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Bacterial Aerosol Neutralization by Aerodynamic Shocks using a Novel Im-

pactor System: Experimental Results For E. Coli and Analysis. Chemical

Engineering Science, 65: 1490-1502, 2010.

9. P. R. Sislian, J. Rau, X. Zhang, D. Pham, M. Li, L. Mädler and P. D. Christofides.
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ABSTRACT OF THE DISSERTATION

Multiscale Modeling and Control of Microstructural Defects and Surface

Morphology in Thin Film Deposition

by

Xinyu Zhang

Doctor of Philosophy in Chemical Engineering
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Thin film deposition is a key process used in the manufacturing of microelectronic

devices as well as in the manufacturing of thin film solar cells. Improving the ability

to operate and control thin film deposition such that the deposited films have desired

levels of internal microstructure and surface morphology is an issue of major techno-

logical significance, with significant implications in the efficiencies of microelectronic

devices and thin film solar cells. While significant progress has been made over the

last ten years on modeling and control of thin film surface roughness and porosity,

there is a number of important unresolved practical issues with respect to our ability

to implement the existing solutions for porosity control in practice as well as with
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respect to control of surface morphology metrics that directly regulate light trapping

properties of thin films.

This dissertation presents a unified and practical framework for multiscale mod-

eling and control of thin film internal microstructure and surface morphology in

thin film deposition processes. Multiscale modeling provides the link between micro-

scopic film properties like film porosity and surface morphology and macroscopically-

controlled process variables like temperature and precursor flow rate and concentra-

tion. Within this multiscale modeling framework, model predictive control is used to

develop novel control problem formulations and manipulated input trajectories which

account for control actuator constraints and lead to a balanced trade-off in the closed-

loop system between the possibly conflicting control objectives of film porosity and

film surface roughness and/or slope. The proposed multiscale modeling and control

methods are applied to a series of complex thin film deposition processes and exten-

sive simulation studies are carried out to evaluate the resulting closed-loop system

performance and robustness in terms of achieving key film quality metrics such as

amount of internal defects and light trapping efficiency of film surface.
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Chapter 1

Introduction

1.1 Motivation

Currently, there is an increasing need to improve the thin film semiconductor man-

ufacturing process operation and yield due to its crucial role in a wide range of

applications such as microelectronics, optical electronics, and solar cells [63]. In the

microelectronics industry, the surface roughness and slope strongly influence the elec-

trical and mechanical properties of microelectronic devices [2, 41]. The amount of

internal defects, which can be characterized by film porosity, is another important

parameter that needs to be tightly controlled. Porosity strongly influences film elec-

trical properties. For example, low-k dielectric films of high porosity are being used

in current interconnect technologies to meet resistive-capacitive delay goals and min-

imize cross-talk. In the case of gate dielectrics, it is important to reduce thin film
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porosity as much as possible and eliminate the development of holes close to the

interface.

Another area that requires stringent control of thin film microstructure is the

photovoltaic cell manufacturing. Photovoltaic (solar) cells are an important source of

sustainable energy and their share of the overall solar cell market is steadily increasing

(e.g., [23, 68]). Currently, the limited conversion efficiency of the solar power prevents

the wide application of solar cells. Thin-film silicon solar cells are currently the most

developed and widely used solar cells. Research on optical and electrical modeling

of thin-film silicon solar cells indicates that the scattering properties of the thin film

interfaces are directly related to the light trapping process and the efficiencies of

thin-film silicon solar cells [36, 51]. Recent studies on enhancing thin-film solar cell

performance [79, 55, 51, 65, 60] have shown that film surface and interface morphology,

characterized by root-mean-square roughness (RMS roughness, r) and root-mean-

square slope (RMS slope, m) at length scales comparable to the wavelength of incident

light [73], play an important role in enhancing absorption of the incident light by

the semiconductor layers. Specifically, significant increase of conversion efficiency by

introducing appropriately roughened interfaces has been reported in several works [66,

40, 37].

To provide a concrete example of this issue, we focus on a typical p-i-n thin-film

solar cell (Fig. 1.1). In this thin-film solar cell, light comes into the hydrogenated

amorphous silicon (a-Si:H) semiconductor layers (p, i, n layers) through a front trans-
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Figure 1.1: Typical structure of a p-i-n thin-film solar cell with front transparent
conducting oxide (TCO) layer and back contact.

parent conducting oxide (TCO) layer (made, for example, of ZnO:Al), and part of

this light is absorbed by the semiconductor layers before it reaches the back TCO

layer. At the back TCO layer, the remaining light is either reflected back to the

semiconductor layers to potentially be absorbed again or leaves the system by trans-

mitting through the back TCO layer. The reflected light that is not absorbed reaches

the front TCO layer again and this process of reflection and transmission is repeated

until all the light leaves the cell or is absorbed by the cell. We focus on a thin film

a-Si:H p-i-n solar cell with glass/ZnO:Al as the front TCO layer and ZnO:Al as the

back TCO layer to demonstrate quantitatively the influence of surfrace/interface r

and m on thin film light reflectance and transmittance. Light scattering (Rayleigh

scattering) occurs when the incident light goes through a rough interface (e.g., the
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front TCO surface or the TCO-p interface) where it is divided into four components:

specular reflection, specular transmission, diffused reflection and diffused transmis-

sion; see Fig. 1.3 [66, 40]. If a rough thin film surface is illuminated with a beam of

monochromatic light at normal incidence, the total reflectance, R, can be approxi-

mately calculated as follows [14]:

R = R0 exp

[
−4πr2

λ2

]

+R0

∫ π/2

0

2π4
(a

λ

)2 ( r

λ

)2

(cos θ + 1)4 sin θ exp

[
−(πa sin θ)2

λ2

]
dθ

(1.1)

where R0 is the reflectance of a perfectly smooth surface of the same material, r

is the RMS roughness, θ is the incident angle, λ is the light wavelength and a is

the auto-covariance length. It can be proved that a =
√

2r/m, where m is the RMS

slope of the profile of the surface [9]. The numerical integration result of eq (1.1) is

shown in Figure 1.2. From this plot, it can be inferred that both r and m strongly

influence the intensity of light reflection (and therefore, light transmission) by the

surface/interface. Specifically, in a thin-film solar cell, the objective is to maximize

the generation of electricity in the i-layer, so it is necessary to control the intensities

and directions of light reflection and transmission at the front and back TCO layers,

as well as at the TCO-p and n-TCO interfaces by attaining proper values of r and m

during the thin-film manufacturing process. Specifically, when light first comes into

the front TCO layer, appropriate values of r and m are needed for the surface of the

TCO layer to maximize the transmission, T , through the TCO layer. At the back
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Figure 1.2: Reflectance of thin film surface as a function of r for different m.

n-TCO interface layer, certain surface morphology is also required to maximize the

reflection, R, of light back to the cell. The distributions of the four components of

light reflectance and transmittance are also affected by m and r [37, 38] even though

this dependence cannot be expressed by an approximate equation like the one of

Eq. (1.1). Therefore, it is important during the manufacturing of thin-film solar cells

to regulate process input variables like precursor flow rates and temperature such that

the surfaces/interfaces of the produced thin-film solar cells have appropriate values

(set-points) of r and m that optimize light reflectance and transmittance.
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Figure 1.3: Light scattering at a rough interface: specular reflection, Rsp, diffused
reflection, Rd, specular transmission, Tsp, and diffused transmission, Td. n1 and n2

are the refractive indices of the two substances above and below the rough interface,
respectively.

1.2 Control of thin film microstructure

Motivated by the above considerations, model-based real-time feedback control of

thin film growth processes has become increasingly important in order to meet the

stringent requirement on the quality of thin films and reduce thin film variability.

The development of modern surface roughness measurement techniques has enabled

real-time feedback of thin film growth conditions with a wide variety of sensors, such

as x-ray and electron diffraction, and optical spectroscopy [8, 24]. For example, sur-

face roughness can be measured by X-ray scattering (GISAXS) in real-time [58] or

by combination of on-line measurement techniques for measuring gas phase compo-

sitions with off-line measurement techniques for measuring surface roughness [54].
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In [54], the latter approach was used to measure carbon composition of thin films

in plasma-enhanced chemical vapor deposition using combination of optical emis-

sion spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS). Moreover, ex-

perimental methods have been developed to perform scanning tunneling microscopy

(STM) measurements of the surface during epitaxial growth of semiconductor lay-

ers [72].

Deposition uniformity and composition control has been accomplished on the basis

of continuum-type distributed parameter models (see [59, 3, 67, 12] for results on rapid

thermal processing (RTP) and [5, 54] for results on plasma-enhanced chemical vapor

deposition (PECVD)). However, precise control of thin film microstructure requires

stochastic distributed models that can predict how the microscopic-level film state is

influenced by changes in the macroscopic process parameters.

Control of macroscopic variables which are low statistical moments of the micro-

scopic distributions (e.g., surface coverage, which is the zeroth moment of species

distribution on a lattice) can be achieved using linear deterministic models. Such

an approach was reported in [64, 7] to identify linear determinstic models from the

output of kinetic Monte Carlo(kMC) simulators and design controllers using linear

control theory. Other results based on construction of linear/nonlinear determinstic

models from input/output data can be found in [15, 61, 77].

However, deterministic models may not be sufficient to control higher statistical

moments of the microscopic distributions, such as the surface roughness (the second
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moment of height distribution on a lattice), surface slope or film internal porosity.

The effect of the stochastic nature of the microscopic proesses becomes significant

in these cases and cannot be ignored in the model construction and controller de-

sign. In the context of modeling the evolution of thin film height profiles, kinetic

Monte Carlo models and stochastic partical differential equations are two widely-

used methods. Feedback control of surface roughness based on kMC models was

developed in [45, 44]. In [44] a real-time roughness estimator was proposed using

multiple small lattice kMC simulators, adaptive filters and measurement error com-

pensators. In [45] feedback controllers based on the real-time roughness estimators

were designed. In addition, the effectiveness of the method was demonstrated in

the context of surface roughness control of a GaAs deposition process model [46].

Kinetic Monte Carlo models have also been used in predictive control of surface

roughness in a complex deposition process including multiple components with both

short-range and long-range interactions [52]. Using kMC simulation as a realization

of a stochastic process consistent with the master equation that describes the evo-

lution of the probability distribution of the system at a certain micro-configuration,

Gallivan [20] proposed a method to construct reduced-order approximation of the

master equation. On the other hand, controller design methods based on stochastic

PDEs can be found in [47, 48]. In this method, the linear PDE is first reformulated

as a system of infinite linear stochastic ODEs by using modal decomposition and

then a finite-dimensional approximation that captures the dominant mode contribu-
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tion to the surface roughness is derived. Subsequently a state feedback controller is

designed based on the finite-dimensional approximation. Finally, computationally-

efficient optimization schemes for multiscale models have been developed based on

the concept of in-situ adaptive tabulation [70, 69], based on the concept of coarse

time-steppers [6, 10], and based on the concept of funneling [49, 50].

Model predictive control is widely used in chemical process control due to its ability

to handle input and state constraints, achieve robustness against model inaccuracy

and force the closed-loop system to follow an optimal trajectory (see reference [21,

4, 56, 62] for reviews of results on MPC). An MPC calculates the control action

by repeatedly solving a finite horizon constrained open-loop optimization problem.

Recent efforts on predictive control of distributed parameter systems have mainly

focused on application to deterministic parabolic PDEs including linear systems with

distributed [17] and boundary [16] actuation.

1.3 Modeling of thin film deposition processes

As discussed in the previous section, both kinetic Monte Carlo (kMC) methods [22, 57]

and stochastic differential equation (SDE) models [18, 74, 39] have been widely used

in thin film growth process modeling and controller design. kMC methods simulate

thin film microscopic processes based on the microscopic rules and the thermody-

namic and kinetic parameters obtained from experiments and molecular dynamics
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simulations [43, 80, 42, 13]. Specifically, kinetic Monte Carlo (kMC) models based on

a square lattice and utilizing the solid-on-solid (SOS) approximation for deposition

were employed to describe the evolution of film microstructure and design feedback

control laws for thin film surface roughness [44, 13]. kMC models have also been used

to simulate porous thin films in many deposition processes, such as the molecular

beam epitaxial (MBE) growth of silicon films [43] and copper thin film growth [80].

A triangular lattice kMC model that allows vacancies and overhangs to develop was

introduced in [29, 81] to model porous thin film growth. However, since kMC models

are not available in closed form, they cannot be readily used for feedback control

design and system-level analysis.

On the other hand, stochastic PDEs can be used for the modeling of surface

height evolution in thin film growth and sputtering processes. For example, many

deposition processes can be modeled by the Edward-Wilkinson equation [18]. The

nonlinear stochastic Kuramoto-Sivashinsky equation (KSE) has been used in [27, 26]

to model a sputtering process. The closed form of the SDE models enables their

use as the basis for the design of feedback controllers which can regulate thin film

surface roughness, film porosity, and film thickness, using either deposition rate or

substrate temperature as manipulated input [28, 29, 30]. Although stochastic PDE

models are available, the construction of these models for thin film deposition pro-

cesses is a challenging task. Most system identification results focus on stochastic

ODE systems, e.g., Astrom’s early work [1] provides theoretical foundations on the
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analysis, parametric optimization, and optimal stochastic control for linear stochastic

ODE systems. More recently, Bohlin [11] and Kristensen [35] proposed likelihood-

based methods for parameter estimation of stochastic ODE models. To determine the

model parameters, an optimization problem is solved in these methods to maximize a

likelihood function or a posterior probability density function of a given sequence of

measurements of a stochastic process. Since the dynamics of the state moment of a

stochastic process may be described by deterministic equations, recent works [47, 53]

proposed an identification method for linear stochastic PDEs employing parameter

identification techniques for deterministic systems.

1.4 Dissertation objectives and structure

Motivated by the above considerations, this dissertation focuses on the modeling and

control of film surface morphology and internal microstructure in thin film growth

processes. Kinetic Monte Carlo models are developed to simulate the thin film growth

processes on the basis of lattice structures; both solid-on-solid and triangular lattice

models are used. Surface roughness, surface slope and film porosity are defined and

computed from the kMC simulation data and are used to characterize the surface

morphology and microstructure of the thin films. Stochastic and deterministic differ-

ential equation models are introduced to describe the evolution of the thin film surface

morphology and internal microstructure and are used as the basis for feedback control

design. The model parameters of the dynamic equation models can be estimated on
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the basis of the kMC simulation data using least-square methods. MPC algorithms

are developed to regulate and stabilize the thin film surface roughness, surface slope

and film porosity at desired levels. Simultaneous control of these variables under

a unified framework is addressed using MPC. The proposed control algorithms are

successfully applied to the kMC models and SPDE models of the thin film deposition

processes under consideration through numerical simulations.

This dissertation has the following structure:

Chapter 2 focuses on simultaneous regulation of film thickness, surface roughness

and porosity in a multiscale model of a thin film growth process using the inlet pre-

cursor concentration as the manipulated input. Specifically, under the assumption of

continuum, a partial differential equation model is first derived to describe the dy-

namics of the precursor concentration in the gas phase. The thin film growth process

is modeled via a microscopic kinetic Monte Carlo simulation model on a triangular

lattice with vacancies and overhangs allowed to develop inside the film. Closed-form

dynamic models of the thin film surface profile and porosity are developed and used

as the basis for the design of model predictive control algorithms to simultaneously

regulate film thickness, surface roughness, and porosity. Both state feedback and

porosity estimation-based output feedback control algorithms are presented. Simula-

tion results demonstrate the applicability and effectiveness of the proposed modeling

and control approach by applying the proposed controllers to the multiscale model of

the thin film growth process.
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Chapter 3 focuses on the development of a model predictive control algorithm to

simultaneously regulate the surface slope and roughness of a thin film growth process

to optimize thin film light reflectance and transmittance. Specifically, a thin film

deposition process modeled on a one-dimensional triangular lattice that involves two

microscopic processes: an adsorption process and a migration process, is considered.

Kinetic Monte Carlo (kMC) methods are used to simulate the thin film deposition

process. To characterize the surface morphology and to evaluate the light trapping

efficiency of the thin film, surface roughness and surface slope are introduced as the

root mean squares of the surface height profile and surface slope profile. An Edwards–

Wilkinson (EW)-type equation is used to describe the dynamics of the surface height

profile and predict the evolution of the root-mean-square (RMS) roughness and RMS

slope. A model predictive control algorithm is then developed on the basis of the

EW equation model to regulate the RMS slope and the RMS roughness at desired

levels by optimizing the substrate temperature at each sampling time. The model

parameters of the EW equation are estimated from simulation data through least-

square methods. Closed-loop simulation results demonstrate the effectiveness of the

proposed model predictive control algorithm in successfully regulating the RMS slope

and the RMS roughness at desired levels that optimize thin film light reflectance and

transmittance.

Chapte 4 focuses on the development of a multivariable model predictive con-

troller that simultaneously regulates thin film surface roughness and mean slope to
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optimize light reflectance and transmittance during thin film manufacturing by ma-

nipulating substrate temperature and deposition rate. Surface roughness and surface

slope are defined as the root-mean-squares of the surface height profile and the sur-

face slope profile, respectively. The dynamics of the evolution of the thin film surface

height profile are assumed to be described by an Edwards–Wilkinson-type equation

(a second-order stochastic partial differential equation) in two spatial dimensions.

Analytical solutions of the expected surface roughness and surface slope are obtained

on the basis of the Edwards–Wilkinson equation and are used in the controller design.

The model parameters of the Edwards–Wilkinson equation depend on the substrate

temperature and deposition rate. This dependence is used in the formulation of

the predictive controller to predict the influence of the control action on the surface

roughness and slope at the end of the growth process. The model predictive con-

troller involves constraints on the magnitude and rate of change of the control action

and optimizes a cost that involves penalty on both surface roughness and mean slope

from the set-point values. The controller is applied to the two-dimensional Edwards–

Wilkinson equation and is shown to successfully regulate surface roughness and mean

slope to set-point values at the end of the deposition that yield desired film reflectance

and transmittance.

Chapter 5 focuses on modeling and control of aggregate thin film surface mor-

phology for improved light trapping using a patterned deposition rate profile. The

dynamics of the evolution of the thin film surface height profile are modeled by an
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Edwards-Wilkinson-type equation in two spatial dimensions. The thin film surface

morphology is characterized in terms of aggregate surface roughness and surface slope.

These variables are computed with respect to appropriate visible light-relevant char-

acteristic length scales and defined as the root-mean-squares of height deviation and

slope of aggregate surface height profiles, respectively. Analytical solutions of the

expected aggregate surface roughness and surface slope are obtained by solving the

Edwards-Wilkinson equation and are used in the controller design. The model pa-

rameters of the Edwards-Wilkinson equation are estimated from kinetic Monte-Carlo

simulations using a novel parameter estimation procedure. This parameter depen-

dence on the deposition rate is used in the formulation of the predictive controller

to predict the influence of the control action on the surface roughness and slope at

the end of the growth process. The cost function of the controller involves penalties

on both aggregate surface roughness and mean slope from set-point values as well

as constraints on the magnitude and rate of change of the control action. The con-

troller is applied to the two-dimensional Edwards-Wilkinson equation. Simulation

results demonstrate that the proposed controller successfully regulates aggregate sur-

face roughness and slope to set-point values at the end of the deposition that yield

desired levels of thin film reflectance and transmittance.

Finally, Chapter 6 summarizes the contributions of this dissertation.
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Chapter 2

Control of Film Thickness, Surface

Roughness and Porosity in a

Multiscale Thin Film Growth

Process

2.1 Introduction

In the context of modeling of thin film porosity, kMC models have been widely used

to model the evolution of porous thin films in many deposition processes [43, 80,

42, 76]. Deterministic and stochastic ordinary differential equation (ODE) models of

film porosity were recently developed [28] to model the evolution of film porosity and
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its fluctuation and design model predictive control (MPC) algorithms to control film

porosity to a desired level and reduce run-to-run porosity variability. More recently,

simultaneous control of film thickness, surface roughness, and porosity within a unified

control framework was addressed on the basis of a kMC thin film growth model

using the deposition rate as the manipulated input [29]. However, in a practical thin

film growth setting, the surface deposition rate cannot be manipulated directly but

indirectly through manipulation of the inlet precursor concentration.

This chapter addresses this practical consideration and focuses on simultaneous

regulation of film thickness, surface roughness, and porosity in a multiscale model of

a thin film growth process using the inlet precursor concentration as the manipulated

input. Specifically, under the continuum hypothesis, a partial differential equation

model is used to describe the dynamics of the precursor concentration in the gas

phase. The thin film growth process is modeled via a microscopic kinetic Monte

Carlo simulation model on a triangular lattice with vacancies and overhangs allowed

to develop inside the film. The macroscopic and microscopic models are connected

through boundary conditions. Distributed parameter and lumped dynamic models

are developed to describe the evolution of the film surface profile and porosity, re-

spectively. The developed dynamic models are then used as the basis for the design of

state and output feedback model predictive control algorithms to simultaneously reg-

ulate film thickness, surface roughness, and porosity. Simulation results demonstrate

the applicability and effectiveness of the proposed modeling and control approach by
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Figure 2.1: Schematic of thin film growth process in an LPCVD reactor.

applying the proposed controllers to the multiscale process model.

2.2 Preliminaries

We consider a silicon thin film growth process in a low-pressure chemical vapor depo-

sition (LPCVD) reactor, which is shown in figure 2.1. Due to the large discrepancies

of the time and length scales between the gas-phase and the thin-film growth phenom-

ena, two different models are employed to describe the evolutions of the gas phase and

of the thin film. Under the continuum hypothesis, a PDE model derived from a mass

balance is used to describe the precursor concentration in the gas-phase. The thin

film growth model is simulated through an on-lattice kMC model that uses a trian-

gular lattice and allows overhangs and vacancies to develop inside the film. The two

models are connected through boundary conditions, i.e., the adsorption rate in the

kMC model depends on the reactant concentration right above the surface following

an appropriate deposition rate law.
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2.2.1 Gas-phase model

For the gas-phase model, a vertical, one-dimensional, stagnant flow geometry is con-

sidered. The inlet flow consists of two components, hydrogen and silane. Silane dif-

fuses through a stagnant gas film of hydrogen. The temperature is constant through-

out the gas phase. Thus, under the assumption of continuum, the silane concentration

in the gas phase can be modeled via the following parabolic PDE:

∂X

∂t
= D

∂2X

∂z2
−KX (2.1)

where X is the molar fraction of silane, D is the diffusivity of silane, and the term

−KX accounts for the consumption of silane in the gas phase, i.e., via gas-phase

reaction and undesired sediments on reactor walls (we assume that this term has a

first-order dependence on silane concentration, but other rate laws can be readily

used in the present framework).

The diffusivity, D, is calculated using a second order polynomial of temperature

as follows [34]:

D = c0 + c1Tg + c2T
2
g , (2.2)

where Tg is the gas phase temperature set at 300 K, and c0, c1, and c2 are the

coefficients of the polynomial whose values are given in Table 2.1.

19



Tg 300 K P 1 Torr
Ts 850 K z0 0.4 m
c0 −2.90 K 0.5
c1 2.06× 10−2 KH 0.19 [Pa−1/2]
c2 2.81× 10−5 Ks 0.70 [Pa−1]

Table 2.1: Gas-Phase Model Parameters.

The diffusion equation of eq (2.1) is subject to the initial condition

X(z, 0) = 0, (2.3)

the boundary condition at the inlet (z = z0 = 0.4 m)

X(z0, t) = Xin, (2.4)

where Xin is the inlet concentration of silane, and the boundary condition at the

wafer surface (z = 0)

CD
∂X

∂z
(0, t) = RW , (2.5)

where C is the molar concentration of the gas phase right above the surface and

RW is the deposition rate on the wafer surface. Under the assumption of ideal gas,

C = P/(RTg), where P is the gas phase pressure and R is the ideal gas constant.

When silane diffuses to the wafer surface, it decomposes into silicon and hydrogen

as follows:

SiH4 → Si + 2H2. (2.6)
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Then, the silicon atoms are deposited onto the thin film. The deposition rate law on

the surface is given as follows [34]:

RW =
kPXs

1 + KH(P (1−Xs))1/2 + KsPXs

, (2.7)

where Xs is the silane concentration at the wafer surface, and k, KH , and Ks are

coefficients in the rate law. The coefficient k follows an Arrhenius-type law as follows

[34]:

k = 1.6× 104 exp(−18500/Ts) mole ·m−2 · s−1 · Pa−1, (2.8)

where Ts is the temperature of the wafer surface. The values of the parameters and

coefficients of the gas-phase model can be found in table 2.1.

2.2.2 On-lattice kinetic Monte Carco model of thin film growth

The film growth model used in this work is an on-lattice kMC model in which all

particles occupy discrete lattice sites [25, 29]. The on-lattice kMC model is valid

for a low temperature region, T < 0.5Tm (Tm is the melting point of the crystal). A

triangular lattice is selected to represent the crystalline structure of the film, as shown

in figure 2.2. The new particles are always deposited from the top side of the lattice

where the gas phase is located. The number of sites in the lateral direction is defined

as the lattice size and is denoted by L. In the triangular lattice, a bottom layer in

the lattice is initially set to be fully packed and fixed, as shown in figure 2.2. There

21



Gas phase 

particles

Particles

on lattice

Substrate 

particlesSubstrate

Gas phase

Figure 2.2: Thin film growth process on a triangular lattice.

are no vacancies in this layer, and the particles in this layer cannot migrate. This

layer acts as the substrate for the deposition and is not counted in the computation

of the number of the deposited particles, i.e., this fixed layer does not influence the

film microscopic properties. Two types of microscopic processes (Monte Carlo events)

are considered: an adsorption process, in which particles are incorporated into the

film from the gas phase, and a migration process, in which surface particles move to

adjacent sites [43, 42, 76, 78].

In an adsorption process, an incident particle comes in contact with the film and is

incorporated onto the film. The microscopic adsorption rate, W , which is in units of

layers per unit time, is equal to the deposition rate, RW (i.e., W = RW ). The incident

particles are initially placed at random positions above the film lattice and move

toward the lattice in the vertical direction until contacting the first particle on the

film. Upon contact, the particle moves (relaxes) to the nearest vacant site. Surface
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relaxation is conducted if this site is unstable, i.e., site with only one neighboring

particle. When a particle is subject to surface relaxation, the particle moves to its

most stable neighboring vacant site and is finally incorporated into the film.

In a migration process, a particle overcomes the energy barrier of the site and

jumps to its vacant neighboring site. The migration rate (probability) of a particle

follows an Arrhenius-type law with a precalculated activation energy barrier that

depends on the local environment of the particle and the substrate temperature.

Since the film is thin, the temperature is assumed to be uniform throughout the film.

The interior particles (the particles fully surrounded by 6 nearest neighbors) and the

substrate layer particles cannot migrate.

When a particle is subject to migration, it can jump to either of its vacant neigh-

boring sites with equal probability, unless the vacant neighboring site has no nearest

neighbors, i.e., the surface particle cannot jump off the film and it can only migrate

on the surface. The deposition process is simulated using the continuous-time Monte

Carlo (CTMC) method (see [29] for details on the microscopic model and simulation

algorithm).

2.2.3 Definitions of surface height profile and film site occu-

pancy ratio

Utilizing the continuous-time Monte Carlo algorithm, simulations of the kMC model

of a porous silicon thin film growth process can be carried out. Snapshots of film
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microstructure, i.e., the configurations of particles within the triangular lattice, are

obtained from the kMC model at various time instants during process evolution. To

quantitatively evaluate the thin film microstructure, two variables, surface roughness

and film porosity, are introduced in this subsection.

Surface roughness, which measures the texture of the thin film surface, is repre-

sented by the root-mean-square of the surface height profile of the thin film. Deter-

mination of surface height profile is slightly different in the triangular lattice model

compared to a solid-on-solid (SOS) model. In the SOS model, the surface of the thin

film is naturally described by the positions of the top particles of each column. In the

triangular lattice model, however, due to the existence of vacancies and overhangs, the

definition of the film surface needs further clarification (see [30] for details). Specifi-

cally, taking into account practical considerations of surface roughness measurements,

the surface height profile of a triangular lattice model is defined based on the particles

that can be reached in the vertical direction, as shown in figure 2.3. In this definition,

a particle is considered as a surface particle only if it is not blocked by the particles in

the neighboring columns. Therefore, the surface height profile of a porous thin film

is the line that connects the sites that are occupied by the surface particles. With

this definition, the surface height profile can be treated as a function of the spatial

coordinate. Surface roughness, as a measurement of the surface texture, is defined

as the standard deviation of the surface height profile from its average height. The

mathematical definition of surface roughness is given later in section 2.3.1.
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Figure 2.3: Definition of surface height profile. A surface particle is a particle that is
not blocked by particles from both of its neighboring columns in the vertical direction.

In addition to film surface roughness, the film site occupancy ratio (SOR) was

introduced in [28] to represent the extent of the porosity inside the thin film. The

mathematical expression of film SOR is defined as follows:

ρ =
N

LH
(2.9)

where ρ denotes the film SOR, N is the total number of deposited particles on the

lattice, L is the lattice size, and H denotes the number of deposited layers. Note that

the deposited layers are the layers that contain only deposited particles and do not

include the initial substrate layers. The variables in the expression of eq (2.9) can be

found in figure 2.4. Since each layer contains L sites, the total number of sites in the

film that can be contained within the H layers is LH. Thus, film SOR is the ratio

of the occupied lattice sites, N , over the total number of available sites, LH. Film
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Figure 2.4: Illustration of the definition of film SOR of eq (2.9).

SOR ranges from 0 to 1. Specifically, ρ = 1 denotes a fully occupied film with a flat

surface. The value of zero is assigned to ρ at the beginning of the deposition process

since there are no particles deposited on the lattice.

2.3 Closed-form dynamic model construction

2.3.1 Edwards–Wilkinson-type equation of surface height

The Edwards–Wilkinson (EW)-type equation, a second-order stochastic PDE, can

be used to describe the surface height evolution in many microscopic processes that

involve thermal balance between adsorption (deposition) and migration (diffusion).

Following our previous works [28, 30], an EW-type equation is chosen to describe the
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dynamics of the fluctuation of surface height (the validation of this choice can be

found in [25]):

∂h

∂t
= rh + ν

∂2h

∂x2
+ ξ(x, t) (2.10)

subject to periodic boundary conditions

h(−π, t) = h(π, t),
∂h

∂x
(−π, t) =

∂h

∂x
(π, t) (2.11)

and the initial condition

h(x, 0) = h0(x) (2.12)

where x ∈ [−π, π] is the spatial coordinate, t is the time, rh and ν are the model

parameters, and ξ(x, t) is a Gaussian white noise with the following mean and covari-

ance:

〈ξ(x, t)〉 = 0

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x− x′)δ(t− t′)

(2.13)

where σ2 is a parameter which measures the intensity of the Gaussian white noise

and δ(·) denotes the standard Dirac delta function. The values of rh, v and σ will be

computed so that the solutions of eq (2.10) approximate well data obtained from the

kMC simulations of the thin film growth process.

To proceed with control design, a stochastic ODE approximation of eq (2.10) is

first derived using modal decomposition. Consider the eigenvalue problem of the
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linear operator of eq (2.10), which takes the following form:

Aφ̄n(x) = ν
d2φ̄n(x)

dx2
= λnφ̄n(x)

φ̄n(−π) = φ̄n(π),
dφ̄n

dx
(−π) =

dφ̄n

dx
(π)

(2.14)

where λn denotes an eigenvalue and φ̄n denotes an eigenfunction. A direct computa-

tion of the solution of the above eigenvalue problem yields λ0 = 0 with ψ0 = 1/
√

2π,

and λn = −νn2 (λn is an eigenvalue of multiplicity two) with eigenfunctions φn =

(1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞. Note that the φ̄n in

eq (2.14) denotes either φn or ψn. The solution of eq (2.10) is expanded in an infinite

series in terms of the eigenfunctions of the operator of eq (2.14) as follows:

h(x, t) =
∞∑

n=1

αn(t)φn(x) +
∞∑

n=0

βn(t)ψn(x) (2.15)

where αn(t), βn(t) are time-varying coefficients. Substituting the above expansion

for the solution, h(x, t), into eq (2.10) and taking the inner product with the adjoint

eigenfunctions, φ∗n(x) = (1/
√

π) sin(nx) and ψ∗n(x) = (1/
√

π) cos(nx), the following

system of infinite stochastic ODEs is obtained:

dβ0

dt
=
√

2πrh + ξ0
β(t)

dβn

dt
= λnβn + ξn

β (t)

dαn

dt
= λnαn + ξn

α(t), n = 1, . . . ,∞

(2.16)
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where

ξn
α(t) =

∫ π

−π

ξ(x, t)φ∗n(x)dx, ξn
β (t) =

∫ π

−π

ξ(x, t)ψ∗n(x)dx. (2.17)

The covariances of ξn
α(t) and ξn

β (t) can be obtained as follows: 〈ξn
α(t)ξn

α(t′)〉 =

σ2δ(t− t′) and
〈
ξn
β (t)ξn

β (t′)
〉

= σ2δ(t− t′). Due to the orthogonality of the eigenfunc-

tions of the operator in the EW equation of eq (2.10), ξn
α(t) and ξn

β (t), n = 0, 1, . . .,

are stochastically independent.

Since the stochastic ODE system is linear, the analytical solution of state variance

can be obtained from a direct computation as follows:

〈
α2

n(t)
〉

=
σ2

2νn2
+

(〈
α2

n(t0)
〉− σ2

2νn2

)
e−2νn2(t−t0)

〈
β2

n(t)
〉

=
σ2

2νn2
+

(〈
β2

n(t0)
〉− σ2

2νn2

)
e−2νn2(t−t0)

n = 1, 2, . . . ,∞

(2.18)

where 〈α2
n(t0)〉 and 〈β2

n(t0)〉 are the state variances at time t0. The analytical solution

of state variance of eq (2.18) will be used in the parameter estimation and the MPC

design.

When the dynamic model of surface height profile is determined, surface roughness

of the thin film is defined as the standard deviation of the surface height profile from
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its average height and is computed as follows:

r(t) =

√
1

2π

∫ π

−π

[h(x, t)− h̄(t)]2dx (2.19)

where h̄(t) =
1

2π

∫ π

−π

h(x, t)dx is the average surface height. According to eq (2.15),

we have h̄(t) = β0(t)ψ0. Therefore, 〈r2(t)〉 can be rewritten in terms of 〈α2
n(t)〉 and

〈β2
n(t)〉 as follows:

〈
r2(t)

〉
=

1

2π

〈∫ π

−π

(h(x, t)− h̄(t))2dx

〉

=
1

2π

〈 ∞∑
i=1

(α2
i (t) + β2

i (t))

〉

=
1

2π

∞∑
i=1

[〈
α2

i (t)
〉

+
〈
β2

i (t)
〉]

(2.20)

where h̄ =
1

2π

∫ π

−π

h(x, t)dx = β0(t)ψ0 is the average of surface height. Thus, eq (2.20)

provides a direct link between the state variance of the infinite stochastic ODEs

of eq (2.16) and the expected surface roughness of the thin film. However, due to

the presence of infinite terms in the summation of eq (2.20), the solution of the

expected surface roughness of eq (2.20) cannot be directly used in the MPC design.

Thus, a reduced-order model is needed and is introduced in the MPC design later

in section 2.4.1. Note that the parameter rh does not appear in the expression of

surface roughness, since only the zeroth state, β0, is affected by rh but this state is

not included in the computation of the expected surface roughness square of eq (2.20).
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Film thickness, which is represented by the average of surface height, h̄, is another

objective under consideration in this work. The dynamics of the expected value of

averaged surface height can be obtained from the analytical solution of the zeroth

state, β0, from eq (2.16), as follows:

d
〈
h̄
〉

dt
= rh. (2.21)

The analytical solution of expected value of film thickness,
〈
h̄
〉
, can be obtained

directly from eq (2.21) as follows:

〈
h̄(t)

〉
=

〈
h̄(t0)

〉
+ rh(t− t0). (2.22)

2.3.2 Dynamic model of film site occupancy ratio

The concept of film site occupancy ratio (SOR) is used to characterize film porosity.

According to the definition of film SOR of eq (2.9), film SOR accounts for all deposited

layers during the entire deposition process. Thus, film SOR is a cumulative property,

the evolution of which can be characterized by an integral form. Before further

derivation of the dynamic model of film SOR, a concept of instantaneous film SOR of

the film layers deposited between time t and t + dt, denoted by ρd, is first introduced

as the spatial derivative of the number of deposited particles in the growing direction
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as follows:

ρd =
dN

d(HL)
(2.23)

In eq (2.23), the lattice size L is a constant and the derivative dH can be written

as a linear function of the time derivative dt as follows:

dH = rHdt (2.24)

where rH is the growth rate of the thin film from the top layer point of view. Note

that rH is different from the model coefficient rh in eq (2.10). Thus, the expressions

of N and H can be obtained by integrating eqs (2.23) and (2.24) as follows:

N(t) = L

∫ t

0

ρdrHds

H(t) =

∫ t

0

rHds

(2.25)

With the definition of ρ of eq (2.9) and the expressions of N and H of eq (2.25),

the film SOR of eq (2.9) can be rewritten in an integral form as follows:

ρ =

∫ t

0
ρdrHds∫ t

0
rHds

(2.26)

To simplify the subsequent development and develop an SOR model that is suit-

able for control purposes, we assume (this assumption will be verified in the closed-

loop simulation results below where the performance of the controller will be evalu-
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ated) that the dynamics of the instantaneous film SOR, ρd, can be approximated by

a linear first-order process, i.e.:

τ
dρd(t)

dt
= ρss

d − ρd(t) (2.27)

where τ is the time constant and ρss
d is the steady-state value of the instantaneous

film SOR. We note that the first-order ODE model of eq (2.27) was introduced and

justified with numerical results in [28] and [25] for the modeling of the partial film

SOR, which is defined to characterize the evolution of the film porosity of layers that

are close to the film surface. The instantaneous film SOR is a similar concept to the

partial film SOR, because it also describes the contribution to the bulk film porosity

of the newly deposited layers. Therefore, the first-order ODE model is a suitable

choice to describe the evolution of the instantaneous film SOR.

From eq (2.26), it follows that at large times as ρd approaches ρss
d , the steady-state

film SOR (ρss) approaches the steady-state value of the instantaneous film SOR (i.e.,

ρss = ρss
d ). The deterministic ODE system of eq (2.27) is subject to the following

initial condition:

ρd(t0) = ρd0 (2.28)

where t0 is the initial time and ρd0 is the initial value of the instantaneous film SOR.
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From eqs (2.27) and (2.28) and the fact that ρss = ρss
d at large times, it follows that

ρd(t) = ρss + (ρd0 − ρss) e−(t−t0)/τ . (2.29)

For controller implementation purposes, the expression of the film SOR can be derived

as follows:

ρ(t) =

∫ t0
0

ρdrHds +
∫ t

t0
ρdrHds

∫ t0
0

rHds +
∫ t

t0
rHds

=
ρ0H0 +

∫ t

t0
ρdrHds

H0 +
∫ t

t0
rHds

(2.30)

where t0 is the current time, ρ0 and H0 are film SOR and film height at time t0,

respectively.

Substituting the solution of ρd of eq (2.29) into eq (2.30) and assuming that rH

is constant for t > τ > t0, which is taken to be the case in the parameter estimation

and the MPC formulations below, the analytical solution of film SOR at time t can

be obtained as follows:

ρ =
ρ0H0 + rH

[
ρss(t− t0) + (ρss − ρ0)τ(e−(t−t0)/τ − 1)

]

H0 + rH(t− t0)
(2.31)

which is directly utilized in the model predictive control formulation of eq (2.34)

below.
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2.4 Model predictive controller design

In this section, model predictive controllers are designed to regulate the expected

values of film roughness square, SOR, and thickness to desired levels by manipulating

the inlet silane concentration. Two different ways of implementing the desired film

thickness requirement are presented and compared. A reduced-order model of the EW

equation is used in the MPC formulation to approximate the dynamics of the surface

roughness. State feedback control is considered in this section to present the control

algorithms, i.e., the surface height profile and the value of film SOR are assumed to

be available to the controller. Porosity estimation-based model predictive control is

considered in section 2.6.

2.4.1 Reduced-order model for surface roughness

In the MPC formulation, the expected surface roughness may be computed from the

EW equation of eq (2.10) by substituting the solution of the state variance of eq (2.18)

into the expression of the expected surface roughness square of eq (2.20). However,

the EW equation is a distributed parameter dynamic model, which contains infinite

dimensional stochastic states. Therefore, the solution of the EW equation leads to

a model predictive controller of infinite order that cannot be realized in practice

(i.e., the practical implementation of a control algorithm based on such a system will

require the computation of infinite sums which cannot be done by a computer). To

this end, a reduced-order model of the infinite dimensional ODE model of eq (2.16) is
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instead derived and used to calculate the prediction of the expected surface roughness

in the model predictive controller.

Due to the structure of the eigenspectrum of the linear operator of the EW equa-

tion of eq (2.10), the dynamics of the EW equation are characterized by a finite

number of dominant modes. By neglecting the high-order modes (n ≥ m + 1), the

system of eq (2.16) can be approximated by a finite-dimensional system as follows:

dαn

dt
= λnαn + ξn

α(t),
dβn

dt
= λnβn + ξn

β (t)

n = 1, . . . , m.

(2.32)

Note that the ODE for the zeroth state is also neglected, since the zeroth state does

not contribute to surface roughness.

Using the finite-dimensional system of eq (2.32), the expected surface roughness

square, 〈r2(t)〉, can be approximated with the finite-dimensional state variance as

follows:

〈
r̃2(t)

〉
=

1

2π

m∑
i=1

[〈
α2

i (t)
〉

+
〈
β2

i (t)
〉]

(2.33)

where the tilde symbol in 〈r̃2(t)〉 denotes its association with a finite-dimensional

system.
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2.4.2 MPC formulation

We consider the control problem of film surface roughness, porosity, and thickness

regulation by using a model predictive control design. The expected values, 〈r2〉, 〈ρ〉,

and
〈
h̄
〉
, are chosen as the control objectives. The adsorption rate is computed by

the controller, which, in turn, is used to calculate the inlet silane concentration via

eq (2.7) (i.e., the presence of the gas phase is neglected in the calculation of the control

action, Xin, but it is accounted for in the multiscale process model, where the control

action is applied). The substrate temperature is fixed at 850 K during the entire

closed-loop simulation. The control action is obtained by solving a finite-horizon

optimal control problem.

The cost function in the optimal control problem (eq (2.34) below) includes penalty

on the deviation of 〈r2〉 and 〈ρ〉 from their respective set-point values. However, since

the manipulated input variable is the adsorption rate and the film deposition process

is a batch operation (i.e., the film growth process is terminated within a certain

time), a desired value of the film thickness is also required to prevent an undergrown

thin film at the end of the deposition process. Therefore, in the MPC shown in

eq (2.34), the desired film thickness is regarded as the set-point value of the film

thickness, i.e., the deviation of the film thickness from the desired value is included

in the cost function. However, only the negative deviation (when the film thickness

is less than the desired value) is penalized; no penalty is imposed on the deviation

when the thin film thickness exceeds the desired thickness. Different weighting factors
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are assigned to the penalties on the deviations of the expected values of film surface

roughness, SOR, and thickness from their desired values. Relative deviations are used

in the formulation of the cost function to make the magnitude of the different terms

comparable. The optimization problem is subject to the dynamics of the reduced-

order model of surface roughness of eq (2.32), the dynamics of the film thickness of

eq (2.21), and the dynamics of the film SOR of eq (2.26). The optimal profile of the

adsorption rate is calculated by solving a finite-dimensional optimization problem in

a receding horizon fashion. Specifically, the MPC problem is formulated as follows:

min
W1,...,Wi,...,Wp

J =

p∑
i=1

{qr2,iFr2,i + qh,iFh,i + qρ,iFρ,i} (2.34)

subject to:

Fr2,i =

[
r2
set − 〈r̃2(ti)〉

r2
set

]2

Fh,i =





[
hmin−〈h̄(ti)〉

hmin

]2

, hmin >
〈
h̄(ti)

〉

0, hmin ≤
〈
h̄(ti)

〉

Fρ,i =

[
ρset − 〈ρ(ti)〉

ρset

]2

〈
α2

n(ti)
〉

=
σ2

2νn2
+

(〈
α2

n(ti−1)
〉− σ2

2νn2

)
e−2νn2∆

〈
β2

n(ti)
〉

=
σ2

2νn2
+

(〈
β2

n(ti−1)
〉− σ2

2νn2

)
e−2νn2∆

〈
h̄(ti)

〉
=

〈
h̄(ti−1)

〉
+ rh∆
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〈ρ(ti)〉 =

1〈
h̄(ti−1)

〉
+ rh∆

· {〈ρ(ti−1)〉
〈
h̄(ti−1)

〉
+ rh

[
ρss∆ + (ρss − 〈ρ(ti−1)〉)τp(e

−∆/τp − 1)
]}

Wmin < Wi < Wmax, i = 1, 2, . . . , p

where t is the current time, ∆ is the sampling time, p is the number of prediction

steps, p∆ is the specified prediction horizon, ti, i = 1, 2, . . . , p, is the time of the

ith prediction step (ti = t + i∆), respectively, Wi, i = 1, 2, . . . , p, is the adsorption

rate at the ith step (Wi = W (t + i∆)), respectively, qr2,i, qh,i, and qρ,i, i = 1, 2, . . . ,

p, are the weighting penalty factors for the deviations of 〈r2〉, 〈h〉 and 〈ρ〉 from their

respective set-points r2
set and ρset,

〈
h̄
〉

from its desired hmin, at the ith prediction

step, and Wmin and Wmax are the lower and upper bounds on the deposition rate,

respectively. Note that we choose
〈
h̄
〉
, rh and ρ(t0) to replace H, rH and ρd0 in the

MPC formulation of eq (2.34), respectively.

The optimal set of (W1, W2, . . . , Wp), is obtained from the solution of the multi-

variable optimization problem of eq (2.34), and only the first value of the manipulated

input trajectory, W1, is used to compute the inlet silane concentration and is applied

to the deposition process from time t until the next sampling time, when new measure-

ments are received and the MPC problem of eq (2.34) is solved for the computation

of the next optimal input trajectory.

The dependence of the model coefficients, rh, ν, σ2, ρss, and τ , on adsorption

rate is used in the formulation of the model predictive controller of eq (2.34). Thus,
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parameter estimation from open-loop kMC simulation results of the thin film growth

process for a variety of operation conditions is performed to obtain the dependence

of the model coefficients on adsorption rate using least square methods [30].

Remark 2.1 In the MPC formulation shown in eq (2.34), the desired thickness re-

quirement is implemented by including penalty on the negative deviation of the ex-

pected film thickness from its set point in the cost function. This formulation cannot

guarantee that the final film thickness is greater than the set-point value, thus it can

be viewed as a soft constraint formulation. To ensure that the thickness requirement

would be satisfied, a thickness constraint should be implemented as a lower bound on

deposition rate, which is the smallest deposition rate needed to reach the desired thick-

ness at the end of the deposition process. The modified MPC, accounting for the gas

phase via a constant gain, can be then formulated as follows:

min
W1,...,Wi,...,Wp

J =

p∑
i=1

{qr2,iFr2,i + qρ,iFρ,i} (2.35)

subject to:

Fr2,i =

[
r2
set − 〈r̃2(ti)〉

r2
set

]2

Fρ,i =

[
ρset − 〈ρ(ti)〉

ρset

]2

〈
α2

n(ti)
〉

=
σ2

2νn2
+

(〈
α2

n(ti−1)
〉− σ2

2νn2

)
e−2νn2∆

〈
β2

n(ti)
〉

=
σ2

2νn2
+

(〈
β2

n(ti−1)
〉− σ2

2νn2

)
e−2νn2∆
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〈
h̄(ti)

〉
=

〈
h̄(ti−1)

〉
+ rh∆

〈ρ(ti)〉 =

1〈
h̄(ti−1)

〉
+ rh∆

· {〈ρ(ti−1)〉
〈
h̄(ti−1)

〉
+ rh

[
ρss∆ + (ρss − 〈ρ(ti−1)〉)τp(e

−∆/τp − 1)
]}

Wmin < Wi < Wmax, i = 1, 2, . . . , p

rh >
hmin − h(ti)

(tend − ti)
, i = 1, 2, . . . , p

It is important to note that it is possible that the required minimum deposition rate

is larger than the upper bound imposed on W , thereby resulting in an infeasible opti-

mization problem. If this happens, the lower bound is reset to Wmax − 0.001.

Remark 2.2 A multivariable control algorithm can be developed for more improved

closed-loop control by simultaneously manipulating two or more process input vari-

ables. For example, the adsorption rate, W , and the substrate temperature, T , may

be used as two simultaneous manipulated inputs in a multivariable control design.

The MPC framework presented in this work is suitable for multivariable control sys-

tem design. However, parameter estimation for a wider range of operating conditions

is required to capture the parameter dependence on the adsorption rate and the sub-

strate temperature. Such a parameter dependence may be tabulated via interpolation

or formulated via linear or nonlinear regression [53].

Remark 2.3 Another possible improvement for the control of a thin film growth pro-

cess is to take into account the transition and crossover of the thin film growth be-
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havior. Specifically, we have recently found [25] that at different regions of operating

conditions, i.e., adsorption rate and substrate temperature, the growth behavior of

thin films may be described by different dynamic models. At low temperatures, the

surface profile of a porous thin film follows closely the EW dynamics. As temperature

increases, the growth behavior deviates from the EW equation. Other dynamic models

(Kardar-Parisi-Zhang-type equations or stochastic Kuramoto-Sivashinsky equation)

may be more suitable to describe the evolution of thin film surface profile. Therefore,

the transition and crossover may be incorporated into the control design by switching

the dynamic models at different regions of operation conditions. While the control

system designed in this work is successful in achieving the control objectives, the use

of even more accurate dynamic models of the film growth at different regimes may

help further improve the accuracy of predictions in the MPC.

2.5 Closed–loop simulations

In this section, the proposed model predictive controllers of eqs (2.34) and eq (2.35)

are applied to the multiscale model of the thin film growth process described in

section 2.2. The value of the adsorption rate is obtained from the solution of the

optimization problem at each sampling time. The corresponding inlet concentration

of silane is calculated from the adsorption rate based on the rate law of eq (2.7) and

is applied to the closed-loop system until the next sampling time. The optimization

problems in the MPC formulations of eqs (2.34) and (2.35) are solved via a local
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constrained minimization algorithm using a broad set of initial guesses.

The desired values (set-point values) in the closed-loop simulations are r2
set = 50

layer2 and ρset = 0.985, with a desired film thickness of hmin = 800 layers. The

substrate temperature is fixed at 850 K. The variation of adsorption rate is from 0.1

to 0.45 layer/s (0.45 layer/s is the maximum adsorption rate that can be obtained

according to the rate law of eq (2.7) at Xs = 1 and the given conditions of the gas

phase in table 2.1). The number of prediction steps is set to be p = 5. The prediction

horizon of each step is fixed at ∆ = 5 s. The closed-loop simulation duration is 3000

s. All expected values are obtained from 1000 independent simulation runs.

2.5.1 Regulation of film surface roughness and thickness

Closed-loop simulations of regulating film surface roughness and thickness are first

carried out. In these control problems, the control objective is to regulate the expected

surface roughness square and expected film thickness to desired values. Thus, the cost

functions of these problems contain penalties on the deviations of the expected surface

roughness square from the set-point value and of the expected film thickness from the

desired value. The weighting factors are qr2,i = 0.1, qh,i = 1 and qρ,i = 0 for all i.

Figure 2.5 shows the closed-loop simulation results of the roughness-thickness

control problem. From figure 2.5, it can be seen that the model predictive controller

drives the expected film thickness close to the desired value, at the end of the simu-

lation. However, due to the requirement of achieving a desired film thickness value,
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which includes a higher penalty factor, the controller computes a higher adsorption

rate, and thus, it results in a higher expected surface roughness square at the end of

the closed-loop simulation. The effect of the penalty on film thickness can be observed

by comparing figure 2.5 to figure 2.6, which shows the closed-loop simulation results

without penalty on film thickness. It can be clearly seen that, without penalty on

the deviation of film thickness from its desired value, the expected surface roughness

square approaches closer to the set-point value at the end of the simulation, while

the expected film thickness is lower than the desired value. Figure 2.7 shows the cor-

responding profiles of the mean value of inlet precursor concentration for both cases,

which demonstrates that in the simulation runs of figure 2.5 (where a higher penalty is

used on film thickness) the controller uses a higher deposition rate. Figure 2.8 shows

the histogram of film thickness from 1000 independent simulation runs at the end of

the simulations (t = 3000 s) using the MPC formulation of eq (2.34) with qr2,i = 0.1,

qh,i = 1 and qρ,i = 0. Although the mean value is around 800, the distribution is wide

and there are many simulations in which the thickness set-point is not reached. The

histogram of roughness square is shown in figure 2.9. In this case, the mean value is

60.37.

2.5.2 Regulation of film porosity

In this subsection, it is demonstrated that the precise regulation of SOR to its set-

point can be achieved. Figure 2.10 shows the closed-loop simulation results of the
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Figure 2.5: Profiles of the expected values of surface roughness square (solid line,
left y-axis) and of film thickness (dash-dotted line, right y-axis) under closed-loop
operation using the MPC formulation of eq (2.34) with qr2,i = 0.1, qh,i = 1 and
qρ,i = 0.
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Figure 2.6: Profiles of the expected values of surface roughness square (solid line,
left y-axis) and of film thickness (dash-dotted line, right y-axis) under closed-loop
operation using the MPC formulation of eq (2.34) with qr2,i = 1, qh,i = 0 and qρ,i = 0.
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Figure 2.7: Profiles of expected inlet silane concentrations under closed-loop operation
using the MPC formulation of eq (2.34) with qr2,i = 0.1, qh,i = 1 and qρ,i = 0 and the
MPC formulation of eq (2.34) with qr2,i = 1, qh,i = 0 and qρ,i = 0 (dashed line).
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Figure 2.8: Histogram of closed-loop film thickness at the end of simulation (t = 3000
s) using the MPC formulation of eq (2.34) with qr2,i = 0.1, qh,i = 1 and qρ,i = 0.
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Figure 2.9: Histogram of closed-loop surface roughness square at the end of simulation
(t = 3000 s) using the MPC formulation of eq (2.34) with qr2,i = 0.1, qh,i = 1 and
qρ,i = 0.

porosity control problem where the cost function includes only a penalty on the

deviation of film SOR from the desired value, 0.985. The histogram of SOR is also

presented in figure 2.11, and the mean value is 0.9845. We conclude from these two

figures that the model predictive controller successfully drives the expected film SOR

to the set-point value.

2.5.3 Simultaneous regulation of film surface roughness, poros-

ity and thickness

Closed-loop simulations of simultaneous regulation of film thickness, surface rough-

ness and SOR are carried out with the same weighting factors. Since the inlet silane
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Figure 2.10: Profiles of the expected values of film SOR (solid line, left y-axis) and of
inlet silane concentration (dash-dotted line, right y-axis) under closed-loop operation
using the MPC formulation of eq (2.34) with qr2,i = 0, qh,i = 0 and qρ,i = 1.
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Figure 2.11: Histogram of closed-loop SOR at the end of simulation (t = 3000 s)
using the MPC formulation of eq (2.34) with qr2,i = 0, qh,i = 0 and qρ,i = 1.
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Figure 2.12: Profiles of the expected values of surface roughness square (solid line,
left y-axis) and of film thickness (dash-dotted line, right y-axis) under closed-loop
operation using the MPC formulation of eq (2.34) with qr2,i = 1, qh,i = 1 and qρ,i = 1.

concentration is the only manipulated input, the desired values of r2
set and ρset cannot

be achieved simultaneously, i.e., the values of inlet silane concentration needed to

achieve the desired surface roughness and film thickness are not the same. Therefore,

a trade-off between the two set-points is made by the controller. Figure 2.12 and

figure 2.13 show the simulation results for this scenario. The expected values of both

surface roughness square and film SOR approach their corresponding set-points and

the expected film thickness is lower than the desired one. Figure 2.14 shows the his-

togram of SOR, where a very narrow distribution around the mean value is observed.
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Figure 2.13: Profiles of the expected values of film SOR (solid line, left y-axis) and of
inlet silane concentration (dash-dotted line, right y-axis) under closed-loop operation
using the MPC formulation of eq (2.34) with qr2,i = 1, qh,i = 1 and qρ,i = 1.
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Figure 2.14: Histogram of closed-loop SOR at the end of simulation (t = 3000 s)
using the MPC formulation of eq (2.34) with qr2,i = 1, qh,i = 1 and qρ,i = 1.
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2.5.4 Regulation of roughness with constraint on film thick-

ness

In this subsection, the modified model predictive controller of eq (2.35) is applied to

the regulation of surface roughness and film thickness. The cost function penalizes

only roughness deviation, and the weighting factors are qr2,i = 0.1, qρ,i = qh,i = 0.

Figure 2.15 shows the profile of the mean value of thickness and roughness. The

MPC drives the thickness above the desired minimum value. The offset of roughness

square at the end of simulation is larger compared to the result shown in figure 2.5

where the film thickness is penalized in the cost function. Figure 2.16 shows the

histogram of film thickness for 1000 simulation runs. Almost every run reaches the

minimum thickness requirement and the maximum negative offset is less than 1. This

can be compared with the result of the MPC formulation of eq (2.34), where about

50% of the simulation runs do not satisfy the thickness requirement. Figure 2.17

shows the histograms of roughness square. Its distribution is wider compared with

the result of MPC of eq (2.34), shown in figure 2.9. It should be pointed out that

the relative weighting between thickness and roughness deviation plays a key role in

the MPC of eq (2.34). For example, by increasing the relative weighting of thickness

over roughness from 10 to 1000, the mean value of the film thickness can be larger

than the set point at the expense of a much higher surface roughness.
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Figure 2.15: Profiles of the expected values of surface roughness square (solid line,
left y-axis) and of film thickness (dash-dotted line, right y-axis) under closed-loop
operation using the MPC formulation of eq (2.35) with qr2,i = 0.1, qh,i = 0 and
qρ,i = 0.
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Figure 2.16: Histogram of closed-loop film thickness at the end of simulation (t = 3000
s) using the MPC formulation of eq (2.35) with qr2,i = 0.1, qh,i = 0 and qρ,i = 0.
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Figure 2.17: Histogram of closed-loop surface roughness square at the end of simu-
lation (t = 3000 s) using the MPC formulation of eq (2.35) with qr2,i = 0.1, qh,i = 0
and qρ,i = 0.

2.6 Porosity estimation-based model predictive con-

trol

The MPC formulations of eqs (2.34) and (2.35) have been derived under the state

feedback assumption. In this assumption, all the required information about the thin

film state can be measured in real time during the closed-loop operation. However,

it may be difficult to measure the film porosity online with currently available tech-

niques, and thus, state feedback control of film SOR may not be possible to be directly

implemented in practice. To address this problem, an estimation scheme is needed to

estimate the film porosity from other available film measurements, e.g., the surface

profile of the thin film. The proposed MPC formulations will then use the estimates
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of the film SOR in the optimization problem to compute the optimal solution for the

manipulated input.

To estimate the film porosity, we need the following assumptions:

1. The number of deposited layers, H, is available or can be measured from the

surface profile of the thin film.

2. The adsorption rate at the wafer surface, W , can be obtained, either from

the simulation of the gas phase model or by measuring the surface precursor

concentration.

By substituting the number of deposited particles, N , with the integral of the

adsorption rate for the entire deposition duration in the definition of film SOR of

eq (2.9), film SOR can be estimated by the following equation:

ρ̂(ti) =

∫ ti
0

W (ti)dt

H(ti)
≈ ρ̂(ti−1)H(ti−1) +

∑i
1 W (ti)∆

H(ti)
(2.36)

where ρ̂(ti) is the estimated film SOR.

To compare the estimated film SOR with its actual value computed by the multi-

scale process model, we plot the profiles of the estimated and of the actual SOR value

from a single simulation run in figure 2.18. It can been seen that the estimate follows

closely the actual film SOR but reaches a lower steady-state value at large times.

Using the estimation scheme of film SOR of eq (2.36), we can construct an output

feedback controller by combining the MPC formulations of eqs (2.34) or (2.35) and
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Figure 2.18: Profiles of SOR estimated via eq (2.36) (solid line) and computed directly
from the multiscale process model (dash-dotted line).

the estimation scheme. To demonstrate the effectiveness of the estimation scheme and

of the output feedback controller, we first consider the porosity-only control problem.

The MPC formulation of eq (2.34) is used in the output feedback controller. The

same operating conditions are used in the output feedback control problem as in the

state feedback control problem in section 2.5. Figure 2.19 shows the profiles of the

film SOR and of the inlet concentration of silane. The output feedback controller

successfully stabilizes the porosity close to the set-point value, 0.985. Figure 2.20

shows the histogram of SOR at t = 3000 s under the output feedback controller. It

can be clearly seen that the output feedback controller results in a wider distribution

of film SOR at the end of the simulation compared to the one under state feedback

control, which is expected due to the error introduced by porosity estimation.

To further demonstrate the applicability of the output feedback controller, we
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Figure 2.19: Profiles of the expected value of film SOR (solid line, left y-axis) and of
inlet silane concentration (dash-dotted line, right y-axis) under closed-loop operation
using the MPC formulation of eq (2.34) with qr2,i = 0, qh,i = 0 and qρ = 1 and
porosity estimation.
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Figure 2.20: Histogram of closed-loop SOR at the end of simulation (t=3000 s) using
the MPC formulation of eq (2.34) with qr2,i = 0, qh,i = 0 and qρ = 1 and porosity
estimation.
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Figure 2.21: Profiles of the expected values of film SOR (solid line, left y-axis) and of
inlet silane concentration (dash-dotted line, right y-axis) under closed-loop operation
using the MPC formulation of eq (2.34) with qr2,i = 1, qh,i = 1 and qρ = 1 and
porosity estimation.

also consider simultaneous output feedback control of film surface roughness, poros-

ity and thickness. The closed-loop simulation results can be found in figure 2.21

and figure 2.22, which show the profiles of the expected value of the film thickness,

roughness square, film SOR, and of the inlet silane concentration, respectively. The

closed-loop profiles under output feedback control are close to the results under state

feedback control presented in section 2.5.3, which is reasonable since the film porosity

is estimated quite well. The histogram of the film SOR is also shown in figure 2.23;

it has a wider spread compared to the one under state feedback control (figure 2.14)

owing to the error introduced by the estimation.
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Figure 2.22: Profiles of the expected values of film SOR (solid line, left y-axis) and of
inlet silane concentration (dash-dotted line, right y-axis) under closed-loop operation
using the MPC formulation of eq (2.34) with qr2,i = 1, qh,i = 1 and qρ = 1 and
porosity estimation.
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Figure 2.23: Histogram of closed-loop SOR at the end of simulation (t=3000 s) using
the MPC formulation of eq (2.34) with qr2,i = 1, qh,i = 1 and qρ = 1 and porosity
estimation.
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2.7 Conclusions

In this chapter, we developed model predictive control algorithms to simultaneously

control film surface roughness, porosity, and thickness in a multiscale model of a thin

film growth process. On the macroscopic side, the gas phase dynamics was modeled by

a continuous PDE model derived from a mass balance. On the microscopic side, the

thin film deposition process was simulated via a kinetic Monte Carlo model developed

on a triangular lattice with vacancies and overhangs allowed to develop inside the film.

Dynamic models of film surface height and film porosity were developed and used in

the MPC algorithms. The regulation of film thickness was addressed in two different

ways. One way is to include penalty on the deviation of the film thickness into the

cost function and the other one is to impose a constraint on the adsorption rate to

ensure the desired film thickness at the end of the film growth process. The proposed

model predictive controllers were applied to the multiscale thin film growth model

to evaluate their performance. In addition, an estimation scheme of film SOR was

introduced and used successfully in conjunction with the MPC schemes.
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Chapter 3

Control of Surface Roughness and

Slope with 1D kMC Model

3.1 Introduction

This chapter focuses on the development of a model predictive control algorithm to

simultaneously regulate the surface slope and roughness of a thin film growth process

to optimize thin film light reflectance and transmittance. Specifically, a thin film

deposition process modeled on a one-dimensional triangular lattice that involves two

microscopic processes: an adsorption process and a migration process, is considered.

Kinetic Monte Carlo methods are used to simulate the thin film deposition process.

To characterize the surface morphology and to evaluate the light trapping efficiency

of the thin film, surface roughness and surface slope are introduced as the root mean
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squares of the surface height profile and surface slope profile. An Edwards–Wilkinson

(EW)-type equation is used to describe the dynamics of the surface height profile

and predict the evolution of the RMS roughness and RMS slope. A model predictive

control algorithm is then developed on the basis of the EW equation model to regulate

the RMS slope and the RMS roughness at desired levels by optimizing the substrate

temperature at each sampling time. The model parameters of the EW equation are

estimated from simulation data through least-square methods. Closed-loop simulation

results are presented to demonstrate the effectiveness of the proposed model predictive

control algorithm in successfully regulating the RMS slope and the RMS roughness

at desired levels that optimize thin film light reflectance and transmittance.

3.2 Thin film deposition process

In this section, a thin film growth process is considered and modeled by using an

on-lattice kMC model on a triangular lattice. Vacancies and overhangs are allowed to

develop inside the film [30, 25]. Definitions of surface height profile, root-mean-square

roughness, and RMS slope are also introduced in this section.

3.2.1 On-lattice kinetic Monte Carlo model

The one-dimensional triangular lattice in which the thin film deposition process takes

place is shown in Fig. 3.1. Film growth occurs in the direction perpendicular to the
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Figure 3.1: Thin film growth process on a triangular lattice. The arrows denote
adsorption and migration processes.

lateral direction, i.e., the vertical direction as shown in Fig. 3.1. Periodic boundary

conditions are applied in the lateral direction, i.e., the horizontal direction as shown

in Fig. 3.1. In the triangular lattice, the maximum number of nearest neighboring

particles around a given particle is six. In the one-dimensional triangular lattice

model, a particle with only one nearest neighbor (and the rest five neighboring sites

being vacant) is considered unstable and is subject to instantaneous surface relax-

ation. When a particle is subject to instantaneous surface relaxation, it moves to

the nearest vacant site that is the most stable, i.e., the site with the most nearest

neighbors; see [33] for a detailed description of the relaxation process. To initiate the

thin film deposition process, a fully packed and fixed substrate layer is placed in the

bottom of the lattice at the beginning of the deposition process.
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In this thin film deposition process, two different micro-processes take place and

significantly influence the thin film surface morphology [76, 78]: an adsorption process,

where vertically incident particles are deposited from the gas phase into the thin

film, and a migration process, where particles on the thin film overcome their energy

barriers of the sites and move to neighboring vacant sites. In an adsorption process,

the initial positions of the incident particles are randomly determined with a uniform

probability distribution function in the gas phase domain. In a migration process,

the probability that an on-film particle is subject to migration (i.e., migration rate)

follows an Arrhenius-type law, where the pre-exponential factor and the activation

energy are taken from a silicon film [25]. However, substrate particles and the particles

fully surrounded by six nearest neighbors cannot move.

The stochastic nature of the microscopic deposition process is captured by using

a kinetic Monte Carlo (kMC) algorithm to simulate the evolution of the deposition

process. The microscopic rules of these micro-processes are used in the kMC algorithm

to simulate the thin film deposition process. In the kMC simulation, each Monte Carlo

event represents a specific microprocess, e.g., adsorption of a particle from the gas

phase or migration of a particle on the thin film. In the kMC simulation, the time

increment after a successfully executed Monte Carlo event depends on the total rate

of all possible events in the lattice model of the thin film at the time of the execution

of the event. In this work, a continuous-time Monte Carlo (CTMC)-type method

(e.g., [71]) is used to implement the kMC simulations.
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The thin film surface morphology depends on the adsorption and the migration

processes. As a result of the complex interplay between the adsorption process and

the migration process, the thin film surface morphology achieves a thermal balance.

This thermal balance can be represented by certain values of surface roughness and

surface slope, the definitions of which are introduced in the next subsection. The

macroscopic variables of the deposition process have a strong influence on the resulting

film surface morphology. The two variables that are considered in this work are the

adsorption rate and the substrate temperature. Specifically, the adsorption rate,

which is denoted by W , is defined as the number of deposited layers per second. The

substrate temperature, which is denoted by T , influences the migration rate via the

Arrhenius rate law.

We note that the deposition rate as an operating condition in this work is different

from the rate of change of film thickness. The deposition rate here refers to the

number of fully packed layers deposited per second and, in a vapor deposition process

model, is determined from the flux rate at the gas-phase/surface boundary. With

a constant deposition rate, the same amount of particles is deposited in the same

time period (in the sense of expected value). Meanwhile, with different substrate

temperatures, different film microstructures may form with different film porosity

and film thickness. Thus, process operating conditions like the deposition rate or

the substrate temperature, can be constant or vary with respect to time. These

operating variables can be used as the manipulated variables for the control of the
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thin film surface morphology expressed in terms of RMS surface slope and RMS

surface roughness.

3.2.2 Definition of variables

In this section, two variables, RMS surface roughness and RMS surface slope, are

precisely defined to characterize the film surface morphology and calculate the re-

flectance of a surface/interface. The surface height profile is used to represent the

film surface morphology in the one-dimensional lattice model and is defined as the

connection of the centers of the surface particles. Surface particles are the particles

that can be reached from above in the vertical direction without being fully blocked

by other particles on the film [30, 25]. Fig. 3.2 shows an example of the surface height

profile of a given thin film configuration. The RMS surface roughness and RMS sur-

face slope can be then defined on the basis of the surface height profile of the thin

film.

Surface roughness is a commonly used measure of thin film surface morphology. In

this work, surface roughness is defined as the root mean square of the surface height

profile. Specifically, the definition of RMS surface roughness is given as follows:

r =

[
1

2L

2L∑
i=1

(hi − h̄)2

]1/2

, (3.1)

where r denotes the RMS surface roughness, hi, i = 1, 2, . . . , 2L, is the surface
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height at the i-th position in the unit of layer, L is the number of sites on the lateral

direction, and h̄ = 1
2L

∑2L
i=1 hi is the average surface height.

From the expression of surface light reflectance of Eq. (1.1) and the dependence

of light reflectance in Fig. 1.2, the RMS surface slope is also an important variable

that determines the surface morphology in addition to the RMS roughness. In this

work, the RMS slope represents the extent of surface slope and is defined as the root-

mean-square of surface slope profile similarly to the definition of the RMS roughness

of Eq. (3.1) in the following form:

m =

[
1

2L

2L∑
i=1

(hs
i )

2

]1/2

(3.2)

where m denotes the RMS slope and hs
i , i = 1, 2, . . . , 2L, is the surface slope at

the i-th position. Both m and hs
i are dimensionless variables. The surface slope

profile is obtained from the surface height profile using a first-order finite-difference

approximation as follows:

hs
i =

(hi+1 − hi)
√

3/2

1/2
=
√

3(hi+1 − hi), (3.3)

where the constant,
√

3, is derived from the geometric ratio between the single-layer

height and the interval between adjacent height positions in the triangular lattice.

Due to the use of PBCs, the slope at the right most boundary position (hs
2L) is

computed from the right most and the left most surface heights, i.e., hs
2L =

√
3(h1 −
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Figure 3.2: An example showing the definition of the surface height profile and the
calculation of the corresponding surface slope profile.

h2L). Fig. 3.2 also shows an example of the surface slope profile obtained from the

surface height profile.

The behavior of RMS slope, i.e., its dynamics and dependence on the operating

conditions and on the lattice size, has been studied in previous work [33]. For the

purpose of theoretical analysis and control design, the square of RMS roughness

(surface roughness square, r2) and the square of RMS slope (mean slope square,

m2), are used in the analysis and controller design later in this work. Specifically,

the expected mean slope square increases from zero and reaches a steady state at

large times. The dynamics and the steady-state values of the expected mean slope
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square depend on the operating conditions, i.e., the substrate temperature and the

adsorption rate. Thus, the substrate temperature and/or the adsorption rate may be

used as the manipulated inputs in the model predictive control design.

3.3 Closed-form dynamic model construction

The Edward-Wilkinson equation model as described in detail in Chapter 2 is used to

model the thin film growth process. However, the domain is changed from [−π, π] to

[0, 2L]. We will focus on the model parameter estimation aspect in this section.

The expected mean slope square can then be expressed as the sum of weighted

modal state variances as follows [33]:

〈
m2(t)

〉
=

∞∑
n=1

Kn

〈
α2

n(t)
〉
, (3.4)

where Kn = 2
L(∆x)3

sin2
(

nπ
2L

)
.

Using the analytical solutions of the expected surface roughness square of Eq. (2.20)

and of the expected mean slope square of Eq. (3.4), we can obtain the behavior of the

surface roughness square and of the mean slope square from the EW equation and

from the lattice model. These analytical solutions will be later used to predict the

evolution of the expected surface roughness square and of the expected mean slope

square in the model parameter estimation and in the controller design.
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3.3.1 Model parameter estimation and dependence on sub-

strate temperature

In the EW equation of Eq. (2.10), there are three parameters rh, ν, and σ2. The

dependence of the model parameters, ν and σ2, on the operating conditions, i.e.,

the adsorption rate and the substrate temperature, is determined from the kMC

simulation data. In this work, we only consider the temperature dependence of model

parameters and use the substrate temperature as the manipulated input for control

purposes (see section 3.4 below). Deposition rate is another choice for manipulated

variable, and it can be implemented via the control of inlet flow rate and/or precursor

concentration. Multivariable feedback control with temperature and deposition rate

as manipulated variables can be done but it is outside the scope of this work.

In this work, the model parameter estimation is conducted on the basis of the

RMS slope so that the dynamics of the surface slope can be captured by the EW

equation in a more accurate fashion. Specifically, these parameters are estimated by

matching the predicted evolution profiles of mean slope square to the ones obtained

from the kMC simulations of the thin film deposition process in a least-square sense

where the following cost is minimized:

min
ν,σ2

N1∑

k=1

[
〈
m2(tk)

〉−
∞∑

n=1

Kn

〈
α2

n(tk)
〉
]2

, (3.5)

where N1 is the number of data points used for parameter estimation and 〈m2(tk)〉
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is the expected mean slope square computed from 100 independent kMC simulations

with identical and time-invariant operating conditions. The prediction of the state

variance, 〈α2
n(tk)〉, is obtained from the analytical solution of Eq. (2.18). In this work,

the deposition rate is fixed at W0 = 1 layer/s for all simulations. Eleven substrate

temperature values ranging from 300K to 700K are sampled for the computation of

the dependence of the parameters on substrate temperature.

Fig. 3.3 shows the steady-state values of the expected mean slope square at dif-

ferent substrate temperatures computed from the EW equation with the estimated

parameters and from the kMC simulations; the agreement is excellent for all substrate

temperatures. The dependence of the model parameters on the substrate tempera-

ture is shown in Fig. 3.4 and is used in the formulation of the model predictive

controller. The EW-type equation with parameters estimated under time-invariant

operating conditions is suitable for the purpose of model predictive control design

because the control input in the MPC formulation is piecewise constant, i.e., the ma-

nipulated substrate temperature remains constant between two consecutive sampling

times, and thus, the dynamics of the microscopic process can be predicted using the

closed-form dynamic models with estimated parameters.

The temperature dependence of model parameters can be verified by comparing

the predictions of the expected mean slope square from the EW equation with the

estimated parameters to the corresponding profiles obtained from the kMC simula-

tions, as shown in Figs. 3.5 and 3.6. We see that the EW equation with the estimated
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Figure 3.3: Steady-state values of the expected mean slope square computed from
the EW equation (solid line) and from the kMC simulations (dashed line) at different
substrate temperatures; W = 1 layer/s.

parameters is consistent with the kMC simulations in terms of the expected mean

slope square at varying substrate temperatures.

It has been demonstrated that for a broad range of temperature variation the

porous thin film growth process exhibits EW-type behavior [25]. Thus, each time

a new temperature condition (control actuation) is applied to the thin film growth

process, the process follows the EW equation behavior but with different model pa-

rameters, which depend on the new temperature condition.
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Figure 3.5: Comparison of EW-model prediction and kMC simulation results for
〈m2〉; T = 500K and W = 1 layer/s.
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Figure 3.6: Comparison of EW-model prediction and kMC simulation results for
〈m2〉;T = 600K and W = 1 layer/s.

3.4 Model predictive controller design

In this section, a model predictive controller is developed on the basis of the con-

structed closed-form dynamic model. The control objective is to regulate the ex-

pected mean slope square and the expected surface roughness square of the thin film

to desired levels which optimize the light trapping efficiency, i.e., minimizing or max-

imizing the light reflectance of the surface or interface in thin-film solar cells. The

dynamics of the mean slope square and of the surface roughness square are described

by the EW equation of the surface height profile of Eq. (2.10) with appropriately

estimated parameters.
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3.4.1 MPC formulation

In this subsection, we consider the problem of regulation of RMS slope and RMS

roughness of the thin film to desired levels within a model predictive control frame-

work. The expected values of mean slope square and of surface roughness square,

〈m2〉 and 〈r2〉, are chosen as the control objectives. The substrate temperature is

used as the manipulated input. When temperature is used as the manipulated in-

put, the deposition rate is fixed at a certain value, W0, during the entire closed-loop

simulation. To account for a number of practical considerations, several constraints

are added to the controller. First, there is a constraint on the range of variation of

the substrate temperature. This constraint ensures validity of the on-lattice kMC

model. Another constraint is imposed on the rate of change of the substrate temper-

ature to account for actuator limitations. The control action at time t is obtained

by solving a finite-horizon optimal control problem. The cost function in the opti-

mal control problem includes penalty on the deviation of 〈r2〉 and 〈m2〉 from their

set-point values, which are computed to optimize the light reflectance of the thin

film. The optimization problem is subject to the dynamics of the surface height. The

optimal temperature profile is calculated by solving a finite-dimensional optimization

problem in a receding horizon fashion. Specifically, the MPC problem is formulated

as follows:

min
T1,...,Ti,...,Tp

J =

p∑
i=1

{
qm2,i

[
m2

set − 〈m2(ti)〉
m2

set

]2

+ qr2,i

[
r2
set − 〈r2(ti)〉

r2
set

]2
}

(3.6)

74



subject to:

∂h

∂t
= rh + ν

∂2h

∂x2
+ ξ(x, t)

r2(t) =
1

2L0

∫ L0

−L0

[h(x, t)− h̄(t)]2dx

m2(t) =
1

2L

2L∑
i=1

(
hi+1 − hi

∆x

)2

Tmin < Ti < Tmax, |(Ti+1 − Ti)/∆| ≤ LT , i = 1, 2, . . . , p,

where t is the current time, ∆ is the length of the sampling interval, p is the number of

prediction steps, p∆ is the specified prediction horizon, ti, i = 1, 2, . . . , p, is the time

of the ith prediction step (ti = t+i∆), Ti, i = 1, 2, . . . , p, is the substrate temperature

at the ith step (Ti = T (ti)), qr2,i and qm2,i, i = 1, 2, . . . , p, are the weighting penalty

factors for the deviations of 〈r2〉 and 〈m2〉 from their respective set-points, r2
set and

m2
set, at the ith prediction step, Tmin and Tmax are the lower and upper bounds on

the substrate temperature, respectively, and LT is the limit on the rate of change

of the substrate temperature. The optimal temperature profile, (T1, T2, . . . , Tp), is

obtained from the solution of the optimization problem of (3.6), which minimizes the

deviation of the expected mean slope square and of the expected surface roughness

square from their respective set-point values within the prediction horizon.

The EW equation model is a stable system, guaranteed by the eigenspectrum

of the second-order spatial differential operator with a positive coefficient. In this

work, the optimization formulations in the MPC algorithms are solved on an open-
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loop operating basis at each sampling time (even though feedback is included at

each sampling time via the measurements). Thus, the inherent stability of the EW-

equation model ensures a stable closed-loop operation under the model predictive

controller.

3.4.2 MPC formulation based on finite-dimensional approx-

imations

The surface roughness square and the mean slope square in terms of the state variance,

Eqs. (2.20) and (3.4), respectively, require computation of infinite sums. Thus, the

model predictive controller of (3.6) is infinite-dimensional and cannot be implemented

in practice. To this end, finite-dimensional approximatiofns (with a sufficiently large

number of slow modes) can be used to approximately predict the dynamics of the

surface roughness square and of the mean slope square as follows:

〈
r̃2(t)

〉
=

1

2L0

N∑
n=1

〈
α2

n(t)
〉
,

〈
m̃2(t)

〉
=

N∑
n=1

Kn

〈
α2

n(t)
〉
, (3.7)

where N denotes the dimension of the approximation and the tilde symbols denote

the association of these variables with a finite-dimensional system.

Fig. 3.7 shows the profiles of the reconstructed surface roughness square and mean

slope square obtained from the finite-dimensional approximations of Eq. (3.7) and

compares them with the values of the surface roughness square and of the mean slope
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Figure 3.7: Profiles of reconstructed surface roughness square and mean slope square
from the finite-dimensional approximation.

square computed from the definitions of Eqs. (3.1) and (3.2). It can be seen from

Fig. 3.7 that as the order of the approximation increases, the reconstructed values

are approaching the actual values computed from the definitions. Thus, the finite-

dimensional approximation, that contains a finite number of modes, can be used for

model prediction in the model predictive control formulation. Note that, although a

higher-order model generally yields a more accurate approximation, the choice of the

dimension of the reduced-order model is limited by the lattice size/discretization size.

In the closed-loop simulations, the values of states are reconstructed from the discrete

surface height profile by taking the inner product with the adjoint eigenfunctions.

Due to the finite number of discrete surface height points, there is a limited number

(half of the discrete surface height points) of states (modes) that can be used to

obtained correct estimates of the surface roughness square and of the mean slope
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square. This limited availability of the states is an additional reason for using a

reduced-order model in the MPC formulation. The MPC formulation based on the

finite-dimensional approximation of the EW equation has the following form:

min
T1,...,Ti,...,Tp

J =

p∑
i=1

{
qm2,i

[
m2

set − 〈m̃2(ti)〉
m2

set

]2

+ qr2,i

[
r2
set − 〈r̃2(ti)〉

r2
set

]2
}

(3.8)

subject to:

〈
α2

n(ti)
〉

= − σ2

2λn

+

(
α2

n(t) +
σ2

2λn

)
e2λni∆

〈
r̃2(ti)

〉
=

1

2L0

N∑
n=1

〈
α2

n(ti)
〉

〈
m̃2(ti)

〉
=

N∑
n=1

Kn

〈
α2

n(ti)
〉

Tmin < Ti < Tmax, |(Ti+1 − Ti)/∆| ≤ LT , i = 1, 2, . . . , p.

3.5 Closed-loop simulations

In this section, we apply the proposed predictive controller of eq (3.8) to the kMC

model of the thin film deposition process to regulate the surface slope and roughness

at desired levels. The substrate temperature is used as the manipulated variable,

which can be implemented via a heating/cooling system. The adsorption rate is

kept constant during all deposition runs. The controlled variables are the expected

values of the mean slope square and of the surface roughness square at the end of the
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deposition process.

In the closed-loop simulations, the surface height profile is obtained from the sur-

face morphology of the thin film from the kMC simulations and is transferred to the

controller (state feedback control) at each sampling time. A finite number of slow

modes are reconstructed from the surface height profile and are used to calculate the

predictions of the mean slope square and of the surface roughness square along the

prediction horizon. The estimated parameters and the dependence of the parameters

on substrate temperature is used when solving the optimization problem in the model

predictive controller. The constrained optimization problem formulated in the MPC

of eq. (3.8) is solved and the optimal input temperature profile is obtained and is

applied to the closed-loop system. The optimization problem is solved via a local

constrained minimization algorithm with a broad set of initial guesses. The measure-

ment of thin film surface morphology is a challenging issue, especially in real-time.

Several techniques have been developed that enable surface height measurements dur-

ing the operation of a deposition process like atomic force microscopy. The surface

information can be also obtained by combining on-line probing and off-line measure-

ments.

After being computed from the solution of the optimization problem, the optimal

manipulated input is applied to the thin film growth process in a sample-and-hold

fashion, i.e., the substrate temperature remains constant until the next sampling time.

The EW model constructed from the open-loop simulation data can be used in the
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MPC design since the manipulated input in the closed-loop system changes slowly

with respect to the dynamics of the evolution of surface roughness and slope.

3.5.1 Separate regulation of surface slope and roughness

We first consider the control problems of separately regulating surface roughness

and slope. Specifically, closed-loop simulations of the slope-only control problem are

carried out by assigning the following values to the weighting factors in the MPC

formulation of eq. (3.8): qr2 = 0.0 and qm2 = 1.0. Two set-point values, m2
set = 0.5

and 5, are considered. The order of finite-dimensional approximation used in the

MPC formulation is N = 100. The deposition rate is fixed at W = 1 layer/s, which

is appropriate from a practical standpoint, and the initial substrate temperature is

T = 500 K. The variation of temperature is from 400 K to 700 K. The maximum

rate of change of the temperature is LT = 1 K/sec, which is also appropriate from a

practical standpoint. The number of prediction steps is p = 5 and the prediction step

size is ∆ = 5 s. The sampling time is also 5 s. Since the sampling time equals the

prediction step size, only the first value of the manipulated input trajectory, T1, is

applied to the deposition process (i.e., kMC model) during the time interval between

two successive sampling times, (t, t+∆). At the time t+∆, the surface height profile

is sampled and the MPC problem of eq. (3.6) is solved to obtain the next optimal

manipulated input trajectory. The closed-loop simulation duration is 1000 s. All

expected values are obtained from 200 independent simulation runs to evaluate the
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statistics of closed-loop performance.

Figs. 3.8 and 3.9 show, respectively, the profiles of the expected mean slope square

and of the expected substrate temperature in the closed-loop simulation where the set-

point of the mean slope square is 0.5. In Fig. 3.9, the substrate temperature increases

linearly from the initial temperature of 500 K due to the constraint on the rate of

change of the temperature. At large times (t > 500 s), the substrate temperature

reaches a steady-state value around 620 K. Correspondingly, the expected surface

mean slope square initially overshoots and is later regulated at the desired value of

0.5, which can be observed from Fig. 3.8. The overshoot of the expected mean slope

square is the consequence of the constrained increase of the substrate temperature.

A less-tight constraint on the rate of change of the substrate temperature or a higher

initial substrate temperature may reduce or even avoid this overshoot.

Figs. 3.10 and 3.11 show the closed-loop simulation results with a higher set-point

value for the mean slope square, m2
set = 5. The proposed model predictive controller

also successfully drives the expected mean slope square to the desired value of 5 within

1000 s.

In addition to the slope-only control problem, the roughness-only control problem

is considered with the following weighting factors: qr2 = 1.0 and qm2 = 0.0. As

shown in Fig. 3.12, the expected surface roughness square is regulated close to the

set-point value of 100; a final offset is observed due to the selection of the EW-model

parameters that are more sensitive with respect to surface slope. This offset can be
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Figure 3.8: Profile of the expected mean slope square under closed-loop operation
(solid line); m2

set = 0.5 (dashed line).
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Figure 3.9: Profile of the expected substrate temperature under closed-loop operation;
m2

set = 0.5.

82



0 200 400 600 800 1000
0

1

2

3

4

5

6

Time (s)

<
m

2 >

Figure 3.10: Profile of the expected mean slope square under closed-loop operation
(solid line); m2

set = 5 (dashed line).
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Figure 3.11: Profile of the expected substrate temperature under closed-loop opera-
tion; m2

set = 5.
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Figure 3.12: Profile of the expected mean roughness square under closed-loop opera-
tion (solid line); r2

set = 100 (dashed line).

eliminated if we replace 〈m2(tk)〉 by 〈r2(tk)〉 in the optimization problem of Eq. (3.5)

used for estimating the EW-model parameters. Specifically, there is a deviation of

the expected surface roughness square from the set-point value at the end of the

simulation. This deviation is due to the fact that the parameter set is estimated

solely on the basis of the dynamics of the mean slope square and this parameter

set may result in deviations in the prediction of surface roughness square, especially

for the intermediate region of the substrate temperature (500 K < T < 650 K). In

addition, because there is no penalty on the deviation of RMS slope, 〈m2〉 is far away

from its set-point of 0.5 at the end of the roughness-only closed-loop simulations.
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3.5.2 Simultaneous regulation of surface slope and roughness

for light trapping efficiency

Finally, closed-loop simulations of simultaneous regulation of surface slope and rough-

ness are carried out. The set-points of the mean slope square and of the surface

roughness square are m2
set = 0.5 and r2

set = 100, respectively. Since the substrate

temperature is the only manipulated input, the mean slope square and the surface

roughness square under closed-loop operation may not reach their respective set-point

values. Therefore, a tradeoff between the surface slope and roughness is made by the

controller on the basis of the weighting factors of the mean slope square and of the

surface roughness square. To simplify the development, the same values of weighting

factors of the mean slope square (and the same weighting factors of the surface rough-

ness square) are used for all prediction steps, i.e., qm2,1 = qm2,2 = · · · = qm2,5 = qm2

(qr2,1 = qr2,2 = · · · = qr2,5 = qr2). The weighting factor of mean slope square is kept at

1, while the factor of surface roughness square varies from 1 to 10000. Fig. 3.13 shows

the final expected values of the mean slope square and of the surface roughness square

at the end of the closed-loop simulations (t = 1000 s) at different ratios of the weight-

ing factors, lg(qr2/qm2). It is clear that as the weighting on the surface roughness

square increases, i.e., a higher value of lg(qr2/qm2), the expected surface roughness

square approaches more closely its set-point value of 100, while the expected mean

slope square deviates from its set-point value of 0.5.

Since the mean slope square and the surface roughness square cannot reach their
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Figure 3.13: Profiles of 〈r2〉 (solid line) and 〈m2〉 (dashed line) at the end of closed-
loop simulations (t = 1000s) for different penalty weighting factors: qm2 = 1 and
1 ≤ qr2 ≤ 10000.

respective set-points, Fig. 3.13 also shows different values of the mean slope square

and of the surface roughness square which are obtained at the end of the closed-

loop simulations with different weighting factors of the mean slope square and of the

surface roughness square. The light reflectance of these thin films obtained from the

closed-loop simulations of simultaneous regulation can be computed from the resulting

RMS surface slope and RMS roughness using Eq. (1.1), as shown in Fig. 3.14. In

Fig. 3.14, the RMS slope, m, and the RMS roughness, r, are computed as the square

roots of 〈m2〉 and 〈r2〉, respectively. The RMS roughness is also scaled with (by

multiplying) a physical factor, 6.5 nm, so that the set-point value, r2
set, together with

m2
set, corresponds to an optimal value (maximum) of the light reflectance in Eq. (1.1).
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It can be seen from Fig. 3.14 that different values of light reflectance of the thin

film are obtained at different ratios of the weighting factors, lg(qr2/qm2). A plot with

contours of the light reflectance is given in Fig. 3.15, which shows the dependence of

the RMS slope, the RMS roughness, and the corresponding light reflectance of the

thin film on the weighting factors. We note that the values of the RMS roughness in

Figs. 3.14 and 3.15 are also scaled with the same factor as the one for r2
set. An optimal

weighting scheme can be determined based on Figs. 3.14 and 3.15. For example, in the

case where a high light reflectance is desired to improve the light trapping efficiency

(e.g., for the back TCO layer that reflects the transmitted light back to the p-i-n

layers of the thin film), a combination of the weighting factors, qr2 = 1 and qm2 = 1,

can be used in the closed-loop operation.

For a perspective of the surface morphology of the thin films, representative snap-

shots of the film surface microstructure at the end of single open-loop and closed-loop

simulations (t = 1000s) are shown in Fig. 3.16. Three closed-loop cases are compared:

(1) slope-only control, (2) roughness-only control, and (3) simultaneous control of

slope and roughness. It can bee seen in Fig. 3.16 that different values of the mean

slope square and of the surface roughness square are achieved at the end of simu-

lations. In the open-loop simulation, the substrate temperature and the adsorption

rate are fixed and the surface slope and roughness evolve following the open-loop

dynamics. In the slope-only and roughness-only control, the mean slope square and

the surface roughness square are regulated around their respective set-point values,
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Figure 3.14: Dependence of light reflectance of thin film on the ratio of the weighting
factors, lg(qr2/qm2); r2

set = 100 and m2
set = 0.5.

m2
set = 0.5 and r2

set = 100, at the end of the simulation. In the case of simultaneous

control of slope and roughness, a trade-off is made between the mean slope square

and the surface roughness square. Specifically, different surface height profiles can

be observed in Fig. 3.16 under open-loop operation and under different closed-loop

operations. A nearly smooth surface height profile is obtained under slope-only con-

trol with a low RMS slope (since the RMS slope set-point, 0.5, is quite low) and a

certain level of RMS roughness; these values of RMS slope and roughness result in a

reflectance value of R/R0 = 0.69 which could be appropriate for a back TCO layer.

On the other hand, roughness-only control results in a rough surface height profile

with both large slope fluctuation (high RMS slope) and large height fluctuation (high
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Figure 3.15: Light reflectance of thin films deposited under closed-loop operations
with different weighting schemes.
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RMS roughness); these values of RMS slope and roughness result in a reflectance

value of R/R0 = 0.18 which could be appropriate for a front TCO layer. The sur-

face height profile under simultaneous control of slope and roughness with weighting

factor ratio lg(qr2/qm2) = 3 results in an “intermediate” surface height profile, as can

be seen in Fig. 3.16, between slope-only control and roughness-only control, and a

reflectance value of R/R0 = 0.46 which could be appropriate for an intermediate solar

cell layer. Therefore, by appropriately choosing the set-points for RMS roughness and

RMS slope as well as the weighting factors, we can produce layers that have a broad

range of reflectance values.

Remark 3.1 In this work, the expected values of roughness and slope are compared

to their respective set-points at the end of the deposition (t = 1000 s). The film

thickness is not considered as a control objective. In some applications, there are

stringent requirements for specific film thickness. If this is the case, model predictive

controllers can be developed for simultaneous regulation of surface roughness, film

porosity, and film thickness by including cost penalty on the deviation of film thickness

from a desired minimum value or by implementing the thickness requirement as a

constraint [29, 81].
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Figure 3.16: Snapshots of the film microstructure at the end of simulations (t =
1000s) under open-loop and closed-loop operations. The open-loop operating con-
ditions: T = 500 K and W = 1.0 layer/s; the set-points in closed-loop simulation:
r2
set = 100 and m2

set = 0.5; the weighting factor ratio in the simultaneous regulation:
lg(qr2/qm2) = 3.
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3.6 Conclusions

A model predictive control algorithm was developed to regulate the surface slope and

roughness of a thin film growth process. The thin film deposition process was modeled

on a one-dimensional triangular lattice that involves two microscopic processes: an

adsorption process and a migration process. Kinetic Monte Carlo methods were used

to simulate the thin film deposition process. To characterize the surface morphology

and to evaluate the light trapping efficiency of the thin film, surface roughness and

surface slope were introduced as the root mean squares of the surface height profile

and surface slope profile. An EW-type equation was used to describe the dynamics

of the surface height profile and predict the evolution of the RMS roughness and

RMS slope. A model predictive control algorithm was then developed on the basis

of the EW equation model to simultaneously regulate the RMS slope and the RMS

roughness at desired levels by optimizing the substrate temperature at each sampling

time. The model parameters of the EW equation were estimated from simulation

data through least-square methods. Closed-loop simulation results were presented to

demonstrate the effectiveness of the proposed model predictive control algorithm in

successfully regulating the RMS slope and the RMS roughness at desired levels that

optimize thin film light reflectance and transmittance.
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Chapter 4

Control of Surface Roughness and

Slope with 2D SPDE Model

4.1 Introduction

This chapter focuses on the development of a multivariable model predictive con-

troller that simultaneously regulates thin film surface roughness and mean slope to

optimize light reflectance and transmittance during thin-film manufacturing by ma-

nipulating the substrate temperature and the deposition rate. The dynamics of the

evolution of the thin film surface height profile are assumed to be described by an

Edwards–Wilkinson-type equation in two spatial dimensions. Analytical solutions

of the expected surface roughness and surface slope are obtained on the basis of

the Edwards–Wilkinson equation and are used in the design of a model predictive
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controller that manipulates the substrate temperature and the deposition rate. The

model predictive controller optimizes a cost function that involves penalty on both

surface roughness and mean slope from desired set-point values and imposes con-

straints on the magnitude and the rate of change of the control action. The controller

is applied to the two-dimensional Edwards–Wilkinson equation and is shown to suc-

cessfully regulate the surface roughness and mean slope to set-point values at the end

of the deposition that yield desired film reflectance and transmittance.

4.2 Preliminaries

4.2.1 2D Edwards–Wilkinson equation for surface height dy-

namics

The Edwards–Wilkinson (EW) equation, which is a second-order stochastic PDE,

provides an adequate description of the dynamics of the evolution of the surface

height profile in many thin-film growth processes that involve a thermal balance

between atom adsorption and surface migration.[18, 19, 25, 32] In this work, the

EW-type equation in two spatial dimensions takes the following form:

∂h

∂t
= c + c2(

∂2h

∂x2
+

∂2h

∂y2
) + ξ(x, y, t) (4.1)
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where x ∈ [0, π], y ∈ [0, π] are the spatial coordinates, t is the time, h(x, y, t) is

the surface height, and ξ(x, y, t) is a Gaussian white noise with a zero mean and the

following covariance:

〈ξ(x, y, t)ξ(x′, y′, t′)〉 = σ2δ(x− x′)δ(y − y′)δ(t− t′) (4.2)

where δ(·) denotes the Dirac delta function. c, c2, and σ2 are model parameters

that have explicit dependence on the macroscopic operating variables, i.e., the sub-

strate temperature, T , and the deposition rate, W . Specifically, c is related to the

growth rate of the average surface height and c2 is related to the effect of surface re-

laxation/migration. These model parameters can be determined from kinetic Monte

Carlo simulation or experimental data [53, 27]. The stochastic PDE, eq. (4.1), is

subject to periodic boundary conditions (PBCs) of the form:

h(0, y, t) = h(π, y, t) h(x, 0, t) = h(x, π, t) (4.3)

∂h

∂x
(0, y, t) =

∂h

∂x
(π, y, t)

∂h

∂y
(x, 0, t) =

∂h

∂y
(x, π, t) (4.4)

and the initial condition

h(x, y, 0) = h0(x, y). (4.5)

To analyze the dynamics and obtain a finite-dimensional approximation of the EW

equation, we first consider the eigenvalue problem of the linear operator of eq (4.1)
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subject to the periodic boundary conditions of eqs (4.3) and (4.4):

Aφm,n(x, y) = c2(
∂2

∂x2
+

∂2

∂y2
)φm,n(x, y) = λm,nφm,n(x, y), (4.6)

∇jφm,n(0, y) = ∇jφm,n(π, y), j = 0, 1 (4.7)

∇jφm,n(x, 0) = ∇jφm,n(x, π), j = 0, 1 (4.8)

where λm,n denotes an eigenvalue, φm,n denotes an eigenfunction, and ∇j, j = 0, 1,

denotes the gradient of a given function. The solution of the eigenvalue problem is

as follows:

λm,n = 4c2(m
2 + n2) (4.9)

φ1,m,n =
2

π
sin(2mx) sin(2ny) (4.10)

φ2,m,n =





1
π

m = 0 and n = 0

2
π

cos(2mx) cos(2ny) m 6= 0 and n 6= 0

√
2

π
cos(2mx) cos(2ny) m = 0, n 6= 0 or m 6= 0, n = 0

(4.11)

φ3,m,n =





0 m = 0

2
π

sin(2mx) cos(2ny) m 6= 0, n 6= 0

√
2

π
sin(2mx) m 6= 0, n = 0

(4.12)

φ4,m,n =





0 n = 0

2
π

cos(2mx) sin(2ny) n 6= 0, m 6= 0

√
2

π
sin(2ny) n 6= 0, m = 0.

(4.13)
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The solution of the EW equation of eq. (4.1) can be expanded in an infinite series in

terms of the eigenfunctions of the operator of eq (4.6) as follows:

h(x, y, t) =
+∞∑
m=0

+∞∑
n=0

φ1,m,nz1,m,n + φ2,m,nz2,m,n + φ3,m,nz3,m,n + φ4,m,nz4,m,n, (4.14)

where z1,m,n, z2,m,n, z3,m,n, and z4,m,n are time-varying coefficient.

Substituting the above expansion for the solution h(x, y, t) into eq (4.1) and taking

the inner product with the adjoint eigenfunctions, the following system of infinite

stochastic linear ordinary differential equations (ODEs) for the temporal evolution of

the time-varying coefficients is obtained:

dz2,0,0

dt
= πc + ξ2,0,0(t), (4.15)

dzp,m,n

dt
= λm,nzp,m,n + ξp,m,n(t), p = 1, 2, 3, 4, m, n = 0, 1, · · · ,∞, m2 + n2 6= 0,

(4.16)

where ξp,m,n =
∫ π

0

∫ π

0
ξ(x, y, t)φp,m,ndxdy is the projection of the noise ξ(x, y, t) on the

ODE for zp,m,n. The noise term, ξp,m,n, has zero mean and covariance

〈ξp,m,n(t)ξp,m,n(t′)〉 = σ2δ(t− t′). (4.17)

The temporal evolution of the variance of mode zp,m,n can be obtained from the
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solution of the linear ODE of eqs (4.15) and (4.16) as follows:

〈
(z2

p,m,n(t)
〉

= e2λm,n(t−t0)
〈
(z2

p,m,n(t0)
〉

+ σ2 e2λm,n(t−t0) − 1

2λm,n

, m2 + n2 6= 0. (4.18)

For feedback control purposes (see Section 4.3 below), the modes can be calculated

from a surface height measurement as follows:

zp,m,n(t) =

∫ π

0

∫ π

0

h(x, y, t)φp,m,n(x, y)dxdy. (4.19)

In many circumstances, only discrete height profile measurements are available, thus

eq (4.19) can be approximated by

zp,m,n(t) =
π2

K2

L−1∑
i=0

L−1∑
j=0

ĥ(i, j, t)φp,m,n(i, j) (4.20)

where L is the number of spatial height sampling (measurement) points in [0, π] in

both x and y coordinates and ĥ(i, j, t) = h(xi, yj, t) = h( iπ
L

, jπ
L

, t). It is worth pointing

out that, when discrete height measurements are available, the highest number of

modes that can be accurately calculated is limited by the spatial sampling points,

m,n ≤ L/2.

The dependence of c, c2 and σ2 on substrate temperature T and deposition rate

W can be identified from either experiments or kinetic Monte Carlo simulations of

the thin film growth process. The expressions reported in [53] that were obtained
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from kinetic Monte Carlo simulations are used here:

c(T, W ) = W

(
1− kw

W aw
ekBT/Ew

)
(4.21)

c2(T, W ) =
kc

L2W ac
ekBT/Ec (4.22)

σ2(T, W ) =
π2

L2

[
1 + e(at+ktW )T−av−kvW

]
(4.23)

where kB is Boltzmann’s constant (8.617343 × 10−5 eV/K), kw = 3.3829 × 10−12,

aw = 0.6042, Ew = 2.7× 10−3 eV, kc = 1.0274× 10−13, ac = 0.1669, Ec = 1.9× 10−3

eV, av = 15.55493, kv = 20.64504 s, at = 0.02332 K−1 and kt = 0.0261 s·K−1.

4.2.2 Film surface roughness and rms slope

Thin film surface morphology can be characterized by roughness and rms slope.

Roughness is defined as the root-mean-square of the surface height profile:

r(t) =

√
1

π2

∫ π

0

∫ π

0

(
h(x, y, t)− h̄(t)

)2
dxdy

≈
√√√√ 1

L2

L−1∑
i=0

L−1∑
j=0

(
ĥ(i, j, t)− h̄

)2

(4.24)

where h̄ denotes the average surface height. Substituting eq (4.14) into eq (4.24), the

expected value of r2 can be rewritten in terms of the state covariance as follows:

〈
r2

〉
=

1

π2

L/2∑

m,n=0,m2+n2 6=0

(〈
z2
1,m,n

〉
+

〈
z2
2,m,n

〉
+

〈
z2
3,m,n

〉
+

〈
z2
4,m,n

〉)
. (4.25)
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The rms slope is defined as the root mean square of the slope of the surface height:

m(t) =

√
1

π2

∫ π

0

∫ π

0

(
∂h

∂x
(x, y, t)

)2

dxdy

≈
√√√√ 1

π2

L−1∑
i=0

L−1∑
j=0

(
ĥ(i + 1, j, t)− ĥ(i, j, t)

∆x

)2
π2

L2
.

(4.26)

The expected rms slope square can also be expressed in terms of the state covariance

as follows:

〈
m2

〉
=

L/2∑

m,n=0,m2+n2 6=0

(
K1,m,n

〈
z2
1,m,n

〉
+ K2,m,n

〈
z2
2,m,n

〉
+ K3,m,n

〈
z2
3,m,n

〉
+ K4,m,n

〈
z2
4,m,n

〉)

(4.27)

where Kp,m,n can be computed by

Kp,m,n =
1

π2

L−1∑
i=0

L−1∑
j=0

(φp,m,n(i + 1, j)− φp,m,n(i, j))2 =
4

π2
sin2

(πm

L

)
. (4.28)

4.3 Model predictive controller design

In this section, a model predictive controller is developed based on the dynamic model

of the expected roughness square and rms slope square. Substrate temperature and

deposition rate are used as the manipulated variables. The control objective is to

minimize the deviation of the expected roughness square and/or rms slope square

from desired set-point values. Because the thin film deposition process is a batch

process, the interval between current time and the end of the batch run is used as
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the prediction horizon. During each predictive controller evaluation, the manipulated

variable is assumed to stay fixed until the end of the batch. To account for practical

considerations, two types of input constrains are imposed: (a) both the temperature

and the deposition rate have lower and upper limits, and (b) the rates of change

of both inputs are constrained to be less than certain upper limits due to actuator

limitations. The resulting MPC formulation is as follows:

min
T (t),W (t)

J(t) = qr2

(〈
r2(tf )

〉− r2
set

)2
+ qm2

(〈
m2(tf )

〉−m2
set

)2
(4.29)

where

〈
r2(tf )

〉
=

1

π2

L/2∑

m,n=0,m2+n2 6=0

(〈
z2
1,m,n

〉
+

〈
z2
2,m,n

〉
+

〈
z2
3,m,n

〉
+

〈
z2
4,m,n

〉)
(4.25)

〈
m2(tf )

〉
=

L/2∑

m,n=0,m2+n2 6=0

(K1,m,n

〈
z2
1,m,n(tf )

〉
+ K2,m,n

〈
z2
2,m,n(tf )

〉

+ K3,m,n

〈
z2
3,m,n(tf )

〉
+ K4,m,n

〈
z2
4,m,n(tf )

〉
)

(4.27)

cov(zp,m,n(tf )) = e−8c2(m2+n2)(tf−t)cov(zp,m,n(t))+σ2 e−8c2(m2+n2)(tf−t) − 1

2λm,n

, m2+n2 6= 0

(4.18)

c = W

(
1− kw

W aw
ekBT/Ew

)
(4.21)

c2 =
kc

L2W ac
ekBT/Ec (4.22)

σ2 =
π2

L2

[
1 + e(at+ktW )T−av−kvW

]
(4.23)
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subject to

c(T, W ) ≥ cmin, (4.30)

Tmin ≤ T ≤ Tmax, Wmin ≤ W ≤ Wmax, (4.31)

|T (t)− T (t− dt)| ≤ ∆Tmax, |W (t)−W (t− dt)| ≤ ∆Wmax, (4.32)

where tf is the final time of the batch run, r2
set and m2

set are the respective set-points

for the surface roughness square and the mean slope square, qr2 and qm2 are the

weighting factors for the deviations of 〈r2〉 and 〈m2〉 from their respective set-points,

r2
set and m2

set, at tf , dt is the time interval between two successive sampling times

and control actions, Tmin and Tmax are the lower and upper bounds on the substrate

temperature respectively, ∆Tmax is the limit on the rate of change of the substrate

temperature, Wmin and Wmax are the lower and upper bounds on the deposition rate,

respectively, and ∆Wmax is the limit on the rate of change of the deposition rate.

The optimization problem is solved at each sampling time once a new measurement

of the surface height profile becomes available. An interior point method optimizer,

IPOPT [75], is used to solve the optimization problem in the MPC formulation.

Remark 4.1 Referring to the design and implementation of estimation-based (output

feedback) control systems, we note that an output feedback controller, which utilizes a

Kalman–Bucy-type filter as the state estimator, was developed and used in the context

of covariance control of a stochastic partial differential equation in a previous work
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of our group [26]. Furthermore, estimation-based control of a kinetic Monte Carlo

model of a one-dimensional thin-film growth process was also studied in the context

of roughness control [27] and porosity control [81]. In the present work, we focus on

the model predictive control of surface roughness and slope of a process described by

the Edwards–Wilkinson equation in two spatial dimensions. The application of the

proposed controller to a kinetic Monte Carlo simulation model of a two-dimensional

thin-film growth process, as well as the design of an estimation-based control scheme,

will be addressed in a future work.

4.4 Closed–loop simulations

In this section, the model predictive controller of eq (4.29) is applied to the two-

dimensional EW equation plant model of eq (4.1). The variation of substrate tem-

perature is from 600–750 K and the variation of the deposition rate is from 0.1 to 1

layer/s. The initial temperature is 610 K, and the initial deposition rate is 1 layer/s.

The maximum rates of change are Tmax = 5 K/s for temperature and ∆Wmax = 0.05

layer/s for deposition rate. The sampling time is 5 s. Each closed-loop simulation

lasts for 100 s. Expected values are calculated from 100 independent runs.
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4.4.1 Control of Film Surface Roughness

First, the problem of regulating film surface roughness is considered. In this scenario,

the cost function only contains penalty on the deviation of the expected surface

roughness square from the set-point. The weighting factors are qr2 = 1 and qm2 = 0.

The set-point is r2
set = 15.

Figure 4.1 shows the profile of 〈r2〉 under the model predictive controller of

eq (4.29). It can be seen that the controller drives the expected film roughness at the

end of the simulation close to the desired value. Figure 4.2 shows the expected profiles

of T and W for the closed-loop simulation. The overall variations of both temperature

and deposition rate are small because the initial values of these variables are close to

the ones needed to accomplish the desired set-points for surface roughness and slope.

As a result, the constraints on the rate of change of the manipulated variables are

not reached in this case since the rates of change of the variables requested by the

controller are much smaller than the imposed constraints. Figure 4.3 compares the

histogram of r2 from open-loop and closed-loop simulations. The model predictive

control algorithm reduces the variance of r2 by 47%, from 0.3179 to 0.1681.

4.4.2 Control of Film Surface rms Slope

Next, we consider the regulation of thin film surface rms slope. The cost function

includes only penalty on the deviation of the expected value of rms slope square from

the set point by choosing weighting factors qr2 = 0 and qm2 = 1. The set point is
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Figure 4.1: Profile of expected film surface roughness square from 100 closed-loop
simulations. qr2 = 1, qm2 = 0 and r2

set = 15.
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Figure 4.2: Profiles of manipulated variables. qr2 = 1, qm2 = 0 and r2
set = 15.

m2
set = 0.2.

Figure 4.4 shows the profile of expected rms slope square from 100 repeats of

closed-loop simulations. The rms slope reaches its set point at t = 100 s. The

constraint on the rate of change of the temperature takes effect in the slope-only

control problem and limits the increase of the substrate temperature at the initial

stage of the deposition. A peak appears in the slope profile in the first 20 seconds
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Figure 4.3: Comparison of histograms of r2 at the end of the simulation between
open-loop (top plot) and closed-loop (bottom plot) simulations. qr2 = 1, qm2 = 0 and
r2
set = 15.

because the temperature can not increase fast enough from its initial value due to the

rate of change constraint. Figure 4.5 shows the profile of expected temperature and

deposition rate. Because the low set-point value of the mean slope square requires

a relatively high substrate temperature, the controller increases the temperature at

the maximum rate during the first four steps and then keeps the temperature around

716 K. The comparison of histograms of m2 at the end of the simulation between

closed-loop and open-loop is presented in figure 4.6. The MPC reduces the variance

but by a smaller amount compared to the case of roughness-only control.

4.4.3 Simultaneous control of roughness and rms slope

Finally, simultaneous regulation of roughness and rms slope is carried out. The set-

points of the surface roughness square and of the mean slope square are r2
set = 15
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Figure 4.4: Profile of expected film surface rms slope square from 100 closed-loop
simulations. qr2 = 0, qm2 = 1, and m2

set = 0.2.
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Figure 4.5: Profiles of manipulated variables. qr2 = 0, qm2 = 1, and m2
set = 0.2.

and m2
set = 0.2. The weighting factor of mean slope square is kept at 1, while the

weighting factor of roughness square increases from 0.01 to 106.

Figure 4.7 shows the change of 〈r2〉 and 〈m2〉 as a function of qr2/qm2 . It can

be seen that as the weighting on roughness square increases, the expected roughness

square approaches more closely its set-point value at the cost of larger deviation of

rms slope square from its set-point value.
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Figure 4.6: Comparison of histograms of m2 at the end of the simulation between
open-loop (top plot) and closed-loop (bottom plot) simulations. qr2 = 0, qm2 = 1,
and m2

set = 0.2.
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Figure 4.7: 〈r2〉 and 〈m2〉 at the end of closed-loop simulations (t = 100 s) for different
penalty weighting factors: qm2 = 1 and 0.01 ≤ qr2 ≤ 106.

4.4.4 Application to light trapping efficiency

For thin-film solar cells, the energy conversion efficiency is directly related to the light

trapping/scattering properties of the thin film interfaces and surfaces, which can be

characterized by the roughness, r, and the rms slope, m. Specifically, Rayleigh scat-
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tering occurs when the incident light goes through a rough interface where it is divided

into four components: specular reflection, specular transmission, diffused reflection,

and diffused transmission [66, 40]. As described in chapter 1, the total reflectance, R,

when a rough thin-film surface is illuminated with a beam of monochromatic light at

normal incidence can be approximated by eq (1.1). The numerical integration result

of eq (1.1) is shown in figure 1.2. From this plot, it can be inferred that both r and m

strongly influence the intensity of light reflection (and, therefore, light transmission)

by the surface/interface.

In the simultaneous control of roughness and slope in section 4.4.3, the expected

surface roughness square and mean slope square can be regulated to different levels

with the same set-points by choosing different weighting schemes, i.e., different ra-

tios between the weighting factors, qr2/qm2 . The corresponding light reflectance for

different weighting factor ratios can be computed according to eq (1.1). In 4.8, the

roughness and rms slope obtained from closed-loop simulations with different qr2/qm2

are mapped to a contour of reflectance. Note that the roughness is scaled by a factor

of 1.16× 10−8 m to represent the length scales of atomic particles in thin film growth

processes. We can see that by changing the ratio, qr2/qm2 , we can produce films whose

surface leads to different reflectance values.

Remark 4.2 Certain set-points for both surface roughness and surface slope are de-

sired to be attained during the manufacturing (thin-film growth) process to optimize the

light trapping efficiency of thin-film solar cells. These requirements may be attained
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Figure 4.8: Light reflectance of thin films deposited under closed-loop operations with
different weighting factor ratio.

through penalty of the deviation of surface roughness and slope in the cost functional

(as done in this work) or through imposition of explicit “soft” or “hard” constraints

on these variables in the model predictive control problem. The latter approach may

be more suitable in applications where there is a need to achieve a roughness (slope)

level that less than a maximum acceptable roughness (slope) level.

4.5 Conclusions

In this chapter, a multivariable model predictive controller was developed that simul-

taneously regulates both thin-film surface roughness and mean slope to optimize film

light reflectance and transmittance during thin-film manufacturing. The dynamics of

the evolution of the thin-film surface height profile were assumed to be described by

an EW-type equation in two spatial dimensions. Analytical solutions of the expected
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surface roughness and surface slope were obtained on the basis of the EW equa-

tion and were used in the design of model predictive controller that manipulates the

substrate temperature and deposition rate. The model predictive controller involves

constraints on the magnitude and rate of change of the control action and optimizes a

cost function that involves penalty on both surface roughness and mean slope from the

set-point values. The controller, which was applied to the two-dimensional Edwards–

Wilkinson equation, successfully regulates both surface roughness and mean slope to

set-point values at the end of the batch operation that yield desired film reflectance

and transmittance.
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Chapter 5

Control of Aggregate Surface

Morphology Using a Patterned

Deposition Rate Profile

5.1 Introduction

This chapter focuses on modeling and control of aggregate thin film surface mor-

phology for improved light trapping using a patterned deposition rate profile. The

dynamics of the evolution of the thin film surface height profile are modeled by an

Edwards-Wilkinson-type equation (a second-order stochastic partial differential equa-

tion) in two spatial dimensions. It is first established that the use of a spatially uni-

form deposition rate profile cannot generate significant thin film surface roughness
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and slope at large length scales (comparable to visible light wavelength), necessitat-

ing the use of a sine-wave-patterned deposition rate profile in space. The thin film

surface morphology is described in terms of aggregate surface roughness and surface

slope, computed with respect to appropriate visible light-relevant characteristic length

scales and defined as the root-mean-squares of an aggregate surface height profile and

of an aggregate surface slope profile, respectively. Using analytical solutions of the

expected aggregate surface roughness and surface slope, the functional dependence

of the Edwards-Wilkinson equation model parameters on the deposition rate is com-

puted and used within a predictive control framework to predict the influence of the

control action on the surface roughness and slope at the end of the growth process.

The controller is applied to the two-dimensional Edwards-Wilkinson equation rep-

resenting an 8,000 nm × 8,000 nm spatial domain and using a sine-wave-patterned

deposition rate profile in space, and it is shown to successfully regulate aggregate

surface roughness and slope at the end of the deposition at levels that yield desired

thin film reflectance and transmittance levels.

5.2 Aggregate surface morphology

5.2.1 Process description and modeling

In this work, the thin film deposition process is modeled by an on-lattice kinetic Monte

Carlo model. Details of the model can be found in previous work of our group [31].
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Figure 5.1: Thin film deposition process on a 2D square lattice.

The two dimensional square lattice where the deposition process takes place is shown

in Figure 5.1. Periodic boundary conditions (PBCs) are applied in the directions

perpendicular to the growth direction. Two different types of micro-processes are

considered: an adsorption process and a migration process. In the adsorption process,

incident particles are incorporated onto the thin film. The incidence direction in the

adsorption process is restricted to be the vertical direction. The rate of adsorption

is proportional to the average deposition rate across the simulation domain. The

site in which a particle is deposited is randomly selected from all lattice sites with

equal probability. During the migration process, particles on the thin film surface

hop against appropriate energy barriers and move to their vacant neighboring sites.

The migration rate follows an Arrhenius-type law and depends on the local particle

micro-configuration (i.e., number of nearest neighboring particles). The substrate
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temperature is fixed at 460 K. The lattice is initialized with a fully-packed and fixed

substrate. A continuous-time Monte Carlo (CTMC)-type algorithm (e.g., [71]) is used

to carry out the simulations.

5.2.2 Aggregate surface roughness and slope

Thin film surface morphology can be characterized by roughness and slope. Rough-

ness is defined as the root-mean-square (RMS) of the surface height profile

r(t) =

√
1

L2

∫ L

0

∫ L

0

(
h(x, y, t)− h̄(t)

)2
dxdy

≈
√√√√ 1

l2

l−1∑
i=0

l−1∑
j=0

(
h(i, j, t)− h̄

)2

(5.1)

where h(i, j, t) is the surface height measurement at the (i, j) lattice site at time t, h̄

denotes the average surface height, L is the dimension of the simulation domain, l is

the number of discrete height measurements on x or y direction. Slope is defined as

the root-mean-square of the gradient of the surface height in x direction

m(t) =

√
1

L2

∫ L

0

∫ L

0

(
∂h

∂x
(x, y, t)

)2

dxdy

≈
√√√√ 1

L2

l−1∑
i=0

l−1∑
j=0

(
h(i + 1, j, t)− h(i, j, t)

∆x

)2
L2

l2

=

√√√√ 1

L2

l−1∑
i=0

l−1∑
j=0

(h(i + 1, j, t)− h(i, j, t))2.

(5.2)
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Roughness and slope can be defined at different length scales. The top subplot in

Figure 5.2 shows a one-dimensional (1D) surface with roughness at different length

scales. In order to characterize surface morphology at different length scales, an
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Figure 5.2: 1D surface with roughness at different length scales: atomic surface profile
(top plot) and aggregate surface profile (bottom plot).

aggregate surface height profile h∆(i, j) is introduced in this work. The aggregate

surface height profile is the averaged height over an interval of length ∆ in 1D and a

square of side ∆ in 2D. In the 2D case, the aggregate surface height takes the form

h∆(i, j) =

∑∆−1
ia=0

∑∆−1
ja=0 h(i∆ + ia, j∆ + ja)

∆2
, i, j = 0, 1, 2 . . . , l∆ − 1. (5.3)

where l∆ is the number of points on the discrete aggregate surface height profile.

Then the aggregate surface roughness, r∆, and the aggregate surface slope, m∆, can
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be defined based on the aggregate surface height profile as follows

r∆(t) =

√√√√ 1

l2∆

l∆−1∑
i=0

l∆−1∑
j=0

(
h∆(i, j, t)− h̄∆(t)

)2
, (5.4)

m∆(t) =

√√√√ 1

L2

l∆−1∑
i=0

l∆−1∑
j=0

(h∆(i + 1, j, t)− h∆(i, j, t))2. (5.5)

Remark 5.1 Figure 5.2 shows an example of an atomic surface profile and of an

aggregate surface profile. We note that in general the surface morphology, including

roughness and slope, depends on lattice size and this dependence has been explored in

other works of our group (the reader may refer to [25, 31, 33]).

5.2.3 Light reflection on a rough surface

For thin-film solar cells, the energy conversion efficiency is directly related to the light

trapping/scattering properties of the thin film interfaces and surfaces, that depend

on the surface roughness and slope. It should be pointed out that the wavelength

of visible light (380 nm-750 nm) is several orders of magnitude greater than the

distance between two neighboring atoms (≈ 0.2 nm). The light reflection depends on

roughness and slope defined at a length scale comparable to the light wavelength.

When incident light goes through a rough interface, it is divided into four com-

ponents: specular reflection, specular transmission, diffused reflection and diffused

transmission [66, 40]. If a rough thin film surface is illuminated with a beam of

monochromatic light at normal incidence, the total reflectance, R, can be approxi-
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mated as follows [14]

R =R0 exp

[
−4πr2

∆

λ2

]

+ R0

∫ π/2

0

2π4
(a∆

λ

)2 (r∆

λ

)2

(cos θ + 1)4 sin θ exp

[
−(πa∆ sin θ)2

λ2

]
dθ

(5.6)

where R0 is the reflection of a perfectly smooth surface, r∆ is the aggregate surface

roughness, θ is the reflectance angle, λ is the light wavelength and a∆ is the auto-

covariance length of the surface. It can be proved that a∆ =
√

2r∆/m∆, where m∆

is the slope of the aggregate profile of the surface [9]. The numerical integration

result of eq (5.6) is shown in Figure 5.3 using λ = 700 nm. Both r∆ and m∆ strongly

influence the intensity of light reflection (and therefore, light transmission) of the sur-

face/interface. Thus, it is important to regulate r∆ and m∆ of the surfaces/interfaces

of the thin-film solar cells to appropriate values that optimize light reflection and

transmission during thin film manufacturing.

5.2.4 Patterned deposition rate profile

Figure 5.4 shows the variation of roughness and slope as a function of aggregation

length for a deposition process with uniform deposition rate profile. The results are

from a kinetic Monte-Carlo simulation of the two-dimensional thin film deposition

process of Figure 5.1 with l = 200. Both aggregate roughness and slope decrease as

aggregation length increases. In this case, the surface roughness is due to atomic level

fluctuations and thus we conclude that atomic level fluctuations contribute mainly to
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Figure 5.3: Reflection as a function of r∆ and m∆ of thin film surface.

roughness and slope at small length scales.

In order to generate significant roughness and slope at large length scales (i.e.,

comparable to the wave length of visible light), we introduce a patterned deposition

rate profile of the following form

w(x, y, t) = w0(t) + A(t) sin

(
2kπ

L
x

)
, (5.7)

where w0 is the mean deposition rate across the simulation domain, A is the magnitude

of the sine wave, k is the number of complete periods of the sine wave within the

simulation domain, and L is the length of the simulation domain.
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120



5.2.5 Edwards-Wilkinson equation for surface height dynam-

ics

To design a feedback controller for the thin film deposition process, a closed-form

model is needed. The Edwards-Wilkinson (EW) equation, which is a second-order

stochastic partial differential equation (PDE), describes adequately the dynamics of

the evolution of the surface height profile in many thin film growth processes that

involve a thermal balance between atom adsorption and surface migration [18, 19, 25,

33]. In this chapter, we consider a two dimensional (2D) EW type equation similar

to the one used in Chapter 4 but under a patterned input profile.

∂h∆

∂t
= w(x, y, t) + c2

(
∂2h∆

∂x2
+

∂2h∆

∂y2

)
+ ξ(x, y, t) (5.8)

where x ∈ [0, L], y ∈ [0, L] are the spatial coordinates, t is the time, h∆(x, y, t) is the

aggregate surface height, and ξ(x, y, t) is a Gaussian white noise with zero mean and

covariance

〈ξ(x, y, t)ξ(x′, y′, t′)〉 = σ2δ(x− x′)δ(y − y′)δ(t− t′). (5.9)

where δ(·) denotes the Dirac delta function, w(x, y, t) is the patterned deposition rate

profile described in eq (5.7), and c2 and σ2 are model parameters that depend on the

mean deposition rate, w0. The stochastic PDE of eq (5.8) is subject to the following
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periodic boundary conditions

h∆(0, y, t) = h∆(L, y, t) h∆(x, 0, t) = h∆(x, L, t) (5.10)

∂h∆

∂x
(0, y, t) =

∂h∆

∂x
(L, y, t)

∂h∆

∂y
(x, 0, t) =

∂h∆

∂y
(x, L, t) (5.11)

and the initial condition

h∆(x, y, 0) = h0∆(x, y). (5.12)

To analyze the dynamics and obtain a finite-dimensional approximation of the EW

equation, we first consider the eigenvalue problem of the linear operator of eq (5.8)

subject to the periodic boundary conditions of eqs (5.10)-(5.11)

Aφnx,ny(x, y) = c2(
∂2

∂x2
+

∂2

∂y2
)φnx,ny(x, y) = λnx,nyφnx,ny(x, y), (5.13)

∇jφnx,ny(0, y) = ∇jφnx,ny(L, y), j = 0, 1 (5.14)

∇jφnx,ny(x, 0) = ∇jφnx,ny(x, L), j = 0, 1 (5.15)

where λnx,ny denotes an eigenvalue, φnx,ny denotes an eigenfunction, and ∇j, j = 0,

1, denotes the value and gradient of a given function, respectively. The solution of
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the eigenvalue problem is as follows

λnx,ny = −4c2π
2

L2
(n2

x + n2
y) (5.16)

φ1,nx,ny =
2

L
sin(

2nxπ

L
x) sin(

2nyπ

L
y) (5.17)

φ2,nx,ny =





1
L

nx = 0 and ny = 0

2
L

cos(2nxπ
L

x) cos(2nyπ

L
y) nx 6= 0 and ny 6= 0

√
2

L
cos(2nxπ

L
x) cos(2nyπ

L
y) otherwise

(5.18)

φ3,nx,ny =





0 nx = 0

2
L

sin(2nxπ
L

x) cos(2nyπ

L
y) nx 6= 0, ny 6= 0

√
2

L
sin(2nxπ

L
x) nx 6= 0, ny = 0

(5.19)

φ4,nx,ny =





0 ny = 0

2
L

cos(2nxπ
L

x) sin(2nyπ

L
y) ny 6= 0, nx 6= 0

√
2

L
sin(2nyπ

L
y) ny 6= 0, nx = 0.

(5.20)

The solution of the EW equation of eq (5.8) can be expanded in an infinite series in

terms of the eigenfunctions of the operator of eq (5.13) as follows

h∆(x, y, t) =
+∞∑

nx=0

+∞∑
ny=0

4∑
p=1

φp,nx,ny(x, y)zp,nx,ny(t), (5.21)

where zp,nx,ny(t), p = 1, 2, 3, 4, are time-varying coefficients.

Substituting the above expansion of h∆(x, y, t) into eq (5.8) and taking the inner

product with the adjoint eigenfunctions, the following system of infinite stochastic
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linear ordinary differential equations (ODEs) for the temporal evolution of the time-

varying coefficients is obtained

dz2,0,0

dt
= w2,0,0 + ξ2,0,0(t), (5.22)

dzp,nx,ny

dt
= wp,nx,ny + λnx,nyzp,nx,ny + ξp,nx,ny(t) (5.23)

p = 1, 2, 3, 4, nx, ny = 0, 1, · · · ,∞, n2
x + n2

y 6= 0,

where ξp,nx,ny(t) =
∫ L

0

∫ L

0
ξ(x, y, t)φp,nx,ny(x, y)dxdy is the projection of the noise

ξ(x, y, t) on the ODE for zp,nx,ny . The noise term, ξp,nx,ny , has zero mean and co-

variance

〈
ξp,nx,ny(t)ξp,nx,ny(t

′)
〉

= σ2δ(t− t′). (5.24)

Similarly, wp,nx,ny is the projection of w on the ODE for zp,nx,ny ,

wp,nx,ny =

∫ L

0

∫ L

0

φp,nx,ny(x, y)w(x, y)dxdy (5.25)

w1,nx,ny = 0 (5.26)

w2,nx,ny =





w0L + AL
2kπ

[1− cos(2kπ)] nx = 0, ny = 0

√
2ALk

2π(n2
x−k2)

[cos(2kπ)− 1] nx 6= 0, nx 6= k, ny = 0

0 otherwise

(5.27)
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w3,nx,ny =





√
2AL
2

nx = k, ny 6= 0

√
2ALnx

2π(k2−n2
x)

sin(2kπ) nx 6= 0, nx 6= k, ny = 0

0 otherwise

(5.28)

w4,nx,ny = 0. (5.29)

The temporal evolution of the variance of mode zp,nx,ny can be obtained from the

solution of the linear ODEs of eqs (5.22) and (5.23) as follows

〈z2,0,0(t)〉 = w2,0,0(t− t0) (5.30)

var(z2,0,0(t)) = σ2(t− t0) (5.31)

〈z(t)〉 = eλ(t−t0) 〈z(t0)〉+
wp

λ
(eλ(t−t0) − 1) (5.32)

var(z(t)) = e2λ(t−t0) var(z(t0)) + σ2 e2λ(t−t0) − 1

2λ
(5.33)

where z(t) = zp,nx,ny(t) and wp = wp,nx,ny for n2
x + n2

y 6= 0.

For feedback control purposes (see Section 5.3 below), the modes can be calculated

from a surface height measurement as follows

zp,nx,ny(t) =

∫ L

0

∫ L

0

h∆(x, y, t)φp,nx,ny(x, y)dxdy. (5.34)

In many circumstances, only discrete height profile point measurements are available,
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thus eq (5.34) can be approximated by

zp,nx,ny(t) ≈
(

L

l∆

)2 l∆−1∑
i=0

l∆−1∑
j=0

h∆(i, j, t)φp,nx,ny(i, j) (5.35)

where l∆ is the number of spatial height sampling (measurement) points in [0, L]. It is

worth pointing out that, when discrete height point measurements are available, the

largest number of modes that can be accurately calculated is limited by the spatial

sampling points, i.e. nx, ny ≤ l∆/2 [82].

Substituting eq (5.21) into eq (5.4), the expected value of r2
∆ can be rewritten in

terms of the state covariance as follows

〈
r2
∆

〉
=

1

L2

∞∑
nx,ny=0
n2

x+n2
y 6=0

4∑
p=1

〈
z2

p,nx,ny

〉
. (5.36)

The expected RMS slope square can also be expressed in terms of the state covariance

as follows

〈
m2

∆

〉
=

∞∑
nx,ny=0
n2

x+n2
y 6=0

4∑
p=1

Kp,nx,ny

〈
z2

p,nx,ny

〉
, (5.37)

where Kp,nx,ny can be computed by

Kp,nx,ny =
1

L2

l∆−1∑
i=0

l∆−1∑
j=0

(φp,nx,ny(i + 1, j)− φp,nx,ny(i, j))
2

=
4l2∆
L4

sin2

(
πnx

l∆

)
.

(5.38)
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5.2.6 Determination of model parameters

The EW equation has two parameters, c2 and σ2, that are assumed to depend on the

mean deposition rate w0. In our previous work [81], the dependences of EW equation

parameters on operating conditions were found by fitting the analytical solution of

〈r2〉 to open-loop kinetic Monte-Carlo simulations. However, this approach is not

applicable here because a system with a much larger physical domain is simulated.

Assuming that the distance between two neighboring sites is 0.2 nm, there are 40000×

40000 sites within the 8000 nm×8000 nm square domain that is simulated. Since it

is not possible to simulate such large lattice size directly, we use the following steps

to get estimates of c2 and σ2 as functions of w0.

1. For each value of w0, a series of open-loop kinetic Monte Carlo simulations

is carried out with increasing lattice size (l = 20, 50, 100, 150, 200, 250). The

values of c2 and σ2 are then determined by fitting the analytical solution of

〈r2(t)〉 (without any aggregation) to kMC simulation data using the least square

method. As a result, c2 and σ2 are obtained in terms of lattice size l for each

value of w0, as shown in Figure 5.5.The following functional forms are used for

the fitting of c2 and σ2/c2

c2(l, w0) = ac(w0)l + bc(w0) (5.39)

σ2

c2

(l, w0) = as(w0) log10(l) + bs(w0) (5.40)
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where the values of the coefficients ac(w0), bc(w0), as(w0) and bs(w0) for different

w0 values are given in Table 5.1.
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Figure 5.5: c2 (top plot) and σ2 (bottom plot) as functions of lattice size l
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w0 ac bc c2 as bs σ2

0.04 3.20× 10−3 −3.04× 10−2 128.06 4.17× 10−3 5.50× 10−2 9.50
0.12 1.97× 10−3 −7.16× 10−2 78.67 1.43× 10−2 1.17× 10−1 14.43
0.20 1.24× 10−3 −4.34× 10−2 49.67 2.90× 10−2 1.87× 10−1 15.95
0.30 9.61× 10−4 −3.56× 10−2 38.42 4.71× 10−2 3.00× 10−1 19.84
0.40 8.33× 10−4 −3.63× 10−2 33.28 6.29× 10−2 4.48× 10−1 24.54

Table 5.1: Values of the coefficients used in eqs. (5.39), (5.40) and the extrapolated
values of c2 and σ2 for lattice size l = 40000.

2. The values of c2 and σ2 at lattice size l = 40000 are determined by extrapolating

the c2 and σ2 according to eq. (5.39) and (5.40). The extrapolated values

c2(l = 40000, w0) and σ2(l = 40000, w0) are also included in Table 5.1.

3. Subsequently, we fit the extrapolated values of c2 and σ2 for l = 40000 as

functions of w0, as shown in Figure 5.6. The following functional forms for

c2(w0) and σ2(w0) are used

c2(w0) = pc1w
3
0 + pc2w

2
0 + pc3w0 + pc4 (5.41)

σ2(w0) = ps1w
4
0 + ps2w

3
0 + ps3w

2
0 + ps4w0 + ps5 (5.42)

where

pc1 = −20.83 pc2 = 110.9 pc3 = −204.1 pc4 = 164.9 (5.43)

ps1 = −7.585 ps2 = 36.65 ps3 = −59.03

ps4 = 42.91 ps5 = 2.998.

(5.44)
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Figure 5.6: c2 (top plot) and σ2 (bottom plot) as functions of deposition rate w0.

To verify the above approach, we compare the roughness obtained from the ex-

trapolated values of c2 and σ2 with that from direct extrapolation of 〈r2〉. First, 〈r2〉
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is extrapolated with respect to lattice size and its value at l = 40000 is obtained.

Figure 5.7 shows the steady state value of 〈r2〉 against lattice size. According to
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Figure 5.7: Steady state value of roughness 〈r2〉 as a function of lattice size l.

Figure 5.7, 〈r2〉 can be fitted to a linear function of log10(l) of the form

〈
r2

〉
ss

(l) = ar log10(l) + br. (5.45)

Then the relationship between steady state roughness and aggregation length, as

shown in Figure 5.8, is used to find the roughness with aggregation length ∆ = 400.

〈r2
∆〉 (∆) is fitted to a power-law function of the form

〈
r2
∆

〉
(∆) = aa∆

ba + ca (5.46)
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Roughness Aggregate roughness
w0 ar br 〈r2〉ss (nm2) 〈r2

∆〉ss (nm2)
0.04 0.002143 0.018237 0.0281 6.25× 10−3

0.12 0.008171 0.035585 0.0732 1.63× 10−2

0.20 0.016950 0.053243 0.1313 2.92× 10−2

0.30 0.027590 0.084274 0.2112 4.70× 10−2

0.40 0.039788 0.123212 0.3063 6.81× 10−2

Table 5.2: Extrapolated aggregate roughness when lattice size l = 40000, aggregation
length ∆ = 400, under different deposition rates.

where aa = 0.07883, ba = −1.193 and ca = 0.02247. According to eq. (5.46),
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Figure 5.8: 〈r2
∆〉 as a function of aggregation length ∆ (lattice size l = 500).

〈r2
∆〉 (∆ = 400) = 0.2224 〈r2

∆〉 (∆ = 1), thus the aggregate roughness for lattice

size l = 40000 and aggregation length ∆ = 400 can be calculated. The results are

summarized in Table 5.2.
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w0 σ2/c2 〈r2〉ss (nm2) 〈r2
∆〉ss (nm2)

0.04 0.074187 0.0323 7.18× 10−3

0.12 0.183404 0.0800 1.78× 10−2

0.20 0.321012 0.1399 3.11× 10−2

0.30 0.516476 0.2551 5.67× 10−2

0.40 0.737238 0.3214 7.15× 10−2

Table 5.3: Calculation of atomic and aggregate steady state surface roughness at
lattice size l = 40000 using extrapolated values of σ2/c2.

Subsequently, we use the extrapolated values of σ2/c2 to calculate the atomic and

aggregate steady state surface roughness. According to eq (5.36), the steady state

roughness of a deposition process starting from a flat surface would be

〈
r2
∆

〉
ss

=
1

L2

∞∑
nx,ny=0
n2

x+n2
y 6=0

4∑
p=1

〈
z2

p,nx,ny

〉
=

1

L2

∞∑
nx,ny=0
n2

x+n2
y 6=0

4∑
p=1

var(zp,nx,ny)

=
σ2

c2L2

∞∑
nx,ny=0
n2

x+n2
y 6=0

L2

2π2(n2
x + n2

y)
=

σ2

c2

∞∑
nx,ny=0
n2

x+n2
y 6=0

1

2π2(n2
x + n2

y)
≈ 0.4353

σ2

c2

.

(5.47)

The results are shown in Table 5.3.

Comparing Tables 5.2 and 5.3, we can see that both approaches yield very close

values for both atomic and aggregate surface roughness for l = 40000.

Remark 5.2 This is the first time the above parameter identification method is pro-

posed. This method could be used for parameter identification for other nonlinear

SPDE models, e.g. Kuramoto-Sivashinsky equation (KSE), that describe surface evo-

lution in other thin film growth models.
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5.3 Model predictive controller design

In this section, a model predictive controller is developed based on the dynamic model

of the expected roughness square and slope square. The mean deposition rate, w0,

and magnitude of sine wave, A, are used as the manipulated variables. In this work,

state feedback is used. At each sampling time, the surface height profile from the

stochastic PDE is fed-back to the controller and the eigenmodes are calculated. In

practice, real-time surface height measurements can be obtained via atomic force

microscopy (AFM) systems. The control objective is to minimize the deviation of the

expected roughness square and slope square from desired set-point values. Because

the thin film deposition process is a batch process, the interval between current time

and the end of the batch run is used as the prediction horizon. During each predictive

controller evaluation, the manipulated variable is assumed to stay fixed until the end

of the batch. The constraints of the problem are: (1) the mean deposition rate has

lower and upper limits; (2) the rate of change of the mean deposition rate should be

less than an upper limit due to actuator limitations; (3) the magnitude of sine wave

should be positive and smaller than the average deposition rate. The resulting MPC

formulation is as follows

min
w0,A

f(w0, A) = qr2

(
r2
set − 〈r2

∆(tf )〉
r2
set

)2

+ qm2

(
m2

set − 〈m2
∆(tf )〉

m2
set

)2

(5.48)
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where

〈
r2
∆(tf )

〉
=

1

L2

∞∑
nx,ny=0
n2

x+n2
y 6=0

4∑
p=1

〈
z2

p,nx,ny
(tf )

〉
(5.49)

〈
m2

∆(tf )
〉

=
∑

nx,ny=0
n2

x+n2
y 6=0

4∑
p=1

(
Kp,nx,ny

〈
z2

p,nx,ny
(tf )

〉)
(5.50)

〈
z2

p,nx,ny
(tf )

〉
= var(zp,nx,ny(tf )) +

〈
zp,nx,ny(tf )

〉2
(5.51)

〈
zp,nx,ny(tf )

〉
= eλnx,ny (tf−t)

〈
zp,nx,ny(t)

〉
+

wp

λnx,ny

(eλnx,ny (tf−t) − 1) (5.52)

var(zp,nx,ny(tf )) = e2λnx,ny (tf−t) var(zp,nx,ny(t)) + σ2 e2λnx,ny (tf−t) − 1

2λnx,ny

(5.53)

λnx,ny = −4c2π
2

L2
(n2

x + n2
y), n2

x + n2
y 6= 0 (5.54)

Subject to

wmin ≤ w0 ≤ wmax, |w0(t)− w0(t− dt)| ≤ ∆wmax, (5.55)

0 ≤ A ≤ w0 (5.56)

where tf is the final time of the batch run, r2
set and m2

set are the respective set-points

for the surface roughness square and the mean slope square, qr2 and qm2 are the

weighting factors for the deviations of 〈r2
∆(tf )〉 and 〈m2

∆(tf )〉 from their respective

set-points, r2
set and m2

set, dt is the time interval between two successive sampling

times, wmin and wmax are the lower and upper bounds on the mean deposition rate,
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respectively, and ∆wmax is the limit on the rate of change of the mean deposition

rate.

The optimization problem is solved at each sampling time once a new measurement

of the surface height profile becomes available. An interior point method optimizer,

IPOPT [75], is used to solve the optimization problem in the MPC formulation.

5.4 Closed–loop simulations

In this section, the model predictive controller of eq (5.48) is applied to the two-

dimensional EW equation model of eq (5.8). The deposition rate varies from 0.02

nm/s to 0.4 nm/s, the substrate temperature is fixed at 460 K and the initial deposi-

tion rate is 0.2 nm/s. The maximum rate of change of the deposition is ∆Wmax = 0.1

nm/s and the sampling time is 1 s. Each closed-loop simulation lasts for 100 s.

Expected values are calculated from 100 independent closed-loop system simulation

runs.

5.4.1 Control of film surface roughness

First, the problem of regulating film surface roughness is considered. In this scenario,

the cost function only contains penalty on the deviation of the expected surface

roughness square from the set-point. The weighting factors are qr2 = 1 and qm2 = 0.

The set-point is r2
set = 0.04 nm2. Because the roughness set-point is small, the surface
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does not have a clear pattern.

Figure 5.9 shows the profile of 〈r2
∆〉 under the model predictive controller of

eq (5.48). It can be seen that the controller drives the expected film roughness to the

desired value at the end of the simulation. Figure 5.10 shows a surface snapshot at

the end of the simulation (t = 100 s) from one single run.
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Figure 5.9: Profile of expected film surface roughness square from 100 closed-loop
simulations. qr2 = 1, qm2 = 0 and r2

set = 0.04 nm2.

5.4.2 Control of film surface slope

Next, we consider the regulation of thin film surface slope. The cost function includes

only penalty on the deviation of the expected value of slope square from the set point

by choosing weighting factors qr2 = 0 and qm2 = 1. The set point is m2
set = 0.025.
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Figure 5.10: Surface profile at the end of simulation, t = 100 s. qr2 = 1, qm2 = 0 and
r2
set = 0.04 nm2.

Figure 5.11 shows the profile of the expected slope square. The slope reaches its

set point at t = 100 s. A surface snapshot at t = 100 s is also given in Figure 5.12.

The surface in Figure 5.12 has clear sine wave pattern because the slope set-point is

relatively large for this case.

5.4.3 Simultaneous control of roughness and slope

Finally, simultaneous regulation of roughness and slope is carried out. The set-points

of the surface roughness square and of the mean slope square are r2
set = 1.0 nm2

and m2
set = 0.025. The weighting factor of mean slope square is kept at 1, while the

weighting factor of roughness square increases from 10−8 to 1.
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Figure 5.11: Profile of expected film surface slope square from 100 closed-loop simu-
lations. qr2 = 0, qm2 = 1 and m2

set = 0.025.

Figure 5.13 shows the variation of 〈r2
∆〉 (t = 100 s) and 〈m2

∆〉 (t = 100 s) as a

function of qr2/qm2 . It can be seen that as the weighting on roughness square increases,

the expected roughness square approaches more closely to its set-point value at the

cost of larger deviation of slope square from its set-point value and vice versa.

5.4.4 Application to light trapping efficiency

We now demonstrate how films of different reflectance can be produced by simulta-

neous control of film surface roughness and slope. Specifically, the expected surface

roughness square and mean slope square can be regulated to different levels by using

the same set points and choosing different weighting schemes, i.e., different ratios of
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Figure 5.12: Surface profile at the end of simulation, t = 100 s. qr2 = 0, qm2 = 1 and
m2

set = 0.025.

the weighting factors, qr2/qm2 . In particular, qm2 is kept at 1.0 while q2
r changes from

10−8 to 1. The corresponding light reflectance for different weighting factor ratios

can be computed according to eq (5.6). In Figure 5.14, the roughness and slope ob-

tained from closed-loop simulations with different qr2/qm2 are mapped to a contour

of reflectance. The points from upper right to lower left correspond to qr2/qm2 ratios

of increasing values. By changing the ratio, qr2/qm2 , different films can be produced

whose surface morphology is characterized by a wide range of reflectance values.
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Figure 5.13: 〈r2
∆〉 and 〈m2

∆〉 at the end of closed-loop simulations (t = 100s) for
different penalty weighting factors: qm2 = 1, 10−8 ≤ qr2 ≤ 1, r2

set = 1.0, m2
set = 0.025.

5.5 Conclusions

In this chapter, a patterned deposition rate profile was introduced to generate signif-

icant roughness and slope at a length scale comparable to the wavelength of visible

light in a thin film deposition process. Working within the framework of the two-

dimensional Edwards-Wilkinson equation representing an 8,000 nm × 8,000 nm spa-

tial domain, a model predictive controller was developed to regulate thin film surface

roughness and slope to desired levels, accounting for constraints on the magnitude

and rate of change of the control actions. The mean value and magnitude of the sine

wave deposition rate profile were used as manipulated variables. Simulation studies

demonstrated the applicability and effectiveness of the patterned deposition rate pro-
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Figure 5.14: Light reflectance of thin films deposited under closed-loop operations
with different weighting factor ratios: qm2 = 1, 10−8 ≤ qr2 ≤ 1 (corresponding to
points from right to left), r2

set = 1.0, m2
set = 0.025

file and of the controller in successfully regulating the final thin film surface roughness

and slope to levels that yield desired thin film reflectance and transmittance.
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Chapter 6

Conclusions

Motivated by the increasing importance of thin film microstructure and surface mor-

phology in semiconductor and solar cell manufacturing, this dissertation developed a

systematic methodology for stochastic modeling and control of thin film surface rough-

ness, slope and porosity within a unified framework. Kinetic Monte Carlo (kMC)

methods and stochastic/deterministic differential equation models were constructed

to account for the stochastic nature of the thin film growth processes and were used

as the basis for model predictive controller design.

In Chapter 2, we developed model predictive control algorithms to simultaneously

control film surface roughness, porosity, and thickness in a multiscale model of a thin

film growth process. On the macroscopic side, the gas phase dynamics was modeled by

a continuous PDE model derived from a mass balance. On the microscopic side, the

thin film deposition process was simulated via a kinetic Monte Carlo model developed
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on a triangular lattice with vacancies and overhangs allowed inside the film. Dynamic

models of film surface height and film porosity were developed and used in the MPC

algorithms. The regulation of film thickness was addressed in two different ways. One

way is to include penalty on the deviation of the film thickness into the cost function

and the other one is to impose a constraint on the adsorption rate to ensure the desired

film thickness at the end of the film growth process. The proposed model predictive

controllers were applied to the multiscale thin film growth model to evaluate their

performance. In addition, an estimation scheme of film SOR was introduced and used

successfully in conjunction with the MPC schemes.

In Chapter 3, a model predictive control algorithm was developed to regulate the

surface slope and roughness of a thin film growth process. The thin film deposition

process was modeled on a one-dimensional triangular lattice that involves two mi-

croscopic processes: an adsorption process and a migration process. Kinetic Monte

Carlo methods were used to simulate the thin film deposition process. To characterize

the surface morphology and to evaluate the light trapping efficiency of the thin film,

surface roughness and surface slope were introduced as the root mean squares of the

surface height profile and surface slope profile. An EW-type equation was used to de-

scribe the dynamics of the surface height profile and predict the evolution of the RMS

roughness and RMS slope. A model predictive control algorithm was then developed

on the basis of the EW equation model to simultaneously regulate the RMS slope

and the RMS roughness at desired levels by optimizing the substrate temperature at
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each sampling time. The model parameters of the EW equation were estimated from

simulation data through least-square methods. Closed-loop simulation results were

presented to demonstrate the effectiveness of the proposed model predictive control

algorithm in successfully regulating the RMS slope and the RMS roughness at desired

levels that optimize thin film light reflectance and transmittance.

In Chapter 4, a multivariable model predictive controller was developed to si-

multaneously regulates thin-film surface roughness and mean slope to optimize film

light reflectance and transmittance during thin-film manufacturing. The dynamics

of the evolution of the thin-film surface height profile were assumed to be described

by an EW-type equation in two spatial dimensions. Analytical solutions of the ex-

pected surface roughness and surface slope were obtained on the basis of the EW

equation and were used in the design of a model predictive controller that manipu-

lates the substrate temperature and deposition rate. The model predictive controller

involves constraints on the magnitude and rate of change of the control action and op-

timizes a cost that involves penalty on deviation of both surface roughness and mean

slope from the set-point values. The controller was applied to the two-dimensional

Edwards–Wilkinson equation and was demonstrated to successfully regulate surface

roughness and mean slope to set-point values at the end of the batch operation that

yield desired film reflectance and transmittance.

Finally, in Chapter 5, a patterned deposition rate profile was introduced to gen-

erate significant roughness and slope at a length scale comparable to the wavelength
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of visible light in a thin film deposition process. Working within the framework of

the two-dimensional Edwards-Wilkinson equation representing an 8,000 nm × 8,000

nm spatial domain, a model predictive controller was developed to regulate thin film

surface roughness and slope to desired levels, accounting for constraints on the mag-

nitude and rate of change of the control actions. The mean value and magnitude of

the sine wave deposition rate profile were used as manipulated variables. Simulation

studies demonstrated the applicability and effectiveness of the patterned deposition

rate profile and of the controller in successfully regulating the final thin film surface

roughness and slope to levels that yield desired thin film reflectance and transmit-

tance.
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