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Maximizing profit has been and will always be the primary purpose of optimal pro-

cess operation. Within process control, the economic optimization considerations of a

plant are usually addressed via a two-layer architecture. In general, this architecture

includes: the upper layer that optimizes process operation set-points taking into ac-

count economic considerations using steady-state system models, and the lower layer

(i.e., process control layer) whose primary objective is to employ feedback control

systems to force the process to track the set-points. Optimizing closed-loop per-

formance with respect to general economic considerations for nonlinear systems in a

unified framework has recently become a subject of increasing theoretical interest and

practical importance. In addition to a tighter integration of economics and control,

advances in communication technologies have motivated augmentation of traditional

point-to-point and wired local control systems with additional cheap and easy-to-

install networked sensors and actuators and control systems. Networked distributed
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control systems can substantially improve the efficiency, flexibility, robustness and

fault tolerance of an industrial control system while reducing the installation, recon-

figuration and maintenance expenses at the cost of coordination and design/redesign

of different control systems in the new architecture.

This dissertation presents rigorous, yet practical, methods for the design of eco-

nomic and distributed predictive control systems. Beginning with a review of re-

cent results on the subject, the dissertation presents the design of Lyapunov-based

economic model predictive control scheme for a broad class of nonlinear systems us-

ing state and output feedback. Then, the dissertation focuses on the development

of an economic model predictive control method with guaranteed improvement in

closed-loop performance compared to conventional Lyapunov-based model predictive

control designs. Subsequently, the dissertation focuses on the design of a networked

distributed model predictive control method for multirate uncertain systems subject

to communication disruptions and measurement noise and distributed model pre-

dictive control method for switched systems to compute optimal manipulated input

trajectories that achieve desired stability, performance and robustness specifications.

The control methods are applied to nonlinear chemical process networks and their

effectiveness and performance are evaluated through extensive computer simulations.
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Chapter 1

Introduction

1.1 Background

1.1.1 Economic Model Predictive Control

The development of optimal operation and control policies for chemical process sys-

tems aiming at optimizing process economics has always been an important research

subject with major practical implications. Within process control, the economic op-

timization considerations of a plant are usually addressed via a two-layer architecture

(e.g., [70] and the references therein). In general, this architecture includes: the up-

per layer that optimizes process operation set-points taking into account economic

considerations using steady-state system models, and the lower layer (i.e., process

control layer) whose primary objective is to employ feedback control systems to force

the process to track the set-points. This two-layer approach usually limits process

operation around a steady-state.

Model predictive control (MPC) is widely adopted in industry in the process con-

trol layer because of its ability to deal with large multivariable constrained control
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problems and to account for optimization considerations [29, 72]. MPC takes advan-

tage of a process model to predict the future evolution of the process at each sampling

time according to the current state along a given prediction horizon. These predictions

are incorporated in an optimization problem to obtain an optimal input trajectory

by minimizing a meaningful performance index. To reduce the computational com-

plexity of the optimization problem, MPC obtains the optimal input solution over

the family of piecewise constant trajectories with fixed sampling time and finite pre-

diction horizon. Once the optimization problem is solved, only the first manipulated

input value is implemented, discarding the rest of the trajectory and repeating the

optimization in the next sampling step (e.g., [85]). The key idea of a standard MPC

is to choose control actions by repeatedly solving an on-line constrained optimization

problem, which aims at minimizing a cost function that involves penalties on the

state variables and on the control actions over a finite prediction horizon.

Typically, the cost function is in quadratic form including penalties on the devi-

ations of the system state and control inputs from a desired steady-state. Because

of the structure of the cost function, the control objective of a standard MPC is to

drive the state of the closed-loop system to the desired steady-state. In MPC the-

ory, the quadratic cost function is also widely used as a Lyapunov function to prove

closed-loop stability (e.g., [72]). Even though in the standard MPC formulations, cer-

tain economic optimization considerations can be taken into account (e.g., optimal

use of control action), general economic optimization considerations are usually not

addressed. In order to account for general economic optimization considerations, the

quadratic cost function used in standard MPC should be replaced by an economics-

based cost function. Moreover, the standard MPC should be re-formulated in an

appropriate way to guarantee closed-loop stability. Economic model predictive con-

trol framework deals with a reformulation of the conventional MPC quadratic cost
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function in which an economic (not necessarily quadratic) cost function is used di-

rectly as the cost in MPC, and thus, it may, in general, lead to time-varying process

operation policies (instead of steady-state operation), which directly optimize process

economics.

Within process control, there have been several calls for the integration of MPC

and economic optimization of processes (e.g., [2, 86, 48]). In the literature, two-

stage MPC structures [6, 80, 78, 103], the so-called LP-MPC and QP-MPC, have

been investigated in order to reduce the difference between the sampling rates of

the steady-state optimization performed in the RTO layer and the lower layer linear

MPC. There are also attempts to integrate steady-state RTO and linear MPC in a

single level [22, 104]. In this type of approach, the economic optimization and control

problems are solved simultaneously in a single optimization problem and an additional

term is added into the MPC cost function to account for the economic considerations.

There are also attempts to utilize a dynamic model in the RTO layer which interacts

with lower layer linear MPC (e.g., [105]). This approach uses dynamical models in

the RTO and re-calculates the optimal set-points for the linear MPC only if economic

benefits are possible. Furthermore, there are efforts on the development of MPC

accounting for general economic considerations in the cost function [28, 47, 24]. In

[28], general ideas of a combined steady-state optimization and linear MPC scheme as

well as a case study were reported. In [47], two economically oriented nonlinear MPC

formulations were proposed for cyclic processes and nominal stability of the closed-

loop system was established via Lyapunov techniques. In [24], MPC schemes using

an economics-based cost function were proposed and the stability properties were

established using a suitable Lyapunov function. The MPC schemes in [24] adopt

a terminal constraint which requires that the closed-loop system state settles to a

steady-state at the end of each optimal input trajectory calculation (i.e., end of the
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prediction horizon). The work in [46] formulated a linear robust economic MPC by

taking advantage of second-order cone programming. The work in [55] considered

a cooperative distributed linear economic MPC scheme subject to convex economic

objectives. Simultaneous consideration of economic and control performance has been

studied in [69]. The use of economic MPC for the reduction of energy related costs

has been considered in [65]. Economic performance of MPC for a simulated electric

arc furnace has been considered in [100]. An implementation of an MPC architecture

which deals with control and economic considerations has been considered in [83].

Despite the above recent progress, at this point, there is limited work to ensure

improvement of closed-loop performance through time-varying operation via economic

MPC with respect to operation under conventional MPC in the context of finite

time operation. An important recent work has established improved economic MPC

performance over steady-state operation for infinite-time operation [1]. Furthermore,

even though a rigorous stability analysis is included in [24], it is difficult, in general,

to characterize, a priori, the set of initial conditions starting from where feasibility

and closed-loop stability of the proposed MPC scheme are guaranteed. Moreover,

all economic MPC schemes including the ones above have been developed under

the assumption of state feedback. State estimation in certain classes of nonlinear

systems can be carried out within the framework of high-gain observers (e.g., [16, 23]),

however, at this stage these estimation techniques have not been used in conjunction

with economic MPC schemes.

1.1.2 Distributed Model Predictive Control

The chemical process industry is a major sector of the US and global economy. Hence,

the development of optimal process control and operation methodologies for chemical
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processes is a research subject of considerable importance. Advanced process control

stands to benefit from the emergence of networked process control and operations,

with the purpose of augmentation of traditional point-to-point local control systems

with additional cheap, safe and easy-to-install networked sensors and actuators. Net-

worked control systems (NCS) can substantially improve the efficiency, flexibility,

robustness and fault tolerance of an industrial control system while reducing the in-

stallation, reconfiguration and maintenance expenses at the cost of coordination and

design/redesign of different control systems in the new architecture [102, 82, 17]. Re-

cent research efforts have led to important results on the design of networked control

systems (e.g., [76, 77, 81, 64]), employing a centralized control paradigm where all

manipulated inputs are evaluated by a single control system.

Model predictive control (MPC) is a natural framework for dealing with the de-

sign and coordination of distributed control systems because it can account for the

influence of other control systems on the computation of the control action for a cer-

tain set of actuators. In a centralized MPC paradigm, all the manipulated inputs of a

given control system are coupled in a single optimization problem to obtain the opti-

mal input trajectory. In the case of large number of state variables and manipulated

inputs for a given control system, the computational complexity of the centralized

MPC may increase significantly and consequently degrade closed-loop system per-

formance, especially in the case of employing a nonlinear model in MPC. Moreover,

a centralized control system for large-scale systems may be difficult to organize and

maintain and is vulnerable to potential process faults. Because in the evaluation

of the control actions by MPC online optimization problems need to be solved, the

evaluation time of the MPC is a very important concern. Specifically, the MPC eval-

uation time strongly depends on the number of manipulated inputs as well as the

dimensionality of the process model. To overcome the above mentioned drawbacks
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of centralized MPC, decentralized and/or distributed MPC can be utilized. While in

a decentralized control architecture [91], individual controllers make their decisions

based on local information, in a distributed framework, controllers communicate with

each other to coordinate their actions. In distributed MPC (DMPC) the optimal

trajectory is obtained through solving a number of distributed optimization problems

with lower dimensionality compared to the centralized design.

Distributed MPC (DMPC) has attracted a lot of attention in the design of coop-

erative networked control systems. In a DMPC architecture, the manipulated inputs

are computed by solving more than one control (optimization) problems in separate

processors in a coordinated fashion. In the context of DMPC designs, a number of

significant efforts have been recently made in the literature; please see [7, 87, 89, 19]

for reviews of available results in this direction. Specifically, the stability of the closed-

loop linear system by considering multiple communications between distributed pre-

dictive controllers and using system-wide control objective functions was guaranteed

in [96]. In [92], a cooperative DMPC scheme was developed for linear systems with

guaranteed stability of the closed-loop system and convergence of the cost to its corre-

sponding, centralized optimal value. A distributed control method for weakly-coupled

nonlinear systems subject to decoupled constraints was proposed in [25]. A DMPC

scheme for linear systems coupled through the inputs, based on a game theoretic

approach, was proposed in [66]. A robust DMPC formulation for decoupled linear

systems was studied in [88]. A DMPC architecture for decoupled nonlinear systems

coupled through cost functions was studied in [49]. A DMPC framework for a class of

nonlinear discrete-time systems subject to no exchange of information between local

controllers was proposed in [67]. Furthermore, in [93], a quasi-decentralized control

framework was developed for multi-unit plants that achieves the desired closed-loop

objectives with minimal cross communication between the controllers.
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Two different DMPC architectures, namely, a sequential DMPC architecture and

an iterative DMPC architecture, were designed for nonlinear systems in [61, 60], and

the work were extended to account for asynchronous and delayed measurements [62].

Distributed MPCs were designed via Lyapunov-based MPC (LMPC) to coordinate

their control actions using one-directional communication. Among the distributed

LMPCs, one LMPC is responsible for closed-loop stability while the rest of the LM-

PCs communicate and cooperate with the stabilizing LMPC to improve the closed-

loop performance. In [61], the communication between the distributed controllers was

assumed to be perfect which is reasonable in applications where wired network com-

munication links are utilized. Furthermore, the results in [61, 60, 62] were obtained

under the assumptions of noise-free communication and availability of noise-free mea-

surements of system states to all the distributed controllers at each sampling time.

Recently, wireless networks have received significant attention [95] and could play

an increasingly important role in distributed control systems. In chemical process

systems [17], there is an increasing trend toward developing industrial DMPC designs

where individual MPCs operate through a shared wireless/wired communication net-

work. However, the design of network-based DMPC system has to deal with the

dynamics introduced by the communication network, which may include commu-

nication disruptions such as communication channel noise, data losses, bandwidth

limitations, time-varying delays, and data quantization [79] which directly affect the

closed-loop stability of NCS architectures. Thus, achieving closed-loop stability sub-

ject to communication disruptions in the context of DMPC is a subject of increasing

importance. Motivated by this trend towards network-based control systems in a va-

riety of engineering applications, significant efforts over the last ten years have led to

results on analysis and design of networked control systems using centralized control

architectures (e.g., [76, 81]).
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1.2 Objectives and Organization of the Disserta-

tion

Motivated by the lack of general economic and distributed control methods for process

systems, the objectives of this dissertation are summarized as follows:

1. To develop economic model predictive control of nonlinear process systems us-

ing Lyapunov techniques taking into account asynchronous and time-varying

delayed measurements.

2. To develop state estimation based economic model predictive control schemes

of nonlinear systems.

3. To develop algorithms for improved finite-time performance of economic model

predictive control of nonlinear systems.

4. To develop distributed model predictive control schemes subject to communi-

cation disruptions.

5. To develop multirate distributed model predictive control of nonlinear uncertain

systems.

6. To develop distributed model predictive control of switched nonlinear systems

with scheduled mode transitions.

The dissertation is organized as follows. In Chapter 2, we develop MPC designs

which are capable of optimizing closed-loop performance with respect to general eco-

nomic considerations for a broad class of nonlinear process systems. Specifically, in

the proposed designs, the economic MPC optimizes a cost function which is related

directly to desired economic considerations and is not necessarily dependent on a
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steady-state — unlike conventional MPC designs. First, we consider nonlinear sys-

tems with synchronous measurement sampling and uncertain variables. The proposed

economic MPC is designed via Lyapunov-based techniques and has two different op-

eration modes. The first operation mode corresponds to the period in which the cost

function should be optimized (e.g., normal production period); and in this operation

mode, the MPC maintains the closed-loop system state within a pre-defined stability

region and optimizes the cost function to its maximum extent. The second opera-

tion mode corresponds to operation in which the system is driven by the economic

MPC to an appropriate steady-state. In this operation mode, suitable Lyapunov-

based constraints are incorporated in the economic MPC design to guarantee that

the closed-loop system state is always bounded in the pre-defined stability region

and is ultimately bounded in a small region containing the origin. Subsequently, we

extend the results to nonlinear systems subject to asynchronous and delayed mea-

surements and uncertain variables. Under the assumptions that there exist an upper

bound on the interval between two consecutive asynchronous measurements and an

upper bound on the maximum measurement delay, an economic MPC design which

takes explicitly into account asynchronous and delayed measurements and enforces

closed-loop stability is proposed. All the proposed economic MPC designs are illus-

trated through a chemical process example and their performance and robustness are

evaluated through simulations.

In Chapter 3, we focus on a class of nonlinear systems and design an estimator-

based economic MPC system which is capable of optimizing closed-loop performance

with respect to general economic considerations taken into account in the construction

of the cost function. Working with the class of full-state feedback linearizable nonlin-

ear systems, we use a high-gain observer to estimate the nonlinear system state using

output measurements and a Lyapunov-based approach to design an economic MPC
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system that uses the observer state estimates. We prove, using singular perturbation

arguments, that the closed-loop system is practically stable provided the observer

gain is sufficiently large. We use a chemical process example to demonstrate the

ability of the state estimation-based economic MPC to achieve process time-varying

operation that leads to a superior cost performance metric compared to steady-state

operation using the same amount of reactant material.

In Chapter 4, we present algorithms for improved finite-time performance of

Lyapunov-based economic model predictive control (LEMPC) of nonlinear systems.

Unlike conventional LMPC schemes which typically utilize a quadratic cost function

and regulate a process at a steady-state, LEMPC designs very often dictate time-

varying operation to optimize an economic (typically non-quadratic) cost function.

The LEMPC algorithms proposed here ensure improved performance, measured by

the desired economic cost, over conventional LMPC by solving auxiliary LMPC prob-

lems and incorporating appropriate constraints, based on the LMPC solution, in their

formulations at various sampling times. The proposed LEMPC schemes also take ad-

vantage of a predefined Lyapunov-based explicit feedback law to characterize their

stability region while maintaining the closed-loop system state in an invariant set

subject to bounded process disturbances. The LEMPC algorithms are demonstrated

through a nonlinear chemical process example.

In Chapter 5, we study DMPC of nonlinear systems subject to communication

disruptions - communication channel noise and data losses - between distributed con-

trollers. Specifically, we focus on a DMPC architecture in which one of the distributed

controllers is responsible for ensuring closed-loop stability while the rest of the dis-

tributed controllers communicate and cooperate with the stabilizing controller to

further improve the closed-loop performance. To handle communication disruptions,
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feasibility problems are incorporated in the DMPC architecture to determine if the

data transmitted through the communication channel is reliable or not. Based on the

results of the feasibility problems, the transmitted information is accepted or rejected

by the stabilizing MPC. In order to ensure the stability of the closed-loop system

under communication disruptions, each model predictive controller utilizes a stability

constraint which is based on a suitable Lyapunov-based controller. The theoretical

results are demonstrated through a nonlinear chemical process example.

In Chapter 6, we consider the design of a network-based DMPC system using

multirate sampling for large-scale nonlinear uncertain systems composed of several

coupled subsystems. Specifically, we assume that the states of each local subsystem

can be divided into fast sampled states (which are available every sampling time)

and slowly sampled states (which are available every several sampling times). The

distributed model predictive controllers are connected through a shared communi-

cation network and cooperate in an iterative fashion at time instants in which full

system state measurements (both fast and slow) are available, to guarantee closed-

loop stability. When local subsystem fast sampled state information is only available,

the distributed controllers operate in a decentralized fashion to improve closed-loop

performance. In the proposed control architecture, the controllers are designed via

LMPC techniques taking into account bounded measurement noise, process distur-

bances and communication noise. Sufficient conditions under which the state of the

closed-loop system is ultimately bounded in an invariant region containing the origin

are derived. The theoretical results are demonstrated through a nonlinear chemical

process example.

In Chapter 7, we present a method for the design of distributed model predictive

control systems for a class of switched nonlinear systems for which the mode tran-
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sitions take place according to a prescribed switching schedule. Under appropriate

stabilizability assumptions on the existence of a set of feedback controllers that can

stabilize the closed-loop switched, nonlinear system, we design a cooperative, dis-

tributed model predictive control architecture using LMPC in which the distributed

controllers carry out their calculations in parallel and communicate in an iterative

fashion to compute their control actions. The proposed distributed model predictive

control design is applied to a nonlinear chemical process network with scheduled mode

transitions and its performance and computational efficiency properties in comparison

to a centralized MPC architecture are evaluated through simulations.

Chapter 8 summarizes the main results of the dissertation and discusses future

research possibilities in economic and distributed predictive control system design.
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Chapter 2

Economic Model Predictive

Control of Nonlinear Process

Systems Using Lyapunov

Techniques

In this chapter, we develop Lyapunov-based economic MPC (LEMPC) designs which

are capable of optimizing closed-loop performance with respect to general economic

considerations for nonlinear systems. The design of the LEMPC is based on unit-

ing receding horizon control with explicit Lyapunov-based nonlinear controller design

techniques and allows for an explicit characterization of the stability region of the

closed-loop system; such a characterization may be conservative in certain appli-

cations and it may be possible for the LEMPC to achieve closed-loop stability for

initial conditions outside of the estimated stability region. In the proposed designs,

the LEMPC schemes optimize a cost function which is related directly to certain

13



economic considerations and is not necessarily dependent on a steady-state — unlike

conventional model predictive control (MPC) designs. First, we consider nonlin-

ear systems with synchronous measurement sampling and uncertain variables. The

proposed LEMPC is designed via Lyapunov-based techniques and has two different

operation modes. The first operation mode corresponds to the period in which the

cost function should be optimized (e.g., normal production period); and in this oper-

ation mode, the LEMPC maintains the closed-loop system state within a pre-defined

stability region and optimizes the cost function to its maximum extent. The sec-

ond operation mode corresponds to operation in which the system is driven by the

LEMPC to an appropriate steady-state. In the LEMPC design, suitable Lyapunov-

based constraints are incorporated to guarantee that the closed-loop system state is

always bounded in the pre-defined stability region and is ultimately bounded in a

small region containing the origin. Subsequently, we extend the results to nonlinear

systems subject to asynchronous and delayed measurements and uncertain variables.

Under the assumptions that there exist an upper bound on the interval between two

consecutive asynchronous measurements and an upper bound on the maximum mea-

surement delay, an LEMPC design which takes explicitly into account asynchronous

and delayed measurements and enforces closed-loop stability is proposed. The theo-

retical results are illustrated through a chemical process example.

2.1 Preliminaries

2.1.1 Notation

The operator | · | is used to denote Euclidean norm of a vector, and a continuous

function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing and
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satisfies α(0) = 0. The symbol Ωr is used to denote the set Ωr := {x ∈ Rnx : V (x) ≤
r} where V is a scalar function, and the operator ‘/’ denotes set subtraction, that

is, A/B := {x ∈ Rnx : x ∈ A, x /∈ B}. The symbol diag(v) denotes a matrix whose

diagonal elements are the elements of vector v and all the other elements are zeros.

2.1.2 Class of nonlinear systems

We consider a class of nonlinear systems which can be described by the following

state-space model:

ẋ(t) = f(x(t), u1(t), . . . , um(t), w(t)) (2.1)

where x(t) ∈ Rnx denotes the vector of state variables of the system and ui(t) ∈ R,

i = 1, . . . ,m, and w(t) ∈ Rnw denote m control (manipulated) inputs and the distur-

bance vector, respectively. The m control inputs are restricted to be in m nonempty

convex sets Ui ⊆ R, i = 1, . . . ,m, which are defined as Ui := {ui ∈ R : |ui| ≤ umax
i }

where umax
i , i = 1, . . . , m, are the magnitudes of the input constraints. The distur-

bance w(t) ∈ Rnw is bounded, i.e., w(t) ∈ W where W := {w ∈ Rnw s.t. |w| ≤
θ, θ > 0}. We assume that f is a locally Lipschitz vector function and that the

origin is an equilibrium point of the unforced nominal system (i.e., the system of

Eq. 2.1 with ui(t) ≡ 0, i = 1, . . . , m and w(t) ≡ 0 for all times) which implies that

f(0, 0, . . . , 0, 0) = 0.

2.1.3 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller h(x) = [h1(x) · · · hm(x)]T

which renders the origin of the nominal closed-loop system asymptotically stable

with ui = hi(x), i = 1, . . . , m, while satisfying the input constraints for all the
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states x inside a given stability region. We note that this assumption is essentially

equivalent to the assumption that the system is stabilizable or that the pair (A,B) in

the case of linear systems is stabilizable. Using converse Lyapunov theorems [59, 18],

this assumption implies that there exist class K functions αi(·), i = 1, 2, 3, 4 and

a continuously differentiable Lyapunov function V (x) for the nominal closed-loop

system, that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
f(x, h1(x), . . . , hm(x), 0) ≤ −α3(|x|)∣∣∣∣

∂V (x)

∂x

∣∣∣∣ ≤ α4(|x|)

hi(x) ∈ Ui, i = 1, . . . , m

(2.2)

for all x ∈ O ⊆ Rnx where O is an open neighborhood of the origin. We denote the

region Ωρ ⊆ O as the stability region of the closed-loop system under the Lyapunov-

based controller h(x). Note that explicit stabilizing control laws that provide ex-

plicitly defined regions of attraction for the closed-loop system have been developed

using Lyapunov techniques for specific classes of nonlinear systems, particularly input-

affine nonlinear systems; the reader may refer to [51, 18, 58, 26] for results in this

area including results on the design of bounded Lyapunov-based controllers by taking

explicitly into account constraints for broad classes of nonlinear systems.

By continuity, the local Lipschitz property assumed for the vector field f and

taking into account that the manipulated inputs ui, i = 1, . . . , m are bounded, there

exists a positive constant M such that

|f(x, u1, . . . , um, w)| ≤ M (2.3)
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for all x ∈ Ωρ and ui ∈ Ui, i = 1, . . . , m. In addition, by the continuous differentiable

property of the Lyapunov function V (x) and the Lipschitz property assumed for the

vector field f , there exist positive constants Lx, Lw, L′x and L′w such that

|f(x, u1, . . . , um, w)− f(x′, u1, . . . , um, 0)| ≤ Lx |x− x′|+ Lw |w|∣∣∣∣
∂V (x)

∂x
f(x, u1, . . . , um, w)− ∂V (x′)

∂x
f(x′, u1, . . . , um, 0)

∣∣∣∣ ≤ L′x |x− x′|+ L′w |w|
(2.4)

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . , m and w ∈ W .

Remark 2.1. We note that while there are currently no general methods for con-

structing Lyapunov functions for general nonlinear systems, for broad classes of non-

linear systems arising in the context of chemical process control applications, quadratic

Lyapunov functions have been widely used and have been demonstrated to yield very

good estimates of closed-loop stability regions [18]; please see also “Application to a

chemical process example” section.

Remark 2.2. Note that in this chapter, we use the level set Ωρ of the Lyapunov

function V (x) to estimate the stability region (i.e., domain of attraction) of the closed-

loop system under the controller h(x). Specifically, an estimate of the domain of

attraction of the closed-loop system is computed as follows: first, a controller (e.g.,

h(x)) is designed that makes the time-derivative of a Lyapunov function, V (x), along

the closed-loop system trajectory negative definite around the equilibrium point; then,

an estimate of the set where V̇ is negative is computed, and finally, a level set (ideally

the largest) of V (denoted by Ωρ in this chapter) embedded in the set where V̇ is

negative, is computed. From this approach to calculate Ωρ, we can conclude that the

set Ωρ is a guaranteed closed-loop stability set but it is possible that the controller h(x)

stabilizes the closed-loop system for initial conditions outside of the set Ωρ.
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2.2 Lyapunov-based economic MPC with synchro-

nous measurement sampling

In this section, we design LEMPC for the system of Eq. 2.1 with synchronous measure-

ment sampling. We assume that the state x of the system is sampled synchronously

and the time instants at which we have state measurements are indicated by the time

sequence {tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time and ∆ is

the sampling time.

In the proposed design, the LEMPC maximizes a cost function which takes into

account specific economic considerations and it has two operation modes. In the first

operation mode, the LEMPC optimizes the economic cost function while maintaining

the system state within the stability region Ωρ (i.e., x(t) ∈ Ωρ); in the second opera-

tion mode, the LEMPC drives the state of the system to a desired steady-state. The

economic MPC is designed via Lyapunov-based MPC techniques [74] to take advan-

tage of the stability properties of the Lyapunov-based controller h(x). Specifically, we

assume that from the initial time t0 up to a specific time t′, the LEMPC operates in

the first operation mode to maximize the economic cost function; after the time t′, we

assume that the LEMPC operates in the second operation mode and calculates the

inputs in a way that the state of the closed-loop system is driven to a neighborhood

of the desired steady-state (i.e., the origin x = 0). The proposed LEMPC provides

more degrees of freedom in the economic optimal operation of the system and can

eventually regulate the system state to a desired steady-state. For simplicity and

without loss of generality in the rest of this chapter, we assume that the specific time

t′ is an integer multiple of the sampling time of the MPC, ∆.
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2.2.1 Implementation strategy

From the initial time t0 to t′, the LEMPC operates in the first operation mode. In

the design of the LEMPC, one important issue we need to consider is the effect of the

bounded disturbance w on the stability of the closed-loop system. In order to take

the disturbance w into account explicitly, we consider a region Ωρ̃, ρ̃ < ρ. Specifically,

when x(tk) is received at a sampling time tk, if x(tk) is in the region Ωρ̃, the LEMPC

maximizes the cost function within the region Ωρ̃; if x(tk) is in the region Ωρ/Ωρ̃,

the LEMPC first drives the system state to the region Ωρ̃ and then maximizes the

cost function within Ωρ̃. Note that the region Ωρ̃ plays the role of a “safe” zone in

which the LEMPC can maximize the cost function to its maximum extent while the

effect of the disturbance w on the closed-loop stability is taken into account. Note

also that the relation between ρ̃ and ρ is determined by the system property (i.e., the

properties of the vector function f), the upper bound on the disturbance (i.e., θ) and

the sampling time of the LEMPC. This relation will be characterized in Eq. 2.12 in

Theorem 2.1.

After time t′, the system operates in the second operation mode. In this operation

mode, the LEMPC calculates the inputs in a way that the Lyapunov function of the

system continuously decreases to steer the state of the system to a neighborhood of

the origin.

The implementation strategy of the proposed LEMPC with synchronous measure-

ment sampling can be summarized as follows:

1. At a sampling time tk, the controller receives the system state x(tk) from the

sensors.

2. If tk < t′, go to Step 3. Else, go to Step 4.
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3. If x(tk) ∈ Ωρ̃, go to Step 3.1. Else, go to Step 3.2.

3.1. The controller maximizes the economic cost function within Ωρ̃. Go to

Step 5.

3.2. The controller drives the system state to the region Ωρ̃. Go to Step 5.

4. The controller drives the system state to a small neighborhood of the desired

steady-state.

5. Go to Step 1 (k ←− k + 1).

2.2.2 LEMPC formulation

The optimization problem of the proposed LEMPC for the system of Eq. 2.1 with

synchronous measurement sampling is as follows:

max
u1,...,um∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), . . . , um(τ))dτ (2.5a)

s.t. ˙̃x(t) = f(x̃(t), u1(t), . . . , um(t), 0) (2.5b)

ui(t) ∈ Ui, i = 1, . . . , m (2.5c)

x̃(tk) = x(tk) (2.5d)

V (x̃(t)) ≤ ρ̃, ∀t ∈ [tk, tk+N), if tk ≤ t′ and V (x(tk)) ≤ ρ̃ (2.5e)

∂V (x(tk))

∂x
f(x(tk), u1(tk), . . . , um(tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), . . . , hm(x(tk)), 0),

if tk > t′ or ρ̃ < V (x(tk)) ≤ ρ (2.5f)
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where S(∆) is the family of piece-wise constant functions with sampling period ∆, N

is the prediction horizon of this LEMPC, L(x̃(τ), u1(τ), . . . , um(τ)) is the economic

measure which defines the cost function, the state x̃ is the predicted trajectory of the

system with u1, . . . , um computed by the LEMPC and x(tk) is the state measurement

obtained at time tk. The optimal solution to this optimization problem is denoted by

u∗i (t|tk), i = 1, . . . , m, which is defined for t ∈ [tk, tk+N).

In the optimization problem of Eq. 2.5, the constraint of Eqs. 2.5b is the nominal

model of the system of Eq. 2.1 (i.e., w(t) = 0 for all t) and is used to predict the

future evolution of the closed-loop system; the constraint of Eq. 2.5c defines the input

constraints on all the inputs; the constraint of Eq. 2.5d defines the initial condition of

the optimization problem; the constraint of Eq. 2.5e is only active when x(tk) ∈ Ωρ̃

in the first operation mode and is incorporated to ensure that the predicted state

evolution of the closed-loop system is maintained in the region Ωρ̃ (thus, the actual

state of the closed-loop system is in the stability region Ωρ); the constraint of Eq. 2.5f

is only active in the second operation mode or when ρ̃ < V (x(tk)) ≤ ρ in the first

operation mode. This constraint is used to enforce that the Lyapunov function of

the system decreases at least at the rate given by the Lyapunov-based controller h(x)

implemented in a sample-and-hold fashion.

The manipulated inputs of the proposed control design from time tk to tk+1 (k =

0, 1, 2, . . .) are defined as follows:

ui(t) = u∗i (t|tk), i = 1, . . . , m, ∀t ∈ [tk, tk+1). (2.6)
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2.2.3 Stability analysis

In this subsection, we present the stability properties of the proposed LEMPC of

Eq. 2.5 for the system of Eq. 2.1 with synchronous measurement sampling. In order

to proceed, we need the following two propositions.

Proposition 2.1 (c.f. [60]). Consider the systems

ẋa(t) = f(xa(t), u1(t), . . . , um(t), w(t))

ẋb(t) = f(xb(t), u1(t), . . . , um(t), 0)
(2.7)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a K function fW (·) such that

|xa(t)− xb(t)| ≤ fW (t− t0), (2.8)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with

fW (τ) =
Lwθ

Lx

(eLxτ − 1). (2.9)

Proposition 2.1 provides an upper bound on the deviation of the state trajectory

obtained using the nominal model, from the actual system state trajectory when

the same control input trajectories are applied. Proposition 2.2 below bounds the

difference between the magnitudes of the Lyapunov function of two different states

in Ωρ.

Proposition 2.2 (c.f. [60]). Consider the Lyapunov function V (·) of the system of

Eq. 2.1. There exists a quadratic function fV (·) such that

V (x) ≤ V (x̂) + fV (|x− x̂|) (2.10)
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for all x, x̂ ∈ Ωρ with

fV (s) = α4(α
−1
1 (ρ))s + Mvs

2 (2.11)

where Mv is a positive constant.

Theorem 2.1 below provides sufficient conditions under which the LEMPC of

Eq. 2.5 guarantees that the state of the closed-loop system of Eq. 2.1 is always

bounded in Ωρ and is ultimately bounded in a small region containing the origin.

Theorem 2.1. Consider the system of Eq. 2.1 in closed-loop under the LEMPC

design of Eq. 2.5 based on a controller h(x) that satisfies the conditions of Eq. 2.2.

Let εw > 0, ∆ > 0, ρ > ρ̃ > 0 and ρ > ρs > 0 satisfy

ρ̃ ≤ ρ− fV (fW (∆)) (2.12)

and

−α3(α
−1
2 (ρs)) + L′xM∆ + L′wθ ≤ −εw/∆. (2.13)

If x(t0) ∈ Ωρ, ρs ≤ ρ̃, ρmin ≤ ρ and N ≥ 1 where

ρmin = max{V (x(t + ∆)) : V (x(t)) ≤ ρs}, (2.14)

then the state x(t) of the closed-loop system is always bounded in Ωρ and is ultimately

bounded in Ωρmin
.

Proof 2.1. The proof consists of three parts. We first prove that the optimization

problem of Eq. 2.5 is feasible for all states x ∈ Ωρ. Subsequently, we prove that, in

the first operation mode, under the LEMPC design of Eq. 2.5, the closed-loop state of

the system of Eq. 2.1 is always bounded in Ωρ. Finally, we prove that, in the second
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operation mode, under the LEMPC of Eq. 2.5, the closed-loop state of the system of

Eq. 2.1 is ultimately bounded in ρmin.

Part 1: When x(t) is maintained in Ωρ (which will be proved in Part 2), the

feasibility of the LEMPC of Eq. 2.5 follows because input trajectories ui(t), i =

1, . . . , m, such that ui(t) = hi(x(tk+j)), ∀t ∈ [tk+j, tk+j+1) with j = 0, . . . , N − 1 are

feasible solutions to the optimization problem of Eq. 2.5 since such trajectories satisfy

the input constraint of Eq. 2.5c and the Lyapunov-based constraints of Eqs. 2.5e

and 2.5f. This is guaranteed by the closed-loop stability property of the Lyapunov-

based controller h(x); the reader may refer to [79] for more detailed discussion on the

stability property of the Lyapunov-based controller h(x).

Part 2: We assume that the LEMPC of Eq. 2.5 operates in the first operation

mode. We prove that if x(tk) ∈ Ωρ̃, then x(tk+1) ∈ Ωρ; and if x(tk) ∈ Ωρ/Ωρ̃, then

V (x(tk+1)) < V (x(tk)) and in finite steps, the state converges to Ωρ̃ (i.e., x(tk+j) ∈ Ωρ̃

where j is a finite positive integer).

When x(tk) ∈ Ωρ̃, from the constraint of Eq. 2.5e, we obtain that x̃(tk+1) ∈ Ωρ̃.

By Propositions 2.1 and 2.2, we have that

V (x(tk+1)) ≤ V (x̃(tk+1)) + fV (fW (∆)). (2.15)

Since V (x̃(tk+1)) ≤ ρ̃, if the condition of Eq. 2.12 is satisfied, we can conclude that

x(tk+1) ∈ Ωρ.

When x(tk) ∈ Ωρ/Ωρ̃, from the constraint of Eq. 2.5f and the condition of Eq. 2.2,
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we can write

∂V (x(tk))

∂x
f(x(tk), u

∗
1(tk), . . . , u

∗
m(tk), 0) ≤ ∂V (x(tk))

∂x
f(x(tk), h1(x(tk)), . . . ,

hm(x(tk)), 0)

≤ −α3(|x(tk)|)
(2.16)

The time derivative of the Lyapunov function along the computed optimal trajectories

u∗1, . . . , u
∗
m for ∀τ ∈ [tk, tk+1) can be written as follows

V̇ (x(τ)) =
∂V (x(τ))

∂x
f(x(τ), u∗1(tk), . . . , u

∗
m(tk), w(τ)) (2.17)

Adding and subtracting the term
∂V (x(tk))

∂x
f(x(tk), u

∗
1(tk), . . . , u

∗
m(tk), 0) to/from the

above equation and considering Eq. 2.16, we have

V̇ (x(τ)) ≤ −α3(|x(tk)|) +
∂V (x(τ))

∂x
f(x(τ), u∗1(tk), . . . , u

∗
m(tk), w(τ))

− ∂V (x(tk))

∂x
f(x(tk), u

∗
1(tk), . . . , u

∗
m(tk), 0)

(2.18)

Due to the fact that the disturbance is bounded |w| ≤ θ and the Lipschitz properties

of Eq. 2.4, we can write

V̇ (x(τ)) ≤ −α3(|x(tk)|) + L′x|x(τ)− x(tk)|+ L′wθ (2.19)

Taking into account Eq. 2.3 and the continuity of x(t), the following bound can be

written for all τ ∈ [tk, tk+1)

|x(τ)− x(tk)| ≤ M∆. (2.20)
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Since x(tk) ∈ Ωρ/Ωρ̃, it can be concluded that x(tk) ∈ Ωρ/Ωρs . Thus, we can write

V̇ (x(τ)) ≤ −α3(α
−1
2 (ρs)) + L′xM∆ + L′wθ. (2.21)

If the condition of Eq. 2.13 is satisfied, then there exists εw > 0 such that the following

inequality holds for x(tk) ∈ Ωρ/Ωρ̃:

V̇ (x(t)) ≤ −εw/∆, ∀t = [tk, tk+1).

Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V (x(tk+1)) ≤ V (x(tk))− εw

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1)

(2.22)

for all x(tk) ∈ Ωρ/Ωρ̃. Using Eq. 2.22 recursively, it is proved that, if x(tk) ∈ Ωρ/Ωρ̃,

the state converges to Ωρ̃ in a finite number of sampling times without leaving the

stability region.

Part 3: We assume that the LEMPC of Eq. 2.5 operates in the second operation

mode. We prove that if x(tk) ∈ Ωρ, then V (x(tk+1)) ≤ V (x(tk)) and the system state

is ultimately bounded in an invariant set Ωρmin
. Following similar steps as in Part 2,

we can derive that the inequality of Eq. 2.22 hold for all x(tk) ∈ Ωρ/Ωρs . Using this

result recursively, it is proved that, if x(tk) ∈ Ωρ/Ωρs , the state converges to Ωρs in a

finite number of sampling times without leaving the stability region. Once the state

converges to Ωρs ⊆ Ωρmin
, it remains inside Ωρmin

for all times. This statement holds

because of the definition of ρmin. This proves that the closed-loop system state under

the LEMPC of Eq. 2.5 is ultimately bounded in Ωρmin
.

Remark 2.3. Note that the set Ωρ (i.e., V ≤ ρ) is an invariant set for the nominal
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closed-loop system and is also an invariant set for the closed-loop system subject to

bounded disturbances w (i.e., |w| ≤ θ) under piece-wise continuous control action

implementation when the conditions stated in Theorem 2.1 (as well as Theorem 2.2

presented in the next section) are satisfied. This can be interpreted as follows: V̇ is

negative everywhere in Ωρ but the origin when there are no disturbances and the con-

trol actions are updated continuously; furthermore, the further away from the origin

the more negative V̇ is. This implies that for sufficiently small disturbances (i.e., θ

sufficiently small) and sufficiently small sampling time (i.e., ∆ sufficiently small) V̇

of the uncertain closed-loop system will continue to be negative for all x ∈ Ωρ but in

a small ball around the origin (i.e., Ωρmin
).

Remark 2.4. Note that the term “ultimately bounded” for the state of a nonlinear

dynamic system (particularly of the closed-loop system in this chapter) means that

after a sufficiently large time, tq, the state of the closed-loop system enters a compact

(closed and bounded) set including the origin (i.e., Ωρmin
for the closed-loop system of

Eq. 2.1 under the LEMPC of Eq. 2.5) and stays within this set for all times t ≥ tq

(i.e., x(t) ∈ Ωρmin
for t ≥ tq).

Remark 2.5. Instead of requiring that the closed-loop system state settles to a steady-

state at the end of the prediction horizon as in [24], in the proposed design, the

LEMPC of Eq. 2.5 has two different operation modes. In the first operation mode,

the LEMPC optimizes the economic cost function within the region Ωρ̃. When the

proposed LEMPC is in the second operation mode, it drives the closed-loop system

state to the steady-state. The LEMPC of Eq. 2.5 also possesses a stability region

which can be explicitly characterized.

Remark 2.6. Note that in order to achieve optimal performance, in general, the pre-

diction horizon of the LEMPC of Eq. 2.5 should be long enough to cover the period
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in which the process operation should be optimized. However, long prediction horizon

may not be practical for a real-time implementation of an MPC algorithm (especially

when nonlinear systems with a large number of manipulated inputs are considered)

because of the high computational burden. For certain applications, we may overcome

this issue by driving part of the system states to certain economic optimal set-points

and operating the rest of the system states in a time-varying manner to further max-

imize the economic cost function. This implies that we operate part of the system

in the second operation mode and part of the system in the first operation mode si-

multaneously. Please see the example section for an application of this approach to a

chemical process example.

2.3 Lyapunov-based economic MPC with asynchr-

onous and delayed measurements

In this section, we consider the design of LEMPC for systems subject to asynchronous

and delayed measurements. Specifically, we assume that the state of the system of

Eq. 2.1, x(t), is available at asynchronous time instants {ta≥0} which is a random

increasing sequence and the interval between two consecutive time instants is not

fixed. We also assume that there are delays involved in the measurements. In order

to model delays in measurements, an auxiliary variable da is introduced to indicate

the delay corresponding to the measurement received at time ta, that is, at time ta,

the measurement x(ta − da) is received. In order to study the stability properties in

a deterministic framework, we assume that there exists an upper bound Tm on the

interval between two successive measurements (i.e., max
a
{ta+1 − ta} ≤ Tm) and an

upper bound D on the delays (i.e., da ≤ D). These assumptions are reasonable from
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a process control perspective. Because the delays are time-varying, it is possible that

at a time instant ta, the controllers may receive a measurement x(ta−da) which does

not provide new information (i.e., ta−da < ta−1−da−1) and the maximum amount of

time the system might operate in open-loop following ta is D + Tm − da. This upper

bound will be used in the formulation of LEMPC for systems subject to asynchronous

and delayed measurements. The reader may refer to [63] for more discussion on the

modeling of asynchronous and delayed measurements.

2.3.1 LEMPC implementation strategy

At each asynchronous sampling time, when a delayed measurement is received, we

propose to take advantage of the nominal system model of Eq. 2.1 and the manip-

ulated inputs that have been applied to the system to estimate the current system

state from the delayed measurement. Based on the estimate of the current system

state, an MPC optimization problem is solved in order to decide the optimal future

input trajectory that will be applied until the next new measurement is received.

Similar to previous section, we introduce an LEMPC design which maximizes a cost

function accounting for specific economic considerations. This LEMPC also has two

operation modes.

From the initial time t0 to t′, the LEMPC operates in the first operation mode.

In this operation mode, the proposed LEMPC maximizes an economics-based cost

function while maintaining the closed-loop system state in the stability region Ωρ.

In order to account for the asynchronous and delayed measurement as well as the

disturbance, we consider another region Ωρ̂ with ρ̂ < ρ. Specifically, when a delayed

measurement is received at a sampling time, the current system state is estimated.

If the estimated current state is in the region Ωρ̂, the LEMPC maximizes the cost
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function within the region Ωρ̂; if the estimated current state is in the region Ωρ/Ωρ̂,

the LEMPC first drives the system state to the region Ωρ̂ and then maximizes the cost

function within Ωρ̂. The relation between ρ and ρ̂ will be characterized in Eq. 2.29

in Theorem 2.2.

After time t′, the system operates in the second operation mode. In this operation

mode, the LEMPC calculates the inputs in a way that the Lyapunov function of the

system continuously decreases to steer the state of the system to a neighborhood of

the origin while taking into account asynchronous and delayed measurements.

The implementation strategy of the proposed LEMPC for systems subject to

asynchronous and delayed measurements can be summarized as follows:

1. At a sampling time ta, the controller receives the system state x(ta − da) from

the sensors and estimates the current system state, x̌(ta).

2. If ta < t′, go to Step 3. Else, go to Step 4.

3. If x̌(ta) ∈ Ωρ̂, go to Step 3.1. Else, go to Step 3.2.

3.1. The controller maximizes the economic cost function within Ωρ̂. Go to

Step 5.

3.2. The controller drives the system state to the region Ωρ̂. Go to Step 5.

4. The controller drives the system state to a small neighborhood of the origin.

5. Go to Step 1 (a ←− a + 1).

2.3.2 LEMPC formulation

At a sampling time ta, the MPC is evaluated to obtain the future input trajectories

based on the received system state value x(ta − da). Specifically, the optimization
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problem of the proposed LEMPC for systems subject to asynchronous and delayed

measurements at ta is as follows:

max
u1,...,um∈S(∆)

∫ ta+N∆

ta

L(x̌(τ), u1(τ), . . . , um(τ))dτ (2.23a)

s.t. ˙̌x(t) = f(x̌(t), u1(t), . . . , um(t), 0) (2.23b)

ui(t) = u∗i (t), i = 1, . . . , m, t ∈ [ta − da, ta) (2.23c)

ui(t) ∈ Ui, i = 1, . . . ,m, t ∈ [ta, ta + N∆) (2.23d)

x̌(ta − da) = x(ta − da) (2.23e)

˙̂x(t) = f(x̂(t), h1(x̂(ta + l∆)), . . . , hm(x̂(ta + l∆)), 0),

∀t ∈ [ta + l∆, ta + (l + 1)∆), l = 0, . . . , N − 1 (2.23f)

x̂(ta) = x̌(ta) (2.23g)

V (x̌(t)) ≤ ρ̂, ∀t ∈ [ta, ta + N∆), if ta ≤ t′ and V (x̌(tk)) ≤ ρ̂ (2.23h)

V (x̌(t)) ≤ V (x̂(t)), ∀t ∈ [ta, ta + NDa∆), if ta > t′ or ρ̂ < V (x̌(ta)) ≤ ρ

(2.23i)

where x̌ is the predicted trajectory of the system with control inputs calculated by this

LEMPC, u∗i (t) with i = 1, . . . , m denotes the actual inputs that have been applied

to the system, x(ta − da) is the received delayed measurement, x̂ is the predicted

trajectory of the system with the control inputs determined by h(x) implemented in

a sample-and-hold fashion, and NDa is the smallest integer that satisfies Tm+D−da ≤
NDa∆. The optimal solution to this optimization problem is denoted by ua,∗

i (t|ta),
i = 1, . . . ,m, which is defined for t ∈ [ta, ta + N∆).

31



There are two types of calculations in the optimization problem of Eq. 2.23. The

first type of calculation is to estimate the current state x̌(ta) based on the delayed

measurement x(ta−da) and input values have been applied to the system from ta−da

to ta (constraints of Eqs. 2.23b, 2.23c and 2.23e). The second type of calculation is

to evaluate the optimal input trajectory of ui (i = 1, . . . , m) based on x̌(ta) while

satisfying the input constraint of Eq. 2.23d and the stability constraints of Eqs. 2.23h

and 2.23i. Note that the length of the constraint NDa depends on the current delay

da, and thus, it may have different values at different time instants and has to be

updated before solving the optimization problem of Eq. 2.23.

The manipulated inputs of the LEMPC of Eq. 2.23 for systems subject to asyn-

chronous and delayed measurements are defined as follows:

uj(t) = ua,∗
j (t|ta), ∀t ∈ [ta, ta+i) (2.24)

for all ta such that ta − da > maxl<a tl − dl and for a given ta, the variable i denotes

the smallest integer that satisfies ta+i − da+i > ta − da and j = 1, . . . , m.

2.3.3 Stability analysis

In this subsection, we present the stability properties of the proposed LEMPC of

Eq. 2.23 in the presence of asynchronous and delayed measurements. In order to

proceed, we need the following proposition.

Proposition 2.3 (c.f. [60, 79]). Consider the nominal sampled trajectory x̂(t) of the

system of Eq. 2.1 in closed-loop for a controller h(x), which satisfies the condition of
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Eq. 2.2, obtained by solving recursively

˙̂x(t) = f(x̂(t), h1(x̂(tk)), . . . , hm(x̂(tk)), 0), t ∈ [tk, tk+1) (2.25)

where tk = t0 + k∆, k = 0, 1, . . .. Let ∆, εs > 0 and ρ > ρs > 0 satisfy

−α3

(
α−1

2 (ρs)
)

+ L′xM∆ ≤ −εs/∆. (2.26)

Then, if x̂(t0) ∈ Ωρ and ρmin < ρ where ρmin is defined in Eq. 2.14, the following

inequality holds

V (x̂(t)) ≤ V (x̂(tk)), ∀t ∈ [tk, tk+1), (2.27)

V (x̂(tk)) ≤ max{V (x̂(t0))− kεs, ρmin}. (2.28)

Proposition 2.3 ensures that if the nominal system controlled by the Lyapunov-

based controller h(x) implemented in a sample-and-hold fashion and with open-loop

state estimation starts in Ωρ, then it is ultimately bounded in Ωρmin
. Theorem 2.2

below provides sufficient conditions under which the LEMPC of Eq. 2.23 guarantees

that the closed-loop system state is always bounded in Ωρ and is ultimately bounded

in a small region containing the origin.

Theorem 2.2. Consider the system of Eq. 2.1 in closed-loop under the LEMPC

design of Eq. 2.23 based on a controller h(x) that satisfies the condition of Eq. 2.2.

Let εs > 0, ∆ > 0, ρ > ρ̂ > 0 and ρ > ρs > 0 satisfy the condition of Eq. 2.26 and

satisfy

ρ̂ ≤ ρ− fV (fW (N∆)) (2.29)
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and

−NRεs + fV (fW (ND∆)) + fV (fW (D)) < 0 (2.30)

where ND is the smallest integer satisfying ND∆ ≥ Tm + D and NR is the smallest

integer satisfying NR∆ ≥ Tm. If N ≥ ND, ρ̂ ≥ ρs, x(t0) ∈ Ωρ, d0 = 0, then

the closed-loop state x(t) of the system of Eq. 2.1 is always bounded in Ωρ and is

ultimately bounded in Ωρa ⊂ Ωρ where

ρa = ρmin + fV (fW (ND∆)) + fV (fW (D)). (2.31)

Proof 2.2. When x(t) is maintained in the stability region Ωρ, the feasibility of the

optimization problem of Eq. 2.23 can be proved following the same arguments as in

Part 1 of the proof of Theorem 2.1. In the remainder of this proof, we focus on

proving that x(t) is always bounded in Ωρ and is ultimately bounded in Ωρa . The

proof consists of two parts. In Part 1, we prove that x(t) is always maintained in Ωρ

in the first operation mode; and in Part 2, we prove that x(t) is ultimately bounded

in Ωρa in the second operation mode.

In this proof, we assume that x(ta−da) is received at ta and the next asynchronous

measurement containing new information is received at ta+i with ta+i = ta + Tm and

Tm = N∆. This corresponds to the worst case scenario from feedback control point of

view. When x(t) is proved to be bounded in Ωρ and ultimately bounded in Ωρa for this

worst case, the results are also guaranteed for the general case (i.e., ta+i ≤ ta + N∆).

Part 1: We assume that the LEMPC of Eq. 2.23 operates in the first operation

mode. We prove that if x̌(ta) ∈ Ωρ̂, then x(ta+i) ∈ Ωρ; and if x̌(ta) ∈ Ωρ/Ωρ̂, then

V (x(ta+i)) < V (x(ta)) and in finite steps, the state converges to Ωρ̂.

When x̌(ta) ∈ Ωρ̂, from the constraint of Eq. 2.23h, we obtain that x̌(ta+i) ∈
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Ωρ̂. When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply

Propositions 2.1 and 2.2 to obtain the following inequality:

V (x(ta+i)) ≤ V (x̌(ta+i)) + fV (fW (N∆)). (2.32)

Since V (x̌(ta+i)) ≤ ρ̂, if the condition of Eq. 2.29 is satisfied, we can conclude that

x(ta+i) ∈ Ωρ. (2.33)

When x̌(ta) ∈ Ωρ/Ωρ̂, from the condition of Eq. 2.23i, we can obtain that

V (x̌(t)) ≤ V (x̂(t)),∀t ∈ [ta, ta + NDa∆). (2.34)

By Proposition 2.3 and taking into account that ρ̂ > ρs, the following inequality can

be obtained

V (x̂(ta+i)) ≤ max{V (x̂(ta))−NDaεs, ρmin}. (2.35)

By Propositions 2.1 and 2.2, we can obtain the following inequalities

V (x̌(ta)) ≤ V (x(ta)) + fV (fW (da)). (2.36)

From the inequalities of Eqs. 2.32, 2.35 and 2.36, we can write that:

V (x(ta+i)) ≤ max{V (x(ta))−NDaεs, ρmin}+ fV (fW (da)) + fV (fW (ND∆)). (2.37)

Note that in the derivation of the inequality of Eq. 2.37, we have taken into account

that ND∆ ≥ Tm + D − da for all da.

In order to prove that the Lyapunov function is decreasing between ta and ta+i,
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the following inequality must hold

NDaεs > fV (fW (ND∆)) + fV (fW (da)) (2.38)

for all possible da ≤ D. Taking into account that fW (·) and fV (·) are strictly increas-

ing functions of their arguments, that NDa is a decreasing function of the delay da

and that if da = D then NDa = NR, if the condition of Eq. 2.30 is satisfied, then the

condition of Eq. 2.38 holds for all possible da and there exist εw > 0 such that the

following inequality holds

V (x(ta+i)) ≤ max{V (x(ta))− εw, ρa} (2.39)

which implies that if x(ta) ∈ Ωρ/Ωρ̂, then V (x(ta+i)) < V (x(ta)). This also implies

that the state converges to Ωρ̂ in a finite number of sampling times without leaving

the stability region.

Part 2: We assume that the LEMPC of Eq. 2.23 operates in the second operation

mode. We prove that x(t) is ultimately bounded in Ωρa . Following similar steps as in

Part 1, we can again derive the condition of Eq. 2.39. Using this condition recursively,

it it proved that, if x(t0) ∈ Ωρ, then the closed-loop trajectory of the system of Eq. 2.1

under the LEMPC of Eq. 2.23 stay in Ωρ and satisfy that

lim sup
t→∞

V (x(t)) ≤ ρa. (2.40)

This proves the results stated in Theorem 2.2.
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2.4 Application to a chemical process example

Consider a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where

an irreversible second-order exothermic reaction A → B takes place [86]. A is the

reactant and B is the product. The feed to the reactor consists of pure A at flow

rate F , temperature T0 and molar concentration CA0. Due to the non-isothermal

nature of the reactor, a jacket is used to remove/provide heat to the reactor. The

dynamic equations describing the behavior of the system, obtained through material

and energy balances under standard modeling assumptions, are given below:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A (2.41a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

σCp

k0e
−E
RT C2

A +
Q

σCpV
(2.41b)

where CA denotes the concentration of the reactant A, T denotes the temperature of

the reactor, Q denotes the rate of heat input/removal, V represents the volume of the

reactor, ∆H, k0, and E denote the enthalpy, pre-exponential constant and activation

energy of the reaction, respectively and Cp and σ denote the heat capacity and the

density of the fluid in the reactor, respectively. The values of the process parameters

used in the simulations are shown in Table 2.1. The process model of Eq. 2.41 is

numerically simulated using an explicit Euler integration method with integration

step hc = 10−4 hr.

The process model has one unstable steady state and one stable steady state in

the operating range of interest. The control objective is to regulate the process in a

region around the unstable steady-state (CAs, Ts) to maximize the production rate

of B. There are two manipulated inputs. One of the inputs is the concentration of A

in the inlet to the reactor, CA0, and the other manipulated input is the external heat
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Table 2.1: Parameter values

T0 = 300 K F = 5 m3

hr

V = 1.0 m3 E = 5× 104 kJ
kmol

k0 = 8.46× 106 1
hr

∆H = −1.15 ×
104

kJ
kmol

Cp = 0.231 kJ
kgK

R = 8.314 kJ
kmolK

σ = 1000 kg
m3 CAs = 2 kmol

m3

Ts = 400 K CA0s = 4 kmol
m3

Qs = 0 KJ
hr

input/removal, Q. The steady-state input values associated with the steady-state are

denoted by CA0s and Qs, respectively.

The process model of Eq. 2.41 belongs to the following class of nonlinear systems:

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(t)

where xT = [CA − CAs T − Ts] is the state, u1 = CA0 − CA0s and u2 = Q − Qs are

the inputs, f = [f1 f2]
T and gi = [gi1 gi2]

T (i = 1, 2) are vector functions. The inputs

are subject to constraints as follows: |u1| ≤ 3.5 kmol/m3 and |u2| ≤ 5× 105 KJ/hr.

w = [w1 w2]
T is the bounded disturbance vector (Gaussian white noise with variances

σ1 = 1 kmol/m3 and σ2 = 40 K) with |w1| ≤ 1 kmol/m3 and |w2| ≤ 40 K.

The economic measure that we consider in this example is as follows [86]:

L(x, u1, u2) =
1

tf

∫ tf

0

k0e
− E

RT (τ) C2
A(τ)dτ (2.42)

where tf = 1 hr is the final time of the simulation. This economic objective function

is to maximize the average production rate over process operation for tf = 1 hr. We

also consider that there is limitation on the amount of material which can be used
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over the period tf . Specifically, the control input trajectory of u1 should satisfy the

following constraint:

1

tf

∫ tf

0

u1(τ)dτ = 1 kmol/m3. (2.43)

This constraint means that the average amount of u1 during one period is fixed.

For the sake of simplicity and without loss of generality, we will refer to Eq. 2.43

as the integral constraint. It has been clarified in [86] (see also [54, 90, 99, 98])

that by periodic operation through switching between upper and lower bound the

average production rate can be improved owing to the second-order dependence of

the reaction rate on reactant concentration. In other words, since the amount of

reactant material over one period of operation is fixed and the reaction is of second-

order, to get the maximum reaction rate over one period, all of the material should

be fed at the beginning of the process operation period. Since this policy is not

practically implementable given the presence of constraints on CA0 value, periodic

operation is the best practical choice to maximize the average production rate over

one period subject to input constraints; please see simulations below.

In the first set of simulations, we assume that the state feedback information

is available at synchronous time instants while in the second set of simulations we

assume that the controller receives asynchronous and delayed measurements.

2.4.1 Synchronous measurement sampling

We will design an LEMPC following Eq. 2.5 to manipulate the two control inputs.

We assume that the full system state x is measured and sent to the LEMPC at

synchronous time instants tk = k∆, k = 0, 1, . . ., with ∆ = 0.01 hr = 36 sec. The

LEMPC horizon is N = 10. For the computation of the stability region, we consider a

quadratic Lyapunov function V (x) = xT Px with P = diag([796.17 0.5]). To estimate
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the stability region Ωρ, we evaluate V̇ by assuming that u1 is equally distributed over

tf (i.e., u1(τ) = 1, 0 ≤ τ ≤ tf ) and utilize feedback linearization for u2 subject to

input constraint umax
2 and bounded disturbance (|w1| ≤ 1 kmol/m3 and |w2| ≤ 40 K).

Since the LEMPC is evaluated at discrete-time instants during the closed-loop

simulation, the integral constraint is enforced as follows:

M−1∑
i=0

u1(ti) =
tf
∆

(2.44)

where M = 100.

To ensure that the integral constraint is satisfied through the period tf , at every

sampling time in which the LEMPC obtains the optimal control input trajectory, it

utilizes the previously computed inputs u1 to constrain the first step value of the

control input trajectory u1 at the current sampling time. Based on the cost function

formulation, for maximization purposes, it is expected that CA and T should be

increased which results in the fact that at the beginning of the closed-loop simulation

u1 should rise to its maximum value and after a while it will go down to its lowest

value to satisfy the integral constraint. We assume that the decrease of the Lyapunov

function starts from the beginning of the simulation (i.e., t′ = 0) for part of the system

state (i.e., temperature). To maximize the production rate, we pick a temperature

set-point near the boundary of the stability region (T = 430 K), considering the

constraints on the control input Q. Due to the fact that the first differential equation

(CA) in Eq 2.41 is input-to-state-stable (ISS) with respect to T , and the contractive

constraint of Eq. 2.45g (see Eq. 2.45) ensures that the temperature converges to the

set-point, the stability of the closed-loop system is guaranteed in the operating range

of interest. To this end, we define VT (tk) = (T (tk)− 430)2. The LEMPC formulation
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for the chemical process example in question has the following form:

max
u1,u2∈S(∆)

1

N∆

∫ tk+N

tk

[k0e
− E

RT (τ) C2
A(τ)]dτ (2.45a)

˙̃x(t) = f(x̃(t)) +
2∑

i=1

gi(x̃(t))ui(t) (2.45b)

u1(t) ∈ gζ , ∀ t ∈ [tk, tk+1) (2.45c)

x̃(tk) = x(tk) (2.45d)

x̃(t) ∈ Ωρ̃ (2.45e)

ui(t) ∈ Ui (2.45f)

dVT (tk)

dT
(f2(x(tk)) + g22(x(tk))u2(tk)) ≤ −γVT (tk) (2.45g)

where x(tk) is the measurement of the process state at sampling time tk, γ = 9.53

and the constraint of Eq. 2.45c implies that the first step value of u1 should be

chosen to satisfy the integral constraint where the explicit expression of gζ can be

computed based on Eq. 2.44 and the magnitude constraint on u1. Also, the constraint

of Eq. 2.45g enforces the Lyapunov function, based on the temperature, to decrease

from the beginning of the simulation. The simulations were carried out using Java

programming language in a Pentium 3.20 GHz computer. The optimization problems

were solved using the open source interior point optimizer Ipopt [97].

The purpose of the following set of simulations is to demonstrate that: I) the pro-

posed LEMPC design stabilizes the closed-loop system for different initial conditions;

II) the proposed LEMPC design maximizes the economic measure L(x, u1, u2); III)

the proposed LEMPC design achieves practical closed-loop stability under different
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initial conditions; and IV) the proposed LEMPC design affords a higher cost function

value compared to the steady-state operation. We consider two different scenarios in

terms of the existence of process disturbance.

Figures 2.1 and 2.2 depict the state and manipulated input profiles, respectively,

without process disturbances starting from the initial condition (2kmol
m3 , 440K). Fig-

ures 2.3 and 2.4 depict the state and manipulated input profiles, respectively, without

process disturbances starting from the initial condition (2kmol
m3 , 400K). These simu-

lations demonstrate that in the absence of disturbances the LEMPC of Eq. 2.45

drives the closed-loop system temperature at the desired steady-state, 430 K. Fig-

ures 2.5-2.8 show the corresponding state and manipulated input profiles starting

from the two initial conditions under bounded process disturbances (Gaussian white

noise with variances σ1 = 1 kmol/m3 and σ2 = 40 K) with |w1| ≤ 1 kmol/m3 and

|w2| ≤ 40 K. Figure 2.9 shows a possible realization of the process disturbance. As

expected, in all scenarios, u1 goes up to its allowable maximum value to increase

reactant concentration as much as possible early on (given the second-order reaction

rate) and after a while it drops to its minimum value to satisfy the integral constraint

( 1
tf

∫ tf
0

u1(τ)dτ = 1). On the other hand, the temperature rises as fast as possible

when the temperature initial condition is below 430 K to maximize the reaction rate,

and it decreases as slow as possible when the initial temperature is above 430 K to

maintain the maximum possible reaction rate while satisfying the stability constraint;

in both cases, the temperature finally settles at T = 430 K and the LEMPC design

of Eq. 2.45 achieves practical stability. Figure 2.10 shows Ωρ with ρ = 2500 and three

closed-loop system trajectories which start at (2kmol
m3 , 400K) (inside of Ωρ; solid line),

(2kmol
m3 , 440K) (inside of Ωρ; dotted line) and (1kmol

m3 , 500K) (outside of Ωρ; dashed

line), respectively. This set of simulations demonstrates that in this case it is possible

to achieve closed-loop stability even for initial conditions outside Ωρ, demonstrating
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Figure 2.1: State trajectories of the process under the LEMPC design of Eq. 2.45 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 440K) without disturbances.
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Figure 2.2: Manipulated input trajectories under the LEMPC design of Eq. 2.45 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 440K) without disturbances.

that in the present example the computed Ωρ estimate is a rather conservative one.

Also, we have carried out a set of simulations to confirm that the application of the

LEMPC design with the integral constraint on u1 improves the economic objective

function compared to the case that the system operates at a steady-state satisfying

the integral constraint. It should be mentioned that this comparison is performed

under the case that there is no process disturbance. This steady-state is computed

by assuming that the reactant material amount is equally distributed in the interval

[0, tf ]. To carry out this comparison, we have computed the total cost of each scenario

based on the index of the following form:

J =
1

tM

M∑
i=0

[k0e
− E

RT (ti) C2
A(ti)]
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Figure 2.3: State trajectories of the process under the LEMPC design of Eq. 2.45 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) without disturbances.
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Figure 2.4: Manipulated input trajectories under the LEMPC design of Eq. 2.45 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) without disturbances.
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Figure 2.5: State trajectories of the process under the LEMPC design of Eq. 2.45 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 440K) subject to disturbances.
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Figure 2.6: Manipulated input trajectories under the LEMPC design of Eq. 2.45 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 440K) subject to disturbances.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

C
A
(K

m
ol

/m
3 )

Time (hr)
0 0.2 0.4 0.6 0.8 1

400

410

420

430

440

T
(K

) 
   

   
   

 

Time (hr)

Figure 2.7: State trajectories of the process under the LEMPC design of Eq. 2.45 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) subject to disturbances.
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Figure 2.8: Manipulated input trajectories under the LEMPC design of Eq. 2.45 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) subject to disturbances.
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Figure 2.9: Disturbance realization for σ1 = 1 kmol/m3 and σ2 = 40 K with |w1| ≤
1 kmol/m3 and |w2| ≤ 40 K
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Figure 2.10: Estimation of Ωρ and three closed-loop system trajectories for syn-
chronous measurement case with disturbances.
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where t0 = 0 hr, tM = 1 hr and M = 100. To be consistent in comparison we set u1 to

a constant value over the simulation such that it satisfies the integral constraint while

letting u2 be computed by the controller. By comparing the cost function values, we

find that in the proposed LEMPC design via time-varying operation (starting from

(CA, T ) = (2kmol
m3 , 400K)), the cost function achieves a higher value (19299.47) com-

pared to the case of steady-state operation (17722.07) (i.e., equal in time distribution

of the reactant). Also, by starting from (CA, T ) = (2kmol
m3 , 440K), the cost function

achieves a higher value (19459.67) compared to the case of steady-state operation

(17852.85).

2.4.2 Asynchronous measurements with delay

For this set of simulations, it is assumed that the state measurements of the process are

available asynchronously at time instants {ta≥0} with an upper bound Tm = 6∆ on the

maximum interval between two successive asynchronous state measurements, where

∆ is the controller and sensor sampling time and is chosen to be ∆ = 0.01 hr = 36 sec.

To model the time sequence {ta≥0}, we use an upper bounded Poisson process. The

Poisson process is defined by the number of events per unit time W . The interval

between two successive concentration sampling times (events of the Poisson process)

is given by ∆a = min{−lnχ/W, Tm}, where χ is a random variable with uniform

probability distribution between 0 and 1. This generation ensures that max
a
{ta+1 −

ta} ≤ Tm. In this example, W is chosen to be W = 25. A gaussian random process

is used to generate the associated delay sequence {da≥0} with da ≤ D while D = 3∆.

Figure 2.11 shows the asynchronous time instants when measurements are available

and the corresponding delay size associated with each measurement.

The LEMPC formulation for the chemical process example in question subject to
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Figure 2.11: Asynchronous measurement sampling times and their associated delay.

asynchronous and delayed state measurements has the following form:

max
u1,u2∈S(∆)

1

N∆

∫ ta+N∆

ta

[k0e
− E

RT (τ) C2
A(τ)]dτ (2.46a)

˙̌x(t) = f(x̌(t)) +
2∑

i=1

gi(x̌(t))u∗i (t), ∀ t ∈ [ta − da, ta) (2.46b)

˙̌x(t) = f(x̌(t)) +
2∑

i=1

gi(x̌(t))ui(t), ∀ t ∈ [ta, ta + N∆) (2.46c)

u1(t) ∈ gζ , ∀ t ∈ [ta, ta + N∆) (2.46d)

x̌(ta − da) = x(ta − da) (2.46e)

x̌(t) ∈ Ωρ̂ (2.46f)

ui(t) ∈ Ui (2.46g)

VT (ta + (l + 1)∆) ≤ βVT (ta + l∆) l = 0, . . . , NDa (2.46h)

where x(ta) is the measurement of the process state at sampling time ta and β =

1/1.1 = 0.909. The constraint of Eq. 2.46h forces the Lyapunov function, based on

the temperature, to decrease for NDa sampling times.

Figures 2.12 and 2.13 show the state and manipulated input profiles, respectively,
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Figure 2.12: State trajectories of the process under the LEMPC design of Eq. 2.46 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 440K) subject to asynchronous and delayed
measurements and disturbances.

starting from the initial condition (2kmol
m3 , 440K) under bounded process disturbances

(the same to the ones used in the case of synchronous measurement sampling). Fig-

ures 2.14 and 2.15 show the corresponding state and manipulated input profiles, re-

spectively, starting from the initial condition (2kmol
m3 , 400K), respectively. From these

figures, we can see similar results as in the case of synchronous measurement sam-

pling, such as, u1 goes up to its allowable maximum value to increase the reactant

concentration as much as possible early on and the temperature rises as fast as possi-

ble when the temperature initial condition is below 430 K to maximize the reaction

rate and it decreases as slow as possible when the initial temperature is above 430 K

to maintain the maximum possible reaction rate. From these figures, we can also

see that the practical stability of the closed-loop system is ensured in the presence

of asynchronous and delayed measurements. This is because in the design of the

LEMPC of Eq. 2.46, asynchronous and delayed measurements are taken explicitly

into account. Similar to the synchronous measurement case, Figure 2.16 shows Ωρ

with ρ = 2500 and three closed-loop system trajectories which start at (2kmol
m3 , 400K)

(inside of Ωρ; solid line), (2kmol
m3 , 440K) (inside of Ωρ; dotted line) and (1kmol

m3 , 500K)

(outside of Ωρ; dashed line), respectively.

Finally, we have also carried out two sets of simulations in which: a) the integral
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Figure 2.13: Manipulated input trajectories under the LEMPC design of Eq. 2.46 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 440K) subject to asynchronous and delayed
measurements and disturbances.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

C
A
(K

m
ol

/m
3 )

Time (hr)
0 0.2 0.4 0.6 0.8 1

400

420

440

460

T
(K

) 
   

   
   

 

Time (hr)

Figure 2.14: State trajectories of the process under the LEMPC design of Eq. 2.46 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) subject to asynchronous and delayed
measurements and disturbances.
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Figure 2.15: Manipulated input trajectories under the LEMPC design of Eq. 2.46 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) subject to asynchronous and delayed
measurements and disturbances.
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Figure 2.16: Estimation of Ωρ and three closed-loop system trajectories for asyn-
chronous measurement case with disturbances.
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Figure 2.17: State trajectories of the process under the LEMPC design of Eq. 2.46 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) subject to asynchronous and delayed
measurements and disturbances under enforcing the integral constraint over a two-
hour period.
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Figure 2.18: Manipulated input trajectories under the LEMPC design of Eq. 2.46 for
initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) subject to asynchronous and delayed
measurements and disturbances under enforcing the integral constraint over a two-
hour period.

constraint is enforced over a time period of two hours, and b) the integral constraint

is enforced over two consecutive one-hour periods. Figures 2.17 and 2.18 depict the

state and input trajectories of the closed-loop system in case (a) and Figures 2.19

and 2.20 depict the state and input trajectories in case (b). These figures illustrate

that the periodic operation of the plant under the proposed LEMPC can be readily

achieved for different operating scenarios.
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Figure 2.19: State trajectories of the process under the LEMPC design of Eq. 2.46
for initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) subject to asynchronous and de-
layed measurements and disturbances under enforcing the integral constraint over two
consecutive one-hour periods.
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Figure 2.20: Manipulated input trajectories under the LEMPC design of Eq. 2.46
for initial condition (CA(0), T (0)) = (2kmol

m3 , 400K) subject to asynchronous and de-
layed measurements and disturbances under enforcing the integral constraint over two
consecutive one-hour periods.
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2.5 Conclusions

In this chapter, we developed LEMPC designs which are capable of optimizing closed-

loop performance with respect to general economic considerations for nonlinear sys-

tems. First, we considered nonlinear systems with synchronous measurement sam-

pling and uncertain variables, and designed an LEMPC via Lyapunov-based tech-

niques. The proposed LEMPC design has two different operation modes. The first

operation mode corresponds to the period in which the cost function should be op-

timized; and in this operation mode, the LEMPC maintains the closed-loop system

state within the stability region and optimizes the cost function to its maximum ex-

tent. The second operation mode corresponds to operation in which the system is

driven by the LEMPC to an appropriate steady-state. Subsequently, we extended the

results to nonlinear systems subject to asynchronous and delayed measurements and

uncertain variables. In both LEMPC designs, suitable constraints were incorporated

to guarantee that the closed-loop system state is always bounded in the stability re-

gion and is ultimately bounded in small regions containing the origin. The theoretical

results were illustrated through a chemical process example.
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Chapter 3

State Estimation-Based Economic

Model Predictive Control of

Nonlinear Systems

In this chapter, we focus on a class of nonlinear systems and design an estimator-

based economic model predictive control (EMPC) system. Working with the class of

full-state feedback linearizable nonlinear systems, we use a high-gain observer to es-

timate the nonlinear system state using output measurements and a Lyapunov-based

approach to design an EMPC system that uses the observer state estimates. We

prove, using singular perturbation arguments, that the closed-loop system is practi-

cally stable provided the observer gain is sufficiently large. We use a chemical process

example to demonstrate the ability of the state-estimation based EMPC to achieve

process time-varying operation that leads to a superior cost performance metric com-

pared to steady-state operation. In the example, the high-gain observer is used to

obtain estimates of the reactant concentration from temperature measurements; a
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meaningful case in process control practice.

3.1 Preliminaries

3.1.1 Notation

The notation | · | is used to denote the Euclidean norm of a vector. A continuous

function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing

and satisfies α(0) = 0. A continuous function β : [0, a) × [0,∞) → [0,∞) is said to

belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K, and

for each fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0

as s → ∞. The symbol Ωr is used to denote the set Ωr := {x ∈ Rnx : V (x) ≤ r}
where V is a sufficiently smooth, positive definite scalar function and r > 0, and the

operator ‘/’ denotes set subtraction, that is, A/B := {x ∈ Rnx : x ∈ A, x /∈ B}. The

notation Lk
fh(·) denotes the standard k-th order Lie derivative of a scalar function h(·)

with respect to the vector function f(·). The notation LgLfh(·) denotes the mixed Lie

derivative of a scalar function h(·), with respect to vector functions f(·) and g(·). The

symbol diag(v) denotes a matrix whose diagonal elements are the elements of vector v

and all the other elements are zeros. sat(·) denotes the standard saturation function.

In and 0n are the identity matrix and a vector of zeros of dimension n, respectively.

Also, the ball Bδ with radius δ > 0 is defined as Bδ = {x ∈ Rnx : |x| ≤ δ}.
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3.1.2 Class of Nonlinear Systems

We consider single-input single-output nonlinear systems described by the following

state-space model:

ẋ = f(x) + g(x)u

y = h(x)
(3.1)

where x ∈ Rnx denotes the vector of state variables of the system, x(t0) = x(0) = x0,

u ∈ R is the manipulated input and y ∈ R is the measured output. The manipulated

input is restricted to be in a nonempty convex set U ⊆ R, which is defined as U :=

{u ∈ R : |u| ≤ umax} where umax is the magnitude of the input constraint. We

assume that f , g and h are sufficiently smooth functions and that the origin is an

equilibrium point of the unforced nominal system (i.e., system of Eq. 3.1 with u(t) ≡
0) which implies that f(0) = 0. Without loss of generality, in this chapter we focus on

single input, single output systems; however, the proposed approach can be extended

to multi-input multi-output systems in a conceptually straightforward manner. We

assume that the output measurement y of the system is continuously available at all

times. We also assume that the system in Eq. 3.1 is full-state feedback linearizable.

Thus, the relative degree of the output with respect to the input is n. Assumption 3.1

below states this requirement.

Assumption 3.1. There exists a set of coordinates

z =




z1

z2

...

zn




= T (x) =




h(x)

Lfh(x)

...

Ln−1
f h(x)




(3.2)
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such that the system of Eq. 3.1 can be written as:

ż1 = z2

...

żn−1 = zn

żn = Ln
fh(T−1(z)) + LgL

n−1
f h(T−1(z))u

y = z1

where LgL
n−1
f h(x) 6= 0 for all x ∈ Rnx.

Using Assumption 3.1, the system of Eq. 3.1 can be rewritten in the following

compact form:

ż = Az + B[Ln
fh(T−1(z)) + LgL

n−1
f h(T−1(z))u]

y = Cz

where

A =




0n−1 In−1

0 0T
n−1


 , B =




0n−1

1


 , C =




1

0n−1




T

Remark 3.1. We note that Assumption 3.1 imposes certain practical restrictions on

the applicability of the method, however, this should be balanced with the nature of the

results achieved by the output feedback controller (please see Theorem 3.1 below) in

the sense that for a sufficiently large observer gain, the closed-loop system under the

output feedback controller approaches the closed-loop stability region and performance

of the state feedback controller (essentially a nonlinear separation-principle that is

achieved because of Assumption 3.1 and the use of a high-gain observer). This is

an assumption imposed in all previous works that use high-gain observers for state

estimation, starting from the early work of Khalil and co-workers [50]. With respect

58



to practical restrictions, our example demonstrates that the method is applicable to a

class of chemical reactor models. We note that the requirement of full state lineariz-

ability can be relaxed by allowing for inverse dynamics (case where the relative degree,

r, is smaller than the system dimension n; i.e., input/output linearizable systems)

at the expense of having an additional observer to estimate the state of the inverse

dynamics; please see [26] for a detailed development of this case.

3.1.3 Stabilizability assumption

We assume that there exists a state feedback controller u = k(x), which renders

the origin of the closed-loop system asymptotically stable while satisfying the input

constraints for all the states x inside a given stability region. Using converse Lyapunov

theorems [18, 59], this assumption implies that there exist class K functions αi(·), i =

1, 2, 3, 4 and a continuously differentiable Lyapunov function V (x) for the closed-loop

system, that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
(f(x) + g(x)k(x)) ≤ −α3(|x|)∣∣∣∣

∂V (x)

∂x

∣∣∣∣ ≤ α4(|x|)

k(x) ∈ U

(3.3)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of the origin. We denote the

region Ωρ ⊆ D as the stability region of the closed-loop system under the controller

k(x). Using the smoothness assumed for the f and g, and taking into account that

the manipulated input u is bounded, there exists a positive constant M such that

|f(x) + g(x)u| ≤ M (3.4)
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for all x ∈ Ωρ and u ∈ U . In addition, by the continuous differentiable property

of the Lyapunov function V (x) and the smoothness of f and g, there exist positive

constants Lx, Lu, Cx, Cg′ and Cg such that

|∂V

∂x
f(x)− ∂V

∂x
f(x′)| ≤ Lx|x− x′|

|∂V

∂x
g(x)− ∂V

∂x
g(x′)| ≤ Lu|x− x′|

|f(x)− f(x′)| ≤ Cx|x− x′|

|g(x)− g(x′)| ≤ Cg′|x− x′|

|∂V

∂x
g(x)| ≤ Cg

(3.5)

for all x, x′ ∈ Ωρ and u ∈ U .

3.1.4 State Estimation via High Gain Observer

The state estimation-based EMPC takes advantage of a high-gain observer ([50, 68]),

which obtains estimates of the output derivatives up to order n−1 and consequently,

provides estimates of the transformed system state z, to obtain the estimated state of

the system x̂ through the inverse transformation T−1(·). Proposition 3.1 below defines

the high-gain observer equations and establishes precise conditions under which the

combination of the high-gain observer and of the controller k(x) together with appro-

priate saturation functions to eliminate wrong estimates enforce asymptotic stability

of the origin in the closed-loop system for sufficiently large observer gain. The proof

of the proposition follows from the results in [26, 23].

Proposition 3.1. Consider the nonlinear system of Eq. 3.1 for which Assumption 3.1

holds. Also, assume that there exists a k(x) for which Eq. 3.3 holds and it enforces lo-

cal exponential stability of the origin in the closed-loop system. Consider the nonlinear
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system of Eq. 3.1 under the output feedback controller

u = k(x̂) (3.6)

where

x̂ = T−1(sat(ẑ)) (3.7)

and

˙̂z = Aẑ + L(y − Cẑ) (3.8)

with

L =

[
a1

ε

a2

ε2
. . .

an

εn

]T

,

and the parameters ai are chosen such that the roots of

sn + a1s
n−1 + . . . + an−1s + an = 0 (3.9)

are in the open left-half of the complex plane. Then given δ, there exists ε∗ such that

if ε ∈ (0, ε∗], |ẑ(0)| ≤ zm, x(0) ∈ Ωδ with zm being the maximum of the vector ẑ

for |ẑ| ≤ βz(δz, 0) where βz is a class KL function and δz = max{|T (x)|, x ∈ Ωδ};
the origin of the closed-loop system is asymptotically stable. This stability property

implies that given ε ∈ (0, ε∗] and some positive constant em > 0 there exists positive

real constant tb > 0 such that if x(0) ∈ Ωδ and |ẑ(0)| ≤ zm, then |x(t) − x̂(t)| ≤ em

for all t ≥ tb.

Remark 3.2. Note that in Proposition 3.1, saturation function, sat(·), is used to

eliminate the peaking phenomenon associated with the high-gain observer, see for

example [50]. Note also that it is considered that the estimated state x̂ has converged

to the actual state x, when the estimation error |x − x̂| is less or equal than a given
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bound em. The time needed to converge, is given by tb which is proportional to the

observer gain 1/ε. During this transient, the value of the Lyapunov function V (x) may

increase. Finally, we note that for nonlinear MPC designs, computational complexity

of the state estimation scheme is very critical. A high-gain observer, as adopted in

this chapter, can be solved very fast and it could be more suitable in the context of

output feedback control. Other state observers (e.g., moving horizon estimation) may

also be used to estimate the system state but the closed-loop stability for this case

needs to be studied carefully.

3.2 State Estimation-Based Economic MPC

In this section, we consider the design of an estimation-based Lyapunov-based EMPC

(LEMPC) for nonlinear systems (see also [38, 37].). We assume that the output

measurements are continuously available. Also, LEMPC is evaluated at synchronous

time instants {tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where t0 = 0 is the first time

that LEMPC is evaluated while the high gain observer has converged and ∆ is the

LEMPC sampling time.

3.2.1 Implementation strategy

The high gain observer of Eq. 3.8 receives output measurements (i.e., y) and provides

estimated system states (i.e., x̂) continuously. At each sampling time tk, the LEMPC

obtains the estimated system state x̂(tk) from the observer. Based on x̂(tk), the

LEMPC takes advantage of the nominal system model to predict the future evolution

of the system over a finite prediction horizon while maximizing a cost function that

accounts for specific economic considerations.
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The two-mode operation architecture in Chapter 2 (see also [34, 33, 32, 10]) is

adopted in the design of the LEMPC. Specifically, we assume that from the time

t0 up to a specific time t′ where without loss of generality t′ is assumed to be a

multiple of LEMPC sampling time, the LEMPC operates in the first operation mode

to maximize the economic cost function while maintaining the closed-loop system

state in the stability region Ωρ. In this operation mode, in order to account for the

high gain observer effect, we consider another region Ωρe with ρe < ρ. If the estimated

current state is in the region Ωρe , the LEMPC maximizes the cost function within

the region Ωρe ; if the estimated current state is in the region Ωρ/Ωρe , the LEMPC

first drives the system state to the region Ωρe and then maximizes the cost function

within Ωρe .

After time t′, the LEMPC operates in the second operation mode and calculates

the inputs in a way that the state of the closed-loop system is driven to a neighborhood

of the desired steady-state through the knowledge of the Lyapunov-based controller

k(x).

The above described implementation strategy of the proposed LEMPC can be

summarized as follows:

1. Based on the output measurements y(t), the high gain observer estimates con-

tinuously the system state x̂(t). The LEMPC gets an sample of the estimated

system state at tk from the observer.

2. If tk < t′, go to Step 3. Else, go to Step 4.

3. If x̂(tk) ∈ Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. The controller maximizes the economic cost function within Ωρe . Go to

Step 5.
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3.2. The controller drives the system state to the region Ωρe and then maximizes

the economic cost function within Ωρe . Go to Step 5.

4. The controller drives the system state to a small neighborhood of the origin.

5. Go to Step 1 (k ←− k + 1).

Remark 3.3. The two-mode operation in the design and implementation of the pro-

posed output feedback LEMPC is adopted in order to reconcile two objectives: 1)

time-varying operation (off steady-state operation) of the process that optimizes a

given economic cost function, ensuring boundedness for the closed-loop system state

within a well-defined stability region (mode 1), and 2) eventual convergence of the

closed-loop system state to an economically optimal steady-state (mode 2). We note

that it is not necessary to adopt a two-mode operation strategy and it is possible to op-

erate the process under mode 1 for arbitrary large period of time (i.e., t′ can be made

arbitrarily large). The operation in mode 2, where the state of the closed-loop system

state converges eventually to a steady-state (potentially economically optimal) is very

often dictated by practical considerations which require time-invariant operation at

steady-state to minimize wear and tear on the control actuators. Possible reasons for

picking t′ (i.e., duration of operation in mode 1) in practice may include acceptable

time to operate the process in time-varying fashion given actuator specifications and

economic considerations.

3.2.2 LEMPC formulation

The LEMPC is evaluated to obtain the future input trajectories based on estimated

state x̂(tk) provided by the high gain observer. Specifically, the optimization problem
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of the proposed LEMPC is as follows:

max
u∈S(∆)

∫ tk+N

tk

L(x̃(τ), u(τ))dτ (3.10a)

s.t. ˙̃x(τ) = f(x̃(τ)) + g(x̃(τ))u(τ) (3.10b)

u(τ) ∈ U, τ ∈ [tk, tk+N) (3.10c)

x̃(tk) = x̂(tk) (3.10d)

V (x̃(t)) ≤ ρe, ∀t ∈ [tk, tk+N), if tk ≤ t′ and V (x̂(tk)) ≤ ρe (3.10e)

LgV (x̂(tk))u(0) ≤ LgV (x̂(tk))k(x̂(tk)),

if tk > t′ or ρe < V (x̂(tk)) ≤ ρ (3.10f)

where x̃ is the predicted trajectory of the system with control inputs calculated by this

LEMPC and S(∆) is the family of piecewise continuous functions with period ∆ which

allows to obtain an optimization problem to be solved at each sampling time with

a finite number decision variables. The constraint of Eq. 3.10b is the system model

used to predict the future evolution of the system subject to the input constraint

of Eq. 3.10c. The constraint of Eq. 3.10e is associated with the operation mode 1

which restricts the predicted system state to be in the set Ωρe while the constraint

of Eq. 3.10f is associated with the operation mode 2 and the operation mode 1 when

the estimated system state is out of the predefined set Ωρe . This constraint makes

sure that the amount of reduction of the Lyapunov function value when the first step

of LEMPC input is applied is at least at the level achieved by applying k(x). The

optimal solution to this optimization problem is denoted by u∗(t|tk), which is defined

for t ∈ [tk, tk+N). The manipulated inputs of the LEMPC of Eq. 3.10 are defined as
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follows:

u(t) = u∗(t|tk), ∀t ∈ [tk, tk+1) (3.11)

3.3 Closed-loop Stability Analysis

To state our main closed-loop stability result, we need the following proposition.

Proposition 3.2 (c.f. [34]). Consider the system of Eq. 3.1 in closed-loop under the

LEMPC of Eq. 3.10 with state feedback (i.e, x̃(tk) = x(tk)) based on a controller k(·)
that satisfies the conditions of Eq. 3.3. Let εw > 0, ∆ > 0 and ρ > ρs > 0 satisfy the

following constraint:

−α3(α
−1
2 (ρs)) + LxM∆ ≤ −εw/∆. (3.12)

If x(0) ∈ Ωρ, then x(t) ∈ Ωρ, ∀t ≥ 0. Furthermore, there exists a class KL function

β and a class K function γ such that

|x(t)| ≤ β(|x(t∗)|, t− t∗) + γ(ρ∗) (3.13)

with ρ∗ = max{V (x(t + ∆)) : V (x(t)) ≤ ρs}, ∀x(t∗) ∈ Bδ ⊂ Ωρ and ∀t ≥ t∗ > t′

where t∗ is chosen such that x(t∗) ∈ Bδ.

Theorem 3.1 below provides sufficient conditions under which the state estimation-

based LEMPC of Eq. 3.10 with the high-gain observer of Eq. 3.8 guarantees that the

state of the closed-loop system of Eq. 3.1 is always bounded and is ultimately bounded

in a small region containing the origin. To state Theorem 3.1, we need the following

definitions:

ei =
1

εn−i
(y(i−1) − ẑi), i = 1, . . . , n, (3.14)

e = [e1 e2 . . . en]T (3.15)
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and

A∗ =




−a1 1 0 · · · 0 0

...
...

...
. . .

...
...

−an−1 0 0 · · · 0 1

−an 0 0 · · · 0 0




, b =




0

...

0

1




(3.16)

where y(i−1) is the (i−1)-th derivative of the output measurement y and ẑi is the i-th

component of ẑ.

Theorem 3.1. Consider the system of Eq. 3.1 in closed-loop with u computed by

the state estimation-based LEMPC of Eqs. 3.7, 3.8 and 3.10 based on a feedback

controller k(·) that satisfies the conditions of Eq. 3.3. Let Assumption 3.1, Eq. 3.12

and Eqs. 3.14-3.16 hold and choose the parameters ai (i = 1, . . . , n) such that the

roots of Eq. 3.9 are in the open left-half of the complex plane. Then there exist a

class KL function β, a class K function γ, a pair of positive real numbers (δx, dx),

0 < ρe < ρ, ε∗ > 0 and ∆∗ > 0 such that if max{|x(0)|, |e(0)|} ≤ δx, ε ∈ (0, ε∗],

∆ ∈ (0, ∆∗],

−α3(α
−1
1 (ρs)) + (M∆ + em)(Lx + Luu

max) < 0 (3.17)

and

ρe ≤ ρ− α4(α
−1
1 (ρ))M max{tb(ε), ∆} (3.18)

with tb defined in Proposition 3.1, then x(t) ∈ Ωρ ∀t ≥ 0. Furthermore, ∀t ≥ t∗ > t′,

the following bound holds:

|x(t)| ≤ β(|x(t∗)|, t− t∗) + γ(ρ∗) + dx (3.19)

Proof 3.1. When u = u∗ is obtained from the state estimation-based LEMPC of

Eqs. 3.7, 3.8 and 3.10, the closed-loop system takes the following singularly perturbed
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form:

ẋ = f(x) + g(x)u∗(x̂)

εė = A∗e + εbLn
fh(T−1(z)) + εbLgL

n−1
f h(T−1(z))u∗(x̂)

(3.20)

First, we compute the reduced-order slow and fast closed-loop subsystems related

to Eq. 3.20 and prove the closed-loop stability of the slow and fast subsystems.

Setting ε = 0 in Eq. 3.20, we obtain the corresponding slow subsystem as follows:

ẋ = f(x) + g(x)u∗(x̂) (3.21a)

A∗e = 0 (3.21b)

Taking into account the fact that A∗ is non-singular and e = [0 0 . . . 0]T is the unique

solution of Eq. 3.21b, we can obtain ẑi = y(i−1), i = 1, . . . , n and x(t) = x̂(t).

This means that the closed-loop slow subsystem is reduced to the one studied in

Proposition 3.2 under state feedback. According to Proposition 3.2, if x(0) ∈ Bδ ⊂
Ωρ, then x(t) ∈ Ωρ, ∀t ≥ 0 and ∀t ≥ t∗ > t′, the following bound holds:

|x(t)| ≤ β(|x(t∗)|, t− t∗) + γ(ρ∗) (3.22)

where ρ∗ and t∗ have been defined in Proposition 3.2.

Introducing the fast time scale τ̄ =
t

ε
and setting ε = 0, the closed-loop fast

subsystem can be represented as follows:

de

dτ̄
= A∗e (3.23)

Since A∗ is Hurwitz, the closed-loop fast subsystem is also stable. Moreover, there
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exist ke ≥ 1 and ae > 0 such that:

|e(τ̄)| ≤ ke|e(0)|e−aeτ̄ , ∀τ̄ ≥ 0. (3.24)

Next, we consider t ∈ (0, max{∆, tb}] and t ≥ max{∆, tb} separately and prove

that if conditions stated in Theorem 3.1 are satisfied, the boundedness of the state is

ensured. Note that tb decreases as ε decreases.

When x(0) ∈ Bδx ⊂ Ωρe ⊂ Ωρ, and δx < δ, considering the closed-loop system

state trajectory:

ẋ(t) = f(x(t)) + g(x(t))u∗(x̂(0)), ∀t ∈ (0, max{∆, tb}]

and using Eqs. 3.4 and 3.3, we can obtain that for all t ∈ (0, max{∆, tb}]:

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ

= V (x(0)) +

∫ t

0

∂V (x(τ))

∂x
ẋ(τ)dτ

≤ ρe + M max{∆, tb(ε)}α4(α
−1
1 (ρ))

(3.25)

Since tb decreases as ε decreases, there exist ∆1 and ε1 such that if ∆ ∈ (0, ∆1] and

ε ∈ (0, ε1], Eq. 3.18 holds and thus,

V (x(t)) < ρ, ∀t ∈ (0, max{∆, tb}]. (3.26)

For t ≥ max{∆, tb}, we have that |x(t)− x̂(t)| ≤ em (this follows from Proposition 3.1

and em decreases as ε decreases), and we can write the time derivative of the Lyapunov

function along the closed-loop system state of Eq. 3.1 under the state estimation-

based LEMPC of Eqs. 3.7, 3.8 and 3.10 for all t ∈ [tk, tk+1) (assuming without loss of
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generality that tk = max{∆, tb}) as follows

V̇ (x(t)) =
∂V (x(t))

∂x
(f(x(t)) + g(x(t))u∗(x̂(tk))) (3.27)

Adding and subtracting the term
∂V (x̂(tk))

∂x
(f(x̂(tk))+g(x(tk))u

∗(x̂(tk))) to/from the

above inequality and taking advantage of Eqs. 3.3 and 3.10f, we can obtain

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs)) +

∂V (x)

∂x
(f(x(t))− f(x̂(tk))

+u∗(x̂(tk))(g(x(t))− g(x̂(tk))))
(3.28)

Using the smoothness properties of V (·), f(·), g(·) and Eq. 3.5, we can obtain

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs)) + (Lx + Luu

max)|x(t)− x̂(tk)| (3.29)

By taking advantage of |x(t)−x̂(tk)| ≤ |x(t)−x(tk)|+|x(tk)−x̂(tk)| ≤ M∆+em (using

Eq. 3.4) and the fact that the estimation error is bounded by em for t ≥ max{∆, tb},
we have

V̇ (x(t)) ≤ −α3(α
−1
1 (ρs)) + (Lx + Luu

max)(M∆ + em) (3.30)

Picking ε2 and ∆2 such that ∀ε ∈ (0, ε2] and ∀∆ ∈ (0, ∆2], Eq. 3.17 is satisfied,

the closed-loop system state x(t) is bounded in Ωρ, ∀t ≥ max{∆, tb}. Finally, using

similar arguments to the proof of Theorem 1 in [16], we have that there exist class

KL function β, positive real numbers (δx, dx) (note that the existence of δx < δ such

that |x(0)| ≤ δx follows from the smoothness of V (x)), and 0 < ε∗ < min{ε1, ε2}
and 0 < ∆∗ < min{∆1, ∆2} such that if max{|x(0)|, |e(0)|} ≤ δx, ε ∈ (0, ε∗] and

∆ ∈ (0, ∆∗], then, the bound of Eq.3.19 holds for all t ≥ 0.

Remark 3.4. It needs to be clarified that under state feedback LEMPC, the closed-loop
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system state is always bounded in Ωρ for both mode 1 and mode 2 operation; however,

for mode 2 operation, after time t∗ the closed-loop system state enters the ball Bδ,

and the closed-loop system state can be bounded by Eq. 3.22. On the other hand, in

state estimation-based LEMPC, the closed-loop system state is always bounded in Ωρ,

if the initial system state belongs in Bδx ⊂ Ωρe ⊂ Ωρ.

Remark 3.5. In this chapter, we consider that there is no measurement noise in the

process output and assume that the full system model is available. We can consider

a smaller stability region, say Ωρ̃, which takes into account the effect of measurement

noise as well as a lower observer gain to deal better with measurement noise. Please

refer to Chapter 6 of [19] (see also [10]) for a detailed discussion on how to determine

the stability region Ωρ in the presence of measurement noise and to the example Sec-

tion for an evaluation of the closed-loop performance of the proposed output feedback

controller under measurement noise.

Remark 3.6. If the initial condition x(t0) (and the following x̂(tk) estimate) is out-

side of the stability region Ωρ, we can not take advantage of the stability properties

of the nonlinear controller k(x). However, since Ωρ is an estimate of the stability re-

gion, it is possible to achieve closed-loop stability under the proposed LEMPC design

for states outside of Ωρ. In the case that x(tk) is outside of Ωρ, the proposed LEMPC

mode 1 can be made feasible by removing the constraint of Eq. 3.10f at the expense of

losing closed-loop stability guarantees.

Remark 3.7. The major motivation for taking advantage of the nonlinear controller

k(x) arises from the need for formulating an a priori feasible economic MPC prob-

lem for a well-defined set of initial conditions. The control action of k(x) is always

a feasible candidate for the proposed LEMPC design (even though the LEMPC via

optimization is free to choose a different control action) and the LEMPC can take
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advantage of k(x) to characterize its own corresponding stability region. In addition,

the closed-loop system state is always bounded in the invariant stability region of k(x).

3.4 Application To A Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where

an irreversible, second-order, endothermic reaction A → B takes place, where A is

the reactant and B is the desired product. The feed to the reactor consists of pure

A at flow rate F , temperature T0 and molar concentration CA0. Due to the non-

isothermal nature of the reactor, a jacket is used to provide heat to the reactor. The

dynamic equations describing the behavior of the reactor, obtained through material

and energy balances under standard modeling assumptions, are given below:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A (3.31a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

σCp

k0e
−E
RT C2

A +
Qs

σCpV
(3.31b)

where CA denotes the concentration of the reactant A, T denotes the temperature of

the reactor, Qs denotes the steady-state rate of heat supply to the reactor, V repre-

sents the volume of the reactor, ∆H, k0, and E denote the enthalpy, pre-exponential

constant and activation energy of the reaction, respectively, and Cp and σ denote the

heat capacity and the density of the fluid in the reactor, respectively. The values of

the process parameters used in the simulations are shown in Table 3.1. The process

model of Eq. 3.31 is numerically simulated using an explicit Euler integration method

with integration step hc = 10−3 hr.

The process model has one stable steady-state in the operating range of interest.
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Table 3.1: Parameter values

T0 = 300 K F = 5 m3

hr

V = 1.0 m3 E = 5× 103 kJ
kmol

k0 = 13.93 1
hr

∆H = 1.15× 104 kJ
kmol

Cp = 0.231 kJ
kgK

R = 8.314 kJ
kmolK

σ = 1000 kg
m3 CAs = 2 kmol

m3

Ts = 350 K CA0s = 4 kmol
m3

Qs = 1.73× 105 KJ
hr

The control objective is to economically optimize the process in a region around the

stable steady-state (CAs, Ts) to maximize the average production rate of B through

manipulation of the concentration of A in the inlet to the reactor, CA0. The steady-

state input value associated with the steady-state point is denoted by CA0s. The

process model of Eq. 3.31 belongs to the following class of nonlinear systems:

ẋ(t) = f(x(t)) + g(x(t))u(t)

where xT = [x1 x2] = [CA − CAs T − Ts] is the state, u = CA0 − CA0s is the input,

f = [f1 f2]
T and gi = [gi1 gi2]

T (i = 1, 2) are vector functions. The input is subject to

constraint as follows: |u| ≤ 3.5kmol/m3. There is an economic measure considered

in this example as follows [86]:

L(x, u) =
1

tf

∫ tf

0

k0e
− E

RT (τ) C2
A(τ)dτ (3.32)

where tf = 1 hr is the time duration of the reactor operation. This economic objective

function highlights the maximization of the average production rate over process

operation for tf = 1 hr. We also consider that there is a limitation on the amount
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of reactant material which can be used over the operation period tf . The average

amount of the manipulated input trajectory u during one period of operation is fixed.

Specifically, u should satisfy the following constraint:

1

tf

∫ tf

0

u(τ)dτ = 1 kmol/m3. (3.33)

For the sake of simplicity, we will refer to Eq. 3.33 as the material constraint. It

should be emphasized that due to the second-order dependence of the reaction rate

on the reactant concentration, the production rate can be improved through switching

between upper and lower bounds of the manipulated input [86], as opposed to steady-

state operation via steady in time distribution of the reactant in the feed. In this

section we will design an estimation-based LEMPC to manipulate the CA0 subject

to the material constraint. In the first set of simulations, we assume that state

feedback information is available at synchronous time instants while in the second

set of simulations we take advantage of a high-gain observer to estimate the reactant

concentration from temperature measurements.

In terms of the Lyapunov-based controller, we use a proportional controller (P con-

troller) in the form u = −γ1x1 − γ2x2 subject to input constraints and the quadratic

Lyapunov function V (x) = xT Px where γ1 = 1.6, γ2 = 0.01, P = diag([110.11, 0.12])

and ρ = 430. It should be emphasized that Ωρ has been estimated through eval-

uation of V̇ when we apply the proportional controller. We assume that the full

system state x = [x1 x2]
T is measured and sent to the LEMPC at synchronous time

instants tk = k∆, k = 0, 1, . . ., with ∆ = 0.01 hr = 36 sec in the first set of

simulations while for output feedback LEMPC only temperature (x2) is available to

LEMPC and a high-gain observer is utilized to estimate the reactant concentration

from temperature measurements. Considering the material constraint which needs
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to be satisfied through one period of process operation, a decreasing LEMPC hori-

zon sequence N0, . . . , N99 where Ni = 100 − i and i = 0, . . . , 99 is utilized at the

different sampling times. At each sampling time tk, LEMPC with horizon Nk takes

into account the leftover amount of reactant material and adjusts its horizon to pre-

dict future system state up to time tf = 1 hr to maximize the average production

rate. Since the LEMPC is evaluated at discrete-time instants during the closed-loop

simulation, the material constraint is enforced as follows:

M−1∑
i=0

u(ti) =
tf
∆

(3.34)

where M = 100. As LEMPC proceeds at different sampling times, this constraint

is adjusted according to the optimal manipulated input at previous sampling times.

Specifically, the state feedback LEMPC formulation for the chemical process example

in question has the following form:

max
u∈S(∆)

1

Nk∆

∫ tk+Nk

tk

[k0e
− E

RT (τ) C2
A(τ)]dτ (3.35a)

˙̃x(t) = f(x̃(t)) + g(x̃(t))u(t) t ∈ [tk, tk+Nk
] (3.35b)

k+Nk−1∑

i=k

u(ti|tk) = ζk (3.35c)

x̃(tk) = x(tk) (3.35d)

V (x̃(t)) ≤ ρ t ∈ [tk, tk+Nk
] (3.35e)

u(t) ∈ U t ∈ [tk, tk+Nk
] (3.35f)

where x(tk) is the process state measurement at sampling time tk and the predicted
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system state along the LEMPC horizon is restricted in the invariant set Ωρ through

enforcement of the constraint of Eq. 3.35e subject to the manipulated input constraint

of Eq. 3.35f. The constraint of Eq. 3.35c implies that the optimal values of u along

the prediction horizon should be chosen to satisfy the material constraint where the

explicit expression of ζk can be computed based on Eq.3.34 and the optimal manipu-

lated input values prior to sampling time tk. In other words, this constraint indicates

the amount of the remaining reactant material at each sampling time. Thus, it en-

sures that the material constraint is enforced through one period of process operation.

In terms of the initial guess for solving the optimization problem of Eq. 3.35, at the

first sampling time we take advantage of the Lyapunov-based controller while for the

subsequent sampling times, a shifted version of the optimal solution of the previous

sampling time is utilized. The simulations were carried out using Java program-

ming language in a Pentium 3.20 GHz computer and the optimization problems were

solved using the open source interior point optimizer Ipopt [97]. The purpose of the

following set of simulations is to demonstrate that: I) the proposed LEMPC design

subject to state and output feedback restricts the system state in an invariant set; II)

the proposed LEMPC design maximizes the economic measure of Eq. 3.35a; and III)

the proposed LEMPC design achieves a higher objective function value compared to

steady-state operation with equal distribution in time of the reactant material. We

have also performed simulations for the case that the constraint of Eq. 3.35e is not

included in the LEMPC design of Eq. 3.35. In this case, the process state is not

constrained to be in a specific invariant set.

Figures 3.1-3.3 illustrate the process state profile in state space (temperature

T versus concentration CA) considering the stability region Ωρ, the time evolution

of process state and the manipulated input profile for the LEMPC formulation of

Eq. 3.35 with and without the state constraint of Eq. 3.35e, respectively. In both
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cases the initial process state is (1.3 kmol
m3 , 320 K). For both cases, the material

constraint is satisfied while in the unconstraint state case, there is more freedom to

compute the optimal input trajectory to maximize the average production rate. It

needs to be emphasized that the process state trajectory under the LEMPC design of

Eq. 3.35 subject to the constraint of Eq. 3.35e never leaves the invariant level set Ωρ

when this constraint is enforced. We have also compared the time-varying operation

through LEMPC of Eq. 3.35 to steady-state operation where the reactant material

is uniformly distributed in the feed to the reactor over the process operation time

(1 hr), from a closed-loop performance point of view. To carry out this comparison,

we have computed the total cost of each operating scenario based on an index of the

following form:

J =
1

tM

M∑
i=0

[k0e
− E

RT (ti) C2
A(ti)]

where t0 = 0 hr, tM = 1 hr and M = 100. To be consistent in comparison, both

of the simulations have been initialized from the steady-state point (2kmol
m3 , 350K).

We find that through time-varying LEMPC operation, there is approximately 7% im-

provement with respect to steady-state operation. Specifically, in the case of LEMPC

operation with ρ = 430 the cost is 13.48, in the case of LEMPC operation with ρ = ∞
(LEMPC of Eq. 3.35 without the state constraint of Eq. 3.35e) the cost is 13.55 and

in the case of steady-state operation the cost is 12.66.

We have also performed closed-loop simulation with the state estimation-based

LEMPC. For this set of simulation the high-gain observer parameters are ε = 0.01,

a1 = a2 = 1, ρe = 400 and zm = 1685; the high-gain observer is of the form of Eq. 3.8

with n = 2. In this case, the LEMPC formulation at each sampling time is initialized

by the estimated system state x̂(tk) while the output (temperature) measurement is

continuously available to the high-gain observer. To ensure that the actual system
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Figure 3.1: Ωρ and state trajectories of the process under the LEMPC design of
Eq. 3.35 with state feedback and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one
period of operation with (solid line) and without (dash-dotted line) the constraint of
Eq. 3.35e. The symbols ◦ and × denote the initial (t = 0 hr) and final (t = 1 hr)
state of these closed-loop system trajectories, respectively.
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Figure 3.2: State trajectories of the process under the LEMPC design of Eq. 3.35
with state feedback and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one period of
operation with (solid line) and without (dash-dotted line) the constraint of Eq. 3.35e.
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Figure 3.3: Manipulated input trajectory under the LEMPC design of Eq. 3.35 with
state feedback and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one period of
operation with (solid line) and without (dash-dotted line) the constraint of Eq. 3.35e.

state is restricted in Ωρ, we set ρe = 400. Figures 3.4-3.6 illustrate the process

state profile in state space (temperature T versus concentration CA) considering the

stability region Ωρ, the time evolution of process states and the manipulated input

profile for the LEMPC formulation of Eq. 3.35 using high-gain observer and with

the state constraint of Eq. 3.35e, respectively. Similar to the state feedback case,

the initial process state is (1.3 kmol
m3 , 320 K). Through LEMPC implementation, the

material constraint is satisfied while the closed-loop system state is restricted inside

the stability region Ωρ. The cost is 12.98 which is above the one for steady-state

operation (12.66).

Also, we performed a set of simulations to compare LEMPC with the Lyapunov-

based controller from an economic closed-loop performance point of view for operation

over two consecutive one hour periods. To be consistent in this comparison in the

sense that both the LEMPC and the Lyapunov-based controller use the same, avail-

able amount of reactant material, we start the simulation in both cases from the

same initial condition (2.44 kmol
m3 , 321.96 K), which corresponds to the steady-state

of the process when the available reactant material is uniformly distributed over

each period of operation. The objective of the Lyapunov-based controller is to keep

the system state at this steady-state, while the output feedback LEMPC leads to
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Figure 3.4: Ωρ and state trajectories of the process under state estimation-based
LEMPC and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one period of operation
subject to the constraint of Eq. 3.35e. The symbols ◦ and × denote the initial (t =
0 hr) and final (t = 1 hr) state of this closed-loop system trajectories, respectively.
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Figure 3.5: State trajectories of the process under state estimation-based LEMPC
and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one period of operation subject
to the constraint of Eq. 3.35e.
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Figure 3.6: Manipulated input trajectory under under state estimation-based LEMPC
and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one period of operation subject
to the constraint of Eq. 3.35e.

time-varying operation that optimizes directly the economic cost. The corresponding

economic costs for this two-hour operation are 26.50 for the LEMPC and 25.61 for

the Lyapunov-based controller.

Finally, we performed a set of simulations to highlight the effect of bounded mea-

surement noise. Figures 3.7-3.9 display the closed-loop system state and manipulated

input of the state-estimation-based LEMPC subject to bounded output (tempera-

ture) measurement noise whose absolute value is bounded by 1 K. As it can be seen

in Figures 3.7-3.9, the controller can tolerate the effect of measurement noise; in this

case, ρe was reduced to 370 to improve the robustness margin of the controller to

measurement noise. Economic closed-loop performance in this case is 12.95.

3.5 Conclusions

In this chapter, we designed an estimator-based EMPC for the class of full-state

feedback linearizable nonlinear systems. A high-gain observer is used to estimate

the nonlinear system state using output measurements and a Lyapunov-based ap-

proach is adopted to design the EMPC that uses the observer state estimates. It

was proved, using singular perturbation arguments, that the closed-loop system is
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Figure 3.7: Ωρ and state trajectories of the process under state estimation-based
LEMPC and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one period of operation
subject to the constraint of Eq. 3.35e and bounded measurement noise. The symbols
◦ and × denote the initial (t = 0 hr) and final (t = 1 hr) state of this closed-loop
system trajectories, respectively.
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Figure 3.8: State trajectories of the process under state estimation-based LEMPC
and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one period of operation subject
to the constraint of Eq. 3.35e and bounded measurement noise.
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Figure 3.9: Manipulated input trajectory under under state estimation-based LEMPC
and initial state (CA(0), T (0)) = (1.3kmol

m3 , 320K) for one period of operation subject
to the constraint of Eq. 3.35e and bounded measurement noise.

practically stable provided the observer gain is sufficiently large. A chemical process

example was used to demonstrate the ability of the state estimation-based economic

MPC to achieve time-varying process operation that leads to a superior cost perfor-

mance metric compared to steady-state operation using the same amount of reactant

material.
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Chapter 4

Algorithms for Improved

Finite-Time Performance of

Lyapunov-Based Economic Model

Predictive Control of Nonlinear

Systems

In Chapter 2, we presented a two-mode Lyapunov-based economic MPC (LEMPC)

design for nonlinear systems which is also capable of handling asynchronous and

delayed measurements and extended it in the context of distributed MPC [10]. De-

spite the above recent progress, at this point, there is limited work to ensure im-

provement of closed-loop performance through time-varying operation via economic

MPC with respect to operation under conventional MPC in the context of finite

time operation. An important recent work has established improved economic MPC
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performance over steady-state operation for infinite-time operation [1]. Motivated

by the lack of available methodologies to guarantee performance of economic MPC

for finite-time operation, this chapter presents two Lyapunov-based economic model

predictive control (LEMPC) algorithms for nonlinear systems which are capable of

optimizing closed-loop performance with respect to a general objective function that

may directly address economic considerations. The LEMPC algorithms proposed in

this chapter ensure improved performance, measured by the desired economic cost,

over conventional LMPC by solving auxiliary LMPC problems and incorporating ap-

propriate constraints in their formulations at various sampling times. The proposed

LEMPC schemes may dictate time-varying process operation, take advantage of a

predefined Lyapunov-based explicit feedback law to characterize their stability region

while maintaining the closed-loop system state in an invariant set subject to bounded

process disturbances. The LEMPC algorithms are demonstrated through a nonlinear

chemical process example and their superiority with respect to conventional LMPC

schemes is demonstrated for a broad set of initial conditions.

4.1 Preliminaries

4.1.1 Notation

The notation | · | is used to denote the Euclidean norm of a vector. A continuous

function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing

and satisfies α(0) = 0. The symbol Ωr is used to denote the set Ωr := {x ∈ Rnx :

V (x) ≤ r} where V is a continuously differentiable, positive definite scalar function

and r > 0, and the operator ‘/’ denotes set subtraction, that is, A/B := {x ∈ Rnx :

x ∈ A, x /∈ B}. The symbol diag(v) denotes a matrix whose diagonal elements are
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the elements of vector v and all the other elements are zeros.

4.1.2 Class of nonlinear systems

We consider a class of nonlinear systems which can be described by the following

state-space model:

ẋ(t) = f(x(t), u(t), w(t)) (4.1)

where x ∈ Rnx denotes the vector of state variables of the system, and u ∈ R

and w ∈ Rnw denote the control (manipulated) input and the disturbance vector,

respectively. The control input is restricted to be in a nonempty convex set U ⊆ R,

which is defined as U := {u ∈ R : |u| ≤ umax} where umax is the magnitude of

the input constraint. The disturbance w ∈ Rnw is bounded, i.e., w ∈ W where

W := {w ∈ Rnw s.t. |w| ≤ θ, θ > 0}. We assume that f is a locally Lipschitz vector

function and that the origin is an equilibrium point of the unforced nominal system

(i.e., the system of Eq. 4.1 with u(t) ≡ 0 and w(t) ≡ 0 for all times) which implies that

f(0, 0, 0) = 0. We assume that the state x of the system is sampled synchronously

and the time instants at which we have state measurements are indicated by the time

sequence {tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time and ∆ is

the sampling time.

4.1.3 Stabilizability assumption

We assume that there exists a Lyapunov-based controller u = h(x) which satisfies the

input constraints for all the states x inside a given stability region and makes the origin

of the closed-loop system asymptotically stable. Using converse Lyapunov theorems

[18, 59], this assumption implies that there exist class K functions αi(·), i = 1, 2, 3, 4
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and a continuously differentiable Lyapunov function V (x), that satisfy the following

inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|)∣∣∣∣
∂V (x)

∂x

∣∣∣∣ ≤ α4(|x|)

h(x) ∈ U, i = 1, . . . ,m

(4.2)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of the origin. We represent the

region Ωρ ⊆ D as the stability region of the closed-loop system under the controller

h(x). Using the Lipschitz property assumed for the f , and taking into account that

the manipulated input u and the disturbance vector w are bounded, there exists a

positive constant M such that

|f(x, u, w)| ≤ M (4.3)

for all x ∈ Ωρ, u ∈ U and w ∈ W . In addition, by the continuous differentiable

property of the Lyapunov function V (x) and the Lipschitz property assumed for the

vector field f , there exist positive constants Lx, Lw, L′x and L′w such that

|f(x, u, w)− f(x′, u, 0)| ≤ Lx |x− x′|+ Lw |w|∣∣∣∣
∂V (x)

∂x
f(x, u, w)− ∂V (x′)

∂x
f(x′, u, 0)

∣∣∣∣ ≤ L′x |x− x′|+ L′w |w|
(4.4)

for all x, x′ ∈ Ωρ, u ∈ U and w ∈ W .

4.1.4 Lyapunov-based MPC

The Lyapunov-based MPC (LMPC) design [73] inherits the closed-loop stability prop-

erties of the Lyapunov-based controller h(·) when it is applied in a sample and hold
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fashion. Specifically, using a conventional quadratic cost function

Ls(x(t), u(t)) = xT (t)Qx(t) + uT (t)Ru(t) (4.5)

and the LMPC at sampling time tk is formulated as follows

min
u∈S(∆)

∫ tk+N

tk

Ls(x̃(τ), u(τ))dτ (4.6a)

s.t. ˙̃x(τ) = f(x̃(τ), u(τ), 0) (4.6b)

u(τ) ∈ U, τ ∈ [tk, tk+N) (4.6c)

x̃(tk) = x(tk) (4.6d)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0) ≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0) (4.6e)

where x̃ is the predicted state trajectory of the system with control input calculated

by this LMPC, S(∆) is the set of piecewise constant functions with period ∆, N

is the finite prediction horizon and Q and R are positive definite weighting matri-

ces. Eq. 4.6b utilizes a nominal system model to predict the future evolution of

the system state with initialization by sampled state feedback at time tk (Eq. 4.6d)

and Eq. 4.6c denotes the constraint on the manipulated input. The Lyapunov-based

constraint of Eq. 4.6e guarantees that the amount of reduction in the Lyapunov func-

tion when we apply the input computed by the LMPC at tk is at least at the level

when the Lyapunov-based controller h(x(tk)) is applied in a sample and hold fashion

(i.e, through two consecutive sampling times tk and tk+1, the manipulated input is

fixed). Thus, the LMPC inherits the closed-stability properties of h(·). For a detailed

closed-loop stability analysis, please refer to [19].
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4.1.5 Lyapunov-based economic MPC

Lyapunov-based economic MPC (LEMPC) includes an economic cost function Le(x(t)

, u(t)) in its formulation which may directly address economic considerations and it

does not necessarily take its optimum value at the steady-state point correspond-

ing to the LMPC formulation of Eq. 4.6 (taken to be the origin in this chapter for

simplicity). This LEMPC characteristic requires reformulation of the conventional

LMPC to address possibly time-varying operation instead of steady-state operation

achieved by the LMPC of Eq. 4.6; however, the closed-loop stability region needs to

be precisely characterized. In Chapter 2, we proposed an LEMPC scheme through

taking advantage of the Lyapunov-based controller h(x). Specifically, the LEMPC

was formulated as follows:

max
u∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ))dτ (4.7a)

s.t. ˙̃x(τ) = f(x̃(τ), u(τ), 0) (4.7b)

u(τ) ∈ U, τ ∈ [tk, tk+N) (4.7c)

x̃(tk) = x(tk) (4.7d)

V (x̃(t)) ≤ ρ, ∀t ∈ [tk, tk+N) (4.7e)

Eq. 4.7b uses a nominal system model to predict the future evolution of the system

state initialized at x(tk) (Eq. 4.7d) and Eq. 4.7c denotes the constraint on the manipu-

lated input. The constraint of Eq. 4.7e maintains the predicted system state along the

prediction horizon in the invariant set Ωρ, and within this set, the LEMPC addresses

economic considerations by optimizing the economic cost function of Eq. 4.7a. Please
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refer to Chapter 2 for a detailed description and analysis of the LEMPC formulation

of Eq. 4.7.

4.2 LEMPC Algorithm I: Nominal Operation

In this section, we consider the design of Lyapunov-based economic MPC (LEMPC)

for nonlinear systems under nominal operation (i.e., w(t) ≡ 0). When there is an eco-

nomic cost function which directly addresses economic considerations of the system

(e.g., Le(x(t), u(t))), steady-state operation may not yield optimal economic closed-

loop performance. We propose a finite prediction horizon LEMPC formulation which

leads to improvement in economic closed-loop performance compared to a conven-

tional steady-state LMPC operation. The proposed scheme at the first stage solves

an auxiliary LMPC problem and then through different sampling times, it incorpo-

rates the solution of this LMPC problem to the LEMPC formulation (see also [36]).

Specifically, we define the manipulated input of the LMPC design of Eq. 4.6 which is

only evaluated at sampling time t0 as follows:

uLMPC(t) = u∗(t|t0), ∀t ∈ [t0, tN). (4.8)

For simplicity, we assume that ∆ =
tN − t0

N
. Subsequently, let the state trajectory

xLMPC(t) be defined as follows:

ẋLMPC(t) = f(xLMPC(t), uLMPC(t), 0), ∀t ∈ [t0, tN) (4.9)
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which is the closed-loop system state trajectory when the manipulated input obtained

through the LMPC of Eq. 4.6 is applied. Also, we define

uLMPC =

∫ tN

t0

uLMPC(τ)dτ (4.10)

as the overall amount of control action utilized by the LMPC of Eq. 4.6 over a finite

prediction horizon N . Subsequently, let us define

cLMPC =

∫ tN

t0

Le(xLMPC(τ), uLMPC(τ))dτ (4.11)

as the overall value of the corresponding economic cost function when we apply the

LMPC solution obtained at sampling time t0 over the period [t0, tN). The purpose

of the LEMPC design discussed below is to obtain an optimal manipulated input

trajectory which uses the same amount of control action obtained by the LMPC of

Eq. 4.6, while improving the economic cost function value over the process operation

period [t0, tN).

4.2.1 Implementation strategy

At time t0, first the LMPC obtains its manipulated input trajectory over [t0, tN)

based on state feedback x(t0). After computing the amount of control action and

economic cost over time [t0, tN) induced by the LMPC state and manipulated input

trajectories using Eqs. 4.10 and 4.11, respectively, the LEMPC obtains its optimal

manipulated input in a receding horizon manner. At each sampling time tk, based on

x(tk), the LEMPC takes advantage of the nominal system model to predict the future

state of the system over a finite prediction horizon while maximizing an economic cost

function. A schematic diagram of the proposed LEMPC design is depicted in Fig. 4.1.
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Figure 4.1: LEMPC architecture under nominal operation

The implementation strategy of the proposed LEMPC can be summarized as follows:

1. At time t0, an auxiliary LMPC optimization problem of Eq. 4.6 is solved based

on state measurement x(t0).

2. The amount of control action used by the LMPC and its corresponding economic

cost over [t0, tN) are computed using Eqs. 4.10 and 4.11, respectively.

3. The LEMPC receives state feedback x(tk) (k = 0, . . . , N − 1) and solves an

optimization problem with prediction horizon Nk = N − k.

4. The LEMPC sends the first step of its optimal solution to the control actuators.

5. Go to Step 3 (k ←− k + 1).

4.2.2 LEMPC formulation

The LEMPC is evaluated to obtain the future input trajectories based on state feed-

back x(tk) at sampling time tk. Specifically, the optimization problem of the proposed
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LEMPC under nominal operation is as follows:

max
u∈S(∆)

∫ tN

tk

Le(x̃(τ), u(τ))dτ (4.12a)

s.t. ˙̃x(τ) = f(x̃(τ), u(τ), 0) (4.12b)

u(τ) ∈ U, τ ∈ [tk, tN) (4.12c)

x̃(tk) = x(tk) (4.12d)

V (x̃(t)) ≤ ρ, ∀t ∈ [tk, tN) (4.12e)

∫ tN

tk

u(τ)dτ = uLMPC − uk (4.12f)

∫ tN

tk

Le(x̃(τ), u(τ))dτ ≥ cLMPC − ck (4.12g)

The constraint of Eq. 4.12b is the nominal system model used to predict the future

evolution of the system state subject to the input constraint of Eq. 4.12c. The con-

straint of Eq. 4.12e restricts the predicted system state to be in the set Ωρ. The

constraint of Eq. 4.12f ensures that the same amount of control action is used by

both the LMPC of Eq. 4.6 and the LEMPC of Eq. 4.12 in the time interval [t0, tN).

The constraint of Eq. 4.12g guarantees that the economic cost function value over

the time interval [t0, tN) is at least at the level achieved when we use the state and

manipulated input trajectory obtained through the LMPC of Eq. 4.6 considering

the optimal manipulated inputs obtained by the LEMPC at previous sampling times

(see also Eqs. 4.14-4.15 below). It should be mentioned that through this implemen-

tation strategy, LEMPC utilizes a decreasing sequence of finite prediction horizons

Nk = N − k (k = 0, . . . , N − 1) where N is the horizon of LMPC optimization
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problem which is solved at sampling time t0 and its solution is incorporated at the

LEMPC formulation. The optimal solution to this optimization problem is denoted

by u∗(t|tk), which is defined for t ∈ [tk, tN). The manipulated input of the LEMPC

of Eq. 4.12 is defined as follows:

uLEMPC(t) = u∗(t|tk), ∀t ∈ [tk, tN) (4.13)

Based on the LEMPC solution, we have

uk =

∫ tk

t0

uLEMPC(τ)dτ (4.14)

and

ck =

∫ tk

t0

Le(x̃(τ), uLEMPC(τ))dτ (4.15)

which are incorporated in the LEMPC of Eq. 4.12 to account for the optimal manip-

ulated input obtained at previous sampling times tj where j = 0, 1, . . . , k − 1.

Remark 4.1. It should be emphasized that both the LMPC of Eq. 4.6 and the LEMPC

of Eq. 4.12 use the same amount of control action through the enforcement of the

constraint of Eq. 4.12f; however, we can formulate the LEMPC in a slightly different

manner by replacing the equality constraint of Eq. 4.12f with an inequality to ensure

that the LEMPC uses less or equal amount of control action compared to the LMPC.

4.2.3 Closed-loop stability and performance

Theorem 4.1 below provides sufficient conditions under which the LEMPC of Eq. 4.12

guarantees that the state of the closed-loop system of Eq. 4.1 is always bounded in

an invariant set and it yields a closed-loop economic cost that is as good or superior
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to the one of the LMPC for finite-time operation over [t0, tN).

Theorem 4.1. Consider the system of Eq. 4.1 in closed-loop under the LEMPC of

Eq. 4.12 based on a controller h(x) that satisfies the conditions of Eq. 4.2. Let εw > 0,

∆ > 0 and ρ > ρs > 0 satisfy

−α3(α
−1
2 (ρs)) + L′xM∆ ≤ −εw/∆. (4.16)

If x(t0) ∈ Ωρ, then the state x(t) of the closed-loop system is bounded in Ωρ ∀t ∈
[t0, tN) and

∫ tN

t0

Le(xLEMPC(τ), uLEMPC(τ))dτ ≥
∫ tN

t0

Le(xLMPC(τ), uLMPC(τ))dτ (4.17)

Proof 4.1. For the optimization problem of the LMPC of Eq. 4.6, u(τ) = h(x̃(τ)), ∀τ
∈ [t0, tN) is a feasible solution. For the LEMPC optimization problem of Eq. 4.12, at

sampling time t0, the solution of the LMPC of Eq. 4.6 (uLMPC(τ), ∀τ ∈ [t0, tN)) is

also a feasible solution. This solution satisfies the input constraint of Eq. 4.7c through

the stabilizability assumption of Eq. 4.2 and the Lyapunov-based stability constraint

of Eq. 4.6e. At sampling time tk where k > 0, the last Nk−1 − 1 steps of the optimal

solution of the LEMPC at sampling time tk−1 (i.e., u∗(t|tk−1), ∀t ∈ [tk, tN)) is a

feasible solution to the LEMPC of Eq. 4.12 due to the fact that there is no process

disturbance. Furthermore, through the enforcement of the constraint of Eq. 4.12d,

the closed-loop system state is bounded within Ωρ.

To be consistent in the comparison from an economic closed-loop performance

point of view between the LMPC of Eq. 4.6 and the LEMPC of Eq. 4.12, we chose

a decreasing sequence of prediction horizons to ensure that both formulations have

been evaluated over time interval [t0, tN). Considering the constraint of Eq. 4.12g at
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sampling time tN−1, we can write

∫ tN

tN−1

Le(x̃(τ), u(τ))dτ ≥ cLMPC − cN−1 (4.18)

Replacing cLMPC and cN−1 using Eqs. 4.11, 4.15 in Eq. 4.18, we can obtain

∫ tN

t0

Le(xLEMPC(τ), uLEMPC(τ))dτ ≥
∫ tN

t0

Le(xLMPC(τ), uLMPC(τ))dτ (4.19)

where the state trajectory xLEMPC(t) is defined as follows:

ẋLEMPC(t) = f(xLEMPC(t), uLEMPC(t), 0), ∀t ∈ [t0, tN) (4.20)

Considering the constraint of Eq. 4.12f at sampling time tN−1, we can write

∫ tN

tN−1

u(τ)dτ = uLMPC − uN−1 (4.21)

Using Eqs. 4.10, 4.14 and 4.21, we can obtain

∫ tN

t0

uLEMPC(τ)dτ =

∫ tN

t0

uLMPCdτ (4.22)

Eqs. 4.19 and 4.22 highlight the fact that the LEMPC through time-varying operation

yields a closed-loop economic cost that is as good or superior to the one of the LMPC

for finite-time operation over [t0, tN) while both of them utilize the same amount of

control action over [t0, tN).

Remark 4.2. It should be emphasized that the LEMPC architecture proposed in Chap-

ter 2 employs a two-mode operation where at the first mode it deals with addressing

economic considerations by maintaining the system state in an invariant set and at
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the second mode it focuses on convergence to a small invariant set around a steady-

state by incorporating an appropriate Lyapunov-based constraint. Since in this chap-

ter, we focus on economic closed-loop performance, we only described the proposed

LEMPC designs in the context of mode one operation in Chapter 2 by evaluating both

the LMPC and the LEMPC over a finite-time operation interval [t0, tN). Note that,

depending on the application and certain specifications, the LEMPC of Eq. 4.12 can

operate at mode 2 after time tN to achieve practical closed-loop stability (i.e., ultimate

convergence of the closed-loop state to a small invariant set including the origin). We

deal with applying the LEMPC in the interval [tN , tf ) where tf denotes the final time

of LEMPC evaluation and the time the closed-loop system state enters a small in-

variant set around the origin. In a similar manner, first the LMPC is evaluated at

sampling time tN and the corresponding input and economic cost based constraints

(Eqs. 4.12f and 4.12g) are obtained and are incorporated in the formulation of the

LEMPC at mode 2 at subsequent sampling times tk where k ≥ N . In terms of the

LEMPC formulation at mode 2, it includes the Lyapunov-based constraint of Eq. 4.6e

to address closed-loop stability instead of the constraint of Eq. 4.12e which deals with

maintaining the closed-loop system state in an invariant set for economic optimiza-

tion purposes. Specifically, at sampling time tN the auxiliary LMPC problem is as

follows

min
u∈S(∆)

∫ tf

tN

Ls(x̃(τ), u(τ))dτ (4.23a)

s.t. ˙̃x(τ) = f(x̃(τ), u(τ), 0) (4.23b)

u(τ) ∈ U, τ ∈ [tN , tf ) (4.23c)

x̃(tN) = x(tN) (4.23d)
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∂V (x(tN))

∂x
f(x(tN), u(tN), 0) ≤ ∂V (x(tN))

∂x
f(x(tN), h(x(tN)), 0) (4.23e)

From the solution of this problem, we can obtain

uLMPC(t) = u∗(t|t0), ∀t ∈ [tN , tf ) (4.24)

ẋLMPC(t) = f(xLMPC(t), uLMPC(t), 0), ∀t ∈ [tN , tf ) (4.25)

uLMPC =

∫ tf

tN

uLMPC(τ)dτ (4.26)

and

cLMPC =

∫ tf

tN

Le(xLMPC(τ), uLMPC(τ))dτ (4.27)

Also, a decreasing sequence of finite prediction horizon Nk =
tf − tk

∆
is used in the

LEMPC formulation to make sure that at each sampling time tk ∈ [tN , tf ), the predic-

tion horizon considers the operation time interval [tk, tf ). Specifically, for a specific

sampling time tk where k ≥ N , the LEMPC at mode 2 is formulated as follows

max
u∈S(∆)

∫ tf

tk

Le(x̃(τ), u(τ))dτ (4.28a)

s.t. ˙̃x(τ) = f(x̃(τ), u(τ), 0) (4.28b)

u(τ) ∈ U, τ ∈ [tk, tf ) (4.28c)

x̃(tk) = x(tk) (4.28d)

∫ tf

tk

u(τ)dτ = uLMPC − uk (4.28e)

∫ tf

tk

Le(x̃(τ), u(τ))dτ ≥ cLMPC − ck (4.28f)
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∂V (x(tk))

∂x
f(x(tk), u(tk), 0) ≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0) (4.28g)

Eq. 4.28b uses the nominal system model to predict the future state of closed-loop

system initialized by x(tk) (Eq. 4.28d) and Eq. 4.28c denotes the constraint on the

manipulated input. The Lyapunov-based constraint of Eq. 4.28g guarantees that the

amount of reduction in the Lyapunov function value when we apply the input computed

by the LEMPC at mode 2 is at least at the level when the Lyapunov-based controller

h(x(tk)) is applied in a sample and hold fashion. The constraint of Eq. 4.28e ensures

that the same amount of control action is used by both the LMPC of Eq. 4.23 and

the LEMPC of Eq. 4.28 for operation in the time interval [tN , tf ) while the constraint

of Eq. 4.28f guarantees that the economic cost function value over the time interval

[tN , tf ) is at least at the level achieved when we apply the state and manipulated input

trajectories obtained through the LMPC of Eq. 4.23 considering the control actions

utilized by the LEMPC at previous sampling times. The optimal solution to this

optimization problem is denoted by u∗(t|tk), which is defined for t ∈ [tk, tf ). The

manipulated input of the LEMPC of Eq. 4.28 is defined as follows:

uLEMPC(t) = u∗(t|tk), ∀t ∈ [tk, tf ) (4.29)

Based on this manipulated input, the following parameters can be computed

uk =

∫ tk

tN

uLEMPC(τ)dτ (4.30)

and

ck =

∫ tk

tN

Le(x̃(τ), uLEMPC(τ))dτ (4.31)

which are incorporated in the LEMPC of Eq. 4.28 to account for the optimal manip-
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ulated input obtained at previous sampling times tj where j = N, N + 1, . . . , k − 1.

4.3 LEMPC Algorithm II: Operation Under Dis-

turbances

In this section, we consider the design of an LEMPC scheme for nonlinear systems

subject to bounded process disturbances (i.e., w(t) 6= 0). The proposed scheme at

each sampling time solves an auxiliary LMPC problem and then incorporates the

LMPC solution to the LEMPC formulation as constraints. The manipulated input

of the LMPC design of Eq. 4.6 from time tk to tN is defined as follows:

uLMPC(t) = u∗(t|tk), ∀t ∈ [tk, tN). (4.32)

Let the state trajectory xLMPC(t) be defined as follows:

ẋLMPC(t) = f(xLMPC(t), uLMPC(t), 0), ∀t ∈ [tk, tN) (4.33)

which is the system state trajectory when the manipulated input is obtained through

the LMPC of Eq. 4.6. Also, we define

uLMPC =

∫ tN

tk

uLMPC(τ)dτ (4.34)

as the amount of control action utilized by the LMPC of Eq. 4.6 over a finite prediction

horizon Nk where Nk = N − k and k = 0, 1, . . . , N − 1. Subsequently, let us define

c1
LMPC =

∫ tk+1

tk

Le(xLMPC(τ), uLMPC(τ))dτ (4.35)
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and

c2
LMPC =

∫ tN

tk

Le(xLMPC(τ), uLMPC(τ))dτ (4.36)

as the value of the economic cost function induced by the LMPC over the first predic-

tion step and the entire prediction horizon, respectively. The purpose of the LEMPC

design is to obtain an optimal manipulated input trajectory which uses the same

amount of control action as the LMPC of Eq. 4.6 at each sampling time while it en-

sures that at each sampling time tk, it achieves a better economic cost value compared

to the LMPC over the operation periods [tk, tk+1) and [tk, tN), respectively.

4.3.1 Implementation strategy

The proposed control scheme solves an auxiliary LMPC optimization problem of

Eq. 4.6 at each sampling time tk. After computing the amount of control action over

the time interval [tk, tN) and the economic cost function values over time intervals

[tk, tk+1) and [tk, tN) using the LMPC state and manipulated input trajectories of

Eqs. 4.34-4.36, respectively, the LEMPC obtains its optimal manipulated input tra-

jectory in a receding horizon manner. Specifically, at each sampling time tk, using

x(tk), the LEMPC takes advantage of the nominal system model to predict the future

state of the system over a finite prediction horizon while maximizing a cost function

that addresses specific economic considerations and maintaining the closed-loop sys-

tem state in the stability region Ωρ. In order to account for the bounded process

disturbance effect, we consider another region Ωρe with ρe < ρ. If the state measure-

ment x(tk) is in the region Ωρe , the LEMPC maximizes the cost function within the

region Ωρe ; if the state measurement is in the region Ωρ/Ωρe , the LEMPC first drives

the system state to the region Ωρe and then maximizes the cost function within Ωρe .

A schematic diagram of the proposed LEMPC design is depicted in Fig. 4.2.
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Figure 4.2: LEMPC architecture subject to disturbances

Specifically, the implementation strategy of the proposed LEMPC can be summa-

rized as follows:

1. At time tk with tk ∈ [t0, tN), an auxiliary LMPC optimization problem of Eq. 4.6

is solved based on state measurement x(tk) for t ∈ [tk, tN).

2. The amount of control action used by the LMPC and its corresponding economic

cost are computed using Eqs. 4.34-4.36.

3. The LEMPC receives x(tk) and solves its optimization problem with prediction

horizon N − k.

4. If x(tk) ∈ Ωρe , go to Step 4.1. Else, go to Step 4.2.

4.1. The controller maximizes the economic cost function within Ωρe . Go to

Step 5.

4.2. The controller drives the system state to the region Ωρe and then maximizes

the economic cost function within Ωρe . Go to Step 5.
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5. Go to Step 1 (k ←− k + 1).

4.3.2 LEMPC formulation

The optimization problem of the proposed LEMPC at sampling time tk is as follows:

max
u∈S(∆)

∫ tN

tk

Le(x̃(τ), u(τ))dτ (4.37a)

s.t. ˙̃x(τ) = f(x̃(τ), u(τ), 0) (4.37b)

u(τ) ∈ U, τ ∈ [tk, tN) (4.37c)

x̃(tk) = x(tk) (4.37d)

V (x̃(t)) ≤ ρe, ∀t ∈ [tk, tN),

if V (x(tk)) ≤ ρe (4.37e)

∫ tN

tk

u(τ)dτ = uLMPC (4.37f)

∫ tk+1

tk

Le(x(τ), u(τ))dτ ≥ c1
LMPC (4.37g)

∫ tN

tk

Le(x(τ), u(τ))dτ ≥ c2
LMPC (4.37h)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0) ≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0),

if ρe < V (x(tk)) ≤ ρ (4.37i)
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The constraint of Eq. 4.37b is the system model used to predict the future evolution

of the system state subject to the input constraint of Eq. 4.37c. The constraint of

Eq. 4.37e restricts the predicted system state to be in the set Ωρe . The constraint of

Eq. 4.37i guarantees that the reduction rate of the Lyapunov function value when the

first step of the LEMPC input is applied is at least at the level achieved by applying

the Lyapunov-based controller h(x) when it is applied in a sample and hold fashion

and ρe < V (x(tk)) ≤ ρ. The constraint of Eq. 4.37f makes sure that the same amount

of control action is used by both the LMPC of Eq. 4.6 and the LEMPC of Eq. 4.37

while the constraints of Eqs. 4.37g-4.37h guarantee that the economic cost function

value over the time intervals [tk, tk+1) and [tk, tN) is at least at the level achieved

when we apply the state and manipulated input trajectories obtained through the

LMPC of Eq. 4.6 over the time intervals [tk, tk+1) and [tk, tN), respectively. It should

be mentioned that a decreasing sequence of finite prediction horizons Nk = N − k

where k = 0, . . . , N − 1 is incorporated in the LMPC and LEMPC formulations at

sampling time tk ∈ [t0, tN). The optimal solution to this optimization problem is

denoted by u∗(t|tk) and is defined for t ∈ [tk, tN). The manipulated input of the

LEMPC of Eq. 4.37 is defined as follows:

uLEMPC(t) = u∗(t|tk), ∀t ∈ [tk, tN) (4.38)

Remark 4.3. The main difference of the proposed LEMPC algorithms of Eqs. 4.12

and 4.37 arises from the existence of bounded process disturbance. The LEMPC of

Eq. 4.12 takes only advantage of the solution of the auxiliary LMPC problem at time

t0 through a decreasing sequence of finite prediction horizons, while the LEMPC of

Eq. 4.37, utilizes the solution of the LMPC at each sampling time tk.
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4.3.3 Closed-loop stability and performance

Corollary 4.1 below provides sufficient conditions under which the LEMPC of Eq. 4.37

guarantees that the state of the closed-loop system of Eq. 4.1 is always bounded in

Ωρ and at each sampling time the LEMPC yields a closed-loop economic cost that is

as good or superior to the one of the LMPC over the interval [tk, tk+1).

Corollary 4.1. Consider the system of Eq. 4.1 in closed-loop under the LEMPC

design of Eq. 4.37 based on a controller h(x) that satisfies the conditions of Eq. 4.2.

Let εw > 0, ∆ > 0, ρ > ρe > 0 and ρ > ρs > 0 satisfy

ρe ≤ ρ− fV (fW (∆)) (4.39)

and

−α3(α
−1
2 (ρs)) + L′xM∆ + L′wθ ≤ −εw/∆. (4.40)

If x(t0) ∈ Ωρ and ρs ≤ ρe, then the state x(t) of the closed-loop system is bounded in

Ωρ for ∀t ∈ [t0, tN) and at each sampling time tk

∫ tk+1

tk

Le(xLEMPC(τ), uLEMPC(τ))dτ ≥
∫ tk+1

tk

Le(xLMPC(τ), uLMPC(τ))dτ (4.41)

Proof 4.2. Since the proof of this corollary follows similar arguments to the one of

the proof of Theorem 4.1, we provide a sketch of the proof. From a feasibility point of

view, at sampling time tk, the LMPC solution uLMPC(τ), ∀τ ∈ [tk, tk+N ] is a feasible

solution for the LEMPC of Eq. 4.37. For a detailed proof regarding boundedness

of the closed-loop system state, please refer to Chapter 2. Through enforcing the

constraints of Eqs. 4.37g and 4.37h at each sampling time tk, the LEMPC of Eq. 4.37

ensures that it obtains an input trajectory that optimizes the economic cost function
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over the first step and the entire prediction horizon, respectively, while, both the

LMPC and LEMPC designs use the same amount of control action over the entire

prediction horizon by enforcing the constraint of Eq. 4.37f at each sampling time.

4.4 Application To A Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where

an irreversible, second-order, endothermic reaction A → B takes place, where A is

the reactant and B is the desired product. The feed to the reactor consists of pure

A at flow rate F , temperature T0 and molar concentration CA0. Due to the non-

isothermal nature of the reactor, a jacket is used to provide heat to the reactor. The

dynamic equations describing the behavior of the reactor, obtained through material

and energy balances under standard modeling assumptions, are given below:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A (4.42a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

σCp

k0e
−E
RT C2

A +
Q

σCpV
(4.42b)

where CA denotes the concentration of the reactant A, T denotes the temperature

of the reactor, Q denotes the rate of heat supply to the reactor, V represents the

volume of the reactor, ∆H, k0 and E denote the enthalpy, pre-exponential constant

and activation energy of the reaction, respectively, and Cp and σ denote the heat

capacity and the density of the fluid in the reactor, respectively. The values of the

process parameters used in the simulations are shown in Table 4.1. The process model

of Eq. 4.42 is numerically simulated using an explicit Euler integration method with

integration step hc = 10−4 hr.

106



Table 4.1: Parameter values

T0 = 300 K F = 5 m3

hr

V = 1.0 m3 E = 5× 103 kJ
kmol

k0 = 13.93 1
hr

∆H = 1.15× 104 kJ
kmol

Cp = 0.231 kJ
kgK

R = 8.314 kJ
kmolK

σ = 1000 kg
m3 CAs = 2 kmol

m3

Ts = 350 K CA0s = 4 kmol
m3

Q = 1.73× 105 KJ
hr

The process model has one stable steady-state in the operating range of interest.

The control objective is to optimize the process operation in a region around the

stable steady-state (CAs, Ts) to maximize the average production rate of B through

manipulation of the concentration of A in the inlet to the reactor, CA0. The steady-

state input value associated with the steady-state point is denoted by CA0s. The

process model of Eq. 4.42 belongs to the following class of nonlinear systems:

ẋ(t) = f(x(t)) + g(x(t))u(t)

where xT = [x1 x2] = [CA−CAs T −Ts] is the state, u = CA0−CA0s is the input, and

f = [f1 f2]
T and g = [g1 g2]

T are vector functions. The input is subject to constraints

as follows: |u| ≤ 3.5kmol/m3. The economic measure considered in this example is

as follows [86]:

Le(x, u) =
1

tN

∫ tN

0

k0e
− E

RT (τ) C2
A(τ)dτ (4.43)

where tN = 1 hr is the time duration of the reactor operation. This economic objective

function highlights the maximization of the average production rate over process

operation for tN = 1 hr (of course, different, yet finite, values of tN can be chosen.).

According to the proposed LEMPC schemes, under mode one operation, auxiliary
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LMPC problems are solved to obtain constraints on the amount of reactant material

(control action) which can be used by the LEMPC control schemes. For the sake of

simplicity, we will refer to these type of constraint as the material constraint. We

consider both nominal and subject to bounded disturbance operations.

In terms of the Lyapunov-based controller, we use a proportional controller (P

controller) in the form u = −γ1x1−γ2x2 subject to input constraints and the quadratic

Lyapunov function V (x) = xT Px where γ1 = 1.6, γ2 = 0.01, P = diag([110.11 0.12])

and ρ = 430. It should be emphasized that Ωρ has been estimated through evaluation

of V̇ when we apply the proportional controller. We assume that the full system

state x = [x1 x2]
T is measured and sent to the LEMPC at synchronous time instants

tk = k∆, k = 0, 1, . . ., with ∆ = 0.01 hr = 36 sec.

4.4.1 Nominal operation

An LMPC optimization problem which is only solved at sampling time t0 = 0 is

formulated with prediction horizon N = 100 (tN = 1 hr) and weighting matrix

Q = diag([1 0.01]) and R = 1. Figures 4.3-4.5 display the closed-loop state and ma-

nipulated input profiles for the LMPC of Eq. 4.6 which leads to steady-state operation.

The LMPC scheme steers the closed-loop system state to the steady-state. However,

this steady-state operation may not be optimal from the standpoint of the cost of

Eq. 4.43. It should be emphasized that this LMPC formulation is only evaluated at

time t0.

Considering the material constraint which needs to be satisfied through each pe-

riod of process operation, a decreasing LEMPC horizon sequence N0, . . . , N99 where

Ni = 100− i and i = 0, . . . , 99 is utilized at the different sampling times. Figures 4.6-

4.8 represent the closed-loop state and the manipulated input for the LEMPC of
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Figure 4.3: Ωρ and state trajectories of the process under the LMPC design of Eq. 4.6
with initial state (CA(0), T (0)) = (1kmol

m3 , 320K) for one period of operation. The
symbols ◦ and × denote the initial (t = 0 hr) and final (t = 1 hr) state of these
closed-loop system trajectories, respectively.
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Figure 4.4: State trajectories of the process under the LMPC design of Eq. 4.6 with
initial state (CA(0), T (0)) = (1kmol

m3 , 320K) for one period of operation.

Eq. 4.12 which dictates a time-varying operation to achieve optimal economic closed-

loop performance. Table 4.2 shows the evaluation of LEMPC and LMPC from an

economic cost function point of view for 30 different initial states within Ωρ as illus-

trated in Figure 4.9. To carry out this comparison, we have computed the total cost

of each operating scenario based on an index of the following form:

J =
1

t100

100∑
i=0

[k0e
− E

RT (ti) C2
A(ti)] (4.44)
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Figure 4.5: Manipulated input trajectory under the LMPC design of Eq. 4.6 with
initial state (CA(0), T (0)) = (1kmol

m3 , 320K) for one period of operation.
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Figure 4.6: Ωρ and state trajectories of the process under the LEMPC design of
Eq. 4.12 with initial state (CA(0), T (0)) = (1kmol

m3 , 320K) for one period of operation.
The symbols ◦ and × denote the initial (t = 0 hr) and final (t = 1 hr) state of these
closed-loop system trajectories, respectively.

where t0 = 0 hr and t100 = 1 hr. It has been confirmed by these sets of simu-

lations that the LEMPC through time-varying process operation improves the eco-

nomic closed-loop performance by 10 % on average against steady-state operation by

LMPC.

4.4.2 Operation subject to bounded process disturbances

Considering the material constraint which needs to be satisfied through each period of

process operation, a decreasing finite prediction horizon sequence N0, . . . , N99 where
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Figure 4.7: State trajectories of the process under the LEMPC design of Eq. 4.12
with initial state (CA(0), T (0)) = (1kmol

m3 , 320K) for one period of operation.
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Figure 4.8: Manipulated input trajectory under the LEMPC design of Eq. 4.12 with
initial state (CA(0), T (0)) = (1kmol

m3 , 320K) for one period of operation.

Table 4.2: Economic closed-loop performance comparison

LEMPC LMPC LEMPC LMPC LEMPC LMPC
1 10.43 9.53 11 11.31 10.35 21 10.85 9.94
2 11.35 10.37 12 10.60 9.67 22 10.55 9.57
3 11.12 10.17 13 10.57 9.67 23 10.46 9.56
4 10.53 9.58 14 10.99 10.05 24 11.61 10.61
5 10.94 10 15 10.59 9.64 25 10.47 9.55
6 10.36 9.44 16 10.64 9.68 26 11.53 10.54
7 11.55 10.59 17 11.50 10.53 27 10.52 9.56
8 10.70 9.73 18 10.79 9.81 28 11.06 10.11
9 11.09 10.14 19 10.68 9.77 29 11.48 10.49
10 10.84 9.94 20 10.61 9.71 30 11.36 10.40
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Figure 4.9: 30 different initial states for evaluation of LEMPC and LMPC schemes
from an economic cost function point of view.

Ni = 100 − i and i = 0, . . . , 99 is utilized at different sampling times. At each

sampling time tk, after solving an auxiliary LMPC prolem with prediction horizon

Nk, the LEMPC with prediction horizon Nk takes into account the control action and

cost constraints and adjusts its finite prediction horizon to predict the future system

evolution up to time tN = 1 hr to maximize the cost of Eq. 4.44. Since the LEMPC

is evaluated at discrete-time instants during the closed-loop simulation, the material

constraint is enforced as follows:

Nk−1∑
i=0

uLEMPC(ti) =

Nk−1∑
i=0

uLMPC(ti) (4.45)

The above equation indicates that the same amount of reactant material at each sam-

pling time is used to solve both the LMPC and the LEMPC optimization problems.

For the purpose of simulations, we set ρe = 400. Also, bounded process disturbances

have been added to the right hand side of the dynamic model of Eq. 4.42 which have

been sampled from a gaussian distribution. The absolute values of process distur-
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Figure 4.10: Ωρ and state trajectories of the process under the LEMPC design of
Eq. 4.37 with initial state (CA(0), T (0)) = (1kmol

m3 , 320K) for one period of operation
subject to bounded process disturbance. The symbols ◦ and × denote the initial (t =
0 hr) and final (t = 1 hr) state of these closed-loop system trajectories, respectively.

bances are bounded by 2 and 50 for the first and the second equation, respectively.

Specifically, the LMPC formulation of Eq. 4.6 at sampling time tk for the chemical

process example is first solved. Having the solution of the LMPC at sampling time tk,

the LEMPC of Eq. 4.37 is then solved. Figures 4.10-4.12 display the closed-loop sys-

tem state and the manipulated input with initial state (CA(0), T (0)) = (1kmol
m3 , 320K)

for one period of operation subject to bounded process disturbances. Through time-

varying operation, LEMPC achieves 15.12 in economic cost function of Eq. 4.44 while

the LMPC yields 13.91.

4.5 Conclusions

This chapter focused on the design of LEMPC algorithms for a class of nonlinear

systems which are capable of optimizing closed-loop performance with respect to a

general objective function that may directly address economic considerations. Under
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Figure 4.11: State trajectories of the process under the LEMPC design of Eq. 4.37
with initial state (CA(0), T (0)) = (1kmol

m3 , 320K) for one period of operation subject
to bounded process disturbance.
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Figure 4.12: Manipulated input trajectory under the LEMPC design of Eq. 4.37 with
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m3 , 320K) for one period of operation subject to
bounded process disturbance.
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appropriate stabilizability assumptions, the proposed LEMPC designs very often dic-

tate time-varying operation to optimize an economic (typically non-quadratic) cost

function in contrast to conventional LMPC designs which typically include a quadratic

objective function and regulate a process at a steady-state. The proposed LEMPC

algorithms took advantage of the solution of auxiliary LMPC problems at different

sampling times to incorporate appropriate economic cost and control action-based

constraints in the LEMPC formulations and ensure improved performance, measured

by the desired economic cost, with respect to conventional LMPC. A chemical process

example was used to demonstrate the proposed LEMPC algorithms.
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Chapter 5

Handling Communication

Disruptions in Distributed Model

Predictive Control

In this chapter, we consider distributed MPC (DMPC) of nonlinear systems subject

to communication disruptions between the distributed controllers. Specifically, we

focus on the design of DMPC architectures that take explicitly into account com-

munication channel noise and data losses between the distributed controllers. In the

proposed DMPC architecture, one of the distributed controllers is responsible for

ensuring closed-loop stability while the rest of the distributed controllers communi-

cate and cooperate with the stabilizing controller to further improve the closed-loop

performance. The communication between the distributed controllers is prone to

communication noise and data losses. We employ a specific channel model to con-

sider a number of realistic data transmission scenarios. In order to determine if the

data transmitted through the communication channel is reliable or not, feasibility
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problems are incorporated in the DMPC architecture and based on the result of

these feasibility problems, the transmitted information is accepted or rejected by the

stabilizing MPC. In order to ensure the stability of the closed-loop system under com-

munication disruptions, each model predictive controller utilizes a stability constraint

which is based on a suitable Lyapunov-based controller. The proposed DMPC system

possesses an explicit characterization of the stability region of the closed-loop system

and guarantees that the closed-loop system is ultimately bounded in an invariant set

which contains the origin. The theoretical results are illustrated using a nonlinear

chemical process example.

5.1 Preliminaries

5.1.1 Notation

The operator | · | is used to denote the Euclidean norm of a vector. A continuous

function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing

and satisfies α(0) = 0. The symbol Ωr is used to denote the set Ωr := {x ∈ Rnx :

V (x) ≤ r} where V is a scalar positive definite, continuous differentiable function

and V (0) = 0, and the operator ‘\’ denotes set subtraction, that is, A\B := {x ∈
Rnx : x ∈ A, x /∈ B}. The symbol diag(v) denotes a square diagonal matrix whose

diagonal elements are the elements of vector v.
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5.1.2 Problem formulation

We consider nonlinear process systems described by the following state-space model:

ẋ(t) = f(x(t)) +
m∑

i=1

gi(x(t))ui(t) + k(x(t))w(t) (5.1)

where x(t) ∈ Rnx denotes the vector of process state variables, ui(t) ∈ Rmui , i =

1, . . . , m, are m sets of control (manipulated) inputs and w(t) ∈ Rnw denotes the

vector of disturbance variables which is assumed to be bounded, that is, w(t) ∈ W

where

W := {w ∈ Rnw : |w| ≤ θw, θw > 0}.

The m sets of inputs are restricted to be in m nonempty convex sets Ui ⊆ Rmui ,

i = 1, . . . ,m, which are defined as follows:

Ui := {ui ∈ Rmui : |ui| ≤ umax
i }, i = 1, . . . , m

where umax
i , i = 1, . . . , m, are the magnitudes of the input constraints. We will design

m distributed controllers to compute the m sets of control inputs, respectively.

We assume that f , gi, i = 1, . . . ,m, and k are locally Lipschitz vector, matrix and

matrix functions, respectively and that the origin is an equilibrium of the unforced

nominal system (i.e., system of Eq. 5.1 with ui(t) = 0, i = 1, . . . , m, w(t) = 0 for

all t) which implies that f(0) = 0. We also assume that the state x of the system

is sampled synchronously and the time instants at which we have state measurement

samplings are indicated by the time sequence {tk≥0} with tk = t0 + k∆, k = 0, 1, . . .

where t0 is the initial time and ∆ is the sampling time.
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−θ θ0

Figure 5.1: Bounded communication channel noise.

5.1.3 Model of the communication channel

We consider data losses and noise in communication between the m distributed con-

trollers. For a given input r ∈ Rmu to the communication channel, the output r̃ ∈ Rmu

is characterized as

r̃ = lr + n (5.2)

where l is a Bernoulli random variable with parameter α and n ∈ Rmu is a vector

whose elements are white gaussian noise with zero mean and the same variance σ2.

The random variable l is used to model data losses in the communication channel. The

white noise, n, is used to model channel noise, quantization error or any other error to

the transmitted signal, and it is independent of the data losses in a probabilistic sense.

If the receiver determines that a successful transmission is made, then l = 1, otherwise

l = 0. Furthermore, in order to obtain deterministic stability results, we assume that,

when a successful transmission is made, the noise, n, attached to the input signal,

r, is bounded by θ (that is |n| ≤ θ) as shown in Fig. 5.1. Both assumptions are

meaningful from a practical standpoint; please see the example in Section 5.4. We

assume that the capacity of the communication channel [20] is high enough so that

we can transmit data through it with a high rate.

Remark 5.1. Note that there are a variety of approaches to detect whether data loss
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has happened at the receiver side of a communication channel. One common approach

is to measure the power of the received signal and compare it with a pre-configured

signal transmission power level. If the power of the received signal is much smaller

than the pre-configured signal transmission power level, then data loss is declared; and

if the power of the received signal is close to the pre-configured signal transmission

power level, then transmission is assumed to be successful.

5.1.4 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller h(x) which renders the

origin of the nominal closed-loop system asymptotically stable with u1 = h(x) and

ui = 0 (i = 2, . . . ,m), while satisfying the input constraint on u1 for all the states x

inside a given stability region. We note that this assumption is essentially equivalent

to the assumption that the process is stabilizable or that the pair (A,B) in the case

of linear systems is stabilizable. Using converse Lyapunov theorems [71, 59, 18],

this assumption implies that there exist functions αi(·), i = 1, 2, 3, 4 of class K and

a continuously differentiable Lyapunov function V (x) for the nominal closed-loop

system, that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
(f(x) + g1(x)h(x)) ≤ −α3(|x|)

|∂V (x)

∂x
| ≤ α4(|x|)

h(x) ∈ U1

(5.3)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of the origin. We denote the

region Ωρ as the stability region of the closed-loop system under the control inputs

u1 = h(x) and ui = 0 (i = 2, . . . , m). By continuity, the local Lipschitz property
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assumed for the functions f(x), gi(x) where i = 1, . . . , m and k(x) and the fact that

the manipulated inputs ui belong to the convex sets Ui, it can be concluded that

there exists a positive constant M such that

|f(x(t)) +
m∑

i=1

gi(x(t))ui(t) + k(x(t))w(t)| ≤ M (5.4)

for all x ∈ Ωρ, ui ∈ Ui and w ∈ W . In addition, by the continuous differentiable

property of the Lyapunov function V and the Lipschitz property assumed for the

functions f(x), gi(x) and k(x), there exist positive constants Lx, Lui, and Lw such

that

|∂V (x)

∂x
f(x)− ∂V (x′)

∂x
f(x′)| ≤ Lx|x− x′|

|∂V (x)

∂x
gi(x)− ∂V (x′)

∂x
gi(x

′)| ≤ Lui|x− x′|, i = 1, . . . , m

|∂V (x)

∂x
k(x)| ≤ Lw

(5.5)

for all x, x′ ∈ Ωρ, ui ∈ Ui and w ∈ W . These constants will be employed in the proof

of the stability of the closed-loop system (Theorem 5.1 in Section 5.3).

Remark 5.2. Note that while there are currently no general methods for construct-

ing Lyapunov functions for general nonlinear systems, for broad classes of nonlinear

systems arising in the context of chemical process control applications, quadratic Lya-

punov functions are widely used and provide very good estimates of closed-loop stability

regions; please see example in Section 5.4.

5.2 DMPC with communication disruptions

In our previous work [61], a DMPC architecture with flawless communication between

controllers was introduced. In practice, however, there is communication disruption

including channel noise and data loss between distributed controllers. The objective of
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Figure 5.2: Distributed LMPC control architecture (F means solving a feasibility
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this chapter (see also [41, 40]) is to propose a DMPC framework which deals with com-

munication disruptions while maintaining closed-loop stability and improving closed-

loop performance. In the sequel, we design m LMPCs to calculate the m sets of

control inputs, respectively, and refer to the controller calculate ui (i = 1, . . . , m) as

LMPC i. In the proposed methodology, LMPC 1 is responsible for the stability of

the closed-loop while the rest of LMPCs (i.e., LMPC 2 to LMPC m) communicate

and cooperate with LMPC 1 to improve the closed-loop performance. The proposed

DMPC design inherits the closed-loop stability from the Lyapunov-based controller

h(·). A schematic diagram of the proposed DMPC design for systems subject to

communication disruptions between distributed controllers is depicted in Fig. 5.2.

We propose to use the following implementation strategy:

1. All LMPCs receive the sensor measurements x(tk) at sampling time tk.

2. For i = 2, . . . , m

2.1. LMPC i evaluates the optimal input trajectory of ui based on x(tk) and
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sends the first step input values of ui to its corresponding actuators.

2.2. LMPC i sends the entire optimal input trajectory of ui to LMPC 1 through

a communication channel.

3. LMPC 1 solves a feasibility problem for each input trajectory it received to

determine if the trajectory should be accepted or rejected.

5. LMPC 1 evaluates the future input trajectory of u1 based on x(tk) and the

results of the feasibility problems for the trajectories it received from LMPC i

with i = 2, . . . , m.

6. LMPC 1 sends the first step input value of u1 to its corresponding actuators.

In the sequel, we describe the design of LMPC j (j = 2, . . . , m) and its corre-

sponding feasibility problem and the design of LMPC 1.

Upon receiving the sensor measurement x(tk), LMPC j obtains its optimal input

trajectory by solving the following optimization problem:

min
uj∈S(∆)

∫ N∆

0

[x̃j(τ)T Qcx̃
j(τ) +

m∑
i=1

uT
i (τ)Rciui(τ)]dτ (5.6a)

˙̃xj(τ) = f(x̃j(τ)) +
m∑

i=1

gi(x̃
j(τ))ui(τ) (5.6b)

u1(τ) = h(x̃j(q∆)), ∀ τ ∈ [q∆, (q + 1)∆) (5.6c)

ui(τ) = 0, ∀ 2 ≤ i ≤ m & i 6= j (5.6d)

x̃j(0) = x(tk) (5.6e)

uj(τ) ∈ Uj (5.6f)
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∂V (x(tk))

∂x
gj(x(tk))uj(0) ≤ 0 (5.6g)

where S(∆) is the family of piece-wise constant functions with sampling period ∆,

Qc and Rci (i = 1, . . . ,m) are positive definite weight matrices that define the cost,

q = 0, ..., N − 1, x(tk) is the state measurement obtained at tk, x̃j is the predicted

trajectory of the nominal system for the input trajectory computed by the LMPC j,

and N is the prediction horizon. We note that in order to simplify the notation,

∂V (x(tk))
∂x

is used to denote ∂V (x(t))
∂x

|t=tk . In the prediction of the future evolution of

the system by LMPC j, it is assumed that LMPC 1 applies the explicit Lyapunov-

based controller h(·) while the rest of the controllers apply zero. While this LMPC

formulation intends to improve the closed-loop performance, Eq. 5.6g ensures that

the implemented control action contributes to further decrease of the value of the

derivative of the Lyapunov function.

Let u∗j(τ |tk) denote the optimal solution of the optimization problem of Eq. 5.6.

LMPC j sends the first step value of u∗j(τ |tk) to its actuators and transmits the whole

optimal trajectory through the communication channel to LMPC 1. LMPC 1 receives

a corrupted version of u∗j(τ |tk) which can be formulated as:

ũj(τ |tk) = lu∗j(τ |tk) + n

If data losses occur during the transmission of the control input trajectory from

LMPC j to LMPC 1, LMPC 1 assumes that LMPC j applies a zero input (i.e., uj =

0). Note that in this chapter, we do not consider explicitly the step of determining

whether data losses occur or not in the transmission of input trajectories. Please see

Remark 5.1 on approaches of determining transmission data losses.

When a transmission of the input trajectory u∗j(τ |tk) is successful, LMPC 1 re-
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ceives ũj(τ |tk) which is a noise-corrupted version of u∗j(τ |tk). To determine the reli-

ability of the received information, LMPC 1 solves a feasibility problem. Based on

the result of the feasibility problem, LMPC 1 determines if the received information

should be accepted or rejected. The feasibility problem for the information received

from LMPC j is as follows:

find z ∈ S(∆)

ũj(τ |tk)− θ ≤ z(τ) ≤ ũj(τ |tk) + θ (5.7a)

z(τ) ∈ Uj (5.7b)

∂V (x(tk))

∂x
gj(x(tk))z(0) > 0 (5.7c)

According to the bounded noise value and the received signal from the communication

channel, LMPC 1 considers all the possibilities of noise effect on the optimal trajectory

of LMPC j (i.e., constraint of Eq. 5.7a) and checks whether in these cases LMPC j

satisfies the constraint of Eq. 5.7c. Note that when the optimization problem of Eq. 5.7

is not feasible, it is guaranteed that the original signal u∗j(τ |tk) after transmission

through the channel still satisfies the stability constraint of Eq. 5.6g. The feasibility

of this problem is used to test whether there exists any possible value of the noise

that could (due to corruption) end up making the implemented control action cause

an increase in the Lyapunov function derivative, i.e., that ∂V (x(tk))
∂x

gj(x(tk))uj(0) >

0. If the problem is infeasible, it is guaranteed that the noise cannot make the

control action destabilizing, and hence, the control action is accepted. On the other

hand, if the problem is feasible, it opens up the possibility of the noise rendering the

control action destabilizing, and hence, it is discarded. We also note that there is no
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requirement that θ is sufficient small, however, larger values of θ increase the range

of z(τ) and influence the feasibility of the problem of Eq. 5.7.

If the optimization problem of Eq. 5.7 is not feasible, then the trajectory informa-

tion received by LMPC 1 (i.e., ũj(τ |tk)) is used in the evaluation of LMPC 1; and if

the optimization problem of Eq. 5.7 is feasible, then ũj(τ |tk) is discarded and a zero

trajectory for uj will be used in the evaluation of LMPC 1. If we define the trajectory

of uj that is used in the evaluation of LMPC 1 as ũ∗j(τ |tk), then it is defined as follows:

ũ∗j(τ |tk) =





ũj(τ |tk) if (5.7) is not feasible and there

is no data loss

0 if (5.7) is feasible or there exists

data loss

where 0 ∈ Rmuj . Note that when data loss in the communication channel occurs,

a zero trajectory of uj is also used in the evaluation of LMPC 1. Note also that

the above strategy on the use of the corrupted communication information is just

one of many possible options to handle communication disruptions in the DMPC

architecture.

Employing ũ∗j where j = 2, . . . ,m, LMPC 1 obtains its optimal trajectory accord-

ing to the following optimization problem:

min
u1∈S(∆)

∫ N∆

0

[x̃1(τ)T Qcx̃
1(τ) +

m∑
i=1

uT
i (τ)Rciui(τ)]dτ

˙̃x1(τ) = f(x̃1(τ)) +
m∑

i=1

gi(x̃
1(τ))ui(τ) (5.8a)

u1(τ) ∈ U1 (5.8b)
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uj(τ) = ũ∗j(τ |tk), j = 2, . . . , m (5.8c)

x̃(0) = x(tk) (5.8d)

∂V (x(tk))

∂x
g1(x(tk))u1(0) ≤ ∂V (x(tk))

∂x
g1(x(tk))h(x(tk)) (5.8e)

In this formulation, LMPC 1 takes advantage of the knowledge of m − 1 feasibility

problems (i.e., ũ∗j , j = 2, . . . , m) and the Lyapunov-based controller h(·) to predict

the future evolution of the system x̃1. Let u∗1(τ |tk) denote the optimal solution of the

optimization problem of Eq. 5.6.

Based on the solutions of the m LMPC optimization problems, the manipulated

inputs of the proposed DMPC design are defined as follows:

ui(t) = u∗i (t− tk|tk), ∀t ∈ [tk, tk+1) i = 1, . . . , m. (5.9)

Remark 5.3. It should be mentioned that the white gaussian noise considered in

this chapter is the accumulation of thermal effects and quantization errors. We did

not consider the effects of multi-path transmission, terrain blocking, interference, etc.

Further, in this chapter, we assume that when packet loss happens, all of the infor-

mation we want to transmit is lost; however, without loss of generality, we can extend

the results in this chapter to the case in which data loss happens only in some packets

of information following a similar methodology like Eq. 5.7 to deal with this issue.

The interested reader may refer to [20] and [84] for more details on communication

channel modeling.
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5.3 DMPC Stability

As it will be proved in Theorem 5.1 below, the proposed DMPC framework takes

advantage of the constraints of Eqs. 5.6g and 5.8e to compute the optimal trajectories

u1, . . . , um such that the Lyapunov function value V (x(tk)) is a decreasing sequence

with a lower bound and achieves the closed-loop stability of the system.

Theorem 5.1. Consider the system of Eq. 5.1 in closed-loop under the DMPC design

of Eqs. 5.6-5.9 based on a controller u1 = h(x) that satisfies the conditions of Eq. 5.3.

Let εw > 0, ∆ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3(α
−1
2 (ρs)) + (Lx +

m∑
i=1

Luiu
max
i )M∆ + Lwθw ≤ −εw/∆. (5.10)

If x(t0) ∈ Ωρ and if ρ∗ ≤ ρ where ρ∗ = max{V (x(t + ∆)) : V (x(t)) ≤ ρs}, then the

state x(t) of the closed-loop system is ultimately bounded in Ωρ∗.

Proof 5.1. The proof consists of two parts. We first prove that the optimization

problems of Eqs. 5.6 and 5.8 are feasible for all states x ∈ Ωρ. Subsequently, we prove

that, under the DMPC design of Eqs. 5.6-5.9, the state of the system of Eq. 5.1 is

ultimately bounded in a region that contains the origin.

Part 1: First, we consider the feasibility of LMPC j (j = 2, . . . , m) and then focus

on the feasibility of LMPC 1. All input trajectories of uj(τ) such that uj(τ) = 0, ∀τ ∈
[0, N∆) satisfy all the constraints (including the input constraint of Eq. 5.6f and the

constraint of Eq. 5.6g) of LMPC j, thus the feasibility of LMPC j is obtained. The

feasibility of LMPC 1 follows because all input trajectories u1(τ) such that u1(τ) =

h(x(tk)), ∀τ ∈ [0, ∆) and u1(τ) = 0, ∀τ ∈ [∆, N∆) are feasible solutions to the

optimization problem of LMPC 1 since all such trajectories satisfy the input constraint

of Eq. 5.8b and the constraint of Eq. 5.8e; this is guaranteed by the assumed property
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of the Lyapunov-based controller h(·).
Part 2: Considering the inequalities of Eq. 5.3, addition of inequalities of Eqs. 5.6g

and 5.8e for j = 2, . . . , m implies that if x(tk) ∈ Ωρ, the following inequality holds:

∂V (x(tk))
∂x

(f(x(tk)) +
m∑

i=1

gi(x(tk))u∗i (0|tk)) ≤ ∂V (x(tk))
∂x

(f(x(tk)) + g1(x(tk))h(x(tk)))

≤ −α3(|x(tk)|).
(5.11)

The time derivative of the Lyapunov function along the actual state trajectory x(t)

of system of Eq. 5.1 in t ∈ [tk, tk+1) is given by:

V̇ (x(t)) =
∂V (x)

∂x
(f(x(t)) +

m∑
i=1

gi(x(t))u∗i (0|tk) + k(x(t))w(t)). (5.12)

Adding and subtracting
∂V (x(tk))

∂x
(f(x(tk))+

m∑
i=1

gi(x(tk))u
∗
i (0|tk)) to the right-hand-

side of Eq. 5.12 and taking Eq. 5.11 into account, we obtain the following inequality:

V̇ (x(t)) ≤ −α3(|x(tk)|) +
∂V (x)

∂x
(f(x(t)) +

m∑
i=1

gi(x(t))u∗i (0|tk) + k(x(t))w(t))

−∂V (x(tk))

∂x
(f(x(tk)) +

m∑
i=1

gi(x(tk))u
∗
i (0|tk)).

(5.13)

From Eq. 5.5 and the inequality of Eq. 5.13, the following inequality is obtained for

all x(tk) ∈ Ωρ\Ωρs :

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + Lw|w(t)|+ (Lx +

m∑
i=1

Luiu
∗
i (0|tk))|x(t)− x(tk)|. (5.14)

Taking into account Eq. 5.4 and the continuity of x(t), the following bound can be

written for all t ∈ [tk, tk+1), |x(t) − x(tk)| ≤ M∆. Using this expression, we obtain

the following bound on the time derivative of the Lyapunov function for t ∈ [tk, tk+1),
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for all initial states x(tk) ∈ Ωρ\Ωρs :

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + (Lx +

m∑
i=1

Luiu
max
i )M∆ + Lwθw.

If the condition of Eq. 5.10 is satisfied, then there exists εw > 0 such that the following

inequality holds for x(tk) ∈ Ωρ\Ωρs :

V̇ (x(t)) ≤ −εw/∆, ∀t = [tk, tk+1).

Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V (x(tk+1)) ≤ V (x(tk))− εw

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1)

(5.15)

for all x(tk) ∈ Ωρ\Ωρs . Using Eq. 5.15 recursively, it is proved that, if x(t0) ∈ Ωρ\Ωρs ,

the state converges to Ωρs in a finite number of sampling times without leaving the

stability region. Once the state converges to Ωρs ⊆ Ωρ∗ , it remains inside Ωρ∗ for

all times. This statement holds because of the definition of ρ∗. This proves that the

closed-loop system under the distributed LMPC design is ultimately bounded in Ωρ∗ .

Remark 5.4. The condition of Eq. 5.10 guarantees that if the state of the closed-loop

system at a sampling time tk is outside the level set V (x(tk)) = ρs but inside the

level set V (x(tk)) = ρ, the derivative of the Lyapunov function of the state of the

closed-loop system is negative under the proposed design.

Remark 5.5. For nonlinear systems under continuous control implementation, a

sufficient condition for invariance is that the Lyapunov function is decreasing on the

boundary of a set. For systems with continuous-time dynamics and sample-and-hold

control implementation, this condition is not sufficient because the derivative may
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become positive during the sampling period and the system may leave the set before

a new sample is obtained. Based on Theorem 5.1, ρ∗ is the maximum value that the

Lyapunov function can achieve in a time period of length ∆ when x(tk) ∈ Ωρs. Ωρ∗

defines an invariant set for the state x(t) under sample-and-hold implementation of

the control action.

Remark 5.6. Note that the closed-loop stability is guaranteed by the constraints of

Eqs. 5.6g and 5.8e. The use of the corrupted input trajectory information of uj (i.e.,

ũj) where j = 2, . . . , m does not affect the feasibility of the optimization problems of

Eqs. 5.6 and 5.8 as well as the stability of the closed-loop system; however, it does

affect the closed-loop system performance. This is the reason for the introduction

of the feasibility problem of Eq. 5.7 which is used to decide whether the corrupted

information can be used to improve the closed-loop performance.

Remark 5.7. We have partitioned Ωρ into two regions (Ωρ\Ωρs and Ωρs). When

x(tk) ∈ Ωρ, it follows that either x(tk) ∈ Ωρ\Ωρs or x(tk) ∈ Ωρs. As we stated

and proved in Theorem 5.1, according to definition of ρ∗, once the state converges to

Ωρs ⊆ Ωρ∗, it remains inside Ωρ∗ for all times. If x(tk) ∈ Ωρ\Ωρs and the condition

in Eq 5.10 is satisfied, the state converges to Ωρs in a finite number of sampling times

without leaving the stability region. In both cases, the state will be bounded in Ωρ∗.

Remark 5.8. In this chapter, we deal with communication disruptions and do not

address issues arising due to faults in the control actuators or in the control system

(e.g., [75, 15]). Also, we assume that all the distributed controllers have access to the

full system state. In Chapter 6, we will address the scenario in which each controller

has access only to partial state information and utilizes an observer to estimate the

full system state subject to bounded process noise (disturbance). It should be men-

tioned that due to the effect of disturbances and model errors, the controllers should
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be updated at every several sampling time with full system state information in order

to provide deterministic closed-loop stability properties.

5.4 Application to a chemical process

The process considered in this study is a three vessel, reactor-separator system con-

sisting of two continuously stirred tank reactors (CSTRs) and a flash tank separator

shown in Fig. 5.3 [15]. A feed stream to the first CSTR F10 contains the reactant

A which is converted into the desired product B. The desired product B can then

further react into an undesired side-product C. The effluent of the first CSTR along

with additional fresh feed F20 makes up the inlet to the second CSTR. The reactions

A → B and B → C (referred to as 1 and 2, respectively) take place in the two CSTRs

in series before the effluent from CSTR 2 is fed to a flash tank. The overhead vapor

from the flash tank is condensed and recycled to the first CSTR, and the bottom

product stream is removed. A small portion of the overhead is purged before being

recycled to the first CSTR. All the three vessels are assumed to have static holdup.

The dynamic equations describing the behavior of the system, obtained through ma-

terial and energy balances under standard modeling assumptions, are given below:

dT1

dt
=

F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

−∆H1

ρCp
k1e

−E1
RT1 CA1 +

−∆H2

ρCp
k2e

−E2
RT1 CA1 +

Q1

ρCpV1

(5.16a)

dCA1

dt
=

F10

V1
(CA10 − CA1) +

Fr

V1
(CAr − CA1)− k1e

−E1
RT1 CA1 − k2e

−E2
RT1 CA1 (5.16b)

dCB1

dt
=
−F10

V1
CB1 +

Fr

V1
(CBr − CB1) + k1e

−E1
RT1 CA1 (5.16c)

dCC1

dt
=
−F10

V1
CC1 +

Fr

V1
(CCr − CC1) + k2e

−E2
RT1 CA1 (5.16d)
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Figure 5.3: Two CSTRs and a flash tank with recycle stream.

dT2

dt
=

F1

V2
(T1 − T2) +

(F20 + ∆F20)
V2

(T20 − T2) +
−∆H1

ρCp
k1e

−E1
RT2 CA2 +

−∆H2

ρCp
k2e

−E2
RT2 CA2

+
Q2

ρCpV2
(5.16e)

dCA2

dt
=

F1

V2
(CA1 − CA2) +

(F20 + ∆F20)
V2

(CA20 − CA2)− k1e
−E1
RT2 CA2 − k2e

−E2
RT2 CA2

(5.16f)

dCB2

dt
=

F1

V2
(CB1 − CB2)− (F20 + ∆F20)

V2
CB2 + k1e

−E1
RT2 CA2 (5.16g)

dCC2

dt
=

F1

V2
(CC1 − CC2)− (F20 + ∆F20)

V2
CC2 + k2e

−E2
RT2 CA2 (5.16h)

dT3

dt
=

F2

V3
(T2 − T3)− HvapFr

ρCpV3
+

Q3

ρCpV3
(5.16i)

dCA3

dt
=

F2

V3
(CA2 − CA3)− Fr

V3
(CAr − CA3) (5.16j)

dCB3

dt
=

F2

V3
(CB2 − CB3)− Fr

V3
(CBr − CB3) (5.16k)

dCC3

dt
=

F2

V3
(CC2 − CC3)− Fr

V3
(CCr − CC3) (5.16l)

Each of the tanks has an external heat input/removal actuator. The model of the

flash tank separator is derived under the assumption that the relative volatility for
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each of the species remains constant within the operating temperature range of the

flash tank. This assumption allows calculating the mass fractions in the overhead

based upon the mass fractions in the liquid portion of the vessel. It has also been

assumed that there is a negligible amount of reaction taking place in the separator.

The following algebraic equations model the composition of the overhead stream

relative to the composition of the liquid holdup in the flash tank:

CAr =
αACA3

K
, CBr =

αBCB3

K
, CCr =

αCCC3

K

K = αACA3
MWA

ρ
+ αBCB3

MWB

ρ
+ αCCC3

MWC

ρ
+ αDxDρ

(5.17)

where xD is the mass fraction of the solvent in the flash tank liquid holdup and is

found from a mass balance. The definitions for the variables used in Eqs. 5.16-5.17

can be found in Table 5.1, with the parameter values given in Table 5.2.

The system of Eqs. 5.16-5.17 is numerically simulated using a standard Euler

integration method. Process noise was added to the right-hand side of each equation in

the process of Eq. 5.16 to simulate disturbances/model uncertainty and it is generated

as autocorrelated noise of the form wk = φwk−1 + ξk where k = 0, 1, . . . is the discrete

time step of 0.001 hr, ξk is generated by a normally distributed random variable with

standard deviation σp, and φ is the autocorrelation factor and wk is bounded by θp,

that is |wk| ≤ θp. Table 5.3 contains the parameters used in generating the process

noise.

We assume that the state measurements which include the temperatures and

species concentrations in the three vessels are available synchronously and contin-

uously at time instants {tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial

time and ∆ is the sampling time. For the simulations carried out in this section, we

pick the initial time to be t0 = 0 and the sampling time to be ∆ = 0.01 hr = 36 sec.
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Table 5.1: Process variables

CA1, CA2, CA3 concentrations of A in vessels 1, 2, 3
CB1, CB2, CB3 concentrations of B in vessels 1, 2, 3
CC1, CC2, CC3 concentrations of C in vessels 1, 2, 3
CAr, CBr, CCr concentrations of A, B, C in the recycle
T1, T2, T3 temperatures in vessels 1, 2, 3
T10, T20 feed stream temperatures to vessels 1, 2
F1, F2, F3 effluent flow rates from vessels 1, 2, 3
F10, F20 feed stream flow rates to vessels 1, 2
CA10, CA20 concentrations of A in the feed stream to vessels 1,

2
Fr recycle flow rate
V1, V2, V3 volumes of vessels 1, 2, 3
u1, u2, u3, u4 manipulated inputs
E1, E2 activation energy for reactions 1, 2
k1, k2 pre-exponential values for reactions 1, 2
∆H1, ∆H2 heats of reaction for reactions 1, 2
Hvap heat of vaporization
αA, αB, αC , αD relative volatilities of A, B, C, D
MWA, MWB, MWC molecular weights of A, B, and C
Q1, Q2, Q3 heat inputs into vessels 1, 2, 3
Cp, R, ρ heat capacity, gas constant and solution density
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Table 5.2: Parameter values

T10 = 300, T20 = 300 K

F10 = 5, F20 = 5, Fr = 1.9 m3

hr

CA10 = 4, CA20 = 3 kmol
m3

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5E4, E2 = 5.5E4 kJ
kmol

k1 = 3E6, k2 = 3E6 1
hr

∆H1 = −5E4, ∆H2 = −5.3E4 kJ
kmol

Hvap = 5 kJ
kmol

Cp = 0.231 kJ
kgK

R = 8.314 kJ
kmolK

ρ = 1000 kg
m3

αA = 2, αB = 1, αC = 1.5, αD = 3 unitless

MWA = 50, MWB = 50, MWC = 50 kg
kmol

Table 5.3: Disturbance parameters.

σp φ θp σp φ θp σp φ θp

CA1 0.1 0.7 0.09 CA2 0.1 0.7 0.09 CA3 0.1 0.7 0.09
CB1 0.02 0.7 0.01 CB2 0.1 0.7 0.03 CB3 0.1 0.7 0.02
CC1 0.02 0.7 0.01 CC2 0.1 0.7 0.01 CC3 0.02 0.7 0.01
T1 10 0.7 1.17 T2 10 0.7 1.35 T3 10 0.7 1.35

Table 5.4: Steady-state values for Q1s, Q2s and Q3s.
Q1s 0 [KJ/hr] Q2s 0 [KJ/hr] Q3s 0 [KJ/hr]

Table 5.5: Steady-state values for xs.
CA1s 3.31 [kmol/m3] CA2s 2.75 [kmol/m3] CA3s 2.88 [kmol/m3]
CB1s 0.17 [kmol/m3] CB2s 0.45 [kmol/m3] CB3s 0.50 [kmol/m3]
CC1s 0.04 [kmol/m3] CC2s 0.11 [kmol/m3] CC3s 0.12 [kmol/m3]
T1s 369.53 [K] T2s 435.25 [K] T3s 435.25 [K]
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The first set of manipulated inputs is the heat injected to or removed from the

three vessels, that is u1 = [Q1−Q1s Q2−Q2s Q3−Q3s]
T ; the second set of manipulated

inputs is the deviated inlet flow rate to vessel 2, that is u2 = ∆F20 = F20 − F20s.

The open-loop system has one unstable and two stable steady states. The control

objective is to regulate the system to the unstable steady-state xs corresponding to the

operating point defined by Q1s, Q2s, Q3s and F20s. The steady-state values for u1 and

u2 are zero. Taking this control objective into account, the process model belongs to

the following class of nonlinear systems: ẋ(t) = f(x(t))+g1(x(t))u1(t)+g2(x(t))u2(t)+

w(t) where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12] = [T1−T1s CA1−CA1s CB1−
CB1s CC1−CC1s T2−T2s CA2−CA2s CB2−CB2s CC2−CC2s T3−T3s CA3−CA3s CB3−
CB3s CC3−CC3s] is the state, uT

1 = [u11 u12 u13] = [Q1−Q1s Q2−Q2s Q3−Q3s] and

u2 = ∆F20 = F20−F20s are the manipulated inputs which are deviation variables and

are subject to the constraints |u1i| ≤ 104 KJ/hr (i = 1, 2, 3) and |u2| ≤ 5 m3/hr, and

w is a bounded noise.

We consider a quadratic Lyapunov function V (x) = xT Px with P = diag([10 104

104 104 10 104 104 104 10 104 104 104]) and design the controller h(x) as three

PI controllers with proportional gains Kp1 = Kp2 = Kp3 = 8000 and integral

time constants τI1 = τI2 = τI3 = 10 based on the measurements of T1, T2 and

T3, respectively. The values of the weights in P have been chosen in a way such

that the Lyapunov-based controller h(x) satisfies the input constraints, stabilizes

the closed-loop system and provides good closed-loop performance. Note that, in

the absence of process and measurement noise, this design of h(x) manipulating

uT
1 = [Q1 Q2 Q3] can stabilize the closed-loop system asymptotically without the

help of u2. Based on h(x) and V (x), we design LMPC 1 to determine u1 and

LMPC 2 to determine u2 following the forms given in Eqs. 5.6 and 5.8, respec-

tively. In the design of the LMPC controllers, the weighting matrices are chosen to be

137



Process

Sensors

x

LMPC 1

u1

LMPC 2

x

u2
Channel

ũ2
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Figure 5.4: Distributed LMPC control architecture for chemical process example (F
means solving a feasibility problem).

Qc = diag([10 104 104 104 9 104 104 104 10 104 104 104]), R1 = diag([(5 5 5)·10−4]) and

R2 = 104. The prediction horizon for the optimization problem is N = 5 with a time

step of ∆ = 0.01 hr. The initial condition which is utilized to carry out the simula-

tions is x(0)T = [362.14 3.1191 0.13 0.01 348.21 2.01 0.16 0.01 462.55 2.31 0.26 0.01].

We set the communication channel noise power (σ2), the data loss probability α and

the noise bound θ to 0.01, 0.1 and 0.25, respectively. Figure 5.4 depicts the proposed

control design for the chemical process example which is composed of two LMPCs.

The state trajectory of the process under the proposed DMPC design from the

initial state are shown in Fig. 5.5. These figures show that the proposed control design

drive the temperatures and the concentrations in the closed-loop system close to the

desired steady-state and achieves closed-loop stability.

To emphasize the importance of solving the feasibility problem in LMPC 1 during

obtaining its optimal input trajectory, we have carried out a set of simulations to

compare the proposed design with our previous control scheme [61] in which LMPC 1

incorporates the received channel signal in its optimization problem without any

pre-processing. In other words, in this case LMPC 1 ignores the fact that whether

communication channel noise and data loss effects violate the feasibility constraints

of LMPC 2 optimization problem. We have carried out a number of simulations to

compare the proposed DMPC design with our previous DMPC design with the same
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Figure 5.5: State trajectories of the process under the proposed DMPC design.

parameters and initial condition from a performance index point of view. Table 5.6

shows the total cost computed for 10 different closed-loop simulations under the pro-

posed DMPC design and our previous control scheme. To carry out this comparison,

we have computed the total cost of each simulation with different operating conditions

(different initial states and process disturbances) based on the index of the following

form:

J =
G∑

i=0

x(ti)
T Qcx(ti) + u1(ti)

T Rc1u1(ti) + u2(ti)
T Rc2u2(ti)

where t0 is the initial time of the simulations and tG = 1 hr is the final time of the

simulations. As we can see in Table 5.6, the proposed distributed LMPC design has

a cost lower than the previous DMPC design in all 10 simulations. This illustrates

that in this example, the proposed distributed LMPC design improves our previous

design from a closed-loop performance point of view.
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Table 5.6: Total performance cost (∗107) along the closed-loop system trajectories.

sim. Prop. Prev. sim. Prop. Prev.
1 5.486 5.488 6 2.549 2.559
2 2.497 2.519 7 1.691 1.697
3 1.771 1.785 8 6.688 6.695
4 1.203 1.215 9 6.632 6.633
5 3.163 3.181 10 2.498 2.515

Table 5.7: Total performance cost (∗107) along the closed-loop system trajectories for
different data loss probabilities and σ2 = 0.01.

α Prop. Prev. α Prop. Prev.
0.05 6.803 6.900 0.30 6.808 6.901
0.10 6.779 6.908 0.35 6.818 6.906
0.15 6.821 6.897 0.40 6.779 6.901
0.20 6.821 6.905 0.45 6.793 6.893
0.25 6.801 6.899 0.50 6.744 6.895

Finally, we have carried out a set of simulations to evaluate the performance

of the proposed DMPC design over the one in [61] from a closed-loop performance

index point of view under different communication channel noise powers and data

loss probabilities. Tables 5.7 and 5.8 show the total cost computed for 10 different

data loss probabilities and noise powers compared to our previous DMPC design,

respectively. As it can be seen from these tables, the proposed DMPC design is

superior from a closed-loop performance point of view for different noise power and

data loss probability values. It should be mentioned that the number of feasible and

infeasible solutions of the optimization problem of Eq. 5.7 depends on the bound on

the communication channel noise; as this bound increases, the number of feasible

solutions increases. For the simulation results corresponding to Fig. 5.5, LMPC 1

utilizes the received signal about 8% of the total number of transmissions.
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Table 5.8: Total performance cost (∗107) along the closed-loop system trajectories for
different channel noise power values and α = 0.1.

σ2 Prop. Prev. σ2 Prop. Prev.
0.005 6.787 6.907 0.030 6.802 6.899
0.010 6.762 6.894 0.035 6.809 6.894
0.015 6.820 6.895 0.040 6.769 6.939
0.020 6.744 6.898 0.045 6.835 6.909
0.025 6.841 6.893 0.050 6.756 6.892

Remark 5.9. Note that the DMPC design in [61] can still guarantee the closed-loop

system stability in the presence of communication disruptions; however, the closed-

loop performance may be degraded. In this chapter, we propose a practical approach

to deal with communication disruptions to improve the closed-loop performance while

maintaining the stability properties of the closed-loop system. In all simulations, the

proposed DMPC design accounting for disruptions yields reduced performance costs

compared to the previous DMPC design, even though this benefit cannot be proved to

hold in general.

5.5 Conclusions

In this chapter, we proposed a DMPC design for nonlinear systems taking into account

explicitly communication disruptions (i.e., data losses and channel noise) between the

distributed controllers. In the proposed DMPC architecture, one of the distributed

controllers is responsible for ensuring closed-loop stability while the rest of the dis-

tributed controllers communicate and cooperate with the stabilizing controller to

further improve the closed-loop performance. To determine if the data transmitted

through the communication channel is reliable or not, feasibility problems were incor-

porated in the DMPC design and based on the result of these feasibility problems, the
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transmitted information was accepted or rejected by the stabilizing MPC. In order

to ensure the stability of the closed-loop system under communication disruptions,

each distributed controller utilized a stability constraint which is based on a suit-

able Lyapunov-based controller. The proposed DMPC system possesses an explicit

characterization of the closed-loop system stability region and guarantees that the

closed-loop system is ultimately bounded in an invariant set which contains the ori-

gin. The theoretical results were demonstrated through a nonlinear chemical process

example.
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Chapter 6

Multirate Distributed Model

Predictive Control of Nonlinear

Uncertain Systems

In the chapter, we consider the design of a network-based DMPC system using multi-

rate sampling for large-scale nonlinear uncertain systems composed of several coupled

subsystems. This problem formulation is important in the context of large-scale net-

works of heterogeneous components that involve variables that exhibit dynamics and

are sampled in significantly different time-scales, for example, energy/water networks

as well as chemical process networks. Specifically, we assume that the states of each

local subsystem can be divided into fast sampled states and slowly sampled states.

Furthermore, we assume that there is a distributed controller associated with each

subsystem and the distributed controllers are connected through a shared communi-

cation network. We propose to design the distributed controllers via Lyapunov-based

MPC (LMPC) and coordinate their actions in an iterative fashion to guarantee closed-

143



loop stability when full system state measurements (both fast and slow) are avail-

able. The transmitted information over the shared communication network is subject

to communication channel noise. When only fast sampled states are available, the

distributed controllers operate in a decentralized fashion to improve closed-loop per-

formance. Sufficient conditions under which the state of the closed-loop system is

ultimately bounded in an invariant region containing the origin are derived. The

theoretical results are demonstrated through a nonlinear chemical process example.

6.1 Preliminaries

6.1.1 Notation and class of nonlinear systems

The operator | · | is used to denote Euclidean norm of a vector while | · |Q refers to

the square of the weighted Euclidean norm, defined by |x|Q = xT Qx. A continuous

function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing

and satisfies α(0) = 0. The symbol Ωr is used to denote the set Ωr := {x ∈ Rnx :

V (x) ≤ r} where V is a scalar positive definite, continuous differentiable function

and V (0) = 0, and the operator ‘/’ denotes set subtraction, that is, A/B := {x ∈
Rnx : x ∈ A, x /∈ B}. The symbol diag(v) denotes a square diagonal matrix whose

diagonal elements are the elements of vector v. We consider a class of nonlinear

systems composed of m interconnected subsystems where each of the subsystems can

be described by the following state-space model:

ẋi(t) = fi(x) + gsi(x)ui(t) + ki(x)wi(t) (6.1)
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where i = 1, . . . , m, xi(t) ∈ Rnxi denotes the vector of state variables of subsystem

i, ui(t) ∈ Rnui and wi(t) ∈ Rnw denote the set of control (manipulated) inputs

and disturbances associated with subsystem i, respectively. The variable x ∈ Rnx

denotes the state of the entire nonlinear system which is composed of the states of

the m subsystems, that is x = [xT
1 · · · xT

i · · · xT
m]T ∈ Rnx . The dynamics of x can be

described as follows:

ẋ(t) = f(x) +
m∑

i=1

gi(x)ui(t) + k(x)w(t) (6.2)

where f = [fT
1 · · · fT

i · · · fT
m]T , gi = [0T · · · gT

si · · ·0T ]T with 0 being the zero matrix of

appropriate dimensions, k is a matrix composed of ki (i = 1, . . . , m) and zeros whose

explicit expression is omitted for brevity, and

w = [wT
1 · · · wT

i · · ·wT
m]T is assumed to be bounded, that is, w(t) ∈ W with W :=

{w ∈ Rnw : |w| ≤ θ, θ > 0}. The m sets of inputs are restricted to be in m nonempty

convex sets Ui ⊆ Rmui , i = 1, . . . , m, which are defined as Ui := {ui ∈ Rnui : |ui| ≤
umax

i } where umax
i , i = 1, . . . , m, is the magnitude of the constraint on the inputs of

the i-th subsystem. We will design m controllers to compute the m sets of control

inputs ui, i = 1, . . . , m, respectively. We will refer to the controller computing ui as

controller i. We assume that f , gi, i = 1, . . . , m, and k are locally Lipschitz vector

functions and that the origin is an equilibrium point of the unforced nominal system

(i.e., system of Eq. 6.2 with ui(t) = 0, i = 1, . . . , m, w(t) = 0 for all t) which implies

that f(0) = 0.
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6.1.2 Modeling of measurements and communication

We assume that the states of each of the m subsystems, xi (i = 1, . . . , m), are di-

vided into two parts: xf,i, states that can be measured at each sampling time (e.g.,

temperatures and pressures) and xs,i, states which are sampled at a relatively slow

rate (e.g., species concentrations). Specifically, we assume that xf,i, are available at

synchronous time instants tp = t0 + p∆, p = 0, 1, . . ., where t0 is the initial time and

∆ is the sampling time; and assume that xs,i, are available every T sampling times

(i.e., xs,i, are available at tk with k = 0, T, 2T, . . .). Note that, in order to simplify the

development, we assume that the slowly sampled states of different subsystems are

all available at the same time instants. This modeling of measurements is relevant to

systems involving heterogeneous measurements which have different sampling rates;

please see the example in Section 6.3. We also assume that for each subsystem its

local sensors, actuators and controller are connected using point-to-point links, which

implies that xf,i and xs,i are available without delay to controller i once they are

measured and that the controllers for different subsystems are connected through a

shared communication network and communicate when the full (fast and slow) system

state is available. We consider measurement noise and communication network noise.

Specifically, we consider measurement noise caused by the lack of complete accuracy

of measurement sensors. This type of noise is defined as the difference between the

reading value of a state from a sensor and the true value of the state. We assume

that the sensor reading values of states xf,i and xs,i are x̌s
f,i and x̌s

s,i, respectively;

and x̌s
f,i and x̌s

s,i are modeled as follows: x̌s
f,i = xf,i + ns

xf,i
, x̌s

s,i = xs,i + ns
xs,i

where

ns
xf,i

and ns
xs,i

are the measurement noise terms associated with xf,i and xs,i, respec-

tively. The measurement noise is assumed to be bounded; that is, |ns
xf,i
| ≤ θs

xf,i
and

|ns
xs,i
| ≤ θs

xs,i
with θs

xf,i
and θs

xs,i
being positive real numbers. It should be mentioned
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that this assumption on the type of measurement noise is meaningful from a practical

standpoint due to the limit on the accuracy of the measurement sensors and the fact

that measurement noise is usually modeled as a percentage of the actual value.

At tk with k = 0, T, 2T, . . ., when fast and slowly sampled states are available to

each controller, the distributed controllers exchange information which is subject to

communication channel noise. Specifically, we assume that controller i sends x̌s
i =

[x̌s,T
f,i x̌s,T

s,i ]T as well as its control input trajectory ui to the other controllers; and

the values received by controller j (j 6= i), x̌j
i and ǔj

i , are modeled as follows: x̌j
i =

x̌s
i + nc,j

xi
, ǔj

i = ui + nj
ui

where nc,j
xi

and nj
ui

are the communication noise terms. The

communication noise terms are also assumed to be bounded; that is, |nc,j
xi
| ≤ θc,j

xi
and

|nj
ui
| ≤ θui

with θc,j
xi

and θui
being positive real numbers. According to the above

modeling, at time tk with k = 0, T, 2T, . . . when fast and slowly sampled states are

available, the state information received by controller i (i = 1, . . . ,m) is described as

follows:

x̌i(tk) = [x̌i
1, . . . , x̌

i
i−1, x̌

s
i , x̌

i
i+1, . . . , x̌

i
m] = x(tk) + ni

x (6.3)

where ni
x ∈ Rnx denotes combined communication and measurement noise and |ni

x| ≤
θi

x with θi
x being a suitable composition of θs

xf,i
, θs

xs,i
and θc,i

xj
(j 6= i). This class of

systems is relevant to the case of large-scale chemical processes that are controlled by

distributed control systems that exchange information over a shared communication

network through which it is not cost-effective to communicate at every sampling time.

Instead, in order to achieve closed-loop stability and good closed-loop performance,

the controllers communicate every several sampling times. Please see Fig. 6.1 for

a schematic of such type of DMPC system with the local controllers designed via

Lyapunov-based MPC techniques.
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6.1.3 Lyapunov-based controller

We assume that there exists a locally Lipschitz Lyapunov-based controller h(x) =

[hT
1 (x) · · · hT

m(x)]T such that when the m control inputs are determined as ui =

hi(x), i = 1, . . . , m, the origin of the nominal interconnected closed-loop system is

asymptotically stable and the input constraints are satisfied for all x inside a compact

set. This assumption implies that there exist a continuously differentiable Lyapunov

function V (x) for the nominal closed-loop system, a class K function α1(·) which

bounds the value of the Lyapunov function from above and a class K function α2(·)
which bounds the time derivative of the Lyapunov function from above [59, 18].

Specifically, from this assumption, we have the following inequalities:

V (x) ≤ α1(|x|), hi(x) ∈ Ui, i = 1, . . . ,m

∂V (x)

∂x

(
f(x) +

m∑
i=1

gi(x)hi(x)

)
≤ −α2(|x|)

(6.4)

for all x ∈ Ωρ where Ωρ denotes the stability region of the closed-loop system under

h(x). The set Ωρ is usually chosen to be a level set of V (x).

Since the manipulated inputs ui, i = 1, . . . , m, and the disturbance w are bounded

in closed sets and the vector fields f , gi, i = 1, . . . , m, k are locally Lipschitz, we can

have the following inequality for all the states within the stability region (i.e., x ∈ Ωρ):

∣∣∣∣∣f(x) +
m∑

i=1

gi(x)ui + k(x)w

∣∣∣∣∣ ≤ M (6.5)

where M is a positive constant. Moreover, if we take into account the continuous

differentiable property of the Lyapunov function V (x), we can write the following
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inequalities: ∣∣∣∣
∂V (x)

∂x
f(x)− ∂V (x′)

∂x
f(x′)

∣∣∣∣ ≤ Lx|x− x′|

|f(x)− f(x′)| ≤ Cx|x− x′|∣∣∣∣
∂V (x)

∂x
gi(x)− ∂V (x′)

∂x
gi(x

′)

∣∣∣∣ ≤ Lui
|x− x′|

∣∣∣∣
∂V (x)

∂x
k(x)

∣∣∣∣ ≤ Lw,

∣∣∣∣
∂V (x)

∂x
gi(x)

∣∣∣∣ ≤ Cgi

|hi(x)− hi(x
′)| ≤ Chi

|x− x′|, |gi(x)| ≤ Mgi

|gi(x)− gi(x)| ≤ Cui
|x− x′|, |k(x)| ≤ Mw

(6.6)

with Lx, Lui
, Cx, Chi

, Cui
, Cgi

, Mgi
, Mw i = 1, . . . , m, and Lw being positive constants

for all x, x′ ∈ Ωρ, ui ∈ Ui, i = 1, . . . , m, and w ∈ W . Note that the inequalities of

Eqs. 6.4-6.6 are derived from the basic assumptions (i.e., Lipschitz vector fields and

existence of stabilizing Lyapunov-based controller) used in this chapter. The various

constants involved in the upper bounds are not assumed to be arbitrarily small.

Remark 6.1. The construction of Lyapunov functions can be carried out in a number

of ways using techniques like, for example, sum-of-squares methods. For broad classes

of nonlinear systems arising in the context of chemical process control applications,

quadratic Lyapunov functions are widely used and provide very good estimates of

closed-loop stability regions; please see example in Section 6.3.

6.2 Multirate DMPC

6.2.1 Multirate DMPC implementation strategy

In this chapter, the m controllers manipulating the m sets of inputs will be designed

through LMPC techniques (see also [43, 42]). For the LMPC associated with con-

troller i, i = 1, . . . , m, we will refer to it as LMPC i. A schematic of the control
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LMPC 1

Subsystem 1

LMPC m − 1

Subsystem

m − 1

LMPC m

Subsystem m· · ·

x̌
s s
,1

x̌
s f
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u
1

x̌
s s
,m

−
1

x̌
s f
,m

−
1

u
m

−
1

x̌
s s
,m

x̌
s f
,m

u
m

−
1

x̌, ǔ1, . . . , ǔm−1, ǔm

Figure 6.1: Distributed LMPC control architecture (solid line denotes fast state sam-
pling and/or point-to-point links; dashed line denotes slow state sampling and/or
shared communication networks).
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system is shown in Fig. 6.1. At a sampling time in which slowly and fast sampled

states are available, the distributed controllers coordinate their actions and predict

future input trajectories which, if applied until the next instant that both slowly and

fast sampled states are available, guarantee closed-loop stability. At a sampling time

in which only fast sampled states are available, each distributed controller tries to

further optimize the input trajectories calculated at the last instant in which the con-

trollers communicated, within a constrained set of values to improve the closed-loop

performance with the help of the available fast sampled states of its subsystem.

The proposed implementation strategy of the DMPC architecture at time instants

in which fast and slowly sampled states are available is as follows:

1. At tk with k = 0, T, 2T, . . ., all the controllers first broadcast their local subsys-

tem states to the other controllers and then evaluate their future input trajec-

tories in an iterative fashion with initial input guesses generated by h(·).

2. At iteration c (c ≥ 1)

2.1. Each controller evaluates its own future input trajectory based on x̌i(tk)

(noisy version of x(tk)) and the last received control input trajectories

(initial input guesses generated by h(·) when c = 1).

2.2. All the distributed controllers exchange their latest future input trajecto-

ries. Based on the input information, each controller calculates and stores

the corresponding value of the cost.

2.3. If a termination condition is satisfied, each controller sends its entire fu-

ture input trajectory corresponding to the smallest value of the cost to

its actuators; if the termination condition is not satisfied, go to step 2.1

(c ← c + 1).
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The proposed implementation strategy of the DMPC architecture at time instants

when only local fast sampled states are available is as follows:

1. Controller i, i = 1, . . . ,m, receives its local fast sampled states, x̌s
f,i.

2. Each controller i estimates the current full system state and evaluates its future

input trajectory and sends the first step input value to its actuators.

6.2.2 Multirate DMPC formulation

Before presenting the design of the LMPCs, we define a nominal sampled trajectory for

each subsystem xi
h(τ |tk), k = 0, T, 2T, . . ., which will be employed in the construction

of the stability constraint of LMPC i (i = 1, . . . , m). This nominal sampled trajectory

is obtained by integrating recursively, for t ∈ [tk, tk+T ) and k = 0, T, 2T, . . ., the

following equation:

ẋi
h(τ |tk) = f(xi

h(τ |tk)) +
m∑

i=1

gi(x
i
h(τ |tk))hi(x

i
h(l∆|tk)),

∀τ ∈ [l∆, (l + 1)∆)

(6.7)

with initial condition xi
h(0|tk) = x̌i(tk) where l = 0, . . . , T − 1, x̌i(tk) is the system

state received by controller i at tk. Based on this sampled trajectory, we define the

following input trajectories:

ui
h,j(τ |tk) = hj(x

i
h(l∆|tk)), ∀τ ∈ [l∆, (l + 1)∆) (6.8)

where j = 1, . . . , m. This sampled trajectory, xi
h(τ |tk), will be used in the LMPC i

formulation.

At time tk, k = 0, T, 2T, . . ., the LMPCs are evaluated in an iterative fashion to
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obtain the future input trajectories. Specifically, the optimization problem of LMPC j

at iteration c is as follows:

min
uj∈S(∆)

∫ N∆

0

[
|x̃j(τ)|Qc +

m∑
i=1

|ui(τ)|Rci

]
dτ (6.9a)

s.t. ˙̃xj(τ) = f(x̃j(τ)) +
m∑

i=1

gi(x̃
j(τ))ui (6.9b)

ui(τ) = ǔ∗,c−1
i (τ |tk), ∀i 6= j (6.9c)

∣∣uj(τ)− u∗,c−1
j (τ |tk)

∣∣ ≤ ∆uj, ∀τ ∈ [0, T∆] (6.9d)

uj(τ) ∈ Uj (6.9e)

x̃j(0) = x̌j(tk) (6.9f)

∂V (x̃j(τ))

∂x

(
1

m
f(x̃j(τ)) + gj(x̃

j(τ))uj(τ)

)

≤ ∂V (xj
h(τ |tk))
∂x

(
1

m
f(xj

h(τ |tk)) + gj(x
j
h(τ |tk))uj

h,j(τ |tk)
)

,

∀τ ∈ [0, T∆] (6.9g)

where S(∆) is the family of piece-wise constant functions with sampling period ∆, N is

the prediction horizon, Qc and Rci, i = 1, . . . , m, are positive definite weight matrices,

the state x̃j is the predicted trajectory of the nominal system with uj computed by

the LMPC of Eq. 6.9 and all the other inputs are received from the other controllers

(i.e., ǔ∗,c−1
i (τ |tk) which is a noisy version of u∗,c−1

i (τ |tk)). The optimal solution to

this optimization problem is denoted by u∗,cj (τ |tk) which is defined for τ ∈ [0, N∆).

Accordingly, we define the final optimal input trajectory of LMPC j (that is, the

153



optimal trajectories computed at the last iteration) as u∗,fj (τ |tk) which is also defined

for τ ∈ [0, N∆). Note that for the first iteration of each distributed LMPC, the input

trajectories defined in Eq. 6.8 are used as the initial input trajectory guesses; that is,

u∗,0i = uj
h,i with i = 1, . . . , m.

The constraint of Eq. 6.9d imposes a limit on the input change between two

consecutive iterations. Note that this constraint does not restrict the input to be in

a small region and as the iteration number increases, the final optimal input could be

quite different from the initial guess. This constraint is enforced to make sure that

the predicted future evolutions of the system state in the distributed controllers are

close enough so that their actions are coordinated and they work together to improve

the closed-loop performance. For LMPC j (i.e., uj), the magnitude of input change

between two consecutive iterations is restricted to be smaller than a positive constant

∆uj. The constraint of Eq. 6.9g is used to guarantee the closed-loop stability. The

manipulated inputs of the proposed control design for t ∈ [tk, tk+1) (k = 0, T, 2T, . . .)

are defined as follows:

ui(t) = u∗,fi (t− tk|tk), i = 1, . . . ,m. (6.10)

For the iterations in the design of Eq. 6.9, the number of iterations c may be

restricted to be smaller than a maximum iteration number cmax (i.e., c ≤ cmax) or/and

the iterations may be terminated when a maximum computational time is reached. In

order to improve the performance, between two slow sampling times, each controller

uses the available local fast sampled measurements to adjust its control input based on

the calculated optimal input trajectory for the current time obtained at the last time

instant in which fast and slowly sampled states were available. In order to guarantee

closed-loop stability, the maximum deviation of the adjusted inputs from the optimal
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input trajectory at each time step is bounded. Between two slow sampling times,

each controller estimates the current full system state using an observer based on the

system model and the available information. Specifically, the observer for controller

i takes the following form for t ∈ [tl−1, tl):

˙̂xi(t) = f(x̂i(t)) +

m,j 6=i∑
j=1

gj(x̂
i(t))ǔ∗,ij (t− tk|tk)

+gi(x̂
i(t))u∗i (t)

(6.11)

with initial condition x̂i(tl−1) = xi
e(tl−1) where x̂i is the state of this observer, ǔ∗,ij (τ |tk)

is the optimal input trajectory of LMPC j (j = 1, . . . ,m, j 6= i) received by LMPC i,

u∗i (t) is the actual input that has been applied to subsystem i, and xi
e(tl−1) is the

full state estimate obtained at tl−1. The state estimate xi
e(tl), l 6= 0, T, 2T, . . ., is

a combination of the state of the observer of Eq. 6.11 and of the available local

state information x̌s
f,i(tl) as follows: xi

e(tl) = [x̂i
1(tl)

T · · · x̌i(tl)
T · · · x̂i

m(tl)
T ]T where

x̌i(tl)
T = [x̌s,T

f,i x̂T
s,i]. The optimization problem of LMPC j for a time instant tl,

l 6= 0, T, 2T, . . . is as follows:

min
uj∈S(∆)

∫ N∆

0

[
|x̃j(τ)|Qc +

m∑
i=1

|ui(τ)|Rci

]
dτ (6.12a)

s.t. ˙̃xj(τ) = f(x̃j(τ)) +
m∑

i=1

gi(x̃
j(τ))ui (6.12b)

ui(τ) = ǔ∗,ji (tl − tk + τ |tk),∀i 6= j,

τ ∈ [0, tk + N∆− tl) (6.12c)

ui(τ) = hi(x̃
j(τ)), ∀i 6= j,
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τ ∈ [tk + N∆− tl, N∆) (6.12d)

∣∣∣uj(τ)− u∗,fj (tl − tk + τ |tk)
∣∣∣ ≤ ∆uj,

τ ∈ [0, tk + N∆− tl) (6.12e)

uj(τ) ∈ Uj (6.12f)

x̃j(0) = xj
e(tl) (6.12g)

where tk is the last time instant in which both fast and slowly sampled states are

available, the state x̃j is the predicted trajectory of the nominal system with uj

computed by the LMPC of Eq. 6.12 and all the other inputs are determined by the

constraints of Eqs. 6.12c and 6.12d. In this optimization problem, the input uj is

restricted to be within a bounded region around the reference input trajectories given

by u∗,fi (τ |tk) and h(x). The optimal solution to this optimization problem is denoted

by u∗,lj (τ |tl) which is defined for τ ∈ [0, N∆). The manipulated inputs of the control

design of Eq. 6.12 for t ∈ [tl, tl+1) (l 6= 0, T, 2T, . . .) are defined as follows:

ui(t) = u∗,li (t− tl|tl), i = 1, . . . ,m. (6.13)

In the design of Eqs. 6.9-6.10 and 6.12-6.13, the closed-loop stability of the system

of Eq. 6.2 is guaranteed by the design of Eqs. 6.9-6.10 at each sampling time tk,

k = 0, T, 2T, . . ., when the full state measurements are available. The design of

Eqs. 6.12-6.13 takes advantage of the predicted input trajectories u∗,fi , i = 1, . . . , m,

at sampling times tk, k = 0, T, 2T, . . ., and the additional available fast-sampling

state measurements to adjust the predicted inputs, u∗,fi , to improve the closed-loop

performance.
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Remark 6.2. Note that in the case of linear systems and flawless communication,

at each iteration, the input given by LMPC j of Eq. 6.9 may be defined as a convex

combination of the current optimal input trajectory and the previous one; for example,

uc
j(τ |tk) =

m,i6=j∑
i=1

wiu
c−1
j (τ |tk) + wju

∗,c
j (τ |tk) (6.14)

where
m∑

i=1

wi = 1 with 0 < wi < 1, u∗,cj is the current solution given by the optimization

problem of Eq. 6.9 and uc−1
j is the convex combination of the solutions obtained at

iteration c − 1. By doing this, it is possible to prove that the optimal cost of the

distributed LMPC of Eq. 6.9 converges to its optimal value [3, 92]. We also note

that in this case, the constraint of Eq. 6.9d can be removed and the stability of the

proposed DMPC architecture is still ensured. Please see Corollary 6.1 below. We

further note that for nonlinear systems it is not possible to prove the convergence of

the optimal cost of the distributed optimization problem of Eq. 6.9 to the cost of the

centralized LMPC [73] because the distributed LMPC does not solve the centralized

LMPC in a distributed fashion due to the way the Lyapunov-based constraint of the

centralized LMPC is broken down into constraints imposed on the individual LMPCs

(i.e., Eq. 6.9g).

Remark 6.3. Note that when there is no measurement noise or communication noise,

the implementation strategy at tk (k = 0, T, 2T, . . .) guarantees that at each sampling

time the optimal cost of the distributed optimization of Eq. 6.9 is upper bounded by

the cost of the Lyapunov-based controller h(·).
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6.2.3 Stability analysis

The stability of the closed-loop system is achieved due to the constraints of Eq. 6.9g

incorporated in each LMPC. The stability property is presented in Theorem 6.1 below.

To prove this theorem, we need the following definitions and propositions. Specifically,

we first define the stability region of the closed-loop system under Lyapunov-based

control, and certain state trajectories of the closed-loop system accounting for the

effect of noise. Subsequently, we state four propositions that bound the discrepancy

between various closed-loop system solutions for finite-time under Lyapunov-based

control that will be used to state the conditions and prove the closed-loop stability

result under multirate DMPC of Theorem 6.1.

Definition 6.1. We define Ωρn as follows:

ρn = max {V (x) : (x + n) ∈ Ωρ, |n| ≤ θx} (6.15)

where θx = max
1≤i≤m

{θi
x} defines the upper bound on the noise n. The region Ωρn will be

used as the stability region of the system under the Lyapunov-based controller h(x) in

the presence of measurement noise, process disturbances and communication noise.

Definition 6.2. The closed-loop state trajectory of the nominal system for t ∈ [tk, tk+1)

under h(x) based on actual system state, x(tk), and applied in sample and hold fashion

is denoted by xh,2(t) which is obtained by integrating, for t ∈ [tk, tk+1), the following

equation:

ẋh,2(t) = f(xh,2(t)) +
m∑

i=1

gi(xh,2(t))hi(xh,2(tk)) (6.16)

where xh,2(tk) ∈ Ωρn.

Definition 6.3. The closed-loop state trajectory of the nominal system for t ∈ [tk, tk+1)

under h(x) based on noisy system states and applied in sample and hold fashion is

158



denoted by xh(t) which is obtained by integrating, for t ∈ [tk, tk+1), the following

equation:

ẋh(t) = f(xh(t)) +
m∑

i=1

gi(xh(t))hi(x̌h(tk)) (6.17)

where xh(tk) ∈ Ωρn, x̌h(tk) = xh,2(tk) + n(tk), |n| ≤ θx.

Proposition 6.1 below bounds the difference between the state trajectories starting

from two different initial conditions in Ωρn (which is in the stability region Ωρ of the

control law h(x)) under noise with control inputs generated by h(x).

Proposition 6.1. Consider the systems:

ẋa(t) = f(xa(t)) +
m∑

i=1

gi(xa(t))hi(x̌a(0))

ẋb(t) = f(xb(t)) +
m∑

i=1

gi(xb(t))hi(x̌b(0))

where the initial states xa(0), xb(0) ∈ Ωρn, |xa(0)− xb(0)| ≤ θab, |xa(0)− x̌a(0)| ≤ θa

and |xb(0) − x̌b(0)| ≤ θb. If 0 < ρn < ρ, then there exists a function fE(·, ·, ·, ·) such

that |xa(t)− xb(t)| ≤ fE(θab, θa, θb, t) for all xa(t), xb(t) ∈ Ωρn with fE(θab, θa, θb, t) =

(θab +
L2

L1

)eL1t − L2

L1

where L1, L2, θab, θa and θb are positive real numbers.

Proof 6.1. If we define e(t) = xa(t) − xb(t), then the derivative of e(t) can be

calculated as ė(t) = ẋa − ẋb. Adding/subtracting
m∑

i=1

gi(xa(t))hi(x̌b(0)) to/from the

expression of ė(t) and using the conditions defined in Eq. 6.6 obtained by the local

Lipschitz properties and the fact that hi(·) satisfies input constraints, we can obtain

the following inequality:

|ė(t)| ≤ Cx|xa(t)− xb(t)|+
m∑

i=1

Mgi
Chi

|x̌a(0)− x̌b(0)|

+
m∑

i=1

umax
i Cui

|xa(t)− xb(t)|.
(6.18)
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Using that |x̌a(0) − x̌b(0)| ≤ θa + θb + θab and defining L1 = Cx +
m∑

i=1

umax
i Cui

and

L2 = (θa + θb + θab)
m∑

i=1

Mgi
Chi

, we obtain |ė(t)| ≤ L1|e(t)| + L2. Integrating |ė(t)|

with initial condition |e(0)| ≤ θab, we can obtain |e(t)| ≤ (θab +
L2

L1

)eL1t − L2

L1

which

proves Proposition 6.1.

The following proposition provides sufficient conditions that ensure that h(·) can

achieve closed-loop stability of the nominal system in the presence of bounded mea-

surement and communication noise.

Proposition 6.2. Consider the closed-loop nominal sampled trajectory xh(t) of the

system of Eq. 6.2 as defined in Definition 6.3. Let ∆, εs, θx > 0 and 0 < ρs < ρn < ρ

satisfy: (
Lx +

m∑
i=1

umax
i Lui

)
(fE(0, 0, θx, ∆) + M∆)

+θx

m∑
i=1

Cgi
Chi

− α2

(
α−1

1 (ρs)
) ≤ −εs/∆.

(6.19)

where fE is defined in Proposition 6.1. For any k, if xh(tk) ∈ Ωρn/Ωρs, then

V (xh(tk+1)) ≤ V (xh(tk))− εs (6.20)

and V (xh(t)) ≤ V (xh(tk)) for t ∈ [tk, tk+1). Also, if ρmin ≤ ρn where ρmin =

max{V (xh(t+ ∆)) : V (xh(t)) ≤ ρs} and xh(t0) ∈ Ωρn, then we also have V (xh(tk)) ≤
max{V (xh(t0))− kεs, ρmin} and V (xh(t)) ≤ max{V (xh(tk)), ρmin} for t ∈ [tk, tk+1).

Proof 6.2. Following Definition 6.3, the time derivative of the Lyapunov function

along the nominal sampled trajectory xh(t) of the system of Eq. 6.2 for t ∈ [tk, tk+1)
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is given by V̇ (xh(t)) =
∂V (xh(t))

∂x
ẋh(t). Adding/subtracting

∂V (xh,2(tk))

∂x

(
f(xh,2(tk)) +

m∑
i=1

gi(xh,2(tk))hi(xh,2(tk))

)
(6.21)

to/from the expression describing V̇ (xh(t)), and then adding/substracting

∂V (xh(t))

∂x

m∑
i=1

gi(xh(t))hi(xh,2(tk)) (6.22)

to/from the resulting inequality, we can obtain the following inequality by the condi-

tions of Eqs. 6.4 and 6.6:

V̇ (xh(t)) ≤
(

Lx +
m∑

i=1

umax
i Lui

)
|xh(t)− xh,2(tk)|

+
m∑

i=1

Cgi
Chi

|x̌h(tk)− xh,2(tk)| − α2

(
α−1

1 (ρs)
) (6.23)

for all xh,2(tk) ∈ Ωρn/Ωρs . Using the triangular inequality, we obtain |xh(t) −
xh,2(tk)| ≤ |xh(t)− xh,2(t)|+ |xh,2(t)− xh,2(tk)| for t ∈ [tk, tk+1). Taking into account

the condition of Eq. 6.5, the continuity of xh,2(t), the fact that |x̌h(tk)−xh,2(tk)| ≤ θx,

and applying Proposition 6.1, we obtain from Eq. 6.23 the following bound on the

time derivative of the Lyapunov function for t ∈ [tk, tk+1), for all initial states

xh(tk) ∈ Ωρn/Ωρs :

V̇ (xh(t)) ≤ θx

m∑
i=1

Cgi
Chi

− α2

(
α−1

1 (ρs)
)

+

(
Lx +

m∑
i=1

umax
i Lui

)
(fE(0, 0, θx, ∆) + M∆) .

(6.24)

If the condition of Eq. 6.19 is satisfied, then V̇ (xh(t)) ≤ −εs/∆. Integrating this

161



bound on t ∈ [tk, tk+1), we obtain that V (xh(tk+1)) ≤ V (xh(tk))− εs and V (xh(t)) ≤
V (xh(tk)). Applying this result recursively, it is easy to verify that V (xh(tk)) ≤
max{V (xh(t0))− kεs, ρmin} and V (xh(t)) ≤ max{V (xh(tk)), ρmin}.

Proposition 6.2 ensures that if the nominal system under the control h(x) imple-

mented in a sample-and-hold fashion starts in Ωρn , then it is ultimately bounded in

Ωρmin
.

Proposition 6.3. Consider the systems

ẋa(t) = f(xa(t)) +
m∑

i=1

gi(xa(t))u
c
i(t)

ẋb(t) = f(xb(t)) +

m, i 6=j∑
i=1

gi(xb(t))ǔ
c−1
i (t) + gj(xb(t))u

c
j(t)

where ǔc−1
i (t) = uc−1

i (t)+nui
with initial states xb(t0) = xa(t0)+nj

x ∈ Ωρ, xa(t0) ∈ Ωρn,

|nj
x| ≤ θj

x and |nui
| ≤ θui

. There exists a function fX,j(·, ·) such that

|xa(t)− xb(t)| ≤ fX,j(θ
j
x, t− t0) (6.25)

for all xa(t), xb(t) ∈ Ωρ, and uc
i(t), uc−1

i ∈ Ui and |uc
i(t)−ǔc−1

i (t)| ≤ ∆ui, i = 1, . . . , m

and fX,j(τ) =

(
C2,j

C1,j

+ θj
x

)
eC1,j(τ) − C2,j

C1,j

with C2,j and C1,j are positive constants.

Proof 6.3. Let e(t) = xa(t) − xb(t). The derivative of e(t) can be calculated as

ė(t) = ẋa(t)− ẋb(t). Adding/subtracting

m,i6=j∑
i=1

gi(xa(t))ǔ
c−1
i (t) to/from the expression

of e(t), and then using the fact ǔc−1
i (t) ≤ umax

i + θui
and the conditions defined in

Eq. 6.6, we obtain the following inequality:

|ė(t)| ≤
(

Cx + umax
j Cuj

+

m,i6=j∑
i=1

(umax
i + θui

)Cui

)
|e(t)|+

m,i6=j∑
i=1

Mg,i∆ui
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Defining C1,j = Cx + umax
j Cuj

+

m,i6=j∑
i=1

(umax
i + θui

)Cui
and C2,j =

m,i6=j∑
i=1

Mgi
∆ui, from

the above inequality, we have |ė(t)| ≤ C1,j|e(t)| + C2,j. Since the initial condition,

e(t0), satisfies |e(t0)| ≤ θj
x (recall xb(t0) = xa(t0)+nj

x where |nj
x| ≤ θj

x), we can obtain

|e(t)| ≤
(

C2,j

C1,j

+ θj
x

)
eC1,j(t−t0) − C2,j

C1,j

. This proves Proposition 6.3.

Proposition 6.3 bounds the difference between the nominal state trajectory under

the optimized control inputs and the predicted nominal state trajectory generated in

each LMPC optimization problem.

Proposition 6.4. Consider the systems

ẋa(t) = f(xa(t)) +
m∑

i=1

gi(xa(t))ui(t) + k(xa(t))w(t)

ẋb(t) = f(xb(t)) +
m∑

i=1

gi(xb(t))ui(t)

with initial states xb(tk) = xa(tk) + n ∈ Ωρ, xa(tk) ∈ Ωρ, and |n| ≤ θx. There exists a

function fW (·, ·) such that

|xa(t)− xb(t)| ≤ fW (θx, t− tk), (6.26)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with fW (θx, τ) =

(
θx +

Γ2

Γ1

)
eΓ1τ− Γ2

Γ1
where

Γ1, Γ2 are positive real numbers.

Proof 6.4. Define e(t) = xa(t)−xb(t), then ė(t) = ẋa(t)− ẋb(t). Using the condition

of Eq. 6.6, we obtain the following inequality:

|ė(t)| ≤
(

Cx +
m∑

i=1

umax
i Cui

)
|e(t)|+ Mwθ. (6.27)

163



Defining Γ1 = Cx +
m∑

i=1

umax
i Cui

and Γ2 = Mwθ, and accounting for that |e(tk)| ≤ θx,

we obtain |e(t)| ≤
(

θx +
Γ2

Γ1

)
eΓ1(t−tk) − Γ2

Γ1

. This proves Proposition 6.4.

Proposition 6.4 provides an upper bound on the deviation of the state trajec-

tory obtained using the nominal model, from the actual state trajectory when the

same control actions are applied. Proposition 6.5 bounds the difference between the

magnitudes of the Lyapunov function of two states in Ωρ.

Proposition 6.5 (c.f. [60]). Consider the Lyapunov function V (·) of the system of

Eq. 6.2. There exists a quadratic function fV (·) such that V (x) ≤ V (x′)+fV (|x−x′|)
for all x, x′ ∈ Ωρ.

In Theorem 6.1 below, we provide sufficient conditions under which the DMPC

of Eqs. 6.9-6.10 and 6.12-6.13 guarantees that the state of the closed-loop system

is ultimately bounded in a region that contains the origin. To simplify the proof

of Theorem 6.1, we define new functions fH(τ) and fX(τ) based on fE and fX,i

(i = 1, . . . , m), respectively, as follows:

fH(τ) =
m∑

i=2

(
1

m
Lx + Mgi

Chi
+ umax

i Lui

)

(
1

L1

fE(θi
x + θ1

x, 0, 0, τ)− L2τ + θi
x + θ1

x

L1

)
,

fX(τ) =

(
1

m
Lx + Lu1u

max
1

)(
1

C1,1

fX,1(0, τ)− C2,1

C1,1

τ

)

+
m∑

i=2

(
1

m
Lx + Lui

umax
i

)

(
1

C1,i
fX,i(θ

i
x + θ1

x, τ)− C2,i

C1,i
τ − θi

x + θ1
x

C1,i

)
.

It is easy to verify that fH(τ) and fX(τ) are strictly increasing and convex functions

of their arguments.
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Theorem 6.1. Consider the system of Eq. 6.2 in closed-loop with the DMPC design

of Eqs. 6.9-6.10 and 6.12-6.13 based on the controller h(x) that satisfies the conditions

of Eq. 6.4 with class K functions αi(·), i = 1, 2. If there exist ∆ > 0, εs > 0, θx > 0,

ρ > ρn > ρmin > 0, ρ > ρn > ρs > 0 and N ≥ T ≥ 1 that satisfy the conditions of

Eqs. 6.19 and the following inequality:

fX(T∆) + fV (fW (θx, T∆)) + fV (fW (θx, 0))fH(T∆) +
m∑

i=1

Cg,i∆ui(T − 1)∆− Tεs < 0,

(6.28)

and if the initial state of the closed-loop system x(t0) ∈ Ωρn, then x(t) is ultimately

bounded in Ωρb
⊆ Ωρn where

ρb = ρmin+fV (fW (θx, 0))ui(T−1)∆+
m∑

i=1

Cg,i∆+fH(T∆)+fV (fW (θx, T∆))+fX(T∆).

Proof 6.5. We first consider two consecutive time instants in which both fast and

slowly sampled states are available: tk and tk+T (k = 0, T, 2T, . . .). We will prove that

the Lyapunov function of the system is decreasing from tk to tk+T . In the following, we

denote the trajectory of the nominal system of Eq. 6.2 under the DMPC of Eqs. 6.9-

6.10 and 6.12-6.13 starting from x̌1(tk) (which is the state received by LMPC 1 at tk)

as x̃, and we also denote the predicted nominal system trajectory in the evaluation

of the LMPC of Eq. 6.9 at the final iteration as x̃j with j = 1, . . . , m. It should

be mentioned that the initial condition for the nominal sampled trajectory x̃ under

the implementation of u∗i can be x̃(tk) = xi
h(0|tk) for any i = 1, ..., m. Without loss

of generality, we assume that x̃(tk) = x̌1(tk) = x1
h(0|tk); use of any i = 2, . . . , m in

x̃(tk) = xi
h(0|tk) would simply require an appropriate modification in the definitions

of fX(·) and fH(·).

The derivative of the Lyapunov function of the nominal system of Eq. 6.2 under
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the DMPC of Eqs. 6.9-6.10 and 6.12-6.13 from tk to tk+T can be expressed as follows:

V̇ (x̃(τ)) =
∂V (x̃(τ))

∂x

(
f(x̃(τ)) +

m∑
i=1

gi(x̃(τ))u∗i (τ)

)
(6.29)

where x̃(tk) = x̌1(tk) = x1
h(0|tk) and u∗i (τ) is the actual input applied to the system

and defined as follows:

u∗i (τ) =





u∗,fi (τ |tk), τ ∈ [0, ∆)

u∗,li (τ |tl), τ ∈ [0, ∆), l = k + 1, . . . , k + T − 1.

Combining Eq. 6.29 and the inequality constraints of Eq. 6.9g (i = 1, . . . ,m), and

adding/subtracting

∂V (x1
h(τ |tk))
∂x

(
f(x1

h(τ |tk)) +
m∑

i=1

gi(x
1
h(τ |tk))u1

h,i(τ |tk)
)

(6.30)

to/from the righthand side of the resulting inequality, we can obtain the following

inequality for all τ ∈ [0, T∆] by taking into account the conditions of Eq. 6.6:

V̇ (x̃(τ)) ≤ V̇ (x1
h(τ |tk)) +

m∑
i=1

Cgi

(
u∗i (τ)− u∗,fi (τ |tk)

)

+

(
1

m
Lx + Lu1u

∗,f
1 (τ |tk)

)
|x̃(τ)− x̃1(τ)|+ . . .

+

(
1

m
Lx + Lumu∗,fm (τ |tk)

)
|x̃(τ)− x̃m(τ)|

+

(
1

m
Lx + umax

2 Lu2

)
|x2

h(τ |tk)− x1
h(τ |tk)|+ . . .

+

(
1

m
Lx + umax

m Lum

)
|xm

h (τ |tk)− x1
h(τ |tk)|

+Mg2Ch2 |x2
h(τ |tk)− x1

h(τ |tk)|+ . . .

+MgmChm |xm
h (τ |tk)− x1

h(τ |tk)|

(6.31)

166



Applying Propositions 6.3 and 6.1 to the inequality of Eq. 6.31, and then integrating

the resulting inequality from τ = 0 to τ = T∆ and taking into account that x̃(tk) =

x1
h(0|tk), the constraints of Eqs. 6.9d and 6.12e and the definitions of fX(·), fH(·) and

u∗(τ), the following inequality can be obtained:

V (x̃(tk+T )) ≤ V (x1
h(T∆|tk)) + fX(T∆) + fH(T∆) +

m∑
i=1

Cg,i∆ui(T − 1)∆. (6.32)

Since V (x1
h(T∆|tk)) ≤ max{V (x1

h(0|tk)) − Tεs, ρmin} from Proposition 6.2, x̃(tk) =

x1
h(0|tk) and |V (x̃(tk))− V (x(tk))| ≤ fV (fW (θx, 0)) and |V (x̃(tk+T ))− V (x(tk+T ))|
≤ fV (fW (θx, T∆)) from Propositions 6.4 and 6.5, we can obtain the following in-

equality from Eq. 6.32:

V (x(tk+T )) ≤ max{V (x(tk))− Tεs, ρmin}+ fX(T∆) + fH(T∆) + fV (fW (θx, T∆))

+fV (fW (θx, 0)) +
m∑

i=1

Cg,i∆ui(T − 1)∆.

(6.33)

If there exist ∆ > 0, εs > 0, θx > 0, ρ > ρn > ρmin > 0, ρ > ρn > ρs > 0 and

N ≥ T ≥ 1 that satisfy the conditions of Eqs. 6.19 and Eq. 6.28, then there exists

εw > 0 such that the following inequality holds

V (x(tk+T )) ≤ max{V (x(tk))− εw, ρb} (6.34)

which implies that if x(tk) ∈ Ωρn/Ωρb
, then V (x(tk+T )) < V (x(tk)), and if x(tk) ∈ Ωρb

,

then V (x(tk+T )) ≤ ρb.

Because the upper bound on the difference between the Lyapunov function of the

actual trajectory x and the nominal trajectory x̃ (see Eq. 6.34) is a strictly increasing
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function of T , the inequality of Eq. 6.34 also implies that:

V (x(t)) ≤ max{V (x(tk))− εw, ρb}, ∀t ∈ [tk, tk+T ]. (6.35)

Using the inequality of Eq. 6.35 recursively, it can be proved that if x(t0) ∈ Ωρn ,

then the closed-loop trajectories of the system of Eq. 6.2 under the proposed DMPC

design stay in Ωρn for all times (i.e., x(t) ∈ Ωρn for all t). Moreover, if x(t0) ∈ Ωρn , the

closed-loop trajectories of the system of Eq. 6.2 under the proposed iterative DMPC

design satisfy lim sup
t→∞

V (x(t)) ≤ ρb. This proves Theorem 6.1.

In addition to the stability result of Theorem 6.1, we note that because the closed-

loop states of the system of Eq. 6.2 under the proposed DMPC scheme are guaranteed

to be bounded in a compact set containing the origin and the manipulated inputs are

bounded for all times (this follows from the practical stability of the closed-loop sys-

tem), the cost along the closed-loop system trajectory over finite time (which only

depends on the absolute values of the magnitude of the system states and the ma-

nipulated inputs) is also bounded. We also note that in the context of linear systems

and noise-free measurements and communication, the distributed optimization prob-

lem of Eq. 6.9 is convex. Furthermore, if the inputs of the distributed controllers are

defined as convex combinations of their current and previous solutions as described

in Eq. 6.14, as the iteration number c increases, the optimal cost given by the dis-

tributed optimization problem of Eq. 6.9 converges to its corresponding centralized

optimal value. This property is summarized in the following Corollary 6.1.

Corollary 6.1. Consider a class of linear time-invariant systems:

ẋ(t) = Ax(t) + Bu(t) (6.36)
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with

ẋi = Aiixi +
∑

j 6=i

Aijxj + Biui(t) (6.37)

where A, B, Aii, Aij and Bi are constant matrices with appropriate dimensions.

If we define the inputs of the distributed controllers at iteration c as in Eq. 6.14,

then at a sampling time tk, as the iteration number c → ∞, the optimal cost of

the distributed optimization problem of Eq. 6.9 converges to the optimal cost of the

corresponding centralized control system. If x(0) ∈ Ωρ and the corresponding central-

ized MPC asymptotically stabilizes the origin of the closed-loop system, the DMPC

of Eq. 6.9 also asymptotically stabilizes the origin of the closed-loop system and the

closed-loop performance of the DMPC converges to the one given by the centralized

control system.

Proof 6.6. In this proof, we focus on a simplified case: 1) a linear system com-

posed of two subsystems, and 2) full state feedback, x, is available every sampling

time. We first prove that, at each sampling time, the optimal cost of the distributed

optimization problem of Eq. 6.9 converges to the optimal cost of the corresponding

centralized control system as the iteration number increases, and then prove that if

the corresponding centralized MPC asymptotically stabilizes the origin of the closed-

loop system, then the DMPC of Eq. 6.9 also asymptotically stabilizes the origin of the

closed-loop system. This proof can be extended in a straightforward manner to in-

clude general linear systems with measurements available every T (T ≤ N) sampling

times.

For a linear system, it is easy to verify that the constraints of Eqs. 6.9a-6.9f are

convex. We will focus on the proof of the convexity of the constraint of Eq. 6.9g.

Specifically, using a quadratic Lyapunov function V (x) = xT Px where P is a positive
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definite symmetric matrix, the constraint of Eq. 6.9g takes the following form:

(
1

2
x̃j(τ)T AT + uj(τ)T BT

j

)
Px̃j(τ) + x̃j(τ)T P

(
1

2
Ax̃j(τ) + Bjuj(τ)

)

≤
(

1

2
xj

h(τ |tk)T AT + uj
h,j(τ |tk)T BT

j

)
Px̃j

h(τ |tk)

+xj
h(τ |tk)T P

(
1

2
Axj

h(τ |tk) + Bju
j
h,j(τ |tk)

)
(6.38)

where j = 1, 2, τ ∈ [0, ∆] and x̃j is the predicted trajectory of the nominal system

with uj computed by the LMPC of Eq. 6.9 and the other input is received from the

other controller. The right hand side of Eq. 6.38 has no dependence on uj or x̃j and

can be considered as a constant. If we take into account that the input trajectories

are piece-wise constant and that x̃j(τ) = eAτ x̃j(0)+
∫ τ

0
eA(τ−s)Bu(s)ds, for τ ∈ [0, ∆],

we can obtain that:

x̃j(τ) = Cj(tk, τ) + Dj(tk, τ)uj (6.39)

where Cj(tk, τ) and Dj(tk, τ) are matrices that depend only on τ . As it can be seen

from Eq. 6.39, uj appears linearly. Taking into account Eq. 6.39 and the fact that the

right hand side of Eq. 6.38 can be considered as a constant, we can re-write Eq. 6.38

in a quadratic form with respect to uj as follows:

uT
j Ej(tk, τ)uj + F j(tk, τ)uj ≤ Gj(tk, τ) (6.40)

where Ej(tk, τ), F j(tk, τ) and Gj(tk, τ) are matrices that depend only on τ . This

proves that the constraint of Eq. 6.38 is convex. Therefore, the optimization problem

of Eq. 6.9 for the linear system with two subsystems is convex. If the inputs of the

distributed controllers at each iteration c are defined as in Eq. 6.14, then the conver-

gence of the cost given by the distributed optimization problem to the corresponding

centralized control system can be proved following similar strategies used in [3, 92] for
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a specific sampling time tk. If x(0) ∈ Ωρ and the centralized MPC can asymptotically

stabilize the origin of the closed-loop system, using the above arguments recursively

for each sampling time, if c →∞ for each sampling time, it follows that the DMPC

also asymptotically stabilizes the origin of the closed-loop system and the closed-loop

cost converges to the one given by the centralized control system.

Remark 6.4. Referring to the open-loop nature of the estimator of Eq. 6.11, it is

important to note that it does not pose any restrictions on the open-loop stability

of the processes in which the proposed multirate DMPC method can be applied. The

reason is that this estimator is used to provide “short-term” (within the slow sampling

period upper bound) estimates of plant states which are used in the fast sampling-time

DMPCs applied in the various subsystems; therefore, if the upper bound on the slow

sampling time is sufficiently small as required by Theorem 1, the stability of the closed-

loop system under the proposed multirate DMPC scheme is guaranteed.

Remark 6.5. Even though the conditions of Theorem 6.1 are conservative in nature

in order to guarantee closed-loop stability, they do provide insight into the relationship

between the various variables characterizing the controller, process and measurement

sampling components of the closed-loop system and can be used to properly tune the

overall control system. The degree of conservativeness of the conditions of Theorem

1 can be assessed in practice via closed-loop simulations.

Remark 6.6. Note that if all the distributed controllers have access to the whole sys-

tem state vector measurements at each slow sampling instant, the controllers do not

have to communicate and can make their calculation in a decentralized fashion without

loss of the closed-loop stability because of the design of the stability constraints. The

communication and iteration of the distributed controllers, however, can improve the

overall closed-loop system performance significantly. It is also important to note that
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the DMPC system operating at the slow sampling time can utilize alternative com-

munication strategies between the distributed controllers like, for example, sequential

communication or local (nearest-neighbor) communication, provided appropriate con-

ditions are satisfied that ensure stability of the closed-loop system in each case. Fur-

thermore, ideas from the quasi-decentralized control framework for multi-unit plants

developed in [93] where suitable models are used in each controller to estimate state

variables of the other subsystems, can be adopted in the proposed DMPC framework.

Finally, we note that if measurements of some of the state variables are not available,

networked state estimation schemes [94] may be used within the proposed multirate

DMPC framework.

6.3 Application to a chemical process

The process considered in this study is a three vessel, reactor-separator system con-

sisting of two continuously stirred tank reactors (CSTRs) and a flash tank separator.

The reactions A → B and A → C (referred to as 1 and 2, respectively) take place

in the two CSTRs before the effluent from CSTR 2 is fed to a flash tank. The de-

tailed description and modeling of the process can be found in [15]. The process is

numerically simulated using a standard Euler integration method. Process noise was

added to simulate disturbances/model uncertainty and it is generated as autocorre-

lated noise of the form wk = φwk−1 + ξk where k = 0, 1, . . . is the discrete time step

of 0.001 hr, ξk is generated by a normally distributed random variable with standard

deviation σp, and φ is the autocorrelation factor and wk is bounded by θp, that is

|wk| ≤ θp. Table 6.1 contains the parameters used in generating the process noise.

The process is divided into three subsystems corresponding to the first CSTR, the

second CSTR and the separator, respectively. For the three subsystems, we will refer
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Table 6.1: Disturbance parameters.

σp φ θp σp φ θp

CA1 0.1 0.7 0.09 CA2 0.1 0.7 0.09
CB1 0.02 0.7 0.01 CB2 0.1 0.7 0.03
CC1 0.02 0.7 0.01 CC2 0.1 0.7 0.01
T1 10 0.7 1.17 T2 10 0.7 1.35
CA3 0.1 0.7 0.09 CB3 0.1 0.7 0.02
CC3 0.02 0.7 0.01 T3 10 0.7 1.35

Table 6.2: Steady-state values for xs.
CA1s 3.31 [kmol

m3 ] CA2s 2.75 [kmol
m3 ]

CB1s 0.17 [kmol
m3 ] CB2s 0.45 [kmol

m3 ]
CC1s 0.04 [kmol

m3 ] CC2s 0.11 [kmol
m3 ]

T1s 369.53 [K] T2s 435.25 [K]
CA3s 2.88 [kmol

m3 ] CB3s 0.50 [kmol
m3 ]

CC3s 0.12 [kmol
m3 ] T3s 435.25 [K]

to them as subsystem 1, subsystem 2 and subsystem 3, respectively. The state of

subsystem 1 is defined as the deviations of the temperature and species concentra-

tions in the first CSTR from their desired steady-state; that is, xT
1 = [xT

f,1, x
T
s,1] where

xf,1 = T1−T1s and xT
s,1 = [CA1−CA1s CB1−CB1s CC1−CCs] denote fast sampled and

slowly sampled measurements of subsystem 1, respectively. Due to the simplicity of

temperature measurement at each sampling time, we denote the temperature as the

fast sampled measurement of each subsystem. The states of subsystems 2 and 3 are

defined similarly; they are xT
2 = [T2 − T2s CA2 − CA2s CB2 − CB2s CC2 − CC2s] and

xT
3 = [T3 − T3s CA3 −CA3s CB3 −CB3s CC3 −CC3s]. The values of the desired steady

state are shown in Table 6.2. Accordingly, the state of the whole process is defined

as a combination of the states of the three subsystems; that is, xT = [xT
1 xT

2 xT
3 ].

The process has one unstable and two stable steady states. The control objective is

to regulate the process at the unstable steady-state xs corresponding to the operating
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point defined by Q1s = 0 KJ/hr, Q2s = 0 KJ/hr and Q3s = 0 KJ/hr, respectively.

Each of the tanks has an external heat input which is the control input associated

with each subsystem, that is, u1 = Q1 − Q1s, u2 = Q2 − Q2s and u3 = Q3 − Q3s.

The inputs are subject to constraints as follows: |u1| ≤ 5 × 104 KJ/hr, |u2| ≤
1.5 × 105 KJ/hr, and |u3| ≤ 2 × 105 KJ/hr. Three distributed MPC controllers

(controller 1, controller 2 and controller 3) will be designed to manipulate each one of

the three inputs in the three subsystems, respectively. The process model (see [15])

belongs to the following class of nonlinear systems:

ẋ(t) = f(x(t)) +
3∑

i=1

gi(x(t))ui(t) + w(x(t))

where the explicit expressions of f , gi (i = 1, 2, 3), are omitted for brevity. We assume

that xf,1, xf,2, xf,3 are measured and sent to controller 1, controller 2 and controller 3,

respectively, at synchronous time instants tl = l∆, l = 0, 1, . . ., with ∆ = 0.01 hr =

36 sec while we assume that each controller receives xs,i every T = 4 sampling times.

The three subsystems exchange their states at tk = kT∆, k = 0, 1, . . .; that is,

the full system state x is sent to all the controllers every T = 4 sampling times.

In the simulations, we consider a quadratic Lyapunov function V (x) = xT Px with

P = diag([20 103 103 103 20 103 103 103 20 103 103 103]). We design the Lyapunov-

based controller h(x) following the continuous bounded control law [58, 18] as follows:

h(x) = −p(x)(LGV )T (6.41)

where

p(x) =





Lf V +
√

(Lf V )
2
+(umax|LGV T |)4

|LGV T |2
[
1+
√

1+(umax|LGV T |)2
] , LGV 6= 0

0 , LGV = 0
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with LfV = ∂V
∂x

f(x) and LGV = ∂V
∂x

G(x) where G = [g1 g2 g3] being the Lie deriva-

tives of the scalar function V with respect to the vector fields f and G, respectively.

To estimate the stability region Ωρ, extensive simulations were carried out to get an

estimate of the region of the closed-loop system under Lyapunov-based control h(x)

where the time-derivative of the Lyapunov function is negative, and then Ωρ is defined

as a level set of the Lyapunov function V (x) embedded within this region.

Based on the Lyapunov-based controller h(x) and V (x), we design the three LM-

PCs following Eqs. 6.9-6.10 and 6.12-6.13 and refer to them as LMPC 1, LMPC 2

and LMPC 3. For each LMPC, we also design a state observer following Eq. 6.11.

In the design of the LMPC controllers, the weighting matrices are chosen to be

Qc = diag([20 103 103 103 20 103 103 103 20 103 103 103]), R1 = R2 = R3 = 10−6.

The prediction horizon for the optimization problem is N = 5 with a sampling

time of ∆ = 0.01 hr. In the simulations, we put a maximum iteration number

cmax on the DMPC evaluation and the maximum iteration number is chosen to

be cmax = 2. Also, we set ∆ui as 10% percent of umax
i (i = 1, 2, 3). The op-

timization problems are solved by the open source interior point optimizer Ipopt

[97]. The initial condition which is utilized to carry out simulations is x(0)T =

[360.69 3.19 0.15 0.03 430.91 2.76 0.34 0.08 430.42 2.79 0.38 0.08]. We set the bound

on the measurement noise to be 1% of the instantaneous value of the signal measured

by sensors. The communication channel noise is generated using gaussian random

variables with variances σn and σu bounded by θn and θu for state values and control

inputs, respectively. These values are shown in Table 6.3.

We first carried out simulations to illustrate that the proposed multirate DMPC

achieves practical closed-loop stability. Figure 6.2 shows the temperature and concen-

tration trajectories of the process under the DMPC design of Eqs. 6.9-6.10 and 6.12-
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Table 6.3: Communication noise parameters.

σn θn σn θn

CA1 1 0.033 CA2 1 0.027
CB1 1 0.001 CB2 1 0.004
CC1 1 0.001 CC2 1 0.001
T1 10 3.695 T2 10 4.352

σn θn σu θu

CA3 1 0.028 u1 10 7.39
CB3 1 0.005 u2 30 22.17
CC3 1 0.001 u3 40 29.56
T3 10 4.352

6.13, respectively. As it can be seen from the figure, the proposed DMPC system can

steer the system state to a neighborhood of the desired steady-state. It should be

emphasized that the inequalities of Eqs 6.19 and 6.28 have been confirmed through

simulations.

We also carried out a set of simulations to demonstrate the optimality of the

closed-loop performance of the proposed multirate DMPC compared with different

control schemes. Specifically, we compared the proposed multirate DMPC with five

different control schemes from a performance point of view for the case in which there

is no communication and measurement noise. The five control schemes considered

are as follows: (1) the proposed DMPC design of Eqs. 6.9-6.10 and 6.12-6.13; (2)

a DMPC design with LMPCs formulated as in Eq. 6.9 which are only evaluated at

time instants in which full system states are available and the inputs are implemented

in open-loop fashion between two full system state measurements (in this case, the

additional fast sampled measurements are not used to improve the closed-loop per-

formance); (3) the proposed DMPC design but without communication between the

distributed controllers and each controller estimating the full system states and the

actions of the other controllers based on the process model and h(x) (in this case,
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Figure 6.2: State trajectories of the process under the DMPC design of Eqs. 6.9-6.10
and 6.12-6.13 with noise.
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Figure 6.3: Manipulated input trajectories under the DMPC design of Eqs. 6.9-6.10
and 6.12-6.13 with noise.
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a distributed LMPC in the DMPC design takes advantage of both fast and slowly

sampled measurements of its own local subsystem but does not receive any input or

state information from the other subsystems); (4) the DMPC design as in (2) but

without communication between the distributed controllers and each controller esti-

mating the full system states and actions of the other controllers based on the process

model and h(x); (5) h(x) applied in sample-and-hold; (6) the centralized LMPC [79].

We perform these simulations under different initial conditions and different process

noise/disturbances. To carry out this comparison, we have computed the total cost

of each simulation based on the index of the following form:

J =
M∑
i=0

[
x(ti)

T Qcx(ti) +
3∑

j=1

uj(ti)
T Rcjuj(ti)

]

where t0 = 0 is the initial time of the simulations and tM = 1 hr is the end of the

simulations. Table 6.4 shows the total cost computed for 10 different closed-loop

simulations under the six different control schemes. From Table 6.4, we see that the

centralized LMPC gives the best performance and the proposed DMPC design gives

the second best performance in all the simulations. Also, Table 6.4 demonstrates that

when there is communication between controllers or there is MPC implementation

when there is only partial state information in each controller (fast sampled state),

the closed-loop performance is improved. It should be mentioned that the Lyapunov-

based controller is a feasible solution to the DMPC problem; however, the DMPC

solution can substantially improve closed-loop performance while it inherits closed-

loop stability from the Lyapunov-based controller. All of the DMPC designs yield

improvement in performance compared to the Lyapunov-based controller.

In the final set of simulations, we demonstrated that the proposed multirate

DMPC has a reduced computational complexity with respect to a corresponding
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Table 6.4: Total performance cost comparison along the closed-loop system trajec-
tories in 10 different runs under: (1) the proposed multirate DMPC design; (2) a
DMPC design with LMPCs formulated as in Eq. 6.9 evaluated only at time instants
in which full system states are available and the inputs are implemented in open-loop
fashion between two full system state measurements; (3) the proposed DMPC design
but without communication between the distributed controllers and each controller
estimating the full system states and the actions of the other controllers based on the
process model and h(x); (4) the DMPC design as in (2) but without communication
between the distributed controllers and each controller estimating the full system
states and actions of the other controllers based on the process model and h(x); (5)
h(x) applied in sample-and-hold; (6) the centralized LMPC [79].

(1) (2) (3) (4) (5) (6)
43963 633589 72200 812903 1116578 27057
21512 606628 28079 743874 1095819 7370
23041 604148 27407 706319 1084445 15112
24681 613289 30211 720131 1104045 8838
31440 618649 36290 723598 1106508 18654
21775 654268 25950 859380 1079984 15287
28553 667143 34209 879852 1109976 13168
28974 659250 34565 865643 1109363 13424
28228 672756 33949 891549 1110884 12991
23929 668499 29688 887300 1106623 11903
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centralized scheme. Specifically, we compared the evaluation time of the centralized

LMPC [79] with the one of the proposed DMPC design in the case that there is no

noise in communication or measurements. We consider the case where each controller

evaluates the input trajectories every T = 4 sampling times (both in the centralized

and the distributed architectures) and evaluate the computational time of the LMPC

optimization problems for 2500 independent closed-loop simulation runs. We con-

sider only the sampling times in which controllers have access to full system states

including fast and slowly sampled states. We found that the mean evaluation time

of the centralized LMPC is 0.267 sec and the mean evaluation time of the DMPC

is 0.235 sec which is the maximum time among the three distributed controllers

(LMPC 1: 0.215 sec, LMPC 2: 0.235 sec and LMPC 3: 0.206 sec). From this set of

simulations, we see that the proposed DMPC design leads to about 12% reduction in

the controller evaluation time.

6.4 Conclusions

In this chapter, we designed a DMPC system using multirate sampling for large-

scale nonlinear uncertain systems composed of several coupled subsystems. In the

proposed control architecture, the controllers were designed via LMPC techniques

taking into account bounded measurement and communication noise and process

disturbances. Sufficient conditions under which the state of the closed-loop system is

ultimately bounded in an invariant region containing the origin were derived. Finally,

the applicability and performance of the proposed DMPC scheme were demonstrated

through a nonlinear chemical process example.
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Chapter 7

Distributed Model Predictive

Control of Switched Nonlinear

Systems with Scheduled Mode

Transitions

Due to changes in raw materials (feedstock), energy sources, product specifications

and market demands, control of switched nonlinear systems with scheduled mode

transitions has received considerable attention in the context of chemical process

control applications. From a stability analysis point of view, switched systems are

well studied using multiple Lyapunov function (MLF) [5] and dwell time [44] concepts

(see also [56, 57] for results and references in this area). From a controller design

standpoint, in order to achieve closed-loop stability, mode transition situations should

be carefully accounted for in the control problem formulation and solution. In this

direction, control of switched systems has been addressed using approaches based
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on Lyapunov functions (e.g., [21, 27, 31, 45, 101]) as well as optimal control theory

(e.g., [5, 4, 30]). Furthermore, in order to achieve scheduled mode transitions in

an optimal setting and accommodate input and state constraints, model predictive

control (MPC) framework can be employed to design control systems that can achieve

these objectives (see, for example [8, 73, 53, 52] for results on MPC of hybrid systems).

As the number of manipulated inputs increases, as it is the case in the context of

large-scale chemical plants, the evaluation time of centralized MPC may increase

significantly. This may impede the ability of centralized MPC to carry out real-time

calculations within the limits imposed by process dynamics and operating conditions.

These control action evaluation problems may become more acute when additional

constraints are imposed on the MPC as it is the case in the context of switched

systems in order to properly force the closed-loop system state to follow a trajectory

that meets the desired switching (operating) process schedule. Furthermore, there are

cooperative DMPC schemes where each distributed controller optimizes the control

actions for its actuators by minimizing a “global” cost accounting for the entire plant

state and set of inputs [87, 19]; however, at this point, there is no work on the DMPC

of switched or hybrid systems.

In this chapter, we present a framework for the design of distributed model pre-

dictive control systems for a broad class of switched nonlinear systems for which the

mode transitions take place according to a prescribed switching schedule. Under ap-

propriate stabilizability assumptions on the existence of a set of feedback controllers

that can stabilize the closed-loop switched, nonlinear system, we design a Lyapunov-

based iterative DMPC scheme with appropriate stability constraints that achieves

stability of the switched closed-loop system and tracking of the prescribed switching

policy. In terms of DMPC feasibility, the stability constraints make sure that at the

moment of mode switching, the closed-loop system state is at the stability region of
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the new mode while the value of the Lyapunov function of the new mode (at the

moment of entering the new mode) is smaller compared to the value of this Lyapunov

function at the last time that the closed-loop system had switched into that mode.

The proposed DMPC scheme is applied to a nonlinear chemical process network with

scheduled mode transitions and its performance and computational efficiency prop-

erties in comparison to centralized MPC are evaluated through simulations.

7.1 Preliminaries

7.1.1 Notation and class of switched nonlinear systems

The notation | · | is used to denote the Euclidean norm of a vector, while we use

| · |Q to denote the square of a weighted Euclidean norm, i.e., |x|Q = xT Qx for all

x ∈ Rn. A continuous function α : [0, a) → [0, a) is said to belong to class K if it is

strictly increasing and satisfies α(0) = 0. The symbol Ωr is used to denote the set

Ωr := {x ∈ Rnx : V (x) ≤ r} where V is a continuous differentiable, positive definite

scalar function, and the operator ‘/’ denotes set subtraction, that is, A/B := {x ∈
Rnx : x ∈ A, x /∈ B}. The symbol diag(v) denotes a matrix whose diagonal elements

are the elements of vector v and all the other elements are zeros. T denotes matrix

transpose operation.

We consider switched nonlinear systems which are composed of p modes (i.e.,

finite-number of switching modes) described by the following state-space model:

ẋ(t) = fσ(t)(x) +
m∑

i=1

giσ(t)
(x)uiσ(t)

(t) (7.1)

where x(t) ∈ Rnx denotes the vector of state variables of the system and uiσ(t)
(t) ∈
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Rmui (i = 1, . . . ,m) is the ith set of control (manipulated) inputs affecting the σ

mode. σ : [0,∞) → I denotes the switching signal which is assumed to be a piecewise

continuous from the right function of time, i.e., σ(tk) = lim
t→t+k

σ(t) for all k, implying

that only a finite number of switches is allowed over any finite interval of time.

The switching signal takes its values in a finite index set I = {1, 2, . . . , p}. The

vector function fσ(t)(x) and the matrix function giσ(t)
(x) have dimension (nx× 1) and

(nx × mui
) respectively. The m sets of inputs are restricted to be in m nonempty

convex sets Uiσ(t)
⊆ Rmui , i = 1, . . . ,m, which are defined as Uiσ(t)

:= {uiσ(t)
∈

Rmui : |uiσ(t)
| ≤ umax

iσ(t)
} where umax

iσ(t)
, i = 1, . . . ,m, are the magnitudes of the input

constraints. We will design m controllers to compute the m sets of control inputs

uiσ(t)
, i = 1, . . . , m, respectively. We will refer to the controller computing uiσ(t)

as

controller i at mode σ(t).

Throughout the rest of this manuscript, tkin
r

and tkout
r

denote the time when, for the

rth time, the system of Eq. 7.1 has switched in and out of the kth mode, respectively,

i.e., σ(t+
kin

r
) = σ(t−kout

r
) = k. So, for tkin

r
≤ t < tkout

r
, the system of Eq. 7.1 is represented

by ẋ = fk(x) +
m∑

i=1

gik(x)uik .

We assume that the vector function fk, and the matrix functions gik , i = 1, . . . , m

(k ∈ I) are locally Lipschitz vector and matrix functions, respectively, and that

the origin is an equilibrium point of the unforced system (i.e., system of Eq. 7.1

with uik(t) = 0, i = 1, . . . , m, for all t, k ∈ I) which implies that fk(0) = 0,

∀k ∈ I. We further assume that during the system operation at mode k for rth

time, i.e., tkin
r
≤ t < tkout

r
, the system state measurements are available and sampled

at synchronous time instants tq = tkin
r

+ q∆kr , q = 0, 1, 2, . . . , Nkr where ∆kr is the

sampling time. Without loss of generality, we assume that Nkr is a positive integer.
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7.1.2 Stabilizability assumptions on nonlinear switched sys-

tem

Consider the system of Eq. 7.1, for a fixed σ(t) = k for some k ∈ I. We assume that

there exists a feedback controller hk(x) = [hT
1k

(x) · · · hT
mk

(x)]T with uik = hik(x), i =

1, . . . , m, which renders the origin of the closed-loop system at mode k asymptotically

stable while satisfying the input constraints for all the states x inside a given stability

region. Using converse Lyapunov theorems [18, 59], this assumption implies that there

exist class K functions αlk(·), l = 1, 2, 3, 4 and a continuously differentiable Lyapunov

function Vk(x) for the closed-loop system, that satisfy the following inequalities:

α1k
(|x|) ≤ Vk(x) ≤ α2k

(|x|)
∂Vk(x)

∂x
(fk(x) +

m∑
i=1

gik(x)hik(x)) ≤ −α3k
(|x|)

|∂Vk(x)

∂x
| ≤ α4k

(|x|)

hik(x) ∈ Uik , i = 1, . . . , m

(7.2)

for all x ∈ Dk ⊆ Rnx where Dk is an open neighborhood of the origin. We denote the

region Ωρ̃k
⊆ Dk as the stability region of the closed-loop system at mode k under

the controller hk(x). Using the smoothness assumed for the fk and gik , and taking

into account that the manipulated inputs uik , i = 1, . . . , m, are bounded, there exists

a positive constant Mk such that

|fk(x) +
m∑

i=1

gik(x)uik | ≤ Mk (7.3)

for all x ∈ Ωρ̃k
, uik ∈ Uik , i = 1, . . . , m, and k ∈ I. In addition, by the continuous

differentiable property of the Lyapunov function Vk(x) and the smoothness of fk and
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gik , there exist positive constants Lxk
, Luik

and Cgik such that

|∂Vk

∂x
fk(x)− ∂Vk

∂x
fk(x

′)| ≤ Lxk
|x− x′|

|∂Vk

∂x
gik(x)− ∂Vk

∂x
gik(x

′)| ≤ Luik
|x− x′|, i = 1, . . . ,m

|∂Vk

∂x
gik(x)| ≤ Cgik , i = 1, . . . , m

(7.4)

for all x, x′ ∈ Ωρ̃k
, uik ∈ Uik , i = 1, . . . ,m, and k ∈ I.

7.1.3 Stability properties of hk(x)

In this subsection, we address the stability properties of the controller hk(x). Propo-

sition 7.1 addresses the closed-loop stability properties of the controller hk(x) while

Proposition 7.2 provides sufficient conditions to force the closed-loop system state

under implementation of the Lyapunov-based controller in a sample-and-hold fashion

to enter the corresponding stability region of the subsequent mode once the system

switches to that mode.

We define the following sampled trajectory when the controller hk(x) is applied

in a sample-and-hold fashion at mode k for tkin
r
≤ τ < tkout

r
as follows

˙̂x(τ) = fk(x̂(τ)) +
m∑

i=1

gik(x̂(τ))hik(x̂(tl)), l = 0, 1, . . . , Nkr − 1, x̂(t0) = x(tkin
r

)

(7.5)

where t0 = tkin
r

.

Proposition 7.1 below ensures that if the closed-loop system at mode k controlled

by hk(x) implemented in a sample-and-hold fashion and with open-loop state estima-

tion (initial state) starts in Ωρ̃k
and stays in mode k for all times, then it is ultimately

bounded in Ωρmink
. It characterizes the closed-loop stability region corresponding to
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each mode.

Proposition 7.1 (c.f. [19]). Consider the closed-loop system of Eq. 7.5 and assume

it operates at mode k for all times. Let ∆k, εsk
> 0 and ρ̃k > ρsk

> 0 satisfy:

−α3k

(
α−1

2k
(ρsk

)
)

+ L′xk
Mk∆k ≤ −εsk

/∆k. (7.6)

Then, if x̂(t0) ∈ Ωρ̃k
and ρmink

< ρ̃k where ρmink
= max{Vk(x̂(t + ∆kr)) : Vk(x̂(t)) ≤

ρsk
}, ∀∆kr ∈ (0, ∆k] the following inequality holds: Vk(x̂(t)) ≤ Vk(x̂(tq)), ∀t ∈

[tq, tq+1) (q = 0, 1, . . .) and Vk(x̂(tq)) ≤ max{Vk(x̂(t0))− qεsk
, ρmink

}. Since Vk(·) is a

continuous function, Vk(x̂) ≤ ρmink
implies |x̂| ≤ dk where dk is a positive constant

and therefore, lim supt→∞ |x̂(t)| ≤ dk.

For each mode k ∈ I, we assume there exist a set of initial conditions Ωρ̃k
, which is

estimated as the level set of the Lyapunov function at mode k (Vk(·)) and a positive

real number ρ∗k such that under implementation of the Lyapunov-based controller

hk(·) in a sample-and-hold fashion, the state of Eq. 7.5 satisfies

V̇k(x̂(τ)) ≤ −ρ∗kVk(x̂(τ)), x̂(τ) ∈ Ωρ̃k/ρsk
, tkin

r
≤ τ < tkout

r
(7.7)

Proposition 7.2. Consider the closed-loop sampled trajectory x̂(t) defined in Eq. 7.5.

Given that tkin
r
≤ t < tkout

r
= tf in

w
, and x̂(tkin

r
) ∈ Ωρ̃k

, if there exist ρ̃k > 0, ρ∗k > 0,

Nkr > 0 and ∆kr > 0 ∀k ∈ I such that

α2f
(α−1

1k
(ρ̃ke

−ρ∗kNkr∆kr )) ≤ ρ̃f , (7.8)

then x̂(tf in
w

) ∈ Ωρ̃f
.
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Proof 7.1. It can be obtained from Eq. 7.7 that

Vk(x̂(tkout
r

)) ≤ Vk(x̂(tkin
r

))e−ρ∗kNkr∆kr (7.9)

Since x̂(tkin
r

) ∈ Ωρ̃k
, we have

Vk(x̂(tkout
r

)) ≤ ρ̃ke
−ρ∗kNkr∆kr (7.10)

From Eq. 7.2 we can obtain |x̂(tkout
r

)| ≤ α−1
1k

(ρ̃ke
−ρ∗kNkr∆kr ). If Eq. 7.8 is satisfied,

using Eq. 7.2 for the Lyapunov-based controller at mode f , it can be concluded that

Vf (x̂(tf in
w

)) ≤ ρ̃f which implies that x̂(tf in
w

) ∈ Ωρ̃f
.

Assumption 7.1. Consider the closed-loop system state trajectory of Eq. 7.5 and

assume that x̂(tkin
r

) ∈ Ωρ̃k
. Suppose, after switching out from mode k for rth time,

the system switches to mode f for wth time, i.e., tkout
r

= tf in
w

. We assume that there

exists ε∗ > 0 such that the closed-loop system state of Eq. 7.5 satisfies the following

MLF constraint

Vf (x̂(tf in
w

)) ≤





Vf (x̂(tf in
w−1

))− ε∗, w > 1, Vf (x̂(tf in
w−1

))>ρminf

ρminf
, w > 1, Vf (x̂(tf in

w−1
))≤ ρminf

ρ̃f , w =1

(7.11)

where ρminf
is defined in Proposition 7.1 below, Vf (x̂(tf in

w−1
)) is the value of the Lya-

punov function of mode f when the system switches into mode f for (w − 1)th time

and Vf (x̂(tf in
w

)) is the value of the Lyapunov function of mode f when the system

switches into mode f for wth time.

Assumption 7.1 implies that there exists a Lyapunov-based controller correspond-
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ing to each switching mode that meets the prescribed switching policy and at each

mode the value of the Lyapunov function of the corresponding mode decreases to

a certain level to ensure that when the system switches out of this mode to enter

the subsequent mode, the closed-loop system state enters the stability region of the

corresponding switching mode and the Lyapunov-based controllers of all the modes

satisfy the MLF constraint [5].

Remark 7.1. It should be emphasized that the stability region Ωρ̃k
characterizes the

set of initial conditions starting from where, the closed-loop system state enters the

corresponding stability region of the subsequent mode to proceed at the time of the

switch. From a feasibility point of view, the Lyapunov-based controller satisfying

Assumption 7.1 yields a feasible solution to the prescribed switching policy. It should

be emphasized that the purpose of the MPC formulation in this chapter (centralized

or distributed) is to take advantage of this feasible solution to improve closed-loop

performance.

7.1.4 Centralized MPC of switched systems

In this section, we briefly review the formulation of the centralized MPC for switched

systems proposed in [73]. For initialization purposes we assume that x(t1in
1

) ∈ Ωρ̃1 .

We assume that the system upon exiting from the mode k for the rth time enters

mode f for the wth time (i.e., tf in
w

= tkout
r

< ∞). Specifically, the centralized MPC at

mode k is formulated as follows:

min
u1k

,...,umk
∈S(∆kr )

∫ T̃

0

[|x̃(τ)|Qck
+

m∑
i=1

|uik(τ)|Rcik
]dτ (7.12a)
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s.t. ˙̃x(τ) = fk(x̃(τ)) +
m∑

i=1

gik(x̃(τ))uik (7.12b)

uik(τ) ∈ Uik , i = 1, . . . , m (7.12c)

x̃(0) = x(tq) (7.12d)

∂Vk(x(tq))

∂x
gik(x(tq))uik(0) ≤ ∂Vk(x(tq))

∂x
gik(x(tq))hik(x(tq)), i = 1, . . . , m (7.12e)

Vf (x̃(tf in
w

)) ≤





Vf (x(tf in
w−1

))− ε∗, w > 1, Vf (x(tf in
w−1

))>ρminf

ρminf
, w > 1, Vf (x(tf in

w−1
))≤ ρminf

ρ̃f , w =1

(7.12f)

where x̃ is the predicted state trajectory of the closed-loop system, S(∆kr) is the

family of piece-wise continuous functions over [0, T̃ ], Qck
and Rcik , i = 1, . . . , m, are

positive definite weight matrices and T̃ is the time interval corresponding to prediction

horizon and

T̃ =





tkout
r
− tq, if tkout

r
< ∞

Tdesign, if tkout
r

= ∞
(7.13)

where 0 < Tdesign < ∞ is a design parameter. The transition constraint of Eq.7.12f en-

sures that if this mode is switched out and then switched back in, then Vk(x(tkin
r+1

)) <

Vk(x(tkin
r

)). In general Vk(x(tkin
r

)) < Vk(x(tkin
r−1

)) < · · · < ρ̃k. In other words, this

constraint enforces the MLF stability condition in the switched system.

Remark 7.2. It should be emphasized that the centralized MPC of Eq. 7.12 is not

implemented in the context of conventional receding horizon scheme. Based on the

prescribed switching schedule policy, at each time interval that the system is supposed

to operate in a specific mode, it uses a prediction horizon from the current time until

190



the time that the system is supposed to switched out from that mode. Furthermore, if

the system is supposed to operate in a single mode for a specific time, it uses a fixed

horizon Tdesign based on Eq. 7.13.

The manipulated inputs of the centralized control design of Eq. 7.12 at mode k

are defined as follows:

uik(t) = u∗ik(t− tq|tq), i = 1, . . . , m, ∀t ∈ [tq, tq+1). (7.14)

A potential drawback of the centralized MPC framework is that its computational

burden significantly increases as the number of manipulated inputs and constraints

grow, motivating the development of DMPC algorithms for switched systems.

7.2 DMPC of switched nonlinear systems

In this section, we propose an iterative Lyapunov-based DMPC scheme for switched

nonlinear systems given a prescribed switching sequence (see also [39, 35].). We as-

sume that there exists a Lyapunov-based controller for each of the switched system

modes which satisfies Eqs. 7.2 and 7.7. The controller design problem seeks to en-

force appropriate Lyapunov-based stability constraint in the DMPC formulation to

achieve practical stability in the closed-loop switched system. From a control design

perspective, DMPC forces the system state to evolve at each switching mode such

that at the time of switching into the next mode, the closed-loop system state is

within the stability region of the new mode. One of the difficulties in the imple-

mentation of distributed MPC in switched systems is the enforcement of the MLF

constraint (Eq. 7.12f) from a feasibility point of view; however, in this chapter, we

take advantage of the specified properties of the Lyapunov-based controller (Eqs. 7.2
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and 7.7) to provide a feasible solution to the optimization problem of the DMPC for

switched systems. Specifically, the implementation strategy of DMPC of switched

nonlinear systems can be described as follows:

1. At sampling time tq all of the distributed controllers receive the state measure-

ments x(tq) through sensors.

2. At each iteration c < cmax

2.1 All of the distributed controllers exchange their latest optimal input tra-

jectories.

2.2 Each MPC evaluates its own future input trajectory based on x(tq) and

the latest received input trajectories of all the other MPCs.

2.3 Using the computed input trajectories of all DMPCs the constraint of

Eq. 7.12f is checked. If this constraint is satisfied go to step 2.5; otherwise,

go to step 2.4.

2.4 Provide the distributed MPCs a new initial guess by slightly perturbing

the latest feasible optimal solution (if c = 1, this solution is h(x(tq)); for

c > 1, it is the solution obtained at iteration c − 1) and re-calculate the

input trajectories of the DMPCs. If the new input trajectories satisfy the

constraint of Eq. 7.12f, go to step 2.5; otherwise, re-calculate the input

trajectories of the DMPCs by slightly perturbing the latest initial guess

and check if the constraint of Eq. 7.12f is satisfied. If a new DMPC solution

that satisfies the constraint of Eq. 7.12f can not be found after a set number

of evaluations, if c = 1, use h(x(tq)) as a solution, else, keep the solution

obtained at iteration c− 1. Go to step 2.5.

2.5 Set c ← c + 1 and return to step 2.1.
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3. After a number of iterations/evaluations that depend on the sampling time,

pick the input trajectories which yield the minimum cost function and satisfy

the constraint of Eq. 7.12f over the iterations.

4. Each MPC controller sends the first step input value of its optimal input tra-

jectory to its actuators.

At each sampling time and at first iteration, the Lyapunov-based controller of

the corresponding mode is a feasible solution for the optimization problem of each

distributed MPC of Eq. 7.15 and also for the centralized MPC problem of Eq. 7.12;

this is consequence of Assumption 7.1 which imposes the existence of a feasible control

input trajectory for the centralized control problem for the switched systems and also

because h(x(tq)) is a feasible solution for the DMPCs.

According to this implementation strategy, the DMPC formulation of MPC j at

iteration c is as follows:

min
ujk

∈S(∆kr )

∫ T̃

0

[|x̃j(τ)|Qck
+

m∑
i=1

|uik(τ)|Rcik
]dτ (7.15a)

s.t. ˙̃xj(τ) = fk(x̃
j(τ)) +

m∑
i=1

gik(x̃
j(τ))uik (7.15b)

uik(τ) = u∗,c−1
ik

(τ |tq), i 6= j (7.15c)

ujk
(τ) ∈ Ujk

(7.15d)

x̃j(0) = x(tq) (7.15e)

∂Vk(x(tq))

∂x
gjk

(x(tq))ujk
(0) ≤ ∂Vk(x(tq))

∂x
gjk

(x(tq))hjk
(x(tq)) (7.15f)
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Vf (x̃
j(tf in

w
)) ≤





Vf (x(tf in
w−1

))− ε∗, w > 1, Vf (x(tf in
w−1

))>ρminf

ρminf
, w > 1, Vf (x(tf in

w−1
))≤ ρminf

ρ̃f , w =1

(7.15g)

where u∗,c−1
ik

(τ |tq) are the optimal control input trajectories from MPC i (i =

1, . . . , m, i 6= j) and x̃j is the predicted system state trajectory while MPC j uses the

optimal control input trajectories of the rest of the controllers from iteration c − 1.

The constraint of Eq. 7.15f enforces that the amount of reduction in the value of

the Lyapunov function by applying the control inputs of the distributed MPCs is at

least at the level achieved by the Lyapunov-based controller when it is applied in

a sample and hold fashion. S(∆kr) is the family of piece-wise continuous functions

over [0, T̃ ]. T̃ is the time interval corresponding to the prediction horizon which is

chosen according to Eq. 7.13. The transition constraint of Eq.7.15g ensures that

if the f mode is switched out and then switched back in for the wth time, then

Vf (x(tf in
w

)) < Vf (x(tf in
w−1

)). In other words, this constraint enforces the MLF stability

constraint in the switched system. If previously, the closed-loop system state entered

the final invariant set Ωρminf
, it will stay there. If it is the first time that the system

switched to mode f , the closed-loop system state is restricted to the set Ωρ̃f
.

It should be emphasized that at the first iteration (c = 1), h(x(tq)) is a feasible

solution to the DMPC and each MPC assumes that the rest of the MPCs apply

the Lyapunov-based controller at the current mode. The manipulated inputs of the

proposed control design of Eq. 7.15 at mode k are defined as follows:

uik(t) = u∗ik(t− tq|tq), i = 1, . . . , m, ∀t ∈ [tq, tq+1). (7.16)

Remark 7.3. Referring to the implementation of the DMPC of Eq. 7.15 with the
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objective of ensuring that the computed optimal solution satisfies the transition con-

straint of the centralized MPC of Eq. 7.12f at each sampling time, we can take ad-

vantage of a sequential implementation strategy at the cost of increasing the com-

putational time of the DMPC calculation because in this case the computational

time at each sampling time will be the sum of the computational times of all DM-

PCs involved in the sequential implementation. In the sequential architecture, if

we evaluate MPCs in an increasing order and pass optimal solutions to the adja-

cent controller, (h1(x(tq)), . . . , hm(x(tq))) is a feasible control input used for MPC 1,

(u∗1(tq), h2(x(tq)), . . . , hm(x(tq))) is a feasible control input used for MPC 2 where

u∗1(tq) is the optimal manipulated input obtained by MPC 1 at sampling time tq and

so on.

7.3 Stability analysis

The following theorem characterizes the stability properties of the DMPC design of

Eq. 7.15.

Theorem 7.1. Consider the system of Eq. 7.1 in closed-loop under the distributed

MPC of Eqs. 7.15-7.16 and assume that there exists Lyapunov-based controllers hk(·),
∀k ∈ I satisfying Eq. 7.2 and Assumption 7.1. Let 0 < Tdesign < ∞ be a design

parameter, T̃ satisfy Eq. 7.13 and tkin
r
≤ t < tkout

r
= tf in

w
for some f , k ∈ I. Then,

given a positive real number dmax, if there exist ∆k, εsk
> 0, ρ̃k > ρsk

> 0 and

εwk
> 0 (∀k ∈ I) such that Eqs. 7.6 and 7.8 are satisfied and ∆kr ∈ (0, ∆∗] where

∆∗ = mink∈I ∆k, then x(t) is bounded and lim supt→∞ |x(t)| ≤ dmax.

Proof 7.2. First we prove that the optimization problem of Eq. 7.15 is feasible

at all times and then we proceed with the closed-loop stability analysis. Since the
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Lyapunov-based controller through implementation in a sample-and-hold fashion sat-

isfies the MLF constraint of Eq. 7.12f and at the end of each switching mode it

constraints the system state to enter the stability region of the subsequent mode, it

follows that at each iteration hjk
(·) is a feasible solution for the optimization problem

of Eq. 7.15.

Given the radius of the ball around the origin, dmax, the values of ρmink
and ∆k

∀k ∈ K are computed based on Propositions 7.2 and 7.1. Then, for the purpose of

DMPC implementation, a value of ∆kr ∈ (0, ∆∗] is chosen where ∆∗ = mink∈I ∆k

and tkout
r
− tkin

r
= lkr∆kr for some integer lkr > 0 (note that given any two positive

real numbers tkout
r
− tkin

r
and ∆∗, one can always find a positive real number ∆kr ≤ ∆∗

such that tkout
r
− tkin

r
= lkr∆kr for some integer lkr > 0).

Part 1: First consider the case when the switching is infinite. Let t be such

that tkin
r
≤ t < tkout

r
and tf in

w
= tkout

r
< ∞. Consider the active mode k. If

Vk(x) > ρmink
, the continued feasibility of the constraint of Eq.7.15f implies that

Vk(x(tkout
r

)) < Vk(x(tkin
r

)). The transition constraint of Eq.7.15g ensures that if this

mode is switched out and then switched back in, then Vk(x(tkin
r+1

)) < Vk(x(tkin
r

)). In

general Vk(x(tkin
r

)) < Vk(x(tkin
r−1

)) < · · · < ρ̃k. Under the feasibility of the constraints

of Eqs.7.15f and 7.15g for all future times, the value of Vk(x) continues to decrease.

If the mode of this Lyapunov function is not active, there exists at least some z ∈ I
such that mode z is active and Lyapunov function Vz continues to decrease until the

time that Vz ≤ ρminz (this happens because there is a finite number of modes, even if

the number of switches may be infinite). From this point onwards, Propositions 7.1

ensures that Vz continues to be less than or equal to ρminz . Due to continuity of

Lyapunov functions, there exists dmax such that lim supt→∞ |x(t)| ≤ dmax.
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Part 2: For the case of a finite switching sequence, consider a t such that tkin
r
≤

t < tkout
r

= ∞. Following a similar argument, Vk(x(tkin
r

)) < Vk(x(tkin
r−1

)) < · · · < ρ̃k.

At the time of the switch to mode k, therefore, x(tkin
r

) ∈ Ωρ̃k
. From this point

onwards, the DMPC is applied without any switching constraint, i.e., the constraint

of Eq.7.15g is removed. Since the DMPC at mode k is stabilizing, it follows that

lim supt→∞ |x(t)| ≤ dmax. This completes the proof of Theorem 7.1.

Remark 7.4. The purpose of Theorem 7.1, is to clarify under appropriate assump-

tions which include I) existence of Lyapunov-based controllers corresponding to each

mode that can asymptotically stabilize the closed-loop system at that switching mode,

II) satisfaction of the prescribed switching schedule by the Lyapunov-based controllers,

and III) picking appropriate finite prediction horizon according to Eq. 7.13, that the

closed-loop system state under the DMPC of Eq. 7.15 is bounded in a final invariant

set.

7.4 Distributed optimization considerations

In this section, we address the question of convergence of the solution of the dis-

tributed MPC to the one of the centralized MPC. It should be emphasized that for

general nonlinear systems it is not possible to prove convergence of the iterations of

the distributed MPC to the optimal centralized MPC cost at each sampling time due

to the way the Lyapunov-based constraint of the centralized MPC is broken down

into constraints imposed on the individual MPCs. However, under appropriate as-

sumptions which include linear model, quadratic Lyapunov functions corresponding

to each mode and an appropriate update rule in the DMPC iterations, it can be shown

that the MPC optimization problem is convex and under a sufficiently large number

of iterations, the optimal value of the objective function under the DMPC converges

197



to the optimal value of the corresponding centralized MPC at each sampling time.

Specifically, we consider a class of switched, linear time-invariant systems with a

state-space description of the form at mode k ∈ I:

ẋ(t) = Akx(t) +
m∑

i=1

Bikuik(t) (7.17)

where Ak and Bik (i = 1, . . . ,m) are constant matrices with appropriate dimensions.

We assume, in accordance with Assumption 7.1, that there exist a set of quadratic

Lyapunov functions Vk = xT Pkx, ∀k ∈ I, where Pk, are positive definite matrices, and

a set of explicit feedback controllers uik = Kikx, where Kik is a constant coefficient

matrix, meet the prescribed switching schedule defined in subsection 7.1.1. We also

assume that the input used as the initial guess in the optimization problem of MPC

at iteration c + 1 is computed according to the following expression

uc
jk

(τ |tk) = (1− w̃jk
)uc−1

jk
(τ |tk) + w̃jk

u∗,cjk
(τ |tk) (7.18)

where
m∑

j=1

w̃jk
= 1 with 0 < w̃jk

< 1, u∗,cjk
is the optimal solution of controller j

(j = 1, . . . , m) at iteration c and uc−1
jk

is the input trajectory assumed by the rest of

controllers for controller j at iteration c and mode k.

Corollary 7.1. Consider the switched, linear system of Eq. 7.17, assume that the

conditions of Assumption 7.1 hold with Vk = xT Pkx and uik = Kikx and let the input

to the optimization problem of MPC i of Eq. 7.15 at mode k (using Vk = xT Pkx,

hik = Kikx where i = 1, . . . , m and the linear model of Eq. 7.17) at iteration c be

defined according to Eq. 7.15. Let also x(tq) ∈ Ωρ̃k
. Then, if the iteration number

c →∞, the optimal cost of the distributed optimization problem of Eqs. 7.15-7.18, at

sampling time tq converges to the optimal cost of the corresponding centralized MPC.
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Furthermore, if the corresponding centralized MPC asymptotically stabilizes the origin

of the closed-loop system, the DMPC of Eq. 7.15 also asymptotically stabilizes the

origin of the closed-loop system and the closed-loop cost of the DMPC converges to

the one given by the centralized control system.

Proof 7.3. We first prove that the optimization problems for both the centralized

and the distributed MPC are convex. Specifically, the optimization problem for the

centralized MPC of Eq. 7.12 with Vk = xT Pkx and hik(x) = Kikx at sampling time

tq takes the following form:

min
u1k

,...,umk
∈S(∆kr )

∫ T̃

0

[|x̃(τ)|Qck
+

m∑
i=1

|uik(τ)|Rcik
]dτ (7.19a)

s.t. ˙̃x(τ) = Akx̃(τ) +
m∑

i=1

Bikuik (7.19b)

uik(τ) ∈ Uik , i = 1, . . . , m (7.19c)

x̃(0) = x(tq) (7.19d)

∂Vk(x(tq))

∂x
Bikuik(0) ≤ ∂Vk(x(tq))

∂x
BiKikx(tq), i = 1, . . . , m (7.19e)

Vf (x̃(tf in
w

)) ≤





Vf (x(tf in
w−1

))− ε∗, w > 1, Vf (x(tf in
w−1

))>ρminf

ρminf
, w > 1, Vf (x(tf in

w−1
))≤ ρminf

ρ̃f , w =1

(7.19f)

Specifically, the constraint of Eq. 7.19e takes the following form:

(uik(0)T BT
ik
Pkx(tq) + x(tq)

T PkBikuik(0))

≤ ((Kikx(tq))
T BT

ik
Pkx(tq) + x(tq)

T PkBikKikx(tq))
(7.20)
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which is linear in terms of uik (i = 1, . . . ,m). If we take into account that the input

trajectories are piece-wise constant and that

x̃(τ) = eAτ x̃(tq) +

∫ τ

0

eA(τ−s)

m∑
i=1

(Bikuik(s))ds, τ ∈ [0, T̃ ] (7.21)

and quadratic Lyapunov functions are used, it can be verified that all the constraints

are convex in terms of the control inputs. Since Uik is also convex for i = 1, . . . ,m, it

can be concluded that the switched centralized MPC optimization problem of Eq. 7.19

is convex. Since the centralized MPC optimization problem for switched linear sys-

tems is convex and it has been initialized by a feasible solution hik(x(tq)) = Kikx(tq)

under Assumption 7.1 and the fact that x(tq) ∈ Ωρ̃k
, it has a unique optimal solu-

tion u∗k = (u∗1k
, . . . , u∗mk

) which yields J(u∗k) at sampling time tq, where J(·) is the

quadratic cost function of the optimization problem (See Eq. 7.19a). Following a

similar argument, it can be proved that the DMPC optimization problem of MPC j

(j = 1, . . . , m) at mode k is also convex. Next, we prove that the optimal inputs and

the cost of the distributed MPC converge to the ones of the centralized MPC at a

fixed sampling time as c → ∞. The proof follows similar arguments to the proofs

presented in [3, 92]. Defining uc
k = (uc

1k
, . . . , uc

mk
) and the cost function by J(uc

k) at

iteration c and mode k where the update rule is defined in Eq. 7.18 while considering

the fact that

uc+1
k = w̃1k

(u∗,c+1
1k

, uc
2k

, . . . , uc
mk

) + · · ·+ w̃mk
(uc

1k
, . . . , uc

(m−1)k
, u∗,c+1

mk
) (7.22)
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we can obtain

J(uc+1
k ) = J(w̃1k

(u∗,c+1
1k

, uc
2k

, . . . , uc
mk

) + · · ·+ w̃mk
(uc

1k
, . . . , uc

(m−1)k
, u∗,c+1

mk
))

< w̃1k
J(u∗,c+1

1k
, uc

2k
, . . . , uc

mk
) + · · ·+ w̃mk

J(uc
1k

, . . . , uc
(m−1)k

, u∗,c+1
mk

)

≤ w̃1k
J(uc

1k
, uc

2k
, . . . , uc

mk
) + · · ·+ w̃mk

J(uc
1k

, . . . , uc
(m−1)k

, uc
mk

)

= J(uc
k)

(7.23)

where the first inequality is the result of strict convexity of the cost function J(·) and

the second one arises from optimality of the control inputs u∗,cik
at iteration c where

i = 1, . . . ,m. So, through iterations over a fixed sampling time, the value of the cost

function decreases. Since the cost function is positive definite and strictly convex and

it is bounded from above by the value achieved by the Lyapunov-based controller,

we can conclude that the value of the cost function converges to some value J as

c → ∞. Since the cost function J(·) is strictly convex and the level sets of the cost

function are compact, there is a limit point ũk = (ũ1k
, . . . , ũmk

) where J = J(ũk). We

choose an index set Z ⊂ {0, 1, 2, . . .} such that the sequence {uz
k}z∈Z converges to ũk.

Furthermore, all iterations uz
k are in the intersection of U1k

×U2k
× . . . Umk

, where ×
denotes cartesian product, and the level set J ≤ J(u0

k). Thus, limz∈Z,z→∞ J(uz
k) = J .

Note that the optimal solution u∗k of the centralized problem of Eq. 7.19 is also a

feasible solution to the DMPC problem. Subsequently, we prove that if c →∞, then

ũk → u∗k. Using contradiction, assume ũk 6= u∗k. Since J(·) is a strict convex function

we can write

∇J(ũk)
T (u∗k − ũk) ≤ J(u∗k)− J(ũk) ≡ ∆J(uk) < 0 (7.24)

From Eq. 7.24 and using contradiction, if we define

∆ũ∗
T

i = (0, . . . ,0, (u∗ik − ũik)
T ,0) (7.25)
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where 0 are vector columns of zeros with appropriate dimensions, it can be easily

shown that the following equation is satisfied for at least one i where i = 1, . . . , m

∇J(ũk)
T ∆ũ∗i ≤

∆J(uk)

m
< 0 (7.26)

Suppose it holds for i = 1. Using Taylor’s expansion around ũk for εk ∈ (0, 1),

δk ∈ (0, ε), c →∞ and taking advantage of Eq. 7.26, we can write

J(ũ1k
+ εk(u

∗
1k
− ũ1k

), ũ2k
, . . . , ũmk

) = J(ũk) + εk∇J(ũk)
T ∆ũ∗1

+
1

2
ε2
k∆ũ∗

T

1 ∇2J(ũ1k
+ εk(u

∗
1k
− ũ1k

), ũ2k
,

. . . , ũmk
)∆ũ∗1

≤ J(ũk) + εk

m
∆J(uk) + ςkε

2
k

< J(ũk)

(7.27)

if εk is small enough such that εk

m
∆uk + ςkε

2
k is negative (this is always possible since

∆J(uk) < 0) and ςk is independent of c and εk. Since the iterative algorithms con-

verges to J(ũk) we can write

J(ũk) = lim
c→∞

J(u∗,c1k
, uc

2k
, . . . , uc

mk
) (7.28)

Also, from optimality of u∗,c1k
, if c →∞, we can obtain

limc→∞ J(u∗,c1k
, uc

2k
, . . . , uc

mk
) ≤ J(ũ1k

+ εk(u
∗
1k
− ũ1k

), ũ2k
, . . . , ũmk

) (7.29)

It should be emphasized that for c →∞, uc
ik
→ ũik where i = 1, . . . , m. Considering
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Eqs. 7.27-7.29, we can obtain

J(ũk) = limc→∞ J(u∗,c1k
, uc

2k
, . . . , uc

mk
)

≤ J(ũ1k
+ εk(u

∗
1k
− ũ1k

), ũ2k
, . . . , ũmk

)

< J̃(ũk)

(7.30)

Therefore, J(ũk) < J(ũk) which is a contradiction. Therefore, the assumption ũk 6= u∗k

was not true. It can be concluded that ũk = u∗k when c → ∞ and J(ũk) = J(u∗k). If

x(tq) ∈ Ωρ̃k
and the centralized MPC can asymptotically stabilize the origin of the

closed-loop system, using the above arguments recursively for each sampling time,

if c → ∞ for each sampling time, it follows that the DMPC also asymptotically

stabilizes the origin of the closed-loop system and the closed-loop cost converges to

the one given by the centralized control system.

7.5 Application to a chemical process network

The process considered in this study is a three vessel, reactor-separator system con-

sisting of two continuously stirred tank reactors (CSTRs) and a flash tank separator

shown in Figure 7.1 [15]. The operation schedule requires switching between two

available inlet streams consisting of pure reactant at different flow rates, concentra-

tions and temperatures. At mode σ = {1, 2} a feed stream to the first CSTR F10σ

contains the reactant A which is converted into the desired product B. The effluent of

the first CSTR along with additional fresh feed F20σ makes up the inlet to the second

CSTR. The reactions A → B and A → C (referred to as 1 and 2, respectively; C is

an undesired product) take place in the two CSTRs in series before the effluent from

CSTR 2 is fed to a flash tank. The overhead vapor from the flash tank is condensed
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Figure 7.1: Two CSTRs and a flash tank with recycle stream.

and recycled to the first CSTR, and the bottom product stream is removed. A small

portion of the overhead is purged before being recycled to the first CSTR. All the

three vessels are assumed to have static holdup. The dynamic equations describing

the behavior of the system at mode σ, obtained through material and energy balances

under standard modeling assumptions, can be found in [15]. Each of the tanks has an

external heat input/removal actuator. The model of the flash tank separator is de-

rived under the assumption that the relative volatility for each of the species remains

constant within the operating temperature range of the flash tank. This assumption

allows calculating the mass fractions in the overhead based upon the mass fractions

in the liquid portion of the vessel. It has also been assumed that there is a negligible

amount of reaction taking place in the separator. The process model (system of non-

linear ordinary differential equations) is numerically simulated using standard Euler

integration method.

This process is divided into three subsystems corresponding to the first CSTR,

the second CSTR and the separator, respectively. For the three subsystems, we

will refer to them as subsystem 1, subsystem 2 and subsystem 3, respectively. The

state of subsystem 1 is defined as the deviations of the temperature and species

concentrations in the first CSTR from the desired, operating steady-state; that is,
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xT
1 = [T1 − T1sσ CA1 − CA1sσ CB1 − CB1sσ CC1 − CCsσ ]T for the system at mode σ.

Similarly, we define the state of subsystems 2 and 3. Accordingly, the state of the

whole process is defined as a combination of the states of the three subsystems; that

is, xT = [xT
1 xT

2 xT
3 ].

The process has one unstable and two stable steady states. The control objec-

tive is to regulate the process at the unstable steady-state xs2 corresponding to the

operating point defined by Q1s = Q2s = Q3s = 0 KJ
hr

(which are the same for both

process operating modes), respectively. The values of the operating steady-states cor-

responding to each mode are shown in Tables 7.1 and 7.2. Each of the tanks has an

external heat input which is the control input associated with each subsystem, that is,

u1σ = Q1−Q1s, u2σ = Q2−Q2s and u3σ = Q3−Q3s for σ = 1, 2. For mode 1 the inputs

are subject to constraints as follows: |u11| ≤ 1.5×105 KJ/hr, |u21| ≤ 1.5×105 KJ/hr,

and |u31| ≤ 2 × 105 KJ/hr while in mode 2 |u12| ≤ 105 KJ/hr, |u22| ≤ 105 KJ/hr,

and |u32| ≤ 1.33 × 105 KJ/hr. Three distributed MPC controllers (controller 1,

controller 2 and controller 3) will be designed to manipulate each one of the three

inputs in the three subsystems, respectively. Furthermore, we assume that the sys-

tem state, x, is available at synchronous time instants tq = q∆, q = 0, 1, . . ., with

∆ = 0.001 hr = 3.6 sec to all the controllers. The process model belongs to the

following class of nonlinear systems:

ẋ(t) = fσ(x(t)) +
3∑

i=1

giσ(x(t))uiσ(t)

where the explicit expressions of fσ, giσ (i = 1, 2, 3 and σ = {1, 2}), are omitted for

brevity.

In the simulations, we consider a quadratic Lyapunov function Vσ(x) = xT Pσx

with P1 = diag([10 103 103 103 20 103 103 103 10 103 103 103]) and P2 = diag([10 103
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Table 7.1: Steady-state values for xs1 .
CA1s1 3.31[kmol

m3 ] CA2s1 2.75[kmol
m3 ] CA3s1 2.88[kmol

m3 ]
CB1s1 0.17[kmol

m3 ] CB2s1 0.45[kmol
m3 ] CB3s1 0.50[kmol

m3 ]
CC1s1 0.04[kmol

m3 ] CC2s1 0.11[kmol
m3 ] CC3s1 0.12[kmol

m3 ]
T1s1 369.53[K] T2s1 435.25[K] T3s1 435.25[K]

Table 7.2: Steady-state values for xs2 .
CA1s2 3.32[kmol

m3 ] CA2s2 2.69[kmol
m3 ] CA3s2 2.91[kmol

m3 ]
CB1s2 0.34[kmol

m3 ] CB2s2 0.70[kmol
m3 ] CB3s2 0.85[kmol

m3 ]
CC1s2 0.08[kmol

m3 ] CC2s2 0.17[kmol
m3 ] CC3s2 0.20[kmol

m3 ]
T1s2 370.98[K] T2s2 429.65[K] T3s2 429.64[K]

103 103 10 103 103 103 10 103 103 103]). We design the Lyapunov-based controller

hσ(x) following the continuous bounded control law design [58, 18] as follows:

uσ = [u1σ u3σ u3σ ]T = hσ(x) = −pσ(x)(LGσVσ)T (7.31)

where

pσ(x) =





Lfσ Vσ+
√

(Lfσ Vσ)
2
+(umax|LGσ V T

σ |)4

|LGσ V T
σ |2

[
1+
√

1+(umax|LGσ V T
σ |)2

] , LGσVσ 6= 0

0 , LGσVσ = 0

with LfσVσ = ∂Vσ

∂x
fσ(x) and LGσVσ = ∂Vσ

∂x
Gσ(x) where Gσ = [g1σ g2σ g3σ ] being the

Lie derivatives of the scalar function Vσ with respect to fσ and Gσ, respectively.

To estimate the stability region Ωρ̃σ , extensive simulations were carried out to get

an estimate of the region of the closed-loop system under Lyapunov-based control

hσ(x) where the time-derivative of the Lyapunov function is negative, and then Ωρ̃σ

is defined as a level set of the Lyapunov function Vσ(x) embedded within this region.

To carry out the closed-loop performance evaluation, we have computed the total

cost of each simulation based on an index of the following form:
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J =
M∑
i=0

[
x(ti)

T Qcσx(ti) +
3∑

j=1

ujσ(ti)
T Rcjσ

ujσ(ti)

]
(7.32)

where t0 = 0 is the initial time of the simulations, tM = 0.1 hr is the end time of the

simulations and ti+1 = ti + ∆ for i = 0, 1, . . .. In the design of the controllers, the

weighting matrices are chosen to be Qc1 = Qc2 = diag([10 103 103 103 20 103 103 103 10

103 103 103]) and R11 = R21 = R31 = R12 = R22 = R32 = 10−8. We set the number of

iterations between controllers cmax = 2. The simulations were carried out using Java

programming language in a Pentium 3.20 GHz computer. The optimization problems

in MPC were solved using the open-source interior point optimizer Ipopt.

We first carried out simulations to illustrate that the Lyapunov-based controller

and the centralized MPC scheme achieve practical closed-loop stability in each mode

of operation, respectively. Figures 7.2 and 7.3 show the Lyapunov function trajec-

tory in the closed-loop system under the Lyapunov-based controller implemented in a

sample-and-hold-fashion and the centralized MPC scheme at mode one and two, re-

spectively. As it can be seen from these two figures, both control schemes at each mode

achieve practical closed-loop stability, while the centralized MPC requests more ag-

gressive moves to steer the closed-loop system state to the origin. From a closed-loop

performance point of view, the centralized MPC outperforms the Lyapunov-based

controller by 30% at mode one and 28% at mode two, respectively.

As a scheduling policy, we assume that at time t = 0.004 hr, the process switches

from mode 1 to mode 2. It should be emphasized that after the system enters mode 2,

it stays there until the end of the simulation time (tf = 0.1 hr), and the MPC/DMPC

of mode 2 is used. Figure 7.4 compares the Lyapunov function trajectory of the closed-

loop system under the Lyapunov-based controller implemented in a sample-and-hold

fashion, the centralized MPC of Eq. 7.12 and the DMPC of Eq. 7.15 for a given
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Figure 7.2: Lyapunov function trajectory of the closed-loop system under the imple-
mentation of the Lyapunov-based controller (dashed-dotted line) in a sample-and-hold
fashion and of the centralized MPC (solid line) at mode one.
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Figure 7.3: Lyapunov function trajectory of the closed-loop system under the imple-
mentation of the Lyapunov-based controller (dashed-dotted line) in a sample-and-hold
fashion and of the centralized MPC (solid line) at mode two.

208



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time (hr)

V
(x

)

 

 
h(x)
Centralized MPC
DMPC

Figure 7.4: Lyapunov function trajectory of the closed-loop system under the imple-
mentation of the Lyapunov-based controller (solid line) in a sample-and-hold fashion,
centralized MPC of Eq. 7.12 (*) and DMPC of Eq. 7.15 (dashed-dotted line) for the
given switching policy; the line composed of the (*) and the dashed-dotted line over-
lap. From t = 0 to 0.004 hr, the lines show V1(x) and from t = 0.004 hr to 0.1 hr,
the lines show V2(x).

switching policy, respectively. It illustrates that the Lyapunov-based controller can

meet the given schedule by steering the closed-loop system state to the stability region

of mode 2 at the time of the switch. So, for the given switching policy, the Lyapunov-

based controller provides a feasible solution. Figure 7.4 shows the Lyapunov function

trajectory of the closed-loop system under the implementation of the centralized MPC

scheme subject to the switching constraint. As it can be seen from Figure 7.4, the

MPC (both centralized and distributed) design enforces the appropriate constraint to

steer the closed-loop system state at mode 1 to the stability region of mode 2 at the

time of the switch. In Figure 7.4, the Lyapunov function is computed for each mode,

independently. It should be emphasized that the MPC designs require more aggressive

control actions to enter the stability region of mode 2 and subsequently stabilizing

the plant compared to the Lyapunov-based controller, which yields improvement in

terms of closed-loop performance.
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Figure 7.5: State trajectories of the closed-loop system under the implementation of
the DMPC system of Eq. 7.15.

Figures 7.5 and 7.6 depict the state and manipulated inputs in the closed-loop

system under the DMPC design of Eq. 7.15 subject to the same switching sched-

ule, respectively. Figure 7.5 shows the deviation of the state trajectories from their

corresponding steady-state values at each mode. As it can be seen in these fig-

ures, the proposed DMPC design enforces the appropriate constraints to steer the

closed-loop system state to the stability region of mode two at the time of the switch

and subsequently, achieves practical closed-loop stability. From a closed-loop perfor-

mance point of view based on Eq. 7.32, the centralized MPC formulation of Eq. 7.12

yields 236447.02 in cost function value J while the DMPC design of Eq. 7.15 yields

236446.87. Therefore, the DMPC achieves nearly the centralized MPC closed-loop

performance.

Finally, we compare centralized MPC and DMPC from a control action evaluation

time point of view. We set the horizon of MPC to N = 30. We compute the average

evaluation time of the MPC formulation at mode 1 (40 times) which includes the

switching constraint and the MPC after we switch to mode 2 (960 times) in both
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Figure 7.6: Manipulated input trajectories computed by the DMPC of Eq. 7.15.

centralized and DMPC formulations. For the DMPC design, we add the simulation

time of two iterations and since the three controllers optimize in parallel, we consider

the maximum time of the computational time of the distributed controllers as the

computational time of the DMPC. The result indicates that for mode 1 there is an

almost 36 % improvement (max{104.18, 38.27, 164.29} seconds vs. 259.50 seconds)

and for mode 2 there is an almost 39 % improvement (max{31.70, 32.99, 37.68} sec-

onds vs. 63.41 seconds) in computational time when we utilize the DMPC framework

compared to the centralized MPC while the closed-loop performance remains nearly

the same.

7.6 Conclusions

This chapter focused on the design of DMPC systems for a class of switched nonlinear

systems subject to a prescribed switching policy. Under appropriate stabilizability

assumptions, the proposed DMPC systems ensure closed-loop stability and satis-

faction of the switching policy. Convergence of the DMPC optimal solution to the

corresponding centralized MPC optimum was established for the linear case. A chem-

ical process network example was used to demonstrate the proposed DMPC design

method.
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Chapter 8

Conclusions and Future Research

Directions

This dissertation presented Lyapunov-based economic and distributed model predic-

tive control (MPC) schemes for nonlinear systems and demonstrated their applicabil-

ity and effectiveness using various chemical process examples.

8.1 Summary

Specifically, Chapter 2 developed Lyapunov-based economic model predictive control

(LEMPC) designs which are capable of optimizing closed-loop performance with re-

spect to general economic considerations for nonlinear systems. First, we considered

nonlinear systems with synchronous measurement sampling and uncertain variables,

and designed an LEMPC via Lyapunov-based techniques. The proposed LEMPC de-

sign has two different operation modes. The first operation mode corresponds to the

period in which the cost function should be optimized; and in this operation mode,

the LEMPC maintains the closed-loop system state within the stability region and
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optimizes the cost function to its maximum extent. The second operation mode cor-

responds to operation in which the system is driven by the LEMPC to an appropriate

steady-state. Subsequently, we extended the results to nonlinear systems subject to

asynchronous and delayed measurements and uncertain variables. In both LEMPC

designs, suitable constraints were incorporated to guarantee that the closed-loop sys-

tem state is always bounded in the stability region and is ultimately bounded in

small regions containing the origin. The theoretical results were illustrated through

a chemical process example.

In Chapter 3, we designed an estimator-based economic MPC (EMPC) for the

class of full-state feedback linearizable nonlinear systems. A high-gain observer is used

to estimate the nonlinear system state using output measurements and a Lyapunov-

based approach is adopted to design the EMPC that uses the observer state estimates.

It was proved, using singular perturbation arguments, that the closed-loop system is

practically stable provided the observer gain is sufficiently large. A chemical process

example was used to demonstrate the ability of the state estimation-based economic

MPC to achieve time-varying process operation that leads to a superior cost perfor-

mance metric compared to steady-state operation using the same amount of reactant

material.

Chapter 4 focused on the design of LEMPC algorithms for a class of nonlinear

systems which are capable of optimizing closed-loop performance with respect to a

general objective function that may directly address economic considerations. Under

appropriate stabilizability assumptions, the proposed LEMPC designs very often dic-

tate time-varying operation to optimize an economic (typically non-quadratic) cost

function in contrast to conventional Lyapunov-based MPC (LMPC) designs which

typically include a quadratic objective function and regulate a process at a steady-
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state. The proposed LEMPC algorithms took advantage of the solution of auxiliary

LMPC problems at different sampling times to incorporate appropriate economic

cost and control action-based constraints in the LEMPC formulations and ensure

improved performance, measured by the desired economic cost, with respect to con-

ventional LMPC. A chemical process example was used to demonstrate the proposed

LEMPC algorithms.

In Chapter 5, we proposed a DMPC design for nonlinear systems taking into

account explicitly communication disruptions (i.e., data losses and channel noise)

between the distributed controllers. In the proposed DMPC architecture, one of

the distributed controllers is responsible for ensuring closed-loop stability while the

rest of the distributed controllers communicate and cooperate with the stabilizing

controller to further improve the closed-loop performance. To determine if the data

transmitted through the communication channel is reliable or not, feasibility problems

were incorporated in the DMPC design and based on the result of these feasibility

problems, the transmitted information was accepted or rejected by the stabilizing

MPC. In order to ensure the stability of the closed-loop system under communication

disruptions, each distributed controller utilized a stability constraint which is based

on a suitable Lyapunov-based controller. The proposed DMPC system possesses an

explicit characterization of the closed-loop system stability region and guarantees

that the closed-loop system is ultimately bounded in an invariant set which contains

the origin. The theoretical results were demonstrated through a nonlinear chemical

process example.

In Chapter 6, we designed a DMPC system using multirate sampling for large-

scale nonlinear uncertain systems composed of several coupled subsystems. In the

proposed control architecture, the controllers were designed via LMPC techniques
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taking into account bounded measurement and communication noise and process

disturbances. Sufficient conditions under which the state of the closed-loop system is

ultimately bounded in an invariant region containing the origin were derived. Finally,

the applicability and performance of the proposed DMPC scheme were demonstrated

through a nonlinear chemical process example.

Chapter 7 focused on the design of DMPC systems for a class of switched nonlinear

systems subject to a prescribed switching policy. Under appropriate stabilizability

assumptions, the proposed DMPC systems ensure closed-loop stability and satis-

faction of the switching policy. Convergence of the DMPC optimal solution to the

corresponding centralized MPC optimum was established for the linear case. A chem-

ical process network example was used to demonstrate the proposed DMPC design

method.

8.2 Future Research Work

Based on previous chapters, the research work in this dissertation can be extended in

the broad areas of economic and distributed control of nonlinear systems. Specifically,

some of the main directions for future research directions include:

• Cooperative and distributed control using networks

• Monitoring and reconfiguration of cooperative, distributed control systems

• Distributed state estimation

• Economic MPC of singularly perturbed systems

In the first direction, the research efforts will focus on the development of net-

worked cooperative, distributed control schemes for nonlinear systems. Specifically,
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the following topics will be considered. First, the multirate distributed MPC scheme

developed in Chapter 6 will be extended to take into account asynchronous and de-

layed measurements. This extension is rather direct from a theory standpoint but it is

very important from an application point of view. The model of the system is utilized

to estimate the current state (which will be used in the design of the distributed MPC

controllers) when delays are involved and design the controllers to use last evaluated

input trajectories when measurements are not available at a time due to asynchronous

samplings. A Lyapunov-based stability constraint will also be incorporated to each

distributed controller to ensure the closed-loop stability. Moreover, network traffic

and field interference may cause data package dropouts and data transmission delays.

In order to deal with such kind delays and data losses in the communication, not only

the distributed controllers needs to be carefully designed, but the network topology

should be also carefully designed at the same time. It needs to scan the most com-

mon used network protocols in field and based on their properties, knowledge from

topology and game theory will be applied in the design of the network topology for

the distributed control system. At the same time, the distributed controllers will be

designed to cooperate to achieve the closed-loop stability and improve the closed-

loop performance. Furthermore, multirate distributed control system with output

feedback will also be considered. For a distributed controller in a large-scale control

system, it may not have access to all the measurements and the state measurement of

the process may be not available. In the design of the distributed controllers, we need

to take into account that different controllers may have access to different parts of

measurements. There are different approaches to address this problem. One approach

is to design a different observer for each controller, and an alternative is to design a

centralized observer and the observer sends the observed state to all the distributed

controllers. Both the approaches can be considered in the future research and they
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will be compared extensively from performance and computational complexity points

of view.

In the second direction, future research will address the design of systems to

monitor cooperative, distributed control systems and the design of strategies to re-

configure the control systems. From the point of view of monitoring, the coupling

and interaction between cooperative, distributed control systems make the design of

such systems and residuals and their evaluation more challenging than in conven-

tional control systems based on centralized architectures. The occurrence of asyn-

chronous behavior and delays in the measurement sampling further complicates the

design of the monitoring systems. In the context of cooperative, distributed control,

the problem of designing systems which can detect and isolate the presence of ac-

tuator/sensor/controller failures has received no attention. We plan to investigate

an approach that unites model-based and data-based approaches for the design of

monitoring systems. The information available through the model structure will be

used to aid the task of building model-based and data-based monitoring systems.

The overall reliability of the plant is strongly dependent on the phenomenon of fault

propagation where the occurrence of an actuator/process fault in some part of the

plant puts the system in a working mode in which other faults are more likely to

happen elsewhere, thus increasing the likelihood of a plant-wide failure. Compared

to centralized control systems, monitoring of cooperative, distributed control systems

has received little attention. In a cooperative, distributed control system, if an ac-

tuator fault occurs, it is possible to carry out fault handling in some cases without

activating a backup control loop. This is because the function of the actuator may be

possible to be complemented by the other remaining actuators with acceptable loss of

overall closed-loop performance. The future research focuses on deriving the condi-

tions under which actuator fault handling can be carried out without backup control
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loops and studying how the remaining cooperative, distributed controllers should be

reconfigured.

In the third direction, future research will focus on the development of distributed

state estimation methods for nonlinear systems. Traditionally, state estimation for

control system design purpose is usually studied within a centralized framework in

which only one centralized observer is designed to estimate all the unknown system

states. However, for large-scale systems, it may not be feasible to design a centralized

state observer to estimate the system states based on available output measurements.

This is because that: 1) the computational complexity of a centralized observer in-

creases significantly with the increase of the number of unknown states, and 2) the

difficulties in the management of the model used in the observer increase when the

number of states and equations involved in the model increase. In the control, espe-

cially distributed control of large-scale nonlinear systems, distributed state estimation

based on sensor networks is of great importance, however, little attention has been

given to this problem in the literature. In the design of distributed state estimation

systems, it needs to take into account the observability and stability of the system,

and the computational complexity of the observers. Future research would focus on

studying the problem of distributed state estimation based on the concept of moving

horizon estimation. This approach has the following advantages: 1) the observer is

optimal because a well-designed optimization problem must be solved online at each

sampling time; 2) the convergence of the distributed state observers can be guaran-

teed in a deterministic fashion; and 3) different constraints on the system states and

inputs can be taken into account, which is common in receding horizon approaches

in control and estimation.
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Recently, we studied MPC of nonlinear singularly perturbed systems in the context

of fast-slow MPC design. Please refer to [9, 13, 11, 14, 12] for a detailed description of

the proposed control schemes. In the forth direction, economic optimization aspects

of two time scale nonlinear systems as well as closed-loop stability analysis can be

addressed by taking advantage of the proposed methods in Chapters 2, 3 and 4 and

the singular perturbation framework.
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