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Abstract

This work explores the design of distributed model predictive control (DMPC) sys-

tems for nonlinear processes using machine learning models to predict nonlinear

dynamic behavior. Specifically, sequential and iterative DMPC systems are designed

and analyzed with respect to closed-loop stability and performance properties.

Extensive open-loop data within a desired operating region are used to develop long

short-term memory (LSTM) recurrent neural network models with a sufficiently small

modeling error from the actual nonlinear process model. Subsequently, these LSTM

models are utilized in Lyapunov-based DMPC to achieve efficient real-time computa-

tion time while ensuring closed-loop state boundedness and convergence to the ori-

gin. Using a nonlinear chemical process network example, the simulation results

demonstrate the improved computational efficiency when the process is operated

under sequential and iterative DMPCs while the closed-loop performance is very

close to the one of a centralized MPC system.
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1 | INTRODUCTION

With the rise of big data analytics, machine learning methodologies

have gained increasing recognition and demonstrated successful

implementation in many traditional engineering fields. One exemplar

use of machine learning techniques in chemical engineering is the

identification of process models using recurrent neural networks

(RNN), which has shown effectiveness in modeling nonlinear dynamic

systems. RNN is a class of artificial neural networks that, by using

feedback loops in its neurons and passing on past information derived

from earlier inputs to the current network, can represent temporal

dynamic behaviors. Neural network methods have shown effective-

ness in solving both classification and regression problems. For exam-

ple, feed-forward neural network (FNN) models have shown

effectiveness in detecting and distinguishing standard types of cyber-

attacks during process operation under model predictive control as

demonstrated in Reference 1. Long short-term memory (LSTM) net-

works, which is a type of RNN, was used in Reference 2 to predict

short-term traffic flow in intelligent transportation system manage-

ment and a supervised LSTM model was used to learn the hidden

dynamics of nonlinear processes for soft sensor applications in Refer-

ence 3. Furthermore, a single-layer RNN called the simplified dual

neural network utilizing dual variables was shown to be Lyapunov sta-

ble and globally convergent to the optimal solution of any strictly con-

vex quadratic programming problem.4

For many large industrial processes and/or novel processes,

developing an accurate and comprehensive model that captures the

dynamic behavior of the system can be difficult. Even in the case

where a deterministic first-principles model is developed based on

fundamental understanding, there may be inherent simplifying

assumptions involved. Furthermore, during process operation, the

model that is employed in model-based control systems to predict the

future evolution of the system state may not always remain accurate

as time progresses due to unforeseen process changes or large distur-

bances, causing plant model mismatch that degrades the performance

of the control algorithm.5 Given these considerations, the model
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identification of a nonlinear process is crucial for safe and robust

model-based feedback control, and given sufficient training data, RNN

is an effective tool to develop accurate process models from data.

On the other hand, chemical process operation has extensively

relied on automated control systems, and the need of accounting for

multivariable interactions and input/state constraints has motivated the

development of model predictive control (MPC). Moreover, augmenta-

tion in sensor information and network-based communication increases

the number of decision variables, state variables, and measurement

data, which in turn increases the complexity of the control problem and

the computation time if a centralized MPC is used. With these consider-

ations in mind, distributed control systems have been developed, where

multiple controllers with inter-controller communication are used to

cooperatively calculate the control actions and achieve closed-loop

plant objectives. In this context, MPC is a natural control framework to

implement due to its ability to account for input and state constraints

while also considering the actions of other control actuators. In other

words, the controllers communicate with each other to calculate their

distinct set of manipulated inputs that will collectively achieve the con-

trol objectives of the closed-loop system. Many distributed MPC

methods have been proposed in the literature addressing the coordina-

tion of multiple MPCs that communicate to calculate the optimal input

trajectories in a distributed manner (the reader may refer to References

6-8 for reviews of results on distributed MPC, and to Reference 9 for a

review of network structure-based decomposition of control and opti-

mization problems). A robust distributed control approach to plant-wide

operations based on dissipativity was proposed in References 10 and

11. Depending on the communication network, that is, whether is one-

directional or bi-directional, two distributed architectures, namely

sequential and iterative distributed MPCs, were proposed in Reference

12. Furthermore, distributed MPC method was also used in Reference

13 to address the problem of introducing new control systems to pre-

existing control schemes. In a recent work,14 a fast and stable non-

convex constrained distributed optimization algorithm was developed

and applied to distributed MPC. As distributed MPC systems also

depend on an accurate process model, the development and implemen-

tation of RNN models in distributed MPCs is an important area yet to

be explored. In the present work, we introduce distributed control

frameworks that employ a LSTM network, which is a particular type of

RNN. The distributed control systems are designed via Lyapunov-based

model predictive control (LMPC) theory. Specifically, we explore both

sequential distributed LMPC systems and iterative distributed LMPC

systems, and compare the closed-loop performances with that of a cen-

tralized LMPC system.

The remainder of the paper is organized as follows. Preliminaries

on notation, the general class of nonlinear systems, and the stabilizing

Lypuanov-based controller for the nonlinear process are given in Sec-

tion 2. The structure and development of RNN and specifically LSTM,

as well as Lyapunov-based control using LSTM models are outlined in

Section 3. In Section 4, the formulation and proof for recursive feasi-

bility and closed-loop stability of the distributed LMPC systems using

an LSTM model as the prediction model are presented. Lastly, Sec-

tion 5 includes the application to a two-CSTR-in-series process,

demonstrating guaranteed closed-loop stability and enhanced compu-

tational efficiency of the proposed distributed LMPC systems with

respect to the centralized LMPC.

2 | PRELIMINARIES

2.1 | Notation

For the remainder of this manuscript, the notation xT is used to

denote the transpose of x. j�j is used to denote the Euclidean norm of

a vector. LfV(x) denotes the standard Lie derivative LfV xð Þ≔ ∂V xð Þ
∂x f xð Þ .

Set subtraction is denoted by “\”, that is, A\B≔ {x�Rn j x�A, x =2B}. ;
signifies the null set. The function f(�) is of class C1 if it is continuously

differentiable in its domain. A continuous function α : [0, a)! [0,∞) is

said to belong to class K if it is strictly increasing and is zero only

when evaluated at zero.

2.2 | Class of systems

In this work, we consider a general class of nonlinear systems in which

several distinct sets of manipulated inputs are used, and each distinct set

of manipulated inputs is responsible for regulating a specific subsystem of

the process. For the simplicity of notation, throughout the manuscript, we

consider two subsystems, subsystem 1 and subsystem 2, consisting of

states x1 and x2, respectively, which are regulated by only u1 and u2,

respectively. However, extending the analysis to systems with more than

two sets of distinct manipulated input vectors (i.e., having more than two

subsystems, with each one regulated by one distinct input vector uj, j = 1,

…,M,M > 2) is conceptually straightforward. The class of continuous-time

nonlinear systems considered is represented by the following system of

first-order nonlinear ordinary differential equations:

_x = Fx,u1,u2,w≔ fx+ g1xu1 + g2xu2 + vxw, xt0 = x0 ð1Þ

where x � Rn is the state vector, u1�R
m1 and u2�R

m2 are two separate

sets of manipulated input vectors, and w�W is the disturbance

vector with W≔ {w�Rr j jwj≤wm,wm≥0}. The control action con-

straints are defined by u1�U1≔ umin
1i

≤ u1i ≤ u
max
1i

, i=1,…,m1

n o
�Rm1 ,

and u2�U2≔ umin
2i

≤ u2i ≤ u
max
2i

, i= 1,…,m2

n o
�Rm2 . f(�), g1(�), g2(�), and v(�)

are sufficiently smooth vector and matrix functions of dimensions

n×1, n×m1, n×m2, and n× r, respectively. Throughout the manu-

script, the initial time t0 is taken to be zero (t0 = 0), and it is assumed

that f(0) = 0, and thus, the origin is a steady state of the nominal

(i.e., w(t)≡0) system of Equation (1) (i.e., (xs, u1s, u2s) = (0,0,0), where xs,

u1s, and u2s represent the steady state and input vectors).

2.3 | Stability assumptions

We assume that there exist stabilizing control laws u1 = Φ1(x) �

U1, u2 = Φ2(x) � U2 (e.g., the universal Sontag control law15)
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such that the origin of the nominal system of Equation (1) with

w(t) ≡ 0 is rendered exponentially stable in the sense that there

exists a C1 Control Lyapunov function V(x) such that the following

inequalities hold for all x in an open neighborhood D around the

origin:

c1 xj j2 ≤V xð Þ≤ c2 xj j2, ð2aÞ

∂V xð Þ
∂x

F x,Φ1 xð Þ,Φ2 xð Þ,0ð Þ≤ −c3 xj j2, ð2bÞ

∂V xð Þ
∂x

����
����≤ c4 j x j ð2cÞ

where c1, c2, c3, and c4 are positive constants. F(x, u1, u2, w) represents

the nonlinear system of Equation (1). A set of candidate controllers

Φ1 xð Þ�Rm1 and Φ2 xð Þ�Rm2 , both denoted by Φk(x) where k = 1, 2, is

given in the following form:

ϕki xð Þ=
−
p+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 + q4

p
qTq

q if q≠0

0 if q=0

8<
: ð3aÞ

Φki xð Þ=
umin
ki

if ϕki xð Þ< umin
ki

ϕki xð Þ if umin
ki

≤ϕki xð Þ≤ umax
ki

umax
ki

if ϕki xð Þ> umax
ki

8><
>: ð3bÞ

where k = 1, 2 represents the two candidate controllers, p denotes LfV

(x) and q denotes Lgki V xð Þ , f = [f1� � �fn]T, gki = gki1 ,…,gkin
� �T

, (i = 1, 2, …,

m1 for k = 1 corresponding to the vector of control actions Φ1(x), and

i = 1, 2, …, m2 for k = 2 corresponding to the vector of control actions

Φ2(x)). ϕki xð Þ of Equation (3a) represents the i th component of the

control law ϕk(x). Φki xð Þ of Equation (3) represents the ith component

of the saturated control law Φk(x) that accounts for the input con-

straints uk�Uk.

Based on Equation (2), we can first characterize a region where

the time-derivative of V is rendered negative under the controller

Φ1(x) � U1, Φ2(x) � U2 as D= x∈Rn j _V xð Þ= LfV + Lg1Vu1 + Lg2Vu2 <
n

−c3 xj j2,u1 =Φ1 xð Þ∈U1,u2 =Φ2 xð Þ∈U2g[ 0f g . Then the closed-loop

stability region Ωρ for the nonlinear system of Equation (1) is

defined as a level set of the Lyapunov function, which is inside D:

Ωρ≔ {x�D j V(x) ≤ ρ}, where ρ> 0 and Ωρ�D. Also, the Lipschitz

property of F(x, u1, u2,w) combined with the bounds on u1, u2, and

w implies that there exist positive constants M, Lx,Lw ,L
0
x,L

0
w such

that the following inequalities hold 8x, x
0
�Ωρ, u1�U1, u2�U2

and w�W:

j F x,u1,u2,wð Þ j ≤M ð4aÞ

j F x,u1,u2,wð Þ−F x0,u1,u2,0ð Þ j ≤ Lx j x−x0 j + Lw jw j ð4bÞ

∂V xð Þ
∂x

F x,u1,u2,wð Þ− ∂V x0ð Þ
∂x

Fðx0 ,u1,u2,0Þ
����

����≤ L0x j x−x0 j + L0w jw j ð4cÞ

3 | LSTM NETWORK

In this work, we develop an LSTM network model with the follow-

ing form:

_̂x= Fnn x̂,u1,u2ð Þ≔Ax̂+ΘTy ð5Þ

where x̂�Rn is the predicted state vector, and u1�R
m1 and u2�R

m2 are

the two separate sets of manipulated input vectors.

yT = y1,…,yn,yn+1,…,yn+m1
,yn+m1 + 1…,yn+m1 +m2

,yn+m1 +m2 + 1

� �
=

H x̂1ð Þ,…,H x̂nð Þ,u11 ,…,u1m1
,u21 ,…,u2m2

,1
h i

�Rn+m1 +m2 + 1 is a vec-

tor of the network state x̂, where H(�) represents a series of interacting
nonlinear activation functions in each LSTM unit, the inputs u1 and u2,

and the constant 1 which accounts for the bias term. A is a diagonal

coefficient matrix, that is, A = diag{−α1,…,−αn}�Rn× n, and

Θ= θ1,…,θn½ ��R n+m1 +m2 + 1ð Þ× n with θi = βi ωi1,…,ωi n+m1 +m2ð Þ,bi
� �

, i = 1,

…, n. αi and βi are constants, and ωij is the weight connecting the jth

input to the ith neuron where i = 1, …, n and j = 1, …, (n+m1 +m2), and

bi is the bias term for i = 1, …, n. We use x to represent the state of

actual nonlinear system of Equation (1) and use x̂ for the state of the

LSTM model of Equation (5). Here, αi is assumed to be positive such

that each state x̂i is bounded-input bounded-state stable.

Instead of having one-way information flow from the input layer to

the output layer in a FNN, RNNs introduce feedback loops into the net-

work and allow information exchange in both directions between mod-

ules. Unlike FNNs, RNNs take advantage of the feedback signals to

store outputs derived from past inputs, and together with the current

input information, give a more accurate prediction of the current out-

put. By having access to information of the past, RNN is capable of rep-

resenting dynamic behaviors of time-series samples, therefore it is an

effective method used to model nonlinear processes. Based on the uni-

versal approximation theorem, it can be shown that the RNN model

with sufficient number of neurons is able to approximate any nonlinear

dynamic system on compact subsets of the state-space for finite

time.16,17 However, in a standard RNN model, the problem of vanishing

gradient phenomena often arises due to the network's difficulty to cap-

ture long term dependencies; this is because of multiplicative gradients

that can be exponentially decaying with respect to the number of

layers. Therefore, the stored information over extended time intervals is

very limited in a short term memory manner. Due to these consider-

ations, Hochreiter and Schmidhuber18 proposed the LSTM network,

which is a type of RNN that uses three gated units (the forget gate, the

input gate, and the output gate) to protect and control the memory cell

state, c(k), where k = 1, …, T, such that information will be stored and

remembered for long periods of time.18 For these reasons, LSTM net-

works may perform better when modeling processes where inputs

toward the beginning of a long time-series sequence are crucial to the

prediction of outputs toward the end of the sequence. This may be

more prevalent in large-scale systems where there may exist inherent

time delays between subsystems, causing discrepancies in the speed of

the dynamics between the subsystems. The basic architecture of an

LSTM network is illustrated in Figure 1a. We develop an LSTM network

model to approximate the class of continuous-time nonlinear processes
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of Equation (1). We use m�R n+m1 +m2ð Þ× T to denote the matrix of

input sequences to the LSTM network, and x̂�Rn× T to denote the

matrix of network output sequences. The output from each repeating

module that is passed onto the next repeating module in the

unfolded sequence is the hidden state, and the vector of hidden

states is denoted by h. The network output x̂ at the end of the pre-

diction period is dependent on all internal states h(1), …, h(T), where

the number of internal states T (i.e., the number of repeating modules)

corresponds to the length of the time-series input sample. The LSTM

network calculates a mapping from the input sequence m to the out-

put sequence x̂ by calculating the following equations iteratively from

k = 1 to k = T:

i kð Þ= σ ωm
i m kð Þ+ωh

i h k−1ð Þ+ bi
� � ð6aÞ

f kð Þ= σ ωm
f m kð Þ+ωh

f h k−1ð Þ+ bf
� � ð6bÞ

c kð Þ= f kð Þc k−1ð Þ+ i kð Þtanh ωm
c m kð Þ+ωh

ch k−1ð Þ+ bc
� � ð6cÞ

o kð Þ= σ ωm
o m kð Þ+ωh

oh k−1ð Þ+ bo
� � ð6dÞ

h kð Þ= o kð Þtanh c kð Þð Þ ð6eÞ

x̂ kð Þ=ωyh kð Þ+ by ð6fÞ

where σ(�) is the sigmoid function, tanh(�) is the hyperbolic tangent

function; both of which are activation functions. h(k) is the internal

state, and x̂ kð Þ is the output from the repeating LSTM module with ωy

and by denoting the weight matrix and bias vector for the output,

(a)

(b)

F IGURE 1 Structure of (a) the
unfolded LSTM network and (b) the
internal setup of an LSTM unit [Color
figure can be viewed at
wileyonlinelibrary.com]

4 of 18 CHEN ET AL.

http://wileyonlinelibrary.com


respectively. The outputs from the input gate, the forget gate, and the

output gate are represented by i(k), f(k), o(k), respectively; correspond-

ingly, ωm
i ,ω

h
i , ω

m
f ,ω

h
f , ω

m
o ,ω

h
o are the weight matrices for the input vec-

tor m and the hidden state vectors h within the input gate, the forget

gate, and the output gate, respectively, and bi, bf, bo represent the bias

vectors within each of the three gates, respectively. Furthermore, c(k)

is the cell state which stores information to be passed down the net-

work units, with ωm
c , ω

h
c , and bc representing the weight matrices for

the input and hidden state vectors, and the bias vector in the cell state

activation function, respectively. The series of interacting nonlinear

functions carried out in each LSTM unit, outlined in Equation (6), can

be represented by H x̂ð Þ. The internal structure of a repeating module

within an LSTM network where the iterative calculations of

Equation (6) are carried out is shown in Figure 1b.

The closed-loop simulation of the continuous-time nonlinear sys-

tem of Equation (1) is carried out in a sample-and-hold manner, where

the feedback measurement of the closed-loop state x is received by

the controller every sampling period Δ. Furthermore, state informa-

tion of the simulated nonlinear process is obtained via numerical inte-

gration methods, for example, explicit Euler, using an integration time

step of hc. Since the objective of developing the LSTM model is its

eventual utilization in a controller, the prediction period of the LSTM

model is set to be the same as the sampling period Δ of the model

predictive controller. The time interval between two consecutive

internal states within the LSTM can be chosen to be a multiple qnn of

the integration time step hc used in numerical integration of the

nonlinear process, with the minimum time interval being qnn = 1, that

is, 1 × hc. Therefore, depending on the choice of qnn, the number of

internal states, T, will follow T = Δ
qnn �hc . Given that the input sequences

fed to the LSTM network are taken at time t = tk, the future states

predicted by the LSTM network, x̂ tð Þ , at t = tk+Δ, would be the net-

work output vector at k = T, i.e., x̂ tk +Δð Þ= x̂ Tð Þ . The LSTM learning

algorithm is developed to obtain the optimal parameter matrix Γ*,

which includes the network parameters ωi, ωf, ωc, ωo, ωy, bi, bf, bc, bo,

by. Under this optimal parameter matrix, the error between the actual

state x(t) of the nominal system of Equation (1) (i.e., w(t)≡0) and the

modeled states x̂ tð Þ of the LSTM model of Equation (5) is minimized.

The LSTM model is developed using a state-of-the-art application

program interface, that is, Keras, which contains open-source neural

network libraries. The mean absolute percentage error between x(t)

and x̂ tð Þ is minimized using the adaptive moment estimation optimizer,

that is, Adam in Keras, in which the gradient of the error cost function

is evaluated using back-propagation. Furthermore, in order to ensure

that the trained LSTM model can sufficiently represent the nonlinear

process of Equation (1), which in turn ascertains that the LSTM model

can be used in a model-based controller to stabilize the actual

nonlinear process at its steady-state with guaranteed stability proper-

ties, a constraint on the modeling error is also imposed during training,

where jν j = j F(x, u1, u2, 0)− Fnn(x, u1, u2) j ≤ γ j xj, with γ >0. Addition-

ally, to avoid over-fitting of the LSTM model, the training process is

terminated once the modeling error falls below the desired threshold

and the error on the validation set stops decreasing. One way to

assess the modeling error ν = F(x(tk), u1, u2, 0)− Fnn(x(tk), u1, u2) is

through numerical approximation using the forward finite difference

method. Given that the time interval between internal states of the

LSTM model is a multiple of the integration time step qnn× hc, the time

derivative of the LSTM predicted state x̂ tð Þ at t = tk can be approxi-

mated by _̂x tkð Þ= Fnn x tkð Þ,u1,u2ð Þ≈ x̂ tk + qnnhcð Þ− x̂ tkð Þ
qnnhc

. The time derivative of

the actual state x(t) at t = tk can be approximated by

_x tkð Þ= F x tkð Þ,u1,u2,0ð Þ≈x tk + qnnhcð Þ−x tkð Þ
qnnhc

. At time t = tk, x̂ tkð Þ= x tkð Þ , the
constraint jν j ≤ γ j xj can be written as follows:

j ν j = j F x tkð Þ,u1,u2,0ð Þ−Fnn x tkð Þ,u1,u2ð Þ j ð7aÞ

≈ j x tk + qnnhcð Þ− x̂ tk + qnnhcð Þ
qnnhc

j ð7bÞ

≤ γ j x tkð Þ j ð7cÞ

which will be satisfied if j x tk + qnnhcð Þ− x̂ tk + qnnhcð Þ
x tkð Þ j ≤ γqnnhc . Therefore, the

mean absolute percentage error between the predicted states x̂ and

the targeted states x in the training data will be used as a metric to

assess the modeling error of the LSTM model. While the error bounds

that the LSTM network model and the actual process should satisfy to

ensure closed-loop stability are difficult to calculate explicitly and are,

in general, conservative, they provide insight into the key network

parameters that will need to be tuned to reduce the error between

the two models as well as the amount of data needed to build a suit-

able LSTM model.

In order to gather adequate training data to develop the LSTM

model for the nonlinear process, we first discretize the desired operat-

ing region in state-space with sufficiently small intervals as well as dis-

cretize the range of manipulated inputs based on the control actuator

limits. We run open-loop simulations for the nonlinear process of

Equation (1) starting from different initial conditions inside the desired

operating region, that is, x0 � Ωρ, for finite time using combinations of

the different manipulated inputs u1 � U1, u2 � U2 applied in a sample-

and-hold manner, and the evolving state trajectories are recorded at

time intervals of size qnn × hc. We obtain enough samples of such tra-

jectories to sweep over all the values that the states and the manipu-

lated inputs (x, u1, u2) could take to capture the dynamics of the

process. These time-series data can be separated into samples with a

fixed length T, which corresponds to the prediction period of the

LSTM model, where Δ = T × qnn × hc. The time interval between two

time-series data points in the sample qnn × hc corresponds to the time

interval between two consecutive memory units in the LSTM net-

work. The generated dataset is then divided into training and valida-

tion sets.

Remark 1 The actual nonlinear process is a continuous-time model

that can be represented using Equation (1); therefore, to char-

acterize the modeling error ν between the LSTM network and

the nonlinear process of Equation (1), the LSTM network is

represented as a continuous-time model of Equation (5). How-

ever, the series of interacting nonlinear operations in the LSTM

memory unit is carried out recursively akin to a discrete-time
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model. The time interval qnn × hc between two LSTM memory

units is given by the time interval between two consecutive

time-series data points in the training samples. Since the LSTM

network provides a predicted state at each time interval

qnn × hc calculated by each LSTM memory unit, similarly to

how we can use numerical integration methods to obtain the

state at the same time instance using the continuous-time

model, we can use the predicted states from the LSTM net-

work to compare with the predicted states from the nonlinear

model of Equation (1) to assess the modeling error. The model-

ing error is subject to the constraint of Equation (7) to ensure

that the LSTM model can be used in the model-based control-

ler with guaranteed stability properties.

3.1 | Lyapunov-based control using LSTM models

Once we obtain an LSTM model with a sufficiently small modeling

error, we can design a stabilizing feedback controller

u1 =Φnn1 xð Þ�U1 and u2 =Φnn2 xð Þ�U2 that can render the origin of the

LSTM model of Equation (5) exponentially stable in an open neighbor-

hood D̂ around the origin in the sense that there exists a C1 Control

Lyapunov function V̂ xð Þ such that the following inequalities hold for

all x in D̂:

ĉ1 xj j2 ≤ V̂ xð Þ≤ ĉ2 xj j2, ð8aÞ

∂V̂ xð Þ
∂x

Fnn x,Φnn1 xð Þ,Φnn2 xð Þð Þ≤ − ĉ3 xj j2, ð8bÞ

∂V̂ xð Þ
∂x

�����
�����≤ ĉ4 j x j ð8cÞ

where ĉ1 , ĉ2 , ĉ3 , ĉ4 are positive constants, and Fnn(x, u1, u2) represents

the LSTM network model of Equation (5). Similar to the characteriza-

tion method of the closed-loop stability region Ωρ for the nonlinear

system of Equation (1), we first search the entire state-space to char-

acterize a set of states D̂ where the following inequality holds:
_̂V xð Þ= ∂V̂ xð Þ

∂x Fnn x,u1,u2ð Þ< − ĉ3 xj j2 , u1 =Φnn1 xð Þ�U1 , u2 =Φnn2 xð Þ�U2 .

The closed-loop stability region for the LSTM network model of Equa-

tion (5) is defined as a level set of Lyapunov function inside D̂ :

Ωρ̂≔ x∈D̂ j V̂ xð Þ≤ ρ̂
n o

, where ρ̂> 0. Starting from Ωρ̂ , the origin of the

LSTM network model of Equation (5) can be rendered exponentially

stable under the controller u1 =Φnn1 xð Þ�U1 , and u2 =Φnn2 xð Þ�U2 . It is

noted that the above assumption of Equation (8) is the same as the

assumption of Equation (2) for the general class of nonlinear systems

of Equation (1) since the LSTM network model of Equation (5) can be

written in the form of Equation (1) (i.e., _̂x= f̂ x̂ð Þ+ ĝ x̂ð Þu, where f̂ �ð Þ and
ĝ �ð Þ are obtained from coefficient matrices A and Θ in Equation (5)).

However, due to the complexity of the LSTM structure and the inter-

actions of the nonlinear activation functions, f̂ and ĝ may be hard to

compute explicitly. For computational convenience, at t = tk, given a

set of control actions u1(tk)�U1\{0} and u2(tk)�U2\{0} that are applied

in a sample-and-hold fashion for the time interval t� [tk, tk+ hc) (hc is

the integration time step), f̂ and ĝ can be numerically approximated as

follows:

f̂ x tkð Þð Þ≈
Ð tk + hc
tk

Fnn x,0,0ð Þdt−x tkð Þ
hc

ð9aÞ

ĝ1 x tkð Þð Þ≈
Ð tk + hc
tk

Fnn x,u1 tkð Þ,0ð Þdt−Ð tk + hc
tk

Fnn x,0,0ð Þdt
hcu1 tkð Þ ð9bÞ

ĝ2 x tkð Þð Þ≈
Ð tk + hc
tk

Fnn x,0,u2 tkð Þð Þdt−Ð tk + hc
tk

Fnn x,0,0ð Þdt
hcu2 tkð Þ ð9cÞ

The integral
Ð tk + hc
tk

Fnn x,u1,u2ð Þdt gives the predicted state x̂ tð Þ at
t = tk+ hc under the sample-and-hold implementation of the inputs

u1(tk) and u2(tk); x̂ tk + hcð Þ is the first internal state of the LSTM net-

work, given that the time interval between consecutive internal states

of the LSTM network is chosen as the integration time step hc. After

obtaining f̂ , ĝ1 , and ĝ2 , the stabilizing control law Φnn1 xð Þ and Φnn2 xð Þ
can be computed similarly as in Equation (3), where f, g1, and g2 are

replaced by f̂ , ĝ1 , and ĝ2 , respectively. Subsequently,
_̂V can also be

computed using the approximated f̂ , ĝ1 , and ĝ2 . The assumptions of

Equations (2) and (8) are the stabilizability requirements of the first-

principles model of Equation (1) and the LSTM network model of

Equation (5), respectively. Since the dataset for developing the LSTM

network model is generated from open-loop simulations for x�Ωρ,

u1�U1, and u2�U2, the closed-loop stability region of the LSTM sys-

tem is a subset of the closed-loop stability region of the actual

nonlinear system, Ωρ̂⊆Ωρ . Additionally, there exist positive constants

Mnn and Lnn such that the following inequalities hold for all x,x0 � Ωρ̂ ,

u1�U1 and u2�U2:

j Fnn x,u1,u2ð Þ j ≤Mnn ð10aÞ

∂V̂ xð Þ
∂x

Fnn x,u1,u2ð Þ− ∂V̂ x0ð Þ
∂x

Fnnðx0 ,u1,u2Þ
�����

�����≤ Lnn j x−x0 j ð10bÞ

4 | DISTRIBUTED LMPC USING LSTM
NETWORK MODELS

To achieve better closed-loop control performance, some level of

communication may be established between the different controllers.

In a distributed LMPC framework, we design two separate LMPCs—

LMPC 1 and LMPC 2—to compute control actions u1 and u2, respec-

tively; the trajectories of control actions computed by LMPC 1 and

LMPC 2 are denoted by ud1 and ud2 , respectively. We consider two

types of distributed control architectures: sequential and iterative dis-

tributed MPCs. Having only one-way communication, the sequential

distributed MPC architecture carries less computational load with

transmitting inter-controller signals. However, it must assume the
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input trajectories along the prediction horizon of the other controllers

downstream of itself in order to make a decision. The iterative distrib-

uted MPC system allows signal exchanges between all controllers,

thereby allowing each controller to have full knowledge of the

predicted state evolution along the prediction horizon and yielding

better closed-loop performance via multiple iterations at the cost of

more computational time.

4.1 | Sequential distributed LMPC using LSTM
network models

The communication between two LMPCs in a sequential distributed LMPC

framework is one-way only; that is, the optimal control actions obtained

from solving the optimization problem of one LMPC will be relayed to the

other LMPC, which will use this information to carry on with its own opti-

mization problem. A schematic diagram of the structure of a sequential dis-

tributed LMPC system is shown in Figure 2a. In a sequential distributed

LMPC system, the following implementation strategy is used:

1. At each sampling instant t = tk, both LMPC 1 and LMPC

2 receive the state measurement x(t), t = tk from the sensors.

2. LMPC 2 evaluates the optimal trajectory of ud2 based on the

state measurement x(t) at t = tk, sends the control action of the first

sampling period u�d2 tkð Þ to the corresponding actuators, and sends the

entire optimal trajectory to LMPC 1.

3. LMPC 1 receives the entire optimal input trajectory of ud2 from

LMPC 2, and evaluates the optimal trajectory of ud1 based on state

measurement x(t) at t = tk and the optimal trajectory of ud2 . LMPC

1 then sends u�d1 tkð Þ, the optimal control action over the next sampling

period to the corresponding actuators.

4. When a new state measurement is received (k k + 1), go to

Step 1.

We first define the optimization problem of LMPC 2, which uses

the LSTM network model as its prediction model. LMPC 2 depends

on the latest state measurement, but does not have any information

on the value that ud1 will take. Thus, to make a decision, LMPC 2 must

assume a trajectory for ud1 along the prediction horizon. An explicit

nonlinear control law, Φnn1 xð Þ, is used to compute the assumed trajec-

tory of ud1 . To inherit the stability properties of Φnnj xð Þ, j=1,2 , ud2
must satisfy a Lyapunov-based contractive constraint that guarantees

a minimum decrease rate of the Lyapunov function V̂ . The optimiza-

tion problem of LMPC 2 is given as follows:

J = min
ud2�S Δð Þ

ðtk +N
tk

L ~x tð Þ,Φnn1 ~x tð Þð Þ,ud2 tð Þ� �
dt ð11aÞ

(a)

(b)

F IGURE 2 Schematic diagrams showing the
flow of information of (a) the sequential
distributed LMPC and (b) the iterative distributed
LMPC systems with the overall process [Color
figure can be viewed at wileyonlinelibrary.com]

CHEN ET AL. 7 of 18

http://wileyonlinelibrary.com


s:t: _~x tð Þ= Fnn ~x tð Þ,Φnn1 ~x tð Þð Þ,ud2 tð Þ� � ð11bÞ

ud2 tð Þ�U2,8t� tk ,tk +N½ Þ ð11cÞ

~x tkð Þ= x tkð Þ ð11dÞ

∂V̂ x tkð Þð Þ
∂x

Fnn x tkð Þ,Φnn1 x tkð Þð Þ,ud2 tkð Þ
� �� �

≤
∂V̂ x tkð Þð Þ

∂x
Fnn x tkð Þ,Φnn1 x tkð Þð Þ,Φnn2 x tkð Þð Þð Þð Þ,

if x tkð Þ�Ωρ̂nΩρnn ð11eÞ

V̂ ~x tð Þð Þ≤ ρnn,8t� tk ,tk +N½ Þ, if x tkð Þ�Ωρnn ð11fÞ

where ~x is the predicted state trajectory, S(Δ) is the set of piecewise

constant functions with period Δ, and N is the number of sampling

periods in the prediction horizon. The optimal input trajectory com-

puted by this LMPC 2 is denoted by u�d2 tð Þ , which is calculated over

the entire prediction horizon t� [tk, tk +N). This information is sent to

LMPC 1. The control action computed for the first sampling period of

the prediction horizon u�d2 tkð Þ is sent by LMPC 2 to its control actua-

tors to be applied over the next sampling period. In the optimization

problem of Equation (11), the objective function of Equation (11a) is

the integral of L ~x tð Þ,Φnn1 tð Þ,ud2 tð Þ� �
over the prediction horizon. Note

that L(x, u1, u2) is typically in a quadratic form, that is,

L x,u1,u2ð Þ= xTQx+ uT1R1u1 + uT2R2u2 , where Q, R1, and R2 are positive

definite matrices, and the minimum of the objective function of Equa-

tion (11a) is achieved at the origin. The constraint of Equation (11b) is

the LSTM network model of Equation (5) that is used to predict the

states of the closed-loop system. Equation (11c) defines the input

constraints on ud2 applied over the entire prediction horizon. Equa-

tion (11d) defines the initial condition ~x tkð Þ of Equation (11b), which is

the state measurement at t = tk. The constraint of Equation (11e)

forces the closed-loop state to move toward the origin if

x tkð Þ�Ωρ̂nΩρnn . However, if x(tk) enters Ωρnn , the states predicted by

the LSTM network model of Equation (11b) will be maintained in Ωρnn

for the entire prediction horizon.

The optimization problem of LMPC 1 depends on the latest state

measurement as well as the control action computed by LMPC

2 (i.e., u�d2 tð Þ,8t� tk ,tk +N½ Þ ). This allows LMPC 1 to compute a control

action ud1 such that the closed-loop performance is optimized while

guaranteeing the stability properties of the Lyapunov-based control-

lers using LSTM network models, Φnnj xð Þ, j=1,2, are preserved. Specif-

ically, LMPC 1 uses the following optimization problem:

J = min
ud1�S Δð Þ

ðtk +N
tk

L ~x tð Þ,ud1 tð Þ,u�d2 tð Þ
� 	

dt ð12aÞ

s:t: _~x tð Þ= Fnn ~x tð Þ,ud1 tð Þ,u�d2 tð Þ
� 	

ð12bÞ

ud1 tð Þ�U1,8t� tk ,tk +N½ Þ ð12cÞ

~x tkð Þ= x tkð Þ ð12dÞ

∂V̂ x tkð Þð Þ
∂x

Fnn x tkð Þ,ud1 tkð Þ,u�d2 tkð Þ
� 	� 	

≤
∂V̂ x tkð Þð Þ

∂x
Fnn x tkð Þ,Φnn1 x tkð Þð Þ,u�d2 tkð Þ

� 	� 	
,

if x tkð Þ�Ωρ̂nΩρnn ð12eÞ

V̂ ~x tð Þð Þ≤ ρnn ,8t� tk ,tk +N½ Þ, if x tkð Þ�Ωρnn ð12fÞ

where ~x is the predicted state trajectory, S(Δ) is the set of piecewise

constant functions with period Δ, and N is the number of sampling

periods in the prediction horizon. The optimal input trajectory com-

puted by LMPC 1 is denoted by u�d1 tð Þ , which is calculated over the

entire prediction horizon t� [tk, tk+N). The control action computed

for the first sampling period of the prediction horizon u�d1 tkð Þ is sent

by LMPC 1 to be applied over the next sampling period. In the optimi-

zation problem of Equation 12, the objective function of Equa-

tion (12a) is the integral of L ~x tð Þ,ud1 tð Þ,u�d2 tð Þ
� 	

over the prediction

horizon. The constraint of Equation (12b) is the LSTM model of Equa-

tion (5) that is used to predict the states of the closed-loop system.

Equation (12c) defines the input constraints on ud1 applied over the

entire prediction horizon. Equation (12d) defines the initial condition

~x tkð Þ of Equation (12b), which is the state measurement at t = tk. The

constraint of Equation (12e) forces the closed-loop state to move

toward the origin if x tkð Þ�Ωρ̂nΩρnn . However, if x(tk) enters Ωρnn , the

states predicted by the LSTM model of Equation (12b) will be

maintained in Ωρnn for the entire prediction horizon. Since the execu-

tion of LMPC 1 depends on the results of LMPC 2, the total computa-

tion time to execute the sequential distributed LMPC design would be

the sum of the time taken to solve each optimization problem in

LMPC 1 and LMPC 2, respectively.

4.2 | Iterative distributed LMPC using LSTM
network models

In an iterative distributed LMPC framework, both controllers commu-

nicate with each other to cooperatively optimize the control actions.

The controllers solve their respective optimization problems indepen-

dently in a parallel structure, and solutions to each control problem

are exchanged at the end of each iteration. The schematic diagram of

an iterative distributed LMPC system is shown in Figure 2b. More

specifically, the following implementation strategy is used:

1. At each sampling instant tk, both LMPC 1 and LMPC 2 receive

the state measurement x(t) at t = tk from the sensors.

2. At iteration c = 1, LMPC 1 evaluates future trajectories of

ud1 tð Þ assuming u2 tð Þ=Φnn2 tð Þ,8t� tk ,tk +N½ Þ . LMPC 2 evaluates future

trajectories of ud2 tð Þ assuming u1 tð Þ=Φnn1 tð Þ,8t� tk ,tk +N½ Þ. The LMPCs

exchange their future input trajectories, calculate and store the value

of their own cost function.
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3. At iteration c > 1:

(a) Each LMPC evaluates its own future input trajectory based on

state measurement x(tk) and the latest received input trajectories from

the other LMPC.

(b) The LMPCs exchange their future input trajectories. Each

LMPC calculates and stores the value of the cost function.

4. If a termination criterion is satisfied, each LMPC sends its

entire future input trajectory corresponding to the smallest value of

the cost function to its actuators. If the termination criterion is not

satisfied, go to Step 3 (c c + 1).

5. When a new state measurement is received, go to Step

1 (k k + 1).

To preserve the stability properties of the Lyapunov-based con-

trollers Φnnj xð Þ, j=1,2, the optimized ud1 and ud2 must satisfy the con-

tractive constraint that guarantees a minimum decrease rate of the

Lyapunov function V̂ given by Φnnj xð Þ, j =1,2. Following the same vari-

ables and constraints as defined in a sequential distributed LMPC

design, the optimization problem of LMPC 1 in an iterative distributed

LMPC at iteration c = 1 is presented as follows:

J = min
ud1�S Δð Þ

ðtk +N
tk

L ~x tð Þ,ud1 tð Þ,Φnn2 ~x tð Þð Þð Þdt ð13aÞ

s:t: _~x tð Þ= Fnn ~x tð Þ,ud1 tð Þ,Φnn2 ~x tð Þð Þð Þ ð13bÞ

ud1 tð Þ�U1,8t� tk ,tk +N½ Þ ð13cÞ

~x tkð Þ= x tkð Þ ð13dÞ

∂V̂ x tkð Þð Þ
∂x

Fnn x tkð Þ,ud1 tkð Þ,Φnn2 x tkð Þð Þð Þð Þ

≤
∂V̂ x tkð Þð Þ

∂x
Fnn x tkð Þ,Φnn1 x tkð Þð Þ,Φnn2 x tkð Þð Þð Þð Þ,

if x tkð Þ�Ωρ̂nΩρnn ð13eÞ

V̂ ~x tð Þð Þ≤ ρnn,8t� tk ,tk +N½ Þ, if x tkð Þ�Ωρnn ð13fÞ

At iteration c = 1, the optimization problem of LMPC 2 is shown

as follows:

J = min
ud2�S Δð Þ

ðtk +N
tk

L ~x tð Þ,Φnn1 ~x tð Þð Þ,ud2 tð Þ� �
dt ð14aÞ

s:t: _~x tð Þ= Fnn ~x tð Þ,Φnn1 ~x tð Þð Þ,ud2 tð Þ� � ð14bÞ

ud2 tð Þ�U2,8t� tk ,tk +N½ Þ ð14cÞ

~x tkð Þ= x tkð Þ ð14dÞ
∂V̂ x tkð Þð Þ

∂x
Fnn x tkð Þ,Φnn1 x tkð Þð Þ,ud2 tð Þ� �� �

≤
∂V̂ x tkð Þð Þ

∂x
Fnn x tkð Þ,Φnn1 x tkð Þð Þ,Φnn2 x tkð Þð Þð Þð Þ,

if x tkð Þ�Ωρ̂nΩρnn ð14eÞ

V̂ ~x tð Þð Þ≤ ρnn ,8t� tk ,tk +N½ Þ, if x tkð Þ�Ωρnn ð14fÞ

At iteration c > 1, following the exchange of the optimized input

trajectories u�d1 tð Þ and u�d2 tð Þ between the two LMPCs, the optimiza-

tion problem of LMPC 1 is modified as follows:

J = min
ud1�S Δð Þ

ðtk +N
tk

L ~x tð Þ,ud1 tð Þ,u�d2 tð Þ
� 	

dt ð15aÞ

s:t: _~x tð Þ= Fnn ~x tð Þ,ud1 tð Þ,u�d2 tð Þ
� 	

ð15bÞ

ud1 tð Þ�U1,8t� tk ,tk +N½ Þ ð15cÞ

~x tkð Þ= x tkð Þ ð15dÞ

∂V̂ x tkð Þð Þ
∂x

ðFnn x tkð Þ,ud1 tkð Þ,u�d2 tkð Þ
� 	

≤
∂V̂ x tkð Þð Þ

∂x
Fnn x tkð Þ,Φnn1 x tkð Þð Þ,Φnn2 x tkð Þð Þð Þð Þ,

if x tkð Þ�Ωρ̂nΩρnn ð15eÞ

V̂ ~x tð Þð Þ≤ ρnn ,8t� tk ,tk +N½ Þ, if x tkð Þ�Ωρnn ð15fÞ

And the optimization problem of LMPC 2 becomes:

J = min
ud2�S Δð Þ

ðtk +N
tk

L ~x tð Þ,u�d1 tð Þ,ud2 tð Þ
� 	

dt ð16aÞ

s:t: _~x tð Þ= Fnn ~x tð Þ,u�d1 tð Þ,ud2 tð Þ
� 	

ð16bÞ

ud2 tð Þ�U2,8t� tk ,tk +N½ Þ ð16cÞ

~x tkð Þ= x tkð Þ ð16dÞ

∂V̂ x tkð Þð Þ
∂x

Fnn x tkð Þ,u�d1 tð Þ,ud2 tð Þ
� 	� 	

≤
∂V̂ x tkð Þð Þ

∂x
Fnn x tkð Þ,Φnn1 x tkð Þð Þ,Φnn2 x tkð Þð Þð Þð Þ,

if x tkð Þ�Ωρ̂nΩρnn ð16eÞ

V̂ ~x tð Þð Þ≤ ρnn ,8t� tk ,tk +N½ Þ, if x tkð Þ�Ωρnn ð16fÞ

At each iteration c ≥ 1, the two LMPCs can be solved simulta-

neously via parallel computing in separate processors. Therefore,

the total computation time required for iterative distributed LMPC

would be the maximum solving time out of the two controllers

accounting for all the iterations required before the termination cri-

terion is met.
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Remark 2 One consideration that applies to any MPC system is that

the computation time to calculate the solutions to the MPC

optimization problem(s) must be less than the sampling time of

the actual nonlinear process of Equation (1). One of the main

advantages of distributed MPC systems is the reduced compu-

tational complexity of the optimization problems, and thus,

reduced total computational time compared to solving the opti-

mization problem in a centralized MPC system. Therefore, run-

ning more iterations to achieve a more optimal set of solutions

(i.e., lower value of the cost function) should be balanced with

reducing total computation time, and there should be an upper

bound enforced on the maximum number of iterations at all

times to ensure calculation of control actions within the

sampling time.

Remark 3 It is important to note that the number of iterations c could

vary and will not affect the closed-loop stability of the iterative

distributed LMPC system. The number of iterations c depends

on the termination conditions, which can be of many forms, for

example, c must not exceed a maximum iteration number cmax

(i.e., c ≤ cmax), the computational time for solving each LMPC

must not exceed a maximum time period, or the difference in

the cost function or of the solution trajectory between two

consecutive iterations is smaller than a threshold value. During

implementation, when one such criterion is met, the iterations

will be terminated.

Remark 4 In general, there is no guaranteed convergence of the opti-

mal cost or solution of an iterative distributed LMPC system to

the optimal cost or solution of a centralized LMPC. This is due

to the non-convexity of the MPC optimization problems. How-

ever, the proposed implementation strategy guarantees that

the optimal cost of the distributed optimization is upper

bounded by the cost of the Lyapunov-based control laws

Φnn1 xð Þ�U1,Φnn2 xð Þ�U2.

4.3 | Sample-and-hold implementation of
distributed LMPC

Once both optimization problems of LMPC 1 and LMPC 2 are solved,

the optimal control actions of the proposed distributed LMPC design

(both sequential and iterative distributed LMPC systems) are defined

as follows:

u1 tð Þ = u�d1 tkð Þ, 8t� tk ,tk +1½
u2 tð Þ = u�d2 tkð Þ, 8t� tk ,tk +1½ ð17Þ

The control actions computed by each LMPC will be applied

in a sample-and-hold manner to the process, which may be sub-

ject to bounded disturbances (i.e., jw(t) j ≤ wm). In this section,

we present the stability properties of the distributed LMPC

design, accounting for sufficiently small bounded modeling error

of the LSTM network and bounded disturbances. Following

Lyapunov arguments, this property will guarantee practical stabil-

ity of the closed-loop system, that is, the closed-loop state x(t) of

the nominal process of Equation (1) is bounded in Ωρ̂ at all times,

and ultimately driven to a small neighborhood Ωρmin
around the origin

under the control actions in the distributed LMPC design of Equa-

tion (17) implemented in a sample-and-hold manner. First, we will pre-

sent propositions demonstrating the existence of an upper bound on

the state error j e tð Þ j = j x tð Þ− x̂ tð Þ j provided that the modeling error

jνj and process disturbances jwj are bounded, followed by proposi-

tions that demonstrate the boundedness and convergence of the

LSTM system of Equation (5) and of the actual nonlinear system of

Equation (1) under the sample-and-hold implementation of

u1 =Φnn1 xð Þ�U1 and u2 =Φnn2 xð Þ�U2 . Both propositions have been

previously proved in.19 Then, we will extend the proof to show the

boundedness and convergence of the nonlinear system of

Equation (1) under the sample-and-hold implementation of

u1 u2½ �= u�d1 u�d2

h i
from the distributed LMPC design of Equation (17)

in the presence of sufficiently small bounded disturbances and model-

ing error.

Proposition 1 Consider the nonlinear system _x= F x,u1,u2,wð Þ of

Equation (1) in the presence of bounded disturbances jw
(t) j ≤wm and the LSTM model _̂x= Fnn x̂,u1,u2ð Þ of Equation (5)

with the same initial condition x0 = x̂0�Ωρ̂ and sufficiently small

modeling error jν j ≤ νm. There exists a class K function fw(�) and
a positive constant κ such that the following inequalities hold

8x, x̂�Ωρ̂ and w(t)�W:

j e tð Þ j = j x tð Þ− x̂ tð Þ j ≤ fw tð Þ≔Lwwm + νm
Lx

eLxt−1
� � ð18aÞ

V̂ xð Þ≤ V̂ x̂ð Þ+ ĉ4
ffiffiffî
ρ
p
ffiffiffiffiffi
ĉ1

p j x− x̂ j + κ x− x̂j j2 ð18bÞ

It has also been established that under the controller

u1 tð Þ=Φnn1 xð Þ�U1 , u2 tð Þ=Φnn2 xð Þ�U2 implemented in a sample-and-

hold fashion, the closed-loop state x(t) of the actual process of Equa-

tion (1) and the closed-loop state x̂ tð Þ of the LSTM system of Equa-

tion (5) are bounded in the stability region and ultimately driven to a

small neighborhood around the origin, given that the conditions of

Equation 8 are satisfied, and the modeling error jν j ≤ γ j x j ≤ νm, where

γ is chosen to satisfy γ < ĉ3=ĉ4. This is shown in the following proposi-

tion. The full proof of the following proposition can be found in Refer-

ence 19.

Proposition 2 Consider the system of Equation (1) under the control-

lers uj =Φnnj x̂ð Þ�Uj , j = 1, 2, which meet the conditions of

Equation (8). The controllers uj =Φnnj x̂ð Þ�Uj , j = 1, 2 are

designed to stabilize the LSTM system of Equation (5), devel-

oped with a modeling error jν j ≤ γ j x j ≤ νm, where γ < ĉ3=ĉ4 .
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The control actions are implemented in a sample-and-

hold fashion, that is, uj tð Þ=Φnnj x̂ tkð Þð Þ, j= 1,2 , 8t� [tk, tk+1),

where tk+1≔ tk+Δ. Let ϵs, ϵw>0, Δ>0, ~c3 = − ĉ3 + ĉ4γ >0, and

ρ̂> ρmin > ρnn > ρs satisfy

−
ĉ3
ĉ2

ρs + LnnMnnΔ≤ −ϵs ð19aÞ

−
~c3
ĉ2

ρs + L
0
xMΔ+ L

0
wwm ≤ −ϵw ð19bÞ

and

ρnn≔max V̂ x̂ t+Δð Þð Þ j x̂ tð Þ∈Ωρs ,u1∈U1,u2∈U2

n o
ð20aÞ

ρmin ≥ ρnn +
ĉ4

ffiffiffî
ρ
p
ffiffiffiffiffi
ĉ1

p fw Δð Þ+ κ fw Δð Þð Þ2 ð20bÞ

Then, for any x tkð Þ= x̂ tkð Þ�Ωρ̂nΩρs , the following inequality holds:

V̂ x̂ tð Þð Þ≤ V̂ x̂ tkð Þð Þ, 8 t� tk ,tk +1½ ð21aÞ

V̂ x tð Þð Þ≤ V̂ x tkð Þð Þ, 8 t� tk ,tk +1½ ð21bÞ

and if x0�Ωρ̂ , the state x̂ tð Þ of the LSTM modeled system of Equa-

tion (5) is bounded in Ωρ̂ for all times and ultimately bounded in Ωρnn ,

and the state x(t) of the nonlinear system of Equation (1) is bounded

in Ωρ̂ for all times and ultimately bounded in Ωρmin
.

Proposition 2 demonstrates that, if x tkð Þ= x̂ tkð Þ�Ωρ̂nΩρs , the

closed-loop state of the LSTM system of Equation (5) and of the

actual nonlinear process of Equation (1) are both bounded in the sta-

bility region Ωρ̂ and they move toward the origin under

u1 tð Þ=Φnn1 xð Þ�U1 and u2 tð Þ=Φnn2 xð Þ�U2 implemented in a sample-

and-hold fashion. If x tkð Þ= x̂ tkð Þ�Ωρs , the closed-loop state of the

LSTM model is maintained in Ωρnn within one sampling period for all

t� [tk, tk+1), and the closed-loop state of the actual nonlinear system

is maintained in Ωρmin
within one sampling period.

In the following theorem, we will prove that the optimization

problem of LMPC 1 and of LMPC 2 in the distributed LMPC network

can be solved with recursive feasibility, and the closed-loop stability

of the nonlinear system of Equation (1) is guaranteed under the

sample-and-hold implementation of the optimal control actions

u1 u2½ �= u�d1 u�d2

h i
given by the distributed LMPC design of

Equation (17).

Theorem 1 Consider the closed-loop system of Equation (1) under

u1 u2½ �= u�d1 u�d2

h i
in the distributed LMPC design of Equation

(17), which are calculated based on the controllers Φnnj xð Þ, j=1,2
that satisfy Equation (8). Let Δ>0, ϵs>0, ϵw>0, and

ρ̂> ρmin > ρnn > ρs satisfy Equations (19) and (20). Then, given any

initial state x0�Ωρ̂ , if the conditions of Proposition 1 and

Proposition 2 are satisfied, and the LSTM model of Equation (5)

has a modeling error jν j ≤ γ j x j ≤ νm, 0 < γ < ĉ3=ĉ4 , then there

always exists a feasible solution for the optimization problem of

Equations (11), (12), (15), (16). Additionally, it is guaranteed that

under the distributed LMPC design u1 u2½ �= u�d1 u�d2

h i
of Equation

(17), x tð Þ�Ωρ̂,8t≥0, and x(t) ultimately converges to Ωρmin
for the

closed-loop system of Equation (1).

Proof. The proof consists of three parts. In Part 1, we first prove

that the optimization problem of each LMPC in the distributed

LMPC network is feasible for all states x�Ωρ̂ . In Part 2, we prove the

boundedness and convergence of the state in Ωρnn for the closed-loop

LSTM system of Equation (5) under the distributed LMPC design

u1 u2½ �= u�d1 u�d2

h i
in Equation (17). Lastly, in Part 3, we prove the

boundedness and convergence of the closed-loop state to Ωρmin
for

the actual nonlinear system of Equation (1) under the distributed

LMPC design u1 u2½ �= u�d1 u�d2

h i
in Equation (17). The following proof

is provided in reference to the formulations of the sequential distrib-

uted LMPC of Equations (11) and (12), but the same result also applies

to the iterative distributed LMPC of Equations (15) and (16).

Part 1: We prove that the optimization problem of each LMPC

in the distributed LMPC network is recursively feasible for all x�Ωρ̂ .

If x tkð Þ�Ωρ̂nΩρnn , the input trajectories udj tð Þ=Φnnj x tkð Þð Þ , j = 1, 2, for

t� [tk, tk+ 1] are feasible solutions to the optimization problem of

LMPC j since such trajectories satisfy the input constraint on udj of

Equation (11c) in LMPC 2 and of Equation (12c) in LMPC 1, respec-

tively, as well as the Lyapunov-based contractive constraint of Equa-

tion (11e) in LMPC 2 and of Equation (12e) in LMPC 1. Additionally, if

x tkð Þ�Ωρnn , the control actions given by Φnnj ~x tk + ið Þð Þ, i = 0, 1, …, N−1

satisfy the input constraint on ud2 of Equation (11c) and the

Lyapunov-based constraint of Equation (11f) in LMPC 2, and the input

constraint on ud1 of Equation (12c) and the Lyapunov-based con-

straint of Equation (12f) in LMPC 1, since it is shown in Proposition 2

that the states predicted by the LSTM model of Equation (11b) and of

Equation (12b) remain inside Ωρnn under the controller Φnnj ~xð Þ, j=1,2.
Therefore, for all x0�Ωρ̂ , the optimization problems of both

Equations (12) and (11) can be solved with recursive feasibility if

x tð Þ�Ωρ̂ for all times.

Part 2: Next, we prove that given any x0 = x̂0�Ωρ̂ , the state of the

closed-loop LSTM system of Equation (5) is bounded in Ωρ̂ for all

times and ultimately converges to a small neighborhood around the

origin Ωρnn defined by Equation (20a) under the sample-and-hold

implementation of the distributed LMPC design u1 u2½ �= u�d1 u�d2

h i
of

Equation (17). First, we consider x tkð Þ�Ωρ̂nΩρnn at t = tk, therefore acti-

vating the contractive constraints of Equation (11e) and Equa-

tion (12e). Based on the definition of ρnn in Equation (20a), this means

x(tk) also belongs to the region Ωρ̂nΩρs . With the conditions of

Equation 8 on Φnn1 x̂ tkð Þð Þ and Φnn2 x̂ tkð Þð Þ satisfied, the contractive

constraints are activated such that the optimal control actions u�d2 , and

sequentially u�d1 , are calculated to decrease the value of the Lyapunov

function based on the states predicted by the LSTM model of Equa-

tion (11b) and Equation (12b) over the next sampling period, respec-

tively. This is shown as follows:
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_̂V x̂ tkð Þð Þ= ∂V̂ x̂ tkð Þð Þ
∂x̂

Fnn x̂ tð Þ,u�d1 tkð Þ,u�d2 tkð Þ
� 	

≤
∂V̂ x̂ tkð Þð Þ

∂x̂
Fnn x̂ tð Þ,Φnn1 x̂ tkð Þð Þ,u�d2 tkð Þ

� 	

≤
∂V̂ x̂ tkð Þð Þ

∂x̂
Fnn x̂ tð Þ,Φnn1 x̂ tkð Þð Þ,Φnn2 x̂ tkð Þð Þð Þ

≤ − ĉ3 x̂ tkð Þj j2

ð22Þ

The time derivative of the Lyapunov function along the trajectory

of x̂ tð Þ of the LSTM model of Equation (5) in t� [tk, tk+1) is given by:

_̂V x̂ tð Þð Þ= ∂V̂ x̂ tð Þð Þ
∂x̂

Fnn x̂ tð Þ,u*d1 tkð Þ,u*d2 tkð Þ
� 	

=
∂V̂ x̂ tkð Þð Þ

∂x̂
Fnn x̂ tkð Þ,u*d1 tkð Þ,u*d2 tkð Þ

� 	

+
∂V̂ x̂ tð Þð Þ

∂x̂
Fnn x̂ tð Þ,u*d1 tkð Þ,u*d2 tkð Þ

� 	

−
∂V̂ x̂ tkð Þð Þ

∂x̂
Fnn x̂ tkð Þ,u*d1 tkð Þ,u*d2 tkð Þ

� 	
ð23Þ

After adding and subtracting ∂V̂ x̂ tkð Þð Þ
∂x̂ Fnn x̂ tkð Þ,u�d1 tkð Þ,u�d2 tkð Þ

� 	
, and

taking into account the conditions of Equation (8), we obtain the fol-

lowing inequality:

_̂V x̂ tð Þð Þ≤ −
ĉ3
ĉ2

ρs +
∂V̂ x̂ tð Þð Þ

∂x̂
Fnn x̂ tð Þ,u�d1 tkð Þ,u�d2 tkð Þ

� 	

−
∂V̂ x̂ tkð Þð Þ

∂x̂
Fnn x̂ tkð Þ,u�d1 tkð Þ,u�d2 tkð Þ

� 	 ð24Þ

Based on the Lipschitz condition of Equation (10) and that x̂�Ωρ̂ ,

u1�U1, and u2�U2, the upper bound of _̂V x̂ tð Þð Þ is derived 8t� [tk,

tk+1):

_̂V x̂ tð Þð Þ≤ −
ĉ3
ĉ2

ρs + Lnn j x̂ tð Þ− x̂ tkð Þ j

≤ −
ĉ3
ĉ2

ρs + LnnMnnΔ
ð25Þ

Therefore, if Equation (19a) is satisfied, the following inequality

holds 8x̂ tkð Þ�Ωρ̂nΩρs and t� [tk, tk+1):

_̂V x̂ tð Þð Þ≤ −ϵs ð26Þ

By integrating the above equation over t � [tk, tk + 1), it is

obtained that V̂ x̂ tk +1ð Þð Þ≤ V̂ x̂ tkð Þð Þ−ϵsΔ: Therefore, V̂ x̂ tð Þð Þ≤ V̂ x̂ tkð Þð Þ,
8t� tk ,tk +1½ Þ: We have proved that for all x̂ tkð Þ�Ωρ̂nΩρs , the state of

the closed-loop LSTM system of Equation (5) is bounded in the

closed-loop stability region Ωρ̂ for all times and moves toward the ori-

gin under u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

implemented in a sample-and-hold

fashion.

Next, we consider when x tkð Þ= x̂ tkð Þ�Ωρs and Equation (26) may

not hold. According to Equation (20a), Ωρnn is designed to ensure that

the closed-loop state x̂ tð Þ of the LSTM model does not leave Ωρnn for

all t� [tk, tk+1), u1�U1, u2�U2, and x̂ tkð Þ�Ωρs within one

sampling period. If the state x̂ tk +1ð Þ leaves Ωρs , the controller

u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

�U will drive the state toward Ωρs over the

next sampling period since Equation (26) is satisfied again at t = tk+1.

Therefore, the convergence of the state to Ωρnn for the closed-loop

LSTM system of Equation (5) is proved for all x̂0�Ωρ̂.

Part 3: We have proven that the closed-loop state of the LSTM

system of Equation (5) are bounded in Ωρ̂ and ultimately converge to

Ωρnn under the controller u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

computed by the

distributed LMPC design of Equation (17) for all x̂�Ωρ̂ . We will now

prove that the controllers u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

computed by the

distributed LMPC design of Equation (17) are able to stabilize the

actual nonlinear system of Equation (1) while accounting for bounded

modeling error jνj and disturbances jwj. If there exists a positive real

number γ < ĉ3=ĉ4 that constrains the modeling error jν j = j F(x, u1,
u2, 0)− Fnn(x, u1, u2) j ≤ γ j xj for all x�Ωρ̂ , u1�U1, u2�U2, then the ori-

gin of the closed-loop nominal system of Equation (1) can be rendered

exponentially stable under the controller u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

.

This is shown by proving that _̂V for the nominal system of

Equation (1) can be rendered negative under u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

.

Based on the conditions on the Lyapunov functions of Equation (22)

as derived in Part 2, and Equation (8c), the time derivative of the

Lyapunov function is derived as follows:

When γ is chosen to satisfy γ < ĉ3=ĉ4 , it holds that
_̂V ≤ −~c3 xj j2 ≤0

where ~c3 = − ĉ3 + ĉ4γ >0 . Therefore, the closed-loop state of the

_̂V xð Þ= ∂V̂ xð Þ
∂x

F x,u*d1 tkð Þ,u*d2 tkð Þ,0
� 	

=
∂V̂ xð Þ
∂x

Fnn x,u*d1 tkð Þ,u*d2 tkð Þ
� 	

+ F x,u*d1 tkð Þ,u*d2 tkð Þ,0
� 	

−Fnn x,u*d1 tkð Þ,u*d2 tkð Þ
� 	� 	

≤ − ĉ3 xj j2 + ĉ4 j x j F x,u*d1 tkð Þ,u*d2 tkð Þ,0
� 	

−Fnn x,u*d1 tkð Þ,u*d2 tkð Þ
� 	� 	

≤ − ĉ3 xj j2 + ĉ4γ xj j2
≤ −~c3 xj j2

ð27Þ
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nominal system of Equation (1) converges to the origin under

u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

,8x0�Ωρ̂ if the modeling error is sufficiently

small, that is, jν j ≤ γ j xj. Additionally, considering the presence of

bounded disturbances (i.e., jw j ≤wm), we will now prove that the

closed-loop state x(t) of the actual nonlinear system of Equation (1)

(i.e., _x= F x,u,wð Þ ) is bounded in Ωρ̂ and ultimately converges to Ωρmin

under the sample-and-hold implementation of the control actions

u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

as computed by the distributed LMPC design

of Equation (17).

Similarly, we first consider x tkð Þ= x̂ tkð Þ�Ωρ̂nΩρnn , which means x

(tk) also belongs to the region Ωρ̂nΩρs .We derive the time-derivative of

V̂ xð Þ for the nonlinear system of Equation (1) with bounded distur-

bances as follows:

_̂V x tð Þð Þ =
∂V̂ x tð Þð Þ

∂x
F x tð Þ,u�d1 tkð Þ,u�d2 tkð Þ,w
� 	

=
∂V̂ x tkð Þð Þ

∂x
F x tkð Þ,u�d1 tkð Þ,u�d2 tkð Þ,0
� 	

+
∂V̂ x tð Þð Þ

∂x
F x tð Þ,u�d1 tkð Þ,u�d2 tkð Þ,w
� 	

−
∂V̂ x tkð Þð Þ

∂x
F x tkð Þ,u�d1 tkð Þ,u�d2 tkð Þ,0
� 	

ð28Þ

From Equation (27), we know that
∂V̂ x tkð Þð Þ

∂x F x tkð Þ,u�d1 tkð Þ,u�d2 tkð Þ,0
� 	

≤ −~c3 x tkð Þj j2 holds for all x�Ωρ̂. Based

on Equation (8a) and the Lipschitz condition in Equation (4), the fol-

lowing inequality is obtained for _̂V x tð Þð Þ 8t� [tk, tk+1) and

x tkð Þ�Ωρ̂nΩρs :

_̂V x tð Þð Þ≤ −
˜c3
ĉ2

ρs +
∂V̂ x tð Þð Þ

∂x
F x tð Þ,u�d1 tkð Þ,u�d2 tkð Þ,w
� 	

−
∂V̂ x tkð Þð Þ

∂x
F x tkð Þ,u�d1 tkð Þ,u�d2 tkð Þ,0
� 	

≤ −
˜c3
ĉ2

ρs + L
0
x j x tð Þ−x tkð Þ j + L0w jw j

≤ −
˜c3
ĉ2

ρs + L
0
xMΔ+ L

0
wwm ð29Þ

Therefore, if Equation (19b) is satisfied, the following inequality

holds 8x tkð Þ�Ωρ̂nΩρs and t� [tk, tk+1):

_̂V x tð Þð Þ≤ −ϵw ð30Þ

Integrating Equation (30) will show that Equation (21b) holds;

hence, the closed-loop state of the actual nonlinear process of Equa-

tion (1) is maintained in Ωρ̂ for all times, and can be driven toward the

origin in every sampling period under the controller

u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

. Additionally, if x tkð Þ�Ωρs , considering the

sample-and-hold implementation of control actions, it has been shown

in Part 2 that the state of the LSTM model of Equation (5) is

maintained in Ωρnn within one sampling period. Considering the

bounded error between the state of the LSTM of Equation (5) model

and the state of the nonlinear system of Equation (1) given by Equa-

tion (18a), there exists a compact set Ωρmin
�Ωρnn that satisfies Equa-

tion (20b) such that the state of the actual nonlinear system of

Equation (1) does not leave Ωρmin
during one sampling period if the

state of the LSTM model of Equation (5) is bounded in Ωρnn . If the

state x(t) enters Ωρmin
nΩρs , we have shown that Equation (30) holds,

and thus, the state will be driven toward the origin again under

u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

during the next sampling period.

Consider x tð Þ�Ωρ̂nΩρnn at t = tk where the contractive constraints

of Equation (11e) and Equation (12e) are activated. Since

x tkð Þ�Ωρ̂nΩρnn , it follows that x tkð Þ�Ωρ̂nΩρs , hence Equation (30) holds,

implying that the closed-loop state will be driven toward the origin in

every sampling step under u1 u2½ �= u�d1 tkð Þ u�d2 tkð Þ
h i

and can be driven

into Ωρnn within finite sampling steps. After the state enters Ωρnn , the

constraint of Equation (11f) and Equation (12f) are activated to main-

tain the predicted states of the LSTM model of Equation (11b) and

Equation (12b) in Ωρnn over the entire prediction horizon. As we char-

acterize a region Ωρmin
that satisfies Equation (20b), the closed-loop

state x(t) of the nonlinear system of Equation (1), 8t� [tk, tk+1) is

guaranteed to be bounded in Ωρmin
if the predicted state by the LSTM

model of Equation (11b) and Equation (12b) remains in Ωρnn . There-

fore, at the next sampling step t = tk+1, if the state x(tk+ 1) is still

bounded in Ωρnn , the constraint of Equation (11f) and Equation (12f)

maintains the predicted state x̂ of the LSTM model of Equations (11b)

and (12b) in Ωρnn such that the actual state x of the nonlinear system

of Equation (1) stays inside Ωρmin
. However, if x tk +1ð Þ�Ωρmin

nΩρnn , fol-

lowing the proof we have shown for the case that x tkð Þ�Ωρ̂nΩρnn , the

contractive constraint of Equations (11e) and (12e) will be activated

instead to drive it toward the origin. This completes the proof of

boundedness of the states of the closed-loop system of

Equation (1) in Ωρ̂ and convergence to Ωρmin
for any x0�Ωρ̂.

Remark 5 Although there exists approximation error induced by

Equation (9), it does not jeopardize the stability analysis. This is

because the same numerical approximations are used univer-

sally whenever the calculations for f̂ , ĝ1 , and ĝ2 are invoked.

This includes when calculating Φnn1 xð Þ,Φnn2 xð Þ , when charac-

terizing the stability region, and when calculating the time-

derivative of the control Lyapunov function in the contractive

constraint for the optimization problems of the distributed

MPC system. Therefore, u1 u2½ �= Φnn1 xð Þ Φnn2 xð Þ½ � still remains

a feasible solution to the distributed MPC that will render the

origin of the nonlinear process exponentially stable for all initial

conditions x0�Ωρ̂.

5 | APPLICATION TO A TWO-CSTR-IN-
SERIES PROCESS

A chemical process example is utilized to demonstrate the application

of sequential distributed and iterative distributed model predictive

control using the proposed LSTM model, the results of which will be
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compared to that of centralized model predictive control. Specifically,

two well-mixed, non-isothermal continuous stirred tank reactors

(CSTRs) in series are considered where an irreversible second-order

exothermic reaction takes place in each reactor as shown in Figure 3.

The reaction transforms a reactant A to a product B (A! B). Each of

the two reactors are fed with reactant material A with the inlet con-

centration CAj0, the inlet temperature Tj0 and feed volumetric flow

rate of the reactor Fj0, j = 1, 2, where j = 1 denotes the first CSTR and

j = 2 denotes the second CSTR. Each CSTR is equipped with a heating

jacket that supplies/removes heat at a rate Qj, j = 1, 2. The CSTR

dynamic models is obtained by the following material and energy bal-

ance equations:

dCA1

dt
=
F10
V1

CA10−CA1ð Þ−k0e
−E
RT1C2

A1 ð31aÞ

dT1

dt
=
F10
V1

T10−T1ð Þ+ −ΔH
ρLCp

k0e
−E
RT1C2

A1 +
Q1

ρLCpV1
ð31bÞ

dCB1

dt
= −

F10
V1

CB1 + k0e
−E
RT1C2

A1
ð31cÞ

dCA2

dt
=
F20
V2

CA20 +
F10
V2

CA1−
F10 + F20

V2
CA2−k0e

−E
RT2C2

A2 ð31dÞ

dT2

dt
=
F20
V2

T20 +
F10
V2

T1−
F10 + F20

V2
T2 +

−ΔH
ρLCp

k0e
−E
RT2C2

A2 +
Q2

ρLCpV2
ð31eÞ

dCB2

dt
=
F10
V2

CB1−
F10 + F20

V2
CB2 + k0e

−E
RT2C2

A2 ð31fÞ

where CAj, Vj, Tj, and Qj, j = 1, 2 are the concentration of reactant A,

the volume of the reacting liquid, the temperature, and the heat input

rate in the first and the second reactor, respectively. The reacting liq-

uid has a constant density of ρL and a constant heat capacity of Cp for

both reactors. ΔH, k0, E, and R represent the enthalpy of the reaction,

pre-exponential constant, activation energy, and ideal gas constant,

respectively. Process parameter values are listed in Table 1. The

manipulated inputs for both CSTRs are the inlet concentration of

species A and the heat input rate, which are represented by the devia-

tion variables ΔCAj0 =CAj0−CAj0s , ΔQj =Qj−Qjs , j = 1, 2, respectively.

The manipulated inputs are bounded as follows: jΔCAj0 j ≤3.5 kmol/

m3 and jΔQj j ≤5×105 kJ/hr, j = 1, 2. Therefore, the states of the

closed-loop system are xT = CA1−CA1s T1−T1s CA2−CA2s T2−T2s½ � ,
where CA1s , CA2s , T1s , and T2s are the steady-state values of concentra-

tion of A and temperature in the first and the second reactor, such

that the equilibrium point of the system is at the origin of the state-

space. It is noted that the states of the first CSTR can be separately

denoted as xT1 = CA1−CA1s T1−T1s½ � and the states of the second CSTR

are denoted as xT2 = CA2−CA2s T2−T2s½ � . In a centralized MPC frame-

work, feedback measurement on all states x is received by the control-

ler, and the manipulated inputs for the entire system, uT = [ΔCA10 ΔQ1

ΔCA20 ΔQ2], are computed by one centralized controller. In a distrib-

uted LMPC system, both LMPCs have access to full-state information

as well as the overall model of the two-CSTR process. Both LMPC

1 and LMPC 2 receive feedback on x(t); LMPC 1 optimizes uT1 and

LMPC 2 optimizes uT2 . The common control objective of the model

predictive controllers is to stabilize the two-CSTR process at the

unstable operating steady-state xTs = CA1s CA2s T1s T2s½ � , whose values

are presented in Table 1. The explicit Euler method with an integra-

tion time step of hc = 10−4 hr is used to numerically simulate the

dynamic model of Equation (31). The nonlinear optimization problems

of the distributed LMPCs of Equations (11) and (12), and of

Equations (15) and (16) are solved using the Python module of the

IPOPT software package,20 named PyIpopt with a sampling period

Δ = 10−2 hr. The objective function in the distributed LMPC optimiza-

tion problem has the form L x,u1,u2ð Þ= xTQx+ uT1R1u1 + uT2R2u2 , where

Q = diag[2×103 1 2×103 1], R1 = R2 = diag[8×10−13 0.001]; the

same objective function is used in both LMPC 1 and LMPC 2 in all dis-

tributed LMPC systems. The overall control Lyapunov function is the

sum of the control Lyapunov functions for the two CSTRs, that is,

V xð Þ=V1 x1ð Þ+V2 x2ð Þ= xT1P1x1 + xT2P2x2 , with the following positive

definite P matrices:

P1 =P2 =
1060 22

22 0:52


 �
ð32Þ

F IGURE 3 Process flow diagram of two CSTRs in series. CSTRs,
continuous stirred tank reactors [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Parameter values of the CSTRs

T10 = 300 K T20 = 300 K

F10 = 5 m3/hr F20 = 5 m3/hr

V1 = 1 m3 V2 = 1 m3

T1s =401:9K T2s =401:9K

CA1s =1:954kmol=m3 CA2s =1:954kmol=m3

CA10s =4kmol=m3 CA20s =4kmol=m3

Q1s
=0:0kJ=hr Q2s

=0:0kJ=hr

k0 = 8.46 × 106 m3/kmol hr ΔH = − 1.15 × 104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 E = 5 × 104 kJ/kmol

Abbreviations: CSTRs, continuous stirred tank reactors.
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Given that the modeling error between the LSTM model and the

first-principles model is sufficiently small, the control Lyapunov func-

tion for the first-principles model of the nonlinear process V can be

used as the control Lyapunov function for the LSTM model V̂ as well.

5.1 | LSTM network development

Open-loop simulations are conducted for finite sampling steps for var-

ious initial conditions inside Ωρ, where ρ = 392, using the nonlinear

system of Equation (1) under various u1 � U1, u2 � U2 applied in a

sample-and-hold manner. These trajectories which consist of training

sample points are collected with a time interval of 5 × hc. The LSTM

model is then developed to predict future states over one sampling

period Δ. This LSTM model captures the dynamics of the overall two-

CSTR process of Equation (31), and can be used in all individual dis-

tributed LMPCs or in the centralized LMPC. The LSTM network is

developed using Keras with 1 hidden layer consisting of 50 units,

where tanh function is used as the activation function, and Adam is

used as the optimizer. The stopping criteria for the training process

include that the mean squared modeling error being less than

5 × 10−7 and the mean absolute percentage of the modeling error

being less than 4.5 × 10−4. After 50 epochs of training, with each

epoch taking on average 200 s, the mean squared error between the

predicted states of the LSTM network model and of the first-

principles models is 4.022 × 10−7 and the mean absolute error is

4.254 × 10−4. After obtaining an LSTM model with sufficiently small

modeling error, the Lyapunov function of the LSTM model, V̂ , is cho-

sen to be the same as V(x). Subsequently, the set D̂ can be character-

ized using the controllers u1 u2½ �= Φnn1 xð Þ Φnn2 xð Þ½ � , from which the

closed-loop stability region Ωρ̂ for the LSTM system can be character-

ized as the largest level set of V̂ in D̂ while also being a subset of Ωρ.

The positive constants ρ̂1 and ρ̂2, which are used to define the largest

level sets of the control Lyapunov functions for the first and the sec-

ond CSTR, respectively, are ρ̂1 = ρ̂2 = 380 . Additionally, the ultimate

bounded region Ωρnn , and subsequently, Ωρmin
, are chosen to be ρnn = 10

and ρmin = 12, determined via extensive closed-loop simulations with

u1�U1, u2�U2. Readers interested in more computational details on

the development of a recurrent neural network model can refer to

Reference 21.

In this study, we simulate three different types of control systems

to compare their closed-loop control performances: a centralized

LMPC, an iterative distributed LMPC system, and a sequential distrib-

uted LMPC system. We develop an LSTM model for the overall two-

CSTR process, which is the same model used in both centralized

LMPC system and distributed LMPC systems. When this LSTM net-

work model is implemented online during closed-loop simulations, the

inputs to the LSTM network are x(t) and u(t) at t = tk, and the outputs

are the predicted future states x̂ tð Þ at t = tk +1; more examples on this

overall LSTM model can be found in Reference 22. It should be noted

that, depending on the different architectures of the control systems,

the choice of inputs and outputs as well as the structure of the LSTM

model used in the control system may be different.

5.2 | Closed-loop model predictive control
simulations

To demonstrate the efficacy of the distributed model predictive control

network using LSTM models, the following simulations are carried out.

First, we simulate a centralized LMPC using the LSTM network for the

overall two-CSTR process as its prediction model, where the four

manipulated inputs are uT = [ΔCA10 ΔQ1 ΔCA20 ΔQ2], and it receives

feedback on all states xT = CA1−CA1s T1−T1s CA2−CA2s T2−T2s½ �. Then,
we simulate sequential distributed LMPCs and iterative distributed

LMPCs, where LMPC 1 and LMPC 2 in both distributed frameworks

use the same LSTM model for the overall two-CSTR process as used

in a centralized LMPC system. The closed-loop control performances

of the aforementioned control networks are compared, the compari-

son metrics include the computation time of calculating the solutions

to the LMPC optimization problem(s), as well as the sum squared error

of the closed-loop states x(t) for a total simulation period of tp = 0.3 hr.

It should be noted that, since iterative distributed LMPC systems

allow parallel computing of the individual controllers, the computation

time for obtaining the final solutions to the optimization problems of

Equations (15) and (16) should be the maximum time of the two con-

trollers, accounting for all iterations carried out before the termination

criterion is reached. The termination criterion used was that the com-

putation time for solving each LMPC must not exceed the sampling

period, Δ. On the other hand, in a sequential distributed LMPC sys-

tem, since the computation of LMPC 1 depends on the optimal trajec-

tory of control action calculated by LMPC 2, the total computation

time taken to obtain the solutions to the optimization problems of

Equations (11) and (12) must be the sum of the time taken by the two

controllers.

Table 2 shows the average computation time for solving the opti-

mization problem(s) of the distributed and centralized LMPC systems,

as well as the sum of squared percentage error of all states in the form

of SSE =
Ð tp
0

CA1−CA1s
CA1s

� 	2
+ T1−T1s

T1s

� 	2
+ CA2−CA2s

CA2s

� 	2
+ T2−T2s

T2s

� 	2
dt . It is

shown in Table 2 that when the two-CSTR process is operated under

distributed LMPC systems, the sum squared error and the average

computation time are reduced compared to the case where a central-

ized LMPC system is used. Moreover, it is shown that the iterative

TABLE 2 Average LMPC computation time in one sampling
period and the sum of squared percentage error of all states along the
closed-loop trajectory under iterative distributed, sequential
distributed, and centralized LMPC systems using their respective
LSTM models with a total simulation time of 0.3 hr

Average computation
time (s)

Sum squared
error

Iterative distributed

LMPC

26.70 2.85

Sequential distributed

LMPC

29.55 3.04

Centralized LMPC 35.26 3.08

Abbreviations: LMPC, Lyapunov-based model predictive control; LSTM,

long short-term memory.
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distributed MPC using the LSTM model has a lower mean computa-

tion time and a lower sum squared error than the sequential distrib-

uted MPC, and the distributed MPC in general achieve a lower sum

squared error than the centralized MPC. It should also be noted that

the computation time of all simulated control systems are lower than

the sampling period used in the two-CSTR process such that the pro-

posed control system can be implemented without computational

issues.

In this work, we develop machine-learning-based models for the

two-CSTR process of Equation (31) assuming that the first-principles
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F IGURE 4 Closed-loop state trajectories of (a) sequential and (b) iterative distributed LMPC systems using LSTM models and first-principles
models, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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model of Equation (31) is unknown. However, in order to have a rea-

sonable baseline for comparison, we show the simulation results of

each distributed control framework using the first-principles model

of the nonlinear process of Equation (31). Furthermore, in real-life

scenarios where the first-principles model of an industrial-scale

chemical plant is not available, the comparison of closed-loop con-

trol performances using machine-learning-based models can be con-

ducted against plant data. To further illustrate the closed-loop

performances of sequential and iterative LMPC systems using the

LSTM model, the closed-loop state evolution showing the conver-

gence of closed-loop states from the initial conditions

xT0 = −1:5kmol=m3 70K 1:5kmol=m3 −70K
� �

under the sequential

and iterative LMPC using the LSTM model are plotted in Figure 4a,b

along with the closed-loop trajectories under the respective distrib-

uted LMPCs using the first-principles model as a baseline for compari-

son. All states converge to Ωρmin
within 0.10 hr under the sequential

and iterative distributed MPCs using the LSTM model. It is reported

that using the LSTM model, the sum squared error of an operation

period of 0.3 hr under iterative distributed LMPC and under sequen-

tial distributed LMPC are 2.85 and 3.04, respectively. Using the first-

principles model, the sum squared error of the same operation period

with the same initial conditions under iterative and sequential distrib-

uted LMPC systems are 2.96 and 2.98, respectively, which is on par

with the sum squared error achieved using LSTM network, with the

iterative distributed LMPC obtaining even a lower sum squared error

using LSTM network than using first-principles. Through closed-loop

simulations and performance metrics comparisons, we have demon-

strated the efficacy of distributed LMPC systems using LSTM network

models.

6 | CONCLUSIONS

In this study, we presented the design of distributed model predic-

tive control systems for nonlinear processes using a machine-learn-

ing-based model, which was used as the prediction model to capture

nonlinear dynamic behavior. Closed-loop stability and performance

properties were analyzed for the sequential and iterative distributed

model predictive control systems. Extensive open-loop data within

the stability region of the nonlinear process characterized by

Lyapunov-based control methods were collected to train LSTM net-

work models with a sufficiently small modeling error with respect to

the actual nonlinear process model. It was shown that both sequen-

tial distributed LMPC system and iterative distributed LMPC system

using the LSTM network model were able to achieve efficient real-

time computation, and ensure closed-loop state boundedness and

convergence to the origin. Working with a nonlinear chemical pro-

cess network example, the distributed LMPC systems using the

LSTM network model were able to obtain similar closed-loop perfor-

mance as the distributed LMPC systems using the first-principles

model, as well as reduced computation time when compared to the

closed-loop results of the centralized LMPC system using the LSTM

network model.
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