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a b s t r a c t 

This work proposes resilient operation strategies for nonlinear processes that are vulnerable to targeted 

cyber-attacks, as well as detection and handling of standard types of cyber-attacks. Working with a 

general class of nonlinear systems, a modified Lyapunov-based Economic Model Predictive Controller 

(LEMPC) using combined closed-loop and open-loop control action implementation schemes is proposed 

to optimize economic benefits in a time-varying manner while maintaining closed-loop process stabil- 

ity. Although sensor measurements may be vulnerable to cyber-attacks, the proposed controller design 

and operation strategy ensure that the process will maintain stability and stay resilient against partic- 

ular types of destabilizing cyber-attacks. Data-based cyber-attack detectors are developed using sensor 

data via machine-learning methods, and these detectors are periodically activated and applied online in 

the context of process operation. Using a continuously stirred tank reactor example, simulation results 

demonstrate the effectiveness of the resilient control strategy in maintaining stable and economically 

optimal operation in the presence of cyber-attacks. The detection results produced by the detection algo- 

rithm demonstrate the capability of the proposed method in identifying the presence of a cyber-attack, as 

well as in differentiating between different types of cyber-attacks. Upon successful detection of the cyber- 

attacks, the impact of cyber-attacks can be mitigated by replacing the attacked sensors by secure back-up 

sensors, and secure operation will resume with the process operated under the proposed resilient LEMPC 

control strategy. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cyber-physical systems (CPS) integrate communication net-

orks, computation, and physical process components to ensure

utomated real-time operation in a seamless manner. Stable and

ecure operation of cyber-physical systems require accurate infor-

ation and reliable communication technologies. In recent years,

he cyber-security of cyber-physical systems has become increas-

ngly important as more communication networks are replaced

r complemented by wireless networks in addition to point-to-

oint communications ( Christofides et al., 2007; Ahlén et al., 2019 ).

hile these new developments increase operation efficiency and

erformance, they also increase the system’s vulnerability to cyber-

ttacks. Recent incidents of cyber-attacks on various industrial

lants, such as the Iranian nuclear plant attack in 2010 and the

krainian electric power grid attack in 2015, demonstrated the

apability of cyber-attacks in infiltrating CPS and the severity of
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heir consequences. Malicious cyber-attacks could target any de-

ice or communication channels in the control network to mod-

fy control actions and jeopardize operational cost, stability, in-

egrity, and other safety considerations. With access to technical

etails of the control system, these targeted cyber-attacks are in-

elligently designed to disrupt process operation and compromise

undamental process safety. As cyber-attacks pose severe threats to

he control system, safety measures addressing cyber-security need

o be carefully considered and incorporated in plant-wide risk as-

essments. A nonlinear systems framework for cyber-attack pre-

ention was proposed in ( Durand, 2018 ) to inspect cyber-attack-

esilient properties of the process and of the control designs. The

mpact of cyber-attacks on critical infrastructures was assessed us-

ng methodologies in system dynamics and sensitivity analysis in

enge et al. (2015) , and metrics were proposed for quantifying the

ropagation of cyber-attacks and significance of control variables. 

On the other hand, with the increase in digital connectivity

nd computing power, potential applications of archived plant data

ould extend beyond day-to-day monitoring and operation. One

xample use of these “big data” approaches is cyber-attack and

https://doi.org/10.1016/j.compchemeng.2020.106806
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http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106806&domain=pdf
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.compchemeng.2020.106806


2 S. Chen, Z. Wu and P.D. Christofides / Computers and Chemical Engineering 136 (2020) 106806 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

t  

d  

b  

t  

s  

r  

w  

t  

t  

fi  

t  

n  

a  

b  

d  

a  

c  

w  

s  

l  

i  

a  

C  

t  

t  

p  

c  

c  

c  

t  

t  

a  

c  

f  

s  

m  

c  

d  

t  

t  

S  

n

2

2

 

t  

f  

i  

t  

f

 

d

x  

x  

 

n

u  

a  

o  
anomaly detection. Due to the close interactions between cyber

and physical components, operational cyber-security of control sys-

tems would mandate a different strategy than traditional informa-

tion technology (IT) approaches – one that combines robust control

strategies with an advanced detection scheme using the process

data at hand, which can be found in Raiyn (2014) . 

Cyber-attacks can target actuators, sensors, communication

channels between devices, and the control system algorithms; they

modify the control implementation using process and control sys-

tem information in an attempt to disrupt closed-loop performance.

A comprehensive review in Ashibani and Mahmoud (2017) in-

cluded analysis on security issues, requirements, and possible so-

lutions at various layers of the CPS architecture. Moreover, a sur-

vey on cyber-physical systems security from the security perspec-

tive (taxonomy of threats, attacks, and controls), the cyber-physical

components perspective, and from a holistic systems perspective

was explored in Humayed et al. (2017) , where representative sys-

tems such as smart grids, medical CPS, and smart cars were stud-

ied. A review of possible weaknesses in corporate networks, in

the Supervisory Control and Data Acquisition (SCADA) and Dis-

tributed Control System (DCS) systems, and in production envi-

ronments was presented in Asghar et al. (2019) . Amongst sensor

cyber-attacks, some common attack types are denial-of-service at-

tacks, replay attacks, and deception attacks – such as min-max, ge-

ometric, and surge attacks ( Cárdenas et al., 2011 ). For instance, for

replay attacks commonly occurring on wireless sensor networks, a

wormhole tunnel can be created between two end points to replay

messages observed in different regions ( Lee et al., 2014 ). The de-

tection and control of replay attacks in smart grid systems specifi-

cally have also been studied in Tran et al. (2013) ; Zhao et al. (2016) .

Moreover, adversaries may launch other deception attacks through

hacking remote terminal units (RTUs), such as sensors in substa-

tions in a power grid transmission system. In Amin et al., 2012 , a

hierarchical attack in automated canal systems was described with

various deception attacks in different cyber layers, and a field-

operational test attack was reported on the Gignac canal system

located in Southern France. Due to the sophistication of cyber-

attacks and their accessibility to control system information, they

are intended to disrupt the closed-loop system while avoiding be-

ing detected by conventional detection methods or by control en-

gineers, thus making them fundamentally different from sensor

or actuator faults. Situations where conventional model-based de-

tection schemes may be rendered ineffective by intelligent cyber-

attacks can be potentially tackled by data-based detection meth-

ods ( Cárdenas et al., 2011 ). 

The development and applications of machine-learning meth-

ods in traditional engineering fields have increased in recent

years, and more specifically in the field of systems engineering

( Polycarpou and Ioannou, 1991; Rawlings and Maravelias, 2019;

Wu et al., 2019; Venkatasubramanian, 2019 ). Machine learning

techniques, such as artificial neural networks, support vector ma-

chines ( Widodo and Yang, 2007 ), as well as more advanced deep

learning methods, such as recurrent neural networks ( Schuster

and Paliwal, 1997; Hochreiter and Schmidhuber, 1997 ), have

demonstrated effectiveness in plant anomaly detection ( Samanta

and Al-Balushi, 20 03; Bishop, 20 06; Singh and Nene, 2013 ). More

specifically, the application of feed-forward artificial neural net-

works in modeling thin-film deposition processes ( Chaffart and

Ricardez-Sandoval, 2018; Kimaev and Ricardez-Sandoval, 2019 ) has

provided comparable control performances, and the application

of neural networks in detecting cyber-attacks in a chemical pro-

cess has shown superior performance than traditional statistical

methods in Wu et al. (2018) . Motivated by this, machine-learning

methodologies can be readily adopted in the context of control

theory and cyber-physical security. In addition to having an ade-

quate detection mechanism, control and operation strategies can
e designed or adjusted accordingly if a process is vulnerable

o cyber-attacks. Prior to developing control frameworks to ad-

ress cyber-attacks in cyber-physical systems, there has been ro-

ust model-based control frameworks proposed to address uncer-

ainties in the process. In Heidarinejad et al. (2012) , it was as-

umed that the uncertain process variables were bounded, and the

obustness of the controller was established with respect to the

orst-case values of the uncertain variables such that the state of

he closed-loop system stays within a well-characterized region of

he state-space given that the uncertain variables are within suf-

ciently small bounds. Moreover, other tube-based model predic-

ive controller approaches have been developed to achieve robust-

ess against unstructured uncertainties ( Mayne et al., 2011; Falugi

nd Mayne, 2013 ). In recent years, increasing research effort s have

een dedicated to developing system and control designs to ad-

ress cyber-attacks ( Durand, 2018 ). For instance, novel methods

nd tools to support effective preliminary design effort s f or new

yber-physical systems were presented in Carter et al. (2019) ,

hich addressed the integration of required defense and resilience

olutions. A robust event-triggered model predictive control prob-

em was investigated in Sun and Yang, 2019 when the process

s subject to bounded disturbances and denial-of-service cyber-

ttacks. Cumulative Sum (CUSUM) detection method was used in

hamanbaz et al. (2019) in conjunction with model predictive con-

rol to operate a nonlinear system under false data injection at-

acks. Moreover, a robust two-tier control architecture was pro-

osed in Chen et al. (2020) that provided convenient system re-

onfiguration strategies to maintain cyber-security. In light of these

onsiderations, the contributions of this work are as follows: 1) A

yber-secure operation mode of economic model predictive con-

rol, 2) the construction of a data-based machine-learning detec-

ion algorithm, and 3) the application of the proposed operation

nd detection schemes to a benchmark nonlinear chemical pro-

ess example. The remainder of this manuscript is organized as

ollows: The notation, the class of nonlinear process systems con-

idered, as well as the formulation of Lyapunov-based economic

odel predictive control are shown in Section 2 ; the modified

yber-secure LEMPC formulations are presented in Section 3 ; the

esign of adapted intelligent cyber-attacks is shown in Section 4 ;

he attack-resilient control strategies are developed in Section 5 ;

he machine-learning-based detection algorithm is explained in

ection 6 ; and the application of the proposed methodology to a

onlinear chemical process example is presented in Section 7 . 

. Preliminaries 

.1. Nonlinear system formulation 

In this work, | ·| is used to denote the Euclidean norm of a vec-

or; x T denotes the transpose of x ; R 

n + denotes the set of vector

unctions of dimension n whose domain is [0, ∞ ). Set subtraction

s denoted by “\ ”, i.e., A \ B := { x ∈ R 

n | x ∈ A, x �∈ B }. Class K func-

ions α( ·): [0, a ) → [0, ∞ ] are defined as strictly increasing scalar

unctions with α(0) = 0 . 

The class of continuous-time nonlinear systems considered is

escribed by the following state-space form: 

˙ 
 (t) = f (x (t ) , u (t )) (1a)

¯
 (t) = h (x (t)) (1b)

where x ( t ) ∈ R 

n is the state vector, and u ( t ) ∈ R 

m is the ma-

ipulated input vector, which is constrained by u ∈ U := { u min 
i 

≤
 i ≤ u max 

i 
, i = 1 , . . . , m } ⊂ R 

m , where u min 
i 

and u max 
i 

are the lower

nd upper bounds for the input vector. We will denote the vector

f state measurements from sensors, which may be compromised
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m  
y sensor cyber-attacks, with x̄ (t) ∈ R 

n . When no cyber-attacks are

resent in the system, x̄ (t) = x (t) . Without loss of generality, the

nitial time t 0 is taken to be zero ( t 0 = 0 ). It is assumed that f ( ·)
s a sufficiently smooth vector function of its arguments, and h ( ·)
s a sufficiently smooth vector function of x where f (0 , 0) = 0 ,

 (0) = 0 . Thus, the origin is an equilibrium point of the system of

q. 1 under u (t) = 0 . 

We assume that there exists an explicit feedback controller of

he form u (t) = φ(x (t)) ∈ U that can render the origin of the non-

inear closed-loop system of Eq. 1 asymptotically stable. 

The stabilizability assumption implies the existence of a posi-

ive definite control Lyapunov function V ( x ) that satisfies the fol-

owing conditions: 

1 (| x | ) ≤ V (x ) ≤ α2 (| x | ) , (2a)

∂V ( x ) 

∂x 
f ( x, φ( x ) ) ≤ −α3 ( | x | ) , (2b) 

∂V (x ) 

∂x 

∣∣∣∣ ≤ α4 (| x | ) (2c) 

for all x ∈ D ⊆R 

n , where D is an open neighborhood around the

rigin, and αi ( ·), i = 1 , 2 , 3 , 4 , are class K functions. Based on the

niversal Sontag control law ( Lin and Sontag, 1991 ), a candidate

ontroller φ( x ) is given by the saturated control law accounting for

he input constraint u ∈ U , which is shown as follows: 

 i (x ) = 

⎧ ⎨ 

⎩ 

− p + 

√ 

p 2 + | q | 4 
| q | 2 q, if q � = 0 

0 , if q = 0 

(3a) 

φi (x ) = 

⎧ ⎨ 

⎩ 

u 

min 
i 

, if ϕ i (x ) < u 

min 
i 

ϕ i (x ) , if u 

min 
i 

≤ ϕ i (x ) ≤ u 

max 
i 

u 

max 
i 

, if ϕ i (x ) > u 

max 
i 

(3b) 

here p denotes L f V ( x ) and q denotes (L g V (x )) T =
 L g 1 V (x ) · · · L g m V (x )] T . ϕi ( x ) of Eq. 3a represents the i th com-

onent of the control law φ( x ) without considering saturation of

he control action at the input bounds. φi ( x ) of Eq. 3b represents

he i th component of the saturated control law φ( x ) that accounts

or the input constraints u ∈ U . 

We first characterize a set of states D , in which the time-

erivative of the Lyapunov function V ( x ) under u = φ(x ) ∈ U is neg-

tive for x � = 0. Then we construct a level set of V ( x ) inside D as

ρ := { x ∈ D | V ( x ) ≤ ρ , ρ > 0}, which represents an estimate of

he stability region of the closed-loop system of Eq. 1 , and �ρ

s an invariant set for the closed-loop system. Therefore, starting

rom any initial state x 0 := x ( t 0 ) in �ρ , φ( x ( t )) guarantees that the

tate trajectory of the closed-loop system of Eq. 1 remains within

ρ and asymptotically converges to the origin. Thus, given that the

ensor measurements received by the controller are secure and re-

iable (i.e., x̄ (t) = x (t) ), the control law φ( x ( t )) is able to stabilize

he process at the origin for any initial conditions x 0 ∈ �ρ . 

.2. Lyapunov-based economic model predictive control 

Within the traditional paradigm of process control, a two-layer

rchitecture is utilized to increase process economic profits where

he tracking model predictive control (MPC) is coupled with an op-

imizer referred to as a real-time optimizer (RTO) that computes

conomically optimal steady-states for the MPC to track by solv-

ng a nonlinear optimization problem with a detailed steady-state

lant model and a possibly nonlinear and nonquadratic objective

unction representing the process economics. 
However, as operational efficiency and increasing energy con-

umption are becoming critical issues in the chemical and petro-

hemical industry, a model-based feedback control strategy, eco-

omic model predictive control (EMPC), was proposed to operate

he system off steady-state by dynamically optimizing an economic

ost function while accounting for stability constraints. It has been

epeatedly shown in the chemical process control literature that a

umber of industrially relevant processes can achieve higher prof-

ts when operated in a time-varying fashion than when operated

t steady-state for all times; therefore, EMPC has been proposed

s an efficient method to address process control problems inte-

rated with dynamic economic optimization of the process (e.g.,

mrit et al., 2011; Heidarinejad et al., 2012; Ellis et al., 2014 ). 

Specifically, Lyapunov-based Economic Model Predictive Control 

LEMPC) design is represented by the following optimization prob-

em: 

 = max 
u ∈ S(�) 

∫ t k + N 

t k 

l e ( ̃  x (t) , u (t)) dt (4a)

.t. ˙ ˜ x (t) = f ( ̃  x (t ) , u (t )) (4b)

u (t) ∈ U, ∀ t ∈ [ t k , t k + N ) (4c)

˜ x (t k ) = x̄ (t k ) (4d)

V ( ̃  x (t)) ≤ ρe , ∀ t ∈ [ t k , t k + N ) , 

if x̄ (t k ) ∈ �ρe 
(4e) 

˙ V ( ̄x (t k ) , u ) ≤ ˙ V ( ̄x (t k ) , φ( ̄x (t k )) , 

if x̄ (t k ) ∈ �ρ\ �ρe 
(4f) 

here ˜ x is the predicted state trajectory, S ( �) is the set of piece-

ise constant functions with period �, and N is the number of

ampling periods in the prediction horizon. ˙ V (x, u ) is used to rep-

esent ∂V (x ) 
∂x 

f (x, u ) . The optimal input trajectory computed by the

MPC is denoted by u ∗( t ), which is calculated over the entire pre-

iction horizon t ∈ [ t k , t k + N ) . The control action computed for the

rst sampling period of the prediction horizon u ∗( t k ) is sent by the

MPC to be applied over the next sampling period in a sample-

nd-hold manner, and the EMPC is solved again in a rolling hori-

on fashion. The EMPC of Eq. 4 is solved by optimizing the time

ntegral of the cost function l e ( ̃  x (t) , u (t)) of Eq. 4a that accounts

or process economic benefits over the prediction horizon subject

o the constraints of Eqs. 4b –4f . Eq. 4c defines the input constraints

pplied over the entire prediction horizon. Eq. 4d defines the ini-

ial condition ˜ x (t k ) of Eq. 4b , which is the state measurement x̄ (t)

t t = t k . The constraint of Eq. 4e maintains the closed-loop state

redicted by Eq. 4b in �ρe over the prediction horizon if the state

¯ (t k ) is inside �ρe , where �ρe is a conservative region within the

losed-loop stability region �ρ to make it an invariant set in the

resence of sufficiently small bounded disturbances. However, if

¯ (t k ) leaves �ρe but still remains in �ρ , the contractive constraint

f Eq. 4f drives the state towards the origin for the next sampling

eriod such that the state will eventually enter �ρe within finite

ampling periods. Therefore, under the LEMPC of Eq. 4 , the closed-

oop state is maintained within the closed-loop stability region

ρ for all times while optimal economic profits can be achieved

ia time-varying operation. The closed-loop stability proof can be

ound in Ellis et al. (2014) . 

. Cyber-secure LEMPC operation strategies 

Given that EMPC operates the system in an off steady-state

anner, cyber-attacks that target EMPC systems can be designed to
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compromise both closed-loop stability and process economic ben-

efits. Specifically, similar to the cyber-attacks that have been de-

signed for tracking MPC ( Wu et al., 2018 ), cyber-attacks for EMPC

systems can be designed to drive states out of the stability region

as fast as possible (e.g., min-max cyber-attack). The EMPC receiving

falsified state measurements will compute incorrect control actions

that will eventually cause the true process states to exit the sta-

bility region. The unstable evolution of state trajectory may occur

even sooner in a system operated under EMPC than under tracking

MPC since the system is operated off steady-state. Therefore, the

selection of operating region, design of operating strategies, and

integration of detection schemes need to be carefully considered. 

3.1. Operation within secure operating region 

Considering that sensors are vulnerable to cyber-attacks, the

process will be operated within a smaller region, �ρsecure , where

0 < ρsecure < ρe , to avoid the system from immediately losing sta-

bility when under malicious cyber-attacks. 

Although economic benefits will not be maximized when op-

erated based on �ρsecure compared to operation around the origi-

nal region �ρe , it allows the system leeway to detect and mitigate

the cyber-attack before closed-loop stability is lost (i.e., before true

process states x ( t ) exit �ρ ). The goal of detection is to identify the

occurrence of a cyber-attack before the true process states exit the

closed-loop stability region �ρ , such that the process can be even-

tually driven back to and stay bounded within the secure region

�ρsecure under LEMPC after eliminating the impact of cyber-attacks.

The modified LEMPC formulation is presented as follows: 

J = max 
u ∈ S(�) 

∫ t k + N 

t k 

l e ( ̃  x (t) , u (t)) dt (5a)

s.t. ˙ ˜ x (t) = f ( ̃  x (t ) , u (t )) (5b)

u (t) ∈ U, ∀ t ∈ [ t k , t k + N ) (5c)

˜ x (t k ) = x̄ (t k ) (5d)

V ( ̃  x (t)) ≤ ρsecure , ∀ t ∈ [ t k , t k + N ) , 

if x̄ (t k ) ∈ �ρsecure 
(5e)

˙ V ( ̄x (t k ) , u ) ≤ ˙ V ( ̄x (t k ) , φ( ̄x (t k )) , 

if x̄ (t k ) ∈ �ρ\ �ρsecure 
(5f)

where the notations follow those in Eq. 4 . The constraint of

Eq. 5e maintains the closed-loop states within �ρsecure over the

prediction horizon if current state x̄ (t k ) is inside �ρsecure , and the

contractive constraint of Eq. 5f will be activated when process

states are outside of the neighborhood �ρsecure . Since �ρsecure is

characterized as a subset of �ρe (i.e., ρsecure < ρe < ρ), when

the process state vector x̄ (t k ) is inside �ρsecure , it is guaranteed

that under sufficiently small bounded disturbances x (t k +1 ) will not

exit �ρ . Therefore, �ρe is determined accounting for bounded dis-

turbances and sample-and-hold implementation of control actions

to ensure the invariance of �ρ . In the presence of bounded dis-

turbances, �ρe can be found computationally ( Heidarinejad et al.,

2012 ). 

Furthermore, it is common that chemical processes are sub-

ject to periodic feed stock constraints, which are specified as part

of the input constraint set U , where the quantity of feed materi-

als is limited within a fixed period of time t N p . During this pe-

riod of time, the total feed material is constrained to a constant

value C , i.e., 1 
t N p 

∫ t N p 
t 0 

u m 

(τ ) dτ = C, where u m 

represents feed ma-

terial used at every sampling period. Therefore, the material con-
umption constraint renews every t N p . If the total operation time is

onger than one material constraint period, this material consump-

ion constraint results in cyclic operation of the plant, and conse-

uently, cyclic behavior of the state-space trajectory. At the start

f a new material constraint period, the total consumption limit is

enewed, as new feed materials become available to be used again

or the next constraint period. 

Fig. 1 illustrates the trajectories of the states and the input

onstrained by feed materials under normal operation of LEMPC

ver one material constraint period. Assuming the process starts

rom the operating steady-state (e.g., the origin), since EMPC max-

mizes the economic benefits while maintaining closed-loop sta-

ility during operation, it will drive the process states in the direc-

ion where economic benefit is optimized using large inputs un-

il process states reach the boundary of the secure region �ρsecure ,

s shown in Segment 1 in Fig. 1 . Following this, the optimized

tate trajectory will progress along the boundary of �ρsecure , as il-

ustrated in Segment 2 in Fig. 1 . Process states will remain on the

oundary until the input materials start to exhaust and the input

onsumption constraints start restricting process states from fur-

her progressing along the boundary. With restricted inputs, the

rocess states will be driven away from operating on the bound-

ry – this is shown in Segment 3 in Fig. 1 . 

emark 1. Additionally, stealthy cyber-attacks can be designed

ith the aim of decreasing process economic benefits by driving

he true process state to the region with low economic profits (but

till within the closed-loop stability region). Since cyber-attacks

argeting process economic profits will not cause physical damage

r accidents, they are more difficult for process engineers to de-

ect. Under the assumption that attackers know the process model

nd the stability region, such cyber-attacks will compromise sen-

or measurements such that the control actions calculated by the

ptimization problem of EMPC will not increase process economic

rofits for the next sampling period as much as it would do un-

er nominal operation. In this study, we only consider attacks that

ntend to compromise process stability. 

. Intelligent cyber-attacks 

Intelligent cyber-attacks are designed to intentionally destroy

he control objectives of the system, disrupting system stability

nd degrading control performance. Cyber-attacks could compro-

ise sensors, actuators, and/or the communication channels be-

ween them. In this work, we only consider attacks on sensor

easurements. Sensor feedback measurements must accurately re-

ort the true state of the process to ensure closed-loop stabil-

ty; falsified measurements may result in control actions that will

o longer achieve maximum economic benefit and may ultimately

rive the true process states outside of the stability region. There

re some standard types of cyber-attacks considered in literature

 Singh and Nene, 2013 ). Min-max cyber-attacks aim to achieve

aximum disruptive impact within shortest amount of time. Surge

ttacks cause maximum deviation for an initial “surge” period, and

hen the attacked value is set to a reduced value for the remainder

f the attack duration such that the cumulative deviation will not

xceed a certain threshold that will trigger alarms in conventional

etection methods such as Cumulative Sum ( Mohanty et al., 2007;

árdenas et al., 2011 ). Geometric attacks geometrically increase the

eviation of the attacked value from its true value until it reaches

he alarming threshold. Details on the formulations of the four at-

ack types can be found in Section 4.1 . Being process and controller

ehavior aware, the cyber-attacks will have access to information

n the operating region of the process under LEMPC �ρsecure , and

xisting alarms configured on the input and output ranges. Specif-

cally, when attacks intend to induce maximum disruption (i.e., in
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Fig. 1. Trajectories of (a) process states x 1 and x 2 , and (b) manipulated input u m , under normal LEMPC operation over one material constraint period. 
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w  

t  
in-max or surge attacks), the attacked value will be set to the

aximum or minimum value beyond which an alarm monitor-

ng the current state measurement will be immediately triggered.

hese intelligent cyber-attacks are designed such that no alarms

ill be sounded (i.e., the falsified state measurement is not out-

ide the operating stability region or the alarm window) and the
ontroller is still able to compute feasible control actions, but have

arge enough variations such that economic optimality and closed-

oop stability will be lost. 

To train a machine-learning-based detector, closed-loop data

ill be collected where attacks with varying durations L a are in-

roduced at random times i 0 during the simulation period. If no
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attacks occur within the simulation period (or the detection win-

dow), then the measurement signals are classified as “no attack”.

Furthermore, we consider a system where some sensors are at-

tacked and some remain intact. For clarity, only one type of cyber-

attack will occur at a time during the simulation period. 

4.1. Design of cyber-attacks adapted to secure LEMPC operation 

The system is now operated under the modified LEMPC of Eq. 5 ,

where the operating region is set to be a smaller level set of V ( x ),

�ρsecure , within the stability region, where 0 < ρsecure < ρe < ρ .

Thus, the cyber-attacks imposed on the sensors also need to be

adapted to prevent having a falsified measurement beyond the

operating region �ρsecure and to avoid triggering any immedi-

ate alarms based on the values of the state measurements. The

adapted mathematical formulations of min-max, surge, geometric,

and replay attacks are presented in the following sections. 

4.1.1. Min-Max cyber-attack 

While avoiding triggering any alarms, min-max attacks result in

maximum destabilizing impact within a short time period. There-

fore, the falsified state measurements take values that are furthest

from the equilibrium point (minimum or maximum) but not out-

side of the secure operating region �ρsecure . 

The min-max attack can be formulated as follows: 

x̄ (t i ) = arg min / max 
x ∈ R n 

{ V (x (t i )) ≤ ρsecure } , ∀ i ∈ [ i 0 , i 0 + L a ] (6)

where ρsecure defines the level set of the Lyapunov function V ( x )

that characterizes the secure operating region of the closed-loop

system of Eq. 1 under LEMPC, x̄ is the compromised sensor mea-

surement, i 0 is the time instant that the attack is introduced, and

L a is the total duration of the attack in terms of sampling periods. 

4.1.2. Surge cyber-attack 

Surge attacks maximize the disruptive impact for an initial

short period of time, then they remain at a lower value for the rest

of the attack duration. The maximum or minimum attack value

is also defined based on the secure operating region, �ρsecure . The

length of the initial surge period and the reduced value after the

surge can be designed in many ways as long as the cumulative

error from t i 0 to t i 0 + L a between state measurements and their pre-

dicted true values does not exceed the threshold defined in some

statistic-based detection methods (e.g., CUSUM). In our study, the

reduced value after the surge is set to act as a sufficiently small

bounded noise imposed on the attacked sensor. The formulation of

the surge attack is presented below: 

x̄ (t i ) = arg min / max 
x ∈ R n 

{ V (x (t i )) ≤ ρsecure } , if i 0 ≤ i ≤ i 0 + L s 

x̄ (t i ) = x (t i ) + η(t i ) , if i 0 + L s < i ≤ i 0 + L a (7)

where i 0 is the start time of the attack, L s is the duration of the

initial surge, and ηl ≤ η( t u ) ≤ ηu is the bounded noise added on

the sensor measurement after the initial surge period, where ηl 

and ηu are the lower and upper bounds of the noise, respectively. 

4.1.3. Geometric cyber-attack 

Under geometric cyber-attacks, closed-loop system stability de-

teriorates at a geometric speed until the cyber-attack reaches the

maximum or minimum allowable value as characterized by the se-

cure operating region. At the start of the attack t i 0 , a small con-

stant β ∈ R is added to the true measured output x (t i 0 ) , where

x (t i 0 ) + β is well below the alarm threshold. Following that, at

each subsequent time step, β is multiplied by a factor (1 + α) ,

where α ∈ (0, 1), until x̄ reaches the maximum allowable attack
alue bounded by �ρsecure . Thus, attackers will choose the two pa-

ameters α and β based on �ρsecure and the attack duration. Geo-

etric attacks can be written in the form as follows: 

x̄ (t i ) = x (t i ) + β × (1 + α) i −i 0 , ∀ i ∈ [ i 0 , i 0 + L a ] (8)

here β and α are parameters that define the magnitude and

peed of the geometric attack. 

.1.4. Replay cyber-attack 

Replay cyber-attacks have access to all previous system outputs

orresponding to secure nominal operating conditions where no

yber-attacks are present. The attacker extracts segments of these

revious state measurements and injects them into the current

easurement readings. As the replayed values are given by secure

ensors and supposedly inside the secure operating bounds, classi-

al detectors will not be able to recognize any abnormalities. Re-

lay attacks can be represented by the following equations: 

x̄ (t i ) = x (t k ) , ∀ k ∈ [ k 0 , k 0 + L a ] , ∀ i ∈ [ i 0 , i 0 + L a ] (9)

here x ( t k ) is the true plant measurement, L a represents the length

f the attack (which is also the length of the replay segment) in

erms of sampling periods, and x̄ is the series of replay attacks

dded at time t i 0 duplicating previous state measurements that are

ecorded starting from time t k 0 . The duration of the attack could

e exactly the length of one or more material constraint periods.

herefore, the tampered state trajectory would look identical to the

ominal state trajectory of one (or more) complete cycle(s) of op-

ration starting from a different set of initial conditions. 

. Attack-resilient combined open-loop and closed-loop control 

Due to the LEMPC constraints of Eqs. 5e and 5f , for any ini-

ial condition x 0 ∈ �ρ , the evolution of state trajectory x ( t ) will

e driven towards but ultimately bounded inside the secure re-

ion �ρsecure . As the economic benefit of the process is maximized

ith respect to the state vector, it is likely that during one mate-

ial constraint period, the optimized states will reach, and evolve

long the boundary of the secure region �ρsecure , which is a level

et of the control Lyapunov function V ( x ). Assuming that the at-

acker has knowledge on the stability region as well as the se-

ure region that the LEMPC operates based on, in order to induce

aximum destructive impact on the system (e.g., in a min-max

r surge cyber-attack) without triggering any alarms, the tampered

tate measurements will be near or on the boundary of the secure

egion �ρsecure . Therefore, regardless of the presence of a cyber-

ttack, the measured process states will likely reach the boundary

f �ρsecure where V ( ̄x ) = ρsecure during the operation of one ma-

erial constraint period. In other words, when measured process

tates yield V ( ̄x ) = ρsecure , there could be two reasons: 1) Follow-

ng optimized control actions u ∗( t k ), the measured process states

each the boundary of the bounded secure region �ρsecure at time t k 
nder the normal operation with no cyber-attacks, or 2) the mea-

ured states are compromised by a cyber-attack (e.g., min-max, or

urge) at time t k . Therefore, when measured states x̄ (t k ) provide

 ( ̄x (t k )) = ρsecure , this measurement can no longer be trusted due

o the ambiguous cause of this observation, and closed-loop con-

rol can no longer be carried out. 

To combat the ambiguity of state measurements when they

re on the boundary of �ρsecure , open-loop control actions will be

sed in conjunction with closed-loop control. Assuming that the

tates measured at the beginning of each material constraint pe-

iod, t = t N 0 , (or initial conditions at t = t 0 ) are secure and correct,

he open-loop control actions are computed at the beginning of

he material constraint period by solving the following nonlinear

ptimization problem: 
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 = max 
u ′ ∈ S(�) 

∫ t N 0 + N p 

t N 0 

l e ( ̃  x (t) , u 

′ (t)) dt (10a)

.t. ˙ ˜ x (t) = f ( ̃  x (t ) , u (t )) (10b)

u 

′ (t) ∈ U, ∀ t ∈ [ t N 0 , t N 0 + N p ) (10c)

˜ x (t N 0 ) = x̄ (t N 0 ) (10d)

V ( ̃  x (t)) ≤ ρsecure , ∀ t ∈ [ t N 0 , t N 0 + N p ) , 

if x̄ (t N 0 ) ∈ �ρsecure 
(10e) 

˙ V ( ̄x (t N 0 ) , u ) ≤ ˙ V ( ̄x (t N 0 ) , φ( ̄x (t N 0 )) , 

if x̄ (t N 0 ) ∈ �ρ\ �ρsecure 
(10f) 

here N p is the number of sampling periods in one material con-

traint period, which is the prediction horizon for open-loop con-

rol. When a new material constraint period begins, the EMPC in

pen-loop control mode receives state measurement and computes

he optimal trajectory of N p control actions that will be applied

n a sample-and-hold manner until the end of this material con-

traint period. In the case that there are no cyber-attacks or pro-

ess disturbances, this optimal trajectory of control actions would

ield maximum economic benefits while meeting all input and

tate constraints. 

While at closed-loop operation, if feedback measurement is no

onger reliable and cannot be used for closed-loop control, the

pen-loop control actions that were calculated at the beginning of
ig. 2. Logic flowchart outlining the implementation steps of the attack-resilient opera

perating within a secure region �ρsecure 
. 
he material constraint period will be used as a substitute until the

nd of the material constraint period. At the end of the material

onstraint period, a cyber-attack detector is activated to determine

ny occurrence of an attack, and the reliability of the control sys-

em is re-assessed. The detector will provide information on the

ecurity status of the feedback measurements over the latest ma-

erial constraint period. Upon mitigating the impact of a confirmed

ttack and/or confirming the security of the control system, closed-

oop control with secure feedback measurement can be reactivated

s a new material constraint period starts. 

Although the absence of feedback may result in minor perfor-

ance degradation in the case that process disturbances and mod-

ling error exists and no cyber-attack is present, this strategy also

ompletely eliminates the impact of a min-max or surge attack

n the sensor measurements. The implementation strategy is illus-

rated in a logic flow diagram in Fig. 2 , and the specific steps are

utlined as follows: 

1. At the start of a material constraint period ( t = t N 0 ), open-loop

control actions over the course of the material constraint pe-

riod are computed following Eq. 10 . Closed-loop control is ac-

tive, calculating the optimal control action over the next sam-

pling period following Eq. 5 . 

2. If ρsecure − V ( ̄x (t k )) ≤ c, (where c > 0 quantifies the distance

from the boundary of secure region to categorize a state mea-

surement as being untrustworthy), then closed-loop control

(i.e., the modified LEMPC of Eq. 5 ) will be deactivated and

open-loop control action u ′ ( t k ) calculated by the LEMPC of

Eq. 10 will be used as an substitute. 

3. Open-loop control actions u ′ ( t k ) will be used until t N 0 + N p . 
tion of LEMPC using combined closed-loop and open-loop control actions when 
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4. At t N 0 + N p , the cyber-attack detector is activated to examine

past full-state measurements x̄ (t k ) for k ∈ [ N 0 , N 0 + N p ] . If an at-

tack is detected, then disconnect the tampered sensors, reroute

these measurement signals to a set of secure back-up sensors,

and go to Step 5. If detection indicates no attack, go to Step 5. 

5. At t N 0 + N p , a new material constraint period starts, and closed-

loop control is reactivated. Repeat Steps 1 – 4. 

Remark 2. In some cases, the system may never reach the bound-

ary of �ρsecure depending on the initial condition, the size of

�ρsecure , and the length of the material constraint period. If this is

the case, and cyber-attacks wrongfully set the measured states to

be on the boundary of �ρsecure , then closed-loop control will still

be deactivated following the implementation of Step 2, and open-

loop control actions will be used. 

Remark 3. In our study, we do not consider systems under large

disturbances. Since open-loop control actions over the entire oper-

ating period are calculated by LEMPC at the beginning of the sim-

ulation period based on the nominal system, closed-loop stability

is guaranteed using open-loop control if there are no disturbances

or model uncertainties in the real process given that the process

is open-loop stable. In the presence of process disturbances other

than cyber-attacks, estimations of true process states are needed

and closed-loop control can be applied based on these estimated

states to stabilize the system within a bounded region. However,

in our manuscript, we assume that the actual nonlinear process

is disturbance-free; therefore, open-loop control is able to ensure

closed-loop stability until the end of the material constraint period

(i.e., the time instant at which NN detection will be activated and

closed-loop control will resume). 

6. Detection of cyber-attacks targeting EMPC 

Cyber-attack detection carried out using data-based approaches,

and more specifically, machine-learning methods, have been stud-

ied in many literature ( Huang et al., 2007; Omar et al., 2013;

Agrawal and Agrawal, 2015 ). Using data-based methods to train a

detection algorithm for cyber-attacks separates the detector from

the physical process model, and therefore makes the detector re-

silient to both process changes and intelligent stealthy attacks de-

signed based on process behavior. 
Fig. 3. Feed-forward neural network structure with 2 hidden layers with inputs being a

within the detection window N T , and output being the probability of each class label for 
Amongst advanced machine-learning methods, neural networks

NN) have been successful in a wide range of applications for both

upervised and unsupervised classifications ( Gurney, 2014 ). There

re also other types of state-of-the-art machine-learning classifi-

ation methods that have been used in a variety of applications

n recent literature, such as k-nearest-neighbors, random forest,

nd support vector machine ( Hassan et al., 2018 ). Amongst these

achine-learning algorithms, the advantage of neural network is

hat it provides a broad class of tuning parameters and a variety of

onlinear activation functions to optimize the overall model. Fur-

hermore, neural networks can be developed using multiple differ-

nt training algorithms, providing more alternatives during train-

ng to obtain better performance results ( Tu, 1996 ). In a supervised

lassification problem, by training the neural network with labeled

ata corresponding to each target class, the neural network can be

sed to classify new data into classes that share similar charac-

eristics. Depending on the training data, the neural network can

istinguish between two (i.e., “attack” or “no attack”) or multiple

lasses (each class representing a known type of attack). 

We use a feed-forward artificial neural network for supervised

lassification in our study. Each layer in the neural network con-

ists of a series of nonlinear functions, yielding values for the neu-

ons in the subsequent layer from the previous layer. Specifically,

he neurons in the first hidden layer are derived from the inputs,

nd the neurons in the output layer are calculated from those in

he last hidden layer. These nonlinear functions are activation func-

ions of the weighted sum of inputs (or neurons in the previous

ayer) with an added bias term. 

The structure of a basic neural network model employed here

s shown in Fig. 3 , with each input representing a nonlinear func-

ion p ( ·) of the full state measurements at each sampling time, and

n output vector for predicted class label. The mathematical for-

ulation of a two-hidden-layer feed-forward neural network is as

ollows: 

(1) 
j 

= g 1 

( 

N T ∑ 

i =1 

w 

(1) 
i j 

p( ̄x (t i )) + b (1) 
j 

) 

(11a)

(2) 
j 

= g 2 

( 

h 1 ∑ 

i =1 

w 

(2) 
i j 

θ (1) 
i 

+ b (2) 
j 

) 

(11b)
 nonlinear function p( ̄x ) at each sampling time of the model predictive controller 

the examined trajectory indicating the status and/or type of cyber-attack. 
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(3) 
j 

= g 3 

( 

h 2 ∑ 

i =1 

w 

(3) 
i j 

θ (2) 
i 

+ b (3) 
j 

) 

, y pred = [ θ (3) 
1 

, θ (3) 
2 

, . . . , θ (3) 
H 

] T (11c)

ith θ (1) 
j 

and θ (2) 
j 

representing neurons in the first and second

idden layer, respectively, where j = 1 , . . . , h l is the number of

eurons in layer l = 1 and l = 2 . θ (3) 
j 

represents neurons in the

utput layer ( l = 3 ), where j = 1 , . . . , H, and H is the number of

lass labels. In this study, we use two hidden layers for the cyber-

ttack detector design; however, multiple hidden layers can also be

eveloped using similar formulations. For each sample, the input

ayer consists of variables p( ̄x (t i )) , which is a nonlinear function

f the full-state measurements at time t i , where i = 1 , . . . , N T is the

ength of the time-varying trajectory. The weights connecting neu-

ons i and j in consecutive layers (from l − 1 to l ) are w 

(l) 
i j 

, and the

ias term on the j th neuron in the l th layer is b (l) 
j 

. Each layer calcu-

ates an output based on the information received from the previ-

us layer, as well as the optimized weights, biases, and the nonlin-

ar activation function g l (some examples include hyperbolic tan-

ent sigmoid transfer function g(z) = 

2 
1+ e −2 z − 1 , and softmax func-

ion g(z j ) = 

e 
z j ∑ H 

i =1 e 
z i 

where H is the number of class labels). Various

ommon activation functions including ReLu, sigmoid, radial basis

unctions were presented and their performances were analyzed

n Sibi et al. (2013) . Furthermore, while Bayesian regularization is

 powerful regularization method to avoid over-fitting and over-

raining, there are also other regularization algorithms such as L2

nd L1 regularization, both of which add a parameter penalty in

he objective function in an effort to reduce the generalization er-

or (thus, the testing error) of the trained model. The advantage of

ayesian regularization is that it provides a probability distribution

f optimal parameters instead of a single optimal value, thereby

ffectively dropping out trivial nodes to speed up the training pro-

ess. In the output layer, y pred is a vector giving the predicted prob-

bilities of each class label. The predicted class label for the exam-

ned sample is indicated by the neuron with the highest probabil-

ty, which in turn provides information on either the presence of

 cyber-attack, or the type of the cyber-attack, depending on the

lassification problem the neural network is trained to solve. 

To obtain an optimal set of weights and biases in Eq. 11 , the

evenberg–Marquardt algorithm ( Gavin, 2019 ) is used to minimize

 Bayesian regularized mean squared error cost function, which

as the following form: 

(w ) = γ
N s ∑ 

k =1 

(y pred,k − y true,k ) 
2 + ζ

N w ∑ 

p=1 

w 

2 
p (12)

here k = 1 , . . . , N s represents the number of samples in the train-

ng dataset, p = 1 , . . . , N w 

represents the number of weights and

iases in the neural network, y true is the vector of target class la-

els of each sample, y pred is the vector of the predicted probabili-

ies associated with each class label, and γ and ζ are the regular-

zation hyper-parameters. Within the Levenberg–Marquardt algo-

ithm, the gradient and the Hessian matrix of S ( w ) are calculated

sing the backpropagation method. The weights and the data are

ssumed to have Gaussian prior probability distributions. Then, the

egularization hyper-parameters, γ and ζ , are updated by maxi-

izing their posterior probability distribution provided the data,

hich is equivalent to maximizing the likelihood of evidence by

ayes’ Theorem. Within each epoch, two sequential procedures are

arried out: the cost function S ( w ) is minimized with respect to

 , and the likelihood of evidence is maximized with respect to

and ζ . Detailed formulation of this procedure can be found in

urden and Winkler (2008) . Training and testing accuracies are

alculated, which are the ratios between the number of correctly
lassified samples and total number of samples in the training and

esting sets, respectively. 

To develop an NN detector, state measurement data are col-

ected while the system is operated under the modified LEMPC of

q. 5 . For better detection accuracy, various state evolutions within

he stability region under different operating conditions need to

e accounted for; therefore, training data is collected for a broad

ange of initial conditions within the stability region �ρ . Full state

easurements x̄ (t) are recorded along the time-varying trajectory

or t ∈ [ t 0 , t N T ] , and a nonlinear function denoted by p( ̄x ) is com-

uted. In order to provide an effective one-dimensional input fea-

ure for the detection problem, the function p( ̄x ) needs to capture

he dynamic behavior of all states. The selection of this input vari-

ble, p( ̄x ) , is discussed in Section 6.1 . 

After data collection and adequate training, the NN detector is

mplemented online and activated at the end of each material con-

traint period, with the process controlled by the modified LEMPC

n Eq. 5 with combined open-loop and closed-loop control de-

cribed in Section 5 . Since the feed-forward NN model is a static

odel that receives inputs of fixed dimension, N T (which is the

ength of the time-varying trajectory over one material constraint

eriod N p ), the detection window of the NN detector when acti-

ated online is N T = N p . The detector will receive the entire se-

uence of full state measurements x̄ (t k ) over the latest material

onstraint period with a fixed length N T . Each sample consists of a

wo-dimensional matrix n × N T , where n is the full state dimen-

ion, and N T is the length of each state trajectory within the detec-

ion window. Each training sample corresponds to a different set of

nitial conditions for the closed-loop system simulation, and equal

umber of samples within each class labels are collected to ensure

raining accuracy. 

.1. Choice of detection input variable 

The nonlinear system of Eq. 1 is operated in an off steady-state

anner under LEMPC by maximizing a nonlinear function of pro-

ess state vector with respect to the control actions, which are sub-

ect to their respective lower and upper bounds, and material con-

umption constraints. Considering this, the exact trajectory of each

ndividual state variable is not predictable and does not follow a

eneral expected trend even under nominal operation. Therefore,

ssessing the trajectory of the measured state vector is not an ef-

ective method of detecting the occurrence of a cyber-attack. 

Moreover, if the goal of a cyber-attack is to destabilize the

losed-loop system within the shortest amount of time, the at-

acker will choose to set the current state measurement to the

aximum/minimum allowable attack value characterized by the

oundary of the secure operating region �ρsecure such that no

larms will be triggered. Therefore, the falsified sensor measure-

ents will also yield a Lyapunov function that is equal to ρsecure .

nlike the case of operation under tracking MPC where the Lya-

unov function decreases as the process states are driven towards

he origin, off steady-state operation of LEMPC results in a state

rajectory that remains on the boundary of the secure operating re-

ion �ρsecure where V ( ̄x ) = ρsecure for the majority of each material

onstraint period as discussed in Section 3.1 . Therefore, the trajec-

ory of the Lyapunov function V ( ̄x ) under nominal operation and

nder cyber-attacks can be too similar to differentiate. For these

easons, the control Lyapunov function of the full-state measure-

ents V ( ̄x ) , which is used as an input variable for the detection

lgorithm used together with a tracking MPC ( Chen et al., 2020 ),

s no longer a good measure of input for the detection algorithm

hen the system is operated under LEMPC. 

Given that EMPC optimizes the economic benefit in its cost

unction, the progression of economic benefit is a measure that ef-

ectively reflects the time-varying operation under LEMPC; hence,
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Table 1 

Parameter values of the CSTR. 

T 0 = 300 K F = 5 m 

3 / h 

V = 1 m 

3 E = 5 × 10 4 kJ/kmol 

k 0 = 8 . 46 × 10 6 m 

3 / kmol h �H = −1 . 15 × 10 4 kJ/kmol 

C p = . 231 kJ/kg K R = 8 . 314 kJ/kmol K 

ρL = 10 0 0 kg/m 

3 
C A 0 s = 4 kmol/m 

3 

Q s = 0 . 0 kJ/h C A s = 1 . 95 kmol/m 

3 

T s = 401 . 87 K 
information derived from the economic benefit provides a good

comparison for attacked and not-attacked scenarios. Therefore,

we will be monitoring the evolution of economic benefits during

closed-loop operation. The cumulative economic benefit increases

monotonically as operation time progresses. The first derivative of

cumulative economic benefit (i.e., incremental economic benefit,

which can be analogous to the reaction rate of desired product, at

each sampling period) displays varying patterns depending on the

initial conditions and on the material consumption constraint. The

rate of change in the incremental economic benefit, or the change

in the production reaction rate between sampling periods, provides

information on the rate of change in the optimized cost function l e 
inside the integral in Eq. 5a . This rate of change, which is also the

second derivative of the cumulative economic benefit, will be used

as the input parameters p( ̄x ) for the neural-network-based detec-

tion algorithm. 

Remark 4. Material constraints on the feed stock are commonly

seen in the industry. Moreover, operating the process in an off-

steady-state manner with material constraint periods imposed is

a common practice for economic model predictive control because

we would like to compare its control performance to that of the

process operated at steady-state for all times. While EMPC aims to

maximize economic benefits by computing optimal sets of control

actions, we impose this constraint on EMPC such that the sum of

the calculated control actions will be the same as the sum used

in steady-state operation. Depending on the initial conditions, the

state trajectory may exhibit different patterns when the material

constraint is removed. Despite this, the proposed neural-network

detection approach does generalize to systems without material

constraint periods. This is because the neural network detector,

with adequate training, is still able to distinguish the attacked tra-

jectory from the nominal trajectory of the examined detection vari-

able (in our case, the second time-derivative of the economic ob-

jective function). 

7. Application to a nonlinear chemical process 

7.1. Process description and control system design 

The application of the modified LEMPC of Eq. 5 , the resilient

control strategy presented in Section 5 , as well as the training and

online detection of NN cyber-attack detectors are demonstrated on

a chemical process example. Specifically, the process considered

is a well-mixed, non-isothermal continuous stirred tank reactor

(CSTR), within which an irreversible second-order exothermic reac-

tion takes place. The second-order reaction, A → B , transforms re-

actant A to product B at a reaction rate r B = k 0 e 
−E/ ( RT ) C 2 

A 
. The CSTR

is equipped with a heating jacket that supplies or removes heat at

a rate Q . The dynamic model of this CSTR process is described by

the following material and energy balance equations: 

dC A 
dt 

= 

F 

V 

(C A 0 − C A ) − k 0 e 
−E 
RT C 2 A (13a)

dT 

dt 
= 

F 

V 

(T 0 − T ) + 

−�H 

ρL C p 
k 0 e 

−E 
RT C 2 A + 

Q 

ρL C p V 

(13b)

where C A is the concentration of reactant A in the reactor, V is the

volume of the reacting liquid in the reactor (assuming the vessel

has constant holdup), T is the temperature of the reactor and Q

denotes the heat input rate. The concentration of reactant A in the

feed is C A 0 . The feed temperature and volumetric flow rate are T 0 
and F , respectively. The reacting liquid has a constant density of ρL 

and a heat capacity of C p . �H, k 0 , R , and E represent the enthalpy

of reaction, pre-exponential constant, ideal gas constant, and acti-

vation energy, respectively. A complete list of the process parame-

ter values are shown in Table 1 . 
The CSTR is initially operated at the unstable steady-

tate [ C As , T s ] = [1 . 9537 kmol/m 

3 , 401 . 87 K] , and [ C A 0 s Q s ] =
4 kmol/m 

3 , 0 kJ/hr] . The manipulated inputs are the inlet con-

entration of reactant A and the heat input rate, which are rep-

esented by the deviation variables �C A 0 = C A 0 − C A 0 s , �Q = Q −
 s , respectively. The manipulated inputs are bounded as follows:

 �C A 0 | ≤ 3.5 kmol / m 

3 and | �Q | ≤ 5 × 10 5 kJ / hr . Therefore, the

tates and the inputs of the closed-loop system are x T = [ C A −
 As T − T s ] and u T = [�C A 0 �Q] , respectively, such that the equi-

ibrium point of the system is at the origin of the state-space, (i.e.,

 

T 
s = [0 , 0] , u T s = [0 , 0] ). We assume that at time t = t 0 , the system

s at the equilibrium point (i.e., the initial conditions of the system

re x 0 = [0 , 0] T ). 

The control objective is to maximize the economic profit of the

STR process of Eq. 13 by manipulating the inlet concentration

C A 0 and the heat input rate �Q , while maintaining the closed-

oop state trajectories in the stability region �ρ for all times under

EMPC. The objective function of the LEMPC optimizes the produc-

ion rate of B as follows: 

 e ( ̃  x , u ) = r B (C A , T ) = k 0 e 
−E/RT C 2 A (14)

he dynamic model of Eq. 13 is numerically simulated using the

xplicit Euler method with an integration time step of h c = 2 . 5 ×
0 −5 hr. The nonlinear optimization problem of the LEMPC of

q. 5 is solved using the MATLAB OPTI Toolbox with the sampling

eriod � = 2 . 5 × 10 −3 hr. 

The modified LEMPC of Eq. 5 uses the following material con-

traint to make the averaged reactant material available within one

perating period t N p = 0 . 06 hr to be its steady-state value, C A 0 s (i.e.,

he averaged reactant material in deviation form, u 1 , is equal to 0).

1 

t N p 

∫ t N p 

0 

u 1 (τ ) dτ = 0 kmol/m 

3 (15)

The control Lyapunov function V (x ) = x T P x is designed with the

ollowing positive definite P matrix: 

 = 

[
1060 22 

22 0 . 52 

]
(16)

he closed-loop stability region �ρ for the CSTR with ρ = 320 is

haracterized as a level set of Lyapunov function inside the region

 , from which the origin can be rendered asymptotically stable un-

er the controller u = φ(x ) ∈ U of Eq. 3 . The secure operating re-

ion �ρsecure for the LEMPC in Eq. 5 is selected to have ρsecure = 90 .

he matrix P in V = x T P x and the stability region �ρ are deter-

ined through simulations when determining the largest invariant

et �ρ in state-space (i.e., the level set of V) in which 

˙ V is ren-

ered negative ( ̇ V ≤ −α3 (| x | ) , where α3 is a class K function) for

ll states within �ρ under the stabilizing controller u = φ(x ) ∈ U .

ifferent values of P will generate different set of states where
˙ 
 ≤ −α3 (| x | ) , resulting in a different size and shape of the invari-

nt set �ρ . 

emark 5. The closed-loop system exhibits periodic patterns due

o the periodic reactant material constraint imposed on the control

ctions. The process itself is not periodic; however, the material

onstraint imposed on the control actions renews periodically. 
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Fig. 4. State-space plot showing the evolution of measured process states over one 

material constraint period under LEMPC (red trajectory) and under resilient LEMPC 

(blue trajectory). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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emark 6. The design of the secure operating region �ρsecure 

an be adjusted depending on the system dynamics, the desired

hreshold for economic benefits, the magnitude and type of cyber-

ttacks, as well as whether the detector experiences time delay in

orrectly identifying the attacks. If the process dynamics are very

ast, then more room needs to be vacated between �ρ and �ρsecure 

o accommodate for the fast changes in process states when un-

er cyber-attacks. However, designing a conservative secure oper-

ting region �ρsecure is at the expense of compromising economic

enefits, since the maximum economic gain under normal oper-

tion is bounded by �ρsecure . Therefore, the determination of the

ize of �ρsecure comes from a balance between operational stabil-

ty and economic performance. These were all factors taken into

onsideration when running extensive closed-loop simulations to

etermine the value of ρsecure . 

.2. Resilient operation of LEMPC 

With initial conditions x 0 = [0 , 0] T , the closed-loop operation of

he CSTR process in Eq. 13 over one material constraint period t N p 
nder the modified LEMPC in Eq. 5 , and under the resilient con-

rol of LEMPC with combined open-loop and closed-loop control

ctions as described in Section 5 around the secure operating re-

ion �ρsecure are both carried out. Fig. 4 presents the state-space

lot showing the trajectory of the measured process states using

he modified LEMPC of Eq. 5 and using the resilient LEMPC con-

rol strategy when the process is under no attack. The switching

rom using closed-loop to open-loop control actions happens at

 s = 0 . 0175 h . For t 0 ≤ t k < t s , measured process states are well

ithin the secure operating region �ρsecure , and closed-loop con-

rol using the modified LEMPC of Eq. 5 is used with state feed-

ack updates. The LEMPC of Eq. 5 is deactivated at t s = 0 . 0175 h

hen the measured process states first reach the boundary of the

ecure operating region, and can no longer be trustworthy as this

ay be a result of a cyber-attack, i.e., when ρsecure − V ( ̄x (t k )) ≤ c,

here c = 0 . 5 for this case study. The distance from the secure re-

ion boundary, c , is determined to account for computational er-

or in designing and inserting the attacked sensor measurements.

t provides a buffer zone for which resilient LEMPC can be acti-

ated accurately and preemptively. Therefore, for t s ≤ t k ≤ t N p , con-

rol actions u ′ ( t k ) from the open-loop optimization of Eq. 10 that

re solved based on the initial condition x will be applied. 
0 
Even in the case that no process disturbance, no model mis-

atch, and no cyber-attack is present, the resulting state trajec-

ories under LEMPC (closed-loop only), and the resilient LEMPC

closed-loop followed by open-loop control actions after the

witching time t s ) are slightly different. This is because the pre-

iction horizon used in the ordinary LEMPC with periodic closed-

oop feedback has a length of N = 8 and rolls forward in time as

eedback signal updates are received, whereas the open-loop opti-

ization problem computed at the beginning of the material con-

traint period accounts for N p = 24 . Therefore, the control actions

omputed from the open-loop optimization, u ′ ( t k ), will be slightly

ifferent from u ( t k ) calculated from online optimization, resulting

n slightly different state trajectories. 

Despite the subtle differences in the state trajectory, using

pen-loop control actions following closed-loop control still main-

ains the process states within the secure operating region (hence

he stability region) for all times. It is important to note that, if

he process is operated at steady-state, the total economic benefit

n the form of 
∫ t N p 

t 0 
l e ( ̄x (t )) dt is 0 . 6397 kmol/m 

3 
, which is much

ess than that achieved under time-varying EMPC operation. The

otal economic benefit from t 0 to t N p using closed-loop-only con-

rol actions from the LEMPC of Eq. 5 is 0 . 8192 kmol/m 

3 
, and us-

ng the resilient control strategy outlined in Section 5 is similarly

 . 8203 kmol/m 

3 . Under no disturbances or model mismatch, the

otal economic benefit achieved by the resilient LEMPC using open-

oop control actions is marginally higher. In closed-loop operation,

e used a shorter prediction horizon to speed up the computation

o ensure the real-time implementation of EMPC. Since the opti-

ization problem of EMPC is essentially non-convex, the solutions

e obtained from closed-loop operation may not be as good as the

olutions calculated at the beginning, which uses a sufficiently long

rediction horizon that covers the entire operating period as per

aterial constraints. This shows the effectiveness of the resilient

ontrol strategy when the system is under no attack as it does not

ompromise system stability and economic performance. Further-

ore, the similarity in the two trajectories also suggests that, if

 cyber-attack is present and the resilient control strategy is uti-

ized, the evolution of true process states will highly resemble that

nder closed-loop control in the absence of cyber-attacks. Under

in-max attacks with LEMPC operation, the total economic ben-

fit that the true process states provide is 1.4939 kmol/m 

3 ; the

igher economic benefit is a result of the min-max attacks driving

he true states outside of the stability region. With resilient LEMPC

peration and under min-max attacks, the true process states also

ield a total economic benefit of 0.8203 kmol/m 

3 
over one op-

rating period, which is the same as the case under no attacks.

ince NN detection is activated at the end of the first operating

eriod, the total economic benefit with integrated NN detection is

lso 0.8203 kmol/m 

3 . This demonstrates that when the process op-

rates under resilience LEMPC, the addition of cyber-attacks does

ot alter the economic performance over one material constraint

eriod. 

.3. Cyber-attack resiliency assessment 

The purpose of using the resilient control strategy outlined in

ection 5 is to prevent true process states from exiting the sta-

ility region �ρ when under sensor cyber-attacks. Fig. 5 shows

he state-space plot of the evolution of true process states and at-

acked state measurements from initial conditions x 0 = [0 , 0] T over

ne material constraint period under LEMPC and under resilient

EMPC when the temperature sensor is attacked by min-max, ge-

metric, replay and surge attacks, respectively. In all cases, once

he specified cyber-attack starts, it will continue until it has been

uccessfully detected; the detection results and process simulation
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Fig. 5. State-space plot showing the evolution of true process states and attacked state measurements (yellow trajectories) over one material constraint period under LEMPC 

(red trajectories) and under resilient LEMPC (blue trajectories) when (a) min-max, (b) geometric, (c) replay, and (d) surge attacks, are targeting the temperature sensor, where 

the dash-dotted ellipse is the stability region �ρ and the dashed ellipse is �ρsecure 
. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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after the detection are shown in Section 7.5 . Here, the simulation

results over only one material constraint period are shown. After a

cyber-attack has tampered the sensor, the resulting falsified state

measurements will not exit the secure operating region �ρsecure so

as to stay inconspicuous to the control engineer. 

Min-max and surge cyber-attacks are added at t = t s = 0 . 0175 h

such that there will be no suspicious deviation in the Lyapunov

function of the system. At t = 0 . 0175 h , both the true process state

and the attacked state measurement will reach the boundary of the

secure operating region, V (x (t s )) = V ( ̄x (t s )) = ρsecure . As shown in

Fig. 5 (a) and (d), when the temperature sensor is under min-max

and surge attacks respectively, true process states will exit �ρsecure 

and eventually �ρ if only closed-loop control actions from the on-

line LEMPC optimization in Eq. 5 are used. However, when the re-

silient LEMPC control strategy is implemented, closed-loop control

is deactivated at t = 0 . 0175 h , and the falsified feedback measure-
ents can no longer impact the control system. Open-loop control

ctions, which are calculated based on a correctly measured set of

nitial conditions, are used starting at t = 0 . 0175 hr until the end

f the material constraint period when t = t N p = 0 . 06 h . As a re-

ult, the true process states will not exit �ρsecure , and the evolution

f the true process states is almost identical to that under secure

losed-loop control (as demonstrated in Section 7.2 ). The system

tays resilient to min-max and surge attacks, with protected sta-

ility and comparable control performance. 

However, the resilient control strategy may not be effective

hen the system is under other types of attacks, particularly in sit-

ations where the falsified state measurement does not approach

he boundary of �ρsecure . To illustrate this, geometric attacks on the

emperature measurements as shown in Fig. 5 (b) start at t = 0 . 01 h

ollowing Eq. 8 , where β = x (t) ∗ (1 . 001) and α = 0 . 1 . As cyber-

ttacks could happen at any time instant during operation, geo-



S. Chen, Z. Wu and P.D. Christofides / Computers and Chemical Engineering 136 (2020) 106806 13 

m  

t  

m  

r  

d  

i  

t  

H  

m  

D  

p  

t  

t  

t

 

l  

l  

o  

m  

i  

d  

r  

t  

[  

c  

h  

s  

a  

t  

s  

g

 

t  

t  

l  

m  

I  

r  

m

7

 

l  

l  

r  

d  

r  

M

 

f  

0  

T  

t  

u  

d

T  

a  

a  

s  

c  

e  

a

Fig. 6. Time-derivative of the reaction rate r B of Eq. 14 based on measured process 

states over one material constraint period, when the temperature sensor is under 

no attack, and under min-max, geometric, replay, and surge attacks, respectively. 
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etric attacks are designed and inserted as such to demonstrate

he incapability of the resilient control strategy in handling geo-

etric attacks or attacks alike. At t = 0 . 01 h , the states have not

eached the boundary of �ρsecure , therefore not satisfying the con-

ition for deactivating closed-loop control. Geometric attacks start-

ng at t = 0 . 01 h resulted in state measurements that did not reach

he boundary of �ρsecure for the entire duration of cyber-attack.

ence, closed-loop control continued with these false measure-

ents, and the true process states exited �ρsecure during operation.

espite having a correct array of open-loop control actions com-

uted at t = 0 h using the correctly measured initial conditions,

hese control actions were not used. As a result, the resilient con-

rol strategy fails to ensure that the true process states are main-

ained within the secure operating region �ρsecure . 

Moreover, there may be situations where, even when closed-

oop control is deactivated and feedback measurements are no

onger used, the true process states still exit �ρsecure because the

pen-loop control actions are calculated based on false sensor

easurements. To illustrate this scenario, replay attacks as shown

n Fig. 5 (c) start at t 0 = 0 h , and the replayed signals span the

uration of one material constraint period. In other words, the

eplayed signals are real closed-loop state measurements when

he system started from a different set of initial conditions, x̄ 0 =
 −0 . 2107 kmol/m 

3 ; 7 . 8047 K] . Since the initial conditions x̄ 0 are in-

orrect, open-loop control actions optimized over the prediction

orizon of N p based on x̄ 0 are also not correct. As a result, de-

pite the falsified state measurements also reaching the bound-

ry of �ρsecure at t = 0 . 0175 h and deactivating closed-loop control,

hese incorrect open-loop control actions applied on the process

till resulted in true process states exiting the secure operating re-

ion. 

In this example, when under geometric and replay attacks, the

rue process states did not exit the stability region �ρ ; however,

his may not be the case for a different geometric attack with

arger α (geometric factor), a different replay attack that yielded

ore aggressive open-loop control actions, or for a faster process.

n other words, system stability cannot be guaranteed by using the

esilient control strategy, and an effective cyber-attack detection

echanism needs to be included. 

.4. Detectors training and testing 

To train neural-network detectors, training data will be col-

ected under closed-loop operation with the secure LEMPC out-

ined in Eq. 5 . Simulation period is one material constraint pe-

iod t N p = 0 . 06 hr with N p = 24 . Cyber-attacks are added at ran-

om times and last until the end of the simulation period. Neu-

al network models are constructed and trained using the MATLAB

achine Learning and Deep Learning Toolboxes. 

The reaction rate to yield product B , r B ( ̄x ) can be calculated

rom full-state measurements x̄ (t) at each time instant t k from k =
 to k = N p following Eq. 14 , where C A = x̄ 1 + C A s and T = x̄ 2 + T s .

he input parameters used for neural network training are the

ime-varying trajectory of the rate of change in r B ( ̄x ) over the sim-

lation period of one material constraint period N p = 24 , which is

enoted as p( ̄x ) , shown as follows: 

p( ̄x (t)) = 

d r B ( ̄x ) 

dt 
(17) 

he evolution of p( ̄x ) when the temperature sensor is under no

ttack, and under min-max, geometric, replay, and surge attacks,

re shown in Fig. 6 . Each sample consists of a 1 × 24 array of p( ̄x ) ,

tarted from a different initial condition within �ρ . With extensive

losed-loop simulations, equal number of samples are collected for

ach output label, from which 70% are used for training, and 30%

re used for testing. 
First, min-max attacks are used to train a neural-network-based

etector. This feed-forward neural network model has two hidden

ayers with 12 and 10 neurons in each layer respectively. Both hid-

en layers use a tansig activation function, which is in the form

 1 , 2 (z) = 

2 
1+ e −2 z − 1 . The output layer uses a softmax function to

rovide a predicted probability of the class labels, which is in the

orm of g 3 (z j ) = 

e 
z j ∑ H 

i =1 e 
z i 

where H denotes the number of class la-

els. Bayesian regularized mean squared error cost function S ( w )

re minimized with respect to the weights and biases using the

evenberg–Marquardt algorithm, in which the gradient and the

essian matrix of S ( w ) are calculated using the back-propagation

ethod. A total of 750 samples are collected for each class label.

he training time for this 2-class detector is 2.05 s, undergoing 70

pochs, and the detector achieves a training accuracy of 98.9%. The

esting accuracy of this detector against the different attack types

s shown in Table 2 . Note that geometric attacks are not identi-

ed as being attacked due to the vast difference in the trends of

p( ̄x ) when under geometric attack compared to min-max attacks

s shown in Fig. 6 . 

A second detector is trained with min-max and geometric at-

acks. The detector is able to classify between 3 classes: Not at-

acked, attacked by min-max cyber-attacks, and attacked by geo-

etric cyber-attacks. Thus, the detector is capable of differentiating

he types of cyber-attacks in addition to indicating the presence

f one. This detector is trained because geometric attacks exhibit

ery different behavior than min-max attacks, and therefore the

esting accuracy by the 2-class detector is very low. This 3-class

eed-forward neural network detector has two hidden layers with

5 and 12 neurons each, using the same activation functions and

ost function in Eq. 11 , which is minimized using the Levenberg–

arquardt algorithm. The training time for this 3-class detector is

9.48 s with 300 epochs. This 3-class detector achieves an overall

raining accuracy of 91.8%, and its testing accuracies in response

o min-max, geometric, and surge attacks are shown in Table 2 .

he detector accurately identifies min-max and geometric attacks

s their respective labels, and it classifies 71.0% of surge attacks as

in-max, 10.0% as geometric, and the remaining 19.0% are wrongly

lassified as “not attacked”. 

emark 7. Since replay signals could mimic the secure operation

f one entire material constraint period starting at a different ini-
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Table 2 

Detection accuracies of NN detectors in response to min-max, geometric, and surge attacks. 

Detector 1 Detector 2 

(Attacked vs. Not Attacked) (Min-max vs. Geometric vs. Not Attacked) 

Min-max 98.3% 89.7% 

Geometric 2.4% (Attacked) 71.1% 

Surge 87.0% (Attacked) 71.0% (Min-max); 10.0% (Geometric) 

Not Attacked 98.4% 95.6% 

Fig. 7. State-space plot showing the evolution of true process states (blue trajectories) and attacked state measurements (red trajectories) over two material constraint 

periods under the resilient LEMPC when (a) min-max, (b) geometric, and (c) surge attacks, targeting the temperature sensor are successfully detected by a NN detector at 

the end of the first material constraint period, t = 0 . 06 hr, where the dash-dotted ellipse is the stability region �ρ and the dashed ellipse is �ρsecure 
. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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tial condition, they are essentially a different sam ple that belongs

to the class of “not attacked”, and will be rightfully classified as

being “not attacked”. At the end of the material constraint period,

the falsified signals follow exactly the trajectory of previous secure

measurements of one period, thus they will remain undetectable

by the NN detectors. Since the NN approach used in this study is

based on supervised classification, it is heavily dependent on la-

beled data from distinct classes. Being duplicates of nominal sig-

nals, replay signals are not in a distinct class of signals that is

different from the nominal data, thus the proposed NN approach

is an unsuitable detection method for replay attacks. Purely data-

based approaches examining sensor measurements in the case of

replay attacks will not be sufficient, and model-based prediction

approaches may be a possible future research direction. The reader

may refer to other works on the detection of replay attacks in

Hoehn and Zhang (2016) ; Tran et al. (2013) . 

7.5. Online detection 

Detector 1 is used to detect min-max and surge attacks,

whereas detector 2 is used to detect geometric attacks. The corre-

sponding detector is activated at the end of the material constraint

period, and examines state measurements received over the last

material constraint period. Since replay attacks cannot be detected,

the online detection results are also not shown. 

Fig. 7 shows the evolution of true process states and measured

process states attacked by min-max, geometric, and surge cyber-

attacks when the process is controlled by the resilient LEMPC with

combined open-loop and closed-loop control. The figures show the

trajectories over two material constraint periods, where NN-based

detection occurs twice – once at the end of the first period, and

once at the end of the second period. 

Min-max and surge attacks are correctly detected by detector

1 at the end of the first constraint period t = 0 . 06 h by examining
he trajectory of p( ̄x (t)) from t = 0 h to t = 0 . 06 h , after which the

ensor devices are switched to a secure set of redundant sensors

nd operation continues with these secure sensor measurements.

uring the second period, the attacked old set of sensors are no

onger connected to the control system, and the newly switched

et of sensors are not tampered by cyber-attacks. At the end of

he second material constraint period t = 0 . 12 h , detector 1 is ac-

ivated again, and it correctly classifies the secure measurements

s ”not attacked”. 

Furthermore, if a particular attack type is trained as a separate

lass (i.e., “geometric”) from other attack types (i.e., “min-max”),

hen the detector is also capable of identifying the type of cyber-

ttack. As shown in Fig. 7 (b), although the true process states ex-

ted �ρsecure during the first material constraint period (closed-loop

ontrol based on false feedback signals was not deactivated), the

tate measurements attacked by geometric attacks were still cor-

ectly identified as geometric by detector 2 at the end of the first

aterial constraint period. After switching the sensor devices to

he respective secure back-up sensors, detector 2 correctly identi-

es the trajectory of p( ̄x (t)) over the second material constraint

eriod from t = 0 . 06 h to t = 0 . 12 h as “not attacked”. This means

hat, although the resilient control strategy cannot ensure stability

ver one material constraint period if the attacked measurement

eliberately avoids approaching the boundary of �ρsecure , the attack

an still be detected at the end of the material constraint period,

nd mitigation measures can be taken following the successful de-

ection to terminate the impact of the cyber-attacks. One method

o avoid the true states from exiting the stability region when un-

er geometric attacks is to adjust the size of �ρsecure such that the

esilient control strategy could come into effect earlier. Moreover,

etting a shorter material constraint period in addition to operating

ithin a conservative secure region could be another preventative

ethod to consider, so that the cyber-attack detection can happen

ore frequently. 
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. Conclusion 

In this work, the secure operation of nonlinear chemical pro-

esses under economic model predictive control was presented via

he design of a secure operating region, resilient control strate-

ies, and a neural-network-based cyber-attack detector. Consider-

ng a general class of nonlinear systems, a resilient Lyapunov-based

conomic Model Predictive Controller with combined closed-loop

nd open-loop control action implementation was developed at the

ost of reduced total economic gain. Through simulating a contin-

ously stirred tank reactor process, it was demonstrated that the

roposed control strategy was effective in maintaining process sta-

ility against particular types of malicious cyber-attacks, namely

in-max and surge attacks, while achieving comparable economic

erformance compared to nominal operation under no attacks.

wo neural-network-based cyber-attack detectors were constructed 

o detect the presence or distinguish the type of a cyber-attack,

nd the time-varying trajectory of a nonlinear function of sensor

easurements were used as the input variables for the detection

lgorithm. The detector was able to provide a diagnosis at the end

f each LEMPC operation period, and simulation results demon-

trated that min-max, surge, and geometric attacks could be suc-

essfully detected. 
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