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A distributed model predictive control (DMPC) strategy brings interesting features of topol-

ogy,  flexibility and maintenance to large-scale nonlinear systems. This work presents

contributions in the study of distributed controllers for nonlinear and large-scale sys-

tems. Two types of distributed predictive control based on model (DMPC) are proposed:

non-cooperative locally linearized DMPC and cooperative locally linearized DMPC. The

decomposition is performed based on a local linearized version of the process model by using

local  matrices representing interactions between controlled outputs, states and inputs. The

proposed strategy was successfully evaluated and compared to the centralized control strat-
Partitioning for distributed control

Model predictive control

Model decomposition

egy.

©  2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
1.  Introduction

The most basic requirement of a control system is that it
guarantees closed-loop stability while increasing the overall
process efficiency. With the great development of system anal-
ysis tools, inexpensive computer power and data for modeling
and developing process identification, it is possible today to
address large and complex systems in a systematic frame-
work.

As computational numerical algorithms and computer
power evolve, the type and size of potential applications
also broadens. Problems that previously were considered
intractable, from a computational point of view, now are solv-
able. However, in order to well understand the full potential of
large-scale systems, especially in process control, is necessary
to specify how a large-scale system is defined. A large-scale
system has many  different meanings in the literature. It can

be used to define a system if it can be partitioned into subsys-

∗ Corresponding author.
E-mail address: lcol@ufu.br (L.C. Oliveira-Lopes).
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0263-8762/© 2018 Institution of Chemical Engineers. Published by Elsev
tems. Of course one has to be reasonable about dimensions,
otherwise a simple decomposition of a low dimensional sys-
tem could be misused for large-scale system. A decomposed
system can be structured as an interconnected system or as a
hierarchically structured system requiring a coordinator.

Control of large-scale systems (LSS) has been long stud-
ied, particularly the issue of how to distribute control tasks in
a complex large-scale process (Mesarovic et al., 2000; Sandell
et al., 1978). The control of LSS requires coordination of all
existing interactions among the constituent subsystems. Sub-
systems of a plant are usually designed independently or are
added later as the installed plant evolves. These changes are
usually motivated by production requirements or environ-
mental regulations. Most LSS utilize decentralized control as
the strategy of choice. However, for subsystems with strong
interactions, this approach can lead to unacceptable perfor-
mance. Centralized control is able to address optimally the
problem of interaction, but with high structural and organiza-
tional costs, making the complex structure and the upgrade
maintenance costly.
ier B.V. All rights reserved.
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Centralized and decentralized control are the two design
xtremes for the control of large-scale systems. While cen-
ralized control takes into account all possible interactions,
ecentralized control ignores them partially or completely.
dditionally, both decentralized and centralized control

equire no communication between subsystems. An alterna-
ive control structure is needed, therefore, that does not have
he organizational and maintenance costs of centralized con-
rol, but could give acceptable performance in large-scale,
ighly interacting systems.

An alternative to centralized control that preserves the
opology and flexibility of decentralized control and at the
ame time may offer a nominal closed-loop stability guarantee
s the distributed control approach. In this control structure,
he interactions between subsystems are modeled and infor-

ation between the subsystems is shared between them.
gnoring the structural constraints and addressing the control
roblem as a distributed optimization problem may lead to an
nsuccessful industrial application, where it is desired high
exibility on the use of existing control structure (Rawlings
nd Stewart, 2008).

In order to design a controller that is able to address the
ssues noted above one needs to consider the following:

Partitioning How can one decompose a LSS into subsys-
ems with known properties to address the structural coupling
n the plantwide control problem?

Communication How can one design a distributed model-
ased control architecture by knowing the subsystems from
he partitioning step above in a way of not having either a large
ommunication burden not a large closed-loop deterioration
ehavior when compared to a centralized performance?

Performance How to evaluate the global properties of the
istributed model based control law based on the set of sub-
ystems?

Another important definition is the concept of complexity.
 system is called complex if conventional system analysis

echniques result in poor solution. A large-scale system is
omplex. There is also the definition based on the centrality
oncept. A system is of large-scale if it is not formed by sub-
ystems grouped into a single center. There are also additional
oncepts such as: (a) System of System concept (SoS): it is a
lass of complex systems whose constituents are themselves
omplex. As defined by Jamshidi (2008), it is a metasystem
hat is comprised of multiple autonomous embedded complex
ystems that can be diverse in technology, context, operation,
eography and conceptual frame; (b) the Enterprise Systems of
ystems Engineering (SoSE) that is focused on coupling tradi-
ional systems engineering activities with enterprise activities
f strategic planning and investment analysis (Carlock and
enton, 2001), and (c) Ultra-large-scale system (ULSS): it is
sed in Computer Science and Software Engineering to refer
o software intensive systems (Feiler et al., 2006).

Even though the above presented concepts are not univer-
ally accepted, in case of distributed process control, we  are
ostly interested to address standard LSS, but it can be also

pplied to more  general systems, such as SoS. Due to the fact
hat one may have systems of interest of very high dimen-
ion, which are complex in nature and even might not be
entral at times. Therefore, because of the LSS broad range of
nderstanding, it can be used to define systems in many  dif-

erent fields, such as electric power system networks, water
istribution systems, manufacturing systems, communica-

ion networks and economy and management systems. In this
work, we are mostly concerned with the process control view
of large-scale system for distributed model predictive control.

There are three classes of models in LSS: (a) aggregated
models, where a higher dimensional system is reduced by
approximation to a lower dimensional system. In this case
the major properties such as controllability, stability and
so forth must be preserved from the original system to
the reduced one; (b) perturbed models, where the reduced
model neglects existing interactions in the original model
by using a regular or singular approach for weak and strong
coupling, respectively, and finally, (c) descriptive variable mod-
els, in which the system representation consists mainly of
physical or economical variables of the system (Jamshidi,
1997). A classification of the LSS approaches can be also
made according to the topology of the communication net-
work, the different communication protocols used by the
local controllers, and the cost function considered in the
local controller optimization problem (Christofides et al.,
2013).

Decomposition for distributed optimization has been
widely used in the literature for process optimization and
distributed control. Despite all of the existing research, for
general problems, there is no systematic method for determin-
ing an optimal decomposition. The existing methodologies are
based on: a case by case study aiming to use any special struc-
ture available to partition the system, or by using a simulation
study to create blocks with small exogenous interaction; use
of network science theory, such as the community detection
strategy (Tang et al., 2018), to seek a strict block diagonal or
block triangular structure by using network algorithms. There
are two major aspects to note, either the existing methodol-
ogy does not apply to a general system description, or it is
based on a network distributed optimization that does not
guarantee performance. The study of distributed optimization
algorithms is still an open problem of research.

A communication-based MPC  (Model Predictive Control)
scheme was investigated by Jia and Krogh (2002) and DMPC
and estimation problems are considered in Mercangöz and
Doyle III (2007) for square plants perturbed by noise. Motee
and Sayyar-Rodsari (2003) introduced a partitioning algorithm
that uses an open-loop performance metric to partition the
distributed system into subsystems balancing them against
the closed-loop cost of the control actions for the overall dis-
tributed system. In Venkat et al. (2005), the authors proposed
a DMPC algorithm designed for linear systems based on a pro-
cess of negotiations among DMPC agents. Zhang and Wang
(2012) presented a strategy for linear time invariant systems
that requires decomposing the entire system into subsystems
based on the control input distribution. This method, however,
cannot be directly applied if the system has inputs affecting
all states of the system. Zhang et al. (2013) proposed a DMPC
algorithm for input-saturated polytopic uncertain systems.
The subsystem controllers are obtained by optimizing a global
cost function and acite min-max distributed MPC  strategy was
proposed for uncertain distributed systems.

It is known that linear systems are almost nonexistent
in nature, but around the operating point of a system one
can make use of the linearized model to predict the process
behavior without significant loss in performance of the con-
trol system. LMPC (Linear Model Predictive Control) can be
applied to these types of problems, where the goal is to operate
them in a region around a steady-state. Some processes with

a high degree of non-linearity may require the implementa-
tion of a nonlinear MPC  approach (NMPC). The principle that
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Fig. 1 – Representation of DMPC Strategies.
describes the NMPC is equivalent to the one of LMPC; the dif-
ference resides in whether the process dynamics are described
with a linear or nonlinear model. One of the problems when
working with NMPC approaches is that the computational
demand required to calculate the control actions within the
sampling period. One way to resolve this issue would be by
using the controller based on a local representation of the
plant model (by successive linearization). In that approach a
local linearized model is obtained at each sampling instant
and is used for control calculations.

The objective of this work is to develop two distributed
predictive control strategies for nonlinear processes, with par-
titioning methodology for linear systems, which will be used
after the successive linearization of the model. One of the con-
trol proposals has a non-cooperative structure and the other
a cooperative structure. The novelty of this work is centered
on the proposal of a new automatic partitioning of models
for application in DMPC for non-linear processes. The remain-
der of this article is organized as follows: Section 2 presents
the proposed new partitioning method and the two DMPC
strategies based on this new system partitioning method are
presented. Numeric examples are shown in Section 3, and
Section 4 concludes the paper.

1.1.  Notation

The operator ‖ · ‖2
Q is used to denote the square of a

weighted Euclidean norm, i.e., ‖x‖2
Q = xTQx for all x ∈ R

n. The

deviation variables are defined as ( )k = ( )k − ( )k−1. The
following nomenclatures are equivalent: x(k − 1) = xk−1 and
u(k − 1) = uk−1.

2.  Problem  formulation

This paper proposes two types of distributed control for non-
linear processes. The major difference between the proposed
methodologies is the algorithm for the calculation of control
actions, DMPC-1 uses a non-cooperative structure and DMPC-
2 is a cooperative controller. The methodologies presented

herein can be represented by the scheme of Fig. 1 and the
following steps:
Step 1: if required, evaluate a locally linearized discrete-time
model around the point (xk−1, uk−1);
Step 2: if required, apply the proposed partitioning method-
ology (Section 2.1);
Step 3: find the control uk using a DMPC-1 (Section 2.2.1) or
DMPC-2 (Section 2.2.2) algorithm;
Step 4: implement the uk obtained on the nonlinear plant;
Step 5: measure/estimate the states xk;
Step 6: with new uk and xk returns to Step 1.

Let a process be assumed to be described by the following
nonlinear ordinary differential equation system:

ẋ = f(x, u) (1)

y = g(x) (2)

where x ∈ R
n, u ∈ R

m and y ∈ R
l are the vector of state vari-

ables, the vector of manipulated variables and the vector of
controlled variables, respectively. The problem of interest is
the partitioning of this m-dimensional control problem into
smaller control problems that can be better maintained and
are also presented an easier solution strategy without a great
loss of performance compared to the centralized control strat-
egy for nonlinear control systems.

The local discrete-time representation of the process
model can be described as (Rocha and Oliveira-Lopes, 2016a,b)

x(k + 1) = Ak−1x(k) + Bk−1u(k) + f(xk−1, uk−1) (3)

y(k) = Ck−1x(k) + g(xk−1) (4)

where f(xk−1, uk−1) = Ac
−1(eAcTs − I)f(xk−1, uk−1), Ts is the

sampling time used in the model discretization, x(k) =
[x1 x2 · · · xn]T ∈ R

n is the state vector in deviation variable;
u(k) ∈ R

m refers to the manipulated variable vector in devia-
tion variable; y(k) ∈ R

l refers to the controlled output vector in
deviation variable; Ak−1 ∈ R

n×n, Bk−1 ∈ R
n×m, Ck−1 ∈ R

l×n are
the discrete-time state, input and controlled variable matrices
at time k − 1, respectively, and Ac ∈ R

n×n is the continuous-
time state matrix. Locally linearized versions of subsystems
will be used by distributed predictive controllers that deal with
plant-submodels mismatch as disturbances to the system.

2.1.  The  proposed  partitioning  methodology

The decomposition of the locally linearized version of the sys-
tem model is based on graph theory using the effect from the
input space to the controlled variables of interest. Firstly, one
evaluates the output effects from each input, next, the state-
output effect is analyzed. The proposed algorithm considers
two levels of effects, the direct effect and the indirect effect.
One needs to consider first the most dominant direct effects,
and if they are not explicit in the model, then the selection
goes to the indirect effect from all inputs to that specific con-
trolled output. The partition can be evaluated at each sampling
instant from the matrices Ak−1, Bk−1 and Ck−1 of the linearized
model (Eqs. (3)–(4)) or periodically according to specific pro-
cess/scenario requirements. To simplify the nomenclature the
index k − 1 will be dropped in the following steps in this paper.
Consider the following controllable linear time-variant (LTV)
plantwide discrete-time system model given by
x(k + 1) = Ax(k) + Bu(k) + Ac
−1(eAcTs − I)f  (5)
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Fig. 2 – Example of a graph representation for the linear time-invariant system, System II of Section 3.2.
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Fig. 3 – Algorithm partitionin

(k) = Cx(k) + g (6)

Consider the following definitions 1–3:
Definition 1: Define a set ϕi = {˛|B˛i /= 0,  ̨ = 1, . . .,  n}, in

hich B˛i is the ˛-th row and i-th column element of the B
atrix. The set ϑi = {x˛,  ̨ ∈ ϕi} contains the states directly

ffected by the input ui.
Definition 2: Define a set �i = {˛|A˛i /= 0,  ̨ = 1, . . .,  n}, in

hich A˛i is the ˛-th row and i-th column element in the A
atrix. The set �i = {x˛,  ̨ ∈ �i} represents the states directly

ffected by the state xi, which form the state structural matrix
 (matrix with 1 where there is state interaction and zero oth-
rwise).

Definition 3: Define a set �i with the states that must be
ncluded in the submodel M�i. Each submodel M�i will be
efined based on the mapping of each state belonging to set

i and �i affecting the output space (based on the C matrix).
A step-by-step algorithm for the introduced decomposition

trategy is:
Step 0: build a graph representation for the matrices A, B,

nd C from the linear model and build a graph representation
or it;

Step 1: create the sets ϕi and �i (and the sets ϑi and �i);
Step 2: create the set �i with the states belonging to the

ets ϑi and �i affecting directly the states that affect the output
ontrolled space;
Step 3: build submodel M�i with elements of the set �i and
he corresponding input;
ults, System II of Section 3.2.

Step 4: merge  the M�i and M�j (for i /= j) submodels if �i and
�j are identical sets. Create a new set of inputs by merging the
ui and uj inputs;

Step 5: check if the submodel M�i is controllable, otherwise
�i is augmented with elements (states) until that assumption
is satisfied.

Figs. 2 and 3 illustrate the partitioning algorithm for a local
representation of a linear system. The partitioning algorithm
receives a graph, as indicated in the example of Fig. 2, with
the system matrices and returns the partitioned subsystems,
as presented in Fig. 3 with the corresponding system matrices.

The algorithm described above was implemented in the
Scilab software and automatically generates controllable sub-
models from the matrices of the representation of the global
state-space model of the process.

2.2.  Controller  design

The directly controlled states can be written in compact form
as xi, and the rewritten plantwide system model is given by

xi(k + 1) = Aiixi(k) + Biiui(k) + fi(xk−1, uk−1)

+
M∑

j=1(j /= i)

Aijxj(k) + Bijuj(k)
(7)

M∑

yi(k) = Ciixi(k) + gi(xk−1) +

j=1(j /=  i)

Cijxj(k) (8)
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where i = 1, . . .,  M;  yi(k) ∈ R
li , xi(k) ∈ R

ni , ui(k) ∈ R
mi are out-

put, state and input vectors of subsystem modeled by M�i at
time k, respectively; xj(k), uj(k) are the state and input vector of
subsystem modeled by M�j, respectively. Herein all matrices
are evaluated at time k − 1.

In this paper, the interrelationships among subsystems are
usually treated as disturbances. Let

di(k) =
M∑

j=1(j /=  i)

Aijxj(k) + Bijuj(k) (9)

hi(k) =
M∑

j=1(j /=  i)

Cijxj(k) (10)

The i-th distributed system model in Eqs. (3)–(4) can be trans-
formed into the following form

xd,i(k + 1) = Aiixd,i(k) + Biiui(k) + fi(xk−1, uk−1) + di(k) (11)

yd,i(k) = Ciixd,i(k) + gi(xk−1) + hi(k), i = 1, 2, . . .,  M (12)

where di(k) and hi(k) represent disturbances from other sub-
systems and fi(xk−1, uk−1) and gi(xk−1) represent the values
of the functions f and g at the points (xk−1, uk−1) and (xk−1)
belonging to the subsystem i. Again, the index k − 1 will not
be displayed in the equations in this section, but one must
remember that the local representation of the state-space
model was obtained by the linearization process around the
(xk−1, uk−1) condition. For each subsystem, the distributed
MPC  problem is cast into the problem of designing a robust
MPC  control law. It is assumed that the nominal model of
(9)–(10) can be described as

xn,i(k + 1) = Aiixn,i(k) + Biiun,i(k) (13)

yn,i(k) = Ciixn,i(k), i = 1, 2, . . .,  M (14)

Predictions of the controlled outputs are obtained as follows

Yi(k|k) = ˝i� ixi(k|k) + ˝i�i�Ui(k|k) + ˝i� iui(k − 1|k)

+˝i�idi(k|k) + ˝i� ifi(k − 1|k) + ˚igi(k|k) + ˚ihi(k|k)
(15)

where

� i =

⎡
⎢⎢⎢⎢⎢⎣

Aii

A2
ii

...

A
Hpi
ii

⎤
⎥⎥⎥⎥⎥⎦ , �i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bii · · · 0

AiiBii + Bii · · · 0

...
. . .

...
Hpi−1∑
j=0

Aj

ii
Bii · · ·

Hpi−Hui∑
j=0

Aj

ii
Bii

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

� i =

⎡
⎢⎢⎢⎢⎣

Bii

AiiBii + Bii

...
Hpi−1

⎤
⎥⎥⎥⎥⎦ , �i = [

Cii

AiiCii + Cii

...
Hpi−1

], (17)
A
ii

Bii + · · · + Bii A
ii

Cii + · · · + Cii
� i =

⎡
⎢⎢⎢⎢⎢⎣

Ili

Aii + Ili

...

A
Hpi−1

ii
+ · · · + Ili

⎤
⎥⎥⎥⎥⎥⎦ , ˝i =

⎡
⎢⎢⎢⎢⎢⎣

Cii 0 · · · 0

0 Cii · · · 0

...
...

. . .
...

0 0 · · · Cii

⎤
⎥⎥⎥⎥⎥⎦

and ˚i =

⎡
⎢⎢⎢⎢⎢⎣

Ili

Ili

...

Ili

⎤
⎥⎥⎥⎥⎥⎦ . (18)

2.2.1.  DMPC-1  –  Non-cooperative  locally  linearized  DMPC
In the DMPC-1 case, each controller optimizes a local objec-
tive function. The cost function provided is composed of local
controlled outputs and manipulated variables, which can be
represented as

Ji(k) =
Hpi∑
j=Hwi

||yi(k + j|k) − ryi (k + j)||2Qi(j)

+
Hui−1∑
j=0

||�ui(k + j|k)||2Ri(j)

+
Hui−1∑
j=0

||ui(k + j|k) − rui (k + j)||2Wi(j)

(19)

where Qi > 0, Ri ≥ 0 and Wi ≥ 0 are the weighting matrices for
the states, variations of inputs and inputs, respectively; ryi
and rui are the reference trajectories for the controlled outputs
and the manipulated inputs, respectively. The cost function is
penalized in the prediction horizon in the range Hwi ≤ j ≤ Hpi .
The objective is to design a DMPC algorithm for computing an
input sequence based on the system states and inputs. The
control inputs obtained can guarantee closed-loop asymp-
totic convergence to the origin of the state and the local cost
function is minimal. The proposed DMPC controller is solved
(sequentially or in a parallel framework) by the following opti-
mization problem:

minui(k+j|k),j=0,...,Hui−1
Ji(k)

s.t.

Yi(k|k) = ˝i� ixi(k|k) + ˝i�i�Ui(k|k) + ˝i� iui(k − 1|k)+
˝i�idi(k|k) + ˝i� ifi(k − 1|k) + ˚igi(k|k) + ˚ihi(k|k)

xi(k|k) = xi(k)

xi(0) = xi0

ui(k + j|k) ∈ �, j = 0, . . .,  Hui − 1

(20)

where 	 is the available input space. Based on the receding
horizon strategy, only the first control action is implemented
on the plant. So if the number of plant inputs is m,  then only
the first m rows of the vector �Ui(k)opt. One can represent this
as
�ui(k)opt = [Im, 0m, . . .,  0m]�Ui(k)opt (21)
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Fig. 4 – Structure of 

here Im is the m × m identity matrix, and 0m is the m × m zero
atrix.

.2.2.  DMPC-2  –  Cooperative  locally  linearized  DMPC
he process of cooperation in the calculation of the control
ctions of a distributed control structure allows the exchange
f information between the subsystems during the same

nstant of sampling. Information from other subsystems is
resent for each controller.

In this section, the cooperative structure used in the DMPC
ontrol proposal is presented in detail. Fig. 4 presents a sim-
lified representation of this type of approach.

In this type of control, there is a controller responsible
or decision making in each subsystem i. Each subsystem i
onsists of li controlled outputs and mi manipulated inputs.
emember that the selection of these variables is done by
artitioning.

At each sampling instant, all controllers receive the values
f the measurable/estimated states (xk) from the plant and
egin an iterative process to determine their optimal trajec-
ories of their control actions. This step is performed through

 local objective function, to have an initial estimate of the
ctions to be calculated. This stage characterizes the first iter-
tion. Once the initial estimation is done, the subsystems
xchange information between them and the second itera-
ion begins, in which a global objective function is used, which
ncludes the effects of all control actions, including those
f the other subsystems. Each controller is responsible for

ncluding the effects of its inputs on the overall objective func-
ion. The information exchanged between subsystems allows
ach controller to know the models and control actions gener-
ted by the other plant controllers. In the cooperative process,
n each iteration, each controller uses the values of the actions
f the other controllers obtained in the previous iteration and
heir respective models to optimize their own control tra-
ectory. When the terminal condition is satisfied, ending the
terative process, each controller sends its optimized control
ctions to the actuators present in the plant. In Fig. 4, the opti-
um trajectory reached by each controller is identified by an

verwritten * (asterisk).
The methodology of the cooperative process is schema-

ized as follows:

. In the first iteration (c = 1):

(a) Each controller receives the measurable or estimated

values of the states (xk);
ooperation process.

(b) Each controller calculates its respective trajectories of
its control actions using a local objective function;

(c) The trajectories calculated by each controller are
shared between them;

2. In subsequent iterations (c > 1):
(a) Each controller calculates a new trajectory of its con-

trol actions using a global objective function and the
previously calculated trajectories of its neighbors;

(b) The convergence condition is evaluated: If satisfied,
each controller sends the calculated optimal actions
(u*) to the actuators; if not satisfied, return to Step 2
(c ←− c + 1).

The local optimization problem used by each controller
in the first iteration is identical to that used in the non-
cooperative linear DMPC proposal. The optimization problem,
can be solved sequentially or in a parallel framework, as well
as the overall objective function used in the other iterations
as presented below:

minui(k+j|k),j=0,...,Hui−1
J(k) =

∑
i

Ji(k)

s.t.

Yi(k|k) = ˝i� ixi(k|k) + ˝i�i�Ui(k|k) + ˝i� iui(k − 1|k)+
˝i�idi(k|k) + ˝i� ifi(k − 1|k) + ˚igi(k|k) + ˚ihi(k|k)

xi(k|k) = xi(k)

xi(0) = xi0

x(k + j|k) ∈ X, j > 0

x(k + Hu|k) ∈ Xf ,

ui(k + j|k) ∈ �i, j = 0, . . .,  Hui−1,

ul(k + j|k) = ul(k + j|k)c−1, l /= i

(22)

with

Ji(k) =
Hpi∑
j=Hwi

||yi(k + j|k) − ryi (k + j)||2Qi(j)+

Hui−1∑
j=0

||ui(k + j|k) − rui (k + j)||2Wi(j)
+

Hui−1∑
2

(23)
j=0

||�ui(k + j|k)||Ri(j) + ||x(k + Hui)||2Pi
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Stability properties are guaranteed by the terminal assem-
bly Xf ⊆ X and the terminal cost Vf = ||x(k + Hui)||2Pi . For the
unrestricted scenario it is desirable to stabilize the system
with the control law u(k) = K · x(k), this is, A + BK is stable. In
this work the gain K is the solution of a quadratic linear con-
trol (LQ) problem with infinite horizon with the same weights
Q and R used in the last equation. So if P is the solution of the
Lyapunov equation:

(A + BK)TP(A + BK) − P = −(Q + KTRK) (24)

it is possible the set Vf = xTPx and Xf =
{

X|xTPx ≤ d
}

, wherein
d is a small positive value chosen for u(k) = K · x(k) to any x ∈ Xf.

2.3.  Partitioning  linear  systems

The discrete time representation of a linear time-invariant
process can be described as

x(k + 1) = Ax(k) + Bu(k) (25)

y(k) = Cx(k) (26)

where x(k) = [x1 x2 · · · xn]T ∈ R
n is the state vector in devi-

ation variable; u(k) ∈ R
m refers to the manipulated variable

vector in deviation variable; y(k) ∈ R
l refers to the controlled

output vector in deviation variable; A ∈ R
n×n, B ∈ R

n×m, C ∈
R
l×n are the discrete-time state, input and controlled variable

matrices, respectively.
The i-th distributed system model for the linear plant can

be transformed into the following form

xd,i(k + 1) = Aiixd,i(k) + Biiui(k) + di(k) (27)

yd,i(k) = Ciixd,i(k) + hi(k), i = 1, 2, . . .,  M (28)

where di(k) and hi(k) represent, as before, disturbances from
other subsystems. For each subsystem, the distributed MPC
problem is cast into the problem of designing a control law.
It is assumed that the nominal model of (27) and (28) can be
described as

xn,i(k + 1) = Aiixn,i(k) + Biiun,i(k) (29)

yn,i(k) = Ciixn,i(k), i = 1, 2, . . .,  M (30)

Predictions of controlled outputs are obtained as follows

Yi(k|k) = ˝i� ixi(k|k) + ˝i�i�Ui(k|k) + ˝i� iui(k − 1|k)+
˝i�idi(k|k) + ˚ihi(k|k)

(31)

where the matrices have representations similar to these pre-
sented previously.

For the case of a linear time-invariant system one can also
show the closed-loop stability of the model predictive con-
troller using partitioned submodels.

2.3.1.  Closed-loop  stability  analysis
For the linear time-invariant case, the closed-loop stability of
the controller is evaluated following the work by Zhang and
Wang (2012). For the control based on the submodels, the sta-

bility of the closed-loop plant can be described according to
the following theorem:
Theorem: The plantwide closed-loop system satisfies
the quadratic Lyapunov stability condition if there exists a
sequence of positive-definite matrices Pi = PTi such that

AT
CLi

PiACLi − Pi < 0 (32)

for all subsystems i ∈ {1, . . ., M}.  Then,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AT
CL1

P1ACL1 − P1 < 0

AT
CL2

P2ACL2 − P2 < 0

· · · · · · · · · · · · · · ·
AT
CLM

PMACLM − PM < 0

(33)

The condition described by the system matrix inequalities in
Equation (33) guarantees the asymptotic stability of each of the
subsystems. However, using similar arguments, it is possible
to prove the asymptotic stability of the overall closed-loop sys-
tem. If there exist P1, P2, . . .,  PM satisfying condition (33), then
the following conditions can be obtained⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V1(k + 1) − V1(k) < 0

V2(k + 1) − V2(k) < 0

· · · · · · · · · · · · · · ·
VM(k + 1) − VM(k) < 0

(34)

Due to the convexity of Vi, i = 1, . . ., M,  one can add them
to originating a stability condition for the overall system as
V(k + 1) − V(k) < 0. The closed-loop system is obtained by com-
bining the state-affine model the MPC controller equations
into the following equation:[

x̂d,i(k + 1)

x̂i(k + 1)

]
= ACLi

[
x̂d,i(k)

x̂i(k)

]
(35)

where,

ACLi =
[

Aii − BiiKi( ii + Li) BiiKiLi

−BiiKiLi Aii − BiiKi( ii − Li)

]
(36)

Using Lyapunov arguments, the plantwide close-loop system
is asymptotic stable if there exist a positive-definite sym-
metric matrix P and a positive-definite quadratic Lyapunov
function V for all initial conditions.

3.  Applications

In this section, dynamic simulations are carried out to evalu-
ate the performance of the proposed DMPC controllers. The
order of the subsystems in the calculation of the control
actions (structural control definition) in the distributed strat-
egy was the same order obtained by the proposed partitioning.
Since the dimension of the toy example explored are not large
to gain full benefit of the strategy, in this work was chosen not
to find the best sequence for these controllers nor to evaluate
the parallel implementation of the calculation in the process-
ing time.

This section presents two illustrative applications for the
proposed methodology: (i) two reactors in series with a sep-
arator and recycle (case study I: OP1A and OP1B), and (ii) a

flowsheet of an industrial grinding system (case study II) pro-
posed by Ylinen et al. (1987).
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Fig. 5 – Two reactors in series with a separator and recycle
(Stewart et al. (2010)).

Table 1 – Process variables.

H1, H2, H3 Liquid heights in each equipment
xA1, xB1, xC1 Percent compositions of A, B and C in the first

reactor
xA2, xB2, xC2 Percent compositions of A, B and C in the

second reactor
xA3, xB3, xC3 Percent compositions of A, B and C on the

bottom of the separator
xAR, xBR, xCR Percent compositions of A, B and C at the top

of the separator
xA0, xB0 Percent compositions of A and B in the feed

flows
Ff1, Ff2 Feed flow rates of pure reagent A in reactors
T0 Temperature of feed flows
TR Temperature of the recycle flow
F1, F2, F3 Effluent flow rates in each equipment
FD Effluent flow rate of the process
FR Recycle flow rate exiting the separator to the

first reactor
� Density of the reaction mixture
cp Specific heat of the reaction mixture
�HA, �HB Heat of reactions
A1, A2, A3 Cross-sectional area of each equipment
T1, T2, T3 Temperatures in each equipment
Q1, Q2, Q3 External heat/coolant inputs to each

equipment
kA1, kB1 Reaction constants in the first reactor
kA2, kB2 Reaction constants in the second reactor

3
a

I
i
s
r
r
p
w
r

Table 2 – Parameters values of the model for System I

Parameter Value Units Parameter Value Units

cP 5.0 kJ/kg K T0 313.0 K
xA0 1.0 % xB0 0.0 %
�HA −200.0 kJ/kg �HB −50.0 kJ/kg
kA 2.0 1/min KB 0.18 1/min

System Case IA
A1, A2 0.02 m2 A3 0.01 m2

� 600.0 kg/m3 Kv1, Kv2, Kv3 8.5 kg/m s
EA/R 100.0 K EB/R 150.0 K
˛A, ˛B 1.0 – ˛C 2.0 –

System Case IB
A1, A2 3.0 m2 A3 1.0 m2

� 1000.0 kg/m3 Kv1, Kv2, Kv3 1020 kg/m s
EA/R 300.0 K EB/R 250.0 K
˛A, ˛B 1.5 – ˛C 2.0 –

Table 3 – Stationary conditions for System I.

OP1Ass1 OP1Ass2 OP1Bss1 OP1Bss2 Units

H1 0.706 0.423 0.706 0.423 m
xA1 0.233 0.194 0.210 0.177
xB1 0.604 0.570 0.626 0.650
T1 345.516 348.246 348.107 350.958 K
H2 1.176 0.541 1.176 0.541 m
xA2 0.173 0.118 0.150 0.101
xB2 0.626 0.598 0.597 0.605
T2 348.250 352.015 350.660 354.553 K
H3 0.939 0.351 0.939 0.351 m
xA3 0.194 0.134 0.200 0.142
xB3 0.701 0.677 0.796 0.851
T3 348.300 352.407 350.670 354.651 K
Ff1 4.000 6.000 480.000 240.000 kg/min
Q1 2.000 6.000 60.000 180.000 kJ/min
Ff2 4.000 1.000 480.000 120.000 kg/min
Q2 2.000 9.000 60.000 210.000 kJ/min
FR 2.000 1.600 240.000 192.000 kg/min
Q3 2.000 9.000 60.000 270.000 kJ/min

Table 4 – Input constraints for System I.

Input ui umin OP1A, B umax OP1A umax OP1B  Units

Ff1 0 10 500 kg/min
Q1 0 10 500 kJ/min
Ff2 0 10 500 kg/min
Q2 0 10 500 kJ/min
FR 0 10 500 kg/min
Q3 0 10 500 kJ/min
.1.  System  I:  Two  reactors  in  series  with  a  separator
nd recycle

n this example, consider a plant shown in Fig. 5 presented
n Stewart et al. (2010). This plant consists of two reactors in
eries, where a first-order reaction occurs that converts the
eactant A to the product B. In the reactors, another first-order
eaction occurs, in which the desired product B is lost to a side
roduct C. In series with the second reactor is a flash separator,
here the distillate is split and partially redirected to the first

eactor.
The model for this system is:

dH1

dt
= 1
�A1

(Ff 1 + FR − F1) (37)

dxA1

dt
= 1
�A1H1

[Ff 1(xA0 − xA1) + FR(xAR − xA1)] − KA1xA1 (38)

dxB1

dt
= 1

�A1H1
[Ff 1(xB0 − xB1) + FR(xBR − xB1)] + KA1xA1

−KB1xB1

(39)
dT1

dt
= 1

�A1H1
[Ff 1(T0 − T1) + FR(TR − T1)]

− 1
cP

(KA1xA1�HA + KB1xB1�HB) + Q1

�A1cPH1

(40)

dH2

dt
= 1
�A2

(Ff 2 + F1 − F2) (41)

dxA2

dt
= 1
�A2H2

[Ff  2(xA0 − xA2) + F1(xA1 − xA2)] − KA2xA2 (42)

dxB2

dt
= 1

�A2H2
[Ff 2(xB0 − xB2) + FR(xB1 − xB2)] + KA2xA2

−KB2xB2

(43)
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Fig. 6 – Dynamic evolution of controlled outputs for OP1A obtained by: centralized control (black solid line), DMPC-1 (blue
dashed dot line) and DMPC-2 (magenta dotted line). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

dT2

dt
= 1

�A2H2
[Ff 2(T0 − T2) + F1(T1 − T2)]

− 1
cP

(KA2xA2�HA + KB2xB2�HB) + Q2

�A2cPH2

(44)

dH2

dt
= 1
�A3

(F2 − FD − FR − F3) (45)

dxA3 1

dt

=
�A3H3

[F2(xA2 − xA3) + FD(xA3 − xAR) + FR(xA3 − xAR)]

(46)
dxB3

dt
= 1
�A3H3

[F2(xB2 − xB3) + FD(xB3 − xBR) + FR(xB3 − xBR)]

(47)

dT3

dt
= 1

�A3H3
[F2(T2 − T3) + FD(T3 − TR) + FR(T3 − TR)]

+ Q3

�A3cPH3

(48)

Flows are defined as:
Fi = KviHi, i ∈ I1:3 (49)
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Fig. 7 – Dynamic evolution of manipulated inputs for OP1A obtained by: centralized control (black solid line), DMPC-1 (blue
dashed dot line) and DMPC-2 (magenta dotted line). (For interpretation of the references to color in this figure legend, the
r

a

K

K

T

F

x

eader is referred to the web version of this article.)

nd the reaction constants are defined as:

Ai = KAexp
(−EA
RTi

)
, i ∈ I1:3 (50)

Bi = KBexp
(−EB
RTi

)
, i ∈ I1:3 (51)

he recycle flow and weight percents satisfy

D = 0.01FR (52)
AR = ˛AxA3

x3
(53)
xBR = ˛BxB3

x3
(54)

x3 = ˛AxA3 + ˛BxB3 + ˛CxC3 (55)

The controlled outputs and manipulated inputs are
denoted, respectively, as

y = [H1, T1, H2, T2, H3, T3]T (56)

u =
[
Ff 1, Q1, Ff 2, Q2, FR, Q3

]T
(57)
The definitions for the variables used in the above model
can be found in Table 1. Table 2 shows the parameters val-
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Fig. 8 – Dynamic evolution of controlled variable obtained for OP1B by: centralized control (black solid line), DMPC-1 (blue
dashed dot line) and DMPC-2 (magenta dotted line). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

ues and Table 3 presents stationary conditions of the system
considered in this example.

The simulations presented herein use two design scenar-
ios: OP1A and OP1B, both with a prediction horizon of Hp = 5
and a control horizon of Hu = 5. The weighting matrices for cen-
tralized control of OP1A are set as Q = I(l, l), R = 100I(m, m)  and
W = 10I(m,  m).  The weighting matrices Qi, Ri and Wi (relating
to subsystem i) for the DMPCs controllers of OP1A are: Qi = I(li,
li), Ri = 100I(mi, mi) and W = 10I(mi, mi). In the scenario OP1B the
weighting matrices for centralized control are set as Q = 10I(l,
l), R = I(m,  m) and W = I(m, m). The weighting matrices Qi, Ri and
Wi (relating to subsystem i), for DMPC controllers of OP1B are:

Qi = 10I(li, li), Ri = I(mi, mi) and W = I(mi, mi). In the operation of
this process the constraints in Table 4 need to be satisfied.
The control objective is to keep the controlled variables at
the steady-state ss1  until the instant k = 10Ts, where Ts is the
sampling time used (0.1 min, and 0.5 min, for OP1A and OP1B,
respectively). Subsequently, the control objective is to drive
the system to the steady-state ss2  and to keep in that condi-
tion until k = 150Ts (OP1A) or k = 60Ts (OP1B). Subsequently, the
control objective is to drive the system to the steady-state ss1
and to keep in that condition until k = 300Ts (OP1A) or k = 120Ts,
when process operation ends.

Fig. 6 and Fig. 8 present the dynamics of the controlled out-
puts for centralized control and the distributed MPC  strategy
proposed in this paper with automatic partitioning at every

sampling time. The control actions are given in Fig. 7 and
Fig. 9.
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Fig. 9 – Dynamic evolution of manipulated inputs obtained for OP1B by: centralized control (black solid line), DMPC-1 (blue
dashed dot line) and DMPC-2(magenta dotted line). (For interpretation of the references to color in this figure legend, the
r
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eader is referred to the web version of this article.)

For the scenario OP1A, it can be observed from the
igs. 6 and 7 that the response obtained by the centralized
ontrol and the proposed DMPC strategies present coincident
urves proving that the proposed methodologies present good
esults.

For the scenario OP1B, it should be noted that the responses
btained for the dynamics of the controlled outputs and
anipulated inputs are equivalent, except for the responses

btained by the DMPC-2. The trajectory obtained by the DMPC-
 is the one closest to the pre-established reference trajectory
or the variables. This shows that the presence of the iter-
tive process in this scenario, allowed to obtain improved
esults. The DMPC-2 for scenario OP1B presented performance

mprovement of more  than 64% for the manipulated inputs
and more  than 14% for the controlled outputs when compared
to the centralized control with same control setting as before.

The processing time of the controllers’ calculations were
recorded in order to promote another type of comparison
between the control structures evaluated. Here are some char-
acteristics of the computer used in the simulations:

Processor: Intel ® CoreTM i7-45100U CPU @ 2.00GHz
RAM Memory: 2 × 8GB DDR3 @ 1600MHz
Operational System: Windows 10 Home 64 bits
Simulation Software: Scilab (5.5.2) 64 bits
Next, Table 5 shows the sum of the calculation times of
the control actions for each control strategy throughout the
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Table 5 – Total processing time for control calculations.

Type of control Time (s) for OP1A Time (s) for OP1B

Centralized 228.96 201.46
DMPC-1 74.88 41.61
DMPC-2 377.16 404.21

Table 6 – Maximum processing time for control
calculations.

Type of control Time (s) for OP1A Time (s) for OP1B

Centralized 2.97 7.69
DMPC-1 0.83 1.27
DMPC-2 3.95 4.66

partitioning and model update were done at every sampling
operation time considered and for the two scenarios consid-
ered. (OP1A and OP1B). Table 6 shows the maximum time to the
processing time of the control action calculations at the time
when this was done more  slowly. This information is impor-
tant to verify if the time used by controllers has exceeded
sampling time.

Analyzing the results presented in Table 5, it is noted that
DMPC-1 is the fastest control strategy and DMPC-2 is the

one that presents the most time-consuming in its calcula-

Fig. 10 – Evolution of partitions for 
tions. From Table 6, it is noted that the maximum time of the
controllers does not exceed the sampling time used in each
scenario (10 seconds for OP1A and 30 seconds for OP1B). Of
course this performance would likely have larger benefit if the
system dimension was larger than the toy example presented,
just to show the methodology.

The developed controllers presented responses equivalent
or close to those obtained by centralized control. Evaluating
all the considered aspects, it can be affirmed for the scenar-
ios considered, that if better performance is desired without
worries with the processing time, the DMPC-2 control is a good
choice, but if the processing time is an important question, the
DMPC-1 control is a reasonable choice with no significant loss
of performance. One could also decrease the processing time
by selecting a less frequent model update and partitioning for
that situation.

3.1.1.  Partition  analysis
Figs. 10a–b and 11 a–b present the evolution of the proposed
partitions for DMPC-1 and DMPC-2, respectively for the case
studies OP1A and OP1B. In this section and all situations, the
time, and the number of distinct partitions found by the pro-

OP1A and OP1B using DMPC-1.
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Fig. 11 – Evolution of partitions

osed methodology was found to be 7 (seven) and 6 (six),
espectively.

For conciseness, the figures indicating each partition are
ot plotted for the case study I, but only their structural depen-
encies are presented. For the DMPC-1 control, note that in
able 7, the system presented 7 (seven) different types of
ubmodels (partitions) in the OP1A scenario, with the first
artition the most frequent, while in the OP1B scenario (see
able 8) 6 (six) different partitions were proposed during the
tudied transition, with the third partition the most frequent
ne.

For the DMPC-2 controller, note that in Table 9, the sys-
em presented six different types of partitions in the OP1A
cenario, with the first partition the most frequent, while in
he OP1B scenario (see Table 10) 5 (five) different partitions
ere proposed during the studied transition, with the third
artition the most frequent one.

Naturally, this behavior is transition dependent and the
ubmodel type does not imply that the submodel has constant
alues, but only the structural form of the partition is given by
he partition algorithm. The local linearized matrices depend
n the model update (linearization step) performed.
The effect of the partitioning frequency was evaluated in
he two scenarios for the DMPC-2 strategy, applying parti-
OP1A and OP1B using DMPC-2.

tioning at each sampling instant, every five, every ten, every
fifteen and every twenty sampling times (Ts, 5Ts, 10Ts, 15Ts e
20Ts, respectively). This evaluation may determine if it is really
advantageous to carry out the proposed partitioning at each
sampling instant. In addition it suggests that a procedure for
selecting whether or not the partitioning would be advanta-
geous could be implemented by evaluating the plant-model
mismatch during the transition.

The results obtained by the partitioning frequency analy-
sis indicate that performance losses are negligible. Therefore,
for the case studies evaluated, the frequency of partitioning in
the evaluated range does not impact the performance of the
proposed controllers, but there is a gain in processing time.
Tables Table 11 and Table 12 present the processing times
of the DMPC-1 and DMPC-2 controllers, respectively, for the
different partitions frequencies tested.

It is noted in Tables 11 and 12 that, as was expected, there
was a decreasing in the processing time when the frequency of
partitioning decreased. For the DMPC-1 strategy and OP1A sce-
nario, for example, there was a 52 % decrease in partitioning
every 20 sampling instants, instead doing so at every instant,
without losing much performance.
It is known that the given performance is a function of the
used tuning by the controllers, the tested scenario, and the
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Table 7 – Simulation partitioning results for case study IA using DMPC-1.

Partition Submodel Description Frequency

# 1

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

61.0%
2 {u2, u4 and u6} ⇒ {x4, x8 and x12}
3 {u3} ⇒ {x4, x5, x8 and x12}
4 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}

# 2

1  {u2, u4 and u6} ⇒ {x4, x8 and x12}
32.3%2 {u3} ⇒ {x4, x5, x8, x9 and x12}

3 {u1 and u5} ⇒ {x1, x4, x5, x8, x9 and x12}

#3

1 {u1} ⇒ {x1, x4, x5, x8 and x12}

4.0%
2 {u2, u4 and u6} ⇒ {x4, x8 and x12}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}

#4
1 {u2, u4 and u6} ⇒ {x4, x8 and x12}

1.7%2 {u3} ⇒ {x4, x5, x8 and x12}
3 {u1 and u5} ⇒ {x1, x4, x5, x8, x9 and x12}

#5
1 {u2, u4 and u6} ⇒ {x4, x8, x9 and x12}

0.3%2 {u3} ⇒ {x4, x5, x8, x9 and x12}
3 {u1 and u5} ⇒ {x1, x4, x5, x8, x9 and x12}

#6

1 {u3} ⇒ {x4, x5, x8, x9 and x12}

0.3%
2 {u4} ⇒ {x4, x8 and x12}
3 {u1 and u5} ⇒ {x1, x4, x5, x8, x9 and x12}
4 {u2 and u6} ⇒ {x4, x8, x9 and x12}

#7

1 {u3} ⇒ {x4, x5, x8, x9 and x12}

0.3%
2 {u1 and u5} ⇒ {x1, x4, x5, x8, x9 and x12}
3 {u6} ⇒ {x4, x8, x9 and x12}

u2 an
4 {

disturbances used to investigate it. As it can be seen in this
case, the results show that the distributed controller is not
far behind in output performance compared to the central-
ized controller, and indeed the partitioning frequency can be
chosen for each case without much loss of performance and
if desired, only the most important one could be previously
investigated (with optimizing tuning). In all cases herein, no
effort was made to reach an optimal control tuning. However,
the performance of partitioned control system may require
that a tuning strategy need to be investigated for the DMPC
depending on the model update and frequency selected in the
proposed methodology.

3.2.  System  II:  Industrial  Grinding  System

The system shown in Fig. 12 is a flowchart of a typical indus-

trial grinding system and is presented in Ylinen et al. (1987).
The controlled outputs are: the grain size of the hydrocy-

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.716 0 0 0 

0 0.863 1.049 0 

0 −0.109 0.186 0 

0 0 0 0.670 

0 0 0 0 0

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
d u4} ⇒ {x4, x8, x9 and x12}

clone overflow stream, denoted as y1 and power density of
the hydrocyclone, denoted as y2. These outputs are controlled
by manipulating the feed ore (u1) and secondary water supply
(u2). This system is linear, so the local linearization step and
model update are not necessary. Additionally, the partitioning
algorithm is used once only. The state-space matrix represen-
tation will be constant at all times. The motivation to include
this linear system here is two folds, the first is to present
details on how the algorithm works at each time instant k, and
how to deal with processes in which the controlled variables
are a combination of states.

The model of the plant expressed in incremental form for
the inputs is given by:

x(k + 1) = Ax(k) + B�u(k) (58)

y(k) = Cx(k) (59)

where,

0 −0.283 0 0 0

0 0 0.755 0 0

0 0 −0.529 0 0

0 0.176 0.865 0 0

.135 0 0 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 0.819 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(60)
0 0 0 0 0.819
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Table 8 – Simulation partitioning results for case study IB using DMPC-1.

Partition Submodel Description Frequency

# 1

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

27.5%

2 {u2} ⇒ {x4}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x8 and x12}
6 {u6} ⇒ {x4 and x12}

# 2

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

1.7%

2 {u2} ⇒ {x4}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x9 and x12}
6 {u6} ⇒ {x4 and x12}

# 3

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

44.2%

2 {u2} ⇒ {x4 and x8}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}
6 {u6} ⇒ {x4 and x12}

# 4

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

1.7%

2 {u2} ⇒ {x4 and x8}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x9 and x12}
6 {u6} ⇒ {x4 and x12}

# 5

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

11.7%

2 {u2} ⇒ {x4 and x8}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x8 and x9}
6 {u6} ⇒ {x4 and x12}

# 6

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

13.3%

2 {u2} ⇒ {x4}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}
6 {u6} ⇒ {x4 and x12}

Table 9 – Simulation partitioning results for case study IA using DMPC-2.

Partition Submodel Description Frequency

# 1

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

62.0%
2 {u2, u4 and u6} ⇒ {x4, x8 and x12}
3 {u3} ⇒ {x4, x5, x8 and x12}
4 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}

# 2

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

3.7%
2 {u2, u4 and u6} ⇒ {x4, x8 and x12}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}

# 3
1  {u2, u4 and u6} ⇒ {x4, x8 and x12}

31.3%2 {u3} ⇒ {x4, x5, x8, x9 and x12}
3 {u1 and u5} ⇒ {x1, x4, x5, x8, x9 and x12}

# 4

1  {u3} ⇒ {x4, x5, x8, x9 and x12}

1.3%
2 {u4} ⇒ {x4, x8 and x12}
3 {u1 and u5} ⇒ {x1, x4, x5, x8, x9 and x12}
4 {u2 and u6} ⇒ {x4, x8, x9 and x12}

# 5

1  {u2, u4 and u6} ⇒ {x4, x8 and x12}

0.3%
2 {u3} ⇒ {x4, x5, x8, x9 and x12}
3 {u1} ⇒ {x1, x4, x5, x8, x9 and x12}
4 {u5} ⇒ {x1, x4, x5, x8 and x12}

# 6
1  {u2, u4 and u6} ⇒ {x4, x8 and x12}

0.1%2 {u3} ⇒ {x4, x5, x8 and x12}
3 {u1 and u5} ⇒ {x1, x4, x5, x8 and x12}
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Table 10 – Simulation partitioning results for case study IB using DMPC-2.

Partition Submodel Description Frequency

# 1

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

27.5%

2 {u2} ⇒ {x4}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x8 and x9}
6 {u6} ⇒ {x4 and x12}

# 2

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

15.8%

2 {u2} ⇒ {x4}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}
6 {u6} ⇒ {x4 and x12}

# 3

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

42.5%

2 {u2} ⇒ {x4 and x8}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}
6 {u6} ⇒ {x4 and x12}

# 4

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

1.7%

2 {u2} ⇒ {x4 and x8}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x9 and x12}
6 {u6} ⇒ {x4 and x12}

# 5

1  {u1} ⇒ {x1, x4, x5, x8 and x12}

12.5%

2 {u2} ⇒ {x4 and x8}
3 {u3} ⇒ {x4, x5, x8, x9 and x12}
4 {u4} ⇒ {x8 and x12}
5 {u5} ⇒ {x1, x4, x5, x8, x9 and x12}
6 {u6} ⇒ {x4 and x12}

Table 11 – Control calculation processing times for the
partitioning frequency of DMPC-1.

Partitioning frequency OP1A OP1B

Every Ts 230.02 62.65
Every 5Ts 156.77 60.72
Every 10Ts 154.57 60.13
Every 15Ts 139.09 59.88

Table 12 – Control calculation processing times for the
partitioning frequency of DMPC-2.

Partitioning frequency OP1A OP1B

Every Ts 590.14 229.11
Every 5Ts 530.56 227.93
Every 10Ts 511.97 226.77
Every 15Ts 503.67 226.13
Every 20Ts 111.31 59.22

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0.181 0

0 0.181

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C =
[

1 1 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0

]
(61)

In this case study, it was established that the control system
must always obey the speed restriction on the manipulated
variables, |�umax| = 1 and the system is initially at x(0) = [0, 0,
0, 0, 0, 0, 0, 0, 0]T. The presented system was partitioned into
two distinct subsystems using the proposed partitioning strat-
egy. The resulting figures for the partitioned subsystems are
given in Fig. 3, and the subsystems are represented by: Sub-
system 1: {u1} ⇒ {x1, x2, x6 and x8}, and Subsystem 2: {u2}

⇒ {x4, x5, x7 and x9}. The respective subsystem models are
given by:
Every 20Ts 485.23 226.05

Subsystem Model #1:

⎡
⎢⎢⎢⎣
x1(k + 1)

x2(k + 1)

x6(k + 1)

x8(k + 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

0.716 0 −0.283 0

0 0.863 0 0

0 0 1 1

0 0 0 0.819

⎤
⎥⎦

⎡
⎢⎢⎢⎣
x1(k)

x2(k)

x6(k)

x8(k)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎣

0

0

0

0.181

⎤
⎥⎦u1(k) (62)

[
y1(k)

]
=

[
1 1 0 0

]
⎡
⎢⎢⎢⎢⎣
x1(k)

x2(k)

x6(k)

⎤
⎥⎥⎥⎥⎦ (63)
x8(k)
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Fig. 12 – Flowsheet of industrial grinding system (Ylinen
e

[

F
m
s
t
c
w
a
Q

t
u
t
i
a
i
y
u
t
t
a
a
a

a
c
t
t

o

t al. (1987)).

Subsystem Model #2:

⎡
⎢⎢⎢⎢⎣
x4(k + 1)

x5(k + 1)

x7(k + 1)

x9(k + 1)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0.670 0 0 0

0 0.165 0.865 0

0 0 1 1

0 0 0 0.819

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
x4(k)

x5(k)

x7(k)

x9(k)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

0

0

0

0.181

⎤
⎥⎥⎦u2(k) (64)

y2(k)
]

=
[

1 −1 0 0
]
⎡
⎢⎢⎢⎢⎣
x4(k)

x5(k)

x7(k)

x9(k)

⎤
⎥⎥⎥⎥⎦ (65)

igs. 2 and 3 show the structural graph for the original plant
odel, and the two partitioned submodels, respectively. The

imulation results used a prediction horizon Hp = 10 and con-
rol horizon Hu = 5; the weighting matrices for centralized
ontrol are set as Q = diag(9.30, 10) and R = diag(1, 1). The
eighting matrices Q1 and R1 (related to subsystem #1), Q2

nd R2 (relating to subsystem #2) for the DMPC controllers are

1 = [10], R1 = [1], Q2 = [2.58] and R2 = [6.02].
In the investigated scenario for System II, the control objec-

ive for the control variable y1 is to keep it at its initial value
ntil the instant k = 10, at which time it is desired to change
he value to y1 = 1 until the k = 100, and subsequently to return
t to the initial condition until k = 160, when the process oper-
tion ends. For the controlled variable y2, the control objective
s to keep it at its initial value until k = 60, then to change it to

2 = 1 until k = 110 and then to return it to the initial condition
ntil k = 160, when the process operation ends. The subsys-
ems order used in the calculation of the control actions in
he distributed strategy was sequential from subsystem # 1
nd then subsystem #2. It is important to highlight that a par-
llel calculation could also be implemented in case of LSS such
s to decrease the overall processing time.

Fig. 13 presents the dynamics of the controlled outputs y1

nd y2. The figure shows the responses obtained by centralized
ontrol and by DMPC strategy proposed in this paper. The con-
rol actions implemented by the manipulated inputs u1 and u2

hat caused the responses in Fig. 13, are shown in Fig. 14.

Analyzing the results, one can notice that for the trajectory

f the controlled output y1 under the proposed DMPC is close
to that obtained using centralized control, though the trajec-
tory of y2 under the DMPC scheme oscillates more  than under
the centralized scheme. The integral deviation of the values of
the controlled outputs for DMPC in relation to the centralized
control was high, but at the expense of a total input smaller
than the one for a centralized approach. A better controller
tuning could improve the response of this process.

The stability can be assessed by evaluating the P matrices
for all subsystems. In this work, the set of inequality was eval-
uated by an LMI (Linear Matrix Inequality) solver. In this case,
it was found two partitions and a stable closed-loop DMPC
controller, since P < 0.

P1 =
[

P1a P1b

]
(66)

where,

P1a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2235.53 0.00 708.94 −630.73 −525.24

0.00 4173.02 0.00 0.00 0.00

708.94 0.00 3051.99 245.21 264.67

−630.73 0.00 245.21 2970.49 2613.17

−525.24 0.00 264.67 2613.17 4984.49

−1384.67 0.00 669.53 577.34 496.13

0.00 0.00 0.00 0.00 0.00

682.79 0.00 −361.50 −357.19 −241.90

264.97 0.00 −150.15 −2467.64 −2322.20

178.57 0.00 −29.11 −1549.13 −4423.78

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(67)

and

P1b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1384.67 0.00 682.79 264.97 178.56

0.00 0.00 0.00 0.00 0.00

669.53 0.00 −361.50 −150.15 −29.11

577.34 0.00 −357.19 −2467.64 −1549.13

−496.13 0.00 −241.90 −2322.20 −4423.77

2206.18 0.00 678.60 −168.52 −244.79

0.00 4173.02 0.00 0.00 0.00

678.60 0.00 3092.32 29.51 153.12

−168.52 0.00 29.51 2340.54 1498.27

−244.79 0.00 153.12 1498.27 5534.57

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)

P2 =
[

P2a P2b

]
(69)

where,

P2a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−59.88 742.99 0.00 1645.29 61.01 401.69

297.49 238.77 0.00 61.01  4058.61 3056.69

286.19 −108.59 0.00 401.69 3056.68 6020.60

−925.17 −726.99 0.00 148.67 −469.27 −297.88

−639.82 −1431.97 0.00 489.94 −107.89 −4.19

0.00 0.00 0.00 0.00 0.00 0.00

107.04 489.68 0.00 −636.34 −274.56 −251.61

−297.23 −412.47 0.00 −14.49 −3028.50 −2817.23

20.15 −229.53 0.00 118.81 −1636.99 −4461.76

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(70)
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Fig. 13 – Dynamic evolution of controlled outputs obtained using centralized control (black solid line) and proposed DMPC
(blue dashed line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 14 – Dynamic evolution of manipulated inputs obtained using centralized control (black solid line) and proposed DMPC
(blue dashed line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
and

P2b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

148.67 489.94  0.00 −636.34 −14.49 118.81

−469.27 −107.89 0.00 −274.56 −3028.50 −1636.99

−297.88 −4.19 0.00 −251.61 −2817.23 −4461.76

1311.24 1013.56 0.00 59.37 227.18  −73.54

1013.56 3794.20 0.00 636.64  630.04 −93.85

0.00 0.00 3467.49 0.00 0.00 0.00

59.37 636.64  0.00 1742.03 −385.61 41.07

227.18 630.04  0.00 −385.61 3315.43 1422.40

−73.54 −93.85 0.00 41.07 1422.40 5857.05

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(71)
4.  Conclusion

This paper introduces a simple and promising procedure that
can be applied to partitioning a nonlinear model for dis-
tributed model predictive control. The methodology can be
applied to nonlinear systems and extends the results of lin-
ear systems proposed by Zhang and Wang (2012) by handling
processes with full input-state matrices. If guaranteed sta-
bility conditions are imposed to subsystems, the plantwide
control can be implemented. In general, in all the case studies
evaluated, the proposed controller developed in this study pre-

sented similar responses as those obtained by the centralized
control, with the DMPC-2 strategy being the best performing
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trategy when compared to the centralized control version,
ut it is the technique with longer processing time. From the
nalysis of the frequency of application of the partitioning
ethodology by the controller, it can be stated that, for the

ase studies evaluated, it is possible to reduce the processing
ime by decreasing the frequency of partitioning, without los-
ng much performance. It is also necessary to highlight that a
rocedure for achieving an offset-free MPC  need to be imposed

plant-model mismatch) because the overall selected submod-
ls may have different gains compared to the actual process
sed by the controller.
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