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ABSTRACT

Panagiotis D. Christofides
Number of words: 291

All chemical engineering processes are inherently nonlinear. In addition to non-
linear nature, many chemical engineering processes are characterized by multiple-
time-scale behavior and spatial variations. The mathematical models of chemical en-
gineering processes are typically obtained from the dynamic conservation equations
and consist of systems of nonlinear Ordinary Differential Equations (ODEs) and non-
linear Partial Differential Equations (PDEs). However, no mathematical model can
precisely predict the dynamic behavior of a real process: there is always uncertainty.

Model uncertainty is typically due to disturbances and unknown process parameters.

In the last decade. significant progress has been made towards the development
of nonlinear control methods for systems of nonlinear ODEs. Differential geometry
has proven to be a natural framework for the analysis and control of such systems.
Within this framework. basic control problems, including the modification of the
input/output behavior. the elimination of measurable disturbances. and the atten-
uation of unmeasured disturbances and unknown parameters have been successfully
addressed. Although geometric control methods may lead to satisfactory control qual-
ity in nonlinear processes without time-scale multiplicity. they usually lead to poor
performance in processes where multiple-time-scale behavior is present. Furthermore,
few results are available for the synthesis of nonlinear controllers for nonlinear PDE
systems. The need to develop control methods for nonlinear two-time-scale ODE
svstems and nonlinear PDE systems has been well-recognized both by industry and

academia.
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Motivated by the above. this doctoral thesis presents a general framework for the
synthesis of nonlinear controllers for nonlinear two-time-scale ODE systems and non-
linear PDE systems that systematically addresses the problems of modification of the
input/output behavior. elimination of measurable disturbances. and attenuation of
unmeasured disturbances and unknown parameters. The proposed control algorithms

are applied to industrially important chemical processes.
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Chapter 1

Introduction

All chemical engineering processes are inherently nonlinear. Nonlinearities arise from
complex reaction mechanisms, Arrhenius dependence of reaction rates on temper-
ature. empirical correlations. etc. In addition to nonlinear nature. many chemical
engineering processes are characterized by multiple-time-scale behavior and spatial
variations. Multiple-time-scale behavior typically arises from the presence of signif-
icantly different residence times and large mass/thermal capacitances. while spatial
variations are due to the underlying convective, diffusive and dispersive phenomena.
The mathematical models of chemical processes are typically obtained from the dy-
namic conservation equations and consist of systems of nonlinear Ordinary Differential

Equations (ODEs) and nonlinear Partial Differential Equations (PDEs).

Motivated by the inherently nonlinear nature of physical and chemical processes. in
the last decade. a flourishing research activity has emerged towards the development
of feedback control methods for nonlinear ODE systems. Differential geometry has
proven to be a natural framework for the analysis and control of such systems. Within
this framework. key aspects of nonlinear dynamics and important control-theoretic
properties have been well-understood. Furthermore, basic control problems. includ-

ing the modification of the input/output behavior, the elimination of measurable
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disturbances, and the attenuation of unmeasured disturbances and unknown param-
eters have been successfully addressed. Implementations of the developed control
algorithms on industrial processes have been also reported. Excellent surveys of both
theoretical and application papers in this area can be found in [Isi89. NvdS90. KA91].
Although geometric control methods may lead to satisfactory control quality in non-
linear processes without time-scale multiplicity. they usually lead to poor performance
in processes where multiple-time-scale behavior is present. Specifically. it is well-
established that a direct application of these methods to two-time-scale systems may

lead to controller ill-conditioning or even to closed-loop instability [KIKO86].

Two-time-scale ODE systems have been primarily studied within the mathematical
framework of singular perturbations. Within this framework. stability issues and geo-
metric properties of nonlinear two-time-scale systems have been analvzed and optimal
control algorithms have been proposed [SK84. Fen79. KKOS86]. However. a controller
synthesis framework for nonlinear two-time-scale ODE systems that addresses the ba-
sic problems of modification of the input/output behavior. elimination of measurable
disturbances. and attenuation of unmeasured disturbances and unknown parameters
is still lacking.

On the other hand. the conventional approach to the control of PDEs involves the
discretization of the original PDE model in space followed by the application of control
methods for ODEs. Although this approach may lead to satisfactory control quality
in processes with mild spatial variations. it usually leads to poor performance in
processes where the spatially varying nature is very strong. This realization motivated
research on the development of distributed control algorithms for linear PDEs that
directly account for their spatially varving nature. The literature on distributed
control of linear PDEs is really extensive. Excellent surveys of both theoretical and
application papers on this topic can be found in [Ray78, Bal82, Keu93]. However,

the range of applicability and the efficiency of linear control methods are significantly
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restricted by the presence of severe nonlinearities in chemical processes.

PDEs are typically classified in two broad categories: a) hyperbolic PDEs which
adequately describe convection-reaction processes. and b) parabolic PDEs which nat-
urally model diffusion-convection-reaction processes. The distinct feature of first-
order hyperbolic PDEs is that all the eigenmodes of the spatial differential operator
contain the same or nearly the same amount of energy, and thus an infinite number
of modes is required to accurately describe their dynamic behavior. This property
prohibits the application of modal decomposition techniques to derive ODE models
that approximately describe the dynamics of the PDE system and suggests address-
ing the control problem on the basis of the infinite dimensional model. Following
this approach. distributed control algorithms have been developed employing opti-
mal control and sliding-mode control. However. there does not exist a framework
for the synthesis of nonlinear distributed controllers for quasi-linear hyperbolic PDE
systems that addresses the problems of modification of the input/output behavior.
elimination of measurable disturbances. and attenuation of unmeasured disturbances

and unknown parameters.

In contrast to hyperbolic PDEs. parabolic PDEs are characterized by a finite-
number of dominant modes. which implies that their dvnamic behavior can be ap-
proximately described by ODE systems that can be used for controller design. Mo-
tivated by this. the standard approach to the control of parabolic PDEs involves the
application of Galerkin's method to the PDE system to derive ODE systems that
approximate the PDE svstem. which are subsequently used as the basis for controller
svnthesis. The main disadvantage of this approach is that the number of modes that
should be retained to derive an ODE model that yields the desired degree of approx-
imation may be very large. leading to high dimensionality of the controller, and thus,

to implementation problems.

This doctoral thesis presents a general framework for the synthesis of nonlinear
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controllers for nonlinear two-time-scale ODE systems. and nonlinear hyperbolic and
parabolic PDE systems that systematically addresses the problems of modification
of the input/output behavior. elimination of measurable disturbances. and attenu-
ation of unmeasured disturbances and unknown parameters. The proposed control

algorithms are applied to industrially important chemical processes.

The first volume of the thesis is organized as follows. Chapter 2 addresses the prob-
lem of synthesizing well-conditioned feedback controllers for two-time-scale nonlinear
ODE systems that modify the input/output behavior in a desired way. Singular per-
turbation methods are used to derive separate reduced-order models which describe
the fast and slow dynamics of the original system. These models are subsequently
used for controller synthesis using differential geometric methods. The proposed con-
trol method is applied to a biochemical reactor and a cascade of two autocatalytic
reactors. Chapter 3 addresses the problem of elimination of the effect of measurable
disturbances on the output in two-time-scale nonlinear ODE systems. The prob-
lem is addressed through appropriate incorporation of measurements of disturbances
(feedforward action) in the feedback controllers derived in chapter 2. The resulting
feedforward /feedback controller is applied to a catalytic reactor. In chapter 4. the
problem of attenuation of the effect of unmeasured disturbances and unknown param-
eters on the output in two-time-scale nonlinear ODE systems is addressed. Nonlinear
controllers are synthesized through combination of differential geometric methods and
Lyapunov techniques that utilize bounds on the size of the uncertain variables. The
method is applied to a chemical reactor. In chapter 5. a control method for multi-input
multi-output two-time-scale ODE systems with uncertain variables is developed and
applied to a fluidized catalytié cracking reactor. The proofs of the results presented

in chapters 2. 3. 4 and 5 are given in appendices A, B. C and D. respectively.

The second volume of the thesis is organized as follows. Chapter 6 addresses the

problem of synthesizing nonlinear distributed output feedback controllers for quasi-
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linear first-order hyperbolic PDE systems that induce a desired input/output be-
havior. The controllers are synthesized on the basis of the PDE model following a
geometric approach. The proposed control method is applied to a plug-flow reac-
tor. Chapter 7 deals with the problem of attenuation of the effect of unmeasured
disturbances and unknown parameters on the output in hyperbolic PDE systems.
Lyapunov techniques for infinite-dimensional systems are emploved for the synthesis
of distributed controllers that utilize bounds on the size of the uncertain variables to
attenuate their effect on the output. The developed control method is applied to a
fixed-bed reactor. Chapter 8 presents a methodology for the synthesis of nonlinear
low-dimensional output feedback controllers for quasi-linear parabolic PDE systems
that induce a desired input/output behavior. The controllers are synthesized on the
basis of low-dimensional ODE models that accurately reproduce the solutions of the
PDE system. derived through combination of nonlinear Galerkin's method and ap-
proximate inertial manifolds. The proposed control method is applied to a packed-bed
reactor. Chapter 9 summarizes the main contributions of this work and proposes di-
rections for future research. Finally. the proofs of the results presented in chapters 6.

7 and 8 are given in appendices E. F and G. respectively.
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Chapter 2

Feedback Control of Nonlinear

Two-Time-Scale Systems

2.1 Introduction

Most physical and chemical systems are inherently nonlinear and are character-
ized by the copresence of dynamical phenomena occurring in multiple-time-scales.
Representative examples of nonlinear multiple-time-scale systems include catalytic
CSTRs [CAS84. Den86). reaction networks [BB91]. fluidized catalytic cracking reactors
[GeoT7. MG8T]). biochemical reactors [HTA67. BO87. BD90]. high-purity distillation
columns [LR91]. electrical circuits {IKha92]. electromechanical networks [Cho82). DC

motor models [KKO86|. flexible mechanical systems [DC93] etc..

Singular perturbation theory provides a natural framework for the analysis and
control of multiple-time-scale systems [KKO86. Kha92]. Singular perturbation meth-
ods allow decomposing a multiple-time-scale system into separate reduced-order sys-
tems that evolve in different time-scales. and inferring its asymptotic properties from
the knowledge of the behavior of the reduced-order systems [IKES76]. Within this

framework. stability issues [SK84} and geometric properties [Fen79. MK88] of non-
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linear two-time-scale systems have been studied and feedback control algorithms
have been developed using optimal control [KKQO8S6]. the integral manifold approach

(SO87. BPMNC93]. and sliding mode techniques [Hec91].

On the other hand. differential geometry has proven to be a natural framework
for the analysis and control of nonlinear systems. Within this framework. several
nonlinear control problems have been successfully addressed (see e.g. {Isi39. NvdS90.
KA91}). However. most of the developed nonlinear control methods do not take
explicitly into account possible time-scale multiplicities. and thus. may lead to ill-
conditioned controllers. significant performance deterioration or even destabilization
of the closed-loop system in the presence of such time-scale multiplicity ([KKOS6]).
The combination of singular perturbation and differential geometric methods for the
solution of the problem of exact state-space linearization of a class of nonlinear two-

time-scale systems was proposed by [Kho90].

This chapter addresses the state feedback control problem for two-time-scale non-
linear systems modeled within the mathematical framework of singular perturbations.
The objective is to svnthesize well-conditioned static state feedback laws that induce
a well-characterized input/output behavior in the closed-loop system. The control
laws are synthesized employving combination of singular perturbation and geometric
methods. Conditions that guarantee the stability of the closed-loop system under
the developed control laws are also derived. The developed control methodology is

applied to two nonlinear chemical processes with time-scale multiplicity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 Preliminaries

We will consider two-time-scale nonlinear systems. modeled in singularly perturbed

form. with the following state-space description:

r = f1 I)+Q1 .l‘)ll
€2 = folr)+ Qax ga(z)u (2.1)
y = h(z)

where £ € X C IR™ and = € Z C IR? denote vectors of state variables, with X" and
Z open and connected sets. u € IR denotes the input. y € IR denotes the controlled
output. ¢ is a small positive parameter which can be interpreted as the speed ratio
of the slow versus the fast dynamical phenomena of the system. Furthermore. f;(r
). fo(z). g2(z) are analytic vector fields. @;(r) and @Q,(r) are analytic matrices

of dimensions n x p and p x p respectively. and A(r) is an analytic scalar function.

Modeling a two-time-scale process in a singularly perturbed form involves defin-
ing the singular perturbation parameter e. taking into account the physicochemical
characteristics of the process. so that the separation of the fast and slow variables
becomes explicit. with e multiplying the time derivatives of the fast variables =. € usu-
ally represents small process parameters or the reciprocal of large process parameters
(e.g. small/large masses. capacitances). The reader may also refer to [KIKO86] for
further discussion on this issue. Referring to the specific singularly perturbed system
of Eq.2.1. we note that the parameter € appears only in the left-hand side (multiply-
ing the time-derivative 2). while the fast variable = enters in a linear fashion. The
first assumption is made for notational simplicity and can be readily relaxed (see
remark 2.7). while the second assumption is consistent with the fact that in many
chemical processes the main nonlinearities are associated with the slow variables and

also allows explicitness and analytical insight in the theoretical development.

The explicit separation of the slow and fast dynamics in the system of Eq.2.1.

owing to the presence of the small parameter € that multiplies the derivative of the

oo
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state vector = allows decomposing it into separate reduced-order systems evolving in
separate time-scales ([KES76]). In particular. assuming that the system of Eq.2.1 is
in standard form i.e.. the matrix @,(z) is nonsingular uniformly in z € X. and setting

€ = 0, the system of Eq.2.]1 takes the form:
r= fi(x) + @i(T)ss + gi1(r)u (2.2)

fa(z) + Q2(z)zs + g2(x)u =0 (2.3)

where z, denotes a quasi-steady-state for =. The invertibility of the matrix Qy(x)
guarantees that the system of algebraic equations (Eq.2.3) admits a unique solution

for z4. of the form:

2 = =[Qax)] 7 [fo( ) + ga(x)y] (2.4)
Substituting Eq.2.4 into Eq.2.2 the following reduced system or slow subsystem is
obtained:
:i = F(z)+ G(zr)u (2.5)
y* = h(z)
where y° denotes output associated with the slow subsystem and
Flr) = filz) = Qua)[Qa()] " fala) .6

Glz) = qi(z) = Qi(2)[Q2(2)]  ga(x)
Note that the input u appears in an affine fashion in the system of Eq.3.5 because
of the linearity in = in the original system. To obtain a representation of the system

which describes the fast dvnamics of the system of Eq.2.1. we define a fast time-scale:

[n this new time-scale the original syvstem takes the form:

I
% = filz) + Qi(7)z + g1 (x)y] (2.8)
d=
77 = Jfo(7) + Qu(7)z + ga()u (2.9)
9
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Setting € equal to zero. the following fast subsystem is obtained:

d=
7 = fol2) + Qa(z)z + ga(a)u (2.10)
where z can be considered approximately equal to its initial value r(0). The following

assumption states a stabilizability requirement on the system of Eq.2.10.

Assumption 2.1: The pair [Q3(z) ga(z)] is stabilizable. in the sense that there crists
an analytic covecior field kT (z) such that the matriz Qq(z) + ga(2)kT () is Hurwit:

uniformly inx € X.

We will now review the standard definition of relative order for nonlinear systems
described by Eq.2.3. the definition of order of magnitude. and a standard stability and
closeness of solutions result (Tikhonov's theorem) for singularly perturbed svstems.

which will be used in our development.

Definition 2.1 : Referring to the nonlinear system of Eq.2.3. the relative order of

y® with respect to u is defined as the smallest integer v for which

LoLyth(z) £ 0 (2.11)
orr = if such an integer does not exist.
Throughout the chapter. it will be assumed that Eq.2.11 holds for all r € X.

Definition 2.2 ([Kha92]): é(¢) = O(e) if there exist positive constants k and ¢ such
that:

16(e)] < kle]. Vel < ¢ (2.

o
—
[ 3]
~

Theorem 2.1 ([Tik48)]): If the slow and fast subsystems of Eqs.2.5-2.10. respec-
tively, are locally exponentially stable, then there exists a positive real number € such

that if € € (0.€%]. then the system of Eq.2.1 is locally exponentially stable and its

10
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solutions z(t), z(t) for all t € [0.00) satisfy:
z(t) = z4(t)+ O(e)
(2.13)

) = =t +s(5) + Ot

: t, . :
where z4(t) is the solution of the system of Eq.2.5 and ng(~) is the solution of:
€

dns

- = Qalz) (2.14)

2.3 Methodological aspects

A direct application of state feedback syvnthesis methods based on nonlinear inver-
sion to systems of the form of Eq.2.1 may result in the derivation of ill-conditioned
control laws. i.e.. control laws that become singular as ¢ — 0. and/or closed-loop
instability (for a detailed discussion. see remarks 2.4 and 2.3). Furthermore. such
an approach may result in feedback laws that depend on the fast state vector = and
lead to destabilization of the fast dvnamics of the system ([KKOS86]). Motivated by
the above considerations. in this paper. we will address the problem of synthesizing
well-conditioned static state feedback laws that guarantee exponential stability of the
closed-loop system and ensure that the output of the closed-loop system satisfies a
relation of the form:

y(t) = y(t)+0(e). t 20 (2.15)
with y°(t) being the output of the closed-loop reduced system. where a prespecified
input/output response is enforced. These requirements will be obtained for sufficiently
small €.

The control problem will be initially addressed for systems in standard form, that
is. systems for which the matrix @Q;(z) is invertible uniformly in £ € X, and then for
systems in nonstandard form. that is. systems for which the matrix Q4(z) is singular

for some r € X. We will establish that. for systems in standard form. the synthesis

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the requisite state feedback law can be performed on the basis of the open-loop
system of Eq.2.1. while for systems in nonstandard form. it has to be preceded by the

feedback regularization of the fast dynamics.

2.4 Control of two-time-scale nonlinear systems in standard

form

In this section, we will address a state feedback synthesis problem for systems of the
form of Eq.2.1 in standard form. with possibly unstable fast dynamics. Motivated
by the possible instability of the fast dynamics and the affine appearance of the fast
state = in the model of Eq.2.1. we will initially consider well-conditioned static state
feedback laws of the form:

u = u+kT(z)z (2.16)

where @ is an auxiliary input and k7(z) is an analytic vector field in IR?. to stabilize
the fast dynamics of the closed-loop system. Substitution of the control law of Eq.2.16

into the svstem of Eq.2.1 vields:

& = filz)+[Qi(z) + @1(2)kT(2)]z + gi()a 2.17)
e = faz) +[Qa(z) + g2(2)kT ()] + g2()

f~d)

One can immediately observe that the control law of Eq.2.16 preserves the two-time-
scale nature of the system. and the linearity with respect to the state = and the
auxiliary input u. Furthermore. performing a standard two-time-scale decomposition,

the fast subsystem is given by:

dz

T = l2)+[Qa(2) + ga(@)kT(2)]: + gala)i (2.18)

while the slow subsvstem takes the form:

i = F(z)+G(2)u
y* = h(z)

12
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where

G(r) = gu(z)— [Qi(z) + g1(2)kT(2)][Qa(z) + ga( )T ()] g2

It is clear that the :-dependent state feedback law of Eq.2.16 allows modifving the

Fla) = Al —[@ul) + )T )]0d () + il AT(r)]“f (2.90)

stability characteristics of the fast dynamics of the original system by choosing the
gain kT(z) such that the matrix Qy(z) + go(z)kT(z) is Hurwitz uniformly in & € X
Moreover, one can immediately observe that the reduced system of Eq.2.19 depends
explicitly on the nonlinear feedback gain kT(r). Therefore. before we proceed with
the solution of the control problem in the slow time-scale. we will establish that the
state feedback law of Eq.2.16 preserves the relative order r of the output y°. The
main result is given in proposition 2.1 that follows. The proof of the proposition can

be found in the appendix A.

Proposition 2.1: Consider the two-time-scale system of Eq.2.1. assumed to be in
standard form. for which assumption 2.1 holds. Then. under a static state feedback law
of the form of Eq.2.16. such that the matrir Qa(z) + go(x)kT (z) is Hurwitz uniformly
in r € X. the relative order of y° with respect to i in the reduced system of Eq.2.19

is equal to r.

In order to enforce control objectives in the closed-loop slow subsystem. we will now

seek well-conditioned static state feedback laws of the form:
u = p(r)+qx)v (2.21)

where p(z). q(r) are scalar fields with ¢(z) # 0 for all + € X. and v is a reference
input. that enforce output tracking and guarantee stability of the closed-loop reduced

system. Under a control law of the form of Eq.2.21 the closed-loop system is given

by:
t = [filz) +q(z)p(z)] + [Qi(z) + g1(2)kT (2)]2 + g1 (z)g(z)v
ez = [le‘ 92(2)p(x)] + [Q2(z) + g2(2)kT(7)]2 + g2(2)q(z)v (2.22)
y = h(z)
13
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fast subsystem is given by:

dz

— = [fle) + 0:()p(z)] + [Qa(2) + g2(2)kT (2)]z + ga()g(2)e (2.23)

and the closed-loop slow subsvstem takes the form:

i = [F(z)+Gla)p(a)] + Gla)g(a)e 2
y* = h(z) '

Proposition 2.2 that follows allows specifving the order of the requested input /output

response in the closed-loop reduced system.

Proposition 2.2: Consider the two-time-scale system of Eq.2.17. where the matrir
Q2(z)+g2(2)kT(z) is Hurwitz uniformly in r € X. Then. under a static state feedback
control law of the form of Eq.2.21. the relative order of y* with respect to v in the

closed-loop reduced system of Eq.2.2 is equal to r.

Proof: The proof of the proposition involves the application of the two-time-scale
decomposition procedure to the resulting closed-loop system. and the standard argu-
ment for nonlinear systems of the form of Eq.2.5 under static state feedback of the
form of Eq.2.21 (see e.g. [Isi89)). A

The result of proposition 2.2 allows requesting an input/output behavior of relative
order r in the closed-loop reduced system. For simplicity. a linear minimal-order

input/output behavior will be postulated. of the form:

drys dys
Sr——+ -+ Hh—+ Gy’ =0 2.2
I +- Ly + Joy® =1 (2.25)

where Jo.---. 3, are adjustable parameters. which can be chosen to guarantee in-
put/output stability and to enforce desired performance specifications in the closed-

loop reduced system.

We are now in a position to give an explicit synthesis formula for the state feedback

controller of Eqs.2.16-2.21 that enforces the requested control objectives in the closed-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



loop system. Theorem 2.2 that follows provides the main result of this section (the

proof of the theorem can be found in the appendix A).

Theorem 2.2: Consider the two-time-scale system of Eq.2.1. assumed to be in stan-

dard form. for which assumption 2.1 holds. Then the static state feedback law:

u = [1+k(2)[Q2(z)] " g2(z)] [ﬂ,.[.GL}:_lh(r)]—1 {v ~ idkL'}h(.z')} (2.26)
(@) Qula)l folz) + KT (2): -
where the feedback gain kT(x) is such that the matrir Q,(x) + g2(x)kT () is Hurwit:
untformly in z € X,
a) guarantees local exponential stability of the fast dynamics of the closed-loop system.

b) ensures that the output of the closed-loop system satisfies a relation of the form :

y(t) = ¥ (H)+0(e) . t 20 (2.

[ 8]
[ )
|
—

for € sufficiently small. with y*(t) being the solution of Eq.2.25.

Remark 2.1: The state feedback law of Eq.2.26 can be equivalently written as

[ QW]
[ 8]
oL

u = [B,LgL}'lh(;r)]-l {v - id’kﬂ}h(r)} + kT (z)(z - €) (2.

k=0

where

£ = —[Qa(z)]” {fz ) + ga(x)[3- Lo LF T h(x)] ™! {v - ;Z;JkL;h(.r)}} (2.29)

=0

denotes a quasi-steady-state for the fast dynamics of the closed-loop system. It is
clear that the above control law consists of two separate components: the component.
kT(r)(z —€). which acts in the fast time-scale and is responsible for the stabilization
of the fast dvnamics of the system. and the component,
[B,-LgL"lh ] - {1 - de ,.Jz } which acts in the slow time-scale and induces
the desired mput/outpui behavior in the closed-loop reduced system. Control laws
that address control objectives in different time-scales are called composite control

laws ({Isi89]). The above analysis of the structure of the controller of theorem 2.2

15
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suggests that the two components 6f the controller can be synthesized independently.

on the basis of the open-loop system of Eq.2.1.

Remark 2.2: The fact that the component kT(z)(z — £) acts in the fast time-scale
where the state vector r can be considered approximately equal to its initial value
z(0) allows designing the feedback gain &7(z) using standard control methods. such

as pole placement, optimal control. etc. (for details see e.g. [KKOS86]).

Remark 2.3: In the case of systems of the form of Eq.2.1 with stable fast dvnamics.
i.e. assuming that the eigenvalues of the matrix Q,(z) lie in the open left-half of
the complex plane uniformly in z € X. the controller of theorem 2.2 does not need
to utilize feedback of the fast state vector = to stabilize the fast dynamics and thus.

simplifies to:

v = |3, LoLyh(z) ]‘{v-ZmL‘ } (2-30)

k=0

Remark 2.4: Referring to systems of the form of Eq.2.1 with stable fast dynamics.

(v) (r)
ag £ 0, ag £ 0. A direct differ-

let v, 7 denote the smallest integers for which
entiation of the output of the system of Eq.2.1 with respect to time vields then the

following expressions:

y = h(x)

y(l) = Lf‘h(l‘,)
yo = Li7A(x)

y = L7 h(z) + wolx.:2) (2.31)
gy = [THh(z) + wi(z. )
y = Lyh(x) 4 e (T, 2)

y = LY h(z) + wen(z.2) + (2. 2)u

where v;(z.z). i = 0.---.v — =, are scalar functions whose specific form is omitted

for brevity. Whenever v < #. the functions v;(z.z) are identically equal to zero

and c(z.z) = Ly, LY~ Yh(z). In this case, the expressions for the derivatives of y of

16
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Eq.2.31 are independent of the fast state vector =. Furthermore. the vector fields
F(z) and G(r) defined in Eq.2.6 satisfy the relations: LgLF'h(x) = Lo, L% h(x)
and Lih(z) = L’}lh(r). k =1.---.r. Clearly. the condition v = r holds in this case.
and the control law of Eq.2.30 induces an input/output behavior of the form:

i d
y+"'+131‘_y+doy=l‘ (.

8. dtv dt

(2]
4
&
(8™
—

in the closed-loop full — order system. On the other hand. on the basis of Eq.2.31.
it is clear that whenever v = =. a state feedback law that induces the input/output
behavior of Eq.2.32 in the closed-loop full-order system requires feedback of the fast
state vector =. and thus. may destabilize the fast dvnamics of the system. while if

v > = such a control law will also be ill-conditioned.

Remark 2.5: In this remark. we will address the implications of the instability of
the fast dynamics on the stability of the zero dvnamics of systems of the form of
Eq.1. for which v < 7. As noted in remark 2.4. whenever v > =, an inversion-based
state feedback law 1s ill-conditioned. and thus. such an analysis is not particularly
meaningful for this case. Referring to the system of Eq.2.1 with v < . there exists

(see e.g. [Isi89]) a coordinate transformation:

o 1

o1(r)
[ m ] :
: On_p(r)
n—v h(r)
(¢.z) = i = T(z.z) = | Lyh(x) (2.33)
Co L7 h(x)
L = <
where @;(z). i = 1.---.n — v are scalar fields. such that the system of Eq.2.1 takes

17
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the form:

14
n = Lpo(n.¢)+ Y Lo,.0n.¢)zx

. r=1

G = G
. T (2.34)
Qu—.l = Qu

G = Lyh(m¢)+ Lo, Ly h(n.C)z + Ly, LY h(0. Q)u

e = fo(n.¢) + Q2n.¢)z + g2(n. Qu

y = G

where o(z) = [¢1(z) --- 0n-,(z)]T. the ((.n)-dependence in the right-hand-side of
Eq.2.34 implies the evaluation of the functions at (z.z) = T=}#.¢.2). and L;0 =
[Lnor -+ Lpon,]Ts Lg,.0 =[Lo,01 -+ Lo, 0n-0]".
Lo, Ly h = (Lo, LT h -+ Loy, Ly~ h]. with Qx being the k — th column vector of
the matrix (1. Whenever v < 7. the dynamical system:

P
no= Lpo(n.0)+ > Lo, 8(n.0)z
r=1 (.

% h(n.0
e = fo(n.0) + Q2(n.0)z ~ g2(n, 0) 7 Ifl"‘gri'z(n)o)
an=fy U

!v
G
(61

is the zero dynamics of the system of Eq.2.1 (see e.g.. [Isi89]). One can immediately
observe that the modes of the zero dvnamics contain the modes of the fast dynamics.
and thus. instability of the fast dynamics implies instability of the zero dvnamics of the
original system. Systems that possess a zero dvnamics with a two-time-scale nature
and unstable fast dvnamics are called slightly nonminimum-phase (see e.g. [SHK89]).
For such systems. one can immediately see that inversion-based state feedback laws
lead to internal instability of the closed-loop system. On the other hand, under the
state feedback law of Eq.2.26. the fast dvnamics of the closed-loop system possess a
locally exponentially stable equilibrium manifold. while the internal stability of the
closed-loop system depends on the stability of the zero dynamics of the open — loop

reduced system (see section 2.3). Furthermore. whenever v = 7, the zero dynamics

18
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of the system of Eq.2.1 in the coordinates of Eq.2.33 takes the form:

r
n = Lpd(n.0)+ > Lo, 0(n.0)z
r=1 (2.36)

' Lo, L5 h(7.0) L% h(n.0)
: = .0 .0) - l - 0 ;
€ f2(n.0) +[Q2(n.0) LQIL;;‘h(n.O)] 9201 )LglL;j‘h(;,.O)

and thus. the system of Eq.2.1 may or may not be slightly non-minimum phase.

depending on its specific structure.

2.5 Control of two-time-scale nonlinear systems in nonstan-

dard form

In this section. we will address a state feedback controller synthesis problem for two-
time-scale nonlinear systems of Eq.2.1 in nonstandard form. i.e.. systems for which
the matrix @2(z) is singular. The immediateimplication of the non-invertibility of the
matrix @2(z) is the lack of a well-defined quasi-steady-state for the fast state vector =
([Kha89]). Therefore. an application of the two-time-scale decomposition procedure
to the system of Eq.2.1 will result in the derivation of a singular reduced system.
Referring to this reduced system. it can be easily seen that the concept of relative
order is not well-defined. and the results of propositions 2.1 and 2.2 that allowed
the formulation and solution of the controller synthesis problems for two-time-scale

svstems in standard form do not hold.

The previous considerations imply that any attempt for the synthesis of state
feedback laws for this class of systems. requires the regularization of the fast dynamics
(in the sense of inducing a well-defined quasi-steady-state for the fast state vector
=) through appropriate feedback of the fast state vector =. Motivated by this. in
what follows, we will initially employ appropriate feedback of the state vector z to
induce an exponentially stable quasi-steady-state for the fast dynamics. and we will

subsequently formulate and solve the synthesis problem on the basis of the resulting
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two-time-scale system.
In particular, we will initially consider a well-conditioned static state feedback law
of the form:
u = u+kT(r): (2.37)
where kT (z) is an analytic vector field in IR? and # is an auxiliary input. to regularize

the fast dynamics. Under the control law of Eq.2.37 the system of Eq.2.1 takes the

form:
i'. = ) + [@1(2) + g1 (2)k T (2)]= + g (o) (2.38)
e = ) + [Q2(2) + ga(2)kT (2)]z + go(z)id -
Performing a two-time—scale decornposmon. the corresponding fast subsystem takes
the form:
d= .
I = fal2) +[Qa2(2) + g2(2)KT ()] + g2(2)d (2.39)
while the corresponding slow subsystem is given by:
& = F(z)+Glz)i 5
: 2.40
i = ha) (240
where the vector fields F(z). G(z) are given in Eq.2.20. It is clear that the =-

dependent state feedback law of Eq.2.37 allows us to regularize the fast dynamics of
the system by choosing &% (z) in such a manner so that the matrix Q,(x)+ g2(x)kT ()
1s Hurwitz uniformly in * € X. A necessary and sufficient condition for the regular-
ization of the fast dynamics is rank{Qs(z) g2(x)] = m. uniformly in r € X ([Kha89]).
Note that this condition is not an additional requirement. since it is directly implied
by the stabilizability property of the pair [Q2(z) g2(x)].

It is now possible to formulate and solve a controller synthesis problem on the
basis of the system of Eq.2.38. In particular. we will seek a well-conditioned static

state feedback law of the form:
u = p(z)+g{z) (2.41)

where p(r), §(z) are scalar fields. with §(z) # 0 for all + € X, and v is the external

reference input. Referring to the system of Eq.2.40. let 7 denote the relative order of
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the output y* with respect to the auxiliary input @. It is then straightforward to show
that the result of proposition 2.2 holds for the two-time-scale system of Eq.2.38 under

the state feedback law of Eq.2.41. This allows postulating the following input/output

behavior:
dr..’}s d!}s R
3.0 9 2a5 — 9 19
3; Tz + -+ 3 I + Foy’ =1 (2.42)

in the closed-loop reduced system. Theorem 2.3 that follows summarizes the main

result of this section. The proof of the theorem can be found in appendix A.

Theorem 2.3: Consider the two-time-scale system of Fq.2.1. assumed to be in non-
standard form. for which assumption 2.1 holds. Then the static state feedback law:

u = [B;Lé[}'lh(x)]—l {v - iﬁkl"}fz(r)} + kT (2)z (2.43)

k=0

where the feedback gain kT(r) is such that the matrir Qa(z) + go(x)kT (1) is Hurwit:
untformly in r € X,

a) guarantees local exponential stability of the fast dynamics of the closed-loop system.
and

b) ensures that the output of the closed-loop system satisfies a relation of the form :

y(t) = 9 (t)+0(e). t >0 (2.-44)
for € sufficiently small. with §°(t) being the solution of Eq.2.42.

Remark 2.6: The result of theorem 2.3 reveals a fundamental difference in the
nature of the control problem between systems in standard and nonstandard form.
In particular. in the case of systems in nonstandard form. the formulation (relative
order of the requested response) and solution of the control problem in the slow time-
scale are based on the reduced system of Eq.2.40. and thus explicitly depend on the
gain kT(z) used to regularize the fast dynamics. as opposed to systems in standard
form where the control problem in the slow time-scale is independent of the choice of

kT (r).
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Remark 2.7: The control algorithms of theorems 2.2 and 2.3 can be directly applied
to two-time-scale systems with e-dependent right-hand side. with the following state-
space description:

r = fi(z.ez.e)+ Qi(z.ez.€)z+ gi(T.€z.€)u

€2 = R(z.2)[falz.€z.€) + Q2(z.€2.€)z + ga( . €2. €)u] (:

y = hiz)

[ R
-
Ut

where R(z.z) is a diagonal matrix of dimension p x p. which is positive definite for

all z € X. = € Z. This is possible because i) the stabilizability requirement of

(3]

assumption 2.1 suffices to ensure that the fast subsystem of the system of Eq.2.45
can be made exponentially stable. and ¢7) in the case of non-singular Q,(r.ez.€).
the open-loop slow subsystem of the syvstem of Eq.2.45 is the same as the one of
Eq.2.5 (which ensures the applicability of theorem 2.2). while in the case of singular
Q2(z, €z.€). the slow subsystem obtained after the regularization of the fast dvnamics

is the same as the one of Eq.2.40 (which ensures the applicability of theorem 2.3).

2.6 Conditions for closed-loop stability

In this section. we will address the stability of the unforced (v = 0) closed-loop full-
order system under the state feedback laws of theorems 2.2 and 2.3. Initially. we will
consider two-time-scale systems of the form of Eq.2.1 in standard form and assume
that: 1) the eigenvalues of the matrix Q,(x) + g2(z)k%(z) lie in the open left-half of
the complex plane uniformly in r € X. 2) the roots of the polvnomial 3y + 35 +
-+- 4+ 3.s" = 0 lie in the open left-half of the complex plane. 3) the open-loop reduced
system of Eq.2.5 is minimum-phase. i.e. its zero dynamics is locally exponentially
stable. Condition 1 guarantees that fast dynamics of the closed-loop system possess
an exponentially stable equilibrium manifold. Moreover, it is straightforward to show
that conditions 2 and 3 guarantee the local exponential stability of the unforced

closed-loop reduced system. under the controller of theorem 2.2. The local exponential
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stability of the closed-loop reduced-order systems implies that the unforced closed-
loop full-order system is locally exponentially stable. for a sufficiently small € (see

theorem 2.1).

In the case of systems in nonstandard form. one can use similar arguments to show
that the local exponential stability of the unforced closed-loop full-order system. for
e sufficiently small. is guaranteed if condition 1 holds. the roots of the polyvnomial
Bo+ 315+ -+ B:s" =0 lie in the open left-half of the complex plane. and the zero

dynamics of the reduced system of Eq.2.40 is locally exponentially stable.

2.7 Simulation studies

2.7.1 Application to a biochemical reactor

Consider the biochemical continuous stirred tank reactor shown in Figure 2.1, where

the following enzymatic reaction ([HTA67]) takes place:
S+ E=(C—> P+ F (2.46)

where S. E. C and P. denote the substrate. the enzyme. the complex and the product
respectively. The inlet stream F) consists of substrate of concentration Cgy and
temperature T'sg. while the inlet stream F, consists of enzyme of concentration Cgg

and temperature Tgo. Under the following assumptions:

o Perfect mixing in the reactor
¢ Uniform temperature in the reactor
e Constant volume of the liquid in the reactor

e Constant density and heat capacity of the reacting liquid
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Figure 2.1: A biochemical continuous stirred tank reactor.
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the material and energy balances that describe the dynamical behavior of the biore-

actor take the following form:

dCp

v=£

T odt
dCs

V==

dt
dCg

n=E -

dt
dCc

P

dt

dT,

V=L =

dt

—E;
—F3Cp + ke BT: Cc ¥,
-F, —-F5
F\Cso — F5Cs — kige BT CsCEV, + koge BT: Co
—-F; -E, —F5
F2Cgo — F3CE — kioe BT CsCiV; + kaoe BL: CoViy + kgoe BT
—E1 '—'Eg —E;;
—F3Cc + ke BT CsCelV; — kyoe RT: CoV; = kaoe BT €1
AH i
FiTso+ FiTeo - AT, + —2— ¢ 280 BT co0ps
PmCpm PmCpm
" —-F, O
+&_)k206 RT. covo + i@ksoe RT: .,
PmCpm PmCom
(2.47)

where Cs. Cg, Cc. Cp denote the concentrations of the species S. E. C. P. and Csg

and Cgg denote the inlet concentrations of the species £ and S. T, and V1, denote

the temperature and the volume of the reactor. F3 denotes the outlet flow rate. and

kio. koo, k3o. Ev. Ey. E5. AH,. AH,. AH; denote the pre-exponential constants.

the activation energies. and the enthalpies of the three reactions. The control objec-

tive is the regulation of the concentration of the substrate C's by manipulating the

heat input to the reactor ). In this type of bioreactions. the inlet concentration of

the enzyme is usually much smaller than the one of the substrate ([HTA67]). Defining

the parameter ¢ as:

and setting:

u=Q—Q, ;=

Ceo
¢ = —— (2.48
Cso )
Cp Cs Ce Ce
= —=—. ==, 3= —, T4=1. 2= =, y=1, (2.49
Coo T T BT T Cpo' V=72 249
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the original set of equations can be put in the form of Eq.2.1 with:

[ E —£s ‘
—‘.31’1 + k3o€ Rz, I3
F, F —
‘—1 - ‘—?12 + ke R4 T3
E -E, —E5
f(z) = —‘73-’133—/»'206 Rz, x3 — kage Rz, 3
F, F. F A L
T.I-Tso + —‘TZTEO - T%x4 + Q. -+ (= H”)kgoe Rzy 130
r v v Pmem"r PmCpm
AH s
+£:+ﬂk30€ R$4 I3CSO
i Prm Com ]
[ 0 ]
_E1 0
—kme RI“ .’L’QCEQ 0
Qi(z) = —En . q(z) = 0
ki€ Rz, 1,CEo _1__.
—El PmemVr
—-AH,
(——l)kloe Rz, 13CEgeCso
L PmCpm J
—-E; —F
fa(z) = %6-{'-[\'206 Rry gy 4 fyge BTazy |+ g2(2) = [ 0 ]
—E,
—F kroe BT
Qa(z) = | g7 ¢~ Roe T Crora | ) = E3

[t can be easily seen that @Q,(z) is nonsingular and thus the two-time-scale svstem is

in standard form. Moreover. the matrix Q2(z) is Hurwitz since r, is always positive.

The values of the system parameters and the corresponding steady-state values
of the system variables are given in Table 2.1. It was verified that these conditions
correspond to a stable equilibrium point. while the zero dynamics of the reduced

system are exponentially stable. Since the fast dynamics of the system is stable, the
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Cso = 1292 kmol m~—3
Ceo = 1191 kmol m-3

t Teo = 310.0 KN

i Tso = 329.24 K
F = 2.1 m3 min-!
Fa = 0.1 m3 min-!
F = 22 m3 min=!
i- = 1.0 m3
R = 1.987 kcal kmol~! R -1
cpm = 0.231 kcal kg=! A~}
Pm = 900.0 kgm-3
kyg = 336x 10° m3kmol~! min~!
kag = 1.80x10° min~!
kag = 579x%x10° min-!
E, = 8.0x10°  kcal kmol™!
E- = 9.0x 10° kcal kmol™!
E; = 10.0x 10° kcal kmol™!
AHy = 1.0x10%  kcal kmol™!
AH, = 1.0x10° kcal kmol~!
AHs = 350x10° kcal kmol~!
Ces = 0491 kmol m=3
Ces, = 005 kmol m=3
Cs, = 112 kmol m=3
Cp, = 0.67 kmol m~=3
T, = 300.0 R
Q, = -38x10° kcal min-!

Table 2.1: Process parameters and steady-state values
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controller of Eq.2.30 was employed in the simulations. Setting ¢ = 0. the open-loop

reduced system of Eq.2.5 can be easily obtained with:

r - —E, .
_‘ 31‘1 + k3ge Rz, T3
F F —Ls
‘f}cso - “773'1’2 — kage Rz, I3
F3I
F(z) = [T
F, F. F. AH — L H
-4 T . _A r3
—,ITSO + _?TEO - ‘7334 + S—'—'ﬁ/fzoﬁ Rz, Csors + '(_——)
"'r "'r "'r PmCpom PmCpm
5 AH,. )C — = —Ls
e kspe Rz, Csol';; + (———/—nlﬂ[kzoe R‘T“ Iz + l\?306 Rz, 1'3] + Qs "
Pm Cpm PCom Vr

G(z) =

—_0 O O

PmCom V7

It can be easily verified that the relative order is 7 = 2. The controller was tuned to
give an overdamped response for changes in the reference input with time constant
and damping factor:

7= 388 nmmn . (= 193
through the following choice of the controller parameters:

Jo= 1.0 . 3= 15.0min . By = 15.0 min?

Several simulations were performed to evaluate the performance of the controller. In
the first simulation run. a 0.8 mol/lt increase in the reference input value was imposed
at time ¢ = 1.0 min. Figure 2.2 shows the corresponding output and input profiles.
One can see that the controller regulates the output to the new value of the reference

input. Figure 2.3 shows the profile of the concentration of the enzyme under the quasi-
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Figure 2.2: Qutput and input profiles for a positive change in the reference input.
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Figure 2.3° Profile of the concentration of the enzyme under the quasi-steady-state assumption

(dotted line). Comparison with the actual one (solid line).
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steady-state assumption. Cg,. and the profile of the concentration of the enzvne in
the reactor. C'g. One can observe that the two profiles almost coincide which implies
that the dynamics of the concentration of the enzyme are indeed negligible. In the
second simulation run. a 0.8 mol/lt decrease in the value of the reference input was
imposed at time t = 1.0 min. Figure 2.4 shows the corresponding output and input

profiles. The controller regulates the output to the new value of the reference input.

Remark 2.8: A standard input/output linearizing controller svnthesized on the basis

of the full-order system vields:
u = [ﬁngthh(l‘)]_l .
{y = Boh(z) — Bi[Ly h(z) + Lo, h(x)z] = Bo[L3 h(2) + Lo, Ly, h(x)z

HL Layhlz) + L) + Ly Lo, hla))s + E0 UL £ Q212 )

€

(2.50)
which becomes singular as ¢ — 0. Moreover. the implementation of this feedback law
requires measurements of the concentration of the enzvme in the reactor. which are

difficult to obtain in practice.

2.7.2 Application to a cascade of two continuous stirred tank reactors

Consider the cascade of the two continuous stirred tank reactors shown in Figure 2.5.

where the following autocatalytic reaction ({GS90]) takes place:

A+ B — 2B (2.51)

where A4 is a reactant. B is the autocatalytic species. followed by the zero-order

side-reaction

B - C (2.52)

where (' is the undesired product. The species A is assumed to be in excess in the two
reactors. while the inlet streams consist of autocatalytic species B of concentration

C'go. Under the following assumptions:

3
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Figure 2.4: Output and input profiles for a negative change in the reference input.
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Figure 2.5: A cascade of two continuous stirred tank reactors
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o Perfect mixing in the reactor
e Uniform temperature in the reactor
e Constant volume of the liquid in the reactor

o Constant density and heat capacity of the reacting liquid

the material and energy balances that describe the dynamical behavior of the system

take the following form:

-E ~E,
£ difl = F,Cgo— FiCgy + kioe BT C vy — koe BT 14
dT, Fi Q, (-AH,,) ;2_5‘]
o = ;.-l-(Tso -T)+ P + pave kioe ft11 Cpy
_EO
+(-‘;é£’_)k RT;
n _El & (2.53)
"’i’difz = FiCg1 + F2Cpo — F3Cpg3y + kye RT, CpgaVy — koe RT, V3
_ ~-F,
% = %TBO + %Tl - %Tz + pm?:n‘,? + (;jci{: ) ko€ RT, Ch2
_EO
+(_:A_£’L)_koe RT,
Prm Com

where C'g,, T} and Cgy. T, denote temperature and the concentration of the autocat-
alytic species in the first and second reactor. Cgg and Tgg denote the inlet temperature
and concentration of the species B. Fj is the outlet flowrate in the second reactor.
Q1. Q. denote the heat inputs to the reactors. kio. ko. Ei. Ey. MH;. AHy denote
the pre-exponential constants. the activation energies, and the enthalpies of the two

reactions.

The control objective is the regulation of the concentration of the autocatalytic
species B in the second reactor by manipulating the inlet concentration Cpgg. In order

to decrease the effect of the side-reaction, i.e.. minimize the production of the species
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C. the liquid holdup of the first reactor is smaller than the liquid hold up of the

second reactor ([Lev72]). Defining the parameter ¢ as:

W -
€= - 2.9
T2 (
and setting:
u=Cpgo—Cpgos. 1y =Ty. 12=Cpa. x3=Ts. 51 =Cpg. y= a1, (2.53)

the original set of equations can be put in the form of Eq.2.1 with:

_ ) _E,
—-AH,,
i—l(TBO-J—'I)+ 9 -+ ( )kof Rr,
V 1 PmCpm "'1 Pm Cpm
-F, -Ey
F>CBos — Fary + kige BT3 2,15 — koe B3 1
fi(r) = P F F _ N -k,
—?T80+ ‘Tll'l——,.ixs-%- Q: - +(—‘ r‘)kmeRIS.rg
V2 2 |12 PmCpm V2 PmCpm
-E,
+(;A_11"‘ﬁkoe R.Ts
i Prm Cpm ]
- _E, ]
(M), T :
Qi(z) = Pm Cpm calr) = | B
F 0
= 0 -
—E ;_EI
. ook Iy |
Bley = | Bp ke B0b | Que) = | -4 RS
‘—2' B0s — _—‘-2_—_ "‘2 "2

ga(r) = [%].h(x): [rg]

The values of the system parameters and the corresponding steady-state values of
the system variables are given in Table 2.2. One can easily see that for these oper-

ating conditions the matrix @2(z) is invertible. and the fast dynamics of the svstem
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LI L T O O | 1 | A I T | O T 1 A TR O T I AR T

0.2

1.0

1.987

2.0

305.0
0.231
900.0

1.1 x 10°
2.9 x 10%
5.4 x 108
10.67 x 10°
1471 x 108
1.08 x 107
8.0 x 10°
9.0 x 103
0.2

2.0

2.5

300.0
3.125
300.0

m?>
m3

kecal kmol=* K—*.

kmol m~3

1N

kcal kg=! R -1
kg m=3
kcal min
kcal min~
kcal kmol—!
kcal kmol~!
kmol m=3min-!
min~!

kcal kmol™!
kcal kmol™!
m3 min~!
m3 min=!
kmol m=3
K

kmol m=3
K

-1
1

Table 2.2: Process parameters and steady-state values
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are unstable. Therefore. the controller of theorem 2.2 was emploved in the simula-
tions. Moreover. it was verified that the zero dynamics of the reduced system are

exponentially stable.

Setting € = 0, the representation of the open-loop reduced svstem of the form of

Eq.2.5 can be easily obtained with:

r B o —Eo 7
F _-A To N
_,.I(TBO—Il)-f- @ ~ +( )/\'OER‘11+
1 PmCpm |2} PmCpm

—£
ﬂ:l_)kloe R.l'l
PmCpm
-E, —-FEq
o(Fy — kyoe BT V)Y (Fy Cos — koe 21 17)
—-E -
F(z) = =L
FyCpgos — F31y + kyoe 1173 2515 — kge W3 15 + F)
—-F, —E,
o(Fy — kioe BT1 V1) "1 (FCgos — koe B21 17)
F__F 3 AH &
_TBO + - _,-3-1'3 + Q2 -+ (_ o )I\’lof RI3 )
% 2 |2} PmCpm V2 PmCpm
—E,
(=AHw), R
L Pm Cpm J
" -El —El
2t ) e B (Fy = hyoe et 1)1,
pmcpm
G(r) = _E,
Fy+ Fy(Fy = kyoe BTiv) 1Ry
0

[t can be easily verified that the relative order is r = 1 and the controller of theorem
2.3 takes the form:

1
(1 + kT (2)[Qa(2)) gal 1)} [31 Lah(z)) ™! {v - Z/ikL‘,‘;h(r)}

k=0

(2.56)
+kT(2)[Qa ) falz) + kT (1) 2
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The nonlinear gain k7{z) was chosen as:
3 b
/\'T(.‘L‘) = —F'—O [~ F) + ki€ R, 1]
1

,‘
[V
.
(W1}
=1
—

to place the eigenvalue of the matrix Q,(r) + ¢g2(z)k%(z) in the open left-half of the
complex plane. The time constant for the input/output response was chosen to be

7 = 15 min. through the following choice of the controller parameters:

Jo= 1.0 . 3, = 15.0 min

Several simulations were performed to evaluate the performance of the controller. In
the first simulation run. a 0.8 mol/lt increase in the value of the reference input was
imposed at time ¢ = 0. Figure 2.6 shows the output and the input profiles. Clearly.
the controller drives the output of the system to the new value of the reference input.
while stabilizing the fast dynamics of the syvstem. Figure 2.7 shows the profiles of
the two components of the control law identified in remark 2.1 for this particular

simulation run. More specifically. {'; denotes the component:

[E™]
&1
o

1
U, = [3,Lch(r)]“{v—ZBkL;;h(I)} (2.
k=0

which acts in the slow time-scale and induces the requested input/output behavior

in the closed-loop reduced system. while {’, denotes the component:
Ly = /\’T(I)(Jl - &) (2.59)

where £ is defined in Eq.2.29. which acts in the fast time-scale and stabilizes the
fast dvnamics of the system. Clearly the behavior of [’} and {’; conforms with the
theoretical predictions. More specifically. the component U} acts for all times in order
to drive the output of the system to the new value of the reference input, while the
component U, approaches zero quickly.

In the second simulation run. a 0.3 mol/lt decrease in the value of the reference

input was imposed at time ¢t = 0. The corresponding output and input profiles are
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Figure 2.6: Output and input profiles for positive change in the reference input.
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shown in Figure 2.8. The controller regulates the output to the new reference input
value. while stabilizing the fast dyvnamics of the system. Finally. an input/output
linearizing control law. which was synthesized on the basis of the original system.
was also emploved in the simulations. A 0.3 mol/lt decrease in the reference input
value was imposed at time ¢ = 0. Figure 2.9. shows the profile of the fast state =
which corresponds to the concentration of the species B in the first reactor. and the
corresponding input. It is clear that the input/output linearizing controller leads to
closed-loop instability, which is expected. since. as can be easily verified following the

development of remark 2.3. the process is slightly non-minimum phase.

2.8 Conclusions

In this chapter. we addressed and solved the problem of synthesizing well-conditioned
static state feedback laws for a class of two-time-scale nonlinear systems. whose fast
dynamics may be unstable or singular. The derived control laws guarantee expo-
nential stability of the fast dynamics and induce a well-characterized input /output
behavior in the closed-loop reduced system. It was established that if the zero dy-
namics of the reduced system is exponentially stable. then the closed-loop system
is exponentially stable and the discrepancy between the output of the closed-loop
full-order system and the output of the closed-loop reduced system is of order e. for
sufficiently small values of ¢. The proposed control methodology was successfully
applied to two representative nonlinear chemical processes with time-scale multiplic-
ity and its superiority with respect to nonlinear control methods that neglect the

presence of time-scale multiplicity was documented through simulations.
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Notation

Roman Letters

Cpo = inlet concentration of the autocatalytic species

Cg1 = concentration of the autocatalytic species in the first reactor
C2 = concentration of the autocatalytic species in the second reactor
Cc = concentration of the complex in the reactor

Ceo = inlet concentration of the enzyme

CEg = concentration of the enzyme in the reactor

Cp = concentration of the product in the reactor

Cso = inlet concentration of the substrate

Cs = concentration of the substrate in the reactor

¢pm = heat capacity of the reacting mixture

Eo-ﬁl , E5. E3 = activation energies

F.F. f1, f = vector fields

Fy. Fy, F3 = flow rates

G. G‘,gl,gz = vector fields associated with the input

h = output scalar function

kT = covector field

ko. kyo. k0. k3p = pre-exponential constants

@1 = matrix of dimension n X p associated with the slow state vector »
(@2 = matrix of dimension p X p associated with the fast state vector =
Q.Q:.Q, = heat inputs to the reactors

r.t = relative orders in the reduced systems

Tso = inlet temperature of the autocatalytic species

Tg, = temperature in the first reactor

Ts, = temperature in the second reactor

Teo = inlet temperature of the enzyme

T, = temperature in the bioreactor

Tso = inlet temperature of the substrate

t =time

u = input

u. i = auxiliary inputs

V.. ¥ .V, = volumes of the liquid holdup in the reactors

v = reference input

= vector of the slow state variables
output

= vector of the fast state variables

@ N
il

%]
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Greek Letters

Br = adjustable parameters

AH,,.AH, .AH,,.AH,, = enthalpy of the reactions

€ = singular perturbation parameter

¢ = state vector in normal form coordinates

n = state vector in normal form coordinates

7 = auxiliary variable

£€ = equilibrium manifolds for the fast dynamics in the closed-loop
v = integer associated with the input in the full-order system

T = integer associated with the state vector z in the full-order system
pm = density of the reacting mixture

¢; = auxiliary functions

Math Symbols

Lsh = Lie derivative of a scalar field h with respect to the vector {
th = k-th order Lie derivative

LgL’}"lh = mixed Lie derivative

R = real line

138 = t—dimensional Euclidean space

€ = belongs to

T = transpose

| -] = standard Euclidean norm
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Chapter 3

Compensation of Measurable
Disturbances for Nonlinear

Two-Time-Scale Systems

3.1 Introduction

Exogenous measurable disturbances which may vary arbitrarily with time are present
in all practical applications. [t is well-known that the presence of disturbances. if
not taken into account in the controller design. may cause significant degradation of
the nominal performance and in some instances closed-loop instability. Motivated by
this. the problem of complete elimination of the effect of disturbances on the outputs
(known as disturbance decoupling) for standard nonlinear systems has been studied
extensively. Geometric conditions for the solvability of this problem via static state
feedback [IKGGMS8I1] and static feedforward/static state feedback [MG83] have been
derived. while the solution of this problem through dynamic feedforward/static state
feedback [DK93] has also been obtained. Other available results on the treatment

of disturbance inputs deal with the use of high-gain feedback to achieve almost dis-
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turbance decoupling (e.g.. [MRvdS88]). and the use of feedforward compensation in
the context of exact state-space linearization [CAS8]. However. a direct application
of the aforementioned control methods to multiple-time-scale systems may lead to
controller ill-conditioning and/or instability of the closed-loop system due to possible
slightly non-minimum phase behavior (see remark 2.3).

Motivated by the above realization. the problem of rejection of disturbances for
linear two-time-scale systems has been addressed using A control methods [KC92.
PB93a]. stochastic control methods (see [KKO86] and the references therein). and
controller design via Lyapunov functions [CGG93]. For nonlinear two-time-scale sys-
tems with stable fast dynamics. combination of singular perturbation theory and
adaptive control schemes [TKMK89] has been proposed for this purpose. For non-
linear two-time-scale systems with unstable fast dynamics. an alternative approach
that utilizes combination of singular perturbations and Lyapunov’s direct method has
been proposed in [Kho39].

In this chapter. a broad class of two-time-scale nonlinear systems modeled within
the singular perturbation framework. with measurable time-varyving disturbances. is
considered: these include both systems in standard and nonstandard form. For these
systems. we synthesize well-conditioned control laws that utilize feedback of the full
state vector and feedforward compensation of disturbances to exponentially stabilize
the fast dynamics and enforce a prespecified input/output behavior independently of
the disturbances in the closed-loop slow subsystem. Singular perturbation methods
are emploved to establish that the discrepancy between the output of the closed-loop
full-order system and the output of the closed-loop slow subsystem is proportional to
the value of the singular perturbation parameter. Key differences in the nature of the
control problem between systems in standard and nonstandard form are identified
and discussed. The stability of the closed-loop system is analyzed using Lyapunov

functions and precise conditions that guarantee boundedness of the trajectories of
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the closed-loop system. for sufficiently small values of the singular perturbation pa-
rameter, are derived. Finally, the developed methodology is applied to a catalytic
continuous stirred tank reactor modeled as a singularly perturbed system in nonstan-

dard form.

3.2 Preliminaries

We will consider two-time-scale nonlinear systems with the following state-space rep-

resentation:
r = fi(z)+ Qi(z)z + g1(z)u+ Wi(r)d(t)
€2 = folz) + Q2(x)z + golz)u + Wi(z)d(t) (3.1)
y = h(z)

where £ € X C IR” and : € Z C IR”? denote vectors of state variables. with X and
Z open and connected sets which contain the equilibrium point of interest. u € R
denotes the manipulated input. d = [d(¢) - - d,(¢)] € IR? denotes the vector of distur-
bance inputs which are assumed to be measurable and sufficiently smooth functions
of time. and y € IR denotes the controlled output. and ¢ is a small positive parameter.
Furthermore. fi(z). fo(z). g1(z). g2( ). are analytic vector fields. Q,(r). @Q,(r) and
Wi(zx). Wy(r). are analytic matrices of dimensions n x p. p x p and n X q. p x ¢
respectively. and h(z) is an analytic scalar function. In what follows. for simplicity.
we will suppress the time-dependence in the notation of the disturbance input vector
d(t).

Assuming that the system of Eq.3.1 is in standard form i.e.. the matrix Q.(z) is
nonsingular uniformly in z € X. and setting ¢ = 0. the system of Eq.3.1 takes the
form:

&= filr) + Qi(z)zs + gi(x)u + Wi(x)d (3.2)
fo(x) + Qa2(7)zs + galz)u + Wo(x)d = 0 (3.3)
where z; denotes a quasi-steady-state for z. The invertibility of the matrix Q,(r)

guarantees that the system of algebraic equations (Eq.3.3) admits a unique solution
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for z,. of the form:

zs = —[Q2Ax)] 7 fo(x) + ga(T)u + Wo(x)d] (3.4)

Substituting Eq.3.4 into Eq.3.2 the following reduced system or slow subsystem is

obtained:
r = F(z)+G(z)u+ W(x)d o
ys — IL(.’E) (33)
where y° denotes output associated with the slow subsystem and
F(z) = filz) )[Q2(x)] 7" fa()
G(z) = gi(a) "'Ql )[Qa2(z)] " g2() (3.6)
W(z) = Wi(z) = Q(z)[Q2(z)]™ W2(x)

Note that the input v and the disturbance input vector d appear in an affine and
separable fashion in the system of Eq.3.5 because of the linearity in = in the original
system. To obtain a representation of the system which describes the fast dvnamics

of the system of Eq.3.1. we define a fast time-scale:

In this new time-scale the original system takes the form:

j— = ¢[fi(x (x)z + g1(x)u + Wi(x)d] (3.8)
dz
dr

Setting € equal to zero. the following fast subsystem is obtained:

= fo(7) + Qa2(z)z + ga(T)u + Wa(x)d (3.9)

dz .
o = T) + Q2(1)z + g2(x)u + Walr)d (3.10)
where r can be considered approximately equal to its initial value r(0) and d constant.
The affine appearance of the fast state = in the system of Eq.3.10 implies that its
bounded-input bounded-state stability depends exclusively on the eigenstructure of

the matrix @,(z). For the open-loop fast subsystem of Eq.3.10, we assume that the

stabilizability requirement of assumption 2.1 holds.
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In closing this section. we will review the concept of relative order of the output
y® with respect to the disturbance input vector d for a system of the form of Eq.3.5.

which will be used in our development.

Definition 3.1 : Referring to the nonlinear system of Eq.3.5. the relative order of
the output y° with respect to the disturbance input vector d is defined as the smallest

integer p for which
[Lyg1 L5 h(z) - Lipe L5 R(x)] £ [0--- 0] (3.11)

where W= denote the x — th column vector of the matrir W, or p = o< if such an

integer does not exist.

3.3 Formulation of the control problem

We will address and solve the problem of svnthesizing well-conditioned control laws
that preserve the two-time-scale nature of the open-loop system. with the following

objectives for the closed-loop system:

1. Boundedness of the trajectories

[ SV

. The output of the closed-loop svstem satisfies a relation of the form:
y(t) = y*(t)+0() .t >0 (3.12)
with y°(t) being the output of the closed-loop reduced system. where a prespec-

ified input/output response is enforced independently of the disturbances.

The above requirements will be enforced in the closed-loop system for sufficiently small
values of the singular perturbation parameter €. The control laws will utilize feedback
of the state : to stabilize the fast dynamics and feedback of the state r combined
with feedforward compensation of disturbances to enforce the desired behavior on the

output.
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The above-specified control problem will be initially addressed for svstems in stan-
dard form and then for systems in nonstandard form. For syvstems in standard form.
it will be established that the requisite control law can be synthesized utilizing ex-
clusively information concerning the original system of Eq.3.1. while for systems in
nonstandard form it has to be preceded by the feedback regularization of the fast

dynamics.

3.4 Disturbance compensation for systems in standard form

In this section. we will consider systems of the form of Eq.3.1 in standard form. with
possibly unstable fast dynamics. i.e., systems for which some of the eigenvalues of the
matrix 2(z) may lie in the open right-half of the complex plane for some r € X.
The instability of the fast dynamics dictates the need to embloy feedback of the state
z. In particular. motivated by the affine appearance of the fast state : in the model

of Eq.3.1. let us initially counsider control laws of the form:
u = a4k (r): (3.13)

where £7(z) is in IR?. and & is an auxiliary input. to achieve stabilization of the fast
dynamics of the system. Under a control law of the form of Eq.3.13. the two-time-scale

system of Eq.3.1 takes the form:

‘i. fl +[Q1(T +gl(‘r 1'] +gl )l)+""(T)d (3 14)
€: = )+ [Q2(x) + g2 2)kT (1)) + g2(x) 0 + W(z)d h

One can immediately observe that a control law of the form of Eq.3.13 preserves the
two-time-scale nature of the process. and the linearity with respect to the state =. the
auxiliary input 4. and the disturbance vector d. Furthermore. performing a standard

two-time-scale decomposition. one can easily show that the fast subsystem is given

by
d:

— = [ail0) +[Qa(7) + g2(2)kT(2)]z + ga(2)d + Wy(z)d (3.15)
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while the reduced system takes the form:

F(z)+ G(z)a + W(z)d

;5 z h(z) (3.16)
where
F(z) = ~ [Qu(z) + @1 (2) kT (2)][Q2(z) + g2(2)kT(2)] ! falx)

Glz) = gq r) —[Q (z) + gu(2)kT (2)][Qa2(2) + ga()kT ()] g2(2) (3.17)
W(z) = Wi(z) - [Qu(z) + g1(x)kT(2)][Q2(2) + ga(2)kT (2)] 7 W)
Clearly, the z-dependent control law of Eq.3.13 allows stabilizing the fast dynamics
of the system by choosing &7 () such that the matrix Q,(x) + g2(x)kT () is Hurwitz
uniformly in £ € X (assumption 2.1). Proposition 3.1 that follows establishes condi-
tions for the invariance of relative orders r. p, under the control law of Eq.3.13. The

proof of the proposition can be found in the appendix B.

Proposition 3.1: Consider the two-time-scale system of Eq.3.14. assumed to be in
standard form. Then, referring to the reduced system of Eq.3.16:
a) the relative order of y* with respect to the auziliary input @ is equal to r, and

b) the relative order of y* with respect to the disturbance input vector d is equal to p.

ifp<r.

In order to enforce the desired behavior on the output. let us now consider feed-

forward/state feedback laws of the form:
@ = p(z)+q(x)e+Q (z.d.dV..-.) (3.18)

where p(z). ¢(r) are analytic scalar functions. with ¢(z) # 0 uniformly in z € X,

v is the reference input, and @ is a smooth algebraic function which is nonsingular
under nominal conditions (z.0. - - -) and well-defined and finite for all possible smooth
functions of time d. Given the asymptotic stability of the fast dynamics of the system
of Eq.3.14, the control law of Eq.3.18 uses feedback of the slow state vector = only,

to avoid destabilization of the fast dynamics, while dynamic feedforward terms are
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allowed in order to achieve complete elimination of the effect of d on y in the closed-

loop reduced svstem.

Substitution of the control law of Eq.3.18 into the svstem of Eq.3.1 vields the

following closed-loop system :

[fi(z) + g1(x)p(2)] + [Qu(2) + g2(2)hT (2)])z + gr(x)q(r)e
+g1(z)Q (:r.d.d(” . ) + Wi(z)d

2 = [folx) + g2(2)p(2)] + [Qa2(z) + g2(2)kT (2)]= + ga(a)g(2) (3.19)
+92(2)Q (x.d. d(” <) + Walz)d

y = h(z)

On the basis of Eq.3.19. it is clear that the control law of Eq.3.18 does not modify
the two-time-scale nature of the system. and the linearity with respect to the state
vector = and the reference input v. Emploving a two-time-scale decomposition for
the system of Eq.3.19. it can be easily shown that the closed-loop fast subsystem is
given by:

d:

= = [f2(x) + g2(x)p(2)] + [Q2(z) + g2( 1)k T (2))= (3.20)

+ga(2)[g(x)e + Q (I.d. d ] + Wyx)d

and the closed-loop reduced system takes the form:

i = [F(z)+Ga)p(a)] + Gla)lg(z)e + Q (x.d.dM - )] + W(x)d (3.21)
y* = h(z)

where F(z). G(z) and W(z) are defined in Eq.3.17. Referring to Eq.3.20. one can

immediately see that the feedforward/state feedback law of Eq.3.18 preserves the

stability characteristics of the fast dynamics of the original system. Proposition 3.2

that follows will allow formulating the controller synthesis problem.

Proposition 3.2: Consider the two-time-scale system of Fq.3.14, assumed to be in
standard form. Then. a feedforward/static state feedback control law of the form of
Eq.3.18 preserves the relative order r. in the sense that the relative order of the output
y* with respect to the reference input v in the closed-loop reduced system of Eq;.?.i’l

is equal to r.
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Proof: The proof of the proposition involves the application of the two-time-scale
decomposition procedure to the resulting closed-loop system. and the standard argu-
ment for nonlinear systems of the form of Eq.3.21 under feedforward/state feedback
of the form of Eq.3.18 (see e.g. [DK93]). A

The result of proposition 3.2 suggests requesting an input/output response of rel-
ative order r in the closed-loop reduced system. For simplicity. the following linear

input/output response will be postulated:

drys dys
Sp——+---4+3 Boy’ = v R
dtr+ +'1dt + Ooy 1 ( )
where fo,---, 3, are adjustable parameters which can be chosen to guarantee in-

put/output stability in the closed-loop reduced system and enforce desired perfor-

mance characteristics.

Theorem 3.1 that follows summarizes the main result of this section. The proof of

the theorem can be found in appendix B.

Theorem 3.1: Consider the two-time-scale nonlinear system of Fq.3.1. assumed to
be in standard form. Consider also the reduced system of Eq.3.5. and assume that

p < r. Then. the conditions:
Le®y(2.d)=0. (=0.1.---.r—p—1 (3.23)
where

¢ . q ; q o u _
(D[(.’L‘.d) = ZLF u (Zdn(t)L“/'N + %) (L[:‘ + Zd,‘-(t)wa + -a—t-) L;, l/L(J?)
u=0 =1 x=1
(3.24)

are necessary and sufficient in order for a control law of the form of Eq.3.18 to induce

an input/output behavior of the form of Eq.3.22 in the closed-loop reduced system.
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If these conditions are satisfied and assumption 2.1 also holds. the control law :
1+ KT (2)[Qu(x)] gala)] [3-La Ly ()]

{l - ZﬂkL ZJk‘I’L-p (1' d.dV.. d(k""))} (3.

k=0

+kT(2)[Qq(2)]” l[fg 1')+W z)d) + kT(r)

where the feedback gain k% (z) is such that the matrir Qq(z) + go(x)kT () is Hurwit:

[ 8]
ot
—

uniformly in z € X,
a) guarantees erponential stability of the fast dynamics of the closed-loop system.

b) ensures that the output of the closed-loop system satisfies a relation of the form :
y(t) = y(t)+0().t>0 (3.26)
for € sufficiently small. with y*(t) being the solution of Fq.3.22

Remark 3.1: The form of the functions defined in Eq.3.24 and the pattern of the
conditions of Eq.3.23 can be found in [DK93]. From the result of the theorem. we
note that the verification of the solvability conditions of Eq.3.23 and the evaluation
of the functions ®,. { = 0.1.---.r — p — | are independent of the selection of the
feedback gain k7 (z) used for the stabilization of the fast dvnamics. and thus. can be
performed on the basis of the open-loop reduced system of Eq.3.5. This fact is an

immediate implication of the results of propositions 3.1 and 3.2.

Remark 3.2: The feedforward/state feedback law of Eq.3.25 can be decomposed into
two separate components: the component. k7 (r)(z — £). where ¢ denotes a control-
dependent quasi-steady-state for the fast dvnamics of the closed-loop system. defined

as follows:
= —[Qa(z)]™! { A7) + go()[B- Lo LF  h{z) {1’—ZﬂkLLIl(I

_iﬂkq)k—p (.‘L‘.d. d(l). ... ‘d(k—p)) } + W"g(x)d}

k=p

which acts in the fast time-scale and stabilizes the fast dynamics of the system, and
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the component

[B-LaLih(z)]| {z —Zm h(x) — idkcbk-p (x.d.d‘”.---.d“""’)} 3

i)\
k=p ° b)

which acts in the slow time-scale and addresses the posed synthesis problem. i.e..
induces the desired input/output behavior in the closed-loop reduced system inde-

pendently of the disturbances.

Remark 3.3: In the case of two-time-scale systems of the form of Eq.3.1 with stable
fast dynamics. i.e.. when the matrix @,(z) is Hurwitz uniformly in r. there is no
need to employ feedback of the fast variable to stabilize the fast dynamics and the

feedforward/feedback law of Eq.3.25 reduces to:

u=[3.LeLy h(z)|” { Zsm S i, (rdd. d("'“’))}
= (3.29)

Finally. motivated by the avuilable results on disturbance decoupling for standard
nonlinear systems of the form of Eq.3.5 via static state feedback [IKGGMS81] of the
form:

u=p(z)+q(r)e (3.30)

we will now provide necessary and sufficient conditions for the solvability of the control
problem formulated in section 3.3. via well-conditioned static state feedback laws of
the form:

u = p(z)+q(x)e+ kT (z): (3.31)

The main result is given in proposition 3.3 that follows (the proof is included in the

appendix B).

Proposition 3.3: Consider the two-time-scale system of Eq.3.1 in standard form, for

which assumption 2.1 holds. Consider also the reduced system of Eq.3.5. Then, the
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conditions i) r < p. and 1) kT (z)[Q2(z)] ' W2(z) = 0. where 0 is the zero covector of
dimension q. are necessary and sufficient in order for a well-conditioned static state
feedback law of the form of Eq.3.31 to achieve approrimate decoupling of the effect of
d on y (in the sense made precise in requirement 2 at section 3.3) with stabilization

of the fast dynamics in the closed-loop system.

Remark 3.4: Condition () of the proposition is expected to hold for the solvability of
this problem. since it is necessary and sufficient for the solvability of the disturbance
decoupling problem via static state feedback of the form of Eq.3.30 (e.g.. [Isi89])

and the approximate disturbance decoupling problem for two-time-scale systems of
Eq.3.1 with exponentially stable fast dvnamics. via the same class of control laws (see
[LRI1]). Condition (ii) of the proposition guarantees that the relative order of the
output y° with respect to the disturbance input vector d in the reduced system of

Eq3.16.say p.isp=p>r.

3.5 Disturbance compensation for systems in nonstandard

form

In this section. we will consider two-time-scale nonlinear systems of Eq.3.1 in non-
standard form. i.e.. systems for which the matrix @,(z) is singular for some r € X.
The direct consequence of the singularity of the matrix Q(r) is the absence of a well-
defined quasi-steady-state for the fast state variables = [IKha89], and thus. the lack of
a well-defined open-loop reduced system. Therefore. the results of propositions 3.1
and 3.2 that allowed the verification of the solvability conditions of Eq.3.23 and the
svnthesis of the controller of Eq.3.25 on the basis of the open-loop reduced system of
Eq.3.5 cannot be recovered. Motivated by this. we will follow a two-step procedure for
the synthesis of a feedforward/state feedback law that solves the posed problem. In

the first step. appropriate feedback of the state vector = will be employed to regularize

(31
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the fast dynamics. in the sense of inducing an exponentially stable quasi-steady-state
for the fast dynamics. In the second step. we will formulate and solve the svnthesis

problem on the basis of the resulting two-time-scale system.

More specifically, we will initially consider a control law of the form:
u = a+k(x)z (3.32)

where k7 (z) is a vector field in RP. and @ is an auxiliary input. to achieve regular-
ization of the fast dynamics. Under the control law of Eq.3.32 the system of Eq.3.1

takes the form:

o= filz) +[Qi(z) + g1(2)k (2)]: + gu(z)d + Wi(z)d (3.33)
e2 = fo(z) +[Qa(z) + g2(2)kT (2)]2 + ga(z)it + W(x)d '
Performing a two-time-scale decomposition. the corresponding fast subsvstem takes

the form:

dz

> = fo(2) + [Qa(z) + g2(2)kT (2)] + ga(2)it + Wo(z)d (3.34)

while the corresponding slow subsystem is given by:

i = F(z)+Gz)i+ W(z)d
¥yt = h(z)

(3.35)
where the vector fields F(a’). G(z) and W(z) are given in Eq.3.17. It is clear that the
=-dependent control law of Eq.3.32 allows us to regularize the fast dynamics of the
system by choosing £7(x) in such a manner so that the matrix Q,(r) + g2(z)kT(x)
is Hurwitz uniformly in £ € X. It is now possible to formulate and solve a controller

synthesis problem on the basis of the system of Eq.3.33. More specifically, we will

seek a feedforward/state feedback law of the form:
@ = plz)+ gz +Q (c,dd,-) (3.36)

where p(z). §(z) are scalar fields. with §(z) # 0 for all z € X, Q is a smooth algebraic

nonsingular function. and v is the reference input. Referring to the system of Eq.3.35,
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let 7 and p denote the relative orders of the output y with respect to the auxiliary input

¢ and the disturbance input vector d. and let the following input /output behavior:

dfgs ’ gs » o
,HFF+ ) 7t + 3oy° = v (3.37)

be postulated in the closed-loop reduced system.

Theorem 3.2 that follows summarizes the main result of this section. The proof of

the theorem can be found in appendix B.

Theorem 3.2: Consider the two-time-scale nonlinear system of Eq.3.1. assumed to
be in nonstandard form. Consider also the nonlinear system of Eq.3.33. and assume

that p < . Then. the conditions:

LeBe(z.d)=0. (=0.1.---.F—p—1 (3.38)
where
PR d L a\" P
ZL D dal Dl + 5 Lp+d du(t)L i ¥ 50| L h()
u=0 x=1 x=1
(3.39)

are necessary and sufficient in order for a control law of the form of Eq.3.36 to induce
the input/output behavior of the form of Eq.3.37 in the closed-loop reduced system.
If these conditions are satisfied and assumption 2.1 also holds, the control law:

u = [FLelf b)) l{l —}:BAL h(x) — 3 Aoy (2. d“'-é))}

k=p

+kT(z)z
(3.40)

where the feedback gain kT (z) is such that the matriz Qa(z) + ga(x)kT(z) is Hurwitz
untformly in r € X,

a) guarantees ezponential stability of the fast dynamics of the closed-loop system,

b) ensures that the output of the closed-loop system satisfies a relation of the form :

y(t) = §°(1)+0(e) . t 20 (3.41)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for € sufficiently small. with §°(t) being the solution of Fq.3.37.

Remark 3.5: The result of theorem 3.3 reveals a fundamental difference in the nature
of the control problem between two-time-scale systems in standard and nonstandard
form. In particular. in the case of systems in standard form the solvability conditions
of the problem can be checked in the open-loop reduced system of Eq.3.5 since they
are independent of the feedback gain k7(r) used to stabilize the fast dyvnamics. On
the other hand, in the case of systems in nonstandard form the solvability conditions
should be checked in the reduced system of Eq.3.35. and thus depend explicitly on
kT(z) used to regularize the fast dynamics. These considerations imply that for
systems in nonstandard form. it is possible. depending on the structure of the system
under consideration. to select the feedback gain £7(z) to guarantee stabilization of

the fast dynamics as well as to ensure that the solvability conditions are satisfied.

Remark 3.6: In the case of two-time-scale systems of the form of Eq.3.1 in non-
standard form. one can show that the condition # < p is necessary and sufficient .
for achieving approximate decoupling of the effect of the disturbances on the output
of the closed-loop full-order system via well-conditioned static state feedback of the
form of Eq.3.31. Notice that this condition depends explicitly on the feedback gain
kT(z) utilized to regularize the fast dynamics. because of the lack of an analogue of

proposition 3.1 in the case of two-time-scale systems in nonstandard form.

Remark 3.7: The control algorithms of theorems 3.1 and 3.2 can be directly applied
to two-time-scale systems with e-dependent right-hand side. with the following state-
space description:

T = fi(z.ez.e)+Q(x.ez.€)z+ qi(T ez )u+ Wi(z.es.€)d
€2 = Rlzr.z)[fa(z.ez.€) + Qa(z.€z.€)z + ga(x. ez €)u + Wa(z,ez,e)d]  (3.42)
y = h(z)

where R(z,z) is a diagonal matrix of dimension p x p, which is positive definite for
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all r € X. z € Z. The reasons for which this is possible were stated in remark 2.7.

3.6 Stability analysis of the closed-loop system

In this section. the stability of the closed-loop full-order syvstem under the derived
control laws will be analyzed. "Our objective is to specify sufficient conditions and
provide an explicit formula for the calculation of the upper bound on e. such that the
states of the closed-loop system are bounded. The presence of time-varying distur-
bances in the model of the system does not allow utilizing standard stability results
for two-time-scale systems [SK84. Kha92] (which are concerned with asymptotic sta-
bility) and requires further analysis of the closed-loop svstem to show boundedness
of the states. Theorem 3.3 that follows states the main stability result for two-time-
scale systems in standard form. under the control law of Eq.3.25 (the proof is given

in appendix B).

Theorem 3.3: Consider the two-time-scale nonlinear system with the state-space rep-
resentation of Eq.3.1. assumed to be in standard form. Then, ifd(t) and its derivatives

up to order r — p + 1 are sufficiently small and the following conditions hold:
{. The roots of the polynomial
Jo+ Sis+---+ 3.8 =0 (3.43)
lie in the open left-half of the compler plane.

2. The unforced zero dynamics of the open-loop reduced system of Eq.3.5 is erpo-

nentially stable.

there exists an € such that the trajectories of the closed-loop system under the con-

troller of theorem 3.1 remain bounded for all € € (0.¢"].

The result of theorem 3.3 also holds for two-time-scale systems in nonstandard form.
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with the second condition imposed on the reduced system of Eq.3.35. The proof of
this result is completely analogous to the one of theorem 3.3 and thus is omitted
for brevity. Finally, we note that the stability result of theorem 3.3 holds even in
the presence of sufficiently small constant parametric uncertainty and unmeasured

disturbances (see the proof of the theorem for the detailed justification).

3.7 Application to a catalytic continuous stirred tank reac-

tor

In this section, the proposed control methodology will be applied to a representa-
tive chemical process with time-scale multiplicity. Consider the catalytic continuous
stirred tank reactor shown in Figure 3.1. where a homogeneous reaction A — B and
a catalytic reaction A — C( take place. The first reaction leads to the generation of
the side-product B. while the second reaction leads to the production of the desired
product C. The inlet stream F) consists of pure species A of concentration C 4. and

temperature T49. Under the following assumptions:

Perfect mixing in the reactor

Uniform temperature in the homogeneous and the catalytic phase

Constant density and heat capacity of the reacting liquid and the catalyst

The outlet flow rate of the reactor is constant

the process dynamic model consists of the following set of material and energy bal-

ances:

e Reactor mass balance:
dV,
dt

=F~F (3.44)
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Figure 3.1: A catalytic continuous stirred tank reactor.
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o Mole balance for the species'A (homogeneous phase):

dCs _ 1
dt V.

~-Ey . C oL
(Fi(Cao = Cap) =k ex oI = KeddCay = Ca)) (343

o Reactox{‘i %nergx balance (homogeneous phase):

PhCon =T, 1 —E,
dt e _ 1 ( _ :
Phpn T PrCp F1(Ta0 — Th) + (—AHp)ky exp( RT, ) (3.46)
—UpAu(Th — Ty) = U A(Th - T))

e Mole balance for the species A (catalytic phase):
dCAc [\ E 9 q=
p7a (C4,, Ca.) — keexp(5+ AT, -)C 4, (3.47)

e Reactor energy balance (catalytic phase):

dT. (.4, ~E. -
pccpc’a_ - ‘C (Th - T ) ( AH )'I“ e\p( RT )C'lc ('3'4b)

where F). F, denote the inlet and outlet flow rates. V;. V.. denote the volumes of the
homogeneous and catalytic phase. Cy,. T, and Cj4,. T. denote the concentration and
temperature of the species A in the homogeneous phase and catalytic phase. k. k..
Ey. E.. AHy. AH, denote the pre-exponential factors. the activation energies and
the enthalpies of the two reactions. A, and (/.. U, denote mass and heat transfer

coefficients. and A,. A. denote the surface of the wall and the catalyst.

The control objective is the regulation of the temperature of the catalyst by ma-
nipulating the inlet flow rate Fi. in order to maintain the generation of the product
species C at the desired level. The inlet concentration and temperature of the species
A. C40 and To. respectively. as well as the wall temperature T,, are assumed to be
the measurable disturbances. The values of the system parameters and the corre-
sponding steady-state values of the system variables are given in Table 3.1. It was
verified that these conditions correspond to a critically stable equilibrium point (the
holdup of the homogeneous phase acts as an integrator). The process exhibits two-

time-scale behavior owing to the large heat capacity of the catalytic phase (i.e. the
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Fs = 500.0 it min~!
Coh = 0.231 keal kg=! A1
Cpe = 231 kcal kg=! K1
m = 09 kg it
o = 90.n kg It
KR.4. = 1618.0 It min~!
.4, = 6667.0 keal min=! p-t
Upedr = 3400 kcal min=! K1
R = 1.987 keal kmol=! K1
kx = 164.68 it mol~'min-!
Ex = 8.0x10® kcal kg~!
k. = 2000.0 min~!
E. = 90x10% kealkg-!
AA, = 69.2006 kcal kmol~!
AH, = -99.0781 kcal kmol™}
|9 = 1435.1 it
|98 = 1000.0 it
C.-Ul = 50 mOl It-{
Ty = 690 KR
Ci. = 3.75 mol I¢=1

'T. = 120 K

[ Fy, = 500 It min=!
Cios = 100 mol It=1
Ta0s = 305.0 KR
Ty, = 310.0 I

Table 3.1: Process parameters and steady-state values
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term p.c,, that multiplies the time-derivative of the catalyst temperature is large).
This implies that V;.C4,.T,.C4, are the fast process variables. while T. is the slow
process variable (this fact was also validated through open-loop simulations). It was
also verified that the process exhibits slightly non-minimum phase behavior. i.e.. its
zero dynamics exhibits a two-time-scale behavior with critically stable fast dyvnamics
(the fast process modes are part of the zero dynamics modes). In order to obtain a
singularly perturbed representation of the process. where the partition to slow and
fast variables is consistent with the dynamic behavior of the process. the parameter

e is defined as:

1 Kt
€= = 0.048— (3.49)
PcCp. Real
Setting: '
nn=T. 51=V,, 22=Ca,. 23=T4, z24=Cas.. u=F, - Fy,
- t
dy = Cao— Caosy d2 = Tao — Ta0s. dz =Ty ~ Toys. y=1. t= poc
cCpc

the original set of equations can be put in the following singularly perturbed form

(where the time-derivatives are taken with respect to f):

) U. A, -E,
T, = — (23— 71) + (= AH:)kc exp( )za
"c R.’BI
€5, = u
. 1 - . .
€2, = - (FlsCAOs + ‘kh e-\'P( R_.h ):1 + (_Fls - [\C‘4C)‘:2 + [\CAC:B
3 3
+(Ca0 — 22)u + Fi,dy) o
I UuA U.A (3:50)
€33 = ‘:‘(Fu(TAo—ks)“ ~ w(:S—Tws)" ——(z3 — 1)
21 PhCpy PrCpy,
_AH _E [/’uyd"lu_v
AR exp(ZER) s 4 (Tao = zo)u + Fuuds + ds)
PhCpy ’ <3 PhCpy,
. K.A, KA. -k,
€24 = V. 2+ (- W ~ ke eXP(‘fE))&:

From the structure of the differential equation of z; in the above system, it is clear

that fast dynamics of the process are singular i.e. there exists no well-defined quasi-
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steady-state for the fast state vector = (this is an implication of the assumption that
the outlet flow rate is constant). Since the process is in nonstandard form. the two-
step procedure of section 3.5 will be followed for the synthesis of the controller. In

the first step. the regularizing feedback law of the form:
o= a-2 (3.51)

was used to transform the original two-time-scale system into a new one in standard
form with exponentially stable fast dvnamics. Under this preliminary feedback the

original system takes the form (where the time-derivatives are taken with respect to

t):
) U.A. —E.
5 = ——(z3—11) + (~AH )k exp(——)zy
"c R.’l‘l
EL.'l = -1+ 0
. 1 -E .
€y = —.— ( 13C403 (C.{o—-g—khe‘(p( R :)) J1 +(—F15—[\(-:1,_~)22
+RAz3+ (Cao — 22)a + Fi,dy)
. 1 U Ay U.A. ‘
€23 = — (Fls T40—~3) (23 = Tws) — (23— 11) + (Tao — z3)u
<1 PhCp, phcph
—AHk ~F Ay
+ (TAO -3+ ( w)k exp( h)) 51+ Fleda + ds)
PrCp, Rz h Con
. A A, - ( KA. I ox -—EC)> )
€2y = v <2 v - cekp( Rz, <4

(3.52)

Setting € = 0 in the above syvstem and using the fact that for a physically meaningful

problem z; = 17 > 0. the following set of differential and algebraic equations can be
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obtained:

. U A, —E.
T, = —(23s — 1) + (= AH )k, e\p(R

| Iy

_E i
0 = Flsc.ms+(C.m—:z,—khexp( - "))&+(—F15—ACAL.>:23

<3s

)~4s

+[\’cAc:3s + (CAO - 323)& + Flsdl

UpAy U.A. 3.53
0 = Fia(Tuo~ 23,) = =528 (25, = Tog) = —5% (23, ~ 1) (3.53)
PhCpy, PhCpn,
—AH)E -F U,Ae
+ (( LI “)) i+ Fidy + ds
PhCp, Rz, PhCpy
LK. .A K. A, -F.
= S —— =k, ) Zas
0 V. 2 < V. exp( g - Rz, ) 4

Owing to the nonlinear appearance of the algebraic variable =3, in the above model.
the equilibrium manifold of the fast dynamics is of the form z; = §(x,. &.d;.ds. d3).

where ¢ is a smooth vector function. The slow subsystem takes then the form:

. L"’c“{c . -
I, = T (gs(z1.t.dy.dy. d3) — 1)+
¢ _E. (3.54)
(—AH )k exp( Rz )94( a.dy,dy.d3) =: D(z,. 8. dy. dy. d3)
1
where g3 = z35. g4 = z45. and D(x,.4.d,.ds.d3) 1s a nonlinear function. On the

basis of this system. it is clear that the relative orders are # = 1. p = 1. Due to the
nonlinear dependence of the auxiliary input @ and the disturbances d,.d;.d; in the
system of Eq.3.54. the svnthesis formula of theorem 3.2 could not be readily used.

Instead. the auxiliary input & was computed numerically by solving the nonlinear

-3
equation D(zy.d.dy.dy.d3) = ! 3 ! for 4. so that the following response:
0y
Sy + Boy® = v (3.55)

is enforced in the closed-loop reduced system. where the parameters 3o, 3, were chosen

to be:

Go= 1.0 ., B = 18T min

Several simulations were performed to evaluate the performance of the controller.
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In the first set of simulation runs. we addressed the capability of the controller to
maintain the output of the system at the operating steady-state in the presence of
the following step disturbances d; = —0.8 mol/lt. dy = ~5.0 K. d3 = 5.0 K. imposed
at t = 0 min. The corresponding output and input profiles are shown in Figure
3.2; clearly. the controller guarantees stability of the fast dvnamics and regulates the
output at the steady-state. attenuating the effect of the disturbances. In the next
set of simulation runs. we evaluated the reference input tracking capabilities of the
controller in the presence of the above constant disturbances. A 10 A" increase in the
value of the reference input was imposed at time t = 0 min. Figure 3.3 displays the
output and input profiles. The performance of the controller is excellent. guaranteeing
the stability of the fast dvnamics. regulating the output at the new reference input
value and compensating for the effect of the disturbances. For the sake of comparison.
we implemented the controller without measurements of the disturbances. Figure 3.4
depicts the output and input profiles. One can immediately see that the controller
cannot attenuate the effect of the disturbance leading to offset. A feedforward/state
feedback controller [DI93] synthesized on the basis of the original two-time-scale
system was also employed in the simulations. Figure 3.5 shows the output profile and
the profile of the volume of the reactor. Clearly. this controller leads to instability
of the closed-loop system because the process exhibits a slightly non-minimum phase

behavior.

In the next set of simulation runs. we evaluated the capability of the controller
to keep the output of the system at the operating steady-state in the presence of
time-varying disturbances. In particular. the following disturbances were imposed at
t =0 mun:

27
—t

r 2 .
dy = -0.8 + 0.53in(:T—t) mol/lt . dy = —5.0 + sin( T )R . d3 =50+ sin,(-T—T,rt) I

where T = 0.2 min. Figure 3.6 shows the output and input profiles. Clearly, the
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Figure 3.2: Output and input profiles for regulation in the presence of constant disturbances.
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Figure 3.3: Output and input profiles for reference input tracking in the presence of constant dis-

turbances.
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Figure 3.4: Output and input profiles for reference input tracking in the presence of constant dis-

turbances (pure feedback controller).
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Figure 3.5: Output and volume profiles for reference input tracking in the presence of constant

disturbances (feedforward/feedback input/output linearizing controller).
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Figure 3.6: Output and input profiles for regulation in the presence of time-varying disturbances.
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controller performance is very satisfactory guaranteeing the stability of the fast dv-
namics. regulating the output at the steady-state and attenuating the effect of the
disturbances. Finally. the servo behavior of the controller was evaluated in the pres-
ence of the above time-varving disturbances. Figure 3.7 illustrates the resulting out-
put and input profiles. As expected. the controller stabilizes the fast dvnamics. while
regulating the output at the new reference input value and attenuating the effect of

the disturbances on the output.

Remark 3.8: Note that the implementation of the controller requires measurements
of the volume of the reactor and the temperature of the catalytic phase for the feed-
back component. and measurements of the three disturbances for the feedforward
component. [t is important to compare these requirements with the ones of control
methods that do not take explicitly into account the multiple-time-scale behavior
exhibited by the process under consideration. For example. let us consider a feed-
forward/state feedback controller svnthesized on the basis of the full-order svstem
[DK93|. The explicit form of the controller takes the form:
u = [3Ly Lyh(z)]™ i
{y — Joh(z) = H[Lfh(z)+ Lo, h(x)z + ZL"";‘LL h(x)d.(t)]

=1

—dy[L} h(x) + Lo, Lyh(x)z + (Lg Lo h(x) + LG h(x) + Ly Lo, h(r))=
, Lashla)ale) + Qafw)z + Wz(l‘)d)]}

€
(3.56)

which becomes singular as e — 0. It can be also easily verified that the implementa-
tion of this control law requires measurements of the full state vector of the process
(feedback component) as well as measurements of the three disturbance inputs (feed-
forward component). This includes measurements of concentrations of the species A

both in homogeneous and catalvtic phase. which are difficult to obtain in practice.

A
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ot
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Figure 3.7: Qutput and input profiles for reference input tracking in the presence of time-varying

disturbances.
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From the results of the simulation study and the observations of remark 3.8. it is
obvious that the consideration of the two-time-scale nature of the process in question
at the modeling and control level. allows simplifving the synthesis and implementation

of the control system as well as controlling effectively the process.

3.8 Conclusions

[n this chapter. a class of nonlinear two-time-scale control systems with external time-
varving disturbances was considered. Systems in both standard and nonstandard form
were studied. For such systems. we synthesized well-conditioned feedforward/state
feedback laws that guarantee exponential stability of the fast dvnamics and induce
a prespecified input/output response in the closed-loop system independently of the
disturbances in the limit as ¢ — 0. Utilizing singular perturbation methods. we estab-
lished that the discrepancy between the output of the closed-loop full-order system
and the output of closed-loop reduced system is of O(¢). for sufficiently small values
of the singular perturbation parameter. We also identified and discussed fundamental
differences in the nature of the control problem between svstems in standard and non-
standard form. Lyvapunov’'s direct method was used to study the stability properties
of the closed-loop system and derive precise conditions that guarantee boundedness
of the trajectories. Finally. the derived control methodology was successfully imple-
mented on a catalyvtic reactor. modeled by a singularly perturbed system in nonstan-
dard form. Comparison with an inversion-based control method. which does not take
into account the time-scale multiplicity exhibited by the process. established that the

developed control methodology vields significantly superior performance.

~1
-1
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Notation

Roman Letters

A. = surface of the catalyst

A, = surface of-the reactor

C40 = inlet concentration of the species A

Can = concentration of the species A in the homogeneous phase
C4. = concentration of the species A in the catalytic phase

cph = heat capacity of the homogeneous phase

¢pe = heat capacity of the catalytic phase

En. E. = activation energies

d = disturbance input vector

F.F. fi. fa = vector fields

Fi = inlet flow rate

F, = outlet flow rate

G. G',gl.gg = vector fields associated with the manipulated input
h = output scalar function

K. = mass transfer coefficient

kT = covector field

kn.k. = pre-exponential constants

L = Lyapunov function

@1.Q-. = matrices associated with the fast state vector =

r.r = relative orders with respect to the input in the reduced system
S = matrix

T4o = inlet temperature of the species A

T, = temperature of the homogeneous phase

T. = temperature of the catalvtic phase

T.. = temperature of the wall

{ = time

..U, = heat transfer coefficients

u = input

4.t = auxiliary inputs

V" = Lyvapunov function

I = volume of the homogeneous phase

I. = volume of the catalytic phase

W. W . W,. W2 = matrices associated with the disturbance inputs
r = vector of the slow state variables

y = output
y* = output associated with slow subsystem
: = vector of fast state variables
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Greek Letters

Jr = adjustable parameters

AH,. AH. = enthalpy of the reactions

€ = singular perturbation parameter

¢.(® = state vectors in normal form coordinates

n = state vector in normal form coordinates

ny = fast state vector

£.6i= equilibrium steady-states for the fast dynamics in the closed-loop system
p.p.p = relative order with respect to the disturbance vector in reduced svstem
pr = density of the homogeneous phase

p. = density of the catalytic phase

®,.d; = auxiliary functions

®..d, = matrices of smooth functions

. ¥ = auxiliary functions '

= Lvapunov function

= compact set

-

o
3

po o

Math Symbols

Lsh = Lie derivative of a scalar field h with respect to the vector field f
L5h k-th order Lie derivative

L:,[.ﬁ'lh mixed Lie derivative

real line

t—dimensional Euclidean space

belongs to

transpose

| = standard Euclidean norm

= zero covector of dimension ¢

i

t

ST NM B
!
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Chapter 4

Robust Control of Nonlinear

Two-Time-Scale Systems

4.1 Introduction

All practical control systems must be robust with respect to uncertainty. Uncer-
tain time-varying variables arise naturally in chemical engineering applications from
unknown or partially known process parameters (e.g. heat transfer coefficients. ki-
netic constants. etc.) and unmeasured disturbance inputs (e.g. concentration of
inlet streams). It is well-established that controllers that guarantee offsetless output
tracking and stability in the nominal closed-loop system. may lead to poor transient
performance. offset and even closed-loop instability in the presence of uncertain vari-
ables. The traditional approach followed to ensure asvmptotic offsetless rejection of
uncertain variables is to incorporate integral action in the controller. This approach
is adequate in the case of constant uncertain variables but it may lead to severe failure

in the presence of time-varying uncertainty.
Motivated by this. the design of robust controllers that are capable of coping

with uncertain time-varving variables has received considerable attention in the past.
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Research initially focused on the development of robust control methods for linear
systems in the frequency-domain (see [MZ89] for example). including H.. u-svnthesis.
etc.. More recently. the state-space counterparts of the H.. frequencv-domain results
have been developed (see for example [DGKF93]). This motivated research on the
extension of H, control methods to certain classes of uncertain nonlinear svstems.
In this direction, theoretical results have been derived (e.g. [vdS92. PB93b]). but
their practical applicability is still in question because the explicit construction of the
controllers requires the analytical solution of nonlinear partial differential equations.
The interested reader may refer to [ARG94] for a critical analvsis on the applicability
of nonlinear H* control methods to engineering applications. Recently. adaptive
control schemes [SI89. TKKS91] have been proposed. The main disadvantage of this
approach is that the uncertainty is assumed to be time-invariant. which significantly

restricts the practical applicability of these methods.

An alternative approach for the synthesis of robust control systems for linear/
nonlinear uncertain systems is based on Lvapunov’s direct method. The basic idea is
to design a controller. utilizing the knowledge of certain bounding functions on the
size of the uncertainty. so that the time-derivative of an appropriate Lyapunov func-
tion calculated along the trajectories of the uncertain closed-loop system is negative
definite as long as the state of the system is larger than a constant which can be made
arbitrarily small by suitable choice of controller parameters. This guarantees that the
ultimate discrepancy between the output of the closed-loop svstem and the reference
input is arbitrarily small. This idea was originally proposed in [CL81] and was further
explored for robust controller design (see e.g.. the review papers [Cor93. Lei93]). For
single-input single-output input-output linearizable nonlinear systems. combination

of this approach with geometric control schemes was studied in [KP88. AC92, RT93].

For uncertain two-time-scale nonlinear systems with stable fast dynamics. an ap-

proach that utilizes a combination of singular perturbation methods and adaptive
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control schemes has been proposed by [TKMKS89. KKM92]. For the same class of
systems. an alternative approach that utilizes a combination of singular perturba-
tion theory and controller design via Lyapunov functions to derive robust controllers
has been developed by [Cor87. Kho89]. For linear singularly perturbed systems with
time-varving uncertainties for which the fast dvnamics mayv be unstable. a class of
nonlinear composite controllers. synthesized using Lyapunov’'s direct method. was
recently proposed by [CGG93|. For linear systems. other available results concern
the use of H* control methods [KC92. PB93a] and stochastic control methods (see

[KKO86] and the references therein) for robust controller design.

In this chapter. we consider a broad class of uncertain singularly perturbed nonlin-
ear systems. The uncertainty is allowed to be time-varving. We assume that the fast
subsystem is stabilizable and the slow subsvstem is input/output linearizable with
ISS inverse dvnamics. For such systems. we synthesize continuous. possibly time-
varyving. state feedback controllers that guarantee boundedness of the trajectories
of the closed-loop system and achieve arbitrary degree of asymptotic attenuation of
the effect of uncertainty on the output. for initial conditions and uncertainties in an
arbitrarily large compact set. as long as the singular perturbation parameter is suffi-
ciently small. Our main result is based on a recent result concerning the robustness
of the input-to-state stability property with respect to uniformly globally asymptot-
ically stable singular perturbations. developed by [CT95]. which is reviewed at the
end of appendix C (see also [CT96]) and uses calculations similar to those used in
the derivation of the ISS nonlinear small gain theorem established by [ZPTP95] (see
also [Tee96]). The explicit construction of the controller requires the knowledge of
upper bounds on the size of uncertainty. Key differences in the nature of the match-
ing condition of our method. between singularly perturbed systems in standard and
nonstandard form are also identified and discussed. In the case of two-time-scale sys-

tems with stable fast dvnamics. our main result establishes a fundamental robustness
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property of a controller synthesized on the basis of the low-dimensional slow model.
with respect to both the parametric uncertainty and the fast {(unmodeled) dvnamics.
The developed control methodology is applied to a typical chemical reactor example
with time-scale multiplicity and uncertainties. and its performance and robustness

characteristics are evaluated through simulations.

4.2 Notation and facts

e |- | denotes the standard Euclidean norm. sgn(-) denotes the sign function. and

Id denotes the identity function.

e For any measurable (with respect to the Lebesgue measure) function 6 : Ryq —

IR™. ||8|| denotes ess.sup.|0(t)]|. t > 0.

e A function W' : IR" — IR is said to be positive definite if 1'(r) is positive for

all nonzero r and is zero at zero.

o A function W : IR" — IR0 is said to be proper if I¥'(r) tends to +oc as |r|

tends to +oc.

e A function 4 : Ryo — Ryp is said to be of class A" if it is continuous. increasing

and is zero at zero. It is of class A . if in addition. it is proper.

o A function 3 : Ryo x R>g — Ryo is said to be of class A'L if. for each fixed
t. the function 3(-.t) is of class A" and. for each fixed s. the function 3(s.-) is

nonincreasing and tends to zero at infinity.

e For any function 4 of class A . its inverse function is well defined and is again

of class A ..

e A matrix A(z) of dimension n x n is said to be Hurwitz uniformly in = € R™ if

there exists a positive real number ¢ such that Re[\;(A(z))] < —c.i=1.---.n
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for all r € R". where A; denotes the i-th eigenvalue of the matrix.

e Let A and B be two matrices of dimensions n; x n, and n, x n, respectively.
and let In,xn,. In,xn, also denote the identity matrices of dimensions ny x nj.

ny X na. Then. the following identity holds:

det(In xn, + AB) = det(In,xn, + BA) (4.1)

e Let z € IR". y € IR" be two vectors and A € IR**" be a matrix. then if ope{4}.
Omin{ A} denote the maximum and minimum singular values of A. the following

relations hold:

ITAy S o'mal‘{A}l‘T”yl* —‘TTAy S _Umin{‘4}|1l|y| (42)

4.3 Preliminaries

We will consider uncertain singularly perturbed nonlinear svstems with the following

state-space description:

i‘ = fl(r.e(t))+Q1(x.0(t)):+gl(1.0(t))u
et = fo(z.0(t)) + Qa(z.0(t))z + ga(x.0(¢))u (4.3)
y = h(z)

where r € IR™ and = € IR? denote vectors of state variables. © € IR denotes the
input. § € IR? denotes the vector of the uncertain (possibly time-varving) variables.
y € IR denotes the output (to be controlled). and ¢ is a small parameter which can
be interpreted as the speed ratio of the slow versus the fast dynamical phenomena of
the system. The vector of uncertain variables § may include time-varying paramet-
ric uncertainties and/or unmeasured exogenous disturbances. The vector functions
fi(z.0). fa(z.8). gi(2.0) and gz(z.0) are sufficientiy smooth. @(z.0) and Q-(z.6)
are sufficiently smooth matrices of appropriate dimensions. and h(z) is a sufficiently

smooth scalar function. Qur assumptions will impose among other things that the
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output y and the input u in the syvstem of Eq.4.3 are in deviation variables. and the
rate of change of the uncertainty. 6. is bounded.

Setting € = 0 and assuming that the matrix Q2(r.8) is invertible uniformly in
z € IR". § € IR7 (this assumption will be removed later). the system of Eq.4.3 takes
the form:

7= fi(z.0)+ Q1(z.0)z5 + g1(z.0)u (4.4)
fo(z.0) + Qa(x.0)zs + ga(z.8)u =0 (4.3)

where =, denotes a quasi-steadyv-state for the fast state vector z. The fact that the
matrix @z(z.8) is invertible implies that the algebraic equation (4.3) admits a unique

solution of the form:

zs = —[@2(2.9)] 7 f2(z.8) + ga(1.0)u] (4.6)

Note that the quasi-steady-state =, is an explicit function of the uncertainty vector ¢
which implies that the exact value of the vector =, is not known. Substituting Eq.4.6

into Eq.4.4. the following dvnamical system is obtained:

T = F(z.0)+ G(z.0)u -
y = h(z) (7]

where
F(z.0) = fi(z.8) — Qu(2.0)[Qax.0)]7! fo(z.6) (4.8)

G(z.0) = gi(z.0) — Qi(z.6)[Q2(z.0)] 7 g2(2.6)

The dvnamical system of Eq.4.7 is called the reduced system or slow subsystem.
Note that the control u appears linearly in the above system which is an implication
of the linearity in = in the original system.

The inherent two-time-scale behavior of the svstem of Eq.4.3 can be analyzed by
defining a fast time-scale:

r o= = (4.9)

In this new time-scale the original system takes the form:

Z—: = €[ filz.0) + Qi(x.0)z + gi(z.0)u] (4.10)
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d=

el fo(z.0) + Q2(x.0)z + g2(x. O (4.111
Setting € equal to zero. the following svstem is obtained:

d: ,

&> = fo(x.8) + Q2(z.0)= + go(z.0)u (4.12)

where r can be considered equal to its initial value z(0) and @ can be viewed as
constant. In what follows. we will refer to the dvnamical svstem of Eq.4.12 as the

fast subsystem.

In this work. we are dealing with systems of the form of Eq.4.3 for which the
matrix @2(z. ) may be singular or possess eigenvalues in the right-half of the complex
plane for some z € IR". § € IR?. The following assumption states our stabilizability

requirement on the open-loop fast subsystem of Eq.+.12.

Assumption 4.1: The pair [Q2(z.0) g2(z.0)] is stabilizable uniformly in r € R",
9 € IRY. in the sense that there erists a co-vector field kT (z) such that the matrir

Q2(z.0) + go(z.0)kT () is Hurwit: uniformly in r € R™. 6 € IR9.

In closing this section. we define what is meant by input-to-state stability for a system

of the form of Eq.4.7.

Definition 4.1 [Son89]: The system in Eq.{.7 (with u = 0) is said to be ISS with

respect to 8 if there erist a function 3 of class KL and a function 4 of class R such

I

that for each z, € IR" and for each measurable. essentially bounded input 6(-) on

[0.00) the solution of Eq.{.7 with x(0) = x, erists for each t > 0 and satisfies
20 < B2(0)]. ) +~(|[6I]). Vi3 0 (4.13)
4.4 Problem statement-Approach

In this chapter. we address and solve the problem of synthesizing well-conditioned

continuous. possibly time-varving. static state feedback controllers that preserve the
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two-time-scale nature of the original system. with the following objectives for the

closed-loop system:

e Boundedness of the trajectories of the closed-loop system

e Arbitrary degree of asymptotic attenuation of the effect of the uncertainty on

the output

e Robust output tracking for changes in the reference input

The above requirements will be obtained for € sufficiently small.

The approach followed for the svnthesis of the controller is essentially a two-step
one. In the first step. we take advantage of assumption 4.1 to design a preliminary
control law that transforms the original singularly perturbed system of Eq.4.3 into a
new singularly perturbed system in standard form with globally exponentially stable
fast dvnamics. In the second step. we synthesize a control law that uses feedback of
the slow state vector r only and utilizes the knowledge of upper bounds on the size
of uncertainty to achieve robust output tracking with arbitrary degree of asymptotic
attenuation of the effect of uncertainty on the output. It is established that the
resulting controller enforces the requested three properties in the closed-loop system.

provided that the singular perturbation parameter ¢ is sufficiently small.

4.5 Robust controller synthesis

In this section. we will develop a solution to the state feedback control problem. spec-
ified in the previous section. for uncertain singularly perturbed nonlinear systems of
the form of Eq.4.3 for which the matrix @Q2(r.8) may be singular or possess eigen-
values which lie in the right half of the complex plane. for some r € IR", 8 € R".

Motivated by the affine appearance of the fast variable = in the model of Eq.4.3, we
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will initially consider control laws of the form:
u = a+kT(2): (4143

where k7(z) is a vector field on IR™ and # is an auxiliary input. The control law
of Eq.4.14 allows stabilizing the fast dvnamics of the system of Eq.4.3 by choosing
appropriately the gain k7(r) (see assumption 4.1).

Under a control law of the form of Eq.4.14 the svstem of Eq.1.3 takes the form:

z = fi(z.0)+ [@Q:(z.0) + g:1(z.0)k :r] + g1(r.0)u
€ = f21'0+[Q21'0 ) + g2(z.0)kT (2)]z + ga(.0)

(4.15)
One can immediately observe that a control law of the form of Eq.4.14 preserves
the two-time-scale nature of the original system. and the linearity with respect to the

state = and the auxiliary input @. Furthermore. performing a standard two-time-scale

decomposition, one can easily show that the fast subsystem is given by:

d=
o = f2(z.6) + [Q2(z.8) + g2(z.0)KT (2)] + ga(2.0) (4.16)
Clearly. the control law of Eq.4.14 guarantees the stability of the fast dvnamics if the
gain kT(zr) is chosen in such a manner so that the matrix Q2(z.8) + g2(x.0)kT(z) is

Hurwitz uniformly in £ € IR™. 6 € IR?. Note that this is always possible because of

assumption 4.1.

The reduced system corresponding to the singularly perturbed syvstem of Eq.4.15

takes the form:
F(z.0) + G(z.0)u

r = -
y = hir) (4.17)

where
F(z.0) = f xe) [@i(z.0) + gi(z ))[Q2(x.8) + ga(z. 0)kT (2)]~" fr(z. 0)
G(z.0) = qi(z.0) = [Q1(2.0) + gi(x 7)][Q2(z.0) + g2(2.0)kT (7)) ga( . 0)
(4.18)

The usual approach followed for the design of stabilizing controllers for uncertain

nonlinear systems of the form of Eq.4.17 involves two steps: first. the derivation of
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bounds (in terms of continuous functions) for the uncertainty: second. the design of
a robust controller for the system of Eq.4.17 via Lyapunov’s direct method. utilizing
the bounding functions for the uncertainty. This approach was originally proposed by
[CL81]. and was further developed by [Kho89]. However. there are certain disadvan-
tages associated with this approach. First. the actual construction of the controller
requires the existence and knowledge of a nonlinear Lyapunov function for the nomi-
nal system. Second. there are certain matching conditions that the uncertainty vector
6 has to satisfy for the applicability of this method. From the aforementioned dif-
ficulties. it is clear that the first one poses fundamental limitations on the practical
applicability of this method. while the second one may or may not pose restrictions
depending on the specific structure of the system under consideration. Motivated by
the above considerations. research efforts have focused on the design of robust con-
trollers using Lvapunov’s direct method for uncertain systems of the form of Eq.4.17

with weaker matching conditions (e.g.. [Qu93]).

In what follows. we consider the synthesis of robust nonlinear control laws for
syvstems of the form of Eq.4.17. The central differences with the above-mentioned
robust controller design methods are that the synthesis of the controller does not
require the existence of a nonlinear Lyapunov function for the nominal system. while
the matching condition required for the application of this theory is different than

the standard one employved in [CL81].

We now proceed with the design of the controller. Motivated by the requirement
of output tracking with attenuation of the effect of the uncertainty on the output.
we initially assume that there exists a coordinate transformation that renders the
svstem of Eq.4.17 in a partially linear form. Our requirement is precisely formulated

in assumption 4.2 that follows:

Assumption 4.2 : The vector of uncertain variables 6(t) is absolutely continuous.
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and there ezists an integer 7 and a set of coordinates:

- - -

G h(zr)
(2 Lehiz)
[;} = | ¢ | = X8 = | Lk (4.19)
T \1{z.8) )
| Dn—r | | \n-#(z.0) |

where x1(2.8). - . \n-7(z.0) are scalar functions such that the reduced system of
Fq.{.17 takes the form:

G = G

-1 = G

G¢ = LEh(X7N(0.0) + La LT (AN (¢ 0. 8))i
mo= U((.n.0.6)

|
i
]

fnei = Wno#((.7.6.9)
y = Q

where L@L'}'lh(z) # 0 for all r € IR". 6 € IR?. Moreover. for each 8 € IR, the states

(. n are bounded if and only if the state r is bounded.

Remark 4.1 : We note that assumption 4.2 implicitly includes the matching con-
dition of our theory. Notice that this condition is different than the standard one
which restricts the uncertainty vector 6 to lie in the span of the vector field G(z.6)
[TKRMK89. CGGI3]. Specifically. it allows handling a larger class of uncertain inputs
than the standard one. but requires posing a stronger stability requirement on the
inverse dvnamics of the svstem of Eq.4.20 (see assumption 4.3). The motivation for
considering this matching condition is given by the fact that it is satisfied by a large
number of practical applications. including the chemical reactor example of section

4.7. where the standard matching condition does not hold in the slow subsystem.

The following assumption poses our stability requirement on the inverse dynamics of
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the reduced system of Eq.4.17.

Assumption 4.3 : The dynamical system:

o= U((.7.6.9)
: (421
i = Wn_#(¢.7.60.6)

is ISS with respect to (.9.6.

Remark 4.2: We note that although. from a theoretical point of view. assumptions
4.2 and 4.3 limit the class of systems for which our methodology is applicable, they are
satisfied by the majority of chemical processes of practical interest. Furthermore. we
remark that even in the case where these assumptions hold around a reasonably large
neighborhood of the equilibrium point. but not necessarily globally. the application

of our methodology is still possible (see the chemical reactor example of section 4.7).

Defining the variable é(z.8) as:
5(z.0) = [F(z.0) - From(z)] (4.22)

where Fom(z) denotes the vector field resulting from F(z.6) by setting 6 equal to its

nominal value 8y and using the fact that Lk;'h(x) =LY ha). hk=1..... 7 (which

Fnom

follows from the structure of Eq.4.20). the system of Eq.4.20 can be written as:

Q:1 = (2
Gioy = G
G o= Ly (AN n.0)) + LeLF ' R(ATHC . 0))a + LiLT'h(A™Y(¢.n.6))

o= W(C.n.6.6)

et = Wal#(¢.7.6.6)
(4.23)

where (¢ = L;l_::mh(:r). k=1..... r.

In most practical applications. there exists partial information about the uncer-
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tain terms of the process model. Information of this kind may result from physical
considerations. preliminary simulations. experimental data. etc. In what follows. we
will quantify possible knowledge about the uncertainty by assuming the existence
of known state-dependent. possibly time-varying. bounds that capture the size of

uncertainty for all times. Assumption 4.4 that follows formalizes this requirement:

Assumption 4.4: The term L@L;‘lh(z) has known constant sign forallr € R". 6 ¢
IRY. and there exist known functions ¢;(x.t). ¢a(z.t) such that the following conditions

hold: .
L h(z)| € &ala.)
) . (4.24)
0 < éx(z.t) S [LgLE  h(x)]
for all 8 € IR9.

Remark 4.3 : We can assume. without loss of generality. that (8.z) restricted in

compact sets imply ¢;(z.t) is bounded and ¢;(z.t) is bounded away from zero.

We are now in position to proceed with the design of the auxiliary input @ to achieve
the asvmptotic attenuation of the effect of the uncertainty on the output. In partic-

ular. we consider static state feedback laws of the form:
u = r(x.t)[p(x) + q(z)T + (2. t)] (4.25)

where p(z). ri(z.1). ro(z.t) are scalar functions. ¢(z) is a row vector function. with
ri(z.t)g(z) # 0 for all r € R™. ¢t € [0.c0). and ¢ = [ ¢ ... oNT | where »(¥
denotes the k —th time derivative of the external reference input v. which is assumed
to be a sufficiently smooth function of time.

The control law of Eq.4.25 consists of three components. The component r|(z.1)
which is used to account for the effect of uncertainty that enters the system coupled
with the input. the component p(z)+g¢(z)¢ which is responsible for the output tracking
and stabilization of the nominal reduced system of Eq.4.17. and the component r;(z,t)

which is responsible for the attenuation of the effect of the uncertainty on the output
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in the closed-loop reduced system.

We are now in position to state the main result of this chapter in the form of a

theorem.

Theorem 4.1: Consider the uncertain singularly perturbed nonlinear system of
Eq.4.3. for which assumptions 4.1, {.2. 4.3. and {.4 hold. under the static state
feedback law:

. L[5 A
u = sgn[LsLlih(z)] [z 1)) ‘{Zﬁ(v“" LE h z))+25—‘_(r“ D
k=1 "™T

k_ Mr
'L;n:,nh —2[éi(z.t) + [Z ¥ — an .r))l]w(:r.o)} + kT (1)
k=1 f
(4.26)

where the feedback gain kT(x) is such that the matrir Qo(z.8) + go(z.0)kT(x) is Hur-
witz uniformly in £ € R™. 6 € RY, 8; are parameters chosen so that the polynomial

F— 3z F— R . . . .
s+ 5ts o %fs + %f = 0 is Hurwitz. and the scalar function w(zr.o) is

given by:
z LA -1 h l‘(k—l))

Fnom

w(z.0) = — 3 (4.27)
L5 (e ) = 4o

where o is an adjustable parameter. Then. for each set of positive real numbers
67.6:.8¢.68;.65.d. there ezists 6™ > 0 and for each @ € (0.¢"]. there erists €* (o) > 0.
such that if o € (0.67]. € € (0.¢*(0)] and |2(0)] < &;. |2(0)] < &.. [|6]] < &5. |16]] < &.

o|| < 6. the output of the closed-loop system satisfies a relation of the form:
p P sy

limsup |y(t) — v(t)| £ d (4.28)

t—oc

Remark 4.4 : The feedback gain k7 (r) can be designed using standard linear control

methods. such as pole placement. optimal control. etc. (for details see [KIXO86]).

Remark 4.5 : Referring to the controller of Eq.4.26. one can easily observe that is

comprised of two pieces: the term kT(z)z which is responsible for the stabilization of
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the fast dynamics of the closed-loop system and the term:
i N _ W T
a(z.t.t) := sgn[LC-;L;-.'lh(.r)] [E2(z.1)]”" {ZI(I‘(“ - Ll;-."mh(.r)) + Eit pa=t

k=1~7 er b
~L5 b))~ Yer(e. )+ (SR = L, b))t
Eoor (x 2l¢y(z. : 13; t Eoom MT)) It r 0
(4.29)
which guarantees boundedness of the trajectories of the closed-loop reduced syvstem
and output tracking with arbitrary degree of asymptotic attenuation of the effect of

6 on y.

Remark 4.6: Note that the result of theorem 4.1 holds for arbitrarily large ini-
tial conditions. uncertainties and their derivatives. and does not impose any kind of

interconnection or growth conditions on the nonlinearities of the svstem.

Remark 4.7: In practical applications. the value of the singular perturbation pa-
rameter is typically fixed by the process. say €,. and thus there is a limit on how
small the ultimate bound d can be chosen. For example. the proof of theorem 4.1 can
be used to calculate 6" from the desired (é;.6..6s.6;. 6z.d) and. in turn. the value €
for © < ¢. If this € is less than ¢,. then d may need to be readjusted (increased)
so that € > ¢,. Of course. if ¢, is too large. there may be no value of d that works.
On the other hand. the value of ¢". calculated from the proof of the theorem. is typi-
cally conservative. and so it can be useful to check the appropriateness of ¢ (and d)

through computer simulations.

Remark 4.8: Theorem 4.1 provides a bound for the discrepancy between the output
and the reference input that holds asymptotically. A characterization of the transient
performance of the controller of Eq.4.26 through a bound for the quantity [|y(¢)—v(t)||
in terms of the norm of the initial condition and the ultimate bound d is established

in the proof of the theorem (consider Eq.C.26 with [|e;|| estimated as |¢,(0)] + 28).
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4.6 A note on the matching condition

In our development so far. we considered singularly perturbed svstems of the form
of Eq.4.3 for which the matrix @2(z.6) could be singular for some r ¢ R". § € IR*.
To develop a solution to the state feedback control problem we essentially followed
a two-step procedure. In the first step. we emploved a preliminary control law of
the form of Eq.4.14 to derive a two-time-scale system in standard form with globallv
exponentially stable fast dvnamics. In the second step. we specified the explicit form
of the auxiliary input u to achieve arbitrary degree of asymptotic attenuation of the
effect of the uncertainty on the output. A direct implication of this approach is
that the coordinate change of assumption 4.2 (which implicitly includes the matching
condition of our methodology) depends explicitly on the feedback gain &7 (z) employed
to stabilize the fast dynamics. Therefore. it may be possible. depending on the
structure of the system under consideration. to choose the gain k7(z) to stabilize
the fast dynamics as well as to ensure that the matching condition of our theory is

satisfied.

In this section. our objective is to show that in the case of singularly perturbed
svstems of the form of Eq.4.3 in standard form i.e.. systems for which the matrix
@2(z.8) is invertible uniformly in r € IR™. 8 € IR? with possibly unstable fast
dvnamics. the matching condition of this methodology is independent of the selection
of the gain k7(zr) emploved to stabilize the fast dvnamics. and therefore it can be

verified on the basis of the open-loop reduced syvstem Eq.4.7.

In order to simplify the statement of our result. we make the following definitions.

Referring to the system of Eq.1.7. let r denote an integer for which 9-% = 0. if

k=1.....r—1.forallz € R".6 € R% and 2= # 0. for all r € R". 6 € R". and let

s denote the smallest integer for which Q;'g—‘;—) # 0. for some r € IR". § € IR?. Similarly,

referring to the system of Eq.4.17. let 7 denote an integer for which 57-’3‘(—:—'- =0.1if
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k=1..... F—1forallz € R". 6 € R% and & £ 0. for all r € R". 6 € R*. and
let § denote the smallest integer for which %‘v—) Z 0. for some r € R*. 8 € R%. The

main result of this section is summarized in proposition 4.1 that follows.

Proposition 4.1: Consider the uncertain singularly perturbed nonlinear system of
Eq.4.3. for which the matriz Qq(z.0) is invertible uniformly in + € R™. 8 € R?
and assumption 4.1 holds. Then. if r is well-defined and the condition r < s holds
for the system of Eq.{.7 and the feedback gain kT (r) is chosen so that the matrir
Q2(z.8) + g2(x.0)kT (z) is Hurwitz uniformly in r € R". § € RY. + is well-defined
and the condition r =1 < § holds for the system of Eq.4.17.

From the result of proposition 4.1. it is clear that for systems in standard form. the
verification of the condition r < s on the basis of the open-loop reduced system of
Eq.4.17 is sufficient for the satisfaction of the matching condition of the developed

robust control methodology.

4.7 Application to a nonisothermal continuous stirred tank

reactor
Two parallel irreversible reactions of the form:

A3 B. A3C (4.30)

take place in a continuous stirred tank reactor which is shown in Figure 4.1. The
desired product is the species B. while species C is the side product. The inlet
stream consists of pure A at flow rate F. concentration C 4 and temperature T4o.
The reactions are endothermic and a heating jacket is used to heat the reactor. Fluid

is added to the jacket at a flow rate F, and an inlet temperature T,o. The rate of
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F. Cao+ Tao

F.Ca.Cp.Cc.T,

Figure 4.1: A nonisothermal continuous stirred tank reactor.
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reactions are assumed to be of the following form:

~E,
T,

)Ca

ry = —kigexp(

-E,
ra = —kygexp( "R_T-)CA

Under the following assumptions:

o Perfect mixing in the reactor

¢ Uniform temperature in the reactor

e Constant volume of the liquid in the reactor

e Constant density and heat capacity of the reacting liquid

e Constant density and heat capacity of the fluid in the jacket
the process model consists of the following set of material and energy balances:

e Reactor Mass Balance for the species A:
—El —Eg
dC 4

V,-—E— = F.(Cag — C4) = kioe BTr C 4V — koge BT- C 41 (4.31)

e Reactor Mass Balance for the species B:

—E,
.dC .
h—dtﬁ = ~F.Cp + kioe BT- C41; (4.32)
e Reactor Energy Balance:
SH) ),
‘;% = F(Ta-T)+ E———-L)l\‘me RT. ¢\, + S_—A—r—zll\’zof RT. c,v;
PmCpm AmCpm
UA,
+ (T, -T,)
PmCpm
(4.33)
e Jacket Energy Balance:
.dT, "A,
‘J—JzF,TJO—F,T]-l-[A (T - T;) (4.34)
dt PiCpy
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where C4 and Cp denote the concentrations of the species A and B. T. and T, denote
the temperatures of the reactor and the jacket. 1; and 1] denote the volumes of the
reactor and the jacket. ko, kgo. Ey. E,. AH;. AH, denote the pre-exponential
constants. the activation energies. and the enthalpies of the two reactions. cpm. ¢,
and pn. p; denote the heat capacities and densities of the reactor and the jacket.
respectively. and U denotes the heat transfer coefficient.
Typically. the volume of the reactor V7 and the volume of the jacket 1 are significantly
different. thus. the parameter € can be defined as the following ratio:
% .
€= t (4.33)
The control objective is the regulation of the concentration of the species B in the
reactor. in order to maintain the production of B at the desired level. by manipu-
lating the inlet temperature of the fluid in the jacket. The inlet concentration and
temperature of the species A. C40 and T40. respectively. are assumed to be the main
uncertainties.
Defining:
1 =C4. 20=Cp. 73=T,. 21 =T,. u=Tjo— T)os (4.36)
61 =Ca0 = Ca0s. 02=Tao—-Ts0s. y=CBn (4.37)

where the subscript s denotes the steady-state values, one obtains the representation

of the form of Eq.4.3 with:

- —EI _E2 -
Fo(Cags — 71) + F.0, = kyoe BT3 2,V — koge RT3 7,15
-E,
—F,23 + kyoe BT3 1,1,
filz.8) = — £
; (_AH'I']) . Rxr -
Fi(Taos ~— 73) + Fiy + F,———k0e 3 1y}
Pm Cpm
AH ~L A
+(;—l)-kgoe Rz, V. — 1,

X PmCpm PmCpm J
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0
0 0 U4,
Qi(z.0) = | . coi(z.0) = | 0 |. fa(z.8) = | ExTos+ ——a3
UA, 0 p;c,
Pmem

UA, .
Qa(z.8) = [—(Fﬁ p,-c,-)}- g(z.0) = [ F, |. k) = [.r._,_}

One can easily verify that the system is in standard form with globally exponentially
stable fast dynamics. Setting ¢ = 0. the representation of the open-loop reduced

svstem can be easily obtained with:

r | ~E, 5
F(C.0s — 71) + F 0, — kyoe B3 7,V — koge RT3 2,1
-E,
—F.zy + kg€ Rzs 'V,
F(z.0) AH 5
r.0) = _. —
Fu(Taos — 73) + Foby + =2 e Rag o v
Pm Cpm
H —L [
~AH, ) A 1 "A
+i—2)‘k20€ R‘T:} .'[1",. + [ L. 4 [ T,- + F_]T]OS]
PmCpm PmCpm F + I 51411
J
0
’ 0
G(z.8) = A L p h:r)=[1'o]
Pmem [A !
F, +—
p;<,

[t can be easily verified that a local version of assumption 4.2 holds (note also that
for this particular example we do not need to assume that (8,.6,) are absolutely

continuous).

The values of the process parameters and the corresponding steady-state values
of the process variables are given in Table 4.1. It was verified that these conditions

correspond to a stable equilibrium point. We will now verify that a local version of
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p_ = 1.00 m3
v = 0.08 m3
Ar = 6.0 m?
U = 1000.0 kcal hr=t m=2 B -1
R = 1.987 kcal kmol~' R -1
Caos = 3.73 kmol m~3
Thaos = 3100 K
Tjos = 3575 K
AH, = 35.4x10% kcal kmol™!
AH, = 35067 x10* kcal kmol~!
kio = 3.36 x 10° hr=t
kag = 7.21x10% Ar!
E, = 8.0x10% kcal kg=!
E, = 9.0x10* kcal kg=!
&m = 0231 keal kg=! K~
Cp; = 0.2 kcal kg=! K-!
Pm = 900.0 kg m=3
o = 800.0 kg m=3
F = 3.0 m3 hr-t
F, = 200 m® hr=1
Cas = 1125 kmol m-3
Cg, = 1875 kmol m=3
T., = 300.0 K
T, = 320.0 K

Table 4.1: Process parameters and steady-state values
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assumption 4.3 also holds. To this'end. consider the coordinate transformation:

I
gl h(l‘) i —El
G2 | = | Lrh(z) | = . (4.38)
Ty — C0s
In the new coordinates the 7; dynamics takes the form:
F =
. - - CZ + rgl A -
= —Fa + F.0, - F.Ci)—k -) £ R
M m+ Fr0 — (G + F.¢1) 20(k10(771 n CAos)‘"r) (m + Caos)
(4.39)

For a meaningful problem 7, should always be greater than zero (notice that 5,
represents the concentration of the species A in the reactor). Setting ¢, = (» =6, =0

the above equation reduces to:
o= —Fup (4.40)

From the above. it follows that the system of Eq.4.39 possesses a local input-to-state
stability property with respect to 6 and (. and thus assumption 4.3 holds locally.

Moreover. assumption 4.4 takes the form :
-E -E,

|LiLrh(z)] < éi(2.1) = [kioe RT3 VL F,]6;] + kioe Bra %‘.';Frwzn (4.41)
I3

where [6,]. |0,| denote the upper bounds on the size of uncertain variables.

We now proceed with the design of the controller. Motivated by physical ar-
guments. we assume that the external reference input is constant. and thus. the

controller of theorem 4.1 takes the form:

2 B 4 2 B o ,
= [Longm Lrum M2 =S LY h(z) + 35 (0D ~ L1 h(2))
= ‘62 nom = ‘32 nom

2 g
2 (e 01+ (SR L, oot o)
k=17
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where the scalar function w(z. ) is given by:

2

(522~ v) + Lo h(2)]
w(z.6) = 3 z (4.43)

3—(1'2 —v)+ L h(z)+0

Taking into account the time-constants of the open-loop reduced system. the following

values were chosen for the parameters g;:

30= 10 . 51= 50 . d'z= ].00

The controller of Eq.4.42 was implemented with ¢ = 0.01 to guarantee that the output

of the system satisfies a relation of the form:
limsup |y — v| < 0.02 (4.44)
t—no0

for a value of the singular perturbation parameter ¢ equal to 0.08.

Simulations were performed to evaluate the performance and robustness properties

of the controller. The uncertainties that were considered were:
0, = Bi05tn(t) . 0y = Oysin(t) (4.45)

where 010 = 0.3 mol/lt and 6,0 = 3.0 A'. The upper bounds on the uncertainty were
assumed to be: |8,| = 0.3. |6z] = 3.0. In all simulation runs. it was verified that the

states of the system stay bounded.

The first simulation run addressed the regulatory characteristics of the controller
in the presence of uncertainties. Figure 4.2 shows the controlled output and the open-
loop response of the process as well as the profile of the input. Onc can immediately
observe that the effect of uncertainties on the output has been significantly reduced
and the output of the process remains very close to the nominal value of the reference

input as predicted by the theory.

The second simulation run addressed the reference input tracking capabilities of

the controller in the presence of uncertainties. A 0.8mol/lt (almost 43 %) decrease
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Figure 4.2: Open-loop (dotted) and closed-loop (solid) output profiles and input profile in the

presence of uncertainty (¢ = 0.01. ¢ = 0.08). |
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in the reference input value (v = 1.073) was imposed at time t=0. The output
and input profiles are shown in Figure 4.3. It is clear that the controller achieves
the requested degree of asymptotic attenuation of the effect of the uncertainty on the
output and regulates the output to the new reference input value despite the presence

of uncertainties.

In the final run. we considered the performance of the controller for o = 0.001 under
the conditions used in the previous simulation. Figure 1.4 depicts the corresponding
output and input profiles. As expected. the degree of attenuation of the uncertainty
increases (compare with figure 4.3). while the output of the system is driven to the

new reference input value.

4.8 Conclusions

In this chapter. we considered a broad class of singularly perturbed syvstems with
time-varying uncertainties. whose fast dynamics may be unstable or singular. The
uncertainty was allowed to be time-varying. It was assumed that the boundary layer
svstem is stabilizable and the reduced system is input/output linearizable with ISS
inverse dynamics. For such systems. we proposed a class of well-conditioned control
laws that guarantee boundedness of the trajectories of the closed-loop system and
achieve arbitrary degree of asvmptotic attenuation of the effect of uncertainty on the
output. for initial conditions and uncertainties in an arbitrarily large compact set.
as long as the singular perturbation parameter is sufficiently small. Fundamental
differences in the nature of the matching condition between systems in standard and
nonstandard form were identified and discussed. Finally. the derived controller was
successfully applied to a nonisothermal continuous stirred tank reactor. with fast
jacket dvnamics and uncertainties in the concentration and temperature of the inlet

stream. modeled by a singularly perturbed system in standard form.
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Figure 4.3: Output and input profiles for reference input tracking in the presence of uncertainty

(0 =0.01, ¢ =0.08).
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Figure 4.4: Output and input profiles for reference input tracking in the presence of uncertainty

(0 =0.001. ¢ = 0.08). 107
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Notation

Roman Letters

cpm = heat capacity of the reacting mixture
cp; = heat capacity of the fluid in the jacket
d,d;..ds.d; = positive real numbers
E,.E; = activation energies
F.F, Foom, f1, fo = vector fields
F..F; = flow rates
G.G.g1,g2 = vector fields associated with the input
= output scalar field
kT = vector field
k.k = positive real numbers
k1o, koo = pre-exponential constants
@1 = matrix of dimension n x p associated with the slow state vector z
@2 = matrix of dimension p x p associated with the fast state vector =

r.T = integers associated with the input @ in the reduced systems
.§ = integers associated with the variable 6 in the reduced systems
= time
= input

= auxiliary input

.. V. = volumes of the liquid holdup in the jacket and reactor
= external reference input

vector of the slow state variables

output

vector of the fast state variables

W R NS ™0
[N

I

Greek Letters

B; = adjustable parameters

8.0:.6:.69.64.0¢,.65. 6z, 6. 55;. 5,7 = positive real numbers
AH, .AH,, = enthalpy of the reactions

e.€%.€", ¢ = singular perturbation parameters

(¢ = state vector

n = state vector

p; = density of the reacting mixture

pm = density of the fluid in the jacket

o = adjustable parameter
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Math Symbols

L¢h = Lie derivative of a scalar field h with respect to the vector field f
LEh = k-th order Lie derivative
LeL5'h = mixed Lie derivative
R = real line
R’ = i{—dimensional Euclidean space
€ = belongs to
T = transpose
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Chapter 5

Robust Control of Multivariable
Nonlinear Two-Time-Scale

Systems

5.1 Introduction

In this chapter, we extend the robust output tracking control methodology proposed
in the previous chapter to multi-input multi-output two-time-scale nonlinear sys-
tems with time-varving uncertainty. for which the fast dvnamics may be unstable
or singular. The objective is to provide an explicit formula of a multivariable state
feedback controller that guarantees boundedness of the trajectories and an arbitrar-
ilv small ultimate discrepancy between the outputs and the reference inputs in the
closed-loop system by a suitable selection of controller parameters. The resulting
controller is a continuous function of the state of the svstem. and its construction
requires the knowledge of apbropriate bounding functions on the size of the uncertain
terms. The performance and robustness properties of the developed robust controller

design method are evaluated through simulations in an fluidized catalytic cracking
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reactor. modeled in the standard singularly perturbed form. with unknown heat of

the combustion reaction.

5.2 Preliminaries

We consider multi-input multi-output two-time-scale nonlinear svstems with the fol-
lowing state-space representation:

r = f1(l’.0(t))+Q1(l‘.0(t))Z+Gl(l‘.g(t))ll
€ = fg(z.0(1{))+Q2(I.0(t)):+Gg(.r.ﬁ(t))u (5.1)

yi = hi(z). 1=1..... m
where z € IR™ and = € IR? denote vectors of state variables. u = [u; -+ u,]T € R™
denotes the vector of manipulated inputs. 8(¢) = [01(t) --- 64(t)] € IR? denotes

the vector of uncertain variables. y; € IR. denotes the ¢-th controlled output. and ¢
is a small positive parameter. which quantifies the degree of coupling between the
fast and slow dynamical phenomena of the system. fi(z.6(t)). fa(x.6(t)). are suffi-
ciently smooth vector functions. @(z.6(t)). @2(z.0(t)). Gi{z.0(t)). Ga(z.6(t)). are
sufficiently smooth matrices of appropriate dimensions. and h;(z). i = 1..... m are
sufficiently smooth scalar fields. The notation and some definitions used in the paper
are given in the appendix.

The fact that e multiplies the time-derivative of the state = allows decomposing the
system of Eq.5.1 into separate lower-order systems evolving in different time-scales
[KKO86]. Defining a fast time-scale. 7 = E and setting ¢ equal to zero. the following

fast subsystem is obtained:

d:
dr

ot
o
—

= folz.8) + Qaz.0): + G2(zx.0)u (5.

where r can be considered equal to its initial value z(0) and @ can be thought of as

constant. Assumption 3.1 states a stabilizability requirement on the fast subsystem.

Assumption 5.1: The pair [Q2(z.0) Go(z.8)] is stabilizable uniformly in r € R™,
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6 € IRY. in the sense that there ezists a sufficiently smooth matriz K (x) such that the
matriz Q2(z.0) + Ga(z.0)K(x) is Hurwitz uniformly in r € R". 6 € R4,

Assuming that the matrix @,(z.8) is invertible uniformly in r € R™. 8 € R¥ and
setting € = 0, the following representation for the equilibrium manifold of the fast

dynamics of the svstem of Eq.5.1 is obtained:
zs = —[Qaz.0)] 7 f2(2.8) + Ga(z.6)u] (5.3)

where =, denotes a quasi-steady-state for the fast state vector z. Utilizing the above

equation. the reduced system or slow subsystem takes the form:

r = F(r.0)_+G(.1:.0)u

yi hi(z). 1 =1..... m (3.4)

I

where the superscript s in y’ denotes that this output is associated with the slow

subsystem and

™
<
|

fi(z.8) — Qu(z.0)[Qa2(z.6)] 7! fo(x.0) (
Gi(z.0) — Q1(z.0)[Q2(z. 0] Ga(2.0)

(1]
(1]

QM
H
=

!

5.3 Robust controller design

5.3.1 Control objectives

In this work. we will address the problem of syvnthesizing well-conditioned (i.e. inde-
pendent of the singular perturbation parameter ¢) robust static state feedback laws
of the form:

u = R(z.v,‘k))+[\'(1'): (5.6)

where ’R(:z:.v,(k)) is a vector function, v,(k) denotes the k — th time derivative of the
external reference input v;. which is assumed to be a smooth function of time and
K(z) is a sufficiently smooth matrix. which preserve the two-time-scale property of
the open-loop system of Eq.5.1 and enforce the following objectives in the closed-loop

svstem:
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1. Boundedness of the trajectories

2. Output tracking of external reference inputs with arbitrary degree of asymptotic

attenuation of the effect of uncertainty on the outputs

The above requirements will be enforced in the closed-loop svstem for sufficiently

small values of the singular perturbation parameter e.

5.3.2 Assumptions

In the general case where Q2(z.0) is singular or unstable. a preliminary control law
of the form:

u = u+ h(z): (3.7)
where @ denotes an auxiliary input and A'(z) is a sufficiently smooth matrix of dimen-
sion m x p can be used to stabilize the fast dvnamics. and thus induce a well-defined
stable quasi-steady-state for the states z. More specifically. substitution of the control

law of Eq.5.7 into the singularly perturbed system of Eq.5.1 vields:
r = f11'0 + [@i(z.60) + Gi(2.0)K(z)]= + Gi(z.0)u
€2 = fa(z.0)+[Qaz.0) + Go(z.0)K ()] + Ga(z.6)u (5.

¥y = 11:‘(1'). r=1..... m

[1}
v A
~

From assumption 3.1. A'(x) can be chosen so that the matrix @3(z.0)+Ga(r.0) K (x)
is Hurwitz. uniformly in r € IR". § € R?. and thus the fast dvnamics of the above

svstem is exponentially stable. The reduced svstem takes then the form:
¢ = F(z.0)+G(z.0)u
o= h(z).i=1..... m

where

F(r.0) = fi(z.0) = A(z.0)f2(z.0)
G(r.0) = Gy(z.0)— A(z.08)Go(z.0)
and A(z.0) = [Q,(z.0) + Gi(x.0) N (2)][Q2(2.8) + Go(z.6)K (z)]~'. Referring to the

system of Eq.53.9 we will state three assumptions that will allow us to proceed with

the robust controller design.
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Assumption 5.2 : Referring to-the system of Eq.5.9. there erist a set of inteqers
(F1-Tae. ... Tm) and a coordinate transformation (¢(.n) = I'(r.0) such that the repre-

sentation of the system. in the coordinates ((.7n). takes the form:

= g
A=
= LRR(T7YCn.0)) + Y L, L2 hy(T™ (¢ n. )i,
=1
g = g
. : (5.11)
d:)—l = Cé:,,n)
) L;__mh,,,(:r-x(c_,,.e))+ZlLé,L;m-lhm(T_l(n.C.GWJ
_]=

o= ¥((.n.6.0)

ey s = Yooy £ (C.7.6.6)

g o= a

where z = T~Y(.9.0), ¢ = [¢C) - ¢"™NT . p=[p --- 7]11—Zl7:|]7" and G’ denotes
the j-th column vector of the matriz G(z.6). Moreover. for each 6 € IRY. the states

(. n are bounded if and only if the state z is bounded.

Assumption 3.2 incorporates the matching condition of our methodology. namely
that a direct time-differentiation of the output y; up to order 7, — 1 vields a set of
equations which are independent of the vector of uncertain variables §. We note that.
from an application point of view. this matching condition is less restrictive from
the standard one imposed in [CL81]. which restricts 6(t) to enter the system in the
same differential equations as u. The consequence of this generalization is that the
n—subsystem depends on 4(t). which implies that we need to assume that é(t) exists

and is bounded (cf. theorem 5.1). Referring to the system of Eq.5.11. we will assume,
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for simplicity. that the matrix:

Lo L2 hy(2.8) - LgnL'hyiz.6)

C(z.0) = (5.12)

Lo L7 h(2.8) -+ Lol h(2.0)
is nonsingular uniformly in r € IR™. 6 € IRY (see remark 5.6 for a discussion on how

to handle the case of singular C(z.#6)).

Assumption 5.3 : The dynamical system:

i o= Uy((.n.60.6)
1 (5.13)
M-y 7 = Yaoy 7(¢.7.6.9)

is input-to-state stable with respect to .9.6.

The above assumption is more restrictive compared to the standard one of asymp-
totic stability of the zero dynamics without inputs [CL81]. however it is necessary
in order to prove that the states of the closed-loop system are bounded for initial
conditions. uncertainty and rate of change of uncertainty arbitrarily large (see also
[TP95]). Furthermore. this assumption could be relaxed to local asymptotic stability
of the n—subsystem with (C.6.6) identically equal to zero. leading to local results
(see remark 5.2).

We will now quantify possible knowledge about the uncertainty by assuming the
existence of known bounding functions that capture the size of the uncertain terms

in the system of Eq.5.11. To this end. we define the variable é(z.#) as:
8(2.8) = [F(1.8) = Fuom(7)) (5.14)

where Pnom(:r) denotes the vector field resulting from F(z.0) by setting 6 equal to

its nominal value 8. Using the fact that Li-_“hi(r) = LKV hi(z). i = 1....,m.

FVIO"'I
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k=1..... .. £Eq.3.11 can be written as follows:

o= g
Qr(,l)—l = Ci,l)
¢ = LR hy(TTNCm.0) + zLG,L" V(T . )i,
J_
+LeL2 " h(TY(C 7. 6))
am o= g™
Cr":)—l = Cr(:,,n)
= LT Ra(TNC7.0)) + YLy L A (T (1. C. 0D,
1=1
+L: L7 (TS 9.0)
T)l = \Ill(g'.n.().é)
oy = Yooy 7(C7.0.6)
yi = Qfl)- t=1..... m
where ¢{ = L& hy(T~Yz).i=1..... m.ok=1.... 7.

Assumption 5.4: The terms LG,L;{—lhg(r). i € [1.m]. have the same knoun con-

stant sign. sgn,. for all r € IR™. 6 € IRY. for each j € [l.m], (some of these terms

may be zero. but the requirement that C(z.0) is nonsingular has to be satisfied). and

there exist known functions ¢1(x.t). é,(z.t). such that the following conditions hold:

IL:LE T (e) - Ll hm(2))T] < &i(2.0)

0 < é(z.t) < mingpim |Lg L™ hil)|

(5.16)

and there exists a known positive real number b such that the m xm matriz M(z.0.t) =

C(z.0)A(z.t). where A(x.t) is an m x m diagonal matrir whose (1.1)-th element is

of the form

forallz € R*". 0 € R%. t > 0.
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Assumption 3.4 requires the existence of a nonlinear function that captures the size of
the additive uncertain terms in the system of Eq.5.11. This requirement is standard
in all Lyapunov-based robust control methods (see [CL81. KP88. AC92] for example|.
However. in contrast to [CL81. KP8S. AC92]. we do not impose any growth conditions
on the nonlinear function é(z.t). such as quadratic growth. etc.. Assumption 5.4 also
requires the existence of a nonlinear function ¢;)(z.t) for each manipulated input «,
that lower bounds the m-coefficients (LC-;,L;_-"Ihl(r) ..... LC-;,L;-_'"’Ihm(r)) (note that
this requirement does not have to be satisfied for the coefficients that are zero). This
requirement is less restrictive than the ones used in [CL81. KP88. AC92]. where an
upper bound (typically small) on the size of the uncertain terms that enter the svstem

coupled with the manipulated inputs is assumed to exist.

5.3.3 Main result

We are now in position to proceed with the design of the auxiliary input @ to achieve
the aforementioned control objectives in the closed-loop reduced system. Specifi-
cally. motivated by the requirement of output tracking. and the presence of additive
and multiplicative uncertainties in the systems of Eq.5.11. we consider static state

feedback laws of the form:

i = Ryz.t)[plx)+Q(z.v™) + Ry(z.1)] (5.17)

where p(z). Ry(z.t) are vector functions. Ry(r.t) is a matrix. Q(.T.z',(k)) is a column

vector. and vfk) denotes the k — th time derivative of the external reference input v*.
which is assumed to be a smooth function of time. The motivation for considering
control laws of the form of Eq.5.17 is provided by the requirement of stabilization
with output tracking in the nominal reduced system (term p(z) + Q(x. v,(k))). and the
fact that the system in Eq.5.9 includes uncertainties entering coupled with the input

(term R,(z.t)) as well as additive ones (term Ra(z.t)).
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Theorem 3.1 that follows provides an explicit formula of the controller that solves

the control problem formulated in the previous section (the proof is given in the
appendix D). To simplify the statement of the theorem. we set & = [v; ¢! --. (7T
and ¢ = [¢f ¢f --- ¢Z]T.

Theorem 5.1: Consider the uncertain singularly perturbed nonlinear system of

FEq.5.1, for which assumptions 3.1. 3.2, 3.3. and 3.4 hold. and the static state feedback

law:
v = K(z)z+A(z.t) {Z}:g“ (O LRy +Z}: " Y
i=lk=1Zif i=1k=1 xr.
—LE! hlz)) - (2+ qxt+4zj:'W‘“ L% hi n+umLo@
. (5.18)
where the feedback matrir KN (z) is such that the matrir Q2(z.0) + Ga(x.0)R (z) is
Hurwitz uniformly in z € R™. § € R". j:: = [j‘;: -:—g T are column vectors
of parameters chosen so that the roots of the equation det(B(s )) = 0. where B(s) is
an m X m matriz, whose (1, j)-th element is of the form i 5k . lie in the open
left-half of the complexr plane. and the vector function w(kr-.lcﬁ)ﬁz"s given by:
35 JEL bt = )
wiz.o) = == (5.19)
Ilzlgdi':(L;;jmhf(r) o) +0

where o is an adjustable parameter. Then, for each set of positive real numbers
8:.6:.69.64.05.d. there erists 0™ and for each 0 < &, there exists €*(P). such that if
0 < 6% ¢ < € (0) and [2(0)] < &.. [2(0)] < 6. [|6]] < 6. [I61] < &, |I5]] < 6.

a) the state of the closed-loop system is bounded. and

b) the outputs of the closed-loop system satisfy:

limsupjy, —v;| <d. 1=1..... m (5.20)

t—n
Remark 5.1: Referring to the result of theorem 5.1, we note that the dependence
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of the upper bound on the singular perturbation parameter. ¢*. on the adjustable
parameter. o. is due to the presence of o on the dvnamical svstem that describes the

fast dvnamics of the closed-loop system.

Remark 5.2: Theorem 5.1 establishes a semi-global type result (the initial con-
ditions. uncertainty and rate of change of uncertainty can be in arbitrarily large
compact sets) and does not impose any kind of interconnection or growth conditions
on the nonlinearities of the svstem. We note that if the coordinate transformation of
assumption 3.2 holds locally and the unforced zero dvnamics:

i o= ¥1(¢.0.0.0)
: (5.21)

-3, 7 ¥, 5 £(¢.0.0.0)
is locally exponentially stable. then the result of theorem 5.1 holds locally (i.e. for

sufficiently small initial conditions. uncertainty and rate of change of uncertainty).

Remark 5.3: Referring to the control law of Eq.5.18. one can show that if the

matrix C(z.8) in the system of Eq.5.9 is independent of 6. then the following simpli-
- m jx .

fications can be made: A(z.1) = {C(z)}"'. b = 0. and [&(z.t) + IZZ—_‘—(PEH -

1=lk=1 d""

Lk

Fﬂo"ﬂ

hi(z))|] = éi(z.t).

Remark 5.4: Referring to the control law of Eq.5.18. we note that the explicit ex-
pression of the term which is responsible for the attenuation of the effect of additive
uncertainties is nonlinear not only is the r-coordinates but also in the ((.n) coor-
dinates (see Eqs.C.10-C.11). This is in agreement with the robust control methods
[CL81. KP83| and contrast to the robust control methodology proposed in [AC92].
where the expression of the term Rj(z.t) is linear in ((.7n) coordinates. and is a

consequence of the fact that we allow ¢;(z.t) to be a general nonlinear function.

Remark 5.5: The singular perturbation formulation provides a natural setting for

addressing robustness with respect to unmodeled dynamics [KKO86]. In particular.
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if the open-loop fast subsystem of Eq.5.2 is exponentially stable uniformly in r < R'.

6 € IR?. the controller of Eq.5.18 can be simplified to:

u {Zzﬂw B Lk b +ZZ “ e LB o))

i=lk= i=1lk=1 "'l

—(2 + b)er(z.t) + [ZZJ (k) _ LLﬂomhi(I)) + |]w(r.o)}
=1k=1 Pifs

(5.22)
which can be explicitly synthesized utilizing information about the open-loop reduced
system of Eq.5.4. In this case. the result of theorem 3.1 establishes a fundamental ro-
bustness property of the controller of Eq.5.22. with respect to uniformly exponentially
stable unmodeled dynamics, provided that they are sufficiently fast. This robustness
property is verv important in many practical applications. where fast dvnamics. such

as sensor and actuator dynamics. are usuallv neglected in the controller design.

Remark 5.6: Whenever the characteristic matrix C(z.8) of the reduced system of
Eq.3.9 is singular. one can utilize available dynamic extension algorithms (see for
example [Isi89]) to design a dynamic state feedback law of the general form:
£ = a(z.6)+b(x.£)F ]
u = c(z.§)+d(z.€)T
where a{z.£).b(z.£).c(z.£).d(x.£) are vector functions of appropriate dimensions.
¢ € R™ denotes a vector of auxiliary inputs. such that the augmented system
£ = a(r.f)+b(z.6)F
¢ = F(z.0)+ G(r.0)c(z.€) + G(z.6)d(z,€)d (5.24)
§¢ = hiz).i=1l.....m

with §° € IR™ as output vector and ¢ € IR™ as input vector possesses a nonsingular
characteristic matrix. Then. the robust control methodology of this paper can be

applied to the system of Eq.5.24.
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5.4 Application to a fluidized catalytic cracker

In this section. we illustrate the implementation of the developed control method-
ology on the industrially significant process of a fluidized catalvtic cracker (FCC)
shown in Figure 5.1. The FCC unit consists of a cracking reactor. where the desired
reactions include cracking of high boiling gas oil fractions into lighter hvdrocarbons
(e.g. gasoline) and the undesired ones include carbon formation reactions. and a re-
generator. where the carbon removal reactions take place. For a detailed discussion
on the features of the FCC unit. the reader may refer to [Den86. MRBG93]. while
applications of linear control methods to the process can be found for example in

[MG87. HMS95]. Under the following standard modeling assumptions:
e Well-mixed reactive catalyst in the reactor
e Small-size catalvst particles
e Constant solid holdup in reactor and regenerator

o Uniform and constant pressure in reactor and regenerator

the process dvnamic model takes the form [Den86|:

Vi di;“‘ = —60FcCeat + 50R.;
idCt_ = —60F,(Cre — Cuc) + 50R.;
el o G0F(T, — T + 0875 Dy Re(Typ — Tro)
+o.875(;§f[—f"—)0, Ry + 0.5(—_-?3,,6 %)
Vo o GOF (e — o) = 50Ra
1~;g‘%'£ = G0F,(Ta = Toy) + o..sé—":ﬁ,,,(:ra.- ~ T+ 0.5(—55'-" )\ Re

where Cq . Cyc. C, denote the concentrations of catalytic carbon on spent catalyst.

the total carbon on spent catalyst. and carbon on regenerated catalyst. T,,, T, denote
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Figure 5.1: A fluidized catalytic cracker.
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the temperatures in the reactor and the regenerator. D, is the density of total feed.
V:a. 17y denote the holdup of the reactor and the regenerator. AH,,. AH,. are heat of
reactions. AHy, is the heat of feed vaporization. F;. denotes the flow rate of catalvst
from reactor to regenerator. S,.S5.. Sy denote specific heats. Ty,. T, denote the inlet
temperatures of the feed in the reactor and the air in the regenerator. and R.s. R,... R

denote reaction rates. The analytic expressions for the reaction rates R.s. R,.. R.s are

[Den86):
R _ kcc‘/;aPra I —ECC
T CamCo% TP\ R(T,, + 460.0)
R _ kcr";aPrQRthtf-[\'cr -

Rtj + "';-aPraI\'cr

o ke _E.
YT CaiCo TP R(T,. + 460.0)

(5.26)
_ R.(21-0y)
Ra = 200
1ioPy
Ofg = 21€l‘p R‘“

106 +100€1' -Eor C
1T6RE, " E P\ R(T, +1600)

where k.. k.. ko are pre-exponential kinetic rate constants. E... E... E,, are activa-
tion energies. Oy, is the oxvgen in flue gas. R, is the total feed rate. and R,; is the
air rate. The values of the process parameters and the corresponding steady-state
values are given in table 5.1. The process exhibits a two-time-scale behavior because
the residence time in the reactor is smaller than the one in the regenerator [Den86].
This implies that although the operator focus is on the reactor, the control problem
must focus on the regenerator which is the process that essentially determines the
dvnamic response of the entire FCC unit. To this end. the control objective is the
regulation of the temperature in the regenerator. T,,. and the concentration of the
carbon on the regenerated catalyst. C;.. by manipulating the inlet temperatures. T},

and T,,. The uncertain variable for the syvstem is taken to be the heat of combustion
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E.. = 18000.0 Btu b~ mole=~*

E.. = 27000.0 Btu Ib~! mole~!

E,. = 63000.0 Btu lb=! mole~!

k.. = 8.39 Mib hr=! psia~'ton— (wt%)~! %6
k.r = 11600 Mbbl day™! psia~'ton~!(wt%)=! 1%
kor = 3.15x10!'° Mlbhr-! psia~'ton~!
Oy, = 02 mole%

Vg = 60.0 ton

Via = 200.0 ton

Tjpe = T44.0 F

Tas = 1735.0 F

P = 250 psia

P = 40.0 psia

AH;, = 600 Btu 15~

AHA.,, = T7.2 Bty lb~!

AH,, = 107000  Btulb-!

S, = 03 Bty ly=1p-1

S. = 0.7 Bty lb=1F-1

R.. = 40.0 ton min~!

Ry = 100.0 Mbbl/day

Dy = 70 Ib gal=!

Rg, = 400.0 MIb min=!

Cear = 0.875 wt%

Cse = 1473 wt%

Cre = 0.6 wt%

Tra = 930.0 F

T, = 1155.0 F

Table 5.1: Process parameters and steady-state values
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in the regeneration. which is also assumed to be time-varyving. Defining the singular

perturbation parameter € as:

-—

T2

€ =

(5.27)

-

rg
and setting 7 = [z1 7|7 = [Cre Trg)T. = = [21 22 237 = [Cear Coe Tra]To v = [y 03] =
[Tsp TailT. vy = (1 y2)7 = [Cre Trg)7. 8 = [AR,,). the system of Eq.5.25 can be put

into the standard singularly perturbed form:

dz

-d—tl- = fu(zi.z0) + @12

dz

d—t2 = fio(z1.72.0) + Q1233 + gr2uz
dz

ed_tl = Qal(z1.22.23.71) (3.28)
d32

EI = falz1) + Q2(z1. 22. 233. 21)
d:3

e-d_t faa(x2) + Q23(=1. 2. 3. 1) + g23ty

where f11. Q1. fiz. @12- g12. @21- f22, @22, f23. @23. g23 are functions whose specific form
is omitted for brevity. It was verified that the svstem of Eq.5.28 possesses an expo-
nentially stable equilibrium manifold for the fast dvnamics. which implies that it is
not needed to utilize a preliminary feedback law of the form of Eq.5.7 to stabilize
the fast dvnamics. Setting ¢ = 0. the equilibrium manifold of the fast dynamics can
be calculated analyvtically and is of the form: =, = g(z).23.1;). where g is a smooth
vector function (note that the input «; enters this algebraic equation in a nonlinear
fashion. due to the nonlinear appearance of the fast state = in the system of Eq.5.28).

The reduced syvstem can then be found to be of the form:

dzx
-El- = Fl(I1.12)+Gll(II~I2tul)

dr, (5.29)
—dt— FQ(I}.Ig.g)+G21(1‘1.1‘2.u1)+G22u2

with F1.G11. F2. G21. G2 appropriately defined (their exact expressions are omitted

for brevity). The system of Eq.5.29 is already in the form of Eq.5.11, with u appearing
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in a nonlinear fashion. and the condition ry + r: = 1 + 1 = 2 holds. which implies
that this system does not possess zero dvnamics. Furthermore. assumption 5.4 is also

satisfied and the function é,(z) takes the form:
61(1')=F2(1’1.1'2.‘0l) (:)30\

where |6] denotes the upper bound on the size of the uncertain variable. which is
assumed to be constant. Clearly. the assumptions required for the application of the
result of the theorem are satisfied. Referring to the system of Eq.3.29. we also note
that the uncertain variable § does not appear coupled with the input variables u,. ua
and that the differential equation that describes the evolution of z, is independent of 6
and u,. The former fact allows using the simplifications discussed in remark 3.3 in the
controller formula. while the latter fact suggests that there is no need for uncertainty
compensation term to be included in the formula that calculates the control action
for the manipulated input u;. Note that the synthesis formula of Eq.5.18 cannot be
readily used due to the nonlinear appearance of the input u; in the system of Eq.5.29.
To resolve this problem. we first considered the algebraic equation G11(71.72. 1) = a
and derived its solution in terms of u;. i.e.. u; = Gy(z1.72.a). Then. the necessary

controller was found to be:

= 1
u = Gula.z2. T(vl—fl)_Fl(rl-I2))
11
u — 1{1(1,_1.)_[}:'(1,1_9)
* T Gan 3y : 24=1-52.50
g 1 - 9 — Do
+G21(II.IZ-G1]($1.1‘2.31—1(‘(71 —-_1'1) - Fl(II-I'))) _2C]( ‘2‘21'— — ;+0)}
5.31)

For the above robust controller. we note that its practical implementation requires
measurements of onlyv two of the states of the process (concentration of carbon on re-
generated catalyst and temperature of the regenerator). A slowly-varying uncertainty

was considered expressed by a sinusoidal function of the form:
6 = 180.0s2(0.13 x t) (5.32)
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The upper bound on the uncertainty was taken to be |#] = 180.0. From theorem
5.1. it is clear that there exists a trade-off between the upper bound on the value
of the singular perturbation parameter ¢” and the level of asymptotic attenuation
d that can be achieved. In the application in question. the value of the singular
perturbation parameter is fixed by the design of the process. i.e. ¢, = 0.3. and thus
there exists a lower bound on the selection of the level d. We performed a set of
computer simulations (for the regulation problem) to calculate o* for certain values
of d. and. in turn. the value of ¢~ for 0 < 6™. The following set of parameters were

found to give an ¢* < ¢, and used in the simulations :
1311 = 0.1. /321 =0.02. 0=0.5 (5-33)

to achieve an ultimate degree of attenuation d = 0.01. for a value of the singular

perturbation parameter ¢ = 0.3.

Two representative simulation runs are reported. In both runs. the process was
initially (¢ = 0.0 hr) assumed to be at steady-state. In the first simulation run.
we tested the regulatoryv capabilities of the controller. Figure 5.2 shows the closed-
loop output profiles. while Figure 5.3 displays the corresponding manipulated in-
put profiles. Clearly the controller regulates the output at the operating steady-
state compensating for the effect of uncertainty and satisfving the requirements
limsup,_ . [y1 — 1] <0.01. limsup,_, [y2 — v2] < 0.01. For the sake of comparison.
we also implemented the same controller without the term which is responsible for
the compensation of uncertainty. i.e. a decoupling input/output linearizing controller
for the nominal open-loop reduced syvstem. The output profiles for this simulation
run are shown in Figure 5.4. One can immediately see how strong is the effect of
the uncertainty on the outputs of the process. leading to poor transient performance
and offset. In the next simulation run. we tested the output tracking capabilities

of the controller. A 25.0 F increase in the value of the output y; was imposed at
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Figure 5.2: Closed-ioop output profiles for regulation.
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Figure 5.3: Closed-loop input profiles for reguiation.
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Figure 5.4: Closed-loop output profiles for regulation (no uncertainty compensation).
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time ¢ = 0.0 Ar. The output profiles are depicted in Figure 5.5 and the profiles of
the corresponding manipulated inputs are given in Figure 5.6 It is clear that the con-
troller drives the output y. to its new reference input value. achieving the requirement
limsup,_. |y2 — v2| < 0.01. It can be also observed that the output y; stavs very
close to its reference input value (i.e. the requirement limsup,__ |1 — ¢;1 < 0.0l is
satisfied). Finally, Figure 5.7 shows the closed-loop output for this simulation run
in the case of implementing the decoupling input/output linearizing controller to the
process. It is clear that this controller cannot attenuate the effect of the uncertainty
vielding unacceptable performance. From the results of the simulation study. we con-
clude that the proposed methodology is a powerful tool for the synthesis of nonlinear

controllers that compensate for the effect of uncertainty.

5.5 Conclusions

In this chapter. we proposed a robust multivariable controller design methodology
for a broad class of multi-input multi-output two-time-scale nonlinear processes with
explicit time-scale separation. modeled within the mathematical framework of singu-
lar perturbations. The proposed controller guarantees boundedness of the state and
asvmptotic output tracking with arbitrary degree of attenuation of the effect of the
uncertainty on the output by a suitable choice of controller parameters. as long as
the singular perturbation parameter is sufficiently small. The method was applied
to fluidized catalyvtic cracking reactor with unknown heat of the combustion reaction

and its performance was successfully tested through computer simulations.
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Figure 5.3: Closed-loop output profiles for reference input tracking.
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Figure 5.6: Closed-loop input profiles for reference input tracking.
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Notation

Roman Letters

Cet = concentration of catalytic carbon on spent catalyst

Cs = concentration of total carbon on spent catalvst

C,. = concentration of carbon on regenerated catalyst

D.; = density of total feed

d.d;..ds.d; = positive real numbers

E..E..E, = activation energies

F, F. Fnam, f1, fa = vector fields

F,. = flow rate of catalyst from reactor to regenerator

G.G.G,,G; = vector fields associated with the inputs

h; =i-th output scalar field

K (z) = sufficiently smooth matrix

ke, ker. kor = pre-exponential kinetic constants

Oy, = oxygen in flue gas

@1 = matrix of dimension n X p associated with the slow state vector r
@2 = matrix of dimension p X p associated with the fast state vector =
R,; = air rate

Re. Rey. R,c = reaction rates

R;; = total feed rate

r;.T; = integers associated with the input vector ¢ in the reduced svstems
Se. Sc. Sy = specific heats

Ty, T = temperatures of the feed in the reactor and the air in the regenerator
T . T;4 = temperatures in reactor and regenerator
t = tlme

.t = manipulated input vectors
ﬁ = auxiliary input vector
ta. Vz = reactor and regenerator catalyst holdups
= external reference input vector
= vector of the slow state variables
yi = i-th output
= = vector of the fast state variables

&

H oo
i
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Greek Letters

Bix = adjustable parameters

6.6:.6..69,6;, bz.. 65, 6z. 6. é:,.8; = positive real numbers
AH.;,AH., = heat of the reactions

AH;, = heat of feed vaporization

e, e¥.¢". € = singular perturbation parameters

( = state vector

n = state vector

o = adjustable parameter
Math Symbols

standard Euclidean norm

I

sgn(-) = sign function

Id = identity function

Lih = Lie derivative of a scalar field h with respect to the vector field {
L'}h = k-th order Lie derivative

LgL’}'lh = mixed Lie derivative

R = real line

R* = {—dimensional Euclidean space

€ = belongs to

T = transpose
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Appendices
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Appendix A

Proofs of Chapter 2

Proof of proposition 2.1:
It is straightforward to show that the static state feedback law of Eq.2.16. on the

quasi-steady-state =, = —[Q2(z)]"!{f2(z) + g2(z)]u. takes the form:
u = [14+ K (2)Q7'(z)g2(2)] ! [& — kT(2)Q7 () fa()] (A1)

where the scalar function 1 + &7(2)Q5!(r)g2(r) is nonzero uniformly in r € X.
Under the state feedback law of Eq.A.l. the closed-loop reduced system takes the

form:

i = F(z)+G)1 4k (2)Q7 (z)ga(2)] ' [a = kT (2)Q7 " () fo()] )
s (A-2)
y° = k()

where the vector fields F(r) and G(z) are given by Eq.2.6. For the above system. one
can directly show that the relative order of the output y with respect to the auxiliary

input @ is exactly equal to r. It remains to be proved that the closed-iocop reduced

systems of Eqs.2.19 and A.2 are identical. Lemma 2.1 that follows states this result.

Lemma 2.1: Consider the two-time-scale system of the form Eq.2.1 in standard
form. subject to the static state feedback law of Eq.2.16. and assume that the matrix
Q2(z) + go(z)kT(z) is Hurwitz uniformly in ¢ € X. Then, the closed-loop reduced

systems of Eqs.2.19 and A.2. derived by commuting the order of the operations: i)
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closing the feedback loop. and ii) setting ¢ = 0. are identical.

The proof of the lemma can be obtained along the lines of the proof which was given

in the case of two-time-scale linear systems under linear static state feedback laws

(see e.g. [KKO86]). and will be omitted for brevity. A

Proof of theorem 2.2:

Under the control law of Eq.2.26 the closed-loop system takes the form:
. — -1
o= filz)+Qiz)z +gi(z) {[1 + KT (2)[Qa(a)] " ga(2)] [ Lo L A(x)
{l - deL }} +g1(2) {T(2)[Qa(2)] " falz) + KT ()=}

k=0

& = fola)+Qule ~+gz(z){[1+kT(z:)[Qz(r)1“g2<r)] [8-LaLi k()] ™"

{l-ZMFh }}+92 ) {7 (2)[Qa(2)] ™ ful) + KT (x)z}

(A.3)
Using the set of variables £. defined in Eq.2.29 the closed-loop system of Eq.A.3 takes

the form:

o= i)+ Qo) + ol { (Lo li h)]

. {z‘ _ ZﬁkL‘;h(x)} + KT () - 5)}
' - (A1)
€: = f2 +Q2 =+ gaf I){[erGL;‘:lh(;p)]

{1 _23‘[’ }+AT(1') )}
The properties of the above t\\o-tlme-scale system can be analyzed by performing
a standard two-time-scale decomposition. More specifically. introducing a new set
of variables 7, defined as 7 = = — £. one can easily show that the closed-loop fast

subsystem is given by:

— = [Qa7) + ga(2)kT(2)]7 (A.5)
Since the matrix Qz(z) + ¢2(z)k7(z) is Hurwitz uniformly in & € X by the appro-
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priate choice of the feedback gain k¥(r). the fast dvnamics of the closed-loop svstem

possesses an exponentially stable equilibrium manifold of the form:

£ = —[Qafa)] [fz(x) + g5(2) { [3-Lalih(a)] ™ {v - zr:.skLélh(z)}H
= (A.6)
Furthermore. the closed-loop reduced system takes the form:
2 = [filz) = Qu(z)(Q2(z)) " fa(2)] + [q1(x) = Qu(x W Q2(x)) ' g2()]
.{[,B,LGL';‘h(x)]" {v —~ Lzrlﬁkl,;h(x)}} (AT)
y* = hlz)

Calculating the derivatives of the output on the basis of Eq.A.7 vields the following

expressions:
y° = h(z)
y* = Lrh(z)
P = L)
S0 = .rph(x)+LGL;-‘h(z){[.arLGL'p"h(r)]"‘{v—im%h(x)}}
= (A8)

Substituting the above expressions to Eq.2.25. it is straightforward to verify that the

desired input/output behavior is indeed enforced in the closed-loop reduced system.

We will now establish that the relation of Eq.2.27 holds for the output of the closed-
loop full-order system. To this end. let us denote by z/(t).x%(¢). the solutions of the
r-subsystem of Eq.A.3 and of Eq.A.7. respectively. Based on the stability results of
section 2.6. the closed-loop reduced system of Eq.A.7 is locally exponentially stable.
Furthermore. as established earlier in this proof, the fast subsystem of Eq.A.5 is
exponentially stable. uniformly in r € X. Utilizing these two stability properties. it
can be shown using theorem 2.1. that under consistent initialization of the states z°,
1'{. e, z¥0) = z{(O). { = 1.---.n. the following estimate holds for the solutions of

these systems:

(t) = r*(t)+0(e). t>0 (A.9)
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for e sufficiently small. Then. the analyticity of the scalar field A(r) and the bound-
edness of the trajectories r/(¢),z%(t) for all times. directly imply that the following

estimate holds for the output y of the closed-loop full-order system:
y(t) = y*(t)+0(e) . t 20 (A.10)

where y(t), y°(t) denote the outputs of the systems of Eq.A.3 and Eq.A.7. respectively.

This completes the proof of theorem 2.2. A

Proof of theorem 2.3:

Under the control law of Eq.2.43 the clased-loop system takes the form:

i o= file)+Quz): + oz ){[ﬂ,LGL”‘h ]‘{U_ZM‘ }}

+g1(z)kT(z)z=

€s = f +Q2( +g2 ){[JrLGLr—lh J 1{ ZJLLL }} ('\ll)
+g2(z)kT ()2

y = h(z)

Employing a standard two-time-scale decomposition, it is straightforward to show

that the closed-loop fast subsystem takes the form:

d=

dr )+ [Qa(z) + g2(x kT(T)]5+92(I)

{[u L h(x ]‘{ ZJAL‘ }}

Clearly, the fast dynamics of the closed-loop system possesses an exponentially stable

(A.12)

equilibrium manifold of the form:

£ = —[Qaz) + ga(2)kT ()] [ falz) + ga(2)

{[JL L h(z)|” {U—ZmL‘ }}

since the matrix Q,(z)+g2(z)k7 () is Hurwitz uniformly in z € X by the appropriate

(A.13)

choice of the feedback gain kT (z).
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Furthermore. the closed-loop reduced system takes the form:

i = F(z)+Glz {[BLGL"‘h )] {1_23@}: }} (A.14)

g° = h(z)
It is then straightforward to show by a direct calculation of the derivatives of the
output y on the basis of Eq.A.14, that the requested input/ouput behavior is indeed
enforced in the closed-loop reduced system. Finally. using the same arguments as in
theorem 2.2. it can be shown that the relation of Eq.2.44 holds for the output of the

closed-loop system of Eq.A.11. JAY
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Appendix B

Proofs of Chapter 3

Proof of proposition 3.1:
[t is straightforward to show that the control law of Eq.3.13. on the quasi-steady-state

takes the form:
[1+ K (2)Q7 )] 7@ — K (2)Qz (2)(folz) + Wa(x)d)] (B.1)

where the scalar function 1 + k7 (z)Q3"(z)g2(z) is nonzero uniformly in r € X.

Under the state feedback law of Eq.B.1. the reduced system takes the form:

& = F(z)+ [1+A-T Q;‘ x)g2(x)] i
-AT(I 2)(f2(x) + Walz)d)] + W(z)d (B.2)
y* = h{z)

where the vector fields F'(z) and G/(x) are given by Eq.3.6. For the system of Eq.B.2.
p denotes the relative order of the output y* with respect to the disturbance input
vector d. For this system. one can directly show that the relative order of the output
y with respect to the auxiliary input @ is exactly equal to r. On the other hand. if

p < radirect differentiation of the output of the system of Eq.B.2 yields the following
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expressions:

y* = h(z)

y'M = Lph(z)

y Y = L h(z)

y'® = Lih(z)+ Po(z.d)

) = [y 4 @y (2.d, dV))

= = [TMh(z) 4+ @,y (z.d.dM) . TP

v = Lih(z)+ LeLF'A(2)[1 + £T(2)Q5  (2)ga(2)] "
o[ — kT(2)Q7" (z)(fa(x) + Wa(z)d)] + ®r_j(z.d.d!). .- d=P))

(B.3)
On the basis of Eq.B.3. it is clear that p = p, whenever p < r. It remains to be proved
that the closed-loop reduced systems of Eqs.3.16 and B.2 are identical. Lemma 3.1

that follows establishes this result.

Lemma 3.1: Consider the two-time-scale system of the form Eq.3.1 in standard
form. subject to the control law of Eq.3.13. and assume that the matrir Q,(x) +
g2(2)kT(z) is invertible uniformly in r € X. Then, the closed-loop reduced systems
of E£qs.3.16 and B.2. derived by commuting the order of the operations: i) closing the

feedback loop, and ii) setting ¢ = Q. are identical.

Lemma 3.1 generalizes a standard result for two-time-scale linear systems under linear
static state feedback laws (see e.g.. [CGGY93]) to nonlinear two-time-scale systems
under feedback laws of the form of Eq.3.13. The proof of the lemma can be readily
obtained along the lines of the one given for the linear case [CGG93] and will be

omitted for brevity. A

Proof of theorem 3.1:

Part I: Using the result of lemma 3.1. the reduced system of Eq.3.16 can be equiv-
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alently written in the form of Eq.B.2. Substitution of the control law of Eq.3.138 to
the reduced system of Eq.B.2 yields then the following closed-loop reduced svstem:
¢ = F(z)+ Gl + kT(2)Q7 (z)g2(z)] p(z) + q(z)v + Q (.r.d. d, .. )

—kT(2)Q7 ' (2)(falz) + Wy(z)d)] + W (z)d

y* = h(z)
(B.4)

On the basis of Eq.B.4 and following [DK93], it can then be shown that the in-
put/output behavior of the form of Eq.3.22 can be enforced in the above closed-loop

reduced system if and only if the conditions of Eq.3.23 are satisfied.

Part 2: Under the control law of Eq.3.25 the closed-loop system takes the form:

-1

i o= fl@)+ Q)+ g {[1+/»T Q2] ga(x)] [ La Ly hix)]

{z -~ ZBkL Zpuqu - (z.d.dM. d“’“”)}}

k=0 k=p
+91(2) (kT (2)[Qa(2)] [ falz) + Walz)d] + kT (2)z} + Wi(z)d
e = foz)+Qa(2)z + ga( {[1+N )[Qa(2)] " g2(x)] [3, Lo LF h(x)]

{z ~ deL Zz:dkdn_,, (z.d.d™. d““”))}}
=p

+o(z {/»Tr)Qz N7 a(2) + Walz)d] + KT ()2} + Wila)d

-1

(B.5)
Defining a set of auxiliary variables €. as follows:
§ = =[QAa)]” l{f2 ) + g2(@)[3- La LF " h(z)]™!
. {v - Z,dkLgh(x) - Zﬂkcbk_p (.r.d. dv.... .d“"”’)} + I/Vg(.r)a’}
= = (B.6)
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the closed-loop system of Eq.B.3 takes the form:

-1

z = filz) + Qi(z):+ qi(2) {[_iLc;L"lh(:r)]
{v— Zﬂ"LF (z) - ZBL‘DL —p (1‘ d.dV. ...‘d(k—p))}

k=0
+T(z)(= = )} + Wala)d

& = fole)+ Qala): +gz(x){[3LcL h(z)]|”
{v~ZﬂLL Zam-p (z.d.dD.. --.d“""’)}

k=p

+kT(2)(= ~ €)} + Wa(z)d

. (B.7)

The properties of the above two-time-scale system can be analyzed by performing
a standard two-time-scale decomposition. More specifically, introducing a new set
of variables 7, defined as ny = z — £. one can easily show that the closed-loop fast

subsystem is given by:

dny

. [Q2(z) + go(2)kT ()] (B.8)

Since the matrix Q3(z)+g2(x)k7(z) is Hurwitz uniformly in £ € X by the appropriate
choice of the feedback gain 7 (z). the fast dynamics of the closed-loop system possess

an exponentially stable equilibrium manifold of the form:
ny = 0 (B.9)
Furthermore, the closed-loop reduced system takes the form:

r = F(r)+G(I){[JrLGL' 'h(x] l{tv—ZJLLk

r . B.10
—Zﬂkq’k-p (r.d.d“).---.d(k“’))}} + W(z)d =: F(z,v.d) ( )

k=p

y© = h(z)
where d = [d dV) -..d"=?|7 denotes an extended disturbance vector. From part

1 of the proof, we have that the output of the above closed-loop reduced system is

completely independent of d and the input/output response of Eq.3.22 is also enforced.
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Furthermore. from proposition 3.2. the relative order of y* with respect to v is equal

to r. and thus there exists a coordinate transformation of the form:

[ G ] [ h(z) ]
. G2 Lf-h(r)
[f’] =|:| = T = (B.11)
Gr L= h( )
L 7 L L(I) j

where n € IR*" and ¢ (z) is a smooth vector function. such that the closed-loop

reduced system of Eq.B.10 takes the form:

Q: = A(+bv
= ¥((,n.d) (B.12)
¥ o= G
where A is Hurwitz matrix of dimension r xr. 6 = [0 ---0 1] € R™*! is a column

vector. and ¥((,7n.d) is a vector of smooth functions. Now. consider the following
form of the closed-loop full-order system:

& = F(z)+G(z){[a,LGL;-llz(x)]"{v— Bk LEh(z)

=0

-ZJm_p (z.d.d™. d"“"’)}} (B.13)

=p

+W(z)d + [Q:(z ()T (2)](z = €)
€2 = [Q2Az) + g2z )A’T(-T)](I"f)

or in terms of the coordinates ((.7.z):

( = AC+bv+0(¢.n)yy

n o= U((.n.d)+ S, (C.n)ny (B.14)
e = [Q2A¢.n) + g20¢.MAT(Com)]ny

y = G

where ®.. ®, are matrices of smooth functions. From the stability result of theorem
3.3. we have that if the hvpotheses of the theorem are satisfied. there exists an ¢ > 0,
such that if € € (0,¢7]. the states ((.7n.z) of the closed-loop full-order system of

Eq.B.14 are bounded. Let ¢ € (0.¢"] and consider the singularly perturbed system,
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resulting from the states (¢.z) of the system of Eq.B.14:
¢ = AC+be+@((.n)ny
e2 = [QaA¢. 1) + g2(¢. KT 0]y (B.15)
y = G
where 17 can be thought of as a bounded input. Performing a two-time-scale de-
composition on the above system, it can be easily seen that the fast subsvstem is
exponentially stable uniformly in £ € X, and the reduced system takes the form:
= AC+ b
v o= q

where the superscript s denotes state of reduced system. which is also exponentially

(B.16)

stable. Utilizing these two stability properties, it can be shown using theorem 2.1
that under consistent initialization of the states (7. (i, i.e.. ¢}(0) = (;(0). i = 1.---.r.
there exists an €= € (0. €. such that if € € (0, €™}, the following estimate holds for

the solutions of systems of Eqs.B.15-B.16:
¢t) = ¢()+0(e) . t 20 (B.17)

From the above estimate. Eq.3.26 follows directly. The proof of the theorem is com-

plete. A

Proof of proposition 3.3 :

Necessity. Consider the two-time-scale system of Eq.3.1. assumed to be in standard
form. Consider also its corresponding reduced system (Eq.3.5) and assume that p < r.
Under the control law of Eq.3.31. the two-time-scale system of Eq.3.1 yields:

& = [filz)+a(x)p(a)] +(Q:i(z) + g1 (2)kT(2)]z + g1(z)q(x)v + Wi(z)d
€2 = [fa(z) + g2(2)p(2)] + [Q2(z) + g2(x)kT(2)]z + ga(z)q(T)v + Wo(z)d
(B.18)

One can now easily verify that the fast subsystem is exponentially stable, subject
to appropriate choice of k7(z). Moreover, the closed-loop reduced system takes the

form: )
[F(z) + G(z)p(z)] + G(z)g(z)v + W(z)d

h(z) (B.19)

~
fhn
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For the above system. one can conclude. utilizing the results of propositions 3.1 and
3.2, that the relative orders of the pairs (y°.v) and (y°.d) are equal to r and p.
respectively, for which by assumption p < r. But for nonlinear svstems of the form of
Eq.3.5. it is well-established (e.g.. [Isi89]) that the necessary and sufficient condition
for achieving exact disturbance decoupling via static state feedback laws of the form
u = p(r) + q(z)v is. r < p, which establishes the necessity of this condition. Finally.
if the condition r < p holds. but the condition &7 (z)[Q4(x)]"'W2(r) = 0 does not
hold, i.e., for some z € X kT(z)[Q,(z)]"'W2(z) # 0. we have from Eq.B.3 that for
the reduced system of Eq.3.16 p = r < p. and thus a static state feedback law of the
form of Eq.3.31 does not suffice to completely eliminate the effect of d on y* in the
closed-loop reduced system of Eq.B.19. which shows the necessity of this condition as

well.

Sufficiency : Referring to the reduced system of Eq.3.5. assume that r < p and
kT (2)[Q2(z)]"'W2a(z) = 0. Then. it is straightforward to show that the control law

of theorem 3.1 takes the form:

u = [1+kT(2)[Qa(x)] g2(2)] [BrLGLr_Ih(’”)]-I{P“ ’ '3@“(:[)} (B.20)
kZ:o 2
+hT(2)[Q2(2)] 7 falx) + kT ()=

which clearly belongs in the class of control laws described by Eq.3.31 and does achieve

stabilization of the fast dvnamics with approximate decoupling of the effect of d on

y. A

Proof of theorem 3.2:

Part 1: Consider the closed-loop reduced system:

¢ = F(z)+ Gx)plz) + Glz)j(z)v + G(2)Q (z.d. dm, .. ) + W(z)d

o = be) (B.21)

Following [DK93]. it can be shown that the input/output behavior of the form of
Eq.3.37 is enforced in the above closed-loop reduced system if and only if the condi-

tions of £q.3.38 are satisfied.
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Part 2: Under the control law of Eq.3.40 the closed-loop svstem takes the form:
. -1
r = filz)+ Qiz)z +gl(z){[ﬂ,L Lr Yh(z) ] { Z&k[f h(z)

—iﬂkék—ﬁ (:L’, d. d(l), e d(k—ﬁ)) } } + gl(a:)kT(z): + Wi(x)d

k=p

ez = fo(z) + Q2x)z + g2(7) {[ﬂ;LéL;'lh(z)] o {1’ - iﬁk[—;h(f)

k=0

-3 Bi®i-; (1:, d.db, ... ,d"‘-ﬁ)) }} + ga(2)kT(2)z + Wo(z)d

k=p

Employing a standard two-time-scale decomposition. it is straightforward to show

that the closed-loop fast subsystem takes the form:

dZ . -1
— = falz) +[Q2(z) + g2(2)kT (z)]z + ga(z) {[5T‘LGL;:~_1h($)]

dr
{v - ZﬂkL" (z) - Zﬂ@k-p (z,d.dM. d“'“”)}} + Wa(z)d
k=0
(B.23)
Clearly, the fast dynamics of the closed-loop system possess an exponentially stable

equilibrium manifold of the form:
1

§ = —Qula) + p@W @)™ [1le) + 0ole) { [BrLaLi hia)] (o
B.24
—ZBLL‘ deék _s (z.d.dV, ---.d"“ﬁ’)}} + Wg(r)d} (B2

k=p

since the matrix Q2(z)+g2(z)k7 (z) is Hurwitz uniformly in £ € X, by the appropriate

choice of the feedback gain kT(z).

Furthermore. the closed-loop reduced system takes the form:

r = F(I)'{"G(x){[ﬁr[, Lr—-lh ] l{v—-ZBkLL
'-zr:fek(i)k—ﬁ (il'.d. d(l)’ . _d(k—ﬁ)) }} + LV(IL‘)d (825)
k=p
¥ = h(z)

Finally. using the same arguments as in theorem 1, it can be shown that the controller
of Eq.3.40 enforces the input/output response of Eq.3.37 in the closed-loop system in

the limit as e — 0. A
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Proof of theorem 3.3:
The proof of the theorem will be derived utilizing a Lyapunov function which is
obtained as the composition of two Lyapunov functions for the fast and slow closed-

loop subsystems (see also, [SK84. Kha92]) and a Lyapunov argument used in [CT95].

The closed-loop system of Eq.B.13, with v = 0. in terms of the coordinates r.7;

takes the following form:

i = F(x)+G(z){[3,LcL 7)]|” { ZJLL

k=0

—i,@k@k-p (z.d,d“).---.d("“’))}}+W )d + [Qi(x) + g1 (z)kT(2)]ns

k=p

- 9. o
iy = [Qa(z) + g2k (s + el 520 + 52d)

(B.26)

Under conditions 1 and 2. it can be shown, following (e.g., [Isi89]) that the closed-loop

reduced system, with d = 0, that is:
t = F(z)+ G(x){[ﬁ Lol h(z ] { ZﬂLL" }} =: Fi(z) (B.27)

is exponentially stable. Using theorem 4.5. in [Kha92]. we have that there exists
a smooth Lyapunov function V" : R® — IR>o and a set of positive real numbers
(a1.a3, a3, a4, as), such that the following conditions hold:

ay|z]* < V(z) < aalef?

Vm—ﬂﬂu < —asla

av

l—'l < a4z

(B.28)

for all z € X that satisfy |z| < as. Consider the closed-loop reduced system with

d(t) #0:
r = Fz)+ {[/3rLGL;~_lh($)]-l {_iﬂk‘bk-p (z,d. d, ... ,d(k"")) }}

k=p
+W(z)d =: Fi(z) + Q(x,J)
(B.29)
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Observing that the term Q(z.d) vanishes if d(t) = 0. and using the third part of
Eq.B.28 and |z| < as. a direct computation of the time-derivative of the function

V(z) along the trajectories of the above system vields:

Vie) = SIF()+Qe.d)]

oV V .
2 (Rl + (@)

~aslel? + 5(Q(.)

< —as|z|? + aylz|as|d|

(B.30)

IN

where ag is positive real number. Since d(t) and its derivatives are assumed to be
arads

sufficiently small, there exists a positive real number p; that satisfies y; <
[eXTeTS

where ar < as. such that |d| < ;. Whenever this condition holds. an application
of theorem 4.10 in {Kha92] gives that the state of the system of Eq.B.29 is bounded.
for all z € X that satisfv |z| < as. Let |d| < p; and calculate the time-derivative of

V(z) along the trajectories of the z-subsystem of Eq.B.26:
V(z) < —aslzl® + aqlzlag|d] + as|z||n/| (B.31)

where ag is a positive real number.

Since the matrix Q,(z) + go(x)kT(x) is Hurwitz uniformly in r € X. the fast

subsystem:
ey = [Qaz) + ga(2)KT (2)]ny (B.32)

is exponentially stable. Using lemma 5.7 in [Kha92], there exists a smooth Lyapunov

function 2 : R™ x IR? — Ryg of the form:
Qz.n5) = 17 S(z)n; (B.33)

and a set of positive real numbers (by, b,. b3. by, bs, bg), such that the following condi-
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tions hold: )
binsl* < Q(z Tlf ) < bofny?

O(z.7;) = —[Qz ) + g2(2)kT (2)]ny < —bs|n;? (B.34)

aN
—| S bylngl, |=—| < b 2
I@r]fl < balny], Iaxl < bslny|
for all ny that satisfy |nf| < bs. Observe that the time-derivative of the state vector

r can be bounded by the following quantity:
2] < wy 4+ welz| + wslz| |7yl (B.35)

where w1, w,. w3 are positive constants, for all £ € X that satisfy [z]| < as. Further-
more, note that since d and its derivatives up to order r — p+ 1 are sufficiently small.
there exists a positive real number (possibly small) p, such that IJ{ < p2. Using
this fact and the estimates Ig—i—l < l3 and |§f—z| < ly|z|, where [3.1 are positive real

numbers, we have:

|_$ + §-J| < y(wr + walz| + walz| [ny]) + palslz] (B.36)
< lgwy + (lws + pala)|z| + laws|z| [y

Computing the time-derivative of the function (z,7;) along the trajectories of the

ns-subsystem of Eq.B.26 and using the inequality of Eq.B.35. we get:

. anN dQ
Uz.ng) = a7 215+ 5= F

< _?3‘7,”2 + by|nsl(lwy + (lawe + p2ly)|x| + Luws|x| ny])

B.37
s |y (w1 + walz] + wslz] [n]) (B.37)
b
< —(?3 — bswy)|ns]? + (bsws + balzws)|z||ns|? + bsws|z| [ny [
+bylzwy || + ba(lzws + pals)|z||ny)
Consider now the smooth function [SK84] L : R" x R? — R>o:
L{z.n;) = V(z)+ Qz,ny) (B.38)

as Lyapunov function candidate for the system of Eq.B.26. From Eq.B.28 and

Eq.B.34, we have that L(z,7y) is positive definite and proper (tends to +oco as |z| —
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oc. or |nf| — oo). with respect to its arguments. To establish boundedness of the
trajectories, we will follow an approach similar to the one in [CT93]. To this end. we
will specify a region in the state-space where the analysis will be performed. First.
let [s be some positive real number and define wy := as(a;)? + 5. Now. define:

ws = max L(x.ny) . (B.39)
{ (@) e R*xRP: |z| <as. [nf] < b6 }

Let ws > max{ws.ws} and define the set Q as follows:

o]}

={ (z.n5,d.d) € R* x R? x R* x R?: } . (B.40)

ld| <y |d) < pa s wy < L(zopy) < ws
The set Q is compact. Computing the time-derivative of L along the trajectories of

this system, the following expression can be easily obtained:

. av . 9. 9N .
L(z,ns) = 5;I+5;$+%Tlf (B.41)

Using the inequalities of Eqs.B.31 and B.37. the following bound for L can be com-
puted:

. . b
L(z.ns) < —aslz|* + aslzlald] + asz]ng| — (;3 — bswy )|y [?

92
+(b5w2 + b413w3)|1’H77!|2 + bsw3|.’l?! IT’fla + b413w1l7]f| (B"L-)
+b4(l3w2 + pals)|z||ny

Using the fact that |ns| < bg, we get:

Leng) € —aslel® + asaslelld] - (2 = bywy)ngf? + elellns] + ol
(B.43)
where ls = ag + bebswy + bebylaws + b2bsws + bylawy + bypaly. We will now use a
three-step argument to show that there exists a positive real number ¢* such that if
€ € (0.€7], then L is negative for all (z,ny,d. J) e Q.
Step 1: n; = 0. From the definition of the set Q, (z,7;.d, CZ) e Nn {(:c,n;,«f,c?) :

ns = 0} implies that L(z.n5) = V(z) 2 wy, which in turn implies that |z] >
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(2L 35)1 > . Using Eq.B.43. we have that on QN {(z.7;.d. 3):
L=V < —a3|z|® + aqae|z||d] < 0 (B.44)

Step 2: We will now show that there exists I; > 0. such that for all (1’.7)/.(17. c'i) €

Qn {(z,ny.d, 3) :|ns] € Iz}, L is negative. In this case. L takes the form:
. - b -
L = —a3|z|* + aqaelz||d]| - f[n;l‘z + ¥(z.7y) (B.15)

where W(z,7;) is a continuous scalar function which satisfies ¥(z.0) = 0. Since
(z,7;.d, J) €AN {(z.n,,J.[i) : 7y = 0} implies that |z| > (_a_;;(a—-,;l)"’ili)% and since
L is continuous. there exists lg > 0 such that (z,7;,d. J) € Qn{(z. lef,d—, c'i) gl < g}
implies |z| > a7. So. from the previous step, we already have that the sum of the
first two terms in Eq.B.45 is negative. Moreover, the sum of the third and the fourth
term is nonpositive. Then. using the properties of U, there exists I; < lg such that L
is negative.

Step 3: |ns| 2 l;. Using Eq.B.43, and the various bounds for (z.d.7;). we have:

- b
L(z,n5) £ —aslz]® + aqaelz|ld] — (?3 — bswy)|ns* + lslzling] + balawi|nyg|

b

< —agfaf = 2B+ 1
€

(B.46)

where lg = agagasp; + bsw b2 + lsasbe + bylzunbs. From Eq.B.46. it is clear that Lis

negative, for all (z.n;.d. J) € (). provided that:

N

€ S % =:¢€" (347)
ly
Using a claim analogous to the one in [CT95]. it can be shown that L(z,7;) is bounded
for all ¢ > 0. Since, it is also proper with respect to (z,7/). the boundedness of the

trajectories follows directly, for all € € (0, €*]. This completes the proof of the theorem.

A

—
(<2
w
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Appendix C

Proofs of C"hapter 4

Proof of theorem 4.1: The proof of the theorem consists of three main parts. In
the first part. the global exponential stability of the closed-loop fast subsystem is
established. In the second part. the closed-loop reduced system is analyzed using
Lyapunov techniques to derive [SS inequalities that capture the evolution of the
states. Then, a direct application of the result of theorem 2 developed in [CT95].
(which is briefly summarized at the end of this appendix) is made to establish that
these ISS inequalities continue to hold up to an arbitrarily small offset, for arbitrarily
large initial conditions. In the third part, the resulting ISS inequalities are studied.,
using techniques similar to those used in [ZPTP95]. to show boundedness of the
trajectories and establish the inequality of Eq.4.28. All the above results will be

obtained for sufficiently small values of ¢ and e.

Part I: In this part of the proof. we will establish that the closed-loop fast subsystem
is globally exponentially stable. Under the control law of Eq.4.26 the closed-loop

system takes the form:

& = F(z.0)+ G(z.0)a(z..t) + [Q:(z,0) + g1 (2. 0)kT (2)][z — C(z,6. ¢, )]

& = [Qulr.0) + ga(z. O)K (2)][z - C(z. 6, 6.9)] (C2)
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where:
C(z.0,0.0) = —[Qg(:z:,O)+g2(1:,9)kT(1’)]"l[f2(.1:.9)+gg(x.9)a(r. v.t)]  (C.3)

It is clear that the closed-loop fast subsystem:

dz
= = [Qaz.0) + g2(2. Ok (2)][z = C(2.0.0.7)] (C.4)
possesses a globally exponentially stable equilibrium manifold of the form of Eq.C.3.
since the matrix Q(z.8) + g2(z.8)kT () is Hurwitz by the appropriate choice of the

feedback gain k7(z).

Part 2:  To proceed with the rest of the proof, we consider the representation of
the closed-loop in terms of the (.7.: coordinates. For ease of notation. we set €. =

(z = C(z,0.0.7)), z = X~Y(,n.0). We then have:

G o= G +e0y(¢,n.0.9)

(o1 = CrtePey(C..0.5)
G o= Ly h(z)+ LeLT h(2) + €. 0:(C,0.0.8) + La L h(x)a(z. . t)

. ) . < . _ C.3
m = ‘I’l(QeTl-g-g) + e:\pf+1(€~,7)-,01 U) ( )
fni = Wn_s((.0,0.60) + e:Wa(C.n.0.7)
& = [Qu(a.0) + galz. OKT(2)]e.
where U;, i = 1,---.n are Lipschitz functions of their arguments. Introducing, the
-1,
variables ¢; = (; — vV, i = 1,---.F, & = e; + zﬁ—kek. and the notation v =
k=17
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[v ) ... v(F‘”]T, the system of Eq.C.5 takes the form:
€1 = er+e.V(E.é:7.7.0)

F—1
€ro1 = ~Z%ek +é:+e. Vi 1(€.6:.7,n.6)
& = eWi(E,6:.0.0.0)+ L% h(z)— v + L L7 h(x)
-1
+Z§—kek+1 + L(-;L’}_lh(:r)a(z:,z?,t) (C.6)
k=1’ 7

1:]1 = ‘I’l(é.é;.i‘,T],o,é)+6:\i’;+1(é.é,‘-.l},7].0)

fnei = Un_#(€,:.0,7.0.0) + ;U (E.6:.7,7.0)

e = [Qxz.0) + ga(z.0)KT (z)]e-
Set € = [e; ez -+ €47, 7 = [€T nT)T. We now follow a two-step procedure to
establish ISS inequalities for the states €.é:.7 of the system of Eq.C.6. Specifically,
in the first step. we derive these inequalities in the absence of singular perturbations.
i.e. €. = 0. In the second step, we establish, using the result of theorem C1 given at -
the end of this appendix. that these properties also hold up to an arbitrarily small
offset. for initial conditions and uncertainties in an arbitrarily large compact set. as

long as € is sufficiently small.

Step 1 : Initially. we note that a straightforward Lyapunov function argument can be
used to show that there exist positive real numbers. k;.a, ;. such that the following

ISS inequality holds for the reduced & subsystem:
&(t)] < k1e™[€(0)] + vz [[€xl] (C.7)

In what follows. our objective is to show that the state é; of the reduced system of
Eq.C.6 possesses an ISS property with respect to éz,€,v,7.6. and moreover the gain

function saturates at ¢. Let us consider the system comprised of the state é; of the
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syvstem of Eq.C.6:

& = L% h(z)-v + Ll h(z +‘ZF€L+1+L LT h(2)a(z B t)  (C.8)

To establish that the state é: of the above system satisfies an ISS property with

respect to €, 7.7, 7,8, we consider the following smooth function V" : R — R>o:

Vo= éef (C.9)

Defining er41 = Ly h(z) — o). M = |Lg =L h(z)|[é2(z.)]7", and computing the

time-derivative of V' along the trajectory of the system of Eq.C.8. we get:

‘;'— = é€; Z—B—-Ck+1 + L; Lr_lh(l' + A/[{ Z_ek'{'-l — €7

k=1

ozt +|Z etz m}]

Furthermore. it is straightforward to show that the representation of the function

(C.10)

w(z. o) in terms of the variable €; is given by:

. €7

Substituting Egs.C.11 into Eq.C.10. we have:

&

. T3 -
V< \Ie-{—e;—’[cl z.t) +|Zﬁ—kek+1| v

k=1

+(M™! - Z_€L+l + L; Lr- h(z )}

€]
62
M{—e - 7[c1 (z.t +|Z-—-ek+1|] E Ir*“f’

k=1 9
<
. k= (C.12)
+|éfl|z—k_.ek+1| + |é7 |L5L;;lh( )I}
k=1
% &
< —é&2 t) —
< [{ é? [cl:r +|Zﬂr€L+1[]| 1+ 0

-1 il lé I
+0 [|L L h(x |+|Z CL-HI} |+¢}

From the last inequality and the fact that M > 1 (this follows from the definition

of M and assumption 4.4), it follows from assumption 4.3 that whenever |é;| > ¢.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the time-derivative of the Lyapunov function satisfies ¥~ < —é2. This fact implies
that the ultimate bound on the state é; of the system of Eq.C.8 depends only on the
parameter ¢ and is independent of the states €.7 and the vector of uncertain variables
6.

Let us now study the time-derivative of V' for |é;| < @. To simplify the notation.

we set U = [é; 77 8T 57|T. Then, Eq.C.12 can be written as:

Vo< M{ 2 4 [éel[| L5 L h(z) |+|Z—6L+1l}

< =&+ |élp(lU))

(C.13)

where p is a class Ko, function. Summarizing, we have that V satisfies the following

properties:

. Jée] > min{a. 20(I41)} = fu(l4]) (C.14)

From the above equation, a direct application of the result of theorem 4.10 reported
in [Kha92]. can be performed to conclude that the following ISS inequality holds for

the state é; of the system of Eq.C.S:
€x(2)] < €7%5éx(0)] + Fue([lAI]) (C.15)

Before we proceed with the rest of this step. we will assume that ¢ € (0, ¢"]. where :

d
o" = -1_4775, (C16)

Consider now the following reduced system:

é|=€2

é'r"— = - —6 +€r
‘ Z ¢ (C.17)

m = ‘Pl(é,e;,v.r),o,é)
fnei = Was(E6:,0,7,0,0)
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From assumption 4.3, we have that the 7 state of the above system possesses an
ISS property with respect to & é:.0.6. We also note that the system of Eq.C.17 is
a cascaded interconnection of two ISS subsystems and thus. the state 7 = [¢7 pT]T
possesses an ISS property with respect to é;.6.0 [Son89. ZPTP95]. To apply the
result of theorem C1 (appendix C). in step 2 of the proof. we need the existence of
a converse function for the system in Eq.C.17. The existence of a converse function
for this system can be derived utilizing the converse theorem developed in [SW95].
In particular, we have that there exists a converse function for the system in Eq.C.17
and the existence of this function implies that there exist a function 3; of class KL

and a function 9; of class A” such that the following ISS inequality holds for the state
n: .
A < Ba([A(0)].¢) + 7a(ll[e- 67 67]71])
< Ba(lA(0). £) + e, (11éxl1) + Fo(116011) + 34(1161D

where 3¢, , 74. 7, are class A" functions respectively, defined as 3:,(s) = J¢(s) = J4(s) =

Fa(3s).

(C.18)

Step 2: We will now utilize the result of theorem C1 (appendix C) to establish
that the ISS inequalities of Eqs.C.15-C.18 continue to hold up to an arbitrarily small
offset. for the states €;.7 of the singularly perturbed system of Eq.C.6. In order to
proceed with the application of this result. we define a set of positive real numbers
(be:.65.6-.64.65. 0. b5 bz dz,.ds). where 6. 6. ;. 6z were specified in the statement

of the theorem. d; is an arbitrary positive real number.

ber 2 i o120e {IZ elt=t) L;n:m”( ))l}

ma . k- k—
85 2 |r|_<_5zv|t7lsgo.|9|$59 {Z’(“( Y L l ’l N+ Zl\u (z.0)] }
k=1

where \,(z.0). v = 1..... n — t are scalar fields defined in assumption 4.2, 8;, >

(C.19)

0’\4

8:. +20. 6 > D"+7, (8¢, ). with D" := B;(65.0)+7s(8¢) +74(8;) +ds, and dz; = 0 < d

(without any loss of generality). The reason for these choices will become clear
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subsequently.

Let us now consider the singularly perturbed system comprised of the states (é;. =)
of the system of Eq.C.6. For this system. the application of theorem C1 (appendix
C) is possible because this system is in standard form. possesses a uniformly global}y
exponentially stable fast subsystem. and the reduced system of Eq.C.8 is input-to-
state stable with respect to & (Eq.C.15). Then, there is an ¢¥(é) > 0 such that if
e € (0.¢(0)] and [E(0)] < Gep, [2(0)] < 8 1161] < o0 1] < 8o 1711 < G- (16511 < by
then

|éx(t)] < e™*%&(0)] + e (lll]) + o (C.20)

Notice also that the explicit dependence of the upper bound on the singular perturba-
tion parameter € on ¢ is due to the appearance of parameter o in the right-hand-side

of the differential equation which describes the closed-loop fast dynamics.

[t can be also verified that the result of theorem C1 reported at the end of this
appendix is also applicable to the singularly perturbed system comprised of the states
(€.7, =) of the system of Eq.C.6, with the same converse function which exists for the
system in Eq.C.17 and its resulting (33, 75) (see also the discussion at the end of step
1). So we have that if € € (0.¢7(¢)] and [7(0)] < 65, [2(0)] < 6., |0]] < 6. |16]] < 6;.
151 < 5. |1ésl| < ;. then
< Ba(l(0)]- 1) + Fall[é- 67 671711) + d
< B5(1(0)1- 1) + e (1IEsl) + F(N161) + F6(N611) + s

For the same reasons discussed above. the upper bound €’ depends on o.

(¢
[7(t) (1)

Part 3 : In this part of the proof. we will show that given the set of positive real
numbers é;,,85.6., 84,65, 65,d (already specified) and with ¢ defined as in Eq.C.16
and ¢ € (0, ¢°). there exists €*(¢) € (0.€7(#)], such that if € € (0, €*(¢)] and |€;(0)] <
bze 1(0)] < 6. |2(0)] < 6e. |I6]] < 8o, 18]l < 6, |I5]] < 65 the output of the

closed-loop system of Eq.C.2 satisfies the relation of Eq.4.28.
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To establish this result. we will analyze the behavior of the dynamical system
comprised of the states é;,7 of the system of Eq.C.6. for which the inequalities of
Eqs.C.20-C.21 hold. using calculations similar to those used in [ZPTP93]. In the first
step. we will use a contradiction argument to show that if o € (0. 6"] the evolution of
7(0)] < 65

and for . 6. & such that 18] < 8. |16l < 8;. lIo]] < é: satisfies the following

the states €:,7. starting from initial conditions that satisfy [é:(0)| < é;..

inequalities:

|ex(t)] < 8zpv 17(2)] < 65 (C.22)

for all times. In the second step. we will analyze the asymptotic behavior of the
system comprised of the states €.é; of Eq.C.6 and establish that the inequality of
Eq.4.28 holds.

Step 1 : We will proceed by contradiction. Let T be the smallest time such that
there is a 6 so that t € (T, T + &) implies either |é:(t)| > 8. or |7(t)] > é;. Then.
for each ¢t € [0,T] the conditions of Eq.C.22 hold. Consider the functions éZ(t). 77 (t)

defined as follows:

s {50 (260 {10 (28T e

From the fact that ||8]] < . ||0]] < §;, we have that:

sup (B(17(0)1-) + a(1101]) + Fa(1101]) + ds) < 83(83.0) +To(66) +73(6) +dy =: D"
o (C.24)

OS<UL)T (e—O.stlé;(O)I + :YLI(“UT”) + 05) < 65; +o+0< 56,-. +2¢
—‘—

Combining the above inequalities with Eq.C.20, and also combining Eq.C.24 with
Eq.C.21. we have that for each ¢ € (0,9]. € € (0.€"(¢)]. and for all ¢ > 0:

€711 < 8z, +26 < &,

] ) . (C.25)
“ﬁT“ S D7 +‘$ér(”ég‘”) S D" + ;Yé;((sé;) < 677

By continuity. we have that there exist some positive real number &k such that
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HETHE(t)]] < 6z and ||7T*(2)|| < b5. V ¢ € [0.T + k]. This contradicts the defi-
nition of T'. Hence, Eq.C.22 holds ¥ ¢ > 0.

Step 2 : In this step. we will analyze the asymptotic properties of the intercon-
nection consisting of the states €, é; of the system of Eq.C.6. in order to recover the
inequality of Eq.4.28. We initially proceed with a direct application of theorem C1
reported at the end of this appendix to the interconnection comprised of the states

(€, =) of the system of Eq.C.6. To this end. we consider the set of positive real num-

bers (8¢, 8, 64, 84, 65, dz), where 6z > —=m8L {Z| (D= LEY h(2))]}. &:. 8. 646

|.'L'|<6x j9]<6e

were specified in the theorem, and dz: = 4. w1thout any loss of generaht\ Then. there
is an €5(@) € (0.€"(4)] such that if € € (0, €(8)] and [€(0)| < b. |z(0)] < 6. ||]| < .
11611 < & 115]] < 65, then:

|&(t)] < kie™*|&(0)] + ve. [l€F]| + 0 (C.26)

In step 1. we established that the trajectories of the closed-loop system state bounded

for all times, for o € (0, 4] and € € (0. €¥(9)].
Claim : The following inequality holds:

limsup|é(t)] < 7e, (limsup |éx(t)]) + & (C.27)
t—0

t—oc

Proof : First. we note that:
lE()]| < kibe + verbe + 0 =2 b (C.28)

The fact that the inequality of Eq.C.26 holds for every initial time ¢, [CT95], yields
that V¢ Z to:

|&(t)] € kre (") |&(to)| + e, sup |éx(T)| + o (C.29)

‘l’to

Pick tg = % We then have:

|€(t)] < k1e™°G(B) + e, sup |é:(7)| + & (C.30)

rZ%
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Taking the limsup of both sides. the result of the claim can be obtained. A
Furthermore we have that (see Eq.48):

ﬁr,‘lilplé"(t)l <o+0<20 (C.31)
Combining the inequalities of Eqgs.C.27-C.31, the following bound can be written for
e:

limsup|é(?)| < 76, (2¢0) + ¢ < d (C.32)

t—o0

We then have that for each ¢ € (0,0"] and € € (0.€%(0)]:

limsup |y(t) — v(t.)l = limsup|&(t)| < d (C.33)
t—00

t—o0o
Summarizing the above inequality and all the other results of the theorem are obtained

for o € (0.0"] and €*(6) = €¥(8). The proof of the theorem is complete. A

Proof of proposition 4.1: Initially. a direct application of the identity of Eq.4.1

vields:

det(Q2(z.0) + g2(z.0)kT(z)) = det(Qa(z.0))det(Ixp + Q3 (7. 8)ga(x.0)kT

(
= det(Qa(z.0))det(1 + kT (z)Q7 " (z.0)ga(x, 8))
(C.34)

7))

From the hypothesis of invertibility of the matrix Q,(x.6) uniformly in € R".
6 € IRY and the above calculation, it follows directly that the matrix Qa(x.8) +
g2(z.0)kT(z) is invertible uniformly in £ € R*, # € IR? if and only if the scalar

1+ kT(z)Q5 "' (x.8)g2(z.8) is nonzero uniformly in r € R". § € RY.

[t is now straightforward to show that the control law of Eq.4.14. calculated on

the quasi-steady-state of Eq.4.6 takes the form:
= [1+&(2)Q7"(2.0)g2(z.0)] @ — kT (2)Q5 " (2.0) f2(z, )] (C.35)

Substitution of the state feedback law of Eq.C.35 into the open-loop reduced system
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of Eq.4.7 vields the following reduced system:

F(z.8) + G(z.0)[1 + kT(2)Q5 (2. 0)ga(z. 0)] " [it — kT ()Q7"(x.6) falx. )]
h(z)

T
y

(C.36)
where the vector functions F(z.6) and G(z.8) are given by Eq.1.7. Now. it can be
easily verified that the reduced system of Eq.C.36 is identical to the reduced system of
Eq.4.17. Note that these systems were derived by commuting the operations setting
¢ = 0 and closing the feedback loop, (see also [KKO86. CGG93]. for an analogous

result in the case of linear singularly perturbed systems).
On the other hand, it is clear from the structure of the system of Eq.C.36. and the
hypothesis r < s that a direct differentiation of the output of the system of Eq.C.36

up to order r yields the following expressions:

y = h(z)
y = Lph(z)
v = L%h(a)

: (C.37)
Y = Lh(a)
y" = Lih(z) + LeLF  h(2)[1 + KT (2)Q7 (2, 8)ga(z.0)] !
[@ = T (2)Q7\(z.0) fa(z, )]
On the basis of the above expressions. it is clear that for the reduced system of

Eq.C.36. (and therefore for the reduced system of Eq.4.17), r = 7 < 5. This completes

the proof of the proposition. A

Review of theorem 2 in [CT95]: We recall a result developed in [CT95], (see also
[CT96]). Consider the singularly perturbed system:

r = .2.0(t).€)

. C.38
€ = g( .2, 0(),€) ( )
where £ € IR™, = € IR?. § € IRY. The functions f and g are locally Lipschitz on
R™ x R? x R? x [0.€). for € sufficiently small.
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Assumption C1: The algebraic equation g(z.z,.0) = 0 possesses a unique root:
zs = h(z.6) (C.39)

with the properties that h : R™ x IR? — IR? and its partial derivatives (% g—g) are

locally Lipschit= and h(0,0) = 0.
Consider also the corresponding slow and fast subsystems:
t = f(z.h(z,0).6.0) (C.40)

Y o gl h(z.)+.0.0) (c.a1)

where y = =z — h(z,6). The assumptions that follow state our stability requirements

on the slow and fast subsystems.

Assumption C2: The reduced system in Eq.C.40 is input-to-state stable with the
class-K L function 83, and the class-K function v.: more precisely there erist a smooth
function V : R" = Ryo and class-K« functions a,.a;.as,a,4 such that:

ai(|z]) £ V(z) < aa(|z]) (C.42)

) = O flz. hix.0).6.0) < ay(10]) — es(le]) (C.13)

for all § € R? and all ¢ € R, hold and the ezistence of such a V' implies that Eq.4.13
holds with 3 = 3, and v = 4,.

Assumption C3: The equilibrium y = 0 of the boundary layer system in Eq.C.{1 is
globally asymptotically stable. uniformly in z € R". § € R

The main result is as follows:

Theorem C1 : Consider the singularly perturbed system in Eq.C.38 for which as-
sumption C! holds and let y = = — h(z,0). If 6(t) is absolutely continuous and

assumptions C2 and C3 hold, then there ezists a function B, of class K'L such that,
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for each set of positive real numbers (6:.6,.64.8;.d..d,). there is an € > 0 such that

if e € (0.€7] and |2(0)] < &z, [y(0)] < &y. |18]] < bo. ||6]] < 6;. then

IA

lz(2)] Bz(|=(0)],t) + ~=(]161]) + d= (C.44)
ly(m)l < Byly(0)],7) + dy (C.43)

where 3: and 7z are the functions defined in assumption C2.
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Appendix D

Proofs of Chapter 5

Proof of theorem 5.1:

The proof of the theorem is conceptually analogous (although notationally more in-
volved) to the one given in Appendix C for single-input single-output systems. In
order to stress the issues associated with the multivariable nature of the problem
and avoid repetitions, we will refer without proof to some results established in the
proof of theorem 4.1. The proof consists of three parts: initially. the global exponen-
tial stability of the fast dynamics of the closed-loop system is established: then. the
closed-loop reduced system is analyzed using Lyapunov techniques to derive bounds
that capture the evolution of the states in terms of the initial conditions and the
inputs. and a direct application of a result of theorem C1 (appendix C) is made to
establish that these bounds continue to hold up to an arbitrarily small offset. for the
singularly perturbed system. Finally, the resulting bounds are utilized, using tech-
niques (small gain theorem type calculations) similar to those used in [Tee96] and
[ZPTP95], to show boundedness of the trajectories and establish the inequality of
Eq.5.20. All the above results will be obtained for sufficiently small values of ¢ and

€.

Part 1: In this part of the proof, we will establish that the closed-loop fast subsystem
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is globally exponentially stable. Under the control law of Eq.5.18 the closed-loop

system takes the form:

i = F(z,8)+ G(z,0) { {}:Zj“( A L5 hy(z))

t=lk=

+ZZB" oV~ L hi(a))

i=lk=1 (Dl)
2+ b)[éy(x,t) + |sz U») ;ﬂomhi(m))”w(x.é)}}
i=lk=1M1Ty
+[Q1(2.8) + Gi(z.0)K (z)][z - C(z.0.6.0)]
[Q2(z,6) + Ga(z.0) K (2)][= — C(z.6. 6.0{)] (D.2)
where:

Clz,0.0,0") = —[Qa(z.8) + Ga(z.0)K (2)]"}[fa(z.8) + Ga(z.0) {A(z.1)

{ZZ 3xk (L) L’;:nm + Zzgxk (L 1) L;‘:n:mh ( ))
t=lk= t=1k=1/17

2+ b)ei(z.t) + I;; izrk SR ;ﬂom hi(z))|]w(z. 0)}}]
(D.3)
It is clear that if the matrix K'(z) is chosen so that the matrix Q»(z.8)+Gq(z.0)K (1)

is Hurwitz uniformly in z € IR™. § € IR? the closed-loop fast subsystem:

dz

= = [Quc.0) + Go(2. 0K (2)][z = C(z.0,8.v o] (D.4)

possesses a globally exponentially stable equilibrium manifold of the form of Eq.D.3.

Part 2: To simplify the notation, set

Ci(z [LG:L"'Ih (T-YC.n,0)) --- Léng_lhg(T“(C.rl,O))], i=1,....m,e. =
(:—C(z.6.9, v,( ))). Observiﬁg the similarity in the structure of the system of Eq.D.1

and the z-subsystem of Eq.5.9 and using assumption 5.2, the representation of the
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closed-loop system of Egs.D.1-D.2 in ((.7. z) coordinates takes the form:

(o= e (¢, 0.0

¢o= ¢ e ¥ . 0.0

V= LRAT VG n.0) + e D¢, 0. 0.0F) + Cu(z.0)
ZZ o [X  hy(z))
i=lk=1 3"’; rom
+ZZ ,sz (k—l) LL -1 h( ))
Pt ﬁm Frnom
24 )&z, t) + IZZ g"‘ - %nmhf(r))l]w(r-o)}}
i=1k=1MT

(M o= ™ e B¢ n.0,08)

(,r(:)_l = C,(m)-i-e:\Ilf-’:)_l(C,n.O.vfk))
(M = Lrha(T4C0.0)) + e8¢, 7,0.0) + Cn(2.0) {A(2.1)

B .
{zz - L (o) + 53 P - Lt

i=lk=1/ "" i=1k=1

b)[er(z. ¢) +IZZ§"‘ O~ Lk h (r))I]w(rﬁé)}}

1=1lk=1

mo= Ui(n.¢.0.6)+ 6:‘1’2 s(Com. 0.0

Boey s = n-z 7 (C1.6.0) + e Un (¢, 0,01
e = [QAT7Y(.7.9).0) + Go(T7(¢,7,0).0) K (T~'(¢.n.0))]e:
yi = gf‘). r=1..... m
(D.5)
where \Ili.i). i=1,....m k=1..... i, and QZ‘F.H’“"@'V are Lipschitz functions

of their arguments.

Intloducing the variables ef:) = (,',ﬁi) - vfk—l), t=1---om, k=1,...,7, éi—f) =
Z T ZZ B el’), and the notation &) = [e{ &l ... l) T

r,—l
l"l L 1 BH',
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€= [e(l)T 5(2)T . e(m)T]T’ = [ET 7,,T]. é: = [ég) ég.’) . és-.:n)]T

= [v(o) ,(1) v,(r-'_l)]T, 0= [T o - v 7T, Mi(z.6.t) = Ci(r.0)A(r.t). the

system of Eq.D.5 takes the form:

) = el @ in.0)
1 m 771"1 1
f'l)—l — _ZZ ll. (t)+ze( )+€ \I,( ) 6 er . 1. 0)
i=1 k=1 xr,
(1) T(1),- « - 1 -1 1 = - m 7, /(1) ()

1=1k=1 d(l)

+Mi(z,6.1) { iz Bik (i) — & — (2 + b)[&1((E.&7.9,7,6).1)

€rt1
i=1lk=1 .er.

szﬂk&M)”@é@mmﬁ%

t=lk=1 ”'!

e(lm) = ™ +e=@£m)( é:.0.7.0)

é(r-:)_l = ("‘) +e. 0" _I(e,e,.v n,0)
( _ _ m rl (m)
e = e UM (6. 0.7.0) + LiLT  hn (T4, 87, 8,7, 0)) +ZZ o el

1= lk-—l xrl

1=lk=1 "'l

+Mp(z.0.1) { ZZ Jik el — = (2 + b)[&1((E, 7. T 1. 0). 1)

m 7',

HZZ“ﬂL '%ﬁ&mMM}

i=lk=1' "'l

o= Uy(E.é:8,1.6,0)+ e: U5+ 41(€ & 8.1.0)

€t = [Qa€.6:.9.1.0)) + Ga(&. &5, 8, 7,0))K (T~ E. &5, 0.7,0))]e.

(D.6)

We will proceed with a two-step procedure to establish the ISS bounds that capture
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the evolution of the states €, é;,7 of the above system. In particular. we will initially
obtain these bounds in the absence of singular perturbations (i.e. when the singular
perturbation parameter ¢ is equal to zero). Once these bounds are derived. we will
apply the result of theorem Cl (appendix C) to establish that these bounds continue
to hold up to an arbitrarily small offset, for initial conditions and uncertainties in an

arbitrarily large compact set, provided that € is sufficiently small.

Step 1 : First, note that the linear structure of é subsystem of the reduced system of
Eq.D.6 and the fact that it is exponentially stable when é; = 0 allows using a direct
Lyapunov function argument to show that there exist positive real numbers. k. a. 7.

such that the following ISS bound holds for the reduced € subsystem:
|e(t)] < k1e™|E(0)] + e [l€-ll (D.7)

In the rest of this step, we will show show that the controller of Eq.5.18 ensures that
the subsystem consisting of the state vector é; = [e(l) '(ri) é(rm)] of the reduced
svstem of Eq.D.6 possesses an ISS property with respect to é:.€.7.7n,0. and more-

over the gain function saturates at ¢. To this end consider the following singularly

perturbed system:

& = e Usi(e é;.i'.n.0)+L5L}“h(T (€, éx.7.7.0) +Zzgd m'
i=lk=1/~1"
+M(z.8.1) { ZZ"‘ ), —é
i=lk= 1’8'"l
9 - - dzk (1) - .« -
-(2+ b)[cl((e v,n.8).t) + lzzd L+1”u' (€. €7, 0, 77~,9))~<15)
i=lk=1"i"
€2 = [QAT™! 0.1,0).0) + Go(T(E,87.©.7,0),0) K (T~ (€, é:. ©,71,8))]e.
(D.8)
where U:(. & 9.7.0) = [(BL)(e.&:.5.7,0) --- O (E. &, 5.7.0))7,
ly(F) — [vg’:l) - v’(:m)]T,
L L7 h(T=Y(€.8:,8.0.0)) = [Lz L3 hy(T (e, 7,8, 7.6)) -~
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L; L""’lh (T-'(e.é:.t.7.9))]7. From part 1, we have that the fast dynamics of the
above system is globally exponentially stable. Consider the reduced system corre-

sponding to the singularly perturbed system of Eq.D.8:

mr.

& = L;LT h(T1(E,6:.8,9.0)) + Zzﬂtk ehar + M{ ZZ d'k Cigy — € °

t=1k=1 t=1k=1""

—(2+b)[ai((e, é7, 0.71,0),8) + lzzg'k i) (T (. &. ﬁ.n.&)).o)}
t=lk=1 "
(D.9)
To establish that the above system is ISS with respect to €.é:,t.n.8. we use the

following smooth function ¥ : R™ — Ryo:

Vo= Ll

3 (D.10)

Calculating the time-derivative of V" along the trajectory of the Systern of Eq.D.9, we

have:

v = o |Lrprea s+ SRS, | -E S, -

t=1k=1 t=1k=1" "l

—(2 + b)[&1((8. 5. T, 0).t) + IZZ ﬁ"‘ el [Jw 'l(é,ér-.i'.nﬂ)).db)H
i=tk=1 Oir B.11)
Furthermore, it is straightforward to show that the representation of the vector func-
tion w(z.o) in terms of the vector €; is given by:

€r
&z + o

w(és, @) = (D.12)

Substituting Eqs.D.12 into Eq.D.11 and using the fact that 1 < opmin{M(z.60.t)} <
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Omaz{M(z.0,t)} < b and the inequalities of Eq.4.2. we have:

V < el {—M(z.0.1)é; — (2 + b)M(z.0.8)[c(T V(€. 6:.8.1.6).1)

+'Zzsff g |+o

t=1lk=1

+ (M(2.0.t) = Imxm) ZZ G ek, + L; LT (T (e ér-.i'.r).()))}

i=1km1 O,
< (=€ -2+ b)[a(T V(e & +IZZﬂ"° el &
i=1k=1 "' ler“*‘O
+(1 + b)( ]ZZ?"‘ {'ll (T~ 1(é.é;,i'.nﬂ).t))}
i=1k=1Pifs
. . e . ,Bxk (z) eg
< (=2 —[g(T- 70,7,
< { é2 — [&1(T~ (¢, €éx,0,7,0 +|,§,§:ﬂm ka1l |+d>
+6(1 + b)[e (T~ (6. &5 5.1.6).t) + Pik i) |
(L+6)a (T (e '§,§a,,. bl |+o

(D.13)

From the last inequality. it follows directly that if [é;] > ¢(1 + b). the time-derivative

of the Lyapunov function satisfies ¥ < —é2. This fact implies that the ultimate

bound on the state é; of the system of Eq.D.9 depends only on the parameter ¢ and
is independent of the states €, 7.

We will now analyze the time-derivative of V' for [é;| < &(1 + b). For ease of

notation. we set & = [é: 77 8T #7]T. Then. Eq.D.13 can be written as:

< e (L4 DG (T (6 s 0).0) + 3055 et
B, (D.14)

i=1k=1

< —€E+ (1 +b)eslp(1U))

where p is a class N, function. Summarizing, we have that V satisfies the following

properties:

U Jel > min{o(1 + 8). (201 + 0)p(U)) = du(al)  (D.15)

~

Using the result of theorem 4.10 in [Kha89}, we get that the following ISS bound
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holds for the state é; of the system of Eq.D.9:
€x(t)] < e7%%|€x(0)] + R (ll2A1]) (D.16)

Before we proceed with the rest of this step. we will assume that o € (0. 0"]. where :

- d ~
¥ =TT n0 T 27 (D-17)

Consider the singularly perturbed system consisting of the states (€. 7. =) of the system

of Eq.D.6. For this system, it can be shown that its fast dynamics are globally
exponentially stable and the 5-subsystem of the reduced system is ISS with respect
to €.é;.0.6. Furthermore, the state 7 = [€T nT]|T of this system possesses an ISS
property with respect to é:, 4,6 [Son89, ZPTP95]. Utilizing the converse theorem
developed in [SW95]. we have that there exists a converse function for the svstem
comprised of the states (€.7) and the existence of this function implies that there
exist a function §; of class A'L and a function 7, of class A" such that the following
ISS inequality holds for the state 7:
6 < Ba(1a(0)].1) + F:(ll[E= 67 67)7))
< Ba(li(0)1.1) + Fe. (HExl) + Ao(11611) + F5(11611)

where ;.. 3¢. 9; are class A" functions respectively. defined as 7;, (s) = Jo(s) = J4(s) =

7s(3s).

Step 2: We will now utilize the result of of theorem C1 (appendix C) to establish
that the ISS inequalities of Eqs.D.16-D.18 continue to hold up to an arbitrarily small
offset. for the states é;.77 of the singularly perturbed system of Eq.D.6. Following
the proof of theorem 4.1. it can be shown that given the set of positive real numbers
(65;.6,—,,6:.69,60,6,—,.3,-,.55;,d5pd,-,) (which can be specified from the data of the the-
orem, for details see the proof of theorem 4.1). that there is an €¥(¢) such that if

e € (0.€%(¢)] and |€#(0)| < 6z,. |2(0)] < 6., [18]] < . |I5]] < 6o, |1]] < b5, l14l] < B

then

[€-(8)] < e=®|ex(0)] + A (llUl]) + o (D.19)
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Furthermore, it can be also shown using the result of theorem C1 (appendix C) that
the singularly perturbed system comprised of €.7, =. with the same converse function
which exists for the reduced system comprised of the states €.n and its resulting
(85.7s). Thus we have that if € € (0,€"(9)] and [7(0)| < 85. |=(0)] < 6.. ||6]] < &s.
1611 < 83 1131l < 65, lléll < &z, then

O] < Ba(l7(0)]. 1) + F,(1|[e- 67 87171} + dy

i (D.20)
< Balla(0)],8) + Fe (le=1D) + 7o (11811) + F5(1181]) + d

Part 3 : The proof of the theorem can be completed by showing that for any given set
of positive real numbers 6z, . 63, 8, 89, 8;. 63, d (already specified) and with 6~ defined as
in Eq.D.17. there exists €*(¢) € (0.€"(¢)]. such that if € € (0.¢*(¢)] and |é:(0)] < é;..
17(0)] < &, |2(0)] < 6., |16]] < &, ||6]] < 6;. |IT]] < bz the output of the closed-loop
system of Eq.D.2 satisfies the relation of Eq.5.20, for each ¢ € (0. ¢7].

This result can be established by analyzing the behavior of the dynamical system
comprised of the states €:.7 of the system of Eq.D.6. for which the inequalities of
Eqs.D.19-D.20 hold, using calculations similar to those used in [Tee96] and [ZPTP95].
First. a contradiction argument can be used to show that if 0 € (0. ¢"] the evolution of
the states €;.7. starting from initial conditions that satisfy |é:(0)] < é¢;. |7(0)| < 65
and for 8. 8. © such that [|0]| < &, ||8]] < &. ||t]] < 6: satisfies the following
inequalities:

|éx(1)] < bern 1A(E)] < 6 (D-21)

for all times. Second. the asymptotic behavior of the system comprised of the states
€. é: of Eq.D.6 is analyzed to establish that the inequality of Eq.5.20 holds. These
calculations are similar to the ones in the proof of theorem 4.1 and are omitted for

reasons of brevity. A
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Chapter 6

Feedback Control of Hyperbolic
PDE Systems

6.1 Introduction

Chemical engineering processes are inherently nonlinear and very frequently involve
state variables that change in both time and space. Representative examples of pro-
cesses with significant spatial variations include plug-flow reactors [Ray81]. counter-
current absorbers-reactors [RAA86). fixed- and fluidized-bed reactors [SF70, Ray3l.
GAATT]. etc.. The mathematical models of these processes are typically derived from

the dvnamic conservation equations and consist of nonlinear PDEs.

The conventional approach for the control of PDE systems is based on the spatial
discretization of the PDE model followed by the controller design on the basis of the
resulting (linear or nonlinear) ordinary differential equation (ODE) model (see e.g..
[SJC80. DBTM92. PWE92]). However. there are certain well-known disadvantages
associated with this approach. For example. fundamental control-theoretic proper-
ties. like controllability and observability, which should depend only on the location

of sensors and actuators. may also depend on the discretization method and the
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number and location of discretization points [Ray81]. Moreover. neglecting the in-
finite dimensional nature of the original system may lead to erroneous conclusions
concerning the stability properties of the open-loop and/or the closed-loop svstem.
Furthermore, in processes where the spatially distributed nature is very strong. due
to the underlying convection and diffusion phenomena. such an approach limits the

controller performance. and may lead to unacceptable control quality.

Motivated by the above considerations. significant research efforts have focused on
the development of control methods for PDE systems that directly account for their
spatially distributed nature. Excellent surveys of theoretical as well as application
papers on this topic can be found in [Bal82. Keu93. Las95. Ray78]. Initially. svstems
of linear PDEs were considered. for which key system and control-theoretic properties
(e.g.. existence and uniqueness of solutions. stability. controllability and observabil-
ity) were well-understood [CP78]. The well-known classification of PDE systems to
hyperbolic. parabolic and elliptic [Smo83]. according to the properties of the spatial
differential operator. essentially determined the approach followed for the solution
of the control problem. Thus. for parabolic PDE systems (e.g., diffusion-reaction
processes). the fact that the system dynamics is practically determined by a finite
number of modes. motivated the use of modal decomposition techniques to derive
ODE models that capture the dominant dvnamics of the system (see for example
the papers [Cur82. GAAT7. HP92, GR95] and chapter 8 of this thesis for a detailed
treatment on control of parabolic PDEs); the controller design problem was then
addressed using methods for linear ODE systems. On the other hand, the distinct
feature of hyperbolic PDEs (convection-reaction processes) is that all the eigenmodes
of the spatial differential operator contain the same or nearly the same amount of
energy, and thus an infinite number of modes is required to accurately describe their
dynamic behavior. This feature prohibits the application of modal decomposition

techniques to derive reduced-order ODE models that approximately describe the dy-
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namics of the PDE system and suggests addressing the control problem on the basis of
the infinite-dimensional model itself. Motivated by this, alternative approaches have
been followed. using mainly optimal control methods (e.g.. [Wan66b. Lo73. Bals6])
on the basis of the original infinite dimensional system. or ODE control methods on
the basis of equivalent ODE realizations obtained by the method of characteristics
[Ray81].

Recently. considerable attention has focused on the understanding of system-
theoretic properties and the dynamical behavior of nonlinear PDEs. by treating
them as evolution equations in appropriate infinite dimensional spaces (see e.g..
[Tem88, BKJ91]). Yet. available results on the control of systems of nonlinear PDEs
are rather sparse, with the exception of optimal control approaches (see e.g.. [Bal91.
BK91. KI92]). Due to their practical relevance and importance. quasi-linear PDE
svstems have attracted particular research interest. For quasi-linear parabolic PDE
systems, an approach that utilizes combination of eigenfunction expansion techniques
and nonlinear control schemes was proposed in [CC92]. For processes modeled by a
single first-order quasi-linear hyperbolic PDE, an approach based on combination of
the method of characteristics and sliding mode techniques was proposed in [SR89].
This method was further developed in [HP95] to account for possible discontinuous
behavior of the control action and was applied to a heat exchanger. An alternative
approach to the control of quasi-linear hyperbolic PDE systems is based on Lya-
punov's direct method (Wan64. Wan66a]. The basic idea in this approach is to design
a controller so that the time-derivative of an appropriate Lyapunov functional cal-
culated along the trajectories of the closed-loop system is negative definite. which
ensures that the closed-loop system is asymptotically stable. This approach was fol-
lowed by Alonso and Ydstie in [AY93]. where concepts from thermodynamics were
emploved to construct a Lyapunov functional candidate, which was used to derive con-

ditions that guarantee asymptotic stability of the closed-loop system under boundary
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proportional-integral-derivative control.

In this chapter, we address the feedback control problem for systems described
by quasi-linear first-order hyperbolic PDEs. for which the manipulated input. the
controlled output and the measured output are distributed in space. Systems of this
form arise naturally in chemical engineering as models of transport-reaction processes.
whenever convective mechanisms dominate over diffusive and dispersive ones (see
the book [RAAS86] for representative examples). For such systems. our objective is
to svnthesize nonlinear distributed output feedback controllers that enforce output

tracking and guarantee stability in the closed-loop system.

The present chapter is structured as follows: after reviewing the necessary pre-
liminaries, a concept of characteristic index between the controlled output and the
manipulated input (which can be thought of as the analogue of relative order) is
introduced and used for the synthesis of distributed state feedback controllers that
induce output tracking in the closed-loop system. A notion of zero-output constraint
dvnamics for hyperbolic PDEs is introduced and used to derive precise conditions that
guarantee the stability of the closed-loop system. Then, output feedback controllers
are synthesized through combination of appropriate distributed state observers with
the developed state feedback controllers. Theoretical analogies between the proposed
approach and available feedback control methods for the stabilization of linear hy-
perbolic PDEs are pointed out. Controller implementation issues are also discussed.
Finally. the application of the developed control method is illustrated through a
nonisothermal plug-flow reactor example modeled by a system of three quasi-linear

hyperbolic PDEs.
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6.2 First-order hyperbolic PDE systems

6.2.1 Preliminaries

We consider systems of quasi-linear first-order partial differential equations in one

spatial dimension with the following state-space representation:

or dz
5 = A(@) 5=+ f(z) + g(z)u (6.1)
y = h(z). ¢=p(z)

subject to the boundary condition:

Ciz(a.t)+ Caoz(b,t) = R(t) (6.2)

and the initial condition:
r(z.0) = zo(2) (6.3)
where z(z.t) = [z1(z.t) --- z.(z.t)]T denotes the vector of state variables. z(z.t) €

H"[(a.b). R™]. with H" being the infinite dimensional Hilbert space of n-dimensional
vector functions defined on the interval [a,b] whose spatial derivatives up to n-th
order are square integrable. = € [a,b] C IR and ¢ € [0. ). denote position and time
respectively. u(z.t) denotes the manipulated variable. y(z.t) denotes the controlled
variable. and ¢(:z.t) denotes the measured variable. A(z) is a sufficiently smooth ma-
trix. f(r) and g(z) are sufficiently smooth vector functions. h(z), p(z) are sufficiently
smooth scalar functions. R(¢) is a column vector which is assumed to be a sufficiently
smooth function of time, zo(z) € H[(a.b). R"]. with [(a,b),IR"] being the Hilbert
space of n-dimensional vector functions defined on the interval [a. b] which are square

integrable. and C;.C; are constant matrices of dimension n x n.

The model of Eq.6.1 describes the majority of convection-reaction processes arising
in chemical engineering [RAAS86] and constitutes a natural generalization of linear
PDE models (see Eq.6.9 below). considered in [PA70, Ray81] in the context of linear

distributed state estimation and control. The distributed and affine appearance of the
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manipulated variable u is typical in most practical applications (see e.g.. [PA70. GRY5.
Ray81]), where the jacket temperature is usually selected as the manipulated variable
(see subsection 6.7.4 below for a detailed discussion on how the jacket temperature is
manipulated in practice). Furthermore. the possibility that the system of Eq.6.1 may
admit boundary conditions at two separate points (e.g.. counter-current processes) is

captured by the boundary condition of Eq.6.2.

Depending on the eigenvalues of the matrix A(z). the system of Eq.6.1 can be
hyperbolic. parabolic or elliptic [Smo83]. Assumption 6.1 that follows ensures that
the system of Eq.6.1 has a well-defined solution and specifies the class of systems

considered in this chapter.

Assumption 6.1: The matrir A(z) is real symmetric and its eigenvalues satisfy:
AM(z) € S A(2) < 0 < A (z) < -0 < Apf(2) (6.4)

for all x € H*[(a.b).R"].

Typical examples where Assumption 6.1 is satisfied include heat exchangers. plug-flow
reactors and countercurrent absorbers-reactors where the matrix A(z) is constant and
diagonal and its elements are the fluid velocities. as well as chromatography of two
interacting solutes where A(x) is a full matrix [RAA86]. Systems of the form of
Eq.6.1 for which the eigenvalues of the matrix A are real and distinct are said to
be hyperbolic. while systems for which some of the eigenvalues of the matrix A are

identically equal are said to be weakly hyperbolic [Smo83].

6.2.2 Specification of the control problem

Consider the system of quasi-linear PDEs of the form of Eq.6.1, for which the ma-
nipulated variable u(z.t). the measured variable ¢(z.t), and the controlled variable

y(=.t) are distributed in space. Let's assume that for the control of the variable y,
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there exists a finite number of control actuators, /. and the same number of measure-
ment sensors; clearly. it is not possible to control the variable y(z.t) at all positions.
Therefore, it is meaningful to formulate the control problem as the one of controlling
y(z,t) at a finite number of spatial intervals. In particular. referring to the single spa-
tial interval [z, z;41]. we suppose that the manipulated input is a'(t). with @' € IR.
and the measured output is ¢'(¢). with ¢ € IR. while the controlled output is j'(¢).

with #* € IR. such that the following relations hold:
u(z.t) = 0(2)ai(t), §(t) =Ciy(=.t). §(t) =Qp(z.t). i <=z<z  (6.3)

where bf(z) is a known smooth function of =. and C', QF are bounded linear operators.
mapping H" into IR. Figure 6.1 shows a pictorial representation of this formulation
in the case of a prototype example. From a practical point of view. the function 4'(z)
describes how the control action @'(t) is distributed in the spatial interval [z;. zi41].
while the operator Q' determines the structure of the sensor in the same spatial
interval. Whenever the control action enters the system at a single point 2o (e.g.
lateral flow injections). with zo € [z;. z;+1] (i.e. point actuation). the function 4'(z) is
taken to be nonzero in a finite space interval of the form [z — €. 2o + €]. where € is a
small positive real number. and zero elsewhere in [z;, 2;4]. Similarly. in the case of
a point sensor acting at =, the operator Q' is assumed to act in [z9 — €. 29 + €], and
considered to be zero elsewhere. The operator C' depends on the desired performance
specifications and in the majority of practical applications (see e.g., [RaySl. HP92]).

is of the following form:

ji(t) = c*’h(r)=['“c'(:)h(x(:.t))d: (6.6)

where ¢(z) is a known smooth function of z. For simplicity. the functions &(z), ¢'(z).

=1, [ will be assumed to be normalized in the interval [a, 8], i.e.,
! EIT S ! Zr .
Z/ ' b'(z)d= = Z/ “c‘(:)d: = 1. Using the relations of Eqs.6.5-6.6, the system

i=1Y 5 i=1v 5
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l ORI OMAG, q’(t)l yi(t)

Figure 6.1: Control problem specification in the case of a prototype example.
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of Eq.6.1 takes the form:

O = AW+ e g
§j = Ch(z). 7= Qp(z) (6.7)
Ciz(a.t) + Caz(b.t) = R(t)
where
@ = [at ﬁl]T
g o= (3§
b(z) = [(H(z—z1) = H(z = 22))bz) -+ (H(z = 21) = H(z — 5141)) 6(2))]
C (H(z=2)—-H(z-2))C --- (H(:—:,)—H(:-—:H.l))C"]3r
Q = [(H(z=z)=H(z=2))Q" - (H(z—z) = H(z ~ 2111)) QT

(6.8)

with H(-) being the standard Heaviside function.
Referring to the system of Eq.6.7. we note that by setting A(z) = A. f(z) =
Bz. g(z) = w. h(z) = kz. p(z) = pz where B is a matrix and k. w,p are vectors
of appropriate dimensions. it reduces to the following system of linear first-order

hyperbolic PDEs: 5
T dz
= = A+ b(=2)u
5 Aa: + Bz + wb(z)u (6.9)
y = Ckz. ¢=Qpzx
subject to the boundary condition of Eq.6.2 and the initial condition of Eq.6.3.

The following example will be used throughout the chapter to illustrate the various

aspects of our methodology.

Example : Consider a steam-jacketed tubular heat exchanger [Ray81]. The dynamic

model of the process is of the form:

%7{- = —vl%—y:—aT-’raTj

T'(0.t) = R(t)

(6.10)

where T'(z.t) denotes the temperature of the reactor, = € [0.1], T;(z.t) denotes the

jacket temperature. v; denotes the fluid velocity in the exchanger and a is a positive

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



constant. Considering T as the manipulated variable. and T as the controlled and

measured variable. the above model can be put in the form of Eq.6.1:

0_1' = —1_1:._. +
5 = g —exrtau S11)
y = . g=r«x (6. .
z(0,t) = R(t)

Consider the case where there exists one actuator with distribution function b(z) = 1.

1
the controlled output is assumed to be §(t) = / y(=.t)d=. and there is a point sensor
0

acting at = = 0.5. Utilizing these relations, the system of Eq.6.11 takes the form:
dz Or + ai(t)
— = —yy- —ar+au
oo o5t o (6)
i = [al=nd g= [ 2zt
0 0.5—¢
A

6.2.3 Review of system-theoretic properties

The objective of this subsection is to review basic system-theoretic properties of
systems of first-order hyperbolic PDEs which will be used in the subsequent sections.
For more details on these subjects. the reader may refer to [CP78. Rus78]. We will
start with the definitions of the inner product and the norm, with respect to which

the notion of exponential stability for the systems under consideration will be defined.

o Let w;.wy be two elements of H([a.b]; R"). Then, the inner product and the

norm. in H([a. b]: R"). are defined as follows:

b
(wiown) = /Q(wl(:)-wz(:))m"d: (6.13)
lorlls = (wrown)?

where the notation (-.-)r~ denotes the standard inner product in the Euclidean

space R".
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Referring to the linear system of Eq.6.9. for which assumption 6.1 holds. it is well-

established [Rus78] that the operator

0
Lr = A—a%-i-Ba‘ (6.14)

defined on the domain in H[(a. b): R"] consisting of functions z € H!{(a.b): R"] which
satisfy the boundary condition of Eq.6.2, generates a strongly continuous semigroup
U(t) of bounded linear operators on H[(a.b); IR"]. This fact implies the existence.
uniqueness. and continuity of solutions for the system of Eq.6.9. In particular. the

generalized solution of this system is given by:
t
¢ = U(t)zo +/ U(t - r)wbia(r)dr + C({)R (6.15)
0

where C'(t) is a bounded linear operator for each t mapping H|[(0.t): IR"] into
H[(a.b): R*]. The notion of semigroup can be thought of as an analog of the notion
of the state transition matrix used for linear finite-dimensional systems. As can be
easily seen from Eq.6.15. U(¢t) evolves the initial condition zo forward in time. From
general semigroup theory [Fri76]. it is known that U/(t) satisfies the following growth
property:

HU(t)l2 < Ke*. t>0 (6.16)

where i’ > 1. a is the largest real part of the eigenvalues of the operator L. and an es-
timate of KA. a can be obtained utilizing the Hiller- Yoshida theorem [Fri76]. Whenever
the parameter a is strictly negative. we will say that the operator of Eq.6.14 gener-
ates an exponentially stable semigroup U(¢). We note that although there exist many
stability concepts for PDEs (e.g.. weak (asymptotic) stability [Fri76. Smo83]). we will
focus. throughout the chapter. on exponential stability, because of its robustness to
bounded perturbations. which is required in most practical applications. where there
is always some uncertainty associated with the process model. The aforementioned
concepts allow stating precisely a standard (see also [PA70, Bal86]) detectabiliﬁy re-

quirement for the system of Eq.6.9. which will be exploited in section 6 for the design
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of distributed state observers.

Assumption 6.2: The pair [Qp L], is detectable. i.c.. there erist a bounded lin-
ear operator P. mapping IR' into H™, such that the linear operator L, = L — PQp

generates an exponentially stable semigroup.

The above detectability assumption does not impose any restrictions on the form
of the operator @ and thus, on the structure of the sensors (e.g. distributed. point

sensors).

In closing this subsection, motivated by the lack of general stability results for
systems of quasi-linear PDEs, we will review a result that will allow characterizing
the local stability properties of the quasi-linear system of Eq.6.7 on the basis of its
corresponding linearized system. To this end. let’s consider the linearization of the

quasi-linear system of Eq.6.7:

g—': = A(:)?—?-{-B(:)l‘-{-w(:)b(:)ﬁ

g = Ckz)z. §=0p(z)r

profile.

Proposition 6.1 ([Smo83)], p.121) : The system of Eq.6.7 (with @ = 0) for which
assumption 6.1 holds. subject to the boundary condition of Eq.6.2. is locally exponen-

tially stable if the operator of the linearized system of Eq.6.17:
3 dz

Lr = A-(,)—:-i-B(:)I (6.18)

generates an exponentially stable semigroup.

The following remark provides conditions. which can be easily verified in practice,

that guarantee the open-loop stability of hyperbolic PDE systems of the form of
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Eq.6.9 (Eq.6.7).

Remark 6.1 : Consider the system of linear (quasi-linear) first-order PDEs of the

form of Eq.6.9 (Eq.6.7) with @ = 0, and assume that the following conditions hold:
L AIS/\'ZSS/\n<0~

.C'g:O

In this case, it can be shown [Rus78] that the eigenvalues of the operator of Eq.6.18

(Eq.6.14) are of the following form:
a, = —00+pumi., pu=—00,-++.00 (6.19)

Thus. first-order PDE systems that satisfy the above conditions (physical examples
include plug-flow reactors. co-current heat exchangers. etc.) possess eigenvalues which
lie on a line crossing the real axis at s = —oo. which. according to Eq.6.16. implies

that theyv are exponentially stable.

6.2.4 Methodological framework

Motivated by the fact that control methods for quasi-linear distributed parameter
systems should explicitly account for their nonlinear and spatially varying nature.

our methodology entails the following two steps:

1. Synthesize distributed nonlinear state feedback controllers that enforce output
tracking and derive conditions that guarantee the exponential stability of the

closed-loop system.

[S]

. Synthesize distributed nonlinear output feedback controllers through combina-
tion of the developed state feedback controllers with appropriate distributed

state observers.
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Motivated by the mathematical properties of these systems. the state feedback control
problem is solved on the basis of the original PDE model. by following an approach
conceptually similar to the one used for the synthesis of inversion-based controllers
for ODE systems. In order to motivate the approach followed for the quasi-linear
case and identify theoretical analogies between our approach and available results on
feedback stabilization of linear hyperbolic PDEs. we will also present the development
for the case of systems of linear PDEs of the form of Eq.6.9. The development for the
case of quasi-linear systems will be performed by essentially generalizing the results

developed for the linear case in a nonlinear context.

6.3 Characteristic index

In this section. we will introduce a concept of characteristic index between the output
7 and the input @ for systems of the form of Eq.6.9. that will allow us to formulate
and solve the state feedback control problem. To reveal the origin and illustrate the
role of this concept. we consider the operation of differentiation of the output 7' of

the system of Eq.6.9 with respect to time. which yields:

§j = Clkz
dy' d . i, 01
il EC Lr_CAE (6.20)

= C'k (»l-ag: + B) r + C'hkwb' ()@

Now. if the scalar C'kwb'(z) is nonzero. we will say that the characteristic index of #*
with respect to @', denoted by ¢, is equal to one. If Cikwb'(z) = 0. the characteristic

index is greater than one. and from Eq.6.20 we have that:

di’ . d
- = (% —+ B 6.21
o Ctk (Aa: + ) T ( )
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Performing one more time-differentiation. we obtain:

ngi i d 2 i 4 i\t
-7 = Ctk (,45; + B) z+Ck (Aa—: + B) wb'(z)a (6.22)

In analogy with the above. if the scalar C'k (4% + B) wb'(=) is nonzero. the char-

acteristic index is equal to two. while if C'k (A% + B) wb'(z) = 0. the characteristic

index is greater than two.

Generalizing the above development. one can give the definition of characteristic

index for systems of the form of Eq.6.9.

Definition 6.1: Referring to the system of linear first-order partial differential equa-
tions of the form of Eq.6.9. we define the characteristic inder of the output §* with

respect to the input @' as the smallest integer o' for which

o'—1
Cik (_451 4 B) wh(2) £0 (6.23)

or o' = oo if such an integer does not ezist.

Remark 6.2: According to definition 6.1. the characteristic index is the smallest
order time-derivative of the output §* which explicitly depends on the manipulated
input @'. In this sense. it can be thought of as a natural generalization of the concept of
relative order for the svstems under consideration. For the case of linear ODE systems.
the relative order can be interpreted as the difference in the degree of the denominator
polynomial and numerator polynomial. Such an interpretation cannot be given for the
concept of characteristic index because the frequency domain representation of the
system of Eq.6.9 typically gives rise to transfer functions which involve complicated

transcendental forms.

In analogy with the linear case, the following concept of characteristic index will be

introduced for the quasi-linear PDE system of Eq.6.7.
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Definition 6.2: Referring to the system of quasi-linear first-order partial differential
equations of the form of Eq.6.7. we define the characteristic inder of the output j'

with respect to the input @' as the smallest integer o' for which

o'—1
C'L, (Za—zfra, + L!) h(z)b'(=) #0 (6.24)

j=1 ="
where a; denotes the j-th column vector of the matriz A(r). and L,,.L; denote the

standard Lie derivative notation. or o' = oo if such an integer does not erist.

Throughout the chapter. it will be assumed that Eq.6.24 holds for all r € H". = €
[a. 8]

From definitions 6.1 and 6.2, one can immediately see that the characteristic index
o' depends on the structural properties of the process (the matrices A. B and the
vectors w.k for the linear case, or the matrix A(z) and the functions f(r). g(z).
h{(z) for the quasi-linear case). as well as on the selection of the control system and

objectives (the functions 4 (z) and the output operators C'). Note that in the control

b'(z) are chosen to act in the same spatial interval (collocated): in the case where
C' and b*(z) are chosen to act in different spatial intervals (noncollocated), it follows
directly from Eqs.6.23-6.24 that the characteristic index o* = co. which implies that

this selection leads to loss of controllability of the output §* from the input a'.

In most practical applications. the selection of (¥'(z).C*) is typically consistent for

all pairs (§'.4'). in a sense which is made precise in the following assumption.

Assumption 6.3: Referring to the system of first-order partial differential equations
of the form of Eq.6.9 (Eq.6.7). ' =0*=...=¢' =0.

Given the above assumption. ¢ can be also thought of as the characteristic index

between the output vector § and the input vector .
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6.4 State feedback control

6.4.1 Linear systems

In this subsection, we focus on systems of linear first-order partial differential equa-
tions of the form of Eq.6.9 and address the problem of synthesizing a distributed
state feedback controller that forces the output of the closed-loop system to track a
reference input in a prespecified manner. More specifically. we consider distributed

state feedback laws of the form:
2 = Sr+sv (6.23)

where S is a linear operator mapping H" into IR'. s is an invertible diagonal matrix of
functionals. and v € IR is the vector of reference inputs. The structure of the control
law of Eq.6.25 is motivated by available results on stabilization of linear PDEs systems
via distributed state feedback (e.g.. [Wan66b. Bal86]) and the requirement of output
tracking. Substituting the distributed state feedback law of Eq.6.25 into the system

of Eq.6.9. the following closed-loop system is obtained:

% = A%ﬁ-‘ + Bz 4+ wb(z)St + wb(=)sv (6.26)

gy = Ckr

It is clear that feedback laws of the form of Eq.6.25 preserve the linearity with respect
to the reference input vector v. We also note that the evolution of the linear PDE
system of Eq.6.26 is governed by a strongly continuous semigroup of bounded linear
operators. because L generates a strongly continuous semigroup and b(z)Sr.b(z)sv
are bounded. finite dimensional perturbations [Fri76], ensuring that the closed-loop

system has a well-defined solution (see subsection 6.2.3). Proposition 6.2 that follows

allows specifying the order of the input/output response in the closed-loop system.

Proposition 6.2: Consider the system of partial differential equations of Eq.é‘.g
subject to the boundary condition of Eq.6.2, for which assumptions 6.1 and 6.3 hold.
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Then. a distributed state feedback control law of the form of Eq.6.25 preserves the
characteristic inder o. in the sense that the characteristic inder of § with respect to

v in the closed-loop system of Eq.6.26 is equal to o.

The fact that the characteristic index between the output § and the reference input v
is equal to o suggests requesting the following input /output response for the closed-

loop system:

LS. A (6.27)
Yo dto ng TY=E =
where v;,792.--,7, are adjustable parameters. These parameters can be chosen to

guarantee input/output stability and enforce desired performance specifications in the
closed-loop system. Referring to Eq.6.27. note that, motivated by physical arguments.
we request, for each pair (F*,v'), i = 1..... [. an input/output response of order o
with the same transient characteristics (i.e. the parameters v, are chosen to be the
same for each pair (7*,v')). This requirement can be readily relaxed if necessary to

impose responses with different transient characteristics for the various pairs (§°.¢*).

We are now in a position to state the main result of this subsection in the form of

a theorem (the proof can be found in the appendix E).

Theorem 6.1: Consider the system of linear partial differential equations of Eq.6.9
subject to the boundary condition of Eq.6.2. for which assumptions 6.1 and 6.3 hold.
Then, the distributed state feedback law:

P a~1 =1
a = {‘760}6 (45: + B) wb(:)]

. {v —Ckz =) _7.Ck (Ag'—~ + B) :r}
v=1 ~

enforces the input/output response of Eq.6.27 in the closed-loop system.

Remark 6.3: Referring to the controller of Eq.6.28, it is clear that the calculation

of the control action requires algebraic manipulations as well as differentiations and
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integrations in space. which is expected because of the distributed nature of the

controller.

Remark 6.4: The distributed state feedback controller of Eq.6.28 was derived fol-
lowing an approach conceptually similar to the one emploved for the synthesis of
inversion-based controllers for ODE systems. We note that this is possible. be-
cause. for the system of Eq.6.9: a) the solution is well-defined (i.e. the evolution
of the state is locally governed by a strongly continuous semigroup of bounded linear
operators); b) the input/output spaces are finite dimensional: and ¢) the manipu-
lated input. the measured output and the controlled output are distributed in space.
These three requirements are standard in most control theories for PDE systems (e.g..
[Bal86. Bal91]) and only the third one poses some practical limitations excluding pro-

cesses where the manipulated input appears in the boundary.

Remark 6.5: The class of distributed state feedback laws of Eq.6.25 is a generaliza-

tion of control laws of the form

a = Fr (6.29)
where F is a bounded linear operator mapping H" into IR‘. which are used for the

stabilization of linear PDEs. The usual approach followed for the design of the gain

operator F utilizes optimal control methods (e.g., [Lo73. Ray81]).

Example (Cont’d) : In the case of the heat exchanger example introduced earlier.
it can be easily verified that the characteristic index of the system of Eq.6.12 is equal
to one. Therefore. a first-order input/output response is requested in the closed-loop
system:

d.
'“?1% fj=uv (6.30)

Using the result of theorem 6.1, the appropriate control law that enforces this response
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1 1 1 0
i = o {v —/0 z(z.t)d=z — 71/(; (‘l’la_:(:~t) - ar(:.t)) d:} (6.31)

6.4.2 Quasi-linear systems

In this subsection, we consider systems of quasi-linear first order PDEs of the form

of Eq.6.7 and control laws of the form:
i = S(z)+35(z)v (6.32)

where S(z) is a nonlinear operator mapping H" into IR'. (x) is an invertible diagonal
matrix of functionals. and v € IR is the vector of reference inputs. The class of control
laws of Eq.6.32 is a natural generalization of the class of control laws considered for
the case of linear systems (Eq.6.25). Under the control law of Eq.6.32. the closed-loop

system takes the form:

5 , ]
a_j = ‘4(1)?—:+f(r)+g(r)b(:)5(x)+9(1)b(3)§(x)” (6.33)

[t is straightforward to show that the above system has locally a well-defined solution,
and the counterpart of proposition 6.2 also holds, i.e.. the characteristic index of the
output § with respect to v in the closed-loop system of Eq.6.33 is equal to o. which
suggests seeking a linear input/output response of the form of Eq.6.27 in the closed-
loop system. Theorem 6.2 that follows states the controller synthesis result for this

case.

Theorem 6.2: Consider the system of quasi-linear partial differential equations of

Eq.6.7 subject to the boundary condition of Eq.6.2, for which assumptions 6.1 and 6.3
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hold. Then, the distributed state feedback law:

-1

c—1
@ = |7,CL, (de] L, + Lf) h(zx)b(z)

1=1

{v—Ch () - un (Za% )Vh(.r)}

enforces the input/output response of Eq.6.27 in the closed-loop system.

(6.34)

Remark 6.6: Theorem 6.2 provides an analytical formula of a distributed nonlinear
state feedback controller that enforces a linear input/output response in the closed-
loop system. In this sense, the controller of Eq.6.34 can be viewed as the counterpart
of input/output linearizing control laws for nonlinear ODE systems (see [IKA91] and

the references therein). in the case of infinite dimensional systems of the form of

Eq.6.7.

6.5 Closed-loop stability

The goal of this section is to define a concept of zero dynamics and the associated
notion of minimum-phaseness for systems of first-order hvperbolic PDEs of the form
of Eq.6.9 (Eq.6.7). subject to the boundary condition of Eq.6.2: this will allow us
to state conditions that guarantee exponential stability of the closed-loop system.
We will initially define the concept of zero dynamics for the case of linear systems
(the definition for the case of quasi-linear systems is completely similar and will be
omitted for brevity). Our definition is analogous with the one given in [BGHY4] (see
also [Poh81}) for the case of linear parabolic PDE systems with boundary feedback

control.

Definition 6.3: The zero dynamics associated with the system of linear first-order

partial differential equations of Eq.6.9 is the system obtained by constraining the out-
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put to zero, i.e., the system:
-1

dr Oz d ot ] ‘
FTi AE_- + Bz — wb(z) [Ck (A—j + B) wb(.,):| {CA (-la—:- + B) 1‘}

Ckz =0
Ciz{a,t) + Caz(b.t) = R(t)

-~

(6.33)
From definition 6.3. it is clear that the dvnamical system which describes the zero
dynamics is an infinite dimensional one. The concept of zero dynamics allows us
to define a notion of minimum-phaseness for systems of the form of Eq.6.9. More
specifically, if the zero dynamics is exponentially stable the system of Eq.6.9 is said
to be minimum-phase. while if the zero dynamics is unstable the system of Eq.6.9 is
said to be nonminimum-phase.
We have now introduced the necessary elements that will allow us to address the
issue of closed-loop stability. Proposition 6.3 that follows provides conditions that
guarantee the exponential stability of the closed-loop system (the proof can be found

in the appendix E).

Proposition 6.3 : Consider the system of Eq.6.9 for which assumptions 6.1 and 6.3
hold. under the controller of Eq.6.28. Then, the closed-loop system is erponentially
stable (i.e.. the differential operator of the closed-loop system generates an erponen-

tially stable semigroup) if the following conditions are satisfied:
1. The roots of the equation
L84t pes” =0 (6.36)
lie in the open left-half of the compler plane.

2. The system of Eq.6.35 is ezponentially stable.

Remark 6.7: Referring to the above proposition. we note that the first condition ad-
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dresses the input/output stability of the closed-loop system and the second condition
addresses its internal stability. Note also that the first condition is associated with the
stability of a finite number of poles. while the second condition concerns the stability
of an infinite number of poles. This is expected since the input/output spaces are

finite dimensional. while the state of the system evolves in infinite dimensions.

Remark 6.8: From the result of proposition 6.3. it follows that the controller of the-
orem 6.1 places a finite number of poles of the open-loop infinite/dimensional system
of Eq.6.9 at prespecified (depending on the choice of parameters ;) locations. by
essentially canceling an infinite number of poles. those included in the zero dynam-
ics. Furthermore. the closed-loop system is exponentially stable if the zero dynamics
of the original system is exponentially stable (condition 2 of proposition 6.3). This
result is analogous to available results on stabilization of systems of linear PDEs of
the form of Eq.6.9 with feedback of the form of Eq.6.29. Specifically. it is well-known
(e.g.. [RusT8, Bal86]) that control laws of the form of Eq.6.29 allow placing a finite
number of open-loop poles at prespecified locations. while in addition guaranteeing
the exponential stability of the closed-loop system. if the pair [£ wb(=)] is stabilizable
(i.e.. the remaining infinite uncontrolled poles are in the open left-half of the complex

plane).

Remark 6.9: From the result of proposition 6.3 and the discussion of remark 6.8. it
is clear that the derivation of exponential stability results for the closed-loop system
under the control law of Eq.6.25 (or the control law of Eq.6.29) requires that the open-
loop system is minimum phase (or stabilizable). The a-priori verification of these
properties can in principle be performed by utilizing spectral theory for operators
in infinite-dimensions [Fri76. Poh81]. However. these calculations are difficult to
perform in the majority of practical applications. In practice, the stabilizability and

minimum-phase properties can be checked through simulations.
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In closing this section, we address the issue of closed-loop stability for svstems of
quasi-linear PDEs. Proposition 6.4 that follows provides the counterpart of the result

of proposition 6.3 for the case of quasi-linear svstems.

Proposition 6.4: Consider the system of Eq.6.7 for which assumptions 6.1 and
6.3 hold, under the controller of Eq.6.34. Then, the closed-loop system is locally
exponentially stable (i.e., the differential operator of the linearized closed-loop system

generates an erponentially stable semigroup) if the following conditions are satisfied:
1. The roots of the equation
l+ms+---+9s° =0 (6.37)
lie in the open left-half of the complez plane.

2. The zero dynamics of the system of Eq.6.7 is locally exponentially stable.

Remark 6.10: The exponential stability of the closed-loop system guarantees. in
both the linear and the quasi-linear case, that in the presence of small modeling
errors. the states of the closed-loop system will be bounded. Furthermore. since
the input/output spaces of the closed-loop system are finite dimensional. and the
controller of Eq.6.34 enforces a linear input/output dynamics between j and v. it is
possible to implement a linear error feedback controller around the (7 — v) loop to
ensure asymptotic offsetless output tracking in the closed-loop system. in the presence

of constant unknown model parameters and unmeasured disturbance inputs.

6.6 Output feedback control

In this section. we will consider the synthesis of distributed output feedback con-
trollers for systems of the form of Eq.6.9 (Eq.6.7). The requisite controllers will

be synthesized employing combination of the developed distributed state feedback
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controllers with distributed state observers. Analysis of the resulting closed-loop sys-
tem will allow deriving precise conditions which guarantee that the requirements of

exponential stability and output tracking are enforced in the closed-loop system.

The conventional approach followed for the design of state estimators for linear
PDE systems is to discretize the system equations and then apply results from es-
timation theory for ODE systems (e.g., [SJC80]). It has been shown however that
methods for state estimation that treat the full distributed parameter syvstem lead to
state observers that vield significantly superior performance [Ray81. CRCS36]. In this
direction. available results on state estimation for systems of first-order hyperbolic
PDEs concern mainly the use of Kalman filtering theory for the design of distributed

state observers [PA70. YSRT74].

6.6.1 Linear systems

We consider state observers with the following general state-space description [PA70]:

d d
6—;’ = Aa—7+3n+wb(:)a+7>(q—9pn) (6.38)

where P is a bounded linear operator. mapping R’ into H". that has to be designed
so that the operator £, = £ — PQp generates an exponentially stable semigroup
(note that this is possible by assumption 6.2). The system of Eq.6.38 consists of a
replica of the process system and the term P(§ — Qpn) used to enforce a fast decay
of the discrepancy between the estimated and the actual values of the states of the
svstem. In practice, the design of the operator P can be performed via a) simple
pole placement in case where the output measurements are not corrupted by noise,

b) Kalman filtering theory. in case where the output measurements are noisy.

Theorem 6.3 that follows provides a state-space realization of the output feedback
controller resulting from the combination of the state observer of Eq.6.38 with the

state feedback controller of Eq.6.28 (the proof is given in appendix E).
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Theorem 6.3 : Consider the system of linear partial differential equations of Eq.6.9
subject to the boundary condition of Eq.6.2, for which assumptions 6.1. 6.2. 6.3 and
the conditions of proposition 6.3 hold. Consider also the linear bounded operator P
designed such that the operator L, = L — PQp generates an erponentially stable

semigroup. Then, the distributed output feedback controller:

dn _ 0On . . 0
5 = Aa~+Br]+wb(..)|i7¢,Ck<Aa~+B }

{v —~Ckn — Z‘/.;Ck (A 9 + B) 'I} + P(qd— <Lpn)

v=1

a o—1
a = [70Ck (A—a—— + B) wb(:)]
c a v
. {v —Chkn = >_v.Ck (46— + B) 17}
v=l ~

a)guarantees exponential stability of the closed-loop system,

(6.39)

-1

b)enforces the input/output response of Eq.6.27 in the closed-loop system if z(z

n(=.0).

Remark 6.11: In the case of open-loop stable systems, a more convenient way to
reconstruct the state of the system is to consider the observer of Eq.6.38 with the
operator P set identically equal to zero. This is motivated by the fact that the open-
loop stability of the system guarantees the convergence of the estimated values to the
actual ones with transient behavior depending on the location of the spectrum of the

operator of Eq.6.14.

Remark 6.12: Available results on stabilization of systems of linear hyperbolic PDEs
via distributed output feedback (e.g.. [Ray81. Bal86]) concern the design of controllers

with the following general state space description:

on 61}
T 8~ + (B + wb(=)Fln + R(q — Lpn) (6.40)
u = Fnq
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where R is a bounded linear operator. mapping IR! into H". We note that the main
similarity between a controller of the form of Eq.6.40 and the controller of Eq.6.39 is
that both are infinite dimensional (because of the state observers utilized). while their
main difference lies in the fact that the controller of Eq.6.39 guarantees exponential
stability of the closed-loop system, if the open-loop system is minimum-phase and
detectable, while a controller of the form of Eq.6.40 will exponentially stabilize the

closed-loop system. if the open-loop system is jointly stabilizable/detectable [Bal36].

Example (Cont’d) : Referring to the linear PDE system of Eq.6.12. we note that
A = —v; < 0. while C; = 0. and thus. the system is open-loop stable according to the
result of remark 6.1. The open-loop stability of the system allows using an output
feedback controller which consists of the distributed state feedback controller coupled

with an open-loop observer. The appropriate controller takes the form:

g _ On L Y L AP <L/ P . PV~
—_— = Ll@:_an+a;{l-/()n(~'t)d~ 71/0( 116:(-.t) an(z.t))d:=

ot
1 1 L d
u= :/—1 {v —/0 n(z.t)dz — ‘71/0 (—1’1‘52(3-” - an(:.t)) d3}
(6.-41)

6.6.2 Quasi-linear systems

[n this subsection. we consider the synthesis of output feedback controllers for systems
of the form of Eq.6.7. Given the lack of general available results on state estimation
of such systems. we will proceed with the design of a nonlinear state observer which
guarantees local exponential convergence of the state estimates to the actual state
values. In particular. the following state observer will be used to estimate the state

vector of the system in space and time:

o AL+ () + g()H(2)3 + P(g ~ Qpl) (6.42)
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where 7 denotes the observer state vector and P is a linear operator. mapping IR’
into H". designed on the basis of the linearization of the system of Eq.6.42 so that

the eigenvalues of the operator £, = £ — PQp(=) lie in the left-half plane.

The state observer of Eq.6.42 can be coupled with the state feedback controller of
Eq.6.34 to derive an output feedback controller that guarantees output tracking and
closed-loop stability. The resulting controller is given in theorem 6.4 that follows (the

proof is given in the appendix E).

Theorem 6.4: Consider the system of quasi-linear partial differential equations of
Eq.6.7 subject to the boundary condition of Fq.6.2, for which assumptions 6.1. 6.2.
6.3 and the conditions of proposition 6.4 hold. Consider also the bounded operator P
designed such that the operator £, = L — PQp(z) generates an exponentially stable
semigroup. Then, the distributed output feedback controller:

) o~1 -1
T =AML+ S+ gtmbi=) | Ly (z "JLQ,+Lf) h(n)b(2)

=1

{L — Ch(n Z’y,, (Z "’La, + L/) h(n)} +P(q — Qp(n))
-1

-1
" 9n.
i = [v.CL, (Z;{—JL%+L;‘) h(n)b(=)

J=1

a v
{L — Ch(n) - Z% (Z "’La, +L,) h(n)}
(6.43)
a)guarantees local ezponential stability of the closed-loop system,

b)enforces the input/output response of Eq.6.27 in the closed-loop system if x(:.0) =
n(=.0).

In analogy with the linear case, for open-loop stable systems, the operator P can be

taken to be identically equal to zero. since the local exponential stability of the open-
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loop system guarantees the local convergence of the estimated values to the actual

values.

Remark 6.13: Note that in the case of imperfect initialization of the observer states
(i.e.. p{=.0) # x(=.0)). although a slight deterioration of the performance may oc-
cur, (i.e., the input/output response of Eq.6.27 will not be exactly imposed in the
closed-loop system). the output feedback controllers of theorem 6.3 and 6.4 guarantee

exponential stability and asymptotic output tracking in the closed-loop system.

Remark 6.14: The nonlinear distributed output feedback of Eq.6.43 is an infinite
dimensional one, due to the infinite dimensional nature of the observer of Eq.6.42.
Therefore. a finite-dimensional approximation of the controller has to be derived for
on-line implementation. This task can be performed utilizing standard discretiza-
tion techniques such as finite differences, orthogonal collocation, etc.. It is expected
that some performance deterioration will occur in this case, depending on the dis-
cretization method used and the number and location of discretization points (see
the chemical reactor application presented in the next section). We finally note that
it is well-established (e.g.. [Bal86]) that as the number of discretization points in-
creases. the closed-loop system resulting from the PDE model plus an approximate
finite-dimensional controller converges to the closed-loop system resulting from the
PDE model plus the infinite-dimensional controller. guaranteeing the well-posedness

of the approximate finite-dimensional controller.

6.7 Application to a nonisothermal plug-flow reactor

6.7.1 Process description

Consider the non-isothermal plug-flow reactor shown in Figure 6.2. where two first-
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Figure 6.2: A nonisothermal plug-flow reactor.
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order reactions in series take place:
AL BRC

where A is the reactant species. B is the desired product. and C is an undesired
product. The inlet stream consists of pure A of concentration C4o and temperature
T40. The reactions are endothermic and a jacket is used to heat the reactor. The

reaction rate expressions are assumed to be of the following form:

— L
REWA

rr = —klO exp(

: -F
Ty = —kzoeXP( RTZ)CB

where k1o, ka0 E1. Ea, denote the pre-exponential constants and the activation

energies of the reactions. Under the following assumptions:

o Perfect radial mixing in the reactor
e Constant volume of the liquid in the reactor
¢ Constant density and heat capacity of the reacting liquid

e Negligible diffusive and dispersive phenomena

the material and energy balances that describe the dynamical behavior of the process

take the following form:

e Mole balance for the species A

« _El
%i = —l‘la.% — ke RT: €
e Mole balance for the species B
-E; -E;
aa% = —v,aac': = + kioe BT> €y — kyge RT- Cp
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e Reactor energy balance

—FE -k,
oT, - oT, + ( AH”)& eBT. ¢, + { AHﬁ)l&zof RT: ¢y
ot 0z PmCpm PmCpm

Uy
+pmcpmVr(T’ g

subject to the following boundary conditions:
Ca(0.1) = Cio(t) . Cp(0.t) =0. T;(0.t) = To(t)

where C4, Cp and denote the concentrations of the species A and B in the reactor.
T, denotes the temperature of the reactor, Ca;. Cp,, T,. denote the steady-state
profiles for the state variables. AH,,. AH,, denote the enthalpies of the two reactions.
Pm. Cpm denote the density and heat capacity of the fluid in the reactor. V; denotes
the volume of the reactor. [, denotes the heat transfer coefficient. and 7, denotes the
spatially uniform temperature in the jacket. The values used for process parameters
are given in Table 6.1. while the corresponding steady-state profiles are shown in
Figure 6.3. The control objective is the regulation of the concentration of the species
B throughout the reactor by manipulating the jacket temperature 7,. We note that.
in practice. T; is usually manipulated indirectly through manipulation of the jacket
inlet flow rate (this implementation issue is addressed in subsection 6.7.4).
Setting:
u=T1,-T,.. 1y, =C4q. 7=Cpg, r3=T,. y=Cp (6.44)
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L = 10 m min~!
L = 1.0 m
9% = 100 it
E, = 20x 10" kecal kmol~!
E, = 35.0x 10  kcal kmol~! !
ko = 3.0x 10" min-! [
kg = 30x10% min-! ;
R = 1.987 kcal kmol~' k-1
AH, = 348000.1  kcal kmol~!
AHA, = 986000.1  kcal kmol=!
Cpm = 0.231 kcal kg=! K~}
Pm = 0.09 kg lt._l
Cp; = 23 kcal kg=! K1
Uw = 2000.0 keal min—! !
Cao = 10 mol It~}
Cge = 0.0 mol It=!
Tao = 3200 I
Tio = 350.0 K
l:,‘ = 1.0 It
.. = 000l min
F]" = 28.837 it min~!
FL = 43.66 It min~!
F3 = 3963 it min="
F]“, = 7234 it min~!
F3, = 77.23 it min~!

Table 6.1: Process parameters and steady-state values
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Figure 6.3: Steady-state profiles of reactor state variables.
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the original set of equations can be put in the form of Eq.6.1 with:

- _E] -
—El —Eg
fi(z1, x3) ko€ Rz T, — ko€ Rzj Ty
f(.L‘) = fQ(Il.Ig.I;;) = __E -—-E-
f3(l‘1.172,1,'3) (—AH,- ) 1 (_AH ) 2
——— ko Rzs Ty + ———kye Rzrj Iy
PmCom PmCpm
(’,’
¥ (23— T.)
L pmcpm"r ° 7 .
i - 0 0
Alzr22.23) = a1 a2 as| = | 0 ~u 0 |. (6.45)
) 0 0 -—-u
| 0
51 0
g(z) = | g2 | = U, h(z) = [1'2] (6.46)
g3

- PmCpm V7
[t is clear that the matrix A(z) is real symmetric and its eigenvalues satisfv Eq.6.4.

Moreover, the eigenvalues of 4(z) are the same. which implies that the above system

of quasi-linear PDEs is weakly hyperbolic.

6.7.2 Control problem formulation-Controller synthesis

In this subsection. we will proceed with the formulation and solution of the control

problem. More specifically. it will be assumed that there are five control actuators

which are characterized by a unity distribution function i.e.. b'(z)a' = @' for all
t=1,---.5. The control actuators are taken to act over equispaced intervals. i.e.:
(a\(t) . [0.0.0.2]
@(t) . [0.2,0.4]
a(t) = { @’(t) . [0.4,0.6] (6.47)
a‘(t) . [0.6,0.8]
L a°(t) [0.8.1.0]
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The desired performance requirement is to control the averaging outputs:

( 0.2

gi(t) = /00 5.024(=. t)d=
0.4

g (t) = /02 5.0z,(=.t)d=
05

g(t) = J g3(t) =/‘;4 O-Ol‘g(:.t)d: (648)

0

gi(t) = [ 5.0z4(z.t)dz

5 i.o_o g

Ly( )—/0_80- To(z.t)dz

Using the above relations, the model that will be used for the synthesis of the output

feedback controller is given by:

% = A(l‘)g—f*'f(x)+g(I)Z(H(3“3i)—H(3—3i+1))17i
~ v=1
1 (6.49)

g = /~'+l—————1'2(:,t)d:, t=1,---,5

M :i+l - 2

where the matrix A(z) and the vector functions f(z) and g(z) are specified in Eq.6.46.
A schematic of the reactor along with the control system is given in Figure 6.4.
Referring to the system of Eq.6.49. its characteristic index can be calculated using

the definition 6.2 introduced in section 6.3. In particular, we have that:

R MES] 1 .
CiL,h(z) =/ —— Lh(z)=0.Vi=1.---.5
% Sigl — 2
6.50)
. 3 : Sl 1 a (
CiL, (Z%La, +L,) h(z) =/ n_l O a0 vizts
=1 0% q Sipl — i 0zg

Thus. the characteristic index of the system of quasi-linear PDEs of Eq.6.49 is equal

to 2. This allows requesting the following second-order response in the closed-loop

system between §' and v, for all ¢ = 1.---.5:
d*y dy . :
T N 4§ = 51
gyttt =t (6.51)

Moreover, the eigenvalues of the matrix A(z) are negative and the boundary con-
ditions are specified in a single point. Thus, the result of remark 6.1 applies di-

rectly vielding that the system is open-loop stable. Furthermore, it was also verified,
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Figure 6.4: Specification of the control problem for the plug-flow reactor.
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through simulations. that the process is minimum-phase. Therefore. the developed
control method can be applied and the distributed output feedback controller of the-
orem 6.4, with P = 0, was employed in the simulations (note that due to open-loop
stability of the process the controller does not use measured process outputs). The

explicit form of the controller is as follows:

9 4
8 ——
—3%1' = —'l"a—zl' — kyoe fins M
5 -E; -E,
an; B
‘3%'2' = —1"5%3 + ko€ _Rm m — kaoe £73 7
) 9 o :
Ons _ _Om  (ZAHEN) Ry, 4 52 Ry,
at 8: pmcpm Pmem
Uy Uw
+ Ed (Tws _LU3)+ e (H(:_:l) —H(" —:l+l))
pmcpm‘r Pmem "r =1

1=

3 9. -!
° {‘72CiLg ( ?lea, + Lj) h(n)bi(:)]
" 0z

° {vi —C'h(n) = 1C' (Za—n}La, + Lf) h(n)

=1~

2
yEw'YS
—yC (Z‘n—fLa:+Lf) h(n)}

=1

-1

3 9.

@ = [ﬁzc'zg (za.—”jLa,u,) h(n)b‘(:)J {vf — C'h(n)
J=1="

9

(3. on. A on. °
’_716‘ (Z’l_]La, + Lf) h(ﬂ) - 726” (Z'.lj'La, + Lf) h(”)}

=1"" =1~
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where the analytical expressions of the terms included in the controller are as follows:

(Za’” Le, + Lf) wp(a) = [ g

i=1 w Sier—ziOns
a 341 1 0
(Z il Laj + L_{) h(n) = [ ' ’:‘___ (-UI'.—T’} +f2(771-’72~773)> d:
on; B 1 0f 67}1 5f2 37]2 0 f2 On3
—L, = —_— J2Z7BY 4-
(Z ) ./:, Zip1 — :-( v) (31}1 oz 0772 9z t Ons 0= d

an; In; a1 07)2
() (o e

,‘ 3 anJ _ Titl 1 afg 3171 af? 07]2 df? 87’3
C (Z—TLGJ th(ﬂ)"'/ ——___:i+1‘ (— )(am 9= +d712 - +51z¥) d:

By

C‘L"}h(n) = /jmjl—: <%f1(771s03) + gi‘fz('h M2.73)

+a_ff3(771 2 773)) dz
(6.53)
The controller was tuned to give an overdamped response between the output 7' and
the reference input v'. In particular. the parameters ¥, and 4, were chosen to be:

11 = 3.0min. 3, = 0.5 min?

to achieve the following time constant and damping factor:

= 0.70Tmin . ¢ = 2.12

6.7.3 Evaluation of controller performance

Several simulation runs were performed to evaluate the performance of the distributed
output feedback controller of Eq.6.52. The method of finite differences was employed
to derive a finite dimensional approximation of the output feedback controller of
Eq.6.52. with a choice of 200 discretization points. In all the simulation runs, the

process was initially assumed to be at steady-state.
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In the fist simulation run, we addressed the reference input tracking capabilities
of the controller. Initially, a2 30% increase in the reference inputs v*. i = 1.--- .5 was
imposed at time ¢ = 0.0 min. Figure 6.5 shows the corresponding output profiles.
It is clear that the controller enforces the requested input/output response in the
closed-loop system and regulates the output at the new reference input values. Thé
corresponding input profiles for each control actuator are depicted in Figure 6.6. We
observe that the control action. required by each actuator to drive the corresponding
output to the new reference value, increases as we approach the outlet of the reactor.
This is expected, because the amount of heat required to maintain the reaction rate
that vields the necessary conversion increases along the length of the reactor. Figure
6.7 shows the evolution of the concentration of the species B throughout the reactor
while Figure 6.8 shows the profile of the concentration of the species B at the outlet
of the reactor. We observe that by using a finite number of control actuators. we

achieve satisfactory control of the output variable Cg at all positions and times.

For the sake of comparison. we also consider the control of the reactor using a
controller which was designed on the basis of a model resulting from discretization of
the original PDE system in space. In particular. the method of finite differences was
used to discretize the original PDE model of Eq.6.49 into a set of five (equal to the
number of control actuators) ordinary differential equations in time. Subsequently. an
input /output linearizing controller [KA91] was designed on the basis of the resulting
ODE model. The corresponding output profiles are shown in Figure 6.9. while Figure
6.10. shows the profile of the concentration of the species B in the outlet of the
reactor. [t is clear that the controller leads to poor performance. because it does not

explicitly take into account the spatially varying nature of the process.
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6.7.4 Practical implementation issues

The distributed output feedback controller of Eq.6.52 assumes that the jacket tem-
perature can be manipulated directly. In practice. the jacket temperature is usually
manipulated indirectly through the jacket inlet flow rate. This can be achieved in a
straightforward way by designing a controller to ensure that the jacket temperature

obtains the values requested by the distributed controller of Eq.6.52.

Specifically, under the assumption of perfect mixing and constant volume. the

dynamic model of the jacket takes the form:
dT! . _F! L 4l 1 .
) = t Tt ]38 _L __—.Tr s d=-=T"
dt Lo = 1) v * Pi s V) (/ Zig1 — i (=.0)d J)
( ;’0 — Ti) {
+__J_‘/?—J-uf“

(6.54)

t=1,....D

where F, is the steady-state jacket inlet flow rate. V7 is the jacket volume. p;. c;;
are the density and heat capacity of the fluid in the jacket. T;O is the temperature of
the inlet stream to a jacket. and u‘}-, is the jacket inlet flow rate (chosen as the new
manipulated input) in deviation variable form. Requesting a first-order response of
the form:

7’jcd—d? fT =g (6.55)

where 7. is the time constant. the necessary controller takes the form:

. o . . ) L'w S+l 1 ;
(@ = TV = ;e (Tl = THF! + </ — T(s.t)dz— TJ)]

P; Cpj Si4l T 3
A/]c(Tj'O - T;)

uy =

(6.56)

The parameter «,. should be chosen such that the response of Eq.6.55 is sufficiently

fast compared to the response of Eq.6.51, while estimates of T,(z.t) can be obtained
from the state observer of Eq.6.52.

The performance of the control scheme resulting from the combination of this

controller with the distributed controller of Eq.6.52 was evaluated through simulations
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on the plug-flow reactor. The values used for the parameters and the steady-state
values of the jacket inlet flow rate Fi,, i = 1.....5. are given in Table 6.1. Figure
6.11 shows the output profiles for the same 30 % increase in the value of the reference
inputs as previously (the profiles for the jacket inlet flow rate are displaved in figure
6.12). Clearly. the performance of the control scheme is excellent. enforcing closed-
loop output responses which are very close to the ones obtained by neglecting the

jacket dynamics (compare with Figure 6.3).

6.8 Conclusions

In this chapter, we developed an output feedback control methodology for systems de-
scribed by quasi-linear first-order hyperbolic partial differential equations. for which
the manipulated input, the controlled output and the measurable output are dis-
tributed in space. The central idea of our approach is the combination of theory of
partial differential equations and concepts from geometric control. Initially, a con-
cept of characteristic index was introduced and used for the synthesis of distributed
state feedback controllers that guarantee output tracking in the closed-loop system.
Conditions that ensure exponential stability of the closed-loop system were derived.
Analytical formulas of output feedback controllers were also derived through com-
bination of suitable state observers with the developed distributed state feedback
controllers. The proposed control methodology was implemented, through simula-
tions, on a nonisothermal plug-flow reactor, modeled by three quasi-linear hyperbolic
PDEs. Comparisons with a control method that involves discretization in space of
the original PDE model and application of standard nonlinear control methods for

ODE systems established that the new control method yields superior performance.
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Notation

Roman Letters
A A(z). A(z)
b*(=)

c'(z)

matrices

distribution function of i-th actuator
performance specification function for i-th output
inlet concentration of the species A
constant matrices

concentration of the species A
concentration of the species B

heat capacity of the reactor fluid

heat capacity of the jacket fluid

activation energies

vector field

outlet flow rate

inlet flow rate

steady-state value for inlet flow rate to the i-th jacket
vector field associated with the manipulated variable
controlled output scalar field
pre-exponential constants

total number of control actuators
measurable output scalar field

inlet temperature of the species A

inlet temperature of the fluid in the jacket
temperature of the jacket

temperature of the reactor

temperature of the wall

time

"w heat transfer coefficient

manipulated variable

manipulated input vector

it i-th manipulated input

volume of the jacket

volume of the reactor

reference input vector

o reference input for the i-th actuator

fluid velocity

vector of state variables

controlled variable

controlled output

spatial coordinate
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Greek Letters

Yk Ve
AH,.AH,
U

Pm

P;

OJ

a

Math Symbols

C:’

H

Lk
Lkh
L,L5 R

TN EEI0 9

11112
(. .

adjustable parameters

enthalpy of the reactions

observer state vector

density of the fluid in the reactor

density of the fluid in the jacket
characteristic index of 7' with respect to @
characteristic index of § with respect to u

= bounded linear operator

infinite dimensional Hilbert space
Lie derivative of a scalar field h with respect to the vector f
k-th order Lie derivative

mixed Lie derivative

bounded linear operator
bounded linear operator
bounded linear operator
bounded linear operator

real line

t—dimensional Euclidean space
belongs to

transpose

standard Euclidean norm

2-norm in H

inner product in R"
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Chapter 7

Robust Control of Hyperbolic
PDE Systems

7.1 Introduction

One of the most important theoretical and practical problems in control is the one
of designing a controller that compensates for the presence of mismatch between the
model used for controller design and the actual process model. Typical sources of
model uncertainty include unknown or partially known time-varying process param-
eters. exogenous disturbances and unmodeled dynamics. It is well-known that the
presence of uncertain variables and unmodeled dynamics. if not taken into account
in the controller design. may lead to severe deterioration of the nominal closed-loop
performance or even to closed-loop instability.

Research on robust control of PDEs with uncertain variables has been limited to
linear systems. For linear parabolic PDEs, the problem of complete elimination of
the effect of uncertain variables on the output via distributed state feedback (known
as disturbance decoupling) was solved in [Cur84, Cur86]. Research on the problem

of robust stabilization of linear PDE systems with uncertain variables led to the
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development of H* control methods in the frequency-domain (e.g. [CG86. POST.
GX89]). The derivation of concrete relations between frequency domain and state-
space concepts for a wide class of PDE systems in [JN88] motivated research on the
development of the state-space counterparts of the H* results for linear PDE systems
(see [Keu93, BK91] for example). Within a state-space framework. an alternative
approach for the design of controllers for linear PDE systems. that deals explicitly
with time-invariant uncertain variables. involves the use of adaptive control methods

[WB89, HB94, Dem94, Bal93].

On the other hand, the problem of robustness of control methods for PDE systems
with respect to unmodeled dynamics is typically studied within the singular pertur-
bation framework (e.g.. [WB89]). This formulation involves synthesizing a controller
on the basis of a reduced-order PDE model (which captures the dominant (slow)
dynamics of the process) and deriving conditions under which the same controller
stabilizes the actual closed-loop system (which includes the unmodeled dynamics).
This approach was employed in [WB89] to establish robustness of a class of finite-
dimensional adaptive controllers, which asymptotically stabilize a PDE system with
time-invariant uncertain variables. with respect to unmodeled dynamics. provided
that they are stable and sufficiently fast. Furthermore. the singular perturbation
framework allows studving the control and order reduction of PDE systems with fast
and slow dynamics. Soliman and Ray [SR79] utilized singular perturbation tech-
niques to design well-conditioned state estimators for two-time-scale parabolic PDE
systems. while Dochain and Bouaziz [DB93] recently used singular perturbations to
reduce the parabolic PDE model that describes a fixed-bed reactor with strong dif-

fusive phenomena to an ODE one.

In this chapter. we consider systems of first-order hyperbolic PDEs with uncer-
tainty, for which the manipulated input and the controlled output are distributed in

space. The objective is to develop a framework for the synthesis of distributed robust
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controllers that handle explicitly time-varving uncertain variables and unmodeled dyv-
namics. For systems with uncertain variables, the problem of complete elimination of
the effect of uncertainty on the output via distributed feedback is initially considered:
a necessary and sufficient condition for its solvability as well as explicit controller
syvnthesis formulas are derived. Then. a distributed robust controller is derived that
guarantees boundedness of the state and achieves asymptotic output tracking with
arbitrary degree of asymptotic attenuation of the effect of uncertain variables on the
output of the closed-loop system. The controller is designed constructively using Lya-
punov's direct method and requires that there exist known bounding functions that
capture the magnitude of the uncertain terms and a matching condition is satisfied.
The problem of robustness with respect to unmodeled dynamics is then addressed
within the context of control of two-time-scale systems modeled in singularly per-
turbed form. Initially, a robustness result of the bounded stability property of a
reduced-order PDE model with respect to stable and fast dvnamics is proved. This
result is then used to establish that the controllers which are synthesized on the basis
of a reduced-order slow model. and achieve uncertainty decoupling or uncertainty
attenuation. continue to enforce these control objectives in the full-order closed-loop
system. provided that the unmodeled dynamics are stable and sufficiently fast. The
developed control method is tested through simulations on a nonisothermal fixed-bed
reactor. where the reactant wave propagates through the bed with significantly larger

speed than the heat wave. and the heat of reaction is unknown.
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7.2 First-order hyperbolic PDEs

7.2.1 Description of hyperbolic PDEs with uncertain variables

We will focus on systems of quasi-linear hyperbolic first-order PDEs in one spatial

variable. with the following state-space description:

Z—j - A(I)@’EH(I)+g(x)b(;)a+W(x)r(zw(t) o)
ys = Ch(l')

subject to the boundary condition:

Ciz(a,t) + Cz(B.t) = R(t) (7.2)

and the initial condition:
z(z.0) = xo(z) (7.3)
In the above description. z(z,t) = [zy(z.t) -++ za(z.t)]T denotes the vector of state

variables. z(z.t) € H"[(a,8).R"], with H" being the infinite-dimensional Hilbert
space of n-dimensional vector functions defined on the interval [a, 3] whose spatial
derivatives up to n-th order are square integrable. and = € [a, 3] C R and ¢ € [0. o0).
denote position and time, respectively. i = [@' --- @']T € R! denotes the vector of
manipulated inputs. § = [6; ---6,] € IR? denotes the vector of uncertain variables.
which may include uncertain process parameters or exogenous disturbances, g, =
[} -+ §!]T € IR denotes the vector of controlled outputs. Figure 7.1 shows the
location of the manipulated inputs and controlled outputs in the case of a prototype
example. A(z).W(z) are sufficiently smooth matrices of appropriate dimensions.
f(x) and g(zx) are sufficiently smooth vector functions. h(z) is a sufficiently smooth
scalar function. C.C, are constant matrices of appropriate dimensions, R(t) is a
time-varying column vector, and zo(z) € H[(a, 3), R"]. with H[(a. 3), R"} being the

Hilbert space of n-dimensional vector functions which are square integrable on the
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Figure 7.1: Specification of the control problem in a prototype example.
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interval [a, 8]. b(z) is a known smooth vector function of the form:

b(z) = [(H(z=z)—H(z=2))b"=z) - (H(z — =) — H(z = 2141)) §(2)]
(7.4)
where H denotes the standard Heaviside function and &*(=) describes how the control
action #'(t) is distributed in the space interval [z;, z;4;]. 7(2) is a known matrix whose
(i, k) — th element is of the form ri(z). where the function ri(z) specifies the position
of action of the uncertain variable 6 on [z;,zi41]. C is a bounded linear operator.

mapping H" into R/, of the form:
C = [(H(z—=2)—H(z=2))C" -+ (H(z—=z) - H(: —241))CT  (7.5)

where the operator C' depends on the desired performance specifications and in most

practical applications is assumed to be of the form:

i(t) = C‘h(a:)=_/.:'+lc‘(:)h(x(:.t))d: (7.6)

where ¢!(z) is a known smooth function. For simplicity, the functions b‘( ).t (=) ri(=).
t=1,.... [. are assumed to be normalized in the interval [a, 3]. i.e.. Z / b‘ (z)dz =
Z/-I+li: :=Z/ “- z)dz = 1. -
i=17% =17

The quasi-linear hyperbolic PDE system of Eq.7.1. with 6(f) = 0. describes the
majority of convection-reaction processes arising in chemical engineering [RAAS6]
and is a natural generalization of linear models considered in [Ray81. CD95] in the
context of linear distributed state estimation and control. The assumption of affine
and separable appearance of @ and 6 is a standard one in uncertainty decoupling
and robust control studies for linear PDEs (e.g., [Cur84, Cur86]), and is satisfied
in most practical applications, where the jacket temperature is usually chosen to be
the manipulated input (see for example [Ray81, CD95]), and the heat of reactions,
the pre-exponential constants, the temperature and concentrations of lateral inlet

streams, etc. are typical uncertain variables.
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7.2.2 Preliminaries

In this subsection, we review a basic stability result (converse Lvapunov theorem) for
systems of the form of Eq.7.1 and introduce a concept of characteristic index between

the output §* and the uncertainty vector 4 that will be used in our development.

Theorem 7.1 [Wan66a) (Converse Lyapunov theorem): Consider the system
of Eq.7.1. with (|z] = |0] = 0). and assume that the operator of Fq.6.1{ generates

a locally exponentially stable semigroup. Then, there ezist a smooth functional | :

H" x [a, 8] = Rq of the form:
b
V() = / 2Tq(=)zd= (7.7)

where q(z) ts a known positive definite function satisfying Z/Zf )z = 1, and
a set of positive real numbers a,,as,az.ay,as such that if ||.r||2 < a5 the following

conditions hold: )
ai[|z|[3 < V(1) < asl|z][3
dv' 9V Jdz
=5 [A( )—+ flz } —as|z|[3 (
aVv

||79;||2 < aqlz|)2

TI
o
—

Remark 7.1: Note that. for infinite-dimensional systems. stability with respect to
one norm does not necessarily imply stability with respect to another norm. This
difficulty is not encountered in finite-dimensional systems since all norms defined in
a finite dimensional vector space are equivalent. In our case. we choose to study
stability with respect to the L,-norm since for hyperbolic systems it represents a
measure of the total energy of the system at any time. and thus exponential stability
with respect to this norm implies that the system’s total energy tends to zero as
t — oo (i.e.. since V() is a quadratic function: V(t) — 0 as { — oo = exponential

stability).
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We now define a concept of characteristic index between the output 7* and the un-
certainty vector 6, for systems of the form of Eq.7.1 that will be used to express
the solvability condition of the uncertainty decoupling problem via distributed state

feedback and the matching condition in the robust uncertainty attenuation problem.

Definition 7.1: Referring to the system of Eq.7.1. we define the characteristic inder
of the output §' with respect to the vector of uncertainties 8 as the smallest integer &'

for which. there exists k € [1.q] such that:

51
: 2. 0z; : _
Cilw, (Z%La, + Lf) h(z)ri(z) # 0 (7.9)
=1 -
where Wy denotes the k-th column vector of the matrir W. or & = oc if such an

integer does not exist.

From the above definition. it follows that é' depends on the structure of the process
(matrices A(z), W(z) and functions f(z), h(z)), as well as on the position of action of
the uncertain variables 6 (functions ri(z)) and the function ¢(z). In order to simplify
the statement of our results., we define the characteristic index of the output vector

§ with respect to the vector of uncertainties § as § = min{§'.4%..... §'}.

7.3 Uncertainty decoupling

In this section. we consider systems of the form of Eq.7.1 and address the problem
of synthesizing a distributed state feedback controller that stabilizes the closed-loop
system and forces the output to track the external reference input in a prespecified
manner for all times. independently of the uncertain variables. More specifically, we

consider control laws of the form:

= S(z)+ s(z)v (7.10)
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where S(z) is a smooth nonlinear operator mapping H" into IR’. s(z) is an invertible
matrix of smooth functionals. and v € IR! is the vector of external reference inputs.

Under the control law of Eq.7.10, the closed-loop system takes the form:

0
G = ARG+ M)+ S + g+ WGl
5 = Chiz)

It is clear that feedback laws of the form of Eq.7.10 preserve the linearity with respect
to the external reference input v. We also note that the evolution of the closed-loop
system of Eq.7.11 is locally governed by a strongly continuous semigroup of bounded
linear operators, because b(z)S(z), b(z)s(z), r(s)0(t) are bounded. finite dimensional
perturbations, ensuring that the solution of the system of Eq.7.11 is well-defined.
Proposition 7.1 that follows allows specifving the order of the input/output response

in the nominal closed-loop system (the proof can be found in the appendix F).

Proposition 7.1: Consider the system of Eq.7.1, for which assumption 6.1 holds.
subject to the distributed state feedback law of Eq.7.10. Then, referring to the closed-
loop system of Eq.7.11:

a) the characteristic inder of §, with respect to the external reference input v is equal
to o, and

b) the characteristic inder of §, with respect to § is equal to §, if § < 0.

The fact that the characteristic index between the output § and the external reference
input v is equal to o suggests requesting the following input/output response for the
closed-loop system:

d° s dys

Yo = — '_S=‘ 7.12
o i +eo+m Jf TYs = (7.12)

where 41.72.- .9, are adjustable parameters which can be chosen to guarantee in-
put/output stability in the closed-loop system. Referring to Eq.7.12, note that. mo-
tivated by physical arguments, we request, for each pair (§},v'), ¢ = I,....[, an

input/output response of order ¢ with the same transient characteristics (i.e. the pa-
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rameters 7k are chosen to be the same for each pair (j:.v'})). The following theorem

provides the main result of this section (the proof is given in the appendix F).

Theorem 7.2: Consider the system of Eq.7.1 for which assumption 6.1 holds. and
assume that: t) the roots of the equation 1 + v15 + -+ + 1,57 = 0 lie in the open
left-half of the complex plane, 1) the zero dynamics (Eq.6.35) is locally exponentially
stable. and 1ii) there ezist a positive real number & such that max{}|8]], 1]} < é.
Then, the condition o < & is necessary and sufficient in order for a distributed state
feedback law of the form of Eq.7.10 to completely eliminate the effect of 6 on i, in the

closed-loop system. Whenever this condition is satisfied. the control law:

-1

o—1
i = %CLQ(Za—f’-'LmLL,) h(z)b(=)
j=1 7"

{ —Chiz) - € (ZBI’L )uh(r)}

v=1

(7.13)

a) guarantees boundedness of the state of the closed-loop system,

b) enforces the input/output response of Fq.7.12 in the closed-loop system.

Remark 7.2: Referring to the solvability condition of the problem, notice that it
depends not only on the structural properties of the process but also on the shape
of the actuator distribution functions b(=), the position of action of the vector of
uncertain variables (matrix function r(z)) and the performance specification functions
¢(z). since ¢ and 6 depend on ¢(z),b(z) and ¢(z), r(z). respectively. This implies that
it is generally possible to select (b(z),c(z)) to allow achieving uncertainty decoupling

via distributed state feedback (see illustrative example in remark 7.5 below).

Remark 7.3: The solvability condition of the problem and the distributed state
feedback controller of Eq.7.13 were derived following an approach conceptually similar
to the one used to solve the counterpart of this problems in the case of ODE systems

(e.g. [DC95]). We note that this is possible, because, for the system of Eq.7.1: a)
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the input/output spaces are finite dimensional: and b) the input/output operators

(functions c'(z), b*(z)) are bounded.

Remark 7.4: We note that the distributed state feedback controller of Eq.7.13 that
solves the uncertainty decoupling problem is identical to the one derived in [CD95]
which solves the output tracking problem via distributed state feedback. while the
conditions i) and i) of theorem 7.2. as proved in [CD95], ensure that the controller

of Eq.7.13 exponentially stabilizes the nominal closed-loop svstem (6(t) = 0).

Remark 7.5 (Illustrative example): Consider a plug-flow reactor with lateral
feed, where a first-order reaction of the form A — B takes place. Assuming that the
lateral flow rate is significantly smaller than the inlet flow rate (i.e. v; > F. where v,
denotes the velocity of the inlet stream to the reactor and F’ denotes the lateral flow

rate per unit volume). the dynamic model of the process is given by:

ocC ocC
S = —ug = kCa+ F(Ca—Ca)
Py 7 -
o - —vz(?—z ( '\H)kCA +F(T-T)+ Ue (T, - T) (7.14)
at S pscys preosVe

C4(0.t) = Cao. T(0.t)=To
where C4(z.t) and T(z.t) denote the concentration of the species A and the tempera-
ture in the reactor. = € [0, 1]. T;(=.t) denotes the wall temperature, C 4;. T} denote the
concentration and the temperature of the lateral inlet stream. £ denotes the reaction
rate constant. AH denotes the enthalpy of the reaction. ps. ¢,y denote the density
and heat capacity of the reacting liquid. l/,, denotes the heat transfer coefficient. and
V7 denotes the volume of the reactor. Set z; = C4, 20 =T, u =T, -T,5,0, = T, - T,
0 =Cat~Cuis.y =T. Ri(t) = Cao(t) and Ro(t) = To(t), where T}, Tjs. C 445 denote
steady-state values. Assume that for the control of the system there is available one
control actuator with distribution function b(z): let also ry(z) and r3(z) determine

1
the position of action of §; and 8,. respectively, and j(t) = / c(z)zo(z.t)dz; then the
0
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system of Eq.7.14 can be written as:

or Jz
—atl = —U[——a; - k.l?l + F(C_.u_, - 1'1) + Fe?
a 3 "‘AH L'rw
—f—z- = -y 1.‘2+( )k$1+—'_~,(]-}8_r2)+F(:rls-I2)
ot 0z preps pscosVe -
v (7.15)
+———=b(z)a + Fri(z)01(t)
prcorVi

gt) = /OIC(Z)1’2(~"»t)dZ~ 71(0,8) = Ry, ,(0.t) = Ry

Performing a time-differentiation of the output j(t), we have:

dj [, ( 8z,  (—AH), Ue R
—(E = ,/()C(~)( (/] 9= + Py L$1+m(T], .’1.‘2)+F(Tls“1f2) d:

Uy
prcpfVs

+ /Olc(:)b(:)ﬁd: + F/Olc(z)rl(:)ol(t)d:

(7.16)
From the above equation and the result of theorem 7.2, it follows that if (¢(z).b(2)) =
/ lc(z)b(.-:)d: # 0 (in which case o = 1), then the uncertainty decoupling problem via
d(i)stributed state feedback is solvable as long as o < §, that is when (¢(z).7(2)) =

1
/ c(z)r1(z)d= = 0. Whenever this condition holds, the necessary controller can be
0

derived from the synthesis formula of Eq.7.13.

7.4 Robust control: uncertain variables

In this section. we consider systems of the form of Eq.7.1 for which the condition
o < 6 is not necessarily satisfied and address the problem of synthesizing a distributed

robust nonlinear controller of the form:
i = S(z)+35(z)v+ Rz, t) (7.17)

where S(r) is a smooth nonlinear operator mapping H" into IR/, 5(z) is an invertible
matrix of smooth functionals, where R(z, t) is a vector of nonlinear functionals, that

guarantees closed-loop stability. enforces asymptotic output tracking, and achieves
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arbitrary degree of asymptotic attenuation of the effect of uncertain variables on
the output of the closed-loop system. The control law of Eq.7.17 consists of two
components, the component $(z) + 3(z)v which is used to enforce output tracking
and stability in the nominal closed-loop system, and the component R(z.t) which is
used to asymptotically attenuate the effect of 6(¢) on the output of the closed-loop
system. The design of S(x) + 3(z)v will be performed employing the geometric ap-
proach presented in the previous section, while the design of R(z.t) will be performed
constructively using Lyapunov’s direct method. The central idea of Lyapunov-based
controller design is to construct R(z.t), using the knowledge of bounding functions
that capture the size of the uncertain terms and assuming a certain path under which
the uncertainty may affect the output, so that the ultimate discrepancy between the
output of the closed-loop system and the reference input can be made arbitrarily

small by a suitable selection of the controller parameters.

We will assume that there exists a known smooth (not necessarily small) vector
function. which captures the magnitude of the vector of uncertain variables 6 for
all times. Information of this kind is usually available in practice. as a result of
experimental data. preliminary simulations, etc. Assumption 7.1 states precisely our

requirement.

Assumption 7.1: There erists a known vector 8(t) = [61(t) --- 0,(t)]. whose ele-

ments are continuous positive definite functions defined on t € {0.00) such that:

18:(2)] < O0i(t), k=1..... q (7.18)

Assumption 7.2 that follows characterizes precisely the class of systems of the form of
Eq.7.1 for which our robust control methodology is applicable. It determines the path
under which the vector of uncertain variables 6(¢t) may affect the output of the closed-
loop system. More specifically. we assume that the vector of uncertain variablesb o(t)

enters the system in such a manner such that the expressions for the time-derivatives
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of the output § up to order ¢ — 1 are independent of §. This assumption is signifi-
cantly weaker than the solvability condition required for the uncertainty decoupling
problem (cf. theorem 7.2) and is satisfied by many convection-reaction processes of
practical interest (including the plug-flow and fixed-bed reactor examples studied in

this chapter).
Assumption 7.2: o < 4.

Theorem 7.3 provides the main result of this section (the proof is given in the appendix

F).

Theorem 7.3: Consider the system of Eq.7.1, for which assumptions 6.1, 6.2, 7.1
and 7.2, and the conditions (1.11,11t) of theorem 7.2 hold. under the distributed statc

feedback law of the form:

i = |CL, Zax’L Lf) h(z)b(2)

v—1
ol _v_zl"c (EBI’LQ,JFL,) h(z)

v=i7e (7.19)
—Z (ZQ—?L% + L,) h()
v=1To =1 "
a v-1
=2K(t)A(z, C (Z xJLaJ + Lf) h(z) - -::—lv
u-l Yo a

where o,4; are adjustable parameters. and ;. are chosen so that v¢ > 0 and the
polynomial s°~! 4+ =ts A Zs+ X =0 is Hurwitz, A(z.9) is an [ x|

diagonal matriz whose (i.i) — th is of the form
-1

v—1
Ar.0) = IZ—Cx (Zar]LaJ + Lf) h(z) — :y—v ‘| +6| .and the

v=1 RL
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time-varying gain K (t) is of the form:
o—1
Ox; = -
ZCka Z La, + L h(x)ri(z)0c(t)] . (7.20)

Then, for each positive real number d. there exist a pair of positive real numbers (é. 0")
such that

if max{||zoll2, |16]1, 1411} < & and ¢ € (0,67]. then:

a) the state of the closed-loop system is bounded. and

b) the output of the closed-loop system satisfies:

-1
o
—_—
—_

lim |§' — 0| <d, i=1,....1 (7.
t—oc

Remark 7.6: The calculation of the control action from the controllers of Eqs.7.13-
7.19 requires algebraic manipulations as well as differentiations and integrations in

space. which is expected because of their distributed nature.

Remark 7.7: The robust nonlinear controller of Eq.7.19 guarantees an arbitrary
degree of asymptotic attenuation of the effect of a large class of uncertain time —
varying variables on the output (those that satisfy assumption 7.2). In many practical
applications. there exist unknown time-invariant process parameters which may not
necessarily satisfy assumption 7.2. Since the manipulated input and controlled output
spaces are finite-dimensional, the asymptotic rejection (in the sense that Eq.7.21
holds) of such constant uncertainties can be achieved by combining the controller of

Eq.7.19 with an external linear error-feedback controller with integral action [DC95].

Remark 7.8: Comparing the uncertainty decoupling result of theorem 7.2 with the
result of theorem 7.3 (Eq.7.21). we note that the latter is clearly applicable to a larger
class of systems (those satisfying the condition ¢ < §), achieving. however, a weaker
performance requirement. More specifically, in the uncertainty decoupling problem

a well-characterized input/output response is enforced for all times independently of
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6(t). while in the case of robust uncertainty rejection the output error (§* — ¢') is
ensured to stay bounded and asymptotically approach arbitrarily close to zero (by

appropriate choice of the parameter ).

Remark 7.9 (Illustrative example (cont’d)): Whenever (¢(z).7(z)) # 0 (which
implies that 6 = ¢ = 1), the uncertainty decoupling problem via distributed state
feedback is not solvable. However, since § = o, we have that the matching condition
of our robust control methodology is satisfied. Assuming that there exists an known
upper bound 6(t) on the size of the uncertain term 6(t). such that |8] < §(t). the

control law of theorem 7.3 takes the form:

_ Uw ! AR Ng-1 ] . ! .
u [pfcpﬂ";/o c(2)b(z)dz=] {70 (l /Oxgd..)

1 ¢ —/ T
e (02 2 (0 ) £ F(T - 1)) o
o 0z prcys prcpsVs

1
/ z2(z.t)dz - v
0

~20(t)—;
]/0 To(z.t)dz—v|+ 0

7.5 Two-time-scale hyperbolic PDE systems

In the rest of the theoretical part of this chapter. we will analyze the problem of
robustness of the controllers of Eqs.7.13-7.19 with respect to stable unmodeled dy-
namics. This problem will be addressed within the broader context of control of
two-time-scale hyperbolic PDE systems. modeled within the framework of singular
perturbations. Such a formulation provides a natural setting for addressing robust-
ness with respect to unmodeled dynamics. To this end. in this section, we will derive
two general stability results for two-time-scale hyperbolic PDE systems which will
be used in the next section, to derive conditions that guarantee robustness of the

controllers of Eqs.7.13-7.19 to stable unmodeled dynamics.

245

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.5.1 Two-time-scale decomposition

We will focus on singularly perturbed hyperbolic PDE systems with the following

state-space description:

d 7) d ;
a—: = Aul(c )5:5 + Aw(z) 5~ d -+ filz) + Qi (z)n + gr(x)b(=)a + Wi (x)r(2)0(1)
a 0 an )
th] = AZl(x)a_:f' + Azz(i)": + fo(z) + Q2(z)n + g2(2)b(=)a + Wi(x)r(2)6(¢)
g = Ch(z)
(7.23)
subject to the boundary conditions:
CnI(d,t)'i‘Cu.’B(b.t) = Rl(t) (__.)4)
(.2
Cun(a.t) + Can(b,t) = Ra(t)
and the initial conditions:
z(z.0) = zo(z) -
7(z.0) = no(:) (1:25)
where z(z.t) = [z1(z.8) -+ zo(z )T p(zet) = [m(z.t) - pp(=.t ]T denote vec-
tors of state variables. z(z.t) € H™[(a.8).R". n(z.t) € H™[(a.d).R?]. with

HY[(a. 8).IR] being the infinite-dimensional Hilbert space of j-dimensional vector
functions defined on the interval [a.3] whose spatial derivatives up to i-th order
are square integrable. An(x). Apa(z). Agg(x). Agg(x) are sufficiently smooth matrices.
fi(z), fa(z ). g2(z) are sufficiently smooth vector functions.

Qi(z).Q2(z). Wi(x). Wy(x) are sufficiently smooth matrices. ¢ is a small parameter
which quantifies the degree of coupling between the fast and slow modes of the sys-
tem, and R,(t). R2(t) are time-varying column vectors. The following assumption

states that the two-time-scale system of Eq.7.23 is hyperbolic.

Assumption 7.3: The (n + p x n + p) matriz:

_ | Aul(z) Ap(x) -
Ale) = [Al:(x) AZ(w)] (7.20)

is real symmetric, and its eigenvalues satisfy:

M(z) S0 S Me(2) <0 < Mgy (2) S -+ < A7) (7.27)
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for all z € H*[(a, 3).R™).

The time-scale multiplicity of the system of Eq.7.23 can be explicitly taken into ac-

count by decomposing it into separate reduced-order models associated with different

time-scales. Defining £z = Au(.’l.')_%f—"i-f{(x). Lyjn = Alj(l')'g_r-"*‘Q\j(l')n. t.) = 1.2

and setting ¢ = 0, the PDE system of Eq.7.23, reduces to a system of coupled partial

and ordinary differential equations of the form:

%f‘ = Luz+ Lo, + qi(2)b(z)a + Wi(z)r(2)8(1)
0 = Luz+ Lagns + g2(z)b(z)a + Wa(z)r(2)6(¢) (7.28)
gs = Ch(z)

The solution of the ODE L3z + L2275 + ga(2)b(2)u + Wao(z)r(z)8(t) = 0 subject to

the boundary conditions of Eq.7.24 is of the form:
ns = L3 (Laz+ ga(z)b(z)a + Walz)r(2)8(t)) (7.29)

The slow subsystem. which captures the slow dynamics of the system of Eq.7.23.

takes the form:

oz = : -
5 = Lz+Gla)b(=)a+W(z)r(=)8(t) (7.30)
s = Ch(z)

where Lz = L1 ~ L1,£5, Lz, G(z) = qi(z) — L12£57 g2(x). W(z) = Wi(z) —
t
L12L5; Wy(z). Defining a fast time-scale r = - and setting € = 0. the fast subsystem.

which describes the fast dynamics of the system of Eq.7.23. takes the form:
0 .
= Laz+ Lan + ga(2)b(2) + Wa(z)r(z)6(2) .
or (7.31)

where z,8 are independent of time.

7.5.2 Stability results

In this subsection, we will give two basic stability results for systems of the form of

Eq.7.23 which are important on their own right and will also be used in the subsequent
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sections to prove a robustness property of the controllers of Eqs.7.13-7.19 with respect
to exponentially stable unmodeled dynamics. We will begin with the statement of
stability requirements on the fast and slow subsystems. In particular. we assume that

the fast subsystem of Eq.7.31 and the unforced (& = 0) slow subsystem of Eq.7.30

=40
are locally exponentially stable. Assumptions 7.4 and 7.5 that follow formalize these

requirements.

Assumption 7.4: The differential operator L,3n generates an exponentially stable

strongly continuous semigroup Uy(t) that satisfies:

t

—aee - a5
NUs ()l < Kre Te. t>0 (7.32)

where Ky > 1. and a; is some positive real number.

Assumption 7.5: The differential operator Lx generates a locally (i.e.. for r € H
that satisfy||z||, < 6., where 6, is a positive real number) exponentially stable strongly

continuous semigroup Us(t) that satisfies:
()2 £ Keem™f, t>0 (7.33)
where Ky > 1, and a, is some positive real number.

From the above assumption and using Eq.6.15. the smoothness of G(x) and W'(z).
and the fact that for [|z||; < §.. there exists a pair of positive real numbers M. M,
such that ||G(x)lls £ M; and ||W({z)]], < M,, we have that the following estimate

holds for the system of Eq.7.30:
t
lell, < Kullzollze™ + &, [ == Glx)b( =) lla(r)ldr

t [
+1\’3/(; e'a.-(t—-r)l|‘/V(.2:)7‘(:)“2|0(1-)|d7- (‘_34)
< Kl|zoll2e™% " + M,||z]| + M.]|0}|

[\'31‘7[1”17(:)”2‘ M, = K Mo||r(2)])2
Qs as
(llzoll2) and the inputs (u.8) are sufficiently small to satisfy A,||zollz + M|la|| +

where M, = , provided that the initial condition
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M,||6]| < 6. Theorem 7.4 provides the main stability result of this section (the proof

is given in the appendix F).

Theorem 7.4: Consider the system of Eq.7.23 with @ = 0. for which assumptions
7.5, 7.6 and 7.7 hold, and define n; := n~n,. Then, there ezist positive real numbers
(K,, &, Ky,a;), such that for each positive real number d. there exist positive real
numbers (6, €%) such that if max{||zollz, ||ns 2 11611 1611} < & and € € (0.€]. then.
forallt >0:

lzll2 £ K,l|zo|]2e~% + M,||0|] + d (7.35)
!
Inslla < Kyllngllee '€ +d

Theorem 7.4 establishes a robustness result of the boundedness property that the slow
subsystem of Eq.7.30 possesses, with respect to exponentially stable singular pertur-
bations, provided that they are sufficiently fast. Theorem 7.5 that follows establishes.
another conceptually important result, namely that the exponential stability prop-
erty of a reduced system (consider the system of Eq.7.30 with |a| = [6(¢)] = 0) is
preserved in the presence of exponentially stable singular perturbations. The proof of

this theorem in analogous to the one of theorem 7.4 and will be omitted for brevity.

Theorem 7.5: Consider the system of Eq.7.23 with |u| = |6(t)] = 0. for which
assumptions 7.3. 7.4 and 7.5 hold, and define n; := n—1ns. Then, there exist positive
real numbers (8. ¢%) such that if max{||zo||2. |7y ]2} < 8 and € € (0.€7). the system
of £q.7.23 is exponentially stable (i.e. Eqs.7.35-7.36 hold with d =0).

7.6 Robustness with respect to unmodeled dynamics

In this section. we utilize the general stability results of the previous section to estab-
lish robustness properties of the controllers of Egs.7.13-7.19 with respect to unmod-

eled dynamics. In particular, we use the hyperbolic singularly perturbed system of
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Eq.7.23 to represent the actual process model. and we assume that the model which
is available for controller design is the slow system of Eq.7.30. Our objective is to
establish that the controllers of Eqs.7.13-7.19, synthesized on the basis of the slow
system, are robust to unmodeled dynamics in the sense that thev enforce approxi-
mate uncertainty decoupling and robust disturbance rejection in the actual model of

Eq.7.23. provided that the separation of the fast and slow modes is sufficiently large.

7.6.1 Robustness of uncertainty decoupling to unmodeled dynamics

In this subsection. we consider the uncertainty decoupling problem for the two-time-
scale hyperbolic system of Eq.7.23 whose fast dynamics is stable (assumption 7.4).

Substitution of the distributed state feedback law of Eq.7.10 into the system of Eq.7.23

vields:
% = Lnr+ Lign+ gi(z)b(2)S(z) + gr(z)b(z)s(x)v + Wi(x)r(2)6(¢)
e—aa—z— = LT+ L22n + g2(z)b(2)S(x) + g2(2)b(z)s(z)v + Wa(x)r(z)0(t) (7.37)
g = Ch(z)

From the above representation of the closed-loop system, it is clear that the control
law of Eq.7.10 preserves the two-time-scale property of the open-loop system and
guarantees that the system of Eq.7.37 has a well-defined solution. Performing a two-
time-scale decomposition on the system of Eq.7.37. the closed-loop fast subsystem

takes the form:

on

S = Laz+Lan+0(@)b()S() + ga(@)b(:)s(@)o + Wale)r()o(t)  (T:38)

where r,0 are independent of time. From the representation of the closed-loop fast
subsystem it is clear that the control law of Eq.7.37 preserves the exponential stability

property of the fast dynamics of the closed-loop system. The closed-loop slow system
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takes the form:

Jz : <
5 = Lo +GEBEIS(E)+G(2)b(=)s(z)e + W(z)r(z)6(t) (7.39)
s = Ch(z)

For the system of Eq.7.39 it is straightforward to show that the result of proposition
7.1 holds, which suggests requesting an input/output response of the form of Eq.7.12

in the closed-loop reduced system.

Theorem 7.6 that follows establishes a robustness property of the solvability con-
dition of the uncertainty decoupling problem (¢ < é) and the input/output response
of Eq.7.12 with respect to stable, sufficiently fast, unmodeled dynamics (the proof of

the theorem is given in the appendix F).

Theorem 7.6: Consider the system of Eq.7.23 for which assumptions 7.3 and 7.4
hold, under the controller of Eq.7.13. Consider also the slow subsystem of Eq.7.30
and assume that the condition o < § and the stability conditions of theorem 7.2 hold.
Then, for each positive real number d, there exist positive real numbers (4. €") such
that if max{[zollz. Ingsll2, 1611, 1611} < § and € € (0, 7). then:

a) the state of the closed-loop system is bounded, and

b) the output of the closed-loop system satisfies for all t > 0:
§t)=9(t)+d. i=1.....1 (7.40)

where §i(t) are the solutions of Eq.7.12.

Remark 7.10: Referring to the above theorem. note that we do not impose any
assumptions on the way the uncertain variables § enter the actual process model of
Eq.7.23 (i.e. the condition ¢ < & has to be satisfied only in the slow subsystem
of Eq.7.30). This is achieved at the expense of the controller of Eq.7.13, which
is synthesized on the basis of the slow subsystem of Eq.7.30., enforcing a type of
approximate uncertainty decoupling in the actual process model, in the sense that

the discrepancy between the output of the actual closed-loop system and the output of

251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the closed-loop reduced system (which is independent of §) can be made smaller than

a given positive number d (possibly small) for all times. provided that ¢ is sufficiently

small (Eq.7.40).

7.6.2 Robust control: uncertain variables and unmodeled dynamics

In this subsection. we consider the robust uncertainty rejection problem for two-time-
scale hyperbolic systems of the form of Eq.7.23 with stable fast dvnamics. Under a

control law of the form of Eq.7.17, the closed-loop system takes the form:

= Lz L+ (@b [S(0) + S(e)o + Rea. )]+ Wil2)r(2)0()
6%;—’ = Lz + La2n + g2(2)b(z)[S(z) + 5(z)v + Rz, t)] + Walz)r()8(t) (7.41)
g = Ch(z)

The fast dynamics of the above system is exponentially stable and the reduced system

takes the form:

—g—f— = Lz+ G(2)b(z)[S(z) + 5(z)v + 77\’,(:2:.t)] + W(x)r(=)8(t) (7.49)
s = Ch(.’l?)

Theorem 7.7 that follows establishes a robustness property of the controller of Eq.7.19

to sufficiently fast unmodeled dynamics (the proof is given in the appendix F).

Theorem 7.7: Consider the system of FEq.7.23 for which assumptions 7.3 and 7.4
hold. under the controller of Eq.7.19. Consider also the slow subsystem of Eq.7.30 and
suppose that assumption 7.2 and the stability conditions of theorem 7.2 hold. Then,
for each positive real number d. there ezist positive real numbers (8.¢") such that
if max{||zall2, |[75ll2>11611. 11811} < é. 6 € (0,6"]. there erists a positive real number
€*(@) such that if

max{ Izl 2. Ingella. 011, 11} < 8. 0 € (0.67], and € € (0.€°(9)]. then:

a) the state of the closed-loop system is bounded. and
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b) the output of the closed-loop system satisfies:

lim [§' —v'|<d. i=1.....1 (7.43)
t=—00

Remark 7.11: Regarding the result of the above theorem. a few observations are.in
order: z) no matching condition is imposed in the actual process model of Eq.7.23. /)
the dependence of €* on ¢ is due to the presence of ¢ on the closed-loop fast subsyvstem.
and :7) a bound for the output error, for all times (and not only asymptotically as
in Eq.7.43) can be obtained from the proof of the theorem in terms of the initial

conditions and d.

Remark 7.12: Whenever the open-loop fast subsystem of Eq.7.31 is unstable. i.e.
the operator £,,7 generates an exponentially unstable semigroup. a preliminary dis-

tributed state feedback law of the form:
a=Fnp+u (7.44)

can be used to stabilize the fast dynamics. under the assumption that the pair
[Ca2 g2(z)b(z)] is stabilizable. yielding thus a two-time-scale hyperbolic system for
which assumption 7.7 holds. The design of the gain operator F can be performed

using for example standard optimal control methods [Bal83].

7.7 Application to a fixed-bed reactor

Consider a fixed-bed reactor where an elementary reaction of the form A — B takes
place. shown in Figure 7.2. The reaction is endothermic and a jacket is used to heat
the reactor. Under the assumptions of perfect radial mixing, constant density and
heat capacity of the reacting liquid, and negligible diffusive phenomena, a dynamic

model of the process can be derived from material and energy balances and has the
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Figure 7.2: A nonisothermal fixed-bed reactor.
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form:

E
oT oT -— Uw
P = —prcpsuig— +(~AH)koe RTC,4 + (0, =T)
i r (7.43)
ac aC =

subject to the initial and boundary conditions:

Ca(0.t) = Cao . Ca(z.0) = C4,(2)

T(0,t) =Tao. T(z,0) = Ty(z)
where C, denotes the concentration of the species A, T denotes the temperature
in the reactor. € denotes the reactor porosity, ps. ¢» denote the density and heat
capacity of the bed, p;, ¢,; denote the density and heat capacity of the fluid phase.
v; denotes the velocity of the fluid phase, U,, denotes the heat transfer coefficient. T,
denotes the spatially uniform temperature in the jacket. V. denotes the volume of the
reactor, ko. E, AH denote the pre-exponential factor, the activation energy. and the
enthalpy of the reaction. C 49,740 denote the concentration and temperature of the
inlet stream. and C4,(z).T,s(z) denote the steady-state profiles for the concentration

of the species A and temperature in the reactor.

The main feature of fixed-bed reactors is that the reactant wave propagates through
the bed with a significantly larger speed than the heat wave. because the exchange of
heat between the fluid and packing slows the thermal wave down [SF70]. Therefore.
the system of Eq.7.45 possesses an inherent two-time-scale property. i.e.. the concen-
tration dynamics are much faster than the temperature dynamics (this fact was also
verified through open-loop simulations). This implies that C,4 is the fast variable,
while T is the slow variable. In order to obtain a singularly perturbed representation
of the process, where the partition to fast and slow variables is consistent with the
dynamic characteristics of the process. the singular perturbation parameter ¢ was

defined as:

e = (7.46)
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Setting t = .z =T.n = C4. the system of Eq.7.45 can be written in the

PCpb
following singularly perturbed form:
E
oz Oz -—— Uy
5 = —preevse +(~AH)koe Rrq+ THT, - )
: " (7.47)
E
e% = —'vla—:’ - koe-ﬁ.;r]

The values of the process parameters are given in table 7.1. It was verified that theyv
correspond to a stable steady-state for the open-loop system. The control problem
considered is the one of controlling the temperature of the reactor (which is the
variable that essentially determines the dynamics of the process) by manipulating
the jacket temperature. Notice that T; is chosen to be the manipulated input with
the understanding that in practice its manipulation is achieved indirectly through
manipulation of the jacket inlet flow rate (for more details see the discussion in remark
7.14). The enthalpy of the reaction is considered to be the main uncertain variable.
Assuming that there is available one control actuator with distribution function b(z) =

1
1 and defining a = T; - Tjs, § = / zd:z. § = AH — AHy. we have from Eq.7.47:
0

E E
= - 7 e —
% = —ijpr[% + (—AHg)koe Rxnp+ ("f”(Tj, —-z)+ L‘uﬁ + koerp Rxn6
d 0 =
Ca—;z = —L‘l-—z- - koe RIT]

1
§=/:1:d:
0

Performing a two-time-scale decomposition of the above system, the fast subsystem

(7.48)

takes the form: E
an dn —En (7.49)

—vj=— — hoe

ar dz

¢ . .
where 7 = - and the z in the above system depends only on the position z. From
€

the system of Eq.7.49. it is clear that the fast dynamics of the system of Eq.7.48 are
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§ vy = 30.0 m hr-!

L = 1.0 m3

Le = 001
L = 1.0 m
E = 20x10* kcal kmol~!
ko = 50x 10! Ar-!

R = 1.987 kcal kmol~! K~}
AHe = 35480.111 kcal kmol™!
Loy = 0.0231 kcal kg=! K~}

' py = 90.0 kg m=3
{w = 500.0 kcal hr=! K1
Cao = 4.0 kmol m=3
Tao = 320.0 K

Table 7.1: Process parameters and steady-state values
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exponentially stable uniformly in z. and thus they can be neglected in the controller
design. Setting ¢ = 0, the model of Eq.7.48 reduces to a set of a partial and an

ordinary differential equation of the form:

E E
%f’ = —pfcpfv%+(—AHo)koe‘En+ Lx <T,-s—r>+%"‘+koerpﬂno '
E
0 = —v,%—koe_ﬁx_q
(7.50)

The structure of the ordinary differential equation allows an analytic derivation of its

solution subject to the boundary condition 5(0.¢) = C.0(t). which is of the form:
. E
k04/0 € Rl‘d: (751)
n(z) = Caoe v

Substituting Eq.7.51 into Eq.7.50. the following reduced system can be obtained:

. £
E ko/O exp Rxd:
Jz 9 ——
Er _Pfcpfl'l'é%'*‘("AHo)koe Rz C yoexp vy
: —’E (7.52)
E ko/ erp Rzd:
U U — 0
+7(Tis — 2) + - + koezp Rz Cyoezp v 9

1
s = /xd:
0

The above system is clearly in the form of Eq.7.1 and a straightforward calculation of
the time-derivative of the output yields that the characteristic indices of the output g
with respect to the manipulated input @ and the uncertain variable § are 0 = 6 = 1.
This implies that it is not possible to decouple the effect of 8 on § via distributed
state feedback, and a robust controller of the form of Eq.7.19 should be synthesized
to attenuate the effect of § on § (this is possible because the matching condition.

assumption 7.4. holds for the system of Eq.7.52). Moreover, it was verified through
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simulations that the zero dynamics of the system of Eq.7.52 are locally exponentially

stable. The explicit form of the controller of Eq.7.19 is:

E
= (v‘/lzd”)—/l(— 12Z ¢ (—AHo)koezp Br
- Llrw Yo o ~ 0 PrCpfli a: 0)Ro€Tp
. _E ‘
ko/ erp Rrd: b
0 U / r(z.t)dz - v
o(C j0exp i + %(Tj ~z))d: — K(t)—= b
" |/rkiM:—M+o
(7.33)
. _E
o E ko/o erp Rzd:
where A'(t) = 25/ LO' “exp Rz Cpezp vl d=. A time-varying uncer-
0 Uy
tainty was considered expressed by a sinusoidal function of the form:
0 = 0.5(—AHg)sin(t) (7.54)

The upper bound on the uncertainty was taken to be § = 0.5/(—=AHo)|. In this
application. the value of the singular perturbation parameter is fixed i.e. ¢ = 0.01.
From theorem 7.6. it is clear that for a given value of €, there exists a lower bound
on the level of asymptotic attenuation d that can be achieved. We performed a set of
computer simulations (for the regulation problem) to calculate ¢ for certain values
of d. and. in turn. the value of ¢* for ¢ < ¢*. The following set of parameters were

found to give an €* < 0.01 and used in the simulations :

7% =02 6=0.1 (7.

-3
3]
o

to achieve an ultimate degree of attenuation d = 0.5.

Two simulation runs were performed to test the regulatory, set-point tracking and
uncertainty rejection capabilities of the controller. In both runs, the process was

initially (¢ = 0.0 min) assumed to be at steady-state. In the first simulation run,
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Figure 7.3: Closed-loop output and manipulated input profiles for regulation.
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we tested the regulatory capabilities of the controller. Figure 7.3 shows the closed-
loop output and manipulated input profiles, while Figure 7.4 displays the evolution
of the temperature profile throughout the reactor. Clearly the controller regulates
the output at the operating steady-state compensating for the effect of uncertainty
and satisfying the requirements limy_o, |§ — v| < 0.5. For the sake of comparison.
we also implemented the same controller without the term which is responsible for
the compensation of uncertainty. The output and manipulated input profiles for
this simulation run are given in Figure 7.5. It is obvious that the controller cannot
attenuate the effect of the uncertainty on the output of the process. leading to poor
transient performance and offset. In thé next simulation run. we tested the output
tracking capabilities of the controller. A 6.6/ increase in the value of the reference
input was imposed at time ¢t = 0.0 Ar. The output and manipulated input profiles
are shown in figure 7.6. It is clear that the controller drives the output 7 to its new
reference input value. achieving the requirement lim;—o, |§ — v| < 0.5. Figure 7.7
shows the output and manipulated profiles in the case of using the same controller
without the term which is responsible for the compensation of uncertainty. Clearly.
the performance is very poor. From the results of the simulation study. we conclude
that there is a need to compensate for the effect of the uncertainty as well as that

the proposed robust control methodology is a very efficient tool for this purpose.

Remark 7.13: The reduction in the dimensionality of the original model of the
reactor using the fact that the process exhibits a two-time-scale property eliminates
the need for using measurements of the concentration of the species A in the controller

of Eq.7.53. which greatly facilitates its practical implementation.

Remark 7.14: Regarding the practical implementation of the robust distributed
controller of Eq.7.53, we note that the manipulated variable T; cannot be manipu-

lated directly. but indirectly through manipulation of the jacket inlet flow rate. To
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Figure 7.4: Profile of evolution of reactor temperature for regulation.
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this end, a controller should be designed based on an ODE model that describes the
jacket dynamics, that operates in an internal loop to manipulate the jacket inlet flow
rate to ensure that the jacket temperature obtains the values computed by the dis-
tributed robust controller (see subsection 6.7.4 for a detailed discussion on this issue).
Of course. when such a controller is used. a slight deterioration of the closed-loop per-
formance and robustness obtained under the assumption that 7; can be manipulated

directly, will occur.

7.8 Conclusions

In this chapter, we considered systems of first-order hyperbolic PDEs with uncer-
tainty, for which the manipulated input and the controlled output are distributed in
space. Both uncertain variables and unmodeled dynamics were considered. In the
case of uncertain variables, we initially derived a necessary and sufficient condition
for the solvability of the problem of complete elimination of the effect of uncertainty
on the output via distributed feedback as well as an explicit controller synthesis for-
mula. Then, assuming that there exist known bounding functions that capture the
magnitude of the uncertain terms and a matching condition is satisfied. we synthe-
sized. using Lyapunov’s direct method, a distributed robust controller that guaran-
tees boundedness of the state and asymptotic output tracking with arbitrary degree
of asymptotic attenuation of the effect of uncertain variables on the output of the
closed-loop system. In the presence of uncertain variables and unmodeled dynamics.
we established that the proposed distributed controllers enforce approximate uncer-
tainty decoupling or uncertainty attenuation in the closed-loop system as long as the
unmodeled dynamics are stable and sufficiently fast. A nonisothermal fixed-bed re-
actor with unknown heat of the reaction was used to illustrate the application of the

proposed control method. The fact that the reactant wave propagates through the
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bed faster than the heat wave was explicitly taken into account. and the original model
of the process. which consists of two quasi-linear hyperbolic PDEs that describe the
spatio-temporal evolution of the reactant concentration and the reactor temperature.
was reduced to one quasi-linear hyperbolic PDEs that describes the evolution of the
reactor temperature. A distributed robust controller was then designed on the basis
of the reduced-order model to enforce output tracking and compensate for the effect
of the uncertainty. Computer simulations were used to evaluate the performance and

robustness properties of the controller.
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Notation

Roman Letters

A, A(z). A(z) = matrices

bi(z) = smooth function of z

c'(z) = smooth function of z

Cao = inlet concentration of the species A

Cu = concentration of the species A in lateral stream
C1.C, = constant matrices

Ca = concentration of the species A

Cob = heat capacity of the bed

Cos = heat capacity of the fluid phase

E = activation energy

L hfa = vector fields

F = lateral inlet flow rate

9,91: 92 = vector fields associated with the manipulated variable
h = controlled output scalar field

ko = pre-exponential constant

[ = total number of control actuators

Q1. Q2 = sufficiently smooth matrices

T 10 = inlet temperature of the fluid in the reactor
Ty = temperature of lateral stream

T = temperature of the reactor

T; = temperature of the jacket

t = time

. = heat transfer coefficients

u = manipulated variable

u = manipulated input vector

it i-th manipulated input
|2 volume of the reactor
external reference input vector
‘ external reference input for the i-th actuator
o) fluid velocity

o =

W W, Wy = sufficiently smooth matrices
T = vector of state variables
Uy s = controlled outputs

&)

= spatial coordinate
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Greek Letters

a = boundary of the spatial domain

8 = boundary of the spatial domain

¥ = adjustable parameters

AH = enthalpy of the reaction

n = observer state vector

6' = characteristic index of 7' with respect to '
) = characteristic index of § with respect to 8

) = vector of uncertain variables

py = density of the bed

ps = density of the fluid phase

o' = characteristic index of 7' with respect to @
o = characteristic index of § with respect to u

Math Symbols

C = bounded linear operator
H infinite dimensional Hilbert space

Lsh = Lie derivative of a scalar field h with respect to the vector field f
Lﬁlh = k-th order Lie derivative

Lng_lh = mixed Lie derivative

S.5.R = nonlinear functionals

R = real line

Rso = positive real line

R = i—dimensional Euclidean space

€ = belongs to

T = transpose

|- = standard Euclidean norm

il |2 = 2-norm inH

(-.-)r= = inner product in R®

[[0]] = ess.sup.{|0(t)|. t > 0}. where 8 : Ry¢ — R™ is any

measurable function

u(t) signal defined on [0.7)

Uy = signal defined on [0.00), given by u,(t) = u(?) if t € [0.7].
and u.(t) =0ift € (7.00)
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Chapter 8

Feedback Control of Parabolic
PDE Systems

8.1 Introduction

Parabolic PDE systems arise naturally as models of diffusion-convection-reaction pro-
cesses [Ray81] and typically involve spatial differential operators whose eigenspectrum
can be partitioned into a finite-dimensional slow one and an infinite-dimensional sta-
ble fast one [Fri76. Bal79]. This implies that the dynamic behavior of such systems
can be approximately described by finite-dimensional svstems. Motivated by this.,
the standard approach to the control of parabolic PDEs involves the application of
Galerkin's method to the PDE system to derive ODE systems that describe the dy-
namics of the dominant (slow) modes of the PDE system, which are subsequently
used as the basis for the synthesis of finite-dimensional controllers [Bal79. Ray31].
However, there are two key controller implementation and closed-loop performance
problems associated with this approach. First, the number of modes that should be
retained to derive an ODE system that yields the desired degree of approximation

may be very large. leading to high dimensionality of the resulting controllers [GR95].

270

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Second. there is a lack of a systematic way to characterize the discrepancy between the
solutions of the PDE system and the approximate ODE system in finite time. which is

essential for characterizing the transient performance of the closed-loop PDE system.

A natural framework to address the problem of deriving low-dimensional ODE
systems that accurately reproduce the solutions of dissipative PDEs is based on the
concept of inertial manifold (IM) (see [Tem88] and the references therein). An I)M
is a positively invariant. finite-dimensional Lipschitz manifold. which attracts every
trajectory exponentially. The dynamics of a parabolic PDE system restricted on the
inertial manifold is described by a set of ODEs called the inertial form. Hence. sta-
bility and bifurcation studies of the infinite-dimensional PDE system can be readily
performed on the basis of the finite-dimensional inertial form [Tem88]. However.
the explicit derivation of the inertial form requires the computation of the analyvtic
form of the IM. Unfortunately, IMs have been proven to exist only for certain classes
of PDEs (for example Kuramoto-Sivashinsky equation and some diffusion-reaction
equations [Tem88]). and even then it is almost impossible to derive their analytic
form. In order to overcome the problems associated with the existence and construc-
tion of IMs, the concept of approximate inertial manifold (AIM) has been introduced
[FST89. FJK+89] and used for the derivation of ODE systems whose dynamic behav-

lor approximates the one of the inertial form.

In the area of control of nonlinear parabolic PDE systems. few papers have ap-
peared in the literature dealing with the application of IM for the synthesis of finite-
dimensional controllers. In particular. in [SK95] the problem of stabilization of a
parabolic PDE with boundary finite-dimensional feedback was studied; a standard
observer-based controller augmented with a residual mode filter [Bal91] was used to
induce an inertial manifold in the closed-loop system, and thus reduce the stabiliza-
tion problem for the PDE system to a stabilization problem for the finite-dimensional

inertial form. In [BGS93]. the theory of inertial manifolds was utilized to determine
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the extent to which linear boundary proportional control influences the dvnamic and

steady-state response of the closed-loop system.

In this paper, we introduce a methodology for the synthesis of nonlinear finite-
dimensional output feedback controllers for systems of quasi-linear parabolic PDEs.
Singular perturbation methods are initially employed to establish that the discrepancy
between the solutions of an ODE system of dimension equal to the number of slow
modes, obtained through Galerkin’s method, and the PDE system is proportional to
the degree of separation of the fast and slow modes of the spatial operator. Then.
a procedure, motivated by the theory of singular perturbations. is proposed for the
construction of AIMs for the PDE system. The AIMs are used for the derivation of
ODE systems of dimension equal to the number of slow modes. that vield solutions
which are close, upto a desired accuracy, to the ones of the PDE system. for almost all
times. These ODE systems are used as the basis for the synthesis of nonlinear output
feedback controllers that guarantee stability and enforce the output of the closed-
loop system to follow upto a desired accuracy, a prespecified response for almost all
times. The proposed control methodology is implemented. through simulations. on a

packed-bed reactor.

8.2 Preliminaries

We consider quasi-linear parabolic PDE systems of the form:

oz or 0*z
— = A= — 1b( = T
T Aa: +Ba:2 + wb(z)u + f(T) 51)

Y= /:'+lc‘(:)kjd:, i=1.....1

subject to the boundary conditions:

Cli(a,t)+Dl-§§-(a.t) = Rl

Ca2(8.0) + Drge(Bt) = Ry
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and the initial condition:
F(z.0) = Zo(2) (8.3)

where #(z,t) = [Z1(z.t) --+ Za(z.t)]T denotes the vector of state variables. [a. 3] C

R is the domain of definition of the process, = € [a.d] is the spatial coordinate.

t € [0,00) is the time, u = [u! u? --- u!]T € IR! denotes the vector of manipulated

07 0%z
92 92

second-order spatial derivatives of Z. f(Z) is a vector function. w.k are constant

inputs, and y* € IR denotes a controlled output. denote the first- and
vectors, A. B,C,, D,.C,. D, are constant matrices. R{.R2 are column vectors. and
Zo{=) is the initial condition. 8(z) is 2 known smooth vector function of z of the form
b(z) = [b*(z) b*(z) --- b(z)], where b'(z) describes how the control action u'(t) is
distributed in the interval [z;.z;41] C [@,3]. and ¢'(z) is a known smooth function
of = which is determined by the desired performance specifications in the interval
[zi- zi+1]. Whenever the control action enters the system at a single point 2y, with
=0 € [iy zi41] (i-e. point actuation). the function '(z) is taken to be nonzero in a finite
space interval of the form [zg — €, z9 + €]. where € is a small positive real number. and
zero elsewhere in [z, z;+1]. Throughout the paper. we will use the order of magnitude
notation O(e). In particular, é6(e) = O(e) if there exist positive real numbers &, and
ky such that: [6(e)| < kile] . V |e| < ka.

We formulate the system of Eqs.8.1-8.2-8.3 in a Hilbert space H([a, 5].IR"). with
H being the space of n-dimensional vector functions defined on [a, 3] that satisfy the

boundary condition of Eq.8.2. with inner product and norm:

3
(wrwn) = [ (@i(z)wa(z))mnds (5.4)

1
lwillz = (w1 w1)?
where w).w, are two elements of H([a, 5]: R") and the notation (-.-)g~ denotes the

standard inner product in IR". Defining the state function = on H([a, 8], IR") as
r(t) = 2(z,1),t > 0. z €|, B, (8.9)
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the operator A in H([e, 8], IR") as:

0z 0’z
Az = AE + Bﬁ
0
z€ D(A) = {x € H([e. 8]: R™); Ciz(a) + D15§(a) = R,. (3.6)
Oz
Crz(8) + Dz;(ﬂ) = R,
and the input and output operators as:
Bu = wbu, Cz = (c.kz) (8.7)
where ¢ = [c! ¢? - - - ¢!]. the system of Eqs.8.1-8.2-8.3 takes the form:
r = Ar+ Bu+ f(z)
y = Cz (8.8)
I(O) = Ig

where f(z(t)) = f(Z(z.t)) and o = Zo(s). We assume that the nonlinear term f(r)
satisfies f(0) = 0 and is also locally Lipschitz continuous i.e.. there exist positive real
numbers ag. Ap such that for any z,.z, € H that satisfy max{||z||z.||z2]|2} < ao.

we have that:

[1f(x1) = fz2)]|2 £ Aollz1 = 242 (8.9)

For A. the standard eigenvalue problem is of the form:
Ao; = Xjo;. J=1..... oo (8.10)

where A; denotes an eigenvalue and ¢; denotes an eigenfunction; the eigenspectrum
of A, g(A), is defined as the set of all eigenvalues of A, i.e. g(A) = {A1,A2...., }.

Assumption 8.1 that follows states our hypotheses for the properties of o(.A).
Assumption 8.1:

1. Re Ay S Re Xy <--- < Re Ay < -+, where Re Aj denotes the real part of A;.
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2. o(A) can be partitioned as o(A) = 01(A) + 02(A), where a,(A) consists of the
first m (with m finite) eigenvalues, i.e. o1(A) = {\..... Am}. and O(;;6 ;\l ) =
€ Am

o(1).

3. Re Am+1 > 0 and |Re \|| << Re Apny1-

Assumption 8.1 states that the eigenspectrum of A can be partitioned into a finite-
dimensional part consisting of m slow eigenvalues. o;(A) = {\..... Am}. and a
stable infinite-dimensional part containing the remaining fast eigenvalues. oy(A) =
{Amree--s }, and that the separation between slow and fast eigenvalues of A is
large. The assumption of finite number of unstable eigenvalues is always satisfied
for parabolic PDEs [Fri76], while the existence of only a few dominant modes that
capture the dominant dynamics of a parabolic PDE system is well-established for the
majority of diffusion-convection-reaction processes (see for example the applications

in the book [Ray81] and the packed-bed reactor example studied in [CD96{]).

Assumption 8.1 guarantees [Fri76] that A generates a strongly continuous semi-
group of bounded linear operators U(t) which implies that the generalized solution

of the system of Eq.8.8 is given by:
t
r = U(t)zo +/0 Ut = s)(Bu(s) + f(x(s)))ds (8.11)
[’ (t) satisfies the following growth property:
()2 £ Aye®'. ViE>0 (8.12)

where A';,a, are positive real numbers. with A} > [ and a; > Re Ay. If ay is
strictly negative, we will say that A generates an exponentially stable semigroup
U/(t). Throughout the manuscript. we will focus on local exponential stability. and
not on weak (asymptotic) stability [Fri76]. because of its robustness to bounded per-
turbations (e.g. uncertain variables. disturbances), which are always present in most

practical applications [Bal9l].
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We will now review the application of Galerkin's method to the system of Eq.8.8
to derive an approximate finite-dimensional system. Let H,. H; be modal subspaces
of A, defined as H, = span{d;.d..... om} and Hy = span{oms1.Oms2.---. } (the
existence of H,, H; follows from assumption 1). Defining the orthogonal projection
operators P; and Ps such that z, = P,z. zy = P;z. the state r of the system (;f

Eq.8.8 can be decomposed as:
r = z,4+z5= P+ Pz (8.13)

Applying P, and Py to the system of Eq.8.8 and using the above decomposition for

z, the system of Eq.8.8 can be equivalently written in the following form:

ddzts = Aszs + Bsu + fS(‘rS* 1?_{)
0z :
—-an- = Af$j+Bfu+ff(I,,$f) (814)

y = Cr,+Czy

r,(0) = Poz(0) = Poxzo, z4(0) = Psz(0) = Pszo
where -As = P,AP,, Bs = PsB-. fs = Psf~ A_f = Pj.APf, Bf = PfB and ff = Pff and
the notation % is used to denote that the state z; belongs in an infinite-dimensional

space. In the above system. A, is a diagonal matrix of dimension m x m of the form
A, = diag{A;}. fo(zs.z5) and fy(z,.z4) are Lipschitz vector functions, and Ay is an
unbounded differential operator which generates a strongly continuous exponentially
stable semigroup (following from part 3 of assumption | and the selection of H,. /).

Neglecting the fast modes. the following finite-dimensional system is derived:

dzx,
= Az, + Bt fi(z,,0) (8.15)
Yys = st

where the subscript s in y, denotes that the output is associated with the slow sys-

tem. The above system can be directly used for controller design employing standard

control methods for ODEs [Bal79. Ray81, CC92].

Remark 8.1: We note that the large separation of slow and fast modes of the spatial
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operator in parabolic PDEs ensures that a controller which exponentially stabilizes the
closed-loop ODE system. also stabilizes the closed-loop infinite-dimensional system
[Bal79]. This is in contrast to the application of this approach to hyperbolic PDEs
where the eigenmodes cluster along nearly vertical asymptotes in the complex plane
and thus, the controller has to be modified to compensate for the destabilizing effect

of the residual modes [Bal91].

Remark 8.2: Whenever the eigenfunctions ¢; of the operator A can not be calculated
analytically, available identification schemes for the estimation of the eigenfunctions
and the adjoint eigenfunctions of A, (see for example [CC92]), that utilize numerical
experiments, can be employed to approximately calculate them. In this case. the

interconnection of Eq.8.14 will take the form

dz,

%’ = -A313+A3fxf+63u+f3(‘r3’lf)

a O
«%— = Af,$$+Af$j+BjU+fj(x5srf) (616)

y = Cr,+Czxj
where Asy = P, AP;. A;; = P; AP, are bounded operators, and the terms Ay ;r s, Afox,
f fAf f JLfs S

represent the modeling errors resulting from the use of approximate eigenfunctions
of A in the subspaces H,. H; instead of the exact ones. and constitute interactions

between the r, and r; subsystems.

8.3 Accuracy of ODE system derived via Galerkin’s method

In this section, we establish. using singular perturbation methods. that if the infinite-
dimensional z;-subsystem of the system of Eq.8.14 is stable and the finite-dimensional
svstem of Eq.8.15 is also stable. then the system of Eq.8.14 is stable and the discrep-
ancy between the solution of the z,-subsystem of the system of Eq.8.14 and the
solution of the system of Eq.8.15. is proportional to the spectral separation of the

slow and fast eigenvalues.
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IRC /\1!

Defining ¢ = T the system of Eq.8.14 can be written in the following form:
m+1
dz,
= A,I3+BSU+fs(l's-l'f)
dt S
oz, (8.17)
CE— .Af(If-i-CBfU-*-Eff(l’,.If)

where Ay, is an unbounded differential operator defined as Ay, = eA;. Since e < 1
(following from assumption 8.1, part 3) and the operators A,. Ay, generate semigroups
with growth rates which are of the same order of magnitude, the system of Eq.8.17
is in the standard singularly perturbed form. with z, being the slow states and r;

being the fast states.

. t . . .
Introducing the fast time-scale 7 = - and setting € = 0. we obtain the following
€ :
infinite-dimensional fast subsystem from the system of Eq.8.17:

9=y
or
From the fact that Re A,,; > 0 and the definition of €, we have that the above

Af(l'f (S.IS)

system is globally exponentially stable. Setting ¢ = 0 in the system of Eq.8.17 and -
using the fact that the inverse operator Ay~ exists and is also bounded (it follows

from the fact that zero is in the resolvent of 4;,). we have that:
gy = 0 (3.19)

and thus the finite-dimensional slow system takes the form:
dz,
dt

We note that the above system is identical to the one obtained by applying the

Asz, + Byu + fy(xs,0) (8.20)

standard Galerkin's method to the system of Eq.8.8, keeping the first m ODEs and
completely neglecting the z ;-subsystem. Assumption 8.2 that follows states a stability

requirement on the system of Eq.8.20.

Assumption 8.2: The finite-dimensional system of Eq.8.20 with u(t) = 0 is expo-

nentially stable i.c., there exist positive real numbers (N2, az.a4), with ay > Ky 2 1
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such that for all z; € H, that satisfy |z,| < a4. the following bound holds:

lzs(t)] < Rye™®z4(0)], V>0 (

[v4)

21)

Proposition 8.1 that follows establishes that the solutions of the open-loop systems
of Eqs.8.20-8.18, after a short finite time interval required for the trajectories of the
system of Eq.8.17 to approach the quasi steady-state of Eq.8.19. consist an O(e)
approximation of the solutions of the open-loop system of Eq.8.17. The proof is given

in the appendix G.

Proposition 8.1: Consider the system of Eq.8.17 with u(t) = 0 and suppose that
assumptions 8.1 and 8.2 hold. Then. there ezist positive real numbers p,, pa. € such
that if |z,(0)] < g1, ||z5(0)[|]2 £ p2 and € € (0.€7]. then the solution x,(t).xs(t) of the
system of Eq.8.17 satisfies for all t € [0,00):

z,(t) = Z,(t) + O(e)

(8.22)
w(t) = 7(2)+0()

where I,(t), T¢(t) are the solutions of the slow and fast subsystems of Fgs.8.20-8.18

with u(t) = 0, respectively.

Remark 8.3: The counterpart of the result of Proposition 8.1 in finite-dimensional
spaces is well-known (Tikhonov's theorem. [Tik48]). while a similar result has also
been established for linear infinite-dimensional systems [Bal84]. The main tech-
nical difference in establishing this result between linear and quasi-linear infinite-
dimensional systems is that, for quasi-linear systems the proof is based on Lyapunov
arguments, while for linear systems the proof is obtained using combination of esti-
mates of the states, obtained from the application of variations of constants formula
[Bal84]. This is a consequence of the fact that for quasi-linear systems it is not
possible to derive a coordinate change that transforms the system of Eq.8.17 into a

cascaded interconnection where the fast modes modes are decoupled from the slow

279

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



modes, which allows to derive an exponentially decaying estimate. for sufficiently
small ¢, for the fast state, which is independent of the one of the slow state. and thus

to prove the result through a direct combination of these estimates.

Remark 8.4: We note that it is possible. using standard results from center manifold
theory for infinite-dimensional systems of the form of Eq.8.8 [Car81. p.1138]. to show
that if the the system of Eq.8.20 is asymptotically stable. then the system of Eq.8.8 is
also asymptotically stable and the discrepancy between the solution of the system of
Eq.8.20 and the z,-subsystem of the closed-loop full-order is asymptotically (as ¢ —
00) proportional to e. Although this result is important because it allows establishing
asymptotic stability of the closed-loop infinite-dimensional system by performing a
stability analysis on a low-order finite-dimensional system. it does not provide any
information about the discrepancy between the solutions of these two systems for

finite ¢t.

8.4 Construction of minimal-order ODE systems via AIMs

In this section. we propose an approach originating from the theory of inertial mani-
folds for the construction of ODE systems of dimension m which yield solutions that
are arbitrarily close (closer than O(¢)) to the ones of the infinite-dimensional system
of Eq.8.8. for almost all times. An inertial manifold M for the system of Eq.8.8
is a subset of H, which satisfies the following properties [Tem8§]: i) M is a finite-
dimensional Lipschitz manifold. ¢z) M is a graph of a Lipschitz function (z,, u.¢€)
mapping H, x R’ x (0.€"] into H; and for every solution z,(t),z(¢) of Eq.8.17 with

rp(0) = ¥(z4(0),u,€), then

zp(t) = S(z,(t),use), V>0 (8.23)
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and i21) M attracts every trajectory exponentially. The evolution of the state r; on
M is given by Eq.8.23, while the evolution of the state z, is given by the following

finite-dimensional inertial form:

dz,

el Az, + Bou + fi(zs. S(z5.u.€)) (3.24)

Assuming that u(t) is smooth, differentiating Eq.8.23 and utilizing Eq.8.17. (x,. u.€)

can be computed as the solution of the following partial differential equation:

Y >
C%[A,l‘s + Bsu + fo(zs, z4)] + eg—uiz = Asxs+eBpu+eff(rs.ry)  (8.25)

which T has to satisfy for all z, € H,, u € IR\, ¢ € (0.¢"]. However. even for parabolic
PDEs for which it is known that M exists, the derivation of an explicit analytic form

of (z,,u.¢€) is an extremely difficult (if not impossible) task.

Motivated by this. we will now propose a procedure. motivated by singular per-
turbations [KKO86]. to compute approximations of £(z,.u.¢) (approximate inertial
manifolds) and approximations of the inertial form. of desired accuracy. To this end.
consider an expansion of ¥(z,, u.€) and u in a power series in €:

u = up+euy + €uy + - + fup + O+
S(zsuce) = Tz u) 4+ €SNz, u) + 5%z, u) + - + €S8z, u) + O(FH)
(8.26)
where u, &F are smooth functions. Substituting the expressions of Eq.8.26 into
Eq.8.25. and equating terms of the same power in ¢. one can obtain approxima-

tions of ¥(z,.u.€) up to a desired order. Substituting the expansion for (z,, u.€)

and u up to order k into Eq.8.24. the following approximation of the inertial form is

obtained:

dzr,
dt

2 . ki

A,z, + B, (uo +euy +€‘ug+---+¢€ uk) (8.27)
+fo(24. Sz u) + €S (x5 u) + €53z, u) + - - - + €S (2, u))

In order to characterize the discrepancy between the solution of the open-loop

finite-dimensional system of Eq.8.27 and the solution of the z,-subsystem of the open-
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loop infinite-dimensional system 6f Eq.8.17. we will impose a stability requirement

on the system of Eq.8.27.

Assumption 8.3: The finite-dimensional system of Eq.8.27 with u(t) = 0 is erpo-
nentially stable i.e., there ezist positive real numbers (K’z.&g.(‘u). with a; > Ky > 1

such that for all z, € H, that satisfy |z,| < ay. the following bound holds:

lzs(t)] < Rae~%tz,(0)], V>0 (8.28)

Proposition 8.2 that follows establishes that the discrepancy between the solutions
obtained from the open-loop system of Eq.8.27 and the expansion for £(z,.u.€) of
Eq.8.30, and the solutions of the infinite-dimensional open-loop system of Eq.8.17 is

of O(e*!), for almost all times. The proof is given in the appendix G.

Proposition 8.2: Consider the system of Eq.8.17 with u(t) = 0 and suppose that

assumptions 8.1 and 8.3 hold. Then, there ezist positive real numbers fi,, ji,, € such
t).

that if [z,(0)| < fi1, ||z5(0)||2 < [z and € € (0,€], then the solution x4(t).x(t) of the
system of Eq.8.17 satisfies for all t € [t,, 00):
Ts(t) = Z,(t) +O(5k+l)
X ( . (8.29)
zp(t) = #s(t) + O(e*)
where ty is the time required for x(t) to approach Z¢(t). z,(t) is the solution of Eq.8.27

with u(t) =0, and &;(t) = €S}(Z,.0) + T2(%,,0) + - - - + ¥ TF(z,,0).

Remark 8.5: Following the proposed approximation procedure, we obtain that the
O(e) approximation of E(z,.0.¢€) is £%(z,.0) = 0 and the corresponding approximate
inertial form is identical to the system of Eq.8.20 with u(t) = 0. This system does
not utilize any information about the structure of the fast subsystem, and thus, this
system vields solutions which are only O(¢) close to the solutions of the open-loop

system of Eq.8.8 (proposition 8.1). On the other hand, the O(e?) approximation of
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Y(z5.0.¢) can be shown to be of the form:
S(2,5,0,€) = £%(z,.0) + €ZX(,,0) = e(As) 7 - fr(z,.0)] (3.30)

The corresponding open-loop approximate inertial form does utilize information about
the structure of the fast subsystem. and thus allows to obtain solutions which are

O(€?) close to the solutions of the open-loop system of Eq.8.8 (proposition 8.2).

Remark 8.6: The standard approach followed in the literature for the construction
of AIMs for systems of the form of Eq.8.14 with u(t) = 0 (see for example [BKJ91]) i

. Or : . . .
to directly set =L = 0. solve the resulting algebraic equations for r; and substitute

ot
the solution for r; to the r,—subsystem of Eq.8.14, to derive the following ODE

system:
dz,
dt

[t is straightforward to show that the slow system of Eq.8.31 is identical to the one

Az + fo(zs, (Af) —1- ~fr(zs ) (8.31)

obtained by using the O(¢?) approximation for S(z,.0.¢) for the construction of the

approximate inertial form.

Remark 8.7: The expansion of u in a power series in € is motivated by our intention
to modify the synthesis of the feedback controller appropriately such that the output
of the O(e**') approximation of the closed-loop inertial form will be arbitrarily close
to the output of the closed-loop PDE system for almost all times (see also remark

38.8).

8.5 Finite-dimensional control

In this section. we use the result of proposition 8.2 to establish that a nonlinear finite-
dimensional output feedback controller that guarantees stability and enforces output
tracking in the ODE system of Eq.8.27, exponentially stabilizes the closed-loop PDE

system and ensures that the discrepancy between the output of the closed-loop ODE
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system and the output of the closed-loop PDE system is of O(e**!). provided that e

is sufficiently small.

The finite-dimensional output feedback controller, which achieves the desired ob-
jectives for the system of Eq.8.27. is constructed through a standard combination of
a state feedback controller with a state observer. In particular. we consider a state

feedback control law of the general form:

u = ug+teu;+---+ fup
= pO(l's) + QO(zs)v + f[Pl(xm E) + Ql(xu 6)1’] + -+ ek[pk(l'sw E) + Qk(ll‘_,.é)l‘]
(8.32)
where po(zs),...,pr(z,) are smooth vector functions. Qo(zs). .- .. Q«(z,) are smooth

matrices. and v € R is the constant reference input vector (see remark 7 for a

procedure for the synthesis of the control law i.e. the explicit computation of

is also considered for the implementation of the state feedback law of Eq.8.32:

dn

dat Asn + B, (pa(zs) + Qolzs)v + €[pr(zs, €) + Qu(Ts.€)v] +--- +

e [pe(zs,€) + Qu(s €)v]) + fo(n, €S (n.u) + €253(n.w) + - - + € TH(n, 1))
+L(y = [Cn + C{eS (0. u) + €S2 (n.u) + -+ + ESH (. w)}])

(8.33)
where n € H; denotes the observer state vector, and L is a matrix chosen so that the
. ) d
eigenvalues of the matrix Cp = A, + i
I (n=n,)

-L [Cns +C{'a% (M. u(m) + €S2 (m.u(m) + -+« + €K (n.u(n)

open left-half of the complex plane. where 7, denotes the steady-state for the system

)}} liein the

(n=ns

of Eq.8.33. The finite-dimensional output feedback controller resulting from the com-

bination of the state feedback controller of Eq.8.32 with the state observer of Eq.8.33
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takes the form:

fl—;’ = A1+ B:(po(n) + Qo(n)v + €[pi(n.€) + Qu(n.€)v] + - +
e [pe(n, €) + Qu(n, €)v]) + fi(n. €S (7. u) + €T u) + - + #TH(y. u))
+L(y-[Cn+C{E° (m,u) + €S} (. u) + €T3 (n.u) + - +f““"(n-u)}])
u = po(n) + Qo(n)v + €[pr(n.€) + Qu(n.€)v] + - - - + *[pr(n. €) + Qu(n. )]

(8.34)
We note that the above controller does not use feedback of the fast state vector r; in
order to avoid destabilization of the fast modes of the closed-loop system. Assumption

8.4 states the desired control objectives under the controller of Eq.8.34.

Assumption 8.4: The finite-dimensional output feedback controller of the form of

Eq.8.34 exponentially stabilizes the O(e¥*+') approrimation of the closed-loop inertial

form and ensures that its outputs yi(t). i = 1,.... [, are the solutions of a known
i(r) ,(r.—l) t

[ — dimensional ODE system of the form o(y.'"™'. y! eyt v) =0, where o s

a vector function and r; is an integer.

Theorem 8.1 provides a precise characterization of the stability and closed-loop tran-
sient performance enforced by the controller of Eq.8.34 in the closed-loop parabolic

PDE system (the proof is given in the appendix G).

Theorem 8.1: Consider the parabolic PDE system of Eq.8.8. for which assump-
tions 8.1 and 8.4 hold. Then. there exist positive real numbers fi;, ji2. € such that if
|z5(0)] < i1, ||x4(0)||]2 £ fiz and € € (0.€"], then the controller of Eq.8.34:

a) guarantees exponential stability of the closed-loop system. and

b) ensures that the outputs of the closed-loop system satisfy for all t € [ty, 00):
y'(t) = Yty +0(eHt) . i=1..... [ (8.35)

where y'(t) is the i-th output of the O(e*+!) approzimation of the closed-loop inertial

form.
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Remark 8.8: The construction of the state feedback law of Eq.8.32. to ensure that
the control objectives stated in assumption 8.4 are enforced in the O(ef+!) approx-
imation of the closed-loop inertial form, can be performed following a sequential
procedure. Specifically, the component ug = po(zs) + Qo(zs)v can be initially synthe-
sized on the basis of the O(e) approximation of the inertial form (Eq.8.20): then the
component u; = py(Z,,€) + Q1(z,.€)v can be synthesized on the basis of the O(e?)

approximation of the inertial form:

dz,
dt

= Az + Bsuo + eBsuy + fo(2s, €(Af) " [~Bsuo — fr(z,.0)))

= fil2e€) + g1 (24 O (8.36)
ys = Cxs+ eC(Ap)™ [=Byuo — fi(25,0)] =: hy(zs. €)

In general, at the k-th step. the component ux = pi(z,.€) + Qi(zs.€)v can be syn-

thesized on the basis of the O(¢e¥) approximation of the inertial form (Eq.8.27). The

synthesis of [p,(z,,€).Q.(zs.€)]. ¥ = 0.....k, can be performed, at each step. utilizing

standard geometric control methods for nonlinear ODEs (see next section).

Remark 8.9: The implementation of the controller of Eq.8.34 requires to explicitly
compute the vector function ©¥(n.u). However. ©*(5,u) has an infinite-dimensional
range and therefore cannot be implemented in practice. Instead a finite-dimensional
approximation of £¥(5,u). say £¥(7, u). can be derived by keeping the first  elements
of £*(n,u) and neglecting the remaining infinite ones. Clearly, as m — oc, SF(5.u)
approaches ©*(n,u). This implies that by picking m to be sufficiently large, the

controller of Eq.8.34 with £¥(n. u) instead of ©*(n, u) guarantees stability and enforces

the requirement of Eq.8.35 in the closed-loop infinite-dimensional system.
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8.6 Finite-dimensional controller synthesis

8.6.1 Preliminaries

In this section, we will synthesize a finite-dimensional output feedback controller for
the system of Eq.8.8 on the basis of the system of Eq.8.27. using geometric control
methods. To this end, we will initially review the concepts of relative order and
characteristic matrix that will be used in the subsequent section to synthesize the
controller. Referring to the system of Eq.8.20. we set. in order to simplify the notation.
Aszs + fo(zs,0) = fo(zs), Bs = go, Cxs = ho(z,). The relative order of the output y!
with respect to the vector of manipulated inputs u is defined as the smallest integer

r; for which

[Los L3 hi(s) - Loy L7 ho(zs)] #1[0 -+ 0] (8.37)

or r; = oo if such an integer does not exist. Furthermore. the matrix:

Lg},L;’é_lhll)(Is) Lgé }:,-Ih(])(l's)
Lol h3(z,) --- L.L7"'R2(z,)

Clag) = | %70 ol ol (8.38)
LaLy ' hb(zs) - LaL}i'hh(z,)

is the characteristic matrix of the system. For simplicity. we will assume that

det(C(z,)) # 0.

8.6.2 Controller formula

Theorem 8.2 provides the synthesis formula of the output feedback controller and con-
ditions that guarantee closed-loop stability in the case of considering a O(€?*) approx-
imation of the exact slow system for the synthesis of the controller. The derivation of
synthesis formulas for higher-order approximations of the output feedback controller
is notationally complicated. although conceptually straightforward. and thus will be

omitted for reasons of brevity.
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Theorem 8.2: Consider the parabolic PDE system of Fq.8.8. for which assumptions
8.1 and 8.2 hold. Consider also the slow subsystem of Eq.8.36. and assume that its
characteristic matriz C(z,.€) is invertible V z, € H,. € € [0.€7]). Suppose also that

the following conditions hold:

1. The roots of the equation:
det(B(s)) =0 (8.39)

where B(s) is a | x | matriz, whose (i, j)-th element is of the form Zd}ksk‘ lie
k=0
in the open left-half of the complex plane.

2. The unforced (v = 0) zero dynamics of the system of £q.8.36 is locally exponen-

tially stable.

Then, there exist constants p, 2, €* such that if |z,(0)] < w1, “l’f(O)”2 < y2 and
€ (0.¢€"], then if n(0) = z4(0), the dynamic output feedback controller:

dn

7 = A+ Bou(n) + fo(n. e(As) 7 [=Byuo(n) = f(n.0))

+L(y = [Cn + e(As) ™' [=Bruo(n) = f5(n.0)])

u = uo(n)+eur(n) = {[Bir, -+ Bir,|C(n)}” {U - ZZBkafo } .

1=1k=0

I r
+€{[/61r1 "'/3m]C(7lwf)} {l _ZZBML h‘ 77 € }

t=1k=0

a) guarantees exponential stability of the closed-loop system, and

b) ensures that the outputs of the closed-loop system satisfy a relation of the form :
vt) = Y+ 0(?),i=1,....0.t>1t (8.41)

where t, is the time required for the off-manifold fast transients to decay to zero

ezponentially. and y'(t). i = 1,....l. is the solution of:

WAL SE = (8.42)

i=1k=0
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Remark 8.10: In the case of open-loop stable systems. a more convenient way to

reconstruct the state of the system is to consider the observer of Eq.8.33 with the

matrix L set identically equal to zero. This is motivated by the fact that the open-

loop stability of the system guarantees the convergence of the estimated values to the

actual ones with transient behavior depending on the location of the spectrum of the
9h

matrix Cr = =—(7s,€).

In,
Remark 8.11: The exponential stability of the closed-loop system guarantees that
in the presence of small errors in process parameters, the states of the closed-loop
system will be bounded. Furthermore, since the input/output spaces of the closed-
loop system are finite dimensional, and the controller of Eq.8.40 enforces a linear
input/output dynamics between y and v. it is possible to implement a linear error
feedback controller around the (y — v) loop to ensure asymptotic offsetless output
tracking in the closed-loop system. in the presence of constant unknown process pa-

rameters and unmeasured disturbance inputs.

Remark 8.12: Note that in the case of imperfect initialization of the observer states
(i.e..n(0) # z5(0)), although a slight deterioration of the performance may occur, (i.e..
the requirement of Eq.8.41 will not be exactly imposed in the closed-loop system),
the output feedback controller of theorem 8.1 guarantees exponential stability and

asymptotic offsetless output tracking in the closed-loop system.

8.7 Application to a packed-bed reactor

We consider a non-isothermal packed-bed reactor shown in Figure 8.1, where an
elementary endothermic reaction of the form A — B takes place. Under standard

modeling assumptions. the dvnamic model of the process expressed in dimensionless

289

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘Figure 8.1: A nonisothermal packed-bed reactor.
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variables takes the form [Ray81]:

T
0z oz 1 8%z T
6—t1 = —8~1 +PeT 6~21 — BrBcezp 1+ 217, + 3p(u — )
N i i (8.43)
0z, 07, 1 9%z, “T13:
< = _ - + I 5
ot dz + Pec 022 Beezp T2
subject to the boundary conditions:
0z 0z 0T aza
:=0, Perz, = %, Pec(z,—-1) = %: =1, %‘% = al;‘ =0 (8.44)

where Z,.Z, denote dimensionless temperature and concentration in the reactor.
Per, Pec are the heat and mass Peclet numbers, Br. Bc denote a dimensionless
heat of reaction and a dimensionless pre-exponential factor, v is a dimensionless acti-
vation energy, Jr is a dimensionless heat transfer coefficient. and u is a dimensionless
jacket temperature which is assumed to be spatially uniform. The control objective is
to control the temperature profile along the length of the reactor. i.e. the controlled

output is of the form:
1
y(t) = /0 Tydz (8.45)

The following typical values for the process parameters were used in our calculations:

Per =5.0. Pec =5.0. Be=0.00001. Br =1.0. g7 =15.62. v =22.14
(8.46)
[t was verified that the above process parameters correspond to a stable steady-state

for the open-loop system. The process model of Eq.8.43 can be put in the form:

t = Ar+Bu+ f(2)

8.47
y = Cz (8.47)
with
1 9%, 0%, 0
_ | A 0 Per 02 0 e
Az = [ 0 AQ}’ 0 L 8%, 9z, (8.48)
Pec 0z° dz
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re D(A) = {1‘ € H3([0.1]:R?): Perc,(0) = %1.—}(0).
5 5 ~a (8.49)
Pec(ex0) ~ 1) = 22(0): 21y = P21) = o}
Bu = [ %T ] u. Czr=(l.z) (8.50)

The solution of the eigenvalue problem for the above spatial differential operator
subject to the boundary conditions of Eq.8.44 can be obtained utilizing standard

techniques from linear operator theory (see for example [Ray81]) and is of the form:

al;, Pe . .
/\,'J‘ = P—;-*-T 1 =1,2, j=1,....00
Pes Pe . 8.51
0;i(z) = Bije 62(603(6—!5:)+rszn(&,-j:)), i=1.2, j=1..... 0 (8.51)
Q5
0i;(2) = e F=oy(z). i=12, j=1..... 00

where Pe = Per = Pec. and Ajij. ¢i;. (Sij. denote the eigenvalues. eigenfunctions and

adjoint eigenfunctions of L. respectively. @,;. B;; can be calculated from the following

formulas:
tan(&,-j) = j%—. 1 =1.2. J=]. ..... oo
@ - (5
2
1
1 ) Pe . N .
B;, = {/0 (cos(a,-j:) + Q&ijSln(aij:)) :} =12 j=1.....0

(8.52)

A direct computation of the first five eigenvalues of L yields A\j; = Ay = ~1.94, A5 =

Az = —4.80. 013 = Mz = —1042. 0y = Ayy = —20.93. and A5 = A5 = —34.78.
These values indicate that the eigenspectrum of L exhibits a two-time-scale property
and suggest considering the first two eigenmodes of each PDE as the slow ones and the
remaining infinite eigenmodes as the fast ones. Defining H, = span{é,, #12, d21, P22}
and applying Galerkin's method to the system of Eq.8.47, a system of the form of

Eq.8.14 is derived where A, is a 4 x 4 diagonal matrix of the form
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A, = diag{A11, M2. 21, A2}, and Ay is an exponentially stable differential operator
A Ay

whose smallest eigenvalue is A\j3 = A;3. Defining € = I:; = /\—23 and following the pro-
cedure described in sections 5 and 6. we derived the O(¢) and O(¢?) approximations
of the exact slow system. The O(¢?) approximation of £(z,. u.€) was constructed by
retaining the first three of the fast modes for each PDE, and discarding the remaining
infinite ones (this is because the use of more than three fast modes provides negligible
improvement in the accuracy of the O(€?) approximation of the fourth-order model).
The zero dynamics of the systems corresponding to the O(¢) and O(e?) approxima-
tions of the exact slow system were found to be exponentially stable. Therefore. the
nonlinear finite-dimensional controller of Eq.8.40 with 3, =0.2. o =1.0and L =0
(this is possible because the open-loop process and thus the O(e?) approximation of
the exact slow system are exponentially stable) was employed in the simulations. It

was also established that the value of ¢ = 0.19 ensures that the controller exponen-

tially stabilizes the closed-loop parabolic PDE system as well.

Simulation runs were performed to illustrate the advantages obtained by using
higher-order approximations of T(z,.u.€) in the construction of the slow subsys-
tem of Eq.8.24 and evaluate the output tracking capabilities of the proposed control
methodology. In particular. we compared the performance of the controller synthe-
sized following the above procedure with that of a controller of the form of Eq.8.40
with € = 0 and L = 0 (O(e) approximation). Figure 8.2 shows the output and ma-
nipulated input profiles for an 8.0% decrease in the value of the set-point (the new
set-point value is v = 1.11). It is clear that the controller synthesized on the basis
of the system which uses an O(€?) approximation for ¥(z,, u. €) provides an excellent
performance driving the output (solid line) very close to the new set-point (note that
as expected. lim—.|y — v| = O(e?)). On the other hand, the controller of the form
of Eq.8.40 with € = 0 drives the output (dotted line) to a neighborhood of the set-

point (note that lim,—..|y — v| = O(¢)) leading to significant offset (compare with
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Figure 8.2: Comparison of output (top figure) and manipulated input (bottom figure) profiles of the
closed-loop system. for an 8% decrease in the set point. The dotted lines correspond to a controller

based on the slow ODE model with an O(e) approximation for £, while the solid lines correspond

to a controller based on the slow ODE model with an O(¢?) approximation for L.
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set-point value). Figure 8.3 displays the evolution of the dimensionless temperature
of the reactor for the case of using an O(e?) approximation for ©(z,.u.€). The con-
troller achieves excellent performance, regulating the temperature at each point of
the reactor to a new steady-state value, which is close to 8% lower than the one of
the original steady-state. Finally. it was also verified through simulations that: i) the
closed-loop output profile obtained by using a fourth-order system with an O(¢?) ap-
proximation for £(z,,u,€) is comparable to the one achieved by using a tenth-order
system with an O(e) approximation for ¥(z,,u,€). and iz) the use of higher-order
approximations for E(z,.u.€) and u(z,,€) (i.e. O(e®)) in the construction of the
fourth-order system provides minimal improvement. From the results of the simu-
lation study. it is evident that the proposed methodology is a powerful tool for the
svnthesis of low-dimensional controllers which yield a desired closed-loop performance

for diffusion-convection-reaction processes.

8.8 Conclusions

In this chapter. we developed a method for the synthesis of nonlinear output feedback
controllers for systems of quasi-linear parabolic PDEs, for which the eigenspectrum
of the spatial differential operator can be partitioned into a finite-dimensional slow
one and an infinite-dimensional stable fast one. Combination of Galerkin's method
with a novel procedure for the construction of AIMs was used, for the derivation of
ODE systems of dimension equal to the number of slow modes, that yield solutions
which are close, upto a desired accuracy. to the ones of the PDE system, for almost all
times. These ODE systems were used as the basis for the synthesis of output feedback
controllers that guarantee stability and enforce the output of the closed-loop system
to follow upto a desired accuracy. a prespecified response for almost all times. The

methodology was successfully applied to a packed-bed reactor.
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1.4

Figure 8.3: Profile of evolution of reactor temperature, for an 8% decrease in the reference input

(O{€®) approximation for T).
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Chapter 9

Conclusions and Future Research

Directions

The present doctoral thesis has focused on the development of a framework. for the
syvnthesis of nonlinear control systems for nonlinear two-time-scale ODE systems. and
hyperbolic and parabolic PDE svstems. that systematically addresses the problems of
modification of the input/output behavior. elimination of measurable disturbances.
and attenuation of unmeasured disturbances and unknown parameters. The pro-
posed control algorithms were applied to industrially important chemical processes.

Specifically. the main contributions of this thesis can be summarized as follows:

1. Control of nonlinear two-time-scale ODE systems. A methodology was
developed for the synthesis of well-conditioned controllers for nonlinear two-time-
scale ODE systems. Using combination of singular perturbation and differen-
tial geometric methods, well-conditioned feedback controllers were synthesized
that guarantee closed-loop stability and enforce output tracking. The problem
of elimination of the effect of measurable disturbances on the output was also
addressed and solved through appropriate incorporation of feedforward compen-

sation in the developed controllers.
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[ 8]

. Control of nonlinear two-time-scale ODE systems with uncertain vari-
ables. General methods were developed for the svnthesis of controllers for non-
linear two-time-scale ODE systems with unmeasured disturbances and unknown
parameters. Using combination of singular perturbations. geometric methods
and Lyapunov techniques, well-conditioned robust feedback controllers were syn-

thesized that:

e guarantee stability of the closed-loop stability and enforce output tracking.

¢ achieve arbitrary degree of asymptotic attenuation of the effect of uncertain

variables on the outputs.

3. Control of nonlinear hyperbolic PDE systems. A methodology was de-
veloped for the synthesis of distributed output feedback controllers for nonlinear
hyperbolic PDEs that addresses the issues of output tracking and closed-loop
stability. The controllers are synthesized on the basis of the PDE model employ-
ing a geometric approach. This methodology was extended. within a Lyapunov-
based framework, for the synthesis of distributed robust controllers for hyperbolic

PDEs with uncertain variables.

4. Control of nonlinear parabolic PDE systems. The problem of synthesiz-
ing low-dimensional output feedback controllers for nonlinear parabolic PDEs
that ensure output tracking with closed-loop stability was addressed and solved.
The key step of the proposed solution is the derivation of low-dimensional ODE
models. which accurately reproduce the dynamics of the PDE system. through
combination of Galerkin's method and approximate inertial manifolds. These

ODE models are subsequently used for controller design.

5. Application to chemical process control. The developed control meth-
ods were successfully applied to industrially important chemical processes. The

methodologies for two-time-scale systems were applied to a biochemical reactor.
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a catalytic reactor and a fluidized catalytic cracker. while the control algorithms
for hyperbolic and parabolic PDEs were applied to a plug-flow reactor. a fixed-

bed reactor, and a packed-bed reactor. respectively.

The results of my doctoral thesis provide the first step towards developing a frame-

work for the analysis and controller synthesis for nonlinear chemical processes with

time-scale multiplicity and strong distributed nature. Main unresolved theoretical

and practical problems that need to be addressed include:

o

. Control of two-time-scale processes with non-explicit time-scale separation. An

attempt in this direction was recently made in the papers [KCD96b. KCD96a}
where a systematic methodology was developed for modeling. via coordinate
change, of a class of two-time-scale processes with non-explicit time-scale sepa-
ration in standard singularly perturbed form. Computational singular perturba-

tion are expected to play a key role in this effort.

. The study of control problems in more general classes of nonlinear PDEs, such

as models arising in fluid dynamics (e.g.. Navier-Stokes equations) and pat-
tern formation (they contain differential operators of fourth order in space. e.g..
Kuramoto-Sivashinsky equation). It is well-known [FJK*89. BBKK96] that such
systems exhibit low-dimensional dynamic behavior, which implies that the pro-
posed framework for control of parabolic PDEs can be used. in principle. to

address their control.

. The development of control algorithms for nonlinear delay-differential equations.

as well as DPS modeling disperse-phase processes (e.g.. crystallizers. emulsion

polymerization reactors), such as nonlinear integro-differential equation systems.

. The development of robust control algorithms in order to deal with disturbances

and parametric uncertainty, and the derivation of design guidelines for the de-
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veloped control algorithms. that will allow handling of manipulated input con-

straints.

The control-relevant modeling and analysis (e.g.. selection of manipulated in-

(W3]

puts and measurements, as well as optimal locations for sensors and actuators).
and the experimental implementation of the control algorithms to industrially

important two-time-scale and distributed parameter systems.
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Appendix E

Proofs of Chapter 6

The proofs of Theorem 6.2 and Proposition 6.4, concerning the case of systems of
quasi-linear PDEs, are conceptually similar to the ones given for the linear counter-

parts of these results, and will therefore be omitted for brevity.

Proof of Proposition 6.2:
Consider the closed-loop system of Eq.6.26. Differentiating the output of this system

with respect to time. we obtain the following set of expressions:

y = Ckz
dy 5,
- = Ck|A+ z
7 C (Aa:+B+wb( )S):r
42 9 2
F .= a . -1
%tg— = Ck (A-BQ:+B+wb(::)S) r+Ck <Aa—a:+B+wb(:)S) wb(z)sv
(E.1)
It is sufficient to show that & = 0. Note that
Ck (Ag: + B+ wb(:)S) =Ck (456: + B) + Ckwb(z)S = Ck (A-aa—~ + B) , because

Ckwb(z) = 0. Similarly, it can be shown, by induction, that
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Ck(Ai-%-B-i-wb

0z

‘ 9 b
(:)8) =Ck (4——+B> ori=1..... o —1. Using this simpli-

fication in the expressions for the time derivatives (Eq.E.1). it follows directly that:

dy d
o Ck (Aé'; + B) z
&y 9 :
(E.2)
dag a 4 6 c—1
T Ck <A5—~:+B> T+ Ck (A-'d—;:+3) wb(z)Sz
a o—1
+Ck (Ast + B) wb(z)sv
This completes the proof of the proposition. VAN
Proof of Theorem 6.1:
Under the controller of Eq.6.28. the closed-loop system takes the form:
-1
oz Oz 9 o
5 AE-*- Br + wb(z) {%Ck (Aé—:--i-B) wb(-)]
o{v-Ck.r—- > v.Ck <A§+B) 1:} (E-3)
v=1 ~
g = Ckz

From the result of proposition 6.2. it follows that a differentiation of the output of
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the system of Eq.E.3 yields the following expressions:

g = Ckz
dj :
£ = CHAx+ B
4% o 2
il Ck (AE + B) T

o — c o—1
Y _ ok (A%+B) z+Chk (A§:+B> wh(z)

-1
a o~-1 o . v
° [%Ck (45—; + B) wb(:-:):l {v —Ckr - Z‘yUCk (4;— + B) .r}
< v=1 -
(E.4)
Substituting the above relation into Eq.6.27. one can easily show that the result of

the theorem holds. A

Proof of Proposition 6.3:
Utilizing the expressions for the output derivatives of Eq.E.2, the closed-loop system

of Eq.E.3 takes the form:

-1
Oz Oz 0 o=t
TR ‘4E+Br+wb(~) l:ClL (A'a—:'f'B) Cb(-)}
R ol PO 2 9 o (E.5)
. {A’,—U(l' -9 - 23 G ~ Cw (Aa—:- + B) r}
j = Ckr
=1
Defining the state vectors (; = ¢y : = 1.---.0. the system of Eq.E.5 can be

dt-’
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equivalently written in the form of the following interconnection:

G = ¢
(,:a-l = (s

o _ Ll . Yo-1. L

Qd - 'agl 6Q2—”'— - gd+‘7al’ (E-G)

-1
oz oz 7, ot
Fri ,4E+B:z:+wb(-) [CL (A‘a—:-f-B) wb(..):l
= d °
e{(—Ck|A=—+B]| =z
0=
-1 = o .
where ( = 7—(v - C1) — Z—QU“. Condition 1 of the proposition guarantees that

4 v=1 /o

the (-subsystem of the above interconnection is exponentially stable. and thus the

following condition holds:

I{] < Kq|Gole™" (E.7)

where |- | denotes the standard Eucledian norm, Ay, a; are positive real numbers, with

- - - 1
K} > 1, and (p is the value of the variable ¢ at timet =0, (i.e. (o = —(v(0) —=¢(1yo) —
lo

o-1
Z kQH_I)O). From condition 2, we have that the differential operator of the system
v=1 /0

of Eq.6.35 generates an exponentially stable semigroup . i.e. ||U||l2 < Rae~22,
where N;. a; are positive real numbers, with A > 1. Utilizing Eq.6.15, the following

estimate can be written for the state z of the system of Eq.E.5:

t _ —
lella S Rallzollae~t 4 K [ IWELI I (ES)
where
_ a o—1 -1
Wi(z) = wb(z) [Ck (AB—: + B) wb(:)} (E.9)

Substituting Eq.E.7 into Eq.E.8, we have that:

t _ -
ll.l?”g S [\'2”1‘0“26—112‘ + 1\'2[\’1/ e—az(t—‘r”“’V(Z)HQKQIC_MTdT
0 (E.10)

_ - t
= Kallzollae ™ + Ka | [W(2)lal ole™ [ e-omdr
4]
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Let § = az — ay. Ifé6= O “1,'“2 < ]\2”1‘0”26 azt + [\2I\,||W HQIQQIG a2ty <
Kl|zo||2e7%t + KyRA4||W(z ”2 ol ———e"%* where 0 < a3 < a;. Clearly. in this
as

case, the closed-loop system is exponentlall) stable. Furthermore. If § > 0. ||z]|, <

K||zoll2e7 + KoKy ||W (=2 ”2 ol e~ (1 — e~(2-a1)t) while if § < 0.
Hzlla < Kal|zoll2e™22* + [\2[\1||W M2 ll?ll —eal — el27a)y [ either case (6 >
0.6 < 0), we have that:

Hzlla < Aa|lzoll2e™® + Aok, ||W (= ”2||€50|l -at (E.11)

where @ = min{a;,a;}. From Eqs.E.7-E.11, the exponential stability of the closed-

loop system of Eq.E.5 follows directly. A

Proof of Theorem 6.3:
Part 1: Stability analysis. Substituting the controller of Eq.6.39 in the system of

Eq.6.9. we have:

-1

oz oz 0 ot
i Aa.’ + Bz + wb(z) |4,Ck (45:-*-3) wb(z)
{v -~ Ckn — Z‘YUCL’ (Aaa + B) TI}
v=1 ~
dn 8

o-1
_ 4On (49 whl(=
5 (,L + Bn + wb(z) [1.Ck (Aa~ + B) wb(z)

{L‘ = Ckn — 3_7.Ck (Aai + B) n} +P(q - Lpn)
v=1 ~

Introducing the error coordinate é = z — 7. the above closed-loop system can be

written as:
-1
dr or P o-1
5 = Aot Brtwb(z) | Ck (AEj + B) wh(z)
{v - Ckz — Z'y,,CL (A 9 + B) x} + Xe (E.13)
gé _
3 = (L —PQp)e
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where

o-1 -1 c v
Xé = wh(z) [’yde (A% + B) wb(:)J {Cké + Z‘)'yC/f (4§ + B) 5}
-~ v=1 ~

(E.14)
Because the operator P is designed such that the operator £ — PQp generates an
exponentially stable semigroup, the following estimate can be written for the evolution

of the state € of the above system:
llellz < Asl|éo||2e~* (E.153)

where €y denotes the vector of initial conditions and A, @ are positive real numbers.
with A3 > 1. Furthermore, utilizing Eq.6.15 and the fact that the conditions of
proposition 6.3 hold, the following inequality can be written for the state r of the

syvstem of Eq.E.13:
. t - —
lzlls < Kallzo|l2e™% + Ky /0 e~8t=)|| T &()||pdr (E.16)

where Ny.a are positive real numbers, with Ky > 1. Substituting the inequality of
Eq.E.15 into Eq.E.16, and performing similar calculations as in the proof of proposi-

tion 6.3, it can be shown that the closed-loop system is exponentially stable.

Part 2: Input/output response. Under consistent initialization of the states r and 7
i.e.. z(z,0) = n(z.0). it follows that €(z,0) = 0. From the dynamical system for €, it

is clear that if €(=.0) = 0. then &(z.t) = 0 for all ¢t > 0. Thus. the system of Eq.E.13

reduces to:

. o—-1 -1
%2 A% L Bt wib(2) l:,-,Ck (A—a— + B) wb(:)]

at d:z 0z
a 8 v (EIT)
{v —Ckz — Z‘/uCk (Aa—: + B) 1'}
v=1 -
A direct application of theorem 6.1 completes the proof of the theorem. A
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Proof of Theorem 6.4:
Part 1: Stability analysis.  Substituting the controller of Eq.6.43 in the system of
Eq.6.7, we have:

-1

o—-1
g_j = A@Z + f(o) + gl [%a (2 ”’La,+L,) h(n)b(:)}

{v —Ch(ﬂ) - i"/uc (z_n:j'La, + Lf) h(’?)}

-1

o—1
5 = Al )2 + f(n) + g(n)b(= ){%C-’« (Z ”’qu) h(n)b(:)}
~ ]—.

o n On. v ~
{v ~Ch(n) = >_%C (Z—nf L, + Lf) h('r)} +P(g — Qp(n))
v=1 =1

(E.18)
In order to perform a local analysis of the stability properties of the above system.

we consider its linearization:

oz oz 9 o-1 -
3 = A(Z)E+B( z)x + w(z)b(z) [%Ck(:) (A(i)t—:+B(:)) w(=)b(z)
0 v _
{ —Ck(z n—Z7,,Ck ( (:)a—+B(:)) n}+7—’(z7—Ck(:)rz)
v=1 ~
. ; o—1 -1
g—? = A(:)g~ + B(z)n + w(=)b(=) [%Ck(:) (‘4( )%+B(:)) w(:}b(:)]
{L —Ck(z)n - Z%Ck z ( (:)56:+ B(Z)) 77} +P(G— 2p(=)n)
v=1 ~

(E.19)

Introducing the error coordinate € = r — 7. the above closed-loop system can be
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written as:

a a . o-~1 -1
-a—':- = A(:)a—j + B(z2)r + w(=z)b(=) [*,‘,Ck(:) (A(:)—a; + B(:)) w(:)b(:)}
{v ~Ck(z)z — i‘y,,Ck(::) (A(:)g—: + B(:)) z} + Xé
v={ ~
de -
= = (£-Pp:)
(E.20)
where
. 9 c—1 -1
Xe = w(z)b(=) l:'yaCk(:) (A(z)—: + B(:)) w(:)b(::)}
i (E.21)
4 a v
{Ck(z)é + Z‘yuCk(z) (4(:)5: + B(:)) é}
v=1 ~

From the conditions of the theorem. we have that the r-subsystem (with é = 0) of the
above interconnection is exponentially stable and the é-subsystem is also exponen-
tially stable. because the operator P is designed such that the operator £ — PQp(z)
generates an exponentially stable semigroup. Following an approach analogous to the
one used in the proof of proposition 6.3, one can show that the system of Eq.E.20 is
exponentially stable. Utilizing the result of proposition 6.1, we have that the closed-
loop system of Eq.E.18 is locally exponentially stable. because the linearized system

of Eq.E.20 is exponentially stable.

Part 2: Input/output response. Under consistent initialization of the states r and 7
re.. r(z.0) = n(z,0). it follows that €(=.0) = 0. From the dynamical system for €, it

is clear that if €(=.0) = 0. then é(=.t) = 0 for all ¢t > 0. Thus, the system of Eq.E.20

325

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



reduces to:

o—1 -1
o = A@Z 4 fa) + gle)i [vaCL (Zax’La,uf) h(r)b(:)}

{v _Chiz) - 3 1.C (Zaxf Lo, + L,) h(z)}

v=1

y = Ch(z)
(E.22)

Since the characteristic index between 7 and v is . a differentiation of the output of
the system of Eq.E.22 yields the following expressions:
g = Ch(z)

dy
dt

{v—Ch Z% (Za:”fL,,)+L,) h(z)}

Substituting the above relation into Eq.6.27. one can easily show that the result of

the theorem holds. A
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Appendix F

Proofs of Chapter 7

Proof of Proposition 7.1:
Part 7.1: The proof of the first part of the proposition is given in the proof of

proposition 6.2.

Part 2: Referring to the open-loop system of Eq.7.1. let § < . We will first show
that the result holds in the case 6 < o. Consider the closed-loop system of Eq.7.11.
From part one of the proposition. we have that the characteristic index of the output
§ with respect to v in the closed-loop system is equal to o. From the definition of
characteristic index of § with respect to 8. we have that the following relations hold

for the open-loop system:

(¥}
~—
i
O
<C
v
-
I
.
.
(=2}
|
—
~
i
—
.
—

u—1
c Lnk (Zar} qu + Lf) h(z)ri(

Differentiating the output of the closed-loop system with respect to time and using

327

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the relations of Eq.F.1, we get:

y = Ch(z)
dj =\ 0z;
E = C (]=1 9= LQJ + Lf) h(.’E)

&y - 6:1:,

From the above equations. it is clear that the result of the second part of the propo-
sition holds if § < 0. The same argument can be used to show that the result is also

true for the case § = 0. The details in this case are omitted for brevity. A

Proof of Theorem 7.2:

Part 1 (uncertainty decoupling). Necessity. We will proceed by contradiction. Con-
sider the system of Eq.7.1 and assume that é < o. Referring to the closed-loop
syvstem of Eq.7.11. we have. from proposition 1. that the characteristic indices o, §
are preserved. and the condition é < o holds. This fact implies that 8 affects directly
the é-th time-derivative of § in the closed-loop system. and thus §. which yields a

contradiction.

Sufficiency. Referring to the system of Eq.7.1. suppose that ¢ < §. In this case, a

328

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



time-differentiation of § up to o-th order vields the following expressions:

y = Ch(z)
dy _ Z 6:1:J~
% C (JX::I-—:LQJ + Lf) h(z)

&y dz;
zz? = (Z $L4,+Lf) (Z&La,u)h(r)

j=1

(F.3)

=1

if C (igija, + L,) (X_jaz’ La, + L,) h(z)
iy
+CL, (ia—l}[% + L,) h(z)b(z)u
i=1 9%
From the expression of the o-th derivative of 7, it is clear that there exists a control
law of the form of Eq.7.10 (e.g., the controller of Eq.7.13) which guarantees that j
is independent of 8 in the closed-loop system, for all times. Finally, one can easily
show. utilizing the expressions of Eq.F.3, that the controller of Eq.7.13 enforces the

input/output response of Eq.7.12 in the closed-loop systen:.

Part 2 (boundedness). First, we note that whenever 6(¢) = 0. the conditions 7) and i:)
of the theorem guarantee that the nominal closed-loop system is locally exponentially
stable (Proposition 6.3). Since the nominal closed-loop system is locally exponential
stability. we have from theorem 6.1 that there exists a smooth Lyapunov functional
Vi H" x [@a.8] — R of the form of Eq.7.7, and a set of positive real numbers
ay.as. as.ay.as. such that the following properties hold:

]|zl S V() < aolz]f}
v 8V

di = '5"£( T) < "‘13“1'”2 (F.4)
av

||—||2 < aqllzll2

if ||z]l2 £ as Whenever (6(t) # 0) the closed-loop system, under the control law of
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Eq.7.13. takes the form:

Il
It
8
+
=
0
3
t

)6(¢) (F.5)

where £(z) is a nonlinear operator. Computing the time-derivative of the functional
V' : H" x[a,8] — R along the trajectories of the uncertain closed-loop system of
Eq.F.5, using Eq.F.4, and using the fact that if ||z||2 < a5 there exists a positive real
number ag such that ||W(z)|]2 < ae, we get:

dv av

T = g L@+ W(z)r(2)6(2) (F.6)
< —aallz|l; + asasllz|l2|Ir(=)l[216(2)]

From the last inequality of the above equation, we have that if
QAsds

0(t)| < ———=____ < §.V¢t>0. then

6(t)] < daq4a6]lr(z)llo = T
&V a R
— S =3 llzllz (F.7)

if %5 < ||z|l2 £ as. Using the result of theorem 4.10 reported in [Kha89]. we have that

||z|]2 is a bounded quantity, which implies that the state of the closed-loop system is

bounded. A
v—1 ¢
Proof of Theorem 7.3: First. we define the state vectors (! = dt"‘S{ =100
- .l - - Y . et . ’7 =1 ‘7 -t ‘70'
v=loo =[G QN G=hon G = Gr 0+ Sh e TG
[-4 lo L]

= [Q} (,3 e gf,]T and for ease of notation. we also set:

o-1 -1
3(z) —[ (ZBI’LGHLL]) h(x)b(:)} (F.8)

Using the above notation the controller of Eq.7.19 takes the form:

~ o-l, - -~
@ = 5(:){—704;—22@“—2K(t)A(ca.¢)cg} (F.9)

v=1 I0
where A((,,8) is an [ x | diagonal matrix, whose (i.¢) — th element is of the form

(IC |+ &)

330

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Part 1: Asymptotic output tracking. Using the definition for the state vectors (,.

v=1,---,0,and g:l.gta. the closed-loop system

oz 0

5z ) ,- )
5 = Ayt f(z) +g(z)b(=)u + W(z)r(=)6(¢) (F.10)
gy = Ch(z)
can be equivalently written in the following form:
Q:l = (
Q.U-l = —:71_1-61 - :’;—Z.CZ - = 7,6-1CU—1 + éﬂ
b a-l“,’u : = T : :
(o = Z;cm =060 — D —Cor1 = 2K (1)A({, )¢ + K (1) (F.11)
v=l 1@ v=1 10
oz

- a—l - -
E = Cl' +g($)b(:)§(l‘) {_’YOCU - ZZZCU-Q-I - 21\'(”A(Ca-¢)§a}
v=1 10

To establish the relation of Eq.7.21. we will first work with the g:,-subsystem of
Eq.F.11 and establish a bound for the state of this system in terms of the initial
condition and the parameter ¢ (in order to simplify the presentation we will focus on
the z-th input/output pair). To this end, we consider the following smooth functions
Vi:R — Ryo.i=1..... [:

Y
V= (G (F.12)

to show that the time-derivative of V! is negative definite outside of a region that
includes the steady state in the space and this region can be made arbitrarily small

by picking ¢ sufficiently small. Calculating the time-derivative of V' along the tra-
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jectories of the g:;-subsystem of Eq.F.10. we have:

%‘; = [l — 2K ()] + 0) '+ K (1)
< —70(3) - 2K |€:;|+‘f’ ¢, ') + K(t |Q;|
< —%AE)—’A (] + @) MG + K@U+ 0) (&) + (¢ o
< —10(6e)? = KE]+ 8)UGIUE - o)

(F.13)
Clearly, if |(}| > ¢, V' is negative definite, which implies [Kha89. theorem 4.10] that
there exist positive real numbers K > 1, a, 4. such that the following bound holds

for the norm of the state of the (:-subsystem:

1] < RN Yole™ +y0 (F.14)

where (C})o denotes the value of ¢} at time t = 0. Consider now the following
subsystem: .
G o= G
(F.15)

7 1 -t ')0 t
__l'gl_—QQ T lgo 1+Qa'

[ o o

G
where (! can be thought of as an external input. Since the parameters 4y are chosen
so that the polynomial 1 4+ ;5 + - - - + 4,5 = 0 is Hurwitz. we have that there exists
positive real numbers A¢.a¢.v;, such that the following bound can be written for the

state vector (' = [(i ¢§ --- (¢_,] of the system of Eq.F.15:

Il < RelGale™™< + g lICE] (F.16)

Taking the limit as ¢ — oo, using the property that

limy—ne SUPQO{'Q:;I} = supr>o{limi—oo IC:]}. and using Eq.F.14 we have:

Jim |¢'] < 7,79 (F.17)
Picking ¢ = s the relation of Eq.7.21 follows directly from the fact lim,—. |(}] <
, lo
limg_.oo |C!I
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Part 2: Boundedness of the state. The proof that the state is bounded. whenever the
conditions of the theorem hold. can be obtained by using contradiction argument. It
starts by assuming that there exists a maximal time T such that for all ¢ € [0.T).
the states (z,(, g:,) of the system of Eq.F.11 (note that T always exists because the
system starts from bounded initial conditions). Then, the bounds that hold for the
states (:r,C,Q:a) for t € [0.T) are derived and is shown that they continue to hold
for t € [0,T + kr]. where k7 is some positive number. However. this contradicts the
assumption that T is the maximal time in which the state is bounded. which implies
that T = oo, and thus the state of the closed-loop svstem is bounded for all times.

A

Proof of Theorem 7.4: Using L;; as defined in subsection 7.7.1. the representation

of the system of Eq.7.23, with @ = 0, in the coordinates (z,7y) takes the form:

g—f = Lz + W(z)r(z)0(t)+ Li2ny
. (F.18)
e—aﬂ = L + E’- EO
ot 2l + el g2+ 5 0)
Since from assumption 7.6. the system:
520%{ = Enru (F.19)

is exponentially stable, we have that if (z,8, 8) are bounded, then there exist a set
of positive real numbers A’y.ay,,, such that the following bound can be written for

the state of the ny-subsystem of Eq.F.18. for all t > 0:
ot
. ~ay -
lingllz £ Kyllngollee "€ 4y, ¢

Using assumption 7.5 and Eq.6.15, we have that the following bound holds for the

(F.20)

state of the z-subsystem of Eq.F.18, for all ¢ > 0:

lell: < Killaollae= + &, [ e D |IWz)r(z)]alo(r)ldr

t
# [ N Ll bl
< Aillzoll2e™ + M2||6]] + M3 supyso{llnyll2}
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Gl Ly gy, — Kool
dition (]|zo|lz) and the inputs (|{]].[|8]|.sup{|[nsll2}) are sufficiently small. Note

where M, = . provided that the initial con-
that since we do not know a-priori that the states (z.7;) of the system of Eq.F.18
are bounded, we have to work with truncations and exploit causality in order to
prove boundedness. Let & be as given in the statement of the theorem. so that
max{||zoll2, 11112, 118}l 1611} < 4. and let &, to be a positive real number that satis-
fies

6: > K,6+Mb+d (F.22)

where d is a positive real number specified in the statement of the theorem. Note
that since K, > 1. §; > &, and using continuity with respect to initial conditions. we
define [0.T) to be the maximal interval in which ||z,|]; < §,. for all t € [0.T) and
suppose that T is finite. We will now show by contradiction that T = oo. provided
that € is sufficiently small.

First. notice that from Eq.F.19, we have that for all t € [0.T), |||l < K6+ qe.
Let € be a positive real number so that € € (0.€] and define 4, := [\}5 + o, €0

Note that é,, > 6.

Lemma [CT95]: Referring to the r-subsystem of Eq.F.18. let Eq.F.21 hold. Then.
for each pair of positive real numbers 6.d, there exists a positive real number p* such
that for each p € [0.p]. if max{||zollz, |[ns]l2: 1161}, 181|} < 8. then the solution of the

r-subsystem of Eq.F.18 with (0) = z¢ ezxists for each t > 0 and satisfies:

llzlls < Killzollze™* + Ma|I8]] + Masupey, {ln/ll2} + d (F.23)

Applying the result of the above lemma, we have that there exists a positive real
number p (assume without loss of generality that p < T'), such that if

max{||zo||2, ||7/ll, 16 1611} < 6,,, then the solution of the z-subsystem of Eq.F.18
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with z(0) = z¢ exists for each t € [0.T) and satisfies:

UVI W

Hl’“g S 1\-3|ll'oll2€—a't -+ A’[zHG” + 1‘/[3 suptzp{anHz} =+ (F?-l)

5

Substituting Eq.F.19 into Eq.F:24, if € € (0. ¢o. we have for all t € [0.T):
p

. d . —a;— o=
llizll: < Killzollze™ + Moll6]| + 5 + MsRylingolla(e € +3qpe)  (F:29)
From the fact that the last term of the above equation vanishes as ¢ — 0. we have
that there exists an €; € (0. ¢} such that if € € (0.¢,], then for all ¢ € [0.T):

llzllz £ K,l|zoll2e™®* + Ma||0]| + d (F.26)

From the definition of é,, the assumption that T is finite and continuity of r. there
must exist some positive real number k such that supieprisj{l|z|l2} < é:. This
contradicts that T is maximal. Hence, T = oc and the inequality Eq.7.35 holds for

all t > 0.

Finally, letting €3 be such that v,,¢ < d for all € € [0.€3] it follows that both

inequalities of Eqs.7.35-7.36 hold for € € (0.¢"] where € = min {¢;. €. €3}. A

Proof of Theorem 7.6: Substituting the controller of Eq.7.13 into the system of

Eq.7.23 and using the expression for the output derivatives of the closed-loop slow
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system of Eq.F.3, we have:

6 n . o~1
a_:: = Lz+g(z)b(z) [‘y,CLg (Z%%La, + L;) h(.z')b(:):l

-1
9 i F.27
6_5”t£ = Loy + ga(2)b(= {%CL (Z z,LaJ + L,) h(z)b(:)} (F.27)
1=1
1 = d"' Oz; ’
{70(1 7 v=1 1o dtu (Z L“J + Lf) h(I)}
0z d:
W. o(t r >
+Wal2)r()8(8) + (524 + 20)
y = Ch(z)
v=1 =
Defining the state vectors (, = dt”"?' v=1,---,0. the system of Eq.F.27 can be
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equivalently written in the following form:

. P
G = G+ ZCLc;‘,h(l‘)ﬂf
k=1
éa—l = ZCLU—2h
. _ L. m Yo-1 . 1 o-1
e = ——Q——G—— g,+—v+ZCL h(z)ny
4 Jo Yo Yo
-1
Jz

o o~1
% = Lz + g(z)b(=) [76(,’[.9 (}:O_—J}La, + Lj) h(l')b(z)J
Jj=1 ="

. { (2811 L, + Lf) h(l‘)} + Lyang + W(z)r(=)0

j=1

1=1

~1
On 0 -
6’707!' = [:227”’ -+ gg( [‘W,CL (Z d:l:JL ) h(l')b(Z)J

- n al’ ’ z d
° ~-C ‘—]La +L h Wolz)r(= - =
{c (; L, ,) (x)}+ 2(2)r(2)0(0) + (G2 + S26)
(F.28)
Performing a two-time-scale decomposition. it can be shown that the fast dynamics

of the above system is locally exponentially stable. and the reduced system takes the
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form:

G =8
Com1 = G5

: 1 .S T s TJo-1 .4 1

; —_ ——_— —_ — _...__—a+—1'

¢ Yo ‘1 Yo 2 Yo ‘ Yo
, ¥ ol ~1 (F.29)
a_f = Lz + g(z)b(z) |7.CL, (Z%Laj + Lf) h(z)b(=)

J=1 "

. {g ~c (z?f-L + L,) h(x)} + Wi(a)r(=)0

j=1 7"

From theorem 7.2, we have that the state of the above system is bounded. Using the
result of theorem 7.4. we have that the state of the closed-loop system of Eq.F.27 is
bounded provided that the initial conditions, the uncertainty. the rate of change of

uncertainty and the singular perturbation parameter are sufficiently small. Using the
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auxiliary variable ¢, = ¢, — (. v = 1.....0. the system of Eq.F.28 can be written as:

SNy
—

. P
= G+ CLk hiz)ny
k=1

(oor = Cot ZCL‘Zf:h

': _ 1 pd ’71 - -1 = 1 4 a—1
(o = %@1 70@2— Baiowal b +kZ=ICL42h(r)nf
o-1 -1
a.’L‘ n a.‘I:J’
o = Letg@)b(z) |1CLy Y 57 Ls, + Ls h(z)b(=)
Jj=1 "~

) (F.30)
{Q- +¢-C (Za—zij[aa, + Lf) h(z)} + Lyony + W(z)r(2)0

i=1

-1 ~1

d i 0z1;

679%{ = Lang + g2(z)b(2) {‘y,CLg (Z-a—:iiLaJ + Lj) h(l‘)b(:):l
j=1""

{f +¢-C (ia—IfLa, + Lf) h(x)} + Wa(z)r(=)6(t)
J=1 ="

6" 6:,
0«9

)

Using the fact that the state of the above system is bounded and the equality ¢,(0) =
¢3(0). holds Vv =1..... o. the following bounds can be written for the evolution of
the states ¢ = [QIT T QI,T]T ns of the above system:

Il < Mllngllz
i (F.31)
. —ay-
llnslla < Ayllnsollze =€ + e
where M, is a positive real number. Combining the above inequalities, we have:
t

- -y :2
IC] < MaKj|nsollae” "€ + My, e (F.32)

Since My, Ky, ||ny0ll2. 74, are some finite numbers of order one, and the right hand side

of the above inequality is a continuous function of ¢ which vanishes as ¢ — 0, we have
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t
that there exists an € such that if € € (0.¢"]. then ./V[,,K]ano[lze—alz + Myyn,e < d

V> 0. Thus. [§(t) — gi(t)] = |Gi()] S |G(t)] S [{(B) < d. Vi >0. A

Proof of Theorem 7.7: The detailed presentation of the proof of the theorem is
too lengthy and will be omitted for brevity. Instead. we will provide a brief outline
of the proof. Initially, it can be shown, following analogous steps as in the proof of
theorem 3. that the state of the closed-loop reduced system of Eq.7.42 is bounded
and the there exist positive real numbers A, a., 7. such that the following estimate

holds for the i-th output error for all ¢t > 0:

7 = vl S K@ - eole™™ + 0 (F.33)
o ) d
where (7' — v*)g is the output error at time ¢t = 0. Picking ¢~ = —. we have that for
e
o € (0.97):
o o d ,
l7° = v'] < K |(F —v')ole™® + = (F.34)

)
Now. referring to system of Eq.7.41 we have shown that satisfies the assumption of
theorem 7.4 (the state of the uncertain closed-loop reduced system is bounded and
the boundary layer is exponentially stable) and thus. the result of this theorem can
be applied. This means that for each positive real number d. there exist positive
real numbers (AL. @.. J..6). such that if ¢ € (0. ¢"] there exists an €*(#) such that.
if maz{||zo||2. 17512 11611, 1611} < 8. & € (0,67] and € € (0,€*(¢)], the state of the

closed-loop system of Eq.7.41 is bounded and the the following estimate holds for the

output error for all ¢t > 0:
. . - . - d
7 =] < Rel(g = vidole™ + 70 + 5 (F.35)

Taking the limit as ¢ — 0 of the above inequality, we have that if

maz{||zollz. [[nsll2: 1161], 11611} < 8, 0 € (0,¢7] and € € (0,€(4)]. then:

: : d
lim |5 - v S 0+ 5 < d (F.36)
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Appendix G

Proofs of C'hapter 8

Proof of proposition 8.1:

The proof of the proposition will be obtained in two steps. In the first step. we will
show that the system of Eq.8.17 is exponentially stable, provided that the initial
conditions and ¢ are sufficiently small. In the second step. we will use the exponential

stability property to prove closeness of solutions (Eq.8.22).

Ezponential stability: First. the system of Eq.8.17 can be equivalently written as:

dz,
;t Ay + fo(2,0) + [fo(Taezy) = fu(24.0)]
(G.1)

E-aa% = .AfJJj + Eff(.'l'_,,l'f)

Let pi,p; with pi > a4 be two positive real numbers such that if |z,| < u] and

[lz]l2 £ p3. then there exist positive real numbers (&, k2, k3) such that

|fa(xswxf) - f_,(.’l:,.O)‘ S leIJ'”2

(G.2)
Ufr(zsezp)ll2 < kalzs| + kallzsll2

Pick py < ay < pf and pp < p3. From assumption 8.3 and the converse Lyvapunov
theorem for finite-dimensional systems [Kha92, Theorem 4.10], we have that there
exists a smooth Lyapunov function V : H, — IR0 and a set of positive real num-

bers (a).a;.as.a4.as5). such that for all z, € H, that satisfy [z| < a4, the following
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conditions hold: - .
all‘rslz < % (1',) < azlz,[

s 2

Vigs) = 5[4, + fi(25,0)] < —asfz,| (G.3)
Liap

Bz, < as|z,

From the global exponential stability property of the fast subsystem of Eq.8.18 (as-
sumption 8.2), and the converse Lyapunov theorem for infinite-dimensional systems
[Wan64. Wan66a|, we have that there exists a Lyapunov functional W : H; — Ry
and a set of positive real numbers (b;, b, b3, by), such that for all z; € H; the following

conditions hold: )
billzsl|3 < W(zg) < bo]|zsll3

. 10W bs )
= —— A" < -
ow
Ha—x‘f'llz < ballzsll2
Consider now the smooth function L : H; x Hy — Ryo:
Liznz)) = V(z.)+W(z)) (G.5)

as Lyapunov function candidate for the system of Eq.G.1. From Eq.G.3 and Eq.G.4.
we have that L(z,.zy) is positive definite and proper (tends to +oco as |z,| — ooc.
or ||zy|]2 — o0), with respect to its arguments. Computing the time-derivative of L

along the trajectories of this system ,and using the bounds of Eq.G.3 and Eq.G.4 and
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the estimates of Eq.G.2, the following expressions can be easily obtained:

ievzy) = a0y
T TS - 3232 61, f
oV av oW’
< - —— - — A"
< az,[A”” + fo(24,0)] + axs[fs(z,.zf) fo(25.0)] + afofIf
oW
+a—xf-ff(l‘s~l‘f)
bs
< —aslzl? + askilz,|||z4l]2 - —e'llffllg + bal|z g l2(k2lzs| + kallzsll2)
b
< —aslnf? + (asks + bikr)esllaslle — (2 — baks)l |l
askl + b4k2
< _ { EANER ] o T RN ]
- _Gsky + baksy jb“k”' b_3_b4k3 |z sil2
2 €
(G.6)
b .
Defining ¢, = 2373 5, we have that if € € (0.¢;) then L(z,.z) <0,
asky + byk,
aszbiks + —_

2
which from the properties of L directly implies that the state of the system of Eq.G.1

is exponentially stable, i.e.. there exists a positive real number o such that:

|zs] —at | M1 -
[ [ENS J s [yz ] (61

Closeness of solutions: First. we define the error coordinate es(7) = r(7) — F(7).
Differentiating es(7) with respect to 7. the following dynamical system can be ob-

tained:
¢
or

Referring to the above system with ¢ = 0, we have from the properties of the

Agees +efy(zs €5 + T5) (G.8)

unbounded operator Ay, (assumption 8.2) and the converse theorem of [Wan64,
Wan66a]. that there exists a Lyapunov functional W : H; — Ryo and a set of

positive real numbers (b;. by. bs. bs), such that for all es € My the following conditions
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hold: - _ -
billes(T)I13 < Wi(es(r)) < balles(r)II3

oW oW _
— = —ASe; < ~bafles(7)l)3

or Oes 14 (G.9)

oW -
—l|2 < bylles(T
155 < Bales (o)l
Computing the time-derivative of W (e,) along the trajectories of the system of Eq.G.8
and using that || fs(zs, es+Zf)||2 < kalles|la+ks, where ky. ks are positive real numbers

(which follows from the fact that the states (z,,Z;) are bounded). we have:

oW

5. S —BfHeng+€B4||6f||2(k4||€f||2+ks) (G.10)
< —(bs — ebaky)|lef|l7 + €baks|lesll
Set ¢; = _—bi- and € = min{e;, e2}. From the above inequality. using theorem 4.10

bak,
in [Kha92}, we have that if € € (0, €"), the following bound holds for |le;(7)]|]; for all

t €[0,00):
t

. -3~ G.11
les(rllls < Bolles()llee ™€ + <., (G4
where 6., is a positive real number. From the above inequality and the fact that

t
llef(0)]|2 = 0, the estimate zs(t) = Z7(~) + O(¢) follows directly.
€
Defining the error coordinate e,(t) = z,(t) — Z(¢) and differentiating e (¢) with

respect to time, the following system can be obtained:

de,

- = Ases + fo(Zs + e5.25) — fo(Ts) (G.12)

The representation of the system of Eq.G.12 in the fast time-scale T takes the form:

de,

= = Ao+ filE + enzy) = fi(Z)] (G.13)

where (e,, Z,) can be considered approximately constant, and thus using that |e,(0)] =
0 and continuity of solutions for e,(7), the following bound can be written for es(7)
for all € [0, 7):

les(T)] < €kemy, ¥V T E€[0.73) (G.14)
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where ks is a positive real number and 7, = t:b = O(1). with t, = O(¢) > 0 is the time
required for zs(t) to approach Z(t), i.e. |[zs(t)||2 < kre for t € [ts. 00). where k- is a
positive real number. The system of Eq.G.12 with Z,(¢) = z;(t) = 0 is exponentially
stable (assumption 8.3). Moreover. since I,(t) decays exponentially. the system of

Eq.G.12 is also exponentially stable if z4(¢) = 0. This implies that for the system:
de,
dt

there exists a smooth Lyapunov function V : H, — IR>o and a set of positive real

-Ases'i'fs(is'{"es-o) “fs(i's) (G15)

numbers (&, @z, @s, 4, as ), such that for all e, € H, that satisfy [e,| < @, the following

conditions hold:
C—lllesl2 S V(E,) S &2|es|2
)%

‘;/(es) = aes [-Ases + fs(js + e, 0) - fs(jS)] < —&3'6312 (Glﬁ)
ov
Iaesl S &SICSI

Computing the time-derivativeof V' (e,) along the trajectories of the system of Eq.G.12
and using that for t € [ty.00) [fs(Zs + €5.2f) — fo(Es + €5,0)] < ksllzsllz < krksge.
where kg is a positive real number (which follows from the fact that the states (z,, )
are bounded), we have for all ¢ € [ts, 00):
V(es) < ~aalesl? + krkadslesle (G.17)
From the above inequality. using theorem +4.10 in [Kha92| and that |e,(ts)| = O(e).
we have that the following bound holds for |e,(t)| for all ¢ € [t;, 00):
les(t)] < éée, (G.18)
where é., is a positive real number. From inequalities of Eqs.G.14-G.18, the estimate
T4(t) = z4(t) + O(e) for all t > 0 follows directly. A

Proof of proposition 8.2:
The proof of the proposition will be obtained following a two-step approach similar

to the one used in the proof of proposition 8.1.
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Ezponential stability: This part of the proof of the proposition is completely analogous
to the proof of exponential stability in the case of proposition 8.1. and thus. it will

be omitted for brevity.

Closeness of solutions: From the first part of the proof € € (0.€"). Defining the error
coordinate é,(t) = z,(t) — Z,(t) and differentiating &,(t) with respect to time. the
following system can be obtained:
dé,
dt

where &y = £%(Z,) + €Z!(Z,) + 2S%(&,) + - - - + € T5(Z,). From assumption 8.3 and

As€s + fo(Zs + €5,25) — fo(Zs. 2 1) (G.19)

the fact that Z,(t) decays exponentially to zero. we have that the system:

de . ... .. ;
'd_; = -Ases'{'fs(l's"‘es-xf) —fs(zsurf) (G-)-O)
is exponentially stable, which implies that there exists a smooth Lyapunov function
e H, — R>0 and a set of positive real numbers (a,, @2. as. @, ds), such that for all

és € H, that satisfy |€;| < a4. the following conditions hold:

dlléslz S V(és) S &ZIésP

. ;1% o .. - .

V(és) = 7. [Asés + fo(@s + €5 2) — fol 5. T7)] < —a3]é,|? (G.21)
v

5] < dslél

Computing the time-derivative of V'(€,) along the trajectories of the system of Eq.G.19
At

and using that for t € [0.00) [fy(Z, + €5.2)) = fo(Zs + é50Fp)| < (Rr€¥¥t + ke € ),
where k,. k, are positive real numbers. we have for all ¢ € [0, 00):

A t
: . . — 29
(e) < —aaleft+ (ke + ke € )aslel (G.22)
From the above inequality, using theorem 4.10 in [Kha92] and the fact that |é,(0)| = 0,
we have that the following bound holds for [é,(¢)| for all ¢ € [0, 00):

Mt

l6s(t)] < Re € + Rek! (G.23)
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A t

where A, K are positive real numbers. Since the term A'e € vanishes outside the

interval [0,%;] (where ¢, is the time required for z; to approach ). it follows from

Eq.G.23 that for all ¢ € [t;. 00):
[&,(t)] < R+t (G.24)

From the above inequality, the estimate z,(t) = &,(t) + O(e**!). for t > t;. follows

directly. A

Proof of theorem 8.1:

Substituting the output feedback controller of Eq.8.34 into the system of Eq.8.17. we

get:
.Z—’t’. = Asn + fs(n- 631(779 u) + 5222(7]7 u) +-- kak(’?- u))
+B, (po(n) + Qo(zs)v + €[p1(n. €) + Q1(7. €)v]
+- -+ €¥[pr(n, €) + Qk(n. e)v])
+L(y — [Cn +CeSH(n, u) + €283 (n.u) + - + S (. u)))
dft’ = Az, + B, (po(n) + Qo(zs)e + e[pa(1.€) + Qu(m, €)o] (G-25)
+-+ pi(n.€) + Qu(n.€)v]) + fulzsrzg)
a
L = Agas+ By (poln) + Qolzs)e + elpi(m.€) + Qu(n- )
+-oo 4 ¥ [pu(n. ) + Quln. €)v]) + efy(zszy)
yi = C.L‘s +C.l‘j. ! = l.l

Performing a two-time-scale decomposition in the above system, the fast subsystem

takes the form:
9z,
or

which is exponentially stable. Furthermore, the O(¢¥*!) approximation of the closed-

= Ajaz, (G.26)
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loop inertial form is given by:

Z—Z = Am+ fs(n. eSHn.ou) + €S, u) + - + 5 (n.u))

+B, (po(n) + Qo(z,)v + €e[p1(n. €) + Qu(n, €)2]

+-- + [pe(n. €) + Qu(n. €)v])

+L(y — [CU +CZ%n,u) + eEYn,u) + T3 (n.u) + - - - + £ TF(y. u)])
d;; = Az, + fole €S (20 u) + €52, u) + - + Tz, u))

+B, (po(n) + Qo(z,)v + €[p1(n, €) + Q1(n. €)v]

++ e lpeln,€) + Quln, €)))
yi = Cz,+CleS (zeu) + @S2(z,,u) + -+ + &K (zy ). i=1.....1

Referring to the above closed-loop ODE system, assumption 8.4 vields that it is
exponentially stable and the output y!,¢ = 1,...,[, changes in a prespecified manner.
A direct application of the result of proposition 8.2 vields that there exist constants
fi1, fi2, € such that if |z,(0)] < f11, ||zf(0)]]2 £ fi2 and € € (0, €7], such that the closed-
loop infinite-dimensional system is exponentially stable and the relation of Eq.8.35

holds. A
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