
UNIVERSITY OF CALIFORNIA

Los Angeles

Machine Learning Modeling with Application to Laser Powder Bed Fusion Additive

Manufacturing Process

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Chemical Engineering

by

Yi Ming Ren

2022

ABSTRACT OF THE DISSERTATION

Machine Learning Modeling with Application to Laser Powder Bed Fusion Additive

Manufacturing Process

by

Yi Ming Ren

Doctor of Philosophy in Chemical Engineering

University of California, Los Angeles, 2022

Professor Panagiotis D. Christofides, Chair

Big data plays an important role in the fourth industrial revolution, which requires engineers

and computers to fully utilize data to make smart decisions to optimize industrial processes. In

the additive manufacturing (AM) industry, laser powder bed fusion (LPBF) and direct metal

laser solidification (DMLS) have been receiving increasing interest in research because of their

outstanding performance in producing mechanical parts with ultra-high precision and variable

geometries. However, due to the thermal and mechanical complexity of these processes, printing

failures are often encountered, resulting in defective parts and even destructive damage to the

printing platform. For example, heating anomalies can result in thermal and mechanical stress

on the building part and eventually lead to physical problems such as keyholing and lack of

fusion. Many of the aforementioned process errors occur during the layer-to-layer printing process,

which makes in-situ process monitoring and quality control extremely important. Although in-situ

sensors are extensively developed to investigate and record information from the real-time printing

process, the lack of efficient in-situ defect detection techniques specialized for AM processes

makes real-time process monitoring and data analysis extremely difficult. Therefore, to help

process engineers analyze sensor information and efficiently filter monitoring data for transport and

ii

storage, machine learning and data processing algorithms are often implemented. These algorithms

integrate the functionality of automated data processing, transferring, and analytics. In particular,

sensor data often takes the form of images, and thus, a prominent approach to conducting image

analytics is through the use of convolutional neural networks (CNN). Nevertheless, the industrial

utilization of machine learning methods often encounters problems such as limited and biased

training datasets. Hence, simulation methods, such as the finite-element method (FEM), are used

to augment and improve the training of the deep learning process monitoring algorithm.

Motivated by the above considerations, this dissertation presents the use of machine learning

techniques in process monitoring, data analytics, and data transfer for additive manufacturing

processes. The background, motivation, and organization of this dissertation are first presented

in the Introduction chapter. Then, the use of FEM to model and replicate in-situ sensor

data is presented, followed by the use of machine learning techniques to conduct real-time

process monitoring trained from a mixture of experimental and replicated sensor image data. In

particular, a cross-validation algorithm is developed through the exploitation of different sensor

advantages and is integrated into the machine learning-assisted process monitoring algorithm.

Next, an application of machine learning (ML) to non-image sensor data is presented as a neural

network model that is developed to estimate in-situ powder thickness to account for recoater arm

interactions. Subsequently, an integrated AM smart manufacturing framework is proposed which

connects the different manufacturing hierarchies, particularly at the local machine, factory, and

cloud level. Finally, in addition to the AM industry, the use of machine learning, specifically

neural networks, in model predictive control (MPC) for dynamic nonlinear processes is reviewed

and discussed.

iii

The dissertation of Yi Ming Ren is approved.

Samanvaya Srivastava

Dante A. Simonetti

Tsu-Chin Tsao

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2022

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 3

1.3 Dissertation Objectives and Structure . 6

2 Computational Fluid Dynamics-Based In-Situ Sensor Analytics of Direct Metal Laser

Solidification Process Using Machine Learning 9

2.1 FEM Model of DMLS and Thermal Sensor Output 10

2.1.1 Build Part Geometry and Mesh . 11

2.1.2 Thermal Energy Transport Governing Equations 12

2.1.3 Model Implementation and Verification 15

2.1.4 Sensor Output Representation . 19

2.2 Sensor Data Analytics through Convolutional Neural Network 22

2.2.1 CNN Construction . 23

2.2.2 Individual Sensor Data Analytics through CNN 28

2.3 Cross-Validation Utilizing Two Sensor Data Analytics 31

2.3.1 Cross-Validation Scheme Formulation . 32

2.3.2 Case Study . 33

2.4 Conclusion . 36

3 Finite Element Modeling of Direct Metal Laser Solidification Process: Sensor Data

v

Replication and Use In Defect Detection and Data Reduction via Machine Learning 38

3.1 FEM Modeling for DMLS . 39

3.1.1 Mesoscale Finite-element Method (FEM) Model Setup 39

3.1.2 Microscale Investigation for Computational Demand Reduction 41

3.1.3 Experimental Based Part-Scale Thermal Feature Analysis 44

3.1.4 Parametric Analysis using Cluster Computation 48

3.2 Machine Learning using CNN . 49

3.2.1 Dataset Preparation . 50

3.2.2 CNN Construction and Training . 51

3.2.3 CNN Model Evaluation . 53

3.3 Data Reduction . 56

3.3.1 Data Reduction in DMLS Process . 56

3.3.2 CNN Classifier . 57

3.3.3 Transmission Strategy . 58

3.4 Conclusion . 61

4 In-Situ Thermographic Inspection for Local Powder Layer Thickness Estimation in

Laser Powder Bed Fusion 63

4.1 Experimental Setup . 64

4.2 1D heat transfer model and finite differential elements solution 66

4.2.1 1D Heat Transfer Model . 66

4.2.2 Thermal Feature: Rise Time . 68

4.3 Experimental Validation . 71

4.4 Machine Learning with FNN Regression Learner for Powder Thickness Prediction 74

4.5 In-situ Thermographic Monitoring for Recoater Interaction 77

4.6 Conclusion . 81

vi

5 A three-level hierachical framework for additive manufacturing 82

5.1 AM Framework Hierarchy . 83

5.1.1 Machine . 83

5.1.2 Factory . 88

5.1.3 Research Center . 91

5.2 Edge-Cloud Data Transfer Details . 94

5.2.1 Data Transfer Case Study . 96

5.2.2 Job Scheduling . 99

5.3 Additive Manufacturing and Industry 4.0 . 99

5.4 Conclusion . 101

6 A Tutorial Review of Neural Network Modeling Approaches for Model Predictive

Control 103

6.1 Introduction . 103

6.2 Preliminaries . 110

6.2.1 Notation . 110

6.2.2 Class of Systems . 111

6.2.3 Stabilizability Assumption . 112

6.3 Real-time Optimization (RTO) and Model Predictive Control (MPC) 113

6.3.1 Real-time Optimization (RTO) . 113

6.3.2 Model Predictive Control (MPC) . 114

6.3.3 Multi-layer Control Scheme . 115

6.4 Neural Network Architecture Overview . 117

6.4.1 Feed-forward Neural Networks (FNN) . 117

6.4.2 Sequential Neural Network Models . 121

6.5 Neural Network Model Construction Tutorial . 128

6.5.1 Problem Identification . 128

6.5.2 Data Collection . 130

vii

6.5.3 Data Preprocessing . 132

6.5.4 Model Construction . 135

6.5.5 Model Training . 144

6.5.6 Model Evaluation . 146

6.6 Neural Network-based MPC Implementation: Chemical Process Example 147

6.6.1 CSTR Process Description . 147

6.6.2 Data Generation and Processing . 149

6.6.3 Neural Network Models Construction . 150

6.6.4 Open-loop performance . 151

6.6.5 Closed-loop Performance . 152

6.6.6 MPC Computation Time Considerations 156

6.7 Conclusion and Future Directions . 156

7 Conclusion 159

Bibliography 161

viii

List of Figures

2.1 Proposed automated data-flow which integrates FEM simulation and machine

learning-based sensor data analytics. 10

2.2 (a) Build part geometry and scan pattern. (b) FEM mesh scheme. 11

2.3 Boundary conditions applied to the build part geometry. Gaussian heat source,

convection, and radiation is considered for the top surface while no heat loss is

assumed for the remaining surfaces. 12

2.4 Temperature dependent thermal properties of IN718: (a) specific heat capacity,

(b) density, and (c) thermal conductivity. The vertical dotted lines represent the

transition region between the solidus and liquidus temperature. 16

2.5 Example melt pool image at one timestep generated by FEM. The melt pool region

is zoomed in and is highlighted by the red circle. 21

2.6 Single layer temperature mapping processed to reproduce OT sensor output. The

red spots represent the potentially overheated regions in various sizes due to

process disturbances. 22

2.7 Modified AlexNet convolutional neural network structure. 25

2.8 Convolutional process of transforming the input image using filters S to feature

maps F . 26

2.9 Max pooling process of an input convoluted layer. 27

2.10 Fully connected layer with softmax and classification layers. 28

2.11 CNN testing confusion matrices: (a) OT CNN, and (b) melt pool CNN. 31

ix

2.12 Confusion matrices of the (a) OT CNN and (b) clustered melt pool CNN

classifying the 169 regions of interest. 34

2.13 Confusion matrices showing the accuracy of the cross-validation scheme with

confidence thresholds of 72% (a) and 87% (b). 35

2.14 Bar graph showing the percent of false-positives, false-negatives, misidentified

errors, and overall accuracy of all considered methods. 36

3.1 Mesoscale build part geometry: (a) 3D view and scan pattern, (b) Cross-sectional

view with boundary conditions. 40

3.2 Temperature dependent thermal properties of Stainless Steel 304L: (a) thermal

conductivity, (b) density, and (c) specific heat capacity. 42

3.3 (a) The air and closely packed powder system. Temperature distribution: (b) Only

in the powder, and (c) both in powder and in air. 44

3.4 (a) Experimental semi-arch geometry, and (b) FEM simulation model geometry. . . 46

3.5 Top view of (a) experimental sensor image, and (b) FEM generated sensor image. . 48

3.6 Table showing the three types of defects introduced in our FEM simulation. 50

3.7 Two types of skip connections in residual networks. (a) The identity block skip

connection, and (b) The convolutional block skip connection. 52

3.8 Confusion matrices for the CNN classifiers trained by (a) set 1, (b) set 2, and (c)

set 3. 54

3.9 (a) Four ROC curves are drawn to compare the classifiers trained by three different

sets and the no skill classifier. (b) ROC curve for the CNN classifier trained from

set 3 with the red circle shows the optimal classification threshold. 55

3.10 Different trade-offs between: (a) performance and data reduced, (b) data reduced

and classification threshold, and (c) performance and classification threshold. . . . 59

4.1 Schematic of LPBF experimental setup with LWIR camera. 65

x

4.2 Schematic of powder spreading process in temperature history of (a) one complete

layer (b) powder heat-up portion. 66

4.3 1D heat diffusion model (a) model definition and (b) simulated temperature

distribution at various times. 68

4.4 Fitted 1D thermal diffusion model results (a) parameterized fitted results overlayed

on results from finite difference solution with rise time for the δ = 320 µm layer

highlighted (b) powder thickness as a function of rise time with power law fit and

calculated powder layer thickness uncertainty. 69

4.5 (a) Photograph of height artifact and (b) surface profile along cross section A-A.

2D maps of the (c) measured powder layer thickness, (d) rise-time τ , (e) A1, (f) A2,

(g) β1, (h) β2, (i) ti, (j) coefficient of determination 2. 72

4.6 (a) Measured temperature histories for different powder thicknesses and fitted

parameters (b) powder thickness δ with respect to rise-time τ 73

4.7 Predicted powder thickness δ by using (a) rise time method, (b) neural network

regression method and (c) powder thickness with normal distribution when the

predicted powder layer thickness is p = 200 ± 5 µm. 76

4.8 (a) Schematic image of overhang with dimensions in mm (b) photograph of

distortion grows on the overhang top surface with a block behind it. 78

4.9 (a) Comparison of powder thickness δ between thermal measure and height

measure. The blue line indicates the inner center powder thickness averaged over

the blue dots line for every layer. The red line denotes the unsupported edge

powder thickness averaged over the red dots line for every layer. (b) Powder

thickness δ at different block areas. Blue and red lines represent the powder

thickness of block along blue and red dots with respect to layers. The insert images

are the 3D map of block powder thickness δ obtained from the thermal measure.

(c) Final overhang samples and the abraded wiper. 79

xi

5.1 An overview of the components of the additive manufacturing framework and their

respective responsibilities. (a) A hierarchical depiction of the AM framework. (b)

The machine level is shown in the gray block, the factory level is shown in the

yellow block and the research center level is shown in the blue block. 84

5.2 Three examples of suitable simulations that can be run at the factory level. (a)

Micro-scale simulation on the powder properties. (b) Meso-scale simulation on a

portion of the build part. (c) Part-scale simulation of the entire build part. 92

5.3 An overview of the edge-cloud data transfer scheme of the additive manufacturing

framework. The arrow orientations represent the directions of the data flow. 94

5.4 Fraction of transmitted (a) correct and (b) incorrect images and their effect on the

retrained CNN accuracy. 98

6.1 The typical process optimization and control perspective used in the field of

chemical process industries. 116

6.2 Schematics of (a) general FNN structure and (b) logisitic unit within FNNs. 118

6.3 Schematics of (a) general unfolded RNN structure, (b) recurrent unit, and (c)

output layer within RNNs. 121

6.4 Schematics of (a) GRU and (b) LSTM. 123

6.5 Structure of an encoder-decoder with RNN units. 128

6.6 Proposed neural network-based model construction workflow. 129

6.7 Open-loop state and manipulated input profiles for the CSTR example. 153

6.8 State profiles of the closed-loop simulation of the first-principles process

model under the LMPC using three models: first-principles (FP), LSTM, and

encoder-decoder. 154

6.9 Input profiles of the closed-loop simulation of the first-principles process

model under the LMPC using three models: first-principles (FP), LSTM, and

encoder-decoder. 155

xii

List of Tables

2.1 IN-718 physical properties. 15

2.2 FEM model operating process parameters. 17

2.3 Comparison between experimental and FEM model melt pool width. 18

2.4 Ambient temperature (273 K) IN-718 thermal properties. 19

2.5 Comparison between experimental and FEM model melt pool width. 19

2.6 Modified AlexNet convolutional neural network with specific layer dimensions. . . 24

3.1 FEM model operating process parameters. 42

3.2 Performance summary of the different transmission strategies both on a regular

CNN and CNN with FEM augmentation. 61

4.1 Material properties of 304 L solid and powder. 70

4.2 The height of each of the eight different strips and corresponding powder thickness

δ . 72

6.1 Parameter and steady-state values for the CSTR. 148

6.2 MSE comparison of the open-loop prediction results between the neural network

models and the first-principles model. 152

6.3 Final offset for each state from steady-state under LMPC using RNN and

encoder-decoder models. 152

xiii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor Panagiotis D.

Christofides, for his support and encouragement of both my technical work and life goals.

Professor Christofides sets an example of excellence as a researcher, mentor, instructor, and role

model. His mentoring on control theory, process/systems engineering, and most importantly life

decisions has made a profound impact on both my character and career. I would also like to thank

Professor Samanvaya Srivastava, Professor Dante A. Simonetti, and Professor Tsu-Chin Tsao for

serving on my doctoral committee. In addition, I would like to thank all of my colleagues with

whom I have worked with over the years in the Christofides research group, including Dr. Zhihao

Zhang, Dr. Scarlett Chen, Fahim Abdullah, Sungil Yun, and Aisha Alnajdi. I would particularly

like to thank Professor Zhe Wu, Dr. Yangyao Ding, Dr. Yichi Zhang, Mohammed Alhajeri, and

Junwei Luo with whom I have collaborated extensively and spent long hours working on papers

together.

I am also grateful for my family and friends and for their encouragement, support, and patience

throughout my graduate career. In particular, I am grateful for my parents, Wen Cheng and Tianli

Ren. In addition, I am also thankful toward my girlfriend, Kaili Ding, and my friends, Tyler Han,

Willis Peng, Albert Lin, Xingrong Qian, Xinghong Tang, Sihan Wang, Guangning Yang, Jiahao

Zhang, Dr. Kan Yao, Dr. Weiqi Zhang, and Dr. Qiyao Zhu, for keeping me motivated. Most

importantly, I would like to thank my grandparents, Jianli Liu and Biwei Cheng, the latter who

recently passed away but will always be in my heart. They have both molded me into the person

I am today and have given me the strength and determination to become fellow doctors following

their footsteps.

Financial support from UCLA Graduate Division, the US Department of Energy (DOE), and

the US National Science Foundation (NSF) is gratefully acknowledged, and my work could not

have been done without this support.

Chapter 2 contains versions of: Ren Y., Y. Zhang, Y. Ding, Y. Wang and P. D.

Christofides, “Computational Fluid Dynamics-Based in-Situ Sensor Analytics of Direct Metal

xiv

Laser Solidification Process Using Machine Learning” Computers & Chemical Engineering, 143,

107069, 2020.

Chapter 3 contains versions of: Ren Y., Y. Zhang, Y. Ding, T. Liu, C. S. Lough, M. C. Leu, E.

C. Kinzel, and P. D. Christofides, “Finite Element Modeling of Direct Metal Laser Solidification

Process: Sensor Data Replication and Use In Defect Detection and Data Reduction via Machine

Learning” Chem. Eng. Res. & Des., 171, 254-267, 2021.

Chapter 4 contains versions of: Liu, T., C. S. Lough, H. Sehhat, Y. M. Ren, P. D. Christofides,

E. C. Kinzel, and M. C. Leu, ”In-Situ Thermographic Inspection for Local Powder Layer Thickness

Estimation in Laser Powder Bed Fusion,” Additive Manufacturing, 55, 102873, 2022.

Chapter 5 contains versions of: Ren, Y., Y. Ding, Y. Zhang, and P. D. Christofides, “A

Three-Layer Hierarchical Framework for Additive Manufacturing,” Digit. Chem. Eng., 1, 100001,

2021.

Chapter 6 contains versions of: Ren, Y., M. S. Alhajeri, J. Luo, S. Chen, F. Abdullah, Z. Wu,

and P. D. Christofides, “A Tutorial Review of Neural Network Modeling Approaches for Model

Predictive Control,” Computers & Chemical Engineering, in press.

xv

Curriculum Vitae

Education

University of California, Los Angeles Sep. 2018 - June 2022

Ph.D., Chemical Engineering Los Angeles, CA

Advisor: Professor Panagiotis D. Christofides

University of California, Los Angeles Sep. 2014 - June 2018

B.S., Chemical and Biomolecular Engineering Los Angeles, CA

Specialization: semiconductor manufacturing

Journal Publications

1. Ren Y., M. S. Alhajeri, J. Luo, S. Chen, F. Abdullah, Z. Wu, and P. D. Christofides, “A

Tutorial Review of Neural Network Modeling Approaches for Model Predictive Control,”

Computers & Chemical Engineering, in press.

2. Ren Y., Y. Zhang, Y. Ding, T. Liu, C. S. Lough, M. C. Leu, E. C. Kinzel, and P. D.

Christofides, “Finite Element Modeling of Direct Metal Laser Solidification Process:

Sensor Data Replication and Use In Defect Detection and Data Reduction via Machine

Learning” Chem. Eng. Res. & Des., 171, 254-267, 2021.

3. Ren Y., Y. Ding, Y. Zhang, and P. D. Christofides, “A Three-Layer Hierarchical

Framework for Additive Manufacturing,” Digit. Chem. Eng., 1, 100001, 2021.

4. Ren Y., Y. Zhang, Y. Ding, Y. Wang and P. D. Christofides, “Computational Fluid

Dynamics-Based in-Situ Sensor Analytics of Direct Metal Laser Solidification Process

Using Machine Learning” Computers & Chemical Engineering, 143, 107069, 2020.

xvi

5. Liu, T., C. S. Lough, H. Sehhat, Y. M. Ren, P. D. Christofides, E. C. Kinzel and M. C.

Leu, ”In-Situ Thermographic Inspection for Local Powder Layer Thickness Estimation

in Laser Powder Bed Fusion,” Additive Manufacturing, 55, 102873, 2022.

6. Wu, Z., A. Tran, Y. M. Ren, C. S. Barnes, S. Chen and P. D. Christofides, “Model

Predictive Control of Phthalic Anhydride Synthesis in a Fixed-Bed Catalytic Reactor via

Machine Learning Modeling”, Chem. Eng. Res. & Des., 145, 173-183, 2019.

7. Ding, Y., Y. Zhang, Y. M. Ren, G. Orkoulas and P. D. Christofides, “Machine

Learning-Based Modeling and Operation for ALD of SiO2 Thin Films Using Data from

a Multiscale CFD Simulation”, Chem. Eng. Res. & Des., 151, 131-145, 2019.

xvii

Chapter 1

Introduction

1.1 Motivation

As the world enters the fourth industrial revolution, the incorporation of big data is becoming

increasingly important because individuals constantly shift between reality and digital domains

with the use of connective technology to enable and manage their work and daily lives [179]. As

a result, data-intensive methods such as machine learning (ML) and deep learning (DL) rose in

popularity due to their ability to assist and automate previously-considered difficult and tedious

tasks. In engineering, ML and DL algorithms have been proposed in various industrial domains

to handle tasks such as defect detection, data rectification, and process control [75, 134]. In this

dissertation, the application of neural networks, a popular type of ML algorithm, within the additive

manufacturing (AM) industry is explored with an emphasis on ML-assisted real-time process

monitoring, data analytics, and data transfer.

Due to the thermal and mechanical complexity of AM processes, especially laser powder bed

fusion (LPBF), process failures are often encountered, which may lead to defective parts or even

fatal damage to the printing platform. For example, unexpected defocusing of the laser beam can

cause cold and hot zones to appear on the powder bed. These heating abnormalities may induce

thermal and mechanical stresses and eventually lead to the final build part to have poor mechanical

1

properties, such as keyholing or lack of fusion [69]. The generated thermal stresses may also

cause part distortion, which alters the powder layer thickness and ultimately interferes with the

recoater arm on a layer-to-layer timescale [65]. Thus, it is important to identify these kinds of

problems and control the process parameters to suppress them during the layer-to-layer printing

process [82, 95, 109, 182, 184]. To monitor the printing process and to facilitate engineers to make

crucial operating recipe updates, in-situ sensors are developed to investigate and record the printing

process information in real-time [41,83]. Some commercial examples of these sensors include the

optical tomography (OT) and melt pool monitoring (MPM) sensors from the EOSTATE suite [148],

the infrared (IR) sensors from FLIR Systems [100], and the physical powder bed images from P.

Basler visible-light cameras [146].

However, there are several issues associated with sensor data that make them difficult to be

utilized efficiently. The two major issues that need to be addressed are the overwhelming size

of the data and the efficiency of data analytics to enable real-time process control. Therefore, a

smart way of integrating sensor image analysis and efficient filtering of process data for transport

and storage is needed. As demonstrated by [54], high-resolution camera sensors provide pictures

at a very fast sampling rate, which produces terabytes of data per build. It is impossible to

accommodate and store all information due to limitations in the speed of data transfer and storage

space. In addition, it is also difficult for engineers to read and analyze every sensor image manually.

To address the aforementioned concerns, end-to-end advanced data processing algorithms that

connect the flow of process information from the initial data measurement to the final data storage

are extensively researched. As a result, modern ML and DL algorithms can be implemented

to integrate such functionalities as automated image processing and data transfer decisions. In

particular, convolutional neural network (CNN) is one of the leading ML algorithm candidates for

image analytics and can be applied to real-time monitoring of printing errors.

2

1.2 Background

Additive manufacturing was invented in the 1990s and has been exploited for the manufacturing

of industrial parts using various kinds of materials including polylactic acid (PLA) plastic,

photopolymer, gypsum, metal alloys, etc. [64]. In the past 20 years, the market share has grown by

20% each year, which created massive opportunities in the field of AM. In 2019, the AM industry

reached approximately 10 billion dollars and was still evolving rapidly. Compared to conventional

manufacturing techniques in the industry such as casting, AM technologies are significantly more

advantageous due to their rapid prototyping time, fast manufacturing speed, reduced production

cost, and versatile build geometry [120]. The adoption of AM techniques also demonstrates huge

economic benefits, where a cost reduction of about 36% to 46% can be achieved [18]. Among the

wide range of materials that can be manufactured with AM methods, metal alloys have particularly

drawn attention in both academia and industry, and comprise 30% of the total AM market

due to their use in high mechanical strength applications, such as tooling [40], pharmaceutical

devices, and automotive equipment [90]. Metal additive manufacturing is estimated to have grown

significantly each year, expanding at a compound annual growth rate of 27.8% and is projected to

reach USD 5.51 billion by 2027. In particular, two major metal deposition methods are typically

used in industry: directed energy deposition (DED) and laser powder bed fusion [60]. DED

involves the melting of a powder or wire feed with an energy source to directly deposit a fused

layer onto the substrate. It has the advantages of high printing speed and low-cost feedstock,

but also faces low-resolution issues, causing significant part deformation and limited geometric

capability. On the other hand, LPBF involves the use of a laser source to selectively melt the

desired geometry on a bed of metal powder. Although LPBF is slower than DED, the precision

and material strength of the parts made by the LPBF method is much superior to those made

by DED. Therefore, LPBF becomes the more suitable option for applications with complicated

design, stringent yield strength and high precision requirements, which are often encountered in

the medical [150] and aerospace [99] industries.

In this work, a subcategory of LPBF called direct metal laser solidification (DMLS) is studied

3

particularly. To construct the desired structure, the first step is to design the build geometry and

the support structure, if necessary, with computer-aided design (CAD) software. Based on the

3D CAD geometry, a specific AM operating recipe is developed, including the layer-by-layer

laser scanning pattern plan and the desired powder thickness for each layer. Before each layer

is printed, the appropriate space in the deposition chamber is first created on the build platform by

lowering the base of the platform by exactly one layer thickness. Next, the recoater blade pushes

the metal powder from the fresh powder stock onto the building platform to prepare a uniform

powder bed. Then, according to the predefined recipe, the laser power source scans across the

layer to selectively melt the powder, and the molten powder subsequently re-solidifies to form the

desired solid part. Despite the demand for high resolution, many part failures are encountered in

industrial manufacturing due to errors and disturbances during the DMLS process. In particular,

the thermal and mechanical stresses of the build part are highly dependent on the temperature,

which is influenced by the laser power, the energy dissipation of the material phase change, and the

conduction and convection within the deposition chamber. Thus, laser and cooling abnormalities

may cause mechanical problems of the build part, such as lack of fusion or keyholing [69].

Furthermore, recoater streaking and jamming can occur due to undesired part deformation above

the expected build surface [65]. Although it is desirable to understand and control the disturbances,

the relationship between the variety of potential disturbances and operating parameters (e.g.,

scanning strategy, laser power, hatch spacing, and scanning speed) is very difficult to generalize for

different materials and build geometries [43]. In addition to process parameters, the in-situ build

properties of the process, particularly powder layer thickness, also have a significant influence on

the local melt pool and overall properties of the part. In general, a thicker powder layer increases

the production rate but can lead to porosity due to lack of fusion [121]. In addition, if the powder

layer becomes too thin, it becomes discontinuous with vacancies that can negatively affect the

porosity of the final part [30, 72, 149]. The thickness of the powder layer has been shown to affect

the size of the melt pool [191], the grain size [103], the density [81], the microhardness [81, 103],

the surface roughness [129], the strength, and the elasticity [154, 162] of the part produced.

4

To better understand the physics behind DMLS processes, several experimental works have

utilized first-principles-based modeling and analysis methods for deterministic analyses. [16]

utilized a multi-physics algorithm of heat transport and mechanical strength analytics to understand

the influence of melt pool on the mechanical property of microstructure. [181] constructed an

integrated model of energy density, material microstructure formation, and mechanical responses

of the resulting parts. Also, other simulation models investigated the effect of operating parameters

and strategies aided by FEM models. For example, [131] looked at different scanning strategies,

and [49] investigated the influence of hatch spacing on the dimensions of the melt pool and

the quality of the associated part. In addition, experimental studies endeavored to optimize the

part design based on model-predicted properties. For example, [125] developed the approach of

probabilistic rapid qualification design and utilized model-predicted results to reduce the overall

qualification process time. [84] used the thermal profile predicted by the model and the stress

analysis to formulate and optimize the design of the structural geometry and the support structure.

Nevertheless, existing simulation models are limited to batch-to-batch detection of defects

and encounter difficulties in detecting defects during the real-time printing process. Thus, to

avoid this problem, in-situ sensor monitoring technologies are developed to record the real-time

manufacturing information. Many types of real-time monitoring technologies have been developed

in academia and industry, including physical powder bed images, layer-wise temperature history

maps, melt pool dimension data, etc. [39] developed an optical sensor setup that is connected with

a field-programmable gate array (FPGA). This setup allows the transfer of sensor information at a

sampling rate higher than 10 kHz. [57] provided a general review of valuable sensors that can be

integrated with all types of metal additive manufacturing methods and applications. Moreover,

the EOS company has developed advanced monitoring devices which consist of EOSTATE

optical tomography, melt pool monitoring, base, and powderbed [148]. Most recently, extensive

research has also been conducted on more efficiently utilizing these in-situ sensors through the

integration of machine learning methods. [190] utilized support vector machine (SVM) techniques

to extract plume and spatter information from powder bed images and evaluate their impact. [145]

5

used scale-invariant feature transform (SIFT) to extract features from the images and then used

histogram of oriented gradients (HOG) to relate melt pool abnormality with the resulting defects.

The same group also tried using CNN with transfer learning from an AlexNet backbone to classify

physical disturbances like super-elevation and recoater jams. [185] exploited a semi-supervised

learning algorithm, which bases the CNN model on the temporal ensemble method, to allow

successful training with limited sensor images for bootstrap.

1.3 Dissertation Objectives and Structure

This dissertation presents the integration of machine learning into additive manufacturing,

more specifically the DMLS and LPBF process, through applications in process monitoring/defect

detection, data analytics, and data reduction and transfer. Specifically, the objectives of this

dissertation are summarized as follows:

1. To develop high-fidelity DMLS FEM models to augment experimental data for training and

maintenance of the CNN defect detection algorithm.

2. To develop automatic process monitoring and defect detection tools for DMLS using a

cross-validated CNN algorithm trained from multiple sensor data.

3. To apply ML algorithm for the in-situ powder layer thickness estimation to prevent recoater

abrasion.

4. To present a smart manufacturing framework focusing on the data transfer between machine,

factory, and cloud for the additive manufacturing industry.

The dissertation is organized as follows.

Chapters 2 and 3 focus on the development of ML-assisted process monitoring tools for the

DMLS process through the use of different sensors and FEM models. Chapter 2 discusses the

construction of an FEM heat transfer model for DMLS and the utilization of the FEM model

6

results to replicate different sensors. Specifically, the EOS OT and MPM sensor results are

reconstructed and studied to detect different types of defects during the building process. To

further automate this defect detection process, two CNNs are constructed to conduct real-time data

analytics on each type of sensor images. Finally, the two CNNs are integrated together to develop

a CNN cross-validation process monitoring algorithm. The cross-validation algorithm exploits the

advantages of each sensor type and uses a meta-analysis method to make a final classification.

A case study is conducted to demonstrate that the cross-validation algorithm outperforms an

individual CNN trained from single sensor data.

The FEM model constructed in Chapter 2 is limited in application due to its reduced

dimensions, which is caused by the large computational power associated with simulating realistic

part proportions, and simplified geometry. Therefore, in Chapter 3, the modeling of the DMLS

process is further developed through the construction of three multi-scale FEM models. At the

highest level, a semi-arch with overhang is constructed with reference to experimental dimensions.

However, using experimental-scale dimensions puts a heavy burden on the computational power

necessary to run multiple FEM simulations. Therefore, micro- and meso-scale submodels are

developed to describe and generalize the powder property and the laser behaviors, respectively.

These generalized behaviors allow simplifications to be made within the experimental-scale model

and thus lessen the computational burden. The experimental-scale FEM model output is then

processed to replicate experimental LWIR sensor results. The FEM replicated sensor data is then

used to augment experimental data for the development of a CNN process monitoring algorithm.

This CNN process monitoring algorithm is further evaluated under experimental conditions with

consideration of model accuracy and inference speed. Finally, the maintenance of the CNN

algorithm is explored focusing on the transmission of new data to sustain an acceptable level of

model accuracy.

Chapter 4 explores the application of ML for the detection of recoater abrasion through the

in-situ estimation of local powder thickness. First, from first-principle equations, a 1D heat transfer

model is developed to show the correlation between powder layer thickness and thermal properties.

7

This relationship is further validated by experimental data. Next, a neural network is applied

for the prediction of powder layer thickness to improve performance. It is found that the neural

network outperforms the experimentally derived relationship for low powder thickness regions

where recoater interactions most often occur. Finally, the neural network-based powder thickness

estimation method is applied to experiments where it displayed good performance for detecting

recoater interactions due to uneven powder thickness.

Building on top of the ML-assisted process monitoring methods, Chapter 5 proposes a

three-level framework regarding the data transfer between the machine, factory, and cloud for

the additive manufacturing industry. At the machine level, on-line data collection and processing

capabilities of individual machines are discussed. At the factory level, defect detection methods

and predefined recipe update policies for machines are explored along with the coordination of data

transfer between the two other connecting levels (machine and cloud). At the cloud level, the usage

of cloud storage and research center for large recipe changes and development are presented. The

proposed framework is further evaluated through a data transfer case study. Finally, the integration

of the proposed framework with Industry 4.0 and its implications are discussed.

Chapter 6 presents an overview of the recent developments of time-series neural network

modeling along with its use in model predictive control (MPC). A tutorial on the construction of a

neural network-based model is provided and key practical implementation issues are discussed.

A nonlinear process example is introduced to demonstrate the application of different neural

network-based modeling approaches and to evaluate their performance in terms of closed-loop

stability and prediction accuracy. Finally, the chapter concludes with a brief discussion of future

research directions on neural network modeling and its integration with MPC.

Chapter 7 summarizes the main results of the dissertation.

8

Chapter 2

Computational Fluid Dynamics-Based

In-Situ Sensor Analytics of Direct Metal

Laser Solidification Process Using Machine

Learning

In this chapter, we develop an automated data-flow that integrates the simulation model and

a machine learning network for real-time process monitoring and sensor data analytics. The

simulation models are tailored to incorporate possible disturbances, and sensor-specific outputs

are generated from the simulation results to reflect realistic disturbances that might be identified

in-situ during the manufacturing process. In particular, we first develop a model that simulates the

heat transfer and phase change based on the operating parameter combination using COMSOL.

Next, according to the EOSTATE OT and MPM measurements, the heat map sensor data are

generated from the simulation model with disturbances introduced as classification categories.

Then, two separate convolutional neural networks (CNN) are designed and trained with transfer

learning with an AlexNet backbone to identify the problems that lie in the OT and melt pool images,

respectively. In addition, the two CNN results are cross-validated using meta-analysis to make a

9

Figure 2.1: Proposed automated data-flow which integrates FEM simulation and machine
learning-based sensor data analytics.

final robust decision. The accuracy of the trained CNN and the computation time are demonstrated

to be applicable to the in-situ AM process monitoring purposes.

2.1 FEM Model of DMLS and Thermal Sensor Output

As discussed in the introduction, first-principles-based numerical simulations have been

utilized to model the DMLS processes to understand the effects of the operating parameters on

the final build part properties. In the presented work, we specifically tailor our simulation model

to predict and reproduce in-situ sensor monitoring information produced during the real-time

manufacturing process. In this section, we first discuss the construction of a time-dependent FEM

model that integrates heat transfer, the phase changes between powder, liquid and resolidified

metal, the associated boundaries, and the operating recipes. Next, the performance of the

developed model is validated with respect to experimental data and theoretical standards. Then,

we will discuss the details of the melt pool and thermal OT sensors and the procedures taken to

process the simulation results to reproduce realistic sensor outputs.

10

Figure 2.2: (a) Build part geometry and scan pattern. (b) FEM mesh scheme.

2.1.1 Build Part Geometry and Mesh

To ensure the generality of the developed method, a simple build geometry is adopted, which is

a 1.4×1.5 mm rectangle with a height of 40 µm representing a single layer of IN-718 powder. The

rectangular build part is printed on top of a square steel substrate with dimensions of 2.0×2.0×1.0

mm in length times width times height. This is shown in Figure 2.2(a). The build part is positioned

near the middle of the steel substrate so that there is sufficient room to the nearest boundaries to

observe the heat transfer behavior.

As shown by the Figure 2.2(b), the FEM model geometry is first meshed with two different

mesh resolutions. Due to the powder layer being the domain where most heat transfer takes place,

we generate a finer mesh for this domain with free tetrahedral mesh elements of a maximum

element size of 3.32× 10−5 m and a minimum element size of 2.16× 10−6 m. Since we are

mostly interested in the x-y plane which is captured by the sensors, we employ a higher resolution

factor for the x and y directions than the z-direction. For the steel substrate mesh, we use a much

lower resolution mesh to enhance computational efficiency. The z-axis is dynamically meshed so

that the mesh nearest to the powder bed is much smaller in size than the one at the bottom. Such an

inflation method gives rise to a maximum element size of 4.76×10−4 m and a minimum element

size of 1.01×10−4 m.

11

Figure 2.3: Boundary conditions applied to the build part geometry. Gaussian heat source,
convection, and radiation is considered for the top surface while no heat loss is assumed for the
remaining surfaces.

2.1.2 Thermal Energy Transport Governing Equations

In this work, we utilize the heat transfer module from COMSOL Multiphysics to capture the

major thermal characteristics of the DMLS process. In the proposed model, we consider the

heat transport (conduction, convection, and radiation) and its associated boundary conditions, the

latent heat of phase change, and the temperature/phase thermal dependent material properties. It

is important to note that the model does not consider the detailed microstructure formation and the

possible fluid flow within the melt pool. Figure 2.3 summarizes the thermal boundary conditions

used for FEM modeling in this study. The top powder surface considers the effect of the Gaussian

laser source, convection, and radiation while the remaining surfaces assume no heat loss.

In each cell, the overall transient heat transfer is governed by the following heat balance

equation:
∂ (ρ(T)Cp(T)T)

∂ t
+∇q = qs (2.1)

12

where ρ is the density of the material, Cp is the specific heat capacity of the material, T is the

temperature, and qs is the rate of internal energy generation. Without the natural convection in the

melt pool, the bulk energy transport is solely influenced by the conduction q as follows:

q =−∇(k(T)T) (2.2)

where k is the thermal conductivity.

2.1.2.1 Boundary and Initial Conditions

The top surface boundary condition in the z-direction is described by the following equation:

− ∂ (k(T)T)
∂ z

(x,y,z = 0) =−Qext +hc(T −T0)+ εσ0(T 4 −T 4
0) (2.3)

where hc is the convective heat transfer coefficient, T0 is the ambient gas temperature, ε is the

emissivity, and σ0 is the Stefan-Boltzmann constant. The heat loss due to convection and radiation

is described by the second and the third term on the right hand side of the equation, respectively.

In addition, the external heat source, Qext , is the laser source, which is assumed to have a Gaussian

distribution:

Qext(r) =
2AP
πω2 e−

2r2

ω2 (2.4)

where A is the absorptivity, P is the laser power, ω is the laser beam radius, and r is the radial

distance from the center of the laser beam.

For the other five surfaces, the assumption of no heat loss is assumed:

∂ (k(T)T)
∂x

(x = (0, l),y,z) = 0,
∂ (k(T)T)

∂y
(x,y = (0,w),z) = 0,

∂ (k(T)T)
∂ z

(x,y,z = h) = 0 (2.5)

where l is the length of the build platform, w is the width of the build platform, and h is the height

of the build platform.

In addition, the initial condition is that the temperature of the entire substrate at the beginning

13

(t = 0) is at the ambient temperature of the printing chamber:

T (t = 0) = T0 (2.6)

2.1.2.2 Phase/Temperature-dependent thermal properties

In our model, we consider three different phases of IN-718 alloy including powder, re-solidified

metal, and liquid, which all have distinctive thermal properties. For metal alloys used in AM

process such as IN-718, the melting point is not at a single temperature due to their mixed

composition. Instead, a transitional zone of solid or liquid exists, which is defined by the

solidus temperature and the liquidus temperature. Any material below the solidus temperature

is considered to be purely in the solid phase, and similar logic applies for the liquidus temperature.

While the solid and liquid phase of the material can be differentiated through the inspection of

temperature, the powder and re-solidified metal phase of the material both exist in the same solid

phase temperature range. In this model, we attempt to differentiate between the powder and

re-solidified metal phase using porosity, φ , which is a function of local temperature:

φ(T) =



φ0 if T ≤ Ts

0 if T ≥ Tl

φ0

Ts −Tl
(T −Tl) if Ts < T < Tl

(2.7)

where Ts is the solidus temperature, Tl is the liquidus temperature, and φ0 is the initial porosity of

the powder.

In addition, we are interested in the three temperature-dependent material properties that are

important to the simulation: the specific heat capacity, the thermal conductivity, and the density of

IN-718, whose profiles are shown in Figure 2.4. Figure 2.4 is plotted using experimental results

reported from [137]. The heat capacity Cp is governed by functions of temperature at the solid and

liquid phase, the latent heat of fusion L f and the percentage at each phase θ also contribute to the

14

Table 2.1: IN-718 physical properties.

IN-718 properties Value
solidus temperature 1533 K

liquidus Tempearture 1609 K
Latent heat of fusion 210 KJ/kg

Emissivity 0.35
Density, Specific heat, Thermal conductivity See Figure 2.4

effective heat capacity as follows:

Cp(T) =



Cp,s(T) if T ≤ Ts

Cp,l(T) if T ≥ Tl

L f

Tl −Ts
+θsCp,s(Ts)+θlCp,l(Tl) if Ts < T < Tl

(2.8)

where subscripts s and l refer to the solid and liquid phase, respectively. The key thermodynamic

parameters are shown in Table 2.1. In contrast, the thermal conductivity and density of the powder

and the re-solidified metal can be distinguished by porosity:

kpowder = ksolid(1−φ(T))4 (2.9)

ρpowder = ρsolid(1−φ(T)) (2.10)

where k and ρ are the thermal conductivity and the density of the material, respectively. As stated

in Equation 2.7, φ is dependent on temperature, which makes k and ρ also indirectly dependent on

temperature.

2.1.3 Model Implementation and Verification

To validate the model, a range of combinations of the laser power and the scan speed were

tested. While laser power and scan speed influence the resulting melt pool differently, they

are often used in conjunction to calculate the total laser energy density which dominates the

15

Figure 2.4: Temperature dependent thermal properties of IN718: (a) specific heat capacity, (b)
density, and (c) thermal conductivity. The vertical dotted lines represent the transition region
between the solidus and liquidus temperature.

16

Table 2.2: FEM model operating process parameters.

Process Parameters Value
Laser power 70-300 W

Scanning speed 0.2-1.2 m/s
Hatch spacing 0.1 mm

Powder thickness 40 µm
Laser spot diameter 70 µm

Absorbance 0.6

comprehensive trend of the overall heating effect and melt pool dimensions. The energy density

can be calculated as follows:

E =
P
V

(2.11)

where E is the energy density, P is the laser power, and V is the scan speed.

Process parameters excluding laser power and scan speed are fixed at a constant 40 µm layer

thickness and 0.1 mm hatch spacing. A commonly used bidirectional laser scanning scheme is

chosen. In particular, the laser scans in the x-direction until reaching the build part’s edge, jumps

one hatch spacing in the y-direction, and then reverses the scanning direction along the negative

x-direction. The range of operating conditions explored is listed in Table 2.2. The outputs collected

from the FEM model are the melt pool dimensions and the temperature characteristics, which are

compared to analytical solution to the Rosenthal equation and experimental findings.

2.1.3.1 Comparison with Experimental Results and solution to the Rosenthal Equation

First, we compare the melt pool dynamics developed in the FEM model with that of the

experimental works [142], as shown in Table 2.3. It is demonstrated that the FEM model results

closely resemble the experimental results for all operating combinations with an error smaller than

10%. One trend we observe is that the experimental values are constantly larger than the FEM

results. The major reason behind this discrepancy between the FEM and experimental results can

be attributed to the fact that the FEM model does not consider the influence of fluid flow of the

molten metal in the melt pool. During the actual rapid heating process, the molten metal is driven

17

Table 2.3: Comparison between experimental and FEM model melt pool width.

Power (W) Scan Speed (m/s) Experimental (µm) FEM (µm)
200 1.2 197.8 - 261.6 180.4 - 252.3
200 0.7 184.9 - 300.9 173.2 - 283.1
100 0.2 242.6 - 297.4 230.0 - 280.2

outwards due to the higher surface tension in the outer sections of the melt pool compared to the

inner sections of the melt pool [102]. This phenomenon thus causes the experimental melt pool to

be larger than the FEM model predicted melt pool.

In addition, the solution to the analytical Rosenthal equation is an important criterion that is

often used to judge the melt pool dimension, which was originally developed for metal welding

[138]. However, due to the similarity in the melting mechanism between welding and metal AM

processes, the Rosenthal equation can be applied to describe the DMLS process. The following

assumptions are made by the Rosenthal equation solution:

1. Thermophysical properties are temperature independent.

2. Quasi-stationary temperature distribution condition around melt pool.

3. Heat source is a point source.

4. Heat transfer is governed purely by conduction, ignoring convection and radiation.

Adopting these assumptions, the Rosenthal equation can be formulated as follows:

T = T0 −
λP

2πkr
exp
(
−V (r+ξ)

2α

)
(2.12)

where T0 is the ambient temperature, λ is the absorptivity, P is the laser power, k is the thermal

conductivity, V is the scanning speed, α is the thermal diffusivity, ξ is the x-direction moving

coordinate expressed by ξ = x−Vt as the laser moves along the x-axis, and r is the distance from

the heat source defined as
√

ξ 2 + y2 + z2. The thermophysical properties of IN-718 for the above

calculation are listed in Table 2.4.

18

Table 2.4: Ambient temperature (273 K) IN-718 thermal properties.

Thermal Property Value
Absorptivity, λ 0.6

Density, ρ 8220 kg ·m−3

Specific heat, Cp 43 J(kg ·K)−1

Thermal conductivity, k 11.4 W (m ·K)−1

Table 2.5: Comparison between experimental and FEM model melt pool width.

Power (W) Scan Speed (m/s) Rosenthal Solution (µm) FEM (µm) Error
300 1.2 178.5 172.3 3.48%
200 0.7 190.8 173.2 9.23%
100 0.2 252.5 230.0 8.88%

Based on the Rosenthal equation, the width of the melt pool of low thermal diffusivity material

including IN-718 can be estimated [157]:

W ≈

√
8

πe
λP

ρCpV (Tm −T0)
(2.13)

where W is the approximate melt pool width, Tm is the melting point of the material, and ρ is

the density listed in Table 2.5. The differences between the analytical solution to the Rosenthal

equation and the FEM generated melt pool dynamics and their respective errors are shown in Table

2.3. In general, the Rosenthal equation predicts the melt pool width to be larger than the FEM

melt pool width. An explanation for this discrepancy is the assumptions made by the Rosenthal

equation. As shown earlier, the Rosenthal equation assumes the thermophysical properties to be

temperature independent, and only conductive heat transfer is considered. Due to the lack of

consideration of convection and radiation heat loss, the solution to the Rosenthal equation estimates

a larger melt pool width than the FEM model.

2.1.4 Sensor Output Representation

After the thermal performances are validated, we use our proposed FEM model to reproduce

the industrial monitoring sensor output: the melt pool monitoring (MPM) sensor and the optical

19

tomography (OT) sensor. The MPM sensor reports the detailed behavior of the region where

the laser focuses on at each timestep. In contrast, the OT sensor outputs monitor the overall

temperature map of the whole layer. These two sensors can provide different views and information

about the thermal features of the build platform. As shown in the previous section, the FEM model

is capable of producing realistic thermal results at any time interval, which demonstrates a great

potential to reproduce the realistic MPM and OT intensity map.

2.1.4.1 Melt Pool

The MPM sensor aims to capture the melt pool behavior through the implementation of an

on-axis photodiode sensor or a short-wave infrared (SWIR) camera that follows the laser scan

pattern. It is capable of capturing high-quality melt pool dynamics due to its on-axis configuration

and small focal domain. A typical melt pool photodiode sensor has a very high capturing rate

in the range of 10 kHz to 25 kHz. Due to this high capture rate, the MPM sensor can generally

produce near-continuous process monitoring. However, the disadvantages of the MPM sensor

include its limited field of view, the influence from scanning parameters, and the huge amount of

data to be generated, stored, and analyzed. It has been demonstrated in our previous section that

the FEM model can directly reproduce the melt pool with reasonable dimensions. Starting with

this preliminary result, we can reproduce the result of the MPM sensor through calibrating our

camera sampling rate to that of a real sensor by tuning the FEM model solution sampling rate to

1×10-4 s, i.e., 10 kHz. Thus, the model generates near-continuous melt pool images similar to

those produced by a realistic sensor. An example of a single melt pool captured by the FEM model

is shown in Figure 2.5.

2.1.4.2 Optical Tomography (OT)

The OT sensor also tries to capture the thermal aspect of the DMLS process but it aims to

generate a layer-wise temperature map of each build layer. The OT camera can usually be an

infrared (IR) camera and has several different types including long-wave infrared (LWIR) or

20

Figure 2.5: Example melt pool image at one timestep generated by FEM. The melt pool region is
zoomed in and is highlighted by the red circle.

medium-wave infrared (MWIR). The OT sensor picks up the light intensity in a fixed sensor

radius and processes these light signals into temperature values. Each temperature value is

assigned to a region/pixel of the final image depending on the sensor specification. Under

normal process operating conditions, the highest temperature values within the melt pool would

contribute predominantly to the signal produced [117]. This is due to the nonlinearity of the

temperature-intensity dependence relationship despite the rapid cooling of the material after the

laser passes.

In order to reproduce the OT sensor results, we utilize the FEM model and the temperature

information of individual mesh cells to create the layer-wise temperature map. Since the sensor

radius is much larger than the individual FEM mesh cells, we average all of the values of mesh cells

within the sensor radius and assign the averaged value as the final value for that sensor location

at each capturing timestep. A sensor radius of 0.25 mm is used due to the build part’s small

dimensions. Then, we analyze the whole averaged temperature history of each previously defined

radius and take the maximum temperature as the final value in our OT temperature map. An

21

Figure 2.6: Single layer temperature mapping processed to reproduce OT sensor output. The red
spots represent the potentially overheated regions in various sizes due to process disturbances.

example of a single layer OT temperature map is shown in Figure 2.6.

2.2 Sensor Data Analytics through Convolutional Neural

Network

After melt pool and OT sensor images are collected, in-situ data analyses need to be constructed

for real-time analytics, as discussed in the introduction. In this work, we adopt the convolutional

neural network, a deep learning technique that is widely adopted for image-processing. Through

training, CNN is able to automatically detect the disturbances and defects in the build part during

the manufacturing process with high accuracy and efficiency. In this section, first, we will discuss

the construction of CNNs. Next, the prediction results from the trained constructed CNN trained

for both melt pool data and OT data are discussed.

22

2.2.1 CNN Construction

The major distinction of a convolutional neural network is the usage of convolutional layers

to extract the correlational information from the high dimensional inputs, which makes CNN a

good candidate for solving image recognition problems. A variety of trained general-purpose,

high-performance CNN backbones, such as AlexNet, ResNet, and VggNet, have demonstrated to

be able to produce highly-accurate image classifications. By changing only the final classification

criteria and preserving the trained feature extraction functionality, CNN backbones can be easily

modified and tailored to analyze DMLS sensor data. This process, which aims to specialize a

pre-trained generic model, is known as transfer learning [67].

In this work, the AlexNet CNN backbone developed by [89] is used as the base CNN

architecture, and transfer learning is performed using MATLAB for the purpose of in-situ sensor

data classification. Figure 2.7 shows the data flow dimensions through the modified AlexNet

CNN and Table 2.6 shows the specific dimensions of the proposed CNN. As shown in Figure

2.7, the hidden layers consist of five sets of convolution layers followed by pooling layers and

fully connected layers. The ReLU function, i.e., ReLu(x) = max(0,x), is applied between layers

to introduce non-linearity, and Local Response Normalization (LRN) is performed to limit the

unbounded output from the ReLu functions [89]. In addition, dropout layers are implemented to

reduce network overfitting and computational resources needed by randomly deactivating neurons.

The CNN terminates with a softmax layer followed by a classification layer. During transfer

learning, only the dense layers are restructured and retrained to identify disturbances that are

specific to the DMLS process using training data containing known errors in OT and MPM sensor

data.

The exact structure and dimensions of the crucial layers are shown in Table 2.6. Specifically,

the training data are the melt pool and the OT images generated from the FEM model and will be

used to train their own respective CNN. The melt pool images are exported from the FEM model

with a resolution of 227×227 pixels in order to match the AlexNet input requirement. However,

since each OT image represents the entire build platform, a resolution of 227×227 pixels is too

23

Table 2.6: Modified AlexNet convolutional neural network with specific layer dimensions.

Layer Dimension Number of filters
Input 227×227×3

Convolution 11×11×3 96
ReLU

Channel normalization (LRN)
Max Pooling
Convolution 5×5×96 256

ReLU
Channel normalization

Max Pooling
Convolution 3×3×256 384

ReLU
Convolution 3×3×384 384

ReLU
Convolution 3×3×384 256

ReLU
Max Pooling

Fully Connected
ReLU

Dropout
Fully Connected

ReLU
Dropout

Fully Connected 1×1×4096
Softmax

Classification 3

24

Figure 2.7: Modified AlexNet convolutional neural network structure.

low to capture all information. Therefore, through trials-and-errors, each OT image is dissected

into 20×20 sub-regions of size 227×227 pixels to preserve all information in the original image,

and each regional OT image is individually processed by the CNN.

After passing the initial input layer, the processed input images enter sets of combinations

of convolution layers and pooling layers. By using trained weighted matrices known as filters

or kernels, the convolution layers are able to recognize specific features. A CNN may contain

multiple sets of convolution layers to extract different levels of features. It has been demonstrated

that early filter layers recognize primitive features such as lines, edges, or corners, whereas latter

layers can distinguish more abstract parts of the desired object, such as heads of animals and

wheels of cars. This hierarchy of abstraction allows the implementation of transfer learning as

features of low-level abstraction are often consistent throughout all geometries. For example, in

the AM process, operational disturbances are usually distinguished by distinctive edges or lines in

the heat map. Thus, a well-trained filter can be easily applied to various processes. A successful

implementation of transfer learning may only require the re-adaptation of high-level filters or even

just the final classification layers.

When a region of the input image is transformed by the filter, Si, it is converted to a region on the

25

Figure 2.8: Convolutional process of transforming the input image using filters S to feature maps
F .

output feature map, Fi, which retains the feature extracted by the certain filter as shown in Figure

2.8. Following the convolution layers, which expand the overall dimensions of the input data

through the creation of multiple feature maps for each filter, pooling is performed to down-sample

and summarize the feature map results [67]. In this work, the max-pooling down-sampling method

is used, as shown in Figure 2.9. Max pooling extracts the maximum value from multiple pixels

in a predefined region of the input layer, also known as the pooling window, and stores it in one

pixel of the pooling layer. The process repeats as the pooling window slides across all of the input

pixels, and the sliding distance is known as stride size. A 3×3 pooling window with a stride size

of 2 is utilized in Alexnet.

After the convolutional layers and pooling layers have extracted features and reduced the

overall dimensionality, fully connected layers are used to perform classification. Through training,

each extracted feature from the convolutional layers is assigned weights with respect to each

classification category. Then, the fully connected layers use the weight matrices to compute the

confidence level of the input belonging to each category. In this work, the last fully connected

layer has input dimensions of 1×1×4096 pixels and it computes the confidence levels of the input

26

Figure 2.9: Max pooling process of an input convoluted layer.

images with respect to each of the three final categories. Finally, as shown in Figure 2.10, the

output of the fully connected layer undergoes the softmax function, i.e., σ (⃗z) =
ezi

∑
k
i=1 ezi

for z⃗ ∈Rk,

where the most likely category will be chosen as the final classification result.

Stochastic gradient descent algorithm is used to train the neural network model through the

alternation of model weights based on the computed gradients. Specifically, the input training data

is first forward-propagated to calculate the loss function:

L =−
3

∑
i=1

yilog(ŷi) (2.14)

where L is the loss, y and ŷ are the ground-truth label and predicted classification label, respectively.

Given the loss function, the model weights are updated using the gradient computed from

back-propagation [12]. Following this approach, the CNN is trained for multiple epochs until

the desired convergence criterion is reached. One training epoch corresponds to the entire training

dataset being propagated through once. The changes made to the weights during each training

epoch are affected by the learning rate which determines how quickly the model adapts to the

problem.

27

Figure 2.10: Fully connected layer with softmax and classification layers.

2.2.2 Individual Sensor Data Analytics through CNN

As mentioned in the previous section, both the melt pool and the OT CNNs share the same

structure using the modified AlexNet backbone. The use of different sets of training images during

transfer learning enables the melt pool CNN and OT CNN to recognize disturbances in melt pool

images and OT images, respectively. In this section, we first discuss the selection details regarding

each CNN’s training and validation image sets. Next, we discuss the hardware used for training

and the specific training options assigned for each CNN. Finally, we further test our CNNs and

analyze the testing results of each CNN using the corresponding confusion matrix.

2.2.2.1 Melt Pool and OT CNN Training

Before either CNN is trained, training images must be labelled with ground truth, i.e., the

categories that images actually belong to, and their respective locations on the build plate. Both

sensor images are split into three categories: proper-melting, under-melting, and over-melting. A

total of nine simulations are performed under various disturbances to collect melt pool and OT

CNN training images. Disturbances are implemented by varying the laser power from 70 W to

437.5 W to create under-melting and over-melting regions. For the melt pool CNN, five simulation

28

results are used for training where 1000 images are produced during each simulation. We notice

that the melt pool image dataset contains much more proper-melting images than under-melting

and over-melting images. Therefore, we carefully choose the proportion of images for each

category and exclude excessive proper-melting images to ensure model accuracy by preventing

class imbalance. The final melt pool CNN training dataset contains a total of 1412 different melt

pool images, of which 710 correspond to proper-melting, 376 correspond to over-melting, and

326 correspond to under-melting. For OT CNN, all nine simulation results are used for training,

where 400 regional OT images are produced during each simulation. Among these 400 regional

OT images, 231 of them are images of the powder bed which the laser does not pass through and

thus only 169 of them are images of interest. Similar to the melt pool CNN, regional OT images are

selectively used for training to avoid class imbalance. The final training dataset for the OT CNN

consists of 1173 regional images, in which 705 correspond to proper-melting, 274 correspond

to over-melting, and 194 correspond to under-melting. Additionally, among the training image

dataset for both CNNs, 70% of the images are randomly selected as training data while the rest

30% are used as validation data.

The OT CNN is trained for a total of 8 epochs with a learning rate of 2× 10−4 as further

training does not increase the CNN performance significantly. The total time to train the OT CNN

is around 4 hours on a 6 GB Nvidia GeForce GTX 1060 GPU and the final training accuracy of the

OT CNN is 86.2%. The melt pool CNN is trained for a total of 12 epochs. It is observed that the

training of the melt pool CNN is more sensitive to the learning rate, which is likely to be due to the

higher contrast in the melt pool images. Therefore, a lower learning rate of 1×10−5 is used. The

total time to train the melt pool CNN is around 8 hours using the same GPU and the final training

accuracy achieved is 89.3%.

2.2.2.2 Melt Pool and OT CNN Testing

In order to further test the accuracy and robustness of the trained CNNs, additional melt

pool and OT images are collected and tested. The OT CNN test set consists of a total of 156

29

regional images, in which 86 correspond to proper-melting, 28 correspond to over-melting, and

42 correspond to under-melting. The melt pool CNN test set consists of a total of 678 melt

pool images, in which 446 correspond to proper-melting, 135 correspond to over-melting, and

97 correspond to under-melting. The testing results of the two models are shown by the confusion

matrices in Figure 2.11. The confusion matrix is commonly used as the metric to demonstrate the

accuracy of classification results, which has the dimensions of R(N+1)×(N+1), where N represents

the number of categories involved in the classification. The categories are laid out horizontally and

vertically to represent the actual class and the predicted class, respectively. The first N ×N entries

of the confusion matrix show the counts of correct and incorrect classifications. The diagonal

entries of the confusion matrix show the amount of correct classifications made by the CNN

of each category. The remaining entries show the number of incorrect classifications and the

specific types of errors made. The last row summarizes the accuracy given a specific ground-truth

class while the last column summarizes the accuracy given a predicted class. Finally, the last

(lower-right) entry of the confusion matrix summarizes the overall accuracy. According to the

confusion matrix, the melt pool CNN is able to achieve an overall accuracy of 89.7% and the OT

CNN achieves an overall accuracy of 84.0%. More specifically, for the OT CNN, 7.7% of the

classifications correspond to false-positive reports, in which proper-melting images are classified

as over-melting or under-melting. Additionally, 1.9% of the reports are false-negative reports,

in which over-melting or under-melting images are classified as proper-melting, and 6.4% of

the reports are misidentified errors of disturbances, in which over-melting images are labelled

as under-melting or vice versa. For the melt pool CNN, there are no false-positive or misidentified

errors for all errors are false-negative reports.

Although both CNNs yield acceptable overall accuracy, we observe that each CNN performs

better when categorizing certain types of disturbances. This is due to the different focus on the

disturbances by the MPM and OT sensors. The detailed breakdown of the OT and melt pool

CNN performances is shown by the confusion matrices (a) and (b) in Figure 2.11, respectively.

The OT CNN has an accuracy of 92.9% in categorizing under-melting cases while the melt pool

30

Figure 2.11: CNN testing confusion matrices: (a) OT CNN, and (b) melt pool CNN.

CNN has an accuracy of 100% and 83% in categorizing proper-melting and over-melting cases,

respectively. Thus, it is desirable to combine the results of both CNNs to fully exploit their

respective advantages. Therefore, a cross-validation scheme is formulated to further increase the

overall accuracy.

2.3 Cross-Validation Utilizing Two Sensor Data Analytics

As mentioned in Section 2.1.4, the OT and MPM sensors have different fields of view. Also,

it was demonstrated that the OT CNN performs better at identifying under-melting cases while the

melt pool CNN performs better at identifying over-melting and proper-melting cases. Therefore,

a cross-validation scheme is proposed to combine the strength of these two sensors and balance

their CNN analytic bias. The framework and results of this cross-validation scheme are discussed

in detail in this section.

31

2.3.1 Cross-Validation Scheme Formulation

In the cross-validation scheme, we attempt to classify regions of the build part using results

from both the melt pool and the OT CNNs. Each region of interest is 0.1 mm × 0.1 mm in size,

which is the same dimension as one regional OT image. First, both the melt pool and the OT CNNs

will be used to separately classify each region and assign a confidence level to that classification.

Then, if one region is classified differently between the two CNNs, the confidence levels from both

CNNs will be used to cross-validate the classification results and determine a final classification.

Additionally, a final equivalent confidence level is provided through meta-analysis.

The location labels are used to correlate the OT and melt pool images with the associated CNN

labels. Since the melt pool images describe a smaller field of view than each region of interest,

one region corresponds to six melt pool images. Therefore, all melt pool images corresponding

to the same region are collected and compared to its ground truth. For each melt pool image,

a confidence level is provided by the softmax layer, and a confidence level threshold is set to

filter out melt pool images with low classification confidence levels. Based on the remaining

qualified classifications, an empirically determined criterion is used to decide on the melt pool

classification of a region, i.e., disturbances that span over three consecutive melt pool images can be

correlated with disturbances on the regional OT images. Therefore, if there exist several potential

classifications for a region, this empirical criterion is applied to determine the final classification.

Additionally, the combined confidence level of the regional melt pool categorization is the average

of the qualified categorizations, which is calculated as follows:

µ =
1
n

n

∑
i

xi (2.15)

where µ is the average confidence, n is the number of qualified classifications, and xi is the

individual confidence level of each associated melt pool image.

After the melt pool CNN results are correlated with each separated region of the build part,

we obtain the confidence level of the same region from the OT CNN and compare it with the

32

results from the melt pool CNN. Since the dimensions of each region of interest are the same as

the OT regional image’s dimensions, the OT CNN classifications and confidence levels do not

need to be further processed. Using the confidence levels from both CNNs, a cross-validated final

classification is determined to be the higher classification confidence level result between the two

CNNs. In addition, the final confidence level can be calculated through the use of inverse-variance

weighting which is a meta-analysis method to combine the result of different studies on the same

problem. It aims to minimize the variance through the calculation of the inverse-variance weighted

average, x̂, which is calculated as follows:

σ
2 =

1
n

n

∑
i
(xi −µ)2 (2.16)

x̂ =
∑

n
i (

xi
σ2)

∑
n
i (

1
σ2)

(2.17)

where x̂ is the inverse-variance weighted confidence level and σ2 is the variance of either the OT

or the melt pool CNN.

2.3.2 Case Study

The proposed cross-validation scheme is validated with a case study using images from one

layer of the DMLS process generated from the FEM simulation. A total of 1000 melt pool

images and 169 OT regional images corresponding to that layer are cross-validated with each other.

Individual CNN analysis is first processed and the classification results for the OT sensor analytics

are shown in Figure 2.12(a). To prepare for the cross-validation scheme, the 1000 melt pool images

are first labelled with their respective locations and correlated to each region of interest. These melt

pool images are then categorized and given a confidence level using the previously trained melt

pool CNN. Next, two confidence level thresholds of 72% and 87% are tested to eliminate unreliable

classifications.

Figure 2.12(a) shows the detailed breakdown of the OT CNN classifying each region of interest.

33

Figure 2.12: Confusion matrices of the (a) OT CNN and (b) clustered melt pool CNN classifying
the 169 regions of interest.

The overall accuracy of the OT CNN is 82.8% which is similar to the previous testing accuracy. A

total of 8.3% of the classifications are false-positive reports, 3% of the reports are false-negative

reports, and 5.9% of the reports are misidentified errors of disturbances. Figure 2.12(b) displays the

testing accuracy of the melt pool CNN categorization for each region of interest. The final accuracy

is 73.4% with 7.1% false-positive reports, 18.4% false-negative reports, and 1.2% misidentified

errors. While the melt pool CNN overall classifies the regions of interest less accurately than the

OT CNN, it makes less misidentified errors than the OT CNN. Specifically, for the classification

of over-melting images, the melt pool CNN has an accuracy of 71.4%, which is much higher than

the 57.1% in the OT CNN. As a result, we apply a cross-validation decision scheme to improve the

overall accuracy of the data analytics process.

Two confidence thresholds of 72% and 87% are tested for the cross-validation and their final

decision accuracies are shown in Figure 2.13. According to the two cross-validated confusion

matrices in Figure 2.13, the overall accuracy of the cross-validation is substantially higher

than that of the individual, non-cross-validated CNN, shown in Figure 2.12. The number of

false-positive, false-negative, and misidentified errors all have been reduced, which demonstrates

34

Figure 2.13: Confusion matrices showing the accuracy of the cross-validation scheme with
confidence thresholds of 72% (a) and 87% (b).

that the cross-validation scheme successfully incorporates the advantages of both sensors. A

comparison between all types of errors and the overall accuracies of the individual OT, melt

pool and cross-validation methods is shown in Figure 2.14. The amount of misidentified errors

drops from 5.9% when solely using the OT CNN to 0.6% when cross-validation is performed

between the OT CNN and the melt pool CNN. The explanation for this decrease can be related

back to the different type of sensor data used. As mentioned in Section 2.1.4, the MPM and

the OT sensors have different fields of view and thus capture different aspects of disturbances.

The cross-validation scheme utilizes information from both sensors and therefore is able to detect

and classify disturbances more accurately. The amount of false-positive reports also decreases

from 8.3% to 6% with the implementation of the cross-validation scheme. This decrease is not

as significant as that of the misidentified errors due to the fact that both sensors face a similar

performance issue when presented with false-positive errors. The major difference between the

72% and 87% cross-validation threshold scheme is the amount of false-negative reports. By setting

a higher confidence threshold, the 87% threshold result is selected to contain more trustworthy

35

Figure 2.14: Bar graph showing the percent of false-positives, false-negatives, misidentified errors,
and overall accuracy of all considered methods.

classifications than its 72% counterpart and thus resulting in a slight decrease in false-negative

reports. At the same time, the 87% threshold results also contain less data than the 72% threshold

result as labels with confidence level between 72% and 87% are discarded. This may result in

the cross-validation scheme being less robust due to the limited data pool size as more results are

discarded when the confidence level threshold is increased.

2.4 Conclusion

In this work, an integrated cross-validation framework using CNNs for the in-situ processing

of the DMLS process was constructed. First, the DMLS process was simulated using COMSOL

Multiphysics, a physics-based simulation software, to obtain the melt pool behavior and layer-wise

OT image data through finite element method modeling. Specifically, the FEM model described the

36

heat transfer behavior of the DMLS process, accounting for phase change, conduction, convection,

and radiation. Then, the FEM model results were validated against both experimental data and

analytical solutions. Next, the thermal data from the validated FEM model were processed into

two sets of images corresponding to the output format of the two types of realistic sensors: the

melt pool sensor and the optical tomography sensor. Specifically, the temperature contour map at

each timestep reproduced the output from the MPM sensor and the locally averaged temperature

history of the build layer reproduced the output of the OT sensor. Afterwards, these two sets of

images were labelled and used to train their respective machine learning model for each sensor.

A convolutional neural network was chosen to be the main machine learning technique used in

this work. Transfer learning was performed on the AlexNet CNN backbone for each sensor, and

both trained CNNs achieve reasonable testing accuracy individually. A single-layer case study

demonstrated that the classification accuracy of identifying OT images using OT CNN alone was

82.8%. To further improve the classification accuracy, a cross-validation scheme was formulated

and applied to the model sensor outputs. Based on the statistical analysis of the classification

results of the melt pool and the OT CNNs, the cross-validation scheme determined a final label as

well as a final confidence level. With the implementation of the cross-validation scheme, the testing

accuracy increased up to 90.4% while the amount of misidentified errors decreased by 5.3%. It

can be concluded that this cross-validation approach of utilizing CNN for in-situ DMLS process

monitoring shows promise as it accurately predicts disturbances and can be potentially applied to

real-time manufacturing monitoring platforms.

37

Chapter 3

Finite Element Modeling of Direct Metal

Laser Solidification Process: Sensor Data

Replication and Use In Defect Detection and

Data Reduction via Machine Learning

In this chapter, a part-scale finite element method (FEM) model is developed to investigate

the heat transfer behavior of the DMLS process and to extract experimentally relevant thermal

features. Specifically, a microscopic and a mesoscale sub-model are initially developed to

describe powder properties and the laser behaviors, respectively, and their outputs are directly

incorporated in the part-scale FEM model. The FEM model-generated data are then processed to

replicate the long-wave infrared camera (LWIR) sensor outputs. Finally, both the experimental and

FEM model-generated images are used to train the machine learning algorithm for in-situ defect

detection applications. In addition, we are endeavoring to look into a convolutional neural network

utilizing such realistic thermal features from LWIR images, with and without a variety of simulated

data augmentation to examine its contribution to the CNN training. The thermal feature extraction

and the machine learning algorithm are then utilized for the data reduction purpose. Also, the

38

transmission strategy is demonstrated to filter out a significant amount of redundant data while

maintaining high model prediction quality.

3.1 FEM Modeling for DMLS

As introduced in the previous section, there has not been an existing part-scale simulation

model for the DMLS process. The major blocking factors include the high computational demand

and the long computational time. Thus, we first review the validity of a previously developed

mesoscale heat transfer model in [135]. Then, to reduce the computational demand of the

large-scale model, complexity reduction strategies are investigated with microscopic models,

including a Gaussian heat source reduction to an equivalent uniform heat source, and a radiation

simplification using a comprehensive 1-D transport model. Next, we associate these two model

outputs to our heat transport modeling framework for experimental build part investigation and

thermal feature analysis. In addition, parametric analyses for various operating parameters,

geometric variations, and disturbances are carried out using cluster computation. The heat transfer

module from COMSOL Multiphysics is used to capture the major thermal characteristics of the

DMLS process.

3.1.1 Mesoscale Finite-element Method (FEM) Model Setup

To investigate the heat transport on the mesoscale, a detailed model has been constructed with

a small-sized simple build geometry in [135], as shown in Figure 3.1(a). Thermal boundary

condition assumptions are considered for the mesoscale FEM modeling. In particular, the top

surface consists of a powder layer, where the laser is applied. A Gaussian laser source is

considered, as well as convection of the ambient gas and the radiation. In contrast, no heat loss is

assumed for the remaining surfaces, the substrate, and the peripheral sides, shown in Figure 3.1(b).

The time-dependent heat transport is dictated by the following equation with the assumption of no

39

Figure 3.1: Mesoscale build part geometry: (a) 3D view and scan pattern, (b) Cross-sectional view
with boundary conditions.

convection in the melt pool:

∂ (ρ(T)Cp(T)T)
∂ t

−∇(k(T)T) = 0 (3.1)

where ρ is the density of the material, where k is the thermal conductivity, Cp is the specific heat

capacity, and T is the temperature. The top boundary condition consists of convection, radiation,

and laser heating:

− ∂ (k(T)T)
∂ z

(x,y,z = 0) =−2AP
πω2 e−

2r2

ω2 +h(T −Tb)+ εσ0(T 4 −T 4
b) (3.2)

where P is the laser power, A is the absorptivity, ω is the laser beam radius, and r is the radial

distance, h is the heat transfer coefficient, Tb is the ambient gas temperature, ε is the emissivity,

and σ0 is the Stefan’s constant. For the other surfaces, no heat loss is assumed, as shown in the

following equation:

∂ (k(T)T)
∂x

(x = (0, l),y,z) = 0,
∂ (k(T)T)

∂y
(x,y = (0,w),z) = 0,

∂ (k(T)T)
∂ z

(x,y,z = h) = 0 (3.3)

where w, l, h are the width, length, and height of the build platform.

Three different phases of alloy are considered which include powder, liquid, and re-solidified

40

metal. The powder properties change irreversibly once the powder has been melted. A transitional

zone of solid or liquid exists between solidus temperature, Ts and liquidus temperature, Tl . The

thermal conductivity k, specific heat capacity Cp, and the density ρ of the material, are governed

by the latent heat of fusion L f and the ratio of each phase θ :

Cp(T) =
L f

Tl −Ts
+θsCp,s(Ts)+θlCp,l(Tl) if Ts < T < Tl (3.4)

where subscripts s and l refer to the solid and liquid phases, respectively. In addition, the powder

phase thermal properties kpowder is defined in terms of the porosity, φ :

kpowder = ksolid(1−φ(T))4 (3.5)

which is dependent on temperature:

φ(T) =



φ0 if T ≤ Ts

0 if T ≥ Tl

φ0

Ts −Tl
(T −Tl) if Ts < T < Tl

(3.6)

The key thermodynamic parameters and their functional forms are shown in [135] and in Figure

3.2 [137]. The resulting melt pool dynamics are compared with that of the experimental works

from [142]. It is demonstrated in [135] that the two results deviate less than 10%. Also, the model

confirms the analytical estimate from the Rosenthal equation [138], which is investigated in detail

in [135].

3.1.2 Microscale Investigation for Computational Demand Reduction

Despite the accuracy provided by the mesoscale simulation, it is computationally heavy to

directly incorporate the developed model into a larger-scale FEM model. The two aspects that

41

Figure 3.2: Temperature dependent thermal properties of Stainless Steel 304L: (a) thermal
conductivity, (b) density, and (c) specific heat capacity.

Table 3.1: FEM model operating process parameters.

Process Parameters Value
Laser power 200 W

Exposure time 75 µs
Point distance 65 µm
Hatch spacing 0.1 mm

Powder thickness 40 µm
Laser spot diameter 70 µm

Absorbance 0.7

42

especially require large quantity and high-quality meshes are the Gaussian laser source and the

radiation. Thus, we are looking for valid simplification to efficiently characterize these two

phenomena without losing model fidelity.

When looking at a model that incorporates the entire build part, the focus range is around 0.25

- 0.65 mm in radius, as prescribed by the pixel dimension of the LWIR camera, which will be

explained in further detail in Section 3.1.3.1. Thus, the exact heat map around the laser focus does

not need to be precisely reproduced as in the Gaussian type of laser simulation. Instead, a uniform

heat source is considered, which assumes a constant heat flux inside the beam radius, and zero heat

flux outside, as shown in the following equation:

q(x,y, t) =


2P

πR2 if r ≤ R

0 if r > R
(3.7)

where q is the heat flux simulating the uniform laser distribution, P is the laser power, R is the

laser diameter, r is the location of the laser in relation to the x and y coordinates, the velocity of

the laser movement, v, and time, t. A temperature comparison is made between the two kinds of

laser sources under the same power. The maximum temperature difference is less than 3% for a

moving laser, and more importantly, a pixel-wise average temperature difference is less than 4%.

The reciprocal of step size is around 5×104 with and 8×104 without this simplification.

Thus, it can be concluded that there is no significant change in temperature and little change

when producing sensor images by using the assumption of a uniform laser distribution. Under such

uniform laser assumption, the mesh size demand is significantly reduced and the number of mesh

points can be cut by about 80%.

In addition, to evaluate the effect of radiation and to seek a solution to efficiently describe

its contribution, we apply a 1-D heat transfer model for the IN-718 powder/air and Stainless

Steel 304L powder/air systems as shown in Figure 3.3. A closest packed structure is considered

for the powders with uniform size according to experimental and industrial relevant recipes.

Constant temperature boundary conditions are applied at the two sides, which are around the laser

43

Figure 3.3: (a) The air and closely packed powder system. Temperature distribution: (b) Only in
the powder, and (c) both in powder and in air.

temperature and the ambient temperature, respectively. Conduction is applied in both powder

phases and air, whereas natural convection is considered in the air. Radiation is considered at the

front and on every powder beads surface. It can be seen from Figure 3.3 that the temperature

gradient decreases sharply before the first contacting surfaces of powder due to radiation, and

the air is the primary source of conductive heat transfer after the first powder surface. Thus, an

effective thermal conductivity of powder ke f f can be considered for the porosity, conductivity of

air and powder, as well as for the effect of radiation. It has been demonstrated that the calculated

value lies within the prediction from [119].

3.1.3 Experimental Based Part-Scale Thermal Feature Analysis

After the thermal performances are validated, we apply the developed FEM scheme with

respect to experimental data from MST to reproduce results from the longwave infrared (LWIR)

44

thermal sensor, which monitors the overall temperature map of the whole layer. As shown in

the previous section, the mesoscale FEM model is capable of producing realistic thermal results

at any time interval. In addition, aided by the microscale and mesoscale model outputs, a

significant level of computational demand can be reduced so that part-scale geometry can be

simulated. In addition, in order to ensure model convergence, a dynamic mesh is implemented,

which simultaneously allows for mesh Independence and an efficient yet accurate solution. These

modifications demonstrate a great potential to reproduce the realistic thermal feature map and

sensor output. Thus, we adapt our FEM model to that of the experimental plan of a desired 15

mm by 20 mm by 10 mm semi-arch geometry, as shown in Figure 3.4. As presented in Table 3.1,

a pulsed laser is simulated according to the experimental setup, which is governed by the point

distance, the movement between each laser pulse, and the exposure time, the duration between

each laser pulse. Other numerical specifications and details are similar to [135].

3.1.3.1 Experimental Temperature Feature Analysis

As shown in Figure 3.4, the target geometry is a semi-arch with varying degrees of

overhang. The experimental plans and trials were conducted at Missouri University of Science

and Technology (MST) and we aim to create FEM simulations that produce similar results as the

experimental trials. We are particularly interested in recreating the defects relating to the thermal

aspects of the build process. This can be a disturbance in the laser causing a region of over-melting

or under-melting, or a geometry-based defect caused by its large overhanging angle. The heat

transfer rate between materials is mainly governed by the thermal conductivity, k, of the material.

During the DMLS process, the thermal conductivity of the powder kpowder and the solid, ksolid ,

differ around one or two orders of magnitude resulting in the solid being much better at conducting

heat than its powder counterpart. At the bulk region, the heat from the laser quickly dissipates

through the solid metal beneath it. However, at overhanging regions, the heat from the laser cannot

be dissipated in time due to being surrounded by mainly powder material, causing a heat saturation

problem. As a result of this heat oversaturation, over-melting may occur at this region, when the

45

Figure 3.4: (a) Experimental semi-arch geometry, and (b) FEM simulation model geometry.

laser repetitively scans near this region before heat is fully dissipated. This in turn can cause a bad

surface finish or even collapse of the part. In order to detect sample quality relating to the thermal

aspects of the DMLS process, an LWIR camera (FLIR T420) is installed above Renishaw AM 250

vaccum-tight build chamber with a ZnSe window to monitor the defects caused by the overhang.

The LWIR camera attempts to generate a layer-wise 2D thermal history of each build layer. It

picks up the radiation in a fixed field of view (0.65 mm/pixel) and calibrates these radioactive

signals into temperature values. Each temperature value is assigned to a region/pixel of the

final image depending on the sensor specification. Under normal process operating conditions,

the highest temperature values within the melt pool would contribute predominantly to the

signal produced [117]. This is due to the nonlinearity of the temperature-intensity dependence

relationship despite the rapid cooling of the material after the laser passes. The LWIR camera

has a frame rate of 30 Hz which in turn generates thousands of images for one layer of the build

process. The maximum temperature of each pixel can be extracted from thousands of images and

remapped into a single layer-wise image. This image can then be easily stored and analyzed in

real-time by machine learning methods to detect defects. Also, this maximum temperature feature

allows us to spot any non-uniform temperature distribution along the surface of the build part. A

heat saturation region caused by large overhanging angles can be directly reflected as shown in

Figure 3.5.

46

3.1.3.2 FEM Data Processing and Validation

To reproduce the LWIR camera results produced by the experiments, we need to further process

our FEM model-generated data. After extracting the time-series temperature data from the FEM

model, we calibrated the timestep of the FEM model to that of the actual LWIR camera capture

rate. The FEM model generates temperature values at a rate of 300 Hz which is ten times faster than

the capture rate of the experimental LWIR of 30 Hz. Therefore, the FEM raw data is temporally

averaged by taking the mean of every ten data points to reflect this difference in capture rate. After

the FEM data is in the same temporal frequency as the experimental data, we also need to map

the FEM data to the same spatial domain as the pixel dimension. The last step is similar to the

maximum temperature feature extraction step of the experimental data processing step. While

the spatial averaging step is performed for every time step, in this work, we are focusing on

the maximum temperature achieved by each pixel space. Therefore, for the final surface pixel

temperature mapping, only the maximum temperature of the entire printing period is saved. The

data calibration and preprocessing step is done within MATLAB similar to the experimental work.

We evaluate the FEM model-generated sensor image both qualitatively and quantitatively with

respect to the experimental sensor images. For qualitative comparison, we look for general trends

in the temperature distribution displayed in sensor images. For quantitative comparison, we

examine the difference in temperature values for each pixel. It should be noted that qualitative

comparison is more important due to its machine learning applications. This is because we do not

want duplicate images to supplement our experimental training set, instead, we want images that

share the same general trends but with some noise. In the experimental pictures shown in Figure

3.5(a), the heat saturation effect causes a zone of high temperature on the right edge corresponding

to the overhanging region of the build part. A similar trend of high temperature on the right edge

of the FEM generated image is reproduced on the FEM simulation, as shown in Figure 3.5(b).

To compare the sensor images quantitatively, we take one set of images from layer 212 of

the build part and examine the temperatures by each pixel. The maximum temperature region

represents the temperature of the overhanging zones while the minimum temperature region

47

Figure 3.5: Top view of (a) experimental sensor image, and (b) FEM generated sensor image.

represents the bulk part above printed metal. It can is demonstrated that the maximum temperature

difference is around 9% while the minimum temperature difference is around 8.2%. This difference

is within a reasonable range as the experimental images’ temperature can also vary due to different

camera calibrations and non-uniform correction methods. We are more interested in the qualitative

comparison between the images and if the temperature trends make physical sense.

3.1.4 Parametric Analysis using Cluster Computation

The aforementioned part-scale FEM model serves as a general-purpose guideline for DMLS

modeling, and it is readily customizable with respect to model accuracy and computational

demands. In this work, we are also trying to look beyond experimental analysis with the aid

of simulation. In particular, defects and disturbances are costly to be investigated in experiments,

as those errors lead not only to higher material and operating costs but also detrimental damage

to the printing platform. The purpose of the CNN classifier is to detect defects in real-time and

having more types of defects in our training dataset will improve its performance. Therefore,

we want to leverage the part-scale FEM model to intentionally create disturbances in order to

augment the existing training dataset. Even though the FEM model can generate data at a lower

cost than experimental builds, it is also not optimal to arbitrarily generate a massive dataset solely

for data augmentation. The FEM model should aim to generate rare or machine damaging defect

data that AM machines cannot produce in a large capacity. The first type of defect implemented

48

is the excessive overhang which is caused by the build geometry. This type of defect can cause

oversaturation of heat near the overhang due to the powder’s low conductivity of heat. This can lead

to a bad surface finish and even collapse of the part. The second type of defect we implemented is

line streaking which is caused by scanning pattern and laser power surge. We created this defect in

our FEM model by applying a laser power increase for three to five hatch spacings. This can lead

to surface protrusion which can potentially cause recoater arm jams and damage. The final type of

defect we implemented is the corner saturation defect. This type of defect is generally caused by

suboptimal scanning patterns and laser movement errors. We created this defect in the FEM model

through the slow turning of the laser at corners along with a suboptimal scanning pattern. Similar

to line streaking, corner saturation can cause surface protrusion which can lead to recoater jams.

Figure 3.6 shows a summary of the defects introduced in the FEM model along with visualizations.

Due to a large amount of potential operating conditions, geometries, and disturbances scenarios

to explore, a variety of simulations need to be carried out. To realize such mass simulation

production, parametric analysis from COMSOL is utilized. Furthermore, to enhance the simulation

computational efficiency, job distribution is realized with distributed cloud computing, where more

than 100 of 8 GB RAMs are allocated on the UCLA hoffman2 cluster. The number of jobs and

adopted cores is based on the mesh memory demand, the available core on the cluster, and the

parallel computing overhead.

3.2 Machine Learning using CNN

Pretrained CNN backbones are used for transfer learning to investigate the DMLS process

adopting the simulated and experimental thermal features. In order to show the importance of

using FEM model simulated images, we will be training two different types of CNNs, one with

simulation augmentation and one without, to compare their respective performance in classifying

the testing datasets.

49

Figure 3.6: Table showing the three types of defects introduced in our FEM simulation.

3.2.1 Dataset Preparation

Our total dataset contains images from four different sources. One is the FEM model simulated

semi-arch images, and the rest are the experimental images of cantilever beam and semi-arch

images from two different builds. All images first undergo data processing before they are

separated into the training and testing datasets. For our training dataset, we use one set of

experimental semi-arch images, and the FEM model simulated semi-arch images as augmentation.

For our testing dataset, we use the other set of experimental semi-arch images and the experimental

cantilever beam images. In our testing dataset, we wish to evaluate how well our CNN classifier

performs on classifying known geometry from a different build and an unknown geometry. As

a result, three different training datasets are created, composed of different combinations of

experimental and simulated images. The three different sets of data are all used to train CNN

classifiers in order to display the effectiveness of the simulated data in helping the detection of

defects. Set 1 contains only experimental data and is used as a baseline to compare with if there

were not any simulated data to use as augmentation. Set 2 and set 3 both contain half and half

of each type but differ in their simulated data composition. Set 2 only contains geometry-based

defects such as those caused by overhangs while set 3 also contains intentionally created defects

50

such as lines and edges caused by laser power disturbances. It is important to note that the

FEM model generated dataset should not be used as a replacement but as a supplement to the

experimental dataset. In this work, the ratio between the simulated and experimental data is kept

below 0.5, so that the training dataset distribution is more realistic and closer to the experimental

builds than the FEM simulations.

In any AM build, without any major machine and build design problem, there is little room

for error for the majority of the layers. As a result, defects only start appearing toward the latter

layers, often causing the build to stop. This trend is reflected in our experimental dataset, which

causes there to be much more non-defective data than defective data. When training any machine

learning model, we want to avoid the problem of class imbalance as much as possible as it can lead

to the classifier having an inherent balance toward one class. Thus, a sampling strategy is included

when selecting our training dataset in which we oversample the less saturated class (defective

images) and undersample the more saturated class (non-defective images). Other ways to combat

the class imbalance would be to adjust the weights when learning one class to the other while

training. However, in our work, we found that using a sampling method was enough to solve the

class imbalance problem and achieving good performance.

3.2.2 CNN Construction and Training

A residual network (ResNet) backbone is used as the basis for the transfer learning of the CNN

classifier. Residual networks contain many residual blocks which create skip connections between

layers, which allow the CNN to classify both simple and complex features without overfitting. In

a typical residual network, there are two different types of skip connections: the identity block and

the convolutional block, shown in Figure 3.7(a) and (b) respectively. In the identity block, there

exists a shortcut path from the input that allows the skipping of three convolutional blocks which

consists of a 2D convolutional layer, a batch normalization layer, and sometimes a Rectified Linear

Unit (ReLU). Similar to the identity block, the convolutional block allows the input to skip over

three convolutional blocks but the shortcut consists of a single convolutional block. Both of these

51

Figure 3.7: Two types of skip connections in residual networks. (a) The identity block skip
connection, and (b) The convolutional block skip connection.

skip connection types allow the input to skip many computations depending on the classification

problem. Due to the implementation of these skip connections, residual networks are able to be

constructed much deeper than other neural networks without adding extra computation power and

worry about parameter overfitting. Among the popular CNN structures, we found the ResNet-18,

a variation of the residual network, architecture to work best due to its ability to train deeper

networks while also maintaining good performance.

After selecting the backbone architecture for our CNN classifier, we applied transfer learning

on the last three classification layers to make it specialize in classifying LWIR sensor images. Next,

we conducted hyperparameter tuning (learning trade, maximum training epochs, and the type of

optimizer) on a subset of the training images in order to save computational cost. The convolutional

and pooling layer hyperparameters are not changed, such as dimensions, strides, and channels, as

during our hyperparameter tuning, we found the original combinations performed better. Instead

52

of the traditional grid search algorithm, we utilized a random “coarse-to-fine” search algorithm as

it allows for more efficiency by not training CNN with suboptimal hyperparameter values multiple

times.

3.2.3 CNN Model Evaluation

After our CNN classifiers are trained from the three different training sets, we compare the

difference in their performance on the pre-constructed testing dataset. All three CNN classifiers

achieve similar high training accuracy, around 96%, which indicates that they can accurately

distinguish between the defective and non-defective classes with the same distribution as the

training set. Therefore, the main purpose of the testing dataset is to evaluate how well our CNN

classifiers handle less known geometries and defects.

The detailed performance of each CNN classifier is shown in Figure 3.8, which demonstrates

a clear difference in the testing accuracy achieved by the three different training sets. The CNN

trained with only experimental data (Set 1) has the lowest testing accuracy which likely indicates

overfitting. Specifically, it achieves accuracy below 50% in classifying different builds and new

geometries which indicates that it fails to generalize beyond one specific build. Set 2 contains

FEM simulated images to provide a bit more noise to reduce overfitting. The CNN trained from

set 2 achieves around the same training accuracy as set 1 while having a higher testing accuracy of

75.4% from 46.4%. Upon a close inspection of the error set 2 has made, we realized that set 2 has

trouble with classifying defects coming from different sources than the training. For example, the

CNN trained from set 2 has difficulties in detecting the corner and edge defects from the cantilever

beam images. Within set 3, the common intentionally created defects are added to the training

dataset. As a result, the CNN trained from set 3 achieves the highest testing accuracy of 94.5%

while also maintaining a good training accuracy.

A common method in comparing different classifiers is through the plotting of the receiving

operating characteristic (ROC) curve. The ROC curve plots the true positive rate against the

false positive rate at different classification thresholds. The final ROC curve for the augmented

53

Figure 3.8: Confusion matrices for the CNN classifiers trained by (a) set 1, (b) set 2, and (c) set 3.

54

Figure 3.9: (a) Four ROC curves are drawn to compare the classifiers trained by three different sets
and the no skill classifier. (b) ROC curve for the CNN classifier trained from set 3 with the red
circle shows the optimal classification threshold.

CNN classifier is shown in Figure 3.9. One quantitative metric to reflect the performance of

the classifier is to look at the area under the ROC curve (AUC), which provides an aggregate

measure of performance across all possible classification thresholds. One interpretation of AUC

is the probability that the model ranks a random positive example higher than a random negative

example. A perfect classifier would have an AUC of 1.0 as it can perfectly predict all positive

and negative cases correctly. On the other hand, a no-skill classifier would have an AUC of 0.5

as it randomly predicts between positive and negative classes. With these numbers as a reference,

we can evaluate how well each classifier does depend on its proximity to a perfect or a no-skill

classifier. As shown in Figure 3.9, the CNN trained from set 1, set 2, and set 3 has an AUC of

0.6998, 0.8774, and 0.9845 respectively.

Finally, we will discuss the applicability limits of the proposed CNN-based defect detection

approach. The CNN classifier does not take into consideration of the physical properties of

the DMLS process. The CNN classifier only sees the numerical values associated with the

processed images and classifies them based on the gradient and intensity differences. Therefore,

the pre-processing of the data into a standardized and suitable format is crucial to the success of

the algorithm. For example, if we applied a different transformation for the temperature to pixel

55

value or used a different material, such as Inconel 718, the proposed CNN will have to undergo

minor adjustment and retraining to achieve similar performance. Overall, the proposed ML

defect detection framework would still be applicable to material or thermal feature transformation

changes.

3.3 Data Reduction

As mentioned in Section 1, one of the current challenges in scaling up DMLS manufacturing is

the gigantic dataset size produced during the monitoring process. In the following section, we will

connect our proposed workflow with data reduction implications and demonstrate several methods

to reduce data.

3.3.1 Data Reduction in DMLS Process

The first strategy is thermal feature reduction, which refers to the transformation of the raw

LWIR sensor data to the thermal feature images. The LWIR sensor first picks up light intensity

signals from the DMLS build process and stores them in a time-series format. In a typical

experiment example, there are seven different build parts on the build plate and each is built up

to layer 240. The raw LWIR sensor data for the build plate for one layer is around 1.485 Gb which

translates to around 350 Gb of data in total. Thus, for large and lengthy production processes,

direct storage of the raw data is not feasible. To deal with this problem, thermal feature algorithms

can be applied to avoid storing unnecessary information such as the light intensity of a location

that is not currently along the laser path. For example, the maximum temperature thermal feature

extracts the highest light intensity for each pixel in each layer. In the same experiment above, we

can reduce 7429 frames of raw data images to a single Tmax image for each layer, which results in

around a 99.94% reduction from raw data.

Even though a large portion of the data reduction is handled by the thermal feature reduction,

the CNN detection reduction is crucial when further scaling up the DMLS manufacturing process.

56

The main goal of the CNN detection reduction is to determine which thermal feature images to

transmit for storage and which to discard. The CNN detection reduction can be separated into two

parts: the CNN classifier and the transmission strategy. Adjusting the CNN classifier will affect

the classification decisions made by the CNN. This is generally done by setting a classification

threshold and varying this threshold to find the optimal operating point based on the importance

of false positive and false negative errors. The trade-off for adjusting the CNN classifier is the

performance of the classifier and the amount of data reduced. The optimal operating point based on

performance is unlikely the optimal point for reducing the most data. On the other hand, adjusting

the transmission strategy will affect what to do with the already classified results. The main

trade-off of adjusting the transmission strategy is the amount of data reduced and the effectiveness

of the data transmitted. In certain scenarios, while a large portion of data can be discarded and thus

saving storage space, some key information may be lost.

3.3.2 CNN Classifier

One objective of our CNN model is to prevent unnecessary data from being transmitted and

stored and this can be controlled by adjusting the CNN classifier threshold, which will vary the

classifications of each image. The specific amount of data reduced is based on the transmission

strategy which considers what percentage of defective and non-defective images will be transmitted

to storage. Different transmission strategies will be discussed in detail in the following section. To

demonstrate the effect of varying the classification threshold, we assume a naive transmission

strategy of transmitting all defective images while discarding all non-defective images in this

section. While other approaches may vary the amount of defective and non-defective images kept,

the general trend displayed by the model performance and data reduction trade-off is the same.

Our CNN classifies the sensor images into two classes: defective (positive cases) and

non-defective (negative cases). However, simply classifying the image based on the higher

confidence scores of the two classes may not result in the best industrial application. For example,

if an image is given a score of 55% defective and 45% non-defective, classifying this image as

57

defective may not be the best in practice as we want to be more certain when we are categorizing

an image as defective. Therefore, an absolute classification threshold should be determined based

on the importance of false positive and false negative classifications. In the DMLS process, a

false negative report can range from a missed hot spot on the part leading to a bad surface finish

or a recoater jam that can damage the whole AM machine. A false positive report is generally

considered as a false alarm and may stop the AM machine build prematurely until a process

engineer is dispatched. By setting a higher classification threshold for detecting defective cases,

there will be a decrease in false positive reports as it would be less inclined to classify some

uncertain errors as defective. Similarly, setting a lower classification threshold will increase the

amount of false positive reports while decreasing negative reports. Figure 3.10 shows the general

trend of varying different thresholds and its effect on model performance and data reduction.

In order to determine the optimal operating point of the CNN classifier, we refer back to the

previously drawn ROC curves in Figure 3.9. A guideline with slope S, calculated by Equation 3.8:

S =
Cost(P|N)−Cost(N|N)

Cost(N|P)−Cost(P|P)
∗ N

P
(3.8)

where Cost(x|y) is the cost of misclassifying a y class as an x class where x and y can be any

combination of P and N, N represents a negative class, and P represents a positive class. In our

work, we assumed equal value of the positive and negative classes. After determining the slope of

the line, we can find the optimal operating point by moving the guideline from the top left corner

of the ROC plot in the direction of the bottom right corner, until it intersects the ROC curve. The

optimal operating point is indicated by the red circle in Figure 3.9. To avoid confusion, only the

classifier trained from set 3 is drawn as it had the highest accuracy and AUC.

3.3.3 Transmission Strategy

In the previous section, we have varied the classification threshold of the CNN classifier to

examine the trade-off between model performance and data reduction. Another key aspect of

58

Figure 3.10: Different trade-offs between: (a) performance and data reduced, (b) data reduced and
classification threshold, and (c) performance and classification threshold.

59

the data reduction trade-off is the transmission strategy, which considers which images should be

transmitted for further analysis and training purposes. Within the total pool of sensor images, not

all images are helpful for error analysis or CNN improvement. Therefore, we want to transmit

this type of image at a reduced rate compared to images containing rare defects. Another goal

of transmitting sensor images is to allow the further tuning of the CNN classifier and to improve

its accuracy during manufacturing cycles. Later in this section, we will compare the differences

between using a complete selection strategy versus a random selection versus a score-based image

transmission strategy.

To describe the trade-offs between data reduction and data effectiveness, we use the retrained

CNN accuracy as the metric. The higher accuracy of the retrained CNN corresponds to a higher

quality of data being transmitted. Regardless of the selected transmission strategy, we take

a portion, 60% in our case, of the original CNN training set and combine it with the newly

transmitted images as our new training set. We still use a portion of the original CNN training

dataset because we want to use it as an anchor dataset in case of dramatic disturbance shift or

error. However, not the entire original training dataset is used because we want to allow the CNN

to improve upon each iteration by emphasizing the importance of the incoming images, which

generally corresponds to more relevant and up-to-date data. Therefore, more weight should be

given to the dataset when conducting retraining.

Table 3.2 provides a summary of the different transmission strategies and their respective

performance and data reduction level. With the complete selection strategy, we transmit all of

the classified images based on the current cycle. This method guarantees none of the crucial

information being lost but is deficient from a data reduction perspective. With the random selection

strategy, we transmit a portion of classified images selected at random. Since defective images

are generally more valued than non-defective images, we select a higher number of defective

images than non-defective images. In our example, we selected 80% of the total defective

images and only 20% of the non-defective images. This selection strategy achieves a reasonable

amount of data reduction around 57%, but cannot achieve the same level of accuracy as the other

60

Table 3.2: Performance summary of the different transmission strategies both on a regular CNN
and CNN with FEM augmentation.

CNN CNN with FEM Augmentation
Original (No retraining) Accuracy: 45.3% Data reduction: n/a Accuracy: 50%, Data reduction: n/a
Complete Transmission Accuracy: 50.3%, Data reduction: 0% Accuracy: 95.1%, Data reduction: 0%

Random Sampling Transmission Accuracy: 51.4%, Data reduction: 58.3% Accuracy: 83.1%, Data reduction: 57.4%
Score-based Transmission Accuracy: 60.3%, Data reduction: 36.6% Accuracy: 95.2%, Data reduction: 75.0%

strategies. The final proposed strategy is the score-based selection strategy. In our CNN predicted

result, a significant portion of the classified pictures scores above the maximum score threshold,

which indicates that the previous CNN iteration can already detect these types of errors. Thus,

transmitting all of the images may result in inefficient use of the data storage, we can eliminate

the uncertain classifications through the implementation of a minimum score threshold and also

achieve data reduction through the implementation of a maximum score threshold. With the

score-based transmission strategy, we are able to reduce the incoming data by 75%. As shown

in Table 3.2, the proposed CNN with FEM augmentation paired with score-based transmission

strategy achieves the highest accuracy as well as the most data reduction. Performance can be

further improved if more detailed tuning is conducted concerning specific processes. Example

tuning parameters include the previously mentioned classification threshold and the maximum and

minimum score-based thresholds.

3.4 Conclusion

Several levels of FEM modeling and simulation were investigated in this work. A mesoscale

model was first constructed which demonstrates that the heat transfer and melt pool behavior

is successfully reconstructed with respect to experimental works and analytical relationships.

Microscale tests were then investigated. In particular, the laser source simplification and heat

conductivity rectification are proven to achieve significant computational demand reduction while

preserving model fidelity. Based on these modeling works, a part-scale model was developed

to reproduce experimentally relevant thermal feature analysis. This FEM model simulated an

61

experimental semi-arch part geometry. In addition, the model will be useful in understanding

experimental defects, and also in the CNN training data augmentation. Transfer learning was

performed on a modified ResNet CNN backbone to reduce computational load. Three different

CNN classifiers trained from different datasets are compared to each other in performance through

examining their respective confusion matrices and ROC curves. It can be concluded that the CNN

classifier augmented with FEM thermal images has shown much improved performance than its

non-augmented counterpart by increasing detection accuracy from 45.2% to 92.3%. Finally, data

reduction implications were discussed in relation to the CNN classifier to overcome the problem

of data transmission and storage.

62

Chapter 4

In-Situ Thermographic Inspection for Local

Powder Layer Thickness Estimation in

Laser Powder Bed Fusion

The DMLS process, which is a type of laser powder bed fusion (LPBF) process, is strongly

influenced by the characteristics of the powder layer, including its thickness and thermal transport

properties. In this chapter, in-situ characterization of the powder layer using thermographic

inspection is investigated. A thermal camera monitors the temperature history of the powder

surface immediately after a layer of new powder is deposited by the recoating system. During this

process, thermal energy diffuses from the underlying solid part, eventually raising the temperature

of the above powder layer. Guided by 1D modeling of this heat-up process, experiments show how

the parameterized thermal history can be correlated with powder layer thickness and its thermal

conductivity. A neural network, based on the parameterized thermal history, further improves the

correlation after training. It is used to predict the part distortion for an unsupported structure. This

method detects serious part distortion several layers before the part breaks through the powder layer

and interacts with the recoater. This approach can be automated to prevent catastrophic recoater

crashes or abrasion of soft wipers and has the potential to monitor local properties of the powder

63

layer in-situ.

4.1 Experimental Setup

Figure 4.1 illustrates the experimental setup with a long-wavelength infrared (LWIR) camera

(FLIR A655sc) integrated with a commercial LPBF machine (Renishaw AM250). A ZnSe window

on the chamber allows the LWIR camera to observe the build plate from 15◦ off-normal. The

LWIR camera has 640 × 480 pixels which corresponds to a spatial resolution of 325 µm in this

configuration. The spectral range of this LWIR camera is 7.5–14.0 µm. The noise-equivalent

temperature difference (NETD) is 30 mK and frame rate is 200 Hz. The camera reports the

temperature of the scene assuming an emissivity of 0.95 (gray body approximation) and is not

corrected for transmission through the window. Because the emissivity of the powder and the

printed solid material as well as the wiper differ, the measured temperatures are lower than the

true temperatures. However, the relevant information for the procedure presented in this chapter is

in the time domain. This allows the measured temperatures to be normalized for calculations and

removes requirements for emissivity and nonuniformity calibrations, significantly simplifying the

instrumentation. Figure 4.2 shows the temperature history of a single pixel for a 67.6 s duration

layer during a typical build using 304 L stainless steel powder in a Renishaw AM250. The powder

used in this chapter had diameters ranging between 15 and 40 µm with a mean diameter 25 µm.

At the start of the process, powder is dispensed from the hopper at the back of the chamber. The

wiper spreads the powder over the build area, traveling from the back of the chamber to the front

of the chamber. The time index is shifted so that the wiper passes over the pixel in Figure 4.2 at

t = 0. As the wiper completes its travel, it pushes any excess powder into a catchment at the front

of the chamber. The laser is then scanned over the pattern for the layer to fuse the powder to the

part. The camera captures this interaction but is saturated when the pixel is heated directly by the

laser. At the conclusion of the laser patterning, the build plate is lowered by the layer height, δ ,

and the wiper returns to the back of the chamber, passing back over the pixel at t = 63.5s. The

64

emissivity of the pixel changes depending on the states of the material and presence of the wiper.

These changes are indicated by the color of the trace.

Figure 4.1: Schematic of LPBF experimental setup with LWIR camera.

Figure 4.2(b) shows a close-up of the interaction with the wiper during the powder-spreading

step. Initially the pixel corresponds to the printed part which has a lower emissivity. This has

cooled from the interaction with the laser, although there still retains some residual heat as well

as any heating from the build plate (maintained at 80◦C for the builds). The wiper pushes powder

in front of it. Some of this powder enters the pixel before the wiper. Although the fresh powder

is cooler, the increased emissivity leads to a slight increase in the measured temperature to Tmin

at T = 60.75◦C. When the wiper blocks the camera’s view of the pixel there is a decrease in the

measured temperature (indicated in grey), followed by a sharp rise in the measured temperature

(t = 0). The surface temperature of the powder increases as heat diffuses from the underlying

part. This asymptotically approaches a steady state value of Tmax, which is the temperature of

the build plate i.e. Tmax = Ts = 80◦C. It should be noted that both Tmin and Tmax have the same

emissivity because they both correspond to the powder state. The dynamic response of the surface

temperature is a function of the powder layer thickness as well as the thermal properties of the

powder. The remainder of the chapter focuses on this portion of the temperaturetime history. It is

65

convenient to normalize the local surface temperature by

Figure 4.2: Schematic of powder spreading process in temperature history of (a) one complete
layer (b) powder heat-up portion.

T −Tmin

Tmax −Tmin
(4.1)

which removes the effects of the temperature of the underlying part as well as the dependence on

the camera’s calibration.

4.2 1D heat transfer model and finite differential elements

solution

4.2.1 1D Heat Transfer Model

Insight into the temperature history can be achieved from modeling the thermal diffusion

through the powder from the underlying part. While the powder layer is made of discrete particles,

evaluating it as continuous effective medium significantly simplifies the analysis. Also, the

thickness of the powder is much less than the lateral extent of most parts, so it is reasonable to

model the problem as 1D problem in the z-direction. Lastly, the temperature range for the system

during the recoating step does not vary significantly enough to consider thermally dependent

66

properties. Figure 4.3(a) illustrates this model. A powder layer of thickness, δ , is in contact

with the printed solid part. Radiation exchange at the free surface of the powder is neglected, but a

convection boundary condition is applied. The printed solid part is modeled as semi-infinite. The

temperature of the semi-infinite end side is constant temperature at Ts = 80◦C. This problem is

governed by the heat transfer equation,

∂T
∂ t

=
ki

ρici

∂ 2T
∂ z2 (4.2)

with boundary conditions,

kp
∂T
∂ z

= h(T (z = 0, t)−T∞) (4.3)

T (z −→ ∞, t) = Ts (4.4)

and initial condition,

T (z, t = 0) =

 Tp 0 < z ≤ δ

Ts δ < z
(4.5)

where T is the temperature and is a function of time, t, and distance from the surface of the

powder, z. The thermal properties in Equation 4.2 depend on the material and can be either powder

or printed solid (denoted by the subscript, i, which is p for powder and s for printed solid). k, ρ

and c are the effective thermal conductivity, density and specific heat of the materials. h is the

convection heat transfer coefficient. T∞ is the ambient temperature while Ts and Tp are the initial

temperatures of the printed solid and powder, respectively.

The powder’s effective thermal conductivity is fit from experiments as described in Section

4.2. The calculated temperature distribution is shown as a function of depth z in Figure 3(b)

for Ts = 80◦C,Tp = 60◦C,T∞ = 60◦C, h = 15W/m2K. The thermal camera only has access to

the surface temperature of the powder. The model predicts that the powder surface temperature

approaches the steady state within almost 1s.

67

Figure 4.3: 1D heat diffusion model (a) model definition and (b) simulated temperature distribution
at various times.

4.2.2 Thermal Feature: Rise Time

It is helpful to have a parameterized expression to fit to the surface temperature history. The

following equation captures the surface temperature rise predicted by the finite difference solution

to Equations 4.2–4.5.

T (z = 0, t) = A1 −A2eβ1(t−ti)−A3eβ2(t−ti) (4.6)

where A1 is the powder free surface’s steady-state temperature and A1−A2−A3 is the powder free

surface’s initial temperature, Tp. Replacing t with t − ti allows the time history to be shifted so the

initial condition occurs at ti (when the wiper introduces fresh powder to the printed solid surface).

The coefficients β1 and β2 depend on the powder layer thickness and thermal diffusivity of the

materials. For a sufficiently thick powder layer on a high thermal diffusivity material (α = k/ρc)

material. While this serves as a starting point, it breaks down for thinner powder layers and this

chapter fits the coefficients numerically for both simulation and experiments. After normalization

using Equation 4.1, the initial temperature of powder free surface T ′(z = 0, t = ti) is zero, so that

68

A1 −A2 −A3 = 0 and Equation 4.6 can be simplified as

T ′(z = 0, t) = A1 −A2eβ1(t−ti)− (A1 −A2)eβ2(t−ti) (4.7)

The coefficients A1,A2,β1,β2 and ti can be fit to the free surface temperature. Figure 4.4(a)

shows the ability of Equation 4.7 to capture the free surface temperature predicted by the finite

difference model for different powder layer thicknesses. The mean squared error for the powder

thicknesses in Figure 4.4(a) is less than 5.3×10−6.

Figure 4.4: Fitted 1D thermal diffusion model results (a) parameterized fitted results overlayed
on results from finite difference solution with rise time for the δ = 320 µm layer highlighted (b)
powder thickness as a function of rise time with power law fit and calculated powder layer thickness
uncertainty.

A characteristic rise time, τ , defined as the time from t − ti for the surface temperature to reach

90% of steady state, can be obtained from Equation 4.7.

69

A2eα1τ +(A1 −A2)eα2τ = 0.1A1 (4.8)

The rise time serves as a thermal feature which can be related to the powder layer thickness

or the thermal properties. Figure 4(b) shows the dependence of the rise time on the powder layer

thickness from finite difference model calculated results. This relationship is captured by a power

law dependence

δ = 269.8τ
0.5048 (4.9)

Assuming the constant properties in Table 1, this function can be used to predict the powder

thickness δ from rise-time τ , which can be fit to simulated or experimental data. The uncertainty

in the predicted powder layer thickness depends on the first derivative of Equation 4.9. An estimate

for the uncertainty in the powder layer thickness, ∆δ is given by

∆δ =
∂δ

∂τ
∆τ (4.10)

Table 4.1: Material properties of 304 L solid and powder.

Properties 304 L Solid 304 L Powder

Density [kg/m3] 8030 4818
Specific heat capacity [J/kgK] 490 490
Thermal conductivity [W/mK] 16.2 0.269

where ∆τ is the uncertainty in the rise time. For example, if we assume that the uncertainty in

the time constant scales with the reciprocal of the frame rate of the camera (200 Hz), the uncertainty

for a 40 µm powder layer would be 5.21 µm while the uncertainty for a 100 µm decreases to 2.17

µm. Coincidentally, this agrees with the breakdown in the treatment of the powder layer as an

effective medium as the layer thickness approaches the powder particle diameter (40 µm for the

70

powder in this chapter).

4.3 Experimental Validation

The parametric expressions in Equations 4.7 and 4.8 can also be applied to experimentally

gathered data, and the experimentally fit coefficients can then be used to predict the powder

thickness. This approach requires collection of temperature histories for various known powder

thicknesses. Figure 4.5(a) and b shows a simple gage specimen printed with the Renishaw AM250.

It consists of 5 mm wide strips, 35 mm long, at different elevations h from a printed datum plane.

After the specimen was printed, the unfused powder is removed from above the gage specimen.

The specimen is not removed from the build platform. After the powder is removed the chamber

is resealed again, the argon atmosphere restored, and the build plate heated to 80◦C, before

commanding the system to add a new layer of powder. The wiper then spreads powder over the

build plate including the specimen. This gives a powder layer thickness that varies spatially with

the height of the individual strips of the gage specimen. The powder layer thickness is δ = h0 −h,

where h0 is the height above the datum of the build plane. In this experiment h0 = 360 µm so that

the highest specimen has δ = 40 µm of powder above it. The heights of the gage specimen and

corresponding powder thicknesses are listed in Table 2. The 8 different heights in the table are

repeated three times along the width of the specimen. The thermal histories for each pixel above

the specimen are recorded during the recoating process. After this, the build plate is removed from

chamber and cleaned. The top surface of the specimen is then laser scanned (LMI Gocater 2320)

to measure precisely and map the height of each strip above the datum plane. Figure 5(b) shows

the measured height of each specimen and Figure 5(c) shows a spatial map of the corresponding

powder thickness registered to the camera pixels. This shows minimal local variances from the

nominal powder thickness.

Figure 6(a) shows examples of the temperature histories for pixels with different nominal

powder thicknesses. Equation 4.7 is fit to the temperature history pixel-by-pixel. The five fitted

71

Figure 4.5: (a) Photograph of height artifact and (b) surface profile along cross section A-A. 2D
maps of the (c) measured powder layer thickness, (d) rise-time τ , (e) A1, (f) A2, (g) β1, (h) β2, (i)
ti, (j) coefficient of determination 2.

Table 4.2: The height of each of the eight different strips and corresponding powder thickness δ .

n h [µm] δ [µm]

1 320 40
2 120 240
3 40 320
4 240 120
5 80 280
6 200 160
7 160 200
8 280 80

coefficients are plotted in Figure 4.5(e)-(i). As mentioned in Section 3.2, A1 corresponds to the

normalized steady state temperature and should have a nominal value of unity. Figure 4.5(e)

shows that the fitted values of A1 range between 0.97 and 1.03. The time shift ti is related to

when the wiper passes over the pixel. The coefficient β1 is inversely proportionate to the thickness

of the powder layer as should be expected. Figure 4.5(f) shows that ti scales linearly with y for

thinner powder layers. This agrees with the constant velocity (v = 140mm/s) of the wiper in the

72

y-direction. For thicker powder layers, there is a delay between when the powder is deposited and

when a temperature rise can be observed on the free surface because of the time it takes for thermal

energy to diffuse through the powder layer.

Figure 4.6: (a) Measured temperature histories for different powder thicknesses and fitted
parameters (b) powder thickness δ with respect to rise-time τ .

The coefficient of determination, R2, for these fits is shown in Figure 4.5(j). The figure shows

that Equation 4.7 captures the local temperature histories well and the minimum R2 over the entire

gage specimen is 0.98 with an average for all the data of R2 = 0.997. The five fitted coefficients

can be combined using Equation 4.8 to calculate the rise time for each pixel. This is plotted in

Figure 4.5(d). The correspondence between powder layer thickness and rise time is clearly visible

in Figure 4.5(c) and (d). Figure 4.6(b) also shows the powder layer thickness as a function of rise

time. A power law fit to this data gives the relationship

δ = 269.9τ
0.5074 (4.11)

73

which has R2 = 0.869.

While the parameterization from the 1D model captures the response well for the interior of the

strips as illustrated in Figure 4.6(a). Figure 4.6(b) shows significant scatter in the rise time and the

measured powder thickness. Much of this occurs at the boundary between strips. In these regions,

the assumptions of the 1D model are not satisfied and the thermal disturbance spreads laterally

(cylindrically away from the edge defined by the adjacent strips). Experimentally, this lateral

spread is on the order of two pixels (0.65 mm for this setup) and is convoluted with resolution of

the camera.

4.4 Machine Learning with FNN Regression Learner for

Powder Thickness Prediction

The previous section showed that working with the rise time leads to straightforward

correlations to the powder thickness or thermal properties. However, the relatively low R2 in Figure

4.6(b) indicates a large variance of predictive performance in certain regions. Specifically, for

powder thicknesses δ < 180µm, the power law model shows a large variance as certain points are

over-estimated by as much as over 200%. In application, this large error will cause the prediction

algorithm to miss defects at low powder thickness levels since the algorithm tends to over-estimate

powder thickness levels.

The consolidation of the five thermal history fitted parameters (A1,A2,β1,β2, and ti) fitted

thermal history to the rise time can lead to some loss of information. Generating physics based

correlations with all five parameters is challenging. Machine learning techniques are well suited

to this type of problem, provided sufficient data is available. A feedforward neural network (FNN)

is applied to the data in Figure 4.5 using the Regression Learner toolbox in MATLAB. The five

parameters A1,A2,β1,β2, and ti in Figure 4.5(e)-(i) are directly used to train the FNN to predict the

powder layer thickness.

The general structure of an FNN model can be mathematically represented by the following

74

equations

a[1]k = σ
[l](

n[1]

∑
i=1

xiw
[1]
i j +b[1]) (4.12a)

a[l−1]
k = σ

[l−1](
n[l−1]

∑
i=1

a[l−2]
i w[l−1]

i j +b[l−1]) (4.12b)

y j = σ
[l](

n[l]

∑
i=1

a[l−1]
i w[l]

i j +b[l]) (4.12c)

where xi is input features and y j is the desired output target. is the weight from neuron i of the

k−1 layer to neuron j of the k layer. l and n[k] denote the number of layers and number of neurons

for the k layer, respectively. b[k] and σ [k] are the bias and activation function for the k layer.

In this study, there are 42510 total data points that are split based on a ratio of 70–15–15

into the training, validation, and testing dataset for the FNN, respectively. The training dataset

is used to adjust the weights and biases of the FNN, the validation dataset is used to adjust

the hyperparameters (number neurons) of the FNN, and the testing dataset is used to evaluate

the performance of the FNN to an unseen dataset. It is important to note that data splitting is

conducted before any further data processing steps such as normalization and scaling to prevent

data leakage. Using the regression learner MATLAB toolbox, several different FNN architectures

are tested against each other with their own specifications. A model with a single hidden layer with

100 hidden neurons and ReLu as the activation function displayed the best performance with an

R-squared value of 0.962.

Figure 4.7 compares the prediction results from the rise time only correlation and the five

parameters based FNN. The FNN preforms significantly better for thinner powder layers. The

overall coefficient of determination R2 improves to 0.962 for the FNN as opposed to 0.859 using

the rise time correlation. Figure 4.7(c) shows histograms of the true powder thicknesses when the

predicted powder layer thickness is δp = 200± 5µm. Fitting a normal distribution to the results

from both models gives a 95% confidence interval estimate of the true powder layer thickness of

δ = 194.2± 60.6µm for the rise time correlation which is improved to δ = 201.5± 32.2µm for

the FNN model.

75

Figure 4.7: Predicted powder thickness δ by using (a) rise time method, (b) neural network
regression method and (c) powder thickness with normal distribution when the predicted powder
layer thickness is p = 200 ± 5 µm.

76

4.5 In-situ Thermographic Monitoring for Recoater

Interaction

Thermal distortion occurs commonly in LPBF. This can occur for unsupported parts when there

is inadequate conduction to the build plate leading to excessive heating. The distortion lowers the

powder thickness on next layer which exasperates the overheating as less material is melted. When

the distortion of the part causes it to break through the powder layer, it can interact with the recoater.

The interaction of the recoater with the part can abrade a soft wiper while a rigid wiper can crash

into the part and damage the machine, part, or both. In the case of a flexible wiper, the abraded

area allows an increase in the powder layer thickness for every part in-line with the abraded area.

The contact with the wiper is potentially catastrophic for both types of wipers. Detecting thermal

distortion prior to a part breaking through the powder layer allows the local process parameters

to be adjusted in order to limit distortion or to have the part suppressed to save the build. The

distorted.part leads to a change in the local powder layer thickness which can be detected using the

thermographic powder layer monitoring technique.

Artifacts with an overhang are printed to demonstrate a change in powder layer thickness

caused by thermal stress as reported in our previous work [134]. The dimensions of the overhang

artifact are shown in Figure 4.8(a). Figure 4.8(b) shows a photograph of the specimen and a

block printed with the Renishaw AM250 system using a flexible (silicone) wiper. The block is

added behind the specimen to capture any subsequent changes in the powder bed thickness due

to the abraded wiper. These artifacts are printed using nominal process parameters developed for

stainless steel 304 L. Specifically, a laser power of 200 W , beam size of 75 µm, scan speed of 800

mm/s and setup nominal powder thickness δN = 50µm. For simplicity, the laser was only rastered

in the xdirection. The parts in Figure 4.8(b) were stopped after 219 layers and show significant

distortion in the unsupported overhanging region. The height of the powder layer is monitored

using the thermal camera, the temperature history for each point fitted using the 5-parameters

in Figure 5, and the FNN used to predict the powder layer thickness. Figure 4.9(a) shows the

77

predicted powder thickness averaged along the leading edge of the overhang artifact (red line). For

reference, the predicted powder thickness averaged over a line at the center of each layer (blue

line) is also plotted. The constant raster direction leads to a slightly higher part (lower thickness)

at the edge almost immediately. This is stable by layer 40. The powder layer thickness on the

unsupported edge starts decreasing more and more at layer 180 due to thermal distortion. Over the

entire print, the reference thickness in the center of the part is stable.

Figure 4.8: (a) Schematic image of overhang with dimensions in mm (b) photograph of distortion
grows on the overhang top surface with a block behind it.

To verify these predictions, specimens were stopped at intermediate heights during the build.

Photographs of the specimens stopped at layers 50, 140, and 215 are shown in Figure 4.9(a). At

the conclusion of the build, these parts were laser scanned (after removing powder but without

removing the parts from the build plate). The nominal height is calculated by multiplying the

number of layers with the nominal powder layer thickness. The actual powder layer thickness is

this nominal height minus the laser scanner measured height. This thickness is plotted for both the

unsupported edge and center of the part in Figure 4.9(a) as points, by averaging the data measured

over each line (red dash line or blue dash line) for the various layers. This validation was repeated

for three different parts (stopped at the same layer) and the error bars show the standard deviations.

The figure shows that the predicted layer height from the thermal inspection method agrees well

with the measured height. In particular, the thermal distortion predicted that the part broke through

the powder layer at layer 212 while the measurements show a broke-through between layers 200

and 205.

78

Figure 4.9: (a) Comparison of powder thickness δ between thermal measure and height measure.
The blue line indicates the inner center powder thickness averaged over the blue dots line for every
layer. The red line denotes the unsupported edge powder thickness averaged over the red dots line
for every layer. (b) Powder thickness δ at different block areas. Blue and red lines represent the
powder thickness of block along blue and red dots with respect to layers. The insert images are
the 3D map of block powder thickness δ obtained from the thermal measure. (c) Final overhang
samples and the abraded wiper.

79

Figure 4.9(b) shows the thermal inspection predicted height for the block behind the overhang

artifact. The predicted powder layer height is plotted for the same x-position as the traces in Figure

4.9(a) (immediately behind the leading edge of the artifact and at its center). The powder layer

stabilizes by layer 40. At layer 215, the local powder layer thickness behind the unsupported edge

starts to increase dramatically. This is due to the abrasion of the wiper and leads to the local

deposition of more powder. While not visible in the photograph of the part in Figure 4.8(b), if this

continued, it could negatively affect the local part properties.

Figure 4.9(c) shows photographs of five identical parts, stopped at layer 219, and the wiper.

The damage to the wiper is visible (scratched metal and abraded silicone). The decrease in the

powder layer thickness indicating an imminent crash could be detected by layer 190 from the

thermal inspection estimate. This is at least 10 layers before the collision and would allow the part

to be suppressed to prevent damage to the wiper as well as any other parts in the build.

It is interesting to observe that the measured as well as predicted powder layer thicknesses

are so much larger than the nominal powder layer thickness, about 200 and 50 µm, respectively.

This is consistent with [105] who showed a nominal powder thickness of 20 µm resulted in a

measured powder layer thickness of more than 100 µm as well as [166] who showed nominal

powder layer thicknesses of 30 and 50 µm corresponded to actual thicknesses of 165 and 225 µm.

This phenomenon is the result of shrinkage of powder consolidation over multiple layers [105] in

addition to significant losses of the powder from spatter and denudation [166].

In addition to suppressing a bad part before it breaks through, detecting thermal distortion early

could be used to adjust the process parameters to match the reduced powder layer thickness. This

includes lowering the laser power or increasing the scan speed. There is also the possibility to

adjust the scan path to minimize overheating. Because the distortion is detected early, there is time

to react by making more gradual changes. Other more drastic approaches are possible, including

laser ablation of the distorted region or physically deforming it down.

80

4.6 Conclusion

This chapter demonstrates the potential of using in-situ thermographic inspection to evaluate

the powder layer thickness and estimate local powder layer thermal properties. An experimental

study, conducted using realistic process parameters in a commercial LPBF machine, agrees well

with a 1D thermal diffusion model for the powder layer. This uses a stationary LWIR thermal

camera in a staring configuration. A parametric fit of the temperature history is used to generate

a correlation to the powder layer thickness. A simplified rise time model provides insight and

was used to estimate thermal conductivity, but it was outperformed by a FNN machine learning

method for data obtained from a calibration specimen. This was tested for a simple artifact with an

overhanging unsupported edge. Without underlying supported structure, the ability of the overhang

to dissipate heat is significantly reduced, causing heat to build up at the edge. Overheating causes

thermal distortion, which reduces the thickness of the next powder layer. The overheating is

exasperated as there is less powder for the laser to melt and the distortion rapidly increases to

the point where it breaks through the powder layer and produces the abrasion of the silicone wiper.

The FNN model was applied to monitor thermal distortion and could ultimately predict a wiper

collision at least 10 layers before it occurred.

The thermal inspection method appears to have several advantages relative to existing methods

for monitoring the powder layer in-situ. In particular, because the inspection occurs during the

recoating step, it does not add additional processing time for the inspection. Comparing with

optical coherence tomography and fringe projection methods, this method’s additional equipment

costs are minimal. The thermographic inspection technique was able to resolve the powder layer

height to ± 32.2 µm (within the mean particle diameter).

81

Chapter 5

A three-level hierachical framework for

additive manufacturing

Metal alloy additive manufacturing (AM) has gained wide industrial interest in the past decade

due to its capability to efficiently deliver complicated mechanical parts with high quality. However,

due to a lack of understanding of the fundamental correlation between the operating conditions

and build quality, the exploration of the optimal operating policy of the AM process is costly and

difficult. In this chapter, a data-driven process optimization framework has been proposed for

the additive manufacturing process, integrating machine learning, finite-element method (FEM)

modeling, and cloud-edge data storage/transfer optimization. A three-level hierarchy of local

machines, factory clouds, and a research center is introduced with each level responsible for its

dedicated tasks. In addition, to ensure the efficiency of data transfer and storage, an edge-cloud data

transfer scheme is constructed, which serves as a guideline for the data flow in the AM framework.

Moreover, an overview of the connections between the proposed framework and the Industry 4.0

framework is presented.

82

5.1 AM Framework Hierarchy

The following sections discuss the proposed additive manufacturing framework, which is

constituted of three levels: the machine level, the factory level and the research center level. An

overview of the roles and responsibilities of each level is demonstrated in Figure 5.1.

5.1.1 Machine

The lowest level of the additive manufacturing framework hierarchy is the machine level,

where build parts are produced and manufacturing data are constantly generated and collected.

An AM machine, e.g. EOS M290, receives the build recipe from the factory level and makes

the build with the received recipe. A typical additive manufacturing recipe includes, but does

not limit to, laser scanning path, hatch spacing, laser power, and powder thickness. Depending

on the build geometry and material, the building parameters can vary dramatically, causing the

building process to range from a couple of hours to a day. Due to a lack of an efficient real-time

model that predicts the build part details online, it is crucial to monitor the AM process with

the appropriate sensors to prevent and understand undesirable defects. The adoption of multiple

sensors to provide better manufacturing results is prevalent in the additive manufacturing process.

For example, [177] developed a multi-sensor framework for the wire arc additive manufacturing,

where individual sensors contribute differently to the final decision making. In addition, [44] also

designed a multi-sensor in-situ monitoring system for the AM process. For the LPBF process, two

of the most commonly used sensors to monitor the in-situ heat transfer aspect of the process, based

on their functionalities, are the optical tomography (OT) sensor and melt pool (MP) sensor [54].

The EOS M290 machine uses the EOS Suite, a process monitoring software, to perform the

online monitoring using the information from these sensors. Both sensors can provide a unique

perspective on the AM process. Specifically, the OT sensor outputs a whole image of the powder

bed that summarizes the maximal temperature that occurred on the platform throughout the build

process. The OT sensor is an off-axis sensor, which does not move along the laser path and

83

Figure 5.1: An overview of the components of the additive manufacturing framework and their
respective responsibilities. (a) A hierarchical depiction of the AM framework. (b) The machine
level is shown in the gray block, the factory level is shown in the yellow block and the research
center level is shown in the blue block.

84

in-sensor post-processing is necessary to adjust for the optical distortion due to different view

angles. Additionally, since the OT sensor captures the entire build plate, the overall resolution will

be lower. On the other hand, the MP sensor captures the local image of the melt pool. Since the

MP sensor is an on-axis camera and aims to observe the transient behavior of the melt pool, it

generates images at a much higher frequency than the OT sensor. Since the MP sensor focuses on

a much smaller area, it produces a higher resolution over the local melt pool region. In other types

of machines, e.g. Renishaw AM250, the EOS monitor suite is unavailable, but analogous cameras

can be installed to achieve a similar effect. Specifically, [100] have installed a short-wave infrared

(SWIR) camera on a Renishaw M250 machine to monitor the in-situ melt pool behavior of the

process, similarly to the MP sensor. Experiments are also be done with thermal feature processing

with the long-wave infrared (LWIR) camera to achieve similar results to the OT sensor.

5.1.1.1 Machine Sensor Monitoring

Even though sensor results are interpretable to process engineers, to further automate the

defect identification process, it is desirable to adopt techniques that make the sensor results

machine-readable. Moreover, the raw data size from sensors can be extremely large, reaching

up to 30 GB per build. Therefore, it is also important to perform efficient data reduction on the

machine level to ensure the efficiency of data transfer speed and data storage size. Since AM sensor

results are more easily interpreted as images, the raw time-series sensor data is first processed and

converted into a layer-wise image of the build plate. For example, the thermal temperature data

from an LWIR camera is transformed into a thermal mapping of the build plate through a thermal

feature extraction algorithm. To classify these processed sensor images, CNNs have been widely

adopted as an image classification technique and their accuracy has been acclaimed by a variety

of industries [89]. CNN can extract and recognize important features within an image in a highly

efficient manner. Therefore, we propose to utilize CNN to process and interpret the AM sensor

results. In this framework, each sensor is proposed to pair with a dedicated and specifically-trained

CNN to perform the defect identification task on the local machine. The extracted features

85

allow automated error detection and recipe update, which also allows redundant information to

be discarded and keeps only essential information. It is also noteworthy that, a deployed CNN is

relatively fast at execution and does not require a large amount of computation power to run. Thus,

even if the machine-level computers may not have the strongest hardware, these computers are

adequately equipped to perform the image classification task. [134] has proposed a CNN defect

detection workflow and tested using experimental data. The proposed CNN workflow can classify

images at high accuracy and timely manner.

5.1.1.2 Sensor Cross Validation and Machine Transmission Details

Different sensors, such as the OT, MP, or powder-bed sensors, provide different perspectives

on the manufacturing process. Therefore, it is important to weigh the sensor results based on the

intrinsic strengths of each sensor. [135] has shown that the OT sensor performs better at identifying

the over-melting problem, while the MP sensor performs better at identifying the under-melting

problem. Similarly, the powder-bed sensor can also be cross-validated against the OT or MP

sensors to identify problems such as recoater jams. Therefore, to fully take advantage of the

strengths of the sensors, a cross-validation scheme is proposed to select the most reasonable sensor

results using statistical analysis.

A crucial aspect of the proposed AM framework at the machine level is the information that

is transmitted from machine to factory. CNNs and other process monitoring workflows can be

implemented to reduce the amount of data transmitted. This filtered process information should be

stored in an efficient and ready for use format before being transmitted to the next hierarchy of the

framework, the factory level. In the following section, a cross-validation scheme between different

sensors and the data transfer format is proposed for the example of two types of errors, e1 and e2,

monitored by two different sensors, S1 and S2.

First, the problematic areas within each build are identified and their locations and error types

are collected using the dedicated sensor CNNs,

86

[(e1, l) j,(e2, l) j] =CNNi(Ii), i ∈ {S1,S2} (5.1)

where CNNi is the trained network for a specific sensor i, Ii is the sensor raw data, i is the type of

sensor image, e j is the likelihood of a potential error label, l j is the error location, j ∈ [0,Ne] is the

error index, and Ne is the total number of errors. Additionally, the output dimension is Ne ×2 due

to the two types of sensors involved in this case.

For one particular location l j, it will have two types of error confidence levels reported by two

types of sensors,

(e1, l j) f inal = λS1,1(e1, l j)S1 +λS2,1(e1, l j)S2

(e2, l j) f inal = λS1,2(e2, l j)S1 +λS2,2(e2, l j)S2

(5.2)

where (ei, l j) f inal is the overall likelihood of an error type i at location l j and λk,i is the weight

determined by cross-validation for sensor k.

Then a filter is applied to every location to determine the most likely error. Confidence levels

below a certain threshold will be regarded as error-free.

E =
[

f ilter
(
(e1, l j) f inal,(e2, l j) f inal

)]
j ∈ [0,N′

e]

f ilter : {Pre-filter e with a threshold; Then apply max(·,·)}
(5.3)

where E is the cross-validated error list.

Although the example provided here uses two sensors and detects two error types, the proposed

cross validation scheme can also be potentially generalized to more sensors and more types of

errors. In addition, human knowledge can also be used for the determination of errors and these

aspects can be explored in future works which focus more on the detailed implementation of the

proposed framework.

87

5.1.2 Factory

As mentioned in the previous section, the factory level is a local computation cluster with

moderate computing power and its physical location would ideally be in the AM factory to ensure

efficient communication with the AM machines. The role of the factory level is to serve as a

checkpoint and coordinator of the AM machines. When the pre-trained CNNs on the AM machine

detect some potential defects, the error information, as well as the corresponding operating

policies, will be sent to the factory for quality assurance and recipe correction if possible. Process

engineers will be stationed at the factory level to perform quality control on incoming data. In

the event of an error, process engineers first can utilize the local resources at the factory level

including the local recipe book and simulation center in an attempt to find solutions to the error.

Process engineers can transmit the error and its corresponding build information to the research

center if further investigation is needed. In the case of misclassification of incoming data by the

CNN algorithm, process engineers can selectively transmit the necessary data to the research center

to improve and update the CNN algorithm.

5.1.2.1 CNN Deployment Monitoring

One of the most important tasks at the factory level is the quality assurance of the

manufacturing process by skilled process engineers. At the machine level, it is not realistic to

have process engineers monitor the various sensor results of each individual machine, hence the

implementation of CNN algorithm to pre-filter out results. However, at the factory level, it is

important for process engineers to regularly perform quality control on the machine products.

While the CNN algorithm on each machine should already be performing at an acceptable high

level, it still is susceptible to unexpected events and manufacturing data drift. For example, during

the life cycle of an AM machine, the sensor calibration may shift and result in a systematic error

in data distribution. If the new distribution is beyond the implemented range of the trained CNN

network, then the CNN classification results will not be accurate and potentially impact the product

quality. Examples of other unexpected events include sensor failures and faulty machines, which

88

are also beyond the knowledge of the original CNN algorithm. Process engineers will monitor

subsets of the incoming data from the machine level and respond to any potential events following

the appropriate protocol. In addition, another benefit in having human experts monitor the results

of the CNN data is the opportunity to improve CNN performance. If an incoming dataset contains

incorrect classifications, the process engineers can selectively transmit a subset of the incoming

images with the corrected labels to the research center for updates to the CNN algorithm. Detailed

transmission schemes and a case study of this proposed workflow will be explained further in

Section 5.2.

5.1.2.2 RNN Workflow

On the factory level, a hybrid recipe update scheme is proposed which aims to provide smart

recipe correction through the combined effort of both a high-level recurrent neural network (RNN)

and human experts. A recurrent network is often used to predict outcomes based on historical data

[110]. Since the machine-level manufacturing data are essentially time sequences of thermal and

structural information, they can be processed by an RNN using a high-level analysis. Therefore,

at the factory level, a pre-trained high-level RNN can be used as an operating recipe encyclopedia.

The operating encyclopedia contains a large manufacturing dataset that can be used to derive

the correlation between the operating conditions and potential defects. Therefore, the RNN

can provide suggestions in the adjustment of AM operating policies when defects are detected.

However, in the early phase of the manufacturing of a new build geometry, the manufacturing data

are usually insufficient for the training of a meaningful RNN. Therefore, human knowledge can be

extremely helpful in assisting the adjustment of AM recipes. In addition to that, human knowledge

can also be applied to efficiently select the dataset to train the RNN with higher accuracy. However,

with the collection of more manufacturing data, the feedback process can further be automated,

thereby, reducing human intervention.

As mentioned in Section 5.1.1.2, the proposed recipe-update scheme is implemented using

the transmitted error list, E, from individual local machines. Due to the standardized format of

89

the transmitted data, the RNN-based workflow can be directly implemented without too much

pre-processing. The formulation of the RNN network is shown as follows,

u′ = RNN(E,b,u)

RNN : f (h(t),m(t),u(t), [e, l],b) = h(t +L),m(t +L),u′(t +L)

where h is a hidden state and m is a memory state. Using the error list and the additional build

history around errors b, from an individual machine, the RNN can predict an updated recipe u′

that can potentially fix the defects during the production. The same RNN network can be directly

applied for multiple local machines and resolve the errors of the same type. It is noteworthy that,

in the beginning phase of the manufacturing, it is difficult to derive a good RNN network due to the

limited amount of manufacturing data. Therefore, human expert knowledge can also be adopted to

facilitate the recipe enhancement.

5.1.2.3 Simulation Center

The other role of the factory is to serve as a local AM process simulation center. The

computation power of the factory cluster can be used to perform the solution of a pre-built FEM

model simulation that does not require too much computational resource. These simulations,

such as elementary structural and thermal analysis, can provide additional information regarding

printing processes and avoid the usage of ex-situ analysis, which is often destructive to the printing

product. Even with the limited computation power on the factory cloud, many types of simulations

can be performed. [135] has explored the possible simulations that can be performed on the

factory level. According to the domain and scale that simulation models focus on, three types

of simulations can be conducted on the factory level: micro-scale, meso-scale, and part-scale.

An example of a micro-scale simulation is shown in Figure 5.2(a). The shown 1-D microscopic

transport model can be used to explore the thermodynamic and transport properties of the materials

that are manufactured. In this particular case, the built 1-D model is used to compute the effective

thermal conductivity of the powder material through numerical experiments. These types of

90

simulations can be used as a useful supplement to the parameter determination studies, such

as described in [51]. For meso-scale simulation, an example is shown in Figure 5.2(b). The

meso-scale simulation focuses on a portion of the built part, which can be a feature of interest

or a sub-part. By constructing an FEM model, the local thermal history details of the part

can be extracted for further analysis. The meso-scale simulation is particularly useful to obtain

insights into the defects or distortions that occur on a specific geometric feature or location.

Finally, part-scale simulation captures the dynamics of the entire build part or even a build plate

where multiple parts are being built. An exemplary part-scale simulation geometry is shown in

Figure 5.2(c). The part-scale simulation can provide a holistic perspective of the building process,

and it can be used to validate the building recipe and prevent part defects through simulation

prediction. All three types of simulations are suitable for the computation resources available on a

factory cluster. Additionally, due to the resemblance of part-scale simulation results with the sensor

data, part-scale simulations can also be used as a data-augmentation method to further enhance the

robustness of recipe design, which will be covered in more detail in the next section.

5.1.3 Research Center

The highest level in the hierarchy of the framework is the research center, which can be assumed

to be a supercomputer cluster equipped with strong computation power. Computation resources are

typically limited on local venues due to the lack of sufficient hardware infrastructure and high cost.

Therefore, cloud computing has been proposed as an alternative to providing strong computational

power to terminal users in a shared environment. The cloud computing market has witnessed

significant growth in the past decade, and the technologies involved with cloud computing have

matured to be able to meet the computation demand by the global research and commercial

activities nowadays [133]. Many cloud computing resources are available commercially, of which

the most representative one is the AWS cloud service provided by Amazon [13]. In this framework,

such a cloud computing hub is used as a dedicated research center for the AM process, which

may serve and oversee hundreds of factories. With the strong computing power of the research

91

Figure 5.2: Three examples of suitable simulations that can be run at the factory level. (a)
Micro-scale simulation on the powder properties. (b) Meso-scale simulation on a portion of the
build part. (c) Part-scale simulation of the entire build part.

92

center, tasks that are not feasible on the local machine and factory cloud can be performed here.

It is noteworthy that the research center does not directly take part in the manufacturing process,

and does not make recommendations for the recipe online. Instead, the research center serves

as a knowledge hub that constantly takes in selected manufacturing data and performs machine

learning studies, such as the training of a high-level recurrent neural network model, to provide the

next-generation recipe for process optimization.

The research center can perform more computationally demanding simulations. For example,

on the factory level, only one FEM model can be executed to validate a certain range of operating

conditions due to the limitation of computational capacity. However, at the research center, a

parametric sweep can be performed to inspect a large range of operating conditions, thus providing

much more insights into the process. The type of simulations that can be performed at the research

center also has a larger variety than at the factory cloud level. For instance, detailed simulation

of the microscopic properties through the first-principles-based method can be performed, which

is too computationally expensive on the factory cloud or local machine. For example, density

functional theory calculations can be performed to obtain the necessary thermodynamic properties

of the build material through the efficient approximate solution of the Schrödinger’s equation [68].

These first-principles-based simulation results, along with the large amount of manufacturing

data provided by different machines on different build parts can provide sufficient quantity and

generality of the additive manufacturing process. With these data, a robust model can be trained

to provide insights on recipe designs for new build parts. Last but not least, another role of the

research center is data storage. The stable infrastructure of supercomputer clusters makes the

research center the ideal place for the storage and easy access of manufacturing data, which is

typically on the scale of petabytes or even exabytes. However, as mentioned before, the research

center is expected to receive data from hundreds and thousands of AM machines from the local

factories. Therefore, the large amount of data influx and data transfer may be overwhelming even

for a supercomputer like the research center. As a result, Section 5.2 proposes an edge-cloud data

transfer scheme that can potentially optimize the data transfer and storage.

93

Figure 5.3: An overview of the edge-cloud data transfer scheme of the additive manufacturing
framework. The arrow orientations represent the directions of the data flow.

With the enormous amount of data gathered from different factories, the research center can

also serve as a decision-making hub for the industry as a whole. [26] argued that enterprise-wide

profitability is reliant on a number of integrated factors such as reliability, safety, flexibility,

and environmental concerns. As discussed in Section 5.1.1.2, in-situ process monitoring of AM

machines is an example of reliability and safety factors. The integration of ML techniques will

allow more flexibility and turn-over rate on recipe design experiments through techniques such as

AI-surrogate models and digital twins [21]. Environmental concerns may include the design of the

input powder material and geometric shapes. It is important to allow consistent information flow

between different factors as it contributes to aligning the enterprise-wide short-term milestones

with long-term milestones. Following this approach, a number of short-term and long-term goals

can be established with the large and expansive range of data collected in the research center.

5.2 Edge-Cloud Data Transfer Details

As mentioned in Section 5.1.3, due to the large size of the AM manufacturing data, it is crucial

to perform data reduction and maximize the data transfer efficiency. The overall data transfer flow

occurring in the AM workflow is shown in Figure 5.3. In summary, the data transfer procedure is

proposed to be the following: first, an initial build recipe is provided to the AM machine by the

factory cloud. As the machine builds the part, the sensor data, I, are processed with CNN, and an

error list E is generated. The error list is further processed through the cross-validation scheme

and a cross-validated error list, E, is generated. After the data processing has been completed, the

94

data transfer is initiated from the local machine to both the factory cloud and the research center.

The data size of the cross-validated error list, E, is estimated to be about several Megabytes per

transfer and the data size of the raw sensor data, I, is estimated to be about several Gigabytes per

transfer. Due to the large data size of the raw sensor data, not all data should be transmitted to the

research center for every build. Instead, a data transfer frequency should be determined to ensure

data completeness, data transfer bandwidth occupation, and data storage efficiency. To ensure

the efficiency in data storage and transfer, the following data selection and transfer paradigm is

proposed based on if a part defect or recipe error is observed:

Machine −→ Factory

if error present then

if new error then
Factory −→ Research Center at f1

else
Factory −→ Research Center at f2% if an old error is persistent

end

else
Factory −→ Research Center at f3

end

where f1, f2, f3 are different data transfer frequencies; f2 > f1 > f3

Specifically, in the proposed paradigm, the data transfers are all initiated in a linear fashion

from the local machine to the factory cloud and finally to the research center to prevent data

duplication. During manufacturing, if an error or defect is detected by the machine monitoring

system and has not been encountered before, the machine will upload the manufacturing data to

the factory cloud for error amelioration. After the data is sent to the factory cloud, according

to a pre-trained recipe update scheme, an updated recipe will be deployed to the local machine,

attempting to mitigate the error. Besides the feedback to the local machine, if the error has never

been encountered before, i.e., a new error, the data will be also sent to the research center for

bookkeeping and further study at a frequency of f1. On the other hand, if the detected error or

95

defect has occurred before and keeps reoccurring despite the recipe update from the factory cloud,

the data will be sent to the research center from the factory cloud and the manufacturing should be

halted if the severity of the defect is high. This data transfer will happen at a frequency of f2. In

the final case, suppose there is no error encountered during the manufacturing, the manufacturing

data will still be transferred to the research center for routine backup. However, the frequency

of routine backup, f3, should be much slower than f1 and f2. The actual choice of data transfer

frequencies is at plant designers’ discretion, but an overall guideline for the priority of data transfer

would be f2 > f1 > f3.

5.2.1 Data Transfer Case Study

Dataset used in this study is the same dataset used in the author’s previous work [134]. In

summary, the dataset consists of processed LWIR camera data from different semi-arch geometries.

The dataset is split into training, validation, and testing and the testing dataset is from a more

recent build than the training and validation dataset. In a typical factory setting, the CNN classifier

installed on each machine should already be performing at a relatively high level. The CNN used

is able to achieve an accuracy of 92.3% on a fairly balanced dataset of defective and non-defective

images. The testing dataset will be used to represent a new set of build information from a typical

AM machine. In this case study, the CNN classifier will be evaluated before and after transmitting

the testing images and updating the CNN classifier.

In this case study, we will be investigating the effectiveness of the proposed framework,

specifically, the transmission between factory and cloud. As mentioned at the factory level, the

incoming images will first be classified in an AI-assisted manner in which process engineers will

conduct quality control on the CNN classifications. First, we manually classify the new images to

recreate the job of the process engineers who will monitor the incoming images. The new set of

images are grouped into two categories: images of which the CNN-determined classifications

that agree with human expert knowledge, and images of which the classifications that do not

agree with human knowledge. As we are dealing with classifying unstructured data, images, the

96

human classification, or the human-level performance, can be thought of as a good ground truth

classification. Ideally, we want to minimize the total data transmission size while maximizing

the effectiveness of the transmitted data. Therefore, these two categories of incoming images

should be transmitted at different rates. Then, we will retrain the CNN classifier with both the new

images and a subset of the original dataset. This is similar to the transmission from the factory

to the cloud and the cloud retraining process. Finally, we will evaluate the performance of the

newly updated CNN similarly to manufacturing ML deployment monitoring. The updated CNN is

retrained five times to ensure performance consistency as there are slight variations between each

training since the specific training images differ from training to training due to uniform selection.

In addition, different weight initialization methods and stochastic gradient descent may result in

slightly different results from time to time. Therefore, we reported both the maximum and average

performance at each transmission rate in our result.

Before the retraining of the CNN, the CNN can achieve an accuracy of 91.3%. This will be

our baseline to which we will compare our updated CNN. As shown in Figure 5.4 (a), we have

varied the fraction of correctly classified images transmitted for retraining to investigate its effect

on CNN performance. It is noteworthy that since we retrained our CNN with only 60% of the

original training dataset plus the new dataset, at fractions below 0.1, the updated CNN performs

worse than the original. This decrease is to be expected since we did not use 40% of the original

training dataset causing some defect types to be missed. However, after merely using more than

0.1 of the new dataset, the updated CNN starts to perform much better. In our case study, the

performance of the CNN stabilizes after around 0.4 of the total correctly classified images are

transmitted for retraining. This supports our proposed framework of only needing to transmit a

portion of all incoming images for retraining as the original CNN can already classify this subset

of images correctly. However, it is still necessary to transmit them for retraining to keep up with the

data drift and routine backup during manufacturing. In Figure 5.4 (b), we have varied the fraction

of incorrectly classified images to CNN performance. In our case study, the performance of the

CNN continues to increase until around 0.85. This fraction is significantly larger than the previous

97

Figure 5.4: Fraction of transmitted (a) correct and (b) incorrect images and their effect on the
retrained CNN accuracy.

0.4 due to this subset being the incorrectly classified images. Specifically, we varied the fraction

of correctly classified images first where all of the incorrect images are sent. After, we selected

the best performing fraction, 0.4, and held it constant when varying the number of incorrectly

classified images. We performed the study in this order because we know that correctly classified

images contribute less than incorrectly classified images in the process of retraining. We did not

vary both fractions at the same time since that increases the computation cost from O(N +M)

to O(N ∗M). We do not need to transmit all of the images since some of the defect types are

repeated, and sending 85% of the incorrect images may be enough for the new CNN to recognize

such a defect. In the case of a persistent error type throughout multiple iterations of the retraining

process, this type of error should be transferred at a higher frequency or be assigned a higher

weight when retraining the CNN. It is notable that the exact hyperparameters, such as transmission

fractions and dataset ratios, are specific for our set of images and can vary when applied to another

dataset. However, the general trends should be consistent throughout any dataset and in agreement

with our proposed data transfer framework.

98

5.2.2 Job Scheduling

The task of data transfer in AM highly resembles the work for the implementation of the

aforementioned data transfer scheme. To address this task, one can take advantage of the various

network load balancing schemes and job scheduling libraries available both open-source and

commercially. [122] investigated the usage of the user datagram protocol (UDP). For example, the

transmission control protocol and the internet protocol (TCP/IP) or open systems interconnection

(OSI) in the field of networking is a great reference for the implementation of the data transfer

scheme [88, 194]. In the TCP/IP or OSI models, the data being transferred over the internet is

divided into packets that are equal in size, which allows a convenient data integrity check and the

usage of standardized processing protocol [59,153]. On the other hand, the sun grid engine (SGE)

is an example of the job scheduling library. A job scheduler like SGE oversees a job scheduling

queue and handles the job distribution and execution based on both job priority and resource

availability. When performing the job scheduling, the job scheduler optimizes and balances the

job load on all available computation nodes and ensures no node gets overcrowded or empty under

various circumstances [63]. For the data transfer in the AM framework, due to the large data size of

the manufacturing data, customization may be necessary when using existing software or libraries.

5.3 Additive Manufacturing and Industry 4.0

Additive manufacturing is often mentioned together with the concept of Industry 4.0, which

represents the fourth industrial revolution. The key idea of Industry 4.0 is the integration of

smart manufacturing and information technologies into the traditional manufacturing process,

which is largely driven by the desire to combine digital and physical applications, to provide

efficient product customization and to promote automation in manufacturing [29, 158]. Industry

4.0 typically features the usage and development of self-aware and self-learning machines, and

cloud-based manufacturing and smart manufacturing are two of the main drivers of Industry 4.0.

As a result, additive manufacturing is a key component of the Industry 4.0 due to its superior

99

prototyping capability and close relationship with other components of the Industry 4.0 [111]. [26]

explained the interrelationships between additive manufacturing and cyber security, simulation,

internet of things (IoT), and big data analytics.

Though still relatively not-well-developed, additive manufacturing is a broad field that has

many sub-categories [167]. Despite the large variety of materials that can be manufactured

by AM, the materials that are most relevant with the framework and pathway of industrial

4.0 include metallic materials, smart materials (e.g., shape memory alloys and shape memory

polymers), printable hydraulics and electronics and special materials & applications (e.g., jewelry,

clothing and food) [46]. Although the additive manufacturing data-driven framework proposed in

this work focuses on the metal additive manufacturing and is based on the powder bed fusion

(PBF) process, it can be tailored and adapted to the AM of other materials with the proper

selection of sensors and potential transfer learning of the trained neural network. Moreover, the

proposed data-transfer scheme is general-purpose and can be applied and customized for any

additive manufacturing process that is data-intensive. In addition to the framework proposed in

this work, there also exist other attempts that have been made to relate additive manufacturing

with the Industry 4.0 framework, from which this work draws inspiration. For example, [161]

has investigated the possibility of an IoT-enabled cloud-based additive manufacturing platform,

where machine-learning techniques and hybrid human knowledge are used for the facilitation

of rapid manufacturing. On the other hand, [25] has looked into the automation and the

smart process-improvement of additive manufacturing through cloud computing and optimization.

Moreover, recently [106] developed a big data-driven framework to assist the development of the

smart AM process through big data utilization. [17] also provided a comprehensive overview of the

integration of cloud computing and additive manufacturing. Therefore, it can be seen that additive

manufacturing is a key element in the Industry 4.0 framework, which can potentially revolutionize

the existing business models and manufacturing decisions [62, 80, 92].

Finally, an emerging field within Industry 4.0 is the integration and handling of cybersecurity

concerns. When calculations, involved in the solution of process models, and/or when data analysis

100

takes place in the factory cloud, the issue of cybersecurity should be carefully addressed as it is

a problem that is occurring more and more in a variety of industries. To this end, cyber-attack

detection and mitigation strategies should be implemented at the factory cloud to achieve early

detection of potential cyber-attacks; a detailed treatment is outside the scope of the present work

and the reader may refer to [170]’s book for an in-depth study on the modeling, detection and

mitigation of cyber-attacks.

5.4 Conclusion

In this work, a data-driven process optimization framework dedicated to the additive

manufacturing (AM) process is proposed. The framework is based on a three-level hierarchy:

machine level, factory level, and research center level. The machine level is the lowermost

level, consisting of the AM machine or the computer equipped with the AM machine. The

machine level is responsible for online data collection and real-time image processing. The second

level is the factory level. This level is responsible for adjusting the recipe with a predefined

recipe-update policy according to the defects reported by machines. In addition, the factory

level can also coordinate data transfer and perform low computationally demanding simulation

tasks to provide insights on the parts that are processed at the factory level. The research

center level is used as the storage hub for the manufacturing data collected from the lower

levels, i.e., factory and machine levels. Using the collected manufacturing data, the research

center, consisting of a supercomputer with tremendous computational resources, can perform

efficient and powerful data mining to improve and develop new process recipes. Moreover, the

research center can perform first-principles-based simulations that further explore the material

properties to facilitate the accurate characterization of the manufacturing process. In addition to

the simulation/workflow framework proposed in this work, due to the large size typically involved

with the AM manufacturing data, a data-transmission scheme is also proposed to serve as a data

transfer guideline for the AM process, and a case study is presented with the data scale suitable for

101

a typical AM application. Finally, the connection between AM and the Industry 4.0 framework is

elaborated to provide further motivation for the research in this field. Future work can be conducted

to explore the efficient implementation of the framework proposed in this work and the integration

between AM and Industry 4.0 concepts.

102

Chapter 6

A Tutorial Review of Neural Network

Modeling Approaches for Model Predictive

Control

6.1 Introduction

Model predictive control (MPC) has attracted significant research interest as it is one of the

major achievements in the development of advanced multivariate process control systems due

to its ability to compute the optimal control actions based on not only the instantaneous state

measurements but also the anticipated process response. Specifically, MPC relies on its built-in

linear/nonlinear model to capture the dynamic behavior of the process and predict the response

of the process over a finite horizon window, such that it can determine the optimal control

trajectory by solving a dynamic optimization problem subject to input and state constraints at

every sampling time. Attributed to the achievement of developing self-tuning controllers in the

1970s, such as minimum variance (MV), generalized minimum variance (GMV) [37,38], and Pole

Placement [163] controls, the methodology of MPC was proposed. Since its conceptualization,

MPC has been developed and modified in various ways over the past few decades. [132] provided

103

a tutorial review of MPC approaches for control practitioners and the variables/parameters that

must be considered when designing an MPC. [108] carried out an exhaustive literature review

of the advances in MPC to handle hard constraints in both linear and nonlinear systems, with

an emphasis on the results regarding stability and optimality. [118] summarized the previous

15 years of research in MPC and proposed several new directions for the future such as

performance monitoring, process diagnostics, estimating states in nonlinear systems, improving

system identification in the multi-input multi-output (MIMO) system context, and the challenges

and reliability of the on-line dynamic optimization problem. Following these advances, MPC

has been widely accepted in industry [77]. For example, in [79], MPC was implemented in an

industrial automotive system and demonstrated superior closed-loop performance compared to

traditional control schemes. However, as stated in [14, 15, 52, 116], a reliable process model that

can capture the input-output relation of the dynamic system is essential to the success of advanced

model-based control systems (e.g., Lyapunov-based MPC (LMPC) and economic MPC (EMPC))

as these systems require process models with well-characterized accuracy to predict the temporal

evolution of the states, and thus, the identification of process models is a central pillar of control

science and engineering.

Traditionally, mathematical and statistical models are widely used to derive process models

in the field of chemical engineering. For instance, famous first-principles models such as the

Navier-Stokes equations are crucial to modeling the fluid dynamics within physical systems.

However, deriving first-principles models for chemical processes can be challenging due to

the complexity of determining the fundamental physico-chemical phenomena of a process. In

contrast, modeling dynamic systems using data-driven models has attracted significant attention,

both historically and recently. In the context of developing dynamic models to embed into

controllers, linear models have been studied exhaustively over the past few decades, leading to

a well-developed framework and literature in this field. This is primarily due to the mathematical

simplicity and results that can be derived for controllers with linear process models, despite

the fact that most chemical processes exhibit highly nonlinear behavior and are characterized

104

by numerous complex interactions between variables as seen in distillation columns [93] and

catalytic continuous stirred-tank reactors (CSTR) [28]. For industrial process control systems,

the parameters of a linear data-driven model are typically identified from industrial or simulation

data [165]. A category of such data-driven models is autoregressive models such as autoregressive

with exogenous inputs (ARX) or autoregressive–moving-average model with exogenous inputs

(ARMAX) [107]. An ARX model takes the weighted sum of the lagged states and inputs to predict

the current states and may also be reformulated as a linear time-invariant state-space model, which

has been studied in-depth in the control literature. The primary reason linear models are still

employed in the control of nonlinear processes is that, besides the aforementioned mathematical

considerations, they are often able to be used for the design of a controller that can stabilize the

nonlinear process itself. For example, [8] investigated the design of a Lyapunov-based EMPC

(LEMPC) using empirical linear state-space models, derived conditions to guarantee closed-loop

stability of the nonlinear process under the LEMPC based on the linear empirical model, applied

the controller to a nonlinear chemical process, and found it to be a computationally efficient

framework. Furthermore, when using a linear state-space model as the process model in MPC,

its structure becomes similar to that of a linear-quadratic regulator (LQR), which has convex

properties and guaranteed convergence [34]. In practice, this can lead to faster convergence of

the MPC optimization problem compared to the usage of nonlinear models in MPC.

While the above methods perform well for linear systems, process modeling using linear

models continues to be challenging for large-scale complex processes due to the limitation of

enough and flexible parameters to capture all nonlinearities in the system. Even though linearized

models can still provide accurate approximations around steady-state regions, as the process

deviates from the steady-state regions, linear models’ performance suffers because the linearization

approximation no longer holds. In response, nonlinear autoregressive models such as nonlinear

autoregressive with exogenous inputs (NARX) are constructed where a more flexible nonlinear

mapping can be added to the lagged states and inputs to capture the nonlinear coupling between

known input effects and unknown input effects [22, 74, 124]. One problem that autoregressive

105

models have is the large number of parameters that need to be estimated. Therefore, extensive

research has been done regarding methods to reduce the dimension of these models. For example,

by using input projection methods such as principal component analysis (PCA) and partial least

squares (PLS), the dimensions of autoregressive models can be reduced to a reasonable amount

[128]. In addition, constraints to the number of parameters can be added to the model such as in the

case of nonlinear additive auto regressive model with exogenous input (NAARX) [74]. However,

even with the use of dimension reduction algorithms, it is still a laborious task, especially for

multivariable systems, to balance between choosing a suitable model structure and identifying all

the required parameters [91]. The field of nonlinear dynamic modeling remains an active area

of research. In the recent literature, several methods have been proposed including explanatory

approaches such as sparse identification for nonlinear dynamical systems (SINDy) [24], which

directly identifies a nonlinear system as a first-order ordinary differential equation that may be

integrated in time. For systems such as chemical processes that evolve on an attractor and reach

a steady-state, explanatory methods such as SINDy have been shown to accurately capture the

long-term trajectories of nonlinear systems in the presence of time-scale multiplicities [2] or

high levels of sensor noise in the data [4]. The resulting SINDy models have also demonstrated

closed-loop stability and faster convergence than first-principles models when incorporated into

an MPC [3]. In [6], well-conditioned polynomial nonlinear state-space models were developed to

be incorporated into an LEMPC. The model identification explicitly accounted for conditioning to

yield well-conditioned models that could be integrated with a relatively large integration time-step,

leading to significant reduction in computation time per sampling period. Other nonlinear

dynamic modeling methods in the literature opt for black-box approaches such as Runge-Kutta

time-steppers embedding neural networks to handle nonlinearities [58, 66, 130, 140] and entropic

regression [11]. It is noted that these alternative methods exist and have their advantages as well

as disadvantages, but a comparison study is beyond the scope of this paper.

Entering the era of big data, deep learning (DL) methods such as artificial neural networks

(ANN) have gained much attention for their exceptional performance in capturing the behavior

106

of complex physical systems, making them top candidates for model-based control systems. The

large number of tunable parameters and the rich variety of nonlinear functions ANNs possess

allow the capture of previously-considered “difficult nonlinearities”. When given the appropriate

parameters, the universal approximation theorem states that an ANN is capable of capturing any

complex input-output relation [42, 101]. However, ANNs did not gain popularity until recently

due to the difficulties associated with implementation and training [128]. Specifically, for the

modeling of complex physical systems, especially noisy and/or nonlinear processes, deep ANNs

may be necessary to capture the input-output relation. Although training deep ANNs requires a

large volume of data due to the high number of parameters to be estimated, which renders their

implementation generally difficult, several recent developments have mitigated the challenges of

training deep ANNs. Firstly, the proliferation of data generated by machines and devices in the last

decade has made the training of data-demanding ANNs viable [183]. Secondly, while deep ANNs

inherently involve many matrix operations, leading to large demands for computational power

during training, recent advancements in computing infrastructure including cloud and parallel

computing have made training deep ANNs feasible. Finally, the development of open-source

machine learning libraries such as Tensorfow [1], PyTorch [123], and Keras have made the

construction and training of complex ANNs much more straightforward and accessible.

There are many different types of ANNs; specifically, feed-forward neural networks (FNN) and

recurrent neural networks (RNN) and their variants [35, 70, 143] have demonstrated potential for

use in model-based control systems. Throughout the scientific history, FNNs have been proposed

to be used as process models in MPC. [50] proposed the use of a two-hidden-layer FNN as the

process model for dynamic matrix control (DMC), which is an early linear form of MPC. A

more recent use of FNN is to model nonlinear dynamic processes since the multivariate nature

of these processes leads to internal state interactions, causing difficulties for traditional models [5].

Therefore, research has been conducted to exploit the nonlinear nature of FNNs to develop process

models for MPC. In [116], a dynamic FNN-based MPC was designed to control the interface

level of a flotation column by manipulating the tailings flow rate. The dynamic FNN took in

107

a multi-time step history of the states to predict the interface level after one-time step. The

MPC’s prediction horizon is set to contain multiple sampling periods, and each sampling period is

equal to the prediction length of the dynamic FNN. Results showed that the dynamic FNN-based

MPC performed better than traditional PID controllers due to faster convergence and smoother

trajectories. [87] reported the use of a stacked FNN-based MPC for a multivariable nonlinear steel

pickling process. FNNs were stacked in series, and an iterative method was used to obtain different

future time steps of process states within the MPC’s prediction horizon. The simulation results

show that the FNN-based MPC displayed good convergence and stability even under disturbances

and noise. In addition to using FNNs as the process models, FNNs can also be used as a model

identifier to determine when a process is subject to parameter variations and uncertainties [73].

The identifier FNN updates the weights of the process model, which is a separate predictor FNN,

in case of system variations and thus creates an adaptive neural network-based MPC. While the

above use of FNNs as process models in MPC displayed good results, modeling complex long-term

dynamic processes was not intuitive given the unidirectional structure of FNNs.

Therefore, the idea of incorporating recurrency to neural networks was proposed to better

capture the ordinal nature within time-series datasets. The first RNNs can be traced back to

the 1980s, when Hopfield networks were first created for pattern recognition purposes [78, 141].

There were also attempts to use RNNs to model nonlinear dynamic processes, but they were

not widespread due to difficulties to train generalizable and accurate RNNs [114]. However,

with recent progress in technology and neural network structure, RNNs have now emerged as a

leading method to model nonlinear dynamic processes [143, 144]. [55] evaluated the applicability

of several neural network architectures, including FNN and RNN variants, for different dynamic

processes as surrogate models. For dynamic processes, FNNs may not perform as well as RNNs

due to the lack of feedback connections that introduce past information derived from earlier

inputs into the current output. Furthermore, the incorporation of feedback loops in RNNs leads

to capturing dynamic behavior in a way conceptually similar to nonlinear dynamic models derived

from first-principles [113]. As a result, modern RNN-based process models (e.g., Long short-term

108

memory (LSTM) [76], Gated recurrent unit (GRU) [32], and encoder-decoder [155]) have been

integrated with different model-based control schemes and used in many research fields, including

chemical [193], mechanical [178], and pharmaceutical [168] engineering. Specifically for process

control, [186] has conducted a comparative study on the use of LSTM- and GRUs as dynamic

process models in predictive control for two chemical reactors. It was found that both models

approximated the properties of the dynamic systems with high accuracy and drove the systems

to desired set-points. For certain stochastic processes, a single RNN process model may not be

adequate to capture the complex nature of the system; therefore, multiple RNNs can be used

in conjunction, creating an ensemble in which the mean or median of the ensemble is taken as

the final prediction. [175] utilized an ensemble of RNNs as the MPC process model to model

the behavior of a fixed-bed catalytic reactor and demonstrated its performance with respect to

computational fluid dynamics (CFD) results. In addition to traditional RNN architectures, an

encoder-decoder architecture was proposed by [33] in which two RNNs were used in series to

capture input sequences of various lengths and long-term dependencies. [189] have demonstrated

that, for dynamic processes that contain many long-term dependencies, encoder-decoder-based

RNNs perform better than LSTM/GRU-based RNNs. [96] have adopted an encoder-decoder RNN

model to develop an MPC for the control of an HVAC system and demonstrated good convergence

and stability. In addition to performance, [53] have argued that encoder-decoder models can easily

be constructed from a model definition perspective for HVAC systems. Specifically, the list of

inputs and outputs of encoder-decoder model is clearly aligned with the inputs and outputs of the

HVAC process and this may help simplify model construction and reduce training costs of EMPC.

Finally, [23] discusses the incorporation and evaluation of different RNN structures in MPC.

Specifically, these RNNs were assessed from the perspective of a control system designer with

emphasis on stability guarantees, safety verification, and consistency with the physical system for

the RNN models. [173] proposed that the incorporation of physical knowledge into RNN models

improves the performance of the MPC system. This claim was further supported by [9], in which

two RNN models, one with physical knowledge and one without, were compared against each other

109

for a two-CSTR-in-series system simulated on a high-fidelity chemical process simulator. It was

found that the physics-based RNN-MPC system converged faster and required less computational

time.

This article aims to survey the popular neural network modeling approaches and provide a

tutorial on the construction and integration of these models with MPC. Recent advances in the

development of neural network models for specific scenarios such as noisy data and on-line

adaptation learning are presented as remarks throughout the tutorial. The explanations presented

in this paper are meant to be accessible to a beginning graduate student with limited knowledge

in control and machine learning. The remainder of the paper is organized as follows: in the next

section, preliminary knowledge on the class of systems considered and stability assumptions are

presented. The third section discusses the concept of MPC and real-time optimization (RTO)

and their implementation in process control. In addition, the role of process model within MPC

and RTO is presented with a focus on neural network model-based MPC and RTO. In the fourth

section, the theories behind neural networks are discussed with an emphasis on the intuition behind

their architecture. This survey on neural network models is not meant to be comprehensive, but

to give readers an idea on the evolution of neural networks and background theories. The fifth

section aims to give a brief tutorial on the construction of a neural network model. Starting from

problem identification to model evaluation, the workflow is meant to be iterative and change with

new findings during application. The sixth section gives an example of applying different neural

network model-based MPCs and their performance on a chemical process. Finally, a summary and

future directions of neural networks for MPC are discussed.

6.2 Preliminaries

6.2.1 Notation

The notation |·| is used to represent the Euclidean norm of a vector. A function f (·) is of

class C 1 if it is continuously differentiable in its domain. ⊙ denotes the Hadamard product or

110

element-wise multiplication. := denotes the assignment operator. The expression x → c represents

the variable x approaching some constant c.

For time step notation, each time step represents a single integration step hc, and ∆ represents

the sampling time, which is the time interval at which state measurements are available. t = tk is

defined as the current time step, and any time before t = tk is considered historical information. M

is the number of inputs that are fed to the model for prediction, which can include historical and

present values of the state and manipulated input variables. N is the number of outputs that are

produced by the model, which indicates the predicted process states in the next N time steps with an

interval of hc. The predicted outputs from the machine learning model constitute the intermediate

and final states within and at the end of one sampling period ∆, respectively, where ∆ = N ·hc. For

each prediction, a sequence of historical and present information (tk−M+1, ..., tk) is used to predict

the future trajectory over a single sampling period (tk+1, ..., tk+N). Since the machine-learning

model provides N future predictions over one ∆, the model will be called iteratively K times to

solve the MPC with a prediction horizon of K sampling periods.

6.2.2 Class of Systems

In this work, the class of multi-input multi-output nonlinear continuous-time systems is

considered and can be represented by the following state-space form:

ẋ = F(x,u) = f (x)+g(x)u (6.1a)

y = h(x) (6.1b)

where x ∈ Rn denotes the state vector, u ∈ Rm is the vector of manipulated inputs and y ∈ Rn

represents the vector of state measurements which are available at every sampling period. The

input vector is bounded by u ∈ U = {umin
i ≤ ui ≤ umax

i , i = 1, ...,m} ⊂ Rm. The terms f (·), g(·),

and h(·) are sufficiently smooth vector and matrix functions of dimensions n × 1, n × m, and

n× 1, respectively, with the assumption that state and input variables are in deviation from their

111

steady-state values such that the origin is a steady-state of the nominal system of Equation 6.1 (i.e.,

(x∗ss,u
∗
ss) = (0,0), where the subscript “ss” indicates the steady-state). Throughout this tutorial

review, initial time is assumed to be t0 = 0, and all states are assumed to be measurable.

6.2.3 Stabilizability Assumption

The existence of a stabilizing feedback control law of the form u = Φ(x) ∈ U is assumed for

stability considerations. The objective of this controller is to ensure that the origin of the nominal

system of Equation 6.1 is exponentially stable under this controller. This assumption implies

that there is a control Lyapunov function of class C 1 denoted as V (x) such that the following

inequalities hold for all x within an open neighborhood D around the origin:

c1|x|2 ≤V (x)≤ c2|x|2, (6.2a)

∂V (x)
∂x

F(x,Φ(x))≤−c3|x|2, (6.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (6.2c)

where c1,c2,c3,c4 are all positive real numbers. The controller Φ(x) can be constructed in the form

of the universal Sontag control law proposed in [97]. Following [176], first, the open neighborhood

around the origin, D, is identified where Equation 6.2b holds under the stabilizing controller u =

Φ(x) ∈U . Then, the closed-loop stability region Ωρ is identified as a level set of V (x) within the

region D where Ωρ = {x ∈ D |V (x)≤ ρ}, with ρ > 0. Moreover, the Lipschitz property of F(x,u)

with the upper and lower bounds on u implies the existence of positive constants Γ, Lx,L
′
x such that

the following inequalities hold for all x and x′ ∈ D, and u ∈U :

|F(x,u)| ≤ Γ (6.3a)

|F(x,u)−F(x′,u)| ≤ Lx|x− x′| (6.3b)∣∣∣∣∂V (x)
∂x

F(x,u)− ∂V (x′)
∂x

F(x′,u)
∣∣∣∣≤ L

′
x|x− x′| (6.3c)

112

6.3 Real-time Optimization (RTO) and Model Predictive

Control (MPC)

6.3.1 Real-time Optimization (RTO)

Real-time optimization (RTO) system is an advanced model-based process optimization and

control tool to compute the optimum operating steady-state condition based on a user-defined

objective function (e.g., minimum energy consumption, maximum economic profitability, etc.

[192]). Typically, RTO is computed over a significantly longer window than the supervisory control

layer. For example, RTO may be computed over hours or days while the supervisory control layer

may be computed over minutes. As a result, the setpoint is updated in real-time according to the

RTO output by addressing the optimization problem described in Equation 6.4:

min
x,u

Le(x,u)

s.t. F(x,u) = 0

gp(x,u) ≤ 0

ge(x,u) ≤ 0

(6.4)

which minimizes a user-defined cost function expressed by Le(x,u). This function is commonly

termed the economic cost function or economic stage cost, since it is a direct or indirect reflection

of the process economics. The objective function can be designed to maximize typical chemical

engineering performance measures such as the production rate of the desired product, selectivity of

the desired product, and product yield. F is a steady-state model. As for gp, it is a vector function,

and represents process constraints (i.e., physical constrains) such as limits on inputs, and ge is the

economic constraints that includes oil and energy prices, etc. Both terms are matrix functions of

dimensions Rp and Re, respectively.

113

6.3.2 Model Predictive Control (MPC)

MPC is an advanced control scheme that is able to anticipate the future states of the process

to make intelligent decisions with respect to the constraints of the process. Theoretically, MPC

consists of three main components (i.e., an objective function, a process model, and a real-time

optimizer [27]), where the process model provides the prediction of state responses based on the

underlying physical and chemical phenomena of the system. Subsequently, the real-time optimizer

will compute the optimal control actions u∗(t) for each sampling period (denoted by ∆) within the

prediction horizon by solving a finite-horizon optimization problem with respect to the objective

function and constraints. The operation of MPC is to address the following optimization problem:

min
u∈S(∆)

∫ tk+K∆

tk
L(x̂(ζ),u(ζ)) dζ (6.5a)

s.t. ˙̂x = F(x̂(t),u(t)) (6.5b)

x̂(tk) = x(tk) (6.5c)

u(t) ∈U,∀t ∈ [tk, tk +K∆) (6.5d)

g(x̂(t),u(t)) ∈ G,∀t ∈ [tk, tk +K∆) (6.5e)

where x̂ represents the predicted states of the process model and S(∆) denotes the set of piecewise

constant functions with ∆. The optimal control actions are calculated to minimize the time integral

of the objective function L(x̂(t),u(t)) in Equation 6.5a over the prediction horizon K, meaning that

the predicted trajectory over K∆ into the future is accounted for within the optimization problem.

However, only the control action for the first sampling period will be implemented to the process

system. In other words, K optimal input actions are computed for each ∆ from the current time step

t = tk until t = tk +K∆ in a feedback control manner on the basis of the predicted state trajectory

x̂, but only the first optimal input u∗(tk) is applied to the process over the next sampling period and

is held constant over ∆, which is known as sample-and-hold implementation. The predicted state

trajectory x̂ is computed using the process model of Equation 6.5b, which can be a first-principles

114

or a data-driven model. Moreover, as shown in Equation 6.5c, the initial condition for the process

model is obtained from the real-time measurement. In addition, the feasible range of control

actions is defined in Equation 6.5d. Lastly, Equation 6.5e represents any additional constraints

(e.g., Lyapunov stability constraints [176]) that are imposed to ensure that the optimal control

actions meet the necessary conditions to guarantee closed-loop stability under sample-and-hold

implementation.

Remark 6.1. The MPC is implemented in a receding horizon manner so that, at every sampling

time, the optimization problem is solved again when new feedback measurements are received.

Note that state and input variables are typically represented in their deviation forms such that the

steady-state values are at the origin. The operating steady-state values can be the optimal states

and inputs that are calculated by the RTO, which is executed at a slower frequency compared to

MPC.

Remark 6.2. The mathematical setup of MPC and RTO is similar to each other, but RTO is

based on steady-state process models and MPC is based on dynamic models [127]. Therefore,

both functionalities are critically dependent on the respective process models. As mentioned, the

first-principles models are the primary candidates for this role. However, in practical operations,

oftentimes an accurate first-principles model is not available. Thus, by replacing the process

model with a neural network model, machine learning can be integrated with RTO and MPC to

accomplish their respective goals using a data-driven modeling approach.

6.3.3 Multi-layer Control Scheme

Traditional architecture-process optimization, particularly with regard to economic

considerations, and chemical process control have been resolved in a hierarchical multi-layer

control scheme, as illustrated in Fig. 6.1. Specifically, the first layer is the RTO, which solves for

optimal set points in accordance with the steady-state process model and supervises the sublayers

by sending out the optimization results. MPC is implemented in the second layer of this control

115

Figure 6.1: The typical process optimization and control perspective used in the field of chemical
process industries.

scheme to direct and derive the process to the new operating point through manipulating the inputs

with its constrained optimal control methodology, which takes into account physical limitations,

process variable interactions, and predicted responses. Control actions from the MPC are employed

to the system by the regulatory control layer.

In addition to the top two-layer control scheme, an EMPC, which introduces penalization terms

into the objective function based on the economic performance of the process, has been proposed

for its ability to achieve similar functionality without RTO and has attracted increasing attention

recently [14,52]. However, regardless of the control scheme, a reliable process model is one of the

most critical components of MPC and EMPC.

116

6.4 Neural Network Architecture Overview

6.4.1 Feed-forward Neural Networks (FNN)

Feed-forward neural networks are generally made up of multiple layers of neurons, with each

neuron being a single logistic unit. Figures 6.2(a) and (b) show the schematics of an FNN and the

model graph describing the calculations conducted within a logistic unit, respectively. The main

concept behind the FNN or any neural network can be summarized into two parts: a forward pass

to predict the desired output and a backward pass to update the weights and biases. In the forward

pass, the input features are propagated through the neural network to generate the predicted output.

In the backward pass, the predicted output is compared with the true output, and the error is back

propagated through all the logistic units. The weights and biases of each logistic unit are updated

with respect to the error to improve the next prediction.

Similar to how real neurons operate in the human brain, the forward propagation of a logistic

unit functions analogously and is described mathematically by the following equations:

z[l]k =
n[l−1]

∑
j=1

h[l−1]
j w[l]

jk +b[l]k (6.6a)

h[l]k = g[l](z[l]k) (6.6b)

where superscripts in brackets, [·], denote the layer number of the neural network. l denotes the

lth layer of the neural network that varies between 0 and L. Only generalized intermediate layer

equations within a neural network are shown in Equation 6.6. The input layer is represented by

l = 0 where h[0]j is the equivalent of the input x j and the output layer is represented by l = L where

h[L]j is the equivalent of the predicted output ŷ j. Subscripts j and k denote the jth and kth units

within their respective layer in the neural network, b denotes the bias, and h denotes the hidden

state. w[l]
jk is the weight connecting the jth neuron of the layer l−1 to the current kth neuron in the

layer l. z denotes the weighted hidden states and the bias term. n[l] is the total number of neurons

in the lth layer. In the forward propagation step, first, following Equation 6.6a, each logistic unit

117

Figure 6.2: Schematics of (a) general FNN structure and (b) logisitic unit within FNNs.

takes inputs from all connected units from the previous layer, h[l−1]
j , and aggregates the input

signals together with its own bias, b[l]k . The summed signal, z[l]k , then undergoes a certain activation

function, g[l], with common ones being the rectified linear unit (ReLu) or tanh, before being sent

as the input h[l]k to the next layer as per Equation 6.6b. During training and inference, signals start

from the input layer and propagate to the final output layer L using this two-step procedure.

E =
1
R

R

∑
i=1

L(ŷ,y) (6.7)

where E is the cost function, L is the loss function for each sample, i is the index of data samples,

R is the total number of data samples, ŷ is the predicted output, and y is the true output. During

training, the cost function is minimized using optimization algorithms to find the optimal set of

weights and biases.

Optimization algorithms are used to update the weights and biases within the FNN. Gradient

descent (GD), when applied to weights and biases, respectively, is shown in Equation 6.8 below,

and its variants are commonly used as the optimization algorithm for neural network training. The

general structure of the GD algorithm is of the form,

w[l]
jk := w[l]

jk −α
∂E

∂w[l]
jk

(6.8a)

118

b[l]k := b[l]k −α
∂E

∂b[l]k
(6.8b)

where w[l]
jk and b[l]k are being updated and α is the learning rate and is conventionally positive (i.e.,

α > 0). The main idea behind gradient descent is to find the local minimum of a differentiable

function by iteratively moving in the opposite direction of the gradient of the function at each

point. During neural network training, the gradient descent algorithm minimizes the loss at each

iteration or epoch by varying the weights and biases. As shown in Equation 6.8, the gradient of the

cost function with respect to each weight and bias needs to be calculated at each layer using the

backpropagation algorithm. The backpropagation algorithm calculates the gradients starting from

the final output layer and propagates to the input layer, which ensures computational efficiency by

avoiding redundant calculations of intermediate terms [67]. Using the chain rule, the gradient can

be transformed into two partial dervatives involving z[l]k as shown below:

∂E

∂w[l]
jk

=
1
R

R

∑
i=1

∂Li

∂w[l]
jk

=
1
R

R

∑
i=1

 ∂Li

∂ z[l]k

∂ z[l]k

∂w[l]
jk

 (6.9a)

∂E

∂b[l]k

=
1
R

R

∑
i=1

∂Li

∂b[l]jk

=
1
R

R

∑
i=1

(
∂Li

∂ z[l]k

∂ z[l]k

∂b[l]k

)
(6.9b)

where Li is the loss for the ith sample. For weights, in Eq. 6.9a, the partial derivative of z[l]k with

respect to w[l]
jk is the incoming hidden state of the previous layer, z[l−1]

j . For biases, the partial

derivative of z[l]k with respect to b[l]k is simply 1 due to the bias being a constant. Finally, as shown

in Equation 6.9, the partial derivative of Li with respect to z[l]k is also needed to calculate the partial

derivative of Li with respect to w and b. This partial derivative is often denoted as the error term,

δ
[l]
k . Using the aforementioned simplifications, the gradient of the loss function with respect to

weights and biases can be transformed into the following equations:

δ
[l]
k =

∂Li

∂ z[l]k
(6.10a)

119

∂Li

∂w[l]
jk

= δ
[l]
k z[l−1]

j (6.10b)

∂Li

∂b[l]k

= δ
[l]
k (6.10c)

where δ
[l]
k is the error of the kth neuron within the lth layer. The mathematical formulation of the

error term is shown by the following equations:

δ
[L]
k = (ŷ− y)g′(z[L]k) (6.11a)

δ
[l]
k = g′(z[l]k)

(
n[l+1]

∑
r=1

δ
[l+1]
r w[l+1]

kr

)
(6.11b)

where g′(·) is the derivative of the activation function g(·). δ
[l]
k , as defined in Equation 6.10a, is

calculated starting from the final output layer and propagated through to the input layer. At the

output layer, assuming square loss, δ
[L]
k is equal to the difference between the true and predicted

output multiplied by the derivative of the activation function, g′(z[L]k), as shown in Equation 6.11a.

For all other layers, the calculation of δ
[l]
k requires the errors from the next layer δ

[l+1]
k and the

derivative of the current activation function, g′(z[l]k) as shown in Equation 6.11b.

In this section, all equations are shown in vector form with individual neurons and weight

connections labeled with subscripts j and k. In the following sections, all equations will be shown

in their capitalized matrix form for simplicity. For example, Equations 6.6a and 6.6b are rewritten

in their matrix form as follows:

Z[l] = H [l−1]W [l]+b[l] (6.12a)

H [l] = f [l](Z[l]) (6.12b)

where the dimensions of each variable in Equation 6.12 are as follows: H [l−1] ∈ Rn×d,H [l] ∈

Rn×h,Z[l] ∈ Rn×h,W [l] ∈ Rd×h, and b[l] ∈ R1×h where the superscripts of R represent the

dimensions of the matrix. Specifically, n is the batch size, which is the number of samples that

will be propagated through the neural network, d is the input size, and h is the number of hidden

120

Figure 6.3: Schematics of (a) general unfolded RNN structure, (b) recurrent unit, and (c) output
layer within RNNs.

units.

6.4.2 Sequential Neural Network Models

Sequential data is prevalent in many real-world problems and machine learning tasks—most

popularly known for its role in natural language processing (NLP) and signal processing.

Specifically, in chemical engineering, sequential data can exist in the form of sensor measurements.

Sequential models are designed to account for the ordinal nature of these datasets. The main focus

of this work will be on neural network model structures that are widely used to conduct time-series

forecasting tasks for MPC.

121

6.4.2.1 Recurrent Neural Network (RNN)

RNNs can be thought of as FNNs with two dimensions instead of one, as shown by the unfolded

diagram of an RNN in Figure 6.3(a). FNN inputs are batches of feature vectors XFNN ∈Rn×d , while

RNN inputs are batches of sequential feature vectors XRNN ∈ Rn×d×t . Therefore, an additional

dimension, t, is added to the neural network to account for the data’s ordinal property. In FNNs,

the output of each neuron, h, is propagated through the network to the last layer before making a

final prediction. In multilayer RNNs, h is passed to both the next layer and the next ordinal input.

H is a matrix that contains all the hidden states, h, within the same layer. Most RNNs are made

up of two different types of units: a recurrent unit and an output unit. The recurrent unit inside

the RNN takes in two inputs: the current input vector, Xt , and the previous hidden state, Ht−1. For

simplicity, all following equations will omit the superscript l that refers to the layer number in the

case of multilayer RNNs.

Forward propagation within RNNs is similar to that within FNNs and is described by the

following equations:

Ht = g1(XtWxh +Ht−1Whh +bh) (6.13a)

Ot = g2(HtWhq +bq) (6.13b)

where Xt ∈ Rn×d,Ht ,Ht−1 ∈ Rn×h,Wxh ∈ Rd×h,Whh ∈ Rh×h,bh ∈ R1×h,Ot ∈ Rn×q,Whq ∈ Rh×q,

and bq ∈ R1×q where q denotes the the dimension of the output. Xt represents the input matrix,

Ht represents the hidden state, and Ot represents the output matrix where t denotes the current

time step. Wxh is the input weight matrix, Whh is the previous hidden state weight matrix, and Whq

is the output weight matrix. bh and bq are the bias terms associated with the hidden layer vector

and the output vector, respectively. Figures 6.3(b) and (c) show a schematic of the operations

conducted on the inputs within a recurrent and output layer, respectively. Within a recurrent layer,

the calculation of Ht from one time step to the next is the same as shown in Equation 6.13a. Two

different weight matrices, Wxh and Whh, are generated for the current input and the previous hidden

state. An optional bias vector, bh, can also be included in the Ht calculation. The output unit is

122

Figure 6.4: Schematics of (a) GRU and (b) LSTM.

analogous to a feed-forward logistic unit in that it contains a single weight matrix with a bias vector

as shown in Equation 6.13b.

The backpropagation process within RNNs is much more complicated than that within FNNs

because of the additional time dimension. In order to obtain the exact gradients with respect to all

weights and parameters, the computational graph of the RNN needs to be calculated one time step

at a time [164]. A problem with this calculation is that, when input sequences are long (¿1000),

it could result in large matrix products, making the training computationally infeasible in many

situations [188]. Another problem associated with long input sequences and gradients is divergent

gradient values. As the input sequences become longer and the exponents of the weight matrices

increase, the output becomes more likely to be divergent. This phenomenon is often referred to as

vanishing or exploding gradients. A solution to this problem is to truncate the gradient at certain

time steps to avoid large matrix calculations and divergent eigenvalues. However, truncation may

result in loss of relevant information from the early time steps.

6.4.2.2 Gated Recurrent Unit (GRU)

Gating in neural networks refers to controlling the expression of key states in neurons.

Generally, gating is achieved through the use of the gates which are sigmoid activation functions,

f (x) = 1
1+e−x , that limit the output from 0 to 1. The output is then multiplied by the state variable

to control its expression. As mentioned in the previous section, traditional RNN units have

123

difficulties capturing longer-term dependencies due to the phenomenon of exploding or vanishing

gradients. GRUs try to alleviate this issue by the addition of reset and update gates [36], and are

mathematically described by the following equations:

Rt = σ(XtWxr +Ht−1Whr +br) (6.14a)

Zt = σ(XtWxz +Ht−1Whz +bz) (6.14b)

Ĥt = tanh(XtWxh +(Rt ⊙Ht−1)Whh +bh) (6.14c)

Ht = Zt ⊙Ht−1 +(1−Zt)⊙ Ĥt (6.14d)

where Rt , Zt , and Ĥt denote the reset gate, update gate, and candidate hidden state, respectively.

The subscripts r and z denotes the association of variables with the reset and update gate,

respectively, and Rt ∈ Rn×h,Zt ∈ Rn×h, Ĥt ∈ Rn×h,Wxr,Wxz ∈ Rd×h,Whr,Whz ∈ Rh×h, and br,bz ∈

R1×h. As shown in Equation 6.14, the reset and update gates control the formulation of the

candidate hidden state, Ĥt , and the extent to which to update the hidden state, Ht , with the candidate

hidden state. The reset and update gate values are calculated from the current input, Xt , and the

previous hidden state, Ht−1, with the only difference being different multiplicative weight matrices

and bias vectors.

The reset gate aims to capture short-term dependencies by controlling the extent of Ht−1 that

RNN should remember by limiting the expression of Ĥt . Therefore, Rt is element-wise multiplied

with Ht−1 to control its expression in Ĥt as shown in Equation 6.14c. When Rt → 1, Ĥt will be

equal to the hidden state calculation of a traditional RNN unit. When Rt → 0, Ĥt will be equal

to the calculations performed within an FNN unit, since there is no information from the previous

state.

The update gate aims to capture longer-term dependencies, as it controls the extent to which

the new hidden state is a copy of the old hidden state by controlling the ratio between Ĥt and Ht−1.

The current hidden state, Ht , is simply a weighted average between Ĥt and Ht−1 controlled by Zt ,

124

as shown in Equation 6.14d. When Zt → 1, Ht ignores Ĥt and subsequently, the current input Xt ,

resulting in Ht = Ht−1. In this case, the current hidden state is a direct copy of the previous hidden

state. When Zt → 0, Ht = Ĥt , but this does not imply that the previous hidden state is ignored. As

seen in Equations 6.14c and 6.14d, Ht can still depend on Ht−1 if Rt → 0. Thus, only when both

Zt ,Rt → 0, will the current hidden state solely consider the current input and ignore all previous

hidden states.

6.4.2.3 Long Short-term Memory (LSTM) Unit

GRUs attempt to solve the problem of vanishing and exploding gradients by directly changing

the hidden state from one unit to the next. In contrast, the LSTM unit introduces a new state,

the memory cell state Ct , to store additional information regarding short-term and long-term

dependencies [76]. As shown by Figure 6.4(b), this new memory cell state is passed between

LSTM units like a hidden state. In addition, the LSTM unit uses three different gates—the input,

forget, and output gates—to dynamically update the values of previous hidden and memory cell

states. The motivation behind the memory states and the three gates is similar to that of the GRU,

which is to decide how to control the expression of previous states and current inputs in the hidden

state.

Similarly to the gates in GRUs, the input, forget, and output gates are all activated by sigmoid

functions using the current input, Xt , and the previous hidden state, Ht−1. Their mathematical

formulations are shown below:

It = σ(XtWxi +Ht−1Whi +bi) (6.15a)

Ft = σ(XtWx f +Ht−1Wh f +b f) (6.15b)

Ot = σ(XtWxo +Ht−1Who +bo) (6.15c)

where It , Ft , and Ot denote the input, forget, and output gate, respectively. The subscripts i, f

and o denote the association of variables with the input, forget, and output gate, respectively, and

125

It ,Ft ,Ot ∈ Rn×h,Wxi,Wx f ,Wxo ∈ Rd×h,Whi,Wh f ,Who ∈ Rh×h, and bi,b f ,bo ∈ R1×h. Specifically,

the input, forget, and output gates will output values ranging from 0 to 1 to control the expression

of key information in the new hidden state.

In an LSTM unit, instead of having a candidate hidden state as in a GRU, a candidate memory

cell, Ĉt , and memory cell state, Ct , are utilized to capture dependencies in the sequence and are

shown by the following equations:

Ĉt = tanh(XtWxc +Ht−1Whc +bc) (6.16a)

Ct = Ft ⊙Ĉt−1 + It ⊙Ĉt (6.16b)

where Ĉt ,Ct ∈ Rn×h,Wxc ∈ Rd×h,Whc ∈ Rh×h, and bc ∈ R1×h. The computation of Ĉt is similar

to that of the three gates except with a tanh activation function that limits the output from −1 to

1 as shown in Equation 6.16a. It is used to introduce new information to Ct by controlling the

expression of Ĉt in Ct . Ft is used to dictate how much old information is to be forgotten from the

previous Ct through controlling the expression of Ct−1 in Ct as shown in Equation 6.16b. Finally,

as shown in Equation 6.17 below, the hidden state, Ht , is the element-wise product between Ot and

tanh(Ct):

Ht = Ot ⊙ tanh(Ct) (6.17)

where Ot dictates how much of Ct is relevant to the current output and controls the extent of the

contribution of Ct to Ht . A difference between LSTM and GRU is that even though the current

input information may not be relevant to the current hidden state, this information is still stored

in the memory cell state so that it can be used for the computation of future hidden states. In

summary, by resolving the issue of vanishing and exploding gradients, the GRU or LSTM units will

suppress irrelevant information and better capture longer-term dependencies using a combination

of gates. For example, if an earlier input is highly significant for the prediction of future outputs,

it is necessary to capture and store this dependency into the hidden state or a separate cell state. In

addition, using a vanilla RNN unit without this storage may result in a very large or a very small

126

gradient with respect to the weight matrices associated with the earlier inputs during training, and

thus may cause exploding or vanishing gradient when propagated through the layers of the neural

network.

6.4.2.4 Encoder-Decoder Architecture

One problem with traditional RNN architectures is that they struggle with variable-length input

and output sequences [33]. In most popular NLP tasks such as language translation, the input and

output sequence will likely have different lengths [155]. In the field of time-series forecasting,

it can be beneficial to use previous sequences as opposed to a single point to predict a future

sequence as certain patterns can be dependent on previous patterns. While the use of GRU and

LSTM units alleviate this problem through the usage of memory cells, long-term dependencies are

still difficult to capture due to the models’ Markov property. Traditional RNN models rely on the

previous state to fully capture even earlier states and do not have direct access to those early states.

In the encoder-decoder system, the encoder has direct access to all past states within a certain

historical window and thus can better capture long-term dependencies. In the context of MPC, the

historical window used in calculating the prediction horizon should be tuned to capture different

length dependencies within the time-series data. In order to address the aforementioned problems,

the encoder-decoder system is designed with two major components: an encoder followed by a

decoder. The encoder first takes a variable-length sequence as the input and summarizes it to

a context state, which is passed to the decoder. The decoder then maps the context state to a

variable-length sequence as the output. The encoder-decoder system can be thought of as a special

RNN architecture, since each encoder-decoder unit can be any of the RNN/GRU/LSTM units

shown in Figure 6.5.

The encoder takes a fixed input sequence with length M − 1 and summarizes it into a context

state that is passed to the decoder. In each encoder unit, each individual input xi is transformed into

the hidden state only and passed to the next encoder unit. As a result of this, the final context state,

C, can be thought of as a function of all the previous hidden states within the historical window C =

127

Figure 6.5: Structure of an encoder-decoder with RNN units.

f (htk−M+1, ...,htk−1). The decoder uses the context state and decoder input sequence, xtk , ...,xtk+N−1 ,

to predict the desired future sequence, ŷtk , ..., ŷtk+N−1 . In the case of time-series forecasting, ŷtk is

generally the predicted states for the next time step at t = tk+1.

6.5 Neural Network Model Construction Tutorial

Incorporating machine learning to solve realistic problems is not a straightforward process. It

is often a cyclical process that uses model evaluation to iterate between improving the data and

improving the model. This cycle is crucial in developing a successful machine learning model,

since it evaluates feedback from previous results and implements changes to further improve the

earlier steps. A general workflow of the iterative cycle is outlined in Figure 6.6. In the following

subsections, each step of the proposed workflow is explained in detail, with a focus on developing

a neural network-based process model for MPC.

6.5.1 Problem Identification

The first step in developing any ML model is to identify a general problem statement and

transform it into a specific ML task. For example, the problem statement might be to optimize the

operation of a series of reactors. It is of utmost important to specify if the goal is to optimize a

certain chemical species’ yield, minimize environmental impact, or maximize overall profits. Even

128

Figure 6.6: Proposed neural network-based model construction workflow.

129

with a well-defined problem statement, there is still no clearly defined ML problem. Following the

reactor example, if the goal is to optimize profit, an EMPC can be implemented to control the

reactor in real-time to produce at the optimal rate under varying operating costs. For real-time

control to be implemented, a dynamic model of the system must be constructed, which is where

a neural network model may be considered. In the absence of a traditional first-principles model,

a neural network surrogate model is able to provide accurate real-time state information of the

reactor comparable to that of the traditional first-principles model [55]. At this step, the ML

task details, such as classification versus regression and supervised versus unsupervised versus

semi-supervised, should be formulated based on the task description and data availability. In

supervised learning, ML algorithms are trained to learn the target relationship within datasets

that contain both the inputs and the labeled outputs. In unsupervised learning, no outputs are

given, and ML algorithms attempt to find possible relationships between inputs alone. Finally,

in semi-supervised learning, unsupervised learning techniques are incorporated into supervised

ML algorithms to avoid the need to label large amounts of data. In the case of most MPC and

RTO problems, a regression neural network model trained with supervised learning is sufficient

for implementation.

6.5.2 Data Collection

After the ML task is identified, it is important to understand the variety of data sources. This

can range from physical devices to network traffic service information. In this work, some of

the most common types of data sources will be highlighted to give the reader a general overview,

focusing on physical equipment, such as sensors. Sensors are the core data sources for many

chemical or manufacturing systems. They aim to measure explicit physical properties, such

as temperature, pressure, and flow rate, at different levels of the system (device, subsystems,

systems, and environment). Sensors are generally separated into two types: primary and secondary.

Primary sensors measure the desired quantity directly, for example an infrared camera measuring

temperature, while secondary sensors measure other quantities and calculate the desired quantity

130

based on the measured quantity, for example a thermometer calculates the temperature by

measuring the volumetric change of mercury. The major difference is the error and uncertainties

produced by the two types of sensors. Secondary sensors are more prone to large uncertainties, as

they may involve multiple measurements and thereby compound the error. In addition, secondary

sensors are calibrated to the primary sensor, which ensures that the error is always equal to or

greater than that of the primary sensor. Therefore, depending on the problem statement, levels of

uncertainty and error need to be evaluated against the sensors’ inherent error to see if the sensor’s

error range is acceptable. Regardless of how well the ML model is able to reproduce the given

dataset, if the data error is too large, applications of the ML model will fail due to the discrepancy

between on-line and off-line testing.

When implementing an MPC system, another point to consider is the sampling frequency

at which the desired quantity can be measured or the control action can be enacted. In certain

situations, the state can only be measured after large time intervals, resulting in a large sampling

period with respect to the time constant of the process, which can cause the model to fail

to effectively capture the process dynamics within each sampling period. In addition, due to

the sample-and-hold implementation of the MPC, a large sampling period also implies that the

MPC may be activated less frequently than the dynamics of the process, leading to performance

deterioration. Therefore, the sampling frequency of states and the process behavior must be

considered in the design of an MPC. An example of the above concern is the use of gas

chromatography to measure the composition within a chemical reactor because the measurement

and subsequent analysis may take more than ten minutes to report a concentration, which does not

provide sufficient real-time concentrations for certain processes with fast dynamics.

Data collected from the system may come in a variety of different forms. Even when measuring

the same physical property, the data can come in both structured and unstructured forms. For

example, a sensor can produce time-series temperature data in the form of a numerical list or table,

which is considered structured data. Alternatively, infrared cameras may generate a heat map that

may be more relevant than time-series data but in an unstructured form. In addition, the data

131

preprocessing step may vary as a result of the state of the process—static versus dynamic. In the

chemical engineering context, static data can be thought of as steady-state, whereas dynamic data

refers to transient behavior. For dynamic data, the order may be important to the process, whereas

static data can be shuffled. Whether it is structured/unstructured or static/dynamic data, identifying

the data type and quality is of utmost importance to ensure the success of the ML model.

6.5.3 Data Preprocessing

Data preprocessing is an essential step to convert the raw data collected from sensors and

experiments to a clean and usable dataset (e.g., Modified National Institute of Standards and

Technology (MNIST), UCI official dataset). The amount of work necessary to transform raw

data to a usable dataset is often overlooked. Specifically, the first step is to remove duplicates

and irrelevant observations from the raw dataset, which is almost inevitable in large datasets. In

a manufacturing setting, multiple sensors are implemented but they may not all be relevant to the

ML task. The main goal of data preprocessing is to reduce the size of the dataset while maintaining

all the relevant information. The next step is to look for structural errors such as corrupted data

values and missing or mislabeled features. The process of filling in missing data values is called

data imputation, which can range from simply using the mean, median, or mode of the column

to implementing simple machine learning techniques such as k-nearest neighbors. Interpolation

methods can also be used depending on the nature of the dataset. Finally, after the dataset is

treated for missing and irrelevant information, outlier detection methods can be implemented to

increase the performance of the ML models. Common outlier detection methods include Z-score,

probabilistic models, and clustering methods. For parametric datasets, which are datasets with a

known distribution, the Z-score method proves to be an efficient way to eliminate outliers and is

shown below:

z =
x−µ

σ
(6.18)

132

where x is the current data point, µ and σ are the mean and standard deviation within the dataset,

and z is the Z-score for the data point. As shown in Equation 6.18, Z-score uses the mean, µ ,

and the standard deviation, σ , to assess whether a data point is an outlier or not. The common

Z-score threshold is around ±2.5 ∼ 3.5. Clustering methods can be used to detect outliers for

non-parametric datesets, and specifically, the density-based spatial clustering of applications with

noise (DBSCAN) method is particularly effective. DBSCAN focuses on finding neighbors by

density on an “n-dimensional sphere” with radius, ε [56]. DBSCAN aims to cluster all the outliers

to an out-of-bound cluster where they can be further processed or removed.

In addition to off-line outlier detection methods, on-line outlier detection algorithms have been

proposed to deal with dynamic time-series data. [98] have proposed an algorithm that combines

an autoregressive moving average process model with a modified Kalman filter that uses past

and current data to estimate the current data point and its variation. [85] have proposed the

use of deep neural networks in detecting outliers within time-series data. Specifically, the raw

time-series data is enriched with more statistical features and an autoencoder is used to select

the most representative statistical features. Outliers often have non-representative features and

thus deviations from the enriched time-series data is taken as outliers. Finally, [94] have used

generative adversarial networks (GAN) for anomaly detection in time-series data. The proposed

GAN framework uses LSTM units as the basis for its discriminator and generator to capture the

temporal correlation in the time-series dataset. The discriminator itself is a direct tool for anomaly

detection. The generator is exploited to capture the mapping from the latent space to the real data

distribution, and this distribution can be used to detect anomalies in the test dataset. A combination

of the discriminator and generator aspect of the proposed GAN is used as a metric to classify

outliers within time-series data.

For any ML project, it is important to have at least two sets of data for training and testing

purposes. In the case of neural network models, a third validation split is also recommended for

model tuning. A typical split ratio is 80/20 or 70/15/15 with validation, although these ratios can

and should be tuned based on the problem statement and availability of data. The training dataset

133

is used to adjust the weights and biases of the neural network, the validation dataset is used to

adjust the hyperparameters (number of neurons, number of layers, etc.) of the neural network,

and the testing dataset is used to evaluate the performance of the neural network to an unseen

dataset. Data splitting is conducted before any further data processing to prevent data leakage.

Data leakage refers to the leakage of information, such as the mean or standard deviation of the

testing to the training dataset, that can affect the testing accuracy. The next step in data preparation

is data processing, which refers to the application of different transformations to the dataset to

improve training performance. Data scaling, which applies some type of scaler to normalize the

dataset within a certain range, can be applied to both structured and unstructured data, making it

commonly the first transformation applied to a dataset. This prevents large discrepancies in the

gradient between different input features during model training, which can cause weight values to

change dramatically, making the training process unstable. The two most commonly used scalers

are the Min-Max scaler and the Z-score scaler. A min-max scaler, shown in Equation 6.19 below,

scales the entire dataset’s values between the user-defined feature range and is calculated using the

following equation:

xscaled =
x− xmin

xmax − xmin
(fmax − fmin)+ fmin (6.19)

where x is the current data point, xmax and xmin are the maximum and minimum values within the

dataset, fmax and fmin are the user-defined maximum and minimum feature values, and xscaled is

the min-max scaled data point. Generally, fmax and fmin are 1 and 0 by default, respectively, which

results in xscaled to be within the range of 0 to 1. On the other hand, the Z-score scaler, shown in

Equation 6.18, scales the dataset to a zero-mean distribution with unit standard deviation. After

data scaling, more task-specific transformations can be implemented to generate the input tensor.

Based on the type of ML library (Tensorflow, Keras, Pytorch) and the type of neural network

chosen (FNN, RNN), the input shape of the training data is processed differently. Custom helper

functions can be implemented to transform the original dataset into the desired training shape.

Remark 6.3. For time-series forecasting tasks, data cannot be entered into the model for training

134

as a single sequence. For the training of neural networks, the input sequence needs to be

partitioned into fixed length intervals of historical and prediction sequences. In other words,

the neural network training sequence would have a total length of M +N with the input being

the historical window plus the instantaneous measurement and the output being the prediction

sequence of length N. A common algorithm to achieve this sequence format is the sliding window

algorithm [45]. In the sliding window algorithm, criteria for the desired window are defined, and

the window is slid across the entire sequence with a fixed step size. In this scenario, the criteria

are that the total window length is equal to M+N and less than the total sequence length.

6.5.4 Model Construction

Depending on the ML task, there are various models that can be applied. As mentioned

previously, the focus of this article will be on supervised regression models for dynamic data

with consideration for control purposes. A variety of different models are compared with clearly

defined trade-offs in performance, interoperability, and computational cost.

6.5.4.1 Model Architecture

Feed-forward Neural Networks (FNN)

Several different neural network structures were introduced in Section 4, and all of them

can be applied to modeling nonlinear dynamic systems depending on the specific process and

computational resources available. When constructing the process model for MPC, it should be

noted that the MPC does not require the entire prediction sequence within one sampling period

from the process model; as a minimum, only the last time step output, t = tk+N , is required,

where tk+N − tk corresponds to one sampling period ∆ in the MPC formulation. Therefore, the

simplest case of a process model is a MIMO FNN model with the input being the process states

and manipulated input at the current time step, t = tk, and the output being the process states at the

end of the prediction sequence, t = tk+N . Note that this time step is analogous to the integration

time step of numerical integration methods when simulating a system of ODEs. A variation of this

135

formulation is the addition of the previous time steps as input to the FNN as shown in [116]. With

this formulation, the FNN will take in M different time steps of process states and manipulated

inputs to predict the process states at t = tk+N . As proposed in [87], another method is to train

an FNN that only predicts a single time step ahead; this FNN can be called repeatedly for N

times, or N such FNNs can be trained and stacked together, to obtain the process states at time

step t = tk+N . This iterative method is similar to the calculations done in RNNs but without the

feedback/recurrent connections within individual logistic units. It is important to note that it is

beneficial to use a framework that is able to predict intermediate states rather than only the last

states within each sampling period. This is because intermediate states provide more information

on the predicted state trajectory and provides a better representation of the cost function of the MPC

optimization problem, since the cost function is typically in the form of an integral over the entire

prediction horizon. Having access to intermediate states with a shorter time interval in between

also allows for better numerical approximations that are necessary within the MPC optimization.

Recurrent Neural Networks (RNN)

While directly implementing a MIMO FNN can satisfy the information needed by the MPC to

calculate the optimal control trajectory, this approach may not result in the best performance due to

the loss of intermediate information. Therefore, RNNs can be used in place of FNNs as capturing

the ordinal aspect of dynamic dataset improves the performance since information between the

first and last prediction time steps may have a significant impact on each other [115]. Based on the

iterative FNN model, an improvement is to replace the feed-forward logistic units with recurrent

units. Specifically, recurrent units will be used to account for the N future time steps at which

the process states will be predicted i.e., every intermediate time step between t = tk and t = tk+N .

In addition, different types of recurrent units, such as LSTM or GRU, can be used in place of

normal recurrent units to improve performance for certain processes. [186] have compared the

performance between GRU and LSTM as process models in MPC for a chemical reactor system.

Both performed better than regular recurrent units, and GRU was recommended due to its lower

computational cost. It is important to note that the choice between recurrent units is highly process

136

and data dependent.

Other than using different types of neural network, the specific connections within a neural

network can also be customized to improve performance, interoperability [23], and computational

efficiency [180]. [173] have developed a physics-based RNN model with knowledge of the

structure of the process. Specifically, for two CSTRs in series, two partially-connected LSTM

layers were used to model the input and output connections of each CSTR. Compared to the

fully-connected LSTM model, the partially-connected model allowed for the decoupling between

the second CSTR’s input from the first CSTR’s process states, which was also reflected in the

real system. From a control perspective, the decoupling effect simplifies the system by reducing

the interactions between the control actions resulting in faster convergence and better stability. [9]

have performed a comparative study on RNNs that incorporate physical knowledge and traditional

fully-connected RNNs in the context of a large-scale complex chemical process simulated with

Aspen Plus Dynamics. The physics-based RNNs displayed superior accuracy and computational

efficiency compared to the fully connected RNNs, which resulted in better convergence speed and

stability in MPC integration.

Encoder-decoder Neural Networks

For certain dynamic processes, such as HVAC systems, long-term dependencies and past

sequential trends are particularly important to predicting future process states. Therefore, a

special architecture of RNNs, encoder-decoder RNNs, can be used to address the above problems.

Compared to the input of traditional RNN structures, the input of the encoder-decoder system will

be the sequence from t = tk−M+1 to t = tk rather than the current time step t = tk. The encoder

then summarizes all the historical information within time period, t = tk−M+1 to t = tk−1, into

a single context state, which is used in the decoder as the initial hidden state. Additionally,

the decoder takes input at the current time step, t = tk, and additional inputs at future time

steps, t = tk+1 to t = tk+N−1, if they are available and relevant to the prediction process. The

implementation of the encoder-decoder system may vary depending on the ML library used,

but a general pseudocode structure is shown in Pseudocode 1. In Pseudocode 1, by defining

137

return sequence = True, the RNN unit will return an output at every time step rather than only

once at the end of the sequence. Similarly, by defining return state = True, the RNN unit will

return all states in addition to the final hidden state. In the case of a LSTM unit, the cell state can

also be accessed through the return state argument. [189] have demonstrated that for air pollution

data that contain many long-term dependencies, encoder-decoder-based RNNs perform better than

LSTM/GRU-based RNNs. One thing to note is that encoder-decoder RNNs typically use more

computational resources during both training and inference, and for most dynamic processes, an

LSTM or GRU is sufficient to capture the system behavior. Therefore, it is important to start

with a simple baseline model and build up the complexity of the neural network models. Finally,

as there always exists a trade-off between model performance and computational efficiency, it is

recommended to clearly track each model’s accuracy and complexity after training.

Remark 6.4. Instead of constructing a single neural network model, multiple models can be

created from the same dataset and used together to predict the future process evolution. This is also

known as ensemble learning and is known to have several advantages over using a single neural

network model. First, ensemble learning allows for more generalization and prevents overfitting

as the algorithm can be exposed to different subsets of the dataset through n-fold cross-validation

methods. In other words, ensemble learning can reduce the variance of the algorithm while

maintaining a low bias for individual models [126]. Second, due to the nonlinearity of the

neural network models, the optimization associated with the process model is non-convex and is an

NP-hard problem. Therefore, through the use of different weight initialization methods, the neural

network model can potentially avoid getting trapped at local minima and arrive at more optimal

sets of weights that allows the neural network to accurately approximate the latent function that

transforms input sequences to corresponding output sequences [175]. Third, uncertainty during

model selection can be better accounted for using ensemble learning algorithms than individual

learning algorithm [112].

There are multiple ways to construct an ensemble learning algorithm. In particular,

two general categories, homogeneous and heterogeneous, will be discussed in this paper.

138

Pseudocode 1: Encoder-decoder Architecture
Encoder:

Input
{

layer class: input layer
shape: (Batch size) × (Encoder Length) × (Number of States and Inputs)

}
(input: encoder input data)
output: encoder input
Recurrent Layers (can be repeated)
{

layer class: LSTM or GRU
hidden units: n encoder
return sequence: False
return state: True

}
(input: encoder input)
output: encoder state h, encoder state c

Decoder:
Input
{

layer class: input layer
shape: (Batch size) × (Decoder Length) × (Number of States and Inputs)

}
(input: decoder input data)
output: decoder input
Recurrent Layers (can be repeated)
{

layer class: LSTM or GRU
hidden units: n decoder
return sequence: True
return state: False

}
(input: decoder input, initial state: encoder state h, encoder state c)
output: decoder sequence
Dense Layers (can be repeated)
{

layer class: Dense
hidden units: n decoder

}
(input: decoder sequence)
output: prediction sequence

139

Homogeneous ensemble learning algorithm consists of models with a single base learning

algorithm in which individual models are trained from different subsets of the given dataset through

methods such as n-fold cross validation and bootstrap sampling. In n-fold cross validation, n

different training and testing dataset splits are conducted and each dataset split is used to train a

different model [48]. In bootstrap sampling, also commonly known as bagging, several bootstrap

datasets take samples from the initial training set without replacement. As a result, multiple

bootstrap training sets are constructed in which the initial training set may appear once, more than

once, or may not appear at all [47]. Individual learning models are then trained using the different

datasets and a weighted average is used to integrate the individual models together. Conversely,

heterogeneous ensemble learning refers to the compilation of different learning algorithms from the

same dataset. Specifically, multiple machine learning methods, such as FNN, RNN, support vector

regressors (SVR), and gradient boosting machines (GBM) can promote better diversity within the

ensemble learning algorithm and thus improve performance [136, 187].

6.5.4.2 Hyperparameter Tuning

Another important aspect of model development is the tuning of model hyperparameters. In

machine learning, hyperparameters refer to parameters that are defined by the user rather than those

optimized during training. These can include the number of neurons and layers, the optimizer, the

mini-batch size, and others.

The number of layers and neurons is often very important to the model performance as it

defines the size and complexity of the model. Depending on the complexity of the input-output

relationship, the size of the neural network should be constructed appropriately. While increasing

the number of layers and neurons will increase the training performance, it will also make the

model less generalizable, which is also known as overfitting. On the contrary, using an overly

simplified model to model a complex process leads to not capturing input-output relationships,

which is a form of underfitting. Methods to recognize overfitting and underfitting will be explained

more in detail in the model training section.

140

In addition to changing the size and complexity of the neural network, the choice of optimizer

is also very important for the final performance of the model. Three popular optimizers, stochastic

gradient descent (SGD) with momentum, RMSprop, and Adam, are shown in Equations 6.20a,

6.20c, and 6.20e, respectively, below:

w := w−αm (6.20a)

m = βm+(1−β)∇E (6.20b)

w := w− α√
ν + ε

∇E (6.20c)

ν = γν +(1− γ)∇2E (6.20d)

w := w− α√
ν + ε

m (6.20e)

where w, m, and ν are the weight, the momentum of the gradient, and the moving average of

squared gradients, respectively, and are updated at every epoch. β and γ are hyperparameters for

momentum and adaptive learning rate, respectively, ε is a sufficiently small constant (10−8), and

E is the cost function. In Section 4.1, the most fundamental and core ML optimization strategy,

gradient descent, is shown in Equation 6.8. GD updates the weights and biases after every epoch

which means the full gradient is calculated for all observations at each epoch. Although accurate,

calculation of the full gradient for every epoch is slow and can cause long computation times for

large datasets. SGD offers a solution for this problem by approximating the full gradient through

calculating the gradient in mini-batches. Subsequently, a momentum term m, as shown by Equation

6.20b, can be added to the SGD algorithm to accelerate the rate in which gradients move, leading

to even faster convergence as shown in Equation 6.20a. Up to this point, when the weights are

updated, the learning rate, α , is constant for all weights. However, the magnitude of the gradient

can be different for different weights, which leads to the creation of an adaptive learning rate.

Thus, RMSProp, shown in Equation 6.20c, adds a square root term of the square of the gradient

ν , where ν is calculated in Equation 6.20d. Finally, the aforementioned two methods, adaptive

141

learning rate and momentum, can be combined into one which is the Adam optimizer, as shown

in Equation 6.20e. [86] has demonstrated that the Adam outperforms other stochastic optimization

methods and works well on practical datasets in most situations.

Remark 6.5. The mini-batch size refers to how many observations are used when calculating the

gradient and updating the weights. Learning rate is another important hyperparameter. Learning

rates that are too small lead to slow convergence of the model, but larger learning rates may lead

to missing the optimal solution. Therefore, adaptive learning rate algorithms, such as Adam, are

highly recommended.

Several searching algorithms can be applied to conduct hyperparameter tuning. The most

intuitive method is grid search in which only one hyperparameter is varied at a time to evaluate

the change in model performance with respect to the varied hyperparameter. While grid search

is comprehensive, the computational cost of grid search is immense when associated with a high

dimensional hyperparameter space. Therefore, random search was developed to reduce the large

computational cost of grid search through randomly selecting combinations of hyperparameters

instead of enumerating all possible combinations [19]. Random search greatly outperforms grid

search when only a small amount of hyperparameters affect the model performance. In addition to

random search, Bayesian-based and gradient-based hyperparameter optimization methods have

also been introduced [104, 151]. Manually implementing a hyperparameter search algorithm

is labor and skill intensive. Therefore, commerical services, such as Google’s HyperTune, are

candidate options for conducting hyperparameter tuning.

6.5.4.3 Cost Functions and Regularization

In Section 4, a generic cost function is shown in Equation 6.7. The cost function is the mean

of all errors within a dataset while the loss function refers to the error of a single datapoint. For

regression tasks, the absolute error and the square error are good choices for the loss function

within the cost function. For certain logarithmic datasets, the square logarithmic error can also be

used if the data points cannot be scaled during the data preparation step. Since the cost function

142

considers the entire dataset, the mean of the loss of all the individual data points is taken as the

cost function, leading to the terminology of mean absolute error (MAE), mean square error (MSE),

and mean square logarithmic error (MSLE). Each of the aforementioned loss functions can be

transformed into their respective cost function using the following equations:

EMAE =
1
R

R

∑
i=1

|yi − ŷi| (6.21a)

EMSE =
1
R

R

∑
i=1

(yi − ŷi)
2 (6.21b)

EMSLE =
1
R

R

∑
i=1

(log(yi +1)− log(ŷi +1))2 (6.21c)

In addition to selecting a loss function, a regularization term can be added to the cost function

for smoothing purposes and to prevent overfitting. Three of the most common regularization

methods, L1, L2, and Elastic net, are shown below:

EL1 =
1
R

R

∑
i=1

L(y, ŷ)+λ

n

∑
j=1

|Wj| (6.22a)

EL2 =
1
R

R

∑
i=1

L(y, ŷ)+λ

n

∑
j=1

W 2
j (6.22b)

ELelastic =
1
R

R

∑
i=1

L(y, ŷ)+λ

(
θ

n

∑
j=1

|Wj|+
1−θ

2

n

∑
j=1

W 2
j

)
(6.22c)

where λ is the regularization hyperparameter and θ is the Elastic net hyperparameter. Both L1

and L2 regularization methods are based on the concept of using different Lp norms to penalize

high regression coefficients for complex models to avoid overfitting. L1 regularization, or Lasso

regression, penalizes the absolute value, L1 norm, of the weights as shown in Equation 6.22a.

L1 regularization is generally used for sparse feature sets, since it can perform feature selection

by zeroing out irrelevant features’ weights. L2 regularization, or Ridge regression, penalizes the

square, L2 norm, of the weights as shown in Equation 6.22b. L2 regularization cannot eliminate

143

features due to the nature of the L2 norm, but performs better than L1 regularization in most

cases. Elastic net, shown in Equation 6.22c, linearly combines L1 and L2 regularization through

a weighted sum and adds an additional hyperparameter, θ , to adjust the ratio between the two

methods. In the aforementioned regularization methods, a regularization parameter λ is included

to control the extent of regularization within models. Elastic net outperforms both regularization

methods in most situations, especially when the number of features is much larger than the number

of observations [195].

6.5.5 Model Training

During model training, it is important to save the training history of the model. The training

history can indicate whether the model has experienced trends of over- or under-fitting. The most

common plot shows the evolution of the loss function with respect to epochs during training and

validation. In most cases, longer training will result in model overfitting to the training dataset

and will not generalize well to the validation and testing datasets. In the case of overfitting, the

training loss keeps on decreasing while the validation loss increases rather than decreases as more

epochs pass. An early stopping function can be implemented to prevent excessive training through

the monitoring of validation loss. For example, an early stopping criteria of a certain number

of consecutive increasing validation loss can be defined and the training process will stop if the

criteria is reached. On the contrary, in underfitting, both the training and validation loss is very

high and is still decreasing at an exponential rate. Ideally, a good model should have similar

training and validation loss at the end of training. A good application to keep track of all training

data is Tensorboard which automatically plots all training and validation curves as well as model

structure graphs.

Remark 6.6. In realistic processes, noise is inevitably present due to a combination of process

disturbances and sensor errors. In the earlier data preparation step, outlier detection techniques,

such as DBSCAN, are introduced to eliminate anomalies. However, a majority of the noise is within

operating range and inherent to the data points. Many different training routines are developed

144

to combat noisy datasets. The dropout method is developed to prevent overfitting in large neural

networks through randomly dropping connections to neurons during training [152]. Dropout has

then been extended to RNN models and adapted with Monte Carlo method to handle noisy data

during training [61, 171]. In addition to the dropout method, [71] has developed a new training

method called “Co-teaching” to effectively train robust deep neural networks. The “Co-teaching”

method trains two neural networks in parallel and allows the exchange of information during each

mini-batch. During forward propagation, each neural network selects a subset of assumed “clean”

data and sends them to the other network. During backpropagation, each neural network updates

its weights using only the “clean” data sent by the other network. [171] has applied both of these

techniques to an example of a chemical process with the integration of MPC. It is demonstrated

that both methods display superior performance compared to the baseline model in fitting and

MPC set-point convergence.

Remark 6.7. Up to this point, only neural networks trained from a fixed dataset have been

discussed. In reality, a process may change over time due to a mixture of external (e.g., equipment

degradation and disturbances) and internal (e.g., fouling within equipment) factors. Therefore, in

the presence of model uncertainty and parameter variations, on-line adaptive learning is essential

to maintaining an accurate and up-to-date process model. At the same time, the frequency with

which process models are retrained needs to be limited by event-triggered schemes in order to

improve applicability and efficiency of adaptive control systems [156, 160]. In [73], a neural

network identifier has been trained to detect process variations and update the parameters of the

process model. [7] has proposed an adaptive EMPC system through the use of an error-triggered

model re-identification scheme in which a threshold is set between the predicted and measured

states as a trigger for model update. Building on top of the previous works, [172] has developed a

dual event and error-triggered on-line update scheme for RNN models in a Lyapounov-based MPC.

Specifically, the event-triggered model re-identification occurs when a triggering condition based

on state measurements is violated, while the error-triggered update scheme is activated when the

accumulated RNN modeling error exceeds some error threshold. With the proposed framework,

145

the adaptive RNN-based LMPC performs better than a standard RNN-based LMPC in terms of

guaranteed stability and control action smoothness.

6.5.6 Model Evaluation

After the machine learning model has been constructed and trained, it is necessary to evaluate

the trained model with meaningful metrics. In this section, general machine learning metrics

are discussed as well as specific errors for MPC. Previously, the training and validation errors

were used to check the training process and tune the model parameters. In model evaluation, the

testing dataset is used to evaluate the finalized model’s performance in terms of both accuracy

and generalization on a set of unseen data. In the context of process modeling, the testing dataset

may contain operating conditions unseen in the training operating conditions. For time-series

forecasting tasks, general regression testing metrics that can be used include MAE, MSE, mean

average percentage error (MAPE), and root mean square error (RMSE). These error metrics

describe how close the model’s predicted states are to the true process’ states. Hence, errors are

used to check the training process and tune the model parameters. Specifically, it is necessary

to ensure that the training error is below a certain bounded modeling error threshold in order to

guarantee exponential stability for the nominal system of Equation 6.1 under a Lyapunov-based

controller built using an RNN model. Subsequently, the generalization of the model needs to be

tested using a set of unseen data. In the context of a specific process, the testing dataset may

contain some unseen operating conditions. For time-series forecasting tasks, general regression

testing metrics can be used that include MAE, MSE, mean average percentage error (MAPE), and

root mean square error (RMSE). These error metrics describe how well the model predicts the

future process states. It has been demonstrated through simulations that lower testing metrics lead

to improved stability in the control system. However, there are also other aspects that should be

considered in the context of integrating control. For example, the smoothness of the prediction

trajectory is very important for the stability the control action implemented.

Remark 6.8. A more generalized error bound for RNN can be calculated using statistical machine

146

learning theory. It is a measure of how well a neural network hypothesis learned from training

data generalizes to unseen data so that it is more comprehensive for a wide range of operating

conditions rather than the given training and testing conditions [169, 174]. The generalization

error bound is found to be such that it does not have any dependency on the states of the neural

network, as it is dependent on the weights, sample size, length of the input sequence, and width

and depth of the neural network.

6.6 Neural Network-based MPC Implementation: Chemical

Process Example

In this section, a nonlinear chemical process is used to demonstrate the performance of various

LMPCs. In particular, three different neural network models (FNN, RNN, and encoder-decoder)

are considered as the process models for LMPCs. The specific chemical reactor example has been

chosen to be tractable in terms of the understanding of its dynamic behavior and evolution by

chemical engineers and researchers familiar with chemical processes.

6.6.1 CSTR Process Description

Consider a non-isothermal, well-mixed CSTR, where the following reversible first-order

exothermic reaction is taking place:

A ↔ B

147

The following mass and energy balance equations represent the first-principles model that

describes the process dynamics:

dCA

dt
=

1
τ
(CA0 −CA)− rA + rB (6.23a)

dCB

dt
=

−1
τ

CB + rA − rB (6.23b)

dT
dt

=
1
τ
(T0 −T)+

−∆H
ρCp

(rA − rB)+
Q

ρCpv
(6.23c)

rA = kAe
−EA
RT CA (6.23d)

rB = kBe
−EB
RT CB (6.23e)

where the notations CA and CB represent the concentration of chemical A and B, respectively. The

reactor temperature is denoted as T , the inlet temperature is denoted by T0, and CA0 is the inlet

concentration. Also, for the reaction kinetics, the reaction rate constant and the activation energy

for the forward reaction are denoted as kA and EA, respectively, and kB and EB for the backward

reaction. The residence time of the reactor is τ , the heat capacity of the liquid mixture is denoted

by Cp, the volume of the reactor is denoted by v, and the reaction enthalpy is ∆H. The CSTR is

surrounded by a heating/cooling jacket that provides/removes heat at a rate Q to/from the reactor.

The optimal steady state point for the process described in Equations 6.23. Table 6.1 lists the

values of the process parameters along with the steady-state values at the optimal operating point.

Table 6.1: Parameter and steady-state values for the CSTR.

CAss = 0.4977 mol/L τ = 60 s

CBss = 0.5023 mol/L Qss = 40386 cal/s

CA0ss = 1 mol/L V = 100 L

To = 400 K Ts = 426.743 K

kA = 5000 /s EA = 1×104 cal/mol

kB = 106 /s EB = 1.5×104 cal/mol

R = 1.987 cal/(mol K) ∆H =−5000 cal/mol

ρ = 1 kg/L Cp = 1000 cal/(kg K)

148

The control objective in this example is to drive the process states, CA, CB, and T , to the

optimal steady-state point by manipulating the heating rate Q and the inlet concentration CA0. The

process variables are all considered in deviation form from their steady-state values, which gives

xT = [x1, x2 ,x3] = [CA−CAss ,CB−CBss ,T −Tss] such that the origin is the equilibrium point of this

system. Furthermore, this extends to the manipulated inputs u = [u1,u2] = [Q−Qss ,CA0 −CA0ss],

where the control action u is bounded by a lower bound uLB = [−40,000 cal/s, − 1 mol/L] and

an upper bound uUB = [40,000 cal/s, 2 mol/L].

The nonlinear minimization problem of LMPC is resolved using the interior point optimizer

(IPOPT) package for each sampling time, which is ∆ = 10 sec with hc = 0.5 sec. IPOPT is an

open source optimization package that can be employed to solve nonlinear optimization problems

[20]. It employs an interior point-line search filter method, which tries to find a local optimum.

Furthermore, the objective function of the LMPC can be formed as L(x,u) = xT Ax+uT Bu, where

A and B are diagonal penalty matrices. Matrices A and B are critical for the MPC performance

and are tuned according to the guidelines discussed in [10]. The chosen Lyapunov functions are

V (x) = xT Px, where P = diag{105,105,1} is a positive definite matrix.

6.6.2 Data Generation and Processing

In this work, extensive open-loop simulations is conducted using the first-principles model

to build the training and testing dataset. Specifically, starting from various initial conditions,

the process model is integrated using the explicit Euler method under time-varying manipulated

inputs while recording the states’ evolution at each time step (i.e., xtk+1, ...,xtk+N , where N = ∆/hc).

Subsequently, the dynamic time-series data are transformed into the format required for training

and testing through the use of the sliding window algorithm. In our case, the criteria for the sliding

window is that the total window length is equal to the sum of the input window length, M, and

prediction horizon length, N. The open-loop simulation runs for 50 time steps for 432 different

initial conditions, and the first 30 time steps are used as the training dataset, while the remaining

20 time steps are used as the testing dataset. In total, 43200 data samples were available for

149

training and testing. The goal is to identify whether the model can learn the behavior of the

process within the first 30 time steps to predict the next 20 time steps starting from different

initial conditions. Both the training and testing datasets are scaled with respect to themselves

only to avoid information leakage. The training and testing datasets are scaled from 0 to 1

using Equation 6.19 to avoid large discrepancies between gradients during training. Finally, the

training and testing datasets are reshaped into 3-D tensors with input and output dimensions of

(Rtrain,M +N,nstates + ninputs) and (Rtest ,M +N,nstates), respectively, where R refers to the total

number of training/testing observations and nstates and ninputs refers to the number of states and

inputs, respectively.

6.6.3 Neural Network Models Construction

In this work, the performance of using three different types of neural network models: FNN,

RNN with LSTM units, and encoder-decoder with LSTM units is investigated. A general

hyperparameter search is conducted on the hidden layers, hidden units, and activation functions

for each of the neural network models. The final FNN is constructed with a single fully-connected

layer with 10 hidden units and a linear activation function. The RNN consists of a single LSTM

layer with eight hidden units and one fully-connected output layer on top with N hidden units. The

LSTM layer and fully-connected layer have activation functions of tanh and linear, respectively.

The encoder-decoder model consists of two LSTM layers (one encoder and one decoder layer)

connected at the ends with 8 hidden units each and a single fully-connected output layer on top

of the decoder LSTM layer with N hidden units. The LSTM layers and fully-connected layer

have activation functions of exponential linear unit (ELU) and linear, respectively. Due to the

different model architectures, the inputs to the models are slightly different. In FNN, the time

step tk will be used to predict the time step tk+N . In RNN, the time step tk will be used to

predict the future sequence tk+1, ..., tk+N . In the encoder-decoder system, the historical and present

information tk−M+1, ..., tk will be used to predict future time steps tk+1, ..., tk+N . All these models

are comparable since, in our MPC implementation, only the last time step, tk+N , is used in the

150

objective function to determine the optimal control trajectory for one ∆. The neural network model

will be called K times to determine the control trajectory for the full MPC prediction horizon.

For training, an MSE cost function is used, and each model is trained for 100 epochs with

a callback function that would follow an early stopping criterion. Each model’s training and

validation errors are logged to ensure no overfitting or underfitting occurs. From the training

and validation errors, the FNN model is rejected because its MSE is two orders of magnitude

larger than the other two models. Therefore, the FNN is not tested in both open and closed-loop

simulations to save computational resources due to its poor training performance.

Remark 6.9. The architecture and training procedures of the three models are kept simple

because of the good quality of the simulation dataset and the large number of available operating

conditions. In real scenarios, data may be contaminated with noise or be insufficient in quantity,

and thus different architectures or processing steps need to be explored to combat these problems.

Some methods for combating noisy data are included in Section 5.4.

6.6.4 Open-loop performance

Subsequently, after the development of different NN models, an open-loop simulation was

performed to evaluate the generalization of the models and their ability to capture the dynamics

of the given CSTR process. During open-loop simulation, the two manipulated inputs, the heating

rate Q and the initial concentration CA0, were varied to compare the states predicted by the models

versus the ground truth given by the first-principles model. Figure 6.7 illustrates the open-loop

prediction using the LSTM model and the encoder-decoder model in response to time-varying

inputs. Three different combinations of [Q−Qss,CA0 −CA0ss] with values of [1.5× 104,0], [3×

104,1.5], and [2×104,1] were introduced in the forms of two step changes at t = 100 sec and t =

200 sec. The two models’ trajectories from the plot are in good agreement with the first-principles

model. Specifically, the MSE for each state given by the LSTM and encoder-decoder models in the

open-loop simulation is computed and shown in Table 6.2. Since the MSE values are sufficiently

small for both models, it can be concluded that the two models provided decent accuracy to move

151

to the closed-loop simulation.

Table 6.2: MSE comparison of the open-loop prediction results between the neural network models
and the first-principles model.

CA −CAss [mol/L] CB −CBss [mol/L] T −Tss [K]

LSTM 3.24×10−6 1.00×10−6 3.61×10−2

Encoder-decoder 5.29×10−6 7.84×10−8 1.69×10−2

6.6.5 Closed-loop Performance

After the open-loop simulation, the models were tested in a closed-loop simulation of the

underlying process under LMPCs based on the LSTM model and the encoder-decoder model. The

dynamics of the closed-loop process under each controller is illustrated in Figures 6.8 and 6.9. The

states trajectories are shown in Figure 6.8, while the associated manipulated inputs (i.e., control

actions) are shown in Figure 6.9. From the resulting trajectories, it can be seen that the LMPC

based on the encoder-decoder model outperforms the RNN-based LMPC in terms of smoothness

of the state profiles, but the controller was able to drive the three states towards steady-state and

stabilize the system with both models. Furthermore, the encoder-decoder based LMPC was able

to drive its states closer to the steady-state state values as shown in Table 6.3.

Table 6.3: Final offset for each state from steady-state under LMPC using RNN and
encoder-decoder models.

CA −CAss [mol/L] CB −CBss [mol/L] T −Tss [K]

LSTM 3.7×10−3 1.8×10−2 7.3×10−2

Encoder-decoder 7.8×10−5 −1.2×10−4 7.9×10−3

152

Figure 6.7: Open-loop state and manipulated input profiles for the CSTR example.

153

Figure 6.8: State profiles of the closed-loop simulation of the first-principles process model under
the LMPC using three models: first-principles (FP), LSTM, and encoder-decoder.

154

Figure 6.9: Input profiles of the closed-loop simulation of the first-principles process model under
the LMPC using three models: first-principles (FP), LSTM, and encoder-decoder.

155

6.6.6 MPC Computation Time Considerations

One area not explored in the neural network-MPC example is the computational time necessary

to find the optimal control action. In practice, there is a limit on the time allocated for the MPC

to spend on solving the nonlinear optimization problem to ensure closed-loop stability. Some

factors that affect the MPC’s speed are the model’s inference time, initial guesses, and optimization

solver. Depending on what type of model is used in the MPC, the model’s inference time can vary

dramatically. A simple first-principles model takes less time than a traditional machine learning

model, which takes less time than a deep neural network learning model. The inference time

between different neural networks can also differ depending on their size and architecture. The

inference time of the models used in this work is in the range of 0.1∼0.5 seconds. In addition,

the initial guess and the solver choice used in the optimization problem can also greatly affect the

computational load. If the MPC optimization problem is to be solved with a poor initial guess,

an inadequate solver, or if the predictive model takes too long to calculate, it is possible that the

nonlinear optimization solver will not converge to a solution in the time allotted, resulting in a

suboptimal MPC [147]. The bottleneck in the MPC is heavily process-dependent and needs to be

identified when attempting to improve the controller performance. For example, in a very complex

process, the model required to capture the dynamics may be architecturally advanced and lead to a

high model inference time, while a high-dimensional system will require a large number of values

to be provided as initial guesses, which may be non-trivial and the bottleneck in solving the MPC

optimization problem.

6.7 Conclusion and Future Directions

A survey on several neural network modeling approaches, in particular FNN, vanilla RNN,

GRU, LSTM, and encoder-decoder architecture-based RNN, and their integration with MPC

was discussed in this work. In addition, a tutorial was provided on the construction of the

aforementioned neural network models with remarks on dealing with specific scenarios such as

156

noisy data. Finally, a chemical process example was studied in closed-loop under the different

neural network model-based MPCs to demonstrate the advantages and disadvantages of each

model.

For future research directions, a recently proposed family of neural networks, named neural

ordinary differential equations (ODE), provides the potential to improve the performance of

modeling of continuous time-series data. This method proposes to parameterize an ODE between

the states of a neural network and, as a result, the output of the neural network is the solution of an

ODE initial value problem, which is computed with an explicit ODE solver (e.g., Euler method,

Runge–Kutta methods) [31]. Compared to traditional RNNs that are usually interpreted as discrete

approximations of time-series data, theoretically, neural ODEs can be interpreted as continuous

approximations of the data. In particular, recent applications of neural ODEs in the literature

include improved performance for forecasting time-series data, especially for data sets with large

or irregular sampling times [139]. A potential future direction includes using neural ODEs as the

process model for MPC to improve the performance of the MPC when dense and synchronous

measurements are not available for model training purposes.

On the other hand, another neural network approach to consider is the transformer architecture.

Up to this point, only sequential neural network models such as RNN, LSTM, GRU, and

encoder-decoder systems were discussed. These sequential models generally have a recurrent

structure which allows them to easily capture the ordinal aspect of time-series data. However, a

drawback of the recurrent property is that they are not optimized for parallel computation. The

input sequence to sequential models is provided the inputs one element at a time, which does not

allow for parallel training and batch inference. In the example of an RNN, the hidden state of

one RNN unit needs to be calculated first before being used as an input to the next RNN unit. In

addition, sequential models assume that the previous recurrent unit is able to fully capture past

behaviors as the current unit does not have direct access to past non-immediate units. Therefore,

[159] have developed a new deep learning architecture, called transformer, in order to overcome

these limitations associated with sequential models. In the context of MPC, the implementation

157

of transformers can potentially not only improve model accuracy but also speed up the MPC’s

computation time due to the faster model inference as a result of parallelization.

158

Chapter 7

Conclusion

This dissertation provides a number of applications of machine learning methods, particularly

neural networks, to additive manufacturing focusing on process monitoring and data analytic tasks.

Specifically, Chapter 2-4 focused on the development of ML-assisted process monitoring tools for

the DMLS process. Chapter 5 proposes a smart manufacturing data transfer framework between

the machine, factory, and cloud levels.

Chapter 2 presented an integrated cross-validation framework between different in-situ sensors

to combine the strength of the sensors and lower individual biases. First, the DMLS process

was simulated using the FEM to obtain the real-time dynamic heat transfer behavior. The FEM

model data was then processed in two different ways to replicate both the MPM and OT sensor

data. Subsequently, automatic process monitoring tools were developed using CNNs that were

trained from the simulated data. Finally, a cross-validation algorithm-based on CNN classification

statistical analysis was developed to lower individual sensor bias toward certain errors. Chapter

3 expanded on the FEM model developed in Chapter 2 by constructing multi-scale models of the

process to increase fidelity and decrease computational load. Specifically, a micro- and meso-scale

model were developed to simplify the laser source and powder-level heat transfer behavior so that

a part-scale model was able to be developed. The part-scale model result was further processed

to mimic experimental sensor results and used in conjunction with experimental sensor data to

159

develop a process monitoring CNN. Finally, the maintenance of the CNN was explored with a

focus on data transfer and storage.

In Chapter 4, an application of machine learning methods to non-image sensor data was

discussed. In particular, the recoater arm interaction during layer-to-layer print was correlated

with the powder level thickness, which was predicted using a feed-forward neural network.

Compared to the traditional polynomial regression method of predicting powder level thickness,

the feed-forward neural network was able to detect low powder thickness much better and achieved

a narrower 95% confidence interval. Finally, experiments were conducted to validate the proposed

method for detecting the interaction of the recoater arm during the printing process.

In Chapter 5, a data-driven process optimization and data transfer framework dedicated

to additive manufacturing processes were proposed. The framework outlined three levels of

hierarchy: the machine level, the factory level, and the cloud level, where each level has its

own duties and limitations. The aforementioned machine learning and FEM modeling methods

were also integrated into the proposed framework to incorporate Industry 4.0 concepts to further

automate the manufacturing process. Furthermore, due to the large data size typically involved

with AM processes, a data-transmission scheme was also proposed to serve as a data transmission

guideline and a case study with the appropriate data scale for a typical AM application was

presented. Finally, the connection and similarities between the proposed AM framework and the

Industry 4.0 framework was elaborated to provide further motivation for the research in this field.

In addition to AM, Chapter 6 reviewed the role of popular neural networks, in particular

FNN, vanilla RNN, GRU, LSTM, and encoder-decoder architecture-based RNN, in MPC was

conducted focusing on their intuition and applicability. In addition, a tutorial was provided on

the construction of neural network models with remarks on dealing with specific scenarios such as

noisy data. A CSTR chemical system example was also studied in a closed-loop under the different

neural network model-based MPCs to demonstrate their performance in terms of convergence and

stability. Finally, future research directions on using neural ordinary differential equations and

transformers in MPC was proposed.

160

Bibliography

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th USENIX symposium on operating systems
design and implementation (OSDI 16), pages 265–283, Savannah, GA, USA, 2016.

[2] Fahim Abdullah, Zhe Wu, and Panagiotis D Christofides. Data-based reduced-order
modeling of nonlinear two-time-scale processes. Chemical Engineering Research and
Design, 166:1–9, 2021.

[3] Fahim Abdullah, Zhe Wu, and Panagiotis D Christofides. Sparse-identification-based
model predictive control of nonlinear two-time-scale processes. Computers & Chemical
Engineering, 153:107411, 2021.

[4] Fahim Abdullah, Zhe Wu, and Panagiotis D Christofides. Handling noisy data in
sparse model identification using subsampling and co-teaching. Computers & Chemical
Engineering, 157:107628, 2022.

[5] Abdul Afram, Farrokh Janabi-Sharifi, Alan S Fung, and Kaamran Raahemifar. Artificial
neural network (ANN) based model predictive control (MPC) and optimization of HVAC
systems: A state of the art review and case study of a residential HVAC system. Energy and
Buildings, 141:96–113, 2017.

[6] Anas Alanqar, Helen Durand, and Panagiotis D Christofides. On identification of
well-conditioned nonlinear systems: Application to economic model predictive control of
nonlinear processes. AIChE Journal, 61:3353–3373, 2015.

[7] Anas Alanqar, Helen Durand, and Panagiotis D Christofides. Error-triggered on-line model
identification for model-based feedback control. AIChE Journal, 63:949–966, 2017.

[8] Anas Alanqar, Matthew Ellis, and Panagiotis D Christofides. Economic model predictive
control of nonlinear process systems using empirical models. AIChE Journal, 61:816–830,
2015.

[9] Mohammed Alhajeri, Junwei Luo, Zhe Wu, Fahad Albalawi, and Panagiotis D Christofides.
Process structure-based recurrent neural network modeling for predictive control: A
comparative study. Chemical Engineering Research and Design, 179:77–89, 2022.

[10] Mohammed Alhajeri and Masoud Soroush. Tuning guidelines for model-predictive control.
Industrial & Engineering Chemistry Research, 59:4177–4191, 2020.

161

[11] Abd AlRahman R. AlMomani, Jie Sun, and Erik Bollt. How entropic regression beats the
outliers problem in nonlinear system identification. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 30:013107, 2020.

[12] Shun Ichi Amari. Backpropagation and stochastic gradient descent method.
Neurocomputing, 5:185–196, 1993.

[13] EC Amazon. Amazon web services.

[14] Rishi Amrit, James B Rawlings, and David Angeli. Economic optimization using model
predictive control with a terminal cost. Annual Reviews in Control, 35:178–186, 2011.

[15] David Angeli, Rishi Amrit, and James B Rawlings. On average performance and
stability of economic model predictive control. IEEE Transactions on Automatic Control,
57:1615–1626, 2011.

[16] Yiğit M Arısoy, Luis E Criales, and Tuğrul Özel. Modeling and simulation of thermal
field and solidification in laser powder bed fusion of nickel alloy IN-625. Optics & Laser
Technology, 109:278–292, 2019.

[17] Felix W Baumann and Dieter Roller. Additive manufacturing, cloud-based 3D printing and
associated services—overview. Journal of Manufacturing and Materials Processing, 1:15,
2017.

[18] Martin Baumers, Luca Beltrametti, Angelo Gasparre, and Richard Hague. Informing
additive manufacturing technology adoption: total cost and the impact of capacity
utilisation. International Journal of Production Research, 55:6957–6970, 2017.

[19] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281–305, 2012.

[20] Lorenz T Biegler. Nonlinear programming: Concepts, algorithms, and applications to
chemical processes. SIAM, 2010.

[21] Lorenz T Biegler, Yi-Dong Lang, and Weijie Lin. Multi-scale optimization for process
systems engineering. Computers & Chemical Engineering, 60:17–30, 2014.

[22] Stephen A Billings. Identification of nonlinear systems-a survey. 127:272–285, 1980.

[23] Fabio Bonassi, Marcello Farina, Jing Xie, and Riccardo Scattolini. On Recurrent Neural
Networks for learning-based control: recent results and ideas for future developments.
Journal of Process Control, 114:92–104, 2022.

[24] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the
National Academy of Sciences, 113:3932–3937, 2016.

162

[25] Mark A Buckner and Lonnie J Love. Automating and accelerating the additive
manufacturing design process with multi-objective constrained evolutionary optimization
and hpc/cloud computing. In 2012 Future of Instrumentation International Workshop
(FIIW) Proceedings, pages 1–4, Gatlinburg, TN, 2012. IEEE.

[26] Javaid Butt. Exploring the interrelationship between additive manufacturing and industry
4.0. Designs, 4:13, 2020.

[27] Eduardo F Camacho and Carlos Bordons Alba. Model Predictive Control. Springer Science
& Business Media, London, 2nd edition, 2013.

[28] Hsueh-Chia Chang and Mobolaji Aluko. Multi-scale analysis of exotic dynamics in
surface catalyzed reactions I: Justification and preliminary model discriminations. Chemical
Engineering Science, 39:37–50, 1984.

[29] Baotong Chen, Jiafu Wan, Lei Shu, Peng Li, Mithun Mukherjee, and Boxing Yin. Smart
factory of industry 4.0: Key technologies, application case, and challenges. IEEE Access,
6:6505–6519, 2018.

[30] Hui Chen, Qingsong Wei, Yingjie Zhang, Fan Chen, Yusheng Shi, and Wentao Yan.
Powder-spreading mechanisms in powder-bed-based additive manufacturing: Experiments
and computational modeling. Acta Materialia, 179:158–171, 2019.

[31] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. Advances in neural information processing systems, 31,
2018.

[32] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. pages 103–111,
Doha, Qatar, 2014. Association for Computational Linguistics.

[33] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. pages 1724–1734, Doha, Qatar,
2014.

[34] Gregory C Chow et al. Analysis and control of dynamic economic systems. Wiley, 1975.

[35] Tommy WS Chow and Yong Fang. A recurrent neural-network-based real-time learning
control strategy applying to nonlinear systems with unknown dynamics. IEEE Transactions
on Industrial Electronics, 45:151–161, 1998.

[36] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[37] David W Clarke and Peter J Gawthrop. Self-tuning control. Proceedings of the Institution
of Electrical Engineers, 126:633–640, 1979.

163

[38] DW Clarke and PJ Gawthrop. Self-tuning controller. Proceedings of the Institution of
Electrical Engineers, 122:929–934, 1975.

[39] Stijn Clijsters, Tom Craeghs, Sam Buls, Karolien Kempen, and J-P Kruth. In situ quality
control of the selective laser melting process using a high-speed, real-time melt pool
monitoring system. The International Journal of Advanced Manufacturing Technology,
75:1089–1101, 2014.

[40] Luis C Costa, Rui Vilar, Tamas Reti, and Augusto M Deus. Rapid tooling by laser
powder deposition: Process simulation using finite element analysis. Acta Materialia,
53:3987–3999, 2005.

[41] Tom Craeghs, Florian Bechmann, Sebastian Berumen, and Jean-Pierre Kruth. Feedback
control of layerwise laser melting using optical sensors. Physics Procedia, 5:505–514, 2010.

[42] Balázs Csanád Csáji et al. Approximation with artificial neural networks. Faculty of
Sciences, Etvs Lornd University, Hungary, 24:7, 2001.

[43] Jordi Delgado, Joaquim Ciurana, and Ciro A Rodrı́guez. Influence of process parameters on
part quality and mechanical properties for DMLS and SLM with iron-based materials. The
International Journal of Advanced Manufacturing Technology, 60:601–610, 2012.

[44] Andrew Dickins, Taufiq Widjanarko, Simon Lawes, P Stavroulakis, and Richard Leach.
Design of a multi-sensor in-situ inspection system for additive manufacturing. In ASPE
and EUSPEN Summer Topical Meeting on Advancing Precision in Additive Manufacturing,
pages 248–152, Berkeley, CA, 2018.

[45] Thomas G Dietterich. Machine learning for sequential data: A review. In Joint
IAPR international workshops on statistical techniques in pattern recognition (SPR) and
structural and syntactic pattern recognition (SSPR), pages 15–30. Springer, 2002.

[46] Ugur M. Dilberoglu, Bahar Gharehpapagh, Ulas Yaman, and Melik Dolen. The role of
additive manufacturing in the era of industry 4.0. Procedia Manufacturing, 11:545–554,
2017.

[47] Pedro M Domingos. Why does bagging work? A bayesian account and its implications.
KDD, pages 155–158, 1997.

[48] Juan Peralta Donate, Paulo Cortez, German Gutierrez Sanchez, and Araceli Sanchis
De Miguel. Time series forecasting using a weighted cross-validation evolutionary artificial
neural network ensemble. Neurocomputing, 109:27–32, 2013.

[49] Zhichao Dong, Yabo Liu, Weibin Wen, Jingran Ge, and Jun Liang. Effect of hatch spacing
on melt pool and as-built quality during selective laser melting of stainless steel: modeling
and experimental approaches. Materials, 12:50, 2019.

[50] Andreas Draeger, Sebastian Engell, and Horst Ranke. Model predictive control using neural
networks. IEEE Control Systems Magazine, 15:61–66, 1995.

164

[51] Sophia N Economidou and Dimitris Karalekas. Optical sensor-based measurements of
thermal expansion coefficient in additive manufacturing. Polymer Testing, 51:117–121,
2016.

[52] Matthew Ellis, Helen Durand, and Panagiotis D. Christofides. A tutorial review of economic
model predictive control methods. Journal of Process Control, 24:1156–1178, 2014.

[53] Matthew J Ellis and Venkatesh Chinde. An encoder–decoder LSTM-based EMPC
framework applied to a building HVAC system. Chemical Engineering Research and
Design, 160:508–520, 2020.

[54] EOS. EOSTATE MeltPool: Real-time process monitoring for EOS M 290, 2018.

[55] Erik Esche, Joris Weigert, Gerardo Brand Rihm, Jan Göbel, and Jens-Uwe Repke.
Architectures for neural networks as surrogates for dynamic systems in chemical
engineering. Chemical Engineering Research and Design, 177:184–199, 2022.

[56] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm
for discovering clusters in large spatial databases with noise. KDD, 96:226–231, 1996.

[57] Sarah K Everton, Matthias Hirsch, Petros Stravroulakis, Richard K Leach, and Adam T
Clare. Review of in-situ process monitoring and in-situ metrology for metal additive
manufacturing. Materials & Design, 95:431–445, 2016.

[58] Ronan Fablet, Said Ouala, and Cédric Herzet. Bilinear residual neural network for the
identification and forecasting of geophysical dynamics. In Proceedings of the 26th European
Signal Processing Conference, pages 1477–1481, Rome, Italy, 2018.

[59] Behrouz A Forouzan. TCP/IP protocol suite. McGraw-Hill Higher Education, 2002.

[60] William E Frazier. Metal additive manufacturing: a review. Journal of Materials
Engineering and Performance, 23:1917–1928, 2014.

[61] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. Advances in Neural Information Processing Systems, 29, 2016.

[62] Banning Garrett. 3D printing: New economic paradigms and strategic shifts. Global Policy,
5:70–75, 2014.

[63] W. Gentzsch. Sun Grid Engine: towards creating a compute power grid. In Proceeding First
IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 35–36,
Brisbane, Australia, 2001.

[64] Ian Gibson, David W Rosen, Brent Stucker, et al. Additive Manufacturing Technologies,
volume 17. Springer, 2014.

[65] Haijun Gong, Khalid Rafi, Hengfeng Gu, Thomas Starr, and Brent Stucker. Analysis of
defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing
processes. Additive Manufacturing, 1:87–98, 2014.

165

[66] Raul González-Garcı́a, Ramiro Rico-Martı̀nez, and Ioannis G Kevrekidis. Identification
of distributed parameter systems: A neural net based approach. Computers & Chemical
Engineering, 22:S965–s968, 1998.

[67] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

[68] Eberhard KU Gross and F1097 Reiner M Dreizler. Density functional theory, volume 337.
Springer Science & Business Media, 2013.

[69] Thomas Grünberger and Robert Domröse. Optical in-process monitoring of direct metal
laser sintering (DMLS): A revolutionary technology meets automated quality inspection.
Laser Technik Journal, 11:40–42, 2014.

[70] Kevin Gurney. An introduction to neural networks. CRC press, 2018.

[71] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and
Masashi Sugiyama. Co-teaching: Robust training of deep neural networks with extremely
noisy labels. Advances in Neural Information Processing Systems, 31, 2018.

[72] Quanquan Han, Heng Gu, and Rossitza Setchi. Discrete element simulation of powder layer
thickness in laser additive manufacturing. Powder technology, 352:91–102, 2019.

[73] Ramadane Hedjar. Adaptive neural network model predictive control. International Journal
of Innovative Computing, Information and Control, 9:1245–1257, 2013.

[74] Michael A Henson and Dale E Seborg. Nonlinear process control. Prentice Hall PTR Upper
Saddle River, New Jersey, 1997.

[75] David M Himmelblau. Applications of artificial neural networks in chemical engineering.
Korean Journal of Chemical Engineering, 17:373–392, 2000.

[76] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9:1735–1780, 1997.

[77] Kailas Holkar and Laxman M Waghmare. An overview of model predictive control.
International Journal of Control and Automation, 3:47–63, 2010.

[78] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79:2554–2558,
1982.

[79] Davor Hrovat, Stefano Di Cairano, H Eric Tseng, and Ilya V Kolmanovsky. The
development of model predictive control in automotive industry: A survey. In 2012 IEEE
International Conference on Control Applications, pages 295–302, Dubrovnik, Croatia,
2012.

[80] Olga Ivanova and Thomas Campbell. Additive manufacturing as a disruptive technology:
Implications of three-dimensional printing. Technology and Innovation, 15:67–69, 01 2013.

166

[81] Karolien Kempen, Evren Yasa, Lore Thijs, J-P Kruth, and Jan Van Humbeeck.
Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Physics
Procedia, 12:255–263, 2011.

[82] AM Khalil, IS Loginova, AN Solonin, and AO Mosleh. Controlling liquation behavior
and solidification cracks by continuous laser melting process of AA-7075 aluminum alloy.
Materials Letters, 277:128364, 2020.

[83] Mojtaba Khanzadeh, Sudipta Chowdhury, Mark A Tschopp, Haley R Doude, Mohammad
Marufuzzaman, and Linkan Bian. In-situ monitoring of melt pool images for porosity
prediction in directed energy deposition processes. IISE Transactions, 51:437–455, 2019.

[84] Jivtesh Khurana, Bradley Hanks, and Mary Frecker. Design for additive manufacturing of
cellular compliant mechanism using thermal history feedback. In ASME 2018 International
Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, Quebec City, Canada, 2018. American Society of Mechanical Engineers Digital
Collection.

[85] Tung Kieu, Bin Yang, and Christian S Jensen. Outlier detection for multidimensional time
series using deep neural networks. In 2018 19th IEEE International Conference on Mobile
Data Management (MDM), pages 125–134, Aalborg, Denmark, 2018.

[86] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[87] Paisan Kittisupakorn, Piyanuch Thitiyasook, Mohd Azlan Hussain, and Wachira Daosud.
Neural network based model predictive control for a steel pickling process. Journal of
Process Control, 19:579–590, 2009.

[88] Charles M Kozierok. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols
Reference. No Starch Press, 2005.

[89] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems,
pages 1097–1105, 2012.

[90] R Leal, FM Barreiros, L Alves, F Romeiro, JC Vasco, M Santos, and C Marto. Additive
manufacturing tooling for the automotive industry. The International Journal of Advanced
Manufacturing Technology, 92:1671–1676, 2017.

[91] Jay H Lee. Modeling and identification for nonlinearmodel predictive control:
Requirements, current status and future research needs. In Nonlinear model predictive
control, pages 269–293. Springer, 2000.

[92] Hirpa G Lemu. On opportunities and limitations of additive manufacturing technology for
industry 4.0 era. In International Workshop of Advanced Manufacturing and Automation,
pages 106–113, Changzhou, China, 2018. Springer.

167

[93] Jean Lévine and Pierre Rouchon. Quality control of binary distillation columns via nonlinear
aggregated models. Automatica, 27:463–480, 1991.

[94] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng.
MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial
networks. In International Conference on Artificial Neural Networks, pages 703–716,
Munich, Germany, 2019. Springer.

[95] Jian Li, Jing Hu, Yi Zhu, Xiaowen Yu, Mengfei Yu, and Huayong Yang. Surface roughness
control of root analogue dental implants fabricated using selective laser melting. Additive
Manufacturing, 34:101283, 2020.

[96] Yue Li and Zheming Tong. Model predictive control strategy using encoder-decoder
recurrent neural networks for smart control of thermal environment. Journal of Building
Engineering, 42:103017, 2021.

[97] Yuandan Lin and Eduardo D Sontag. A universal formula for stabilization with bounded
controls. Systems & Control Letters, 16:393–397, 1991.

[98] Hancong Liu, Sirish Shah, and Wei Jiang. On-line outlier detection and data cleaning.
Computers & Chemical Engineering, 28:1635–1647, 2004.

[99] Renwei Liu, Zhiyuan Wang, Todd Sparks, Frank Liou, and Joseph Newkirk. Aerospace
applications of laser additive manufacturing. In Laser Additive Manufacturing, pages
351–371. Elsevier, 2017.

[100] Cody S Lough, Xin Wang, Christopher C Smith, Robert G Landers, Douglas A Bristow,
James A Drallmeier, Ben Brown, and Edward C Kinzel. Correlation of SWIR imaging with
LPBF 304L stainless steel part properties. Additive Manufacturing, 35:101359, 2020.

[101] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators
for identifying differential equations based on the universal approximation theorem of
operators. arXiv preprint arXiv:1910.03193, 2019.

[102] Chao Ma, Madhu Vadali, Neil A Duffie, Frank E Pfefferkorn, and Xiaochun Li. Melt pool
flow and surface evolution during pulsed laser micro polishing of Ti6Al4V. Journal of
Manufacturing Science and Engineering, 135, 2013.

[103] Mingming Ma, Zemin Wang, Ming Gao, and Xiaoyan Zeng. Layer thickness dependence
of performance in high-power selective laser melting of Cr18Ni9Ti stainless steel. Journal
of Materials Processing Technology, 215:142–150, 2015.

[104] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter
optimization through reversible learning. In International Conference on Machine Learning,
pages 2113–2122, Lille, France, 2015. PMLR.

[105] Yahya Mahmoodkhani, Usman Ali, Shahriar Imani Shahabad, Adhitan Rani Kasinathan,
Reza Esmaeilizadeh, Ali Keshavarzkermani, Ehsan Marzbanrad, and Ehsan Toyserkani. On
the measurement of effective powder layer thickness in laser powder-bed fusion additive
manufacturing of metals. Progress in Additive Manufacturing, 4:109–116, 2019.

168

[106] Arfan Majeed, Yingfeng Zhang, Shan Ren, Jingxiang Lv, Tao Peng, Saad Waqar, and
Enhuai Yin. A big data-driven framework for sustainable and smart additive manufacturing.
Robotics and Computer-Integrated Manufacturing, 67:102026, 2021.

[107] Bryon R Maner and Francis J Doyle III. Polymerization reactor control using
autoregressive-plus volterra-based MPC. AIChE Journal, 43:1763–1784, 1997.

[108] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert.
Constrained model predictive control: Stability and optimality. Automatica, 36:789–814,
2000.

[109] Tait D McLouth, David B Witkin, Glenn E Bean, Scott D Sitzman, Paul M Adams,
Julian R Lohser, Jenn-Ming Yang, and Rafael J Zaldivar. Variations in ambient and elevated
temperature mechanical behavior of IN718 manufactured by selective laser melting via
process parameter control. Materials Science and Engineering: A, 780:139184, 2020.

[110] Larry R Medsker and LC Jain. Recurrent neural networks: Design and Applications. CRC
press, 2001.

[111] Mehrshad Mehrpouya, Amir Dehghanghadikolaei, Behzad Fotovvati, Alireza Vosooghnia,
Sattar S. Emamian, and Annamaria Gisario. The potential of additive manufacturing in the
smart factory industrial 4.0: A review. Applied Sciences, 9:3865, 2019.

[112] Joao Mendes-Moreira, Carlos Soares, Alı́pio Mário Jorge, and Jorge Freire De Sousa.
Ensemble approaches for regression: A survey. ACM Computing Surveys, 45:1–40, 2012.

[113] Milos Miljanovic. Comparative analysis of recurrent and finite impulse response neural
networks in time series prediction. Indian Journal of Computer Science and Engineering,
3:180–191, 2012.

[114] W Thomas Miller, Richard S Sutton, and Paul J Werbos. Neural networks for control. MIT
press, 1995.

[115] Nima Mohajerin and Steven L Waslander. Multistep prediction of dynamic systems with
recurrent neural networks. IEEE Transactions on Neural Networks and Learning Systems,
30:3370–3383, 2019.

[116] Swati Mohanty. Artificial neural network based system identification and model predictive
control of a flotation column. Journal of Process Control, 19:991–999, 2009.

[117] Gunther Mohr, Simon J Altenburg, Alexander Ulbricht, Philipp Heinrich, Daniel Baum,
Christiane Maierhofer, and Kai Hilgenberg. In-situ defect detection in laser powder
bed fusion by using thermography and optical tomography—comparison to computed
tomography. Metals, 10:103, 2020.

[118] Manfred Morari and Jay H Lee. Model predictive control: past, present and future.
Computers & Chemical Engineering, 23:667–682, 1999.

169

[119] Daniel Moser, Sreekanth Pannala, and Jayathi Murthy. Computation of effective thermal
conductivity of powders for selective laser sintering simulations. Journal of Heat Transfer,
138:8, 2016.

[120] Peeyush Nandwana, William H Peter, Ryan R Dehoff, Larry E Lowe, Michael M Kirka,
Francisco Medina, and Sudarsanam S Babu. Recyclability study on Inconel 718 and
Ti-6Al-4V powders for use in electron beam melting. Metallurgical and Materials
Transactions B, 47:754–762, 2016.

[121] Quy B Nguyen, Duy N Luu, Mui Ling Sharon Nai, Z Zhu, Z Chen, and J Wei. The role of
powder layer thickness on the quality of slm printed parts. Archives of Civil and Mechanical
Engineering, 18:948–955, 2018.

[122] Chinedum E Okwudire, Sharankumar Huggi, Sagar Supe, Chengyang Huang, and Bowen
Zeng. Low-level control of 3d printers from the cloud: A step toward 3D printer control as
a service. Inventions, 3:56, 2018.

[123] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, and Luca Antiga. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 32, 2019.

[124] J Pemberton. Non-linear and non-stationary time series analysis., 1990.

[125] AD Peralta, M Enright, M Megahed, J Gong, M Roybal, and J Craig. Towards rapid
qualification of powder-bed laser additively manufactured parts. Integrating Materials and
Manufacturing Innovation, 5:154–176, 2016.

[126] Robi Polikar. Ensemble learning. In Ensemble Machine Learning, pages 1–34. Springer,
2012.

[127] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive control
technology. Control engineering practice, 11:733–764, 2003.

[128] S Joe Qin and Thomas J McAvoy. Nonlinear PLS modeling using neural networks.
Computers & Chemical Engineering, 16:379–391, 1992.

[129] Chunlei Qiu, Chinnapat Panwisawas, Mark Ward, Hector C Basoalto, Jeffery W Brooks,
and Moataz M Attallah. On the role of melt flow into the surface structure and porosity
development during selective laser melting. Acta Materialia, 96:72–79, 2015.

[130] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for
data-driven discovery of nonlinear dynamical systems. arXiv:1801.01236, 2018.

[131] Davi Ramos, Fawzi Belblidia, and Johann Sienz. New scanning strategy to reduce warpage
in additive manufacturing. Additive Manufacturing, 28:554–564, 2019.

[132] James B Rawlings. Tutorial overview of model predictive control. IEEE Control Systems
Magazine, 20:38–52, 2000.

170

[133] Lei Ren, Lin Zhang, Fei Tao, Chun Zhao, Xudong Chai, and Xinpei Zhao. Cloud
manufacturing: from concept to practice. Enterprise Information Systems, 9:186–209, 2015.

[134] Yi Ming Ren, Yichi Zhang, Yangyao Ding, Tao Liu, Cody S Lough, Ming C Leu, Edward C
Kinzel, and Panagiotis D Christofides. Finite element modeling of direct metal laser
solidification process: Sensor data replication and use in defect detection and data reduction
via machine learning. Chemical Engineering Research and Design, 171:254–267, 2021.

[135] Yi Ming Ren, Yichi Zhang, Yangyao Ding, Yongjian Wang, and Panagiotis D
Christofides. Computational fluid dynamics-based in-situ sensor analytics of direct metal
laser solidification process using machine learning. Computers & Chemical Engineering,
143:107069, 2020.

[136] Matheus Henrique Dal Molin Ribeiro, Stéfano Frizzo Stefenon, José Donizetti de Lima,
Ademir Nied, Viviana Cocco Mariani, and Leandro dos Santos Coelho. Electricity price
forecasting based on self-adaptive decomposition and heterogeneous ensemble learning.
Energies, 13:5190, 2020.

[137] John Romano, Leila Ladani, and Magda Sadowski. Laser additive melting and solidification
of Inconel 718: finite element simulation and experiment. JOM, 68:967–977, 2016.

[138] Daniel Rosenthal. Mathematical theory of heat distribution during welding and cutting.
Welding Journal, 20:220–234, 1941.

[139] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential
equations for irregularly-sampled time series. Advances in neural information processing
systems, 32, 2019.

[140] Samuel H. Rudy, J. Nathan Kutz, and Steven L. Brunton. Deep learning of dynamics
and signal-noise decomposition with time-stepping constraints. Journal of Computational
Physics, 396:483–506, 2019.

[141] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. Nature, 323:533–536, 1986.

[142] Magda Sadowski, Leila Ladani, William Brindley, and John Romano. Optimizing quality
of additively manufactured Inconel 718 using powder bed laser melting process. Additive
Manufacturing, 11:60–70, 2016.

[143] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[144] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45:2673–2681, 1997.

[145] Luke Scime and Jack Beuth. Using machine learning to identify in-situ melt pool signatures
indicative of flaw formation in a laser powder bed fusion additive manufacturing process.
Additive Manufacturing, 25:151–165, 2019.

171

[146] Luke Scime, Derek Siddel, Seth Baird, and Vincent Paquit. Layer-wise anomaly detection
and classification for powder bed additive manufacturing processes: A machine-agnostic
algorithm for real-time pixel-wise semantic segmentation. Additive Manufacturing,
36:101453, 2020.

[147] Pierre OM Scokaert, David Q Mayne, and James B Rawlings. Suboptimal model predictive
control (feasibility implies stability). IEEE Transactions on Automatic Control, 44:648–654,
1999.

[148] Clare Scott. EOS introduces EOSTATE Exposure OT, First Commercial Optical
Tomography System for Additive Manufacturing, 2017.

[149] M Hossein Sehhat and Ali Mahdianikhotbesara. Powder spreading in laser-powder bed
fusion process. Granular Matter, 23:1–18, 2021.

[150] Sunpreet Singh and Seeram Ramakrishna. Biomedical applications of additive
manufacturing: present and future. Current Opinion in Biomedical Engineering, 2:105–115,
2017.

[151] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. Advances in Neural Information Processing Systems, 25,
2012.

[152] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15:1929–1958, 2014.

[153] W Richard Stevens and Gary R Wright. TCP/IP illustrated, volume 2. Addison-Wesley,
1996.

[154] V Sh Sufiiarov, AA Popovich, EV Borisov, IA Polozov, DV Masaylo, and AV Orlov. The
effect of layer thickness at selective laser melting. Procedia engineering, 174:126–134,
2017.

[155] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. Advances in Neural Information Processing Systems, 27, 2014.

[156] Paulo Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Transactions on Automatic Control, 52:1680–1685, 2007.

[157] Ming Tang, P Chris Pistorius, and Jack L Beuth. Prediction of lack-of-fusion porosity for
powder bed fusion. Additive Manufacturing, 14:39–48, 2017.

[158] Saurabh Vaidya, Prashant Ambad, and Santosh Bhosle. Industry 4.0 – a glimpse. Procedia
Manufacturing, 20:233–238, 2018.

[159] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 5998–6008, 2017.

172

[160] Xiaofeng Wang and Michael D Lemmon. Event design in event-triggered feedback control
systems. In 2008 47th IEEE Conference on Decision and Control, pages 2105–2110,
Cancun, Mexico, 2008.

[161] Yuanbin Wang, Yuan Lin, Ray Y Zhong, and Xun Xu. IoT-enabled cloud-based additive
manufacturing platform to support rapid product development. International Journal of
Production Research, 57:3975–3991, 2019.

[162] Jordan S Weaver, Justin Whiting, Vipin Tondare, Carlos Beauchamp, Max Peltz, Jared
Tarr, Thien Q Phan, and M Alkan Donmez. The effects of particle size distribution
on the rheological properties of the powder and the mechanical properties of additively
manufactured 17-4 PH stainless steel. Additive Manufacturing, 39:101851, 2021.

[163] P Eo Wellstead, D Prager, and P Zanker. Pole assignment self-tuning regulator. In
Proceedings of the Institution of Electrical Engineers, volume 126, pages 781–787. IET,
1979.

[164] Paul J Werbos. Backpropagation through time: What it does and how to do it. Proceedings
of the IEEE, 78:1550–1560, 1990.

[165] Zachary T Wilson and Nikolaos V Sahinidis. The ALAMO approach to machine learning.
Computers & Chemical Engineering, 106:785–795, 2017.

[166] Tim Marten Wischeropp, Claus Emmelmann, Milan Brandt, and Aaron Pateras.
Measurement of actual powder layer height and packing density in a single layer in selective
laser melting. Additive Manufacturing, 28:176–183, 2019.

[167] Kaufui V Wong and Aldo Hernandez. A review of additive manufacturing. International
scholarly research notices, 2012:208760, 2012.

[168] Wee Chin Wong, Ewan Chee, Jiali Li, and Xiaonan Wang. Recurrent neural network-based
model predictive control for continuous pharmaceutical manufacturing. Mathematics,
6:242, 2018.

[169] Zhe Wu, Aisha Alnajdi, Quanquan Gu, and Panagiotis D Christofides. Statistical
machine-learning-based predictive control of uncertain nonlinear processes. AIChE Journal,
68:e17642, 2022.

[170] Zhe Wu and Panagiotis D Christofides. Process operational safety and cybersecurity: A
feedback control approach. Springer, 2021.

[171] Zhe Wu, Junwei Luo, David Rincon, and Panagiotis D Christofides. Machine learning-based
predictive control using noisy data: Evaluating performance and robustness via a large-scale
process simulator. Chemical Engineering Research and Design, 168:275–287, 2021.

[172] Zhe Wu, David Rincon, and Panagiotis D Christofides. Real-time adaptive
machine-learning-based predictive control of nonlinear processes. Industrial & Engineering
Chemistry Research, 59:2275–2290, 2019.

173

[173] Zhe Wu, David Rincon, and Panagiotis D Christofides. Process structure-based recurrent
neural network modeling for model predictive control of nonlinear processes. Journal of
Process Control, 89:74–84, 2020.

[174] Zhe Wu, David Rincon, Quanquan Gu, and Panagiotis D Christofides. Statistical machine
learning in model predictive control of nonlinear processes. Mathematics, 9:1912, 2021.

[175] Zhe Wu, Anh Tran, Yi Ming Ren, Cory S Barnes, Scarlett Chen, and Panagiotis D
Christofides. Model predictive control of phthalic anhydride synthesis in a fixed-bed
catalytic reactor via machine learning modeling. Chemical Engineering Research and
Design, 145:173–183, 2019.

[176] Zhe Wu, Anh Tran, David Rincon, and Panagiotis D Christofides. Machine learning-based
predictive control of nonlinear processes. part I: theory. AIChE Journal, 65:e16729, 2019.

[177] Fangda Xu, Vimal Dhokia, Paul Colegrove, Anthony McAndrew, Stewart Williams,
Andrew Henstridge, and Stephen T Newman. Realisation of a multi-sensor framework for
process monitoring of the wire arc additive manufacturing in producing Ti-6Al-4V parts.
International Journal of Computer Integrated Manufacturing, 31:785–798, 2018.

[178] Jing Xu, Chuandong Li, Xing He, and Tingwen Huang. Recurrent neural network
for solving model predictive control problem in application of four-tank benchmark.
Neurocomputing, 190:172–178, 2016.

[179] Min Xu, Jeanne M David, Suk Hi Kim, et al. The fourth industrial revolution: Opportunities
and challenges. International journal of financial research, 9:90–95, 2018.

[180] Yuhui Xu, Lingxi Xie, Wenrui Dai, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Hongkai
Xiong, and Qi Tian. Partially-connected neural architecture search for reduced
computational redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43:2953–2970, 2021.

[181] Wentao Yan, Yanping Lian, Cheng Yu, Orion L Kafka, Zeliang Liu, Wing Kam Liu,
and Gregory J Wagner. An integrated process–structure–property modeling framework
for additive manufacturing. Computer Methods in Applied Mechanics and Engineering,
339:184–204, 2018.

[182] Jingjing Yang, Hanchen Yu, Jie Yin, Ming Gao, Zemin Wang, and Xiaoyan Zeng. Formation
and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Materials
& Design, 108:308–318, 2016.

[183] Shen Yin and Okyay Kaynak. Big data for modern industry: Challenges and trends, point
of view. Proceedings of the IEEE, 103:143–146, 2015.

[184] Yohan Yoon, Jungryoul Yim, Eunho Choi, Junghan Kim, Kyuhwan Oh, and Youngchang
Joo. Texture control of 3.04%-si electrical steel sheets by local laser melting and directional
solidification. Materials Letters, 185:43–46, 2016.

174

[185] Bodi Yuan, Brian Giera, Gabe Guss, Ibo Matthews, and Sara Mcmains. Semi-supervised
convolutional neural networks for in-situ video monitoring of selective laser melting. In
Proceedings of Winter Conference on Applications of Computer Vision (WACV), pages
744–753, Waikoloa Village, Hawaii, 2019. IEEE.

[186] Krzysztof Zarzycki and Maciej Ławryńczuk. LSTM and GRU neural networks as models
of dynamical processes used in predictive control: A comparison of models developed for
two chemical reactors. Sensors, 21:5625, 2021.

[187] Hossein Ghaderi Zefrehi and Hakan Altınçay. Imbalance learning using heterogeneous
ensembles. Expert Systems with Applications, 142:113005, 2020.

[188] Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive into deep learning.
arXiv preprint arXiv:2106.11342, 2021.

[189] Bo Zhang, Guojian Zou, Dongming Qin, Yunjie Lu, Yupeng Jin, and Hui Wang. A novel
encoder-decoder model based on read-first LSTM for air pollutant prediction. Science of
The Total Environment, 765:144507, 2021.

[190] Yingjie Zhang, Geok Soon Hong, Dongsen Ye, Kunpeng Zhu, and Jerry YH Fuh. Extraction
and evaluation of melt pool, plume and spatter information for powder-bed fusion AM
process monitoring. Materials & Design, 156:458–469, 2018.

[191] Zhidong Zhang, Usman Ali, Yahya Mahmoodkhani, Yuze Huang, Shahriar Imani Shahabad,
Adhitan Rani Kasinathan, and Ehsan Toyserkani. Experimental and numerical investigation
on the effect of layer thickness during laser powder-bed fusion of stainless steel 17-4PH.
International Journal of Rapid Manufacturing, 9:212–230, 2020.

[192] Zhihao Zhang, Zhe Wu, David Rincon, and Panagiotis D Christofides. Real-time
optimization and control of nonlinear processes using machine learning. Mathematics,
7:890, 2019.

[193] Yingzhe Zheng, Xiaonan Wang, and Zhe Wu. Machine learning modeling and predictive
control of the batch crystallization process. Industrial & Engineering Chemistry Research,
61:5578–5592, 2022.

[194] Hubert Zimmermann. OSI reference model - the ISO model of architecture for open systems
interconnection. IEEE Transactions on communications, 28:425–432, 1980.

[195] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67:301–320, 2005.

175

	Introduction
	Motivation
	Background
	Dissertation Objectives and Structure

	Computational Fluid Dynamics-Based In-Situ Sensor Analytics of Direct Metal Laser Solidification Process Using Machine Learning
	FEM Model of DMLS and Thermal Sensor Output
	Build Part Geometry and Mesh
	Thermal Energy Transport Governing Equations
	Model Implementation and Verification
	Sensor Output Representation

	Sensor Data Analytics through Convolutional Neural Network
	CNN Construction
	Individual Sensor Data Analytics through CNN

	Cross-Validation Utilizing Two Sensor Data Analytics
	Cross-Validation Scheme Formulation
	Case Study

	Conclusion

	Finite Element Modeling of Direct Metal Laser Solidification Process: Sensor Data Replication and Use In Defect Detection and Data Reduction via Machine Learning
	FEM Modeling for DMLS
	Mesoscale Finite-element Method (FEM) Model Setup
	Microscale Investigation for Computational Demand Reduction
	Experimental Based Part-Scale Thermal Feature Analysis
	Parametric Analysis using Cluster Computation

	Machine Learning using CNN
	Dataset Preparation
	CNN Construction and Training
	CNN Model Evaluation

	Data Reduction
	Data Reduction in DMLS Process
	CNN Classifier
	Transmission Strategy

	Conclusion

	In-Situ Thermographic Inspection for Local Powder Layer Thickness Estimation in Laser Powder Bed Fusion
	Experimental Setup
	1D heat transfer model and finite differential elements solution
	1D Heat Transfer Model
	Thermal Feature: Rise Time

	Experimental Validation
	Machine Learning with FNN Regression Learner for Powder Thickness Prediction
	In-situ Thermographic Monitoring for Recoater Interaction
	Conclusion

	A three-level hierachical framework for additive manufacturing
	AM Framework Hierarchy
	Machine
	Factory
	Research Center

	Edge-Cloud Data Transfer Details
	Data Transfer Case Study
	Job Scheduling

	Additive Manufacturing and Industry 4.0
	Conclusion

	A Tutorial Review of Neural Network Modeling Approaches for Model Predictive Control
	Introduction
	Preliminaries
	Notation
	Class of Systems
	Stabilizability Assumption

	Real-time Optimization (RTO) and Model Predictive Control (MPC)
	Real-time Optimization (RTO)
	Model Predictive Control (MPC)
	Multi-layer Control Scheme

	Neural Network Architecture Overview
	Feed-forward Neural Networks (FNN)
	Sequential Neural Network Models

	Neural Network Model Construction Tutorial
	Problem Identification
	Data Collection
	Data Preprocessing
	Model Construction
	Model Training
	Model Evaluation

	Neural Network-based MPC Implementation: Chemical Process Example
	CSTR Process Description
	Data Generation and Processing
	Neural Network Models Construction
	Open-loop performance
	Closed-loop Performance
	MPC Computation Time Considerations

	Conclusion and Future Directions

	Conclusion
	Bibliography

