
UNIVERSITY OF CALIFORNIA

Los Angeles

A Machine Learning-Based Approach to Cybersecurity and Safety of Model Predictive Control

Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Chemical Engineering

by

Siyao Chen

2022

ABSTRACT OF THE DISSERTATION

A Machine Learning-Based Approach to Cybersecurity and Safety of Model Predictive Control

Systems

by

Siyao Chen

Doctor of Philosophy in Chemical Engineering

University of California, Los Angeles, 2022

Professor Panagiotis D. Christofides, Chair

Automated real-time operations of industrial process control systems depend heavily on

accurate information and reliable communication of decision variables, state variables, and

measurement data. Augmentation in sensor information and network-based communication

increases the complexity of the control problem in terms of modeling structure and accuracy,

process safety, as well as vulnerability to cybersecurity threats. Production plants collect a

large amount of operational and instrumentation data to be used for monitoring, control, and

troubleshooting. The potential application of these data goes beyond preventative maintenance

and fault detection, especially with increased digital connectivity and increased computing power.

With the rise of big data, researchers are equipped to explore more robust systems that will improve

production and computation efficiency, operational process safety as well as cybersecurity in many

industrial applications. As various machine-learning algorithms have demonstrated success in a

wide range of engineering applications, the development of rigorous and systematic integration of

nonlinear process control and machine-learning methods has become the focus of this research.

Large-scale industrial processes face many control and operating challenges such as high

dimensionality, information structure constraints, complex interacting process dynamics, and

ii

uncertainties in the system. To this end, the need of accounting for multivariable interactions

and input/state constraints has motivated the development of model predictive control (MPC),

and subsequently highlights the need for a process model that describes the process dynamics

accurately. More specifically, distributed and decentralized control structures demonstrate better

computational efficiency compared to the centralized control framework. On the other hand,

traditional approaches to process safety through process design considerations and hazard analysis

are independent from the design of control systems. MPC provides a framework to account for

process operational safety constraints, and is able to provide simultaneous closed-loop stability and

safety. Furthermore, cybersecurity has become another leading cause of process safety incidents,

and is becoming increasingly important in chemical process industries as cyber-attacks have

grown in sophistication and frequency. As intelligent cyber-attacks have access to control system

information, researchers are motivated to develop cyber-attack detection and resilient operation

strategies to address cyber-security issues beyond fault diagnosis.

This dissertation presents the use of machine learning techniques in MPC, and provides

various methods of designing MPC systems for improved cyber-security and operational safety

for nonlinear chemical processes. Integrated detect-control architectures for Lyapunov-based

MPC, economic MPC, and distributed and decentralized MPC systems are presented to address

several types of intelligent cyber-attacks with machine-learning-based detection algorithms and

resilient control and mitigation strategies. Data-driven nonlinear dynamic models are developed

for large-scale processes consisting of multiple subsystems, and are used as the predictive model

in distributed and decentralized MPC systems. Distributed MPC systems designed with control

Lyapunov-barrier functions (CLBF) to guarantee closed-loop stability and safety properties are

presented, and machine-learning methods to characterize the barrier function used in a CLBF-MPC

are developed with statistical stability and safety analyses. Nonlinear chemical process examples

are numerically simulated to demonstrate the effectiveness and performance of the proposed

control methods throughout the dissertation.

iii

The dissertation of Siyao Chen is approved.

Philippe Sautet

James F. Davis

Elisa Franco

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2022

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 6

1.3 Dissertation Objectives and Structure . 13

2 A Cyber-secure Control-Detector Architecture for Nonlinear Processes 18

2.1 Preliminaries . 19

2.1.1 Nonlinear System Formulation . 19

2.2 Cyber-secure Two-tier Control Architecture . 20

2.2.1 Lower-tier Control System . 20

2.2.2 Upper-tier Model Predictive Control System 21

2.3 Cyber-attack Design and Detection . 23

2.3.1 Attack Scenarios . 23

2.3.2 Types of Intelligent Cyber-attacks . 25

2.3.3 Machine-Learning-Based Detection of Cyber-attacks 29

2.3.4 Mitigation Measures via Control System Reconfiguration 34

2.4 Application to a Reactor-Reactor-Separator Process 35

2.4.1 Process Description and Control System Design 35

2.4.2 Cyber-attacks and Detector Training . 39

2.4.3 Cyber-attack Detection Results . 41

v

3 Cyber-attack Detection and Resilient Operation of Nonlinear Processes under

Economic Model Predictive Control 51

3.1 Preliminaries . 53

3.1.1 Nonlinear System Formulation . 53

3.1.2 Lyapunov-based Economic Model Predictive Control 54

3.2 Cyber-secure LEMPC Operation Strategies . 56

3.2.1 Operation within Secure Operating Region 56

3.3 Intelligent Cyber-Attacks . 60

3.3.1 Design of Cyber-attacks Adapted to Secure LEMPC Operation 61

3.4 Attack-Resilient Combined Open-loop and Closed-loop Control 63

3.5 Detection of Cyber-Attacks Targeting EMPC . 66

3.5.1 Choice of Detection Input Variable . 70

3.6 Application to a Nonlinear Chemical Process . 71

3.6.1 Process Description and Control System Design 71

3.6.2 Resilient Operation of LEMPC . 74

3.6.3 Cyber-attack Resiliency Assessment . 76

3.6.4 Detectors Training and Testing . 79

3.6.5 Online Detection . 83

4 Cyber-Security of Centralized, Decentralized, and Distributed Control-Detector

Architectures for Nonlinear Processes 85

4.1 Preliminaries . 86

4.1.1 Notation . 86

4.1.2 Class of Systems . 86

4.1.3 Stability Assumptions . 87

4.2 Centralized, Decentralized, and Distributed Lyapunov-based Model Predictive

Control . 89

4.2.1 Centralized LMPC . 89

vi

4.2.2 Decentralized LMPC . 90

4.2.3 Distributed LMPC . 92

4.3 Intelligent Cyber-Attacks . 94

4.3.1 Design of Cyber-Attacks on Sensors . 94

4.3.2 Robustness of Decentralized LMPC against Cyber-Attacks 97

4.4 Detection of Cyber-Attacks . 97

4.4.1 Online Detection . 102

4.5 Application to a Two-CSTR-in-Series Process . 103

4.5.1 Closed-loop Performance without Detection 105

4.5.2 FNN Detector Modeling . 107

4.5.3 Closed-loop Operation with FNN Detector 111

5.1 Machine Learning-Based Distributed Model Predictive Control of Nonlinear

Processes 115

5.1.1 Preliminaries . 117

5.1.1.1 Notation . 117

5.1.1.2 Class of Systems . 117

5.1.1.3 Stability Assumptions . 118

5.1.2 Long Short-Term Memory Network . 119

5.1.2.1 Lyapunov-based Control using LSTM Models 125

5.1.3 Distributed LMPC using LSTM Network Models 126

5.1.3.1 Sequential Distributed LMPC using LSTM Network Models 127

5.1.3.2 Iterative Distributed LMPC using LSTM Network Models 129

5.1.3.3 Sample-and-hold implementation of Distributed LMPC 134

5.1.4 Application to a Two-CSTR-in-Series Process . 141

5.1.4.1 LSTM Network Development . 144

5.1.4.2 Closed-loop Model Predictive Control Simulations 145

vii

5.2 Decentralized Machine-Learning-Based Predictive Control of Nonlinear Processes 149

5.2.1 Preliminaries . 150

5.2.1.1 Notation . 150

5.2.1.2 Class of Systems . 150

5.2.1.3 Stability Assumptions . 151

5.2.2 Long Short-Term Memory Neural Network . 154

5.2.2.1 Lyapunov-based Control using LSTM Models 161

5.2.3 Decentralized LMPC using LSTM Models . 163

5.2.3.1 Sample-and-hold implementation of Decentralized LMPC 166

5.2.4 Application to a Two-CSTR-in-Series Process . 172

5.2.4.1 LSTM Network Development . 175

5.2.4.2 Closed-loop Model Predictive Control Simulations 177

6 Machine-Learning-Based Construction of Barrier Functions and Models for Safe

Model Predictive Control 182

6.1 Preliminaries . 183

6.1.1 Notation . 183

6.1.2 Class of Systems . 183

6.1.3 Stabilizability Assumptions Expressed via Lyapunov-based Control 184

6.1.4 Process Modeled Using Recurrent Neural Network 184

6.1.5 Control Barrier Function . 185

6.2 Construction of Barrier Function using Neural Networks 187

6.2.1 Neural Network Structure and Training 187

6.2.2 Effectiveness of NN-based Barrier Function 190

6.3 Stabilization and safety via Control Lyapunov-Barrier Function 193

6.3.1 Design of Constrained CLBF . 195

6.4 CLBF-based MPC using FNN CBF and RNN Prediction Model 197

6.4.1 Formulation of CLBF-MPC . 200

viii

6.5 Application to a Chemical Process Example . 202

6.5.1 Development of the RNN Model for the CSTR Process 204

6.5.2 Development of the FNN Model for Barrier Function 204

6.5.3 Closed-loop Simulations . 207

7 Barrier-Function-Based Distributed Predictive Control for Operational Safety of

Nonlinear Processes 210

7.1 Preliminaries . 212

7.1.1 Notation . 212

7.1.2 Class of Systems . 212

7.1.3 Control Lyapunov Function . 213

7.1.4 Control Barrier Function . 213

7.2 Stabilization and Safety via Control Lyapunov-Barrier Function 214

7.2.1 Design of Constrained CLBF . 217

7.3 CLBF-Based Control Law . 217

7.3.1 Effect of Bounded Disturbance and Sample-and-hold Implementation of

Control Actions . 217

7.4 CLBF-DMPC Formulations and Analysis . 220

7.4.1 Sequential Distributed MPC System . 220

7.4.2 Iterative Distributed MPC System . 223

7.4.3 Modified DMPC Structure in Special Cases 228

7.5 Application to a Nonlinear Chemical Process . 231

8 Statistical Machine-Learning-based Predictive Control Using Barrier Functions for

Process Operational Safety 240

8.1 Preliminaries . 241

8.1.1 Notation . 241

8.1.2 Class of Systems . 241

ix

8.1.3 Stabilizability via Lyapunov-based Control 242

8.1.4 Control Barrier Function . 242

8.2 Barrier Function Construction using Feed-forward Neural Networks 243

8.2.1 Model Structure and Training . 243

8.2.2 Verification of FNN-based CBF . 246

8.3 FNN Generalization Error . 248

8.3.1 Rademacher Complexity . 249

8.3.2 Generalization Error Bound of FNN . 250

8.3.3 Implications of Generalization Error Bound for Different Loss Functions . 254

8.4 Probabilistic Stabilization and Safety via Control Lyapunov-Barrier Function . . . 257

8.4.1 Design of Constrained CLBF . 258

8.4.2 Sample-and-hold Implementation of CLBF-based Controller 261

8.4.3 FNN-CLBF-based MPC . 263

8.5 Application to a Chemical Process Example . 267

8.5.1 Preliminaries . 267

8.5.2 Development of the FNN Model for Barrier Function 268

8.5.3 Analysis on Generalization Performance and Closed-loop Stability and

Safety . 270

8.5.4 Varying number of layers . 274

8.5.5 Varying training data sample size . 279

9 Conclusion 286

Bibliography 290

x

List of Figures

2.1 Two-tier control-detector architecture showing (a) Lower-tier controllers using

continuous secure sensor measurements and an upper-tier model predictive

controller using both continuous (secure) and networked (vulnerable to

cyber-attacks) sensor measurements, and (b) Feed-forward neural network

structure with 2 hidden layers with inputs being the full-state Lyapunov function at

each sampling time of the model predictive controller within the detection window,

and output being the probability of each class label for the examined trajectory

indicating the status and/or type of cyber-attack. 30

2.2 Online implementation of NN detector with moving horizon detection window NT

and alarm verification window NA, where the detector reads past inputs x(tk) of

length NT and dimension nx, and computes the predicted class label. 33

2.3 Process schematic consisting of two CSTRs and a flash drum separator. 35

2.4 True and measured values of xA1 in deviation variable form without detection or

mitigation mechanisms when (a) min-max, (b) replay, (c) geometric, and (d) surge

cyber-attacks are introduced at 3.22 hr on the concentration sensor measuring xA1. . 42

2.5 Evolution of true process states when min-max cyber-attacks on all 9 state

measurement sensors are introduced at 3.22 hr when the process network

operates under the two-tier control architecture but no detection or control system

reconfiguration mechanisms are implemented. 44

xi

2.6 Evolution of true process states under min-max cyber-attacks on all nine state

measurements. The min-max cyber-attacks are introduced at 3.22 hr and are

detected at 3.28 hr, at which time the upper-tier LMPC is turned off and the

temperature measurements used by the lower-tier PI controllers are taken from

secure back-up temperature sensors and the process is driven back to the steady-state. 45

2.7 Evolution of true process states under min-max cyber-attacks on all six mass

fraction sensors. The min-max cyber-attacks are introduced at 3.22 hr and are

detected at 3.28 hr, at which time the upper-tier LMPC is turned off and the process

is driven back to the steady-state under the lower-tier PI controllers. 47

2.8 Evolution of true process states under replay cyber-attacks on all six mass fraction

sensors. The replay cyber-attacks are introduced at 3.22 hr and are detected at

3.28 hr, at which time the upper-tier LMPC is turned off and the process is driven

back to the steady-state under the lower-tier PI controllers. 48

2.9 Evolution of true process states under geometric cyber-attacks on all six mass

fraction sensors. The geometric cyber-attacks are introduced at 3.22 hr and are

detected at 3.28 hr, at which time the upper-tier LMPC is turned off and the process

is driven back to the steady-state under the lower-tier PI controllers. 49

2.10 Evolution of true process states under surge cyber-attacks on all six mass fraction

sensors. The surge cyber-attacks are introduced at 3.22 hr and are detected at

3.28 hr, at which time the upper-tier LMPC is turned off and the process is driven

back to the steady-state under the lower-tier PI controllers. 50

3.1 Trajectories of (a) process states x1 and x2, and (b) manipulated input um, under

normal LEMPC operation over one material constraint period. 59

3.2 Logic flowchart outlining the implementation steps of the attack-resilient operation

of LEMPC using combined closed-loop and open-loop control actions when

operating within a secure region Ωρsecure . 66

xii

3.3 Feed-forward neural network structure with 2 hidden layers with inputs being a

nonlinear function p(x̄) at each sampling time of the model predictive controller

within the detection window NT , and output being the probability of each class

label for the examined trajectory indicating the status and/or type of cyber-attack. . 69

3.4 State-space plot showing the evolution of measured process states over one

material constraint period under LEMPC (red trajectory) and under resilient

LEMPC (blue trajectory). 76

3.5 State-space plot showing the evolution of true process states and attacked state

measurements (yellow trajectories) over one material constraint period under

LEMPC (red trajectories) and under resilient LEMPC (blue trajectories) when

(a) min-max, (b) geometric, (c) replay, and (d) surge attacks, are targeting the

temperature sensor, where the dash-dotted ellipse is the stability region Ωρ and the

dashed ellipse is Ωρsecure . 79

3.6 Time-derivative of the reaction rate rB of Eq. 3.14 based on measured process

states over one material constraint period, when the temperature sensor is under no

attack, and under min-max, geometric, replay, and surge attacks, respectively. . . . 81

3.7 State-space plot showing the evolution of true process states (blue trajectories) and

attacked state measurements (red trajectories) over two material constraint periods

under the resilient LEMPC when (a) min-max, (b) geometric, and (c) surge attacks,

targeting the temperature sensor are successfully detected by a NN detector at the

end of the first material constraint period, t = 0.06 hr, where the dash-dotted ellipse

is the stability region Ωρ and the dashed ellipse is Ωρsecure 84

4.1 Feed-forward neural network structure with 1 hidden layer with inputs being the

vector of Lyapunov functions of two subsystems V1(x̄1(ti)) and V2(x̄2(ti)) with a

detection window i = 1, ...,NT , and output being the probability of each class label

for the examined trajectory of length NT indicating the status and/or location of

cyber-attack. 101

xiii

4.2 State-space closed-loop trajectories of the true, the measured, and the un-attacked

process states of the second CSTR under the decentralized LMPC system when

the temperature sensor T2 is attacked by min-max, surge, and geometric attacks,

respectively. 106

4.3 Closed-loop trajectories of true states the two-CSTR process operated under

centralized, decentralized, and distributed LMPC systems when min-max attacks

are added on the temperature sensor T2 of the second CSTR at t = 0.05 hr. 108

4.4 Closed-loop trajectories of true states the two-CSTR process operated under

centralized, decentralized, and distributed LMPC systems when surge attacks are

added on the temperature sensor T2 of the second CSTR at t = 0.05 hr. 109

4.5 Closed-loop trajectories of true states the two-CSTR process operated under

centralized, decentralized, and distributed LMPC systems when geometric attacks

are added on the temperature sensor T2 of the second CSTR at t = 0.05 hr. 110

4.6 Closed-loop trajectories of true states the two-CSTR process operated under the

decentralized LMPC system when min-max attacks are added on the temperature

sensor T2 of the second CSTR at t = 0.30 hr, and detected by the 2-class FNN

detector at t = 0.30 hr. 113

4.7 Closed-loop trajectories of true states the two-CSTR process operated under the

decentralized LMPC system when surge attacks are added on the temperature

sensor T1 of the first CSTR at t = 0.30 hr and detected by the 2-class FNN detector

at t = 0.32 hr, after which all sensors are switched to their secure back-up sensors

and the true process states are driven back to the ultimate bounded region Ωρs

around the operating steady-state. 114

xiv

4.8 Closed-loop trajectories of true states the two-CSTR process operated under the

decentralized LMPC system when geometric attacks are added on the temperature

sensor T1 of the first CSTR at t = 0.30 hr and detected by the 2-class FNN detector

at t = 0.35 hr, after which all sensors are switched to their secure back-up sensors

and the true process states are maintained within the ultimate bounded region Ωρs

around the operating steady-state. 114

5.1.1 A long short-term memory recurrent neural network and its unfolded structure,

where m is the input vector and x̂ is the output vector, c is the cell state vector, and

h is the hidden state vector. 121

5.1.2 The internal structure of an LSTM unit showing the input gate, the forget gate,

and the output gate layers, where the cell state vector c(k−1), hidden state vector

h(k− 1), and the input vector m(k) are used to obtain c(k), h(k), as well as the

network output vector y(k) via an additional output activation layer. 121

5.1.3 A schematic showing the flow of information of the sequential distributed LMPC

system with the overall process. 130

5.1.4 A schematic showing the flow of information of iterative distributed LMPC system

with the overall process. 130

5.1.5 Process flow diagram of two CSTRs in series. 142

5.1.6 Closed-loop state trajectories of the sequential distributed LMPC systems using

LSTM model and first-principles models respectively. 148

5.1.7 Closed-loop state trajectories of the iterative distributed LMPC systems using

LSTM model and first-principles models respectively. 148

xv

5.2.1 A long short-term memory (LSTM) recurrent neural network for subsystem j and

the series of its unfolded structure, where m is the input vector consisting of the

state measurement x at each MPC sampling period and the control action u j to be

optimized over the next sampling period, c is the cell state vector, h is the hidden

state vector, and x̂ j is the output vector. 156

5.2.2 The internal structure of an LSTM unit inside the LSTM network j where the past

cell state vector c(k− 1), past hidden state vector h(k− 1), and the current input

vector m(k) are used to obtain c(k), h(k), and the network output vector x̂ j(k) for

subsystem j via the input gate, the forget gate, the output gate, and an output layer. 158

5.2.3 An illustration showing the integration time step hc used in the numerical

integration of the process states x, the time interval between internal states in the

LSTM network qnn×hc, and the sampling period for the model predictive controller.159

5.2.4 A schematic showing the flow of information of Nsys number of decentralized

LMPCs with the overall process subdivided into Nsys number of subsystems. 164

5.2.5 Process flow diagram of two CSTRs in series. 173

5.2.6 Closed-loop state trajectories of the decentralized LMPC systems using LSTM

model and first-principles (FP) model, respectively. 179

5.2.7 Closed-loop input trajectories of the decentralized LMPC systems using LSTM

model and first-principles (FP) model, respectively. 180

5.2.8 Closed-loop state trajectories of the centralized LMPC system using an

LSTM model, and the decentralized LMPC systems using LSTM models and

first-principles (FP) models in state space, showing the boundedness of the states

of each subsystem j, j = 1,2 in Ωρ̂ j for all operation time tp = 0.03 hr, and the

convergence of the states of each subsystem j in Ωρmin j
after t ≥ 0.07 hr. 181

6.1 Structure of a 2-hidden-layer feedforward neural network with the state vector x ∈

Rn as inputs and the CBF B̂(x) as the output. 188

xvi

6.2 FNN-predicted barrier function B̂(x) for all data points in the training and the

testing datasets. 206

6.3 State values in the safe (black) and unsafe (red) operating regions, with

misclassified data points (blue circles) showing that all inaccuracies are safe points

misclassified as unsafe points. 207

6.4 State trajectories originated from 6 different initial conditions in the safe operating

regions under the closed-loop control of the CLBF-MPC using the RNN predictive

model and the FNN-based CBF. 208

6.5 Closed-loop state trajectories under the CLBF-MPC using different combinations

of first-principles (FP) process model or RNN process model, and analytical

Control Barrier Function (CBF) or FNN-based CBF. 209

7.1 Closed-loop trajectories of CSTR-1 and CSTR-2 under the sequential

CLBF-DMPC in the presence of a bounded unsafe set. 235

7.2 Closed-loop trajectories of CSTR-1 and CSTR-2 under the sequential

CLBF-DMPC in the presence of an unbounded unsafe set. 235

7.3 Discretized points (x3,x4) near CSTR-2’s unsafe region D2 in state-space showing

the negativity and non-negativity of Ẇ2 under the CLBF-based Sontag control law

with respect to different values of x1 discretized from CSTR-1’s safe operating

region Uρ1 . 237

7.4 Discretized points (x3,x4) near CSTR-2’s unsafe region D2 in state-space showing

the negativity and non-negativity of Ẇ2 under the CLBF-based Sontag control law

with respect to different values of x2 discretized from CSTR-1’s safe operating

region Uρ1 . 238

7.5 Closed-loop trajectories starting from different initial conditions of CSTR-1 and

the same initial condition of CSTR-2 under the sequential CLBF-DMPC in the

presence of a bounded unsafe set showing safe and stable performance. 239

xvii

7.6 Closed-loop trajectories starting from two different initial conditions of CSTR-1

and the same initial condition of CSTR-2 under the sequential CLBF-DMPC in

the presence of a bounded unsafe set showing one safe (orange) and one unsafe

(blue) trajectory. 239

8.1 Generalization performance for the FNN models for characterizing bounded

unsafe regions utilizing various neurons. 271

8.2 Generalization performance for the FNN models for characterizing unbounded

unsafe region utilizing various neurons. 272

8.3 Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop

control of the FNN-based CLBF-MPC for FNN models trained with varying

neurons in the case of bounded unsafe region. 274

8.4 Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function

trained with 15 neurons (blue) vs. 2 neurons (red), where states classified as safe

by each FNN model are labelled by circle markers, and states classified as unsafe

by each FNN model are labelled by diamond markers. 275

8.5 Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop

control of the FNN-based CLBF-MPC for FNN models trained with varying

neurons in the case of unbounded unsafe regions. 276

8.6 Generalization performance for the FNN models for characterizing bounded

unsafe regions utilizing various layers. 277

8.7 Generalization performance for the FNN models for characterizing unbounded

unsafe region utilizing various layers. 277

8.8 Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop

control of the FNN-based CLBF-MPC for FNN models trained with varying layers

in the case of bounded unsafe region. 278

xviii

8.9 Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function

trained with 2 layers (blue) vs. 18 layers (red), where states classified as safe by

each FNN model are labelled by circle markers, and states classified as unsafe by

each FNN model are labelled by diamond markers. 279

8.10 Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop

control of the FNN-based CLBF-MPC for FNN models trained with varying layers

in the case of unbounded unsafe regions. 280

8.11 Generalization performance for the FNN models for characterizing bounded

unsafe regions utilizing various data sample size. 281

8.12 Generalization performance for the FNN models for characterizing unbounded

unsafe region utilizing various data sample size. 281

8.13 Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop

control of the FNN-based CLBF-MPC for FNN models trained with varying data

sample size in the case of bounded unsafe region. 283

8.14 Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function

trained with 8499 data samples (blue) vs. 152 data samples (red), where states

classified as safe by each FNN model are labelled by circle markers, and states

classified as unsafe by each FNN model are labelled by diamond markers. 283

8.15 Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop

control of the FNN-based CLBF-MPC for FNN models trained with varying data

sample size in the case of unbounded unsafe regions. 284

xix

List of Tables

2.1 Values and descriptions of process parameters and steady-states of state and input

variables. 37

3.1 Parameter values of the CSTR. 72

3.2 Detection accuracies of NN detectors in response to min-max, geometric, and

surge attacks. 82

4.1 Parameter values of the two CSTRs in series. 104

4.2 Sum of squared percentage error of the first and the second CSTR controlled by

decentralized and distributed LMPC systems when under no attacks and when the

temperature sensor T2 is attacked by min-max, surge, geometric cyber-attacks. . . . 111

4.3 Detection accuracies of NN detectors in response to min-max, geometric, and

surge attacks. 112

5.1.1 Parameter values of the CSTRs. 144

5.1.2 Average LMPC computation time in one sampling period and the sum of squared

percentage error of all states along the closed-loop trajectory under iterative

distributed, sequential distributed, and centralized LMPC systems using their

respective LSTM models with a total simulation time of 0.3 hr. 147

5.2.1 Parameter values of the two CSTRs in series. 174

xx

5.2.2 Average LMPC computation time in one sampling period and the sum of

squared percentage error of all states along the closed-loop trajectory under the

centralized and the decentralized systems using their respective LSTM models and

first-principles models, all with a total operation time of 0.3 hr. 178

7.1 Values and descriptions of process parameters and steady-states of state and input

variables. 232

xxi

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor Panagiotis D.

Christofides, for his support, encouragement, and guidance on both my technical work as well

as professional development over the past four years. Professor Christofides sets an example of

excellence as a researcher, mentor, instructor, and role model. I am lucky to be a student of his,

as this Ph.D. experience has laid out a strong foundation for my future career. His mentoring on

control theory, process/systems engineering, and life in general has made a profound impact on

both my character and my career goals.

I am also grateful for my family and friends – for their encouragement, love, and support

throughout my graduate career and throughout my life. In particular, I would like to thank my

parents, Ken Chen and Aiping He, my grandparents, and my fiancé Jinming Wang. They have

always believed in me, and it is their unconditional and unwavering support and affirmation that

give me the strength and motivation to overcome the next challenge in life.

In addition, I would like to thank all of my colleagues with whom I have worked over the years

in the Christofides research group, including Dr. Zhihao Zhang, Dr. Yangyao Ding, Dr. Yichi

Zhang, Yi Ming Ren, Mohammed Alhajeri, Michael Park, Fahim Abdullah, Aisha Alnajdi, Junwei

Luo, Sungil Yun, Matthew Tom, Vito Canuso, Berkay Citmaci. I would particularly like to thank

Professor Zhe Wu, Dr. David Rincon, with whom I have collaborated extensively and spent long

hours working on papers together.

I would also like to thank Professor Philippe Sautet, Professor James Davis, and Professor Elisa

Franco for serving on my doctoral committee.

Financial support from UCLA Graduate Division Fellowship, UCLA Doctoral Dissertation

Year Fellowship, the US Department of Energy (DOE) and the US National Science Foundation

(NSF) is gratefully acknowledged, and my work could not have been done without this support.

With regard to the research that forms the foundation for this work:

Chapter 2 contains versions of: Chen, S., Wu, Z., and Christofides, P. D., ”A Cyber-secure

Control-Detector Architecture for Nonlinear Processes,” AIChE J., 66, e16907, 2020.

xxii

Chapter 3 contains versions of: Chen, S., Wu, Z., and Christofides, P. D., ”Cyber-attack

Detection and Resilient Operation of Nonlinear Processes under Economic Model Predictive

Control,” Comp. & Chem. Eng., 136, 106806, 2020.

Chapter 4 contains versions of: Chen, S., Wu, Z., and Christofides, P. D., “Cyber-Security

of Centralized, Decentralized, and Distributed Control-Detector Architectures for Nonlinear

Processes,” Chem. Eng. Res. & Des., 165, 25-39, 2021.

Chapter 5.1 and 5.2 contain versions of: Chen, S., Wu, Z., Rincon, D. , and Christofides,

P. D., “Machine Learning-Based Distributed Model Predictive Control of Nonlinear Processes,”

AIChE J., 66, e17013, 2020; Chen, S., Wu, Z., and Christofides, P. D., “Decentralized Machine

Learning-Based Predictive Control of Nonlinear Processes,” Chem. Eng. Res. & Des., 162, 45-60,

2020.

Chapter 6 contains versions of: Chen, S., Wu, Z., and Christofides, P. D.,

“Machine-learning-based construction of barrier functions and models for safe model predictive

control,” AIChE J., e17456, 2021.

Chapter 7 contains versions of: Chen, S., Wu, Z., and Christofides, P. D.,

“Barrier-Function-Based Distributed Predictive Control for Operational Safety of Nonlinear

Processes,” Comp. & Chem. Eng., 159, 107690, 2022.

Chapter 8 contains versions of: Chen, S., Wu, Z., and Christofides, P. D., “Statistical

Machine-Learning-based Predictive Control Using Barrier Functions for Process Operational

Safety,” Comp. & Chem. Eng., Submitted, 2022.

xxiii

Curriculum Vitae

Education

University of Alberta Sep. 2013 - June 2018

B.S., Chemical Engineering Computer Process Control Co-op Edmonton, Canada

Journal Publications

1. Chen, S., Wu, Z., and Christofides, P. D., “Statistical Machine-Learning-based Predictive

Control Using Barrier Functions for Process Operational Safety,” Comp. & Chem. Eng.,

Submitted, 2022.

2. Chen, S., Wu, Z., and Christofides, P. D., “Barrier-Function-Based Distributed Predictive

Control for Operational Safety of Nonlinear Processes,” Comp. & Chem. Eng., 159,

107690, 2022.

3. Chen, S., Wu, Z., and Christofides, P. D., “Machine-learning-based construction of

barrier functions and models for safe model predictive control,” AIChE J., e17456, 2021.

4. Chen, S., Wu, Z., and Christofides, P. D., “Cyber-Security of Centralized, Decentralized,

and Distributed Control-Detector Architectures for Nonlinear Processes,” Chem. Eng.

Res. & Des., 165, 25-39, 2021.

5. Chen, S., Wu, Z., Rincon, D. , and Christofides, P. D., “Machine Learning-Based

Distributed Model Predictive Control of Nonlinear Processes,” AIChE J., 66, e17013,

2020.

6. Chen, S., Wu, Z., and Christofides, P. D., “Decentralized Machine Learning-Based

Predictive Control of Nonlinear Processes,” Chem. Eng. Res. & Des., 162, 45-60, 2020.

xxiv

7. Chen, S., Wu, Z., and Christofides, P. D., ”Cyber-attack Detection and Resilient

Operation of Nonlinear Processes under Economic Model Predictive Control,” Comp.

& Chem. Eng., 136, 106806, 2020.

8. Chen, S., Wu, Z., and Christofides, P. D., ”A Cyber-secure Control-Detector Architecture

for Nonlinear Processes,” AIChE J., 66, e16907, 2020.

9. Wu, Z., Chen, S., Rincon, D., and Christofides, P. D., ”Post Cyber-Attack State

Reconstruction for Nonlinear Processes Using Machine Learning,” Chem. Eng. Res.

& Des., 159, 248-261, 2020.

10. Chen, S., Kumar, A., Wong, W. C., Chiu, M. S. , and Wang, X., “Hydrogen value chain

and fuel cells within hybrid renewable energy systems: Advanced operation and control

strategies,” Applied Energy, 233, 321-337, 2019.

11. Wu, Z., Tran, A., Ren, Y. M., Barnes, C. S., Chen, S., and Christofides, P. D., “Model

predictive control of phthalic anhydride synthesis in a fixed-bed catalytic reactor via

machine learning modeling”, Chemical Engineering Research & Design, 145, 173-183,

2019.

xxv

Chapter 1

Introduction

1.1 Motivation

The ubiquitous deployment of sensors, the expansion of wireless communication, as well as

the improved and cheaper computing power all contribute to the leap towards Industry 4.0. An

explosive growth of data and computing power has been witnessed in the last decade that allows

the development of big data analytics and intelligent machines [32, 111, 133]. Production plants

collect and archive huge operational and instrumentation data used for monitoring, control, and

troubleshooting. The potential application of these data goes beyond preventative maintenance

and fault detection, especially with increased digital connectivity and increased computing power.

This new digital revolution allows researchers to explore more robust systems that will improve

operational stability, process safety, production quality, computation speed, economic gain, as

well as cybersecurity in many industrial applications. In the following paragraphs, some critical

challenges in the field of process control that motivate the research work presented in this

dissertation will be outlined.

Stable and secure operation of cyber-physical systems require accurate information and reliable

communication technologies. In recent years, the cyber-security of cyber-physical systems has

become increasingly important as more communication networks are replaced or complemented

1

by wireless networks in addition to point-to-point communications [2, 26]. While these new

developments increase operation efficiency and performance, they also increase the system’s

vulnerability to cyber-attacks. One example use of these “big data” is anomaly detection, including

the detection of cyber-attacks and other abnormal process behavior. Due to the close interactions

between cyber and physical components, operational cyber-security of control systems would

mandate a different strategy than traditional information technology (IT) approaches – one that

combines robust control strategies with an advanced detection scheme using the process data

at hand. Stealthy, intelligent cyber-attack diagnosis and defense span a much broader scope

than classical fault detection problems because intelligent adversaries can modify the actuator,

the sensor, or the control implementation using process and control system information. With

knowledge of the plant model and control formulation, cyber-attacks are strategically programmed

with the goal of disruption, and are fundamentally different from ordinary sensor and actuator

faults. Furthermore, the effects of these attacks may only be observed in changes of the dynamic

behavior (runtime variables) of the closed-loop system; thus, using hardware performance counters

to track code modifications is not feasible [61]. While conventional detection methods have

demonstrated their effectiveness in detecting suspicious process variable deviations, most of these

methods are model-based – either dependent on network and computer system models, or on

physical process models. Certain classes of intelligent cyber-attacks either render traditional

detection methods ineffective, or remain undetected until the system experiences a significant

deviation and reaches an undesirable operating point, at which the existing alarm systems could

be triggered. The goal of a robust cyber-attack detector is to identify attacks from subtle

variations in real-time process state measurements and mitigate the risk before an operation

alarm is triggered. Therefore, without explicit knowledge on the process model, adopting a

data-based detection approach utilizing machine-learning algorithms provides a promising path

for the detection of unknown intelligent cyber-attacks. The integration of existing advanced

control techniques (e.g., Model Predictive Control (MPC)) and online machine-learning-based

detection algorithms adds another protective safeguard to the multi-layer cyber-defense strategy

2

that is standard to next-generation smart manufacturing. Machine learning techniques, such as

support vector machines [115], as well as more advanced deep learning methods, such as recurrent

neural networks [50, 94], have demonstrated effectiveness in plant anomaly detection [12, 91, 97].

Motivated by this, machine-learning methodologies can be readily adopted in the context of control

theory and cyber-physical security. In addition to having an adequate detection mechanism, control

and operation strategies can be designed or adjusted accordingly if a process is vulnerable to

cyber-attacks.

Another control challenge faced by many applications involves the scale and complexity

of the process. Most existing methods for analyzing and controlling dynamical systems hinge

on the common assumption of centrality, meaning that all the information available about

the system is collected and received by a single controller to perform relevant calculations.

Many industrial systems, such as chemical production plants, power distribution grids, urban

traffic networks, and cyber-physical facilities such as data centers, are considered large-scale

systems in which the assumption of centrality cannot hold due to the absence of a centralized

information-gathering platform and the lack of centralized computing capabilities. Challenges

such as high dimensionality of the system, uncertainties and delays in the communication

network, and geographical separation of components, combined with the rapid development

of microprocessor technologies, are factors that push for the shift from centralized control to

decentralized decision-making and distributed computations [11, 27]. Amongst many advanced

control techniques for large-scale systems, MPC is well known for its ability to handle

multi-variable control problems with constraints. Centralized MPC is generally unsuited for

the control of large-scale networked systems because of difficulties associated with scalability

as well as the maintenance of global models [11]. Therefore, the formulation of decentralized

and distributed MPC algorithms has naturally emerged to address these challenges [10, 27]. The

original optimization problem in the centralized controller is broken down into a number of

smaller optimization problems, which are solved in separate decentralized or distributed local

controllers. Thus, decentralized and distributed control structures provide a practical solution

3

to decoupling large-scale processes and reducing the computational complexity of a centralized

control problem by having multiple MPCs that work iteratively and cooperatively to achieve

a common control objective applicable to the entire system [23, 71]. The advancement in

computing and communication technologies has provided an adequate platform for networked

control systems to handle the control problem of large-scale, complex processes in a distributed

or decentralized structure. However, the existence of networked communication also implies

inherent vulnerabilities to cyber-security risks. To this end, cyber-security threats on centralized,

decentralized, and distributed control systems also need to be assessed and addressed with proper

detection mechanisms.

For many large-scale industrial processes and/or novel processes, developing an accurate

and comprehensive model that captures the dynamic behavior of the system can be difficult.

Even in the case where a deterministic first-principles model is developed based on fundamental

understandings, there may be inherent simplifying assumptions involved. Furthermore, during

process operation, the model that is employed in model-based control systems to predict the

future evolution of the system state may not always remain accurate as time progresses due to

unforeseen process changes or large disturbances, causing plant model mismatch that degrades the

performance of the control algorithm [39]. Given these considerations, the model identification

of a nonlinear process is crucial for safe and robust model-based feedback control. Nonlinear

system identification and an efficient approach to such is a crucial step to designing nonlinear

model predictive controllers. While there is no systematic way to parameterize general nonlinear

dynamic systems, among existing techniques, the universal approximation properties of neural

networks make them a powerful method for modeling nonlinear systems using data [40]. There

are many different structures of neural networks, such as feedforward neural networks (FNN),

convolutional neural networks (CNN), and recurrent neural networks (RNN). RNN has proven its

effectiveness in representing temporal dynamic behaviors of sequential data by taking advantage of

feedback signals stored in its network units [40,57]. Many classes and variants of RNNs have been

proposed and utilized in various applications, such as model identification, speech recognition,

4

signal processing, and intrusion detection. The integration of machine-learning-based modeling

methods and various advanced control architectures is a broad field with expanding research scope.

Using state-of-the-art machine-learning methods to address the issues of model uncertainties in a

distributed and decentralized control structure is also a research topic addressed in this dissertation.

Moreover, the improvement of process operational safety has also been a long-standing

research problem in the field of optimal control of dynamic processes. The severity of the

potential hazards involved and the close interaction between human lives and the environment

make safety a top priority in any industrial plant operation. The catastrophic outcomes of these

incidents alarm us of the importance of maintaining, designing, and implementing stricter and

more robust process and operational safety measures [30]. One way to prevent safety incidents

is by designing a comprehensive and robust process control system that not only maintains

stable production and economic optimality, but also handles unexpected production scenarios that

could lead to unsafe operating conditions and environmental hazards. In addition to configuring

alarming thresholds on process variables, the interactions between multiple process variables in

a large-scale complex plant and their impact on the operational safety of the system should also

be considered. Hence, MPC has been proposed as an advanced control methodology to account

for multi-variable interactions, variable and safety constraints, and nonlinearities in industrial

plants. Machine-learning-based methods can aid in the formulation of control algorithms that

are incorporated in the design of MPC systems that will be able to ensure operational safety

while achieving desired control performance. This approach can be extended to large-scale

processes with multiple sub-systems under a distributed or decentralized control system. Lastly,

rigorous statistical analysis is provided for the machine-learning-based methods, which provides

an upper bound on the generalization performance of the machine-learning-based MPC designs in

guaranteeing closed-loop stability and safety.

5

1.2 Background

Recent incidents of cyber-attacks on various industrial plants, such as the Iranian nuclear plant

attack in 2010 and the Ukrainian electric power grid attack in 2015, demonstrated the capability of

cyber-attacks in infiltrating cyber-physical systems (CPS) and the severity of their consequences.

Malicious cyber-attacks could target any device or communication channels in the control network

to modify control actions and jeopardize operational cost, stability, integrity, and other safety

considerations. With access to technical details of the control system, these targeted cyber-attacks

are intelligently designed to disrupt process operation and compromise fundamental process

safety. As cyber-attacks pose severe threats to the control system, safety measures addressing

cyber-security need to be carefully considered and incorporated in plant-wide risk assessments.

Cyber-attacks can target actuators, sensors, communication channels between devices, and the

control system algorithms; they modify the control implementation using process and control

system information in an attempt to disrupt closed-loop performances. A comprehensive review

in [9] included analysis on security issues, requirements, and possible solutions at various layers

of the CPS architecture. Moreover, a survey on cyber-physical systems security from the

security perspective (taxonomy of threats, attacks, and controls), the cyber-physical components

perspective, and from a holistic systems perspective was explored in [54], where representative

systems such as smart grids, medical CPS, and smart cars were studied. A review of possible

weaknesses in corporate networks, in the Supervisory Control and Data Acquisition (SCADA)

and Distributed Control System (DCS) systems, and in production environments was presented

in [8]. Amongst sensor cyber-attacks, some common attack types are denial-of-service attacks,

replay attacks, and deception attacks – such as min-max, geometric, and surge attacks [16]. For

instance, for replay attacks commonly occurring on wireless sensor networks, a wormhole tunnel

can be created between two end points to replay messages observed in different regions [65]. The

detection and control of replay attacks in smart grid systems specifically have also been studied

in [107, 140]. Moreover, adversaries may launch other deception attacks through hacking remote

terminal units (RTUs), such as sensors in substations in a power grid transmission system. In [6],

6

a hierarchical attack in automated canal systems was described with various deception attacks in

different cyber layers, and a field-operational test attack was reported on the Gignac canal system

located in Southern France. Due to the sophistication of cyber-attacks and their accessibility to

control system information, they are intended to disrupt the closed-loop system while avoiding

being detected by conventional detection methods or by control engineers, thus making them

fundamentally different from sensor or actuator faults. Situations where conventional model-based

detection schemes may be rendered ineffective by intelligent cyber-attacks can be potentially

tackled by data-based detection methods [16].

Machine-learning methods deployed for attack detection were presented in a number of works

[14, 86, 108]. Using various machine-learning classification methods, cyber-attacks on power

systems were distinguished from process disturbances in [48], and a behavior-based intrusion

detection algorithm was developed to identify the type of attack [59]. Similarly, detection of

cyber-attacks in a chemical process was realized via development of feed-forward artificial neural

networks in [118], where compromised signals were rerouted to a secure sensor upon detection.

One prominent use of machine-learning algorithms is to solve classification problems. For

example, in [95], a hybrid approach using support vector machines and genetic algorithms was

implemented and compared to existing network intrusion detection systems in the industry. An

overview of recent research directions for applying supervised and unsupervised machine learning

techniques to address the problem of anomaly detection was presented in [85]. Neural network

and many of its variances have demonstrated remarkable performance. For instance, a Long

Short-Term Memory (LSTM) recurrent neural network was used to build a classifier model for

the intrusion detection system in [62]. The anomaly detection algorithm outlined in [42] also used

a LSTM network as a predictor to model normal behavior of a water treatment testbed, and used the

Cumulative Sum (CUSUM) method to identify anomalies. FNNs were used to construct detectors

in [21], which were implemented in an economic model predictive control system with combined

open-loop and closed-loop control modes to monitor and stay resilient against cyber-attacks. Many

variants of CNN with different topologies, parameters, and structures were analyzed for the task

7

of intrusion detection in cyber-security of network traffic in [112], which have shown significant

improvement than conventional classifiers. These recent literature contributions have demonstrated

the feasibility of machine-learning algorithms in anomaly detection. At any large-scale chemical

production plant, tremendous amount of data is being collected and archived daily in the historian.

Using neural-network algorithms, these data can be put to use to train effective detection devices

for monitoring and guarding the system against malicious cyber-attacks.

In many practical problems, a mathematical model based on physical first-principles is not

fully known or too complicated to be used as the internal model for model-based control. A

continuous-time RNN is developed in [3] and used in the context of nonlinear model predictive

control where automatic differentiation techniques are used in both training the neural network

model as well as in solving the online optimization problem in the controller. A combination of

FNN and RNN is used in [132] where unmodeled dynamics as well as unknown higher-order terms

from the decomposition of the nonlinear system are modeled by an FNN via supervised learning,

and the optimization problem of the nonlinear model predictive control is iteratively solved using

a single-layer RNN called the simplified dual network. Three deep neural network structures

are trained and evaluated in [84] to demonstrate their effectiveness in modeling underlying

characteristics of dynamical systems from input-output data. Moreover, in [121], an ensemble

of RNN models is developed and used in the design of a Lyapunov-based economic model

predictive control to address economic optimality of nonlinear systems. The integration of

machine-learning-based modeling methods and various advanced control architectures is a broad

field with expanding research scope.

Chemical process operation has extensively relied on automated control systems, and the

need of accounting for multivariable interactions and input/state constraints has motivated

the development of MPC. Moreover, augmentation in sensor information and network-based

communication increases the number of decision variables, state variables, and measurement data,

which in turn increases the complexity of the control problem and the computation time if a

centralized MPC is used. Many industrial systems, such as power distribution grids, mechanical

8

systems and chemical processes, supply chains, and urban traffic networks, are large-scale systems

that cannot be handled by using a centralized controller because the system to be controlled is

too large and the control problem to be solved is too complex [10]. These challenges cannot be

simply solved by using faster computers with larger memory. With these considerations in mind,

distributed control systems have been developed, where multiple controllers with inter-controller

communication are used to cooperatively calculate the control actions and achieve closed-loop

plant objectives. In this context, MPC is a natural control framework to implement due to

its ability to account for input and state constraints while also considering the actions of other

control actuators. In other words, the controllers communicate with each other to calculate

their distinct set of manipulated inputs that will collectively achieve the control objectives of

the closed-loop system. Many distributed MPC methods have been proposed in the literature

addressing the coordination of multiple MPCs that communicate to calculate the optimal input

trajectories in a distributed manner (the reader may refer to [27, 92, 101] for reviews of results on

distributed MPC, and to [31] for a review of network structure-based decomposition of control and

optimization problems). A robust distributed control approach to plant-wide operations based on

dissipativity was proposed in [114, 131]. Depending on the communication network, i.e., whether

is one-directional or bi-directional, two distributed architectures, namely sequential and iterative

distributed MPCs, were proposed in [70]. Furthermore, distributed MPC method was also used

in [71] to address the problem of introducing new control systems to pre-existing control schemes.

In a recent work [105], a fast and stable non-convex constrained distributed optimization algorithm

was developed and applied to distributed MPC. As distributed MPC systems also depend on an

accurate process model, the development and implementation of RNN models in distributed MPCs

is an important area yet to be explored.

Decentralized control systems have also been proposed to address the concerns associated with

control of large-scale systems, including challenges posed by high dimensionality, information

structure constraints, uncertainties and delays in the system [10]. The analysis of the overall system

is divided into independent sub-problems that are weakly related to each other to be regulated

9

by separate controllers, which together constitute a decentralized control structure. As such,

decentralized control structures provide a practical solution to decoupling large-scale processes and

reducing the computational complexity of a centralized control problem. Many recent works have

been done on the subject of decentralized control [49, 53, 73]. For example, augmented estimators

for subsystems were designed in [135] to form a distributed state estimation network from

decentralized estimators. A quasi-decentralized control framework was developed in [103] where

the network utilization and communication costs were minimized. With respect to earlier works, in

[75], a stabilizing decentralized MPC algorithm was presented for nonlinear discrete-time systems

subject to decaying disturbances. Moreover, a dynamically-coupled decentralized MPC system

for large-scale linear processes subject to input constraints was presented in [5], where the global

model of the process was approximated by multiple smaller subsystem models and the degree of

decoupling was a tunable parameter in the design. Furthermore, a decentralized control strategy

using the overlapping decomposition method and using H∞ controllers was applied to a web

transport system in [63]. By only acquiring local output measurements and deciding local control

inputs, the main advantages of a decentralized control scheme are the reduced communications

and parallel computations.

Amongst many MPC formulations, Lyapunov-based MPC (LMPC) ensures feasibility and

stabilizability within an explicitly defined stability region using a Lyapunov-based stabilizing

control law [79, 82]. Previously, safety considerations have been incorporated in the design of

LMPC algorithms to specify unsafe regions of operation in state space characterized by the relative

safeness of process states [4], as well as to ensure that unsafe regions are avoided at all times by

utilizing a Control Lyapunov-Barrier Function (CLBF) [90, 122]. CLBFs are developed from the

combination of a Control Lyapunov Function (CLF) and a Control Barrier Function (CBF), and

can be used in control algorithms to account for both stability and safety, respectively [56,83,106].

Barrier functions, or barrier certificates, serve as an important tool in safety-critical systems where

multi-objective control is involved [129]. CLBF-MPC has been proposed in [119, 122], where

the stability and safety analysis for the closed-loop system in the presence of both bounded

10

and unbounded unsafe sets have been provided. Many other recent works [76, 136] have also

explored MPC with discrete-time control barrier functions, as well as optimal control based on

reinforcement learning with the inclusion of control barrier functions.

Incorporating CLBF in the design of distributed MPC in controlling multiple subsystems is

a strategy that has not been explored in literature. This is essential to the operation of complex

industrial processes where the overall system may encounter regions in state-space for which they

would like to avoid, and the sub-controllers for each subsystem need to work cooperatively to

achieve the stability and safety objectives. To this end, an analytical representation of the unsafe

operating points in state-space is used to specify the CLBFs that will be used for the design of

distributed MPC systems. The unsafe operating regions may be specified for each subsystem

individually, or if these unsafe points are interdependent across subsystems, the unsafe regions

may be specified holistically with respect to the overall process.

One challenge of implementing CLBF-based controllers is whether the unsafe operating region

can be explicitly and accurately represented in closed form as a function of process states. While

this may be possible to do for simple shapes or patterns of the unsafe region, it is practically

difficult to express such a barrier function for real industrial processes with complex unsafe regions

that cannot be readily described with common explicit functions. To this end, FNN can be used

to model barrier functions based on data samples collected from the safe and the unsafe operating

regions.

There has been previous works on characterizing a barrier function using machine learning

methods, such as using support vector machines [100] and neural networks [58, 139]. Moreover,

in [68, 89], optimization-based approaches are used to learn CBFs from data for nonlinear

continuous control affine dynamical systems as well as hybrid systems. In [130], an imitation

learning framework is proposed to learn neural network-based feedback controllers with CBF

constraints for systems under disturbances. The work in [58] uses neural networks to jointly

learn a Lyapunov-like function and a barrier function and obtains a safe and goal-reaching control

policy. Similarly, in [139], barrier functions are synthesized using neural networks that use

11

a devised activation function Bent-ReLu and checked against the barrier function criteria as a

formal guarantee. Although formal proofs of guaranteed safety and stability have been provided

either from a priori theoretical development or posterior empirical verification, the question of

generalization accuracy of machine learning techniques has not been addressed.

Many research works have been conducted on the probabilistic safety certification of barrier

functions, but the probability analysis is with respect to uncertainties that exist in the process

dynamics (e.g., [60, 72, 74]), and not in the sense of analyzing the generalization error of the

modeling method. For example, in [72], a Gaussian process is used to model the projection of

unknown residual dynamics onto a CBF; similarly in [60], the Gaussian process approach is used

to obtain a distribution over the system dynamics, which is then used to ensure safety with high

probability by specifying a chance constraint on a CBF. The work in [29] develops barrier functions

for stochastic systems with sufficient conditions for safety with probability.

On the other hand, probably approximately correct (PAC) learning theory provides a framework

for analyzing the generalization ability of machine learning models, and provides the conditions

under which a learning algorithm is probably able to yield an output that is approximately correct

[81, 110]. One way to characterize the machine learning model’s capability to generalize new

unseen data based on learned data is to examine the generalization error. In [37], a tighter

error bound on the performance of classification via support vector machine is characterized

by exploiting domain knowledge. A bound on the generalization error of feed-forward neural

networks has been developed by providing a bound on the Rademacher complexity of the network

[43]. In [126], a similar bound is provided for recurrent neural networks, and statistical stability

analysis of Lyapunov-based MPC using the recurrent neural network model was introduced.

Generalization error in deep learning algorithms has been surveyed in [55] with discussions

on different measures to assess generalization capabilities of deep neural networks, such as

PAC-Bayes theory, algorithm stability, algorithm robustness, and compression-based approach.

In this dissertation, statistical analysis on the FNN-based CBF construction method proposed in

our previous work in [25] is also provided, and the FNN-based CBF will be used to design a

12

CLBF-based model predictive control system.

1.3 Dissertation Objectives and Structure

This dissertation presents machine learning approaches to address challenges in modern control

systems such as operational safety, cybersecurity, and large-scale process control, and provides

control theoretic analyses as well as applications on nonlinear chemical process examples. The

objectives of this dissertation can be summarized as follows:

1. To present a framework of integrating machine-learning-based detection algorithms with

resilient control methods implemented in the contexts of two-tier LMPC, EMPC, distributed

and decentralized MPC, to ensure cyber-security of industrial processes

2. To develop machine-learning-based distributed and decentralized model predictive control

schemes with rigorous theoretical analysis on their closed-loop stability properties

3. To investigate the safety and stability properties of distributed MPC systems designed based

on Control Lyapunov-Barrier Functions

4. To present machine-learning-based methods of characterizing Control Lyapunov-Barrier

Functions and provide control theoretic proof as well as statistical analysis on the stability

and safety properties of CLBF-based MPC algorithms

5. To illustrate the applications of the proposed control methods to nonlinear chemical process

examples

The remainder of this dissertation is organized as follows. Chapter 2 presents a

detector-integrated two-tier control architecture capable of identifying the presence of various

types of cyber-attacks, and ensuring closed-loop system stability upon detection of the

cyber-attacks. Working with a general class of nonlinear systems, an upper-tier Lyapunov-based

Model Predictive Controller, using networked sensor measurements to improve closed-loop

13

performance, is coupled with lower-tier cyber-secure explicit feedback controllers to drive a

nonlinear multivariable process to its steady-state. Although the networked sensor measurements

may be vulnerable to cyber-attacks, the two-tier control architecture ensures that the process will

stay immune to destabilizing malicious cyber-attacks. Data-based attack detectors are developed

using sensor measurements via artificial neural networks, where various types of cyber-attacks

are introduced to the process under nominal and noisy operating conditions. The detectors are

applied online to a simulated reactor-reactor-separator process. Simulation results demonstrate

the effectiveness of these detection algorithms in detecting and distinguishing between multiple

classes of intelligent cyber-attacks. Upon successful detection of cyber-attacks, the two-tier control

architecture allows convenient reconfiguration of the control system to stabilize the process to its

operating steady-state.

Chapter 3 proposes resilient operation strategies for nonlinear processes that are vulnerable

to targeted cyber-attacks, as well as detection and handling of standard types of cyber-attacks.

Working with a general class of nonlinear systems, a modified Lyapunov-based Economic

Model Predictive Controller (LEMPC) using combined closed-loop and open-loop control action

implementation schemes is proposed to optimize economic benefits in a time-varying manner

while maintaining closed-loop process stability. Although sensor measurements may be vulnerable

to cyber-attacks, the proposed controller design and operation strategy ensure that the process

will maintain stability and stay resilient against particular types of destabilizing cyber-attacks.

Data-based cyber-attack detectors are developed using sensor data via machine-learning methods,

and these detectors are periodically activated and applied online in the context of process operation.

Using a continuously stirred tank reactor example, simulation results demonstrate the effectiveness

of the resilient control strategy in maintaining stable and economically optimal operation in the

presence of cyber-attacks. The detection results demonstrate the capability of the proposed method

in identifying the presence of a cyber-attack, as well as in differentiating between different types of

cyber-attacks. Upon successful detection of the cyber-attacks, the impact of cyber-attacks can be

mitigated by replacing the attacked sensors by secure back-up sensors, and secure operation will

14

resume with the process operated under the proposed resilient LEMPC control strategy.

In Chapter 4, cyber-security in large-scale complex processes consisting of multiple

sub-systems under the control of decentralized and distributed controllers is studied. With the

expansion in communication networks, vulnerability to cyber intrusions also increases. This work

investigates the effect of different types of standard cyber-attacks on the operation of nonlinear

processes under centralized, decentralized, and distributed model predictive control systems.

The robustness of the decentralized control architecture over distributed and centralized control

architectures is analyzed. Moreover, a machine-learning-based detector is trained using sensor data

to monitor and ensure the cyber-security of the overall system. Specifically, detectors built with

feed-forward neural networks are used to detect the presence of an attack or identify the subsystem

being attacked. A nonlinear chemical process example is simulated to demonstrate the robustness

of decentralized control architectures and the effectiveness of the neural-network detection scheme

in maintaining the closed-loop stability of the system.

Chapter 5.1 and Chapter 5.2 explore the design of distributed MPC and decentralized MPC

systems for nonlinear processes using machine learning models to predict nonlinear dynamic

behavior. Firstly, the distributed MPC scheme is discussed, where sequential and iterative

distributed model predictive control systems are designed and analyzed with respect to closed-loop

stability and performance properties. Extensive open-loop data within a desired operating region

are used to develop LSTM recurrent neural network models with a sufficiently small modeling

error from the actual nonlinear process model. Subsequently, these LSTM models are utilized in

Lyapunov-based distributed MPC to achieve efficient real-time computation time while ensuring

closed-loop state boundedness and convergence to the origin. Using a nonlinear chemical process

network example, the simulation results demonstrate the improved computational efficiency when

the process is operated under sequential and iterative distributed MPCs while the closed-loop

performance is very close to the one of a centralized MPC system. Secondly, the dencetralized

MPC system for nonlinear processes is presented, where the nonlinear process is broken down into

multiple, yet coupled subsystems and the dynamic behavior of each subsystems is described by

15

machine learning models. One decentralized MPC is designed and used to control each subsystem

while accounting for the interactions between subsystems through feedback of the entire process

state. The closed-loop stability of the overall nonlinear process network and the performance

properties of the decentralized model predictive control system using machine-learning prediction

models are analyzed. More specifically, multiple recurrent neural network models suited for each

different subsystem need to be trained with a sufficiently small modeling error from their respective

actual nonlinear process models to ensure closed-loop stability. These recurrent neural network

models are subsequently used as the prediction model in decentralized Lyapunov-based MPCs

to achieve efficient real-time computation time while ensuring closed-loop state boundedness and

convergence to the origin. The simulation results of a nonlinear chemical process network example

demonstrate the effective closed-loop control performance when the process is operated under the

decentralized MPCs using the independently-trained recurrent neural network models, as well as

the improved computational efficiency compared to the closed-loop simulation of a centralized

MPC system.

In Chapter 6, a Control Lyapunov-Barrier Function-based Model Predictive Control method

is developed utilizing a feed-forward neural network specified Control Barrier Function and a

recurrent neural network predictive model to stabilize nonlinear processes with input constraints,

and to guarantee that safety requirements are met for all times. The nonlinear system is first

modeled using recurrent neural network techniques, and a Control Barrier Function is characterized

by constructing a feed-forward neural network model with unique structures and properties. The

FNN model for the CBF is trained based on data samples collected from safe and unsafe operating

regions, and the resulting FNN model is verified to demonstrate that the safety properties of the

CBF are satisfied. Given sufficiently small bounded modeling errors for both the FNN and the RNN

models, the proposed control system is able to guarantee closed-loop stability while preventing

the closed-loop states from entering unsafe regions in state-space under sample-and-hold control

action implementation. We provide the theoretical analysis for both bounded unsafe sets in

state-space, and demonstrate the effectiveness of the proposed control strategy using a nonlinear

16

chemical process example with a bounded unsafe region.

Chapter 7 focuses on the design of distributed model predictive control (DMPC) systems for

nonlinear processes with input constraints using a Control Lyapunov-Barrier Function to achieve

simultaneous closed-loop stability and process safety. Specifically, a constrained CLBF is first used

to design explicit control laws for each subsystem and to characterize a set of initial conditions,

starting from which the closed-loop states of the overall nonlinear system are guaranteed to

converge to the operating steady-state under the CLBF-based control laws while avoiding unsafe

regions in state space. We then propose the CLBF-based DMPC, and prove its feasibility and

effectiveness in ensuring the stability and avoidance of unsafe regions under sample-and-hold

implementation of DMPC control actions. The CLBF-based DMPC is applied to both sequential

and iterative DMPC designs in the general sense, and a modification to the DMPC formulation

is presented for special cases of systems where the coupling between subsystems is in a one-way

cascading manner. The proposed CLBF-DMPC method is demonstrated via a nonlinear chemical

process example consisting of two subsystems.

In Chapter 8, we present statistical model predictive control with Control Lyapunov-Barrier

Functions built using machine learning approaches, and analyze closed-loop stability and safety

properties in probability using statistical machine learning theory. A FNN is used to construct

the Control Barrier Function, and a generalization error bound can be obtained for this FNN

via the Rademacher complexity method. The FNN Control Barrier Function is incorporated in

a CLBF-based MPC, which is used to control a nonlinear process subject to input constraints. The

stability and safety properties of the closed-loop system under the sample-and-hold implementation

of FNN-CLBF-MPC are evaluated in a statistical sense. A chemical process example is used to

demonstrate the relation between various factors of building an FNN model and the generalization

error, as well as the probabilities of closed-loop safety and stability for both bounded and

unbounded unsafe sets.

Chapter 9 summarizes the main results of the dissertation.

17

Chapter 2

A Cyber-secure Control-Detector

Architecture for Nonlinear Processes

This chapter presents a detector-integrated two-tier control architecture capable of identifying

the presence of various types of cyber-attacks, and ensuring closed-loop system stability upon

detection of the cyber-attacks. Working with a general class of nonlinear systems, an upper-tier

Lyapunov-based Model Predictive Controller (LMPC), using networked sensor measurements

to improve closed-loop performance, is coupled with lower-tier cyber-secure explicit feedback

controllers to drive a nonlinear multivariable process to its steady-state. Although the networked

sensor measurements may be vulnerable to cyber-attacks, the two-tier control architecture ensures

that the process will stay immune to destabilizing malicious cyber-attacks. Data-based attack

detectors are developed using sensor measurements via machine-learning methods, namely

artificial neural networks (ANN), under nominal and noisy operating conditions, and applied online

to a simulated reactor-reactor-separator process. Simulation results demonstrate the effectiveness

of these detection algorithms in detecting and distinguishing between multiple classes of intelligent

cyber-attacks. Upon successful detection of cyber-attacks, the two-tier control architecture

allows convenient reconfiguration of the control system to stabilize the process to its operating

steady-state.

18

Despite current literature efforts on stealthy attack analysis and machine-learning-based

detection, there is a lack of an integration of the two, as well as a broader application of detection

schemes across stealthy attack classes and nonlinear chemical processes. Furthermore, feasible

mitigation practices using control strategies after the occurrence of attacks have not yet been

explored. In light of these gaps, the contributions of this work are as follows: 1) construction

of data-based machine-learning detection algorithms which can effectively detect multiple classes

of intelligent cyber-attacks; 2) design of a robust control architecture to promptly contain and

eliminate the impact of cyber-attacks by reconfiguring the control system; and 3) application of

the proposed detection and mitigation schemes to a benchmark multivariable nonlinear process

example, which is a process example widely used in literature to test the performance of new

control system designs [87, 101, 134]. This Chapter is organized as follows: notation and the class

of nonlinear process systems considered are presented in Section 2.1; the cyber-secure control

architecture is formulated in Section 2.2; the design and detection mechanism of cyber-attacks are

presented in Section 2.3; and the application of the proposed methodology to a nonlinear chemical

process network is presented in Section 2.4.

2.1 Preliminaries

2.1.1 Nonlinear System Formulation

In this work, |·| is used to denote the Euclidean norm of a vector; xT denotes the transpose of x;

Rn
+ denotes the set of vector functions of dimension n whose domain is [0,∞). Class K functions

α(·) : [0,a)→ [0,∞] are defined as strictly increasing scalar functions with α(0) = 0. The class of

continuous-time nonlinear systems considered is described by the following state-space form:

ẋ(t) = f (x(t),uc(t),ua(t)) (2.1a)

yc(t) = hc(x(t)), ya(t) = ha(x(t)) (2.1b)

19

where x ∈ Rnx is the state vector, yc(t) ∈ Rnyc represents the vector of state measurements that

are sampled continuously (e.g., reactor temperature), and ya(t) ∈ Rnya represents the vector

of networked state measurements that may be sampled asynchronously at t = tk (e.g., reactor

product concentration); uc and ua are the manipulated input vectors, which are constrained by

[uc ∈ Rmuc ,ua ∈ Rmua] ∈ U := {umin
i ≤ ui ≤ umax

i , i = 1, ...,muc +mua}. Through yc and ya, we

assume measurement of the full state vector x can be obtained at tk. Without loss of generality, the

initial time t0 is taken to be zero (t0 = 0). It is assumed that f (·) is a sufficiently smooth vector

function of its arguments, and hc(·) and ha(·) are sufficiently smooth vector functions of x where

f (0,0,0) = 0, hc(0) = 0, ha(0) = 0. Thus, the origin is an equilibrium point of the system of

Eq. 8.1 under uc(t) = 0 and ua(t) = 0.

2.2 Cyber-secure Two-tier Control Architecture

We propose a cyber-secure control architecture that unites a lower-tier control system that uses

the dedicated sensor measurements, yc(t), to ensure stability of the steady-state of the closed-loop

system and an upper-tier, high-performance control system (in this work, model predictive control)

that uses both dedicated (yc(t)) and networked (ya(t)) sensor measurements to improve closed-loop

performance significantly above what could be achieved with the lower-tier control system. Below

we present in detail the lower-tier and upper-tier control systems.

2.2.1 Lower-tier Control System

We assume that there exists an explicit feedback controller of the form uc(t) = φc(yc(x(t))) ∈U

that can stabilize the closed-loop system of Eq. 8.1. This controller, using only the continuous

measurements yc(t) is termed the lower-tier controller, and is designed such that the origin of

the nominal closed-loop system of Eq. 8.1 with the input ua(t) = 0 is rendered asymptotically

stable. Therefore, there exist class K functions αi(·), i = 1,2,3,4, and a positive definite control

20

Lyapunov function V (x) that satisfy the following conditions:

α1(|x|)≤V (x)≤ α2(|x|), (2.2a)

∂V (x)
∂x

f (x,φc(yc(x)),0)≤−α3(|x|), (2.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (2.2c)

for all x ∈ D ⊆ Rnx , where D is an open neighbourhood around the origin. We construct a subset

defined as a level set of V (x) inside D, Ωρ := {x ∈ D | V (x)≤ ρ,ρ > 0}, to represent an estimate

of the stability region of the closed-loop system of Eq. 8.1 under φc(yc). Ωρ is an invariant set for

the closed-loop system. Therefore, starting from any initial state in Ωρ , φc(yc) guarantees that the

state trajectory of the closed-loop system remains within Ωρ and asymptotically converges to the

origin. Thus, given that the sensor measurements received by the lower-tier controller are secure

and reliable, the lower-tier controller is able to stabilize the process to the origin for any initial

conditions inside Ωρ .

2.2.2 Upper-tier Model Predictive Control System

To fully utilize the networked (potentially asynchronous) state measurements ya(t) and to compute

ua(t) that improves the overall closed-loop performance over what can be achieved with φc(yc), a

Lyapunov-based MPC (LMPC) is used as the upper-tier controller with its contractive constraint

defined based on the stability region of the lower-tier controller such that the asymptotic stability

of the closed-loop system will not be jeopardized by the contributions of ua(t). The optimization

21

problem of LMPC is as follows:

J = min
ua∈S(∆)

∫ tk+N

tk
L(x̃(t), ũc(t),ua(t))dt (2.3a)

s.t. ˙̃x(t) = f (x̃(t),φc(yc(x̃(t)),ua(t)) (2.3b)

˙̂x(t) = f (x̂(t),φc(yc(x̂(t)),0) (2.3c)

x̃(tk) = x̂(tk) = x(tk) (2.3d)

[uc(t),ua(t)] ∈U, ∀ t ∈ [tk, tk+N) (2.3e)

V (x̃(tk))≤V (x̂(tk)), if V (x̃(tk))> ρmin (2.3f)

V (x̃(t))≤ ρmin, ∀ t ∈ [tk, tk+N), if V (x̃(tk))≤ ρmin (2.3g)

where ua belongs to a family of piece-wise constant functions S(∆) with sampling period ∆,

N is the number of sampling periods in the prediction horizon, and the LMPC optimization

problem presented in Eq. 2.3 optimizes ua over the prediction horizon t ∈ [tk, tk+N) when full state

measurement is received at time instance tk. The optimal solution is denoted u∗a(t). The first control

action of u∗a(t), i.e., ua(t) = u∗a(tk), is applied in open loop until a new full-state measurement x(tk)

obtained from yc(tk) and ya(tk) in Eq. 3.1b becomes available to the LMPC and the optimization

problem is solved again. In the meantime, the lower-tier controller continuously calculates and

applies uc(t) = φc(yc(t)) based on continuous measurement feedback yc(t). If the time between

two consecutive asynchronous measurements is longer than the prediction horizon N ·∆, then ua(t)

is set to zero for the remainder of the asynchronous sampling interval past the prediction horizon,

such that it does not act as an additional disturbance to the lower-tier controller before the next

ya arrives. In Eqs. 2.3b and 2.3c, x̃(t) and x̂(t) are the predicted state trajectories of the two-tier

nominal system using control actions φc(yc(x̃(t)) coupled with ua(t) computed by LMPC, and

control actions φc(yc(x̂(t)) coupled with ua(t) = 0, respectively. As shown in Eq. 2.3d, full-state

measurements received at tk are used as the initial conditions of the predicted trajectories in the

optimization problem of LMPC. Both upper-tier and lower-tier controller inputs are subject to

22

their respective constraints defined by U in Eq. 2.3e.

Given that the lower-tier controller is able to stabilize the system independently as the

Lyapunov function under lower-tier control satisfies the conditions in Eq. 3.2, the contractive

constraint in Eq. 2.3f ensures that the value of the Lyapunov function of the closed-loop system

under two-tier control, V (x̃(tk)), is lower than or equal to that under lower-tier control alone

V (x̂(tk)). Therefore, Ωρ is the closed-loop stability region under two-tier control. In other

words, the upper-tier maintains the closed-loop stability of the system while improving the overall

closed-loop performance. In order to avoid oscillations when the states approach the equilibrium

point, the Lyapunov function is bounded as seen in Eq. 2.3g once the system enters a small region

around the equilibrium point characterized by a level set Ωρmin , where 0 < ρmin < ρ . It is important

to note that the LMPC is only executed when full-state information is received from both the

continuous and asynchronous measurements as they become available at time tk. The continuous

measurements are measured and transmitted by sensors in a point-to-point network, and are used

by the lower-tier control system to compute stabilizing control actions continuously. Thus, the

continuous measurements will be available and readily used as state feedback in addition to the

asynchronous measurements when the LMPC is activated. This two-tier control design, where

the networked sensor measurements, ya(t), used only by the upper-tier controller may be under

potential cyber-attack, is illustrated in Fig. 2.1(a).

2.3 Cyber-attack Design and Detection

2.3.1 Attack Scenarios

The upper-tier control system – where networked sensor information is incorporated and part of its

measurement feedback is asynchronous – is vulnerable to cyber-attacks. Due to these irregular

and sparse measurements, suspicious disparities between consecutive state measurements may

be less apparent or susceptible to detection by the control engineer or classical fault-detection

schemes. Furthermore, deviations caused by intelligent cyber-attacks and their dynamic impact

23

on the process may be less detectable when multiple states are attacked. While the networked

asynchronous measurements used only in the upper-tier controller are more susceptible to attacks,

the continuous measurements used in both upper-tier and lower-tier controllers must remain intact

for a few reasons. Firstly, we assume that the process is stabilized under lower-tier controllers,

and the upper-tier controller is designed such that its control Lyapunov function is contained

inside that of the stabilizing lower-tier controllers. Therefore, the closed-loop stability under

two-tier control is ensured by the stabilizing lower-tier controllers, and the closed-loop stability

under lower-tier control is only guaranteed if the continuous measurements feeding into lower-tier

controllers are secure and reliable. Secondly, having a secure stabilizing lower-tier controller

allows quick mitigation measures by changing the control structure once a cyber-attack is identified

in the networked measurements. Since the process can be driven to its operating steady-state using

only the lower-tier control system, in the case of a confirmed cyber-attack detection, the upper-tier

controller which uses the corrupted networked measurements will be shut off. If the continuous

measurements are also tampered, then the closed-loop stability under the lower-tier controllers is

no longer guaranteed, and this mitigation plan is rendered ineffective. Therefore, having secure

continuous sensor measurements is instrumental to maintaining functional stabilizing lower-tier

controllers, which in turn ensures robustness of the closed-loop system to cyber-attacks.

To capture realistic sensor variance and to differentiate cyber-attacks from normal device

fluctuations, bounded sensor noise is also considered. Thus, in our formulation, two scenarios

are considered:

1. Nominal model is as presented in the nonlinear system outlined in Eq. 8.1 where output

sensors do not encounter any sensor noise.

2. Noise model adopts the same dynamic system model in Eq. 3.1a, but with bounded Gaussian

noise w(t) ∈W added to all sensor measurements, where W = {w ∈ Rnyc+nya | |w| ≤ wmax}.

Depending on the range of the outputs, the standard deviation of noise distribution for each

24

sensor is adjusted accordingly. Therefore, Eq. 3.1b is modified to the following form:

yc(t) = hc(x(t))+w(t), ya(t) = ha(x(t))+w(t), w(t) ∈ W (2.4)

To collect closed-loop data used for machine-learning detector training, attacks with varying

durations La are introduced at random times i0 during the simulation period. In both cases (with and

without noise), signals without attack interceptions are classified as “no attack”. Attacks on single

sensor and on multiple sensors are both considered, where the data collected from single-sensor

tampering is used for detector training, the multiple-sensor attacks are simulated for online testing

of the effectiveness of the detector algorithms. Data collected from single-sensor tampering also

allows for sensor isolation using machine-learning-based models. For clarity, we consider that

only one type of cyber-attack will occur at a time, i.e., there will not be a hybrid of multiple attack

types within each attack duration.

Remark 2.1. The continuous state measurements used by lower-tier controllers are also used by

the upper-tier controller despite the asynchronous execution frequency of the upper-tier controller.

Since these continuous state measurements cannot be tampered, the same measurements fed into

the upper-tier controller remain intact when an attack occurs. Thus, even in the case where

multiple sensors are under attack, only those sending sampled asynchronous state measurements to

the upper-tier controller will be corrupted. Moreover, it is not meaningful to simulate an intelligent

cyber-attack that targets the two separate communication channels going into the two tiers of

controllers such that the continuous measurements received by lower-tier controllers are accurate

while the continuous measurements received by the upper-tier controller are falsified. This is

because a simple tracker that examines the deviation between the same measurements received by

both controllers would identify the presence of this abnormality. Therefore, the continuous state

measurements remain unattacked in both controllers.

2.3.2 Types of Intelligent Cyber-attacks

As intelligent cyber-attacks are adaptive to the process and control system behavior, we may

assume that they are as powerful as having access to the measurement feedback signals (sensor

25

attack), the control command signals (actuator attack), or auxiliary information such as the

threshold and bias parameters in detection methods such as CUSUM [16, 80]. Being process and

controller behavior aware, the attacks will therefore have information on the stability region of the

process under two-tier control, as well as existing alarm triggers on the ideal operating window

imposed on the input and output variables. In this work, we only consider attacks on sensor

measurements. During normal operation, these sensor feedback measurements need to accurately

reflect the true state of the plant, otherwise any falsified measurement may result in control actions

that no longer guarantee closed-loop stability, and may eventually drive the process away from

its steady-state and outside of Ωρ . Intelligent cyber-attacks are designed such that the controller

is able to compute feasible control actions (i.e., the falsified state is not outside the closed-loop

stability region Ωρ), but have large enough magnitude of variations such that the control system

will not be able to drive the process to its operating steady-state. The four most important types [16]

of such attacks are considered below.

2.3.2.1 Min-Max Cyber-attack

Min-max attacks are designed to induce maximum destabilizing impact within shortest time

without being detected. In order to stay undetectable by classical detection methods, min-max

attacks are introduced based on the more conservative value of the following two conditions:

1) a window around the equilibrium point of the attacked state(s) reflecting reasonable physical

operating conditions; 2) state values furthest from the equilibrium point (minimum or maximum)

such that the system does not exit the closed-loop stability region Ωρ . Attacks generated based on

these two conditions ensure that the attacked state measurements fed to the control system do not

exit the stability region or the configured operating window, and do not trigger any conventional

detection alarms designed based on these boundary values. The min-max attack can be formulated

as follows:

x̄(ti) = min{arg max
x∈Rnx

{V (x(ti))≤ ρ},arg max
x∈Rnx

{x(ti) ∈ χ}}, ∀ i ∈ [i0, i0 +La] (2.5)

26

where ρ defines the level set of the Lyapunov function V (x) that characterizes the stability region of

the closed-loop system of Eq. 8.1 under the two-tier control system, χ := {xl ≤ x≤ xu} represents

the ideal state operating window, x̄ is the compromised sensor measurement at each sampling step,

i0 marks the time instant that attack is added, and La denotes the time duration of the attack in

terms of sampling periods.

2.3.2.2 Replay Cyber-attack

In a replay attack, the attacker first records segments of the system output corresponding to a

nominal operating condition where large oscillations occur. The attacker then intercepts and

resets the current process state measurements to these pre-recorded values. Replay attacks can

be represented by the following equations:

x̄(ti) = x(tk), ∀ k ∈ [k0,k0 +La], ∀ i ∈ [i0, i0 +La] (2.6)

where x(tk) is the true plant measurement, La represents the length of the attack in terms of

sampling periods, and x̄ is the series of replay attacks introduced at time ti0 duplicating previous

plant measurements that are recorded starting from time tk0 . As previous plant outputs are obtained

from legitimate closed-loop measurements and given by secure sensors, these state values are

supposedly inside the stability region and the operating envelope. Therefore, by replicating these

values and feeding them back to the controller, classical detectors will not be able to recognize the

abnormality caused by replay cyber-attacks.

2.3.2.3 Geometric Cyber-attack

Geometric cyber-attacks aim to deteriorate the closed-loop system stability slowly at the beginning,

then geometrically increase their impact as time progresses, with its maximum damage achieved

at the end of the attack duration. Initially, the attacker adds a small constant β to the true measured

output (β is well below the maximum allowable value as defined in a min-max attack). At each

subsequent time step, this offset is multiplied by (1+α), where α ∈ (0,1), until it reaches the

27

maximum allowable attack value. The two parameters α and β are therefore selected based on the

stability region, the operating envelope, and the attack duration. Geometric attacks can be written

in the form:

x̄(ti) = x(ti)+β × (1+α)i−i0, ∀ i ∈ [i0, i0 +La] (2.7)

where x̄ is the compromised sensor measurement, β and α are parameters that define the magnitude

and speed of the geometric attack, i0 signifies the time instant at which the attack starts, and La is

the duration of the attack in terms of sampling periods.

2.3.2.4 Surge Cyber-attack

Surge attacks act similarly as min-max attacks initially to maximize the disruptive impact for a

short period of time, then they are reduced to a lower value. In our case, the duration of the initial

surge in terms of sampling times is selected as Ls ∈ [2,5] to differentiate itself from a min-max

attack. Moreover, the initial surge period Ls is chosen to be in this range such that the potential

time delays on the detection alarm will not be longer than Ls where the impact is most severe, and

in turn, may cause a missed alarm from the detector. After the initial surge, the reduced constant

value – at which the attack stays at – is chosen considering the impact of the initial surge and the

total duration of the attack such that the cumulative error between state measurements and their

steady-state values will not exceed the threshold defined in some statistic-based detection methods

(e.g., CUSUM).The formulation of a surge attack is presented below:

x̄(ti) = min{arg max
x∈Rnx

{V (x(ti))≤ ρ}, arg max
x∈Rnx

{x(ti) ∈ χ}}, if i0 ≤ i≤ i0 +Ls

x̄(ti) = arg max
x∈Rnx

{|x(ti)|,0≤ i≤ i0}, if i0 +Ls < i≤ i0 +La

(2.8)

where i0 is the start time of the attack, Ls is the duration of the initial surge, and La is the total

duration of the attack in terms of sampling periods. After the initial surge, the attack is reduced to

a lower constant value, which is obtained by examining the secure state measurements prior to the

occurrence of the surge attack, and taking the value that is furthest away from the origin.

28

2.3.3 Machine-Learning-Based Detection of Cyber-attacks

There are many advantages to using a data-based approach to develop the cyber-attack detector

[1, 52, 85]. Firstly, with attacks having possible access to information on process behavior

(stability region and variable operating window), physical-model-based detection methods where

the statistics threshold and false alarm bias are selected based on process operation are rendered

ineffective [16]. Secondly, during real-life operation, plant model structure and parameters may be

subject to modifications due to a changing operating environment. Therefore, using a data-based

(physical model independent) method to train a detection mechanism for cyber-attacks is resilient

to both process changes and intelligently designed attacks.

Within well-practiced machine-learning methods, neural networks (NN) have proven their

effectiveness in both supervised and unsupervised classification problems [44]. Depending on

the training data and target number of classes the algorithm aims to identify, neural networks can

be used to distinguish between “attack” and “no attack” (two classes), or to identify the type of

attack (multiple classes). While under attack, data collected from individual sensors can also be

used to locate the corruption, where the neural network model distinguishes between multiple

classes with each class representing one problematic sensor. In our study, a feed-forward artificial

neural network is used for supervised classification. Through a series of nonlinear transformations,

neurons in the first hidden layer are derived from the inputs, and hidden neurons in subsequent

layers are derived from their precedent layer, with the output calculated from neurons in the last

hidden layer. These nonlinear transformations are in the form of an activation function of biases

and weighted sum of inputs (or neurons in the previous layer). The structure of a basic neural

network model employed here is shown in Fig. 2.1(b), with each input representing the control

Lyapunov function of the full state measurements at each asynchronous sampling time instant, and

an output vector for predicted class label.

29

(a)

(b)

Figure 2.1: Two-tier control-detector architecture showing (a) Lower-tier controllers using
continuous secure sensor measurements and an upper-tier model predictive controller using both
continuous (secure) and networked (vulnerable to cyber-attacks) sensor measurements, and (b)
Feed-forward neural network structure with 2 hidden layers with inputs being the full-state
Lyapunov function at each sampling time of the model predictive controller within the detection
window, and output being the probability of each class label for the examined trajectory indicating
the status and/or type of cyber-attack.

The mathematical formulation of the two-hidden-layer feed-forward neural network is as

30

follows:

θ
(1)
j = g1(

NT

∑
i=1

w(1)
i j V (x(ti))+b(1)j) (2.9a)

θ
(2)
j = g2(

h1

∑
i=1

w(2)
i j θ

(1)
i +b(2)j) (2.9b)

θ
(3)
j = g3(

h2

∑
i=1

w(3)
i j θ

(2)
i +b(3)j), ypred = [θ

(3)
1 ,θ

(3)
2 , ...,θ

(3)
H]T (2.9c)

with θ
(1)
j and θ

(2)
j representing neurons in the first and second hidden layer, respectively, where

j = 1, ...,hl is the number of neurons in layer l = 1 and l = 2. θ
(3)
j represents neurons in the output

layer (l = 3), where j = 1, ...,H, and H is the number of class labels. In this study, the number of

hidden layers is 2; however, the formulation of neurons can be similarly applied to multiple hidden

layers as well. In the input layer, input variables V (x(ti)) are the control Lyapunov function of the

full state measurements at time ti, where i = 1, ...,NT is the length of the time-varying trajectory

for each input sample. The weight associated with the connections between neurons i and j in

consecutive layers (from l − 1 to l) is denoted by w(l)
i j , and the bias placed on the jth neuron

in the lth layer is denoted by b(l)j . Each layer receives information from its previous layer, and

computes an output based on the optimized weights, biases, and its nonlinear activation function

– denoted gl (e.g., hyperbolic tangent sigmoid transfer function g(z) = 2
1+e−2z − 1, and softmax

function g(z j) =
ez j

∑
H
i=1 ezi

where H is the number of class labels). Performances of different common

activation functions including ReLu, sigmoid, radial basis functions were analyzed in [96]. In

the output layer, ypred is a vector providing the predicted probabilities of each class label for the

examined sample, where the neuron with the highest probability indicates the predicted class label.

Depending on the type of classification problem the neural network is intended for, the predicted

class label provides information on either the status or the type of a cyber-attack. The weights and

biases are optimized by minimizing the Bayesian regularized mean squared error cost function.

The cost function used in the optimization problem is of the form:

S(w) = γ

Ns

∑
k=1

(ypred,k− ytrue,k)
2 +ζ

Nw

∑
p=1

w2
p (2.10)

where k = 1, ...,Ns represents the number of samples in the training dataset, p= 1, ...,Nw represents

the number of weights and biases in the neural network, ytrue is the vector of target class label

associated with each sample, ypred is the vector of the predicted probabilities associated with each

class label derived from the neural network, and γ and ζ are the regularization hyper-parameters.

31

The minimization of S(w) with respect to the weights and biases is a nonlinear optimization

problem solved using the Levenberg-Marquardt algorithm, in which the gradient and the Hessian

matrix of S(w) are calculated using the backpropagation method. Assuming the weights and the

data have Gaussian prior probability distributions, the regularization hyper-parameters, γ and ζ , are

updated by maximizing their posterior probability distribution given the data, which is equivalent

to maximizing the likelihood of evidence by Bayes’ Theorem. Within each epoch, the cost function

S(w) is minimized with respect to w, and the likelihood of evidence is maximized with respect to γ

and ζ . This is carried out iteratively until self-consistency is achieved, at which point the optimal

distribution of weights and biases in the Bayesian regularized artificial neural network is obtained.

Bayesian regularized artificial neural networks can effectively avoid over-training and over-fitting.

Evidence procedures provide an objective Bayesian criterion for early stopping and remove the

need for lengthy cross validations. Furthermore, the less relevant weights are turned off during

the training process and Bayesian regularization effectively prunes the network [15]. Training and

testing accuracies are calculated using the ratio between number of correctly classified samples

and total number of samples in the training and testing sets, respectively. To develop a neural

network detection model, closed-loop measurement data, both yc and ya, under two-tier control are

collected. For better detection accuracy, training data needs to be collected starting at a broad range

of initial conditions within the stability region Ωρ , such that various state evolutions under different

operating conditions are covered. Full state measurements are recorded along the time-varying

trajectory, and the Lyapunov function V (x) is computed. As it captures the dynamic features

of all states, V (x) is an effective one-dimensional input feature for the attack detection problem.

To ensure training accuracy, equal number of samples within each class are collected, with each

sample corresponding to a different set of initial conditions for the closed-loop system simulation.

After data collection and adequate training, the NN detector is implemented online with

the process controlled by the two-tier control system. The feed-forward NN model is a static

model receiving inputs of fixed dimension, NT , which is the length of the time-varying trajectory.

Therefore, the detection window of the NN detector while implemented online also matches

the trajectory length of the training data, NT . The detector is activated every time full state

measurements become available, and uses a moving horizon detection window, receiving latest

sequences of x(tk) of fixed length NT . Moreover, as the NN detector does not have perfect

classification accuracy, false alarms may occur where large oscillatory data within normal ranges

may be misclassified as a cyber-attack. To reduce false alarm rates, a sliding alarm verification

window is also implemented, where the number of positive attack detections within this window

32

need to surpass a threshold before a cyber-attack alarm is confirmed. The size of this verification

window and the threshold value are determined based on the closed-loop evolution of the process,

as these two parameters have a direct impact on the detection time and alarm rate. If sensor

isolation is required, then all upper-tier state trajectories need to be fed into the neural network

individually, as the output class labels depend on changes in each sensor. Each sample consists

of a two-dimensional matrix nx×NT , where nx is the full state dimension, and NT is the length

of each state trajectory within the training simulation period. Similarly, equal number of samples

in each class (i.e., one class representing each networked sensor measurement being attacked) are

collected for various initial conditions in the stability region. These samples are used to train a

sensor-isolation NN algorithm outputting multiple classes, where each class corresponds to each

of the networked sensors being attacked. During online implementation, given that the system is

under attack, this sensor isolator examines all states in the most recent NT sampling periods and

outputs which sensor is experiencing abnormalities.

Figure 2.2: Online implementation of NN detector with moving horizon detection window NT
and alarm verification window NA, where the detector reads past inputs x(tk) of length NT and
dimension nx, and computes the predicted class label.

Remark 2.2. In the sliding verification window, we examine the number of positive detections out

of the total number of detector activations; the two parameters, size of verification window and

threshold for alarms, are different from a threshold number that is often examined in statistical

methods such as Cumulative Sum. Long-term attacks such as geometric and surge attacks may

33

be designed such that the cumulative error of the attacked measurements stay just below the

statistical detection threshold, thus remain undetectable. However, they are detectable by neural

network detectors, given that the extent and pattern of the attacked measurements are similar to

the anomalous behavior learned by the neural net during training. Furthermore, neural network

detectors trained with noisy sensor data are able to differentiate cyber-attacks from normal device

fluctuations. However, in the case that measurement noise is so significant that it is similar to

attacked oscillations (like in a replay attack), then the neural network detector may flag these

noisy measurements as replay cyber-attacks. If significant noise is bound to be observed, then

new neural network detectors can be readily trained based on these new noisy data to reflect the

changed nominal operating conditions.

2.3.4 Mitigation Measures via Control System Reconfiguration

Upon detection of an attack on the sensors providing networked asynchronous state measurements

to the two-tier control system, the control system reconfiguration logic allows for two mitigation

plans. First, the control system can deactivate the upper-tier controller completely and operate the

system under the stabilizing lower-tier control system only, which uses cyber-secure, dedicated

sensor measurements. Since the lower-tier controllers are capable of driving the process to its

operating steady-state with secure continuous measurements, the effect of the cyber-attacks is fully

eliminated in the closed-loop system in this case and the process is stabilized to the operating

steady-state. Second, if a sensor isolation detector is also implemented, it will be activated

once a sensor attack is verified. Subsequently, the upper-tier controller can choose to switch the

compromised sensor to its redundant back-up sensor with secure readings. By abandoning the

corrupted sensor and using its back-up sensor using a secure sensor-controller communication, the

upper-tier controller remains functional and is able to drive the process to its steady-state with

better closed-loop performance.

In the extreme case that both continuous and asynchronous sensor measurements are attacked,

the upper-tier controller will be shut off and the lower-tier controllers will reroute their continuous

measurement signals from the corrupted sensors to their respective secure back-up sensors.

The robustness of the proposed two-tier control architecture against intelligent cyber-attacks is

demonstrated in Section 2.4 below through a reactor-reactor-separator process.

34

Figure 2.3: Process schematic consisting of two CSTRs and a flash drum separator.

2.4 Application to a Reactor-Reactor-Separator Process

2.4.1 Process Description and Control System Design

To simulate a chemical process application where multiple manipulated inputs are regulated by

both the upper-tier and lower-tier controllers, a process network consisting of two CSTRs followed

by a flash tank separator is considered [137]. A schematic diagram of this process network can

be found in Fig. 2.3. Two reactions in series take place (A→B→C) in both reactors, and the

overhead vapor from the flash tank is recycled to the first CSTR. All three vessels are assumed to

have constant holdup.

Using mass and energy balances, the process model can be obtained, which includes 9

nonlinear ordinary differential equations as shown below:

35

dxA1

dt
=

F10

V1
(xA10− xA1)+

Fr

V1
(xAr− xA1)− k1e

−E1
RT1 xA1 (2.11a)

dxB1

dt
=

F10

V1
(xB10− xB1)+

Fr

V1
(xBr− xB1)+ k1e

−E1
RT1 xA1− k2e

−E2
RT1 xB1 (2.11b)

dT1

dt
=

F10

V1
(T10−T1)+

(−∆H1)

ρCp
CMk1e

−E1
RT1 xA1 +

(−∆H2)

ρCp
CMk2e

−E2
RT1 xB1 +

Q1

ρCpV1
+

Fr

V1
(T3−T1) (2.11c)

dxA2

dt
=

F1

V2
(xA1− xA2)+

F20

V2
(xA20− xA2)− k1e

−E1
RT2 xA2 (2.11d)

dxB2

dt
=

F1

V2
(xB1− xB2)+

F20

V2
(xB20− xB2)+ k1e

−E1
RT2 xA2− k2e

−E2
RT2 xB2 (2.11e)

dT2

dt
=

F20

V2
(T20−T2)+

(−∆H1)

ρCp
CMk1e

−E1
RT2 xA2 +

(−∆H2)

ρCp
CMk2e

−E2
RT2 xB2 +

Q2

ρCpV2
+

F1

V2
(T1−T2) (2.11f)

dxA3

dt
=

F2

V3
(xA2− xA3)−

Fr +Fp

V3
(xAr− xA3) (2.11g)

dxB3

dt
=

F2

V3
(xB2− xB3)−

Fr +Fp

V3
(xBr− xB3) (2.11h)

dT3

dt
=

F2

V3
(T2−T3)+

Q3

ρCpV3
+

(Fr +Fp)CM

ρCpV3
(xAr∆HvapA + xBr∆HvapB + xCr∆HvapC) (2.11i)

where the state variables include the temperatures of the three vessels T1, T2, T3, respectively, which

are measured securely and continuously, and the mass fractions of species A and B in the three

vessels xA1, xA2, xA3 and xB1, xB2, xB3, whose measurements are available at asynchronous time

instants and are sent to the upper-tier control system over a digital network that may be subjected

to cyber-attacks. The upper-tier control system involves an LMPC that receives both asynchronous

and continuous state measurements, and it is executed when full state information becomes

available. Each of the three vessels has an external heat input. Three PI controllers are used to

manipulate the heat inputs to the three vessels, Q1, Q2 and Q3, each to regulate vessel temperature

at a desired set-point value, and the LMPC manipulates the feed stream flow rate to second CSTR,

F20, to improve the speed of the closed-loop response. Assuming that there is negligible reaction in

the separator tank and the relative volatility of each species remains constant within the operating

temperature range, the composition of the recycle stream are: xAr =
αAxA3

αAxA3 +αBxB3 +αCxC3
,

xBr =
αBxB3

αAxA3 +αBxB3 +αCxC3
, xCr =

αCxC3

αAxA3 +αBxB3 +αCxC3
, where α represents the constant

relative volatility of each species. Each of the six mass fraction measurements can be subject

to the cyber-attacks, which are designed based on the current value of the true states at the time

the attack occurs, as discussed in Section 2.3. With the integration of a machine-learning-based

cyber-attack detector, the control objective is to track all 9 states to an unstable equilibrium point

while meeting all imposed constraints and staying immune to intelligent cyber-attacks. All process

36

Table 2.1: Values and descriptions of process parameters and steady-states of state and input
variables.

Parameter/Value Description
F10 = 5.04 m3/hr Feed flow rate of CSTR 1
Fr = 50.4 m3/hr Recycle stream flow rate
Fp = 5.04 m3/hr Purge stream flow rate
T10 = 300 K, T20 = 300 K Feed temperatures of CSTR 1 & 2
V1 = 1.0 m3, V2 = 0.5 m3, V3 = 1.0 m3 Volume of 3 vessels
k1 = 9.972×106 h−1, Pre-exponential factors for reactions 1 & 2
k2 = 9.36×106 h−1

E1 = 5.0×104 kJ/kmol, Activation energy for reactions 1 & 2
E2 = 6.0×104 kJ/kmol
∆H1 =−1.2×105 kJ/kmol, Heat of reaction for reactions 1 & 2
∆H2 =−1.4×105 kJ/kmol
∆HvapA =−3.53×104 kJ/kmol, Heat of vaporization for A, B, C
∆HvapB =−1.57×104 kJ/kmol,
∆HvapC =−4.068×104 kJ/kmol
Cp = 4.2 kJ/(kg K) Heat capacity
R = 8.314 kJ/(kmol K) Gas constant
ρ = 1000 kg/m3 Liquid solution density
αA = 3.5, αB = 1.0, αC = 0.5 Relative volatility of A, B, C
CM = 2 kmol/m3 Total molar concentration
xA1s = 0.1762, xA2s = 0.1965, xA3s = 0.0651, Steady-state values of state variables
xB1s = 0.6731, xB2s = 0.6536, xB3s = 0.6703,
T1s = 480.32 K, T2s = 472.79 K, T3s = 474.89 K
Q1s = 2.9×109 kJ/hr, Q2s = 1.9×109 kJ/hr, Steady-state values of input variables
Q3s = 2.9×109 kJ/hr, F20s = 5.04 m3/hr

parameter values, the steady-state values, and the corresponding steady-state input values are given

in Table 7.1.

Deviation variables are used to present the simulation results, where the state vector and the

input vector are represented as the difference between their values and their steady-states. By using

deviation variables, the equilibrium point of the process (i.e., the operating steady-state) is at the

origin of the state space. The input variables in deviation variable form are subject to the following

operating constraints: −4.04 m3/hr ≤ ∆F20 ≤ 3.96 m3/hr, |∆Q1| ≤ 5×107 kJ/hr, |∆Q2| ≤ 5×
107 kJ/hr, |∆Q3| ≤ 5×107 kJ/hr.

Classical controllers are used in the lower-tier control system; specifically,

proportional-integral (PI) controllers are used. The formulation of PI controller is presented

37

as below:

uci(t) = Kci(eci(t)+
1
τi

∫ t

0
eci(τ)dτ), eci(t) = yREF

ci
(t)− yci(t) (2.12a)

where eci(t) is the error between the measured output values yci and their operating set-points

yREF
ci

(defined based on the operating steady-state), and Kci and τi are the proportional gain and

integral time constant of each PI controller i = 1,2,3, respectively. In order to ensure closed-loop

stability under PI control, Kci and τi are selected by first linearizing the model in Eq. 8.1 around

the steady-state, and then assessing the eigenvalues of the linearized model ẋ = Ax+Buc. The

proportional gain and time constant of the three PI controllers are chosen to be [Kc1 Kc2 Kc3]
T =

[−8× 105, − 8× 105, − 8× 105]T and [τ1 τ2 τ3]
T = [5000, 5000, 5000]T , respectively. An

initial set of the PI controller parameters are determined using the Cohen-Coon tuning method, and

then further optimized from closed-loop simulations, to make sure that the closed-loop response

is smooth with reasonable control actions. With these tuning parameters, closed-loop stability

under P-only control is ensured as the eigenvalues of the linearized model are Λ = [−2.599, −
56.97, − 99.98− 26.28i, − 99.98 + 26.28i, − 27.93− 149.2i, − 27.93 + 149.2i, − 257.8−
26.93i, −257.8+26.93i, −758.8], all of which having negative real parts, and the integral term

aims to eliminate the offset while having minimal impact on the control action. An anti-windup

mechanism is also implemented inside each PI controller to avoid integral wind-up effects which

involves eliminating the integral term when the control action hits constraints. The upper-tier

LMPC used in this simulation adopts the formulation shown in Eq. 2.3. The objective function

used in the optimization problem of LMPC is defined by a positive definite function, L(x,ua) =

xT Qcx + uT
a Rcua, where Rc and Qc are weighting matrices to penalize ua and x, and have the

following values: Rc = 1.0 and Qc = diag([5000, 10, 0.001, 5000, 10, 0.001, 5000, 10, 0.001]).

The quadratic control Lyapunov function used in the contractive constraints of LMPC has the

form V (x) = xT Px, where P is a positive definite matrix: P = diag([3228.31, 220.79, 4.334×
10−4, 2576.72, 233.80, 4.474 × 10−4, 23675.92, 222.77, 4.434 × 10−4]). The family of

piece-wise constant function S(∆) which ua belongs to uses a sampling period of ∆ = 0.02 hr,

and the prediction horizon of the LMPC is N = 10. The nonlinear optimization problem of LMPC

is solved using the OPTI-Toolbox in MATLAB. To numerically simulate the dynamic process

model in Eq. 2.11, explicit Euler method is used with an integration step of hc = 10−4hr. The

time sequence at which asynchronous measurements are sampled and received by the upper-tier

controller is modeled after a lower-bounded random Poisson process, with each unequal interval

38

between two consecutive asynchronous measurements being at least ∆ak ≥∆ for all k∈ [1,NT]. The

sequence of asynchronous intervals used in this simulation in which the LMPC calculations are

executed is as follows: ∆a = [0.04, 0.08, 0.1, 0.06, 0.12, 0.08, 0.02] for every 1.5 hr; alternative

calculations of the asynchronous time instants may be considered with similar conclusions. After

a simulation grid search, we use ρ = 120 as a level set of Lyapunov function to characterize

the stability region and ρmin = 0.1 to ensure convergence close to the steady-state. The safe

operating envelope of the 9 states in deviation variable form is as follows: xl = [−0.1763, −
0.6731, − 50, − 0.1965, − 0.6536, − 50, − 0.0651, − 0.6703, − 50]T denotes the lower

bounds of the states and xu = [0.7237, 0.2269, 50, 0.7035, 0.2464, 50, 0.8349, 0.2297, 50]T

denotes the upper bounds of the states. The stability region and the operating envelope

are key parameters to generating intelligent cyber-attacks. The simulation period used for

collecting training data is 3 hr, within which the lower-tier PI controllers are executed

150 times, and the upper-tier LMPC is executed 42 times. With the upper-tier controller

receiving full-state measurements 42 times, the time-varying trajectories of state measurements

have a length of NT = 43, accounting for the initial condition measurements. Closed-loop

simulations under two-tier and under PI-only control are carried out to compare the closed-loop

performances; the initial conditions used to evaluate the performance metrics are x0 =

[0.0176, 0.067299, 48.032, 0.0197, 0.0654, 47.279, 0.006499, 0.067, 47.489]. Performance

metrics in terms of settling time and normalized cumulative mean squared error along the

state trajectories are calculated for closed-loop control under only lower-tier PI controllers, and

under the two-tier LMPC/PI control scheme. It is shown that it takes 2.46 hr for lower-tier

PI controllers, and 0.6 hr for two-tier LMPC/PI to settle to the operating steady-state. The

normalized cumulative mean squared errors are 4.1203 and 0.8014 for lower-tier PI and two-tier

LMPC/PI, respectively. The two-tier control architecture achieves significantly better closed-loop

performance by stabilizing the process within shorter time and eliminating process overshoots and

offset effectively.

2.4.2 Cyber-attacks and Detector Training

Min-max attacks are used to train the neural-network-based detector with and without sensor noise.

If the neural network detector is trained with only one type of attack, the resulting output will have

2 classes – attacked and not attacked. In addition, replay attacks are also used to train a neural

network detector capable of identifying the type of attack, where the output classes consist of 3

labels: not attacked, attacked by min-max attacks, and attacked by replay attacks. In the first 5

39

sampling steps, more extreme oscillations with larger magnitudes in state feedback are observed.

Therefore, these aggressively oscillatory measurements with length La = 5 are recorded and used

as replay attacks. Other attacks with varying lengths can be introduced at random time instants

between i0 ∈ [6,42] to simulate cyber-attacks of various durations and occurring at various times

during operation. With extensive closed-loop simulations, equal number of samples are collected

for each output class, with each sample either consisting of a 1×43 array of V (x) values (in attack

identification), or a 9× 43 matrix of x values along the dynamic trajectory (in sensor isolation),

where the 9× 43 matrix in each sample is then collapsed into a 1× 387 array to be fed into the

feed-forward neural network detector. Four NN detectors are trained to carry out detection: 1)

a 2-class model with nominal operation under min-max attack (12000 samples per class label,

training time 24.05 seconds), 2) a 2-class model with noisy sensors under min-max attack (1044

samples per class label, training time 4.332 seconds), 3) a 3-class model with noisy sensors and

2 attack types – min-max and replay (1044 samples per class label, training time 5.265 seconds),

and 4) a 6-class model with noisy sensors under min-max attack for corrupted sensor isolation

(2800 samples per class label, training time 6211.52 seconds). To train the compromised sensor

isolation detector, we also used a min-max attack to simulate the abnormal behaviors. Noisy

sensors are simulated by adding bounded Gaussian white noise on each sensor. The lower and

upper bounds of the sensor noises are as follows: |w1| ≤ 7.5× 10−5, |w2| ≤ 5.5× 10−5, |w3| ≤
0.032 K, |w4| ≤ 7.5×10−5, |w5| ≤ 5.5×10−5, |w6| ≤ 0.032 K, |w7| ≤ 3.5×10−5, |w8| ≤ 5.5×
10−5, |w9| ≤ 0.032 K. These Gaussian noise distributions have a mean of µ = 0 and standard

deviations σ1 = σ4 = 0.0002, σ2 = σ5 = σ8 = 0.001, σ3 = σ6 = σ9 = 0.1 K, and σ7 = 0.0001.

Feed-forward neural networks with two hidden layers having 12 and 10 neurons, respectively, are

built using the MATLAB Machine Learning and Deep Learning Toolboxes. Both hidden layers

use a tansig activation function, which is in the form g1,2(z) = 2
1+e−2z −1, and is commonly known

as the hyperbolic tangent sigmoid transfer function. The output layer uses a so f tmax function to

provide a predicted probability of the class labels, which is in the form of g3(z j) =
ez j

∑
H
i=1 ezi

where H

denotes the number of class labels. The NN detector trained with nominal conditions has a training

accuracy of 99.6% and a testing accuracy of 92.2%, while the NN detector trained with noisy

sensors achieves a training accuracy of 99.9% and testing accuracy of 100%. The NN algorithm

trained with noisy sensors achieves a higher accuracy than the nominal case because the addition

of noise contributes more variance to the training dataset, thereby making the learning process

harder and yielding a more robust NN detector. Moreover, the training and testing accuracy of the

NN detector trained with noisy sensors under two types of cyber-attacks are 98.2% and 91.4%,

40

respectively, and the NN algorithm to isolate the compromised noisy sensor achieves a training

and testing accuracy of 99.6% and 99.0%, respectively.

2.4.3 Cyber-attack Detection Results

The NN detectors are implemented online with the process operated under two-tier control with

initial conditions at the operating steady-state; i.e., x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0]T (the conclusions

are similar for other initial conditions in Ωρ). Therefore, attacks are introduced when the process

is stabilized at its operating steady-state. As the NN detectors are trained using a fixed input

dimension of 43 (with 42 sampling steps), to ensure that input data with sufficient length is

collected, the detector is activated at time instant k = 42 in the asynchronous time sequence,

which corresponds to real time t = 3.0 hr. The detector reads state measurements in the previous

42 sampling periods, analyzes their behaviors, and computes an output on which class these

time-series data resembles. The window of this fixed-length segment of time-sequence data rolls

forward in time as the upper-tier LMPC and the attack detector are executed in real time. The alarm

verification window is chosen to be three sampling periods of the upper-tier LMPC, where two

positive detections within every three consecutive sampling steps will confirm the presence of an

attack. Once an attack is confirmed, at the same time instant, the detection alarm will be triggered

and the LMPC will be deactivated. Furthermore, to examine whether the detector will misclassify

not-attacked signals as being under attack, attacks are introduced a few sampling periods after the

detector has been activated at t = 3.0 hr, such that the first few outputs by the detector are based on

normal operation data. Cyber-attacks with a duration of La = 40 sampling periods are introduced

at time instant i0 = 45, which corresponds to t = 3.22 hr; thus, the compromised sensor will stay

corrupted until the end of the 6− hr simulation period. To illustrate the pattern and effect of the

four cyber-attack types, Fig. 2.4 shows the true state values and the sensor values of state 1 when

min-max, replay, geometric, and surge attacks target only the sensor measuring mass fraction xA1

with bounded noise. Although Fig. 2.4 only shows the true state progression of state 1, all 9

states experience similar deviating patterns after the cyber-attacks. Under min-max attack, the true

state settles at an offset of similar magnitude as the initial jump. Replay attack results in aggressive

oscillations in true plant states around an offset. Geometric attacks drive process states increasingly

away from the operating steady-state before reaching an offset due to the increasing magnitude of

the attack with time until the attack reaches the boundary of the stability region. Surge attack

causes an initial jump similarly seen in min-max attacks; with the reduction of attack severity,

states are driven closer to the setpoint, but still reach an offset that is smaller than that in min-max.

41

The upper-tier LMPC receives falsified information on the values of these process states, and in

turn, computes a control action that is unable to drive the true states back to the steady-state. States

do not continue to diverge and do not exit the stability region, but instead settle at an offset value,

due to the stabilizing contributions from the three lower-tier PI controllers, which use secure sensor

measurements. Regardless, the attack has successfully targeted the system and the two-tier control

system fails to drive the states back to their operating steady-states without using any data-based

detection algorithms.

0 1 2 3 4 5 6
-0.05

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 1 2 3 4 5 6
-0.05

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6
-0.2

-0.1

0

0.1

0.2

0.3

Figure 2.4: True and measured values of xA1 in deviation variable form without detection or
mitigation mechanisms when (a) min-max, (b) replay, (c) geometric, and (d) surge cyber-attacks
are introduced at 3.22 hr on the concentration sensor measuring xA1.

When the trained NN detectors are applied during online operation, time delays are observed

due to the configured alarm verification window, which requires at least two positive detections

out of three detection instances to confirm an attack. The time delay is defined as the number

of sampling steps between when the attack is inserted and when the attack is confirmed. In the

cases of the first two detectors trained using min-max attack only (i.e., nominal and with noise

operations), replay, geometric and surge attacks are unknown attacks which have not been learned

42

by the NN detector. All four types of cyber-attacks, despite the latter three being unknown to the

NN detector, are captured by the NN detector trained under nominal condition. The NN detection

algorithm detects min-max, replay, and surge attacks successfully with a time delay of 1 sampling

period. This is because two out of three detections need to be positive to confirm a detection;

in other words, as soon as two consecutive positive detections occur, the detection is confirmed.

Therefore, the detection of these cyber-attacks is delayed by 1 sampling period, at which time the

second consecutive positive detection is received by the control system. A time delay of 2 sampling

periods is observed when a geometric attack is introduced due to the initial small magnitude of

change induced, therefore causing the NN detector a delay in predicting the correct class label.

As time progresses, the attack increases exponentially towards a point where the deviation is on

par with the other three attacks, at which point the detector captures the irregular deviation. The

potential time delay of NN detectors trained with min-max attacks in detecting geometric attacks

will vary depending on the geometric parameters, i.e., β and α in Eq. 4.12. Meanwhile, the NN

detector trained with noisy sensor measurements is able to detect min-max, geometric, and surge

attacks successfully, but with a time delay of 7 sampling periods when the geometric attack is

introduced. Moreover, this detector fails to detect replay attacks due to the oscillatory nature of

the replay signals. Unlike the other 3 attacks where the attacked measurement stays at the attack

target for at least 2 sampling periods, replay attacks oscillate at every sampling period, which is

different from the min-max behavior that this NN detector is trained based on. Given the relatively

smaller magnitude of the oscillations (not reaching the min-max window) and oscillatory behavior

of replay attacks, the NN detector trained with added noises is not able to differentiate replay

attacks from sensor noise. Thus, a third NN detector is trained, where both replay and min-max

attacks are accounted in the training process. This detection algorithm outputs 3 classes, where

min-max and replay attacks are classified correctly and the detection is confirmed after a time

delay of 1 sampling period, and geometric and surge attacks are classified as replay attacks with

the detection confirmed after 1 sampling period.

Cyber-attacks could target multiple sensors at once, and the detection algorithms are tested on

these cases where more than one sensor could be under attack. We first consider the extreme case

where min-max cyber-attacks are applied on all 9 sensors to simulate the impact of cyber-attacks

when all state measurements are compromised without using any online detectors; this scenario

allows to demonstrate the value of the proposed two-tier control architecture. The true state

trajectories are shown in Fig. 2.5 where a min-max attack is introduced at 3.22 hr with a duration

covering until the end of the simulation period. With the continuous temperature measurements

43

also under cyber-attack, closed-loop stability under the lower-tier controllers is no longer achieved.

As a result of the cyber-attack, the true state evolution exits the stability region when no detection

algorithms are being used; moreover, the mass fractions of species A and the temperatures in

all three vessels exceed their operating boundaries, violating the safety limits on their states in

deviation variable form. Under the circumstance that continuous temperature measurements are

jeopardized, the only cyber-attack countermeasure is to reroute measured temperature signals

received by lower-tier controllers from the corrupted sensors to a new set of redundant sensors

with secure readings. This extreme scenario demonstrates the severity of the destabilizing impacts

of cyber-attacks to all sensors, and thus, the necessity of having secure and reliable feedback

measurements for the lower-tier controllers in order to maintain the robustness of the overall

control architecture.

0 2 4 6

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 2 4 6

-150

-100

-50

0

50

0 2 4 6

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6

-0.8

-0.6

-0.4

-0.2

0

0.2

0 2 4 6

-150

-100

-50

0

50

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 2 4 6

-150

-100

-50

0

50

True state trajectory
Lower safety limit
Upper safety limit

Figure 2.5: Evolution of true process states when min-max cyber-attacks on all 9 state
measurement sensors are introduced at 3.22 hr when the process network operates under the
two-tier control architecture but no detection or control system reconfiguration mechanisms are
implemented.

44

To mitigate the impact of the cyber-attacks on all 9 sensors, the neural-network detection

algorithm trained with noisy measurements and two cyber-attack types is applied online. With

the alarm verification window to reduce false alarms, the min-max attack is introduced at 3.22 hr

and the detection is confirmed at 3.28 hr, from which point the upper-tier LMPC is turned off and

the continuous temperature measurements used by lower-tier PI controllers are obtained from a set

of secure back-up sensors. By doing this, the closed-loop stability of the process under lower-tier

control is re-established and the process is driven back to its operating steady-state, as shown in

Fig. 2.6.

0 2 4 6

-0.08

-0.06

-0.04

-0.02

0

0 2 4 6
-0.04

-0.02

0

0.02

0.04

0 2 4 6

0

5

10

15

20

0 2 4 6

-0.1

-0.05

0

0 2 4 6
-0.04

-0.02

0

0.02

0.04

0.06

0.08

1 2 3 4 5 6

0

5

10

15

20

25

30

0 2 4 6
-0.05

-0.04

-0.03

-0.02

-0.01

0

0 2 4 6

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 2 4 6

0

5

10

15

20

25

Figure 2.6: Evolution of true process states under min-max cyber-attacks on all nine state
measurements. The min-max cyber-attacks are introduced at 3.22 hr and are detected at 3.28 hr,
at which time the upper-tier LMPC is turned off and the temperature measurements used by the
lower-tier PI controllers are taken from secure back-up temperature sensors and the process is
driven back to the steady-state.

To ensure the robustness of the lower-tier controller against cyber-attacks, we now consider

the case where only the networked mass fraction measurements fed into the upper-tier LMPC

are attacked while the continuous temperature measurements used by both the lower-tier PIs and

45

the upper-tier LMPC remain secure. Therefore, with the stabilizing lower-tier PI controllers, the

upper-tier LMPC can be turned off once the detection of an attack is confirmed (i.e., ua = 0 for

the remainder of the closed-loop simulation) such that the false control actions calculated by the

upper-tier LMPC will not act as a disturbance to the closed-loop system. The effectiveness of this

mitigation strategy is illustrated in our simulation results, where the true plant states are driven

back to their operating steady-states using the stabilizing lower-tier PI controllers despite the

sudden jumps or gradual deviations caused by cyber-attacks. The re-stabilized state trajectories

after min-max, replay, geometric, and surge attacks are shown respectively in Figs. 2.7, 2.8, 2.9,

and 2.10. When the attacks are introduced at time 3.22 hr, the detection algorithm confirms that the

measured state trajectory is under attack at 3.28 hr, at which point the LMPC is turned off, and the

process is re-stabilized to its operating steady-state using the lower-tier PI controllers. Despite the

minor degradation in closed-loop performance with only lower-tier controllers, the reconfigured

control system succeeds in maintaining closed-loop stability in the presence of cyber-attacks.

46

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-2

-1

0

1

2

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-2

-1

0

1

2

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-2

-1

0

1

2

Figure 2.7: Evolution of true process states under min-max cyber-attacks on all six mass fraction
sensors. The min-max cyber-attacks are introduced at 3.22 hr and are detected at 3.28 hr, at which
time the upper-tier LMPC is turned off and the process is driven back to the steady-state under the
lower-tier PI controllers.

47

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-2

-1

0

1

2

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-2

-1

0

1

2

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-0.01

-0.005

0

0.005

0.01

0 2 4 6

-2

-1

0

1

2

Figure 2.8: Evolution of true process states under replay cyber-attacks on all six mass fraction
sensors. The replay cyber-attacks are introduced at 3.22 hr and are detected at 3.28 hr, at which
time the upper-tier LMPC is turned off and the process is driven back to the steady-state under the
lower-tier PI controllers.

48

0 2 4 6

-0.01

0

0.01

0 2 4 6

-0.01

0

0.01

0 2 4 6

-2

0

2

0 2 4 6

-0.01

0

0.01

0 2 4 6

-0.01

0

0.01

0 2 4 6

-2

0

2

0 2 4 6

-0.01

0

0.01

0 2 4 6

-0.01

0

0.01

0 2 4 6

-2

0

2

Figure 2.9: Evolution of true process states under geometric cyber-attacks on all six mass fraction
sensors. The geometric cyber-attacks are introduced at 3.22 hr and are detected at 3.28 hr, at which
time the upper-tier LMPC is turned off and the process is driven back to the steady-state under the
lower-tier PI controllers.

49

0 2 4 6

-0.01

0

0.01

0 2 4 6

-0.01

0

0.01

0 2 4 6

-2

0

2

0 2 4 6

-0.01

0

0.01

0 2 4 6

-0.01

0

0.01

0 2 4 6

-2

0

2

0 2 4 6

-0.01

0

0.01

0 2 4 6

-0.01

0

0.01

0 2 4 6

-2

0

2

Figure 2.10: Evolution of true process states under surge cyber-attacks on all six mass fraction
sensors. The surge cyber-attacks are introduced at 3.22 hr and are detected at 3.28 hr, at which
time the upper-tier LMPC is turned off and the process is driven back to the steady-state under the
lower-tier PI controllers.

50

Chapter 3

Cyber-attack Detection and Resilient

Operation of Nonlinear Processes under

Economic Model Predictive Control

This chapter proposes resilient operation strategies for nonlinear processes that are vulnerable

to targeted cyber-attacks, as well as detection and handling of standard types of cyber-attacks.

Working with a general class of nonlinear systems, a modified Lyapunov-based Economic

Model Predictive Controller (LEMPC) using combined closed-loop and open-loop control action

implementation schemes is proposed to optimize economic benefits in a time-varying manner

while maintaining closed-loop process stability. Although sensor measurements may be vulnerable

to cyber-attacks, the proposed controller design and operation strategy ensure that the process

will maintain stability and stay resilient against particular types of destabilizing cyber-attacks.

Data-based cyber-attack detectors are developed using sensor data via machine-learning methods,

and these detectors are periodically activated and applied online in the context of process operation.

Using a continuously stirred tank reactor example, simulation results demonstrate the effectiveness

of the resilient control strategy in maintaining stable and economically optimal operation in the

presence of cyber-attacks. The detection results produced by the detection algorithm demonstrate

the capability of the proposed method in identifying the presence of a cyber-attack, as well as

in differentiating between different types of cyber-attacks. Upon successful detection of the

cyber-attacks, the impact of cyber-attacks can be mitigated by replacing the attacked sensors by

secure back-up sensors, and secure operation will resume with the process operated under the

proposed resilient LEMPC control strategy.

51

Machine-learning methodologies can be readily adopted in the context of control theory

and cyber-physical security. In addition to having an adequate detection mechanism, control

and operation strategies can be designed or adjusted accordingly if a process is vulnerable to

cyber-attacks. Prior to developing control frameworks to address cyber-attacks in cyber-physical

systems, there has been robust model-based control frameworks proposed to address uncertainties

in the process. In [46], it was assumed that the uncertain process variables were bounded, and

the robustness of the controller was established with respect to the worst-case values of the

uncertain variables such that the state of the closed-loop system stays within a well-characterized

region of the state-space given that the uncertain variables are within sufficiently small bounds.

Moreover, other tube-based model predictive controller approaches have been developed to achieve

robustness against unstructured uncertainties [38, 78]. In recent years, increasing research efforts

have been dedicated to developing system and control designs to address cyber-attacks [35].

For instance, novel methods and tools to support effective preliminary design efforts for new

cyber-physical systems were presented in [17], which addressed the integration of required

defense and resilience solutions. A robust event-triggered model predictive control problem was

investigated in [104] when the process is subject to bounded disturbances and denial-of-service

cyber-attacks. Cumulative Sum (CUSUM) detection method was used in [18] in conjunction

with model predictive control to operate a nonlinear system under false data injection attacks.

Moreover, a robust two-tier control architecture was proposed in [22] that provided convenient

system reconfiguration strategies to maintain cyber-security. In light of these considerations, the

contributions of this work are as follows: 1) a cyber-secure operation mode of economic model

predictive control, 2) the construction of a data-based machine-learning detection algorithm, and

3) the application of the proposed operation and detection schemes to a benchmark nonlinear

chemical process example. The remainder of this chapter is organized as follows: the notation,

the class of nonlinear process systems considered, as well as the formulation of Lyapunov-based

economic model predictive control are shown in Section 3.1; the modified cyber-secure LEMPC

formulations are presented in Section 3.2; the design of adapted intelligent cyber-attacks is

shown in Section 4.3; the attack-resilient control strategies are developed in Section 3.4; the

machine-learning-based detection algorithm is explained in Section 4.4; and the application of

the proposed methodology to a nonlinear chemical process network is presented in Section 3.6.

52

3.1 Preliminaries

3.1.1 Nonlinear System Formulation

In this work, |·| is used to denote the Euclidean norm of a vector; xT denotes the transpose of x;

Rn
+ denotes the set of vector functions of dimension n whose domain is [0,∞). Set subtraction

is denoted by “\”, i.e., A\B := {x ∈ Rn|x ∈ A,x /∈ B}. Class K functions α(·) : [0,a)→ [0,∞]

are defined as strictly increasing scalar functions with α(0) = 0. The class of continuous-time

nonlinear systems considered is described by the following state-space form:

ẋ(t) = f (x(t),u(t)) (3.1a)

x̄(t) = h(x(t)) (3.1b)

where x(t) ∈ Rn is the state vector, and u(t) ∈ Rm is the manipulated input vector, which is

constrained by u ∈ U := {umin
i ≤ ui ≤ umax

i , i = 1, ...,m} ⊂ Rm, where umin
i and umax

i are the

lower and upper bounds for the input vector. We will denote the vector of state measurements

from sensors, which may be compromised by sensor cyber-attacks, with x̄(t) ∈ Rn. When no

cyber-attacks are present in the system, x̄(t) = x(t). Without loss of generality, the initial time t0
is taken to be zero (t0 = 0). It is assumed that f (·) is a sufficiently smooth vector function of its

arguments, and h(·) is a sufficiently smooth vector function of x where f (0,0) = 0, h(0) = 0. Thus,

the origin is an equilibrium point of the system of Eq. 8.1 under u(t) = 0.

We assume that there exists an explicit feedback controller of the form u(t) = φ(x(t)) ∈U that

can render the origin of the nonlinear closed-loop system of Eq. 8.1 asymptotically stable. The

stabilizability assumption implies the existence of a positive definite control Lyapunov function

V (x) that satisfies the following conditions:

α1(|x|)≤V (x)≤ α2(|x|), (3.2a)

∂V (x)
∂x

f (x,φ(x),0)≤−α3(|x|), (3.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (3.2c)

for all x ∈ D ⊆ Rn, where D is an open neighborhood around the origin, and αi(·), i = 1,2,3,4,

are class K functions. Based on the universal Sontag control law [67], a candidate controller φ(x)

is given by the saturated control law accounting for the input constraint u ∈U , which is shown as

53

follows:

ϕi(x) =

 − p+
√

p2 + |q|4
|q|2

q, if q ̸= 0

0, if q = 0
(3.3a)

φi(x) =


umin

i , if ϕi(x)< umin
i

ϕi(x), if umin
i ≤ ϕi(x)≤ umax

i

umax
i , if ϕi(x)> umax

i

(3.3b)

where p denotes L fV (x) and q denotes (LgV (x))T = [Lg1V (x) · · ·LgmV (x)]T . ϕi(x) of Eq. 7.7a

represents the ith component of the control law φ(x) without considering saturation of the control

action at the input bounds. φi(x) of Eq. 7.7b represents the ith component of the saturated control

law φ(x) that accounts for the input constraints u ∈U .

We first characterize a set of states D, in which the time-derivative of the Lyapunov function

V (x) under u = φ(x) ∈U is negative for x ̸= 0. Then we construct a level set of V (x) inside D

as Ωρ := {x ∈ D | V (x) ≤ ρ,ρ > 0}, which represents an estimate of the stability region of the

closed-loop system of Eq. 8.1, and Ωρ is an invariant set for the closed-loop system. Therefore,

starting from any initial state x0 := x(t0) in Ωρ , φ(x(t)) guarantees that the state trajectory of

the closed-loop system of Eq. 8.1 remains within Ωρ and asymptotically converges to the origin.

Thus, given that the sensor measurements received by the controller are secure and reliable (i.e.,

x̄(t) = x(t)), the control law φ(x(t)) is able to stabilize the process at the origin for any initial

conditions x0 ∈Ωρ .

3.1.2 Lyapunov-based Economic Model Predictive Control

Within the traditional paradigm of process control, a two-layer architecture is utilized to increase

process economic profits where the tracking model predictive control (MPC) is coupled with

an optimizer referred to as a real-time optimizer (RTO) that computes economically optimal

steady-states for the MPC to track by solving a nonlinear optimization problem with a detailed

steady-state plant model and a possibly nonlinear and nonquadratic objective function representing

the process economics.

However, as operational efficiency and increasing energy consumption are becoming critical

issues in the chemical and petrochemical industry, a model-based feedback control strategy,

economic model predictive control (EMPC), was proposed to operate the system off steady-state

by dynamically optimizing an economic cost function while accounting for stability constraints. It

54

has been repeatedly shown in the chemical process control literature that a number of industrially

relevant processes can achieve higher profits when operated in a time-varying fashion than

when operated at steady-state for all times; therefore, EMPC has been proposed as an efficient

method to address process control problems integrated with dynamic economic optimization of

the process (e.g., [7, 36, 46]).

Specifically, Lyapunov-based Economic Model Predictive Control (LEMPC) design is

represented by the following optimization problem:

J = max
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t))dt (3.4a)

s.t. ˙̃x(t) = f (x̃(t),u(t)) (3.4b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.4c)

x̃(tk) = x̄(tk) (3.4d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N),

if x̄(tk) ∈Ωρe (3.4e)

V̇ (x̄(tk),u)≤ V̇ (x̄(tk),φ(x̄(tk)),

if x̄(tk) ∈Ωρ\Ωρe (3.4f)

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with period

∆, and N is the number of sampling periods in the prediction horizon. V̇ (x,u) is used to represent
∂V (x)

∂x f (x,u). The optimal input trajectory computed by the EMPC is denoted by u∗(t), which is

calculated over the entire prediction horizon t ∈ [tk, tk+N). The control action computed for the first

sampling period of the prediction horizon u∗(tk) is sent by the EMPC to be applied over the next

sampling period in a sample-and-hold manner, and the EMPC is solved again in a rolling horizon

fashion. The EMPC of Eq. 3.4 is solved by optimizing the time integral of the cost function

le(x̃(t),u(t)) of Eq. 3.4a that accounts for process economic benefits over the prediction horizon

subject to the constraints of Eqs. 3.4b-3.4f. Eq. 3.4c defines the input constraints applied over

the entire prediction horizon. Eq. 3.4d defines the initial condition x̃(tk) of Eq. 3.4b, which is

the state measurement x̄(t) at t = tk. The constraint of Eq. 3.4e maintains the closed-loop state

predicted by Eq. 3.4b in Ωρe over the prediction horizon if the state x̄(tk) is inside Ωρe , where Ωρe

is a conservative region within the closed-loop stability region Ωρ to make it an invariant set in the

presence of sufficiently small bounded disturbances. However, if x̄(tk) leaves Ωρe but still remains

in Ωρ , the contractive constraint of Eq. 3.4f drives the state towards the origin for the next sampling

55

period such that the state will eventually enter Ωρe within finite sampling periods. Therefore, under

the LEMPC of Eq. 3.4, the closed-loop state is maintained within the closed-loop stability region

Ωρ for all times while optimal economic profits can be achieved via time-varying operation. The

closed-loop stability proof can be found in [36].

3.2 Cyber-secure LEMPC Operation Strategies

Given that EMPC operates the system in an off steady-state manner, cyber-attacks that target

EMPC systems can be designed to compromise both closed-loop stability and process economic

benefits. Specifically, similar to the cyber-attacks that have been designed for tracking MPC [118],

cyber-attacks for EMPC systems can be designed to drive states out of the stability region as

fast as possible (e.g., min-max cyber-attack). The EMPC receiving falsified state measurements

will compute incorrect control actions that will eventually cause the true process states to exit the

stability region. The unstable evolution of state trajectory may occur even sooner in a system

operated under EMPC than under tracking MPC since the system is operated off steady-state.

Therefore, the selection of operating region, design of operating strategies, and integration of

detection schemes need to be carefully considered.

3.2.1 Operation within Secure Operating Region

Considering that sensors are vulnerable to cyber-attacks, the process will be operated within a

smaller region, Ωρsecure , where 0 < ρsecure < ρe, to avoid the system from immediately losing

stability when under malicious cyber-attacks.

Although economic benefits will not be maximized when operated based on Ωρsecure compared

to operation around the original region Ωρe , it allows the system leeway to detect and mitigate the

cyber-attack before closed-loop stability is lost (i.e., before true process states x(t) exit Ωρ). The

goal of detection is to identify the occurrence of a cyber-attack before the true process states exit the

closed-loop stability region Ωρ , such that the process can be eventually driven back to and bounded

within the secure region Ωρsecure under LEMPC after eliminating the impact of cyber-attacks. The

56

modified LEMPC formulation is presented as follows:

J = max
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t))dt (3.5a)

s.t. ˙̃x(t) = f (x̃(t),u(t)) (3.5b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.5c)

x̃(tk) = x̄(tk) (3.5d)

V (x̃(t))≤ ρsecure, ∀ t ∈ [tk, tk+N),

if x̄(tk) ∈Ωρsecure (3.5e)

V̇ (x̄(tk),u)≤ V̇ (x̄(tk),φ(x̄(tk)),

if x̄(tk) ∈Ωρ\Ωρsecure (3.5f)

where the notations follow those in Eq. 3.4. The constraint of Eq. 3.5e maintains the closed-loop

states within Ωρsecure over the prediction horizon if current state x̄(tk) is inside Ωρsecure , and

the contractive constraint of Eq. 3.5f will be activated when process states are outside of the

neighborhood Ωρsecure . Since Ωρsecure is characterized as a subset of Ωρe (i.e., ρsecure < ρe < ρ),

when the process state vector x̄(tk) is inside Ωρsecure , it is guaranteed that under sufficiently

small bounded disturbances x(tk+1) will not exit Ωρ . Therefore, Ωρe is characterized accounting

for bounded disturbances and sample-and-hold implementation of control actions to ensure the

invariance of Ωρ . In the presence of bounded disturbances, Ωρe can be found computationally [46].

Furthermore, it is common that chemical processes are subject to periodic feed stock

constraints, which are specified as part of the input constraint set U , where the quantity of feed

materials is limited within a fixed period of time tNp . During this period of time, the total feed

material is constrained to a constant value C, i.e., 1
tNp

∫ tNp
t0 um(τ)dτ =C, where um represents feed

material used at every sampling period. Therefore, the material consumption constraint renews

every tNp . If the total operation time is longer than one material constraint period, this material

consumption constraint results in cyclic operation of the plant, and consequently, cyclic behavior

of the state-space trajectory. At the start of a new material constraint period, the total consumption

limit is renewed, as new feed materials become available to be used again for the next constraint

period.

Fig. 3.1 illustrates the trajectories of the states and the input constrained by feed materials under

normal operation of LEMPC over one material constraint period. Assuming the process starts

from the operating steady-state (e.g., the origin), since EMPC maximizes the economic benefits

57

while maintaining closed-loop stability during operation, it will drive the process states in the

direction where economic benefit is optimized using large inputs until process states reach the

boundary of the secure region Ωρsecure , as shown in Segment 1 in Fig. 3.1. Following this, the

optimized state trajectory will progress along the boundary of Ωρsecure , as illustrated in Segment 2

in Fig. 3.1. Process states will remain on the boundary until the input materials start to exhaust and

the input consumption constraints start restricting process states from further progressing along

the boundary. With restricted inputs, the process states will be driven away from operating on the

boundary – this is shown in Segment 3 in Fig. 3.1.

58

-1 -0.5 0 0.5 1

-40

-30

-20

-10

0

10

20

30

40

2

1

3

(a)

5 10 15 20
-4

-3

-2

-1

0

1

2

3

4

1

2

3

(b)

Figure 3.1: Trajectories of (a) process states x1 and x2, and (b) manipulated input um, under normal
LEMPC operation over one material constraint period.

Remark 3.1. Additionally, stealthy cyber-attacks can be designed with the aim of decreasing

process economic benefits by driving the state to the region with low economic profits (but still

in the closed-loop stability region). Since cyber-attacks targeting process economic profits will not

59

cause physical damage or accidents, they are more difficult for process engineers to detect. Under

the assumption that attackers know the process model and the stability region, such cyber-attacks

will compromise sensor measurements such that the control actions calculated by the optimization

problem of EMPC will not increase process economic profits for the next sampling period as much

as it would do under nominal operations. In this study, we only consider attacks that intend to

compromise process stability.

3.3 Intelligent Cyber-Attacks

Intelligent cyber-attacks are designed to intentionally destroy the control objectives of the system,

disrupting system stability and degrading control performance. Cyber-attacks could compromise

sensors, actuators, and/or the communication channels between them. In this work, we only

consider attacks on sensor measurements. Sensor feedback measurements must accurately report

the true state of the process to ensure closed-loop stability; falsified measurements may result in

control actions that will no longer achieve maximum economic benefit and may ultimately drive the

true process states outside of the stability region. There are some standard types of cyber-attacks

considered in literature [97]. Min-max cyber-attacks aim to achieve maximum disruptive impact

within shortest amount of time. Surge attacks cause maximum deviation for an initial “surge”

period, and then the attacked value is set to a reduced value for the remainder of the attack duration

such that the cumulative deviation will not exceed a certain threshold that will trigger alarms in

conventional detection methods such as Cumulative Sum [16,80]. Geometric attacks geometrically

increase the deviation of the attacked value from its true value until it reaches the alarming

threshold. Details on the formulations of the four attack types can be found in Section 4.3.1.

Being process and controller behavior aware, the cyber-attacks will have access to information on

the operating region of the process under LEMPC Ωρsecure , and existing alarms configured on the

input and output ranges. Specifically, when attacks intend to induce maximum disruption (i.e.,

in min-max or surge attacks), the attacked value will be set to the maximum or minimum value

beyond which an alarm monitoring the current state measurement will be immediately triggered.

These intelligent cyber-attacks are designed such that no alarms will be sounded (i.e., the falsified

state measurement is not outside the operating stability region or the alarm window) and the

controller is still able to compute feasible control actions, but have large enough variations such

that economic optimality and closed-loop stability will be lost.

To train a machine-learning-based detector, closed-loop data will be collected where attacks

60

with varying durations La are introduced at random times i0 during the simulation period. If no

attacks occur within the simulation period (or the detection window), then the measurement signals

are classified as “no attack”. Furthermore, we consider a system where some sensors are attacked

and some remain intact. For clarity, only one type of cyber-attack will occur at a time during the

simulation period.

3.3.1 Design of Cyber-attacks Adapted to Secure LEMPC Operation

The system is now operated under the modified LEMPC of Eq. 3.5, where the operating region is

set to be a smaller level set of V (x), Ωρsecure , within the stability region, where 0 < ρsecure < ρe <

ρ . Thus, the cyber-attacks imposed on the sensors also need to be adapted to prevent having a

falsified measurement beyond the operating region Ωρsecure and to avoid triggering any immediate

alarms based on the values of the state measurements. The adapted mathematical formulations of

min-max, surge, geometric, and replay attacks are presented in the following sections.

3.3.1.1 Min-Max Cyber-attack

While avoiding triggering any alarms, min-max attacks result in maximum destabilizing impact

within a short time period. Therefore, the falsified state measurements take values that are furthest

from the equilibrium point (minimum or maximum) but not outside of the secure operating region

Ωρsecure . The min-max attack can be formulated as follows:

x̄(ti) = argmin/max
x∈Rn
{V (x(ti))≤ ρsecure}, ∀ i ∈ [i0, i0 +La] (3.6)

where ρsecure defines the level set of the Lyapunov function V (x) that characterizes the secure
operating region of the closed-loop system of Eq. 8.1 under LEMPC, x̄ is the compromised sensor

measurement, i0 is the time instant that the attack is introduced, and La is the total duration of the

attack in terms of sampling periods.

3.3.1.2 Surge Cyber-attack

Surge attacks maximize the disruptive impact for an initial short period of time, then they remain

at a lower value for the rest of the attack duration. The maximum or minimum attack value is also

defined based on the secure operating region, Ωρsecure . The length of the initial surge period and the

reduced value after the surge can be designed in many ways as long as the cumulative error from ti0
to ti0+La between state measurements and their predicted true values does not exceed the threshold

61

defined in some statistic-based detection methods (e.g., CUSUM). In our study, the reduced value

after the surge is set to act as a sufficiently small bounded noise imposed on the attacked sensor.

The formulation of the surge attack is presented below:

x̄(ti) = argmin/max
x∈Rn
{V (x(ti))≤ ρsecure}, if i0 ≤ i≤ i0 +Ls

x̄(ti) = x(ti)+η(ti), if i0 +Ls < i≤ i0 +La

(3.7)

where i0 is the start time of the attack, Ls is the duration of the initial surge, and ηl ≤ η(tu) ≤ ηu

is the bounded noise added on the sensor measurement after the initial surge period, where ηl and

ηu are the lower and upper bounds of the noise, respectively.

3.3.1.3 Geometric Cyber-attack

Under geometric cyber-attacks, closed-loop system stability deteriorates at a geometric speed until

the cyber-attack reaches the maximum or minimum allowable value as characterized by the secure

operating region. At the start of the attack ti0 , a small constant β ∈R is added to the true measured

output x(ti0), where x(ti0)+β is well below the alarm threshold. Following that, at each subsequent

time step, β is multiplied by a factor (1+α), where α ∈ (0,1), until x̄ reaches the maximum

allowable attack value bounded by Ωρsecure . Thus, attackers will choose the two parameters α and

β based on Ωρsecure and the attack duration. Geometric attacks can be written in the form as follows:

x̄(ti) = x(ti)+β × (1+α)i−i0 , ∀ i ∈ [i0, i0 +La] (3.8)

where β and α are parameters that define the magnitude and speed of the geometric attack.

3.3.1.4 Replay Cyber-attack

Replay cyber-attacks have access to all previous system outputs corresponding to secure nominal

operating conditions where no cyber-attacks are present. The attacker extracts segments of these

previous state measurements and injects them into the current measurement readings. As the

replayed values are given by secure sensors and supposedly inside the secure operating bounds,

classical detectors will not be able to recognize any abnormalities. Replay attacks can be

represented by the following equations:

x̄(ti) = x(tk), ∀ k ∈ [k0,k0 +La], ∀ i ∈ [i0, i0 +La] (3.9)

where x(tk) is the true plant measurement, La represents the length of the attack (which is also
the length of the replay segment) in terms of sampling periods, and x̄ is the series of replay attacks

62

added at time ti0 duplicating previous state measurements that are recorded starting from time tk0 .

The duration of the attack could be exactly the length of one or more material constraint periods.

Therefore, the tampered state trajectory would look identical to the nominal state trajectory of one

(or more) complete cycle(s) of operation starting from a different set of initial conditions.

3.4 Attack-Resilient Combined Open-loop and Closed-loop

Control

Due to the LEMPC constraints of Eq. 3.5e and Eq. 3.5f, for any initial condition x0 ∈ Ωρ , the

evolution of state trajectory x(t) will be driven towards but ultimately bounded inside the secure

region Ωρsecure . As the economic benefit of the process is maximized with respect to the state

vector, it is likely that during one material constraint period, the optimized states will reach,

and evolve along the boundary of the secure region Ωρsecure , which is a level set of the control

Lyapunov function V (x). Assuming that the attacker has knowledge on the stability region as

well as the secure region that the LEMPC operates based on, in order to induce maximum

destructive impact on the system (e.g., in a min-max or surge cyber-attack) without triggering

any alarms, the tampered state measurements will be near or on the boundary of the secure

region Ωρsecure . Therefore, regardless of the presence of a cyber-attack, the measured process

states will likely reach the boundary of Ωρsecure where V (x̄) = ρsecure during the operation of one

material constraint period. In other words, when measured process states yield V (x̄) = ρsecure,

there could be two reasons: 1) following optimized control actions u∗(tk), the measured process

states reach the boundary of the bounded secure region Ωρsecure at time tk under the normal

operation with no cyber-attacks, or 2) the measured states are compromised by a cyber-attack (e.g.,

min-max, or surge) at time tk. Therefore, when measured states x̄(tk) provide V (x̄(tk)) = ρsecure,

this measurement can no longer be trusted due to the ambiguous cause of this observation, and

closed-loop control can no longer be carried out.

To combat the ambiguity of state measurements when they are on the boundary of Ωρsecure ,

open-loop control actions will be used in conjunction with closed-loop control. Assuming that the

states measured at the beginning of each material constraint period, t = tN0 , (or initial conditions at

t = t0) are secure and correct, the open-loop control actions are computed at the beginning of the

63

material constraint period by solving the following nonlinear optimization problem:

J = max
u′∈S(∆)

∫ tN0+Np

tN0

le(x̃(t),u′(t))dt (3.10a)

s.t. ˙̃x(t) = f (x̃(t),u(t)) (3.10b)

u′(t) ∈U, ∀ t ∈ [tN0, tN0+Np) (3.10c)

x̃(tN0) = x̄(tN0) (3.10d)

V (x̃(t))≤ ρsecure, ∀ t ∈ [tN0, tN0+Np),

if x̄(tN0) ∈Ωρsecure (3.10e)

V̇ (x̄(tN0),u)≤ V̇ (x̄(tN0),φ(x̄(tN0)),

if x̄(tN0) ∈Ωρ\Ωρsecure (3.10f)

where Np is the number of sampling periods in one material constraint period, which is the

prediction horizon for open-loop control. At time tk, a new material constraint period begins,

the EMPC in open-loop control mode receives state measurement x(tk) and computes the optimal

trajectory of Np control actions that will be applied in a sample-and-hold manner until the end of

this material constraint period. In the case that there are no cyber-attacks or process disturbances,

this optimal trajectory of control actions would yield maximum economic benefits while meeting

all input and state constraints.

While at closed-loop operation, if feedback measurement is no longer reliable and cannot be

used for closed-loop control, the open-loop control actions that were calculated at the beginning

of the material constraint period will be used as a substitute until the end of the material constraint

period. At the end of the material constraint period, a cyber-attack detector is activated to determine

any occurrence of an attack, and the reliability of the control system is re-assessed. The detector

will provide information on the security status of the feedback measurements over the latest

material constraint period. Upon mitigating the impact of a confirmed attack and/or confirming

the security of the control system, closed-loop control with secure feedback measurement can be

reactivated as a new material constraint period starts.

Although the absence of feedback may result in minor performance degradation in the case

that process disturbances and modeling error exists and no cyber-attack is present, this strategy

also completely eliminates the impact of a min-max or surge attack on the sensor measurements.

The implementation strategy is illustrated in a logic flow diagram in Fig. 3.2, and the specific steps

are outlined as follows:

64

1. At the start of a material constraint period (t = tN0), open-loop control actions over the course

of the material constraint period are computed following Eq. 3.10. Closed-loop control is

active, calculating the optimal control action over the next sampling period following Eq. 3.5.

2. If ρsecure−V (x̄(tk)) ≤ c, (where c > 0 quantifies the distance from the boundary of secure

region to categorize a state measurement as being untrustworthy), then closed-loop control

(i.e., the modified LEMPC of Eq. 3.5) will be deactivated and open-loop control action u′(tk)

calculated by the LEMPC of Eq. 3.10 will be used as an substitute.

3. Open-loop control actions u′(tk) will be used until tN0+Np .

4. At tN0+Np , the cyber-attack detector is activated to examine past full-state measurements x̄(tk)

for k ∈ [N0,N0 +Np]. If an attack is detected, then disconnect the tampered sensors, reroute

these measurement signals to a set of secure back-up sensors, and go to Step 5. If detection

indicates no attack, go to Step 5.

5. At tN0+Np , a new material constraint period starts, and closed-loop control is reactivated.

Repeat Steps 1 – 4.

Remark 3.2. In some cases, the system may never reach the boundary of Ωρsecure depending on the

initial condition, the size of Ωρsecure , and the length of the material constraint period. If this is the

case, and cyber-attacks wrongfully set the measured states to be on the boundary of Ωρsecure , then

closed-loop control will still be deactivated following the implementation of Step 2, and open-loop

control actions will be used.

Remark 3.3. In our study, we do not consider systems under large disturbances. Since open-loop

control actions over the entire operating period are calculated by MPC at the beginning of

the simulation period based on the nominal system, closed-loop stability is guaranteed using

open-loop control if there are no disturbances or model uncertainties in the real process given that

the process is open-loop stable. In the presence of process disturbances other than cyber-attacks,

estimations of true process states are needed and closed-loop control can be applied based on these

estimated states to stabilize the system within a bounded region. However, in our manuscript, we

assume that the actual nonlinear process is disturbance-free; therefore, open-loop control is able

to ensure closed-loop stability until the end of the material constraint period (i.e., the time instant

at which NN detection will be activated and closed-loop control will resume).

65

Figure 3.2: Logic flowchart outlining the implementation steps of the attack-resilient operation
of LEMPC using combined closed-loop and open-loop control actions when operating within a
secure region Ωρsecure .

3.5 Detection of Cyber-Attacks Targeting EMPC

Cyber-attack detection carried out using data-based approaches, and more specifically,

machine-learning methods, have been studied in many literature (e.g., [1,52,85]). Using data-based

methods to train a detection algorithm for cyber-attacks separates the detector from the physical

process model, and therefore makes the detector resilient to both process changes and intelligent

stealthy attacks designed based on process behavior.

Amongst advanced machine-learning methods, neural networks (NN) have been successful in

a wide range of applications for both supervised and unsupervised classifications [44]. There are

also other types of state-of-the-art machine-learning classification methods that have been used

in a variety of applications in recent literature, such as k-nearest-neighbors, random forest, and

66

support vector machine [45]. Amongst these machine-learning algorithms, the advantage of neural

network is that it provides a broad class of tuning parameters and a variety of nonlinear activation

functions to optimize the overall model. Furthermore, neural networks can be developed using

multiple different training algorithms, providing more alternatives during training to obtain better

performance results [109]. In a supervised classification problem, by training the neural network

with labeled data corresponding to each target class, the neural network can be used to classify

new data into classes that share similar characteristics. Depending on the training data, the neural

network can distinguish between two (i.e., “attack” or “no attack”) or multiple classes (each class

representing a known type of attack).

We use a feed-forward artificial neural network for supervised classification in our study. Each

layer in the neural network consists of a series of nonlinear functions, yielding values for the

neurons in the subsequent layer from the previous layer. Specifically, the neurons in the first

hidden layer are derived from the inputs, and the neurons in the output layer are calculated from

those in the last hidden layer. These nonlinear functions are activation functions of the weighted

sum of inputs (or neurons in the previous layer) with an added bias term.

The structure of a basic neural network model employed here is shown in Fig. 3.3, with each

input representing a nonlinear function p(·) of the full state measurements at each sampling time,

and an output vector for predicted class label. The mathematical formulation of a two-hidden-layer

feed-forward neural network is as follows:

θ
(1)
j = g1(

NT

∑
i=1

w(1)
i j p(x̄(ti))+b(1)j) (3.11a)

θ
(2)
j = g2(

h1

∑
i=1

w(2)
i j θ

(1)
i +b(2)j) (3.11b)

θ
(3)
j = g3(

h2

∑
i=1

w(3)
i j θ

(2)
i +b(3)j), ypred = [θ

(3)
1 ,θ

(3)
2 , ...,θ

(3)
H]T (3.11c)

with θ
(1)
j and θ

(2)
j representing neurons in the first and second hidden layer, respectively, where

j = 1, ...,hl is the number of neurons in layer l = 1 and l = 2. θ
(3)
j represents neurons in the

output layer (l = 3), where j = 1, ...,H, and H is the number of class labels. In this study,

we use two hidden layers for the cyber-attack detector design; however, multiple hidden layers

can also be developed using similar formulations. For each sample, the input layer consists of

variables p(x̄(ti)), which is a nonlinear function of the full-state measurements at time ti, where

i = 1, ...,NT is the length of the time-varying trajectory. The weights connecting neurons i and j in

67

consecutive layers (from l−1 to l) are w(l)
i j , and the bias term on the jth neuron in the lth layer is

b(l)j . Each layer calculates an output based on the information received from the previous layer, as

well as the optimized weights, biases, and the nonlinear activation function gl (some examples

include hyperbolic tangent sigmoid transfer function g(z) = 2
1+e−2z − 1, and softmax function

g(z j) =
ez j

∑
H
i=1 ezi

where H is the number of class labels). Various common activation functions

including ReLu, sigmoid, radial basis functions were presented and their performances were

analyzed in [96]. Furthermore, while Bayesian regularization is a powerful regularization method

to avoid over-fitting and over-training, there are also other regularization algorithms such as L2

and L1 regularization, both of which add a parameter penalty in the objective function in an effort

to reduce the generalization error (thus, the testing error) of the trained model. The advantage of

Bayesian regularization is that it provides a probability distribution of optimal parameters instead

of a single optimal value, thereby effectively dropping out trivial nodes to speed up the training

process. In the output layer, ypred is a vector giving the predicted probabilities of each class label.

The predicted class label for the examined sample is indicated by the neuron with the highest

probability, which in turn provides information on either the presence of a cyber-attack, or the type

of the cyber-attack, depending on the classification problem the neural network is trained to solve.

To obtain an optimal set of weights and biases in Eq. 6.6, the Levenberg-Marquardt algorithm

[41] is used to minimize a Bayesian regularized mean squared error cost function, which has the

following form:
S(w) = γ

Ns

∑
k=1

(ypred,k− ytrue,k)
2 +ζ

Nw

∑
p=1

w2
p (3.12)

where k = 1, ...,Ns represents the number of samples in the training dataset, p= 1, ...,Nw represents

the number of weights and biases in the neural network, ytrue is the vector of target class labels

of each sample, ypred is the vector of the predicted probabilities associated with each class label,

and γ and ζ are the regularization hyper-parameters. Within the Levenberg-Marquardt algorithm,

the gradient and the Hessian matrix of S(w) are calculated using the backpropagation method.

The weights and the data are assumed to have Gaussian prior probability distributions. Then, the

regularization hyper-parameters, γ and ζ , are updated by maximizing their posterior probability

distribution provided the data, which is equivalent to maximizing the likelihood of evidence by

Bayes’ Theorem. Within each epoch, two sequential procedures are carried out: the cost function

S(w) is minimized with respect to w, and the likelihood of evidence is maximized with respect to γ

and ζ . Detailed formulation of this procedure can be found in [15]. Training and testing accuracies

are calculated, which are the ratios between the number of correctly classified samples and total

number of samples in the training and testing sets, respectively.

68

�����
��
��

�
�

��

�����
��
��

�����
���
��

�
�!
�"

�
�

��

�
!
�� �

�!
��

�
!

��

�
#�

��

�
�

�"

�
!

�"

�
�

�"

�
!
�"

�
�!
�$

�
�

�$

�
#"

�"

�
!
�$

�
����

�
%

�$

�
�

�$

�
!

�$

�
%

�$

Figure 3.3: Feed-forward neural network structure with 2 hidden layers with inputs being a
nonlinear function p(x̄) at each sampling time of the model predictive controller within the
detection window NT , and output being the probability of each class label for the examined
trajectory indicating the status and/or type of cyber-attack.

To develop an NN detector, state measurement data are collected while the system is operated

under the modified LEMPC of Eq. 3.5. For better detection accuracy, various state evolutions

within the stability region under different operating conditions need to be accounted for; therefore,

training data is collected for a broad range of initial conditions within the stability region Ωρ .

Full state measurements x̄(t) are recorded along the time-varying trajectory for t ∈ [t0, tNT], and a

nonlinear function denoted by p(x̄) is computed. In order to provide an effective one-dimensional

input feature for the detection problem, the function p(x̄) needs to capture the dynamic behavior

of all states. The selection of this input variable, p(x̄), is discussed in Section 4.4.1.

After data collection and adequate training, the NN detector is implemented online and

activated at the end of each material constraint period, with the process controlled by the modified

LEMPC in Eq. 3.5 with combined open-loop and closed-loop control described in Section 3.4.

Since the feed-forward NN model is a static model that receives inputs of fixed dimension, NT

(which is the length of the time-varying trajectory over one material constraint period Np), the

detection window of the NN detector when activated online is NT = Np. The detector will receive

the entire sequence of full state measurements x̄(tk) over the latest material constraint period with a

fixed length NT . Each sample consists of a two-dimensional matrix n×NT , where n is the full state

dimension, and NT is the length of each state trajectory within the detection window. Each training

sample corresponds to a different set of initial conditions for the closed-loop system simulation,

69

and equal number of samples within each class labels are collected to ensure training accuracy.

3.5.1 Choice of Detection Input Variable

The nonlinear system of Eq. 8.1 is operated in an off steady-state manner under LEMPC by

maximizing a nonlinear function of process state vector with respect to the control actions, which

are subject to their respective lower and upper bounds, and material consumption constraints.

Considering this, the exact trajectory of each individual state variable is not predictable and

does not follow a general expected trend even under nominal operation. Therefore, assessing

the trajectory of the measured state vector is not an effective method of detecting the occurrence

of a cyber-attack.

Moreover, if the goal of a cyber-attack is to destabilize the closed-loop system within the

shortest amount of time, the attacker will choose to set the current state measurement to the

maximum/minimum allowable attack value characterized by the boundary of the secure operating

region Ωρsecure such that no alarms will be triggered. Therefore, the falsified sensor measurements

will also yield a Lyapunov function that is equal to ρsecure. Unlike the case of operation under

tracking MPC where the Lyapunov function decreases as the process states are driven towards

the origin, off steady-state operation of LEMPC results in a state trajectory that remains on the

boundary of the secure operating region Ωρsecure where V (x̄) = ρsecure for the majority of each

material constraint period as discussed in Section 3.2.1. Therefore, the trajectory of the Lyapunov

function V (x̄) under nominal operation and under cyber-attacks can be too similar to differentiate.

For these reasons, the control Lyapunov function of the full-state measurements V (x̄), which is

used as an input variable for the detection algorithm used together with a tracking MPC [22], is

no longer a good measure of input for the detection algorithm when the system is operated under

LEMPC.

Given that EMPC optimizes the economic benefit in its cost function, the progression of

economic benefit is a measure that effectively reflects the time-varying operation under LEMPC;

hence, information derived from the economic benefit provides a good comparison for attacked and

not-attacked scenarios. Therefore, we will be monitoring the evolution of economic benefits during

closed-loop operation. The cumulative economic benefit increases monotonically as operation

time progresses. The first derivative of cumulative economic benefit (i.e., incremental economic

benefit, which can be analogous to the reaction rate of desired product, at each sampling period)

displays varying patterns depending on the initial conditions and on the material consumption

constraint. The rate of change in the incremental economic benefit, or the change in the production

70

reaction rate between sampling periods, provides information on the rate of change in the optimized

cost function le inside the integral in Eq. 3.5a. This rate of change, which is also the second

derivative of the cumulative economic benefit, will be used as the input parameters p(x̄) for the

neural-network-based detection algorithm.

Remark 3.4. Material constraints on the feed stock are commonly seen in the industry. Moreover,

operating the process in an off-steady-state manner with material constraint periods imposed is

a common practice for economic model predictive control because we would like to compare its

control performance to that of the process operated at steady-state for all times. While EMPC

aims to maximize economic benefits by computing optimal sets of control actions, we impose this

constraint on EMPC such that the sum of the calculated control actions will be the same as the

sum used in steady-state operation. Depending on the initial conditions, the state trajectory may

exhibit different patterns when the material constraint is removed. Despite this, the proposed

neural-network detection approach does generalize to systems without material constraint periods.

This is because the neural network detector, with adequate training, is still able to distinguish the

attacked trajectory from the nominal trajectory of the examined detection variable (in our case,

the second time-derivative of the economic objective function).

3.6 Application to a Nonlinear Chemical Process

3.6.1 Process Description and Control System Design

The application of the modified LEMPC of Eq. 3.5, the resilient control strategy presented

in Section 3.4, as well as the training and online detection of NN cyber-attack detectors are

demonstrated on a chemical process example. Specifically, the process considered is a well-mixed,

non-isothermal continuous stirred tank reactor (CSTR), within which an irreversible second-order

exothermic reaction takes place. The second-order reaction, A → B, transforms reactant A to

product B at a reaction rate rB = k0e−E/RTC2
A. The CSTR is equipped with a heating jacket that

supplies or removes heat at a rate Q. The dynamic model of this CSTR process is described by the

following material and energy balance equations:

dCA

dt
=

F
V
(CA0−CA)− k0e

−E
RT C2

A (3.13a)

dT
dt

=
F
V
(T0−T)+

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(3.13b)

71

where CA is the concentration of reactant A in the reactor, V is the volume of the reacting liquid

in the reactor (assuming the vessel has constant holdup), T is the temperature of the reactor and Q

denotes the heat input rate. The concentration of reactant A in the feed is CA0. The feed temperature

and volumetric flow rate are T0 and F , respectively. The reacting liquid has a constant density of

ρL and a heat capacity of Cp. ∆H, k0, R, and E represent the enthalpy of reaction, pre-exponential

constant, ideal gas constant, and activation energy, respectively. A complete list of the process

parameter values are shown in Table 5.2.1.

Table 3.1: Parameter values of the CSTR.

T0 = 300 K F = 5 m3/hr

V = 1 m3 E = 5×104 kJ/kmol

k0 = 8.46×106 m3/kmol hr ∆H =−1.15×104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 CA0s = 4 kmol/m3

Qs = 0.0 kJ/hr CAs = 1.95 kmol/m3

Ts = 401.87 K

The CSTR is initially operated at the unstable steady-state [CAs, Ts] =

[1.9537 kmol/m3, 401.87 K], and [CA0s Qs] = [4 kmol/m3, 0 kJ/hr]. The manipulated

inputs are the inlet concentration of reactant A and the heat input rate, which are represented

by the deviation variables ∆CA0 = CA0 −CA0s , ∆Q = Q−Qs, respectively. The manipulated

inputs are bounded as follows: |∆CA0| ≤ 3.5 kmol/m3 and |∆Q| ≤ 5× 105 kJ/hr. Therefore, the

states and the inputs of the closed-loop system are xT = [CA−CAs T −Ts] and uT = [∆CA0 ∆Q],

respectively, such that the equilibrium point of the system is at the origin of the state-space, (i.e.,

xT
s = [0,0],uT

s = [0,0]). We assume that at time t = t0, the system is at the equilibrium point (i.e.,

the initial conditions of the system are x0 = [0,0]T).

The control objective is to maximize the economic profit of the CSTR process of Eq. 8.45

by manipulating the inlet concentration ∆CA0 and the heat input rate ∆Q, while maintaining the

closed-loop state trajectories in the stability region Ωρ for all times under LEMPC. The objective

function of the LEMPC optimizes the production rate of B as follows:

le(x̃,u) = rB(CA,T) = k0e−E/RTC2
A (3.14)

The dynamic model of Eq. 8.45 is numerically simulated using the explicit Euler method with an

72

integration time step of hc = 2.5×10−5 hr. The nonlinear optimization problem of the LEMPC of

Eq. 3.5 is solved using the MATLAB OPTI Toolbox with the sampling period ∆ = 2.5×10−3 hr.

The modified LEMPC of Eq. 3.5 uses the following material constraint to make the averaged

reactant material available within one operating period tNp = 0.06 hr to be its steady-state value,

CA0s (i.e., the averaged reactant material in deviation form, u1, is equal to 0).

1
tNp

∫ tNp

0
u1(τ)dτ = 0 kmol/m3 (3.15)

The control Lyapunov function V (x) = xT Px is designed with the following positive definite P

matrix:

P =

[
1060 22

22 0.52

]
(3.16)

The closed-loop stability region Ωρ for the CSTR with ρ = 320 is characterized as a level set

of Lyapunov function inside the region D, from which the origin can be rendered asymptotically

stable under the controller u = φ(x) ∈U of Eq. 7.7. The secure operating region Ωρsecure for the

LEMPC in Eq. 3.5 is selected to have ρsecure = 90. The matrix P in V = xT Px and the stability

region Ωρ are determined through simulations when determining the largest invariant set Ωρ in

state-space (i.e., the level set of V) in which V̇ is rendered negative (V̇ ≤ −α3(|x|), where α3 is a

class K function) for all states within Ωρ under the stabilizing controller u = φ(x) ∈U . Different

values of P will generate different set of states where V̇ ≤ −α3(|x|), resulting in a different size

and shape of the invariant set Ωρ .

Remark 3.5. The closed-loop system exhibits periodic patterns due to the periodic reactant

material constraint imposed on the control actions. The process itself is not periodic; however,

the material constraint imposed on the control actions renews periodically.

Remark 3.6. The design of the secure operating region Ωρsecure can be adjusted depending on

the system dynamics, the desired threshold for economic benefits, the magnitude and type of

cyber-attacks, as well as whether the detector experiences time delay in correctly identifying the

attacks. If the process dynamics are very fast, then more room needs to be vacated between Ωρ and

Ωρsecure to accommodate for the fast changes in process states when under cyber-attacks. However,

designing a conservative secure operating region Ωρsecure is at the expense of compromising

economic benefits, since the maximum economic gain under normal operation is bounded by

Ωρsecure . Therefore, the determination of the size of Ωρsecure comes from a balance between

operational stability and economic performance. These were all factors taken into consideration

73

when running extensive closed-loop simulations to determine the value of ρsecure.

3.6.2 Resilient Operation of LEMPC

With initial conditions x0 = [0,0]T , the closed-loop operation of the CSTR process in Eq. 8.45

over one material constraint period tNp under the modified LEMPC in Eq. 3.5, and under the

resilient control of LEMPC with combined open-loop and closed-loop control actions as described

in Section 3.4 around the secure operating region Ωρsecure are both carried out. Fig. 3.4 presents the

state-space plot showing the trajectory of the measured process states using the modified LEMPC

of Eq. 3.5 and using the resilient LEMPC control strategy when the process is under no attack.

The switching from using closed-loop to open-loop control actions happens at ts = 0.0175 hr.

For t0 ≤ tk < ts, measured process states are well within the secure operating region Ωρsecure , and

closed-loop control using the modified LEMPC of Eq. 3.5 is used with state feedback updates. The

LEMPC of Eq. 3.5 is deactivated at ts = 0.0175 hr when the measured process states first reach

the boundary of the secure operating region, and can no longer be trustworthy as this may be a

result of a cyber-attack, i.e., when ρsecure−V (x̄(tk)) ≤ c, where c = 0.5 for this case study. The

distance from the secure region boundary, c, is determined to account for computational error in

designing and inserting the attacked sensor measurements. It provides a buffer zone for which

resilient LEMPC can be activated accurately and preemptively. Therefore, for ts ≤ tk ≤ tNp , control

actions u′(tk) from the open-loop optimization of Eq. 3.10 that are solved based on the initial

condition x0 will be applied.

Even in the case that no process disturbance, no model mismatch, and no cyber-attack is

present, the resulting state trajectories under LEMPC (closed-loop only), and the resilient LEMPC

(closed-loop followed by open-loop control actions after the switching time ts) are slightly

different. This is because the prediction horizon used in the ordinary LEMPC with periodic

closed-loop feedback has a length of N = 8 and rolls forward in time as feedback signal updates

are received, whereas the open-loop optimization problem computed at the beginning of the

material constraint period accounts for Np = 24. Therefore, the control actions computed from

the open-loop optimization, u′(tk), will be slightly different from u(tk) calculated from online

optimization, resulting in slightly different state trajectories.

Despite the subtle differences in the state trajectory, using open-loop control actions following

closed-loop control still maintains the process states within the secure operating region (hence the

stability region) for all times. It is important to note that, if the process is operated at steady-state,

the total economic benefit in the form of
∫ tNp

t0 le(x̄(t))dt is 0.6397 kmol/m3, which is much less

74

than that achieved under time-varying EMPC operation. The total economic benefit from t0 to

tNp using closed-loop-only control actions from the LEMPC of Eq. 3.5 is 0.8192 kmol/m3, and

using the resilient control strategy outlined in Section 3.4 is similarly 0.8203 kmol/m3. Under

no disturbances or model mismatch, the total economic benefit achieved by the resilient LEMPC

using open-loop control actions is marginally higher. In closed-loop operation, we used a shorter

prediction horizon to speed up the computation to ensure the real-time implementation of EMPC.

Since the optimization problem of EMPC is essentially non-convex, the solutions we obtained

from closed-loop operation may not be as good as the solutions calculated at the beginning,

which uses a sufficiently long prediction horizon that covers the entire operating period as per

material constraints. This shows the effectiveness of the resilient control strategy when the

system is under no attack as it does not compromise system stability and economic performance.

Furthermore, the similarity in the two trajectories also suggests that, if a cyber-attack is present and

the resilient control strategy is utilized, the evolution of true process states will highly resemble that

under closed-loop control in the absence of cyber-attacks. Under min-max attacks with LEMPC

operation, the total economic benefit that the true process states provide is 1.4939 kmol/m3; the

higher economic benefit is a result of the min-max attacks driving the true states outside of the

stability region. With resilient LEMPC operation and under min-max attacks, the true process

states also yield a total economic benefit of 0.8203 kmol/m3 over one operating period, which

is the same as the case under no attacks. Since NN detection is activated at the end of the first

operating period, the total economic benefit with integrated NN detection is also 0.8203 kmol/m3.

This shows that when the process operates under resilience LEMPC, the addition of cyber-attacks

does not alter the economic performance over one material constraint period.

75

-1.5 -1 -0.5 0 0.5 1 1.5
-80

-60

-40

-20

0

20

40

60

80

0.18 0.2 0.22 0.24 0.26
1

2

3

4

5

6

Figure 3.4: State-space plot showing the evolution of measured process states over one material
constraint period under LEMPC (red trajectory) and under resilient LEMPC (blue trajectory).

3.6.3 Cyber-attack Resiliency Assessment

The purpose of using the resilient control strategy outlined in Section 3.4 is to prevent true process

states from exiting the stability region Ωρ when under sensor cyber-attacks. Fig. 3.5 shows the

state-space plot of the evolution of true process states and attacked state measurements from

initial conditions x0 = [0,0]T over one material constraint period under LEMPC and under resilient

LEMPC when the temperature sensor is attacked by min-max, geometric, replay and surge attacks,

respectively. In all cases, once the specified cyber-attack starts, it will continue until it has been

successfully detected; the detection results and process simulation after the detection are shown

in Section 3.6.5. Here, the simulation results over only one material constraint period are shown.

After a cyber-attack has tampered the sensor, the resulting falsified state measurements will not

exit the secure operating region Ωρsecure so as to stay inconspicuous to the control engineer.

76

Min-max and surge cyber-attacks are added at t = ts = 0.0175 hr such that there will be no

suspicious deviation in the Lyapunov function of the system. At t = 0.0175 hr, both the true

process state and the attacked state measurement will reach the boundary of the secure operating

region, V (x(ts))=V (x̄(ts))= ρsecure. As shown in Fig. 3.5(a) and Fig. 3.5(d), when the temperature

sensor is under min-max and surge attacks respectively, true process states will exit Ωρsecure and

eventually Ωρ if only closed-loop control actions from the online LEMPC optimization in Eq. 3.5

are used. However, when the resilient LEMPC control strategy is implemented, closed-loop control

is deactivated at t = 0.0175 hr, and the falsified feedback measurements can no longer impact the

control system. Open-loop control actions, which are calculated based on a correctly measured

set of initial conditions, are used starting at t = 0.0175 hr until the end of the material constraint

period when t = tNp = 0.06 hr. As a result, the true process states will not exit Ωρsecure , and the

evolution of the true process states is almost identical to that under secure closed-loop control (as

demonstrated in Section 3.6.2). The system stays resilient to min-max and surge attacks, with

protected stability and comparable control performance.

However, the resilient control strategy may not be effective when the system is under other

types of attacks, particularly in situations where the falsified state measurement does not approach

the boundary of Ωρsecure . To illustrate this, geometric attacks on the temperature measurements

as shown in Fig. 3.5(b) start at t = 0.01 hr following Eq. 4.12, where β = x(t) ∗ (1.001) and

α = 0.1. As cyber-attacks could happen at any time instant during operation, geometric attacks

are designed and inserted as such to demonstrate the incapability of the resilient control strategy in

handling geometric attacks or attacks alike. At t = 0.01 hr, the states have not reached the boundary

of Ωρsecure , therefore not satisfying the condition for deactivating closed-loop control. Geometric

attacks starting at t = 0.01 hr resulted in state measurements that did not reach the boundary of

Ωρsecure for the entire duration of cyber-attack. Hence, closed-loop control continued with these

false measurements, and the true process states exited Ωρsecure during operation. Despite having a

correct array of open-loop control actions computed at t = 0 hr using the correctly measured initial

conditions, these control actions were not used. As a result, the resilient control strategy fails to

ensure that the true process states are maintained within the secure operating region Ωρsecure .

Moreover, there may be situations where, even when closed-loop control is deactivated and

feedback measurements are no longer used, the true process states still exit Ωρsecure because the

open-loop control actions are calculated based on false sensor measurements. To illustrate this

scenario, replay attacks as shown in Fig. 3.5(c) start at t0 = 0 hr, and the replayed signals span

the duration of one material constraint period. In other words, the replayed signals are real

77

closed-loop state measurements when the system started from a different set of initial conditions,

x̄0 = [−0.2107 kmol/m3;7.8047 K]. Since the initial conditions x̄0 are incorrect, open-loop control

actions optimized over the prediction horizon of Np based on x̄0 are also not correct. As a result,

despite the falsified state measurements also reaching the boundary of Ωρsecure at t = 0.0175 hr and

deactivating closed-loop control, these incorrect open-loop control actions applied on the process

still resulted in true process states exiting the secure operating region.

In this example, when under geometric and replay attacks, the true process states did not exit the

stability region Ωρ ; however, this may not be the case for a different geometric attack with larger α

(geometric factor), a different replay attack that yielded more aggressive open-loop control actions,

or for a faster process. In other words, system stability cannot be guaranteed by using the resilient

control strategy, and an effective cyber-attack detection mechanism needs to be included.

78

-1.5 -1 -0.5 0 0.5 1 1.5

-80

-60

-40

-20

0

20

40

60

80

-1.5 -1 -0.5 0 0.5 1 1.5

-80

-60

-40

-20

0

20

40

60

80

-1.5 -1 -0.5 0 0.5 1 1.5

-80

-60

-40

-20

0

20

40

60

80

-1.5 -1 -0.5 0 0.5 1 1.5

-80

-60

-40

-20

0

20

40

60

80

0.1 0.2 0.3

2

4

6

0.1 0.2 0.3

2

4

6

8

(d)(c)

(a) (b)

Figure 3.5: State-space plot showing the evolution of true process states and attacked state
measurements (yellow trajectories) over one material constraint period under LEMPC (red
trajectories) and under resilient LEMPC (blue trajectories) when (a) min-max, (b) geometric, (c)
replay, and (d) surge attacks, are targeting the temperature sensor, where the dash-dotted ellipse is
the stability region Ωρ and the dashed ellipse is Ωρsecure .

3.6.4 Detectors Training and Testing

To train neural-network detectors, training data will be collected under closed-loop operation

with the secure LEMPC outlined in Eq. 3.5. Simulation period is one material constraint period

tNp = 0.06 hr with Np = 24. Cyber-attacks are added at random times and last until the end of

the simulation period. Neural network models are constructed and trained using the MATLAB

79

Machine Learning and Deep Learning Toolboxes.

The reaction rate to yield product B, rB(x̄) can be calculated from full-state measurements

x̄(t) at each time instant tk from k = 0 to k = Np following Eq. 3.14, where CA = x̄1 +CAs and

T = x̄2 +Ts. The input parameters used for neural network training are the time-varying trajectory

of the rate of change in rB(x̄) over the simulation period of one material constraint periodNp = 24,

which is denoted as p(x̄), shown as follows:

p(x̄(t)) =
drB(x̄)

dt
(3.17)

The evolution of p(x̄) when the temperature sensor is under no attack, and under min-max,

geometric, replay, and surge attacks, are shown in Fig. 3.6. Each sample consists of a 1× 24

array of p(x̄), started from a different initial condition within Ωρ . With extensive closed-loop

simulations, equal number of samples are collected for each output label, from which 70% are

used for training, and 30% are used for testing.

80

0 0.01 0.02 0.03 0.04 0.05 0.06
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Figure 3.6: Time-derivative of the reaction rate rB of Eq. 3.14 based on measured process states
over one material constraint period, when the temperature sensor is under no attack, and under
min-max, geometric, replay, and surge attacks, respectively.

First, min-max attacks are used to train a neural-network-based detector. This feed-forward

neural network model has two hidden layers with 12 and 10 neurons in each layer respectively.

Both hidden layers use a tansig activation function, which is in the form g1,2(z) = 2
1+e−2z −1. The

output layer uses a so f tmax function to provide a predicted probability of the class labels, which is

in the form of g3(z j) =
ez j

∑
H
i=1 ezi

where H denotes the number of class labels. Bayesian regularized

mean squared error cost function S(w) are minimized with respect to the weights and biases using

the Levenberg-Marquardt algorithm, in which the gradient and the Hessian matrix of S(w) are

calculated using the back-propagation method. A total of 750 samples are collected for each class

label. The training time for this 2-class detector is 2.05 seconds, undergoing 70 epochs, and the

detector achieves a training accuracy of 98.9%. The testing accuracy of this detector against the

81

different attack types is shown in Table 4.3. Note that geometric attacks are not identified as being

attacked due to the vast difference in the trends of p(x̄) when under geometric attack compared to

min-max attacks as shown in Fig. 3.6.

A second detector is trained with min-max and geometric attacks. The detector is able to

classify between 3 classes: not attacked, attacked by min-max cyber-attacks, and attacked by

geometric cyber-attacks. Thus, the detector is capable of differentiating the types of cyber-attacks

in addition to indicating the presence of one. This detector is trained because geometric attacks

exhibit very different behavior than min-max attacks, and therefore the testing accuracy by the

2-class detector is very low. This 3-class feed-forward neural network detector has two hidden

layers with 15 and 12 neurons each, using the same activation functions and cost function in

Eq. 6.6, which is minimized using the Levenberg-Marquardt algorithm. The training time for

this 3-class detector is 39.48 seconds with 300 epochs. This 3-class detector achieves an overall

training accuracy of 91.8%, and its testing accuracies in response to min-max, geometric, and surge

attacks are shown in Table 4.3. The detector accurately identifies min-max and geometric attacks

as their respective labels, and it classifies 71.0% of surge attacks as min-max, 10.0% as geometric,

and the remaining 19% are wrongly classified as “not attacked”.

Table 3.2: Detection accuracies of NN detectors in response to min-max, geometric, and surge
attacks.

Detector 1 Detector 2

(Attacked vs. Not Attacked) (Min-max vs. Geometric vs. Not Attacked)

Min-max 98.3% 89.7%

Geometric 2.4% (Attacked) 71.1%

Surge 87.0% (Attacked) 71.0% (Min-max); 10.0% (Geometric)

Not Attacked 98.4% 95.6%

Remark 3.7. Since replay signals could mimic the secure operation of one entire material

constraint period starting at a different initial condition, they are essentially a different sample that

belongs to the class of “not attacked”, and will be rightfully classified as being “not attacked”.

At the end of the material constraint period, the falsified signals follow exactly the trajectory

of previous secure measurements of one period, thus they will remain undetectable by the NN

detectors. Since the NN approach used in this study is based on supervised classification, it is

heavily dependent on labeled data from distinct classes. Being duplicates of nominal signals,

82

replay signals are not in a distinct class of signals that is different from the nominal data, thus the

proposed NN approach is an unsuitable detection method for replay attacks. Purely data-based

approaches examining sensor measurements in the case of replay attacks will not be sufficient, and

model-based prediction approaches may be a possible future research direction. The reader may

refer to other works on the detection of replay attacks in [51, 107].

3.6.5 Online Detection

Detector 1 is used to detect min-max and surge attacks, whereas detector 2 is used to detect

geometric attacks. The corresponding detector is activated at the end of the material constraint

period, and examines state measurements received over the last material constraint period. Since

replay attacks cannot be detected, the online detection results are also not shown.

Fig. 3.7 shows the evolution of true process states and measured process states attacked by

min-max, geometric, and surge cyber-attacks when the process is controlled by the resilient

LEMPC with combined open-loop and closed-loop control. The figures show the trajectories over

two material constraint periods, where NN-based detection occurs twice – once at the end of the

first period, and once at the end of the second period.

Min-max and surge attacks are correctly detected by detector 1 at the end of the first constraint

period t = 0.06 hr by examining the trajectory of p(x̄(t)) from t = 0 hr to t = 0.06 hr, after which

the sensor devices are switched to a secure set of redundant sensors and operation continues with

these secure sensor measurements. During the second period, the attacked old set of sensors are

no longer connected to the control system, and the newly switched set of sensors are not tampered

by cyber-attacks. At the end of the second material constraint period t = 0.12 hr, detector 1 is

activated again, and it correctly classifies the secure measurements as ”not attacked”.

Furthermore, if a particular attack type is trained as a separate class (i.e., “geometric”) from

other attack types (i.e., “min-max”), then the detector is also capable of identifying the type of

cyber-attack. As shown in Fig. 3.7(b), although the true process states exited Ωρsecure during

the first material constraint period (closed-loop control based on false feedback signals was not

deactivated), the state measurements attacked by geometric attacks were still correctly identified

as geometric by detector 2 at the end of the first material constraint period. After switching the

sensor devices to the respective secure back-up sensors, detector 2 correctly identifies the trajectory

of p(x̄(t)) over the second material constraint period from t = 0.06 hr to t = 0.12 hr as “not

attacked”. This means that, although the resilient control strategy cannot ensure stability over

one material constraint period if the attacked measurement deliberately avoids approaching the

83

boundary of Ωρsecure , the attack can still be detected at the end of the material constraint period,

and mitigation measures can be taken following the successful detection to terminate the impact of

the cyber-attacks. One method to avoid the true states from exiting the stability region when under

geometric attacks is to adjust the size of Ωρsecure such that the resilient control strategy could come

into effect earlier. Moreover, setting a shorter material constraint period in addition to operating

within a conservative secure region could be another preventative method to consider, so that the

cyber-attack detection can happen more frequently.

-2 -1 0 1 2

-50

0

50

-2 -1 0 1 2

-50

0

50

-2 -1 0 1 2

-50

0

50

(a) (b) (c)

Figure 3.7: State-space plot showing the evolution of true process states (blue trajectories) and
attacked state measurements (red trajectories) over two material constraint periods under the
resilient LEMPC when (a) min-max, (b) geometric, and (c) surge attacks, targeting the temperature
sensor are successfully detected by a NN detector at the end of the first material constraint period,
t = 0.06 hr, where the dash-dotted ellipse is the stability region Ωρ and the dashed ellipse is Ωρsecure .

84

Chapter 4

Cyber-Security of Centralized,

Decentralized, and Distributed

Control-Detector Architectures for

Nonlinear Processes

Decentralized and distributed control systems provide an efficient solution to many challenges

of controlling large-scale industrial processes. With the expansion in communication networks,

vulnerability to cyber intrusions also increases. This work investigates the effect of different types

of standard cyber-attacks on the operation of nonlinear processes under centralized, decentralized,

and distributed model predictive control (MPC) systems. The robustness of the decentralized

control architecture over distributed and centralized control architectures is analyzed. Moreover, a

machine-learning-based detector is trained using sensor data to monitor the cyber security of the

overall system. Specifically, detectors built using feed-forward neural networks are used to detect

the presence of an attack or identify the subsystem being attacked. A nonlinear chemical process

example is simulated to demonstrate the robustness of decentralized control architectures and the

effectiveness of the neural-network detection scheme in maintaining the closed-loop stability of

the system.

This work explores the impact of standard types of sensor cyber-attacks on centralized,

decentralized, and distributed Lyapunov-based model predictive control (LMPC) systems, and

shows the robustness of decentralized control system against certain cyber-attacks when compared

to centralized and distributed control systems. We examine Lyapunov-based model predictive

85

control systems in this study, however, the proposed control-detector architecture and detection

methodology can be extended to other applications of model predictive control, or other methods

of advanced control systems in general. Then, a neural-network-based detector is trained

and implemented online to monitor sensor behaviors when the process is operated under the

decentralized control system. Section 2 presents the preliminaries on notation, the general class

of nonlinear systems considered, and the stabilizability assumptions. Section 3 includes the

formulations of the centralized, decentralized, and distributed LMPCs. The design of intelligent

cyber-attacks is shown in Section 4, and the development of the cyber-attack detector using neural

networks is explained in Section 5. In Section 6, closed-loop simulations and analyses of a

two-CSTR-in-series chemical process are presented.

4.1 Preliminaries

4.1.1 Notation

Throughout the manuscript, |·| is used to denote the Euclidean norm of a vector. The notation

xT is used to denote the transpose of x. Set subtraction is denoted by “\”, i.e., A\B := {x ∈
Rn | x ∈ A,x /∈ B}. A continuous function α : [0,a)→ [0,∞) is said to belong to class K if it

is strictly increasing and is zero only when evaluated at zero. The function f (·) is of class C 1 if

it is continuously differentiable in its domain. Lastly, L fV (x) denotes the standard Lie derivative

L fV (x) := ∂V (x)
∂x f (x).

4.1.2 Class of Systems

Consider a general class of continuous-time nonlinear systems in which multiple distinct sets of

manipulated inputs are used, with each set of manipulated inputs regulating a specific subsystem

of the process. We consider j = 1, ...,Nsys subsystems, with each subsystem j consisting of states

x j which are regulated by only u j and potentially impacted by states in other subsystems due to

coupling between subsystems. The continuous-time nonlinear dynamics of the subsystem j is

described as follows:

ẋ j = Fj(x,u j) := f j(x)+g j(x)u j, x j(t0) = x j0 , ∀ j = 1, ...,Nsys (4.1)

86

where Nsys represents the number of subsystems, x j ∈Rn j represents the state vector for subsystem

j, and x represents the vector of all states x = [x T
1 · · ·x T

Nsys
]T ∈ Rn, where n = ∑

Nsys
j=1 n j. u j ∈ Rm j

is the set of manipulated input vectors for each subsystem j, which together constitute the vector

of all manipulated inputs u ∈ Rm with m = ∑
Nsys
j=1 m j. The manipulated input vector constraints are

defined by u j ∈U j := {umin
ji ≤ u ji ≤ umax

ji , i = 1, ...,m j} ⊂ Rm j ,∀ j = 1, ...,Nsys. Therefore, the set

that bounds the manipulated input vector u for the overall system is denoted by U , which is the

union of all U j, j = 1, ...,Nsys. f j(·) and g j(·) are sufficiently smooth vector and matrix functions

of dimensions n j×1 and n j×m j, respectively. The initial time t0 is taken to be zero (t0 = 0). We

assume that f j(0) = 0, ∀ j = 1, ...,Nsys, thus, the origin is a steady-state of the nominal system of

Eq. 8.1 (i.e., u(t) ≡ 0). Therefore, we have (xs,us) = (0,0), where xs and us are the steady-state

state and input vectors for the overall system, respectively. The overall system is described as

follows:

ẋ = F(x,u1, ...,uNsys) := f (x)+
Nsys

∑
j=1

g j(x)u j (4.2a)

x̄ = h(x) (4.2b)

where f (·) represents the vector function of dimension n× 1 for all states of the two subsystems

f = [f T
1 · · · f T

Nsys
]T . x̄∈Rn denotes the vector of full state measurements from sensors, which may

be compromised by sensor cyber-attacks. When no cyber-attacks are present in the system, x̄ = x.

4.1.3 Stability Assumptions

Depending on the partitioning of the overall large-scale system, there may exist interacting

dynamics between the subsystems, where the states of one subsystem may be impacted by the

states of other subsystems. We assume that there exist stabilizing control laws u j = Φ j(x) ∈U j

which regulate the individual subsystems j = 1, ...,Nsys and will be applied to the control actuators

in the respective subsystems such that the origin of the overall system of Eq. 8.1 is rendered

asymptotically stable. This implies that there exists a C 1 control Lyapunov function V (x) such

that the following inequalities hold for all x ∈ Rn in an open neighborhood D around the origin:

c1(|x|)≤V (x)≤ c2(|x|), (4.3a)

∂V (x)
∂x

F(x,ΦΦΦ(x))≤−c3(|x|), (4.3b)

87

∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4(|x|) (4.3c)

where c1, c2, c3 and c4 are class K functions. F(x,u) represents the overall nonlinear system

of Eq. 8.1. ΦΦΦ(x) = [Φ1(x)T · · ·ΦNsys(x)
T]T represents the vector containing the candidate control

laws for each subsystem j, i.e., Φ j(x) ∈ Rm j , for j = 1, ...,Nsys. The candidate controller for each

subsystem j is given in the following form:

φ ji(x) =

 − p+
√

p2 +q4

qT q
q if q ̸= 0

0 if q = 0
(4.4a)

Φ ji(x) =


umin

ji if φ ji(x)< umin
ji

φ ji(x) if umin
ji ≤ φ ji(x)≤ umax

ji

umax
ji if φ ji(x)> umax

ji

(4.4b)

Depending on whether the control system is decentralized or distributed, the candidate control

laws of Eq. 7.7 may be calculated differently. In a decentralized control system, each controller

has knowledge of the dynamics of the local subsystem that it regulates, but does not have access

to the model dynamics of the entire process. Therefore, when the candidate controller of Eq. 7.7

is implemented, p in Eq. 7.7a denotes ∂V (x)
∂x j

f j(x) and q denotes ∂V (x)
∂x j

g ji(x). Here, f j ∈ Rn j and

g ji ∈ Rn j×m j for j = 1, ...,Nsys, and i = 1, ...,m j for subsystem j corresponding to the vector of

control actions Φ j(x) ∈ Rm j . The control Lyapunov function V (x) can be a linear combination of

multiple control Lyapunov functions Vj. Each Vj is designated for the subsystem j and is a function

of x j only, i.e., V (x) = ∑
Nsys
j=1Vj(x j). Thus, ∂V (x)

∂x j
=

∂V j(x j)
∂x j

, ∀ j = 1, ...,Nsys, and the time-derivative

of V can be represented as V̇ (x) = L fV +LgVu = ∑
Nsys
j=1

∂V (x)
∂x j

(f j +∑
m j
i=1 g jiu ji). On the other hand,

in a distributed control system, each controller has knowledge of the dynamics of the overall

process, and calculates the control actions for each corresponding subsystem accordingly. Thus,

when the candidate controller Φ ji(x) of Eq. 7.7 is calculated, p denotes L fV (x) = ∂V (x)
∂x f (x) =

∑
Nsys
j=1

∂V (x)
∂x j

f j(x) and q denotes Lg ji
V (x) = ∂V (x)

∂x j
g ji for subsystems j = 1, ...,Nsys, and i = 1, ...,m j

number of inputs for subsystem j; here, we only consider g ji because Φ j(x) ∈ Rm j regulates the

states x j ∈ Rn j of the subsystem j only.

φ ji(x) of Eq. 7.7a represents the ith component of the control law φ j(x). Φ ji(x) of Eq. 7.7

represents the ith component of the saturated control law Φ j(x) that accounts for the input

constraints u j ∈U j for subsystem j. Note that the candidate control law Φ j(x) is calculated based

on the nonlinear dynamics of the subsystem j of Eq. 5.2.2, and the set of candidate control laws

88

for the overall system is denoted as ΦΦΦ(x) = [Φ1(x)T · · ·ΦNsys(x)
T]T ∈U , which together can render

the overall system of Eq. 8.1 asymptotically stable.

Based on Eq. 7.5, we first characterize a region where the time-derivative of the Control

Lyapunov function V is rendered negative definite under the candidate control laws ΦΦΦ(x) ∈ U

as D = {x ∈ Rn | V̇ (x) = L fV + LgVu ≤ −c3(|x|),u = ΦΦΦ(x) ∈U}∪ {0}. Then, the closed-loop

stability region Ωρ for the nonlinear system of Eq. 8.1 is defined as a level set of V , which is

an invariant set for the closed-loop system inside D: Ωρ := {x ∈ D | V (x) ≤ ρ}, where ρ > 0

and Ωρ ⊂ D. Therefore, starting from any initial state x0 := x(t0) in Ωρ , ΦΦΦ(x(t)) guarantees that

the state trajectory of the closed-loop system of Eq. 8.1 remains within Ωρ and asymptotically

converges to the origin. Thus, given that the sensor measurements received by the controller are

secure and reliable (i.e., x̄ = x), the control law ΦΦΦ(x) is able to stabilize the process at the origin

for any initial conditions x0 ∈Ωρ .

4.2 Centralized, Decentralized, and Distributed

Lyapunov-based Model Predictive Control

4.2.1 Centralized LMPC

Traditionally, when the overall process is regulated by a centralized controller, the control problem

that is solved incorporates all the manipulated inputs and state measurements of the process.

Specifically, the centralized Lyapunov-based Model Predictive Control (LMPC) is represented by

the following optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk
L(x̃(t),u(t))dt (4.5a)

s.t. ˙̃x(t) = F(x̃(t),u(t)) (4.5b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (4.5c)

x̃(tk) = x̄(tk) (4.5d)

V̇ (x̄(tk),u)≤ V̇ (x̄(tk),ΦΦΦ(x̄(tk))),

if x̄(tk) ∈Ωρ\Ωρs (4.5e)

V (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N),

if x̄(tk) ∈Ωρs (4.5f)

89

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with period

∆, and N is the number of sampling periods in the prediction horizon. V̇ (x,u) is used to represent
∂V (x)

∂x F(x,u). The optimal input trajectory computed by the centralized LMPC is denoted by u∗(t),

which is calculated over the entire prediction horizon t ∈ [tk, tk+N). The control action computed

for the first sampling period of the prediction horizon u∗(tk) is sent by the LMPC to be applied over

the next sampling period in a sample-and-hold manner, and the centralized LMPC is solved again

in a rolling horizon fashion. The LMPC of Eq. 4.5 is solved by minimizing the time integral of the

objective function L(x̃(t),u(t)) of Eq. 4.5a over the prediction horizon N, subject to the constraints

of Eqs. 4.5b-4.5f. The objective function is generally in a quadratic form of x̃T Qx̃+uT Ru such that

the states can be driven to the operating steady-state of the process without exhausting too much

inputs; here, Q and R are the weighting matrices for the states and the inputs, respectively. Eq. 4.5c

defines the input constraints applied over the entire prediction horizon, and Eq. 4.5d defines the

initial condition x̃(tk) of Eq. 4.5b, which is the state measurement x̄(t) at t = tk. The constraint of

Eq. 4.5e forces the closed-loop state to move towards the origin at a minimum rate characterized by

the Lyapunov function V and the Lyapunov-based control law ΦΦΦ(x̄(tk)), if x̄(tk) ∈Ωρ\Ωρs , where

Ωρ is the stability region and Ωρs is the ultimate bounded region around the operating steady-state

which the closed-loop states of Eq. 4.5b will converge to. If x̄(tk) enters Ωρs , Eq. 4.5f ensures that

the states predicted by Eq. 4.5b will be maintained in Ωρs for the entire prediction horizon.

4.2.2 Decentralized LMPC

When the optimization problem of a centralized MPC is too complex to solve within a reasonable

time period (i.e., the sampling period), the control problem may be decoupled into smaller local

optimization problems that are solved in separate processors/controllers to achieve improved

computational efficiency. In a decentralized LMPC system, no communication is established

between the different local controllers, therefore each controller does not have any knowledge

on the control actions calculated by the other controllers.

We design separate j = 1, ...,Nsys LMPCs, each designated to regulate the states x j of one

subsystem j, and compute the respective control actions. The trajectories of control actions

computed by LMPC j are denoted by ud j , which are applied to the corresponding control actuators

in subsystem j. Each decentralized LMPC may receive full-state feedback measurements, but they

only have information on the dynamic behavior of their respective subsystem. The mathematical

90

formulation of each decentralized LMPC j, j = 1, ...,Nsys, is shown as follows:

J j = min
ud j∈S(∆)

∫ tk+N

tk
L(x̃ j(t),ud j(t))dt (4.6a)

s.t. ˙̃x j(t) = Fj(x̂(t),ud j(t)) (4.6b)

x̂(t) = [x̄1(tk)T · · · x̄ j−1(tk)T x̃ j(t)T x̄ j+1(tk)T · · · x̄Nsys(tk)
T]T (4.6c)

ud j(t) ∈U j, ∀ t ∈ [tk, tk+N) (4.6d)

x̃ j(tk) = x̄ j(tk) (4.6e)

∂V (x̄(tk))
∂x j

(Fj(x̄(tk),ud j(tk)))≤
∂V (x̄(tk))

∂x j
(Fj(x̄(tk),Φ j(x̄(tk)))),

if x̄(tk) ∈Ωρ\Ωρs (4.6f)

V (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if x̄(tk) ∈Ωρs (4.6g)

where x̃ j is the predicted state trajectory for subsystem j, S(∆) is the set of piecewise constant

functions with period ∆, and N is the number of sampling periods in the prediction horizon for

subsystem j. The optimal input trajectory computed by this LMPC j is denoted by u∗d j
(t), which

is calculated over the entire prediction horizon t ∈ [tk, tk+N). The control action computed for the

first sampling period of the prediction horizon u∗d j
(tk) is sent by LMPC j to its control actuators in

subsystem j to be applied over the next sampling period. The objective function of Eq. 5.2.13a is

the integral of L(x̃ j(t),ud j(t)) over the prediction horizon, where L(x j,u j) is typically in a quadratic

form of xT
j Q jx j + uT

j R ju j, and Q j and R j are the weighting matrices of the states and the inputs

of subsystem j respectively. The states of each subsystem will be driven towards the origin by

minimizing this objective function. The constraint of Eq. 5.2.13b is the first-principles model of

Eq. 5.2.2 used to predict the states of the closed-loop subsystem j. x̂(t) is a vector containing the

predicted states of subsystem j, x̃ j(t), and the measured states of all other subsystems at t = tk,

x̄i(tk), ∀ i = 1, ...,Nsys,and i ̸= j. Eq. 5.2.13d is the input constraints on ud j applied over the entire

prediction horizon, and Eq. 5.2.13e defines the initial conditions of Eq. 5.2.13b for subsystem j,

which is the state measurement x̄ j(t) at t = tk. Eq. 5.2.13f is a constraint that forces the closed-loop

state of subsystem j to move towards the origin at a minimum rate characterized by the Lyapunov

function V and the Lyapunov-based control law Φ j(x̄(tk)) if x̄(tk) ∈ Ωρ\Ωρs . If x̄(tk) enters the

terminal set region Ωρs , then the states x̃ j predicted by Eq. 5.2.13b will be maintained in Ωρs for

the entire prediction horizon.

Since the decentralized LMPCs solve different optimization problems specific to their

91

respective subsystems and are computed in separate processors in parallel, the computation time

for solving one iteration of the entire decentralized LMPC design in one sampling period (assuming

that the feedback measurements are available to both controllers at synchronous intervals) will be

the maximum time out of the two LMPCs.

4.2.3 Distributed LMPC

To achieve better closed-loop control performance, some level of communication may be

established between the different controllers. In this study, we consider an iterative distributed

MPC system, which allows signal exchanges between all controllers, thereby allowing each

controller to have full knowledge of the predicted state evolution along the prediction horizon and

yielding better closed-loop performance via multiple iterations at the cost of more computational

time. In the context that two LMPCs are designed, both controllers communicate with each

other to cooperatively optimize the control actions. The controllers solve their respective

optimization problems independently in a parallel structure, and solutions to each control problem

are exchanged at the end of each iteration. More specifically, the following implementation strategy

is used:

1. At each sampling instant tk, each LMPC j, j = 1, ...,Nsys, receives the state measurement

x̄(t) at t = tk from all the sensors.

2. At iteration c = 1, each LMPC j evaluates future trajectories of ud j(t) assuming the control

actions of all other subsystemsare calculated by the Lyapunov-based control law, ui(t) =

Φi(x̄(tk)),∀t ∈ [tk, tk+N), i = 1, ...,Nsys, i ̸= j. The LMPCs then exchange their future input

trajectories, calculate and store the value of their own objective function.

3. At iteration c > 1:

(a) Each LMPC evaluates its own future input trajectory based on state measurement x̄(tk)

and the latest received input trajectories from the other LMPCs.
(b) The LMPCs exchange their future input trajectories. Each LMPC calculates and stores

the value of the cost function.

4. When a termination criterion is satisfied, each LMPC sends its entire future input trajectory

corresponding to the smallest value of the cost function to its actuators. If the termination

criterion is not satisfied, go to back Step 3 (c ← c+1).

5. When a new state measurement x̄ is received, go to Step 1 (k← k+1).

92

Following the same variables and constraints as defined in a decentralized LMPC design, the

optimization problem of LMPC 1 in an iterative distributed LMPC at iteration c = 1 is presented

as follows:

J = min
ud j∈S(∆)

∫ tk+N

tk
L(x̃(t),ud j(t),Φi(x̃(t)))dt (4.7a)

s.t. ˙̃x(t) = F(x̃(t),ud j(t),Φi(x̃(t))) (4.7b)

ud j(t) ∈U j, ∀ t ∈ [tk, tk+N) (4.7c)

x̃(tk) = x̄(tk) (4.7d)

∂V (x̄(tk))
∂x

(F(x̄(tk),ud j(tk),Φi(x̄(tk))))≤
∂V (x̄(tk))

∂x
(F(x̄(tk),ΦΦΦ(x̄(tk)))),

if x̄(tk) ∈Ωρ̂\Ωρs (4.7e)

V (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if x̄(tk) ∈Ωρs (4.7f)

where for each control action j corresponding to subsystem j, i = 1, ...,Nsys, i ̸= j, which refers

to the control actions of all other subsystems except for j. At iteration c > 1, after the exchange

of the optimized input trajectories u∗d j
(t),∀t ∈ [tk, tk+N) between all LMPCs j = 1, ...,Nsys, the

optimization problem of LMPC j is as follows:

J = min
ud j∈S(∆)

∫ tk+N

tk
L(x̃(t),ud j(t),u

∗
di
(t))dt (4.8a)

s.t. ˙̃x(t) = F(x̃(t),ud j(t),u
∗
di
(t)) (4.8b)

ud j(t) ∈U j, ∀ t ∈ [tk, tk+N) (4.8c)

x̃(tk) = x̄(tk) (4.8d)

∂V (x̄(tk))
∂x

(F(x̄(tk),ud j(tk),u
∗
di
(tk))≤

∂V (x̄(tk))
∂x

(F(x̄(tk),ΦΦΦ(x̄(tk)))),

if x̄(tk) ∈Ωρ̂\Ωρs (4.8e)

V (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if x̄(tk) ∈Ωρs (4.8f)

At each iteration c ≥ 1, the two LMPCs can be solved simultaneously via parallel computing in

separate processors. Therefore, the total computation time required for iterative distributed LMPC

is the maximum solving time out of the two controllers accounting for all the iterations required

before the termination criterion is met. The termination condition can be of many forms, e.g., c

must not exceed a maximum iteration number cmax (i.e., c ≤ cmax), the computational time for

solving each LMPC must not exceed a maximum time period, or the difference in the cost function

93

or of the solution trajectory between two consecutive iterations is smaller than a threshold value.

During implementation, when one such criterion is met, the iterations will be terminated.

Once the optimization problems of all subsystems j = 1, ...,Nsys are solved, the optimal control

actions of the proposed decentralized or distributed LMPC systems are defined as follows:

u j(t) = u∗d j
(tk), j = 1, ...,Nsys, ∀ t ∈ [tk, tk+1) (4.9)

4.3 Intelligent Cyber-Attacks

With the intention of destroying the control objectives of the system, cyber-attacks can

jeopardize system stability. Intelligent cyber-attacks could target sensors, actuators, and/or the

communication channels in the system [16]. In this work, we only consider sensor cyber-attacks.

Falsified sensor feedback measurements that do not accurately report the true states of the process

will result in incorrect control actions being calculated by the controllers, which may ultimately

drive the true process states outside of the stability region. The cyber-attacks may have access

to the stability region which the controllers are designed to operate the process within, and

correspondingly they may have knowledge on any existing alarms configured on the input and

output variables such that no alarms will be triggered to bring human attention and intervention,

and the controllers are still able to compute feasible control actions based on the falsified sensor

measurements.

4.3.1 Design of Cyber-Attacks on Sensors

Sensor cyber-attacks can target any sensor in the overall system, regardless of the structure of

the system being centralized, decentralized, or distributed. There are some standard types of

cyber-attacks considered in literature [22, 97], and the formulation details of three of them are

shown in this section. For simplicity, the following cyber-attacks will be introduced in the

context of a decentralized LMPC system where the Lyapunov function of each subsystem Vj is

assessed independently. However, the same form of cyber-attacks can be applied to systems under

centralized and distributed control as well. Note that Vj is a function of x j exclusively. Therefore,

the design of the cyber-attacks is with respect to the stability region of each subsystem respectively.

Remark 4.1. In this work, we only consider sensor cyber-attacks. However, cyber-attacks

can also happen in actuators or in any communication channels. Specifically, if the attacker

94

has knowledge on the architecture of the control system being distributed, the attacks could

be injected in the inter-controller communication channels. The controllers communicate their

future input trajectories with each other, which gives information on the future predicted states of

other subsystems. If such information is falsified, the controllers will calculate incorrect control

actions based on the received wrongful information, and these incorrect control actions will get

communicated to other controllers again through iterations, and the impact of the cyber-attack

will propagate and magnify. Investigating the inter-controller communication channel attacks and

detecting such attacks based on sensor data or other forms of metrics will be an interesting future

research direction.

4.3.1.1 Min-Max Cyber-attack

Maximum disruption impact is achieved by a min-max attack within a short period of time without

triggering any alarms. The falsified sensor measurement will be set to a value furthest away from

the value of the current true state without exiting the stability region, and thus the resulting falsified

measurements x̄ j will be on the boundary of the stability region, i.e., Vj(x̄ j) = ρ j. Depending on

the value of x j, the furthest value from the current state might be the maximum or the minimum

as characterized by the boundary of the stability region. Therefore, the min-max attack on one

particular subsystem j can be formulated as follows:

x̄ j(ti) = arg(min/max)x j{x j ∈ Rnj | Vj(x j(ti)) = ρ j}, ∀ i ∈ [i0, i0 +La] (4.10)

where i0 is the time instant that the attack is injected, x̄ j denotes the compromised sensor
measurement, La is the total duration of the attack in terms of sampling periods, ρ j refers to the

level set of the Lyapunov function Vj(x j) that characterizes the stability region of the closed-loop

subsystem of Eq. 5.2.2 under the decentralized LMPC.

4.3.1.2 Surge Cyber-attack

Surge attacks induce maximum deviation for an initial short period, and then the attacked value

is set to a reduced value thereafter such that the cumulative deviation will not exceed a certain

threshold, which is typically examined by conventional detection methods such as Cumulative

Sum [16, 80]. The initial surge value that causes maximum impact is also defined based on the

stability region of the subsystem j, Ωρ j . Designing the length of the initial surge period and the

attacked sensor measurement after the surge can be of many forms, as long as the cumulative

error between state measurements and their predicted true values (usually given by an estimation

95

algorithm) for the entire attack duration does not exceed the statistics-based threshold defined in

other detection methods (e.g., CUSUM). For our study, the attack after the initial surge is designed

to act as a sufficiently small bounded noise imposed on the attacked sensor. The formulation of the

surge attack is as follows:

x̄ j(ti) = arg(min/max)x j{x j ∈ Rnj | Vj(x j(ti)) = ρ j}, if i0 ≤ i≤ i0 +Ls

x̄ j(ti) = x j(ti)+η(ti), Vj(x̄ j(ti))< ρ j, if i0 +Ls < i≤ i0 +La

(4.11)

where Ls is the duration of the initial surge, and ηl ≤ η(ti)≤ ηu is the bounded noise added on the

sensor measurement after the initial surge period, where ηl and ηu are the lower and upper bounds

of the noise, respectively. Here, the reduced attack value is designed to have much lesser magnitude

and lower impact compared to the min/max value achieved during the initial surge so that the attack

could last for a long time without being detected by conventional detection methods. Therefore,

the Lyapunov function of the reduced attack measurement should not exceed the boundary of the

stability region, i.e., Vj(x̄ j) < ρ j. In the case that the additive noise does generate x̄ j(ti) such that

Vj(x̄ j(ti)) > ρ j due to the true state x j already outside of the stability region, x̄ j after the surge

would be set to the closest point on the boundary of the stability region to the true state value until

the true state returns inside the stability region, after which x̄ j would take the form of having a

sufficiently small bounded noise added onto the true state measurement.

4.3.1.3 Geometric Cyber-attack

Under geometric cyber-attacks, closed-loop system stability deteriorates at a geometric speed until

the attacked value reaches the maximum or minimum allowable limit as characterized by the

stability region of the subsystem. Geometric attacks can be written as follows:

x̄ j(ti) = x j(ti)+β × (1+α)i−i0, ∀ i ∈ [i0, i0 +La] (4.12)

where β and α define the initial magnitude and the speed of the geometric attack, respectively. A

small constant β ∈R is added to the true measured output x j(ti0) at the start of the attack such that

x j(ti0)+β is well below the alarm threshold. At each subsequent time step after ti0 , β is multiplied

by a factor (1+α), α ∈ (0,1), until x̄ j reaches the maximum allowable attack value bounded

by Ωρ j . x̄ j is increasing or decreasing geometrically depending on the sign of the parameter β .

Attackers will choose the two parameters α and β based on Ωρ j and the attack duration La.

96

4.3.2 Robustness of Decentralized LMPC against Cyber-Attacks

Both decentralized and distributed LMPC systems are designed to alleviate the computational

complexity and effort of a centralized control problem regulating multiple subsystems.

Considering the inherent structure and operating requirement of both systems, the decentralized

control system exhibits greater robustness against potential cyber-attacks. Firstly, there must exist

inter-controller communication in a distributed control system to exchange information on the

control actions calculated by each distributed local controller. With additional communication

channels between controllers built for this purpose, it creates a greater exposure surface that is

vulnerable to cyber-attacks targeting communication channels. Controllers in the decentralized

control system do not share any information, and therefore, eliminating this layer of potential

threat. Secondly, every local controller in a distributed control system has knowledge on how the

overall process dynamically evolves, and receives full-state measurements of the entire process at

every sampling period as required. This means that, if any one of the many sensors of the entire

system is falsified, it would result in erroneous calculations in all local controllers, and the error

would propagate as the incorrect control actions calculated by the controllers are exchanged. On

the other hand, decentralized controllers only have knowledge of the process dynamics of the local

subsystem, and are designed to only regulate the states of the respective subsystem. Depending

on how the overall process is partitioned, local controllers in the decentralized control system

may not need information on feedback measurements of the process states of other subsystems.

Therefore, in the case that only one or a few subsystems are attacked, the decentralized controllers

regulating those un-attacked subsystems will not be affected at all, and are still able to maintain

local subsystem stability. This will be demonstrated in the simulation studies in Section 4.5.

4.4 Detection of Cyber-Attacks

Since physical processes may be prone to structural or parameter changes, and sophisticated

stealthy attacks may have knowledge on the process behavior and the underlying model,

model-based detection algorithms may be less effective than data-based detection methods [16].

Most model-based detection methods – such as the Cumulative Sum method – rely on the

availability of an accurate model that describes the dynamics of the process, and they determine

the presence of an anomaly or a cyber-attack in the system by examining the discrepancy between

a model-based predictive estimate and the actual process output. There are some disadvantages

to these model-based methods. One disadvantage is that during real-time operation, the process

97

model is subject to structural and parameter changes, and therefore the model used to construct

the detector also needs to be adjusted to reflect the same changes. Another disadvantage is that,

the intelligent cyber-attacks may have information on the setup of the control system including

the design of the model-based detector, and therefore, could adopt attack tactics that counteract

the detection scheme. For example, a Cumulative Sum method would not be able to detect surge

attacks or any other forms of attacks that have prior knowledge on the detection threshold imposed

on the cumulative error in the state measurement. Therefore, these potential shortcomings provide

motivation for developing data-based detection methods which are independent from the physical

process model and are resilient to process changes and stealthy attacks designed based on process

behavior. Amongst data-based methods, machine learning algorithms provide many advanced and

flexible capabilities of classification and regression; more specifically, by using different categories

of training data and constructing different training algorithms, the machine-learning-based detector

may be designed and optimized to perform a variety of different detection tasks. The interested

readers may also refer to [118] for a numerical analysis on the detection accuracy of a

machine-learning-based detection method and a model-based statistics detection method. Neural

networks (NN), as one of the advanced machine-learning techniques, have proven to be successful

in a variety of applications, solving both supervised and unsupervised classification problems. One

advantage of NN over other classification methods such as k-nearest-neighbors, random forest, and

support vector machine, is that a large number of nonlinear activation functions, tuning parameters,

and alternative training algorithms can be used to optimize the overall model accuracy [109].

In our study, we use a feed-forward neural network (FNN) for supervised classification. In

supervised classification, the NN will be trained using data with labels corresponding to each

target class, and its task will be to classify new data samples into the respective known classes that

the new data identifies the most similarities with. A conventional FNN consists of an input layer,

an output layer, and a customizable number of hidden layers in between. Each layer undergoes a

series of nonlinear functions, which are activation functions of the weight sum of inputs (or neurons

in the previous layer) with a bias term, and provides the values for the neurons in the current layer.

The neurons in the first hidden layer are derived from the inputs, and the outputs are calculated

from the neurons in the last hidden layer.

As the accuracy of the FNN model depends heavily on the types and quality of the training

data, selecting the input features for the FNN model that effectively and concisely capture the

evolution of the process states is critical. Considering the control objective of the system, the

states of the nonlinear subsystems of Eq. 5.2.2 are driven towards the operating steady-state

98

under the decentralized or the distributed LMPC subject to Lyapunov-based constraints. The

Lyapunov function of the subsystem, Vj(x̄ j), which is a function of the measured process states

x̄ j of the respective subsystem j only, captures the dynamic features of all states. Thus, Vj(x̄ j)

is an effective one-dimensional parameter used as the input variables for the attack detection

problem. More specifically, since multiple subsystems are involved, we record the Lyapunov

function of all subsystems using the state measurements recorded along the time-varying trajectory,

i.e., V1(x̄1(ti)), V2(x̄2(ti)), i = 1, ...,NT , and concatenate V1 and V2 as a single one-dimensional

vector of dimension 1× (2NT). The resulting vector contains information on the evolution of the

process states of the two subsystems independently, and will be used as the input vector into the

feed-forward NN detector model to determine whether abnormalities exist in any of the sensor

measurements in the latest time window of ∆×NT , where ∆ is the sampling period of the LMPC

system. Since the information of the state measurements of the two subsystems are recorded and

presented in the detector input vector independently, depending on the structure of the NN detector

model and the classes of the training data, the FNN detector can be trained to either detect the

presence of an attack anywhere in the overall system, or identify the location of an attack (i.e.,

which subsystem the problematic sensors are located).

The structure of a basic one-hidden-layer FNN model for cyber-attack detection is shown in

Fig. 6.1. On the input layer, each neuron represents the Lyapunov function Vj(x̄ j(ti)) at time instant

ti, for j = 1,2, i = 1, ...,NT , and resulting in a total of p = 1, ...,2NT neurons. The output layer

provides an output vector the the predicted class label, where the number of neurons corresponds to

the number of possible classes. The mathematical formulation of a one-hidden-layer FNN model

is shown as follows:

θ
(1)
k = g1(

2NT

∑
p=1

w(1)
pk Vj(x̄ j(ti))+b(1)k) (4.13a)

θ
(2)
k = g2(

h

∑
p=1

w(2)
pk θ

(1)
p +b(2)k) (4.13b)

ypred = [θ
(2)
1 ,θ

(2)
2 , ...,θ

(2)
H]T (4.13c)

with θ
(1)
k representing neurons in the hidden layer layer, where k = 1, ...,h is the number of neurons

in hidden layer. θ
(2)
k represents neurons in the output layer, where k = 1, ...,H, and H is the

number of class labels. In this work, we use one hidden layer for this FNN detector model. Using

the similar formulations as Eq. 6.6, multiple hidden layers can also be constructed. The input

layer for each sample consists of variables V1(x̄1(ti)) and V2(x̄2(ti)) for i = 1, ...,NT . The weights

99

connecting neurons p and k in consecutive layers (from layer l− 1 to layer l) are w(l)
pk , and the

bias term on the kth neuron in the lth layer is b(l)k . Each layer calculates an output using the

information received from the previous layer, the optimized weights, biases, which are all passed

into a nonlinear activation function gl (some examples include hyperbolic tangent transfer function

g(z) = 2
1+e−2z −1, sigmoid function g(z) = 1

1+e−z , and softmax function g(zk) =
ezk

∑
H
i=1 ezi

where H is

the number of class labels). The output layer consists of a vector, ypred , which gives the predicted

probabilities of each class label, where the neuron with the highest probability indicates the final

predicted class label for the examined sample. Depending on the classification problem that the

neural network is trained to solve, the predicted class label can provide information on either the

presence of a cyber-attack, where the cyber-attack occurs, or the type of cyber-attack.

To obtain an optimal set of weights and biases in Eq. 6.6, the solver Adam is used to minimize

a binary cross-entropy loss function, which has the following form:

S(w) = (Ns ·
Ns

∑
q=1

yactual,q · ln(ypred,q))
−1 (4.14)

where q = 1, ...,Ns represents the number of samples in the training dataset, yactual is the vector of

target class labels of each sample, and ypred is the vector of the predicted probabilities associated

with each class label.

100

Figure 4.1: Feed-forward neural network structure with 1 hidden layer with inputs being the vector
of Lyapunov functions of two subsystems V1(x̄1(ti)) and V2(x̄2(ti)) with a detection window i =
1, ...,NT , and output being the probability of each class label for the examined trajectory of length
NT indicating the status and/or location of cyber-attack.

To build an FNN detector model, training data samples are collected, which consist of

closed-loop time-varying trajectories of the specific input vector variable suited for the detector

model, generated from simulations under different attack scenarios. Sensor cyber-attacks with

varying duration La are introduced at random times ti0 on specific sensor(s) during the simulation

period NT ×∆, which is the same length as the detection window. We consider a system where

some sensors are attacked and some remain intact. If no attacks occur anywhere in the system

within NT ×∆, then the measurement signals are labeled and should be classified as “no attack”.

In order to improve the detection accuracy, various closed-loop state evolutions within the stability

region Ωρ need to be accounted for; therefore, training data is collected for a broad range of

initial conditions within the stability region. Full state measurements x̄(t) are recorded along

the time-varying trajectory for t ∈ [t0, tNT], and the Lyapunov functions of both subsystems are

computed. Each training sample reflects a different set of initial conditions, and within each class

labels, equal number of samples are collected to ensure training accuracy. Training and testing

101

accuracies are the ratios between the number of correctly classified samples and total number of

samples in the training and testing sets, respectively.

4.4.1 Online Detection

When the FNN detector is implemented online with the process controlled by the centralized,

the decentralized, or the distributed LMPC system, it uses a moving horizon detection window

of a fixed length NT , which is the same length as the time-varying trajectories of the training

data. The detector is activated every time full-state measurements become available; it receives the

latest sequences of the process state measurements of all subsystems with a fixed length NT , and

computes the Lyapunov function Vj of each subsystem j respectively. The values of Vj along the

time-varying trajectory of length NT will then be concatenated into a single one-dimensional vector

to be used as the input vector for the FNN detector. If the FNN detector is trained to differentiate

between “not attacked” and “attacked”, then at every sampling period, it makes a decision on

whether the sensor measurements over the latest time period of ∆×NT have been tampered. In

addition, if the FNN detector is trained with multiple classes where each class represents one

particular subsystem being attacked, then by examining the concatenated input vector containing

all Vj, j = 1, ...,Nsys along the detection window NT , the detector will determine the particular

subsystem where the tampered sensors are located. When the occurrence of a sensor cyber-attack

has been confirmed, the sensor measurements can no longer be trusted, and all sensors will be

switched for secure back-up sensors to completely mitigate the attack.

Remark 4.2. The availability of back-up sensors is always necessary in case of instrument failure,

or in this case, sensor cyber-attacks. These redundant sensors are not connected to the online

system until a necessary scenario arises, and therefore will remain secure to any cyber-attacks

that target control system in real time. Here, we propose one strategy for mitigating the impact of

the cyber-attack by physically switching out the problematic sensors; other mitigation measures

have also been proposed in our previous work in [120] where we use a recurrent neural network

model to reconstruct tampered state measurements and restore system stability by using these state

observers.

102

4.5 Application to a Two-CSTR-in-Series Process

In this study, we simulate a chemical process consisting of two well-mixed, non-isothermal

continuous stirred tank reactors (CSTRs) that operate in series. An irreversible second-order

exothermic reaction takes place in each reactor, where the feed reactant A is transformed into

product B. Reactant material A is fed into each of the two reactors j = 1,2, with inlet concentrations

CA j0, inlet temperatures Tj0 and the reactor feed volumetric flow rates Fj0. On each CSTR, a

heating jacket is installed to supply and remove heat at a rate Q j, j = 1,2. Considering the material

and energy balances of the overall process, the dynamic models of this two-CSTR-in-series process

can be represented as follows:

dCA1

dt
=

F10

VL1

(CA10−CA1)− k0e
−E
RT1 C2

A1 (4.15a)

dT1

dt
=

F10

VL1

(T10−T1)+
−∆H
ρLCp

k0e
−E
RT1 C2

A1 +
Q1

ρLCpVL1

(4.15b)

dCA2

dt
=

F20

VL2

CA20 +
F10

VL2

CA1−
F10 +F20

VL2

CA2− k0e
−E
RT2 C2

A2 (4.15c)

dT2

dt
=

F20

VL2

T20 +
F10

VL2

T1−
F10 +F20

VL2

T2 +
−∆H
ρLCp

k0e
−E
RT2 C2

A2 +
Q2

ρLCpVL2

(4.15d)

where CA j, VL j , Tj and Q j, j = 1,2 are the concentration of reactant A, the volume of the reacting

liquid, the temperature, and the heat input rate in the first and the second reactor, respectively. The

reacting liquid has a constant density of ρL and a constant heat capacity of Cp for both reactors.

E, R, ∆H, and k0 represent the activation energy, ideal gas constant, enthalpy of the reaction, and

pre-exponential constant, respectively. Table 5.2.1 lists all parameter values of this process.

For both CSTRs, the manipulated inputs are the inlet concentration of species A and the heat

input rate supplied by the heating jacket, which are represented by the deviation variables ∆CA j0 =

CA j0 −CA j0s , ∆Q j = Q j −Q js , j = 1,2, respectively. The manipulated inputs are bounded as

follows: |∆CA j0| ≤ 3.5 kmol/m3 and |∆Q j| ≤ 5×105 kJ/hr, j = 1,2. The states of the closed-loop

system are the concentration of species A and the temperature in the first and the second reactor,

which are also represented by their deviation variables such that the equilibrium point of the system

is at the origin of the state-space. Therefore, the vector of closed-loop states is x= [CA1−CA1s T1−
T1s CA2−CA2s T2−T2s]

T , where CA1s , CA2s , T1s and T2s are the steady-state values of concentration

of A and temperature in each of the two tanks, respectively.

We analyze and compare three different control architectures in this example. In a centralized

103

Table 4.1: Parameter values of the two CSTRs in series.

T10 = 300 K T20 = 300 K

F10 = 5 m3/hr F20 = 5 m3/hr

VL1 = 1 m3 VL2 = 1 m3

T1s = 401.9 K T2s = 401.9 K

CA1s = 1.954 kmol/m3 CA2s = 1.954 kmol/m3

CA10s = 4 kmol/m3 CA20s = 4 kmol/m3

Q1s = 0.0 kJ/hr Q2s = 0.0 kJ/hr

k0 = 8.46×106 m3/kmol hr ∆H =−1.15×104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 E = 5×104 kJ/kmol

framework, the centralized controller receives feedback measurements of all states x, and computes

the manipulated inputs for the entire system, u = [∆CA10 ∆Q1 ∆CA20 ∆Q2]
T . The objective

function in the centralized LMPC optimization problem is L(x,u) = xT Qx+ uT Ru, where Q =

diag[2×103 1 2×103 1], R= diag[8×10−13 0.001 8×10−13 0.001]. In a decentralized scheme,

two LMPCs are designed for the two subsystems respectively, and they are solved in separate

processors independently without any inter-controller communications. Due to the structure and

the interactions between the two CSTRs, the dynamic behvaior of the second CSTR is impacted

by that of the first CSTR, but not vice versa. Thus, LMPC 1 receives only local state feedback

measurements of the first CSTR as other state measurements in the system are not needed to

compute the manipulated control actions for the first CSTR. To predict the process states of the

second CSTR, LMPC 2 needs feedback information on all states, and therefore receives feedback

measurements of both CSTRs to calculate the control actions for the second CSTR. The objective

function in the decentralized LMPC j optimization problem has the form L j(x j,u j) = xT
j Q jx j +

uT
j R ju j, where Q j = diag[2× 103 1], R j = diag[8× 10−13 0.001], for j = 1,2, and u j, j = 1,2

denote the manipulated input vectors of each subsystem j. In a distributed system, both LMPCs

are designed to predict the state evolution of the entire process, and then calculate the respective

control actions for each CSTR accordingly. Therefore, feedback measurements of both CSTRs

are received by both LMPCs in the distributed system. The objective function in each distributed

LMPC is L(x,u1,u2) = xT Qx+ uT
1 R1u1 + uT

2 R2u2, where Q = diag[2× 103 1 2× 103 1], R1 =

R2 = diag[8× 10−13 0.001], and u1 = [∆CA10 ∆Q1]
T , u2 = ∆CA20 ∆Q2]

T . We assume that the

104

feedback measurements of all states are available at the same synchronous intervals ∆ = 10−2 hr.

The control Lyapunov function for each decentralized LMPC j is Vj(x j) = xT
j Pjx j, for j = 1,2,

and the control Lyapunov function for the centralized and the distributed LMPCs is the sum of the

control Lyapunov functions for the two CSTRs, i.e., V (x) = V1(x1)+V2(x2) = xT
1 P1x1 + xT

2 P2x2,

with the following positive definite Pj matrices:

P1 = P2 =

[
1060 22

22 0.52

]
(4.16)

The closed-loop stability region Ωρ j for each subsystem j = 1,2, defined by the largest level sets

of the control Lyapunov functions for subsystem 1 and 2 respectively, are ρ1 = ρ2 = 392. The

ultimate bounded regions Ωρs j
are chosen to be ρs j = 7, for j = 1,2; the positive constants ρ j and

ρs j are determined via extensive closed-loop simulations with u j ∈U j.

To numerically simulate the dynamic model of Eq. 8.45, we use the explicit Euler method with

an integration time step of hc = 10−4 hr. The nonlinear optimization problems of the centralized,

the decentralized, and the distributed LMPCs are solved with the same sampling period of ∆ =

10−2 hr using PyIpopt, which is a Python module of the IPOPT software package.

4.5.1 Closed-loop Performance without Detection

To illustrate the impact of the three types of sensor cyber-attacks considered for this system, we

compare the closed-loop performance of the decentralized LMPC system when attacked and when

not attacked. Fig. 4.2 shows in state-space plot the closed-loop evolution of the process states

of the second CSTR (i.e., CA2−CA2s and T2−T2s) under the decentralized LMPC system when

un-attacked and when one type of sensor attack has been injected during operation. The three types

of attacks – min-max, geometric, and surge attacks – are respectively added on the temperature

sensor of the second CSTR at time t = 0.04 hr and lasted until the end of the simulation period

of 0.3 hr. The tampered sensor measurements, as well as the true process states are shown in the

same plots. We can see that the falsified sensor measurements remain within the stability region

boundaries, communicating to the controller that the solution to the optimization problem of the

system is still feasible, causing the controller to calculate incorrect control actions with respect

to the true process state. As a result, the true process states of the system are eventually driven

outside of the stability region without triggering any alarms in the absence of an adequate detection

mechanism.

105

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-200

-150

-100

-50

0

50

100

150

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-200

-150

-100

-50

0

50

100

150

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-200

-150

-100

-50

0

50

100

150

Figure 4.2: State-space closed-loop trajectories of the true, the measured, and the un-attacked
process states of the second CSTR under the decentralized LMPC system when the temperature
sensor T2 is attacked by min-max, surge, and geometric attacks, respectively.

While sensors of one subsystem may be compromised, its impact on other subsystems depends

on the structure and the resulting actions of the control system. Figs. 4.3 – 4.5 show the true state

profiles of the two-CSTR process of Eq. 8.45 operated under the centralized, the decentralized,

and the distributed LMPC systems when under min-max, surge, and geometric sensor attacks,

respectively. All types of attacks are added on the temperature sensor T2 of the second CSTR

starting at t = 0.05 hr. The measured states from attacked sensors are not shown in these figures

because depending on the location of the true process state, the attacked sensor measurement will

adjust and show different patterns as well. Since the problematic sensor is in the second CSTR

subsystem, the true states of the second CSTR (x3 and x4) under the centralized, decentralized,

and distributed LMPC systems all exhibit destabilized behavior and are no longer driven to the

operating steady-state as a result of the cyber-attack. The true states x1 and x2 of the first

CSTR subsystem, however, may or may not be impacted by the sensor attacks in the second

CSTR subsystem depending on the closed-loop control system. The decentralized LMPC system

demonstrates robustness against sensor cyber-attacks on the temperature sensor of the second

CSTR, and ensures the stability of the intact subsystem (i.e., x1 and x2 which belong to the first

CSTR), which has not experienced cyber-attacks. However, when the process is operated under

the centralized and the distributed LMPC systems, varying degrees of oscillations and deviations

are seen in the true state profiles of the first CSTR. Moreover, the true state profiles under the

106

centralized LMPC demonstrate significantly worse performance for both CSTR subsystems when

under min-max and surge attacks. Although the true state trajectories under the distributed LMPC

system may seem overlapped with that under the decentralized LMPC system, the closed-loop

performance under the distributed LMPC system is inferior than the decentralized LMPC system

when subject to sensor attacks on a particular subsystem. To further illustrate the robustness of

the decentralized LMPC system compared to the distributed LMPC system, the sum of squared

percentage error of the two CSTRs in the form of SSE1 =
∫ tNT

0 ((
CA1−CA1s

CA1s
)2 + (

T1−T1s
T1s

)2)dt and

SSE2 =
∫ tNT

0 ((
CA2−CA2s

CA2s
)2 +(

T2−T2s
T2s

)2)dt over the simulation period of tNT = 0.3 hr are calculated

for the decentralized and distributed LMPC systems when the temperature sensor T2 is under

the three attack types and when under no attacks. The SSE results are shown in Table 4.2. We

can see that the SSE of the decentralized LMPC 1 stays constant regardless of the presence of

an attack; when either min-max, surge, or geometric attacks are injected into the second CSTR,

while the decentralized LMPC 2 does yield higher SSE values as a result of the sensor attack, the

decentralized LMPC 1 yields SSE values identical to that of the “not attacked” scenario. However,

the SSE values of the distributed LMPC 1 when under the three types of attacks are inconsistent

and higher than that under no attacks.

The decentralized LMPC system outperforms the centralized and the distributed LMPC

systems because the objective function used in each decentralized LMPC only depends on local

state feedback measurements of its own subsystem, and is not impacted by state measurements of

other subsystems. Therefore, if a particular subsystem is not attacked, the decentralized LMPC

for that subsystem will ensure and sustain its stability. On the other hand, due to the centralized

LMPC and the distributed LMPC system’s requirements of using full-state measurements, the

destabilizing impact of sensor cyber-attacks on one particular subsystem will propagate to other

subsystems as well. In both centralized LMPC and distributed LMPC structures, the objective

function in the LMPC optimization problem accounts for variations in the feedback measurements

of all states in order to bring all states to the operating steady-state. Therefore, if one sensor of

the overall process is attacked and reflects false information, then the control actions calculated by

the centralized LMPC or the distributed LMPC system will deviate from the supposedly optimal

value, and cause destabilizing behavior in the true process states of all subsystems.

4.5.2 FNN Detector Modeling

Training data are collected under closed-loop operation for a simulation period of tNT = 0.3 hr with

NT = 30 and ∆ = 0.01 hr. Cyber-attacks are added at random times during the simulation period

107

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3
-10

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3
-250

-200

-150

-100

-50

0

50

100

150

Figure 4.3: Closed-loop trajectories of true states the two-CSTR process operated under
centralized, decentralized, and distributed LMPC systems when min-max attacks are added on
the temperature sensor T2 of the second CSTR at t = 0.05 hr.

and last until the end of the period. The state measurements x̄ j, j = 1,2 of both CSTRs at every

sampling period are recorded, then the Lyapunov function of each subsystem Vj(x̄ j), j = 1,2 is

calculated along the time-varying trajectory of length NT = 30 to be concatenated and used as the

input vector for the FNN model. Such state measurements were collected for un-attacked scenarios

as well as scenarios in which either the temperature sensor of the first CSTR T1, or the temperature

108

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3
-40

-20

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25

-50

0

50

100

Figure 4.4: Closed-loop trajectories of true states the two-CSTR process operated under
centralized, decentralized, and distributed LMPC systems when surge attacks are added on the
temperature sensor T2 of the second CSTR at t = 0.05 hr.

sensor of the second CSTR T2, has been targeted by min-max attacks. Within each scenario, the

training data samples are obtained by simulating the closed-loop process under the decentralized

LMPC system starting from different set of initial conditions in the stability region. For training

data collection, we only simulate min-max sensor attacks; after obtaining a model with adequate

classification accuracy, we test this detector model against surge and geometric sensor attacks to

examine the accuracy of the detector against unknown types of sensor cyber-attacks. Depending on

whether the detector is designed to identify the presence of a sensor cyber-attack where 2 classes

109

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3
-10

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3
-100

-50

0

50

100

150

200

Figure 4.5: Closed-loop trajectories of true states the two-CSTR process operated under
centralized, decentralized, and distributed LMPC systems when geometric attacks are added on
the temperature sensor T2 of the second CSTR at t = 0.05 hr.

are involved (attacked vs. not attacked), or to identify which subsystem the sensor cyber-attack

has occurred where 3 classes are involved in this example (CSTR-1 attacked vs. CSTR-2 attacked

vs. not attacked), the collected training data are labeled differently. Both the 2-class detector and

the 3-class detector are FNN models consisting of one hidden layer with 10 neurons, which uses

a tanh activation function in the form of g1(z) = 2
1+e−2z −1. Then, on the output layer, a sigmoid

activation function in the form of g2(z) = 1
1+e−z is used to provide an output value between 0

and 1, which represents the predicted probability of the class labels. The number of layers and

the number of neurons in each layer is determined via a grid search method. There are some

110

Table 4.2: Sum of squared percentage error of the first and the second CSTR controlled by
decentralized and distributed LMPC systems when under no attacks and when the temperature
sensor T2 is attacked by min-max, surge, geometric cyber-attacks.

Decentralized SSE-1 Decentralized SSE-2 Distributed SSE-1 Distributed SSE-2

Not Attacked 1.4560 1.3815 1.4578 1.3956

Min-max 1.4560 6.9806 1.5081 7.1882

Surge 1.4560 1.5631 1.4586 1.5540

Geometric 1.4560 11.0521 1.4878 4.7149

standard nonlinear activation functions used in feedforward neural networks and available in the

Keras library; in our simulation, we chose to use tanh on the hidden layer, and sigmoid on the

output layer, as this combination produced the best prediction outcome and model accuracy. A

total of 1500 samples are collected for each class label (i.e., attack scenario), where 70% is used

for training and 30% is used for testing. The optimizer function used when minimizing the cost

function of the network is Adam and 50 epochs are carried out during training for both the 2-class

and the 3-class FNN detector models. The testing accuracies against the three different attack

types (min-max, surge, geometric) on either the temperature sensor of the first CSTR (i.e., x̄2) or

the temperature sensor of the second CSTR (i.e., x̄4) are shown in Table 4.3. Regardless of where

the attack happens, the 2-class FNN detector is able to identify the presence of a cyber sensor

attack accurately. Both detectors are able to achieve a testing accuracy of above 96% against all

attack scenarios. Moreover, the classification accuracy for the “not attacked” scenario is 100% for

both detectors, showing that the occurrence of false alarms is very low.

4.5.3 Closed-loop Operation with FNN Detector

After obtaining the FNN detector models with an adequate classification accuracy, we apply the

detector online. At each sampling instant after the state measurements are collected from the

sensors and before these measurements are communicated to the controllers, they are sent to the

detector. A moving horizon detection window of size NT × ∆ is implemented on the detector,

where the detector examines the Lyapunov functions of the latest measured state trajectories of

length NT for both subsystems j = 1,2 as the input vector for the FNN model (i.e., Vj(x̄ j(tk)) for

j = 1,2 and k = 1, ...,NT). Therefore, as the new state measurements are received by the detector,

the Lyapunov functions for these latest measurements are calculated and added to the input vector,

111

Table 4.3: Detection accuracies of NN detectors in response to min-max, geometric, and surge
attacks.

Detector 1 (2-class) Detector 2 (3-class)

(Attacked vs. Not Attacked) (T1 Attacked vs. T2 Attacked vs. Not Attacked)

Min-max on T1 99.93% 99.87%

Min-max on T2 99.94% 99.88%

Surge on T1 99.29% 98.57%

Surge on T2 98.22% 100.00%

Geometric on T1 96.88% 97.73%

Geometric on T2 99.47% 98.93%

Not Attacked 100.00% 100.00%

and the detection window moves forward one sampling step ∆. If the prediction provided by the

detector indicates that an attack has occurred within the detection window NT ×∆, then all sensors

in the process will be deemed un-trustworthy and should be switched to their back-up sensors. In

the case that a 3-class detector is used and is able to identify which subsystem is experiencing

sensor cyber-attacks, then a possible mitigation response is to only replace the sensors of the

targeted subsystem. However, knowing that cyber-attacks has entered the system and leaving the

overall network vulnerable, it is still good practice to examine all the sensors and act accordingly.

We simulate closed-loop operation of the two-CSTR process under the more robust decentralized

LMPC system integrated with the 2-class FNN detector. The total simulation period is 0.6 hr

with a sampling period of ∆ = 0.01 hr, where either the temperature sensor for T1 or T2 starts

experiencing one of the three types of cyber-attacks at t = 0.3 hr. The measured and the true states

of both CSTRs in state-space under different attack scenarios are shown in Figs. 4.6 – 4.8. After the

detector indicates the occurrence of a cyber-attack, all sensors of the system are deemed unreliable

and are switched to redundant back-up sensors to ensure the security of measurement data. The

detector experiences a slight time delay when detecting the presence of certain sensor attacks.

More specifically, a detection time delay of 2 sampling periods are observed when min-max and

surge attacks are added on the sensor for T1, and a detection time delay of 5 sampling periods for

geometric attacks on T1. When attacks target T2, the detection time delays for min-max, surge, and

geometric attacks are 0, 0, and 4 sampling periods, respectively. This means that as soon as the

sensor for T2 is attacked by min-max or surge attacks, and the attacked measurements are sent to

112

the detector, the detector flags it immediately and the sensors are switched to their secure back-up

sensors before the controller receives these incorrect measurements. Despite the time delays in

some cases, all true process states are maintained inside the stability region and eventually driven

back to the terminal set around the operating steady-state within 6 sampling periods (i.e., 0.06 hr).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

Figure 4.6: Closed-loop trajectories of true states the two-CSTR process operated under the
decentralized LMPC system when min-max attacks are added on the temperature sensor T2 of
the second CSTR at t = 0.30 hr, and detected by the 2-class FNN detector at t = 0.30 hr.

113

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

Figure 4.7: Closed-loop trajectories of true states the two-CSTR process operated under the
decentralized LMPC system when surge attacks are added on the temperature sensor T1 of the
first CSTR at t = 0.30 hr and detected by the 2-class FNN detector at t = 0.32 hr, after which all
sensors are switched to their secure back-up sensors and the true process states are driven back to
the ultimate bounded region Ωρs around the operating steady-state.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

Figure 4.8: Closed-loop trajectories of true states the two-CSTR process operated under the
decentralized LMPC system when geometric attacks are added on the temperature sensor T1 of
the first CSTR at t = 0.30 hr and detected by the 2-class FNN detector at t = 0.35 hr, after which
all sensors are switched to their secure back-up sensors and the true process states are maintained
within the ultimate bounded region Ωρs around the operating steady-state.

114

Chapter 5.1

Machine Learning-Based Distributed Model

Predictive Control of Nonlinear Processes

This chapter explores the design of distributed model predictive control (DMPC) systems for

nonlinear processes using machine learning models to predict nonlinear dynamic behavior.

Specifically, sequential and iterative distributed model predictive control systems are designed and

analyzed with respect to closed-loop stability and performance properties. Extensive open-loop

data within a desired operating region are used to develop Long Short-Term Memory (LSTM)

recurrent neural network models with a sufficiently small modeling error from the actual nonlinear

process model. Subsequently, these LSTM models are utilized in Lyapunov-based DMPC to

achieve efficient real-time computation time while ensuring closed-loop state boundedness and

convergence to the origin. Using a nonlinear chemical process network example, the simulation

results demonstrate the improved computational efficiency when the process is operated under

sequential and iterative DMPCs while the closed-loop performance is very close to the one of a

centralized MPC system.

With the rise of big data analytics, machine learning methodologies have gained increasing

recognition and demonstrated successful implementation in many traditional engineering fields.

One exemplar use of machine learning techniques in chemical engineering is the identification

of process models using recurrent neural networks (RNN), which has shown effectiveness in

modeling nonlinear dynamic systems. RNN is a class of artificial neural networks that, by using

feedback loops in its neurons and passing on past information derived from earlier inputs to the

current network, can represent temporal dynamic behaviors.

On the other hand, chemical process operation has extensively relied on automated control

115

systems, and the need of accounting for multivariable interactions and input/state constraints has

motivated the development of model predictive control (MPC). Moreover, augmentation in sensor

information and network-based communication increases the number of decision variables, state

variables, and measurement data, which in turn increases the complexity of the control problem

and the computation time if a centralized MPC is used. With these considerations in mind,

distributed control systems have been developed, where multiple controllers with inter-controller

communication are used to cooperatively calculate the control actions and achieve closed-loop

plant objectives. In this context, MPC is a natural control framework to implement due to

its ability to account for input and state constraints while also considering the actions of other

control actuators. In other words, the controllers communicate with each other to calculate

their distinct set of manipulated inputs that will collectively achieve the control objectives of

the closed-loop system. Many distributed MPC methods have been proposed in the literature

addressing the coordination of multiple MPCs that communicate to calculate the optimal input

trajectories in a distributed manner (the reader may refer to [27, 92, 101] for reviews of results on

distributed MPC, and to [31] for a review of network structure-based decomposition of control and

optimization problems). A robust distributed control approach to plant-wide operations based on

dissipativity was proposed in [114, 131]. Depending on the communication network, i.e., whether

is one-directional or bi-directional, two distributed architectures, namely sequential and iterative

distributed MPCs, were proposed in [70]. Furthermore, distributed MPC method was also used

in [71] to address the problem of introducing new control systems to pre-existing control schemes.

In a recent work [105], a fast and stable non-convex constrained distributed optimization algorithm

was developed and applied to distributed MPC. As distributed MPC systems also depend on an

accurate process model, the development and implementation of RNN models in distributed MPCs

is an important area yet to be explored. In the present work, we introduce distributed control

frameworks that employ a Long Short-Term-Memory (LSTM) network, which is a particular

type of RNN. The distributed control systems are designed via Lyapunov-based model predictive

control (LMPC) theory. Specifically, we explore both sequential distributed LMPC systems and

iterative distributed LMPC systems, and compare the closed-loop performances with that of a

centralized LMPC system.

The remainder of the chapter is organized as follows. Preliminaries on notation, the general

class of nonlinear systems, and the stabilizing Lypuanov-based controller for the nonlinear process

are given in Section 2. The structure and development of recurrent neural network and specifically

LSTM, as well as Lyapunov-based control using LSTM models are outlined in Section 3. In

116

Section 4, the formulation and proof for recursive feasibility and closed-loop stability of the

distributed Lyapunov-based model predictive control systems using an LSTM model as the

prediction model are presented. Lastly, Section 5 includes the application to a two-CSTR-in-series

process, demonstrating guaranteed closed-loop stability and enhanced computational efficiency of

the proposed distributed LMPC systems with respect to the centralized LMPC.

5.1.1 Preliminaries

5.1.1.1 Notation

For the remainder of this manuscript, the notation xT is used to denote the transpose of x. |·|
is used to denote the Euclidean norm of a vector. L fV (x) denotes the standard Lie derivative

L fV (x) := ∂V (x)
∂x f (x). Set subtraction is denoted by “\”, i.e., A\B := {x ∈ Rn | x ∈ A,x /∈ B}. /0

signifies the null set. The function f (·) is of class C 1 if it is continuously differentiable in its

domain. A continuous function α : [0,a)→ [0,∞) is said to belong to class K if it is strictly

increasing and is zero only when evaluated at zero.

5.1.1.2 Class of Systems

In this work, we consider a general class of nonlinear systems in which several distinct sets

of manipulated inputs are used, and each distinct set of manipulated inputs is responsible for

regulating a specific subsystem of the process. For the simplicity of notation, throughout the

manuscript, we consider two subsystems, subsystem 1 and subsystem 2, consisting of states x1

and x2 respectively, which are regulated by only u1 and u2 respectively. However, extending the

analysis to systems with more than two sets of distinct manipulated input vectors (i.e., having more

than two subsystems, with each one regulated by one distinct input vector u j, j = 1, ...,M, M > 2)

is conceptually straight-forward. The class of continuous-time nonlinear systems considered is

represented by the following system of first-order nonlinear ordinary differential equations:

ẋ = F(x,u1,u2,w) := f (x)+g1(x)u1 +g2(x)u2 + v(x)w, x(t0) = x0 (5.1.1)

where x ∈ Rn is the state vector, u1 ∈ Rm1 and u2 ∈ Rm2 are two separate sets of manipulated

input vectors, and w ∈W is the disturbance vector with W := {w ∈ Rr | |w| ≤ wm, wm ≥ 0}. The

control action constraints are defined by u1 ∈U1 := {umin
1i
≤ u1i ≤ umax

1i
, i = 1, ...,m1} ⊂ Rm1 , and

117

u2 ∈ U2 := {umin
2i
≤ u2i ≤ umax

2i
, i = 1, ...,m2} ⊂ Rm2 . f (·), g1(·), g2(·), and v(·) are sufficiently

smooth vector and matrix functions of dimensions n× 1, n×m1, n×m2, and n× r, respectively.

Throughout the manuscript, the initial time t0 is taken to be zero (t0 = 0), and it is assumed that

f (0) = 0, and thus, the origin is a steady-state of the nominal (i.e., w(t)≡ 0) system of Eq. 8.1 (i.e.,

(xs,u1s,u2s) = (0,0,0), where xs, u1s and u2s represent the steady-state state and input vectors).

5.1.1.3 Stability Assumptions

We assume that there exist stabilizing control laws u1 = Φ1(x) ∈U1,u2 = Φ2(x) ∈U2 (e.g., the

universal Sontag control law [67]) such that the origin of the nominal system of Eq. 8.1 with

w(t) ≡ 0 is rendered exponentially stable in the sense that there exists a C 1 Control Lyapunov

function V (x) such that the following inequalities hold for all x in an open neighborhood D around

the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (5.1.2a)

∂V (x)
∂x

F(x,Φ1(x),Φ2(x),0)≤−c3|x|2, (5.1.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (5.1.2c)

where c1, c2, c3 and c4 are positive constants. F(x,u1,u2,w) represents the nonlinear system of

Eq. 8.1. A set of candidate controllers Φ1(x) ∈ Rm1 and Φ2(x) ∈ Rm2 , both denoted by Φk(x)

where k = 1,2, is given in the following form:

φki(x) =

 − p+
√

p2 +q4

qT q
q if q ̸= 0

0 if q = 0
(5.1.3a)

Φki(x) =


umin

ki
if φki(x)< umin

ki

φki(x) if umin
ki
≤ φki(x)≤ umax

ki

umax
ki

if φki(x)> umax
ki

(5.1.3b)

where k = 1,2 represents the two candidate controllers, p denotes L fV (x) and q denotes Lgki
V (x),

f = [f1 · · · fn]
T , gki = [gki1, ...,gkin]

T , (i= 1,2, ...,m1 for k = 1 corresponding to the vector of control

actions Φ1(x), and i = 1,2, ...,m2 for k = 2 corresponding to the vector of control actions Φ2(x).)

φki(x) of Eq. 7.7a represents the ith component of the control law φk(x). Φki(x) of Eq. 7.7 represents

the ith component of the saturated control law Φk(x) that accounts for the input constraints uk ∈Uk.

118

Based on Eq. 7.5, we can first characterize a region where the time-derivative of V is rendered

negative under the controller Φ1(x) ∈U1, Φ2(x) ∈U2 as D = {x ∈ Rn | V̇ (x) = L fV +Lg1Vu1 +

Lg2Vu2 <−c3|x|2,u1 = Φ1(x)∈U1,u2 = Φ2(x)∈U2}∪{0}. Then the closed-loop stability region

Ωρ for the nonlinear system of Eq. 8.1 is defined as a level set of the Lyapunov function, which is

inside D: Ωρ := {x ∈ D | V (x) ≤ ρ}, where ρ > 0 and Ωρ ⊂ D. Also, the Lipschitz property of

F(x,u1,u2,w) combined with the bounds on u1, u2 and w implies that there exist positive constants

M, Lx,Lw,L
′
x,L

′
w such that the following inequalities hold ∀x,x′ ∈Ωρ ,u1 ∈U1,u2 ∈U2 and w ∈W :

|F(x,u1,u2,w)| ≤M (5.1.4a)

|F(x,u1,u2,w)−F(x′,u1,u2,0)| ≤ Lx|x− x′|+Lw|w| (5.1.4b)∣∣∣∣∂V (x)
∂x

F(x,u1,u2,w)−
∂V (x′)

∂x
F(x′,u1,u2,0)

∣∣∣∣≤ L
′
x|x− x′|+L

′
w|w|

(5.1.4c)

5.1.2 Long Short-Term Memory Network

In this work, we develop an LSTM network model with the following form:

˙̂x = Fnn(x̂,u1,u2) := Ax̂+Θ
T y (5.1.5)

where x̂ ∈ Rn is the predicted state vector and u1 ∈ Rm1 and u2 ∈ Rm2 are the two separate sets

of manipulated input vectors. yT = [y1, ...,yn,yn+1, ...,yn+m1,yn+m1+1...,yn+m1+m2,yn+m1+m2+1] =

[H(x̂1), ...,H(x̂n),u11, ...,u1m1
,u21, ...,u2m2

,1] ∈ Rn+m1+m2+1 is a vector of the network state x̂,

where H(·) represents a series of interacting nonlinear activation functions in each LSTM unit,

the inputs u1 and u2, and the constant 1 which accounts for the bias term. A is a diagonal

coefficient matrix, i.e., A = diag{−α1, ...,−αn} ∈ Rn×n, and Θ = [θ1, ...,θn] ∈ R(n+m1+m2+1)×n

with θi = βi[ωi1, ...,ωi(n+m1+m2),bi], i = 1, ...,n. αi and βi are constants, and ωi j is the weight

connecting the jth input to the ith neuron where i = 1, ...,n and j = 1, ...,(n+m1 +m2), and bi is

the bias term for i = 1, ...,n. We use x to represent the state of actual nonlinear system of Eq. 8.1

and use x̂ for the state of the LSTM model of Eq. 6.3. Here, αi is assumed to be positive such that

each state x̂i is bounded-input bounded-state stable.

Instead of having one-way information flow from the input layer to the output layer in a

feed-forward neural network (FNN), RNNs introduce feedback loops into the network and allow

information exchange in both directions between modules. Unlike feed-forward neural networks,

119

RNNs take advantage of the feedback signals to store outputs derived from past inputs, and together

with the current input information, give a more accurate prediction of the current output. By having

access to information of the past, RNN is capable of representing dynamic behaviors of time-series

samples, therefore it is an effective method used to model nonlinear processes. Based on the

universal approximation theorem, it can be shown that the RNN model with sufficient number of

neurons is able to approximate any nonlinear dynamic system on compact subsets of the state-space

for finite time [64, 99]. However, in a standard RNN model, the problem of vanishing gradient

phenomena often arises due to the network’s difficulty to capture long term dependencies; this is

because of multiplicative gradients that can be exponentially decaying with respect to the number

of layers. Therefore, the stored information over extended time intervals is very limited in a short

term memory manner. Due to these considerations, Hochreiter and Schmidhuber [50] proposed the

Long Short-Term Memory (LSTM) network, which is a type of RNN that uses three gated units

(the forget gate, the input gate, and the output gate) to protect and control the memory cell state,

c(k), where k = 1, ...,T , such that information will be stored and remembered for long periods

of time [50]. For these reasons, LSTM networks may perform better when modeling processes

where inputs towards the beginning of a long time-series sequence are crucial to the prediction of

outputs towards the end of the sequence. This may be more prevalent in large-scale systems where

there may exist inherent time delays between subsystems, causing discrepancies in the speed of

the dynamics between the subsystems. The basic architecture of an LSTM network is illustrated

in Fig. 5.2.1. We develop an LSTM network model to approximate the class of continuous-time

nonlinear processes of Eq. 8.1.

120

Figure 5.1.1: A long short-term memory recurrent neural network and its unfolded structure, where
m is the input vector and x̂ is the output vector, c is the cell state vector, and h is the hidden state
vector.

Figure 5.1.2: The internal structure of an LSTM unit showing the input gate, the forget gate, and
the output gate layers, where the cell state vector c(k− 1), hidden state vector h(k− 1), and the
input vector m(k) are used to obtain c(k), h(k), as well as the network output vector y(k) via an
additional output activation layer.

121

We use m ∈ R(n+m1+m2)×T to denote the matrix of input sequences to the LSTM network,

and x̂ ∈ Rn×T to denote the matrix of network output sequences. The output from each repeating

module that is passed onto the next repeating module in the unfolded sequence is the hidden state,

and the vector of hidden states is denoted by h. The network output x̂ at the end of the prediction

period is dependent on all internal states h(1), ...,h(T), where the number of internal states T

(i.e., the number of repeating modules) corresponds to the length of the time-series input sample.

The LSTM network calculates a mapping from the input sequence m to the output sequence x̂ by

calculating the following equations iteratively from k = 1 to k = T :

i(k) =σ(ωm
i m(k)+ω

h
i h(k−1)+bi) (5.1.6a)

f (k) =σ(ωm
f m(k)+ω

h
f h(k−1)+b f) (5.1.6b)

c(k) = f (k)c(k−1)+ i(k)tanh(ωm
c m(k)+ω

h
c h(k−1)+bc) (5.1.6c)

o(k) =σ(ωm
o m(k)+ω

h
o h(k−1)+bo) (5.1.6d)

h(k) =o(k)tanh(c(k)) (5.1.6e)

x̂(k) =ωyh(k)+by (5.1.6f)

where σ(·) is the sigmoid function, tanh(·) is the hyperbolic tangent function; both of which are

activation functions. h(k) is the internal state, and x̂(k) is the output from the repeating LSTM

module with ωy and by denoting the weight matrix and bias vector for the output, respectively. The

outputs from the input gate, the forget gate, and the output gate are represented by i(k), f (k), o(k),

respectively; correspondingly, ωm
i , ωh

i , ωm
f , ωh

f , ωm
o , ωh

o are the weight matrices for the input

vector m and the hidden state vectors h within the input gate, the forget gate, and the output gate

respectively, and bi, b f , bo represent the bias vectors within each of the three gates, respectively.

Furthermore, c(k) is the cell state which stores information to be passed down the network units,

with ωm
c , ωh

c and bc representing the weight matrices for the input and hidden state vectors, and

the bias vector in the cell state activation function, respectively. The series of interacting nonlinear

functions carried out in each LSTM unit, outlined in Eq. 5.2.8, can be represented by H(x̂). The

internal structure of a repeating module within an LSTM network where the iterative calculations

of Eq. 5.2.8 are carried out is shown in Fig. 5.2.2.

The closed-loop simulation of the continuous-time nonlinear system of Eq. 8.1 is carried out

in a sample-and-hold manner, where the feedback measurement of the closed-loop state x is

received by the controller every sampling period ∆. Furthermore, state information of the simulated

nonlinear process is obtained via numerical integration methods, e.g., explicit Euler, using an

122

integration time step of hc. Since the objective of developing the LSTM model is its eventual

utilization in a controller, the prediction period of the LSTM model is set to be the same as the

sampling period ∆ of the model predictive controller. The time interval between two consecutive

internal states within the LSTM can be chosen to be a multiple qnn of the integration time step

hc used in numerical integration of the nonlinear process, with the minimum time interval being

qnn = 1, i.e., 1× hc. Therefore, depending on the choice of qnn, the number of internal states,

T , will follow T = ∆

qnn·hc
. Given that the input sequences fed to the LSTM network are taken at

time t = tk, the future states predicted by the LSTM network, x̂(t), at t = tk +∆, would be the

network output vector at k = T , i.e., x̂(tk +∆) = x̂(T). The LSTM learning algorithm is developed

to obtain the optimal parameter matrix Γ∗, which includes the network parameters ωi, ω f , ωc,

ωo, ωy, bi, b f , bc, bo, by. Under this optimal parameter matrix, the error between the actual state

x(t) of the nominal system of Eq. 8.1 (i.e., w(t) ≡ 0) and the modeled states x̂(t) of the LSTM

model of Eq. 6.3 is minimized. The LSTM model is developed using a state-of-the-art application

program interface, i.e., Keras, which contains open-source neural network libraries. The mean

absolute percentage error between x(t) and x̂(t) is minimized using the adaptive moment estimation

optimizer, i.e., Adam in Keras, in which the gradient of the error cost function is evaluated using

back-propagation. Furthermore, in order to ensure that the trained LSTM model can sufficiently

represent the nonlinear process of Eq. 8.1, which in turn ascertains that the LSTM model can be

used in a model-based controller to stabilize the actual nonlinear process at its steady-state with

guaranteed stability properties, a constraint on the modeling error is also imposed during training,

where |ν |= |F(x,u1,u2,0)−Fnn(x,u1,u2)| ≤ γ|x|, with γ > 0. Additionally, to avoid over-fitting of

the LSTM model, the training process is terminated once the modeling error falls below the desired

threshold and the error on the validation set stops decreasing. One way to assess the modeling error

ν = F(x(tk),u1,u2,0)−Fnn(x(tk),u1,u2) is through numerical approximation using the forward

finite difference method. Given that the time interval between internal states of the LSTM model is

a multiple of the integration time step qnn×hc, the time derivative of the LSTM predicted state x̂(t)

at t = tk can be approximated by ˙̂x(tk) = Fnn(x(tk),u1,u2)≈ x̂(tk+qnnhc)−x̂(tk)
qnnhc

. The time derivative of

the actual state x(t) at t = tk can be approximated by ẋ(tk) = F(x(tk),u1,u2,0) ≈ x(tk+qnnhc)−x(tk)
qnnhc

.

123

At time t = tk, x̂(tk) = x(tk), the constraint |ν | ≤ γ|x| can be written as follows:

|ν |= |F(x(tk),u1,u2,0)−Fnn(x(tk),u1,u2)| (5.1.7a)

≈ |x(tk +qnnhc)− x̂(tk +qnnhc)

qnnhc
| (5.1.7b)

≤ γ|x(tk)| (5.1.7c)

which will be satisfied if |x(tk+qnnhc)−x̂(tk+qnnhc)
x(tk)

| ≤ γqnnhc. Therefore, the mean absolute percentage

error between the predicted states x̂ and the targeted states x in the training data will be used as a

metric to assess the modeling error of the LSTM model. While the error bounds that the LSTM

network model and the actual process should satisfy to ensure closed-loop stability are difficult

to calculate explicitly and are, in general, conservative, they provide insight into the key network

parameters that will need to be tuned to reduce the error between the two models as well as the

amount of data needed to build a suitable LSTM model.

In order to gather adequate training data to develop the LSTM model for the nonlinear process,

we first discretize the desired operating region in state-space with sufficiently small intervals as

well as discretize the range of manipulated inputs based on the control actuator limits. We run

open-loop simulations for the nonlinear process of Eq. 8.1 starting from different initial conditions

inside the desired operating region, i.e., x0 ∈Ωρ , for finite time using combinations of the different

manipulated inputs u1 ∈U1,u2 ∈U2 applied in a sample-and-hold manner, and the evolving state

trajectories are recorded at time intervals of size qnn× hc. We obtain enough samples of such

trajectories to sweep over all the values that the states and the manipulated inputs (x,u1,u2) could

take to capture the dynamics of the process. These time-series data can be separated into samples

with a fixed length T , which corresponds to the prediction period of the LSTM model, where

∆ = T × qnn× hc. The time interval between two time-series data points in the sample qnn× hc

corresponds to the time interval between two consecutive memory units in the LSTM network.

The generated dataset is then divided into training and validation sets.

Remark 5.1.1. The actual nonlinear process is a continuous-time model that can be represented

using Eq. 8.1; therefore, to characterize the modeling error ν between the LSTM network and

the nonlinear process of Eq. 8.1, the LSTM network is represented as a continuous-time model

of Eq. 6.3. However, the series of interacting nonlinear operations in the LSTM memory unit

is carried out recursively akin to a discrete-time model. The time interval qnn× hc between two

LSTM memory units is given by the time interval between two consecutive time-series data points

124

in the training samples. Since the LSTM network provides a predicted state at each time interval

qnn×hc calculated by each LSTM memory unit, similarly to how we can use numerical integration

methods to obtain the state at the same time instance using the continuous-time model, we can

use the predicted states from the LSTM network to compare with the predicted states from the

nonlinear model of Eq. 8.1 to assess the modeling error. The modeling error is subject to the

constraint of Eq. 5.2.9 to ensure that the LSTM model can be used in the model-based controller

with guaranteed stability properties.

5.1.2.1 Lyapunov-based Control using LSTM Models

Once we obtain an LSTM model with a sufficiently small modeling error, we can design a

stabilizing feedback controller u1 = Φnn1(x) ∈U1 and u2 = Φnn2(x) ∈U2 that can render the origin

of the LSTM model of Eq. 6.3 exponentially stable in an open neighborhood D̂ around the origin in

the sense that there exists a C 1 Control Lyapunov function V̂ (x) such that the following inequalities

hold for all x in D̂:

ĉ1|x|2 ≤ V̂ (x)≤ ĉ2|x|2, (5.1.8a)

∂V̂ (x)
∂x

Fnn(x,Φnn1(x),Φnn2(x))≤−ĉ3|x|2, (5.1.8b)∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣≤ ĉ4|x| (5.1.8c)

where ĉ1, ĉ2, ĉ3, ĉ4 are positive constants, and Fnn(x,u1,u2) represents the LSTM network model

of Eq. 6.3. Similar to the characterization method of the closed-loop stability region Ωρ for the

nonlinear system of Eq. 8.1, we first search the entire state-space to characterize a set of states D̂

where the following inequality holds: ˙̂V (x) = ∂V̂ (x)
∂x Fnn(x,u1,u2) < −ĉ3|x|2, u1 = Φnn1(x) ∈ U1,

u2 = Φnn2(x) ∈U2. The closed-loop stability region for the LSTM network model of Eq. 6.3 is

defined as a level set of Lyapunov function inside D̂: Ωρ̂ := {x ∈ D̂ | V̂ (x) ≤ ρ̂}, where ρ̂ > 0.

Starting from Ωρ̂ , the origin of the LSTM network model of Eq. 6.3 can be rendered exponentially

stable under the controller u1 = Φnn1(x) ∈U1, and u2 = Φnn2(x) ∈U2. It is noted that the above

assumption of Eq. 5.2.10 is the same as the assumption of Eq. 7.5 for the general class of nonlinear

systems of Eq. 8.1 since the LSTM network model of Eq. 6.3 can be written in the form of Eq. 8.1

(i.e., ˙̂x = f̂ (x̂) + ĝ(x̂)u, where f̂ (·) and ĝ(·) are obtained from coefficient matrices A and Θ in

Eq. 6.3). However, due to the complexity of the LSTM structure and the interactions of the

nonlinear activation functions, f̂ and ĝ may be hard to compute explicitly. For computational

convenience, at t = tk, given a set of control actions u1(tk) ∈U1\{0} and u2(tk) ∈U2\{0} that are

125

applied in a sample-and-hold fashion for the time interval t ∈ [tk, tk +hc) (hc is the integration time

step), f̂ and ĝ can be numerically approximated as follows:

f̂ (x(tk))≈
∫ tk+hc

tk Fnn(x,0,0)dt− x(tk)

hc
(5.1.9a)

ĝ1(x(tk))≈
∫ tk+hc

tk Fnn(x,u1(tk),0)dt−
∫ tk+hc

tk Fnn(x,0,0)dt

hcu1(tk)
(5.1.9b)

ĝ2(x(tk))≈
∫ tk+hc

tk Fnn(x,0,u2(tk))dt−
∫ tk+hc

tk Fnn(x,0,0)dt

hcu2(tk)
(5.1.9c)

The integral
∫ tk+hc

tk Fnn(x,u1,u2)dt gives the predicted state x̂(t) at t = tk + hc under the

sample-and-hold implementation of the inputs u1(tk) and u2(tk); x̂(tk + hc) is the first internal

state of the LSTM network, given that the time interval between consecutive internal states

of the LSTM network is chosen as the integration time step hc. After obtaining f̂ , ĝ1 and

ĝ2, the stabilizing control law Φnn1(x) and Φnn2(x) can be computed similarly as in Eq. 7.7,

where f , g1, and g2 are replaced by f̂ , ĝ1, and ĝ2, respectively. Subsequently, ˙̂V can also be

computed using the approximated f̂ , ĝ1, and ĝ2. The assumptions of Eq. 7.5 and Eq. 5.2.10 are

the stabilizability requirements of the first-principles model of Eq. 8.1 and the LSTM network

model of Eq. 6.3, respectively. Since the dataset for developing the LSTM network model is

generated from open-loop simulations for x ∈ Ωρ , u1 ∈U1, and u2 ∈U2, the closed-loop stability

region of the LSTM system is a subset of the closed-loop stability region of the actual nonlinear

system, Ωρ̂ ⊆Ωρ . Additionally, there exist positive constants Mnn and Lnn such that the following

inequalities hold for all x,x′ ∈Ωρ̂ , u1 ∈U1 and u2 ∈U2:

|Fnn(x,u1,u2)| ≤Mnn (5.1.10a)∣∣∣∣∂V̂ (x)
∂x

Fnn(x,u1,u2)−
∂V̂ (x′)

∂x
Fnn(x′,u1,u2)

∣∣∣∣≤ Lnn|x− x′| (5.1.10b)

5.1.3 Distributed LMPC using LSTM Network Models

To achieve better closed-loop control performance, some level of communication may be

established between the different controllers. In a distributed Lyapunov-based model predictive

controller (LMPC) framework, we design two separate LMPCs – LMPC 1 and LMPC 2 – to

compute control actions u1 and u2 respectively; the trajectories of control actions computed by

LMPC 1 and LMPC 2 are denoted by ud1 and ud2 , respectively. We consider two types of

126

distributed control architectures: sequential and iterative distributed MPCs. Having only one-way

communication, the sequential distributed MPC architecture carries less computational load with

transmitting inter-controller signals. However, it must assume the input trajectories along the

prediction horizon of the other controllers downstream of itself in order to make a decision.

The iterative distributed MPC system allows signal exchanges between all controllers, thereby

allowing each controller to have full knowledge of the predicted state evolution along the prediction

horizon and yielding better closed-loop performance via multiple iterations at the cost of more

computational time.

5.1.3.1 Sequential Distributed LMPC using LSTM Network Models

The communication between two LMPCs in a sequential distributed LMPC framework is one-way

only; i.e., the optimal control actions obtained from solving the optimization problem of one

LMPC will be relayed to the other LMPC, which will use this information to carry on with

its own optimization problem. A schematic diagram of the structure of a sequential distributed

LMPC system is shown in Fig. 5.1.3. In a sequential distributed LMPC system, the following

implementation strategy is used:

1. At each sampling instant t = tk, both LMPC 1 and LMPC 2 receive the state measurement

x(t), t = tk from the sensors.

2. LMPC 2 evaluates the optimal trajectory of ud2 based on the state measurement x(t) at t = tk,

sends the control action of the first sampling period u∗d2
(tk) to the corresponding actuators,

and sends the entire optimal trajectory to LMPC 1.

3. LMPC 1 receives the entire optimal input trajectory of ud2 from LMPC 2, and evaluates the

optimal trajectory of ud1 based on state measurement x(t) at t = tk and the optimal trajectory

of ud2 . LMPC 1 then sends u∗d1
(tk), the optimal control action over the next sampling period

to the corresponding actuators.

4. When a new state measurement is received (k ← k+1), go to Step 1.

We first define the optimization problem of LMPC 2, which uses the LSTM network model as

its prediction model. LMPC 2 depends on the latest state measurement, but does not have any

information on the value that ud1 will take. Thus, to make a decision, LMPC 2 must assume a

trajectory for ud1 along the prediction horizon. An explicit nonlinear control law, Φnn1(x), is used

127

to compute the assumed trajectory of ud1 . To inherit the stability properties of Φnn j(x), j = 1,2,

ud2 must satisfy a Lyapunov-based contractive constraint that guarantees a minimum decrease rate

of the Lyapunov function V̂ . The optimization problem of LMPC 2 is given as follows:

J = min
ud2∈S(∆)

∫ tk+N

tk
L(x̃(t),Φnn1(x̃(t)),ud2(t))dt (5.1.11a)

s.t. ˙̃x(t) = Fnn(x̃(t),Φnn1(x̃(t)),ud2(t)) (5.1.11b)

ud2(t) ∈U2, ∀ t ∈ [tk, tk+N) (5.1.11c)

x̃(tk) = x(tk) (5.1.11d)

∂V̂ (x(tk))
∂x

(Fnn(x(tk),Φnn1(x(tk)),ud2(tk)))≤
∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1(x(tk)),Φnn2(x(tk)))),

if x(tk) ∈Ωρ̂\Ωρnn (5.1.11e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (5.1.11f)

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with period

∆, and N is the number of sampling periods in the prediction horizon. The optimal input trajectory

computed by this LMPC 2 is denoted by u∗d2
(t), which is calculated over the entire prediction

horizon t ∈ [tk, tk+N). This information is sent to LMPC 1. The control action computed for the

first sampling period of the prediction horizon u∗d2
(tk) is sent by LMPC 2 to its control actuators to

be applied over the next sampling period. In the optimization problem of Eq. 5.1.11, the objective

function of Eq. 5.1.11a is the integral of L(x̃(t),Φnn1(t),ud2(t)) over the prediction horizon. Note

that L(x,u1,u2) is typically in a quadratic form, i.e., L(x,u1,u2) = xT Qx + uT
1 R1u1 + uT

2 R2u2,

where Q, R1, and R2 are positive definite matrices, and the minimum of the objective function

of Eq. 5.1.11a is achieved at the origin. The constraint of Eq. 5.1.11b is the LSTM network

model of Eq. 6.3 that is used to predict the states of the closed-loop system. Eq. 5.1.11c defines

the input constraints on ud2 applied over the entire prediction horizon. Eq. 5.1.11d defines the

initial condition x̃(tk) of Eq. 5.1.11b, which is the state measurement at t = tk. The constraint of

Eq. 5.1.11e forces the closed-loop state to move towards the origin if x(tk) ∈ Ωρ̂\Ωρnn . However,

if x(tk) enters Ωρnn , the states predicted by the LSTM network model of Eq. 5.1.11b will be

maintained in Ωρnn for the entire prediction horizon.

The optimization problem of LMPC 1 depends on the latest state measurement as well as the

control action computed by LMPC 2 (i.e., u∗d2
(t),∀t ∈ [tk, tk+N)). This allows LMPC 1 to compute

a control action ud1 such that the closed-loop performance is optimized while guaranteeing the

stability properties of the Lyapunov-based controllers using LSTM network models, Φnn j(x), j =

128

1,2, are preserved. Specifically, LMPC 1 uses the following optimization problem:

J = min
ud1∈S(∆)

∫ tk+N

tk
L(x̃(t),ud1(t),u

∗
d2
(t))dt (5.1.12a)

s.t. ˙̃x(t) = Fnn(x̃(t),ud1(t),u
∗
d2
(t)) (5.1.12b)

ud1(t) ∈U1, ∀ t ∈ [tk, tk+N) (5.1.12c)

x̃(tk) = x(tk) (5.1.12d)

∂V̂ (x(tk))
∂x

(Fnn(x(tk),ud1(tk),u
∗
d2
(tk)))≤

∂V̂ (x(tk))
∂x

(Fnn(x(tk),Φnn1(x(tk)),u
∗
d2
(tk))),

if x(tk) ∈Ωρ̂\Ωρnn (5.1.12e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (5.1.12f)

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise constant functions with period

∆, and N is the number of sampling periods in the prediction horizon. The optimal input trajectory

computed by LMPC 1 is denoted by u∗d1
(t), which is calculated over the entire prediction horizon

t ∈ [tk, tk+N). The control action computed for the first sampling period of the prediction horizon

u∗d1
(tk) is sent by LMPC 1 to be applied over the next sampling period. In the optimization problem

of Eq. 5.1.12, the objective function of Eq. 5.1.12a is the integral of L(x̃(t),ud1(t),u
∗
d2
(t)) over the

prediction horizon. The constraint of Eq. 5.1.12b is the LSTM model of Eq. 6.3 that is used to

predict the states of the closed-loop system. Eq. 5.1.12c defines the input constraints on ud1 applied

over the entire prediction horizon. Eq. 5.1.12d defines the initial condition x̃(tk) of Eq. 5.1.12b,

which is the state measurement at t = tk. The constraint of Eq. 5.1.12e forces the closed-loop state

to move towards the origin if x(tk) ∈ Ωρ̂\Ωρnn . However, if x(tk) enters Ωρnn , the states predicted

by the LSTM model of Eq. 5.1.12b will be maintained in Ωρnn for the entire prediction horizon.

Since the execution of LMPC 1 depends on the results of LMPC 2, the total computation time to

execute the sequential distributed LMPC design would be the sum of the time taken to solve each

optimization problem in LMPC 1 and LMPC 2 respectively.

5.1.3.2 Iterative Distributed LMPC using LSTM Network Models

In an iterative distributed LMPC framework, both controllers communicate with each other to

cooperatively optimize the control actions. The controllers solve their respective optimization

problems independently in a parallel structure, and solutions to each control problem are

exchanged at the end of each iteration. The schematic diagram of an iterative distributed LMPC

129

system is shown in Fig. 5.1.4.

Figure 5.1.3: A schematic showing the flow of information of the sequential distributed LMPC
system with the overall process.

Figure 5.1.4: A schematic showing the flow of information of iterative distributed LMPC system
with the overall process.

More specifically, the following implementation strategy is used:

1. At each sampling instant tk, both LMPC 1 and LMPC 2 receive the state measurement x(t)

130

at t = tk from the sensors.

2. At iteration c = 1, LMPC 1 evaluates future trajectories of ud1(t) assuming u2(t) =

Φnn2(t),∀t ∈ [tk, tk+N). LMPC 2 evaluates future trajectories of ud2(t) assuming u1(t) =

Φnn1(t),∀t ∈ [tk, tk+N). The LMPCs exchange their future input trajectories, calculate and

store the value of their own cost function.

3. At iteration c > 1:

(a) Each LMPC evaluates its own future input trajectory based on state measurement x(tk)

and the latest received input trajectories from the other LMPC.

(b) The LMPCs exchange their future input trajectories. Each LMPC calculates and stores

the value of the cost function.

4. If a termination criterion is satisfied, each LMPC sends its entire future input trajectory

corresponding to the smallest value of the cost function to its actuators. If the termination

criterion is not satisfied, go to Step 3 (c ← c+1).

5. When a new state measurement is received, go to Step 1 (k← k+1).

To preserve the stability properties of the Lyapunov-based controllers Φnn j(x), j = 1,2, the

optimized ud1 and ud2 must satisfy the contractive constraint that guarantees a minimum decrease

rate of the Lyapunov function V̂ given by Φnn j(x), j = 1,2. Following the same variables and

constraints as defined in a sequential distributed LMPC design, the optimization problem of LMPC

1 in an iterative distributed LMPC at iteration c = 1 is presented as follows:

J = min
ud1∈S(∆)

∫ tk+N

tk
L(x̃(t),ud1(t),Φnn2(x̃(t)))dt (5.1.13a)

s.t. ˙̃x(t) = Fnn(x̃(t),ud1(t),Φnn2(x̃(t))) (5.1.13b)

ud1(t) ∈U1, ∀ t ∈ [tk, tk+N) (5.1.13c)

x̃(tk) = x(tk) (5.1.13d)

∂V̂ (x(tk))
∂x

(Fnn(x(tk),ud1(tk),Φnn2(x(tk))))≤
∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1(x(tk)),Φnn2(x(tk)))),

if x(tk) ∈Ωρ̂\Ωρnn (5.1.13e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (5.1.13f)

131

At iteration c = 1, the optimization problem of LMPC 2 is shown as follows:

J = min
ud2∈S(∆)

∫ tk+N

tk
L(x̃(t),Φnn1(x̃(t)),ud2(t))dt (5.1.14a)

s.t. ˙̃x(t) = Fnn(x̃(t),Φnn1(x̃(t)),ud2(t)) (5.1.14b)

ud2(t) ∈U2, ∀ t ∈ [tk, tk+N) (5.1.14c)

x̃(tk) = x(tk) (5.1.14d)

∂V̂ (x(tk))
∂x

(Fnn(x(tk),Φnn1(x(tk)),ud2(t)))≤
∂V̂ (x(tk))

∂x
(Fnn(x(tk),Φnn1(x(tk)),Φnn2(x(tk)))),

if x(tk) ∈Ωρ̂\Ωρnn (5.1.14e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (5.1.14f)

At iteration c > 1, following the exchange of the optimized input trajectories u∗d1
(t) and u∗d2

(t)

between the two LMPCs, the optimization problem of LMPC 1 is modified as follows:

J = min
ud1∈S(∆)

∫ tk+N

tk
L(x̃(t),ud1(t),u

∗
d2
(t))dt (5.1.15a)

s.t. ˙̃x(t) = Fnn(x̃(t),ud1(t),u
∗
d2
(t)) (5.1.15b)

ud1(t) ∈U1, ∀ t ∈ [tk, tk+N) (5.1.15c)

x̃(tk) = x(tk) (5.1.15d)

∂V̂ (x(tk))
∂x

(Fnn(x(tk),ud1(tk),u
∗
d2
(tk))≤

∂V̂ (x(tk))
∂x

(Fnn(x(tk),Φnn1(x(tk)),Φnn2(x(tk)))),

if x(tk) ∈Ωρ̂\Ωρnn (5.1.15e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (5.1.15f)

132

And the optimization problem of LMPC 2 becomes:

J = min
ud2∈S(∆)

∫ tk+N

tk
L(x̃(t),u∗d1

(t),ud2(t))dt (5.1.16a)

s.t. ˙̃x(t) = Fnn(x̃(t),u∗d1
(t),ud2(t)) (5.1.16b)

ud2(t) ∈U2, ∀ t ∈ [tk, tk+N) (5.1.16c)

x̃(tk) = x(tk) (5.1.16d)

∂V̂ (x(tk))
∂x

(Fnn(x(tk),u∗d1
(t),ud2(t)))≤

∂V̂ (x(tk))
∂x

(Fnn(x(tk),Φnn1(x(tk)),Φnn2(x(tk)))),

if x(tk) ∈Ωρ̂\Ωρnn (5.1.16e)

V̂ (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (5.1.16f)

At each iteration c ≥ 1, the two LMPCs can be solved simultaneously via parallel computing in

separate processors. Therefore, the total computation time required for iterative distributed LMPC

would be the maximum solving time out of the two controllers accounting for all the iterations

required before the termination criterion is met.

Remark 5.1.2. One consideration that applies to any MPC system is that the computation time to

calculate the solutions to the MPC optimization problem(s) must be less than the sampling time of

the actual nonlinear process of Eq. 8.1. One of the main advantages of distributed MPC systems

is the reduced computational complexity of the optimization problems, and thus, reduced total

computational time compared to solving the optimization problem in a centralized MPC system.

Therefore, running more iterations to achieve a more optimal set of solutions (i.e., lower value of

the cost function) should be balanced with reducing total computation time, and there should be

an upper bound enforced on the maximum number of iterations at all times to ensure calculation

of control actions within the sampling time.

Remark 5.1.3. It is important to note that the number of iterations c could vary and will not

affect the closed-loop stability of the iterative distributed LMPC system. The number of iterations

c depends on the termination conditions, which can be of many forms, e.g., c must not exceed

a maximum iteration number cmax (i.e., c ≤ cmax), the computational time for solving each

LMPC must not exceed a maximum time period, or the difference in the cost function or of the

solution trajectory between two consecutive iterations is smaller than a threshold value. During

implementation, when one such criterion is met, the iterations will be terminated.

Remark 5.1.4. In general, there is no guaranteed convergence of the optimal cost or solution

133

of an iterative distributed LMPC system to the optimal cost or solution of a centralized LMPC.

This is due to the non-convexity of the MPC optimization problems. However, the proposed

implementation strategy guarantees that the optimal cost of the distributed optimization is upper

bounded by the cost of the Lyapunov-based control laws Φnn1(x) ∈U1, Φnn2(x) ∈U2.

5.1.3.3 Sample-and-hold implementation of Distributed LMPC

Once both optimization problems of LMPC 1 and LMPC 2 are solved, the optimal control actions

of the proposed distributed LMPC design (both sequential and iterative distributed LMPC systems)

are defined as follows:
u1(t) = u∗d1

(tk),∀t ∈ [tk, tk+1)

u2(t) = u∗d2
(tk),∀t ∈ [tk, tk+1)

(5.1.17)

The control actions computed by each LMPC will be applied in a sample-and-hold manner to

the process, which may be subject to bounded disturbances (i.e., |w(t)| ≤ wm). In this section,

we present the stability properties of the distributed LMPC design, accounting for sufficiently

small bounded modeling error of the LSTM network and bounded disturbances. Following

Lyapunov arguments, this property will guarantee practical stability of the closed-loop system,

i.e., the closed-loop state x(t) of the nominal process of Eq. 8.1 is bounded in Ωρ̂ at all times,

and ultimately driven to a small neighborhood Ωρmin around the origin under the control actions

in the distributed LMPC design of Eq. 7.19 implemented in a sample-and-hold manner. First,

we will present propositions demonstrating the existence of an upper bound on the state error

|e(t)|= |x(t)− x̂(t)| provided that the modeling error |ν | and process disturbances |w| are bounded,

followed by propositions that demonstrate the boundedness and convergence of the LSTM system

of Eq. 6.3 and of the actual nonlinear system of Eq. 8.1 under the sample-and-hold implementation

of u1 = Φnn1(x) ∈ U1 and u2 = Φnn2(x) ∈ U2. Both propositions have been previously proved

in [127]. Then, we will extend the proof to show the boundedness and convergence of the nonlinear

system of Eq. 8.1 under the sample-and-hold implementation of [u1 u2] = [u∗d1
u∗d2

] from the

distributed LMPC design of Eq. 7.19 in the presence of sufficiently small bounded disturbances

and modeling error.

Proposition 5.1.1. Consider the nonlinear system ẋ = F(x,u1,u2,w) of Eq. 8.1 in the presence of

bounded disturbances |w(t)| ≤ wm and the LSTM model ˙̂x = Fnn(x̂,u1,u2) of Eq. 6.3 with the same

initial condition x0 = x̂0 ∈Ωρ̂ and sufficiently small modeling error |ν | ≤ νm. There exists a class

K function fw(·) and a positive constant κ such that the following inequalities hold ∀x, x̂ ∈ Ωρ̂

134

and w(t) ∈W:

|e(t)|= |x(t)− x̂(t)| ≤ fw(t) :=
Lwwm +νm

Lx
(eLxt−1) (5.1.18a)

V̂ (x)≤ V̂ (x̂)+
ĉ4
√

ρ̂√
ĉ1
|x− x̂|+κ|x− x̂|2 (5.1.18b)

It has also been established that under the controller u1(t) = Φnn1(x) ∈U1, u2(t) = Φnn2(x) ∈
U2 implemented in a sample-and-hold fashion, the closed-loop state x(t) of the actual process of

Eq. 8.1 and the closed-loop state x̂(t) of the LSTM system of Eq. 6.3 are bounded in the stability

region and ultimately driven to a small neighborhood around the origin, given that the conditions

of Eq. 5.2.10 are satisfied, and the modeling error |ν | ≤ γ|x| ≤ νm, where γ is chosen to satisfy

γ < ĉ3/ĉ4. This is shown in the following proposition. The full proof of the following proposition

can be found in [127].

Proposition 5.1.2. Consider the system of Eq. 8.1 under the controllers u j = Φnn j(x̂) ∈U j, j =

1,2, which meet the conditions of Eq. 5.2.10. The controllers u j = Φnn j(x̂) ∈ U j, j = 1,2 are

designed to stabilize the LSTM system of Eq. 6.3, developed with a modeling error |ν | ≤ γ|x| ≤ νm,

where γ < ĉ3/ĉ4. The control actions are implemented in a sample-and-hold fashion, i.e., u j(t) =

Φnn j(x̂(tk)), j = 1,2, ∀t ∈ [tk, tk+1), where tk+1 := tk+∆. Let εs, εw > 0, ∆> 0, c̃3 =−ĉ3+ ĉ4γ > 0,

and ρ̂ > ρmin > ρnn > ρs satisfy

− ĉ3

ĉ2
ρs +LnnMnn∆≤−εs (5.1.19a)

− c̃3

ĉ2
ρs +L

′
xM∆+L

′
wwm ≤−εw (5.1.19b)

and

ρnn := max{V̂ (x̂(t +∆)) | x̂(t) ∈Ωρs,u1 ∈U1,u2 ∈U2} (5.1.20a)

ρmin ≥ ρnn +
ĉ4
√

ρ̂√
ĉ1

fw(∆)+κ(fw(∆))
2 (5.1.20b)

Then, for any x(tk) = x̂(tk) ∈Ωρ̂\Ωρs , the following inequality holds:

V̂ (x̂(t))≤ V̂ (x̂(tk)), ∀t ∈ [tk, tk+1) (5.1.21a)

V̂ (x(t))≤ V̂ (x(tk)), ∀t ∈ [tk, tk+1) (5.1.21b)

135

and if x0 ∈Ωρ̂ , the state x̂(t) of the LSTM modeled system of Eq. 6.3 is bounded in Ωρ̂ for all times

and ultimately bounded in Ωρnn , and the state x(t) of the nonlinear system of Eq. 8.1 is bounded in

Ωρ̂ for all times and ultimately bounded in Ωρmin .

Proposition 6.3 demonstrates that, if x(tk) = x̂(tk)∈Ωρ̂\Ωρs , the closed-loop state of the LSTM

system of Eq. 6.3 and of the actual nonlinear process of Eq. 8.1 are both bounded in the stability

region Ωρ̂ and they move towards the origin under u1(t) = Φnn1(x) ∈U1 and u2(t) = Φnn2(x) ∈
U2 implemented in a sample-and-hold fashion. If x(tk) = x̂(tk) ∈ Ωρs , the closed-loop state of

the LSTM model is maintained in Ωρnn within one sampling period for all t ∈ [tk, tk+1), and the

closed-loop state of the actual nonlinear system is maintained in Ωρmin within one sampling period.

In the following theorem, we will prove that the optimization problem of LMPC 1 and of

LMPC 2 in the distributed LMPC network can be solved with recursive feasibility, and the

closed-loop stability of the nonlinear system of Eq. 8.1 is guaranteed under the sample-and-hold

implementation of the optimal control actions [u1 u2] = [u∗d1
u∗d2

] given by the distributed LMPC

design of Eq. 7.19.

Theorem 5.1.1. Consider the closed-loop system of Eq. 8.1 under [u1 u2] = [u∗d1
u∗d2

] in the

distributed LMPC design of Eq. 7.19, which are calculated based on the controllers Φnn j(x), j =

1,2 that satisfy Eq. 5.2.10. Let ∆ > 0, εs > 0, εw > 0 and ρ̂ > ρmin > ρnn > ρs satisfy Eq. 6.18

and 6.19. Then, given any initial state x0 ∈ Ωρ̂ , if the conditions of Proposition 5.1.1 and

Proposition 6.3 are satisfied, and the LSTM model of Eq. 6.3 has a modeling error |ν | ≤ γ|x| ≤ νm,

0 < γ < ĉ3/ĉ4, then there always exists a feasible solution for the optimization problem of

Eq. 5.1.11, Eq. 5.1.12, and of Eq. 5.1.15, Eq. 5.1.16. Additionally, it is guaranteed that under the

distributed LMPC design [u1 u2] = [u∗d1
u∗d2

] of Eq. 7.19, x(t) ∈ Ωρ̂ , ∀t ≥ 0, and x(t) ultimately

converges to Ωρmin for the closed-loop system of Eq. 8.1.

Proof. The proof consists of three parts. In Part 1, We first prove that the optimization problem of

each LMPC in the distributed LMPC network is feasible for all states x ∈Ωρ̂ . In Part 2, we prove

the boundedness and convergence of the state in Ωρnn for the closed-loop LSTM system of Eq. 6.3

under the distributed LMPC design [u1 u2] = [u∗d1
u∗d2

] in Eq. 7.19. Lastly, in Part 3, we prove

the boundedness and convergence of the closed-loop state to Ωρmin for the actual nonlinear system

of Eq. 8.1 under the distributed LMPC design [u1 u2] = [u∗d1
u∗d2

] in Eq. 7.19. The following

proof is provided in reference to the formulations of the sequential distributed LMPC of Eq. 5.1.11

– Eq. 5.1.12, but the same result also applies to the iterative distributed LMPC of Eq. 5.1.15 –

Eq. 5.1.16.

136

Part 1: We prove that the optimization problem of each LMPC in the distributed LMPC

network is recursively feasible for all x ∈ Ωρ̂ . If x(tk) ∈ Ωρ̂\Ωρnn , the input trajectories ud j(t) =

Φnn j(x(tk)), j = 1,2, for t ∈ [tk, tk+1] are feasible solutions to the optimization problem of LMPC

j since such trajectories satisfy the input constraint on ud j of Eq. 5.1.11c in LMPC 2 and of

Eq. 5.1.12c in LMPC 1 respectively, as well as the Lyapunov-based contractive constraint of Eq.

5.1.11e in LMPC 2 and of Eq. 5.1.12e in LMPC 1. Additionally, if x(tk)∈Ωρnn , the control actions

given by Φnn j(x̃(tk+i)), i = 0,1, ...,N−1 satisfy the input constraint on ud2 of Eq. 5.1.11c and the

Lyapunov-based constraint of Eq. 5.1.11f in LMPC 2, and the input constraint on ud1 of Eq. 5.1.12c

and the Lyapunov-based constraint of Eq. 5.1.12f in LMPC 1, since it is shown in Proposition 6.3

that the states predicted by the LSTM model of Eq. 5.1.11b and of Eq. 5.1.12b remain inside Ωρnn

under the controller Φnn j(x̃), j = 1,2. Therefore, for all x0 ∈ Ωρ̂ , the optimization problems of

both Eq. 5.1.12 and Eq. 5.1.11 can be solved with recursive feasibility if x(t) ∈Ωρ̂ for all times.

Part 2: Next, we prove that given any x0 = x̂0 ∈Ωρ̂ , the state of the closed-loop LSTM system

of Eq. 6.3 is bounded in Ωρ̂ for all times and ultimately converges to a small neighborhood around

the origin Ωρnn defined by Eq. 6.19a under the sample-and-hold implementation of the distributed

LMPC design [u1 u2] = [u∗d1
u∗d2

] of Eq. 7.19. First, we consider x(tk)∈Ωρ̂\Ωρnn at t = tk, therefore

activating the contractive constraints of Eq. 5.1.11e and Eq. 5.1.12e. Based on the definition of

ρnn in Eq. 6.19a, this means x(tk) also belongs to the region Ωρ̂\Ωρs . With the conditions of

Eq. 5.2.10 on Φnn1(x̂(tk)) and Φnn2(x̂(tk)) satisfied, the contractive constraints are activated such

that the optimal control actions u∗d2
, and sequentially u∗d1

, are calculated to decrease the value

of the Lyapunov function based on the states predicted by the LSTM model of Eq. 5.1.11b and

Eq. 5.1.12b over the next sampling period, respectively. This is shown as follows:

˙̂V (x̂(tk)) =
∂V̂ (x̂(tk))

∂ x̂
Fnn(x̂(t),u∗d1

(tk),u∗d2
(tk))

≤∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(t),Φnn1(x̂(tk)),u
∗
d2
(tk))

≤∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(t),Φnn1(x̂(tk)),Φnn2(x̂(tk)))

≤− ĉ3|x̂(tk)|2

(5.1.22)

The time derivative of the Lyapunov function along the trajectory of x̂(t) of the LSTM model of

137

Eq. 6.3 in t ∈ [tk, tk+1) is given by:

˙̂V (x̂(t)) =
∂V̂ (x̂(t))

∂ x̂
Fnn(x̂(t),u∗d1

(tk),u∗d2
(tk))

=
∂V̂ (x̂(tk))

∂ x̂
Fnn(x̂(tk),u∗d1

(tk),u∗d2
(tk))+

∂V̂ (x̂(t))
∂ x̂

Fnn(x̂(t),u∗d1
(tk),u∗d2

(tk))

− ∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(tk),u∗d1
(tk),u∗d2

(tk))

(5.1.23)

After adding and subtracting ∂V̂ (x̂(tk))
∂ x̂ Fnn(x̂(tk),u∗d1

(tk),u∗d2
(tk)), and taking into account the

conditions of Eq. 5.2.10, we obtain the following inequality:

˙̂V (x̂(t))≤− ĉ3

ĉ2
ρs +

∂V̂ (x̂(t))
∂ x̂

Fnn(x̂(t),u∗d1
(tk),u∗d2

(tk))

− ∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(tk),u∗d1
(tk),u∗d2

(tk))

(5.1.24)

Based on the Lipschitz condition of Eq. 5.2.12 and that x̂ ∈ Ωρ̂ , u1 ∈U1, and u2 ∈U2, the upper

bound of ˙̂V (x̂(t)) is derived ∀t ∈ [tk, tk+1):

˙̂V (x̂(t))≤− ĉ3

ĉ2
ρs +Lnn|x̂(t)− x̂(tk)|

≤− ĉ3

ĉ2
ρs +LnnMnn∆

(5.1.25)

Therefore, if Eq. 5.2.15a is satisfied, the following inequality holds ∀x̂(tk) ∈ Ωρ̂\Ωρs and t ∈
[tk, tk+1):

˙̂V (x̂(t))≤− εs (5.1.26)

By integrating the above equation over t ∈ [tk, tk+1), it is obtained that V̂ (x̂(tk+1))≤ V̂ (x̂(tk))−εs∆.

Therefore, V̂ (x̂(t))≤ V̂ (x̂(tk)),∀t ∈ [tk, tk+1). We have proved that for all x̂(tk) ∈Ωρ̂\Ωρs , the state

of the closed-loop LSTM system of Eq. 6.3 is bounded in the closed-loop stability region Ωρ̂

for all times and moves towards the origin under [u1 u2] = [u∗d1
(tk) u∗d2

(tk)] implemented in a

sample-and-hold fashion.

Next, we consider when x(tk) = x̂(tk) ∈ Ωρs and Eq. 5.1.26 may not hold. According to

Eq. 6.19a, Ωρnn is designed to ensure that the closed-loop state x̂(t) of the LSTM model does

not leave Ωρnn for all t ∈ [tk, tk+1), u1 ∈U1, u2 ∈U2, and x̂(tk) ∈ Ωρs within one sampling period.

If the state x̂(tk+1) leaves Ωρs , the controller [u1 u2] = [u∗d1
(tk) u∗d2

(tk)] ∈U will drive the state

138

towards Ωρs over the next sampling period since Eq. 5.1.26 is satisfied again at t = tk+1. Therefore,

the convergence of the state to Ωρnn for the closed-loop LSTM system of Eq. 6.3 is proved for all

x̂0 ∈Ωρ̂ .

Part 3: We have proven that the closed-loop state of the LSTM system of Eq. 6.3 are bounded

in Ωρ̂ and ultimately converge to Ωρnn under the controller [u1 u2] = [u∗d1
(tk) u∗d2

(tk)] computed

by the distributed LMPC design of Eq. 7.19 for all x̂ ∈Ωρ̂ . We will now prove that the controllers

[u1 u2] = [u∗d1
(tk) u∗d2

(tk)] computed by the distributed LMPC design of Eq. 7.19 are able to

stabilize the actual nonlinear system of Eq. 8.1 while accounting for bounded modeling error |ν |
and disturbances |w|. If there exists a positive real number γ < ĉ3/ĉ4 that constrains the modeling

error |ν |= |F(x,u1,u2,0)−Fnn(x,u1,u2)| ≤ γ|x| for all x∈Ωρ̂ , u1 ∈U1, u2 ∈U2, then the origin of

the closed-loop nominal system of Eq. 8.1 can be rendered exponentially stable under the controller

[u1 u2] = [u∗d1
(tk) u∗d2

(tk)]. This is shown by proving that ˙̂V for the nominal system of Eq. 8.1 can

be rendered negative under [u1 u2] = [u∗d1
(tk) u∗d2

(tk)]. Based on the conditions on the Lyapunov

functions of Eq. 5.2.19 as derived in Part 2, and Eq. 5.2.10c, the time derivative of the Lyapunov

function is derived as follows:

˙̂V (x) =
∂V̂ (x)

∂x
F(x,u∗d1

(tk),u∗d2
(tk),0)

=
∂V̂ (x)

∂x
(Fnn(x,u∗d1

(tk),u∗d2
(tk))+F(x,u∗d1

(tk),u∗d2
(tk),0)−Fnn(x,u∗d1

(tk),u∗d2
(tk)))

≤− ĉ3|x|2 + ĉ4|x|(F(x,u∗d1
(tk),u∗d2

(tk),0)−Fnn(x,u∗d1
(tk),u∗d2

(tk)))

≤− ĉ3|x|2 + ĉ4γ|x|2

≤− c̃3|x|2

(5.1.27)

When γ is chosen to satisfy γ < ĉ3/ĉ4, it holds that ˙̂V ≤ −c̃3|x|2 ≤ 0 where c̃3 = −ĉ3 + ĉ4γ > 0.

Therefore, the closed-loop state of the nominal system of Eq. 8.1 converges to the origin under

[u1 u2] = [u∗d1
(tk) u∗d2

(tk)], ∀ x0 ∈Ωρ̂ if the modeling error is sufficiently small, i.e., |ν | ≤ γ|x|.
Additionally, considering the presence of bounded disturbances (i.e., |w| ≤ wm), we will now

prove that the closed-loop state x(t) of the actual nonlinear system of Eq. 8.1 (i.e., ẋ = F(x,u,w))

is bounded in Ωρ̂ and ultimately converges to Ωρmin under the sample-and-hold implementation

of the control actions [u1 u2] = [u∗d1
(tk) u∗d2

(tk)] as computed by the distributed LMPC design of

Eq. 7.19.

Similarly, we first consider x(tk) = x̂(tk) ∈ Ωρ̂\Ωρnn , which means x(tk) also belongs to the

region Ωρ̂\Ωρs .We derive the time-derivative of V̂ (x) for the nonlinear system of Eq. 8.1 with

139

bounded disturbances as follows:

˙̂V (x(t)) =
∂V̂ (x(t))

∂x
F(x(t),u∗d1

(tk),u∗d2
(tk),w)

=
∂V̂ (x(tk))

∂x
F(x(tk),u∗d1

(tk),u∗d2
(tk),0)+

∂V̂ (x(t))
∂x

F(x(t),u∗d1
(tk),u∗d2

(tk),w)

− ∂V̂ (x(tk))
∂x

F(x(tk),u∗d1
(tk),u∗d2

(tk),0)

(5.1.28)

From Eq. 5.2.21, we know that ∂V̂ (x(tk))
∂x F(x(tk),u∗d1

(tk),u∗d2
(tk),0) ≤ −c̃3|x(tk)|2 holds for all x ∈

Ωρ̂ . Based on Eq. 5.2.10a and the Lipschitz condition in Eq. 5.2.5, the following inequality is

obtained for ˙̂V (x(t)) ∀t ∈ [tk, tk+1) and x(tk) ∈Ωρ̂\Ωρs:

˙̂V (x(t))≤− c̃3

ĉ2
ρs +

∂V̂ (x(t))
∂x

F(x(t),u∗d1
(tk),u∗d2

(tk),w)−
∂V̂ (x(tk))

∂x
F(x(tk),u∗d1

(tk),u∗d2
(tk),0)

≤− c̃3

ĉ2
ρs +L

′
x|x(t)− x(tk)|+L

′
w|w|

≤− c̃3

ĉ2
ρs +L

′
xM∆+L

′
wwm

(5.1.29)

Therefore, if Eq. 5.2.15b is satisfied, the following inequality holds ∀x(tk) ∈ Ωρ̂\Ωρs and t ∈
[tk, tk+1):

˙̂V (x(t))≤− εw (5.1.30)

Integrating Eq. 5.2.22 will show that Eq. 5.2.17b holds; hence, the closed-loop state of the actual

nonlinear process of Eq. 8.1 is maintained in Ωρ̂ for all times, and can be driven towards the

origin in every sampling period under the controller [u1 u2] = [u∗d1
(tk) u∗d2

(tk)]. Additionally,

if x(tk) ∈ Ωρs , considering the sample-and-hold implementation of control actions, it has been

shown in Part 2 that the state of the LSTM model of Eq. 6.3 is maintained in Ωρnn within one

sampling period. Considering the bounded error between the state of the LSTM of Eq. 6.3 model

and the state of the nonlinear system of Eq. 8.1 given by Eq. 5.1.18a, there exists a compact set

Ωρmin ⊃ Ωρnn that satisfies Eq. 6.19b such that the state of the actual nonlinear system of Eq. 8.1

does not leave Ωρmin during one sampling period if the state of the LSTM model of Eq. 6.3 is

bounded in Ωρnn . If the state x(t) enters Ωρmin\Ωρs , we have shown that Eq. 5.2.22 holds, and thus,

the state will be driven towards the origin again under [u1 u2] = [u∗d1
(tk) u∗d2

(tk)] during the next

sampling period.

140

Consider x(t) ∈ Ωρ̂\Ωρnn at t = tk where the contractive constraints of Eq. 5.1.11e and

Eq. 5.1.12e are activated. Since x(tk) ∈Ωρ̂\Ωρnn , it follows that x(tk) ∈Ωρ̂\Ωρs , hence Eq. 5.2.22

holds, implying that the closed-loop state will be driven towards the origin in every sampling

step under [u1 u2] = [u∗d1
(tk) u∗d2

(tk)] and can be driven into Ωρnn within finite sampling steps.

After the state enters Ωρnn , the constraint of Eq. 5.1.11f and Eq. 5.1.12f are activated to maintain

the predicted states of the LSTM model of Eq. 5.1.11b and Eq. 5.1.12b in Ωρnn over the entire

prediction horizon. As we characterize a region Ωρmin that satisfies Eq. 6.19b, the closed-loop state

x(t) of the nonlinear system of Eq. 8.1, ∀t ∈ [tk, tk+1) is guaranteed to be bounded in Ωρmin if the

predicted state by the LSTM model of Eq. 5.1.11b and Eq. 5.1.12b remains in Ωρnn . Therefore,

at the next sampling step t = tk+1, if the state x(tk+1) is still bounded in Ωρnn , the constraint of

Eq. 5.1.11f and Eq. 5.1.12f maintains the predicted state x̂ of the LSTM model of Eq. 5.1.11b

and Eq. 5.1.12b in Ωρnn such that the actual state x of the nonlinear system of Eq. 8.1 stays

inside Ωρmin . However, if x(tk+1) ∈ Ωρmin\Ωρnn , following the proof we have shown for the case

that x(tk) ∈ Ωρ̂\Ωρnn , the contractive constraint of Eq. 5.1.11e and Eq. 5.1.12e will be activated

instead to drive it towards the origin. This completes the proof of boundedness of the states of the

closed-loop system of Eq. 8.1 in Ωρ̂ and convergence to Ωρmin for any x0 ∈Ωρ̂ .

Remark 5.1.5. Although there exists approximation error induced by Eq. 5.2.11, it does not

jeopardize the stability analysis. This is because the same numerical approximations are

used universally whenever the calculations for f̂ , ĝ1 and ĝ2 are invoked. This includes when

calculating Φnn1(x),Φnn2(x), when characterizing the stability region, and when calculating the

time-derivative of the control Lyapunov function in the contractive constraint for the optimization

problems of the distributed MPC system. Therefore, [u1 u2] = [Φnn1(x) Φnn2(x)] still remains

a feasible solution to the distributed MPC that will render the origin of the nonlinear process

exponentially stable for all initial conditions x0 ∈Ωρ̂ .

5.1.4 Application to a Two-CSTR-in-Series Process

A chemical process example is utilized to demonstrate the application of sequential distributed

and iterative distributed model predictive control using the proposed LSTM model, the results

of which will be compared to that of centralized model predictive control. Specifically, two

well-mixed, non-isothermal continuous stirred tank reactors (CSTRs) in series are considered

where an irreversible second-order exothermic reaction takes place in each reactor as shown in

Fig. 5.2.5.

141

Figure 5.1.5: Process flow diagram of two CSTRs in series.

The reaction transforms a reactant A to a product B (A→ B). Each of the two reactors are

fed with reactant material A with the inlet concentration CA j0, the inlet temperature Tj0 and feed

volumetric flow rate of the reactor Fj0, j = 1,2, where j = 1 denotes the first CSTR and j = 2

denotes the second CSTR. Each CSTR is equipped with a heating jacket that supplies/removes

heat at a rate Q j, j = 1,2. The CSTR dynamic models is obtained by the following material and

142

energy balance equations:

dCA1

dt
=

F10

V1
(CA10−CA1)− k0e

−E
RT1 C2

A1 (5.1.31a)

dT1

dt
=

F10

V1
(T10−T1)+

−∆H
ρLCp

k0e
−E
RT1 C2

A1 +
Q1

ρLCpV1
(5.1.31b)

dCB1

dt
=− F10

V1
CB1 + k0e

−E
RT1 C2

A1
(5.1.31c)

dCA2

dt
=

F20

V2
CA20 +

F10

V2
CA1−

F10 +F20

V2
CA2− k0e

−E
RT2 C2

A2 (5.1.31d)

dT2

dt
=

F20

V2
T20 +

F10

V2
T1−

F10 +F20

V2
T2 +

−∆H
ρLCp

k0e
−E
RT2 C2

A2 +
Q2

ρLCpV2
(5.1.31e)

dCB2

dt
=

F10

V2
CB1−

F10 +F20

V2
CB2 + k0e

−E
RT2 C2

A2 (5.1.31f)

where CA j, Vj, Tj and Q j, j = 1,2 are the concentration of reactant A, the volume of the reacting

liquid, the temperature, and the heat input rate in the first and the second reactor, respectively. The

reacting liquid has a constant density of ρL and a constant heat capacity of Cp for both reactors.

∆H, k0, E, and R represent the enthalpy of the reaction, pre-exponential constant, activation energy,

and ideal gas constant, respectively. Process parameter values are listed in Table 5.2.1. The

manipulated inputs for both CSTRs are the inlet concentration of species A and the heat input

rate, which are represented by the deviation variables ∆CA j0 = CA j0−CA j0s , ∆Q j = Q j −Q js ,

j = 1,2, respectively. The manipulated inputs are bounded as follows: |∆CA j0| ≤ 3.5 kmol/m3

and |∆Q j| ≤ 5× 105 kJ/hr, j = 1,2. Therefore, the states of the closed-loop system are xT =

[CA1−CA1s T1−T1s CA2−CA2s T2−T2s], where CA1s , CA2s , T1s and T2s are the steady-state values

of concentration of A and temperature in the first and the second reactor, such that the equilibrium

point of the system is at the origin of the state-space. It is noted that the states of the first CSTR

can be separately denoted as xT
1 = [CA1−CA1s T1− T1s] and the states of the second CSTR are

denoted as xT
2 = [CA2−CA2s T2−T2s]. In a centralized MPC framework, feedback measurement

on all states x is received by the controller, and the manipulated inputs for the entire system,

uT = [∆CA10 ∆Q1 ∆CA20 ∆Q2], are computed by one centralized controller. In a distributed

LMPC system, both LMPCs have access to full-state information as well as the overall model of

the two-CSTR process. Both LMPC 1 and LMPC 2 receive feedback on x(t); LMPC 1 optimizes

uT
1 and LMPC 2 optimizes uT

2 . The common control objective of the model predictive controllers is

to stabilize the two-CSTR process at the unstable operating steady-state xT
s = [CA1s CA2s T1s T2s],

whose values are presented in Table 5.2.1.

143

Table 5.1.1: Parameter values of the CSTRs.

T10 = 300 K T20 = 300 K

F10 = 5 m3/hr F20 = 5 m3/hr

V1 = 1 m3 V2 = 1 m3

T1s = 401.9 K T2s = 401.9 K

CA1s = 1.954 kmol/m3 CA2s = 1.954 kmol/m3

CA10s = 4 kmol/m3 CA20s = 4 kmol/m3

Q1s = 0.0 kJ/hr Q2s = 0.0 kJ/hr

k0 = 8.46×106 m3/kmol hr ∆H =−1.15×104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 E = 5×104 kJ/kmol

The explicit Euler method with an integration time step of hc = 10−4 hr is used to numerically

simulate the dynamic model of Eq. 8.45. The nonlinear optimization problems of the distributed

LMPCs of Eq. 5.1.11 – Eq. 5.1.12, and of Eq. 5.1.15 – Eq. 5.1.16 are solved using the Python

module of the IPOPT software package [113], named PyIpopt with a sampling period ∆ = 10−2 hr.

The objective function in the distributed LMPC optimization problem has the form L(x,u1,u2) =

xT Qx+uT
1 R1u1+uT

2 R2u2, where Q= diag[2×103 1 2×103 1], R1 =R2 = diag[8×10−13 0.001];

the same objective function is used in both LMPC 1 and LMPC 2 in all distributed LMPC systems.

The overall control Lyapunov function is the sum of the control Lyapunov functions for the two

CSTRs, i.e., V (x) = V1(x1) +V2(x2) = xT
1 P1x1 + xT

2 P2x2, with the following positive definite P

matrices:

P1 = P2 =

[
1060 22

22 0.52

]
(5.1.32)

Given that the modeling error between the LSTM model and the first-principles model is

sufficiently small, the control Lyapunov function for the first-principles model of the nonlinear

process V can be used as the control Lyapunov function for the LSTM model V̂ as well.

5.1.4.1 LSTM Network Development

Open-loop simulations are conducted for finite sampling steps for various initial conditions inside

Ωρ , where ρ = 392, using the nonlinear system of Eq. 8.1 under various u1 ∈U1, u2 ∈U2 applied in

a sample-and-hold manner. These trajectories which consist of training sample points are collected

144

with a time interval of 5×hc. The LSTM model is then developed to predict future states over one

sampling period ∆. This LSTM model captures the dynamics of the overall two-CSTR process of

Eq. 8.45, and can be used in all individual distributed LMPCs or in the centralized LMPC. The

LSTM network is developed using Keras with 1 hidden layer consisting of 50 units, where tanh

function is used as the activation function, and Adam is used as the optimizer. The stopping criteria

for the training process include that the mean squared modeling error being less than 5×10−7 and

the mean absolute percentage of the modeling error being less than 4.5×10−4. After 50 epochs of

training, with each epoch taking on average 200 s, the mean squared error between the predicted

states of the LSTM network model and of the first-principles models is 4.022× 10−7 and the

mean absolute error is 4.254× 10−4. After obtaining an LSTM model with sufficiently small

modeling error, the Lyapunov function of the LSTM model, V̂ , is chosen to be the same as V (x).

Subsequently, the set D̂ can be characterized using the controllers [u1 u2] = [Φnn1(x) Φnn2(x)],

from which the closed-loop stability region Ωρ̂ for the LSTM system can be characterized as the

largest level set of V̂ in D̂ while also being a subset of Ωρ . The positive constants ρ̂1 and ρ̂2,

which are used to define the largest level sets of the control Lyapunov functions for the first and

the second CSTR respectively, are ρ̂1 = ρ̂2 = 380. Additionally, the ultimate bounded region

Ωρnn , and subsequently, Ωρmin , are chosen to be ρnn = 10 and ρmin = 12, determined via extensive

closed-loop simulations with u1 ∈U1,u2 ∈U2. Readers interested in more computational details

on the development of a recurrent neural network model can refer to [128].

In this study, we simulate three different types of control systems to compare their closed-loop

control performances: a centralized LMPC, an iterative distributed LMPC system, and a sequential

distributed LMPC system. We develop an LSTM model for the overall two-CSTR process, which

is the same model used in both centralized LMPC system and distributed LMPC systems. When

this LSTM network model is implemented online during closed-loop simulations, the inputs to the

LSTM network are x(t) and u(t) at t = tk, and the outputs are the predicted future states x̂(t) at

t = tk+1; more examples on this overall LSTM model can be found in [125]. It should be noted that,

depending on the different architectures of the control systems, the choice of inputs and outputs as

well as the structure of the LSTM model used in the control system may be different.

5.1.4.2 Closed-loop Model Predictive Control Simulations

To demonstrate the efficacy of the distributed model predictive control network using LSTM

models, the following simulations are carried out. First, we simulate a centralized LMPC using

the LSTM network for the overall two-CSTR process as its prediction model, where the four

145

manipulated inputs are uT = [∆CA10 ∆Q1 ∆CA20 ∆Q2], and it receives feedback on all states

xT = [CA1−CA1s T1−T1s CA2−CA2s T2−T2s]. Then, we simulate sequential distributed LMPCs

and iterative distributed LMPCs, where LMPC 1 and LMPC 2 in both distributed frameworks use

the same LSTM model for the overall two-CSTR process as used in a centralized LMPC system.

The closed-loop control performances of the aforementioned control networks are compared,

the comparison metrics include the computation time of calculating the solutions to the LMPC

optimization problem(s), as well as the sum squared error of the closed-loop states x(t) for a total

simulation period of tp = 0.3 hr. It should be noted that, since iterative distributed LMPC systems

allow parallel computing of the individual controllers, the computation time for obtaining the final

solutions to the optimization problems of Eq. 5.1.15 – Eq. 5.1.16 should be the maximum time

of the two controllers, accounting for all iterations carried out before the termination criterion is

reached. The termination criterion used was that the computation time for solving each LMPC

must not exceed the sampling period, ∆. On the other hand, in a sequential distributed LMPC

system, since the computation of LMPC 1 depends on the optimal trajectory of control action

calculated by LMPC 2, the total computation time taken to obtain the solutions to the optimization

problems of Eq. 5.1.11 – Eq. 5.1.12 must be the sum of the time taken by the two controllers.

Table 5.2.2 shows the average computation time for solving the optimization problem(s) of

the distributed and centralized LMPC systems, as well as the sum of squared percentage error of

all states in the form of SSE =
∫ tp

0 (
CA1−CA1s

CA1s
)2 +(

T1−T1s
T1s

)2 +(
CA2−CA2s

CA2s
)2 +(

T2−T2s
T2s

)2dt. It is shown

in Table 5.2.2 that when the two-CSTR process is operated under distributed LMPC systems, the

sum squared error and the average computation time are reduced compared to the case where a

centralized LMPC system is used. Moreover, it is shown that the iterative distributed MPC using

the LSTM model has a lower mean computation time and a lower sum squared error than the

sequential distributed MPC, and the distributed MPC in general achieve a lower sum squared error

than the centralized MPC. It should also be noted that the computation time of all simulated control

systems are lower than the sampling period used in the two-CSTR process such that the proposed

control system can be implemented without computational issues.

146

Table 5.1.2: Average LMPC computation time in one sampling period and the sum of squared
percentage error of all states along the closed-loop trajectory under iterative distributed, sequential
distributed, and centralized LMPC systems using their respective LSTM models with a total
simulation time of 0.3 hr.

Ave. Computation Time (s) Sum Squared Error

Iterative Distributed LMPC 26.70 2.85

Sequential Distributed LMPC 29.55 3.04

Centralized LMPC 35.26 3.08

In this work, we develop machine-learning-based models for the two-CSTR process of Eq. 8.45

assuming that the first-principles model of Eq. 8.45 is unknown. However, in order to have a

reasonable baseline for comparison, we show the simulation results of each distributed control

framework using the first-principles model of the nonlinear process of Eq. 8.45. Furthermore,

in real-life scenarios where the first-principles model of an industrial-scale chemical plant is

not available, the comparison of closed-loop control performances using machine-learning-based

models can be conducted against plant data. To further illustrate the closed-loop performances

of sequential and iterative LMPC systems using the LSTM model, the closed-loop state

evolution showing the convergence of closed-loop states from the initial conditions xT
0 =

[−1.5kmol/m3 70K 1.5kmol/m3 − 70K] under the sequential and iterative LMPC using the

LSTM model are plotted in Figs. 5.1.6 – 5.1.7 along with the closed-loop trajectories under the

respective distributed LMPCs using the first-principles model as a baseline for comparison. All

states converge to Ωρmin within 0.10 hr under the sequential and iterative distributed MPCs using

the LSTM model. It is reported that using the LSTM model, the sum squared error of an operation

period of 0.3 hr under iterative distributed LMPC and under sequential distributed LMPC are

2.85 and 3.04, respectively. Using the first-principles model, the sum squared error of the same

operation period with the same initial conditions under iterative and sequential distributed LMPC

systems are 2.96 and 2.98, respectively, which is on par with the sum squared error achieved

using LSTM network, with the iterative distributed LMPC obtaining even a lower sum squared

error using LSTM network than using first-principles. Through closed-loop simulations and

performance metrics comparisons, we have demonstrated the efficacy of distributed LMPC systems

using LSTM network models.

147

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25 0.3

0

20

40

60

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3

-60

-40

-20

0

Figure 5.1.6: Closed-loop state trajectories of the sequential distributed LMPC systems using
LSTM model and first-principles models respectively.

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3

-60

-40

-20

0

Figure 5.1.7: Closed-loop state trajectories of the iterative distributed LMPC systems using LSTM
model and first-principles models respectively.

148

Chapter 5.2

Decentralized Machine-Learning-Based

Predictive Control of Nonlinear Processes

This chapter focuses on the design of decentralized model predictive control (MPC) systems

for nonlinear processes, where the nonlinear process is broken down into multiple, yet coupled

subsystems and the dynamic behavior of each subsystems is described by machine learning

models. One decentralized MPC is designed and used to control each subsystem while accounting

for the interactions between subsystems through feedback of the entire process state. The

closed-loop stability of the overall nonlinear process network and the performance properties of

the decentralized model predictive control system using machine-learning prediction models are

analyzed. More specifically, multiple recurrent neural network models suited for each different

subsystem need to be trained with a sufficiently small modeling error from their respective

actual nonlinear process models to ensure closed-loop stability. These recurrent neural network

models are subsequently used as the prediction model in decentralized Lyapunov-based MPCs

to achieve efficient real-time computation time while ensuring closed-loop state boundedness and

convergence to the origin. The simulation results of a nonlinear chemical process network example

demonstrate the effective closed-loop control performance when the process is operated under the

decentralized MPCs using the independently-trained recurrent neural network models, as well as

the improved computational efficiency compared to the closed-loop simulation of a centralized

MPC system.

The integration of machine-learning-based modeling methods and various advanced

control architectures is a broad field with expanding research scope. Using state-of-the-art

machine-learning methods to address the issues of model uncertainties in a decentralized

149

control structure highlights the research interest of this study. In this chapter, we introduce

decentralized model-based control frameworks, where each decentralized controller employs a

Long-Short-Term-Memory (LSTM) network – a particular class of RNN. One decentralized

controller is designed and designated to one subsystem of the overall process, and each

decentralized controller is designed via Lyapunov-based model predictive control (LMPC) theory

([79]). We analyze the stability properties of the decentralized LMPC system that uses LSTM

network models as the prediction model for each subsystem, and then compare the closed-loop

performances of the decentralized LMPCs with those using first-principles models as the prediction

model, and lastly compare with the closed-loop performance of a centralized LMPC system. The

remainder of the paper is organized as follows. Section 2 presents preliminaries on notation, the

general class of nonlinear systems considered, and the stabilizability assumptions. An introduction

on RNN, specifically the structure and development of LSTM networks, as well as Lyapunov-based

control using LSTM networks are presented in Section 3. The formulation and stability proofs of

the decentralized LMPC systems using LSTM models are outlined in Section 4. In Section 5,

closed-loop simulations of a two-CSTR-in-series process under the decentralized LMPC system

are presented.

5.2.1 Preliminaries

5.2.1.1 Notation

Throughout the manuscript, the notation xT is used to denote the transpose of x. |·| is used to denote

the Euclidean norm of a vector. Set subtraction is denoted by “\”, i.e., A\B := {x ∈Rn | x ∈ A,x /∈
B}. A continuous function α : [0,a)→ [0,∞) is said to belong to class K if it is strictly increasing

and is zero only when evaluated at zero. The function f (·) is of class C 1 if it is continuously

differentiable in its domain. L fV (x) denotes the standard Lie derivative L fV (x) := ∂V (x)
∂x f (x).

5.2.1.2 Class of Systems

Consider a general class of continuous-time nonlinear systems in which several distinct sets of

manipulated inputs are used, with each set of manipulated inputs regulating a specific subsystem

of the process. The class of the overall continuous-time nonlinear system is described as follows:

ẋ = F(x,u,w) := f (x)+g(x)u+ v(x)w, x(t0) = x0 (5.2.1)

150

where x ∈ Rn is the vector of all states of the nonlinear system, u ∈ Rm is the vector of all

manipulated inputs of the system, and w ∈ Rl is the disturbance vector for the entire system.

f (·), g(·), and v(·) are sufficiently smooth vector and matrix functions of dimensions n×1, n×m,

and n× l, respectively. We refer to each subpart of the process as a subsystem. Throughout the

manuscript, we consider j = 1, ...,Nsys subsystems, with each subsystem j consisting of states

x j which are regulated by only u j and potentially impacted by states in other subsystems due to

coupling between subsystems. The continuous-time nonlinear dynamics of the subsystem j is

described as follows:

ẋ j = Fj(x,u j,w) := f j(x)+g j(x)u j + v j(x)w, x j(t0) = x j0, ∀ j = 1, ...,Nsys (5.2.2)

where Nsys represents the number of subsystems, x j ∈Rn j represents the state vector for subsystem

j, and x represents the vector of all states x = [x T
1 · · ·x T

Nsys
]T ∈Rn, where n = ∑

Nsys
j=1 n j. u j ∈Rm j is

the set of manipulated input vectors for each subsystem j, which together constitute the vector of all

manipulated inputs u∈Rm with m=∑
Nsys
j=1 m j. The manipulated input vector constraints are defined

by u j ∈ U j := {umin
ji ≤ u ji ≤ umax

ji , i = 1, ...,m j} ⊂ Rm j ,∀ j = 1, ...,Nsys. Therefore, the set that

bounds the manipulated input vector u for the overall system is denoted by U , which is the union

of all U j, j = 1, ...,Nsys. w ∈W is the disturbance vector with W := {w ∈Rl | |w| ≤ wm, wm ≥ 0}.
f j(·), g j(·), and v j(·) are sufficiently smooth vector and matrix functions of dimensions n j× 1,

n j×m j, and n j× l, respectively. The initial time t0 is taken to be zero (t0 = 0). We assume that

f j(0) = 0, ∀ j = 1, ...,Nsys, thus, the origin is a steady-state of the nominal system of Eq. 8.1 (i.e.,

u(t)≡ 0, w(t)≡ 0). Therefore, we have (xs,us) = (0,0), where xs and us are the steady-state state

and input vectors, respectively.

5.2.1.3 Stability Assumptions

Depending on the partitioning of the overall large-scale system, there may exist interacting

dynamics between the subsystems, where the states of one subsystem may be impacted by the

states of other subsystems. Accounting for the coupling effects between these subsystems, we

assume that there exist stabilizing control laws u j = Φ j(x) ∈ U j which regulate the individual

subsystems j = 1, ...,Nsys and will be applied to the control actuators in the respective subsystems

such that the origin of the overall system of Eq. 8.1 with w(t) ≡ 0 is rendered exponentially

stable. This implies that there exists a C 1 control Lyapunov function V (x) such that the following

151

inequalities hold for all x ∈ Rn in an open neighborhood D around the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (5.2.3a)

∂V (x)
∂x

F(x,ΦΦΦ(x),0)≤−c3|x|2, (5.2.3b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (5.2.3c)

where c1, c2, c3 and c4 are positive constants. F(x,u,w) represents the overall nonlinear system of

Eq. 8.1. ΦΦΦ(x) = [Φ1(x)T · · ·ΦNsys(x)
T]T represents the vector containing the candidate controllers

for each subsystem j, i.e., Φ j(x) ∈ Rm j , for j = 1, ...,Nsys. The candidate controller for each

subsystem j is given in the following form:

φ ji(x) =

 − p+
√

p2 +q4

qT q
q if q ̸= 0

0 if q = 0
(5.2.4a)

Φ ji(x) =


umin

ji if φ ji(x)< umin
ji

φ ji(x) if umin
ji ≤ φ ji(x)≤ umax

ji

umax
ji if φ ji(x)> umax

ji

(5.2.4b)

where p denotes ∂V (x)
∂x j

f j(x) and q denotes ∂V (x)
∂x j

g ji(x). Here, f j ∈ Rn j and g ji ∈ Rn j×m j for j =

1, ...,Nsys, and i = 1, ...,m j for subsystem j corresponding to the vector of control actions Φ j(x) ∈
Rm j . It should be noted that the control Lyapunov function V (x) can be a linear combination

of multiple control Lyapunov functions Vj, where each Vj is designated for the subsystem j and

is a function of x j only, i.e., V (x) = ∑
Nsys
j=1Vj(x j). Thus, ∂V (x)

∂x j
=

∂V j(x j)
∂x j

, ∀ j = 1, ...,Nsys, and

the time-derivative of V can be represented as V̇ (x) = L fV +LgVu = ∑
Nsys
j=1

∂V (x)
∂x j

(f j +∑
m j
i=1 g jiu ji).

φ ji(x) of Eq. 7.7a represents the ith component of the control law φ j(x). Φ ji(x) of Eq. 7.7 represents

the ith component of the saturated control law Φ j(x) that accounts for the input constraints u j ∈U j

for subsystem j. Note that the candidate control law Φ j(x) is calculated based on the nonlinear

dynamics of the subsystem j of Eq. 5.2.2, and the set of candidate control laws for the overall

system is denoted as ΦΦΦ(x) = [Φ1(x)T · · ·ΦNsys(x)
T]T ∈ U , which together can render the overall

system of Eq. 8.1 with w≡ 0 exponentially stable.

Based on Eq. 7.5, we can first characterize a region where the time-derivative of the

Control Lyapunov function V is rendered negative definite under the controllers ΦΦΦ(x) =

152

[Φ1(x)T · · ·ΦNsys(x)
T]T ∈U as D = {x∈Rn | V̇ (x) = L fV +LgVu≤−c3|x|2,u = ΦΦΦ(x)∈U}∪{0}.

Subsequently, the closed-loop stability region Ωρ for the nonlinear system of Eq. 8.1 is defined as

a level set of V , which is inside D: Ωρ := {x ∈ D | V (x) ≤ ρ}, where ρ > 0 and Ωρ ⊂ D. Also,

the Lipschitz property of F(x,u,w) combined with the bounds on u and w imply that there exist

positive constants M, Lx,Lw,L
′
x,L

′
w such that the following inequalities hold for all x,x′ ∈Ωρ ,u∈U

and w ∈W :

|F(x,u,w)| ≤M (5.2.5a)

|F(x,u,w)−F(x′,u,0)| ≤ Lx|x− x′|+Lw|w| (5.2.5b)∣∣∣∣∂V (x)
∂x

F(x,u,w)− ∂V (x′)
∂x

F(x′,u,0)
∣∣∣∣≤ L

′
x|x− x′|+L

′
w|w| (5.2.5c)

Note that the controller Φ ji(x), i = 1, ...,m j of Eq. 7.7 is a candidate stabilizing control law

for the u j ∈ Rm j inputs regulating subsystem j accounting for the interacting dynamics between

subsystems, and the nominal system of Eq. 8.1 is rendered exponentially stable under the set of all

such stabilizing control laws for Nsys subsystems, ΦΦΦ(x) ∈U ⊂ Rm.

Remark 5.2.1. Before we proceed, it is important to elaborate on the structure and differences

between decentralized and distributed control systems. Both decentralized and distributed

control systems aim to alleviate the computational complexity and effort of a centralized control

problem used to regulate multiple subsystems. More specifically, there exists inter-controller

communication in a distributed control system, sharing information on the control actions

calculated by each local controller. This means that additional communication channels need to be

established between the local controllers, which contributes to additional communication network

traffic. Correspondingly, the computation time may increase (e.g., in a sequential distributed

control system, the controllers need to wait for the calculated results from the precedent controllers

and are executed in a sequential manner; in an iterative distributed control system, while the

calculated control actions are exchanged simultaneously past the first iteration, the additional

iterations also contribute to longer computation time). On the other hand, in a decentralized

control system, each local controller concurrently calculates the optimal control actions based on

state feedback measurements, thereby significantly reducing the computational time for control

action calculation. However, without information on the control actions taken by the other

controllers, the cost function minimized by each local controller only includes the relevant control

actions and the corresponding predicted states of the respective subsystem, thereby yielding

inferior closed-loop performance.

153

Remark 5.2.2. It is important to note that, regardless of the open-loop stability property of

the equilibrium point in which the process is operated at, the stabilizability assumption ensures

the existence of a controller that achieves desired decay rate of the closed-loop state to the

origin and the Lyapunov stability constraints in MPC ensure closed-loop stability and closed-loop

state convergence to the origin at a rate that is as fast or faster than the one achieved by

a Lyapunov-based controller. If the process steady-state of operation is open-loop stable, the

closed-loop stability region may be bigger given the limitation imposed in the control actions by

the control actuator constraints.

5.2.2 Long Short-Term Memory Neural Network

It has been demonstrated in numerous examples in the literature that recurrent neural network

(RNN) models are capable of modeling dynamic behaviors of time-series data and are an effective

method to represent nonlinear processes [40, 57, 102]. With the use of feedback loops in the

network, RNNs store outputs derived from past inputs, and use these previous output information

together with current inputs to obtain a more accurate prediction of the current output. With

sufficient number of neurons in the RNN model, it can be shown that RNNs are capable of

approximating any nonlinear dynamic systems on compact subsets of the state-space for finite

time based on the universal approximation theorem [64, 99].

There are many types and variations of recurrent neural networks suited for different purposes.

Classic RNNs have neurons which pass on historical information across time, and they are

prevalent in the fields of natural language processing and speech recognition [28]. However,

they face difficulty of accessing information from a long time ago due to the vanishing/exploding

gradient phenomena, and they cannot consider any future input for the prediction of the current

state since the feedback loops are in the forward direction in time only. To this end, many

variations of RNNs have been proposed. For example, in order to address the vanishing/exploding

gradient problem, specific gates are used in each repeating network unit to assess and regulate the

information transferred down the network. More specifically, Long Short-Term Memory (LSTM)

networks use three gates (the forget gate, the input gate, and the output gate) to protect and control

the memory cell state, thus information will be stored and remembered for long periods of time,

making LSTM networks well suited for data sequences that exhibit long time lags between relevant

data points [50,93]. Gated Recurrent Unit (GRU), which is a variation of the LSTM unit, combines

the gating functions of the input gate and the forget gate in an LSTM unit, thereby significantly

154

reducing the training and execution time [33]. On the other hand, Bidirectional RNN (BRNN)

was proposed in [94] where a hidden layer with forward connections in time and a hidden layer

with backward connections in time were used together such that both past outputs and future

outputs were used along with current inputs to predict the current output. Moreover, Deep RNN

(DRNN) stacks multiple hidden recurrent layers on top of each other, where each hidden state is

continuously passed to both the next time step of the current layer, as well as the current time step

of the next layer [93]. LSTM networks could also adopt the configurations of BRNN and DRNN

for more complex applications. For each subsystem j, j = 1, ...,Nsys, we develop a classic LSTM

model to approximate the continuous-time nonlinear processes of each subsystem of Eq. 5.2.2.

Combining Nsys such LSTM network models, the nonlinear process of Eq. 8.1 can be represented

as follows:
˙̂x = Fnn(x̂,u) = [˙̂x T

1 · · · ˙̂x T
Nsys

]T (5.2.6)

and the LSTM network model for each subsystem j, modeling the nonlinear dynamics of Eq. 5.2.2,

is represented in the following form:

˙̂x j = Fnn j(x̂,u j) := λ jA jx̂+Θ
T
j y j, j = 1, ...,Nsys (5.2.7)

where x̂ ∈ Rn is the predicted state vector for the overall system, x̂ j ∈ Rn j is the predicted state

vector given by the LSTM model for subsystem j, and u j ∈Rm j is the manipulated input vector for

subsystem j. y j = [y1 · · ·yn j+m j+1]
T = [H(x̂1) · · ·H(x̂n j) u1 · · ·um j 1]T ∈ Rn j+m j+1 is a vector

of both the network states x̂ j and the inputs u j, where H(·) represents a series of interacting

nonlinear activation functions in each LSTM unit. λ j ∈ Rn j×n is a coefficient matrix representing

the interacting dynamic behavior between the states of the overall system x and the states of the

subsystem j, x j. A j is a diagonal coefficient matrix, where A j = diag{−α j1 · · ·−α jn} ∈Rn×n, and

Θ j = [θ1 · · ·θn j+m j+1] ∈ R(n j+m j+1)×n j with θi = β ji[ωi1 · · ·ωi(n j+m j) b ji], i = 1, ...,n j. α ji and β ji

are constants, and ωik is the weight connecting the kth input to the ith neuron where i = 1, ...,n j

and k = 1, ...,(n j +m j), and b ji is the bias term for i = 1, ...,n j. We assume that α ji are positive

constants such that each state in the vector x̂ j is bounded-input bounded-state stable. We use x j

to represent the state of the actual nonlinear subsystem of Eq. 5.2.2 and use x̂ j for the state of

the subsystem j modeled by the LSTM network of Eq. 5.2.7. The basic architecture of an LSTM

network is illustrated in Fig. 5.2.1.

The matrix of input sequences to the LSTM network is denoted by m ∈ R(n+m j)×T containing

the measured states x ∈ Rn at each model predictive controller (MPC) sampling period ∆ and the

155

Figure 5.2.1: A long short-term memory (LSTM) recurrent neural network for subsystem j and
the series of its unfolded structure, where m is the input vector consisting of the state measurement
x at each MPC sampling period and the control action u j to be optimized over the next sampling
period, c is the cell state vector, h is the hidden state vector, and x̂ j is the output vector.

manipulated inputs u j ∈Rm j to be optimized over the next sampling period ∆, both with a sequence

length of T . The matrix of the network output sequences is the predicted states for subsystem j

denoted by x̂ j ∈ Rn j×T . From each repeating LSTM unit, the network state that is passed onto the

next LSTM unit in the unfolded sequence is the hidden state, denoted by h(1), ...,h(T), where the

number of internal states T (i.e., the number of repeating LSTM units) corresponds to the length

of the input sequence. The LSTM network calculates the predicted output sequence x̂ j from the

156

input sequence m by computing the following calculations iteratively from k = 1 to k = T :

i(k) =σ(ωm
i m(k)+ω

h
i h(k−1)+bi) (5.2.8a)

f (k) =σ(ωm
f m(k)+ω

h
f h(k−1)+b f) (5.2.8b)

c(k) = f (k)c(k−1)+ i(k)tanh(ωm
c m(k)+ω

h
c h(k−1)+bc) (5.2.8c)

o(k) =σ(ωm
o m(k)+ω

h
o h(k−1)+bo) (5.2.8d)

h(k) =o(k)tanh(c(k)) (5.2.8e)

x̂ j(k) =ωyh(k)+by (5.2.8f)

where m(k) denotes the kth element in the input sequence, h(k) and x̂ j(k) are the internal state

and the output computed by the kth LSTM unit in the unfolded sequence, respectively. σ(·) is

the sigmoid activation function, tanh(·) is the hyperbolic tangent activation function. ωy and by

denote the weight matrix and bias vector for the output, respectively. The outputs from the input

gate, the forget gate, and the output gate are represented by i(k), f (k), o(k), respectively; ωm
i , ωh

i ,

ωm
f , ωh

f , ωm
o , ωh

o are the weight matrices for the input vector m and the hidden state vector h within

the input gate, the forget gate, and the output gate respectively, and bi, b f , bo represent the bias

vectors within each of the three gates, respectively. c(k) is the cell state which stores memory and

passes information down the LSTM units, with ωm
c , ωh

c and bc representing the weight matrices

for the input and hidden state vectors, and the bias vector, respectively. The series of interacting

nonlinear functions carried out in each LSTM unit, outlined in Eq. 5.2.8, can be represented by

H(·). The internal structure of an LSTM unit showing the gating functions is shown in Fig. 5.2.2.

Remark 5.2.3. Since the class of nonlinear systems we consider in this work is continuous-time,

the stability analysis of the data-based LSTM model is also conducted using the continuous-time

representation. However, given the inherent internal structure of the LSTM model and that the

LSTM model is constructed based on data arranged in sequences of uniform intervals, the LSTM

model works as a discrete-time model with a uniform sampling time. While the LSTM model and

the first-principles model of the process are both represented as a continuous-time models, the

computation of the LSTM model occurs at discrete time instants, similar to how the first-principles

continuous-time model in the form of ordinary differential equations can be numerically integrated

via explicit Euler method, but maybe with a different integration time step.

The continuous-time nonlinear system of Eq. 8.1 is operated under the proposed decentralized

Lyapunov-based model predictive control (LMPC) system in a sample-and-hold manner, where

157

Figure 5.2.2: The internal structure of an LSTM unit inside the LSTM network j where the past
cell state vector c(k− 1), past hidden state vector h(k− 1), and the current input vector m(k) are
used to obtain c(k), h(k), and the network output vector x̂ j(k) for subsystem j via the input gate,
the forget gate, the output gate, and an output layer.

the feedback measurement of the closed-loop state x for the nonlinear system is received by

the designated local controller, LMPC j, every sampling period ∆. Using numerical integration

methods such as the explicit Euler method, we can obtain the state information of the simulated

nonlinear process with an integration time step of hc. We develop the LSTM network model for

each subsystem j such that it can be used as the prediction model in the decentralized LMPC;

to this end, the total prediction period of the LSTM network model is also set to be ∆ (i.e., the

last output state vector is obtained at the end of every ∆), and the time interval between two

consecutive internal states h in the LSTM network for subsystem j can be chosen as a multiple

qnn of the integration time step hc, with the minimum time interval being the integration time

step with qnn = 1. Depending on the choice of qnn, the number of internal states T will follow

T = ∆

qnn·hc
. Therefore, given that the input sequence is fed to the LSTM network at t = tk, the

LSTM network provides a sequence of T future predicted states following Eq. 5.2.8, with the last

network output vector corresponding to the predicted state x̂ j(t) at t = tk+∆. Since input sequences

with a length of T are needed to produce T number of internal states, the input time-series samples

158

will be of a fixed length of T . Fig. 5.2.3 illustrates the different time steps used in this work, i.e.,

the integration time step for the numerical simulation (hc), the time interval between the internal

states in the developed LSTM network models (qnn× hc), and the sampling period in the model

predictive control algorithm (∆).

Figure 5.2.3: An illustration showing the integration time step hc used in the numerical integration
of the process states x, the time interval between internal states in the LSTM network qnn×hc, and
the sampling period for the model predictive controller.

To collect training data for developing an LSTM network for each subsystem j, we first

discretize the targeted region in state-space with sufficiently small intervals; then, open-loop

simulations are carried out where the first-principles model of Eq. 5.2.2 is numerically integrated at

a fixed integration time step of hc, and these simulations are conducted for various initial conditions

x0 ∈Ωρ under various input sequences u j ∈U j, j = 1, ...,Nsys implemented in a sample-and-hold

manner with a sampling period of ∆. We obtain enough samples of trajectories for finite time

to sweep over all the values that (x,u) can take in the targeted region in state-space. Then,

we extract the state measurements every qnn× hc interval to use as the target predicted internal

states during training. As there are T such internal states within each controller sampling period

∆ = T ×qnn×hc, the last internal state corresponds to the output predicted state at the end of every

∆. The time interval between two data points in the sample of time-series sequence is qnn×hc, and

159

it corresponds to the time interval between two consecutive LSTM units in the LSTM network. We

separate the dataset into the corresponding input and output vectors for each subsystem j, i.e., the

input vector includes data on all states of the overall system x and the distinct set of manipulated

inputs for the subsystem, u j, and the output vector includes the states of the subsystem, x j. The

generated dataset is then divided into training and validation sets.

Remark 5.2.4. We could use all the numerically integrated state values every hc step (i.e., qnn = 1)

as the internal states in the LSTM network, however, this would increase the computational load

associated with training and implementing the model. Therefore, we choose a qnn value such

that there are sufficient state values within each sampling period of the controller ∆ to capture

the dynamic state evolution while not overburdening the computational effort. While the control

actions are computed every sampling period ∆ (i.e., the model predictive controllers are executed

once every ∆), the objective function of the optimization problem of the model predictive controller

includes the integral of all the predicted states over the prediction horizon of N×∆, which includes

all the predicted internal states intervaled at qnn×hc given by the LSTM model.

With sufficient data in the training dataset, the LSTM network is developed using an application

program interface which contains open-source neural network libraries, e.g., Keras. The optimal

parameter matrix of the LSTM network, Γ∗, which includes the network parameters ωi, ω f , ωc,

ωo, ωy, bi, b f , bc, bo, by, is optimized by minimizing the mean absolute percentage error between

x j(t) and x̂ j(t) for each subsystem j. The minimization of the state error is carried out using

the adaptive moment estimation optimizer, i.e., Adam in Keras, in which the gradient of the error

cost function is calculated using back-propagation. A constraint on the modeling error ν j for

each LSTM network j is imposed during training, |ν j| = |Fj(x,u j,0)−Fnn j(x,u j)| ≤ γ j|x j|, with

γ j > 0, such that the modeling error for the overall nonlinear system is sufficiently small, i.e., |ν |=
∑

Nsys
j=1 |ν j| ≤ γ|x|, γ > 0. With a sufficiently small modeling error, the trained LSTM network model

can adequately represent the nonlinear process of subsystem j and can be used in the proposed

model predictive controller to stabilize the actual nonlinear process of Eq. 8.1 at its steady-state

with guaranteed stability properties.

The modeling error can be numerically approximated using the forward finite difference

method. Note that the time interval qnn · hc between two LSTM memory units is given by the

time interval between two consecutive time-series data points in the training data sequences. Since

the LSTM network provides a predicted state at each time interval qnn ·hc calculated by each LSTM

memory unit, similarly to how we can use numerical integration methods to obtain the state at the

same time instance using the continuous-time model of Eq. 8.1, we can use the predicted states

160

from the LSTM network to compare with the predicted states from the nonlinear model of Eq. 8.1

to assess the modeling error. The time derivative of the LSTM predicted state x̂ j(t) at t = tk can be

approximated by ˙̂x j(tk) = Fnn j(x(tk),u j)≈
x̂ j(tk+qnn·hc)−x̂ j(tk)

qnn·hc
. The time derivative of the actual state

x j(t) at t = tk can be approximated by ẋ j(tk) = Fj(x(tk),u j,0) ≈
x j(tk+qnn·hc)−x j(tk)

qnn·hc
. At time t = tk,

x̂ j(tk) = x j(tk), the constraint |ν j| ≤ γ|x j| for the LSTM network of subsystem j can be written as

follows:

|ν j|= |Fj(x(tk),u j,0)−Fnn j(x(tk),u j)| (5.2.9a)

≈ |
x j(tk +qnn ·hc)− x̂ j(tk +qnn ·hc)

qnn ·hc
| (5.2.9b)

≤ γ j|x j(tk)| (5.2.9c)

which will be satisfied if |x j(tk+qnn·hc)−x̂ j(tk+qnn·hc)
x j(tk)

| ≤ γ j · qnn · hc. Therefore, we can use the mean

absolute percentage error between the predicted states x̂ j and the targeted states x j in the training

data to assess the modeling error of the LSTM model for subsystem j. To avoid over-fitting of the

LSTM models, the training process is terminated once the modeling error falls below the desired

threshold and the error on the validation set stops decreasing. The modeling error of the overall

system of Eq. 5.2.6 can be represented as a sum of the modeling errors of the individual LSTM

networks, i.e., |ν |= ∑
Nsys
j=1 |ν j|.

Remark 5.2.5. For the theoretical analysis and the construction of the LSTM model in this

work, we assume that a first-principles model for the nominal process is available in the form

of ordinary differential equations. In the case that such models are not available, the modeling

error approximation in Eq. 5.2.9 can be calculated based on real plant data.

5.2.2.1 Lyapunov-based Control using LSTM Models

After obtaining a sufficiently small modeling error between the trained LSTM network and the

actual nonlinear model of Eq. 8.1 for subsystem j, we assume that there exists a set of stabilizing

feedback controllers u = ΦΦΦnn(x) ∈U , where ΦΦΦnn(x) = [Φnn1(x)
T · · ·ΦnnNsys

(x)T]T , that can render

the origin of the LSTM model of Eq. 5.2.6 exponentially stable in the sense that there exists a C 1

control Lyapunov function V̂ (x) such that the following inequalities hold for all x ∈ Rn in an open

neighborhood around the origin D̂:

ĉ1|x|2 ≤ V̂ (x)≤ ĉ2|x|2, (5.2.10a)

161

∂V̂ (x)
∂x

Fnn(x,ΦΦΦnn(x))≤−ĉ3|x|2, (5.2.10b)∣∣∣∣∂V̂ (x)
∂x

∣∣∣∣≤ ĉ4|x| (5.2.10c)

where ĉ1, ĉ2, ĉ3, ĉ4 are positive constants, and Fnn(x,u) is represented by the system of LSTM

models Eq. 5.2.6. While there are many forms that the Lyapunov function V̂ can take, it is a

function that captures all the states of the overall system of Eq. 5.2.6. Similar to the Lyapunov

function V (x) for the nonlinear system of Eq. 8.1 introduced in Section 5.2.1.3, one example of

V̂ is a linear combination of the Lyapunov functions of the states of individual subsystems, i.e.,

V̂ (x) = ∑
Nsys
j=1 V̂j(x j). Here, we assume that V̂j(·) is a function of x j only.

Similar to the characterization method of the closed-loop stability region Ωρ for the nonlinear

subsystem of Eq. 8.1, we first search the entire state-space to characterize a set of states D̂ where

the following inequality holds: ˙̂V (x) = ∂V̂ (x)
∂x Fnn(x,u)≤−c3|x|2, u = ΦΦΦnn(x)∈U . The closed-loop

stability region for the LSTM model of Eq. 5.2.6 is defined as a level set of Lyapunov function

inside D̂: Ωρ̂ := {x ∈ D̂ | V̂ (x) ≤ ρ̂}, where ρ̂ > 0. Starting from Ωρ̂ , the origin of the LSTM

model of Eq. 5.2.6 can be rendered exponentially stable under the set of controllers u j = Φnn j(x)∈
U j, for j = 1, ...,Nsys. The assumptions of Eq. 5.2.10 are the stabilizability conditions for the

LSTM model of Eq. 5.2.6, and they are analogous to the ones of Eq. 7.5 for the general class

of nonlinear systems of Eq. 8.1 since the LSTM model of Eq. 5.2.7 for each subsystem can be

written in the form of Eq. 5.2.2 (i.e., for each subsystem, ˙̂x j = f̂ j(x̂)+ ĝ j(x̂)u j, where f̂ j(·) and

ĝ j(·) are obtained from coefficient matrices λ j, A j and Θ j in Eq. 5.2.7). However, due to the

complexity of the LSTM structure and the interactions of the nonlinear activation functions, f̂ j

and ĝ j may be hard to compute explicitly. For computational convenience, we will numerically

approximate f̂ j and ĝ j using the forward finite difference method similar to Eq. 5.2.9. At t = tk,

we compute two sets of predicted states x̂ j(t) at t = tk + qnn · hc using the LSTM network under

the sample-and-hold implementation of two sets of inputs respectively: first, we use u ji = 0, ∀ i =

1, ...,m j, applied in a sample-and-hold manner for the time interval [tk, tk + qnn · hc) to obtain the

predicted state x̂ j(t) at t = tk + qnn · hc under zero inputs, denoted as
∫ tk+qnn·hc

tk Fnn j(x,0)dt; then,

we use u j(tk) = [0 · · ·u ji(tk) · · ·0] ∈ Rm j , where umin
ji ≤ u ji(tk) ≤ umax

ji , u ji(tk) ̸= 0, applied in a

sample-and-hold manner for the interval [tk, tk + qnn · hc) to obtain the predicted state x̂ j(t) at t =

tk +qnn ·hc under a non-zero input u ji(tk), denoted as
∫ tk+qnn·hc

tk Fnn j(x,u j(tk))dt. Therefore, given

162

the state measurement x(tk) at t = tk, f̂ j and ĝ ji can be numerically approximated as follows:

f̂ j(tk) =

∫ tk+qnn·hc
tk Fnn j(x,0)dt− x(tk)

qnn ·hc
(5.2.11a)

ĝ ji(tk) =

∫ tk+qnn·hc
tk Fnn j(x,u j(tk))dt−

∫ tk+qnn·hc
tk Fnn j(x,0)dt

qnn ·hc ·u ji(tk)
(5.2.11b)

Here, qnn · hc is the time interval between two internal states within the LSTM network; thus, the

predicted state x̂(tk +qnn ·hc) represented by the integral
∫ tk+qnn·hc

tk Fnn j(x, ·)dt in Eq. 5.2.11, is the

first internal state of the LSTM network. After obtaining f̂ j and ĝ ji , i = 1, ...,m j, the stabilizing

control law Φnn j(x j) can be computed similarly as in Eq. 7.7 and repeated for all subsystems

j = 1, ...,Nsys, with f̂ j and ĝ ji replacing f j and g ji respectively. Subsequently, ˙̂V can also be

computed using the approximated values of f̂ j and ĝ ji .

Since the dataset for developing the LSTM model for subsystem j is generated from open-loop

simulations for x ∈ Ωρ , u j ∈U j, the closed-loop stability region of the LSTM system is a subset

of the closed-loop stability region of the actual nonlinear system, i.e., Ωρ̂ ⊆ Ωρ . Moreover, there

exist positive constants Mnn and Lnn such that the following inequalities hold for all x,x′ ∈ Ωρ̂ ,

u ∈U :

|Fnn(x,u)| ≤Mnn (5.2.12a)∣∣∣∣∂V̂ (x)
∂x

Fnn(x,u)−
∂V̂ (x′)

∂x
Fnn(x′,u)

∣∣∣∣≤ Lnn|x− x′| (5.2.12b)

Remark 5.2.6. Depending on how the overall system of Eq. 8.1 is partitioned, the extent of the

coupling effect between the different subsystems j may be different. The Lyapunov-based control

law Φnn j(x(t)) for each subsystem j are designed accounting for the coupling effect between the

partitioned subsystems, and ΦΦΦnn(x), which is the vector containing all subsystem control laws, can

render the origin of the LSTM model of Eq. 5.2.6 exponentially stable for all x̂0 = x0 ∈Ωρ̂ .

5.2.3 Decentralized LMPC using LSTM Models

When the optimization problem of a centralized MPC is too complex to solve within a reasonable

time period (i.e., the sampling period), the control problem may be decoupled into smaller local

optimization problems that are solved in separate processors/controllers to achieve improved

computational efficiency. In a decentralized LMPC system, there is no communication between

163

the different local controllers, therefore each controller does not have any knowledge on the control

actions calculated by the other controllers. A schematic diagram showing the decentralized LMPC

architecture of a process consisting of Nsys subsystems is shown in Fig. 5.2.4.

Figure 5.2.4: A schematic showing the flow of information of Nsys number of decentralized LMPCs
with the overall process subdivided into Nsys number of subsystems.

Consider j = 1, ...,Nsys subsystems, each with distinct sets of states x j and manipulated inputs

u j. We design separate LMPCs, each designated for one subsystem to compute the respective

control actions. The trajectories of control actions computed by LMPC j are denoted by ud j .

Each decentralized LMPC may receive full-state feedback measurements, but they only have

information on the dynamic behavior of their respective subsystem. Therefore, separate LSTM

models are developed, one for each subsystem j. For instance, LMPC j uses the LSTM network

model developed for subsystem j as its prediction model to predict the states of subsystem j (i.e.,

x j), and calculates the control actions ud j which are applied to the corresponding control actuators

in subsystem j. To inherit the stability properties of Φnn j , j = 1, ...,Nsys, the optimized control

actions ud j must satisfy a Lyapunov-based contractive constraint that guarantees a minimum

decrease rate of the Lyapunov function V̂ . The mathematical formulation of each decentralized

164

LMPC j, j = 1, ...,Nsys, is shown as follows:

J j = min
ud j∈S(∆)

∫ tk+N

tk
L(x̃ j(t),ud j(t))dt (5.2.13a)

s.t. ˙̃x j(t) = Fnn j(x̄(t),ud j(t)) (5.2.13b)

x̄(t) = [x1(tk)T · · ·x j−1(tk)T x̃ j(t)T x j+1(tk)T · · ·xNsys(tk)
T]T (5.2.13c)

ud j(t) ∈U j, ∀ t ∈ [tk, tk+N) (5.2.13d)

x̃ j(tk) = x j(tk) (5.2.13e)

∂V̂ (x(tk))
∂x j

(Fnn j(x(tk),ud j(tk)))≤
∂V̂ (x(tk))

∂x j
(Fnn j(x(tk),Φnn j(x(tk)))),

if x(tk) ∈Ωρ̂\Ωρnn (5.2.13f)

V̂ (x̄(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈Ωρnn (5.2.13g)

where x̃ j is the predicted state trajectory, S(∆) is the set of piecewise constant functions with

period ∆, and N is the number of sampling periods in the prediction horizon for subsystem j. The

optimal input trajectory computed by this LMPC j is denoted by u∗d j
(t), which is calculated over

the entire prediction horizon t ∈ [tk, tk+N). The control action computed for the first sampling

period of the prediction horizon u∗d j
(tk) is sent by LMPC j to its control actuators to be applied

over the next sampling period. In the optimization problem of Eq. 5.2.13, the objective function

of Eq. 5.2.13a is the integral of L(x̃ j(t),ud j(t)) over the prediction horizon. Note that L(x j,u j) is

typically in a quadratic form, i.e., L(x j,u j) = xT
j Q jx j +uT

j R ju j, where Q j and R j are the weighting

matrices of the states and the inputs of subsystem j respectively, such that each subsystem will

be steered towards the origin by minimizing the objective function. The constraint of Eq. 5.2.13b

is the LSTM model of Eq. 5.2.7 that is used to predict the states of the closed-loop subsystem

j using x̄(t) and ud j(t) as the input vector to the LSTM model. x̄(t) is a vector containing the

predicted states of subsystem j, x̃ j(t), and the measured states of all other subsystems at t = tk,

xi(tk), ∀ i = 1, ...,Nsys,and i ̸= j. Eq. 5.2.13d defines the input constraints on ud j applied over the

entire prediction horizon. Eq. 5.2.13e defines the initial condition x̃ j(tk) of Eq. 5.2.13b, which is

the state measurement x j(t) at t = tk. The constraint of Eq. 5.2.13f forces the closed-loop state

to move towards the origin at a minimum rate characterized by the Lyapunov function V̂ and

the Lyapunov-based control law Φnn j(x(tk)) if x(tk) ∈ Ωρ̂\Ωρnn . However, if x(tk) enters Ωρnn ,

the states predicted by the LSTM model of Eq. 5.2.13b will be maintained in Ωρnn for the entire

prediction horizon.

165

Since the decentralized LMPCs examine different optimization problems specific to their

respective subsystems and they are computed in separate processors in parallel, the computation

time for solving one iteration of the decentralized LMPC design in one sampling period (assuming

that the feedback measurements are available to both controllers at synchronous intervals) will be

the maximum time out of the two LMPCs.

Remark 5.2.7. The computation time to calculate the solutions to any MPC optimization

problem(s) must be less than the sampling time of the nonlinear process. One of the main

advantages of decentralized MPC systems is the reduced computational complexity of the

optimization problems where a large-scale system is broken down into local subsystems, and thus,

reduced total computational time is needed compared to solving the optimization problem in a

centralized MPC system.

Remark 5.2.8. In the case that full-state feedback is not available to the controllers, decentralized

estimators can be used to reconstruct state information. Provided that the state estimation error

is bounded and is rendered sufficiently small in a short time, it can be considered as part of the

bounded process disturbance, and the closed-loop stability analysis of the estimator-based control

system may be established.

5.2.3.1 Sample-and-hold implementation of Decentralized LMPC

Once the optimization problems of all subsystems j = 1, ...,Nsys are solved, the optimal control

actions of the proposed decentralized LMPC design are defined as follows:

u j(t) = u∗d j
(tk), j = 1, ...,Nsys, ∀ t ∈ [tk, tk+1) (5.2.14)

The stability of the overall system of Eq. 8.1 is ensured by the inclusion of a contractive

constraint Eq. 5.2.13f in the formulation of each of the decentralized LMPCs, which ascertains

that the optimized control actions of Eq. 7.19 guarantee a minimum decrease rate of the Lyapunov

function V̂ characterized by the Lyapunov-based control law using LSTM models Φnn j(x(t)).

We have previously proven the stability properties of a centralized MPC using RNN models

where the Lyapunov-based control actions are applied in a sample-and-hold manner, given that

the process disturbances and the modeling error are sufficiently small; detailed proof can be found

in [127]. More specifically, given that the stabilizability conditions of Eq. 5.2.10 are satisfied and

the modeling error |ν | ≤ γ|x| ≤ νm, where γ is chosen to satisfy γ < ĉ3/ĉ4 (ĉ3 and ĉ4 are the

166

positive constants in Eq. 5.2.10), the closed-loop state x(t) of the actual process of Eq. 8.1 and

the closed-loop state x̂(t) of the LSTM system of Eq. 5.2.6 are bounded in the stability region and

driven to a small neighborhood around the origin under the set of Lyapunov-based controllers

ΦΦΦnn(x) ∈ U implemented in a sample-and-hold manner. This is established in the following

proposition:

Proposition 5.2.1. Consider the system of Eq. 8.1 under the Lyapunov-based controllers u j =

Φnn j(x̂) ∈ U j, j = 1, ...,Nsys, which meet the conditions of Eq. 5.2.10, and are designed to

stabilize the LSTM system of Eq. 5.2.6 and implemented in a sample-and-hold fashion, i.e.,

u j(t) = Φnn j(x̂(tk)), j = 1, ...,Nsys, ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆. The LSTM system is

developed with an overall modeling error |ν | ≤ γ|x| ≤ νm, where γ < ĉ3/ĉ4. Let εs, εw > 0,

∆ > 0, c̃3 =−ĉ3 + ĉ4γ > 0, and ρ̂ > ρmin > ρnn > ρs satisfy

− ĉ3

ĉ2
ρs +LnnMnn∆≤−εs (5.2.15a)

− c̃3

ĉ2
ρs +L

′
xM∆+L

′
wwm ≤−εw (5.2.15b)

and

ρnn := max{V̂ (x̂(t +∆)) | x̂(t) ∈Ωρs,u ∈U} (5.2.16a)

ρmin ≥ ρnn +
ĉ4
√

ρ̂√
ĉ1

fw(∆)+κ(fw(∆))
2 (5.2.16b)

Then, for any x(tk) = x̂(tk) ∈Ωρ̂\Ωρs , the following inequality holds:

V̂ (x̂(t))≤ V̂ (x̂(tk)), ∀t ∈ [tk, tk+1) (5.2.17a)

V̂ (x(t))≤ V̂ (x(tk)), ∀t ∈ [tk, tk+1) (5.2.17b)

and if x0 ∈ Ωρ̂ , the state x̂(t) of the LSTM modeled system of Eq. 5.2.6 is bounded in Ωρ̂ for

all times and ultimately bounded in Ωρnn , and the state x(t) of the nonlinear system of Eq. 8.1 is

bounded in Ωρ̂ for all times and ultimately bounded in Ωρmin .

Consider each closed-loop subsystem of Eq. 5.2.2 under u j = u∗d j
in the decentralized LMPC

design of Eq. 7.19, which are calculated based on the controllers Φnn j(x), j = 1, ...,Nsys that

collectively satisfy Eq. 5.2.10 for the overall system. The control actions computed by each

LMPC will be applied in a sample-and-hold manner to the process. The proof for recursive

167

feasibility of each of the decentralized LMPCs, and the closed-loop stability of the overall

nonlinear process of Eq. 8.1 under the sample-and-hold implementation of the optimal control

actions u j = u∗d j
, j = 1, ...,Nsys of Eq. 7.19 will be established in the following theorem.

Theorem 5.2.1. Consider the nonlinear process of Eq. 8.1 and the LSTM network system of

Eq. 5.2.6. In the presence of bounded disturbances |w(t)| ≤ wm and a sufficiently small modeling

error |ν | ≤ γ|x| ≤ νm, γ > 0, there exists a class K function fw(·) and a positive constant κ

such that ∀x, x̂ ∈Ωρ̂ and w(t) ∈W, |e(t)|= |x(t)− x̂(t)| ≤ fw(t) := Lwwm+νm
Lx

(eLxt−1). Let ∆ > 0,

εs > 0, εw > 0, c̃3 =−ĉ3 + ĉ4γ > 0, and ρ̂ > ρmin > ρnn > ρs satisfy the conditions of Eq. 5.2.15a

– Eq. 6.19b, then given any initial state x0 ∈ Ωρ̂ , there always exists a feasible solution for the

optimization problems of Eq. 5.2.13 for each decentralized LMPC, and it is guaranteed that under

the optimized control actions u j = u∗d j
, j = 1, ...,Nsys, x(t) ∈ Ωρ̂ , ∀t ≥ 0, and x(t) ultimately

converges to Ωρmin for the closed-loop system of Eq. 8.1.

Proof. This proof consists of three parts. First, we will prove the recursive feasibility of the

optimization problem in each decentralized LMPC in Part 1. Then, under the optimized control

actions of the decentralized LMPC design of Eq. 7.19, we will prove the boundedness and

convergence of the closed-loop state of the LSTM network system of Eq. 5.2.6 in a compact

set Ωρnn in Part 2. And lastly, in Part 3, we will prove the boundedness and convergence

of the closed-loop state of the nonlinear system of Eq. 8.1 in a compact set Ωρmin under the

sample-and-hold implementation of the control actions from the decentralized LMPC design of

Eq. 7.19.

Part 1: In this part, we prove that the optimization problem in Eq. 5.2.13 of each decentralized

LMPC for subsystem j is feasible for all states x ∈ Ωρ̂ . First, we consider x(tk) ∈ Ωρ̂\Ωρnn . The

input trajectories ud j(t) = Φnn j(x(tk)), j = 1, ...,Nsys for t ∈ [tk, tk+1) are feasible solutions to the

optimization problem of Eq. 5.2.13 as the input constraint of Eq. 5.2.13d and the Lyapunov-based

contractive constraint of Eq. 5.2.13f are both satisfied. Now we consider x(tk) ∈ Ωρnn . The input

trajectories ud j(tk+i) =Φnn j(x̃(tk+i)), i = 0,1, ...,N−1, j = 1, ...,Nsys satisfy the constraints on the

inputs in Eq. 5.2.13d and the Lyapunov-based constraint of Eq. 5.2.13g. This is because it has been

shown in Proposition 6.3 that the states predicted by the LSTM model of Eq. 5.2.13b under the

Lyapunov-based controllers Φnn j(x̃), j = 1, ...,Nsys remain inside Ωρnn . Therefore, we have proven

that for all x0 ∈ Ωρ̂ , the optimization problem of each decentralized LMPC can be solved with

recursive feasibility.

Part 2: We will now prove that given x0 = x̂0 ∈ Ωρ̂ , the state of the closed-loop LSTM

system of Eq. 5.2.6 is bounded in Ωρ̂ for all times and ultimately converges to Ωρnn defined

168

by Eq. 6.19a under the sample-and-hold implementation of the decentralized LMPC design

u j = u∗d j
, j = 1, ...,Nsys of Eq. 7.19. First, we consider the case where x(tk) ∈ Ωρ̂\Ωρnn at

t = tk, and the contractive constraint of Eq. 5.2.13f is activated. The following inequality holds

for the derivative of the Lyapunov function based on the states predicted by the LSTM model of

Eq. 5.2.13b of each decentralized LMPC at t = tk:

∂V̂ (x̂(tk))
∂ x̂ j

Fnn j(x̂(tk),u
∗
d j
(tk))≤

∂V̂ (x̂(tk))
∂ x̂ j

Fnn j(x̂(tk),Φnn j(x̂(tk))), ∀ j = 1, ...,Nsys (5.2.18)

Since the Lyapunov function for the overall system V̂ (x) can be a linear combination of the

Lyapunov functions for each subsystem, V̂ (x) = ∑
Nsys
j=1 V̂j(x j), where V̂j is assumed to be a function

of x j only, Eq. 5.2.18 can be extended to the overall system of Eq. 5.2.6 to give the following

inequality:

Nsys

∑
j=1

∂V̂ (x̂(tk))
∂ x̂ j

Fnn j(x̂(tk),u
∗
d j
(tk))≤

Nsys

∑
j=1

∂V̂ (x̂(tk))
∂ x̂ j

Fnn j(x̂(tk),Φnn j(x̂(tk))) (5.2.19a)

⇒ ∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(tk),u∗d(tk))≤
∂V̂ (x̂(tk))

∂ x̂
Fnn(x̂(tk),Φnn(x̂(tk)))

≤− ĉ3|x̂(tk)|2 (5.2.19b)

where Eq. 5.2.19b is given by the stabilizability condition of Eq. 5.2.10b. By the definition of ρnn

in Eq. 6.19a, x(tk) = x̂(tk) ∈ Ωρ̂\Ωρnn also belongs to the set Ωρ̂\Ωρs . Considering Eq. 5.2.19b,

the conditions of Eq. 5.2.10, and the Lipschitz conditions of Eq. 5.2.12, the time derivative of the

Lyapunov function along the trajectory of x̂(t) of the LSTM model of Eq. 5.2.6 in t ∈ [tk, tk+1) is

given by:

∂V̂ (x̂(t))
∂ x̂

Fnn(x̂(t),u∗d(tk)) =
∂V̂ (x̂(tk))

∂ x̂
Fnn(x̂(tk),u∗d(tk))+

∂V̂ (x̂(t))
∂ x̂

Fnn(x̂(t),u∗d(tk))

− ∂V̂ (x̂(tk))
∂ x̂

Fnn(x̂(tk),u∗d(tk))

≤− ĉ3

ĉ2
ρs +

∂V̂ (x̂(t))
∂ x̂

Fnn(x̂(t),u∗d(tk))−
∂V̂ (x̂(tk))

∂ x̂
Fnn(x̂(tk),u∗d(tk))

≤− ĉ3

ĉ2
ρs +Lnn|x̂(t)− x̂(tk)|

≤− ĉ3

ĉ2
ρs +LnnMnn∆

≤− εs
(5.2.20)

169

By integrating the above equation over t ∈ [tk, tk+1), it is obtained that V (x̂(tk+1))≤V (x̂(tk))−εs∆,

hence V (x̂(t))≤V (x̂(tk)),∀t ∈ [tk, tk+1). Thus, for all x̂(tk) ∈Ωρ̂\Ωρs , the state of the closed-loop

LSTM system of Eq. 5.2.6 is bounded in the closed-loop stability region Ωρ̂ for all times and

moves towards the origin under the sample-and-hold implementation of u j = u∗d j
, j = 1, ...,Nsys.

Next, we consider when x(tk) = x̂(tk) ∈ Ωρs . Ωρnn as defined in Eq. 6.19a ensures that when

x̂(tk) ∈Ωρs , under u ∈U , the closed-loop state x̂(t) of the LSTM model does not leave Ωρnn for all

t ∈ [tk, tk+1). If x̂(tk+1) leaves Ωρnn , then Eq. 5.2.20 is satisfied at t = tk+1, and the control actions of

the decentralized LMPC design of Eq. 7.19 will drive x̂ towards the origin over the next sampling

period. If x̂(tk) is outside of Ωρs but inside of Ωρnn , the constraint of Eq. 5.2.13g will ensure that

x̂(tk+i), i = 1, ...,N− 1 will also remain inside Ωρnn . This concludes Part 2 of the proof showing

the convergence of the closed-loop state x̂ of the LSTM system of Eq. 5.2.6 to Ωρnn for all x̂0 ∈Ωρ̂ .

Part 3: Now we will prove the boundedness and convergence of the closed-loop state of the

actual nonlinear system of Eq. 8.1 under the sample-and-hold implementation of the optimized

control actions u j = u∗d j
, j = 1, ...,Nsys of the decentralized LMPC design, accounting for bounded

overall modeling error |ν | ≤ γ|x|,0 < γ < ĉ3/ĉ4 and disturbances |w| ≤ wm. We first consider

the scenario where x(tk) ∈Ωρ̂\Ωρnn (which implies that x(tk) also belongs to the region Ωρ̂\Ωρs),

and the contractive constraint of Eq. 5.2.13f is activated. Based on the Lyapunov conditions of

Eq. 5.2.10c and the inequality derived in Eq. 5.2.19b, the time derivative of the Lyapunov function

of the nominal system of Eq. 8.1 is as follows:

∂V̂ (x(tk))
∂x

F(x(tk),u∗d(tk),0) =
∂V̂ (x(tk))

∂x
(Fnn(x(tk),u∗d(tk))+F(x(tk),u∗d(tk),0)−Fnn(x(tk),u∗d(tk)))

≤− ĉ3|x(tk)|2 + ĉ4|x(tk)|(F(x(tk),u∗d(tk),0)−Fnn(x(tk),u∗d(tk)))

≤− ĉ3|x(tk)|2 + ĉ4γ|x(tk)|2

≤− c̃3|x(tk)|2
(5.2.21)

where c̃3 =−ĉ3 + ĉ4γ > 0. Therefore, the closed-loop state of the nominal system of Eq. 8.1 with

w ≡ 0 converges to the origin under u j = u∗d j
, j = 1, ...,Nsys, ∀ x0 ∈ Ωρ̂ if the modeling error

|ν | ≤ γ|x|. Considering bounded disturbances and the effect of sample-and-hold implementation,

based on Eq 5.2.21, Eq. 5.2.10a, and the Lipschitz condition in Eq. 5.2.5, the following inequality

170

is obtained for the time-derivative of V̂ (x(t)) ∀t ∈ [tk, tk+1) and x(tk) ∈Ωρ̂\Ωρs:

∂V̂ (x(t))
∂x

F(x(t),u∗d(tk),w) =
∂V̂ (x(tk))

∂x
F(x(tk),u∗d(tk),0)+

∂V̂ (x(t))
∂x

F(x(t),u∗d(tk)),w)

− ∂V̂ (x(tk))
∂x

F(x(tk),u∗d(tk),0)

≤− c̃3

ĉ2
ρs +

∂V̂ (x(t))
∂x

F(x(t),u∗d(tk),w)−
∂V̂ (x(tk))

∂x
F(x(tk),u∗d(tk),0)

≤− c̃3

ĉ2
ρs +L

′
x|x(t)− x(tk)|+L

′
w|w|

≤− c̃3

ĉ2
ρs +L

′
xM∆+L

′
wwm

≤− εw
(5.2.22)

Integrating Eq. 5.2.22 for t ∈ [tk, tk+1) will show that Eq. 5.2.17b holds. Therefore, the closed-loop

state of the actual nonlinear process of Eq. 8.1 is maintained in Ωρ̂ for all t ≥ t0, and can be

driven towards the origin in every sampling period under the decentralized LMPC control actions

u j = u∗d j
, j = 1, ...,Nsys. Next, we consider the case where x(tk) ∈ Ωρs . Given that the state

error is bounded by |e(t)| = |x(t)− x̂(t)| ≤ fw(t) := Lwwm+νm
Lx

(eLxt −1), there exists a compact set

Ωρmin ⊃ Ωρnn satisfying Eq. 6.19b such that the state of the actual nonlinear system of Eq. 8.1 at

t = tk+1 (i.e., x(tk+1)) does not leave Ωρmin if the predicted state of the LSTM model of Eq. 5.2.6 at

t = tk+1 (i.e., x̂(tk+1)) is bounded in Ωρnn , which is guaranteed if x(tk) ∈ Ωρs , as shown in Part 2.

Therefore, we have proven that the state x(t) of the nonlinear system of Eq. 8.1 is bounded in Ωρ̂ for

all x0 ∈Ωρ̂ , t ≥ t0 and ultimately bounded in Ωρmin under the sample-and-hold implementation of

the decentralized LMPC control design of Eq. 7.19. After the state x(tk) enters Ωρnn , the constraint

of Eq. 5.2.13g is activated to maintain the predicted states x̂ of the LSTM model of Eq. 5.2.13b

inside Ωρnn over the entire prediction horizon, such that the closed-loop state x(t) of the nonlinear

system of Eq. 8.1 remains in Ωρmin under the sample-and-hold implementation of the optimized

decentralized control action u j = u∗d j
, j = 1, ...,Nsys for t ∈ [tk, tk+1). At the next sampling

step, if x(tk+1) ∈ Ωρmin\Ωρnn , then Eq. 5.2.22 holds, and the contractive constraint of Eq. 5.2.13f

will be activated instead to drive the state towards the origin during the next sampling period.

Therefore, with the overall system stabilized under the control actions u j = u∗d j
, j = 1, ...,Nsys

of the decentralized LMPC design of Eq. 7.19, we have proven that the overall system can be

stabilized under the control actions of the decentralized LMPC design of Eq. 7.19 implemented in

a sample-and-hold fashion.

171

5.2.4 Application to a Two-CSTR-in-Series Process

We use a chemical process example to demonstrate the closed-loop simulation of the nonlinear

process under the decentralized Lyapunov-based model predictive control (LMPC) system using

the trained LSTM models, and the simulation results will be compared to that of decentralized

LMPC system using first-principles models, as well as a centralized model predictive control

system using LSTM models. More specifically, two well-mixed, non-isothermal continuous stirred

tank reactors (CSTRs) that operate in series are considered, where an irreversible second-order

exothermic reaction transforming a reactant A to a product B (A→ B) takes place in each reactor.

A schematic diagram of the process is shown in Fig. 5.2.5. Reactant material A with inlet

concentration CA j0, inlet temperature Tj0 and feed volumetric flow rate of the reactor Fj0, are

fed into each of the two reactors j = 1,2, where j = 1 denotes the first CSTR and j = 2 denotes

the second CSTR. A heating jacket is installed on each CSTR to supply/remove heat at a rate Q j,

j = 1,2. The dynamic models of the two-CSTR-in-series process are obtained by the following

material and energy balance equations:

dCA1

dt
=

F10

V1
(CA10−CA1)− k0e

−E
RT1 C2

A1 (5.2.23a)

dT1

dt
=

F10

V1
(T10−T1)+

−∆H
ρLCp

k0e
−E
RT1 C2

A1 +
Q1

ρLCpV1
(5.2.23b)

dCA2

dt
=

F20

V2
CA20 +

F10

V2
CA1−

F10 +F20

V2
CA2− k0e

−E
RT2 C2

A2 (5.2.23c)

dT2

dt
=

F20

V2
T20 +

F10

V2
T1−

F10 +F20

V2
T2 +

−∆H
ρLCp

k0e
−E
RT2 C2

A2 +
Q2

ρLCpV2
(5.2.23d)

where CA j, Vj, Tj and Q j, j = 1,2 are the concentration of reactant A, the volume of the reacting

liquid, the temperature, and the heat input rate in the first and the second reactor, respectively. The

reacting liquid has a constant density of ρL and a constant heat capacity of Cp for both reactors.

E, R, ∆H, and k0 represent the activation energy, ideal gas constant, enthalpy of the reaction, and

pre-exponential constant, respectively. The process parameter values are listed in Table 5.2.1.

For both CSTRs, the manipulated inputs are the inlet concentration of species A and the heat

input rate supplied by the heating jacket, which are represented by the deviation variables ∆CA j0 =

CA j0 −CA j0s , ∆Q j = Q j −Q js , j = 1,2, respectively. The manipulated inputs are bounded as

follows: |∆CA j0| ≤ 3.5 kmol/m3 and |∆Q j| ≤ 5×105 kJ/hr, j = 1,2. The states of the closed-loop

system are the concentration of species A and the temperature in the first and the second reactor,

which are also represented by their deviation variables such that the equilibrium point of the system

172

Figure 5.2.5: Process flow diagram of two CSTRs in series.

is at the origin of the state-space. Therefore, the vector of closed-loop states is x= [CA1−CA1s T1−
T1s CA2−CA2s T2−T2s]

T , where CA1s , CA2s , T1s and T2s are the steady-state values of concentration

of A and temperature in each of the two tanks, respectively.

The states of the first CSTR can be separately denoted as x1 = [CA1−CA1s T1− T1s]
T and

the states of the second CSTR are denoted as x2 = [CA2−CA2s T2−T2s]
T . Correspondingly, the

manipulated inputs that regulate the state of the first CSTR can be denoted as u1 = [∆CA10 ∆Q1]
T ,

and the manipulated inputs for the second CSTR are u2 = [∆CA20 ∆Q2]
T . We let the states and the

manipulate inputs of the first CSTR constitute subsystem 1, and that of the second CSTR constitute

subsystem 2.

In a centralized LMPC framework, feedback measurement of all states x is received by the

controller, and the manipulated inputs for the entire system, u = [∆CA10 ∆Q1 ∆CA20 ∆Q2]
T ,

are computed by one centralized controller. In a decentralized LMPC scheme, we design two

LMPCs, each one is responsible for one subsystem. The two LMPCs are solved independently

in separate processors without any inter-communications. Due to the specific dynamic behavior

and interactions between the two CSTRs, the states of the first CSTR play a part in the dynamic

evolution of the states of the second CSTR, but not vice versa. Therefore, LMPC 1 receives

173

Table 5.2.1: Parameter values of the two CSTRs in series.

T10 = 300 K T20 = 300 K

F10 = 5 m3/hr F20 = 5 m3/hr

V1 = 1 m3 V2 = 1 m3

T1s = 401.9 K T2s = 401.9 K

CA1s = 1.954 kmol/m3 CA2s = 1.954 kmol/m3

CA10s = 4 kmol/m3 CA20s = 4 kmol/m3

Q1s = 0.0 kJ/hr Q2s = 0.0 kJ/hr

k0 = 8.46×106 m3/kmol hr ∆H =−1.15×104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 E = 5×104 kJ/kmol

feedback measurements of x1, predicts x̂1 in its internal model, and manipulates the inputs for the

first CSTR, u1 = [∆CA10 ∆Q1]
T . We assume that LMPC 2 has access to full-state measurement

signals but does not have any knowledge on how x1 dynamically evolves. Therefore, LMPC

2 receives feedback measurements of x, predicts the states of the second CSTR, x̂2, and only

manipulates the inputs for the second CSTR, u2 = [∆CA20 ∆Q2]
T . Furthermore, we assume that

the feedback measurements of all states are available to both controllers at the same synchronous

intervals ∆ = 10−2 hr.

The dynamic model of Eq. 8.45 is numerically simulated using the explicit Euler method with

an integration time step of hc = 10−4 hr. The nonlinear optimization problems of each of the

decentralized LMPCs of Eq. 5.2.13 are solved using the Python module of the IPOPT software

package, PyIpopt [113], with the same sampling period ∆ = 10−2 hr. The objective function in

the decentralized LMPC optimization problem for subsystem j has the form L j(x j,u j) = xT
j Q jx j+

uT
j R ju j, where Q j = diag[2× 103 1], R j = diag[8× 10−13 0.001], for j = 1, ...,Nsys. Here, we

have two subsystems, Nsys = 2. The control Lyapunov function for each decentralized LMPC j is

Vj(x j) = xT
j Pjx j, for j = 1,2, with the following positive definite Pj matrices:

P1 = P2 =

[
1060 22

22 0.52

]
(5.2.24)

174

5.2.4.1 LSTM Network Development

To collect the training data for building the LSTM network models, we carry out open-loop

simulations for finite sampling steps for various initial conditions inside Ωρ j , where ρ j = 392, j =

1,2, for both subsystems using the nonlinear system of Eq. 8.45. We apply various u1 ∈U1, u2 ∈U2

in a sample-and-hold manner to the nonlinear process and collect trajectories with a time interval

of qnn ·hc = 5hc. We separate these trajectories of manipulated input vector u j and the state vector

x j into segments with a fixed length T = 20, such that the time period that the training samples

cover, T ×qnn×hc = 20×5×10−4 hr, is the same as the prediction period of the LSTM network

∆ = 10−2 hr. We also normalize both the input vector and state vector samples with respect to

their means and standard deviations. The trajectories for T = 20 of the state vectors x j over the

prediction period ∆ are used as the target state vectors when training the LSTM networks. Using

the normalized samples of input and state vector sequences for each subsystem j, we develop a

separate LSTM network j for each subsystem to predict the normalized future states over one

sampling period ∆, which are then re-scaled to the actual future states x̂1 and x̂2 as described in the

previous section. Each LSTM network j captures the dynamic behavior of its respective subsystem

j, but does not have any information on the dynamic behaviors of all other subsystems; the LSTM

netowrk j can then be used in the decentralized LMPC j as the prediction model.

It should be noted that, depending on the different architectures of the control systems, the

choice of inputs and outputs as well as the structure of the LSTM model used in the control system

may be different. In some cases, the nonlinear process, such as the one outlined in Eq. 8.45, cannot

be completely decoupled into two separate subsystems. For instance, the states of the first CSTR x1

are completely independent from the states and inputs of the second CSTR; however, the evolution

of the states of the second CSTR, x2, depends on the values of the states of the first CSTR, x1.

With knowledge on only the first CSTR (subsystem 1) and the first CSTR being independent from

information on the second CSTR, LSTM network 1 receives information on x1(tk) and u1(tk) as

the inputs to the neural network, and is able to predict x̂1(tk+1), where tk+1 := tk +∆. Although

we assume that full-state feedback information is available to all controllers at the same time

intervals, due to the unique process dynamics in this case, decentralized LMPC 1 for the first

CSTR (subsystem 1) requires feedback measurements of x1 only. Therefore, LSTM network 1,

which is built to be used as the internal prediction model in decentralized LMPC 1, only uses

x1(tk) and u1(tk) as the inputs to the neural network, and does not need information on x2(tk). On

the other hand, since the prediction of x̂2(tk+1) depends on x1(tk) and x2(tk), decentralized LMPC

2 will take full advantage of the feedback measurements of all states. Therefore, the inputs to

175

the LSTM network 2 are x1(tk), x2(tk), and u2(tk), and the outputs of LSTM network 2 are the

predicted future states of the second CSTR, x̂2(t) at t = tk+1. Note that since LSTM network 2

does not have any information on u1 and only predicts closed-loop states of the second CSTR x2,

the LSTM network model is only accounting for the impact of x1(tk), x2(tk), and u2(tk) on the

future state x2(tk+1) analogous to only having knowledge on the dynamic behavior of subsystem

2.

Both LSTM networks j = 1,2 are developed with 1 hidden layer, where tanh function is used

as the activation function, and Adam is used as the optimizer to minimize the error between the

sequences of target states and predicted states. With the normalized training data, the mean squared

modeling error needs to be less than 5×10−7 to terminate the training process. After 10 epochs of

training, each epoch taking on average 700 s, the training mean squared error between the predicted

states x̂1 of the LSTM network 1 and the first-principles model of the first CSTR is 6.70×10−7, and

the validation mean squared error is 6.43× 10−4. Similarly, the mean squared error between the

predicted states x̂2 of the LSTM network 2 and the first-principles model of the second CSTR in the

training dataset is 7.02×10−7, and the mean squared error in the validation dataset is 1.14×10−6,

after 10 epochs of training with each epoch taking on average 720 s. The Lyapunov function of

the LSTM network model for both subsystems, V̂j, j = 1,2, is chosen to be the same as Vj. The

set D̂ j can be characterized using the stabilizing control laws u j = Φnn j(x j), j = 1,2 of Eq. 7.7,

computed using the numerically approximated f̂ j(tk), ĝ ji(tk) in Eq. 5.2.11. Subsequently, the

closed-loop stability region Ωρ̂ j for subsystem j can be characterized as the largest level set of

V̂j in D̂ j while also being a subset of Ωρ j . The positive constants ρ̂ j, j = 1,2, which are used to

define the largest level sets of the control Lyapunov functions for subsystem 1 and 2 respectively,

are ρ̂1 = ρ̂2 = 380. Additionally, the ultimate bounded region Ωρnn j
, and subsequently, Ωρmin j

,

are chosen to be ρnn j = 10 and ρmin j = 12, for j = 1,2; the positive constants ρnn j and ρmin j are

determined via extensive closed-loop simulations with u j ∈U j. More computational details on the

development of a recurrent neural network model can be found in [128].

Remark 5.2.9. The machine-learning-based model of each subsystem can be of different structures

and variants of the recurrent neural network, and can be trained using different algorithms,

depending on the complexity and dynamic behavior of the nonlinear process. In general, if the

machine learning algorithm is capable of capturing temporal relationship between its input and

output variables, then it can be used for model construction from data for dynamic systems. For

example, a classic recurrent neural network model is fitted for a single-CSTR process in [128], and

a recurrent neural network whose design depends on the a priori structural process knowledge is

176

fitted for the two-CSTR-in-series process in [125]. Besides neural networks, hidden Markov models

and support vector machines have also been applied in modeling and control of dynamic systems

(e.g., [20, 69]). In this example, we constructed two LSTM network models for the two CSTRs

individually. However, similar studies can be done where the first CSTR can be modeled using a

classic RNN with simpler network structures to improve computational efficiency during training

and execution, and the second CSTR can be modeled using a different class of recurrent neural

networks (e.g., LSTM or GRU) with more units (i.e., more nonlinear activation functions and fitted

parameters) to account for the relatively higher complexity in the second subsystem.

5.2.4.2 Closed-loop Model Predictive Control Simulations

We run closed-loop simulations on the two-CSTR-in-series process of Eq. 8.45 operated under

a centralized LMPC system and under two decentralized LMPC systems. First, to design a

centralized LMPC system, we use an LSTM network model developed for the overall two-CSTR

process of Eq. 8.45 where, at time instant t = tk, the inputs to this overall LSTM model are the four

manipulated inputs u(t) = [∆CA10 ∆Q1 ∆CA20 ∆Q2]
T applied in a sample-and-hold fashion for t ∈

[tk, tk+1), as well as the four states of the overall process x(t)= [CA1−CA1s T1−T1s CA2−CA2s T2−
T2s]

T at t = tk, and the outputs of this LSTM network model are the predicted states x̂(tk+1).

The centralized LMPC uses this two-CSTR process model as the prediction model to optimize

the four manipulated inputs u∗(tk) while receiving feedback of all states x. The closed-loop

performance of this centralized LMPC using an LSTM network model will be used as a benchmark

for comparison. Next, with the two LSTM networks developed for subsystem 1 and 2 as shown

in Section 5.2.4.1, we design two decentralized LMPCs, where LMPC 1 uses the LSTM network

model for subsystem 1, and LMPC 2 uses the LSTM network model for subsystem 2. LMPC 1

receives feedback of x1 = [CA1−CA1s T1− T1s]
T and optimizes u1 = [∆CA10 ∆Q1]

T ; LMPC 2

receives feedback of all states x and optimizes u2 = [∆CA20 ∆Q2]
T . The two decentralized LMPCs

are independent of each other, and they can be solved simultaneously in separate processors in

parallel to save computation time. Therefore, the computation time for solving one LMPC iteration

is the maximum time of the two decentralized controllers. To further demonstrate the efficacy of

the decentralized LMPC system using LSTM models, we compare the closed-loop performance

of the decentralized LMPC system using LSTM models with that of the same decentralized

LMPC system using first-principles models. The closed-loop performances of the centralized

and the decentralized control networks using their respective LSTM models, as well as using

the first-principles models are compared in terms of the computation time of solving one MPC

177

iteration and the sum of squared percentage error of the closed-loop states x for a total simulation

period of tp = 0.3 hr, which are both shown in Table 5.2.2. The sum of squared percentage

error is in the form of SSPE =
∫ tp

0

[
(

CA1−CA1s
CA1s

)2 +(
T1−T1s

T1s
)2 +(

CA2−CA2s
CA2s

)2 +(
T2−T2s

T2s
)2
]

dt. It is

shown that the average computation time is significantly reduced when the process of Eq. 8.45

is operated under two decentralized LMPCs compared with the result of a centralized LMPC, and

both control systems generate comparable sum of squared percentage errors. Furthermore, the

decentralized LMPC system using LSTM models achieves similar average computation time and

sum of squared percentage error as the decentralized LMPC system using first-principles models.

The computation time of all simulated control systems are lower than the sampling period of the

process; therefore, the proposed control system using LSTM models can be implemented without

computational issues.

Table 5.2.2: Average LMPC computation time in one sampling period and the sum of squared
percentage error of all states along the closed-loop trajectory under the centralized and the
decentralized systems using their respective LSTM models and first-principles models, all with
a total operation time of 0.3 hr.

Ave. Computation Time (s) Sum of Squared Percentage Error

Decentralized (LSTM) 5.41 2.94

Decentralized (First-Principles) 5.18 2.84

Centralized (LSTM) 35.26 3.08

Centralized (First-Principles) 27.93 2.96

The closed-loop state evolution of the two-CSTR-in-series process under the two decentralized

LMPCs using the LSTM model and using the first-principles model are shown in Fig. 5.2.6, and

the corresponding input profiles are shown in Fig. 5.2.7. The closed-loop state trajectories in

state-space under the centralized LMPC using an LSTM model, the decentralized LMPC system

using two LSTM models, and the decentralized LMPC system using the respective first-principles

model for each subsystem, are shown in Fig. 5.2.8 to show the boundedness and convergence of

the closed-loop states. Starting from initial conditions x0 = [−1.5 70 1.5 − 70]T , all states of

each subsystem j, j = 1,2, converge to Ωρmin j
within 0.07 hr and are bounded in Ωρ̂ j under the

two decentralized LMPCs using their respective LSTM network models for all time. Therefore,

through closed-loop simulations and assessing their performance metrics, we have illustrated the

effectiveness of the proposed decentralized LMPC design using separate LSTM network models

in stabilizing the overall nonlinear process.

178

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0 0.05 0.1 0.15 0.2 0.25 0.3

0

20

40

60

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3

-60

-40

-20

0

Figure 5.2.6: Closed-loop state trajectories of the decentralized LMPC systems using LSTM model
and first-principles (FP) model, respectively.

Remark 5.2.10. The absence of a first-principles model provides the motivation for developing

machine-learning-based models for nonlinear processes. However, we show the simulation results

of the control frameworks using first-principles models of the two-CSTR-in-series process of

Eq. 8.45 to adequately compare with the results of the same process operated under the same

control frameworks using LSTM network models. In real-life scenarios where the first-principles

model of the studied process is not attainable, the same comparison can be carried out with respect

to real plant data.

179

0 0.05 0.1 0.15 0.2 0.25 0.3

0

1

2

3

4

0 0.05 0.1 0.15 0.2 0.25 0.3
-6

-4

-2

0

2
105

0 0.05 0.1 0.15 0.2 0.25 0.3
-4

-3

-2

-1

0

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

0

2

4

6
105

Figure 5.2.7: Closed-loop input trajectories of the decentralized LMPC systems using LSTM
model and first-principles (FP) model, respectively.

180

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

Figure 5.2.8: Closed-loop state trajectories of the centralized LMPC system using an LSTM model,
and the decentralized LMPC systems using LSTM models and first-principles (FP) models in state
space, showing the boundedness of the states of each subsystem j, j = 1,2 in Ωρ̂ j for all operation
time tp = 0.03 hr, and the convergence of the states of each subsystem j in Ωρmin j

after t ≥ 0.07 hr.

181

Chapter 6

Machine-Learning-Based Construction of

Barrier Functions and Models for Safe

Model Predictive Control

In this chapter, we propose a Control Lyapunov-Barrier Function-based Model Predictive Control

method utilizing a feed-forward neural network specified Control Barrier Function and a recurrent

neural network predictive model to stabilize nonlinear processes with input constraints, and

to guarantee that safety requirements are met for all times. The nonlinear system is first

modeled using recurrent neural network (RNN) techniques, and a Control Barrier Function is

characterized by constructing a feed-forward neural network (FNN) model with unique structures

and properties. The FNN model for the CBF is trained based on data samples collected from

safe and unsafe operating regions, and the resulting FNN model is verified to demonstrate that the

safety properties of the CBF are satisfied. Given sufficiently small bounded modeling errors for

both the FNN and the RNN models, the proposed control system is able to guarantee closed-loop

stability while preventing the closed-loop states from entering unsafe regions in state-space under

sample-and-hold control action implementation. We provide the theoretical analysis for both

bounded unsafe sets in state-space, and demonstrate the effectiveness of the proposed control

strategy using a nonlinear chemical process example with a bounded unsafe region.

Many previous works have been developed to incorporate various machine learning modeling

approaches with the design of MPC (e.g., [34, 47, 117]). In this work, in addition to using a a

recurrent neural network (RNN) as the prediction model in the MPC, we also characterize the

CLBF using an FNN model. Provided with extensive training data which are labeled, NN models

182

can be constructed with strategically chosen architectures, activation and objective functions, and

evaluation metrics, and ultimately trained with supervision to approximate the barrier function.

The FNN-specified barrier function can be proven to satisfy all required conditions of a barrier

function, and can then be applied to the CLBF-based controllers. In our study, we consider a

CLBF-MPC, where the barrier function is found using feed-forward neural network structures.

The chapter is organized as follows. Preliminaries on the class of systems considered, the

stabilizability assumptions and safety considerations given by CLBF are described in Section

2. We introduce the structure and the development of the NN model in Section 3, along with

proofs of its efficacy when applied in the CLBF-based controllers. In Section 4, the formulation

of the CLBF-MPC with NN-specified BF is presented, where the proof for recursive feasibility

of the optimization problem, as well as the boundedness and convergence of the closed-loop

state while always avoiding the unsafe region is shown, given bounded modeling error of the

NN-BF, sample-and-hold implementation of control actions, and a well-characterized set of initial

conditions. Lastly, in Section 5, the control method proposed in this work is applied to an example

chemical process to illustrate its effectiveness.

6.1 Preliminaries

6.1.1 Notation

We use |·| to denote the Euclidean norm of a vector. L fV (x) := ∂V (x)
∂x f (x) denotes the standard Lie

derivative . Furthermore, a scalar continuous function V : Rn→R is proper if for all k ∈R, the set

{x∈Rn |V (x)≤ k} is a compact set. xT denotes the transpose of x. Bβ (ε) := {x∈Rn | |x−ε|< β}
is an open ball around ε with radius of β , with positive real numbers β and ε . Set subtraction is

denoted by ”\”, i.e., A\B := {x ∈Rn | x ∈ A,x /∈ B}. /0 signifies the null set. Lastly, a function f (·)
is of class C 1 if it is continuously differentiable.

6.1.2 Class of Systems

The class of continuous-time nonlinear systems considered is described by the following

state-space form:

ẋ = f (x)+g(x)u+h(x)w, x(t0) = x0 (6.1)

183

where x ∈ Rn represents the state vector, u ∈ Rm represents the input vector, and w ∈W is the

bounded disturbance vector, where W := {w ∈Rl | |w| ≤ θ , θ ≥ 0}. The input control actions are

constrained by their lower and upper bounds, u ∈U := {umin ≤ u ≤ umax} ⊂ Rm. f (·), g(·), and

h(·) are vector and matrix functions of dimensions n× 1, n×m, and n× l, respectively, and we

assume that they are sufficiently smooth. Without loss of generality, we take the initial time t0 to

be zero, i.e., t0 = 0. It is assumed that f (0) = 0. Thus, the system of Eq. 8.1 with w(t) ≡ 0 has a

steady state at the origin. Additionally, it is assumed the feedback measurement of x(t) is available

at synchronous sampling times, tk.

6.1.3 Stabilizability Assumptions Expressed via Lyapunov-based Control

For the nominal system of Eq. 8.1 with w(t) ≡ 0, we assume that there exists a positive definite

and proper Control Lyapunov Function (CLF), V , that satisfies the small control property as well

as the following conditions:

L fV (x)< 0,∀x ∈ {z ∈ Rn\{0} | LgV (z) = 0} (6.2)

The small control property states that for every ε > 0, ∃ δ > 0, s.t. ∀ x ∈ Bδ (0), there exists

u that satisfies |u| < ε and L fV (x)+LgV (x) · u < 0 [98]. The existence of such CLF implies that

there exists a stabilizing feedback control law Φ(x)∈U for the nominal system of Eq. 8.1 such that

Eq. 7.2 holds for u=Φ(x)∈U , and the origin of the closed-loop system is rendered asymptotically

stable for all x in a neighborhood around the origin under u=Φ(x)∈U . A candidate of a stabilizing

feedback control law is shown in [67]. We can characterize a region φu where the time derivative

of V (x) is rendered negative using u = Φ(x) ∈U as: φu = {x ∈Rn | V̇ (x) = L fV (x)+LgV (x) ·u <

0,u=Φ(x)∈U}∪{0}. Within this region φu, we define a level set of V (x), Ωb := {x∈ φu |V (x)≤
b, b > 0}, which is a forward invariant set such that the closed-loop trajectory x(t), t ≥ 0 of

the nominal system of Eq. 8.1 with w(t) ≡ 0 under u = Φ(x) ∈U remains in Ωb, for any initial

condition x0 ∈Ωb.

6.1.4 Process Modeled Using Recurrent Neural Network

When first-principles models of a process are not available or may not be accurate, one way to

model the process is to use data-based machine-learning methods. A recurrent neural network

(RNN) is an effective algorithm that is capable of modeling the dynamics of the nonlinear system

184

of Eq. 8.1, and its general formulation is shown as follows:

˙̂x = Fnn(x̂,u) := Ax̂+Θ
T y (6.3)

where x̂ ∈ Rn is the state vector of the RNN model and u ∈ Rm is the manipulated input vector.

y = [y1, ...,yn,yn+1, ...,ym+n] = [σ(x̂1), ...,σ(x̂n),u1, ...,um] ∈ Rn+m is a vector that contains both

the network state x̂ and the input u, where σ(·) is the nonlinear activation function. A is a diagonal

coefficient matrix, i.e., A = diag{−a1, ...,−an} ∈Rn×n, and Θ = [θ1, ...,θn] ∈R(m+n)×n with θi =

bi[wi1, ...,wi(m+n)], i = 1, ...,n. ai and bi are constants. wi j represents the weight connecting the

jth input to the ith neuron where i = 1, ...,n and j = 1, ...,(m+n). ai is assumed to be positive for

each state x̂i to be bounded-input bounded-state stable. For the remainder of the manuscript, x will

be used to denote the state of the nonlinear system of Eq. 8.1, and x̂ will be used to denote the state

of the RNN model of Eq. 6.3.

As the RNN model of Eq. 6.3 is an input-affine system, it can be also written in the form that

is similar to the general nonlinear system of Eq. 8.1:

ẋ = f̂ (x)+ ĝ(x)u (6.4)

where f̂ (·) and ĝ(·) can be derived from the coefficient matrices A and Θ in Eq. 6.3 and are

assumed to be sufficiently smooth. The construction of RNN models including procedures on

data generation, model training and validation, as well as developing an ensemble of models have

been outlined in [127]. Note that f̂ (·) and ĝ(·) can be approximated via numerical methods. The

modeling error of the RNN, |ν |, needs to be below a certain threshold νm during training, and is

bounded as follows: |ν |= |F(x,u,0)−Fnn(x,u)| ≤ γ|x| ≤ νm, where γ > 0. The bounded modeling

error is a requirement to ensure that the nonlinear system of Eq. 8.1 and the RNN model of Eq. 6.3

have the same steady-state within the operating region considered, and is a requirement used in

subsequent stability and safety proofs. Furthermore, we assume that there exists a CLF V̂ and a

Lyapunov-based stabilizing control law u=Φnn(x)∈U that renders the origin of the RNN modeled

system of Eq. 6.3 asymptotically stable.

6.1.5 Control Barrier Function

We assume that there exists an open set D in state-space that should be avoided during operations;

for example, the operating conditions within this region may result in process safety risks. We also

185

characterize a set of safe states, X0 := {x ∈ Rn\D} where {0} ∈X0 and X0∩D = /0. The set of

initial conditions to be considered in this study will be developed from X0.

Two types of unsafe regions are generally considered in literature – bounded and unbounded

sets – the details of which can be found in [122]. We denote bounded unsafe set and unbounded

unsafe set as Db and Du, respectively. Due to the data-driven approach of constructing the

CBF, there are relevant restrictions with collecting finite samples from compact sets of safe and

unsafe data. Therefore, only bounded unsafe sets can be handled in this approach. Details of

the limitations on the compactness of the unsafe set will be further presented in Section 3.2.2.

We address process operational safety in the sense of not entering any unsafe sets. The formal

definition of process operational safety is defined as follows:

Definition 6.1. Consider the nominal system of Eq. 8.1 with w(t)≡ 0 and input constraints u ∈U.

If there exists a control law u = Φ(x)∈U such that, for any initial state x(t0) = x0 ∈X0, the origin

of the closed-loop system of Eq. 8.1 is rendered asymptotically stable, and the state trajectories of

the system do not enter the unsafe region, i.e., x(t) ∈X0, x(t) /∈ D , ∀ t ≥ 0, then the control law

u = Φ(x) maintains the process state within a safe operating region X0 for all times.

Following the definition of safe operation, the definition of a valid Control Barrier Function

(CBF) is as follows [116]:

Definition 6.2. Given a set of unsafe points in state-space D , a C 1 function B(x) : Rn→ R is a

CBF if it satisfies the following properties:

B(x)> 0, ∀ x ∈D (6.5a)

L f B(x)≤ 0, ∀ x ∈ {z ∈ Rn\D | LgB(z) = 0} (6.5b)

XB := {x ∈ Rn | B(x)≤ 0} ̸= /0 (6.5c)

Remark 6.1. In many chemical processes, unbounded unsafe sets represent unsafe operations

where process variables exceed their safety envelopes, e.g., when temperature is above a threshold

that can lead to overheating, or when concentration is below a threshold which could lead to

incomplete reaction. Bounded unsafe sets are more common in mechanical processes; e.g.,

robotics navigation to avoid obstacles in its trajectory. In chemical processes, many mid-range

operating conditions are sub-optimal to achieving high yields of reactions. For example, low

pressure steam could be used as a coolant at low temperature, or as a heat source at high

temperature. However, if its temperature is in the middle ranges, then it is not fit for either purpose

and might be discarded as waste.

186

Remark 6.2. For many industrial operations where the dynamics of the process is not well

understood, it is difficult to model the intertwined relations between multitudes of variables.

Although it is possible to specify certain operating envelopes within which individual process

variables should operate within, the impact of these variables on other variables, and vice versa,

may not be pre-assessed and therefore, cannot be explicitly described. It is common for plant

operators to provide data points at or near which operation would be avoided. With these data

points, we can use the approach discussed in this manuscript to model a CBF.

6.2 Construction of Barrier Function using Neural Networks

6.2.1 Neural Network Structure and Training

In our study, we use a feed-forward artificial neural network (FNN) to synthesize the control

barrier function B̂(x). A conventional FNN consists of an input layer, an output layer, and any

number of hidden layers in between that can be customized depending on network complexity and

computational need. Each layer undergoes nonlinear transformations, which consists of activation

functions of a bias term plus the weighted sum of neurons in the previous layer. In turn, the results

of these activation functions provide the values of the neurons in the current layer. The neurons in

the first hidden layer are derived from the input layer, and the outputs are calculated based on the

neurons in the last hidden layer. The input layer contains the state vector x of the nonlinear system

of Eq. 8.1 with a dimension of Rn, and the single output in the output layer provides the predicted

barrier function B̂(x) for the particular input data sample x.

Without having prior knowledge on an explicit formulation of the barrier function B(x), training

data for the NN will be collected for both the safe and unsafe regions with target values of B(x) that

satisfy the conditions of Eq. 8.3a and Eq. 8.3c for each region respectively. We choose nonlinear

activation functions that will best fit the dichotomous nature of the barrier function, which will

aid in obtaining better prediction accuracy. Furthermore, we encode custom loss function and

evaluation metric for the FNN in order to ensure that the condition of Eq. 8.3b is also satisfied.

Since this approach is data-driven and dependent on the sampling of training data generation, we

also provide formal proof for the verification of the FNN-learned barrier function B̂(x), proving

that the B̂(x) indeed satisfies all conditions of Eq. 8.3. The structure of a 2-hidden-layer FNN are

presented in Fig. 6.1 and in Eq. 6.6 below:

187

Figure 6.1: Structure of a 2-hidden-layer feedforward neural network with the state vector x ∈ Rn

as inputs and the CBF B̂(x) as the output.

θ
(1)
j = g1(

n

∑
i=1

w(1)
i j xi +b(1)j) (6.6a)

θ
(2)
j = g2(

h1

∑
i=1

w(2)
i j θ

(1)
i +b(2)j) (6.6b)

B̂ = g3(
h2

∑
i=1

w(3)
i θ

(2)
i +b(3)) (6.6c)

with θ
(1)
j and θ

(2)
j representing neurons in the first and second hidden layer, respectively, where

j = 1, ...,hl is the number of neurons in layer l = 1 and l = 2. The weight associated with the

connections between neurons i and j, which are in consecutive layers (from l−1 to l), is denoted

by w(l)
i j , and b(l)j represents the bias term added to the weighted sum for each neuron in hidden

188

layers l = 1, 2 and output layer l = 3. Upon receiving the information from the previous layer,

neurons in the current layer l then computes an output via a nonlinear activation function, denoted

gl . There are many choices of activation functions, e.g., sigmoid function, g(z) = 1
1+e−z , hyperbolic

tangent sigmoid function g(z)= 2
1+e−2z−1, and ReLu function, g(z)=max(0,z); interested readers

may refer to [96] for more details on the different activation functions and their characteristics. The

two-hidden-layer representation in this section can be similarly extended to multiple hidden layers

for better fitting suited for other applications.

To train the FNN, training data are generated by sampling points from the operating region of

the system (i.e., x∈X ⊂Rn where X is a compact set). In order to ensure that the FNN developed

from discrete data samples is able to meet the conditions of B(x) in a continuous sense (for reasons

that will be further explained in Section 8.2.2), the safe and the unsafe operating regions we

consider need to be compact and connected sets within X . Therefore, we first characterize a

compact and connected set H , that encloses the open set D such that a key condition used for

designing CBF, as shown in Eq. 8.32, is satisfied. These design guidelines are explained in detail

in Section 4.1. Then, we use H ′, which encloses H with sufficient margin, to represent the

unsafe region. Samples from the unsafe region H ′ and the safe region X \H ′ are collected by

discretizing the respective regions with a fixed mesh size (δx)H ′ and (δx)X \H ′ respectively. We

denote the finite sampled data set of the unsafe region as SH ′ , and the finite sampled data set of

the safe region as SI . To achieve best training results, equal number of samples for each set are

obtained, where ND and NI represents the number of sampled data points in the unsafe and the safe

regions respectively.

Due to the dichotomous condition of B(x) as specified by Eq. 8.3a and Eq. 8.3c (depending on

whether the particular point x belongs to the safe or the unsafe region in state-space), the activation

functions of the two hidden layers and the output layer are all chosen to be the hyperbolic tangent

sigmoid function (i.e., tanh(z)) due to the nature of tanh(z) functions settling at 1 as z approaches

+∞, and −1 as z approaches −∞, effectively polarizing the outputs and allowing the outputs of

the FNN to take either relatively constant positive values, or relatively constant negative values.

According to the requirement of conditions Eq. 8.3a and Eq. 8.3c, we can then label safe data

points in SI as having an output value B(x) of −1, and unsafe data points in SH ′ as having an

output value B(x) of +1. These labeled target output values can be then compared to the predicted

output values given by the layers of neurons and tanh activation functions; more specifically, we

use mean squared error in the objective function to track the error between the target B(x) and

the predicted B̂(x) values. Minimizing the mean squared error between the target B(x) and the

189

predicted B̂(x) values will address the conditions of Eq. 8.3a and Eq. 8.3c. Furthermore, we add an

additional term in the cost function, which uses the ReLu function and penalizes sample points that

violate the condition of Eq. 8.3b. To obtain an optimal set of weights and biases that will produce

an output B̂(x) that meets all three conditions of Eq. 8.3, we use an optimization algorithm to

minimize the cost function, which has the following form:

Cost =Cost1 +Cost2

Cost1 = α
1
Ns

Ns

∑
k=1

(B̂k−Bk)
2

Cost2 = β

NI

∑
j=1

ReLu(L f̂ B̂ j + τI)

(6.7)

where Cost1 represents the mean squared error between the target and the predicted outputs for all

samples in the operating region, and Cost2 represents the penalizing term to ensure that L f̂ B̂ ≤ 0

for all x ∈ SH . k = 1, ...,Ns represents the total number of samples in the training dataset, i.e.,

Ns = ND + NI , and j = 1, ...,NI represents all sample points in the safe operating region. In

Cost2, τI is a small positive constant. Since ReLu is defined to take the maximum between its

argument and 0, we penalize any occurrences of data samples producing L f̂ B̂ j + τI > 0, thereby

forcing L f̂ B̂ j to be negative for all points in the safe region. Positive constants α and β are

hyper-parameters representing the weights of the two terms in the cost function. During training,

when ∑
NI
j=1 ReLu(L f̂ B̂ j+τI) has reached 0, then we have arrived at a predicted barrier function B̂(x)

that satisfies the condition Eq. 8.3b. In order to ensure the efficacy of the predicted barrier function

B̂(x) at the end of the network training, we evaluate and monitor Cost1 and Cost2 separately

during training, and implement stopping criteria that would require both Cost1 and Cost2 to reach

below their respective thresholds to ensure bounded modeling error for B̂(x) as well as negative

semi-definiteness of L f̂ B̂≤ 0 for all x ∈ SI .

6.2.2 Effectiveness of NN-based Barrier Function

The definition given in Definition 8.2 presents the properties and characteristics of an adequate

barrier function. In this section, we will show how FNN-based barrier function can be verified to

satisfy Definition 8.2 and be applied to continuous nonlinear systems of Eq. 8.1.

190

6.2.2.1 Continuity and Differentiability

By Definition 8.2, the barrier function is a continuously differentiable function, thus we need to

show that B̂(x) and ˙̂B(x) are continuous. By the universal approximation theorem, feed-forward

artificial neural networks are able to model any continuous nonlinear functions on compact subsets

of the state space Rn with sufficient number of neurons [99]. Furthermore, B̂(x) is the output

of a series of nonlinear activation functions of inputs, weights and biases. We choose activation

functions that are Lipschitz continuous in the compact subset within which the FNN training data

is collected, such as tanh. All hidden layers and output layer of the FNN model for approximating

B(x) use tanh as the activation function, therefore making B̂(x) also Lipschitz continuous.

6.2.2.2 Verification

Minimizing the cost function of Eq. 8.6 aims to minimize the error between the values of B(x)

and B̂(x) as well as to penalize violations of the decrease condition L f̂ B̂(x) ≤ 0, ∀x ∈ SI , but

does not enforce the conditions of Eq. 8.3 in a continuous sense. Therefore, we must verify that

these conditions hold over the compact subsets for which the respective data samples are collected

from. Many verification techniques can be used, such as the Satisfiability Modulo Theories (SMT)

algorithm in [19] and the Lipschitz method in [58, 88]. More specifically, the work in [13] has

shown the verification of the decrease condition for a candidate Lyapunov function on a finite

sampling of a bounded set of initial conditions. The following theorem is adapted from the work

in [13], in which the full proof of the theorem is presented in details.

Theorem 6.1. Let Ss be a finite set sampled from a compact set S ⊂ Rn such that for all x ∈ S,

there exists at least a pair (xs,δxs) ∈ Ss×R+ s.t. |x− xs| ≤ δxs. If for all xs ∈ Ss it holds that

F(xs)≤−LF ·δxs (or respectively F(xs)<−LF ·δxs), where LF > 0 is the Lipschitz constant for

function F, then F(x)≤ 0 (respectively F(x)< 0) holds for all x ∈ S. [13]

Therefore, by Theorem 8.1, we can show that L f̂ B̂(x)≤ 0, ∀ x∈X \H ′ by checking the tightened

condition L f̂ B̂(x) ≤ −L′ · δxX \H ′, ∀ x ∈ SI , where the sampled finite set SI is a discretization

of the compact set X \H ′, L′ > 0 is the Lipschitz constant for L f̂ B̂(x), and δxX \H ′ > 0 is the

discretization mesh size in the safe region X \H ′. Similarly, we can show that B̂(x) ≤ 0, ∀ x ∈
X \H ′ by showing that B̂(x) ≤ −L · δxX \H ′ ∀ x ∈ SI , where L is the Lipschitz constant for

B̂. Once this tightened condition is verified, it is sufficient to show that the condition of Eq. 8.3c

is satisfied. Lastly, we show that the condition of Eq. 8.3a is satisfied by verifying that −B̂(x) <

−L ·δxH ′, ∀ x ∈ SH ′ , which means −B̂(x)< 0 ∀ x ∈H ′, and equivalently B̂(x)> 0 ∀ x ∈H ′.

191

6.2.2.3 Characterization of Unsafe Data

It is generally difficult to describe the exact unsafe operating conditions of nonlinear processes as

the actual unsafe set D can be open and not connected. For example, unsafe sets are not connected

if there are multiple clusters of unsafe operating regions located within close proximity such that

navigating around them would be nearly impossible. Therefore, in order to proceed with designing

an adequate CBF, we first characterize a compact, connected set, denoted as H , to embed the

unsafe set D . This approach is similarly applied in the design of constrained CLBF Wc(x) proposed

in [119], where an explicit form of the CBF was constructed. In our study, we use a similar compact

and connected set H , such that D ⊂H , to characterize the set of unsafe states considered.

To obtain a FNN model for the CBF, we need to supply the model with training data samples

from the unsafe and the safe operating regions in state-space. As there always exists inherent

modeling error in the approximation of the CBF, a contingency margin should be considered when

generating these training data. More specifically, we use a larger compact set, H ′ where H ⊂H ′,

to distinguish the different labels assigned to safe and unsafe data samples. Data samples obtained

from a discretization of the region H ′ will be labeled as “unsafe”, and data samples obtained from

a discretization of the set X \H ′ will be labeled as “safe”. Upon verification of the trained model

with regards to the definition of CBF (Eq. 8.3) and with regards to the classification accuracy, we

ensure that the resulting unsafe region as predicted by the FNN-modeled CBF, denoted as Ĥ ,

should be as close to H ′ as possible and always be a superset of the compact unsafe region H .

We leave sufficient margin between H and H ′ so that, with bounded modeling error in the FNN

model for CBF (Eq. 6.6) and in the RNN model for the nonlinear process (Eq. 6.3), it is guaranteed

that the closed-loop state will not enter H given any initial condition x0 ∈X \H ′.

Remark 6.3. Despite rigorous training and extensive validation, there may still exist modeling

error in the testing phase or in the implementation of the NN model that we cannot eliminate

completely. Without knowing an explicit analytical form of B(x), it is difficult to quantify such

modeling error as well. We assume that the contingency margin that we leave when characterizing

the set of unsafe points for which training data will be generated from is able to account for the

inherent modeling error of the FNN-modeled CBF B̂(x). Hence, while the FNN output B̂ aims to

characterize the unsafe region boundary as close to H ′ as possible, in the presence of modeling

error, the predicted B̂(x) will satisfy all conditions on CBF and CLBF with respect to the actual

unsafe closed and compact set H .

Remark 6.4. To verify that the FNN-modeled barrier function B̂(x) satisfies the properties of a

192

CBF in a continuous sense, the finite sets of safe and unsafe data used to build the FNN must be

sampled from a compact (i.e., closed and bounded) safe set X \H ′, and a compact unsafe set

H ′, respectively, as shown in Section 3.2.2. It should be noted that the unsafe set H ′ is a set

characterized by the user to enclose the compact set H to account for the error margin in the

neural network model. Moreover, the compact set H is a set characterized by the user to enclose

the actual unsafe region D . In this study, we focus on bounded unsafe sets, Db. Bounded unsafe

sets in the middle of the operating region could obstruct the state trajectories, and are therefore

the more difficult case to handle. In the case of unbounded unsafe sets, Du, they must be first

approximated by a sufficiently large compact set within a reasonable physical range, Db̃. Based

on this approximated unsafe set, we can then characterize the compact set H ′⊃Db̃ from which we

will collect finite samples of unsafe data used for training the FNN, and subsequently, the analysis

and design of CLBF will follow that of the bounded unsafe set.

6.3 Stabilization and safety via Control Lyapunov-Barrier

Function

A Control Lyapunov-Barrier Function (CLBF) was proposed in [90], which is a weighted average

of a CLF and a CBF, where it was shown that if a CLBF exists for the system of Eq. 8.1 with w(t)≡
0, there exists a controller u = Φ(x) that will maintain the closed-loop state with x0 ∈X0 within a

level set of the CLBF and outside of D at all times. The work in [119,122] extends the analysis to

constrained CLBFs, accounting for physical constraints on manipulated inputs u∈U . In the recent

work in [123], a constrained CLBF-MPC is analyzed where the MPC uses a prediction model built

from an ensemble of RNN models, and the stability and safety properties of this approach were

guaranteed using a control law u = Φnn(x) ∈U . The CLF needs to meet the conditions outlined in

Section 8.1.3 and the CBF needs to meet the conditions of Eq. 8.3. As we have shown in Section

8.2.2, upon successful verification of B̂(x) against the conditions of Eq. 8.3, it is a valid CBF

which CLBF-based controllers can take in. Therefore, the theoretical results shown in [123] can

be similarly applied to a CLBF constructed with a FNN-specified CBF B̂(x), where closed-loop

stability and safe operation can be achieved under the CLBF-based control law u = Φnn(x)∈U for

the RNN system of Eq. 6.3.

The definition of a constrained CLBF constructed using the FNN-CBF B̂, denoted as Wnn(x)

with respect to the RNN model of Eq. 6.3 is as follows:

193

Definition 6.3. Given a set of unsafe points in state-space D , a proper, lower-bounded and C 1

function Wnn(x) : Rn→ R is a constrained CLBF if Wnn(x) has a minimum at the origin and also

satisfies the following properties:

Wnn(x)> ρ, ∀ x ∈D ⊂ φuc (6.8a)

L f̂Wnn(x)< 0,

∀ x ∈ {z ∈ φuc\(D ∪{0}∪Xe) | LĝWnn(z) = 0} (6.8b)

Uρ := {x ∈ φuc |Wnn(x)≤ ρ} ̸= /0 (6.8c)

φuc\(D ∪Uρ)∩D = /0 (6.8d)

where ρ ∈ R is a constant, Xe := {x ∈ φuc\(D ∪{0}) | ∂Wnn(x)/∂x = 0} is a set of states for

the RNN model of Eq. 6.4 where L f̂Wnn(x) = 0 (for x ̸= 0) due to ∂Wnn(x)/∂x = 0. f̂ and ĝ

are from the RNN model in Eq. 6.4. Under a stabilizing control law u = Φnn(x) ∈ U , φuc is

defined to be the union of the set where the time-derivative of Wnn(x) is negative with constrained

inputs, the origin, and the set Xe : φuc = {x ∈ Rn | Ẇnn(x(t),Φnn(x)) = L f̂Wnn + LĝWnn · u <

−αW |Wnn(x)−Wnn(0)|,u = Φnn(x) ∈ U}∪ {0}∪Xe, and αW is a positive real number used to

characterize the set φuc. A control law u = Φnn(x) ∈U that renders the origin exponentially stable

within φuc is assumed to exist for the RNN system of Eq. 6.3 in the sense that there exists a C 1

constrained CLBF Wnn(x). The CLBF function satisfies the following conditions ∀ x ∈ φuc and has

a minimum at the origin:

ĉ1|x|2 ≤Wnn(x)−ρ0 ≤ ĉ2|x|2, (6.9a)

∂Wnn(x)
∂x

Fnn(x,Φnn(x))≤−ĉ3|x|2, ∀ x ∈ φuc\Bδ (xe) (6.9b)∣∣∣∣∂Wnn(x)
∂x

∣∣∣∣≤ ĉ4|x| (6.9c)

where ĉ j(·), j = 1, 2, 3, 4 are positive real numbers, Wnn(0) = ρ0 is the global minimum value

of Wnn(x), and Bδ (xe) is a small neighborhood around xe ∈Xe. Fnn(x,u) is the RNN system of

Eq. 6.3.

In addition, in the nonlinear system of Eq. 8.1, we assumed that functions f ,g and h are

sufficiently smooth, by continuity, there exist positive constants Lx,Lw, L
′
x,L

′
w, M, such that for

194

all x,x′ ∈Uρ , w ∈W , and u ∈U , the following conditions will hold:

|F(x,u,w)| ≤M (6.10a)

|F(x,u,w)−F(x′,u,0)| ≤ Lx|x− x′|+Lw|w| (6.10b)∣∣∣∣∂Wnn(x)
∂x

F(x,u,w)− ∂Wnn(x′)
∂x

F(x′,u,0)
∣∣∣∣≤ L

′
x|x− x′|+ | ≤ L

′
w|wm| (6.10c)

In [122], an exemplar stabilizing control law Φnn(x) is shown. The Lyapunov function V (x)

can be replaced with the CLBF Wnn(x) within the Lyapunov-based control law that is presented in

the form of the universal Sontag controller [67].

6.3.1 Design of Constrained CLBF

We first design CLF and CBF separately to meet their respective conditions, and we follow the

practical design guidelines presented in [119] to construct the CLBF. We present the design method

for choosing the CLF, the CBF, and the corresponding weights in this section, and show that the

B̂(x) is able to meet all the conditions on CBF, through which Wnn(x) is able to meet all its required

properties of Eq. 8.31 and Eq. 7.5 and has a global minimum at the origin.

Proposition 6.1. Given an open set D of unsafe states for the system of Eq. 8.1 with w(t) ≡ 0,

assume that there exists a C 1 CLF V : Rn → R+, and a C 1 CBF B̂ : Rn → R, such that the

following conditions hold:

c1 |x|2 ≤V (x)≤ c2 |x|2 , ∀x ∈ Rn,c2 > c1 > 0 (6.11)

D ⊂H ⊂H ′ ⊂ φuc, 0 /∈H , 0 /∈H ′ (6.12)

B̂(x) =−η < 0, ∀x ∈ Rn\H ′; B̂(x)> 0, ∀x ∈H ′ (6.13)

where H is a compact and connected set within φuc, and H ′ is a compact and connected set

within φuc that encloses H with sufficient margin to account for modeling errors in B̂(x), f̂ , and

ĝ. Define Wnn(x) to have the form Wnn(x) :=V (x)+µB̂(x)+ν , where:∣∣∣∣∂Wnn(x)
∂x

∣∣∣∣≤ ĉ4|x| (6.14)

L f̂Wnn(x)< 0,

∀ x ∈ {z ∈ φuc\(D ∪{0}∪Xe) | LĝWnn(z) = 0}
(6.15)

195

µ >
c2c3− c1c4

η
, (6.16a)

ν = ρ− c1c4, (6.16b)

c3 := max
x∈∂H ′

|x|2, (6.16c)

c4 := min
x∈∂D

|x|2 (6.16d)

then the control law Φnn(x) (Lyapunov-based Sontag controller with Wnn(x) replacing V (x))

guarantees that the closed-loop state is bounded in φuc\H and does not enter the unsafe region

H for all times, for any initial state x0 ∈ φuc\DH ′ , where DH ′ := {x ∈H ′ |Wnn(x)> ρ}.

Proof. By the construction of the FNN model for the CBF, B̂(x) meets the condition of Eq. 8.33

despite modeling error due to the characterization of H ′⊃H , where the margin between H ′ and

H accounts for the modeling error of B̂(x), and of f̂ and ĝ of the RNN model of Eq. 6.4. It was

proven in [119] and [123] that a constrained CLBF designed following these guidelines satisfies

the properties of Eq. 8.31 and Eq. 7.5c; the proofs will be omitted here.

In addition, we also need to prove that the constrained CLBF Wnn(x) designed using a CLF V (x)

and a CBF B̂(x) satisfies the additional properties of Eq. 7.5a – Eq. 7.5b, which are required for

u = Φnn(x) ∈U to render the origin of the RNN system of Eq. 6.3 exponentially stable. In order to

make sure Eq. 7.5a holds, both |V (x)−V (0)| and |B̂(x)− B̂(0)| need to be bounded. From Eq. 6.11,

we know that c1 |x|2 ≤V (x)−V (0)≤ c2 |x|2 , ∀ x ∈ Rn since V (0) = 0. Based on the construction

and the training objectives of the FNN-modeled CBF, we also know that |B̂(x)− B̂(0)| ≤ 2 within

a sufficiently small bounded error that includes modeling inaccuracies and numerical error in the

B̂ predictions. Therefore, the resulting CLBF, Wnn(x)−Wnn(0), which is a linear combination of

the bounded V (x) and B̂(x), is also bounded by its respective lower and upper bounds as shown in

Eq. 7.5a.

The condition of Eq. 7.5b holds due to the definition of φuc as well as the boundedness of

|Wnn(x)−Wnn(0)|, where ĉ3 = αW ĉ2. Furthermore, V (x) has a global minimum at the origin:

V (0) = 0 and V (x) > 0 for all x ∈ Rn\{0}. With a sufficiently small bounded numerical error

and modeling error, B̂(x) = −1 for all x ∈ φuc\H ′, where {0} ∈ φuc\H ′, and B̂(x) = +1 for all

x ∈H ′. Therefore, B̂(x) also has a global minimum at the origin within bounded numerical error.

Since Wnn(x) is a weighted average of V (x) and B̂(x), the global minimum of Wnn(x) is also at the

origin. Therefore, we have demonstrated, a CLBF Wnn(x) and a controller u = Φnn(x) ∈U exist

that together satisfy all conditions of Eq. 8.31 and Eq. 7.5, and will guarantee exponential stability

196

for all x0 ∈ φuc\DH ′ .

In the rest of our paper, we will focus on initial conditions in Uρ , which is a forward invariant

set of Wnn(x) as defined in Eq. 8.31d. Furthermore, closed-loop stability and safety for the RNN

system of Eq. 6.3 are analyzed with respect to bounded unsafe sets similar to Theorem 1 in [122].

Specifically, in the presence of bounded unsafe sets, there exist stationary points xe ∈ Xe in

state-space other than the origin that can be treated as saddle points. When states reach these

stationary points, the continuous control law of u = Φnn(x) ∈U is unable to drive the states away

from them. We design discontinuous control actions u = ū(x) ∈ U , ū(x) ̸= Φnn(x), to drive the

states away from these saddle points in the direction of decreasing Wnn(x). The theorem below

provides the sufficient conditions under which the controller u = Φnn(x) ∈U designed based on

the CLBF Wnn(x) is able to fulfill stability and safety for the closed-loop RNN system of Eq. 6.3.

Theorem 6.2. Consider a constrained CLBF Wnn(x): Rn→R built using B̂(x), that has a minimum

at the origin and satisfies the conditions of Eq. 8.31, exists for the RNN system of Eq. 6.3. The

controller u = Φnn(x) ∈U that satisfies Eq. 7.5 guarantees that the closed-loop state stays within

Uρ for all times for any x0 ∈ Uρ . In the presence of a bounded unsafe region in state-space, the

origin can be rendered exponentially stable under u = Φnn(x) ∈U (if x is not near a saddle point

xe) and under discontinuous control actions u = ū(x) ∈ U that decrease Wnn(x) (if x is near a

saddle point xe) for all x0 ∈Uρ .

Proof. It has been proven in [119, 122, 123] that the universal Sontag controller [98] with the

CLBF Wnn(x) replacing the Lyapunov function V (x) gives a valid u = Φnn(x) ∈ U that ensures

Ẇnn(x) ≤ 0 for all x ∈ Uρ , therefore ensuring that for x0 ∈ Uρ , x is bounded in Uρ for all times.

Furthermore, since Uρ is a level set of Wnn(x) in φuc (φuc is a set within which Eq. 7.5 is met), the

origin is rendered exponentially stable under u = Φnn(x) ∈U . In the presence of bounded unsafe

regions, the saddle points at which Ẇnn(x) = 0 can be handled by discontinuous control actions

u = ū(x) ∈ U, ū(x) ̸= Φnn(x) that decrease Wnn(x). The detailed proofs for handling bounded

unsafe sets can be referenced from Thereom 1 in [122], and will be omitted here.

6.4 CLBF-based MPC using FNN CBF and RNN Prediction

Model

In this work, we propose a CLBF-based MPC which is designed based on a CLBF-based controller

that ensures simultaneous closed-loop stability and process safety for the nonlinear system of

197

Eq. 8.1. The CLBF-based controller u = Φnn(x) ∈ U , which uses a Wnn(x) incorporating an

FNN-modeled CBF (B̂(x)), is designed based on the f̂ and ĝ of the RNN system of Eq. 6.4. Then,

the CLBF-MPC is developed to optimize process performance while driving the process states to

a small ball around the origin. So far, we have shown that a valid CLBF Wnn(x) can be constructed

using B̂(x), from which the controller u = Φnn(x) ∈ U exponentially stabilizes the origin of the

RNN system of Eq. 6.3 while keeping closed-loop states in a safe region of operation Uρ .

The control actions of the CLBF-MPC are implemented in a sample-and-hold manner to the

original nonlinear system of Eq. 8.1, i.e., for any t ∈ [tk, tk+1), u(t) = u(tk), where tk+1 := tk +∆.

Note that ∆ is the sampling period of the MPC. Due to the presence of bounded disturbances in the

nonlinear system of Eq. 8.1, as well as the modeling mismatch between the RNN system of Eq. 6.3

and the first-principles system of Eq. 8.1, we must investigate the safety and stability properties of

the system with these considerations in mind.

In Proposition 1 of [123], given that the modeling error of the RNN model of Eq. 6.3 is

bounded by |ν | = |F(x,u,0)− Fnn(x,u)| ≤ γ|x| ≤ νm, and the nonlinear system of Eq. 8.1 has

bounded disturbances |w| ≤ wm, the boundedness of the state error |x− x̂| and the difference

between |Wc(x)−Wc(x̂))| was shown, where Wc is a CLBF that uses an explicitly defined CBF

B(x). More specifically, |x(t)− x̂(t)| ≤ fw(t) := Lwwm+νm
Lx

(eLxt−1), and Wc(x)≤Wc(x̂)+κ|x− x̂|2+
ĉ4
√

ρ−ρ0√
ĉ1
|x− x̂|, where κ > 0. Since Wnn(x) can be also shown to be continuous and bounded on a

compact set and behaves the same as Wc(x), the same proofs apply on Wnn(x), and we can conclude

that Wnn(x) ≤Wnn(x̂) +
ĉ4
√

ρ−ρ0√
ĉ1

fw(t) + κ fw(t)2, where ĉ1, and ĉ4 are positive real constants in

Eq. 7.5 for Wnn(x).

All subsequent proofs on the stability and safety of the nominal system of Eq. 8.1 under the

CLBF-based control law designed based on Wnn(x) follow the same proofs in [123] (Proposition 2

and Proposition 3), with Wnn replacing Wc. This is shown for bounded unsafe regions, where the

CLBF-based control law designed using the RNN model of Eq. 6.3 can also guarantee closed-loop

exponential stability and safety for the nominal system of Eq. 8.1. We will show that the

combination of the CLBF-based control law u = Φnn(x) ∈ U along with discontinuous control

actions that yield decreasing Wnn(x) will provide exponential stability and safety in the case of

bounded unsafe sets.

We consider the nominal system of Eq. 8.1 with a bounded unsafe set, where saddle points

xe ∈ Xe are present in Uρ . We provide sufficient conditions, under which the continuous

CLBF-based control actions u = Φnn(x) ∈ U and the control actions u = ū(x) ∈ U designed in

a discontinuous manner, can ensure closed-loop stability and safety. The proof for the following

198

adapted proposition can be found in [123].

Proposition 6.2. If the RNN model is developed such that for all x ∈Uρ and u ∈U, the modeling

error is constrained by |ν | = |F(x,u,0)−Fnn(x,u)| ≤ γ|x|, where γ is a positive real number that

satisfies γ < ĉ3/ĉ4, and furthermore, Eq. 6.17 is satisfied under discontinuous control actions

u = ū(x) ∈U when x(tk) = x̂(tk) ∈Bδ (xe),

Wnn(x̂(t))<Wnn(x̂(tk))− fe(t− tk), ∀t > tk (6.17)

where

fe(t− tk) :=
ĉ4
√

ρ−ρ0√
ĉ1

fw(t− tk)−κ fw(t− tk)2

and fw(t) is the upper bound on the state error |x(t)− x̂(t)| ≤ fw(t), then the stability and safety

properties outlined in Theorem 6.2 also apply to the nominal system of Eq. 8.1 with a bounded

unsafe region Db under u = Φnn(x) ∈U and u = ū(x) ∈U.

In the presence of bounded disturbances (i.e., |w(t)| ≤ wm), now we show that the nonlinear

system of Eq. 8.1 can be rendered exponentially stable and maintained within the safe region Uρ .

Under the sample-and-hold implementation of the control actions, the state of the closed-loop

system of Eq. 8.1 is always bounded in Uρ , and converges to a small neighborhood Uρmin . Given

that the set of initial conditions Uρ for which exponential stability and safety of the RNN system

of Eq. 6.3 can be guaranteed under the CLBF-based control laws is characterized using Wnn(x), the

following proposition has been adapted from Proposition 4 in [123].

Proposition 6.3. Consider the nonlinear system of Eq. 8.1 under the CLBF-based controller u =

Φnn(x) ∈U (under sample-and-hold implementation), which is built using a valid Wnn following

Proposition 8.1 and satisfies Eq. 7.5. If Eq. 6.17 is satisfied under the controller u = ū(x) ∈U in a

sample-and-hold fashion for x ∈Bδ (xe), and there exist εw > 0, ∆ > 0 and ρs < ρnn < ρmin < ρ

that satisfy

− c̃3

ĉ2
(ρs−ρ0)+L

′
xM∆+L

′
wwm ≤−εw (6.18)

and

ρnn := max{Wnn(x̂(t +∆)) | u ∈U, x̂(t) ∈Uρs} (6.19a)

ρnn+ fe(∆)≤ ρmin (6.19b)

where fe(t) is given by Eq. 6.17, then for any x(tk) ∈Uρ\Uρs , Wnn(x(t)) is guaranteed to decrease

199

within every sampling period, and can be bounded in Uρ for all times and ultimately bounded in

Uρmin .

6.4.1 Formulation of CLBF-MPC

The following optimization problem represents the CLBF-MPC design:

J = min
u∈S(∆)

∫ tk+N

tk
L(x̃(t),u(t))dt (6.20a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (6.20b)

x̃(tk) = x(tk) (6.20c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (6.20d)

Ẇnn(x(tk),u(tk))≤ Ẇnn(x(tk),Φnn(tk))

if x(tk) /∈Bδ (xe) and Wnn(x(tk))> ρnn (6.20e)

Wnn(x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if Wnn(x(tk))≤ ρnn (6.20f)

Wnn(x̃(t))<Wnn(x(tk))− fe(t− tk), ∀ t ∈ (tk, tk+N),

if x(tk) ∈Bδ (xe) (6.20g)

where x̃(t) is the predicted state trajectory, N is the number of sampling periods in the prediction

horizon, S(∆) represents the set of piece-wise constant functions with sampling period ∆. The

CLBF-MPC optimization problem has an objective function of Eq. 8.44a, which is the integral of

L(x̃(t),u(t)) over the prediction horizon typically in a quadratic form, i.e., L(x̃(t),u(t)) = x̃T Qx̃+

uT Ru, where Q, R are positive definite weighting matrices, and the minimum of this objective

function is achieved at the origin. In Eq. 8.44b, the predicted state trajectory x̃(t), t ∈ [tk, tk+N) are

calculated using the RNN model Fnn of Eq. 6.3. Ẇnn(x,u) represents ∂Wnn(x)
∂x (f̂ (x)+ ĝ(x)u), where f̂

and ĝ are the approximated nonlinear functions of the RNN model of Eq. 6.4. The input constraints

of Eq. 8.44d are applied over the entire prediction horizon. We assume that the measured states of

the closed-loop system are available at each sampling time. For the predicated state trajectory of

Eq. 8.44b, the initial condition is obtained from the feedback measurement of Eq. 8.44c at t = tk. To

ensure closed-loop stability and process operational safety, the constraints of Eqs. 8.44e-8.44g are

utilized. When x(tk) /∈Bδ (xe) and Wnn(x(tk)) > ρnn, the constraint of Eq. 8.44e forces Wnn(x̃) to

decrease along at a rate less than or equal to that under the CLBF-based control law u=Φnn(x)∈U .

If Wnn(x(tk))≤ ρnn, the constraint of Eq. 8.44f maintains the predicted state of the RNN system of

200

Eq. 6.3 within Uρnn such that the closed-loop state of the nonlinear system of Eq. 8.1 is bounded

in Uρmin . Furthermore, if x(tk) ∈Bδ (xe), the constraint of Eq. 8.44g decreases Wnn(x) over the

predicted state trajectory such that the closed-loop state can escape from saddle points xe within a

finite number of sampling periods. Once the state leaves Bδ (xe), it will be driven to smaller level

sets of Wnn(x) under the constraint of Eq. 8.44e, therefore guaranteeing that the state does not go

back to Bδ (xe) afterwards. After solving the optimal solution u∗(t), the control action at the first

time instant, u∗(tk), is applied over the next sampling period in a sample-and-hold manner. The

horizon will be moved forward one sampling period, and the above process is repeated.

The following theorem and proof will show that safety and stability can be established for the

closed-loop nonlinear system of Eq. 8.1 using the CLBF-based MPC.

Theorem 6.3. Consider the system of Eq. 8.1 with a constrained CLBF Wnn built using a NN-BF

B̂(x) following the procedures in Section 8.2. The constrained NN-based CLBF Wnn(x) satisfies

Eq. 8.31 and has a minimum at the origin. Given any initial state x0 ∈ Uρ , it is guaranteed

that the CLBF-MPC optimization problem of Eq. 8.44 can be solved with recursive feasibility for

all times. Additionally, under the sample-and-hold implementation of CLBF-MPC based on an

RNN prediction model that satisfies |ν |= |F(x,u,0)−Fnn(x,u)| ≤ γ|x| ≤ νm and the conditions in

Proposition 6.3, it is guaranteed that for any x0 ∈ Uρ , the state is bounded in Uρ , ∀ t ≥ 0, and

ultimately converges to Uρmin as t→ ∞.

Proof.

Part 1: The optimization problem of Eq. 8.44 for the CLBF-MPC has a feasible solution

at all times since the CLBF-MPC constraints of Eqs. 8.44d-8.44g can be satisfied by the

sample-and-hold control laws u = ū(x) ∈U , ∀x ∈Bδ (xe) and u = Φnn(x) ∈U , ∀x ∈Uρ\Bδ (xe).

This has been demonstrated in Propositions 6.2 and 6.3 with detailed proofs outlined in [123].

More specifically, the control laws u = ū(x) ∈ U , ∀x ∈ Bδ (xe) and u = Φnn(x) ∈ U , ∀x ∈
Uρ\Bδ (xe) are already constrained by u ∈U , therefore the input constraint of Eq. 8.44d can be

met over the prediction horizon. By letting u(tk) = Φnn(x(tk)) when x(tk) ∈Uρ\(Bδ (xe) ∪ Uρnn),

Eq. 8.44e is also satisfied. It has been shown in Proposition 6.3 that once the closed-loop state is

inside Uρs under the control law u = Φnn(x) ∈U , it will not leave Uρnn for any u ∈U within one

sampling period. Thus, the CLBF-based control law u(t) = Φnn(x(tk+i)) ∈U , ∀t ∈ [tk+i, tk+i+1)

with i = 0, ...,N − 1 provides a feasible trajectory of control actions that meet the constraint

of Eq. 8.44f. Lastly, as the controller u = ū(x) ∈ U satisfies Eq. 6.17, the control action

u(t) = ū(x(tk+i))∈U , ∀t ∈ [tk+i, tk+i+1) with i = 0, ...,N−1 will satisfy the constraint of Eq. 8.44g

201

and drive the state away from saddle points if x(tk) ∈Bδ (xe). The proof for recursive feasibility

of the optimization problem of Eq. 8.44 is complete.

Part 2: Now we will prove that the optimized solution of Eq. 8.44 will guarantee simultaneous

safety and stability for the closed-loop nonlinear system of Eq. 8.1. For any x0 ∈ Uρ\Uρnn , the

constraint of Eq. 8.44e ensures that the optimized CLBF-MPC control action u∗ will drive the

closed-loop state of the RNN system towards the origin and into Uρnn within finite sampling

periods. After the state enters Uρnn , the constraint of Eq. 8.44f ensures the boundedness of

the closed-loop state of the RNN model in Uρnn for the remaining time. With the impact of

the RNN modeling error, bounded disturbances, and sample-and-hold implementation of control

actions, it has been shown in Proposition 6.3 that when the closed-loop state of the RNN system is

bounded in Uρnn , the actual state of the nonlinear system of Eq. 8.1 is ultimately bounded in Uρmin .

Furthermore, since the safe operating region Uρ has no intersection with the unsafe region D , the

closed-loop state will be bounded in Uρ for any x0 ∈Uρ , and thus will not enter D at all times.

In addition, avoiding convergence to saddle points needs to be considered. Saddle points are

points in state-space at which the CLBF Wnn has a local minima. Starting from an initial condition

x0 ∈Uρ\Uρnn , the constraint of Eq. 8.44e pulls the state towards the origin. When the closed-loop

state reaches a neighborhood around the saddle point where x(tk) ∈ Bδ (xe), the constraint of

Eq. 8.44g will drive the state away from the neighborhood of saddle point in a direction of

decreasing Wnn(x). Once the state escapes Bδ (xe), then the constraints of Eqs. 8.44e-8.44f will

ensure operational safety and closed-loop stability, and the closed-loop state ultimately converges

to the origin and is bounded in Uρmin . Therefore, the presence of saddle points have been addressed,

and closed-loop stability and safety under the CLBF-MPC for the nonlinear system of Eq. 8.1 with

bounded unsafe sets have been proven.

6.5 Application to a Chemical Process Example

In this section, we apply the proposed CLBF-MPC on a chemical process example. The process

considered consists of a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where

an irreversible first-order exothermic reaction A→ B takes place. There is a heating jacket installed

on the reactor to supply and remove heat. The material and energy balances of this CSTR system

202

is as follows:

dCA

dt
=

F
VL

(CA0−CA)− k0e−E/RTCA (6.21a)

dT
dt

=
F
VL

(T0−T)− ∆Hk0

ρLCp
e−E/RTCA +

Q
ρLCpVL

(6.21b)

where T is the temperature in the reactor, CA represents the concentration of reactant A, Q is the

heat rate, and VL is the volume of the reacting liquid in the reactor. The reactor feed contains the

reactant A at a concentration CA0, temperature T0, and volumetric flow rate F . ρL, Cp, k0, E and

∆H are the liquid density, heat capacity, reaction pre-exponential factor, activation energy and the

enthalpy of the reaction, respectively. Process parameter values can be found in [119]. The control

objective is to operate the CSTR at the steady-state point (CAs, Ts) = (0.57 kmol/m3, 395.3 K) and

maintain the state in a safe region by manipulating the inlet concentration of species A, ∆CA0 =

CA0−CA0s , and the heat input rate ∆Q = Q−Qs. The input constraints for ∆Q and ∆CA0 are

|∆Q| ≤ 0.0167 kJ/min and |∆CA0| ≤ 1 kmol/m3, respectively.

Deviation variables are used such that the equilibrium point of the system is at the origin

of the state-space. xT = [CA−CAs T − Ts], uT = [∆CA0 ∆Q] represent the state vector and the

manipulate input vector in deviation variable forms, respectively. As the focus of the current work

is on the machine-learning construction of CBF and its application on an RNN-MPC, we do not

consider bounded disturbances. Further simulations can be run with added disturbances to assess

the robustness of the proposed control system.

We construct a Control Lyapunov Function using the standard quadratic form V (x)= xT Px with

P =

[
9.35 0.41

0.41 0.02

]
. The P matrix of the control Lyapunov function is determined via extensive

closed-loop simulations of the process. With the goal of finding the largest stability and safety

region in state space, we carry out an iterative search where we start with an initial guess of the

P matrix, then find the region in state space within which the time derivative of CLBF can be

rendered negative under the Sontag control law, and characterize the largest forward invariant set

within this region to be considered as the stability and safety region. We define the unsafe region,

D , as a region embedded fully within the closed-loop system stability region. The unsafe region is

located in the middle of the stability region such that the state trajectory will intersect the unsafe

region on its converging route towards the origin. Such a bounded unsafe set poses both theoretical

as well as implementation challenges for CLBF-MPC as the controller has to drive the state around

the unsafe region and to the steady-state.

203

6.5.1 Development of the RNN Model for the CSTR Process

We follow similar procedures of data generation, training and validation as outlined in [123] to

obtain an RNN model for the nonlinear process of Eq. 8.1. To generate training data sufficiently

large to represent the entire operating region, open-loop simulations are run for finite sampling

steps starting at various initial conditions within the safe and stabilizable set Uρ with various

control actions u ∈U . The RNN model constructed takes the form of a Long-Short-Term-Memory

network, which is a special kind of RNN known for its superior performance in remembering

longer-intervaled temporal relationships. The RNN model uses one input layer, one hidden layer

consisting of 20 recurrent units, and one output layer. State measurements x(tk) and the control

actions u(tk) are the inputs to the RNN model, and the RNN model has the outputs of the predicted

state trajectory over one sampling period x̂(t) for t ∈ [tk, tk+1]. The number of recurrent units in

the hidden layer corresponds with the number of internal states within each sampling period. In

our simulations, the time progression of states are simulated using an Euler integration method at

an integration time step of hc, and the sampling period of MPC is ∆ = 100hc. In order to predict

the states at the end of each sampling period, we could choose to have a maximum of 100 internal

states, with a time interval of hc between each internal state. In order to provide the RNN with

sufficient neurons to achieve adequate accuracy and to also reduce computational effort, we have

conducted a grid search between various numbers of internal states, and have chosen the design

of 20 internal states with a time interval of 5hc between each internal state. An early stopping

criterion of achieving a validation mean squared error (MSE) of below 1× 10−6 is implemented

to avoid over-fitting and to ensure that the modeling error is rendered sufficiently small. After 65

epochs, early stopping is triggered and the obtained RNN model achieves a training MSE of 4.17

×10−6 and a validation MSE of 9.03×10−7.

6.5.2 Development of the FNN Model for Barrier Function

In this example, we define the unsafe region as follows: D := {x ∈ R2 | F(x) = (x1+0.22)2

1 +
(x2−4.6)2

1×104 < 2×10−4}. H is defined as H := {x ∈ R2 | F(x) < 2.5×10−4} such that it satisfies

D ⊂H ⊂ φuc in Proposition 8.1. We define the unsafe region to be an ellipse as an illustrative

example of a challenging case of bounded unsafe set embedded in the operating region. In practice,

the bounded unsafe set can be of any bounded form in state-space, and may not be easily described

explicitly. For example, operating at certain mid-ranges of temperature and concentration could

lead to material corrosion, incomplete reactions, or generation of byproducts from side reactions.

204

There are also circumstances where specific ranges of operation are sub-optimal to efficiency and

productivity. To generate training data for the FNN model, we specify H ′ := {x ∈ R2 | F(x) <

5.6× 10−4}. The set of initial conditions considered Uρ is characterized with ρ = 0 as per

Eq. 8.31d. The CLBF Wnn(x) is constructed with the following parameters: c1 = 0.001, c2 =

10, c3 = 48.269, c4 = 16.85, ν = ρ − c1c4 = −1.685× 10−2, and µ = 5000. The safe region,

Uρ\H ′, and the unsafe region H ′, are discretized into 18,000 data samples, respectively. The

data samples are assigned a target label of “+1” if they belong in the unsafe region, and “-1” if

they belong in the safe region. The FNN model is constructed with 2 hidden layers of 12 and 10

neurons respectively. The inputs to the FNN model are the state measurement vector, and the output

of the FNN model gives the predicted class of the data point in state-space indicating whether it is

located inside the safe or the unsafe region. Both hidden layers use an activation function of tanh,

and the cost function of Eq. 8.6 has the following weighting parameters: α = 1.1, β = 0.005.

The validation metric examines the magnitude of Cost2 of Eq. 8.6, and early stopping is triggered

if Cost2 has reached 0. After 700 epochs of training, the MSE (Cost1) is 0.0155, and Cost2 has

a cumulative value of 0.4233. The classification accuracy over the testing dataset is 99.5%. The

predicted B̂ values are shown in Fig. 6.2, and the misclassified data points in the testing set are

shown in Fig. 6.3. Cost2 has not reached 0 as required by the algorithm within the specified number

of epochs; however, the classification accuracy has reached an acceptable level to cease training.

Then, the model can be assessed in terms of its misclassification rate, as well as the conditions on

the values of B̂(x) and L f̂ B̂(x) as specified by Eq. 8.3. There are 171 out of 36,000 data points

being misclassifed, all of them are safe data classified as being unsafe. This does not cause any

problems as the controller will simply be prompted to act sooner due to this misclassification

when the closed-loop state approaches the boundary of the unsafe region. This also means that

the predicated unsafe region given by the FNN-modeled CBF, denoted as Ĥ , is larger than H ′

as specified by the training data samples, therefore more conservative than what was intended.

Moreover, to verify that the FNN model satisfies the safety conditions of CBF of Eq. 8.3, we

verify that the tighter conditions hold for all discretized data points in their respective regions.

It is shown that all predicted B̂(x) > 0.0197 for all discretized x points in Ĥ , and the predicted

B̂(x) < −0.0241 for all discretized x points in Uρ\Ĥ . Since Ĥ is a superset of D , it is proven

that conditions Eq. 8.3a and Eq. 8.3c hold, respectively. We also examine L f̂ B̂(x) values for all

discretized x points outside of the unsafe region and where LĝB̂(x) = 0. Although both the FNN

and the RNN models can be expressed in continuous forms, for simplicity, we use numerical

approximation to calculate L f̂ B̂(x) and LĝB̂(x) respectively. Due to the dichotomous nature of B̂

205

having nearly constant values close to +1 or −1, all discretized points in x ∈ Uρ\D such that

LĝB̂(x) = 0 have L f̂ B̂(x) = 0. Although we cannot conclude that ∀ x ∈ {z ∈ Rn\D | LĝB̂(x) = 0},
L f̂ B̂(x) ≤ 0 holds, we know that the FNN model with a high accuracy can achieve L f̂ B̂(x) = 0

within the discretized region. Therefore, we proceed with this FNN model for CBF and apply it in

the CLBF-MPC to assess its closed-loop performance.

Figure 6.2: FNN-predicted barrier function B̂(x) for all data points in the training and the testing
datasets.

Remark 6.5. When training the FNN model, one may find that the weighting parameters α and β

need to be chosen based on a grid-search approach as these two parameters indicate the trade-off

between classification accuracy and enforcing L f̂ B̂(x) ≤ 0 for all discretized data points in the

safe region. In our simulations, striving for high classification accuracy whilst minimizing Cost2
yielded a good model with its safety requirements met. In the case that the verification against the

safety requirements of Eq. 8.3 are not met, the FNN needs to be retrained with more weighting on

Cost2 and more epochs.

206

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-10

-8

-6

-4

-2

0

2

4

6

8

10

-0.25 -0.24 -0.23 -0.22 -0.21 -0.2 -0.19

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Figure 6.3: State values in the safe (black) and unsafe (red) operating regions, with misclassified
data points (blue circles) showing that all inaccuracies are safe points misclassified as unsafe
points.

6.5.3 Closed-loop Simulations

To demonstrate that the closed-loop state trajectory does not reach the unsafe region D when

being driven towards the origin, we choose various initial conditions within Uρ to start the

simulation. It is demonstrated that the stabilization of the closed-loop system can be achieved

when the simulation starts at an initial condition (x1, x2) = (0.18, -4.5), which is on the opposite

side far from the unsafe region. More initial conditions near the unsafe region within the ellipse

Uρ are selected, from which the closed-loop state would have encountered the unsafe region if

a conventional tracking controller were to be implemented. It is demonstrated that although the

state enters the region H ′ due to inevitable modeling error within the FNN model for the CBF

and the RNN model for the nonlinear process, the state never reaches the border of D . Note that

D represents the actual unsafe set in state-space from physical law, H is the closed and compact

set that encloses D , H ′ is the set within which training data collected are deemed as “unsafe”. In

addition, we use Ĥ to denote the unsafe set predicted by B̂(x), which as shown in the previous

section, encloses the unsafe set given by the training dataset H ′. All trajectories demonstrate that

the states can successfully converge to the terminal set Uρmin while not entering the unsafe region

207

D , as shown in Fig. 6.4.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 6.4: State trajectories originated from 6 different initial conditions in the safe operating
regions under the closed-loop control of the CLBF-MPC using the RNN predictive model and the
FNN-based CBF.

We also compare the closed-loop performance of the proposed machine-learning-based

CLBF-MPC with other CLBF-MPC’s with various levels of machine-learning implemented as part

of the formulation. The trajectories are shown in Fig. 6.5. As shown, all trajectories successfully

avoided the unsafe region, bounded in Uρ , and ultimately converged to Uρmin . The trajectories

using the analytical CBF, which is designed based on the region H , enter and trespass the H ′

region (as they should in order to converge to the origin faster) while not entering the H region.

The trajectories using the FNN-modeled CBF do oscillate around the boundary of the H ′ region

due to modeling error, but remain distanced from the H region with the conservative contingency

margin considered.

208

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 6.5: Closed-loop state trajectories under the CLBF-MPC using different combinations of
first-principles (FP) process model or RNN process model, and analytical Control Barrier Function
(CBF) or FNN-based CBF.

209

Chapter 7

Barrier-Function-Based Distributed

Predictive Control for Operational Safety of

Nonlinear Processes

This chapter focuses on the design of distributed model predictive control (DMPC) systems for

nonlinear processes with input constraints using a Control Lyapunov-Barrier Function (CLBF)

to achieve simultaneous closed-loop stability and process safety. Specifically, we first use a

constrained CLBF to design explicit control laws for each subsystem and to characterize a set

of initial conditions, starting from which the closed-loop states of the overall nonlinear system are

guaranteed to converge to the operating steady-state under the CLBF-based control laws while

avoiding unsafe regions in state space. We then propose the CLBF-based DMPC, and prove

its feasibility and effectiveness in ensuring the stability and avoidance of unsafe regions under

sample-and-hold implementation of DMPC control actions. The CLBF-based DMPC is applied to

both sequential and iterative DMPC designs in the general sense, and a modification to the DMPC

formulation is presented for special cases of systems where the coupling between subsystems is in

a one-way cascading manner. The proposed CLBF-DMPC method is demonstrated via a nonlinear

chemical process example consisting of two subsystems.

Process safety is inarguably a top priority in industrial engineering given the involvement of

operators with potential hazards and exposure to the environment. During each stage of design,

operation, and maintenance, risk assessment and analysis is an irreplaceable part of engineering

and implementation in order to prevent catastrophic events from happening. Process control

systems not only enable automated control, operation, and monitoring of the plant, but also allow

210

safe, stable, and optimal production if robust control designs are implemented. The work in [66]

provides a control-inspired approach for the engineering of safe processes, and by defining process

safety within a system-theoretic framework, allows for a comprehensive treatment of process

safety.

CLBF-MPC has been proposed in [119, 122], where the stability and safety analysis for

the closed-loop system in the presence of both bounded and unbounded unsafe sets have been

provided. Many other recent works [76, 136] have also explored MPC with discrete-time control

barrier functions, as well as optimal control based on reinforcement learning with the inclusion of

control barrier functions.

In this work, we introduce CLBF to the design of DMPC in controlling multiple subsystems.

This contribution is essential to the operation of complex industrial processes where the overall

system may encounter regions in state-space for which they would like to avoid, and the

sub-controllers for each subsystem need to work cooperatively to achieve the stability and safety

objectives. In this work, we use an analytical representation of the unsafe operating points in

state-space to specify the CLBFs. However, interested readers may also refer to previous works

in [25] for machine-learning-based methods of characterizing such regions and designing MPC

algorithms based on a feedforward-neural-network-based control barrier function. The unsafe

operating regions may be specified for each subsystem individually, or if these unsafe points are

interdependent across subsystems, the unsafe regions may be specified holistically with respect to

the overall process.

The remainder of the paper is organized as follows. We address the class of systems considered,

the stabilizability assumptions, and the definition of Control Lyapunov-Barrier Functions in

Section 2. In Section 3, we provide the formulation of DMPCs, and develop a CLBF-based DMPCs

that guarantee recursive feasibility, closed-loop stability and safety under the sample-and-hold

control action implementation for the general case. We also provide a modified DMPC framework

for special cases of coupled subsystems in order to demonstrate its advantages and drawbacks.

In Section 4, we demonstrate the applicability of the proposed control scheme using a nonlinear

chemical process example.

211

7.1 Preliminaries

7.1.1 Notation

We use |·| to denote the Euclidean norm of a vector. xT denotes the transpose of x. If a function f (·)
is continuously differentiable, it is of class C 1. L fV (x) := ∂V (x)

∂x f (x) represents the Lie derivative.

We say that a continuous scalar function V : Rn→R is a proper function, if the set {x∈Rn |V (x)≤
k} is a compact set ∀ k ∈ R. With positive real numbers β and ε , we use Bβ (ε) := {x ∈ Rn | |x−
ε|< β} to represent an open ball around ε with radius of β . A\B := {x∈Rn | x∈ A,x /∈ B} denotes

set subtraction.

7.1.2 Class of Systems

A general class of nonlinear systems is considered in which multiple distinct sets of manipulated

inputs exist. Each set of inputs regulates a specific subsystem. Throughout the manuscript,

we consider two subsystems – subsystem-1 and subsystem-2 – for the simplicity of notation.

Subsystem-1 and subsystem-2 consist of states x1 and x2 respectively, which are controlled by and

only by u1 and u2 respectively. The general class of system under consideration can be represented

by nonlinear ordinary differential equations as follows:

ẋ = F(x,u1,u2,w) := f (x)+g1(x)u1 +g2(x)u2 + v(x)w,

x(t0) = x0

(7.1)

where x ∈ Rn denotes the state vector, u1 ∈ Rm1 and u2 ∈ Rm2 are the two distinct sets of input

vectors, and the disturbance is denoted by w ∈W with W := {w ∈ Rr | |w| ≤ wm, wm ≥ 0}. There

are constraints on the control actions as defined by u1 ∈U1 := {umin
1i
≤ u1i ≤ umax

1i
, i = 1, ...,m1} ⊂

Rm1 , and u2 ∈ U2 := {umin
2i
≤ u2i ≤ umax

2i
, i = 1, ...,m2} ⊂ Rm2 . f (·), g1(·), g2(·), and v(·) are

matrix and vector functions of dimensions n×1, n×m1, n×m2, and n× r, respectively, which are

assumed to be sufficiently smooth. The initial time t0 is taken to be zero (t0 = 0), and we assume

that f (0) = 0. Therefore, the origin is an equilibrium point of the nominal system of Eq. 8.1 with

w(t) ≡ 0 (i.e., (xs,u1s,u2s) = (0,0,0), where xs, u1s and u2s represent the steady-state state and

input vectors).

212

7.1.3 Control Lyapunov Function

With the nominal system of Eq. 8.1 with w(t) ≡ 0 in consideration, it is assumed that a Control

Lyapunov Function (CLF) V exists, which is positive definite and proper; the CLF meets the small

control property, which indicates that for every positive ε , there exists a positive δ , such that

∀ x ∈ Bδ (0), ∃ uT = [uT
1 , uT

2] that meet the conditions of |u| < ε and L fV (x)+ Lg1V (x) · u1 +

Lg2V (x) ·u2 < 0 [98]. In addition, the CLF also satisfies the following conditions:

L fV (x)< 0,

∀x ∈ {z ∈ Rn\{0} | Lg1V (z) = 0, Lg2V (z) = 0}
(7.2)

The existence of V implies the existence of explicit feedback control laws Φ1(x) ∈U1, Φ2(x) ∈U2

such that Eq. 7.2 holds for the nominal system of Eq. 8.1 under u1 = Φ1(x)∈U1, u2 = Φ2(x)∈U2,

and for all x in an explicitly defined neighborhood around the origin, the closed-loop system is

rendered asymptotically stable. The Sontag control law in [67] is one example of such stabilizing

feedback control laws. A region φu can be characterized around the origin where the time derivative

of the Lyapunov function V (x) is negative under u1 = Φ1(x) ∈ U1, u2 = Φ2(x) ∈ U2 as: φu =

{x ∈ Rn | V̇ (x) = L fV (x)+Lg1V (x) ·u1 +Lg2V (x) ·u2 < 0,u1 = Φ1(x) ∈U1, u2 = Φ2(x) ∈U2}∪
{0}. Within φu, we define Ωb := {x ∈ φu | V (x) ≤ b, b > 0}, which is a level set of V (x) and a

forward invariant set. For the closed-loop system under u1 = Φ1(x) ∈U1, u2 = Φ2(x) ∈U2, Ωb

is considered as the stability region in the sense that, for any x0 ∈ Ωb, the closed-loop trajectory

x(t), t ≥ 0 of the nominal system of Eq. 8.1 (i.e., w(t)≡ 0) remains in Ωb.

7.1.4 Control Barrier Function

During operation, there are undesirable regions within state-space that must be avoided for safety

and/or other considerations related to cost, environment, and optimality. Let us assume that an

open set D exists, and it sufficiently describes the region to be avoided. In the remainder of the

manuscript, the notation D is used to represent the unsafe set. A safe set can be subsequently

defined as X0 := {x ∈ Rn\D} where X0 ∩D = /0, {0} ∈X0. X0 will include the set of initial

conditions that we consider. Both bounded and unbounded unsafe regions have been studied in

literature; in this manuscript, bounded unsafe set is denoted as Db, unbounded unsafe set is denoted

as Du, respectively.

The definition of process operational safety studied in this manuscript entails closed-loop states

not entering any unsafe sets. Formally, operational safety has a definition described as follows:

213

Definition 7.1. The nominal system of Eq. 8.1 under input constraints u ∈U and with w(t)≡ 0 is

considered. If a set of constrained control actions u1 = Φ1(x) ∈U1, u2 = Φ2(x) ∈U2 exists such

that, for any initial state x(t0) = x0 ∈X0, the process state trajectories do not enter the unsafe

region and converge to the origin asymptotically (i.e., x(t) ∈ X0, x(t) /∈ D , ∀ t ≥ 0), then the

control actions u1 = Φ1(x), u2 = Φ2(x) are able to maintain the closed-loop state within a safe

operating region X0 at all times.

Subsequently, with the introduction of safe and unsafe operating regions in state-space, we can

define a valid Control Barrier Function (CBF) in the following definition [116]:

Definition 7.2. With a set of unsafe points D in state-space, a C 1 function B(x) : Rn → R is a

Control Barrier Function if it satisfies these properties:

B(x)> 0, ∀ x ∈D (7.3a)

L f B(x)≤ 0, ∀ x ∈ {z ∈ Rn\D | LgB(z) = 0} (7.3b)

XB := {x ∈ Rn | B(x)≤ 0} ̸= /0 (7.3c)

7.2 Stabilization and Safety via Control Lyapunov-Barrier

Function

The work in [90] proposed a Control Lyapunov-Barrier Function (CLBF) and proved that if a valid

CLBF exists for the nominal system of Eq. 8.1, then for any initial condition x0 ∈X0, a control law

exists which maintains the closed-loop state outside of D and within an explicitly characterized

region around the steady-state (which is a level set of CLBF) at all times. In [119, 122], this work

is extended to including constraints on the manipulated inputs u∈U in the design of CLBFs. In all

three works, the CLBF was designed using a weighted sum of a CBF and a CLF, where the CBF

satisfies the properties outlined in Eq. 8.3, and the CLF meets the relevant conditions in Section

8.1.3. Then, a practical design guideline is presented in [119] to construct this CLBF. We can

reference and utilize the same guidelines, applied on the nonlinear system of Eq. 8.1 consisting of

multiple subsystems to design the CLBF for the overall process.

The definition of a constrained CLBF W (x) with respect to the overall process as represented

by the nonlinear model of Eq. 8.1 is shown as below:

Definition 7.3. Considering an unsafe set in state-space D , a lower-bounded, proper, and C 1

function W (x) : Rn→ R is a constrained CLBF if W (x) satisfies the following properties and has

214

a minimum at the origin:

W (x)> ρ, ∀ x ∈D ⊂ φuc (7.4a)

L fW (x)< 0,

∀ x ∈ {z ∈ φuc\(D ∪{0}∪Xe) | Lg1W (z) = 0,

Lg2W (z) = 0} (7.4b)

Uρ := {x ∈ φuc |W (x)≤ ρ} ̸= /0 (7.4c)

φuc\(D ∪Uρ)∩D = /0 (7.4d)

where Xe := {x ∈ φuc\(D ∪{0}) | ∂W (x)
∂x = 0} represents a set of states where L fW (x) = 0 (for

x ̸= 0) due to ∂W (x)
∂x = 0. ρ ∈R is a real constant. f ,g1,g2 are the vector and matrix functions from

Eq. 8.1. Using a set of explicit control laws subject to their lower and upper bounds u1 = Φ1(x) ∈
U1, u2 = Φ2(x) ∈U2, φuc is defined to be the union of the origin, the set Xe, and the set where

the time-derivative of W (x) is negative: φuc = {0} ∪ Xe ∪ {x ∈ Rn | Ẇ (x(t),Φ1(x),Φ2(x)) =

L fW +Lg1W ·u1+Lg2W ·u2 <−αW |W (x)−W (0)|, u1 = Φ1(x)∈U1, u2 = Φ2(x)∈U2, αW > 0}.
For the nominal system of Eq. 8.1 with w(t) ≡ 0, if a C 1 constrained CLBF W (x) exists, then

there exists a set of control laws u1 = Φ1(x) ∈U1, u2 = Φ2(x) ∈U2 that together render the origin

asymptotically stable within φuc. The CLBF function has a minimum at the origin and is able to

satisfy the following properties ∀ x ∈ φuc:

c1|x|2 ≤W (x)−ρ0 ≤ c2|x|2, (7.5a)

∂W (x)
∂x

F(x,Φ1(x),Φ2(x))≤−c3|x|2, ∀ x ∈ φuc\Bδ (xe) (7.5b)∣∣∣∣∂W (x)
∂x

∣∣∣∣≤ c4|x| (7.5c)

where F(x,u1,u2) is the nominal system of Eq. 8.1 with w(t)≡ 0, c j(·)> 0, j = 1, 2, 3, 4 are real

numbers, ρ0 represents the global minimum of W (x) at the origin (i.e., W (0) = ρ0), and Bδ (xe)

denotes a neighborhood surrounding a saddle point in state-space, xe ∈Xe.

Within the nonlinear system described by Eq. 8.1, the functions f ,g1,g2 and v are assumed

to be sufficiently smooth, thus positive constants Lx,Lw, L
′
x,L

′
w, and M exist (by continuity) s.t.

215

∀ x,x′ ∈Uρ , w ∈W , and u1 ∈U1, u2 ∈U2, the conditions below will hold:

|F(x,u1,u2,w)| ≤M (7.6a)

|F(x,u1,u2,w)−F(x′,u1,u2,0)| ≤ Lx|x− x′|+Lw|w| (7.6b)∣∣∣∣∂W (x)
∂x

F(x,u1,u2,w)−
∂W (x′)

∂x
F(x′,u1,u2,0)

∣∣∣∣≤ L
′
x|x− x′|+L

′
w|wm| (7.6c)

Remark 7.1. When designing local controllers, we could consider designing a CLBF for

individual subsystems Wj(x j), where x j are the states of the subsystem j. We can characterize the

region φuc j for each subsystem j, which includes the set for which under a set of constrained control

laws u j = Φ j(x)∈U j, the CLBF satisfies Ẇj(x j,Φ j(x j))<−αW j |Wj(x j)−Wj(0)|. However, in the

context of DMPC where multiple controllers work collaboratively to achieve a collective control

objective of guaranteeing safety and stability for each subsystem, some initial conditions may

result in trajectories where the control objective for each controller in the DMPC network may

lead to a conflict. For example, one controller may encounter an unsafe region for its respective

local subsystem and attempts to navigate the closed-loop states away from the unsafe region,

consequently increasing the Lyapunov function V (x) for the overall system. On the other hand,

another controller may be attempting to navigate the process state of the other subsystem to the

origin, thereby decreasing V (x) for the overall system. Therefore, the set of initial conditions

for which the conditions of Eq. 7.5 are satisfied will only be a subset of the combination of sets

for which the CLBF conditions on Wj(x j) are satisfied for each subsystem individually. In other

words, if the stability and safety region for each subsystem j is defined with respect to W j(x j) as

Uρ j , j = 1,2, then Uρ ⊆ (Uρ1 ∪Uρ2).

An example of such CLBF-based controllers Φ1(x) ∈ U1 ⊂ Rm1 and Φ2(x) ∈ U2 ⊂ Rm2 , is

given as follows:

φ ji(x) =

 − p+
√

p2 +q4

qT q
q if q ̸= 0

0 if q = 0
(7.7a)

Φ ji(x) =


umin

ji if φ ji(x)< umin
ji

φ ji(x) if umin
ji ≤ φ ji(x)≤ umax

ji

umax
ji if φ ji(x)> umax

ji

(7.7b)

where j = 1,2 represents the two candidate controllers for the two subsystems, p denotes L fW (x)

where f = [f1 · · · fn]
T , and q denotes Lg ji

W (x), where g ji = [g ji1, ...,g jin]
T , (i = 1,2, ...,m1 for j = 1

216

corresponding to Φ1(x), and i = 1,2, ...,m2 for j = 2 corresponding to Φ2(x).) φ ji(x) of Eq. 7.7a

denotes the ith component of the control action φ j(x). After accounting for the input constraints

u j ∈U j, Φ ji(x) of Eq. 7.7 represents the ith component of the saturated control law Φ j(x).

7.2.1 Design of Constrained CLBF

The set Uρ , as defined in Eq. 8.31d, is a forward invariant set of W (x), and it will define the set of

initial conditions we consider in the rest of the manuscript. We analyze the scenario of bounded

unsafe sets first following similar logic as presented in Theorem 1 in [122], and present theoretical

analysis on the closed-loop stability and safety for the nonlinear system of Eq. 8.1. Specifically

in the case of bounded unsafe regions, stationary points in addition to the origin xe ∈ Xe are

present in state-space which can be considered as saddle points. The continuous control actions

u1 = Φ1(x) ∈U1, u2 = Φ2(x) ∈U2 are not able to help the states escape the stationary points once

the states reach them. Therefore, discontinuous control actions u1 = ū1(x) ∈ U1, u2 = ū2(x) ∈
U2 that decrease W (x) are designed, where [ū1(x), ū2(x)] ̸= [Φ1(x),Φ2(x)], to navigate x away

from these stationary points along the direction of W (x) decreasing. On the other hand, in the

presence of unbounded unsafe sets, the only unique stationary point in state-space is the origin,

therefore u1 = Φ1(x) ∈U1, u2 = Φ2(x) ∈U2 are able to render the origin asymptotically stable

and simultaneously guaranteeing process safety. More work on handling bounded and unbounded

unsafe sets are detailed in [122] for further reference.

7.3 CLBF-Based Control Law

7.3.1 Effect of Bounded Disturbance and Sample-and-hold Implementation

of Control Actions

As the CLBF will be used in the design of DMPC, which implements its control actions in a

sample-and-hold manner, we need to consider the impact of sample-and-hold control as well as

the presence of disturbances in the nonlinear system of Eq. 8.1 which are sufficiently small and

bounded when analyzing stability and safety properties of the closed-loop system. We provide

proof for these considerations in the next proposition.

Proposition 7.1. Consider the nominal system of Eq. 8.1 with w(t) ≡ 0 and a constrained CLBF

W (x) that meets the requirements of Definition 8.6 and has a minimum at the origin. Subsequently,

217

we characterize the set of initial conditions Uρ ⊂ X0. Let u1(t) = Φ1(x(tk)) ∈ U1, u2(t) =

Φ2(x(tk)) ∈U2 for all tk ≤ t < tk+1, x(tk) ∈ Uρ\Bδ (xe) where δ > 0, xe ∈Xe and tk represents

the time stamp t = k∆, k = 0,1,2, ..., and u1(t) = ū1(x) ∈ U1, u2(t) = ū2(x) ∈ U2 such that if

x(tk) ∈Bδ (xe), then W (x(tk+1)) < W (x(tk)) for any ∆ > 0. Then, there exists a real valued ∆∗,

such that, if ∆ ∈ (0,∆∗] and x0 ∈Uρ , then x(t) ∈Uρ , and limt→∞ |x(t)| ≤ d, for any positive real

number d.

Proof. For any initial conditions in Uρ , we will first show that x(t) converges to a terminal

level set around the origin Uρmin := {x ∈ φuc |W (x) ≤ ρmin} as t → ∞ where ρmin < ρ . Then by

the continuity of W (x), we prove that limt→∞ |x(t)| ≤ d as t→∞. First, we consider the case when

x(tk)∈Uρ\(Uρs∪Bδ (xe)), where ρs < ρmin < ρ , and demonstrate that Ẇ (x(t),u1(t),u2(t))<−ε

holds in the set Z := {x∈ φuc\Bδ (xe) | ρs≤W (x)≤ ρ} under u1(t) = u1(tk) =Φ1(x(tk)), u2(t) =

u2(tk) = Φ2(x(tk)), ∀ t ∈ [tk, tk + ∆∗). The time derivative of the CLBF can be represented as

follows:

Ẇ (x(t),u1(t),u2(t))

= Ẇ (x(tk),u1(tk),u2(tk))+(Ẇ (x(t),u1(t),u2(t))

−Ẇ (x(tk),u1(tk),u2(tk))

= L fW (x(tk))

+Lg1W (x(tk))u1(tk)+Lg2W (x(tk))u2(tk)

+(L fW (x(t))−L fW (x(tk)))

+(Lg1W (x(t))−Lg1W (x(tk)))u1(t)

+(Lg2W (x(t))−Lg2W (x(tk)))u2(t)

(7.8)

Since W (x) is a C 1 function that satisfies Eq. 8.31, and f (·), g1(·) and g2(·) are

assumed to be smooth, there exist positive real numbers k f , kg1 and kg2 , such that

|(L fW (x(t))− L fW (x(tk))| ≤ k f |x(t)− x(tk)|, |(Lg1W (x(t))− Lg1W (x(tk)))u1(t))| ≤ kg1|x(t)−
x(tk)|, |(Lg2W (x(t))− Lg2W (x(tk)))u2(t))| ≤ kg2|x(t)− x(tk)|. In addition, since f (x), g1(x)

and g2(x) are continuous, and Z is bounded, there exists a positive real number ks and a

sampling period ∆′ such that |x(t)− x(tk)| ≤ ks∆
′ for all t ∈ [tk, tk +∆′). According to how φuc

is defined, it is given that Ẇ (x(tk)) < −αW |W (x)−W (0)| < −αW ρm holds for all x ∈Z , where

ρm := min
x∈Z
|W (x)−W (0)|. We choose ∆′ < αW ρm−ε

ks(k f+kg1+kg2)
and 0 ≤ ε < αW ρm, where αW is used

to characterize φuc. Using these inequalities derived from Lipschitz conditions, Eq. 8.42 can be

218

written as:
Ẇ (x(t),u1(t),u2(t))≤ Ẇ (x(tk),u1(tk),u2(tk))

+ ks(k f + kg1 + kg2)∆
′

<−αW ρm + ks(k f + kg1 + kg2)∆
′

<−ε

(7.9)

which implies that for any initial conditions in Uρ , W (x(t)) < W (x(tk)) ≤ ρ,∀ t > tk and the

closed-loop state x(t) will enter a terminal set Uρs within finite steps. We have proven that x(t) is

bounded in Uρ ∀t ∈ [tk, tk +∆′).

In addition, we discuss the case where the closed-loop state is in the neighborhood of saddle

points, x(tk) ∈Bδ (xe) where xe are saddle points. Since ū1(x), ū2(x) are a set of control actions

that decrease W (x), as a result, W (x(tk+1)) < W (x(tk)) as x(tk+1) moves to a smaller level set of

W (x) and the closed-loop state eventually leaves Bδ (xe) within finite time steps. After it leaves

the saddle point neighborhood, x(t) will not come back to Bδ (xe) as Eq. 8.43 (i.e., W (x(t)) <

W (x(tk)),∀ t > tk) holds thereafter.

We will now address the effect of sample-and-hold control and bounded disturbance on the

convergence and boundedness of the closed-loop state. First, we will show that given x(tk) ∈Uρs ,

the trajectory of x(t) will stay in Uρ ′min
,∀ t ∈ [tk, tk +∆′′). Consider ∆′′ such that

ρ
′
min = max

∆∈[0,∆′′)
{W (x(tk +∆)) | x(tk) ∈Uρs, u ∈U}. (7.10)

There exists a sufficiently small ∆′′ such that Eq. 7.10 holds. Therefore, let ∆∗ = min{∆′,∆′′},
and we have shown that for any x(tk) ∈ Uρs , the closed-loop state x(t) under sample-and-hold

control implementation will remain in Uρ ′min
during one sampling period ∆ ∈ (0,∆∗]. When taking

the bounded disturbance |w(t)| ≤ wm into account and the CLBF-based controller applied in a

sample-and-hold fashion, we can show that Proposition 7.1 still holds for the system of Eq. 8.1

subject to the bounded disturbance. Given the local Lipschitz property of v(·), we can derive

the following inequality for LvW (x): ∃ kd > 0, s.t. |(LvW (x(t))−LvW (x(tk))| ≤ kd|x(t)− x(tk)|.
Therefore, similar results can be shown for Ẇ (x(t),u1(t),u2(t)) and ρmin that account for w(t) as

follows:
Ẇ (x(t),u1(t),u2(t))≤ Ẇ (x(tk),u1(tk),u2(tk))

+ ks(k f + kg1 + kg2 + kdwm)∆
′

<−αW ρm + ks(k f + kg1 + kg2 + kdwm)∆
′

<−ε

(7.11)

219

ρmin = max
∆∈[0,∆′′)

{W (x(tk +∆),u1,u2,w) | x(tk) ∈Uρs,

u ∈U, |w| ≤ wm}.
(7.12)

where ∆′ < αW ρm−ε

ks(k f+kg1+kg2+kdwm)
and 0 ≤ ε < αW ρm, respectively. Hence, when sufficiently small

bounded disturbance |w| ≤ wm is present, Ẇ < 0 still holds within each sampling period if ∆′

and ε are chosen. Furthermore, if x(tk) ∈ Bδ (xe), the discontinuous control laws ū1(x), ū2(x)

are assumed to exist and satisfy W (x(tk+1)) < W (x(tk)), ∀ |w| ≤ wm. By the definition of ρmin

of Eq. 7.12, it is shown that for any x(tk) ∈ Uρs , the trajectory of x(t) will stay in Uρmin,∀ t ∈
[tk, tk +∆′′). The proof above shows the robustness of the CLBF-based control law against the

sample-and-hold execution in the presence of sufficiently small bounded disturbances, and serves

as an underlying foundation for proving that the CLBF-DMPC is also robust to sample-and-hold

control execution and bounded disturbances.

7.4 CLBF-DMPC Formulations and Analysis

DMPC has proven to provide improved computational time and closed-loop control performance,

where some level of communication may be established between the different controllers. In this

framework, two separate MPCs are designed to compute control actions u1 and u2 respectively; the

control law trajectories computed by MPC-1 and MPC-2 are denoted by ud1 and ud2 , respectively.

In the following few sections, we will discuss a sequential distributed MPC design and an

iterative distributed MPC design; interested readers may refer to [24, 27] for other distributed and

decentralised MPC architectures.

7.4.1 Sequential Distributed MPC System

Between two MPCs in a sequential DMPC structure, the communication is one-way. In other

words, the set of the optimal control laws calculated by one MPC will be relayed to the other

MPC, which will utilize this additional knowledge to optimize its corresponding set of control

laws. In a sequential DMPC framework, the following implementation strategy is used:

1. At each sampling instant t = tk, sensor measurements on the states x(t), t = tk are sent to

both MPC-1 and MPC-2.

2. The optimal trajectory of ud1 is calculated by MPC-1 and sent to MPC-2, and the first value

of the input trajectory u∗d1
(tk) is sent to the corresponding actuators.

220

3. MPC-2 calculates the optimal trajectory of ud2 based on state measurement x(t) at t = tk and

the optimal trajectory of ud1 received from MPC-1, then sends the first optimal control action

over the next sampling period u∗d2
(tk) to the corresponding control actuators.

4. At the next sampling instance, when an updated state measurement is available (k ← k+1),

go to Step 1.

In the calculation of MPC-1, it first assumes a trajectory for ud2 along the prediction horizon,

which is computed using the explicit nonlinear CLBF-based control law, Φ2(x). In addition, we

incorporate a contractive constraint in the optimization problem of the MPC in order to ensure

that ud1 will inherit the stability and safety properties of Φ j(x), j = 1,2, and decrease the CLBF

W (x) at a minimum rate of that of the CLBF-based control laws Φ j(x), j = 1,2. The optimization

problem of MPC-1 is given as follows:

J = min
ud1∈S(∆)

∫ tk+N

tk
L(x̃(t),ud1(t),Φ2(x̃(t)))dt (7.13a)

s.t. ˙̃x(t) = F(x̃(t),ud1(t),Φ2(x̃(t))) (7.13b)

x̃(tk) = x(tk) (7.13c)

ud1(t) ∈U1, ∀ t ∈ [tk, tk+N) (7.13d)

Ẇ (x(tk),ud1(tk),Φ2(x(tk))) (7.13e)

≤ Ẇ (x(tk),Φ1(x(tk)),Φ2(x(tk))),

if x(tk) /∈Bδ (xe) and W (x(tk))> ρs (7.13f)

W (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if W (x(tk))≤ ρs (7.13g)

W (x̃(t))<W (x(tk)), ∀ t ∈ (tk, tk+N),

if x(tk) ∈Bδ (xe) (7.13h)

where S(∆) is the set of piece-wise constant functions with sampling period ∆, N is the number

of sampling periods in the prediction horizon, and x̃ represents the predicted state trajectory.

The optimal input trajectory calculated over the prediction horizon t ∈ [tk, tk+N) by MPC-1 is

denoted as u∗d1
(t). The cost function of Eq. 7.13a is the integral of L(x̃(t),ud1(t),Φ2(t)) over

the prediction horizon; here, L(x,u1,u2) typically takes on a quadratic form, i.e., L(x,u1,u2) =

xT Qx + uT
1 R1u1 + uT

2 R2u2, where Q, R1, and R2 are positive definite weighting matrices. The

minimum value of the objective function of Eq. 7.13a is at the origin. The constraint of Eq. 7.13b is

221

the nominal system of Eq. 8.1 with w(t)≡ 0 and predicts the closed-loop state trajectory. Eq. 7.13d

defines the input variable constraints on ud1 . The initial condition x̃(tk) of Eq. 7.13b is taken as the

state sensor measurement at t = tk defined in Eq. 7.13c. The constraints of Eqs. 7.13f-7.13h are

activated depending on the location of the process state in state-space, and they work together

to make certain of operational safety and stability. When x(tk) /∈ Bδ (xe) and W (x(tk)) > ρs,

the constraint Eq. 7.13f ensures that W (x̃) decreases at least as fast as the rate achieved by the

CLBF-based control laws u1 = Φ1(x) ∈ U1, u2 = Φ2(x) ∈ U2. If W (x(tk)) ≤ ρs, the constraint

of Eq. 7.13g maintains the predicted state within Uρs , so that in the presence of sufficiently

bounded disturbances in the nonlinear system of Eq. 8.1, the closed-loop state still remains in

Uρmin . Furthermore, if x(tk) enters a neighborhood of a saddle point Bδ (xe), the constraint

Eq. 7.13h ensures that W (x) decreases over the predicted trajectory, and with decreasing W (x), the

closed-loop process state can eventually escape xe within finite steps. Once the state escapes from

the saddle points Bδ (xe), the constraint of Eq. 7.13f will drive it towards the origin into smaller

level sets of the CLBF W (x), thus guaranteeing the state will not return to Bδ (xe) thereafter. Each

time MPC-1 is executed, it communicates the entire trajectory of u∗d1
(t), t ∈ [tk, tk+N) to MPC-2 and

sends the first value of the input trajectory u∗d1
(tk) to its actuators. The horizon rolls one sampling

time step forward while the above optimization problem is solved again.

MPC-2 computes control actions ud2 based on the latest received state measurement, and

in addition, the control action computed by MPC-1 (i.e., u∗d1
(t),∀t ∈ [tk, tk+N)). By utilizing

the optimal input trajectory of MPC-1 as well as the CLBF-based control law Φ2(x(tk)), the

closed-loop performance is optimized while guaranteeing that the stability and safety properties

of the CLBF-based control laws are preserved. Specifically, MPC-2 calculates the following

optimization problem:

222

J = min
ud2∈S(∆)

∫ tk+N

tk
L(x̃(t),u∗d1

(t),ud2(t))dt (7.14a)

s.t. ˙̃x(t) = F(x̃(t),u∗d1
(t),ud2(t)) (7.14b)

x̃(tk) = x(tk) (7.14c)

ud2(t) ∈U2, ∀ t ∈ [tk, tk+N) (7.14d)

Ẇ (x(tk),u∗d1
(tk),ud2(tk)) (7.14e)

≤ Ẇ (x(tk),u∗d1
(tk),Φ2(x(tk))),

if x(tk) /∈Bδ (xe) and W (x(tk))> ρs (7.14f)

W (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if W (x(tk))≤ ρs (7.14g)

W (x̃(t))<W (x(tk)), ∀ t ∈ (tk, tk+N),

if x(tk) ∈Bδ (xe) (7.14h)

The notation and the explanation of the optimization problem of MPC-2 are akin to that of

MPC-1 and will be omitted here for brevity. To account for the total computation time for

the sequential DMPC framework, one would add the times taken to solve each MPC problem

respectively, since the solution of MPC-2 depends on the MPC-1 results.

7.4.2 Iterative Distributed MPC System

The communication between two MPCs in an iterative framework is two-ways. The optimal

control actions calculated by each MPC are exchanged to better predict future states, and the

optimization problem in each MPC is solved independently in a parallel structure until an iteration

criterion has been met. The implementation strategy is as follows:

1. MPC-1 and MPC-2 receive the state sensor measurement x(t) at t = tk at each sampling

instant tk.

2. At iteration c = 1, MPC-1 calculates ud1(t) over the prediction horizon assuming u2(t) =

Φ2(t),∀t ∈ [tk, tk+N). MPC-2 calculates ud2(t) over the prediction horizon assuming u1(t) =

Φ1(t),∀t ∈ [tk, tk+N). The future trajectories of ud1(t) and ud2(t) are exchanged between the

two MPCs, and each MPC calculates and stores the value of its own cost function.

3. At iteration c > 1:

223

(a) Based on state measurement x(tk) as well as the latest input trajectories received from

the other MPC, each MPC evaluates its own future input trajectory again.

(b) The MPCs cross-communicate their newest calculated future input trajectories. Each

MPC computes then stores the value of its cost function.

4. If a termination criterion is met, each MPC selects the input trajectory corresponding to the

smallest cost function value, and sends the first control action of this optimal trajectory to its

actuators. If the termination criterion is not satisfied, go to Step 3 (c ← c+1).

5. At the next sampling instance, when an updated state measurement is available, go to Step 1

(k← k+1).

The optimization problem of MPC-1 in an iterative distributed LMPC at iteration c = 1 is

presented as follows. Readers may refer to the formulations of sequential DMPC design for

detailed definitions of the same variables and constraints.

J = min
ud1∈S(∆)

∫ tk+N

tk
L(x̃(t),ud1(t),Φ2(x̃(t)))dt (7.15a)

s.t. ˙̃x(t) = F(x̃(t),ud1(t),Φ2(x̃(t))) (7.15b)

x̃(tk) = x(tk) (7.15c)

ud1(t) ∈U1, ∀ t ∈ [tk, tk+N) (7.15d)

Ẇ (x(tk),ud1(tk),Φ2(x(tk))) (7.15e)

≤ Ẇ (x(tk),Φ1(x(tk)),Φ2(x(tk))),

if x(tk) /∈Bδ (xe) and W (x(tk))> ρs (7.15f)

W (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if W (x(tk))≤ ρs (7.15g)

W (x̃(t))<W (x(tk)), ∀ t ∈ (tk, tk+N),

if x(tk) ∈Bδ (xe) (7.15h)

224

At iteration c = 1, the optimization problem of MPC-2 is shown as follows:

J = min
ud2∈S(∆)

∫ tk+N

tk
L(x̃(t),Φ1(x̃(t)),ud2(t))dt (7.16a)

s.t. ˙̃x(t) = F(x̃(t),Φ1(x̃(t)),ud2(t)) (7.16b)

x̃(tk) = x(tk) (7.16c)

ud2(t) ∈U2, ∀ t ∈ [tk, tk+N) (7.16d)

Ẇ (x(tk),Φ1(x(tk)),ud2(tk)) (7.16e)

≤ Ẇ (x(tk),Φ1(x(tk)),Φ2(x(tk))),

if x(tk) /∈Bδ (xe) and W (x(tk))> ρs (7.16f)

W (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if W (x(tk))≤ ρs (7.16g)

W (x̃(t))<W (x(tk)), ∀ t ∈ (tk, tk+N),

if x(tk) ∈Bδ (xe) (7.16h)

At iteration c > 1, after the optimized input trajectories u∗d1
(t) and u∗d2

(t) have been exchanged

between the two MPCs, the optimization problem of MPC-1 becomes:

J = min
ud1∈S(∆)

∫ tk+N

tk
L(x̃(t),ud1(t),u

∗
d2
(t))dt (7.17a)

s.t. ˙̃x(t) = F(x̃(t),ud1(t),u
∗
d2
(t)) (7.17b)

x̃(tk) = x(tk) (7.17c)

ud1(t) ∈U1, ∀ t ∈ [tk, tk+N) (7.17d)

Ẇ (x(tk),ud1(tk),u
∗
d2
(t)) (7.17e)

≤ Ẇ (x(tk),Φ1(x(tk)),Φ2(x(tk))),

if x(tk) /∈Bδ (xe) and W (x(tk))> ρs (7.17f)

W (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if W (x(tk))≤ ρs (7.17g)

W (x̃(t))<W (x(tk)), ∀ t ∈ (tk, tk+N),

if x(tk) ∈Bδ (xe) (7.17h)

225

And the optimization problem of MPC-2 becomes:

J = min
ud2∈S(∆)

∫ tk+N

tk
L(x̃(t),u∗d1

(t),ud2(t))dt (7.18a)

s.t. ˙̃x(t) = F(x̃(t),u∗d1
(t),ud2(t)) (7.18b)

x̃(tk) = x(tk) (7.18c)

ud2(t) ∈U2, ∀ t ∈ [tk, tk+N) (7.18d)

Ẇ (x(tk),u∗d1
(tk),ud2(t)) (7.18e)

≤ Ẇ (x(tk),Φ1(x(tk)),Φ2(x(tk))),

if x(tk) /∈Bδ (xe) and W (x(tk))> ρs (7.18f)

W (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if W (x(tk))≤ ρs (7.18g)

W (x̃(t))<W (x(tk)), ∀ t ∈ (tk, tk+N),

if x(tk) ∈Bδ (xe) (7.18h)

Since the two MPCs in an iterative framework can be simultaneously solved in a parallel

structure using separate processors, the total computation time would equal to the maximum time

of the two MPCs including all iterations taken until termination of iterations. The total number of

iterations would depend on the termination criterion. Some examples of these criteria may include,

the total iterations must not exceed a maximum threshold, c ≤ cmax; the computation time each

MPC takes must not surpass a time threshold; between two consecutive iterations, the difference

in the cost function value or the computed trajectory of control actions must be sufficiently small.

Remark 7.2. In this work, we have presented the formulations and simulations of DMPC systems

in the case of two subsystems (and thus, two controllers) for simplicity of notation, but the results

are conceptually straightforward and can be similarly extended to the case of Nsys subsystems

having Nsys controllers in total.

Once solving both optimization problems of MPC-1 and MPC-2 is complete, the proposed

CLBF-DMPC provides the optimal control actions in the following form:

u1(t) = u∗d1
(tk),∀t ∈ [tk, tk+1)

u2(t) = u∗d2
(tk),∀t ∈ [tk, tk+1)

(7.19)

The control actions computed by each MPC will be applied in a sample-and-hold manner to the

nonlinear process of Eq. 8.1 with bounded disturbances.

226

We will now demonstrate that, for the nonlinear system of Eq. 8.1, stability and safety can be

established under the CLBF-based DMPC system with the theorem and proof below. Note that the

proof is written with respect to the sequential DMPC, but the same concept can be applied to the

iterative DMPC as well.

Theorem 7.1. Consider the system described by Eq. 8.1, and it has a constrained CLBF W (x) that

satisfies Eq. 8.31 with its minimum value at the origin. Given any initial condition x0 ∈ Uρ , the

CLBF-DMPC optimization problems of Eq. 7.13 – 7.14 are guaranteed to have recursive feasibility

for all times, and under the sample-and-hold implementation of CLBF-DMPC control actions

[u1 u2] = [u∗d1
u∗d2

], x(t) is bounded in Uρ for all t ≥ 0, and as t→ ∞, converges to Uρmin .

Proof.

Part 1: In Eq. 7.13 – 7.14, the optimization problems of the CLBF-DMPC have feasible

solutions at all times, and this is because the CLBF-DMPC constraints of Eqs. 7.13d, 7.13h,

and Eqs. 7.14d, 7.14h can be met respectively by the sample-and-hold implementation of

control actions u1 = ū1(x) ∈ U1, u2 = ū2(x) ∈ U2, ∀x ∈ Bδ (xe) and u1 = Φ1(x) ∈ U1, u2 =

Φ2(x) ∈ U2, ∀x ∈ Uρ\Bδ (xe). By letting u1(tk) = Φ1(x(tk)), u2(tk) = Φ2(x(tk)) when x(tk) ∈
Uρ\(Bδ (xe) ∪ Uρ), Eq. 7.13f and Eq. 7.14f are also satisfied. In Proposition 7.1, we have shown

that once x is driven inside Uρs by the CLBF-based control laws u1 =Φ1(x)∈U1, u2 =Φ2(x)∈U2,

it will not exit Uρmin within one sampling period for any u1 ∈ U1, u2 ∈ U2. Therefore, the

CLBF-based control laws are able to provide a feasible solution for the input trajectories and

satisfy the constraints of Eq. 7.13g and Eq. 7.14g. Lastly, as the controller u1 = ū1(x) ∈U1, u2 =

ū2(x) ∈U2 are able to satisfy W (x(tk+1)) <W (x(tk)), the control action u j(t) = ū j(x(tk+i)) ∈U j,

for j = 1,2, ∀ t ∈ [tk+i, tk+i+1) with i = 0, ...,N − 1 will satisfy the constraints of Eq. 7.13h

and Eq. 7.14h and eventually navigate the states away from the stationary saddle points if

x(tk) ∈Bδ (xe).

Part 2: We will now demonstrate simultaneous stability and safety for the nonlinear system of

Eq. 8.1 can be guaranteed under the optimized solutions of Eq. 7.13 – 7.14. For any x0 ∈Uρ\Uρs ,

the constraints of Eq. 7.13f and Eq. 7.14f ensure that the CLBF-DMPC control actions u∗d1
, and

sequentially u∗d2
, are optimized to decrease the value of the CLBF and will drive x towards the

origin; the closed-loop state x will eventually enter Uρs within finite sampling steps.

After x enters Uρs , the constraints of Eq. 7.13g and Eq. 7.14g ensure the boundedness of the

closed-loop state in Uρmin for the remaining time considering the impact of sample-and-hold control

and the presence of bounded disturbance. As the safe operating region Uρ does not intersect

with the unsafe region D , x will not enter D for all times and will remain inside Uρ for any

227

x0 ∈Uρ . With x0 ∈Uρ\Uρs , the constraints of Eq. 7.13f and Eq. 7.14f pull the state towards the

origin. The constraint of Eq. 7.13h and Eq. 7.14h will be activated when x arrives at a saddle

point neighborhood, i.e., x(tk) ∈Bδ (xe); x will be driven away from Bδ (xe) in the direction of

W (x) decreasing. After it leaves from Bδ (xe), the DMPC constraints of Eqs. 7.13f-7.13g and

Eqs. 7.14f-7.14g will take over and continue to ensure closed-loop safety and stability thereafter;

ultimately, the closed-loop state converges towards the origin and is bounded in Uρmin . Thus,

closed-loop stability and safety under the sample-and-hold implementation of CLBF-DMPC for

the nonlinear system of Eq. 8.1 with sufficiently bounded disturbance in the presence of bounded

unsafe sets have been shown.

7.4.3 Modified DMPC Structure in Special Cases

In many industrial processes, there are examples where the process variables of an upstream

sub-process impact the dynamics of a downstream sub-process, but not vice versa. In these

cases where the first subsystem is independent and the second subsystem is dependent on the first

subsystem, we can design the DMPC with some special considerations to assess whether safety

and stability can be simultaneously guaranteed. We use sequential DMPC as an example. Since the

first subsystem is completely independent, its contractive constraint of Eq. 7.13f can be modified

to only account for the CLBF of subsystem-1 Ẇj, j = 1, and therefore only depends on the states

and inputs of subsystem-1, x j(tk), u j where j = 1. In doing so, MPC-1 can guarantee the stability

and safety of the upstream process, subsystem-1. The contractive constraint of Eq. 7.14f can also

be similarly modified to account for the CLBF function of subsystem-2 only, Ẇj, j = 2, where

Ẇ2(x1,x2,u2) can be simplified to be a function of x1 of subsystem-1, x2 of subsystem-2, and u2 of

subsystem-2. This leads to a modified formulation of the DMPC system with simpler computation

complexity. However, since the constraints to each controller are only with respect to its own

subsystem, one caveat to this modification is that the state measurements of subsystem-1 will be

treated as disturbances in the computation of MPC-2. Therefore, as we will demonstrate with a

nonlinear example in Section 8.5, there are values of of states for subsystem-1 that may result in

non-negative values of Ẇ2 for subsystem-2.

The DMPC formulation for such processes can be modified for improved computation time

and algorithm simplicity. Using sequential DMPC as an example, the optimization problem of

228

MPC-1 is as follows:

J = min
ud1∈S(∆)

∫ tk+N

tk
L(x̃(t),ud1(t),Φ2(x̃(t)))dt (7.20a)

s.t. ˙̃x(t) = F(x̃(t),ud1(t),Φ2(x̃(t))) (7.20b)

x̃(tk) = x(tk) (7.20c)

ud1(t) ∈U1, ∀ t ∈ [tk, tk+N) (7.20d)

Ẇ1(x1(tk),ud1(tk)) (7.20e)

≤ Ẇ1(x1(tk),Φ1(x(tk))),

if x1(tk) /∈Bδ1(x1e) and W1(x1(tk))> ρs1 (7.20f)

W1(x̃1(t))≤ ρs1, ∀ t ∈ [tk, tk+N), if W1(x1(tk))≤ ρs1 (7.20g)

W1(x̃1(t))<W1(x1(tk)), ∀ t ∈ (tk, tk+N),

if x1(tk) ∈Bδ1(x1e) (7.20h)

where the level sets of Wj(x j) will be respectively defined with positive real constants ρs j , j = 1,2,

and the neighborhood of saddle points present in the stability and safety region of the subsystem- j

will be correspondingly denoted as Bδ j(x je).

The predicted state trajectory calculation of subsystem-2 x̃2 relies on the state measurements

of subsystem-1 x1(tk). The calculation of Ẇ2 will need the measurements of x1(tk) in addition to

x2(tk) and u2(tk). Note that the full state vector is the combination of states of subsystems 1 and 2,

i.e., x(tk)T = [x1(tk)T ,x2(tk)T]. Therefore, the formulation of the modified MPC-2 in a sequential

229

distributed design is as follows:

J = min
ud2∈S(∆)

∫ tk+N

tk
L(x̃(t),u∗d1

(t),ud2(t))dt (7.21a)

s.t. ˙̃x(t) = F(x̃(t),u∗d1
(t),ud2(t)) (7.21b)

x̃(tk) = x(tk) (7.21c)

ud2(t) ∈U2, ∀ t ∈ [tk, tk+N) (7.21d)

Ẇ2(x(tk),ud2(tk)) (7.21e)

≤ Ẇ2(x(tk),Φ2(x(tk))),

if x2(tk) /∈Bδ2(x2e) and W2(x2(tk))> ρs2 (7.21f)

W2(x̃2(t))≤ ρs2, ∀ t ∈ [tk, tk+N), if W2(x2(tk))≤ ρs2 (7.21g)

W2(x̃2(t))<W2(x2(tk)), ∀ t ∈ (tk, tk+N),

if x2(tk) ∈Bδ2(x2e) (7.21h)

A similar modification can be applied to iterative DMPC structures. Following the MPC-1

calculation, closed-loop stability and safety can be guaranteed for subsystem-1 using the

CLBF-based constraints on W1. Since subsystem-2 is dependent on the states of subsystem-1

and since the calculation of MPC-2 is carried out with CLBF-based constraints on W2 only, there

may exist points in state space where the explicit control law Φ2(x(tk)) can no longer guarantee

a negative Ẇ2(x(tk),Φ2(x(tk))) given the impact from the state measurements of subsystem-1

x1(tk). When this happens, the optimizer for MPC-2 may still attempt to find a set of input

trajectory u∗d2
that decreases W2, i.e., Ẇ2(x(tk),ud2(tk)) < 0. Alternatively, MPC-2 can opt to use

the discontinuous control actions ū2(x) ∈U2, which ensures the existence of a solution for u∗d2
that

will decrease W2(x̃2) along the predicted trajectory.

Remark 7.3. With respect to the use of a Barrier function to express safety specifications, it is

important to note that the Barrier Function plays essentially the role of a safety constraint (i.e.,

temperature needs to be below a certain value or a nonlinear function of several state variables

needs to be within a certain range) but it is implemented within the MPC scheme in a way that

ensure that the closed-loop state does not enter the unsafe set (i.e., region of increased risk) in a

guaranteed manner (simply, setting up a constraint in the MPC to require that the closed-loop state

does not enter in a certain unsafe region cannot ensure that such an excursion of the closed-loop

state to the unsafe set will not occur). Regions in state-space where the system trajectory may

230

be allowed to enter, but due to increasing safety risk the state should not stay there long, can

be formulated as soft constraints in MPC, and have been studied in past works [138]. Such soft

constraints can be added in the DMPC framework presented in this work as they do not lead to

infeasibility of the MPC optimization problem. In the case where the closed-loop state is allowed

to enter the unsafe region for a particular subsystem, the amount of time a controller takes to

return the closed-loop system state to a safe region is related to the speed of the closed-loop

response under the CLBF-based DMPC, which can be tuned by adjusting the weights in the MPC

cost function. Finally, it is important to note that if there exist model uncertainties and process

disturbances that lead to process/model mismatch, the proposed DMPC provides a robustness

margin to sufficiently small bounded disturbances through the negative margin in the Lyapunov

function time-derivative, which is a consequence of the use of measurement feedback in MPC at

each sampling time.

7.5 Application to a Nonlinear Chemical Process

We will demonstrate the proposed CLBF-DMPC method on a chemical process example, which

consists of two well-mixed, non-isothermal continuous stirred tank reactors (CSTRs) in series. An

irreversible second-order exothermic reaction takes place in each reactor that transforms a reactant

A to a product B (A→ B). Each CSTR is fed with reactant material A with the inlet concentration

CA j0, the inlet temperature Tj0 and feed volumetric flow rate of the reactor Fj0, j = 1,2, where

j = 1 denotes the first CSTR and j = 2 denotes the second CSTR. The reactors are equipped with

heating jackets to remove/supply heat at a rate Q j, j = 1,2. This system can be modelled by the

following material and energy balance equations:

dCA1

dt
=

F10

V1
(CA10−CA1)− k0e

−E
RT1 C2

A1 (7.22a)

dT1

dt
=

F10

V1
(T10−T1)+

−∆H
ρLCp

k0e
−E
RT1 C2

A1 +
Q1

ρLCpV1
(7.22b)

dCB1

dt
=− F10

V1
CB1 + k0e

−E
RT1 C2

A1
(7.22c)

dCA2

dt
=

F20

V2
CA20 +

F10

V2
CA1−

F10 +F20

V2
CA2− k0e

−E
RT2 C2

A2 (7.22d)

dT2

dt
=

F20

V2
T20 +

F10

V2
T1−

F10 +F20

V2
T2 +

−∆H
ρLCp

k0e
−E
RT2 C2

A2 +
Q2

ρLCpV2
(7.22e)

dCB2

dt
=

F10

V2
CB1−

F10 +F20

V2
CB2 + k0e

−E
RT2 C2

A2 (7.22f)

231

where Q j, Vj, CA j, Tj, where j = 1,2, are the heat input rate, the volume of the reacting liquid,

concentration of reactant A, and the temperature in the first and the second reactor, respectively.

∆H, E, k0, and R represent the enthalpy of the reaction, activation energy, pre-exponential constant,

and ideal gas constant, respectively. All process parameter values can be found in Table 7.1.

Table 7.1: Values and descriptions of process parameters and steady-states of state and input
variables.

Parameter/Value Description
F10,F20 = 5 m3/hr Feed flow rate of CSTR 1 & 2
T10 = 300 K, T20 = 300 K Feed temperatures of CSTR 1 & 2
V1 = 1.0 m3, V2 = 1.0 m3 Volume of reacting liquid in CSTR 1 & 2
k0 = 8.46×106 h−1 Pre-exponential constant
E = 5.0×104 kJ/kmol Activation energy
∆H =−1.15×104 kJ/kmol, Enthalpy of reaction
Cp = 0.231 kJ/(kg K) Heat capacity
R = 8.314 kJ/(kmol K) Gas constant
ρ = 1000 kg/m3 Liquid solution density
CA10s = 4kmol/m3,CA20s = 4kmol/m3 Inlet concentration steady-state values
Q1s = 0kJ/hr,Q2s = 0kJ/hr Heat input rate steady-state values
CA1s = 1.9537kmol/m3,CA2s = 1.9537kmol/m3 Concentration of reactant A steady-state values
T1s = 401.9K,T2s = 401.9K Temperature steady-state values

The manipulated inputs for both CSTRs are the inlet concentration of species A and the heat

input rate, which are in deviation variable representations ∆CA j0 =CA j0−CA j0s , ∆Q j = Q j−Q js ,

j = 1,2, respectively. The manipulated inputs have their respective lower and upper bounds:

|∆CA j0| ≤ 3.5 kmol/m3 and |∆Q j| ≤ 5× 105 kJ/hr, j = 1,2. The states of the two-CSTR

system are xT = [CA1−CA1s T1− T1s CA2−CA2s T2− T2s], where CA1s , CA2s , T1s and T2s are

the steady-state values of concentration of A and temperature in the two reactors, such that the

operating steady-state and equilibrium of the nonlinear system is at the origin of the state-space.

States of the CSTR-1 can be separately denoted as [x1,x2] = [CA1−CA1s T1−T1s] and the states

of the CSTR-2 are denoted as [x3,x4] = [CA2−CA2s T2−T2s]. In a distributed MPC framework,

both MPCs have knowledge of full-state measurements as well as the overall plant model of the

two-CSTR process. Feedback measurements on x(t) are received by both MPCs, where MPC-1

optimizes [u1,u2] = [∆CA10 ∆Q1] and MPC-2 optimizes [u3,u4] = [∆CA20 ∆Q2]. The common

control objective of the two MPCs is to stabilize the two-CSTR process at the unstable operating

steady-state xT
s = [CA1s CA2s T1s T2s] = [1.9537kmol/m3, 1.9537kmol/m3, 401.9K, 401.9K].

To numerically simulate the dynamic ODE model of Eq. 8.45, we use the explicit Euler method

232

with an integration time step of hc = 10−5 hr. We demonstrate our simulations with the sequential

DMPC framework. The nonlinear optimization problems of the sequential DMPC of Eq. 7.20

– Eq. 7.21 are calculated every sampling period ∆ = 10−3 hr using the Python module of the

IPOPT software package [113]. The objective function in the DMPC optimization problem

has the form L(x,u1,u2) = xT Qx+ uT
1 R1u1 + uT

2 R2u2, where Q = diag[2× 103 1 2× 103 1],

R1 = R2 = diag[8×10−13 0.001]; the same objective function is used in both MPC-1 and MPC-2.

Due to the special structure of the nonlinear process studied, where the first CSTR is completely

independent of the second CSTR, we can adopt the modified DMPC design in Eq. 7.20 – Eq. 7.21.

In this manuscript, we present the simulation results of a sequential DMPC; however, the same

closed-loop performance can be similarly demonstrated with an iterative DMPC.

We first consider a bounded unsafe region Db, which is embedded fully in the closed-loop

system stability region, and is located in the middle of the stability region, as shown in Fig. 7.1.

This is so that the state will encounter this unsafe set on its trajectory as it converges towards

the origin if no safety control is considered. It is challenging to handle such unsafe sets for

the CLBF-DMPC as the closed-loop state needs to be driven around the unsafe set, towards the

steady-state thereafter, and ultimately bounded in a neighborhood around the steady-state. In this

work, we consider an ellipsoid described as Db := {x ∈ R4 | h1(x) = (x1 + 0.92)2 + (x2−42)2

500 <

0.06, h2(x) = (x3 + 0.92)2 + (x4−42)2

500 < 0.06}. By following the design method in [122], we can

define the set H which encloses D as H := {x ∈ R4 | h1(x) ≤ 0.07,h2(x) ≤ 0.07}. Then, the

CBF B j(x), j = 1,2 can be constructed as follows:

B j(x) =

 e
h j(x)

h j(x)−0.07 − e−6, if x ∈H

−e−6, if x /∈H
(7.23)

From Eq. 7.23, it is guaranteed that B(x) is positive in the unsafe region D . The overall CLBF is

the sum of the CLBFs for the two CSTRs, i.e., W (x) =W1(x)+W2(x) =V1(x)+V2(x)+µ(B1(x)+

B2(x))+ν where V1(x) = xT
1 P1x1 and V2(x) = xT

2 P2x2. Uρ , which is safe operating region and the

set of valid initial conditions, is defined with ρ = 0 as per Eq. 8.31d. W (x) is designed using

ν =−340, µ = 1×109, which are selected based on the design method in [122], and the following

positive definite P matrices:

P1 = P2 =

[
1060 22

22 0.52

]
(7.24)

Similarly, we also study the scenario of unbounded unsafe region, which is defined as Du := {x ∈

233

R4 | h1(x) = x1 + x2 > 47, h2(x) = x3 + x4 > 47}. The enclosing compact set H is defined as

H := {x ∈ R4 | h1(x) > 45,h2(x) > 45}, and the corresponding CBFs for the two subsystems

B j(x), j = 1,2 are shown as follows:

B j(x) =

{
eh j(x)−47−2× e−2, if x ∈H

−e−2, if x /∈H
(7.25)

The CLBF W (x) for the unbounded unsafe region is constructed with ν =−0.104 and µ = 5000.

Closed-loop simulations are run starting from various initial conditions of the two CSTRs

inside the safety and stability regions under two scenarios: (1) in the presence of bounded, and

(2) unbounded unsafe sets. The state trajectories of both CSTRs under CLBF-DMPC for cases of

bounded and unbounded unsafe sets are shown in Fig. 7.1 and Fig. 7.2 respectively. These initial

conditions are chosen to cover various points in state-space where the control problem becomes

challenging to solve. For example, both CSTRs start at an initial condition very close to the

boundary of the unsafe set, but at different positions such that the directions of state evolution

may be different; one CSTR may start from the side of the unsafe set and the other CSTR may

start from the side without the unsafe set, such that one MPC drives the closed-loop state of its

respective subsystem around the unsafe ellipse, and the other MPC drives the closed-loop state

of its subsystem towards the origin at optimal rate. It is demonstrated that the closed-loop system

achieve stability while successfully avoiding the unsafe regions in both CSTRs when the simulation

starts at the illustrated five initial conditions inside their respective regions Uρ1 for CSTR-1 and

Uρ2 for CSTR-2, and eventually converges and is bounded in their respective terminal sets Uρmin1

and Uρmin2
. This is shown for both scenarios of bounded and unbounded unsafe sets.

Note that we have selected initial conditions of the two CSTRs inside their respective stability

and safety regions, Uρ1 and Uρ2 , and the stability and safety region for the overall system Uρ

should be a subset of the union of the two individual sets, Uρ ⊆ (Uρ1 ∪Uρ2). As it is difficult

to have a closed-form representation of Uρ , the characterization of Uρ can be carried out through

numerical simulation to first find a region for which Ẇ (x,Φ1(x),Φ2(x)) < 0, and then find the

largest level set of W (x) within this region.

The stability and safety region Uρ1 for CSTR-1 can be characterized through numerical

simulation by assessing Ẇ1(x1(tk),Φ1(x1(tk))) and using information on the states of CSTR-1

itself. To rigorously characterize the stability and safety region Uρ2 for CSTR-2, discretized points

in state-space for which Ẇ2(x(tk),Φ2(x(tk)))< 0 need to be assessed first. However, since x(tk) also

includes the x1(tk), the characterization of Uρ2 cannot be done without considering the process state

234

-2 -1 0 1 2

-80

-60

-40

-20

0

20

40

60

80

-2 -1 0 1 2

-80

-60

-40

-20

0

20

40

60

80

Figure 7.1: Closed-loop trajectories of CSTR-1 and CSTR-2 under the sequential CLBF-DMPC
in the presence of a bounded unsafe set.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

Figure 7.2: Closed-loop trajectories of CSTR-1 and CSTR-2 under the sequential CLBF-DMPC
in the presence of an unbounded unsafe set.

of CSTR-1; this region can be also found via state-space discretization and extensive numerical

simulations, but is difficult to visualize since it involves a 4-D state vector. Thus, considering

235

bounded unsafe sets, Fig. 7.3 and Fig. 7.4 show some CSTR-2 points in state-space where

Ẇ2 is rendered negative under the CLBF-based Sontag control law Φ2(x) plotted with respect

to x1 of CSTR-1 and x2 of CSTR-1 separately. The x1 and x2 points of CSTR-1 are generated

by discretizing Uρ1 , and the x3 and x4 points of CSTR-2 are generated by discretizing only the

region in between the unsafe set D2 and the compact set H2 which encloses D2. We only assess

discretized points in this critical region of safety to see which points may contribute to jeopardized

safety when the states of CSTR-2 are near the boundary of the unsafe set. We can see that

there exists combinations of (x1,x2) values that result in Ẇ2 ≥ 0 under the CLBF-based Sontag

control law Φ2(x(tk)). In these situations, the CLBF-DMPC can still optimize for solutions of

ud2(x(tk)) that will yield decreasing W2 along the predicted trajectory; for example, the constraint

of Eq. 7.21h can be activated and the set of discontinuous control actions ū2(x) ∈ U2 that exist

to address the cases of saddle points can be used. In situations where Ẇ2(x,Φ2(x)) = 0, the

existence of ū2(x) ∈ U2 ensure the feasibility of DMPC-2 in guaranteeing stability and safety.

However, in situations where Ẇ2(x,Φ2(x)) > 0, DMPC-2 may run into points of in-feasibility

during optimization and this is demonstrated in Fig. 7.6.

In this study, we only consider the set of initial conditions in the respective regions Uρ1 and

Uρ2 for the closed-loop simulations of CSTR-1 and CSTR-2. In our simulations, Uρ2 mirrors Uρ1

for simplistic visualization and to provide a preliminary set of initial conditions for which we can

consider to perform closed-loop control using the CLBF-DMPC. As such, we can demonstrate

that there are certain values of states of CSTR-1 that may jeopardize closed-loop safety for the

same valued CSTR-2 states under the explicit CLBF-based Sontag control law. Furthermore, even

though the discontinuous control actions ū2(x) ∈ U2 ensure feasibility of the CLBF-DMPC and

provide a set of solutions that decrease W2 along the prediction trajectory in the neighborhood

of saddle points where Ẇ2 = 0, there may be situations where Ẇ2 > 0 and DMPC-2 is unable

to reach a feasible solution that decreases W2 at that particular point in state-space. Fig. 7.5

demonstrates that starting from five different initial conditions of CSTR-1 within Uρ1 and the

same initial condition of CSTR-2 within Uρ2 , simultaneous stability and safety can be achieved

for both CSTRs where the closed-loop states for the overall system do not enter the unsafe region

and converges to the terminal sets. This demonstrates the efficacy of the CLBF-DMPC in handling

the impact of the states of CSTR-1 on the closed-loop evolution of CSTR-2. We may also examine

the efficacy of CLBF-DMPC when the state of CSTR-2 is on the verge of critical safety. Starting

from the same initial condition of CSTR-2 (x3, x4) = (−1.135kmol/m3, 45.2K) that is within the

enclosing compact set H2 but outside the unsafe set D2, we can see in Fig. 7.6 that some initial

236

Figure 7.3: Discretized points (x3,x4) near CSTR-2’s unsafe region D2 in state-space showing
the negativity and non-negativity of Ẇ2 under the CLBF-based Sontag control law with respect to
different values of x1 discretized from CSTR-1’s safe operating region Uρ1 .

conditions of CSTR-1 (orange, (x1, x2) = (−1.08kmol/m3, 64K)) may result in safe closed-loop

operation where the closed-loop state successfully avoids the unsafe sets D1 and D2, but some

(blue, (x1, x2) = (−0.6kmol/m3, 36K)) may result in the closed-loop state of CSTR-2 entering

the unsafe set D2. Note that both sets of initial conditions of CSTR-1 shown in Fig. 7.6 have been

evaluated to have Ẇ2(x,Φ2(x)) > 0. However, it is shown that starting from (x1, x2, x3, x4) =

(−1.08kmol/m3, 64K, − 1.135kmol/m3, 45.2K) (orange), the CLBF-DMPC is able to provide

feasible solutions that yield Ẇ2(x(tk),u∗d2
(tk))< 0 and drive the closed-loop states away and around

the unsafe set D2. On the other hand, starting from (x1, x2, x3, x4) = (−0.6kmol/m3, 36K, −
1.135kmol/m3, 45.2K) (blue), the CLBF-DMPC fails to provide a set of feasible solutions with

Ẇ2(x(tk),u∗d2
(tk)) < 0 , therefore resulting in the closed-loop state of CSTR-2 entering the unsafe

set D2 within the first sampling period.

237

Figure 7.4: Discretized points (x3,x4) near CSTR-2’s unsafe region D2 in state-space showing
the negativity and non-negativity of Ẇ2 under the CLBF-based Sontag control law with respect to
different values of x2 discretized from CSTR-1’s safe operating region Uρ1 .

238

-2 -1 0 1 2

-80

-60

-40

-20

0

20

40

60

80

-2 -1 0 1 2

-80

-60

-40

-20

0

20

40

60

80

Figure 7.5: Closed-loop trajectories starting from different initial conditions of CSTR-1 and the
same initial condition of CSTR-2 under the sequential CLBF-DMPC in the presence of a bounded
unsafe set showing safe and stable performance.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

-1.5 -1 -0.5

30

35

40

45

50

55

Figure 7.6: Closed-loop trajectories starting from two different initial conditions of CSTR-1 and
the same initial condition of CSTR-2 under the sequential CLBF-DMPC in the presence of a
bounded unsafe set showing one safe (orange) and one unsafe (blue) trajectory.

239

Chapter 8

Statistical Machine-Learning-based

Predictive Control Using Barrier Functions

for Process Operational Safety

In this work, we present statistical model predictive control with Control Lyapunov-Barrier

Functions (CLBF) built using machine learning approaches, and analyze closed-loop stability and

safety properties in probability using statistical machine learning theory. A feedforward neural

network (FNN) is used to construct the Control Barrier Function, and a generalization error bound

can be obtained for this FNN via the Rademacher complexity method. The FNN Control Barrier

Function is incorporated in a CLBF-based model predictive controller (MPC), which is used to

control a nonlinear process subject to input constraints. The stability and safety properties of the

closed-loop system under the sample-and-hold implementation of FNN-CLBF-MPC are evaluated

in a statistical sense. We use a chemical process example to demonstrate the relation between

various factors of building an FNN model and the generalization error, as well as the probabilities

of closed-loop safety and stability for both bounded and unbounded unsafe sets.

We provide statistical analysis on the CBF construction method proposed in our previous

work in [25], and model the CBF using a feed-forward neural network, which will be used to

design a CLBF-based model predictive control system. We first develop the generalization error

bound on the FNN-CBF, and derive probabilistic safety and stability guarantees for the control

law designed using a CLBF with FNN-CBF under sufficient conditions. The sampling, modeling,

and verification procedures of the FNN are discussed. Then, we extend the probabilistic stability

and safety properties to the FNN-CLBF-MPC, and demonstrate that with high probability, the

240

FNN-CLBF-MPC is able to maintain the closed-loop state of a nonlinear process within a safe set

and ultimately keep it bounded within a terminal set around the origin.

The rest of the chapter is organized as follows. Preliminaries on the nonlinear system and

definitions of Lyapunov Function and Barrier Function are given in Section 2. The construction

of barrier functions using neural networks, including assumptions, design, data generation and

model verification, are presented in Section 3. Section 4 develops the generalization error bounds

on the FNN-CBF and explain their implications. In Section 5, the design of the FNN-CLBF

control law and the FNN-CLBF-based MPC are provided, and the probabilistic stability and

safety properties of the control system are provided. Lastly, the proposed control method and the

associated generalization error and closed-loop performance are shown via a nonlinear chemical

process example in Section 6.

8.1 Preliminaries

8.1.1 Notation

The Euclidean norm is denoted by the operator |·|. The notation ∥W∥1,∞ = max j(∑i
∣∣Wi, j

∣∣)
denotes the infinity norm of the 1-norms of the columns of matrix W . We use ”\” to represent

set subtraction, i.e., A\B := {x ∈ Rn | x ∈ A,x /∈ B}. xT denotes the transpose of matrix x.

L fV (x) := ∂V (x)
∂x f (x) represents the Lie derivative of V with respect to f . A function f (is class

C1 of the first derivative of f exists and is continuous. A function f : Rn → Rm is said to be

L-Lipschitz continuous, if there exists L ≥ 0 such that for all a,b ∈ Rn, | f (a)− f (b)| ≤ L|a− b|.
A continuous function r : [0,a)→ [0,∞) belongs to a class K function if r(0) = 0, and is strictly

increasing. Lastly, P(A) represents the probability of the occurrence of an event A, and E[X]

denotes the expected value of a random variable X .

8.1.2 Class of Systems

In this study, we consider a general class of continuous-time nonlinear systems, which can be

represented by the following state-space model:

ẋ = F(x,u) := f (x)+g(x)u, x(t0) = x0 (8.1)

241

where x ∈ Rn is the state vector, u ∈ Rk denotes the manipulated input vector bounded by u ∈U ,

where U := {umin ≤ u ≤ umax} ⊂ Rk. It is assumed that the vector and matrix functions f (·) and

g(·) are sufficiently smooth with f (0) = 0, and thus the origin is a steady-state of the nonlinear

system. Lastly, the initial time is assumed to be at 0, i.e., t0 = 0.

8.1.3 Stabilizability via Lyapunov-based Control

For the nonlinear system of Eq. 8.1, it is assumed that a stabilizing feedback control law u=Φ(x)∈
U exists such that there exists a positive definite and proper Control Lyapunov Function (CLF),

denoted as V (x), that satisfies the following inequalities as well as the small control property:

c1 |x|2 ≤V (x)≤ c2 |x|2 (8.2a)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ rV (|x|) (8.2b)

L fV (x)< 0,∀x ∈ {z ∈ Rn\{0} | LgV (z) = 0} (8.2c)

where rV is a function that belongs to class K , and c1, c2 are positive constants. V (x) also meets

the small control property, which states that, for every ε > 0, ∃ δ > 0, s.t. ∀ x ∈Bδ (0), there

exists an input u satisfying |u| < ε and L fV (x)+LgV (x) · u < 0 [98]. The existence of such CLF

implies that the origin of the nonlinear system of Eq. 8.1 is rendered asymptotically stable under

u=Φ(x)∈U for all x in a neighborhood around the origin. This region where the time derivative of

V (x) can be rendered negative under u = Φ(x) ∈U is defined as φu = {x ∈ Rn | V̇ (x) = L fV (x)+

LgV (x) · u < 0,u = Φ(x) ∈ U} ∪ {0}. Furthermore, we define a level set of V (x) within φu as

Ub := {x ∈ φu | V (x) ≤ b, b > 0}, which is a forward invariant set in a sense that for any initial

condition x0 ∈Ub, the closed-loop trajectory x(t), t ≥ 0 of the nonlinear system of Eq. 8.1 remains

in Ub under u = Φ(x) ∈U .

8.1.4 Control Barrier Function

Consider that an open set D exists in state space, forming an unsafe region that should be avoided

at all times for reasons such as violation of safety protocols. In contrast, a set of safe states can

also be characterized as X0 := {x ∈ Rn\D} where {0} ∈X0 and X0∩D = /0. The safe set X0

represents the set of initial conditions that will be considered. In this work, we consider process

operational safety as follows:

242

Definition 8.1. For any initial state x(t0) = x0 ∈ X0, if there exists a constrained control law

u = Φ(x) ∈U that renders the origin of the closed-loop system of Eq. 8.1 asymptotically stable,

and the closed-loop state trajectories do not enter the unsafe set D at all times, i.e., x(t) ∈X0,

x(t) /∈ D , ∀ t ≥ 0, then the control law u = Φ(x) ∈U maintains the closed-loop state within the

safe region X0 for all times.

Subsequently, we present the properties of a Control Barrier Function (CBF) in the following

definition [116]:

Definition 8.2. Consider D which is a set of unsafe state values in state space, a C 1 function

B(x) : Rn→ R is a Control Barrier Function (CBF) if the following conditions are met:

B(x)> 0, ∀ x ∈D (8.3a)

L f B(x)≤ 0, ∀ x ∈ {z ∈ Rn\D | LgB(z) = 0} (8.3b)

XB := {x ∈ Rn | B(x)≤ 0} ̸= /0 (8.3c)

8.2 Barrier Function Construction using Feed-forward Neural

Networks

8.2.1 Model Structure and Training

The control barrier function is developed from operating data in the state space that are labelled

based on their safety status. This barrier function will then be synthesized using a feed-forward

neural network (FNN), which typically consists of an input layer, some hidden layers, and an

output layer. Each layer contains neurons undergoing nonlinear transformations, with activation

functions of the weighted sum of neurons in the previous layer plus a bias term. In this study, the

inputs to the FNN are the state vector x ∈ Rn of the nonlinear system of Eq. 8.1, and the output

of the FNN predicts the barrier function value B̂(x) ∈ Rn. Training data points are collected from

both the unsafe and the safe operating regions, where the target output values of B(x) will satisfy

the CBF conditions of Eq. 8.3a and Eq. 8.3c for the unsafe and the safe regions, respectively. More

specifically, safe data points are labeled with a target output value of B(x) = −1, and unsafe data

points are labeled with a target output value of B(x) = +1.

A general FNN model is considered, where m number of data samples are used to develop

this model. The data samples are generated independently as per the data distribution over X×Y ∈

243

Rdx×Rdy , where dx and dy denote the dimension of the FNN input and output vectors respectively;

in this application, dx = n, which is the dimension of the state vector of the nonlinear system of

Eq. 8.1, and dy = 1, which is the dimension of the barrier function output B(x). The general

structure of FNN model with inputs denoted as x ∈Rdx and predicted output denoted as ŷ ∈Rdy in

terms of scalar or vector-valued functions and weight matrices for d total number of layers can be

formulated as follows:

ŷ = σd(Wdσd−1(Wd−1σd−2(...σ1(W1x)))) (8.4)

where each Wl for l = 1, ...,d layers represents the weight parameter matrix, and each σl represents

the activation function in each layer. The number of layers d represents the depth of the network,

and the width of the network hmax can be defined as the maximum number of neurons in a hidden

layer (maximal column or row dimension of Wl), i.e., hmax = maxl=1,...,d{hl}, where hl denotes the

number of neurons in the l-th layer.

In this study, due to the unique dichotomous nature of B(x), we choose a hyperbolic tangent

sigmoid function σ(z) = tanh(z) = 2
1+e−2z − 1 as the activation function to polarize the output of

the network and in turn, improve the prediction accuracy. This is because of the property of the

tanh(z) function approaching +1 as z approaches +∞, and−1 as z approaches−∞, thus polarizing

the outputs of each layer and enforces the output of the FNN to approximate constant positive

values (+1 for safe points), or constant negative values (-1 for unsafe points). To clarify notations

used in this paper, when discussing the general properties of FNN, the input and output of the

FNN model are denoted by the bold face x ∈ Rdx and y ∈ Rdy respectively. For this particular

application, x is the state vector of Eq. 8.1 (x∈Rn), and y is the barrier function value (B(x)∈R1).

Before proceeding with developing the generalization error bound, there are some standard

assumptions presented as follows:

Assumption 8.1. The FNN inputs are bounded, i.e., |xi| ≤ BX , for all i = 1, ...,m samples.

Assumption 8.2. The maximal 1-norm (l1/l∞) of the rows of weight matrices in the output and in

the hidden layers are bounded as follows:

∥W∥1,∞ ≤ BW (8.5)

Assumption 8.3. All the datasets (i.e., training and testing) are drawn from the same underlying

distribution.

244

Assumption 8.4. σl (where l denotes any hidden layers) is a 1-Lipschitz continuous activation

function, and satisfies σl(0) = 0.

Remark 8.1. Assumption 8.1 specifies the upper bound on the FNN inputs, which is consistent with

the way we sample the FNN inputs (i.e., the state vector) as we only consider a bounded set around

the steady-state of the nonlinear system of Eq. 8.1. Assumption 8.2 assumes the boundedness of the

FNN weight matrices; this can be ensured during FNN training, as only a finite class of hypothesis

functions are searched to find the optimal set of FNN parameters. Assumption 8.3 is required as

the model trained from the training dataset will be evaluated on the testing dataset, and training

and testing model accuracy metrics are compared against each other. The evaluation of the model

on the testing data (including closed-loop simulations) as well as the comparison of accuracy

metrics are only valid if the two datasets have the same underlying target distribution. Assumption

8.4 is an assumption on the activation functions of the FNN, which is satisfied by many common

activation functions, and can be used to derive the upper bound for the Rademacher complexity of

the FNN hypothesis class. An example of a 1-Lipschitz continuous activation function is tanh(·).

We sample points from the operating region of the system (i.e., x ∈ X ⊂ Rn where X is

a compact set) to use as training and testing data for the FNN. Since the conditions of Eq. 8.3

imposed on the resulting B̂(x) must be satisfied in a continuous sense, the regions from which

discrete data points are sampled from must be compact and connected. This is done by first

characterizing a compact and connected set H , which is a superset of the open set D (as indicated

in Eq. 8.32 in Section 8.4), then designing a larger compact and connected set H ′, which is

a superset of H and encloses H with sufficient margin. This region H ′ is used to generate

unsafe data points from, such that the unsafe set the FNN model predicts will remain as a superset

of H , given bounded modeling and numerical error of the FNN model. This means that the

FNN model may classify safe points as unsafe, but will not classify unsafe points as safe; the

latter is not tolerated and should be avoided. Readers who are interested may refer to [25] for

more details on how to characterize the unsafe region for data collection purposes when building

a FNN-CLBF-MPC that uses both first-principles and RNN models. We collect samples from the

safe region X \H ′ and the unsafe region H ′ by discretizing the regions by a grid size of (δx)H ′

and (δx)X \H ′ respectively. The datasets consisting of finite samples are denoted as SI and SH ′

for safe and unsafe regions, respectively. Together, SI and SH ′ form the overall sample set Ss.

The FNN parameters (weights and biases) are optimized by minimizing the loss function shown

in Eq. 8.6 using the Adam solver as a part of the Tensorflow Keras software package. Specifically,

245

the loss function consists of two parts. The first part L1 uses mean squared error to calculate the

difference between the target B(x) and the prediction B̂(x), and in minimizing this error, aims to

satisfy the conditions of Eq. 8.3a and Eq. 8.3c. The second part L2 penalizes sample points that

do not comply with the conditions of Eq. 8.3b by using the ReLu(·) function and adding a small

positive constant τI as seen in Eq. 8.6c.

L(B̂,B) = αL1 +βL2 (8.6a)

L1 =
1
m

m

∑
k=1

(B̂(xk)−Bk)
2 (8.6b)

L2 =
1

NI f

NI f

∑
j=1

ReLu(L f B̂(x j)+ τI) (8.6c)

where L1 tracks the mean squared error (MSE) between the target B and the predicted barrier

function B̂ for all discretized data points xk,k = 1, ...,m, in the entire operating region that we

sample from, and L2 is the loss function term that aims to satisfy L f B̂≤ 0 for all x∈ {SI |LgB̂(x) =

0}, where NI f is the number of discretized data points that satisfies this condition in the safe

region. Since ReLu takes the maximum between its argument and 0, i.e., ReLu(z) = max{0,z},
L2 penalizes any samples that produce L f B̂ j + τI > 0, therefore forcing L f B̂ j ≤ 0 to hold for the

applicable points in the safe region. α > 0 and β > 0 are hyperparameters that adjust the weighting

of L1 and L2 in the cost function. When L2 has reached 0 during training, then the weights and

biases have been optimized in a way that the predicted barrier function B̂(x) satisfies the condition

Eq. 8.3b. To make sure that all conditions of Eq. 8.3 are satisfied at the end of training, L1 and

L2 are evaluated and monitored separately during training, and both L1 and L2 are required to

be below a respective threshold value such that the modeling error for B̂(x) is bounded and the

negative semi-definiteness of L f B̂(x) for all x in the safe region with LgB̂(x) = 0 can be shown.

8.2.2 Verification of FNN-based CBF

Upon arriving at an FNN-CBF from the discretized data samples, it is important to demonstrate

that the conditions of Eq. 8.3 in the Definition of CBF are satisfied and that FNN-CBF can be used

to design control laws for the continuous nonlinear system of Eq. 8.1.

246

8.2.2.1 Continuity and Differentiability

The CBF is continuously differentiable (i.e., a C1 function) by Definition 8.2, mandating that

B̂(x) and ˙̂B(x) must be proven to be continuous. As per the universal approximation theorem

[99], with sufficient model complexity, FNNs are capable of modeling any continuous nonlinear

functions on a compact set of the state space. In addition, B̂(x) is the output of an FNN that

consists of a chain of nonlinear activation functions, i.e., tanh(·), which is a Lipschitz continuous

and continuously differentiable function in the compact subset we sample from. Thus, B̂(x) is also

Lipschitz continuous and continuously differentiable on the sampled compact subset. In terms of

FNN notations, we have shown that the overall hypothesis function class h(x) that maps the FNN

inputs x to the FNN output y in the form of barrier function value is also a C1 function. It is

assumed that the barrier function satisfies the following inequality:∣∣∣∣∂B
∂x

∣∣∣∣≤ rB(|x|) (8.7)

where rB is a class K function similar to rV in Eq. 8.2b.

8.2.2.2 Verification

Training an FNN that minimizes the loss function of Eq. 8.6 aims to meet the conditions of Eq. 8.3

in Definition 8.2 for all discretized points sampled from the compact subsets that we consider, but

does not guarantee that the conditions are met for all points in the respective compact subsets.

Therefore, the conditions must be verified to hold over the compact subsets in a continuous sense.

Similar to the approaches implemented in [13, 58, 88], we use a Lipschitz method to verify that

the decrease condition holds for a candidate function on a finite sample of a bounded set. The

following theorem presents the necessary criteria to use this verification technique:

Theorem 8.1. Consider a compact set S⊂Rn and let Ss be a finite set sampled from S s.t. ∀ x ∈ S,

there exists at least a pair (xs,δxs) ∈ Ss×R+ such that |x− xs| ≤ δxs. If F(xs) ≤ −LF · δxs (or

respectively F(xs)<−LF ·δxs) holds for all xs ∈ Ss , where the Lipschitz constant for the function

F is denoted by LF > 0, then F(x)≤ 0 (respectively F(x)< 0) holds for all x ∈ S. [13]

Therefore, by checking the tightened inequality L f B̂(x) ≤ −L′ · δxX \H ′ , ∀ x ∈ SI , it will be

verified that L f B̂(x) ≤ 0, ∀ x ∈X \H ′, where L′ > 0 is the Lipschitz constant for L f B̂(x), the

finite set SI is sampled from the compact set X \H ′, and δxX \H ′ > 0 is the discretization

grid size (distance between two discretized x points) of the safe set X \H ′. On a similar note,

247

B̂(x) ≤ 0, ∀ x ∈X \H ′ can be shown to hold by verifying that B̂(x) ≤ −L′′ ·δxX \H ′ ∀ x ∈ SI ,

where the Lipschitz constant for B̂ is denoted by L′′. Lastly, we show that Eq. 8.3a is satisfied by

checking −B̂(x)<−L′′ ·δxH ′, ∀ x ∈ SH ′ , which is sufficient to verify that −B̂(x)< 0 ∀ x ∈H ′,

thus equivalent to B̂(x)> 0 ∀ x∈H ′. These conditions will be checked for all sample points in the

respective discretized sets after an FNN model is obtained. More details on the sampling, design,

training, and verification of the FNN-CBF can be found in our previous work in [25].

8.3 FNN Generalization Error

When we train an FNN model, the model is obtained by minimizing the loss function calculated

based on training data samples only. Therefore, there is no information given on the error or

performance of the model on new testing data. The generalization error measures the model’s

ability of making an accurate prediction for new data from the same underlying distribution that

has not been seen or studied by the neural network. Using statistical theory commonly used in

machine learning, we present an upper bound for the generalization error of the FNN model in

predicting the value of the barrier function output.

We first introduce some important preliminary concepts that will be referenced in the

development of FNN generalization error bound. Without loss of generality, we let K be the

hypothesis class of FNN functions h(·) that map a dx-dimensional input x∈Rdx to a dy-dimensional

output ŷ ∈ Rdy . We use ŷ = h(x) to denote the predicted output of the FNN model and L(ŷ,y) to

represent the loss function. Here, the loss function can be of many forms; for example, in our case

of constructing a barrier function FNN, the loss function is the sum of two loss functions as shown

in Eq. 8.6, where one loss function (L1) assesses the mean squared error between the predicted

and the true barrier function output values, and the other loss function (L2) ensures that the Lie

derivative properties of the resulting FNN barrier function are met. Nevertheless, in supervised

learning where the true output values are known and used during training, the loss function will

involve calculating the difference between ŷ and y. The following error definitions are presented

for FNN model training.

Definition 8.3. [81] Given a function h that predicts y (output) using x (input), the generalization

error or expected loss / error over an underlying data distribution is Dd is

LD(h)≜ E[L(h(x),y)] =
∫

X×Y
L(h(x),y)ρ(x,y)dxdy (8.8)

248

where ρ(x,y) is the joint probability distribution for x and y, X and Y respectively denote the

vector space for all possible inputs and outputs.

In most cases, the joint probability distribution ρ is not known. Therefore, we approximate the

expected error by using the empirical error presented as follows:

Definition 8.4. [81] Consider a dataset Ss = (s1, ...,sm), si = (xi,yi), with m number of data

samples collected from the underlying data distribution Dd , the empirical risk or error is

ÊSs[L(h(x),y)] =
1
m

m

∑
i=1

L(h(xi),yi) (8.9)

In addition, we also need to demonstrate the loss function L(ŷ,y) is locally Lipschitz

continuous. In this particular study, the true FNN output is the true barrier function value B ∈ R1

that takes the values of either −1 or +1, thus |y| ≤ 1. Since the FNN uses hyperbolic tangent

sigmoid σ(z) = tanh(z) = 2
1+e−2z −1 as the activation function, the predicted FNN output B̂ is also

bounded by |ŷ| ≤ 1. Furthermore, the training of FNN is designed such that it will only stop after

L2 in Eq. 8.6 reaches below a threshold (i.e., L f B̂(x)≤ 0 ∀ x ∈ {SI |LgB̂(x) = 0} is satisfied only

when L2 ≤ τI , where τI > 0 is a small positive constant). Therefore, L2 is also upper bounded.

With these considerations, both L1 and L2 loss functions are locally Lipschitz continuous, and the

overall loss function L is also locally Lipschitz continuous with the following inequality satisfied

for any two predictions:

|L(y, ŷ2)−L(y, ŷ1)| ≤ Lr |ŷ2− ŷ1| (8.10)

where Lr denotes the local Lipschitz constant for the loss function L.

8.3.1 Rademacher Complexity

We use empirical Rademacher complexity to bound the generalization error as it is commonly

used in machine learning theory to quantify the richness of a class of functions. The Rademacher

complexity is defined as follows:

Definition 8.5. [81] Given a dataset of m samples Ss = {s1, ...,sm}, and a hypothesis class F of

scalar-valued functions, the empirical Rademacher complexity of F is defined as:

RSs(F) = Eεεε

[
sup
f∈F

1
m

m

∑
i=1

εi f (si)

]
(8.11)

249

where εεε = (ε1, ...,εm)
T contains Rademacher random variables εi that are independent and

identically distributed (i.i.d.) and satisfy P(εi =−1) = P(εi = 1) = 0.5.

For the hypothesis class Hh of vector-valued functions h ∈ Rdy , it also satisfies the inequality

shown in the following lemma:

Lemma 8.1 (c.f. Corollary 4 in [77]). Given a hypothesis class Hh of vector-valued functions

h ∈ Rdy , and a dataset of m samples Ss = {s1, ...,sm}. Consider the loss function L(·) which is a

Lr-Lipschitz function mapping h ∈ Rdy to R, then we have

Eεεε

[
sup

h∈Hh

m

∑
i=1

εiL(h(xi),yi)

]
≤
√

2LrEεεε

[
sup

h∈Hh

m

∑
i=1

dy

∑
k=1

εikhk(xi)

]
(8.12)

where εik is a m×dy matrix consisting of independent Rademacher variables, and hk(·) denotes the

k-th component of the vector-valued function h(·). For simplicity, the subscript εεε on the expectation

will be omitted for the remainder of the manuscript.

The following bound ([77]) can be derived to simplify the bound in terms of vector-valued

functions to one in terms of scalar-value functions:

E

[
sup

h∈Hh

m

∑
i=1

dy

∑
k=1

εikhk(xi)

]
≤

dy

∑
k=1

E

[
sup

h∈Hh,k

m

∑
i=1

εih(xi)

]
(8.13)

where Hh,k, k = 1, ...,dy represent scalar-valued function classes for the components of the

vector-valued function class Hh for a network of d layers. We derive the bound for empirical

Rademacher complexity in terms of scalar-valued function class first, then use Eq. 8.13 to develop

the bound for vector-valued functions.

8.3.2 Generalization Error Bound of FNN

Consider the class of loss functions associated with the function class Hh:

G = {g : (x,y)→ L(h(x),y),h ∈Hh} (8.14)

where y is the true FNN output vector, x is the FNN input vector, and h(x) represents the predicted

FNN output vector. We have the following lemma to upper bound the generalization error using

the Rademacher complexity of the family of loss functions RSs(G).

250

Lemma 8.2 (c.f. Theorem 3.3 in [81]). Given a data set of m number of i.i.d samples, the following

inequality holds for all g ∈ G over the sample space Ss = (si), si = (xi,yi) with probability of at

least 1−δ :

E[g(x,y)]≤ 1
m

m

∑
i=1

g(xi,yi)+2RSs(G)+3

√
log(2

δ
)

2m
(8.15)

Interested readers may refer to [126] and [81] for the full proof of this lemma. The RHS

of this inequality includes three terms, the sum of which specifies the upper bound for the FNN

generalization error. These three terms represent the empirical loss based on the sample dataset

Ss, the Rademacher complexity, and an error term that depends on the sample size and confidence

δ . We further bound the Rademacher complexity such that the upper bound of the generalization

error can be quantified by known specific values such as the sample size m, confidence δ , neural

network depth d, input dimension dx, and upper bounds on the input vector BX and on the weight

matrices BW .

We first consider the hypothesis class Hh,k of scalar-valued functions, where k represents

components of the vector-valued function class Hh. For the scalar-valued function class Hh,k,

the following lemma is presented to upper-bound the scaled empirical Rademacher complexity.

We will later use this lemma to derive the upper bound for the empirical Rademacher complexity

for the vector-valued hypothesis function class Hh.

Lemma 8.3 (c.f. Lemma 4 in [126]). With λ > 0, the scaled empirical Rademacher complexity

mRSs(Hh,k) = E[suph∈Hh,k ∑
m
i=1 εih(xi)] satisfies the following inequality:

mRSs(Hh,k) = E[sup
h∈Hh,k

m

∑
i=1

εih(xi)]

=
1
λ

logexp

(
λE

[
sup

h∈Hh,k

m

∑
i=1

εih(xi)

])

≤ 1
λ

log

(
E

[
sup

h∈Hh,k

exp(λ
m

∑
i=1

εih(xi))

]) (8.16)

We further specify the upper bound of the Rademacher complexity by breaking down the

function h(xi); this is done through a “peeling” approach to “peel” off the weights and activation

functions of the FNN model layer by layer. Here, due to the unique application of the FNN

model we construct, all the activation functions are tanh(·) in order to polarize the results to +1

and −1 values. We present the following lemma, which is modified from Lemma 2 in [43], to

251

demonstrate this peeling step inside a convex, monotonically increasing function (such as exp(·))
for a 1-Lipschitz activation function σ(·) that satisfies σ(0) = 0 (such as tanh(·)).

Lemma 8.4 (c.f. Lemma 2 in [43]). Given any vector-valued function class N with a 1-Lipschitz

continuous activation function σ(·) that satisfies σ(0) = 0 applied element-wise, and a convex and

monotonically increasing function p : R→ R+, the following inequality holds:

E

[
sup

||W ||1,∞≤BW ,ν∈N
p

(
||

m

∑
i=1

εiσ(Wν(xi))||∞

)]
≤ 2E

[
sup

ν∈N
p

(
BW ||

m

∑
i=1

εiν(xi)||∞

)]
(8.17)

Lemma 8.4 holds for the vector-valued function class ν ∈N (or equivalently h ∈Hh), and

therefore also holds for the scalar-valued function class ν ∈Nk (or equivalently h∈Hh,k), where k

represents the k-th component of the vector-valued function class. Following Lemma 8.4, we now

reference Theorem 2 in [43] to derive a bound on the Rademacher complexity for the scalar-valued

FNN function class Hh,k, as presented in Lemma 8.5. The full proof of Lemma 8.5 can be

found in [43]. First, Eq. 8.16 is used as a starting point to provide an inequality involving the

scaled Rademacher complexity for the scalar-valued function class Hh,k and the scalar-valued

hypothesis function h(x)∈Hh,k, which provides the predicted output in the output layer. Since the

function exp(·) in Eq. 8.16 qualifies as a convex, monotonically increasing function, we can apply

Lemma 8.4 repetitively to Eq. 8.16 by “peeling” off the neural network layer by layer, starting

from h(x) in the output layer. The function p(·) in Eq. 8.17 refers to exp(·), and the scalar-valued

functions ν ∈ Nk refer to subnetworks of the FNN from the input layer up to the layer being

“peeled”. The resulting upper bound on the Rademacher complexity for the scalar-valued function

class Hh,k is presented in Lemma 8.5 and can be represented in terms of FNN input bound, weight

matrix bounds, FNN depth, sample size, and FNN input dimension.

Lemma 8.5 (c.f. Theorem 2 in [43]). Given neural networks with depth d and a class of

scalar-valued functions Hh,k where ||Wl||1,∞ ≤ BW for all l = 1, ...,d, and Assumptions 8.1 - 8.4

satisfied, the following inequality holds:

RSs(Hh,k)≤
2BX(BW)d

√
d +1+ log(dx)√
m

(8.18)

Interested readers may refer to Section 7 of [43] for the proof of this theorem.

The above lemma presents the Rademacher complexity upper bound for the scalar-valued

functions Hh,k, k = 1, ...,dy, for the k-th component of the vector-valued function class Hh.

252

Now we will derive the generalization error bound for the loss function class associated with the

vector-valued hypothesis FNN function class Hh. We use Eqs. 8.12-8.13 to derive the following

theorem:

Theorem 8.2 (c.f. Theorem 1 in [126]). Consider the dataset Ss consisting of m i.i.d. data

samples and the class of loss functions associated with the vector-valued FNN hypothesis class

Hh satisfying Assumptions 8.1 - 8.4. With probability of at least 1− δ , we have the following

inequality:

E[g(x,y)]≤ O

(
Lrdy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
+

1
m

m

∑
i=1

g(xi,yi) (8.19)

where BX is the upper bound on FNN inputs defined in Eq. 8.1, BW is the upper bound on FNN

weight matrices as stated in Eq. 8.2, Lr is the local Lipschitz constant for the loss function L(·) as

defined in Eq. 8.10, dx is the FNN input dimension, dy is the FNN output dimension.

Proof. Using Eqs. 8.12 - 8.13, we can derive the following upper bound for the loss function

L(h(xi),yi) with h(xi) being vector-valued functions:

RSs(G) = E

[
sup

h∈Hh

1
m

m

∑
i=1

εiL(h(xi),yi)

]
≤
√

2LrE

[
sup

h∈Hh

1
m

m

∑
i=1

dy

∑
k=1

εikhk(xi)

]

≤
√

2Lr
1
m

dy

∑
k=1

E

[
sup

h∈Hh,k

m

∑
i=1

εih(xi)

] (8.20)

Using the definition of Rademacher complexity for the scalar-valued function class Hh,k, we have

the following:

√
2Lr

1
m

dy

∑
k=1

E

[
sup

h∈Hh,k

m

∑
i=1

εih(xi)

]
=
√

2Lr
1
m

dy

∑
k=1

mRSs(Hh,k)

=
√

2Lr

dy

∑
k=1

RSs(Hh,k)

(8.21)

Therefore, using Eq. 8.18, we can derive the bound on the Rademacher complexity of the loss

253

function as follows:

RSs(G)≤
√

2Lr

dy

∑
k=1

RSs(Hh,k)

≤
√

2Lr

dy

∑
k=1

2BX(BW)d
√

d +1+ log(dx)√
m

≤ 2
√

2Lrdy
BX(BW)d

√
d +1+ log(dx)√

m

(8.22)

Lastly, we can substitute Eq. 8.22 into Eq. 8.15, and obtain the generalization error bound as seen

in Eq. 8.19.

8.3.3 Implications of Generalization Error Bound for Different Loss

Functions

As seen in Eq. 8.6, there are two parts to the loss function of the FNN, and each part is being

monitored separately during training. As explained in Section 8.3, both loss functions L1 and L2

are locally Lipschitz continuous functions satisfying the following inequalities:

|L1(y, ŷ2)−L1(y, ŷ1)| ≤ Lr1 |ŷ2− ŷ1| (8.23a)

|L2(ŷ2)−L2(ŷ1)| ≤ Lr2 |ŷ2− ŷ1| (8.23b)

where Lr1 and Lr2 denote the local Lipschitz constant for loss functions L1 and L2 respectively.

Note that L1 is a function assessing the MSE between the true output y and the predicted output ŷ,

and L2 is a function of the predicted output ŷ only (the explicit form of ∂B
∂x , hence L f B(x), are not

known ahead of time).

Therefore, we can develop the generalization error bound with respect to each loss function,

and explain their respective implications. Here, we replace the general notations of FNN inputs x

and output y with the specific variables under consideration in our case, which include states of the

nonlinear system of Eq. 8.1 x as the inputs, barrier function value B as the true output, and B̂(x) as

the predicted output. The expected loss of L1 is upper bounded by the following inequality with

254

probability of at least 1−δ :

E[L1(B̂(x),B)]≤ O

(
Lr1dy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
+

1
m

m

∑
i=1

L1(B̂(xi),Bi)

(8.24)

Since L1 evaluates error between true FNN output (i.e., B) and predicted FNN output (i.e., B̂(x))

in terms of MSE, the upper bound on |B̂−B| is:

|B̂−B| ≤

√√√√
O

(
Lr1dy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
+

1
m

m

∑
i=1

L1(B̂(xi),Bi) (8.25)

We can further develop a bound on the value of B̂(x), which holds with probability of at least 1−δ

as follows:

|B̂|= |B̂+B−B|

≤ |B|+ |B̂−B|

≤ |B|+

√√√√
O

(
Lr1dy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
+

1
m

m

∑
i=1

L1(B̂(xi),Bi)

(8.26)

Given the conditions of Eq. 8.3a and Eq. 8.3c, the true barrier function B take values of +1 for

unsafe x, and −1 for safe x; therefore, |B| ≤ 1 for all x in the operating region. In order to ensure

that B̂ satisfies B̂ ≤ 0 for all safe x, and B̂ > 0 for all unsafe x, the upper bound on the modeling

error of the barrier function output must be less than 1, thus,√√√√
O

(
Lr1dy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
+

1
m

m

∑
i=1

L1(B̂(xi),Bi)≤ 1 (8.27)

The FNN model must be trained and built by selecting the appropriate number of samples m, the

depth of the network d, the bound on the weight matrices BW such that this bound on the modeling

error is satisfied.

Moreover, the generalization error bound of L2 represents the upper bound of the expected

value of L2 when applied on testing data that has not been studied by the FNN. The generalization

255

error bound of L2 can be written as follows:

E[L2(B̂(x)]≤O

(
Lr2dy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
+

1
m

m

∑
i=1

L2(B̂(xi)) (8.28)

where the term 1
m ∑

m
i=1 L2(B̂(xi)) represents the empirical loss of L2 resulting from m data samples

from the training dataset. As described in Section 8.2.1, we monitor L2 during training and only

stop training when L2 reaches 0 for all training data samples. Therefore, 1
m ∑

m
i=1 L2(B̂(xi)) = 0.

Furthermore, by the law of large numbers, with sufficiently large number of data sample size, the

sample mean can sufficiently approximate the real expected value. In this case, we can use the

testing dataset empirical loss to approximate the expectation of L2, which assesses ReLu(L f B̂(x)+

τI) for x values that have not been studied by the FNN. We can further simplify Eq. 8.28 to the

following form by utilizing the fact that the empirical loss of L2 on the training dataset is 0:

E[
1

Ntest
I f

Ntest
I f

∑
i=1

ReLu(L f B̂(xi)+ τI)]≤ O

(
Lr2dy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
(8.29a)

E[ReLu(L f B̂(x)+ τI)]≤ O

(
Lr2dy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
(8.29b)

where xi for i = 1, ...,Ntest
I f

represents safe states in the testing dataset at which LgB̂(xi) = 0. In

order to meet the condition of Eq. 8.3b for testing data points that have not been previously studied

by the FNN, the following inequality must hold:

O

(
Lr2dy

BX(BW)d
√

d +1+ log(dx)√
m

)
+3

√
log(2

δ
)

2m
− τI ≤ 0 (8.30)

By carefully choosing the number of layers to the FNN (depth d), the number of training sample

size m, the upper bounds on weight matrices BW , as well as the upper bound on the input vector

BX by selecting the range of states considered in the compact set in state space appropriately, we

build a FNN that satisfies Eq. 8.30, and in turn, ensures that L f B̂(x)≤ 0 in the operating region for

which we consider the states are constrained within with probability 1−δ .

256

8.4 Probabilistic Stabilization and Safety via Control

Lyapunov-Barrier Function

The Control Lyapunov-Barrier Function (CLBF) in the form of a weighted average of CLF and

CBF was proposed in [90], and it shows that when a CLBF exists for the system of Eq. 8.1, there

exists a controller u =Φ(x) that keeps the closed-loop state bounded within a level set of the CLBF

and outside of the unsafe set D for all times for any initial condition x0 ∈X0. This work is further

extended in [119, 122] to account for input constraints in the system and the constrained CLBF

was presented. Furthermore, a constrained CLBF-MPC where the prediction model inside the

MPC was developed using an ensemble of Recurrent Neural Network (RNN) models was proposed

in [123]. Based on this work, we proposed a machine-learning-based CLBF-MPC in [25] where

the CBF is built using an FNN model to characterize the safety status of the states inside the

operating region, and the MPC uses an RNN model for its predictions. In this work, we provide

statistical analysis on the probability of stabilization and safety of a CLBF-based controller where

the CBF is built using an FNN, first under the control law u = Φ(x) ∈U for the nonlinear system

of Eq. 8.1, then under the CLBF-MPC where MPC uses the first-principles model in the form of

ODE as described by Eq. 8.1 to predict future states. The FNN-CBF B̂ can be shown to meet the

conditions outlined in Eq. 8.3 in probability with proper model construction, parameter selection,

and post-training verification. Therefore, it can be readily used as a valid CBF in the design of

CLBF. The constrained CLBF built using the FNN-CBF B̂ is defined as follows:

Definition 8.6. Given a set of unsafe points in state-space D , a proper, lower-bounded and C 1

function Ŵ (x) : Rn → R is a constrained CLBF if Ŵ (x) has a minimum at the origin and also

satisfies the following properties:

Ŵ (x)> ρ, ∀ x ∈D ⊂ φuc (8.31a)∣∣∣∣∂Ŵ (x)
∂x

∣∣∣∣≤ rW (|x|) (8.31b)

L fŴ (x)< 0,

∀ x ∈ {z ∈ φuc\(D ∪{0}∪Xe) | LgŴ (z) = 0} (8.31c)

Uρ := {x ∈ φuc | Ŵ (x)≤ ρ} ̸= /0 (8.31d)

φuc\(D ∪Uρ)∩D = /0 (8.31e)

where f and g are from the nonlinear model in Eq. 8.1, ρ ∈ R is a constant, rW is a class K

257

function, Xe := {x ∈ φuc\(D ∪{0}) | ∂Ŵ (x)/∂x = 0} is a set of states for the nonlinear model

of Eq. 8.1 where L fŴ (x) = 0 (for x ̸= 0) due to ∂Ŵ (x)/∂x = 0. If Ŵ (x) exists for the nonlinear

system of Eq. 8.1 as defined in Eq. 8.6, then there exists a control law u = Φ(x) ∈ U such that

the origin of the system is rendered asymptotically stable within a region φuc, which is defined

as the union of the origin, and the set Xe, and the set for which the time-derivative of Ŵ (x) is

negative with constrained inputs: φuc = {x ∈ Rn | {0}∪Xe ∪ ˙̂W (x(t),Φ(x)) = L fŴ +LgŴ · u <

−αW |Ŵ (x)−Ŵ (0)|,u = Φ(x) ∈U} , and αW > 0 is a real constant used to characterize the set

φuc. An example of such control law Φ(x) takes the form of the Lyapunov-based universal Sontag

law [67] with the Lyapunov function V (x) replaced by the CLBF Ŵ (x); details can be found

in [119, 122, 124].

8.4.1 Design of Constrained CLBF

The design of CLBF can be carried out following the practical design guidelines in [119], by

first designing valid CLF and CBF that meet their conditions outlined in Eq. 8.2 and Eq. 8.3

respectively. This design method is further expanded and proven in [25] in the case of FNN-based

CBF and RNN-based process model, and it was shown that through a FNN-CBF B̂(x) that meets

all its required conditions, the resulting machine-learning based Ŵ (x) has a global minimum at the

origin and is able to meet all its requirements of Eq. 8.31. The proof for the following proposition

can be found in [122] and [25] and will be omitted here. In this work, we have introduced the

statistical analysis on the generalization error of the FNN-CBF B̂. Accounting for the general

expected error of B̂, the FNN-CBF B̂ is shown to meet all the requirements of Eq. 8.3 with

probability of 1− δ if the two conditions on the modeling error bound shown in Eq. 8.27 and

Eq. 8.30 are met. Therefore, the properties of the resulting CLBF Ŵ as well as the associated

safety and stabilizability properties of the CLBF-based controller will also hold with probability

1−δ .

Proposition 8.1. Consider the C 1 FNN-CBF B̂(x) : Rn→R, trained using the dataset Ss consisting

m i.i.d data samples satisfying Assumptions 8.1-8.4, and has a resulting loss function errors

constrained by Eq. 8.27 and Eq. 8.30. Given an open set D of unsafe states for the system of

Eq. 8.1, assume that there exists a C 1 CLF V : Rn→ R+, such that the following conditions hold:

D ⊂H ⊂H ′ ⊂ φuc, 0 /∈H , 0 /∈H ′ (8.32)

B̂(x) =−η < 0, ∀x ∈ Rn\H ′; B̂(x)> 0, ∀x ∈H ′ (8.33)

258

where H and H ′ are both compact and connected sets within φuc, and H ′ encloses H with

sufficient margin accounting for modeling errors in B̂(x). Consider Ŵ (x) designed as Ŵ (x) :=

V (x)+µB̂(x)+ν , and satisfies: ∣∣∣∣∂Ŵ (x)
∂x

∣∣∣∣≤ rW (|x|) (8.34)

L fŴ (x)< 0,

∀ x ∈ {z ∈ φuc\(D ∪{0}∪Xe) | LgŴ (z) = 0}
(8.35)

µ >
c2c3− c1c4

η
, (8.36a)

ν = ρ− c1c4, (8.36b)

c3 := max
x∈∂H ′

|x|2, (8.36c)

c4 := min
x∈∂D

|x|2 (8.36d)

then, with probability of at least 1−δ , the control law Φ(x) ∈U (Lyapunov-based Sontag control

law with V (x) replaced by Ŵ (x)) guarantees that, for any initial state x0 ∈ φuc\DH ′ , where

DH ′ := {x ∈H ′ | Ŵ (x) > ρ}, the state is bounded in φuc\H and does not enter the unsafe

region H for all t > 0.

Proof. Through the selection of parameters µ and ν , the conditions of Eq. 8.31a and Eq. 8.31e

can be met. The proofs for these two conditions are shown in [119] and will be omitted here.

We will focus on how the conditions of Eq. 8.31b and Eq. 8.31c can be met. Given that Eq. 8.27

and Eq. 8.30 are met, B̂(x) satisfies the CBF properties presented in Eq. 8.3 with probability at

least 1− δ . From Eq. 8.2b and Eq. 8.7, as well as the way the CLBF is constructed Ŵ (x) :=

V (x)+µB̂(x)+ν , we have the following:∣∣∣∣∂Ŵ (x)
∂x

∣∣∣∣= ∣∣∣∣∂V
∂x

+µ
∂ B̂
∂x

∣∣∣∣
≤ rV (|x|)+µrB(|x|)

≤ rW (|x|)

(8.37)

where rW , as the weighted sum of two class K functions rV and rB, is also a class K

function. Thus, it is shown that Eq. 8.31b is satisfied. Similarly, for all x ∈ {z ∈ φuc\(D ∪{0}∪

259

Xe) | LgŴ (z) = 0}, Eq. 8.31c can be also shown to hold with the following derivation:

L fŴ (x) = L fV (x)+µL f B̂(x)< 0 (8.38)

Thus, Eq. 8.31b and Eq. 8.31c are both satisfied. In addition, the global minimum of V (x) is at

the origin, i.e., V (0) = 0, and V (x) > 0 for all x ∈ Rn\{0}. With a sufficiently small modeling

error as characterized by its generalization error bound, B̂(x) = −1 for all x ∈ φuc\H ′, where

{0} ∈ φuc\H ′, and B̂(x) = +1 for all x ∈ H ′ in probability. Hence, B̂(x) also has a global

minimum at the origin in probability. Since Ŵ (x) is a weighted average of V (x) and B̂(x), the

global minimum of Ŵ (x) is at the origin. Therefore, it has been demonstrated that a CLBF Ŵ (x)

and the control law u=Φ(x)∈U exist that satisfy all conditions of Eq. 8.31 with probability 1−δ ,

and guarantee the safety and asymptotic stability of the states for all x0 ∈ φuc\DH ′ .

We specify the set of initial conditions considered in our study as Uρ , which is a level set of

Ŵ (x) as described in Eq. 8.31d. Since ˙̂W (x) = 0 for x = 0 and x = xe ∈Xe, and ˙̂W (x)< 0 within

the set φuc\(Xe ∪ 0) under the control law u = Φ(x) ∈U , it holds that ˙̂W (x) ≤ 0 for all x ∈ Uρ .

We know that Ŵ (x) is a proper function, therefore the level set of Ŵ (x), Uρ , is a compact, forward

invariant set. For any initial condition x0 ∈Uρ , the closed-loop state x(t) is bounded in Uρ under

the continuous control law u = Φ(x) ∈U . Furthermore, since the set Uρ has no intersection with

the set DH ′ , the closed-loop state will not enter the unsafe set DH ′ characterized by Proposition

8.1.

For bounded unsafe sets (e.g., the entire unsafe region occurs as an obstacle in the middle of

the operating region), there are stationary points in state space (in addition to the origin), denoted

as xe ∈ Xe where ˙̂W = 0, which can be considered as saddle points. When states reach these

stationary points, the continuous controller u = Φ(x) ∈U is incapable of steering the states away

from these points and they will remain there and become trapped. Thus, we design discontinuous

control actions u = ū(x) ∈U that can drive the states away from xe in a path of decreasing Ŵ (x).

Once the states leave xe under ū(x), then the controller u = Φ(x) ∈U is able to continue driving

the state towards the origin asymptotically since ˙̂W (x) < 0 for all x ∈ Uρ\(Xe ∪ 0). In the case

of unbounded unsafe sets, the origin will be the only stationary point in state-space, therefore the

CLBF-based control law u = Φ(x) ∈U is able to ensure asymptotic stability and safety.

260

8.4.2 Sample-and-hold Implementation of CLBF-based Controller

We have shown that if there exists a constrained CLBF Ŵ built from FNN-CBF B̂ that meets the

conditions of Eq. 8.31 and a set of control law u = Φ(x) ∈U that is continuously implemented,

the closed-loop state can be maintained within the safe region for all times. This CLBF-based

control law u = Φ(x) ∈ U is used to design CLBF-based constraints in MPC. As the MPC is

executed every sampling period ∆, the control law will be implemented in a sample-and-hold

manner. Therefore, we will now discuss the impact of sample-and-hold application of control

actions on the probabilistic stability and safety of the nonlinear system of Eq. 8.1.

We consider the region Uρ\(Uρs∪Bδ (xe)), where ρs < ρmin < ρ , and prove that for all x(tk) in

this region, Ẇ (x(t),u(t))<−ε where u(t) is applied in a sample-and-hold manner u(t) = u(tk) =

Φ(x(tk)), ∀ t ∈ [tk, tk +∆′). Since this region is a bounded region within φuc and the functions f (·)
and g(·) are continuous, we have the following inequalities:

˙̂W (x(tk))<−αW |Ŵ (x)−Ŵ (0)|<−αW ρ0 (8.39a)

|x(t)− x(tk)| ≤ k1∆
′, ∀ t ∈ [tk, tk +∆

′) (8.39b)

where k1 is a positive real number and ∆′ > 0 represents a sampling period, where the sampling

period of the CLBF-based controller and CLBF-MPC ∆ will be taken from the range ∆ ∈ (0,∆∗].

Eq. 8.39a comes from the definition of the region φuc, and ρ0 := min
x∈Uρ\(Uρs∪Bδ (xe))

|Ŵ (x)−Ŵ (0)|,

and Ŵ (0) is the minimum of Ŵ (x) which is found at the origin. Furthermore, since Ŵ (x) is a

C 1 function that meets the property of Eq. 8.31b, and considering the fact that f (·) and g(·) are

sufficiently smooth functions, we have the following inequalities:

|L fŴ (x(t))−L fŴ (x(tk))| ≤ k2|x(t)− x(tk)| (8.40a)

|(LgŴ (x(t))−LgŴ (x(tk)))u(t)| ≤ k3|x(t)− x(tk)| (8.40b)

where k2 and k3 are positive real numbers. With these inequalities established, the following

proposition is presented to show that with sufficient conditions, the controller u = Φ(x) ∈ U

designed based on the FNN-based CLBF Ŵ (x) and the discontinuous control law u = ū(x)∈U are

able to guarantee closed-loop stability and safety for the nonlinear system in Eq. 8.1.

Proposition 8.2. Consider the nonlinear system of Eq. 8.1 with a FNN-based CLBF Ŵ (x) designed

based on a valid CLF V (x) and a valid FNN-CBF B̂(x) that satisfies Eq. 8.3 with probability of at

261

least 1−δ . There exists ε > 0,∆′ > 0,∆′′ > 0,ρ > ρmin > ρs that satisfy:

∆
′ <

αW ρ0− ε

k1(k2 + k3)
, 0≤ ε < αW ρ0 (8.41a)

ρmin := max
∆t∈[0,∆′′)

{Ŵ (x(tk +∆t)) | x(tk) ∈Uρs, u ∈U} (8.41b)

∆
∗ = min{∆′,∆′′} (8.41c)

such that, for any x(tk)∈Uρ , under the sample-and-hold application of either u(t) =Φ(x(tk)) ∀t ∈
[tk, tk+1) where tk+1 = tk +∆ and ∆ ∈ (0,∆∗], or u(t) = ū(x(tk)) ∈U when x(tk) ∈Bδ (xe), Ŵ (x)

is guaranteed to decrease over one sampling period with probability of at least 1−δ , and x(t) is

bounded in Uρ for all times and ultimately converges to Uρmin .

Proof. We first consider the case of bounded unsafe sets in state space. We will first prove that the

closed-loop state trajectory x(t) will be bounded in Uρ and will enter Uρs in finite steps under the

sample-and-hold implementation of control actions u = Φ(x) ∈U or u = ū(x) ∈U if x ∈Bδ (xe).

Then we will prove that once the state enters Uρs , i.e., x(tk) ∈ Uρs , x(t) will stay in Uρmin for

t = [tk, tk +∆′′).

Under the sample-and-hold implementation of u(t), for x(tk) ∈ Uρ\(Uρs ∪Bδ (xe)), we can

write ˙̂W (x) as follows:

˙̂W (x(t),u(t)) = ˙̂W (x(tk),u(tk))+(˙̂W (x(t),u(t))

− ˙̂W (x(tk),u(tk)))

=L fŴ (x(tk))+LgŴ (x(tk))u(tk)

+(L fŴ (x(t))−L fŴ (x(tk)))

+(LgŴ (x(t))−LgŴ (x(tk)))u(t)

(8.42)

Substituting Eq. 8.39a, Eq. 8.40 and Eq. 8.39b, we derive the following inequality:

˙̂W (x(t),u(t))<−αW ρ0 + k1(k2 + k3)∆
′

<−ε

(8.43)

which sufficiently shows that under sample-and-hold implementation of control actions u(t), ˙̂W (x)

can be rendered negative for any x(tk) ∈ Uρ\(Uρs ∪Bδ (xe)), and Ŵ (x(t)) < Ŵ (x(tk)) ≤ ρ ,

therefore bounded within Uρ ∀t > tk. Within finite steps, x(t) will eventually enter Uρs .

For bounded unsafe sets where stationary points in state-space exist, consider x(tk) ∈Bδ (xe).

262

x(tk+1) can be driven to a smaller level set of Ŵ (x) under the discontinuous control law u = ū(x) ∈
U which decreases Ŵ (x) over one sampling period; i.e., Ŵ (x(tk+1)) < Ŵ (x(tk)). Within finite

sampling periods, the closed-loop state will eventually leave Bδ (xe), and will never return since

the control law u = Φ(x) ∈U will take over and ensure that Ŵ (x(t))< Ŵ (x(tk)) for all t > tk.

Once the state enters the set Uρs , x(tk) ∈ Uρs , the definition of Uρmin in Eq. 8.41b shows that

the trajectory x(t) will stay in Uρmin for t ∈ [tk, tk +∆′′). We choose a maximal sampling period

∆∗ which is the minimum of ∆′ and ∆′′ as described by Eq. 8.41c, and choose a sampling period

∆ ∈ (0,∆∗]. Within t ∈ [tk, tk +∆), under the sample-and-hold implementation of u = Φ(x) ∈U or

u = ū∈U , we are able to show that, with probability at least 1−δ , for x(tk)∈Uρ\Uρs , x(t) moves

towards the origin into smaller level sets of Ŵ and eventually into the level set Uρs , and for x(tk) ∈
Uρs , x(t) remains in Uρmin . Since the CLBF properties on Ŵ (x) are satisfied with a probability

of at least 1− δ , the closed-loop stability and safety of the system under the sample-and-hold

implementation of CLBF-based control laws also follow the same probability.

In the case of unbounded unsafe sets, stationary points other than the origin Bδ (xe) do not

exist, therefore, the sample-and-hold control actions u = Φ(x) ∈U are able to drive closed-loop

state towards smaller level sets of Ŵ (x) since ˙̂W (x,Φ(x))< 0 holds, and similarly, will be bounded

within Uρmin eventually.

8.4.3 FNN-CLBF-based MPC

Given the probabilistic stability and safety analysis provided by the sample-and-hold

implementation of FNN-CLBF-based control laws u = Φ(x) ∈ U , the FNN-CLBF-based MPC

263

is formulated as follows:

J = min
u∈S(∆)

∫ tk+N

tk
L(x̃(t),u(t))dt (8.44a)

s.t. ˙̃x(t) = f (x̃(t))+g(u(t)) (8.44b)

x̃(tk) = x(tk) (8.44c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (8.44d)
˙̂W (x(tk),u(tk))≤ ˙̂W (x(tk),Φ(x(tk)))

if x(tk) /∈Bδ (xe) and Ŵ (x(tk))> ρmin (8.44e)

Ŵ (x̃(t))≤ ρmin, ∀ t ∈ [tk, tk+N), if Ŵ (x(tk))≤ ρmin (8.44f)

Ŵ (x̃(t))< Ŵ (x(tk)), ∀ t ∈ (tk, tk+N),

if x(tk) ∈Bδ (xe) (8.44g)

where the state trajectory predicted by the ODE model of Eq. 8.1 is represented by x̃(t), the number

of sampling periods in the prediction horizon is denoted by N, and S(∆) is a piece-wise constant

function with a sampling time ∆. This optimization problem of Eq. 8.44 is solved by the MPC every

time a new measurement is received (every ∆), and the optimization problem has an objective

function Eq. 8.44a that is in the form of the integral of L(x̃(t),u(t)) = x̃T Qx̃ + uT Ru over the

prediction horizon. Here, Q, R are positive definite weight matrices. The objective function is

formulated this way such that it has a minimum at the origin. Eq. 8.44d describes the constraints

imposed on the input vector along the predicted trajectory. It is assumed that state measurements

are received at every sampling period. As seen in Eq. 8.44c, the initial condition of the predicted

state trajectory in Eq. 8.44b are obtained from the feedback state measurements at t = tk. The

constraints of Eqs. 8.44e-8.44g are used to ensure closed-loop stability and safety. When x(tk) /∈
Bδ (xe) and Ŵ (x(tk)) > ρmin, the constraint in Eq. 8.44e decreases Ŵ (x̃) at a rate at least of the

rate achieved by the CLBF-based controller u = Φ(x) ∈ U . When Ŵ (x(tk)) ≤ ρmin, Eq. 8.44f

maintains the closed-loop state trajectory over the prediction horizon inside the level set Uρmin . If

x(tk) ∈Bδ (xe), Eq. 8.44g is activated to decrease Ŵ (x) over the next sampling period so that the

state will escape the saddle point within finite steps. The first control action u∗(tk) of the optimized

input trajectory u∗(t) will be applied in a sample-and-hold manner for the next sampling period.

After that, the horizon will move forward one sampling period, and the above optimization problem

is solved again.

The CLBF used in the CLBF-MPC of Eq. 8.44 is one constructed using an FNN-based CBF

264

B̂(x), which is well-trained and designed to satisfy modeling error constraints in Eq. 8.27 and

Eq. 8.30. Subsequently, with probability at least 1− δ , B̂(x) meets the conditions of Eq. 8.3,

CLBF meets the conditions of Eq. 8.31 via the design method presented in Proposition 8.1, and

therefore, probabilistic safety and stability under the CLBF-based control laws are provided. The

following theorem will demonstrate that probabilistic stability and safety can be established under

the CLBF-MPC of Eq. 8.44.

Theorem 8.3. Consider the nonlinear system of Eq. 8.1 with a constrained CLBF Ŵ (x) built

following Proposition 8.1 using a FNN-CBF B̂(x) that satisfies Eq. 8.27 and Eq. 8.30 and meets

the conditions of Eq. 8.3 with probability of at least 1−δ . Let ∆ > 0, ε > 0,ρ > ρmin > ρs satisfy

the requirements in Proposition 8.2. Given x0 ∈ Uρ , with probability of at least 1− δ , recursive

feasibility can be guaranteed for the optimization problem of q. 8.44, and the closed-loop state is

bounded in Uρ , ∀ t ≥ 0, and converges to Uρmin as t→ ∞.

Proof. There always exists a feasible solution for the CLBF-MPC optimization problem since

sample-and-hold implementation of the CLBF-based control law u = Φ(x) ∈ U (when x(tk) ∈
Uρ\Bδ (xe)) and the discontinuous control law u = ū ∈ U (when x(tk) ∈Bδ (xe) in the case of

bounded unsafe sets) provide one such solution that satisfy the constraints of Eqs. 8.44d-8.44g

for all x(tk) ∈ Uρ . This has been proven in Proposition 8.2. The properties Eq. 8.33 ensure that

the CBF B̂ is able to discern the unsafe region from the safe region accurately with a probability

of at least 1− δ . Furthermore, it has been shown in Proposition 8.1 that ˙̂W (x) ≤ 0 is held with

probability at least 1−δ in the region Uρ .

For unbounded unsafe sets, there are no stationary points in the operating region other than the

origin. For any x0 ∈Uρ\(Bδ (xe)∪Uρmin), Eq. 8.44e forces the optimal control action calculated

by the FNN-CLBF-based MPC u∗(tk) to decrease Ŵ (x) at a rate at least as fast as that achieved

by the control law Φ(x(tk)). Therefore, u∗(tk) will drive the closed-loop state towards the origin

and into Uρmin within finite steps. After that, Eq. 8.44f ensures that the closed-loop state remains

inside Uρmin . We can conclude that the closed-loop state under the CLBF-MPC will be bounded in

Uρ for t > 0 and eventually be bounded in Uρmin , thus will not enter the unsafe set D for all times

since the safe set Uρ has no intersection with the unsafe set D .

In the case of bounded unsafe sets, when the closed-loop state reaches a stationary point, x(tk)∈
Bδ (xe), Eq. 8.44g is activated to ensure that the optimal solution of the MPC drives the state away

from the stationary point in a direction of decreasing Ŵ . After the state escapes the neighborhood

around the saddle point, Eqs. 8.44e-8.44f will continue to ensure that x(t) is bounded in Uρ and

eventually converges to Uρmin without entering the bounded unsafe set.

265

When Eq. 8.44e is activated, the FNN-CBF is used to predict the corresponding barrier function

value B̂ based on x(tk). This B̂(x(tk)) prediction is shown to satisfy the CBF properties of Eq. 8.3

with probability of at least 1−δ , and therefore stability and safety properties enforced by Eq. 8.44e

are achieved with a probability of at least 1−δ . When Eq. 8.44f or Eq. 8.44g are activated, FNN

predictions of the barrier function are carried out for the entire trajectory B̂(x̃(t)) for t ∈ [tk, tk+N].

Each of the FNN inputs, x̃(t), are calculated based on the ODE model of Eq. 8.1, which are accurate

assuming there are no modeling mismatches. The predictions B̂(x̃(t)) based on x̃(t) are therefore

independent predictions and do not affect one another. At each time step of the trajectory in the

MPC prediction horizon, the probability of the actual closed-loop state being maintained inside

Uρmin (in the case of Eq. 8.44f), or the actual closed-loop state being driven around the unsafe set

in the direction of decreasing CLBF (in the case of Eq. 8.44f) is at least 1−δ . However, to ensure

that the entire trajectory satisfies its safety and stability properties, the probability will be reduced

(specifically, (1−δ)N for N time steps in the prediction horizon). Although the overall probability

of stability and safety for this predicted trajectory is reduced, the stability and safety properties of

the system under the first control action u∗(tk) of the FNN-CLBF-MPC for the current time step

t = tk is guaranteed with probability 1− δ . When a new feedback measurement is received, the

MPC is executed again and computes a new control action to be applied that ensures stability and

safety with probability 1−δ over the next sampling step.

Remark 8.2. In this study, we study the generalization error bound of the FNN-CBF and the

probabilistic closed-loop stability and safety properties of the FNN-CLBF-MPC where the MPC

uses the first-principles model for prediction. In our previous work in [25], we have also

developed FNN-CLBF-MPC systems where the MPC can use a prediction model of the nonlinear

process built using recurrent neural networks (RNN). Similar to the FNN used in this study, with

a neural-network-based model, there exists an expected error in the predicted output x̂ of the

nonlinear system that can be upper-bounded following machine learning theory; this has been

developed in [126]. In our previous work [25], we have discussed design methods with data

generation and unsafe region characterization to account for both modeling error in the FNN-CBF

and in the RNN process model, as well as with numerical approximations of the predicted vector

and matrix functions f̂ and ĝ. We have demonstrated through theoretical development as well

as closed-loop simulations that with adequate design and verification of the FNN-CBF as well

as sufficient boundedness of the modeling and numerical errors, closed-loop stability and safety

can be achieved for FNN-CLBF-MPC using both first-principles and RNN models. In this work,

266

we have only conducted closed-loop studies on FNN-CLBF-MPC using a first-principles model

as the focus of this manuscript is on the generalization error upper bound of the FNN model.

We can easily extend the statistical stability and safety analysis to FNN-CLBF-MPC using RNN

models by following the work in [126], where we can further specify the upper bound on the

modeling error of the RNN process model as it depends on a number of factors such as sample

size, weight matrix bounds, input length, and network complexity, and in turn construct the RNN

to meet Lyapunov-based stability properties in probability.

8.5 Application to a Chemical Process Example

8.5.1 Preliminaries

A chemical process example is simulated to demonstrate the effectiveness of the FNN-based CLBF

in ensuring the closed-loop stability and safety of a nonlinear process, and to demonstrate how

various aspects of FNN design and training may impact the outcome of the FNN model. The

system we consider is a continuously stirred tank reactor (CSTR) which is non-isothermal and

assumed to be well-mixed, undergoing a second-order, exothermic, irreversible reaction converting

reactant A into product B. There is a heating jacket equipped to remove and supply heat. The

process dynamics can be modelled by material and energy balances as shown below:

dCA

dt
=

F
VL

(CA0−CA)− k0e−E/RTC2
A (8.45a)

dT
dt

=
F
VL

(T0−T)− ∆Hk0

ρLCp
e−E/RTC2

A +
Q

ρLCpVL
(8.45b)

where the two states of the system, CA and T , are the concentration of A in the tank and the

temperature inside the tank, respectively. VL, F , T0 represent the volume of the reacting fluid in

the reactor, volumetric flow rate of the feed, and temperature of the feed, respectively. Q denotes

the heat jacket input rate, and CA0 denotes the feed concentration of reactant A. It is assumed

that the reacting liquid has a constant heat capacity Cp and density ρL. Other constants such as

the pre-exponential constant, ideal gas constant, enthalpy and activation energy of the reaction are

denoted by k0, R, ∆H, and E, respectively. The values of these process parameters are given in

[128].

The CSTR process is stabilized at its unstable equilibrium point (CAs, Ts) =

267

(1.954 kmol/m3, 401.9 K) by the CLBF-based MPC, which manipulates the inputs CA0 and Q

with corresponding steady-state values (CA0s Qs) = (4 kmol/m3, 0 kJ/hr). The manipulated inputs

have the following bounds: |∆CA0| ≤ 3.5 kmol/m3 and |∆Q| ≤ 5× 105 kJ/hr, which originate

from physical constraints. The states and the inputs of the system are represented in deviation

variable for the subsequent analyses such that the equilibrium point of Eq. 8.45 is at the origin,

i.e., [∆CA = CA−CAs, ∆T = T −Ts], and [∆CA0 = CA0−CA0s , ∆Q = Q−Qs]. For simplicity of

notation, the state and input vectors are represented in the following forms: xT = [∆CA ∆T] and

uT = [∆CA0 ∆Q]. The CLBF-MPC is executed every sampling period where ∆ = 10−3 hr, where

the nonlinear optimization problem of Eq. 8.44 is solved using the python module PyIpopt. To

simulate the CSTR process and predict the state trajectory inside the MPC, the system of ODE of

Eq. 8.45 is solved using the explicit Euler method with an integration time step of hc = 10−5 hr.

We use the following positive definite P matrix to build a CLF V (x) in the form of V (x) = xT Px:

P =

[
1060 22

22 0.52

]
(8.46)

where the values of the P matrix are determined via extensive closed-loop simulations of the

process. The unsafe region D can be either bounded or unbounded, and is a set within the stability

region such that the state may enter the unsafe region on its path while it is driven towards the

origin under a control law that does not consider safety constraints. The CLBF-MPC accounts for

these unsafe regions in state-space and is capable of navigating the states around the unsafe set and

towards the equilibrium point thereafter.

8.5.2 Development of the FNN Model for Barrier Function

The control barrier function within the CLBF is built using an FNN model, which takes x as

inputs and computes the value B̂(x). In this study, we consider the cases of both bounded and

unbounded unsafe regions. First, the bounded unsafe set is considered, where the unsafe region

is defined as Db := {x ∈ R2 | Fb(x) =
(x1+0.92)2

1 + (x2−42)2

500 < 0.06}. Hb is defined as Hb := {x ∈
R2 | Fb(x) < 0.07} such that it satisfies Db ⊂Hb ⊂ φuc in Proposition 8.1. The unsafe region

is an ellipse embedded in the operating region to demonstrate the challenging case of a bounded

unsafe set obstructing the trajectory of the closed-loop state. Practically, the unsafe sets may not

be easily represented in a closed form function. However, based on engineering knowledge or

simulations, one may collect sufficiently dense data in the operating region with corresponding

268

labels indicating whether the data point is safe or unsafe. Following this, we can obtain respective

sets of data samples that are labelled as unsafe and safe, and can be subsequently used for model

training. In our study, after specifying the region of unsafe operation, we generate training data

for the FNN model. This is done by first specifying a region which the system is likely operated

within, in this case, we specify V (x) ≤ 368, which is a level set of CLF characterized as the

stability region in the absence of unsafe sets under the use of Lyapunov-based control laws. Then,

we specify H ′
b := {x ∈R2 | Fb(x)< 0.0952}, which is a larger compact set that encloses H with

enough contingency accounting for modeling and numerical error. Similarly, we also consider

the case of unbounded unsafe sets, which have the unsafe region defined as follows: Du := {x ∈
R2 | Fu(x) = x1+x2 > 47}. Since both the unsafe and the safe sets from which we sample must be

compact, we first approximate this unbounded region with a sufficiently large compact set within

the operating region Du′ := {x∈R2 | Fu(x)≥ 46 and V (x)≤ 368}. We then characterize H ′
u⊃Du′

as H ′
u := {x ∈ R2 | Fu(x)> 45 and V (x)≤ 368}.

Data points that fall in the set H ′ are labeled as “unsafe”, while data points outside of this set

are labeled as “safe”. Both the safe and the unsafe regions are discretized into the same number of

data samples, where the samples are labeled with a target output of B(x) = +1 if x belongs to the

unsafe set, and B(x) =−1 if x belongs to the safe set. The inputs to the FNN model are the vector

of state measurements x, and the FNN model produces B̂(x) values that classify x as being safe or

unsafe.

The following three case studies are examined: varying the number of neurons in the FNN,

varying the number of layers in the FNN, and varying the number of training sample size in the

FNN. We construct numerous FNN models under each scenario to study the impact of the structure

and training of FNN on the generalization error of the resulting model. In all models we construct,

the activation functions used in all hidden layers are tanh(·), and the cost functions of Eq. 8.6 are

used, where both loss functions are monitored separately during training. The FNN undergoes 500

epochs of training. L2 = 0 and L1 no longer decreasing for 100 consecutive epochs are the two

criteria to trigger early-stopping of training.

Once a FNN-CBF is built, it must be verified that the conditions of Eq. 8.3 must hold for all

x in their respective compact sets, by examining whether the strict inequalities of Eq. 8.3 hold

for a tightened bound as described in Theorem 8.1. For example, it has been shown that for a

3-hidden-layer FNN with 10 neurons in each layer, B̂(x)≥ 5.751×10−1 for all discretized x ∈ Ĥ ,

where Ĥ is the unsafe region characterized by the predictions of the FNN model, and B̂(x) ≤
−3.3× 10−3 for all discretized x ∈ Uρ\Ĥ . It is shown that Ĥ is a superset of D , since there

269

are safe points outside the boundary of D being misclassified as unsafe by the FNN, but there are

no unsafe points being misclassified as safe. Therefore, the conditions of Eq. 8.3a and Eq. 8.3c

are proven to hold in a continuous sense. To prove that the condition of Eq. 8.3b also holds,

we examine L f B̂(x) values for all discretized x in the safe set for which LgB̂(x) = 0. This can

be seen from the error metrics in Fig. 8.6, where for a 3-hidden-layer model, the errors from

ReLu(L f B̂(x)+0.01) for all safe x’s at which LgB̂(x) = 0 in both training and testing datasets are

below 1.18×10−6, which means that L f B̂≤−0.01−1.18×10−6. Thus, the condition of Eq. 8.3b

is proven to be true in a continuous sense.

Once the control barrier function is verified, the CLBF Ŵ (x) is characterized with the following

parameters: c1 = 0.001, c2 = 100, c3 = 49.38, c4 = 35.21, µ = 5000, ρ = 0, and ν = −0.0352

following the guidelines in Proposition 8.1. The stability and safety region Uρ is therefore defined

according to Eq. 8.31d.

8.5.3 Analysis on Generalization Performance and Closed-loop Stability

and Safety

The generalization performance is assessed via three metrics: the misclassification rate calculated

as the ratio of misclassified samples over the total number of samples in the training and testing data

sets, the MSE between the predicted and true barrier function output, and loss function calculated

from ReLu(L f B̂(x)+ τI for all safe x’s in each data set, where τI = 0.01 is a positive constant used

to ensure the negative definiteness of L f B̂(x).

Within each case study of FNN models trained using different width, depth, and sample size,

both bounded and unbounded unsafe sets are studied. In addition to studying the generalization

performance of these FNN models, closed-loop simulations are also ran and compared, and the

probability of stability and safety has been investigated. We also run closed-loop simulations

with these FNN models and assess its probability of unsafe, unstable, or non-convergent behavior.

Unsafe behavior is defined as the closed-loop state entering the unsafe region D any time during

its trajectory from the initial condition to the final state. Unstable behavior is when the closed-loop

state exits the stability operating region any time during the simulation period. Non-convergence

occurs when the final state at the end of the simulation period is not within the terminal set

Uρmin , or when the state exits the terminal set after entering it for the first time. We discretize the

operating region evenly to generate a set of x0 used as initial conditions for closed-loop studied.

We run closed-loop simulations starting from 83 different initial conditions in the operating region

270

Uρ\(Uρmin ∪Bδ (xe)) for the case of bounded unsafe sets, and from 74 different initial conditions

in the operating region Uρ\Uρmin for the case of unbounded unsafe sets. The probability of each

of these three undesirable behaviors is calculated by tabulating the number of occurrences out of

the total number of initial conditions ran.

8.5.3.1 Varying number of neurons

In this case study, the FNN is trained with different number of neurons within 1 hidden layer, where

the number of neurons (or the width of the FNN) varies from nw = 1 to nw = 300. In the case of the

bounded unsafe set, by discretizing the boxes around both the safe and the unsafe regions along

each dimension of the state vector by a mesh grid size of 350 by 350, we obtain 20472 unsafe

samples and 25695 safe samples. In the case of the unbounded unsafe set, since it is a simpler case

where the boundary of safety is linear, we discretize the safe and unsafe regions by 150 by 150,

resulting in a dataset of 3021 unsafe and 4198 safe samples respectively. 70% of these samples are

used for training, and 30% are used for testing. The generalization performance for FNN models

with various number of neurons to address the presence of bounded and unbounded unsafe sets are

shown in Fig. 8.1 and Fig. 8.2 respectively.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te Train

Test

0 50 100 150 200 250 300
0

0.5

1

1.5

B
a
rr

ie
r

F
u
n
c
ti
o
n
 O

u
tp

u
t
M

S
E

0 50 100 150 200 250 300

Number of Neurons

0

0.005

0.01

L
o
s
s
 f
ro

m
 s

a
fe

 R
e
L
u
(L

fB
 +

 0
.0

1
)

Figure 8.1: Generalization performance for the FNN models for characterizing bounded unsafe
regions utilizing various neurons.

In the case of bounded unsafe regions, the drop in misclassification rate and barrier function

output MSE are prominently shown as the number of neurons increases from nw = 1 to nw = 10

271

50 100 150 200 250 300

0.005

0.01

0.015

0.02

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Train

Test

0 50 100 150 200 250 300
0

0.02

0.04

0.06

B
a
rr

ie
r

F
u
n
c
ti
o
n
 O

u
tp

u
t
M

S
E

0 50 100 150 200 250 300

Number of neurons

6

8

10

12

L
o
s
s
 f
ro

m
 s

a
fe

 R
e
L
u
(L

fB
 +

 0
.0

1
)

10
-3

Figure 8.2: Generalization performance for the FNN models for characterizing unbounded unsafe
region utilizing various neurons.

for both training and testing datasets. The misclassification rate and output MSE for the training

dataset stay consistently low for nw≥ 10, where its misclassification rate is maintained below 0.018

and MSE output is maintained below 0.067 (this high point occurs at nw = 300). Misclassification

rate and output MSE in the testing dataset are consistently higher than the training dataset for

all variations of nw, which is expected as there exists a gap between the expected error and the

empirical error as shown in the generalization error analysis in this work. For the testing dataset,

misclassification rate stays below 0.04 and output MSE stays below 0.11 for nw ∈ [10,200] except

for the one-off case at nw = 25, which has a testing data misclassification rate of 7×10−2 and an

output MSE of 2.3× 10−1. Sometimes one-off cases of FNN models occur where their resulting

errors are higher than other FNN models of similar structure due to the stochastic nature of FNN

training and prediction. For nw > 200, it is seen that the testing errors in misclassification rate

and output MSE increase as nw increases while the training errors for these two metrics stay

consistently low. This is expected as the FNN model is essentially over-parametrized by too many

number of neurons, and while this improves the model’s ability to learn and fit existing data, it

becomes overfitted and therefore producing increasingly larger errors when applied to other data

samples that do not exist in the training set. The third error metric is the loss calculated from

ReLu(L f B̂(x)+ 0.01) for all safe x that satisfy LgB̂(x) = 0 in both training and testing datasets.

Although there are no obvious trends in the relation between this error and the number of neurons,

272

it is observed that the error in the training set stays below 1.008×10−2, while the highest error in

the testing set is at 1.154×10−2.

In the case of unbounded unsafe sets, all three error metrics achieve relatively low values

compared to the case of bounded unsafe sets due to the less challenging nature of unbounded

unsafe sets similar to a linear boundary. There are no obvious trends of errors increasing or

decreasing as the number of neurons increase because the errors are already maintained at a low

level (misclassification rate is kept under 2×10−2, output MSE is kept under 6×10−2, and L f B̂(x)

is kept under 1.107× 10−2, accounting for both training and testing errors). However, we do

observe that the gap between training and testing error generally increases as nw increases beyond

50. This may be due to model overfitting where the model is again parametrized with too many

neurons.

The probabilities of unsafe, unstable, and non-convergent closed-loop behavior under the

control of FNN-based CLBF-MPC built using FNN models with varying number of neurons in

the case of bounded unsafe set are shown in Fig. 8.3. In addition, the figure also shows the

probability of any of these three behaviors occurring. It is demonstrated that the probability

decreases drastically for nw > 2 and reaches its minimum at nw = 15. It is also noted that the

instances of non-convergence also increases for nw ≥ 250, which is consistent with the trend of

testing error and generalization error gap increasing for overfitted models with nw > 200.

To better illustrate how FNN models trained with insufficient number of neurons may impact

the closed-loop performance of the FNN-CLBF-MPC, Fig. 8.4 compares two state trajectories

starting from the same initial condition, one under an FNN barrier function trained with 15 neurons

(blue), and one under an FNN barrier function trained with 2 neurons (red). The FNN barrier

function trained with 2 neurons, which has much higher errors and probabilities of instability

and violation of safety, falsely identifies all states within this time-series trajectory as “unsafe”

(labeled by diamond markers), including the initial condition x0. Therefore, it is shown to produce

a closed-loop trajectory that fails to navigate the state around the unsafe region. The closed-loop

state enters the unsafe region and struggles to leave within the simulation period. This shows an

instance of unsafe and non-convergent behavior amongst the 83 runs of closed-loop simulations

starting from different initial conditions. On the other hand, with an FNN barrier function trained

with 15 neurons, starting from the same initial condition, the closed-loop state of the CSTR process

is able to converge to the terminal set within the simulation period and avoid entering the unsafe

region H ′. All states within this trajectory are correctly classified as “safe”, which is labeled by

the circle markers.

273

0 50 100 150 200 250 300

Number of neurons

0

0.02

0.04

0.06

0.08

0.1

0.12

P
ro

b
a

b
ili

ty

Any of the 3

Unsafe

Unstable

No Convergence

Figure 8.3: Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop
control of the FNN-based CLBF-MPC for FNN models trained with varying neurons in the case
of bounded unsafe region.

The probabilities of unsafe, unstable, and non-convergent closed-loop behavior in the presence

of unbounded unsafe regions are shown in Fig. 8.5. Since all models have low misclassification

rate and low barrier function output MSE, the number of occurrences of such unsafe, unstable,

or non-convergent trajectories is zero for various FNN models trained with different number of

neurons. In other words, all of the closed-loop simulation runs starting from 74 different initial

conditions are able to converge to the terminal set within the simulation period while not entering

the unsafe region and not exiting the stability region.

8.5.4 Varying number of layers

The relation between model depths and generalization performance are also studied, where FNN

models with various number of layers from nl = 1 to nl = 20 are constructed with 10 neurons

within each hidden layer. The same data generation and sampling method is used as in the case

study of varying number of neurons. The generalization performance for FNN models with various

number of layers for both cases of bounded and unbounded unsafe sets are shown in Fig. 8.6 and

Fig. 8.7 respectively.

274

-3 -2 -1 0 1 2 3

-100

-80

-60

-40

-20

0

20

40

60

80

100

Figure 8.4: Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function
trained with 15 neurons (blue) vs. 2 neurons (red), where states classified as safe by each FNN
model are labelled by circle markers, and states classified as unsafe by each FNN model are
labelled by diamond markers.

In the case of bounded unsafe sets, the misclassification rate and the output MSE for the testing

dataset are maintained below 5.6×10−2 and 1.79×10−1 respectively for layers nl = 1 to nl = 12,

and the testing errors are shown to be higher than the training errors for all layers. For layers nl ≥
15, the generalization error gap between testing and training error drastically increases, which can

be attributed to the model being overfitted, thus unable to generalize to new data as effectively. It is

also observed that both training and testing error increase as the number of layer increases for nl ≥
15. This is a common phenomenon that has been seen in neural networks with increasing depth;

some possible explanations include: the network may be not able to find an appropriate mapping

between two consecutive layers and becomes hard to optimize, or higher-level layers may lose

access to important lower-level layer features. However, this remains a topic that is continuously

studied by researchers. For the third error metric which assesses the negative definiteness of L f B̂,

all models produced an average ReLu(L f B̂(x)+0.01) of less than 0.01 in both training and testing

datasets, and this error is maintained under 2.8×10−4 in both training and testing sets for models

with nl ≥ 2. This shows that an FNN of at least 2 layers is needed.

In the case of unbounded unsafe sets, the resulting training and testing misclassification rate

and output MSE are again sporadic because their values are already low for all layers. The highest

misclassification rate and output MSE are 1.37× 10−2 and 3.65× 10−2 respectively, which are

275

0 50 100 150 200 250 300

Number of neurons

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
P

ro
b

a
b

ili
ty

Any of the 3

Unsafe

Unstable

No Convergence

Figure 8.5: Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop
control of the FNN-based CLBF-MPC for FNN models trained with varying neurons in the case
of unbounded unsafe regions.

obtained at nl = 5. For the first two error metrics, the testing dataset consistently yields a higher

error than the training dataset, which agrees with the theoretical development of Section 8.3. The

training loss from ReLu(L f B̂+ 0.01) is oddly higher than the testing losses for nl = 1,2,3. The

highest loss of this error metric is 0.0109 for training and 6.8× 10−3 for testing at nl = 2. For

nl ≥ 3, L f B̂(x) < 0,x ∈ {Uρ |LgB̂(x) = 0} holds for both training and testing datasets. For this

particular study, Fig. 8.7 shows that it is best to choose an FNN built with 4 layers.

Closed-loop probability studies are also conducted for both bounded and unbounded unsafe

sets. For bounded unsafe sets, the probability of non-convergent behavior starts increasing for nl ≥
12, and the probability of unsafe, unstable behavior starts increasing for nl ≥ 15. The probabilities

are plotted against varying FNN depth in Fig. 8.8. This is consistent with the generalization error

276

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Train

Test

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

B
a
rr

ie
r

F
u
n
c
ti
o
n
 O

u
tp

u
t
M

S
E

0 2 4 6 8 10 12 14 16 18 20

Number of layers

0

0.005

0.01

L
o
s
s
 f
ro

m
 s

a
fe

 R
e
L
u
(L

fB
 +

 0
.0

1
)

Figure 8.6: Generalization performance for the FNN models for characterizing bounded unsafe
regions utilizing various layers.

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Train

Test

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

B
a
rr

ie
r

F
u
n
c
ti
o
n
 O

u
tp

u
t
M

S
E

0 2 4 6 8 10 12 14 16 18 20

Number of layers

0

0.005

0.01

L
o
s
s
 f
ro

m
 s

a
fe

 R
e
L
u
(L

fB
 +

 0
.0

1
)

Figure 8.7: Generalization performance for the FNN models for characterizing unbounded unsafe
region utilizing various layers.

performance, where the model becomes overfitted as the number of layer increases beyond nl ≥
15, and the training error, the testing error, as well as the generalization error gap all increase.

The larger the generalization error gap, the less likely that closed-loop stability and safety can be

guaranteed, thus the occurrences of unstable, unsafe, and non-convergent behavior increase.

277

0 2 4 6 8 10 12 14 16 18 20

Number of layers

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b
ili

ty

Any of the 3

Unsafe

Unstable

No Convergence

Figure 8.8: Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop
control of the FNN-based CLBF-MPC for FNN models trained with varying layers in the case
of bounded unsafe region.

We further demonstrate the difference in closed-loop performance between two models trained

with different number of layers for systems with bounded unsafe sets in state space. Fig. 8.9 shows

two state profiles under the FNN-CLBF-MPC, one of them has an FNN barrier function trained

with 2 layers (blue), and the other one has an FNN barrier function trained with 18 layers (red).

Along the red-colored state trajectory, all state values are falsely identified as “unsafe” by the

18-layer FNN barrier function, causing the closed-loop state to move very slowly, eventually into

the unsafe region and unable to escape. The blue-colored trajectory starts from the same initial

conditon, and is driven inside the terminal set while avoiding the unsafe set successfully. Along

this trajectory, only one state at xT = [−1.2537,41.3475], which is outside the unsafe region, is

being falsely identified as “unsafe”. This is because the predicted unsafe region Ĥ characterized

by the FNN barrier function B̂(x) constructed using 2 layers turns out to be a superset of H ′,

which allows the MPC to act preemptively before the state actually enters H ′.

Similarly, the probability of unsafe, unstable, and non-convergent behaviors for the case of

unbounded unsafe regions are shown in Fig. 8.10. Due to the consistently low modeling error, the

probability of such behavior is zero across all variations of FNN depth.

278

-3 -2 -1 0 1 2 3

-100

-80

-60

-40

-20

0

20

40

60

80

100

Figure 8.9: Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function
trained with 2 layers (blue) vs. 18 layers (red), where states classified as safe by each FNN model
are labelled by circle markers, and states classified as unsafe by each FNN model are labelled by
diamond markers.

8.5.5 Varying training data sample size

Lastly, the number of training data sample size is varied to examine its impact on the generalization

error and closed-loop performance. The same data generation method is applied with the exception

of varying the discretization grid size along each dimension of x from nd = 10,20,30, ...,450,500.

The resulting datasets range from having a total sample size of m = 38 to m = 94251. The

same neural network structure is used, consisting of 2 hidden layers of 10 neurons each.

Fig. 8.11-Fig. 8.12 illustrate the three error metrics in training and testing datasets for the bounded

and unbounded unsafe sets respectively.

In the case of bounded unsafe regions, it is seen that for training data sample size between

m = 38 to m = 3775, both training and testing sets produce high misclassification rate and the

output MSE. The testing errors are higher than the testing errors with a generalization error gap,

and the magnitude of these errors as well as the generalization error gap between training and

testing sets decrease as the sample size increases. This is aligned with theoretical derivations

as larger sample size results in improved model accuracy and reduced generalization error. The

generalization gap, which captures the difference between expected error (testing dataset) and

empirical error (training dataset), is roughly proportional to 1√
m as indicated by Eq. 8.19. This

279

0 2 4 6 8 10 12 14 16 18 20

Number of layers

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
P

ro
b

a
b

ili
ty

Any of the 3

Unsafe

Unstable

No Convergence

Figure 8.10: Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop
control of the FNN-based CLBF-MPC for FNN models trained with varying layers in the case of
unbounded unsafe regions.

is consistent with the trend observed here where the decrease is drastic when m is small, and

reaches a plateau as m increases to larger values. For data sample size m≥ 8499, both training and

testing errors in the first two metrics stay consistently low below 1.8× 10−2 and 5.6× 10−2 for

misclassification and MSE respectively, and no significant improvement is seen beyond m≥ 8499.

For the losses calculated from ReLu(L f B̂(x)+ 0.01), it is observed that both training and testing

errors are able to achieve extremely low values for m = 38 to m = 3775 where the misclassification

rate and MSE are high. This may be because the data samples are too few for the FNN to learn

the underlying relation between input and output, and therefore it fails to minimize L1 and only

stresses on satisfying L2. The maximum ReLu(L f B̂(x)+ 0.01) for all models is 7.79× 10−4 and

therefore the expected L f B̂(x) stays below 0 for all models.

280

0 1 2 3 4 5 6 7 8 9 10

10
4

0

0.05

0.1

0.15

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Train

Test

0 1 2 3 4 5 6 7 8 9 10

10
4

0

0.1

0.2

0.3

0.4

B
a
rr

ie
r

F
u
n
c
ti
o
n
 O

u
tp

u
t
M

S
E

0 1 2 3 4 5 6 7 8 9 10

Number of Training Data Samples 10
4

0

2

4

6

8

L
o
s
s
 f
ro

m
 s

a
fe

 R
e
L
u
(L

fB
 +

 0
.0

1
)

10
-4

Figure 8.11: Generalization performance for the FNN models for characterizing bounded unsafe
regions utilizing various data sample size.

0 1 2 3 4 5 6 7 8 9

10
4

0

0.05

0.1

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Train

Test

0 1 2 3 4 5 6 7 8 9

10
4

0

0.05

0.1

0.15

0.2

B
a
rr

ie
r

F
u
n
c
ti
o
n
 O

u
tp

u
t
M

S
E

0 1 2 3 4 5 6 7 8 9

Number of training data samples 10
4

0

0.005

0.01

L
o
s
s
 f
ro

m
 s

a
fe

 R
e
L
u
(L

fB
 +

 0
.0

1
)

Figure 8.12: Generalization performance for the FNN models for characterizing unbounded unsafe
region utilizing various data sample size.

In the case of unbounded unsafe regions, it is similarly seen in Fig. 8.12 that the testing error

and generalization error gap for misclassification rate and output MSE at the smallest sample size

m = 38 is drastically higher than the other FNN models trained with larger training sample size,

and they reach a low, stable level after m ≥ 3199. For the loss term of ReLu(L f B̂(x)+ 0.01), all

281

losses stay below 9.27×10−3, which means that the expected L f B̂(x)< 0 for all models.

We also simulate closed-loop runs starting from various initial conditions within the operating

region to assess probabilities of unstable, unsafe, and non-convergent behaviors. It is shown in

Fig. 8.13 that the probabilities of unsafe and non-convergent instances drop to 0 for m ≥ 3775,

and the probability of unsafe instances is also in general lower when the sample size is larger.

This is better demonstrated in the comparison of two closed-loop trajectories shown in Fig. 8.14

where the closed-loop state under an FNN model trained with 152 samples (red) and under an

FNN model trained with 8499 samples (blue) are plotted together. The FNN model trained with

152 samples incorrectly classifies the initial condition as well as many states around the unsafe

region as “unsafe” (diamond markers), and the closed-loop state under this FNN-CLBF-MPC

enters the unsafe region and eventually traverses across the unsafe region, exiting on the other side.

The closed-loop state continues to migrate towards terminal set, where eventually the FNN model

correctly identifies the state as being “safe” (labeled by circle markers), and the closed-loop state

ultimately is driven inside the terminal set. The closed-loop state along the trajectory controlled

by the FNN-CLBF-MPC trained with 8499 samples are all correctly classified as “safe”, and the

MPC is able to quickly drive and maintain the state inside the terminal set in a stable and safe

manner. Closed-loop simulations are also conducted starting from various initial conditions inside

the operating region for the unbounded unsafe sets, and the probabilities of any of these undesirable

instances occurring are zero for all models, as shown in Fig. 8.15.

282

0 1 2 3 4 5 6 7

Number of training data samples 10
4

0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a
b
ili

ty

Any of the 3

Unsafe

Unstable

No Convergence

Figure 8.13: Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop
control of the FNN-based CLBF-MPC for FNN models trained with varying data sample size in
the case of bounded unsafe region.

-3 -2 -1 0 1 2 3

-100

-80

-60

-40

-20

0

20

40

60

80

100

Figure 8.14: Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function
trained with 8499 data samples (blue) vs. 152 data samples (red), where states classified as safe by
each FNN model are labelled by circle markers, and states classified as unsafe by each FNN model
are labelled by diamond markers.

283

0 1 2 3 4 5 6 7 8 9 10

Number of training size 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty

Any of the 3

Unsafe

Unstable

No Convergence

Figure 8.15: Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop
control of the FNN-based CLBF-MPC for FNN models trained with varying data sample size in
the case of unbounded unsafe regions.

284

Remark 8.3. As shown in Theorem 8.2, the generalization performance of the FNN model depends

on a number of factors, including the sample size m, the network weight matrix bounds BW , the

bound on the possible values of state vector as inputs to the FNN BX , the depth of the neural

network d, the output dimension dy and the input dimension dx. In this study, we have demonstrated

case study results on the impact of neural network hypothesis class complexity (depth and width)

and the training sample size m on the overall generalization and closed-loop performance. As an

extension to this study, one may also study the impact of BW , BX , which have been investigated

in [126], or dx, by adjusting the number of input features if possible.

285

Chapter 9

Conclusion

This dissertation discusses a number of different designs of machine-learning-based MPC

systems to improve cybersecurity and safe operation of nonlinear chemical processes. Firstly,

machine-learning-based detection schemes are proposed and integrated with various control

systems such as a two-tier LMPC system and EMPC system with attack-resilient operation

strategies. The impact of different types of cyber-attacks on distributed and decentralized MPC

systems are also explored, and a machine-learning-based detector is implemented to identify

the presence or location of the attack. Next, data-driven models are developed using machine

learning methods for nonlinear dynamic processes consisting of multiple sub-processes, and they

are incorporated in distributed and decentralized MPC systems with closed-loop stability analyses.

A Control Lyapunov-Barrier Function (CLBF) is also utilized in the design of a distributed MPC

system to demonstrate guaranteed closed-loop stability and operational safety properties for all

sub-systems in the nonlinear process. Furthermore, machine learning techniques are used to

characterize a CLBF with verified conditions, and control laws designed based on this CLBF are

able to ensure closed-loop stability and safety for a nonlinear process. Lastly, the generalization

error of this machine-learning-based CLBF is assessed using statistical learning theories, and the

probabilistic closed-loop performance of the CLBF-MPC is evaluated.

In Chapter 2, a cyber-secure control architecture for nonlinear chemical processes

incorporating secure lower-tier explicit feedback controllers and an upper-tier model predictive

controller was proposed. On top of the stabilizing lower-tier controllers, the upper-tier LMPC

contributed to better closed-loop performance by using networked sensor measurements which

may be vulnerable to cyber-attacks. A neural-network-based detector is integrated with the two-tier

control architecture such that the control system can be reconfigured to stabilize the process at the

286

original steady-state upon detection of a cyber-attack. Neural-network-based detection algorithms

were developed and have proven their success during online implementation in detecting the

presence of cyber-attacks when various types of cyber-attacks were applied on multiple sensors.

Four feed-forward neural networks were trained and tested under nominal and noisy operating

conditions, all of which achieved a detection accuracy of over 91%. Through the application of the

proposed detection and mitigation methods on a multivariable process, this work demonstrated the

effectiveness of machine-learning-based methods in developing algorithms used for cyber-attack

diagnosis and cyber-defense, as well as the robustness of the proposed two-tier control architecture

in maintaining cyber-security.

In Chapter 3, the secure operation of nonlinear chemical processes under economic model

predictive control was presented via the design of a secure operating region, resilient control

strategies, and a neural-network-based cyber-attack detector. Considering a general class of

nonlinear systems, a resilient Lyapunov-based Economic Model Predictive Controller with

combined closed-loop and open-loop control action implementation was developed at the cost

of reduced total economic gain. Through simulating a continuously stirred tank reactor process,

it was demonstrated that the proposed control strategy was effective in maintaining process

stability against particular types of malicious cyber-attacks, namely min-max and surge attacks,

while achieving comparable economic performance compared to nominal operation under no

attacks. Two neural-network-based cyber-attack detectors were constructed to detect the presence

or distinguish the type of a cyber-attack, and the time-varying trajectory of a nonlinear function

of sensor measurements were used as the input variables for the detection algorithm. The detector

was able to provide a diagnosis at the end of each LEMPC operation period, and simulation results

demonstrated that min-max, surge, and geometric attacks could be successfully detected.

As cyber-attacks pose critical risks to large-scale industrial plants, the effects of some

standard types of sensor cyber-attacks on the operation of nonlinear processes under centralized,

decentralized and distributed model predictive control systems were analyzed in Chapter 4.

Decentralized control systems have been demonstrated to be more robust than distributed and

centralized control systems against sensor cyber-attacks. Using sensor data, a feed-forward neural

network model was trained with adequate accuracy to detect the presence of cyber-attacks and

was implemented online with a moving horizon detection window. Simulation studies were

carried out on a nonlinear chemical process example to demonstrate the effectiveness of the

combined architecture of the decentralized control system and the machine-learning-based detector

in ensuring the closed-loop stability and the cyber-security of the overall closed-loop process.

287

In Chapter 5.1, we first presented the design of distributed model predictive control systems

for nonlinear processes using a machine-learning-based model, which was used as the prediction

model to capture nonlinear dynamic behavior. Closed-loop stability and performance properties

were analyzed for the sequential and iterative distributed model predictive control systems.

Extensive open-loop data within the stability region of the nonlinear process characterized by

Lyapunov-based control methods were collected to train LSTM network models with a sufficiently

small modeling error with respect to the actual nonlinear process model. It was shown that both

sequential distributed LMPC system and iterative distributed LMPC system using the LSTM

network model were able to achieve efficient real-time computation, and ensure closed-loop

state boundedness and convergence to the origin. Working with a nonlinear chemical process

network example, the distributed LMPC systems using the LSTM network model were able to

obtain similar closed-loop performance as the distributed LMPC systems using the first-principles

model, as well as reduced computation time when compared to the closed-loop results of the

centralized LMPC system using the LSTM network model. Following this, in Chapter 5.2 we also

presented the design of decentralized model predictive control systems for nonlinear processes

using machine-learning models, which were developed separately to capture the nonlinear dynamic

behavior of independent subsystems. The nonlinear process was divided into multiple subsystems,

and the closed-loop stability and performance properties of the proposed decentralized framework

with respect to the overall process were analyzed. Using Lypuanov-based control methods to

characterize the stability region of the nonlinear process, extensive open-loop data were collected

to train one LSTM network model for each subsystem with a sufficiently small modeling error. It

was shown that the decentralized LMPCs using LSTM models were able to ensure closed-loop

state boundedness and convergence to a small neighborhood around the origin for all process

states inside the stability region while achieving efficient real-time computation. Using a nonlinear

chemical process example, the decentralized LMPCs using LSTM models were able to obtain

similar closed-loop performance as the same decentralized LMPCs using first-principles models.

Furthermore, they were able to significantly reduce the computation time while ensuring similar

closed-loop results when compared to the case of the centralized LMPC using an LSTM model for

the overall process.

In Chapter 6, we have demonstrated that nonlinear systems subject to input constraints could

be stabilized by a CLBF-MPC while not entering unsafe regions where the barrier function was

constructed using an FNN model and the predictive model within MPC was obtained using an

RNN model. A Control Barrier Function was first characterized by building an FNN model with

288

unique structures and properties, and was then trained and validated using discretized data collected

from a conservative rendition of unsafe and safe regions. Given sufficiently small bounded

modeling errors with the two NN models, the proposed CLBF-MPC was able to meet its control

objective of ensuring simultaneous stability and safety for all initial conditions within a subset

of the stability region under sample-and-hold control action implementation. The effectiveness

of the machine-learning-based CLBF-MPC was demonstrated using a nonlinear chemical process

example with a bounded unsafe set.

We have shown theoretical analysis that nonlinear systems with input constraints and consisting

of multiple subsystems can be stabilized by a CLBF-DMPC while not crossing the boundary of

unsafe regions in Chapter 7. A constrained CLBF is designed to characterize a stability region that

has no intersection with the unsafe regions, and subsequently used to design CLBF-based explicit

control laws for each subsystem. A CLBF-DMPC, which can be calculated either sequentially

or iteratively, is presented and proven to have recursive feasibility as well as stability and safety

properties with considerations of sample-and-hold control action implementation and presence of

bounded disturbances. A modified DMPC structure is also studied and simulated for particular

considerations of nonlinear subsystems. Lastly, the effectiveness of the proposed CLBF-DMPC

system is demonstrated on a two-CSTR process with both bounded and unbounded unsafe sets.

Lastly, in Chapter 8, a machine-learning-based Control Lyapunov-Barrier Function is used

to design model predictive controllers for nonlinear systems with the presence of bounded and

unbounded unsafe sets. Specifically, an FNN model is used to construct the Control Barrier

Function, for which the generalization error bound is analyzed using the Rademacher complexity

method from statistical machine learning theory. Subsequently, probabilistic stability and safety is

established for CLBF-based control laws designed using this FNN-CBF, which is then extended

to the sample-and-hold implementation of an FNN-CLBF-MPC. We demonstrate the impact that

structural complexity and sample size of the FNN model have on the generalization performance,

as well as the probabilities of closed-loop stability and safety in the cases of bounded and

unbounded unsafe sets through a chemical reactor example.

289

Bibliography

[1] S. Agrawal and J. Agrawal. Survey on anomaly detection using data mining techniques.
Procedia Computer Science, 60:708–713, 2015.

[2] A. Ahlén, J. Akerberg, M. Eriksson, A. J. Isaksson, T. Iwaki, K. H. Johansson, S. Knorn,
T. Lindh, and H. Sandberg. Toward wireless control in industrial process automation: A
case study at a paper mill. IEEE Control Systems Magazine, 39:36–57, 2019.

[3] R. K. Al Seyab and Y. Cao. Nonlinear system identification for predictive control using
continuous time recurrent neural networks and automatic differentiation. Journal of Process
Control, 18:568–581, 2008.

[4] F. Albalawi, H. Durand, and P. D. Christofides. Process operational safety using model
predictive control based on a process safeness index. Computers & Chemical Engineering,
104:76–88, 2017.

[5] A. Alessio, D. Barcelli, and A. Bemporad. Decentralized model predictive control of
dynamically coupled linear systems. Journal of Process Control, 21:705–714, 2011.

[6] S. Amin, X. Litrico, S. Sastry, and A. M. Bayen. Cyber security of water scada
systems—part i: Analysis and experimentation of stealthy deception attacks. IEEE
Transactions on Control Systems Technology, 21:1963–1970, 2012.

[7] R. Amrit, J. B. Rawlings, and D. Angeli. Economic optimization using model predictive
control with a terminal cost. Annual Reviews in Control, 35:178–186, 2011.

[8] M. R. Asghar, Q. Hu, and S. Zeadally. Cybersecurity in industrial control systems: Issues,
technologies, and challenges. Computer Networks, 165:106946, 2019.

[9] Y. Ashibani and Q. H. Mahmoud. Cyber physical systems security: Analysis, challenges
and solutions. Computers & Security, 68:81–97, 2017.

[10] L. Bakule. Decentralized control: An overview. Annual Reviews in Control, 32:87–98,
2008.

[11] A. Bemporad, M. Heemels, and M. Johansson. Networked control systems, volume 406.
Springer, 2010.

[12] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, NY, 2006.

290

[13] R. Bobiti and M. Lazar. A sampling approach to finding Lyapunov functions for nonlinear
discrete-time systems. In In Proceedings of the 2016 European Control Conference (ECC),
pages 561–566, Aalborg, Denmark, 2016.

[14] A. L. Buczak and E. Guven. A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Communications Surveys & Tutorials,
18:1153–1176, 2015.

[15] F. Burden and D. Winkler. Bayesian regularization of neural networks. In Artificial Neural
Networks, pages 23–42. Springer, New York, NY, 2008.

[16] A. A. Cárdenas, S. Amin, Z. S. Lin, Y. L. Huang, C. Y. Huang, and S. Sastry. Attacks against
process control systems: risk assessment, detection, and response. In Proceedings of the 6th
ACM symposium on information, computer and communications security, pages 355–366,
Hong Kong, China, 2011.

[17] B. Carter, S. Adams, G. Bakirtzis, T. Sherburne, P. Beling, B. Horowitz, and C. Fleming. A
preliminary design-phase security methodology for cyber–physical systems. Systems, 7:21,
2019.

[18] M. Chamanbaz, F. Dabbene, and R. Bouffanais. A physics-based attack detection technique
in cyber-physical systems: A model predictive control co-design approach. In Proceedings
of the Australian & New Zealand Control Conference (ANZCC), pages 18–23, Auckland,
New Zealand, 2019.

[19] Y. C. Chang, N. Roohi, and S. Gao. Neural Lyapunov control. arXiv preprint
arXiv:2005.00611, 2020.

[20] J. Chen and F. Pan. Dynamic modeling of biotechnical process based on online support
vector machine. Journal of Computers, 4:251, 2009.

[21] S. Chen, Z. Wu, and P. D. Christofides. Cyber-attack detection and resilient operation
of nonlinear processes under economic model predictive control. Computers & Chemical
Engineering, 136:106806, 2020.

[22] S. Chen, Z. Wu, and P. D. Christofides. A cyber-secure control-detector architecture for
nonlinear processes. AIChE Journal, 66:e16907, 2020.

[23] S. Chen, Z. Wu, and P. D. Christofides. Decentralized machine-learning-based predictive
control of nonlinear processes. Chemical Engineering Research and Design, 162:45–60,
2020.

[24] S. Chen, Z. Wu, and P. D. Christofides. Cyber-security of centralized, decentralized, and
distributed control-detector architectures for nonlinear processes. Chemical Engineering
Research and Design, 165:25–39, 2021.

[25] S. Chen, Z. Wu, and P. D. Christofides. Machine-learning-based construction of barrier
functions and models for safe model predictive control. AIChE Journal, e17456, 2021.

291

[26] P. D. Christofides, J. F. Davis, N. H. El-Farra, D. Clark, K. R. D. Harris, and J. N. Gipson.
Smart plant operations: Vision, progress and challenges. AIChE Journal, 53:2734–2741,
2007.

[27] P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. Liu. Distributed model
predictive control: A tutorial review and future research directions. Computers & Chemical
Engineering, 51:21–41, 2013.

[28] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. In Proceedings of the NIPS Workshop on Deep
Learning and Representation Learning, Montreal, Canada, 2014.

[29] A. Clark. Control barrier functions for complete and incomplete information stochastic
systems. In Proceedings of the 2019 American Control Conference, pages 2928–2935,
Philadelphia, PA, 2019.

[30] D. A. Crowl and J. F. Louvar. Chemical process safety-fundamentals with applications.
Process Safety Progress, 30:408–409, 2011.

[31] P. Daoutidis, W. Tang, and A. Allman. Decomposition of control and optimization problems
by network structure: Concepts, methods, and inspirations from biology. AIChE Journal,
65:e16708, 2019.

[32] R. Davies. Industry 4.0: Digitalisation for productivity and growth. 2015.

[33] R. Dey and F. M. Salem. Gate-variants of gated recurrent unit (GRU) neural networks. In
Proceedings of the 60th IEEE International Midwest Symposium on Circuits and Systems,
pages 1597–1600, Medford, MA, USA, 2017.

[34] A. Draeger, S. Engell, and H. Ranke. Model predictive control using neural networks. IEEE
Control Systems Magazine, 15:61–66, 1995.

[35] H. Durand. A nonlinear systems framework for cyberattack prevention for chemical process
control systems. Mathematics, 6:169, 2018.

[36] M. Ellis, H. Durand, and P. D. Christofides. A tutorial review of economic model predictive
control methods. Journal of Process Control, 24:1156–1178, 2014.

[37] E. Eryarsoy, G. J. Koehler, and H. Aytug. Using domain-specific knowledge in
generalization error bounds for support vector machine learning. Decision Support Systems,
46:481–491, 2009.

[38] P. Falugi and D. Q. Mayne. Getting robustness against unstructured uncertainty: a
tube-based mpc approach. IEEE Transactions on Automatic Control, 59:1290–1295, 2013.

[39] M. G. Forbes, R. S. Patwardhan, H. Hamadah, and R. B. Gopaluni. Model predictive control
in industry: Challenges and opportunities. IFAC Papers OnLine, 48:531–538, 2015.

[40] K. Funahashi and Y. Nakamura. Approximation of dynamical systems by continuous time
recurrent neural networks. Neural Networks, 6:801–806, 1993.

292

[41] H. P. Gavin. The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting
problems, 2019.

[42] J. Goh, S. Adepu, M. Tan, and Z. S. Lee. Anomaly detection in cyber-physical systems
using recurrent neural networks. In Proceedings of the 18th IEEE International Symposium
on High Assurance Systems Engineering, pages 140–145, Singapore, 2017.

[43] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural
networks. In Proceedings of the Conference On Learning Theory, pages 297–299,
Stockholm, Sweden, 2018.

[44] K. Gurney. An introduction to neural networks. CRC press, London, 2014.

[45] C. Hassan, M. S. Khan, and M. A. Shah. Comparison of machine learning algorithms in
data classification. In Proceedings of the 24th International Conference on Automation and
Computing (ICAC), pages 1–6, Newcastle upon Tyne, United Kingdom, 2018.

[46] M. Heidarinejad, J. Liu, and P. D. Christofides. Economic model predictive control of
nonlinear process systems using Lyapunov techniques. AIChE Journal, 58:855–870, 2012.

[47] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger. Learning-based model
predictive control: Toward safe learning in control. Annual Review of Control, Robotics,
and Autonomous Systems, 3:269–296, 2020.

[48] R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and S. Pan. Machine
learning for power system disturbance and cyber-attack discrimination. In Proceedings of
the 7th International Symposium on Resilient Control Systems, pages 1–8, Denver, CO,
2014. IEEE.

[49] D. Hioe, N. Hudon, and J. Bao. Decentralized nonlinear control of process networks
based on dissipativity—a hamilton–jacobi equation approach. Journal of Process Control,
24:172–187, 2014.

[50] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9:1735–1780, 1997.

[51] A. Hoehn and P. Zhang. Detection of replay attacks in cyber-physical systems. In
Proceedings of the 2016 American Control Conference (ACC), pages 290–295, Boston, MA,
2016.

[52] L. Huang, X. Nguyen, M. N. Garofalakis, J. M. Hellerstein, M. I. Jordan, A. D. Joseph,
and N. Taft. Communication-efficient online detection of network-wide anomalies. In
Proceedings of the 2007 IEEE INFOCOM, volume 7, pages 134–142, Anchorage, Alaska,
2007.

[53] N. Hudon and J. Bao. Dissipativity-based decentralized control of interconnected nonlinear
chemical processes. Computers & Chemical Engineering, 45:84–101, 2012.

293

[54] A. Humayed, J. Lin, F. Li, and B. Luo. Cyber-physical systems security—a survey. IEEE
Internet of Things Journal, 4:1802–1831, 2017.

[55] D. Jakubovitz, R. Giryes, and M. Rodrigues. Generalization error in deep learning. In
Compressed sensing and its applications, pages 153–193. Springer, 2019.

[56] M. Jankovic. Combining control Lyapunov and barrier functions for constrained
stabilization of nonlinear systems. In Proceedings of the American Control Conference,
pages 1916–1922, Seattle, Washington, 2017.

[57] L. Jin, P. N. Nikiforuk, and M. M. Gupta. Approximation of discrete-time state-space
trajectories using dynamic recurrent neural networks. IEEE Transactions on Automatic
Control, 40:1266–1270, 1995.

[58] W. Jin, Z. Wang, Z. Yang, and S. Mou. Neural certificates for safe control policies. arXiv
preprint arXiv:2006.08465, 2020.

[59] K. N. Junejo and J. Goh. Behaviour-based attack detection and classification in cyber
physical systems using machine learning. In Proceedings of the 2nd ACM International
Workshop on Cyber-Physical System Security, pages 34–43, Xi’an, China, 2016.

[60] M. J. Khojasteh, V. Dhiman, M. Franceschetti, and N. Atanasov. Probabilistic safety
constraints for learned high relative degree system dynamics. In Learning for Dynamics
and Control, pages 781–792. PMLR, 2020.

[61] F. Khorrami, P. Krishnamurthy, and R. Karri. Cybersecurity for control systems: A
process-aware perspective. IEEE Design & Test, 33:75–83, 2016.

[62] J. Kim, J. Kim, H. L. T. Thu, and H. Kim. Long short term memory recurrent neural
network classifier for intrusion detection. In Proceedings of the International Conference
on Platform Technology and Service, pages 1–5, Jeju, Korea, 2016.

[63] D. Knittel, D. Gigan, and E. Laroche. Robust decentralized overlapping control of large
scale winding systems. In Proceedings of the 2002 American Control Conference, volume 3,
pages 1805–1810, Anchorage, AK, 2002.

[64] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P. A. Ioannou.
High-order neural network structures for identification of dynamical systems. IEEE
Transactions on Neural Networks, 6:422–431, 1995.

[65] P. Lee, A. Clark, L. Bushnell, and R. Poovendran. A passivity framework for modeling
and mitigating wormhole attacks on networked control systems. IEEE Transactions on
Automatic Control, 59:3224–3237, 2014.

[66] N. G. Leveson and G. Stephanopoulos. A system-theoretic, control-inspired view and
approach to process safety. AIChE Journal, 60:2–14, 2014.

[67] Y. Lin and E. D. Sontag. A universal formula for stabilization with bounded controls.
Systems and Control Letters, 16:393–397, 1991.

294

[68] L. Lindemann, H. Hu, A. Robey, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni.
Learning hybrid control barrier functions from data. arXiv preprint arXiv:2011.04112,
2020.

[69] F. Liu and Y. Yao. Modeling and analysis of networked control systems using hidden
markov models. In Proceedings of the International Conference on Machine Learning and
Cybernetics, volume 2, pages 928–931, 2005.

[70] J. Liu, X. Chen, D. Muñoz de la Peña, and P. D. Christofides. Sequential and iterative
architectures for distributed model predictive control of nonlinear process systems. part
I: Theory. In Proceedings of the 2010 American Control Conference, pages 3148–3155,
Baltimore, MD, 2010. IEEE.

[71] J. Liu, D. Muñoz de la Peña, and P. D. Christofides. Distributed model predictive control of
nonlinear process systems. AIChE Journal, 55:1171–1184, 2009.

[72] S. Liu, A. R. Kumar, J.F. Fisac, R. P. Adams, and P.J. Ramadge. Probf: Learning
probabilistic safety certificates with barrier functions. arXiv preprint arXiv:2112.12210,
2021.

[73] S. Liu, J. Liu, Y. Feng, and G. Rong. Performance assessment of decentralized control
systems: an iterative approach. Control Engineering Practice, 22:252–263, 2014.

[74] W. Luo, W. Sun, and A. Kapoor. Multi-robot collision avoidance under uncertainty with
probabilistic safety barrier certificates. Advances in Neural Information Processing Systems,
33:372–383, 2020.

[75] L. Magni and R. Scattolini. Stabilizing decentralized model predictive control of nonlinear
systems. Automatica, 42:1231–1236, 2006.

[76] Z. Marvi and B. Kiumarsi. Safe reinforcement learning: A control barrier function
optimization approach. International Journal of Robust and Nonlinear Control,
31:1923–1940, 2021.

[77] A. Maurer. A vector-contraction inequality for rademacher complexities. In Proceedings
of the International Conference on Algorithmic Learning Theory, pages 3–17, Bari, Italy,
2016.

[78] D. Q. Mayne, E. C. Kerrigan, E. J. Van Wyk, and P. Falugi. Tube-based robust
nonlinear model predictive control. International Journal of Robust and Nonlinear Control,
21:1341–1353, 2011.

[79] P. Mhaskar, N. H. El-Farra, and P. D. Christofides. Stabilization of nonlinear systems with
state and control constraints using Lyapunov-based predictive control. Systems & Control
Letters, 55:650–659, 2006.

[80] S. R. Mohanty, A. K. Pradhan, and A. Routray. A cumulative sum-based fault detector for
power system relaying application. IEEE Transactions on Power Delivery, 23:79–86, 2007.

295

[81] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT
press, 2018.

[82] D. Muñoz de la Peña and P. D. Christofides. Lyapunov-based model predictive control
of nonlinear systems subject to data losses. IEEE Transactions on Automatic Control,
53:2076–2089, 2008.

[83] B. Niu and J. Zhao. Barrier Lyapunov functions for the output tracking control of
constrained nonlinear switched systems. Systems & Control Letters, 62:963–971, 2013.

[84] O. Ogunmolu, X. Gu, S. Jiang, and N. Gans. Nonlinear systems identification using deep
dynamic neural networks. arXiv Preprint arXiv:1610.01439, 2016.

[85] S. Omar, A. Ngadi, and H. H. Jebur. Machine learning techniques for anomaly detection:
an overview. International Journal of Computer Applications, 79:33–41, 2013.

[86] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor. Machine learning
methods for attack detection in the smart grid. IEEE Transactions on Neural Networks and
Learning Systems, 27:1773–1786, 2015.

[87] D. B. Pourkargar, A. Almansoori, and P. Daoutidis. Comprehensive study of decomposition
effects on distributed output tracking of an integrated process over a wide operating range.
Chemical Engineering Research and Design, 134:553–563, 2018.

[88] S. M. Richards, F. Berkenkamp, and A. Krause. The Lyapunov neural network: Adaptive
stability certification for safe learning of dynamical systems. In Proceedings of the
Conference on Robot Learning, pages 466–476, Zurich, Switzerland, 2018.

[89] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni.
Learning control barrier functions from expert demonstrations. In Proceedings of the 59th
IEEE Conference on Decision and Control, pages 3717–3724, Jeju Island, South Korea,
2020.

[90] M. Z. Romdlony and B. Jayawardhana. Stabilization with guaranteed safety using control
Lyapunov–barrier function. Automatica, 66:39–47, 2016.

[91] B. Samanta and K. R. Al-Balushi. Artificial neural network based fault diagnostics of rolling
element bearings using time-domain features. Mechanical Systems and Signal Processing,
17:317–328, 2003.

[92] R. Scattolini. Architectures for distributed and hierarchical model predictive control–a
review. Journal of Process Control, 19:723–731, 2009.

[93] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[94] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45:2673–2681, 1997.

296

[95] T. Shon and J. Moon. A hybrid machine learning approach to network anomaly detection.
Information Sciences, 177:3799–3821, 2007.

[96] P. Sibi, S. A. Jones, and P. Siddarth. Analysis of different activation functions using back
propagation neural networks. Journal of Theoretical and Applied Information Technology,
47:1264–1268, 2013.

[97] J. Singh and M. J. Nene. A survey on machine learning techniques for intrusion detection
systems. International Journal of Advanced Research in Computer and Communication
Engineering, 2:4349–4355, 2013.

[98] E. D. Sontag. A ‘universal’ construction of artstein’s theorem on nonlinear stabilization.
Systems & Control Letters, 13:117–123, 1989.

[99] E. D. Sontag. Neural nets as systems models and controllers. In Proceedings of the Seventh
Yale Workshop on Adaptive and Learning Systems, pages 73–79, Yale University, New
Haven, CT, 1992.

[100] M. Srinivasan, A. Dabholkar, S. Coogan, and P. A. Vela. Synthesis of control barrier
functions using a supervised machine learning approach. In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 7139–7145, Las Vegas,
NV, 2020.

[101] B. T. Stewart, A.N. Venkat, J.B. Rawlings, S.J. Wright, and G. Pannocchia. Cooperative
distributed model predictive control. Systems & Control Letters, 59:460–469, 2010.

[102] H. T. Su, T. J. McAvoy, and P. Werbos. Long-term predictions of chemical processes
using recurrent neural networks: A parallel training approach. Industrial & Engineering
Chemistry Research, 31:1338–1352, 1992.

[103] Y. Sun and N. H. El-Farra. Quasi-decentralized model-based networked control of process
systems. Computers & Chemical Engineering, 32:2016–2029, 2008.

[104] Y. C. Sun and G. H. Yang. Robust event-triggered model predictive control for
cyber-physical systems under denial-of-service attacks. International Journal of Robust
and Nonlinear Control, 29:4797–4811, 2019.

[105] W. Tang and P. Daoutidis. Fast and stable nonconvex constrained distributed optimization:
the ELLADA algorithm. Optimization and Engineering, 23:259–301, 2022.

[106] K. P. Tee, S. S. Ge, and E. H. Tay. Barrier Lyapunov functions for the control of
output-constrained nonlinear systems. Automatica, 45:918–927, 2009.

[107] T. T. Tran, O. S. Shin, and J. H. Lee. Detection of replay attacks in smart grid systems.
In Proceedings of the 2013 International Conference on Computing, Management and
Telecommunications, pages 298–302, Ho Chi Min, Vietnam, 2013.

[108] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin. Intrusion detection by machine learning: A
review. Expert Systems with Applications, 36:11994–12000, 2009.

297

[109] J. V. Tu. Advantages and disadvantages of using artificial neural networks versus
logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology,
49:1225–1231, 1996.

[110] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.

[111] B. Vastag. Exabytes: Documenting the ‘digital age’and huge growth in computing capacity.
Washington Post, 2011.

[112] R. Vinayakumar, K. P. Soman, and P. Poornachandran. Applying convolutional neural
network for network intrusion detection. In Proceedings of the International Conference
on Advances in Computing, Communications and Informatics, pages 1222–1228, Udupi,
India, 2017.

[113] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–57,
2006.

[114] R. Wang and J. Bao. Distributed plantwide control based on differential dissipativity.
International Journal of Robust and Nonlinear Control, 27:2253–2274, 2017.

[115] A. Widodo and B. Yang. Support vector machine in machine condition monitoring and fault
diagnosis. Mechanical Systems and Signal Processing, 21:2560–2574, 2007.

[116] P. Wieland and F. Allgöwer. Constructive safety using control barrier functions. IFAC
Proceedings Volumes, 40:462–467, 2007.

[117] W. C. Wong, E. Chee, J. Li, and X. Wang. Recurrent neural network-based model predictive
control for continuous pharmaceutical manufacturing. Mathematics, 6:242, 2018.

[118] Z. Wu, F. Albalawi, J. Zhang, Z. Zhang, H. Durand, and P. D. Christofides. Detecting and
handling cyber-attacks in model predictive control of chemical processes. Mathematics,
6:173, 2018.

[119] Z. Wu, F. Albalawi, Z. Zhang, J. Zhang, H. Durand, and P. D. Christofides.
Control Lyapunov-barrier function-based model predictive control of nonlinear systems.
Automatica, 109:108508, 2019.

[120] Z. Wu, S. Chen, D. Rincon, and P. D. Christofides. Post cyber-attack state reconstruction for
nonlinear processes using machine learning. Chemical Engineering Research and Design,
159:248 – 261, 2020.

[121] Z. Wu and P. D. Christofides. Economic machine-learning-based predictive control of
nonlinear systems. Mathematics, 7:494, 2019.

[122] Z. Wu and P. D. Christofides. Handling bounded and unbounded unsafe sets in control
Lyapunov-barrier function-based model predictive control of nonlinear processes. Chemical
Engineering Research and Design, 143:140–149, 2019.

298

[123] Z. Wu and P. D. Christofides. Control Lyapunov-barrier function-based predictive control of
nonlinear processes using machine learning modeling. Computers & Chemical Engineering,
134:106706, 2020.

[124] Z. Wu, H. Durand, and P. D. Christofides. Safe economic model predictive control of
nonlinear systems. Systems & Control Letters, 118:69–76, 2018.

[125] Z. Wu, D. Rincon, and P. D. Christofides. Process structure-based recurrent neural network
modeling for model predictive control of nonlinear processes. Journal of Process Control,
89:74–84, 2020.

[126] Z. Wu, D. Rincon, Q. Gu, and P. D. Christofides. Statistical machine learning in model
predictive control of nonlinear processes. Mathematics, 9:1912, 2021.

[127] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine learning-based predictive
control of nonlinear processes. part I: Theory. AIChE Journal, 65:e16729, 2019.

[128] Z. Wu, A. Tran, D. Rincon, and P. D. Christofides. Machine learning-based predictive
control of nonlinear processes. part II: Computational implementation. AIChE Journal,
65:e16734, 2019.

[129] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness of control barrier functions
for safety critical control. IFAC-PapersOnLine, 48:54–61, 2015.

[130] S. Yaghoubi, G. Fainekos, and S. Sankaranarayanan. Training neural network controllers
using control barrier functions in the presence of disturbances. In Proceedings of the 2020
IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pages
1–6, Rhodes, Greece, 2020.

[131] Y. Yan, R. Wang, J. Bao, and C. Zheng. Robust distributed control of plantwide processes
based on dissipativity. Journal of Process Control, 77:48–60, 2019.

[132] Z. Yan and J. Wang. Model predictive control of nonlinear systems with unmodeled
dynamics based on feedforward and recurrent neural networks. IEEE Transactions on
Industrial Informatics, 8:746–756, 2012.

[133] S. Yin and O. Kaynak. Big data for modern industry: challenges and trends [point of view].
Proceedings of the IEEE, 103:143–146, 2015.

[134] X. Yin and J. Liu. Subsystem decomposition of process networks for simultaneous
distributed state estimation and control. AIChE Journal, 65:904–914, 2019.

[135] X. Yin, J. Zeng, and J. Liu. Forming distributed state estimation network from decentralized
estimators. IEEE Transactions on Control Systems Technology, 27:2430–2443, 2018.

[136] J. Zeng, B. Zhang, and K. Sreenath. Safety-critical model predictive control with
discrete-time control barrier function. In Proceedings of the American Control Conference,
pages 3882–3889, New Orleans, LA, 2021.

299

[137] J. Zhang and J. Liu. Distributed moving horizon state estimation for nonlinear systems with
bounded uncertainties. Journal of Process Control, 23:1281–1295, 2013.

[138] Z. Zhang, Z. Wu, D. Rincon, C. Garcia, and P. D. Christofides. Operational safety of
chemical processes via safeness-index based MPC: Two large-scale case studies. Computers
& Chemical Engineering, 125:204–215, 2019.

[139] H. Zhao, X. Zeng, T. Chen, and Z. Liu. Synthesizing barrier certificates using neural
networks. In Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control, pages 1–11, Sydney, Australia, 2020.

[140] J. Zhao, J. Wang, and L. Yin. Detection and control against replay attacks in smart grid.
In Proceedings of the 12th International Conference on Computational Intelligence and
Security, pages 624–627, Wuxi, China, 2016.

300

	Introduction
	Motivation
	Background
	Dissertation Objectives and Structure
	A Cyber-secure Control-Detector Architecture for Nonlinear Processes
	Preliminaries
	Nonlinear System Formulation
	Cyber-secure Two-tier Control Architecture
	Lower-tier Control System
	Upper-tier Model Predictive Control System
	Cyber-attack Design and Detection
	Attack Scenarios
	Types of Intelligent Cyber-attacks
	Machine-Learning-Based Detection of Cyber-attacks
	Mitigation Measures via Control System Reconfiguration
	Application to a Reactor-Reactor-Separator Process
	Process Description and Control System Design
	Cyber-attacks and Detector Training
	Cyber-attack Detection Results
	Cyber-attack Detection and Resilient Operation of Nonlinear Processes under Economic Model Predictive Control
	Preliminaries
	Nonlinear System Formulation
	Lyapunov-based Economic Model Predictive Control

	Cyber-secure LEMPC Operation Strategies
	Operation within Secure Operating Region

	Intelligent Cyber-Attacks
	Design of Cyber-attacks Adapted to Secure LEMPC Operation

	Attack-Resilient Combined Open-loop and Closed-loop Control
	Detection of Cyber-Attacks Targeting EMPC
	Choice of Detection Input Variable

	Application to a Nonlinear Chemical Process
	Process Description and Control System Design
	Resilient Operation of LEMPC
	Cyber-attack Resiliency Assessment
	Detectors Training and Testing
	Online Detection

	Cyber-Security of Centralized, Decentralized, and Distributed Control-Detector Architectures for Nonlinear Processes
	Preliminaries
	Notation
	Class of Systems
	Stability Assumptions

	Centralized, Decentralized, and Distributed Lyapunov-based Model Predictive Control
	Centralized LMPC
	Decentralized LMPC
	Distributed LMPC

	Intelligent Cyber-Attacks
	Design of Cyber-Attacks on Sensors
	Robustness of Decentralized LMPC against Cyber-Attacks

	Detection of Cyber-Attacks
	Online Detection

	Application to a Two-CSTR-in-Series Process
	Closed-loop Performance without Detection
	FNN Detector Modeling
	Closed-loop Operation with FNN Detector

	Machine Learning-Based Distributed Model Predictive Control of Nonlinear Processes
	Preliminaries
	Notation
	Class of Systems
	Stability Assumptions

	Long Short-Term Memory Network
	Lyapunov-based Control using LSTM Models

	Distributed LMPC using LSTM Network Models
	Sequential Distributed LMPC using LSTM Network Models
	Iterative Distributed LMPC using LSTM Network Models
	Sample-and-hold implementation of Distributed LMPC

	Application to a Two-CSTR-in-Series Process
	LSTM Network Development
	Closed-loop Model Predictive Control Simulations

	Decentralized Machine-Learning-Based Predictive Control of Nonlinear Processes
	Preliminaries
	Notation
	Class of Systems
	Stability Assumptions
	Long Short-Term Memory Neural Network
	Lyapunov-based Control using LSTM Models
	Decentralized LMPC using LSTM Models
	Sample-and-hold implementation of Decentralized LMPC
	Application to a Two-CSTR-in-Series Process
	LSTM Network Development
	Closed-loop Model Predictive Control Simulations
	Machine-Learning-Based Construction of Barrier Functions and Models for Safe Model Predictive Control
	Preliminaries
	Notation
	Class of Systems
	Stabilizability Assumptions Expressed via Lyapunov-based Control
	Process Modeled Using Recurrent Neural Network
	Control Barrier Function

	Construction of Barrier Function using Neural Networks
	Neural Network Structure and Training
	Effectiveness of NN-based Barrier Function

	Stabilization and safety via Control Lyapunov-Barrier Function
	Design of Constrained CLBF

	CLBF-based MPC using FNN CBF and RNN Prediction Model
	Formulation of CLBF-MPC

	Application to a Chemical Process Example
	Development of the RNN Model for the CSTR Process
	Development of the FNN Model for Barrier Function
	Closed-loop Simulations

	Barrier-Function-Based Distributed Predictive Control for Operational Safety of Nonlinear Processes
	Preliminaries
	Notation
	Class of Systems
	Control Lyapunov Function
	Control Barrier Function

	Stabilization and Safety via Control Lyapunov-Barrier Function
	Design of Constrained CLBF

	CLBF-Based Control Law
	Effect of Bounded Disturbance and Sample-and-hold Implementation of Control Actions

	CLBF-DMPC Formulations and Analysis
	Sequential Distributed MPC System
	Iterative Distributed MPC System
	Modified DMPC Structure in Special Cases

	Application to a Nonlinear Chemical Process

	Statistical Machine-Learning-based Predictive Control Using Barrier Functions for Process Operational Safety
	Preliminaries
	Notation
	Class of Systems
	Stabilizability via Lyapunov-based Control
	Control Barrier Function

	Barrier Function Construction using Feed-forward Neural Networks
	Model Structure and Training
	Verification of FNN-based CBF

	FNN Generalization Error
	Rademacher Complexity
	Generalization Error Bound of FNN
	Implications of Generalization Error Bound for Different Loss Functions

	Probabilistic Stabilization and Safety via Control Lyapunov-Barrier Function
	Design of Constrained CLBF
	Sample-and-hold Implementation of CLBF-based Controller
	FNN-CLBF-based MPC

	Application to a Chemical Process Example
	Preliminaries
	Development of the FNN Model for Barrier Function
	Analysis on Generalization Performance and Closed-loop Stability and Safety
	Varying number of layers
	Varying training data sample size

	Conclusion
	Bibliography

