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Abstract

This work presents a detector-integrated two-tier control architecture capable of

identifying the presence of various types of cyber-attacks, and ensuring closed-loop

system stability upon detection of the cyber-attacks. Working with a general class of

nonlinear systems, an upper-tier Lyapunov-based Model Predictive Controller

(LMPC), using networked sensor measurements to improve closed-loop performance,

is coupled with lower-tier cyber-secure explicit feedback controllers to drive a

nonlinear multivariable process to its steady state. Although the networked sensor

measurements may be vulnerable to cyber-attacks, the two-tier control architecture

ensures that the process will stay immune to destabilizing malicious cyber-attacks.

Data-based attack detectors are developed using sensor measurements via machine-

learning methods, namely artificial neural networks (ANN), under nominal and noisy

operating conditions, and applied online to a simulated reactor-reactor-separator pro-

cess. Simulation results demonstrate the effectiveness of these detection algorithms

in detecting and distinguishing between multiple classes of intelligent cyber-attacks.

Upon successful detection of cyber-attacks, the two-tier control architecture allows

convenient reconfiguration of the control system to stabilize the process to its oper-

ating steady state.
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1 | INTRODUCTION

Automated real-time operations of industrial process control systems

depend heavily on accurate information and reliable communication

technologies. These cyber-physical systems (CPS) utilize hardware

and software resources to seamlessly integrate computation, network,

and physical process components. In more recent years, wireless net-

works and internet communication are starting to complement or

replace existing wired point-to-point communications, and together

constitute a hybrid communication network.1 As these new develop-

ments bring efficiency and improved closed-loop performance, height-

ened concern for security also arises.2 As more components are

included, there is a high probability that continuous feedback

measurements cannot be guaranteed due to bursts of network

transmission errors. Furthermore, each device and communication

channel in the network expand the exploitable surface to cyber-

attacks. With increasing sophistication of the cyber-attacks, the nega-

tive consequences associated with these attacks may be beyond

asset damage and economic loss. Since attackers may have access to

technical details of the control system and of the process operation,

fundamental process safety and operational integrity may also be

compromised. A number of industrial cyber-attacks in recent years,

such as the Stuxnet worm attacking Iran's nuclear centrifuges, the

2014 cyber-attack targeting a German steel mill, and the 2015 cyber-

attack on Ukraine's electric power grid, have all proven their detri-

mental physical impacts.3 Current mitigation practice recommends
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having multiple independent layers of protection, such as personnel

training, network compartmentalization, access restriction, using

“unhackable” analog backup, running anti-virus softwares, and so on.2

However, there is no systematic approach to actively monitor, detect,

and contain these intrusions using the data network on a digital plat-

form. Therefore, designing new advanced detection schemes coupled

with robust control architectures to cyber-attacks can provide a resil-

ient solution to addressing this gap. Considering the close interaction

between cyber and physical components, operational cyber-security

of the control systems requires a different strategy from the tradi-

tional information technology (IT) approaches.

Recent IT developments have given an edge to enterprise cyber-

security (e.g., enhancement of firewalls for guarding confidentiality),

and similar safeguarding methodologies such as advanced big data

analytics may also be used to secure device measurements, which are

instrumental to process operation. Production plants collect and

archive huge operational and instrumentation data to be used for

monitoring, control, and troubleshooting. However, much of these big

data archived is seldom revisited. The potential application of these

data goes beyond preventative maintenance and fault detection,

especially with increased digital connectivity and increased computing

power. One example usage of big data is the detection and prediction

of cyber-attacks in the plant. In recent years, machine-learning tech-

niques have become increasingly popular in classical engineering fields

in addition to computer science and engineering.4-6 Artificial neural

networks were trained to model a pilot-scale entrained-flow gasifier

in Reference 7, and were also used to predict industrially relevant

observable values and/or stochastic PDE model parameters for

nonlinear model predictive control of multiscale thin film deposition

processes in References 8, 9. Conventional machine-learning methods

(e.g., artificial neural network, principal component analysis, support

vector machines) and more advanced deep learning methods

(e.g., convolutional neural networks, long short-term memory neural

networks, gated recurrent units) have demonstrated success in

detecting machine and plant anomalies.10 Model-based fault diagnosis

and classification in electric drive systems were carried out using a

fault diagnostic neural network in Reference 11 and automated fault

detection and diagnosis of HVAC subsystems using hidden Markov

models was studied in Reference 12. Moreover, machine-learning

methods deployed for attack detection were presented in a number

of works.13-15 Particularly, the anomaly detection algorithm outlined

in Reference 16 used a long short-term memory (LSTM) neural net-

work as a predictor to model normal behavior of a water treatment

testbed, and used the Cumulative Sum (CUSUM) method to identify

anomalies. Using various machine-learning classification methods,

cyber-attacks on power systems were distinguished from process dis-

turbances in Reference 17, and a behavior-based intrusion detection

algorithm was developed to identify the type of attack.18 Similarly,

detection of cyber-attacks in a chemical process was realized via

development of feed-forward artificial neural networks in Reference

19, where compromised signals were rerouted to a secure sensor

upon detection. These recent literature contributions have demon-

strated the feasibility of machine-learning algorithms in anomaly

detection. Therefore, machine-learning methodologies can be readily

adopted in the context of control theory and cyber-physical security.

Stealthy, intelligent cyber-attack diagnosis and defense span a much

broader scope than classical fault detection problems because intelli-

gent adversaries can modify the actuator, the sensor, or the control

implementation using process and control system information.

With knowledge of the plant model and of the control formula-

tion, cyber-attacks are strategically programmed with the goal of dis-

ruption, and are fundamentally different from ordinary sensor and

actuator faults. Specifically, among sensor cyber-attacks, Denial-of-

Service attacks, replay attacks and deception attacks (e.g., Min-Max,

Geometric, Surge) are some of the most common and easily

implementable ones by attackers.20 Furthermore, the effects of these

attacks may be only observed in changes of the dynamic behavior

(runtime variables) of the closed-loop system; thus, using hardware

performance counters to track code modifications is not feasible.3

While conventional detection methods have demonstrated their

effectiveness in detecting suspicious process variable deviations, most

of these methods are model-based—either dependent on network and

computer system models, or on physical process models. Certain clas-

ses of intelligent cyber-attacks either render traditional detection

methods ineffective, or remain undetected until the system experi-

ences a significant deviation and reaches an undesirable operating

point, at which the existing alarm systems could be triggered. The goal

of a robust cyber-attack detector is to identify attacks from subtle

variations in real-time process state measurements and mitigate the

risk before an operation alarm is triggered. Therefore, without explicit

knowledge on the process model, adopting a databased detection

approach utilizing machine-learning algorithms provides a promising

path for the detection of unknown intelligent cyber-attacks. The inte-

gration of existing advanced control techniques (e.g., MPC) and online

machine-learning-based detection algorithms adds another protective

safeguard to the multilayer cyber-defense strategy that is standard to

next-generation smart manufacturing.

Despite current literature efforts on stealthy attack analysis and

machine-learning-based detection, there is a lack of an integration of

the two, as well as a broader application of detection schemes across

stealthy attack classes and nonlinear chemical processes. Further-

more, feasible mitigation practices using control strategies after the

occurrence of attacks have not yet been explored. In light of these

gaps, the contributions of this work are as follows: (a) construction of

data-based machine-learning detection algorithms which can effec-

tively detect multiple classes of intelligent cyber-attacks; (b) design of

a robust control architecture to promptly contain and eliminate the

impact of cyber-attacks by reconfiguring the control system; and

(c) application of the proposed detection and mitigation schemes to a

benchmark multivariable nonlinear process example, which is a pro-

cess example widely used in literature to test the performance of new

control system designs.21-23 The remainder of this paper is organized

as follows: notation and the class of nonlinear process systems con-

sidered are presented in Section 2; the cyber-secure control architec-

ture is formulated in Section 3; the design and detection mechanism

of cyber-attacks are presented in Section 4; and the application of the
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proposed methodology to a nonlinear chemical process network is

presented in Section 5.

2 | PRELIMINARIES

2.1 | Nonlinear system formulation

In this work, |�| is used to denote the Euclidean norm of a vector; xT

denotes the transpose of x; Rn
+ denotes the set of vector functions of

dimension n whose domain is [0,∞). Class K functions α(�) : [0, a)!
[0,∞] are defined as strictly increasing scalar functions with α(0) = 0.

The class of continuous-time nonlinear systems considered is

described by the following state-space form:

_x tð Þ= f x tð Þ,uc tð Þ,ua tð Þð Þ ð1aÞ

yc tð Þ= hc x tð Þð Þ,ya tð Þ= ha x tð Þð Þ ð1bÞ

where x∈Rnx is the state vector, yc tð Þ∈Rnyc represents the vector

of state measurements that are sampled continuously (e.g., reactor

temperature), and ya tð Þ∈Rnya represents the vector of networked

state measurements that may be sampled asynchronously at t = tk

(e.g., reactor product concentration); uc and ua are the manipu-

lated input vectors, which are constrained by [uc∈Rmuc ,ua∈Rmua ]

∈U≔ umin
i ≤ ui ≤ umax

i , i=1,…,muc +mua

� �
. Through yc and ya, we assume

measurement of the full state vector x can be obtained at tk. Without

loss of generality, the initial time t0 is taken to be zero (t0 = 0). It is

assumed that f(�) is a sufficiently smooth vector function of its argu-

ments, and hc(�) and ha(�) are sufficiently smooth vector functions of

x where f(0, 0, 0) = 0, hc(0) = 0, ha(0) = 0. Thus, the origin is an equilib-

rium point of the system of Equation (1) under uc(t) = 0 and ua(t) = 0.

3 | CYBER-SECURE TWO-TIER CONTROL
ARCHITECTURE

We propose a cyber-secure control architecture that unites a lower-tier

control system that uses the dedicated sensor measurements, yc(t), to

ensure stability of the steady state of the closed-loop system and an

upper-tier, high-performance control system (in this work, model predic-

tive control) that uses both dedicated (yc(t)) and networked (ya(t)) sensor

measurements to improve closed-loop performance significantly above

what could be achieved with the lower-tier control system. Below we

present in detail the lower-tier and upper-tier control systems.

3.1 | Lower-tier control system

We assume that there exists an explicit feedback controller of the

form uc(t) = ϕc(yc(x(t))) ∈ U that can stabilize the closed-loop system of

Equation (1). This controller, using only the continuous measurements

yc(t) is termed the lower-tier controller, and is designed such that the

origin of the nominal closed-loop system of Equation (1) with the

input ua(t) = 0 is rendered asymptotically stable. Therefore, there exist

class K functions αi(�), i = 1, 2, 3, 4, and a positive definite control

Lyapunov function V (x) that satisfy the following conditions:

α1 jxjð Þ≤V xð Þ≤ α2 jxjð Þ, ð2aÞ

∂V xð Þ
∂x

f x,ϕc yc xð Þð Þ,0ð Þ≤ −α3 jxjð Þ, ð2bÞ

∂V xð Þ
∂x

����
����≤ α4 jxjð Þ ð2cÞ

for all x∈D⊆Rnx , where D is an open neighbourhood around the origin.

We construct a subset defined as a level set of V (x) inside D, Ωρ: = {x

∈ D | V (x)≤ ρ, ρ>0}, to represent an estimate of the stability region of

the closed-loop system of Equation (1) under ϕc(yc). Ωρ is an invariant

set for the closed-loop system. Therefore, starting from any initial state

in Ωρ, ϕc(yc) guarantees that the state trajectory of the closed-loop sys-

tem remains within Ωρ and asymptotically converges to the origin.

Thus, given that the sensor measurements received by the lower-tier

controller are secure and reliable, the lower-tier controller is able to sta-

bilize the process to the origin for any initial conditions inside Ωρ.

3.2 | Upper-tier model predictive control system

To fully utilize the networked (potentially asynchronous) state

measurements ya(t) and to compute ua(t) that improves the overall

closed-loop performance over what can be achieved with ϕc(yc), a

Lyapunov-based MPC (LMPC) is used as the upper-tier controller with

its contractive constraint defined based on the stability region of the

lower-tier controller such that the asymptotic stability of the closed-

loop system will not be jeopardized by the contributions of ua(t). The

optimization problem of LMPC is as follows:

J = min
ua∈S Δð Þ

ðtk +N
tk

L ~x tð Þ,~uc tð Þ,ua tð Þð Þdt ð3aÞ

s:t: _~x tð Þ= fð~x tð Þ,ϕc yc ~x tð Þð Þ,ua tð Þð Þ ð3bÞ

_̂x tð Þ= fðx̂ tð Þ,ϕc yc x̂ tð Þð Þ,0ð Þ ð3cÞ

~x tkð Þ= x̂ tkð Þ= x tkð Þ ð3dÞ

uc tð Þua tð Þ½ �∈U, 8t∈ tktk +Nð Þ ð3eÞ

V ~x tkð Þð Þ≤V x̂ tkð Þð Þ, ifV ~x tkð Þð Þ> ρmin ð3fÞ

V ~x tð Þð Þ≤ ρmin, 8t∈ tktk +Nð Þ, ifV ~x tkð Þð Þ≤ ρmin ð3gÞ

where ua belongs to a family of piece-wise constant functions S(Δ)

with sampling period Δ, N is the number of sampling periods in the
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prediction horizon, and the LMPC optimization problem presented in

Equation (3) optimizes ua over the prediction horizon t ∈ [tk, tk + N) when

full state measurement is received at time instance tk. The optimal solu-

tion is denoted u*a tð Þ. The first control action of u*a tð Þ, i.e., ua tð Þ= u*a tkð Þ,
is applied in open loop until a new full-state measurement x(tk)

obtained from yc(tk) and ya(tk) in Equation (1b) becomes available to

the LMPC and the optimization problem is solved again. In the meantime,

the lower-tier controller continuously calculates and applies uc(t) = ϕc(yc(t))

based on continuous measurement feedback yc(t). If the time between

two consecutive asynchronous measurements is longer than the predic-

tion horizon N �Δ, then ua(t) is set to zero for the remainder of the asyn-

chronous sampling interval past the prediction horizon, such that it does

not act as an additional disturbance to the lower-tier controller before the

next ya arrives. In Equations (3b) and (3c), ~x tð Þ and x̂ tð Þ are the predicted

state trajectories of the two-tier nominal system using control actions

ϕcðyc ~x tð Þð Þ coupled with ua(t) computed by LMPC, and control actions

ϕcðyc x̂ tð Þð Þ coupled with ua(t) = 0, respectively. As shown in Equa-

tion (3d), full-state measurements received at tk are used as the initial

conditions of the predicted trajectories in the optimization problem of

LMPC. Both upper-tier and lower-tier controller inputs are subject to

their respective constraints defined by U in Equation (3e).

Given that the lower-tier controller is able to stabilize the system

independently as the Lyapunov function under lower-tier control sat-

isfies the conditions in Equation (2), the contractive constraint in Equa-

tion (3f) ensures that the value of the Lyapunov function of the closed-

loop system under two-tier control, V ~x tkð Þð Þ , is lower than or equal to

that under lower-tier control alone V x̂ tkð Þð Þ . Therefore, Ωρ is the

closed-loop stability region under two-tier control. In other words, the

upper-tier maintains the closed-loop stability of the system while

improving the overall closed-loop performance. In order to avoid oscil-

lations when the states approach the equilibrium point, the Lyapunov

function is bounded as seen in Equation (3g) once the system enters a

small region around the equilibrium point characterized by a level set

Ωρmin
, where 0 < ρmin < ρ. It is important to note that the LMPC is only

executed when full-state information is received from both the contin-

uous and asynchronous measurements as they become available at

time tk. The continuous measurements are measured and transmitted

by sensors in a point-to-point network, and are used by the lower-tier

control system to compute stabilizing control actions continuously.

Thus, the continuous measurements will be available and readily used

as state feedback in addition to the asynchronous measurements when

the LMPC is activated. This two-tier control design, where the

networked sensor measurements, ya(t), used only by the upper-tier con-

troller may be under potential cyber-attack, is illustrated in Figure 1a.

4 | CYBER-ATTACK DESIGN AND
DETECTION

4.1 | Attack scenarios

The upper-tier control system—where networked sensor information is

incorporated and part of its measurement feedback is asynchronous—is

vulnerable to cyber-attacks. Due to these irregular and sparse measure-

ments, suspicious disparities between consecutive state measurements

may be less apparent or susceptible to detection by the control engi-

neer or classical fault-detection schemes. Furthermore, deviations cau-

sed by intelligent cyber-attacks and their dynamic impact on the

process may be less detectable when multiple states are attacked.

While the networked asynchronous measurements used only in the

upper-tier controller are more susceptible to attacks, the continuous

measurements used in both upper-tier and lower-tier controllers must

remain intact for a few reasons. First, we assume that the process is

stabilized under lower-tier controllers, and the upper-tier controller is

designed such that its control Lyapunov function is contained inside

that of the stabilizing lower-tier controllers. Therefore, the closed-loop

stability under two-tier control is ensured by the stabilizing lower-tier

controllers, and the closed-loop stability under lower-tier control is only

guaranteed if the continuous measurements feeding into lower-tier

controllers are secure and reliable. Second, having a secure stabilizing

lower-tier controller allows quick mitigation measures by changing the

control structure once a cyber-attack is identified in the networked

measurements. Since the process can be driven to its operating steady

state using only the lower-tier control system, in the case of a con-

firmed cyber-attack detection, the upper-tier controller which uses the

corrupted networked measurements will be shut off. If the continuous

measurements are also tampered, then the closed-loop stability under

the lower-tier controllers is no longer guaranteed, and this mitigation

plan is rendered ineffective. Therefore, having secure continuous sen-

sor measurements is instrumental to maintaining functional stabilizing

lower-tier controllers, which in turn ensures robustness of the closed-

loop system to cyber-attacks.

To capture realistic sensor variance and to differentiate cyber-

attacks from normal device fluctuations, bounded sensor noise is also

considered. Thus, in our formulation, two scenarios are considered:

1. Nominal model is as presented in the nonlinear system outlined in

Equation (1) where output sensors do not encounter any sensor

noise.

2. Noise model adopts the same dynamic system model in Equa-

tion (1a), but with bounded Gaussian noise w(t) ∈ W added to all

sensor measurements, where W = w∈Rnyc + nya jwj≤wmaxj
� �

.

Depending on the range of the outputs, the standard deviation of

noise distribution for each sensor is adjusted accordingly. There-

fore, Equation (1b) is modified to the following form:

yc tð Þ= hc x tð Þð Þ+w tð Þ, ya tð Þ= ha x tð Þð Þ+w tð Þ, w tð Þ∈W ð4Þ

To collect closed-loop data used for machine-learning detector

training, attacks with varying durations La are introduced at random

times i0 during the simulation period. In both cases (with and without

noise), signals without attack interceptions are classified as “no

attack”. Attacks on single sensor and on multiple sensors are both

considered, where the data collected from single-sensor tampering is

used for detector training, the multiple-sensor attacks are simulated
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for online testing of the effectiveness of the detector algorithms. Data

collected from single-sensor tampering also allows for sensor isolation

using machine-learning-based models. For clarity, we consider that

only one type of cyber-attack will occur at a time, that is, there will

not be a hybrid of multiple attack types within each attack duration.

Remark 1 The continuous state measurements used by lower-tier con-

trollers are also used by the upper-tier controller despite the

asynchronous execution frequency of the upper-tier controller.

Since these continuous state measurements cannot be tampered,

the same measurements fed into the upper-tier controller remain

intact when an attack occurs. Thus, even in the case where multi-

ple sensors are under attack, only those sending sampled asyn-

chronous state measurements to the upper-tier controller will be

corrupted. Moreover, it is not meaningful to simulate an intelligent

cyber-attack that targets the two separate communication

(a)

(b)

F IGURE 1 Two-tier control-detector architecture showing (a) lower-tier controllers using continuous secure sensor measurements and an
upper-tier model predictive controller using both continuous (secure) and networked (vulnerable to cyber-attacks) sensor measurements, and
(b) feed-forward neural network structure with two hidden layers with inputs being the full-state Lyapunov function at each sampling time of the
model predictive controller within the detection window, and output being the probability of each class label for the examined trajectory
indicating the status and/or type of cyber-attack [Color figure can be viewed at wileyonlinelibrary.com]
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channels going into the two tiers of controllers such that the

continuous measurements received by lower-tier controllers are

accurate while the continuous measurements received by the

upper-tier controller are falsified. This is because a simple tracker

that examines the deviation between the same measurements

received by both controllers would identify the presence of this

abnormality. Therefore, the continuous state measurements

remain unattacked in both controllers.

4.2 | Types of intelligent cyber-attacks

As intelligent cyber-attacks are adaptive to the process and control

system behavior, we may assume that they are as powerful as hav-

ing access to the measurement feedback signals (sensor attack),

the control command signals (actuator attack), or auxiliary informa-

tion such as the threshold and bias parameters in detection

methods such as CUSUM.24,25 Being process and controller behav-

ior aware, the attacks will therefore have information on the stabil-

ity region of the process under two-tier control, as well as existing

alarm triggers on the ideal operating window imposed on the input

and output variables. In this work, we only consider attacks on sen-

sor measurements. During normal operation, these sensor feed-

back measurements need to accurately reflect the true state of the

plant, otherwise any falsified measurement may result in control

actions that no longer guarantee closed-loop stability, and may

eventually drive the process away from its steady state and outside

of Ωρ. Intelligent cyber-attacks are designed such that the control-

ler is able to compute feasible control actions (i.e., the falsified

state is not outside the closed-loop stability region Ωρ), but have

large enough magnitude of variations such that the control system

will not be able to drive the process to its operating steady state.

The four most important types25 of such attacks are considered

below.

4.2.1 | Min-max cyber-attack

Min-max attacks are designed to induce maximum destabilizing

impact within shortest time without being detected. In order to stay

undetectable by classical detection methods, min-max attacks are

introduced based on the more conservative value of the following

two conditions: (a) a window around the equilibrium point of the

attacked state(s) reflecting reasonable physical operating conditions;

(b) state values furthest from the equilibrium point (minimum or maxi-

mum) such that the system does not exit the closed-loop stability

region Ωρ. Attacks generated based on these two conditions ensure

that the attacked state measurements fed to the control system do

not exit the stability region or the configured operating window, and

do not trigger any conventional detection alarms designed based on

these boundary values. The min-max attack can be formulated as

follows:

�x tið Þ=min argmax
x∈Rnx

V x tið Þð Þ≤ ρf g,argmax
x∈Rnx

x tið Þ∈χf g
� �

, 8i∈ i0, i0 + La½ �

ð5Þ

where ρ defines the level set of the Lyapunov function V (x) that

characterizes the stability region of the closed-loop system of

Equation (1) under the two-tier control system, χ := {xl ≤ x ≤ xu} repre-

sents the ideal state operating window, �x is the compromised sensor

measurement at each sampling step, i0 marks the time instant that

attack is added, and La denotes the time duration of the attack in

terms of sampling periods.

4.2.2 | Replay cyber-attack

In a replay attack, the attacker first records segments of the system

output corresponding to a nominal operating condition where large

oscillations occur. The attacker then intercepts and resets the current

process state measurements to these pre-recorded values. Replay

attacks can be represented by the following equations:

�x tið Þ= x tkð Þ,8k∈ k0,k0 + La½ �, 8i∈ i0, i0 + La½ � ð6Þ

where x(tk) is the true plant measurement, La represents the length of

the attack in terms of sampling periods, and �x is the series of replay

attacks introduced at time ti0 duplicating previous plant measure-

ments that are recorded starting from time tk0 . As previous plant out-

puts are obtained from legitimate closed-loop measurements and

given by secure sensors, these state values are supposedly inside the

stability region and the operating envelope. Therefore, by replicating

these values and feeding them back to the controller, classical detec-

tors will not be able to recognize the abnormality caused by replay

cyber-attacks.

4.2.3 | Geometric cyber-attack

Geometric cyber-attacks aim to deteriorate the closed-loop system sta-

bility slowly at the beginning, then geometrically increase their impact

as time progresses, with its maximum damage achieved at the end of

the attack duration. Initially, the attacker adds a small constant β to the

true measured output (β is well below the maximum allowable value as

defined in a min-max attack). At each subsequent time step, this offset

is multiplied by (1 + α), where α ∈ (0, 1), until it reaches the maximum

allowable attack value. The two parameters α and β are therefore

selected based on the stability region, the operating envelope, and the

attack duration. Geometric attacks can be written in the form:

�x tið Þ= x tið Þ+ β× 1+ αð Þi− i0 , 8i∈ i0, i0 + La½ � ð7Þ

where �x is the compromised sensor measurement, β and α are param-

eters that define the magnitude and speed of the geometric attack, i0
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signifies the time instant at which the attack starts, and La is the dura-

tion of the attack in terms of sampling periods.

4.2.4 | Surge cyber-attack

Surge attacks act similarly as min-max attacks initially to maximize the

disruptive impact for a short period of time, then they are reduced to

a lower value. In our case, the duration of the initial surge in terms of

sampling times is selected as Ls ∈ [2, 5] to differentiate itself from a

min-max attack. Moreover, the initial surge period Ls is chosen to be

in this range such that the potential time delays on the detection

alarm will not be longer than Ls where the impact is most severe, and

in turn, may cause a missed alarm from the detector. After the initial

surge, the reduced constant value—at which the attack stays at—is

chosen considering the impact of the initial surge and the total dura-

tion of the attack such that the cumulative error between state mea-

surements and their steady state values will not exceed the threshold

defined in some statistic-based detection methods (e.g., CUSUM).The

formulation of a surge attack is presented below:

�x tið Þ=min argmax
x∈Rnx

V x tið Þð Þ≤ ρf gargmax
x∈Rnx

x tið Þ∈χf g
� �

, if i0 ≤ i≤ i0 + Ls

�x tið Þ= argmax
x∈Rnx

jx tið Þj,0≤ i≤ i0f g, if i0 + Ls < i≤ i0 + La
ð8Þ

where i0 is the start time of the attack, Ls is the duration of the initial

surge, and La is the total duration of the attack in terms of sampling

periods. After the initial surge, the attack is reduced to a lower con-

stant value, which is obtained by examining the secure state measure-

ments prior to the occurrence of the surge attack, and taking the

value that is furthest away from the origin.

4.3 | Machine-learning-based detection of cyber-
attacks

There are many advantages to using a databased approach to develop

the cyber-attack detector.26-28 First, with attacks having possible

access to information on process behavior (stability region and vari-

able operating window), physical-model-based detection methods

where the statistics threshold and false alarm bias are selected based

on process operation are rendered ineffective.25 Second, during real-

life operation, plant model structure and parameters may be subject

to modifications due to a changing operating environment. Therefore,

using a data-based (physical model independent) method to train a

detection mechanism for cyber-attacks is resilient to both process

changes and intelligently designed attacks.

Within well-practiced machine-learning methods, neural networks

(NN) have proven their effectiveness in both supervised and

unsupervised classification problems.29 Depending on the training

data and target number of classes the algorithm aims to identify, neu-

ral networks can be used to distinguish between “attack” and “no

attack” (two classes), or to identify the type of attack (multiple clas-

ses). While under attack, data collected from individual sensors can

also be used to locate the corruption, where the neural network

model distinguishes between multiple classes with each class rep-

resenting one problematic sensor. In our study, a feed-forward artifi-

cial neural network is used for supervised classification. Through a

series of nonlinear transformations, neurons in the first hidden layer

are derived from the inputs, and hidden neurons in subsequent layers

are derived from their precedent layer, with the output calculated

from neurons in the last hidden layer. These nonlinear transformations

are in the form of an activation function of biases and weighted sum

of inputs (or neurons in the previous layer). The structure of a basic

neural network model employed here is shown in Figure 1b, with each

input representing the control Lyapunov function of the full state

measurements at each asynchronous sampling time instant, and an

output vector for predicted class label. The mathematical formulation

of the two-hidden-layer feed-forward neural network is as follows:

θ 1ð Þ
j = g1

XNT

i=1

w 1ð Þ
ij V x tið Þð Þ+ b 1ð Þ

j

 !
ð9aÞ

θ 2ð Þ
j = g2

Xh1
i=1

w 2ð Þ
ij θ 1ð Þ

i + b 2ð Þ
j

 !
ð9bÞ

θ 3ð Þ
j = g3

Xh2
i=1

w 3ð Þ
ij θ 2ð Þ

i + b 3ð Þ
j

 !
, ypred = θ 3ð Þ

1 ,θ 3ð Þ
2 ,…,θ 3ð Þ

H

h iT
ð9cÞ

with θ 1ð Þ
j and θ 2ð Þ

j representing neurons in the first and second hidden

layer, respectively, where j = 1, …, hl is the number of neurons in layer

l = 1 and l = 2. θ 3ð Þ
j represents neurons in the output layer (l = 3),

where j = 1, …, H, and H is the number of class labels. In this study, the

number of hidden layers is 2; however, the formulation of neurons

can be similarly applied to multiple hidden layers as well. In the input

layer, input variables V (x[ti]) are the control Lyapunov function of the

full state measurements at time ti, where i = 1, …, NT is the length of

the time-varying trajectory for each input sample. The weight associ-

ated with the connections between neurons i and j in consecutive

layers (from l−1 to l) is denoted by w lð Þ
ij , and the bias placed on

the jth neuron in the lth layer is denoted by b lð Þ
j . Each layer receives

information from its previous layer, and computes an output based

on the optimized weights, biases, and its nonlinear activation

function—denoted gl (e.g., hyperbolic tangent sigmoid transfer func-

tion g zð Þ= 2
1+ e−2z −1 , and softmax function g zj

� �
= ezjPH

i=1
ezi

where H is

the number of class labels). Performances of different common activa-

tion functions including ReLu, sigmoid, radial basis functions were

analyzed in Reference 30. In the output layer, ypred is a vector provid-

ing the predicted probabilities of each class label for the examined

sample, where the neuron with the highest probability indicates the

predicted class label. Depending on the type of classification problem

the neural network is intended for, the predicted class label provides

information on either the status or the type of a cyber-attack.

The weights and biases are optimized by minimizing the Bayesian
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regularized mean squared error cost function. The cost function used

in the optimization problem is of the form:

S wð Þ= γ
XNs

k =1

ypred,k −ytrue,k
� �2

+ ζ
XNw

p=1

w2
p ð10Þ

where k = 1, …, Ns represents the number of samples in the training

dataset, p = 1, …, Nw represents the number of weights and biases in

the neural network, ytrue is the vector of target class label associated

with each sample, ypred is the vector of the predicted probabilities

associated with each class label derived from the neural network, and

γ and ζ are the regularization hyper-parameters. The minimization of S

(w) with respect to the weights and biases is a nonlinear optimization

problem solved using the Levenberg–Marquardt algorithm, in which

the gradient and the Hessian matrix of S(w) are calculated using the

backpropagation method. Assuming the weights and the data have

Gaussian prior probability distributions, the regularization hyper-

parameters, γ and ζ, are updated by maximizing their posterior proba-

bility distribution given the data, which is equivalent to maximizing

the likelihood of evidence by Bayes' Theorem. Within each epoch, the

cost function S(w) is minimized with respect to w, and the likelihood

of evidence is maximized with respect to γ and ζ. This is carried out

iteratively until self-consistency is achieved, at which point the opti-

mal distribution of weights and biases in the Bayesian regularized arti-

ficial neural network is obtained. Bayesian regularized artificial neural

networks can effectively avoid over-training and over-fitting. Evi-

dence procedures provide an objective Bayesian criterion for early

stopping and remove the need for lengthy cross validations. Further-

more, the less relevant weights are turned off during the training pro-

cess and Bayesian regularization effectively prunes the network.31

Training and testing accuracies are calculated using the ratio between

number of correctly classified samples and total number of samples in

the training and testing sets, respectively. To develop a neural net-

work detection model, closed-loop measurement data, both yc and ya,

under two-tier control are collected. For better detection accuracy,

training data needs to be collected starting at a broad range of initial

conditions within the stability region Ωρ, such that various state evolu-

tions under different operating conditions are covered. Full state mea-

surements are recorded along the time-varying trajectory, and the

Lyapunov function V (x) is computed. As it captures the dynamic fea-

tures of all states, V (x) is an effective one-dimensional input feature

for the attack detection problem. To ensure training accuracy, equal

number of samples within each class are collected, with each sample

corresponding to a different set of initial conditions for the closed-

loop system simulation.

After data collection and adequate training, the NN detector is

implemented online with the process controlled by the two-tier con-

trol system. The feed-forward NN model is a static model receiving

inputs of fixed dimension, NT, which is the length of the time-varying

trajectory. Therefore, the detection window of the NN detector while

implemented online also matches the trajectory length of the training

data, NT. The detector is activated every time full state measurements

become available, and uses a moving horizon detection window,

receiving latest sequences of x(tk) of fixed length NT. Moreover, as the

NN detector does not have perfect classification accuracy, false

alarms may occur where large oscillatory data within normal ranges

may be misclassified as a cyber-attack. To reduce false alarm rates, a

sliding alarm verification window is also implemented, where the num-

ber of positive attack detections within this window need to surpass a

threshold before a cyber-attack alarm is confirmed. The size of this

verification window and the threshold value are determined based on

the closed-loop evolution of the process, as these two parameters

have a direct impact on the detection time and alarm rate. If sensor

isolation is required, then all upper-tier state trajectories need to be

fed into the neural network individually, as the output class labels

depend on changes in each sensor. Each sample consists of a two-

dimensional matrix nx × NT, where nx is the full state dimension, and

NT is the length of each state trajectory within the training simulation

period. Similarly, equal number of samples in each class (i.e., one class

representing each networked sensor measurement being attacked)

are collected for various initial conditions in the stability region. These

samples are used to train a sensor-isolation NN algorithm outputting

multiple classes, where each class corresponds to each of the

networked sensors being attacked. During online implementation,

given that the system is under attack, this sensor isolator examines all

states in the most recent NT sampling periods and outputs which sen-

sor is experiencing abnormalities.

Remark 2 In the sliding verification window, we examine the number of

positive detections out of the total number of detector activations;

the two parameters, size of verification window and threshold for

alarms, are different from a threshold number that is often exam-

ined in statistical methods such as Cumulative Sum. Long-term

attacks such as geometric and surge attacks may be designed

such that the cumulative error of the attacked measurements stay

just below the statistical detection threshold, thus remain

undetectable. However, they are detectable by neural network

detectors, given that the extent and pattern of the attacked mea-

surements are similar to the anomalous behavior learned by the

neural net during training. Furthermore, neural network detectors

trained with noisy sensor data are able to differentiate cyber-

attacks from normal device fluctuations. However, in the case that

measurement noise is so significant that it is similar to attacked

oscillations (like in a replay attack), then the neural network detec-

tor may flag these noisy measurements as replay cyber-attacks. If

significant noise is bound to be observed, then new neural network

detectors can be readily trained based on these new noisy data to

reflect the changed nominal operating conditions.

4.4 | Mitigation measures via control system
reconfiguration

Upon detection of an attack on the sensors providing networked

asynchronous state measurements to the two-tier control system, the
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control system reconfiguration logic allows for two mitigation plans.

First, the control system can deactivate the upper-tier controller

completely and operate the system under the stabilizing lower-tier

control system only, which uses cyber-secure, dedicated sensor mea-

surements. Since the lower-tier controllers are capable of driving the

process to its operating steady state with secure continuous measure-

ments, the effect of the cyber-attacks is fully eliminated in the closed-

loop system in this case and the process is stabilized to the operating

steady state. Second, if a sensor isolation detector is also

implemented, it will be activated once a sensor attack is verified. Sub-

sequently, the upper-tier controller can choose to switch the com-

promised sensor to its redundant back-up sensor with secure

readings. By abandoning the corrupted sensor and using its back-up

sensor using a secure sensor-controller communication, the upper-tier

controller remains functional and is able to drive the process to its

steady state with better closed-loop performance.

In the extreme case that both continuous and asynchronous sen-

sor measurements are attacked, the upper-tier controller will be shut

off and the lower-tier controllers will reroute their continuous mea-

surement signals from the corrupted sensors to their respective

secure back-up sensors. The robustness of the proposed two-tier con-

trol architecture against intelligent cyber-attacks is demonstrated in

Section 5 below through a reactor-reactor-separator process.

5 | APPLICATION TO A REACTOR-
REACTOR-SEPARATOR PROCESS

5.1 | Process description and control system
design

To simulate a chemical process application where multiple manipulated

inputs are regulated by both the upper-tier and lower-tier controllers, a

process network consisting of two continuous stirred tank reactors

(CSTRs) followed by a flash tank separator is considered.32 A schematic

diagram of this process network can be found in Figure 2. Two reac-

tions in series take place (A ! B ! C) in both reactors, and the over-

head vapor from the flash tank is recycled to the first CSTR. All three

vessels are assumed to have constant holdup. Using mass and energy

balances, the process model can be obtained, which includes nine

nonlinear ordinary differential equations as shown below:

dxA1
dt

=
F10
V1

xA10−xA1ð Þ+ Fr
V1

xAr −xA1ð Þ−k1e
−E1
RT1 xA1 ð11aÞ

dxB1
dt

=
F10
V1

xB10−xB1ð Þ+ Fr
V1

xBr −xB1ð Þ+ k1e
−E1
RT1 xA1−k2e

−E2
RT1 xB1 ð11bÞ

dT1

dt
=
F10
V1

T10−T1ð Þ+ −ΔH1ð Þ
ρCp

CMk1e
−E1
RT1 xA1

+
−ΔH2ð Þ
ρCp

CMk2e
−E2
RT1 xB1 +

Q1

ρCpV1
+
Fr
V1

T3−T1ð Þ
ð11cÞ

dxA2
dt

=
F1
V2

xA1−xA2ð Þ+ F20
V2

xA20−xA2ð Þ−k1e
−E1
RT2 xA2 ð11dÞ

dxB2
dt

=
F1
V2

xB1−xB2ð Þ+ F20
V2

xB20−xB2ð Þ+ k1e
−E1
RT2 xA2−k2e

−E2
RT2 xB2 ð11eÞ

dT2

dt
=
F20
V2

T20−T2ð Þ+ −ΔH1ð Þ
ρCp

CMk1e
−E1
RT2 xA2

+
−ΔH2ð Þ
ρCp

CMk2e
−E2
RT2 xB2 +

Q2

ρCpV2
+
F1
V2

T1−T2ð Þ
ð11fÞ

dxA3
dt

=
F2
V3

xA2−xA3ð Þ− Fr + Fp
V3

xAr −xA3ð Þ ð11gÞ

dxB3
dt

=
F2
V3

xB2−xB3ð Þ− Fr + Fp
V3

xBr −xB3ð Þ ð11hÞ

F IGURE 2 Process schematic
consisting of two CSTRs and a flash drum
separator
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dT3

dt
=
F2
V3

T2−T3ð Þ+ Q3

ρCpV3
+

Fr + Fpð ÞCM

ρCpV3
xArΔHvapA + xBrΔHvapB + xCrΔHvapCð Þ

ð11iÞ

where the state variables include the temperatures of the three ves-

sels T1, T2, T3, respectively, which are measured securely and continu-

ously, and the mass fractions of species A and B in the three vessels

xA1, xA2, xA3 and xB1, xB2, xB3, whose measurements are available at

asynchronous time instants and are sent to the upper-tier control sys-

tem over a digital network that may be subjected to cyber-attacks.

The upper-tier control system involves an LMPC that receives both

asynchronous and continuous state measurements, and it is executed

when full state information becomes available. Each of the three ves-

sels has an external heat input. Three PI controllers are used to manip-

ulate the heat inputs to the three vessels, Q1, Q2, and Q3, each to

regulate vessel temperature at a desired set-point value, and the

LMPC manipulates the feed stream flow rate to second CSTR, F20,

to improve the speed of the closed-loop response. Assuming that

there is negligible reaction in the separator tank and the relative

volatility of each species remains constant within the operating

temperature range, the composition of the recycle stream are:

xAr =
αAxA3

αAxA3 +αBxB3 + αCxC3
,xBr =

αBxB3
αAxA3 + αBxB3 +αCxC3

,xAr =
αCxC3

αAxA3 + αBxB3 + αCxC3
, where

α represents the constant relative volatility of each species. Each of

the six mass fraction measurements can be subject to the cyber-

attacks, which are designed based on the current value of the true

states at the time the attack occurs, as discussed in Section 4. With

the integration of a machine-learning-based cyber-attack detector,

the control objective is to track all nine states to an unstable equilib-

rium point while meeting all imposed constraints and staying immune

to intelligent cyber-attacks. All process parameter values, the

steady-state values, and the corresponding steady-state input values

are given in Table 1. Deviation variables are used to present the sim-

ulation results, where the state vector and the input vector are rep-

resented as the difference between their values and their steady

states. By using deviation variables, the equilibrium point of the pro-

cess (i.e., the operating steady state) is at the origin of the state

space. The input variables in deviation variable form are subject to

the following operating constraints: −4.04 m3/hr ≤ΔF20 ≤ 3.96 m3/

hr, |ΔQ1| ≤ 5× 107 kJ/hr, |ΔQ2| ≤ 5× 107 kJ/hr, |ΔQ3| ≤ 5× 107 kJ/hr.

Classical controllers are used in the lower-tier control system;

specifically, proportional-integral (PI) controllers are used. The formu-

lation of PI controller is presented as below:

uci tð Þ=Kci eci tð Þ+
1
τi

ðt
0
eci τð Þdτ

	 

, eci tð Þ= yREFci

tð Þ−yci tð Þ ð12aÞ

where eci tð Þ is the error between the measured output values yci and

their operating set-points yREFci
(defined based on the operating steady

state), and Kci and τi are the proportional gain and integral time con-

stant of each PI controller i = 1, 2, 3, respectively. In order to ensure

closed-loop stability under PI control, Kci and τi are selected by first

linearizing the model in Equation (1) around the steady state, and then

assessing the eigenvalues of the linearized model _x=Ax+Buc .

The proportional gain and time constant of the three PI controllers

are chosen to be Kc1 Kc2 Kc3½ �T = −8×105, −8×105, −8×105
h iT

and

[τ1 τ2 τ3]
T = [5,000, 5,000, 5,000]T, respectively. An initial set of the PI

controller parameters are determined using the Cohen-Coon tuning

method, and then further optimized from closed-loop simulations, to

make sure that the closed-loop response is smooth with reasonable

control actions. With these tuning parameters, closed-loop stability

under P-only control is ensured as the eigenvalues of the linearized

model are Λ = [−2.599, −56.97, −99.98−26.28i, −99.98+26.28i,

−27.93−149.2i, −27.93+ 149.2i, −257.8−26.93i, −257.8 +26.93i,

−758.8], all of which having negative real parts, and the integral term

TABLE 1 Values and descriptions of process parameters and
steady states of state and input variables

Parameter/value Description

F10 = 5.04 m3/hr Feed flow rate of CSTR 1

Fr = 50.4 m3/hr Recycle stream flow rate

Fp = 5.04 m3/hr Purge stream flow rate

T10 = 300 K, T20 = 300 K Feed temperatures of CSTR

1 & 2

V1 = 1.0 m3, V2 = 0.5 m3,

V3 = 1.0 m3

Volume of 3 vessels

k1 = 9.972 × 106 h−1, Pre-exponential factors for

reactions 1 & 2

k2 = 9.36 × 106 h−1

E1 = 5.0 × 104 kJ/kmol Activation energy for reactions

1 & 2

E2 = 6.0 × 104 kJ/kmol

ΔH1 = −1.2 × 105 kJ/kmol Heat of reaction for reactions

1 & 2

ΔH2 = −1.4 × 105 kJ/kmol

kJ/kmol

ΔHvapA = −3.53 × 104 kJ/

kmol

Heat of vaporization for A, B,

C

ΔHvapB = −1.57 × 104 kJ/kmol

ΔHvapC = −4.068 × 104 kJ/

kmol

Cp = 4.2 kJ/(kg K) Heat capacity

R = 8.314 kJ/(kmol K) Gas constant

ρ = 1,000 kg/m3 Liquid solution density

αA = 3.5, αB = 1.0, αC = 0.5 Relative volatility of A, B, C

CM = 2 kmol/m3 Total molar concentration

xA1s = 0.1762, xA2s = 0.1965,

xA3s = 0.0651

Steady-state values of state

variables

xB1s = 0.6731, xB2s = 0.6536,

xB3s = 0.6703

T1s = 480.32 K, T2s = 472.79 K,

T3s = 474.89 K

Q1s = 2.9 × 109 kJ/hr,

Q2s = 1.9 × 109 kJ/hr,

Steady-state values of input

variables

Q3s = 2.9 × 109 kJ/hr,

F20s = 5.04 m3/hr
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aims to eliminate the offset while having minimal impact on the con-

trol action. An anti-windup mechanism is also implemented inside

each PI controller to avoid integral wind-up effects which involves

eliminating the integral term when the control action hits constraints.

The upper-tier LMPC used in this simulation adopts the formulation

shown in Equation (3). The objective function used in the optimization

problem of LMPC is defined by a positive definite function,

L x,uað Þ= xTQcx+ uTaRcua , where Rc and Qc are weighting matrices to

penalize ua and x, and have the following values: Rc = 1.0 and

Qc = diag([5,000, 10, 0.001, 5,000, 10, 0.001, 5,000, 10, 0.001]). The

quadratic control Lyapunov function used in the contractive con-

straints of LMPC has the form V (x) = xTPx, where P is a positive defi-

nite matrix: P = diag([3,228.31, 220.79, 4.334×10−4, 2,576.72,

233.80, 4.474×10−4, 23,675.92, 222.77, 4.434×10−4]). The family

of piece-wise constant function S(Δ) which ua belongs to uses a sam-

pling period of Δ = 0.02hr, and the prediction horizon of the LMPC is

N = 10. The nonlinear optimization problem of LMPC is solved using

the OPTI-Toolbox in MATLAB. To numerically simulate the dynamic

process model in Equation (11), explicit Euler method is used with an

integration step of hc = 10−4 hr. The time sequence at which asyn-

chronous measurements are sampled and received by the upper-tier

controller is modeled after a lower-bounded random Poisson process,

with each unequal interval between two consecutive asynchronous

measurements being at least Δak ≥Δ for all k ∈ [1, NT]. The sequence

of asynchronous intervals used in this simulation in which the LMPC

calculations are executed is as follows: Δa = [0.04, 0.08, 0.1, 0.06,

0.12, 0.08, 0.02] for every 1.5 hr; alternative calculations of the asyn-

chronous time instants may be considered with similar conclusions.

After a simulation grid search, we use ρ = 120 as a level set of

Lyapunov function to characterize the stability region and ρmin = 0.1

to ensure convergence close to the steady state. The safe operating

envelope of the 9 states in deviation variable form is as follows:

xl = [−0.1763, −0.6731, −50, −0.1965, −0.6536, −50, −0.0651,

−0.6703, −50]T denotes the lower bounds of the states and

xu = [0.7237, 0.2269, 50, 0.7035, 0.2464, 50, 0.8349, 0.2297, 50]T

denotes the upper bounds of the states. The stability region and the

operating envelope are key parameters to generating intelligent

cyber-attacks. The simulation period used for collecting training data

is 3 hr, within which the lower-tier PI controllers are executed

150 times, and the upper-tier LMPC is executed 42 times. With the

upper-tier controller receiving full-state measurements 42 times, the

time-varying trajectories of state measurements have a length of
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F IGURE 3 True and measured values of xA1 in deviation variable form without detection or mitigation mechanisms when (a) min-max,
(b) replay, (c) geometric, and (d) surge cyber-attacks are introduced at 3.22 hr on the concentration sensor measuring xA1 [Color figure can be
viewed at wileyonlinelibrary.com]
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NT = 43, accounting for the initial condition measurements. Closed-

loop simulations under two-tier and under PI-only control are

carried out to compare the closed-loop performances; the initial

conditions used to evaluate the performance metrics are x0 = [0.0176,

0.067299, 48.032, 0.0197, 0.0654, 47.279, 0.006499, 0.067,

47.489]. Performance metrics in terms of settling time and

normalized cumulative mean squared error along the state trajecto-

ries are calculated for closed-loop control under only lower-tier

PI controllers, and under the two-tier LMPC/PI control scheme. It

is shown that it takes 2.46 hr for lower-tier PI controllers,

and 0.6 hr for two-tier LMPC/PI to settle to the operating

steady state. The normalized cumulative mean squared errors

are 4.1203 and 0.8014 for lower-tier PI and two-tier LMPC/PI,

respectively. The two-tier control architecture achieves significantly

better closed-loop performance by stabilizing the process within

shorter time and eliminating process overshoots and offset

effectively.

5.2 | Cyber-attacks and detector training

Min-max attacks are used to train the neural-network-based detector

with and without sensor noise. If the neural network detector is

trained with only one type of attack, the resulting output will have

two classes—attacked and not attacked. In addition, replay attacks

are also used to train a neural network detector capable of identify-

ing the type of attack, where the output classes consist of three

labels: not attacked, attacked by min-max attacks, and attacked by

replay attacks. In the first five sampling steps, more extreme oscilla-

tions with larger magnitudes in state feedback are observed. There-

fore, these aggressively oscillatory measurements with length La = 5

are recorded and used as replay attacks. Other attacks with varying

lengths can be introduced at random time instants between i0 ∈

[6, 42] to simulate cyber-attacks of various durations and occurring

at various times during operation. With extensive closed-loop simula-

tions, equal number of samples are collected for each output class,
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with each sample either consisting of a 1 × 43 array of V (x) values

(in attack identification), or a 9 × 43 matrix of x values along the

dynamic trajectory (in sensor isolation), where the 9 × 43 matrix in

each sample is then collapsed into a 1 × 387 array to be fed into the

feed-forward neural network detector. Four NN detectors are

trained to carry out detection: (a) a 2-class model with nominal oper-

ation under min-max attack (12,000 samples per class label, training

time 24.05 s), (b) a 2-class model with noisy sensors under min-max

attack (1,044 samples per class label, training time 4.332 s), (c) a

3-class model with noisy sensors and 2 attack types—min-max and

replay (1,044 samples per class label, training time 5.265 s), and (d) a

6-class model with noisy sensors under min-max attack for corrupted

sensor isolation (2,800 samples per class label, training time

6,211.52 s). To train the compromised sensor isolation detector, we

also used a min-max attack to simulate the abnormal behaviors.

Noisy sensors are simulated by adding bounded Gaussian white

noise on each sensor. The lower and upper bounds of the sensor

noises are as follows: |w1| ≤ 7.5 × 10−5, |w2| ≤ 5.5 × 10−5,

|w3| ≤ 0.032 K, |w4| ≤ 7.5 × 10−5, |w5| ≤ 5.5 × 10−5, |w6| ≤ 0.032 K,

|w7| ≤ 3.5 × 10−5, |w8| ≤ 5.5 × 10−5, |w9| ≤ 0.032 K. These Gaussian

noise distributions have a mean of μ = 0 and standard deviations

σ1 = σ4 = 0.0002, σ2 = σ5 = σ8 = 0.001, σ3 = σ6 = σ9 = 0.1 K, and

σ7 = 0.0001. Feed-forward neural networks with two hidden layers

having 12 and 10 neurons, respectively, are built using the MATLAB

Machine Learning and Deep Learning Toolboxes. Both hidden layers

use a tansig activation function, which is in the form

g1,2 zð Þ= 2
1+ e−2z −1, and is commonly known as the hyperbolic tangent

sigmoid transfer function. The output layer uses a softmax function to

provide a predicted probability of the class labels, which is in the form

of g3 zj
� �

= ezjPH

i= 1
ezi

where H denotes the number of class labels. The

NN detector trained with nominal conditions has a training accuracy

of 99.6% and a testing accuracy of 92.2%, while the NN detector

trained with noisy sensors achieves a training accuracy of 99.9% and

testing accuracy of 100%. The NN algorithm trained with noisy sen-

sors achieves a higher accuracy than the nominal case because the

addition of noise contributes more variance to the training dataset,

thereby making the learning process harder and yielding a more

robust NN detector. Moreover, the training and testing accuracy of

the NN detector trained with noisy sensors under two types of cyber-

attacks are 98.2% and 91.4%, respectively, and the NN algorithm to

isolate the compromised noisy sensor achieves a training and testing

accuracy of 99.6% and 99.0%, respectively.
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5.3 | Cyber-attack detection results

The NN detectors are implemented online with the process operated

under two-tier control with initial conditions at the operating steady

state; i.e., x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0]T (the conclusions are similar for

other initial conditions in Ωρ). Therefore, attacks are introduced when

the process is stabilized at its operating steady state. As the NN

detectors are trained using a fixed input dimension of 43 (with 42 sam-

pling steps), to ensure that input data with sufficient length is col-

lected, the detector is activated at time instant k = 42 in the

asynchronous time sequence, which corresponds to real time

t = 3.0 hr. The detector reads state measurements in the previous

42 sampling periods, analyzes their behaviors, and computes an out-

put on which class these time-series data resembles. The window of

this fixed-length segment of time-sequence data rolls forward in time

as the upper-tier LMPC and the attack detector are executed in real

time. The alarm verification window is chosen to be three sampling

periods of the upper-tier LMPC, where two positive detections within

every three consecutive sampling steps will confirm the presence of

an attack. Once an attack is confirmed, at the same time instant, the

detection alarm will be triggered and the LMPC will be deactivated.

Furthermore, to examine whether the detector will misclassify not-

attacked signals as being under attack, attacks are introduced a few

sampling periods after the detector has been activated at t = 3.0 hr,

such that the first few outputs by the detector are based on normal

operation data. Cyber-attacks with a duration of La = 40 sampling

periods are introduced at time instant i0 = 45, which corresponds to

t = 3.22 hr; thus, the compromised sensor will stay corrupted until the

end of the 6-hr simulation period. To illustrate the pattern and effect

of the four cyber-attack types, Figure 3 shows the true state values

and the sensor values of state 1 when min-max, replay, geometric,

and surge attacks target only the sensor measuring mass fraction xA1

with bounded noise. Although Figure 3 only shows the true state pro-

gression of state 1, all nine states experience similar deviating patterns

after the cyber-attacks. Under min-max attack, the true state settles

at an offset of similar magnitude as the initial jump. Replay attack

results in aggressive oscillations in true plant states around an offset.

Geometric attacks drive process states increasingly away from the

operating steady state before reaching an offset due to the increasing

magnitude of the attack with time until the attack reaches the bound-

ary of the stability region. Surge attack causes an initial jump similarly

seen in min-max attacks; with the reduction of attack severity, states
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are driven closer to the setpoint, but still reach an offset that is smaller

than that in min-max. The upper-tier LMPC receives falsified information

on the values of these process states, and in turn, computes a control

action that is unable to drive the true states back to the steady state.

States do not continue to diverge and do not exit the stability region, but

instead settle at an offset value, due to the stabilizing contributions from

the three lower-tier PI controllers, which use secure sensor measure-

ments. Regardless, the attack has successfully targeted the system and

the two-tier control system fails to drive the states back to their operat-

ing steady states without using any data-based detection algorithms.

When the trained NN detectors are applied during online opera-

tion, time delays are observed due to the configured alarm verification

window, which requires at least two positive detections out of three

detection instances to confirm an attack. The time delay is defined as

the number of sampling steps between when the attack is inserted and

when the attack is confirmed. In the cases of the first two detectors

trained using min-max attack only (i.e., nominal and with noise opera-

tions), replay, geometric and surge attacks are unknown attacks which

have not been learned by the NN detector. All four types of cyber-

attacks, despite the latter three being unknown to the NN detector, are

captured by the NN detector trained under nominal condition. The NN

detection algorithm detects min-max, replay, and surge attacks suc-

cessfully with a time delay of one sampling period. This is because two

out of three detections need to be positive to confirm a detection; in

other words, as soon as two consecutive positive detections occur, the

detection is confirmed. Therefore, the detection of these cyber-attacks

is delayed by one sampling period, at which time the second consecu-

tive positive detection is received by the control system. A time delay

of two sampling periods is observed when a geometric attack is intro-

duced due to the initial small magnitude of change induced, therefore

causing the NN detector a delay in predicting the correct class label. As

time progresses, the attack increases exponentially towards a point

where the deviation is on par with the other three attacks, at which

point the detector captures the irregular deviation. The potential time

delay of NN detectors trained with min-max attacks in detecting geo-

metric attacks will vary depending on the geometric parameters, that is,

β and α in Equation (7). Meanwhile, the NN detector trained with noisy

sensor measurements is able to detect min-max, geometric, and surge

attacks successfully, but with a time delay of seven sampling periods

when the geometric attack is introduced. Moreover, this detector fails

to detect replay attacks due to the oscillatory nature of the replay sig-

nals. Unlike the other three attacks where the attacked measurement
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stays at the attack target for at least two sampling periods, replay attacks

oscillate at every sampling period, which is different from the min-max

behavior that this NN detector is trained based on. Given the relatively

smaller magnitude of the oscillations (not reaching the min-max window)

and oscillatory behavior of replay attacks, the NN detector trained with

added noises is not able to differentiate replay attacks from sensor noise.

Thus, a third NN detector is trained, where both replay and min-max

attacks are accounted in the training process. This detection algorithm

outputs three classes, where min-max and replay attacks are classified

correctly and the detection is confirmed after a time delay of one sam-

pling period, and geometric and surge attacks are classified as replay

attackswith the detection confirmed after one sampling period.

Cyber-attacks could target multiple sensors at once, and the detec-

tion algorithms are tested on these cases where more than one sensor

could be under attack. We first consider the extreme case where min-

max cyber-attacks are applied on all nine sensors to simulate the impact

of cyber-attacks when all state measurements are compromised with-

out using any online detectors; this scenario allows to demonstrate the

value of the proposed two-tier control architecture. The true state tra-

jectories are shown in Figure 4 where a min-max attack is introduced at

3.22 hr with a duration covering until the end of the simulation period.

With the continuous temperature measurements also under cyber-

attack, closed-loop stability under the lower-tier controllers is no longer

achieved. As a result of the cyber-attack, the true state evolution exits

the stability region when no detection algorithms are being used; more-

over, the mass fractions of species A and the temperatures in all three

vessels exceed their operating boundaries, violating the safety limits on

their states in deviation variable form. Under the circumstance that

continuous temperature measurements are jeopardized, the only

cyber-attack countermeasure is to reroute measured temperature

signals received by lower-tier controllers from the corrupted sensors

to a new set of redundant sensors with secure readings. This extreme

scenario demonstrates the severity of the destabilizing impacts of

cyber-attacks to all sensors, and thus, the necessity of having secure

and reliable feedback measurements for the lower-tier controllers in

order to maintain the robustness of the overall control architecture.

To mitigate the impact of the cyber-attacks on all nine sensors, the

neural-network detection algorithm trained with noisy measurements

and two cyber-attack types is applied online. With the alarm verifica-

tion window to reduce false alarms, the min-max attack is introduced

at 3.22 hr and the detection is confirmed at 3.28 hr, from which point

the upper-tier LMPC is turned off and the continuous temperature
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measurements used by lower-tier PI controllers are obtained from a set

of secure back-up sensors (Figure 5). By doing this, the closed-loop sta-

bility of the process under lower-tier control is re-established and the

process is driven back to its operating steady state.

To ensure the robustness of the lower-tier controller against cyber-

attacks, we now consider the case where only the networked mass frac-

tion measurements fed into the upper-tier LMPC are attacked while the

continuous temperature measurements used by both the lower-tier PIs

and the upper-tier LMPC remain secure. Therefore, with the stabilizing

lower-tier PI controllers, the upper-tier LMPC can be turned off once the

detection of an attack is confirmed (i.e., ua = 0 for the remainder of the

closed-loop simulation) such that the false control actions calculated by

the upper-tier LMPC will not act as a disturbance to the closed-loop sys-

tem. The effectiveness of this mitigation strategy is illustrated in our sim-

ulation results, where the true plant states are driven back to their

operating steady states using the stabilizing lower-tier PI controllers

despite the sudden jumps or gradual deviations caused by cyber-attacks.

The re-stabilized state trajectories after min-max, replay, geometric, and

surge attacks are shown respectively in Figures 6–9. When the attacks

are introduced at time 3.22 hr, the detection algorithm confirms that the

measured state trajectory is under attack at 3.28 hr, at which point the

LMPC is turned off, and the process is re-stabilized to its operating

steady state using the lower-tier PI controllers. Despite the minor degra-

dation in closed-loop performance with only lower-tier controllers, the

reconfigured control system succeeds in maintaining closed-loop stability

in the presence of cyber-attacks.

6 | CONCLUSION

In this work, a cyber-secure control architecture for nonlinear chemi-

cal processes incorporating secure lower-tier explicit feedback

controllers and an upper-tier model predictive controller was proposed.

On top of the stabilizing lower-tier controllers, the upper-tier LMPC con-

tributed to better closed-loop performance by using networked sensor

measurements which may be vulnerable to cyber-attacks. A neural-

network-based detector is integrated with the two-tier control architec-

ture such that the control system can be reconfigured to stabilize the

process at the original steady state upon detection of a cyber-attack.

Neural-network-based detection algorithms were developed and have
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proven their success during online implementation in detecting the

presence of cyber-attacks when various types of cyber-attacks were

applied on multiple sensors. Four feed-forward neural networks were

trained and tested under nominal and noisy operating conditions, all

of which achieved a detection accuracy of over 91%. Through the

application of the proposed detection and mitigation methods on

a multivariable process, this work demonstrated the effectiveness

of machine-learning-based methods in developing algorithms used

for cyber-attack diagnosis and cyber-defense, as well as the robust-

ness of the proposed two-tier control architecture in maintaining

cyber-security.
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