reactors
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(CSTRs) in series. In each of the reactors a second-order, exothermic reaction of the form

A→ B occurs where A is the reactant material and B is the desired product. Each of the

two reactors are fed with fresh reactant material with concentration CA j0 and flow rate Fj0,

j = 1, 2 where j = 1 denotes the first CSTR and j = 2 denotes the second CSTR. To

provide heat to the reactor contents, each of the reactors has a heating jacket. The contents

of each of the CSTRs have a uniform temperature Tj, concentration of the reactant CA j, and

concentration of the product CB j for j = 1, 2. Under standard modeling assumptions, the

following set of differential equations describing the evolution of the reactor state variables

may be derived from first principles modeling techniques:

dT1

dt
=

F10

V1
(T10−T1)−

∆Hk0

ρCp
e−E/RT1C2

A1 +
Q1

ρCpV1
(7.30a)

dCA1

dt
=

F10

V1
(CA10−CA1)− k0e−E/RT1C2

A1 (7.30b)

dCB1

dt
=−F10

V1
CB1 + k0e−E/RT1C2

A1 (7.30c)

dT2

dt
=

F20

V2
T20 +

F10

V2
T1−

(F10 +F20)

V2
T2−

∆Hk0

ρCp
e−E/RT2C2

A2 +
Q2

ρCpV2
(7.30d)

dCA2

dt
=

F20

V2
CA20 +

F10

V2
CA1−

(F10 +F20)

V2
CA2− k0e−E/RT2C2

A2 (7.30e)

dCB2

dt
=

F10

V2
CB1−

(F10 +F20)

V2
CB2 + k0e−E/RT2C2

A2 (7.30f)

where the process parameters are given in Table 7.1. The possible inputs to the process

are the heat rates supplied to the reactors Q1 and Q2 and the inlet concentrations of the

reactant material CA10 and CA20. The available control action is bounded in the following

set: Q j ∈ [0.0, 100.0]MJ h−1, j = 1, 2 and CA j0 ∈ [0.5, 7.5]kmol m−3, j = 1, 2.

The operating profit of the process is considered to be proportional to the product molar
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flow rate out of the second reactor. Therefore, the economic cost is:

le(x,u) = (F10 +F20)CB2 (7.31)

where F10 +F20 is the outlet volumetric flow rate of the second CSTR and CB2 is the con-

centration of the product in the second CSTR. An economics-based constraint is imposed

which limits the amount of reactant that may be fed to each reactor:

1
t f

∫ t f

0
Fj0CA j0 dt = ṀA j0,avg (7.32)

for j = 1, 2 where ṀA j0,avg = 20kmol h−1. The average constraint of Eq. 7.32 is enforced

over operating windows of length 0.55 h which has been determined through simulations as

the operating window length that leads to improved asymptotic performance of the closed-

loop system under EMPC compared to steady-state operation (refer to Section 3.3.2 for

the details for implementing the average constraint over a finite-length operating win-

dow). The economically optimal steady-state with respect to the cost of Eq. 7.31 and

the constraint of Eq. 7.32 corresponds to the economically optimal steady-state input of

Q∗1 = Q∗2 = 100MJ h−1 and C∗A10 =C∗A20 = 4.0kmol m−3 and is open-loop (locally) asymp-

totically stable.

Remark 7.4. The fact that the economically optimal steady-state is open-loop asymptoti-

cally stable implies that there exists a control Lyapunov function (CLF), i.e., there exists a

smooth positive-definite function V (x) that satisfies L fV < 0 for all states in some neigh-

borhood of the origin when LgiV ≡ 0 for all i = 1, . . . , nu, see, for example, [33] for more

discussion of this point. Furthermore, there exists a stabilizing controller which satisfies

the conditions of Eq. 7.28a-7.28c. Thus, an explicit characterization of the stabilizing con-

troller for each of the simulated control structure configurations is not given. Also, it is
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important to point out the EMPC is able to maintain operation in a bounded region around

the economically optimal steady-state (verified by extensive simulations). Although the

optimal steady-state is open-loop asymptotically stable, the main objective of applying

feedback control is to maintain robustness of the operation and to optimize the process

economics in a manner that cannot be achieved through open-loop operation.

The purpose of applying EMPC to the process is to maximize the economic cost func-

tion of Eq. 7.31 through dynamic (off steady-state) operation of the process. First, we

demonstrate that dynamic operation of the process with the cost function of Eq. 2.5a and

constraint of Eq. 7.32 is better than operation at the economically optimal steady-state. In

this set of simulations, control actions for all possible inputs are computed by EMPC. We

apply the EMPC with the following formulation to the process:

max
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ

s.t. ˙̃x(t) = f (x̃(t))+
4

∑
j=1

g j(x̃(t))u j(t)

x̃(tk) = x(tk)

u(t) ∈ U, ∀ t ∈ [tk, tk+N)

1
τM

∫
τM

0
Fj0CA j0 dt = ṀA j0,avg, j = 1, 2

(7.33)

where the dynamic model is that of Eq. 7.30, the prediction horizon is N = 5, the sam-

pling period is ∆ = 0.05h and the number of sampling periods in the operating window

that the average constraint is enforced is M = 11, i.e., τM = 0.55h. To numerically in-

tegrate the dynamic model, explicit Euler method is employed with an integration time

step of 1.0×10−3 h. Ipopt [187] was used to solve the nonlinear optimization problem of

Eq. 7.33. All simulations below were completed on a desktop PC with an Intel Core R© 2

DuoTM processor running an Ubuntu operating system.
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Figure 7.3: The closed-loop state trajectories under the EMPC of Eq. 7.33.
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Figure 7.4: The manipulated input trajectories under the EMPC of Eq. 7.33.
The input trajectories Q1(t) and Q2(t) are not shown because they are constant profiles with Qi(t) =
100MJ h−1, i = 1,2 for all t ≥ 0 over the entire 33.0 hour length of operation.
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The EMPC of Eq. 7.33 is applied to the chemical process of Eq. 7.30. The chemical pro-

cess is initialized at a transient initial condition, i.e., off steady-state initial condition, and

a length of operation of 33.0 h was simulated. The closed-loop state and input trajectories

over the time period 31.0 h to 33.0 h are shown in Figs. 7.3-7.4 to illustrate the asymptotic

operating behavior of the process under EMPC. The EMPC dictates a dynamic operation

policy (Figs. 7.3-7.4) through continuous manipulation of the inlet reactant concentration.

However, for the heat rate inputs, the EMPC computes a constant input profile which corre-

sponds to 100 MJ h−1, i.e., the maximum allowable heat rate. The reason for this behavior

is that the reaction rate is maximized at large temperature and thus, the molar flow rate of

the desired product leaving the process is the largest when the maximum amount of heat

is provided to the reactors. To show that the operating policy is economically better than

steady-state operation, the average economic cost is defined as:

J̄e =
1
t f

∫ t f

0
le(x(t),u(t))dt . (7.34)

For the process of Eq. 7.30 under EMPC, the asymptotic performance, i.e., the average

economic cost after a sufficiently long operating time such that the effect of the initial

condition becomes negligible, is 29.98. The economically optimal steady-state has an (av-

erage) economic cost of 28.21. Thus, asymptotic operation under EMPC is 6.27% better

than steady-state operation.

Since there is a benefit in terms of the economic cost to operate the chemical process

of Eq. 7.30 under EMPC, input selection for EMPC is considered. First, the input selec-

tion methodology (Fig. 7.2) is applied to the chemical process example. Subsequently,

closed-loop simulation results are provided to confirm this is the proper choice of input

selection for EMPC. Two sets of simulations are considered. In the first set of simulations,

all the possible 16 combinations of input selections for EMPC are simulated under nominal
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Figure 7.5: A directed graph constructed for the chemical process example for the eco-

nomic cost function of Eq. 7.31 to compute the relative degree of various input variables

using the methodology of [35]. The candidate manipulated inputs are dark gray and the

economic cost is light gray.

operation. In the second set, operation with process noise is considered.

Applying the input selection methodology for EMPC (Fig. 7.2), the relative degree of

the economic cost with respect to each input is computed with the directed graph method

of [35] (Fig. 7.5). Based on this analysis, the inputs Q1 and CA10 have a relative degree of 3,

while the inputs Q2 and CA20 have a relative degree of 2. No inputs have an infinite relative

degree. The normalized dynamic and steady-state sensitivities are computed. All the inputs

are scaled such that u j ∈ [−1,1], j = 1, 2, 3, 4 and the following notation is adopted for

the inputs: u1 = (Q1−Qshift)/Qre f , u2 = (Q2−Qshift)/Qre f , u3 = (CA10−Cshift)/Cre f ,

and u4 = (CA20−Cshift)/Cre f where Qre f and Cre f are scaling factors, Qshift and Cshift are

shifting constants, and the vector fields g1(x), g2(x), g3(x), and g4(x) are the vector fields

corresponding to the inputs u1, u2, u3, and u4, respectively from the dynamic model of

Eq. 7.30.
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Figure 7.6: The dynamic sensitivities for inputs with relative degree 2 which are computed

with the closed-loop state trajectory under the EMPC with all inputs on EMPC.

0.0 1.0 2.0 3.0 4.0 5.0

0.0

0.5

1.0

S̄
3,
1

0.0 1.0 2.0 3.0 4.0 5.0

0.0

0.5

1.0

S̄
3,
2

t [h]

Figure 7.7: The dynamic sensitivities for inputs with relative degree 3 which are computed

with the closed-loop state trajectory under the EMPC with all inputs on EMPC.
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The dynamic sensitivities of Eq. 7.19 for the inputs with relative degree of 2 are:

S2,1 = Lg2L f le,x(x) =
Qre f k0E(F10 +F20)

ρCpV2RT 2
2

e−E/RT2C2
A2 , (7.35)

S2,2 = Lg4L f le,x(x) =
2F20Cre f k0(F10 +F20)

V2
e−E/RT2CA2 . (7.36)

for u2 and u4, respectively. The dynamic sensitivities are computed from the closed-loop

state trajectory under the EMPC with control actions computed by EMPC for all inputs

and are shown in Fig. 7.6. The average normalized dynamic sensitivities over the length

of operation are S̄2,1 = 0.02 and S̄2,2 = 0.98. From this analysis, the input u4 has a much

greater dynamic sensitivity on the economic cost than u2. A similar analysis is completed

for inputs with relative degree of 3 and their dynamic sensitivities are given by:

S3,1 = Lg1L2
f le,x(x) =

Qre f F10k0E(F10 +F20)

ρCpV1V2R

(
1

T 2
1

e−E/RT1C2
A1 +

1
T 2

2
e−E/RT2C2

A2

)
(7.37)

S3,2 = Lg3L2
f le,x(x) =

2F2
10Cre f k0F3

V1V2

(
e−E/RT1CA1 + e−E/RT2CA2

)
(7.38)

for u1 and u3, respectively and are shown in Fig. 7.7. The average normalized dynamic

sensitivities are S̄3,1 = 0.01 and S̄3,2 = 0.99. A similar relationship is observed, that is, the

inlet concentration input u3 has a greater dynamic sensitivity than the heat rate input u1.

The dynamic sensitivity analysis identified that the inlet concentration inputs have a

more substantial dynamic sensitivity compared to the heat rate inputs (comparing inputs

with the same relative degree). Using steady-state sensitivity, all inputs are compared to

see if these effects are significant across the set of all the possible inputs. For simplicity,

the steady-state sensitivities (Eq. 7.27) are computed with the economically optimal steady-
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state and are given by:

Ŝ1 = 0.01

Ŝ2 = 0.01

Ŝ3 = 0.56

Ŝ4 = 0.43

(7.39)

for the inputs u1, u2, u3, and u4, respectively. Based on both sensitivity analyses, the inlet

concentration inputs should be placed on EMPC. Based on the relative degree analysis, Q2

may also be placed on EMPC. However, the sensitivity analysis revealed that the economic

cost is not sensitive to this input.

All 16 possible input selection combinations for EMPC are simulated. If the control

action is not computed by EMPC, then it is fixed to its economically optimal steady-state

value. The case where no inputs are placed on EMPC is also considered. The resulting

EMPC schemes were applied to the process under nominal operation. The average eco-

nomic cost for each of these cases depended only on whether CA10 and CA20 were on EMPC.

If none of inlet concentrations were on EMPC, the average economic cost was J̄e = 28.22;

if CA10 was manipulated by EMPC and CA20 was fixed, the cost was J̄e = 28.54; if CA10 was

fixed and CA20 was manipulated by EMPC, the cost was J̄e = 29.57; and if both CA10 and

CA20 were on EMPC, the cost was J̄e = 30.13. The reason the economic cost function is not

influenced by the heat rates is the computed heat rate trajectories by EMPC are constant

trajectories; that is, the constant trajectory when the heat rate was fixed to its economically

optimal value is the same as the computed heat rate trajectory of EMPC.

From the average economic cost results, the inlet concentration CA20 has more of an

impact on the average cost than the inlet concentration CA10 (the case that CA20 is on EMPC

and CA10 is not on EMPC the performance is 1.1% better than the case that CA10 is on

EMPC and CA20 is not on EMPC). This agrees with the relative degree of the economic

cost function with respect to CA10 and CA20 which are 3 and 2, respectively. The average
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Figure 7.8: The closed-loop state trajectories of the chemical process under EMPC with

added process noise.

computation time required to solve the EMPC problem, a key metric considered in the last

set of simulations, was also considered for each of the 16 simulations considered here. It

was found that the computation time was mainly a function of the number of inputs whose

control action was computed by EMPC, i.e., the computation time scaled with the number

of decision variables, and the computation time of each EMPC with the same number of

inputs were all comparable. The average computation time required to solve the EMPC

with the inputs CA10 and CA20 was 36.4 ms, while, that of the EMPC with all inputs was

163.6 ms.

In the last set of simulations, process operation in the presence of process noise was

considered. The process noise was modeled as bounded Gaussian noise. The process noise

added to the temperature differential equations was wT ∼N (0,152) and was bounded by

wb,T = 40.0, i.e., |wT (t)| ≤ wb,T ; the process noise added to the concentration differential

equations was wC ∼N (0,22) with a bound of wb,C = 5.0. The process noise was realized

by generating a new random number and adding it to the right-hand side of the process
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Figure 7.9: The manipulated input trajectories of the chemical process under EMPC with

added process noise.

model of Eq. 7.30 over the sampling period. Four cases were considered: (1) all the inputs

were controlled by EMPC, (2) the inputs having relative degree 2 (CA20 and Q2) were

controlled by EMPC, (3) the inputs having relative degree 3 (CA10 and Q1) were controlled

by EMPC, and (4) the inputs CA10 and CA20 were controlled by EMPC. For each of the

four cases the process was initialized with the same initial condition and simulated for

16.5 h length of operation with the same realization of the process noise. The closed-loop

trajectories are given in Figs. 7.8-7.9 for the case where control actions for all inputs are

computed by EMPC.

The average economic costs over the simulation for these cases were: (1) J̄e = 29.87,

(2) J̄e = 29.21 (a decrease of 2.2% over all inputs on EMPC), (3) J̄e = 28.26 (a decrease of

5.4% over all inputs on EMPC) and (4) J̄e = 29.87, respectively for each case. Furthermore,

the average computation time required to solve the EMPC for each case was (1) 4041 ms,

(2) 239 ms, (3) 584 ms, and (4) 718 ms, respectively. The computation time reduction going

from all four inputs to two inputs was an order of magnitude since the number of decision
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variables in the optimization problem is a dominant factor in the computational burden of

solving the optimization problem. Also, case (4) has two average constraints imposed in

the optimization problem compared to cases (2) and (3) which only have one average con-

straint. It is important to emphasize that the same program and computer processing power

were used in all cases. Thus, the comparison of the computation time is consistent. The

average computation time was computed for a simulation with 320 sampling periods, i.e.,

the EMPC was solved 320 times. The computation time required to solve the EMPC that

computes control actions for CA20 and Q2 is less than the computation time of EMPC that

computes control actions for CA10 and Q1 (the reduction in computation time is approx-

imately a factor of two) which suggests that the computational burden is associated with

how direct is the dynamic effect of the input on the economic cost.

This example is relatively small and thus, it may be computationally viable to compute

control actions for the full set of manipulated inputs with EMPC. In the final input selection,

the inputs CA10 and CA20 are controlled by EMPC. The inlet concentrations are the inputs

that are continuously manipulated by the EMPC which leads to dynamic operation of the

process that is economically better compared to steady-state operation. The input CA20

has more of an impact on the closed-loop performance compared to the input CA10. Even

though the relative degree of the economic cost with respect to Q2 is 2, it is not included

on EMPC because practically no benefit is realized with this input on EMPC which the

sensitivity analysis showed.

7.4 Conclusions

In this chapter, control configuration selection for economic model predictive control was

considered. A methodology to identify the manipulated inputs from the set of all possible

manipulated inputs for which EMPC should compute control actions was developed on the
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basis of the process economics. Since EMPC will typically enforce a dynamic operating

policy, the relative degree and the sensitivities of the economic cost function with respect to

an input were used to explicitly account for the nonlinear process dynamics and choose the

manipulated inputs assigned to EMPC. The set of inputs selected for EMPC is guaranteed

to be a stabilizing one. The overall methodology was demonstrated with a chemical process

example.
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Chapter 8

Conclusions

This dissertation presented approaches to economic model predictive control (EMPC) of

nonlinear process systems. The approaches were formulated to address several key theoret-

ical considerations of EMPC including recursive feasibility, closed-loop stability, closed-

loop performance, and computational efficiency. Many of the developed EMPC schemes

took advantage of Lyapunov-based control techniques. The effectiveness and performance

of the developed EMPC approaches were illustrated via applications to chemical process

examples.

In Chapter 3, various LEMPC designs were developed, which are capable of optimiz-

ing closed-loop performance with respect to general economic considerations for nonlinear

systems. Numerous issues arising in the context of chemical process control were consid-

ered including closed-loop stability, robustness, closed-loop performance, and explicitly

time-varying economic cost functions. The formulations of the LEMPC schemes were pro-

vided as well as rigorous theoretical treatments of the schemes were carried out. Closed-

loop stability, in the sense of boundedness of the closed-loop state, under the LEMPC

designs was proven. Additionally, when desirable, the LEMPC designs may be used to

enforce convergence of the closed-loop state to steady-state. Under a specific terminal con-
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straint design, the closed-loop system under the resulting LEMPC scheme was shown to

achieve at least as good closed-loop performance as that achieved under an explicit stabi-

lizing controller. Demonstrations of the effectiveness of the LEMPC schemes on chemical

process examples were also provided. Moreover, the closed-loop properties of these ex-

amples under the LEMPC schemes were compared with respect to existing approaches to

optimization and control. In all cases considered, the closed-loop economic performance

under the LEMPC designs was better relative to the conventional approaches.

In Chapter 4, several computationally-efficient two-layer frameworks for integrating

dynamic economic optimization and control of nonlinear systems were presented. In the

upper layer, EMPC is used to compute economically optimal time-varying operating trajec-

tories. Explicit control-oriented constraints were employed in the upper layer EMPC. In the

lower layer, an MPC scheme is used to force the system to track the optimal time-varying

trajectory computed by the upper layer EMPC. The properties, i.e., stability, performance,

and robustness, of closed-loop systems under the two-layer EMPC methods were rigor-

ously analyzed. The two-layer EMPC methods were applied to chemical process examples

to demonstrate the closed-loop properties. In all the examples considered, closed-loop

stability was achieved, the closed-loop economic performance under the two-layer EMPC

framework was better than that achieved under conventional approaches to optimization

and control, and the total on-line computational time was better with the two-layer EMPC

methods compared to that under one-layer EMPC methods.

In Chapter 5, a strategy for implementing Lyapunov-based economic model predictive

control (LEMPC) in real-time with computation delay was developed. The implementation

strategy uses a triggering condition to precompute an input trajectory from LEMPC over

a finite-time horizon. At each sampling period, if a certain stability (triggering) condition

is satisfied, then the precomputed control action by LEMPC is applied to the closed-loop

system. If the stability condition is violated, then a backup explicit stabilizing controller
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is used to compute the control action for the sampling period. In this fashion, the LEMPC

is used when possible to optimize the economics of the process. Conditions such that the

closed-loop state under the real-time LEMPC is always bounded in a compact set were

derived. The real-time LEMPC scheme was applied to a chemical process network and

demonstrated that it may maintain closed-loop stability in the presence of significant com-

putation delay and process noise while also, improving the closed-loop economic perfor-

mance compared to the economic performance at the economically optimal steady-state.

In Chapter 6, closed-loop stability and performance of systems described by nonlinear

DDEs under Lyapunov-based economic model predictive control (LEMPC) was consid-

ered. First, conditions such that closed-loop stability for systems with sufficiently small

state and input delays under LEMPC, formulated with an ODE model of the system, were

derived. A chemical process example demonstrated that indeed closed-loop stability is

maintained under LEMPC for sufficiently small time-delays in both the states and the in-

puts. However, closed-loop performance significantly degraded for larger input delays.

This motivated designing a predictor feedback LEMPC methodology. The predictor feed-

back LEMPC design employs a predictor to compute a prediction of the state after the input

delay and an LEMPC scheme, formulated with a DDE model. The predicted state from the

predictor is used to initialize the DDE model. The predictor feedback LEMPC was applied

to the chemical process example and resulted in better closed-loop stability and perfor-

mance properties compared to the LEMPC, formulated with an ODE approximation of the

nonlinear time-delay system.

In Chapter 7, control configuration selection for economic model predictive control was

considered. A methodology to identify the manipulated inputs from the set of all possible

manipulated inputs for which EMPC should compute control actions was developed on the

basis of the process economics. Since EMPC will typically enforce a dynamic operating

policy, the relative degree and the sensitivities of the economic cost function with respect to
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an input were used to explicitly account for the nonlinear process dynamics and choose the

manipulated inputs assigned to EMPC. The set of inputs selected for EMPC is guaranteed

to be a stabilizing one. The overall methodology was demonstrated with a chemical process

example.

In summary, EMPC is a viable option to integrate dynamic economic optimization

and control of nonlinear systems, and this dissertation has developed several such EMPC

methods that may contribute in enabling the vision of Smart Manufacturing.
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[108] D. S. Laila, D. Nešić, and A. Astolfi. Sampled-data control of nonlinear systems.
In A. Lorı́a, F. Lamnabhi-Lagarrigue, and E. Panteley, editors, Advanced Topics in
Control Systems Theory, volume 328 of Lecture Notes in Control and Information
Science, pages 91–137. Springer London, 2006.

[109] L. Lao, M. Ellis, and P. D. Christofides. Smart manufacturing: Handling preven-
tive actuator maintenance and economics using model predictive control. AIChE
Journal, 60:2179–2196, 2014.

[110] C. K. Lee and J. E. Bailey. Modification of consecutive-competitive reaction selec-
tivity by periodic operation. Industrial & Engineering Chemistry Process Design
and Development, 19:160–166, 1980.

[111] J. Lee and D. Angeli. Cooperative distributed model predictive control for linear
plants subject to convex economic objectives. In Proceedings of the 50th IEEE Con-
ference on Decision and Control and European Control Conference, pages 3434–
3439, Orlando, FL, 2011.

[112] J. Lee and D. Angeli. Distributed cooperative nonlinear economic MPC. In Pro-
ceedings of the 20th International Symposium on Mathematical Theory of Networks
and Systems, Melbourne, Australia, 2012.

[113] J. H. Lee, R. D. Braatz, M. Morari, and A. Packard. Screening tools for robust
control structure selection. Automatica, 31:229–235, 1995.

[114] J. H. Lee, S. Natarajan, and K. S. Lee. A model-based predictive control approach
to repetitive control of continuous processes with periodic operations. Journal of
Process Control, 11:195–207, 2001.

343



[115] Y. Lin, E. Sontag, and Y. Wang. A smooth converse Lyapunov theorem for robust
stability. SIAM Journal on Control and Optimization, 34:124–160, 1996.

[116] S. Liu, J. Zhang, and J. Liu. Economic MPC with terminal cost and application to
an oilsand primary separation vessel. Chemical Engineering Science, in press, DOI:
10.1016/j.ces.2015.01.041.

[117] W. L. Luyben. The concept of “eigenstructure” in process control. Industrial &
Engineering Chemistry Research, 27:206–208, 1988.

[118] L. Magni, D. M. Raimondo, and F. Allgöwer. Nonlinear Model Prediction Control:
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ing optimal parameter values in forced periodic operation. Chemical Engineering
Science, 47:605–613, 1992.
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