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ABSTRACT

This article focuses on the design of distributed model predictive control (DMPC) systems for nonlinear
processes with input constraints using a Control Lyapunov-Barrier Function (CLBF) to achieve simultane-
ous closed-loop stability and process safety. Specifically, we first use a constrained CLBF to design explicit
control laws for each subsystem and to characterize a set of initial conditions, starting from which the
closed-loop states of the overall nonlinear system are guaranteed to converge to the operating steady-
state under the CLBF-based control laws while avoiding unsafe regions in state space. We then propose
the CLBF-based DMPC, and prove its feasibility and effectiveness in ensuring the stability and avoidance
of unsafe regions under sample-and-hold implementation of DMPC control actions. The CLBF-based DMPC
is applied to both sequential and iterative DMPC designs in the general sense, and a modification to the
DMPC formulation is presented for special cases of systems where the coupling between subsystems is in
a one-way cascading manner. The proposed CLBF-DMPC method is demonstrated via a nonlinear chemical

process example consisting of two subsystems.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Process safety is inarguably a top priority in industrial engi-
neering given the involvement of operators with potential haz-
ards and exposure to the environment. During each stage of de-
sign, operation, and maintenance, risk assessment and analysis is
an irreplaceable part of engineering and implementation in or-
der to prevent catastrophic events from happening. Process control
systems not only enable automated control, operation, and mon-
itoring of the plant, but also allow safe, stable, and optimal pro-
duction if robust control designs are implemented. The work in
Leveson and Stephanopoulos (2014) provides a control-inspired ap-
proach for the engineering of safe processes, and by defining pro-
cess safety within a system-theoretic framework, allows for a com-
prehensive treatment of process safety. The interacting dynamics
between multiple subsystems of a complex industrial plant and
their combined impact on process safety and operations are fac-
tors that should be taken into consideration in order to handle and
avoid unexpected circumstances and hazards. To this end, a model
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predictive control (MPC) system stands out as a candidate control
method to handle safety constraints, multi-variable interactions,
and nonlinearities in large-scale processes (Garcia et al., 1989). In
particular, in order to work with large-scale processes that pos-
sess large amount of state variables and sensor data, distributed
MPC (DMPC) has been proposed to reduce computational time and
complexity of the optimization problem (Christofides et al., 2013).
In a DMPC framework, collective control objectives are achieved
by multiple controllers which have inter-controller communication
established to calculate their respective control actions. Previous
works on decentralized and distributed MPC systems (Venkat et al.,
2004; Stewart et al., 2010; Christofides et al., 2013) have shown
the effectiveness of this approach in improving closed-loop per-
formance while reducing computational time; and more recently,
they have been used in cases where machine-learning modeling
may be adopted (Chen et al., 2020), as well as in applications of
demonstrated robustness against cyber-attacks (Chen et al., 2021a).
Within a distributed framework, there exist many configuration
variants depending on the degree of communication between sub-
controllers, and have been applied to various engineering appli-
cations such as distributed smart grid optimization, moving hori-
zon estimation of reactor-separator process, and distributed model
predictive control of multi-motor driving cutterhead systems
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(Zhang and Liu, 2013; Qi et al., 2013; Yang et al., 2019). Sequen-
tial DMPC allows one-way communication from one controller to
the next, while iterative DMPC allows two-way communication be-
tween all controllers and iteration during the optimization calcula-
tions until a termination criterion has been met. Both of these two
frameworks have been used in recent literature (Liu et al., 2010;
2012; Yang et al., 2019) and will be discussed in this work.

Barrier functions, or barrier certificates, serve as an important
tool in safety-critical systems where multi-objective control is in-
volved (Xu et al., 2015). To account for safety constraints in a pro-
cess, control laws based on a Control-Lyapunov-Barrier-Function
(CLBF) can be developed and subsequently incorporated in the de-
sign of MPC algorithms to ensure stability and safety of operation
(Wu et al., 2019). More specifically, CLBFs can be developed by in-
tegrating a Control Barrier Function (CBF), which is an extension
of barrier functions applied to a controlled system, and a Con-
trol Lyapunov function (CLF). While CLFs work to characterize a
stability region, CBFs characterize unsafe regions that closed-loop
state must not enter during operation (Romdlony and Jayaward-
hana, 2016). CLBF-MPC has been proposed in Wu et al. (2019);
Wu and Christofides (2019), where the stability and safety anal-
ysis for the closed-loop system in the presence of both bounded
and unbounded unsafe sets have been provided. Many other recent
works (Marvi and Kiumarsi, 2021; Zeng et al., 2021) have also ex-
plored MPC with discrete-time control barrier functions, as well as
optimal control based on reinforcement learning with the inclusion
of control barrier functions. In this work, we introduce CLBF to the
design of DMPC in controlling multiple subsystems. This contribu-
tion is essential to the operation of complex industrial processes
where the overall system may encounter regions in state-space for
which they would like to avoid, and the sub-controllers for each
subsystem need to work cooperatively to achieve the stability and
safety objectives. In this work, we use an analytical representation
of the unsafe operating points in state-space to specify the CLBFs.
However, interested readers may also refer to previous works in
Chen et al. (2022) for machine-learning-based methods of char-
acterizing such regions and designing MPC algorithms based on
a feedforward-neural-network-based control barrier function. The
unsafe operating regions may be specified for each subsystem in-
dividually, or if these unsafe points are interdependent across sub-
systems, the unsafe regions may be specified holistically with re-
spect to the overall process.

The remainder of the paper is organized as follows. We ad-
dress the class of systems considered, the stabilizability assump-
tions, and the definition of Control Lyapunov-Barrier Functions in
Section 2. In Section 3, we provide the formulation of DMPCs, and
develop a CLBF-based DMPCs that guarantee recursive feasibility,
closed-loop stability and safety under the sample-and-hold con-
trol action implementation for the general case. We also provide
a modified DMPC framework for special cases of coupled subsys-
tems in order to demonstrate its advantages and drawbacks. In
Section 4, we demonstrate the applicability of the proposed con-
trol scheme using a nonlinear chemical process example.

2. Preliminaries
2.1. Notation

We use |-| to denote the Euclidean norm of a vector. xT de-
notes the transpose of x. If a function f(-) is continuously differ-
entiable, it is of class C!. LiV(x) := 8‘g;")f(x) represents the Lie
derivative. We say that a continuous scalar function V : R" — R is
a proper function, if the set {x e R" | V(x) <k} is a compact set
V k € R. With positive real numbers § and €, we use Bg(¢) := {xe
R" | |x — €| < B} to represent an open ball around € with radius of
B.A\B:={xecR" | x €A, x ¢ B} denotes set subtraction.
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2.2. Class of systems

A general class of nonlinear systems is considered in which
multiple distinct sets of manipulated inputs exist. Each set of in-
puts regulates a specific subsystem. Throughout the manuscript,
we consider two subsystems - subsystem-1 and subsystem-2 - for
the simplicity of notation. Subsystem-1 and subsystem-2 consist of
states x; and x, respectively, which are controlled by and only by
u; and u, respectively. The general class of system under consid-
eration can be represented by nonlinear ordinary differential equa-
tions as follows:

X=F(x up, up, w) = f(x) + &1 (X1 + & X)uz + VX)W,
x(to) = Xo

where x ¢ R" denotes the state vector, u; ¢ R™ and u; € R™
are the two distinct sets of input vectors, and the distur-
bance is denoted by w e W with W :={weR" | |w| < wp, Wy >
0}. There are constraints on the control actions as defined by
Uy el = {u;rilin <up suP™i= 1,....,my} cR™, and u; €U, :=
(Ui <z, < U0 =1, ma) CR™2.F(), 1), 82(), and V()
are matrix and vector functions of dimensions n x 1, n x my, n x
m,, and n x r, respectively, which are assumed to be sufficiently
smooth. The initial time t; is taken to be zero (tg = 0), and we as-
sume that f(0) = 0. Therefore, the origin is an equilibrium point
of the nominal system of Eq. (1) with w(t) =0 (i.e., (xs, Uys, Ug) =
(0,0,0), where x, uys and uys represent the steady-state state and
input vectors).

(1)

2.3. Control Lyapunov function

With the nominal system of Eq. (1) with w(t) = 0 in considera-
tion, it is assumed that a Control Lyapunov Function (CLF) V exists,
which is positive definite and proper; the CLF meets the small con-
trol property, which indicates that for every positive &, there ex-
ists a positive 8, such that V x € B5(0), 3 uT = [u], ul] that meet
the conditions of |u| <& and LfV(x) +Lg, V(%) - ug + Lg,V(x) - up <
0 Sontag (1989). In addition, the CLF also satisfies the following
conditions:

LV (x) <0,
Vx e {ze R"\{0} | L;,V(2) =0, L,V (z) =0}

The existence of V implies the existence of explicit feedback con-
trol laws ®(x) e U;, D,(x) € Uy such that Eq. (2) holds for the
nominal system of Eq. (1) under u; = ®¢(x) e Uy, uy = (x) e Uy,
and for all x in an explicitly defined neighborhood around the ori-
gin, the closed-loop system is rendered asymptotically stable. The
Sontag control law in Lin and Sontag (1991) is one example of such
stabilizing feedback control laws. A region ¢, can be characterized
around the origin where the time derivative of the Lyapunov func-
tion V(x) is negative under u; = ®1(x) € Uy, uy = &, (x) € U, as:
Gu={XxeR" | V(x) =LV(x) +Lg,V(x) - ug +Lg,V(X) -1 <0, uy =
D (x) eUy, uy = Py(x) e U} U{0}. Within ¢, we define 2 :=
{x ey | V(x) <b, b> 0}, which is a level set of V(x) and a for-
ward invariant set. For the closed-loop system under u; = ®;(x) €
Uy, upy = @,(x) € Uy, 2, is considered as the stability region in the
sense that, for any xy € 2, the closed-loop trajectory x(t), t > 0 of
the nominal system of Eq. (1) (i.e., w(t) = 0) remains in 2.

(2)

2.4. Control barrier function

During operation, there are undesirable regions within state-
space that must be avoided for safety and/or other considerations
related to cost, environment, and optimality. Let us assume that
an open set D exists, and it sufficiently describes the region to
be avoided. In the remainder of the manuscript, the notation D
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is used to represent the unsafe set. A safe set can be subsequently
defined as &y := {x € R"\D} where ;N D =g, {0} € Ay. Ay will in-
clude the set of initial conditions that we consider. Both bounded
and unbounded unsafe regions have been studied in literature; in
this manuscript, bounded unsafe set is denoted as D, unbounded
unsafe set is denoted as Dy, respectively.

The definition of process operational safety studied in this
manuscript entails closed-loop states not entering any unsafe sets.
Formally, operational safety has a definition described as follows:

Definition 1. The nominal system of Eq. (1) under input con-
straints u e U and with w(t) =0 is considered. If a set of con-
strained control actions uy = ®¢(x) e Uy, uy = ®,(x) e U, exists
such that, for any initial state x(ty) = xog € Xy, the process state tra-
jectories do not enter the unsafe region and converge to the origin
asymptotically (i.e., x(t) € Xy, x(t) ¢ D, V t > 0), then the control
actions u; = ®;(x), up; = ®,(x) are able to maintain the closed-
loop state within a safe operating region Xy at all times.

Subsequently, with the introduction of safe and unsafe oper-
ating regions in state-space, we can define a valid Control Bar-
rier Function (CBF) in the following definition: Wieland and All-
gower (2007).

Definition 2. With a set of unsafe points D in state-space, a C!
function B(x) : R" — R is a Control Barrier Function if it satisfies
these properties:

B(x)>0, VxeD (3a)
LiB(x) <0, YV xe {ze R\D | LgB(z) = 0} (3b)
Xg:={xeR"|B(x) <0} #0 (30)

3. Stabilization and safety via control Lyapunov-barrier
function

The work in Romdlony and Jayawardhana (2016) proposed a
Control Lyapunov-Barrier Function (CLBF) and proved that if a valid
CLBF exists for the nominal system of Eq. (1), then for any initial
condition xg € Xy, a control law exists which maintains the closed-
loop state outside of D and within an explicitly characterized re-
gion around the steady-state (which is a level set of CLBF) at all
times. In Wu and Christofides (2019); Wu et al. (2019), this work is
extended to including constraints on the manipulated inputs u e U
in the design of CLBFs. In all three works, the CLBF was designed
using a weighted sum of a CBF and a CLF, where the CBF satisfies
the properties outlined in Eq. (3), and the CLF meets the relevant
conditions in Section 2.3. Then, a practical design guideline is pre-
sented in Wu et al. (2019) to construct this CLBF. We can reference
and utilize the same guidelines, applied on the nonlinear system
of Eq. (1) consisting of multiple subsystems to design the CLBF for
the overall process.

The definition of a constrained CLBF W (x) with respect to the
overall process as represented by the nonlinear model of Eq. (1) is
shown as below:

Definition 3. Considering an unsafe set in state-space D, a lower-
bounded, proper, and ¢! function W(x) : R* — R is a constrained
CLBF if W (x) satisfies the following properties and has a minimum
at the origin:

WE)>p, VXxeDcCdy (4a)
LW (x) <0,
Vxe{zepu\(DU{0}UX,) | [;,W(2) =0,
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L, W (z) = 0} (4b)
Up :={Xeuc | W(X) < p} #0 (4c)
Gu\(DUU,)ND =0 (4d)

where X, := {x € puc\(DU{0}) | % =0} represents a set of
states where LfW(x) =0 (for x #0) due to 3"3‘/% =0. peRis
a real constant. f,g;,g, are the vector and matrix functions
from Eq. (1). Using a set of explicit control laws subject to
their lower and upper bounds u; = ®;(x) e Uy, uy = O;(x) e Uy,
¢uc is defined to be the union of the origin, the set A, and
the set where the time-derivative of W (x) is negative: ¢y =
{0} U Xe U {xeR" | W(x(t), ®;(x), D3(x)) =LW+LgW-uy +
LgZW-uz <7Olw|W(X)7W(O)|, uq =¢](X) e U, UZ=®2(X)E
U,, oy > 0}. For the nominal system of Eq. (1) with w(t) =0,
if a ¢! constrained CLBF W (x) exists, then there exists a set of
control laws u; = ®1(x) € Uy, up = &,(x) € U, that together ren-
der the origin asymptotically stable within ¢,.. The CLBF function
has a minimum at the origin and is able to satisfy the following
properties V x € ¢yc:

C1|X|2 SW(X)—,OO §C2|X 2, (58)
8M3/)EX)F(X, @1 (x), Py (%)) < —c3|x|?, V X € Puc\Bs (Xe) (5b)
'avgix) = calx| (50)

where F(x, uq, uy) is the nominal system of Eq. (1) with w(t) =0,
¢j(-)>0,j=1, 2, 3, 4 are real numbers, pg represents the global
minimum of W (x) at the origin (i.e., W(0) = pg), and Bg(x.) de-
notes a neighborhood surrounding a saddle point in state-space,
Xe € Xe.

Within the nonlinear system described by Eq. (1), the functions
f. g1, 8> and v are assumed to be sufficiently smooth, thus positive
constants Ly, Ly, L;, L,/,V, and M exist (by continuity) s.t. V x, X’ € Uy,
we W, and uy € U;, uy € Uy, the conditions below will hold:

|F(x, uq,up, w)| <M (6a)
[F(x,uq, uy, w) — F(X', uq, Uz, 0)| < Ly|x — X'| + Ly |W| (6b)
IW (x IW (X'

8)§ )F(x,u1,u2,w)— 85( )F(x’, uq, Uy, 0)

<L|x—X| 4L, |wn| (6¢)

Remark 1. When designing local controllers, we could consider
designing a CLBF for individual subsystems W;(x;), where x; are
the states of the subsystem j. We can characterize the region ¢>ucj
for each subsystem j, which includes the set for which under a
set of constrained control laws u; = ®;(x) € U;, the CLBF satisfies
Wj(xj, ®;(x))) < —aw, [W;(x;) —W;(0)|. However, in the context of
DMPC where multiple controllers work collaboratively to achieve
a collective control objective of guaranteeing safety and stability
for each subsystem, some initial conditions may result in trajecto-
ries where the control objective for each controller in the DMPC
network may lead to a conflict. For example, one controller may
encounter an unsafe region for its respective local subsystem and
attempts to navigate the closed-loop states away from the un-
safe region, consequently increasing the Lyapunov function V(x)
for the overall system. On the other hand, another controller may
be attempting to navigate the process state of the other subsys-
tem to the origin, thereby decreasing V (x) for the overall system.
Therefore, the set of initial conditions for which the conditions of
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Eq. (5) are satisfied will only be a subset of the combination of
sets for which the CLBF conditions on W;(x;) are satisfied for each
subsystem individually. In other words, if the stability and safety
region for each subsystem j is defined with respect to W;(x;) as
Up;, J=1,2, then Uy < (Up, UlUp,).

An example of such CLBF-based controllers ®1(x) € Uy c R™
and &, (x) € Uy c R™, is given as follows:

_p+VP+q

¢;,(x) = g ¢ if q+#0 7a)
0 if g=0
u?ilin if  ¢;(x) < u;_l;lin

q>ji (x) = ¢j,» (%) if uji in < ¢j|‘ (x) < ul]j:ax (7b)
u;?ax if ¢ji x) > u;{lax

where j = 1, 2 represents the two candidate controllers for the two
subsystems, p denotes LW (x) where f ={[f;.. . fa]T, and q denotes
ngl_W(x), where g;. =[gj,, .. ,gjm]T, (i=1,2,...,myq for j=1 cor-
responding to ®;(x), and i=1,2,...,m; for j =2 corresponding
to @;(x).) ¢;,(x) of Eq. (7a) denotes the i, component of the con-
trol action ¢;(x). After accounting for the input constraints u; € U},
®; (x) of Eq. (7) represents the iy component of the saturated
control law ®;(x).

3.1. Design of constrained CLBF

The set Uy, as defined in Eq. (4c), is a forward invariant set
of W(x), and it will define the set of initial conditions we con-
sider in the rest of the manuscript. We analyze the scenario of
bounded unsafe sets first following similar logic as presented in
Theorem 1 in Wu and Christofides (2019), and present theoreti-
cal analysis on the closed-loop stability and safety for the non-
linear system of Eq. (1). Specifically in the case of bounded un-
safe regions, stationary points in addition to the origin x. € X, are
present in state-space which can be considered as saddle points.
The continuous control actions u; = ®1(x) e Uy, uy = &y(x) € U,
are not able to help the states escape the stationary points once
the states reach them. Therefore, discontinuous control actions
u; = uy(x) e Uy, uy =1ty (x) € Uy that decrease W (x) are designed,
where [i;(X), tp(x)] # [P (x), Dy(x)], to navigate x away from
these stationary points along the direction of W (x) decreasing. On
the other hand, in the presence of unbounded unsafe sets, the
only unique stationary point in state-space is the origin, there-
fore u; = ®1(x) e Uy, uy = ®,(x) € U, are able to render the ori-
gin asymptotically stable and simultaneously guaranteeing process
safety. More work on handling bounded and unbounded unsafe
sets are detailed in Wu and Christofides (2019) for further refer-
ence.

4. CLBF-based control law

4.1. Effect of bounded disturbance and sample-and-hold
implementation of control actions

As the CLBF will be used in the design of DMPC, which imple-
ments its control actions in a sample-and-hold manner, we need
to consider the impact of sample-and-hold control as well as the
presence of disturbances in the nonlinear system of Eq. (1) which
are sufficiently small and bounded when analyzing stability and
safety properties of the closed-loop system. We provide proof for
these considerations in the next proposition.

Proposition 1. Consider the nominal system of Eq. (1) with w(t) =
0 and a constrained CLBF W (x) that meets the requirements of
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Definition 3 and has a minimum at the origin. Subsequently, we char-
acterize the set of initial conditions U, C Xp. Let uy (t) = &1 (x(ty)) €
U, ua(t) = ©(x(t)) e Uy for all t <t < tyyq, x(&) € Up\Bs(Xe)
where & > 0, X € X and t; represents the time stamp t = kA, k =
0,1,2,..., and uy(t) =ty (x) e Uy, uy(t) =1ty (x) e Uy such that if
x(ty) € Bs(xe), then W(x(ty,1)) <W(x(ty)) for any A > 0. Then,
there exists a real valued A*, such that, if A e (0, A*] and xq €
Up, then x(t) eUp, and lim_ [x(t)| <d, for any positive real
number d.

Proof. For any initial conditions in ¢,, we will first show that x(t)
converges to a terminal level set around the origin U, , = {x €
Guc | W(X) < pmin} as t — oo where pnin < 0. Then by the con-
tinuity of W (x), we prove that lim;_ |x(t)| <d as t — oc. First,
we consider the case when x(t) € U, \ (Up, U Bs(xe)), where ps <
Pmin < p, and demonstrate that W (x(t), u; (t), u5(t)) < —€ holds
in the set Z:= {x e ¢uc\Bs(xe) | ps <W(x) < p} under uq(t) =
up(t) = @r(x(&)), uz(t) = uz(ty) = Pa(x(ty)), V t € [t t + A*).
The time derivative of the CLBF can be represented as follows:

W (x(t), uy (t), u2(t)) _

= Wx(t), u1 (t), u2(t)) + (W (x(t), ug (t), u2(t))
—W(x(ty), uq (), up ()

= LW (X(t)) + Lg, W (x(tr) )1 (t) + Lg, W (x(£) Y2 (&) (8)
+ (LW (x(t)) — LW (x(t)))
+ (L, W (x(t)) — L, W (x(t,)) ) u (£)
+ (Lg, W (x(t)) — L, W (x(tr) ) u2 (£)

Od

Since W(x) is a ¢! function that satisfies Eq. (4), and f(.),
g21(-) and g (-) are assumed to be smooth, there exist positive real
numbers kg, kg and kg,, such that [(LiW (x(t)) — LiW (x(t,))] <
kelx(6) = X)), 1Ly W (x()) — Ly W (x(6)))un (0))] < kg, |X(E) —
()] Ly, W) — Ly, W X(t6)) ()] < kg, X(E) —x(5)]. I
addition, since f(x), gi(x) and gp(x) are continuous, and
Z is bounded, there exists a positive real number ks and
a sampling period A’ such that |x(t) —x(t,)| < ksA’ for all
t €[t ty + A'). According to how ¢, is defined, it is given that
W(x(t,) < —aw|W(x) —W(0)| < —aypm holds for all xe 2,

‘— mi _ r o __owpm—€
where pop = rxryzr:1|W(x) W(0)|. We choose A’ < BTk, T, THay)

and 0 < € < o pm, Where oy is used to characterize ¢yc. Using
these inequalities derived from Lipschitz conditions, Eq. (8) can be
written as:

W x(t), ug (£), uz(£)) < W (x(t), uy (t), uz (t))
+ks (kg + kg, + kg, ) A 9)
< —aw Pm + ks(kp + kg, + kg, ) A’
<—€

which implies that for any initial conditions in u,, W(x(t)) <
W(x(t;)) < p,V t >t, and the closed-loop state x(t) will enter a
terminal set U, within finite steps. We have proven that x(t) is
bounded in U, Vt € [ty ty + A').

In addition, we discuss the case where the closed-loop state
is in the neighborhood of saddle points, x(t;) € Bs(xe) where X,
are saddle points. Since i (x), ti; (x) are a set of control actions
that decrease W (x), as a result, W(x(t;,1)) < W(x(t)) as x(ty, 1)
moves to a smaller level set of W(x) and the closed-loop state
eventually leaves Bs(x.) within finite time steps. After it leaves the
saddle point neighborhood, x(t) will not come back to Bg(x.) as
Eq. (9) (i.e, W(x(t)) < W(x(t)),V t > t;) holds thereafter.

We will now address the effect of sample-and-hold control and
bounded disturbance on the convergence and boundedness of the
closed-loop state. First, we will show that given x(t;) € Up,, the tra-
jectory of x(t) will stay in u/’fmn’v t e[ty ty + A”). Consider A"
such that

Prin = Max {W(x(t, + A)) | x(ty) e Uy, ueU}. (10)
A€[0.A7)
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There exists a sufficiently small A” such that Eq. (10) holds.
Therefore, let A* = min{A’, A”}, and we have shown that for
any x(ty) € Uy, the closed-loop state x(t) under sample-and-hold
control implementation will remain in Uy during one sam-

pling period A € (0, A*]. When taking the mlgé)unded disturbance
|w(t)| < wy, into account and the CLBF-based controller applied in
a sample-and-hold fashion, we can show that Proposition 1 still
holds for the system of Eq. (1) subject to the bounded distur-
bance. Given the local Lipschitz property of v(-), we can derive
the following inequality for L,W (x): 3 k4 > 0, s.t. |[(LyW (x(t)) —
LW (x(t))| < kq|x(t) — x(t;)|. Therefore, similar results can be
shown for W (x(t), u; (t), uy(t)) and pp,;, that account for w(t) as
follows:

Wx(), (), uy(t))
< Wx(ty), ug (t), ua(te)) + ks(ks + kg, + kg, + KgWm) A/ (1)
< —awpm + ks(ks + kg, + kg, + kqwm) A’
< —€

pmin:Ag}fi(”){W(x(tk +A) U uz, w) | X(t) € Up,. (12)

uel, |w| <wp}.

where A’ < ks(kﬁ"“"”’m’e and 0 <€ < aywpm, respectively.

Hence, when sufficiently small bounded disturbance |w| <wp, is
present, W < 0 still holds within each sampling period if A’
and € are chosen. Furthermore, if x(t;) € Bs(xe), the discontin-
uous control laws i (x), i (x) are assumed to exist and satisfy
W (x(tey1)) < W(t)), ¥V |w| <wp. By the definition of pp, of
Eq. (12), it is shown that for any x(t;) € Uy, the trajectory of x(t)
will stay in Uy, .V t €[ty ty+ A”). The proof above shows the
robustness of the CLBF-based control law against the sample-and-
hold execution in the presence of sufficiently small bounded dis-
turbances, and serves as an underlying foundation for proving that
the CLBF-DMPC is also robust to sample-and-hold control execu-
tion and bounded disturbances.

5. CLBF-DMPC formulations and analysis

DMPC has proven to provide improved computational time and
closed-loop control performance, where some level of communica-
tion may be established between the different controllers. In this
framework, two separate MPCs are designed to compute control
actions u; and u, respectively; the control law trajectories com-
puted by MPC-1 and MPC-2 are denoted by ug, and ug,, respec-
tively. In the following few sections, we will discuss a sequen-
tial distributed MPC design and an iterative distributed MPC de-
sign; interested readers may refer to Christofides et al. (2013);
Chen et al. (2021a) for other distributed and decentralised MPC ar-
chitectures.

5.1. Sequential distributed MPC system

Between two MPCs in a sequential DMPC structure, the com-
munication is one-way. In other words, the set of the optimal con-
trol laws calculated by one MPC will be relayed to the other MPC,
which will utilize this additional knowledge to optimize its corre-
sponding set of control laws. In a sequential DMPC framework, the
following implementation strategy is used:

1. At each sampling instant t = t;, sensor measurements on the
states x(t), t =t;, are sent to both MPC-1 and MPC-2.

2. The optimal trajectory of ug, is calculated by MPC-1 and sent
to MPC-2, and the first value of the input trajectory u;l (t) is
sent to the corresponding actuators.

3. MPC-2 calculates the optimal trajectory of uy, based on state
measurement x(t) at t =t, and the optimal trajectory of Ug,

Computers and Chemical Engineering 159 (2022) 107690

received from MPC-1, then sends the first optimal control ac-
tion over the next sampling period u§2 (t) to the corresponding

control actuators.
4, At the next sampling instance, when an updated state measure-
ment is available (k < k+ 1), go to Step 1.

In the calculation of MPC-1, it first assumes a trajectory for
ug, along the prediction horizon, which is computed using the
explicit nonlinear CLBF-based control law, ®,(x). In addition, we
incorporate a contractive constraint in the optimization problem
of the MPC in order to ensure that ug, will inherit the stability
and safety properties of ®;(x), j=1,2, and decrease the CLBF
W(x) at a minimum rate of that of the CLBF-based control laws
®;(x), j=1,2. The optimization problem of MPC-1 is given as fol-
lows:

tk+N
7= min, /t L), g, (£). Do (R(0)))dt (13a)
s.t. )?(t) =F(X(t), ug, (t), D2(X(t))) (13b)
X(t) = x(t) (13c)
ug, (t) e U1, YVt € [ty. teen) (13d)

W (x(th). ug, (t). P2(X(6))) < W (X(tx), P1(X(tx)). P2 (X(ty))).

(13e)
if x(t,) ¢ Bs(xe) and W (x(ty)) > ps (13f)
W(E(t)) < ps. Yt e[ty tin), if W) < ps (13g)
W (&) <W(x(t)), Vte (b tun),
if X(ty) € Bs(Xe) (13h)

where S(A) is the set of piece-wise constant functions with sam-
pling period A, N is the number of sampling periods in the pre-
diction horizon, and X represents the predicted state trajectory.
The optimal input trajectory calculated over the prediction hori-
zon t € [ty, t,n) by MPC-1 is denoted as u§1 (t). The cost func-
tion of Eq. (13a) is the integral of L()Z(t),ud] (t), d,(t)) over the
prediction horizon; here, L(x, uq, uy) typically takes on a quadratic
form, ie., L(x, uy, up) = XTQx + ulRyuy + ulRyu,, where Q, Ry, and
R, are positive definite weighting matrices. The minimum value
of the objective function of Eq. (13a) is at the origin. The con-
straint of Eq. (13b) is the nominal system of Eq. (1) with w(t) =
0 and predicts the closed-loop state trajectory. Eq. (13d) defines
the input variable constraints on ug4,. The initial condition X(t;)
of Eq. (13b) is taken as the state sensor measurement at t =t
defined in Eq. (13c). The constraints of Eqs. (13f)-(13h) are acti-
vated depending on the location of the process state in state-space,
and they work together to make certain of operational safety and
stability. When x(t) ¢ Bs(xe) and W (x(t;)) > ps, the constraint
Eq. (13f) ensures that W (X) decreases at least as fast as the rate
achieved by the CLBF-based control laws uq = ®1(x) e Uy, up =
D, (x) € Uy. If W(x(t,)) < ps, the constraint of Eq. (13g) maintains
the predicted state within U, so that in the presence of suffi-
ciently bounded disturbances in the nonlinear system of Eq. (1),
the closed-loop state still remains in 4, , . Furthermore, if x(t;)
enters a neighborhood of a saddle point Bg(x.), the constraint
Eq. (13h) ensures that W (x) decreases over the predicted trajec-
tory, and with decreasing W (x), the closed-loop process state can
eventually escape x, within finite steps. Once the state escapes
from the saddle points Bj(x.), the constraint of Eq. (13f) will drive
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it towards the origin into smaller level sets of the CLBF W (x), thus
guaranteeing the state will not return to Bjs(x.) thereafter. Each
time MPC-1 is executed, it communicates the entire trajectory of
u§1 (t), t e[ty tyyn) to MPC-2 and sends the first value of the in-
put trajectory uzl (t) to its actuators. The horizon rolls one sam-
pling time step forward while the above optimization problem is
solved again.

MPC-2 computes control actions uy, based on the latest re-
ceived state measurement, and in addition, the control action com-
puted by MPC-1 (i.e., uzl (t),Vt € [ty ty,n)). By utilizing the op-
timal input trajectory of MPC-1 as well as the CLBF-based con-
trol law @, (x(t,)), the closed-loop performance is optimized while
guaranteeing that the stability and safety properties of the CLBF-
based control laws are preserved. Specifically, MPC-2 calculates the
following optimization problem:

7= min, /ﬂ f'“” L), 1, (), ug, (0))dE (14a)
st X(t) = F(R(t), uj (1), ug, (1)) (14b)
X(ty) = x(ty) (14c)
ug, (t) €Uy, ¥ t € [t trsn) (14d)
W (x(ti), ug, (6), Ug, (6)) < W (x(te), g, (), P2(x(t))),  (14e)
if X(ty) ¢ Bs(Xe) and W (x(ty)) > ps (14f)
W(X()) < ps, ¥t e[ty tirn), if Wk(ty)) < ps (14g)
W(E()) <W(x(t)), Vte (b tiyn).

if x(t) € Bs(Xe) (14h)

The notation and the explanation of the optimization problem
of MPC-2 are akin to that of MPC-1 and will be omitted here for
brevity. To account for the total computation time for the sequen-
tial DMPC framework, one would add the times taken to solve each
MPC problem respectively, since the solution of MPC-2 depends on
the MPC-1 results.

5.2. Iterative distributed MPC system

The communication between two MPCs in an iterative frame-
work is two-ways. The optimal control actions calculated by each
MPC are exchanged to better predict future states, and the opti-
mization problem in each MPC is solved independently in a paral-
lel structure until an iteration criterion has been met. The imple-
mentation strategy is as follows:

1. MPC-1 and MPC-2 receive the state sensor measurement x(t)
at t = t;, at each sampling instant ¢;.

2. At iteration c =1, MPC-1 calculates Uug, (t) over the predic-
tion horizon assuming u, (t) = ®,(t), Vt € [ty ty,n). MPC-2 cal-
culates ug, (¢) over the prediction horizon assuming u(t) =
dq(b), Vt € [t. ty,n)- The future trajectories of ug, (t) and ug, (t)
are exchanged between the two MPCs, and each MPC calculates
and stores the value of its own cost function.

3. At iteration ¢ > 1:

(a) Based on state measurement x(t;) as well as the latest input
trajectories received from the other MPC, each MPC evalu-
ates its own future input trajectory again.

(b) The MPCs cross-communicate their newest calculated future
input trajectories. Each MPC computes then stores the value
of its cost function.
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4. If a termination criterion is met, each MPC selects the input tra-
jectory corresponding to the smallest cost function value, and
sends the first control action of this optimal trajectory to its
actuators. If the termination criterion is not satisfied, go to Step
3(c «<c+1)

5. At the next sampling instance, when an updated state measure-
ment is available, go to Step 1 (k < k + 1).

The optimization problem of MPC-1 in an iterative distributed
LMPC at iteration ¢ = 1 is presented as follows. Readers may refer
to the formulations of sequential DMPC design for detailed defini-
tions of the same variables and constraints.

tk+N
7= min, /t L), g, (£). Do (R(0)))dt (152)
st &) = FR(). ug, (1), D2 (X(1))) (15b)
X(t) = x(t) (15¢)
g, (6) € Uy, ¥ € € [t tien) (15d)

W (x(th). ug, (t). P2(X(6))) < W (X(ti), P1(X(tx)). P2 (X(ty))).

(15e)
if X(t;) ¢ Bs(xe) and W (x(t;.)) > ps (15f)
W(X(t)) < ps. Yt €[ty tirn), if Wk(t)) < ps (15g)
W(X(t)) < W(x(te)), V t e (b tipn).

if X(ty) € Bs(xe) (15h)

At iteration ¢ = 1, the optimization problem of MPC-2 is shown
as follows:

7=, min /t LR, By RO)), g, (O)dE (16a)
st X(t) = F(X(t), D1 (R(t)), ug, (t)) (16b)
X(ty) = x(t) (16¢)
Uug, (t) €Uy, Y t €[t tn) (16d)

W (x(te), P1(X(t)). Ug, () =W (X(ti), P1(x(te)). P2 (X (1)),

(16e)
if x(tx) ¢ Bs (xe) and W (x(ty)) > ps (16f)
WE()) < ps. Yt e[ty tin), if W) < ps (16g)
W(E(E)) <Wxt)), Ve (b tin),

if x(ty) € Bs(xe) (16h)

At iteration c > 1, after the optimized input trajectories u:ll )
and uzz (t) have been exchanged between the two MPCs, the opti-
mization problem of MPC-1 becomes:

tk+N
J= msi&)/ LE(E), ug, (6), 3, (D))t (17a)

ud] €. ty
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st ®(t) = F(R(t). ug, (t). uj, (1)) (17b)
X(t) = x(t) (17¢)
Ug, () €Uy, Yt €[ty tien) (17d)

W (x(ti), g, (), ug, (£)) < W (X(t), 1 (x(t)), P2(x(t))), (17e)

if X(ty) ¢ Bs(Xe) and W (x(ty)) > ps (17f)
W(E&()) < ps, YVt ety tiyn), if WEE)) < ps (17g)
W(R()) <W(x(t)), Yt e (b tion),

if x(ty) € Bs(xe) (17h)

And the optimization problem of MPC-2 becomes:

7= min ft LR, g, (0. g, )t (18a)
st X(t) = F(R(t), uj (1), ug, (1)) (18b)
X(te) = x(t) (18¢)
ug, (t) e Uy, V t € [ty, tien) (18d)

W (x(ti), ug, (6), Ug, (£)) < W (x(6), @1 (x(t)), P2(X(&))). (18e)

if x(ty) ¢ Bs(xe) and W (x(ty)) > ps (18f)

W(X(t)) < ps, VYt €ty tien), i Wx(t)) < os (18g)
WE(t)) < Wx(t)), YVt e (t, tin),
if x(t;) € Bs(xe) (18h)

Since the two MPCs in an iterative framework can be simulta-
neously solved in a parallel structure using separate processors, the
total computation time would equal to the maximum time of the
two MPCs including all iterations taken until termination of itera-
tions. The total number of iterations would depend on the termi-
nation criterion. Some examples of these criteria may include, the
total iterations must not exceed a maximum threshold, ¢ < cmax;
the computation time each MPC takes must not surpass a time
threshold; between two consecutive iterations, the difference in
the cost function value or the computed trajectory of control ac-
tions must be sufficiently small.

Remark 2. In this work, we have presented the formulations and
simulations of DMPC systems in the case of two subsystems (and
thus, two controllers) for simplicity of notation, but the results are
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conceptually straightforward and can be similarly extended to the
case of Nsys subsystems having Nsys controllers in total.

Once solving both optimization problems of MPC-1 and MPC-2
is complete, the proposed CLBF-DMPC provides the optimal control
actions in the following form:

up (t) = uy (). Vt € [t tiey1)
up (t) = uy (). Vt € [te, tiyr)

The control actions computed by each MPC will be applied in a
sample-and-hold manner to the nonlinear process of Eq. (1) with
bounded disturbances.

We will now demonstrate that, for the nonlinear system of
Eq. (1), stability and safety can be established under the CLBF-
based DMPC system with the theorem and proof below. Note that
the proof is written with respect to the sequential DMPC, but the
same concept can be applied to the iterative DMPC as well.

(19)

Theorem 1. Consider the system described by Eq. (1), and it has a
constrained CLBF W (x) that satisfies Eq. (4) with its minimum value
at the origin. Given any initial condition xy € U, the CLBF-DMPC op-
timization problems of Egs. (13) and (14) are guaranteed to have re-
cursive feasibility for all times, and under the sample-and-hold imple-
mentation of CLBF-DMPC control actions [u; u;]| = [u(’;1 u;z], x(t) is
bounded in U, for all t > 0, and as t — oo, converges to Uy . .

Proof.

Part 1: In Eq. (13) and (14), the optimization problems of the
CLBF-DMPC have feasible solutions at all times, and this is
because the CLBF-DMPC constraints of Egs. (13d), (13h), and
(14d), (14h) can be met respectively by the sample-and-hold
implementation of control actions u; =u;(x) eUy, u; =
Uy (x) € Uy, Vx e Bs(xe) and uy = &1(x) e Uy, up = Dy (x) €
Uy, Vx € Up\Bs(xe). By letting ug(t) = ®1(x(t)), ua(f) =
D, (x(ty)) when x(t) € Up\(Bs(Xe) U U,), Eqgs. (13f) and
(14f) are also satisfied. In Proposition 1, we have shown
that once x is driven inside ,, by the CLBF-based control
laws u; = @1(x) € Uy, upy = ®5(x) € Uy, it will not exit U, .
within one sampling period for any u; € Uy, uy € U,. There-
fore, the CLBF-based control laws are able to provide a fea-
sible solution for the input trajectories and satisfy the con-
straints of Eqgs. (13g) and (14g). Lastly, as the controller u; =
uq(x) € Uy, uy =1y(x) € U, are able to satisfy W (x(f,1)) <
W (x(ty)), the control action u;(t) = u1;(x(ty.;)) € Uj, for j =
1,2, V t €[ty typipr) with i=0,...,N—1 will satisfy the
constraints of Eqs. (13h) and (14h) and eventually navigate
the states away from the stationary saddle points if x(t;) €
Bs(xe).

Part 2: We will now demonstrate simultaneous stability and
safety for the nonlinear system of Eq. (1) can be guaran-
teed under the optimized solutions of Egs. (13) and (14). For
any xg € Uy \Up,, the constraints of Eqs. (13f) and (14f) en-
sure that the CLBF-DMPC control actions uzl, and sequen-
tially u*z, are optimized to decrease the value of the CLBF
and will drive x towards the origin; the closed-loop state x
will eventually enter ¢, within finite sampling steps. 0

After x enters Up,, the constraints of Eqgs. (13g) and (14g) en-
sure the boundedness of the closed-loop state in U, . for the re-
maining time considering the impact of sample-and-hold control
and the presence of bounded disturbance. As the safe operating
region U, does not intersect with the unsafe region D, x will not
enter D for all times and will remain inside ¢, for any xq € U,.
With xg € Uy \Up,, the constraints of Eqgs. (13f) and (14f) pull the
state towards the origin. The constraint of Eqs. (13h) and (14h) will
be activated when x arrives at a saddle point neighborhood, i.e.,
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x(ty) € Bs(xe); x will be driven away from Bs(xe) in the direc-
tion of W(x) decreasing. After it leaves from Bg(x.), the DMPC
constraints of Eqgs. (13f), (13g) and (14f), (14g) will take over and
continue to ensure closed-loop safety and stability thereafter; ul-
timately, the closed-loop state converges towards the origin and
is bounded in U, . . Thus, closed-loop stability and safety under
the sample-and-hold implementation of CLBF-DMPC for the non-
linear system of Eq. (1) with sufficiently bounded disturbance in
the presence of bounded unsafe sets have been shown.

5.3. Modified DMPC structure in special cases

In many industrial processes, there are examples where the
process variables of an upstream sub-process impact the dynam-
ics of a downstream sub-process, but not vice versa. In these cases
where the first subsystem is independent and the second sub-
system is dependent on the first subsystem, we can design the
DMPC with some special considerations to assess whether safety
and stability can be simultaneously guaranteed. We use sequential
DMPC as an example. Since the first subsystem is completely inde-
pendent, its contractive constraint of Eq. (13f) can be modified to
only account for the CLBF of subsystem-1 Wj, j =1, and therefore
only depends on the states and inputs of subsystem-1, x;(f;), u;
where j=1. In doing so, MPC-1 can guarantee the stability and
safety of the upstream process, subsystem-1. The contractive con-
straint of Eq. (14f) can also be similarly modified to account for the
CLBF function of subsystem-2 only, W;. j = 2, where W, (xq, Xy, )
can be simplified to be a function of x; of subsystem-1, x, of
subsystem-2, and u, of subsystem-2. This leads to a modified for-
mulation of the DMPC system with simpler computation complex-
ity. However, since the constraints to each controller are only with
respect to its own subsystem, one caveat to this modification is
that the state measurements of subsystem-1 will be treated as
disturbances in the computation of MPC-2. Therefore, as we will
demonstrate with a nonlinear example in Section 6, there are val-
ues of states for subsystem-1 that may result in non-negative val-
ues of W, for subsystem-2.

The DMPC formulation for such processes can be modified for
improved computation time and algorithm simplicity. Using se-
quential DMPC as an example, the optimization problem of MPC-1
is as follows:

J :uf!si&) /t’ f’“" LE(D). ug, (t), Do (R(t)))dt (20a)
st ®(t) = F(R(t), ug, (t), D2(X(t))) (20b)
X(t) = x(t) (20¢)
Ug, (t) €Uy, V t € [t tpn) (20d)
Wi (%1 (6. Ug, (1)) < Wi (1 (6), P1(X(t))), (20e)
if X (t) ¢ Bs, (X1e) and Wy (x4 (&) > ps, (20f)
Wi (X1 () < ps,. V€ [t tign). i Wi (xq (8) < ps, (20g)
Wi (R (8)) < Wi(x1(t)), YV t e (b, tepn),

if X1 (ty) € Bs, (X1¢) (20h)
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where the level sets of W;(x;) will be respectively defined with
positive real constants Ps; j=1,2, and the neighborhood of
saddle points present in the stability and safety region of the
subsystem-j will be correspondingly denoted as B(;j (Xje)-

The predicted state trajectory calculation of subsystem-2 X, re-
lies on the state measurements of subsystem-1 x;(t;). The calcu-
lation of W, will need the measurements of x; (t;) in addition to
X3 (t,) and u;(t,). Note that the full state vector is the combina-
tion of states of subsystems 1 and 2, i.e., x(t,)" = [x1 (t)T, x5 ()T ].
Therefore, the formulation of the modified MPC-2 in a sequential
distributed design is as follows:

7= min, A L&), 5, (0), g, (0))dt (21a)
st X(t) = FR(t). uj (£). ug, (t)) (21b)
X(t) = x(ty) (21c)
Ug, (t) €U, ¥ t € [ti tisn) (21d)
Wa (X(t). g, (1)) < Wa (x(ty). P2 (X(t))). (21e)
if X2 (ty) ¢ Bs, (X2e) and Wy (x2(ty)) > ps, (21f)
W (X2(1)) < ps,. Yt € [ty L), if Wa (X2 (1) < s, (21g)
Wa(%2(t)) < Wa(x2(tk)), V t € (t, tiyn),

if X, (ty) € B, (Xz¢) (21h)

A similar modification can be applied to iterative DMPC struc-
tures. Following the MPC-1 calculation, closed-loop stability and
safety can be guaranteed for subsystem-1 using the CLBF-based
constraints on W;. Since subsystem-2 is dependent on the states
of subsystem-1 and since the calculation of MPC-2 is carried out
with CLBF-based constraints on W, only, there may exist points in
state space where the explicit control law @, (x(t;)) can no longer
guarantee a negative W, (x(t;), ®,(x(t;))) given the impact from
the state measurements of subsystem-1 x1 (t,). When this happens,
the optimizer for MPC-2 may still attempt to find a set of input
trajectory “ZZ that decreases W, i.e., W, x(t), ug, (t)) < 0. Alter-
natively, MPC-2 can opt to use the discontinuous control actions
i (x) € Uy, which ensures the existence of a solution for u* that

dy
will decrease W, (X,) along the predicted trajectory.

Remark 3. With respect to the use of a Barrier function to express
safety specifications, it is important to note that the Barrier Func-
tion plays essentially the role of a safety constraint (i.e., temper-
ature needs to be below a certain value or a nonlinear function
of several state variables needs to be within a certain range) but
it is implemented within the MPC scheme in a way that ensure
that the closed-loop state does not enter the unsafe set (i.e., re-
gion of increased risk) in a guaranteed manner (simply, setting up
a constraint in the MPC to require that the closed-loop state does
not enter in a certain unsafe region cannot ensure that such an
excursion of the closed-loop state to the unsafe set will not oc-
cur). Regions in state-space where the system trajectory may be
allowed to enter, but due to increasing safety risk the state should
not stay there long, can be formulated as soft constraints in MPC,
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and have been studied in past works (Zhang et al., 2019). Such
soft constraints can be added in the DMPC framework presented
in this work as they do not lead to infeasibility of the MPC opti-
mization problem. In the case where the closed-loop state is al-
lowed to enter the unsafe region for a particular subsystem, the
amount of time a controller takes to return the closed-loop sys-
tem state to a safe region is related to the speed of the closed-
loop response under the CLBF-based DMPC, which can be tuned
by adjusting the weights in the MPC cost function. Finally, it is im-
portant to note that if there exist model uncertainties and process
disturbances that lead to process/model mismatch, the proposed
DMPC provides a robustness margin to sufficiently small bounded
disturbances through the negative margin in the Lyapunov function
time-derivative, which is a consequence of the use of measurement
feedback in MPC at each sampling time.

6. Application to a nonlinear chemical process

We will demonstrate the proposed CLBF-DMPC method on a
chemical process example, which consists of two well-mixed, non-
isothermal continuous stirred tank reactors (CSTRs) in series. An
irreversible second-order exothermic reaction takes place in each
reactor that transforms a reactant A to a product B (A — B). Each
CSTR is fed with reactant material A with the inlet concentration
Cajo, the inlet temperature Tjy and feed volumetric flow rate of the
reactor Fjp, j=1,2, where j=1 denotes the first CSTR and j =2
denotes the second CSTR. The reactors are equipped with heating
jackets to remove/supply heat at a rate Q;, j = 1, 2. This system can
be modelled by the following material and energy balance equa-
tions:

% —@(Cmo Ca1) — koe%Cﬁl (22a)
dT] F]() —AH = 2 Ql
— =—(To-T)+ koe®i Cz; + 22b
it ( 10—T1) piC, Ko Gt S (22b)
d% __ fo cm + koe™ a (22¢)
dc F F
—2 = @CAZO + EC _ ot FZOCAZ (22d)
dt vy
—koe™: C2, (22e)
dl, R Fo Fo + FBo
@V Ty + v, —T - v, ——=T (22f)
Q;
+— k et (2, 4+ —2 22
o1Cp 27 pGVa (228)
dCs  Fo Fo + Fo =
o R T Ty et kee™ Gy (22h)
where Q;, Vj, Caj, T;, where j=1,2, are the heat input rate, the

volume of the reacting liquid, concentration of reactant A, and
the temperature in the first and the second reactor, respectively.
AH, E, kg, and R represent the enthalpy of the reaction, activa-
tion energy, pre-exponential constant, and ideal gas constant, re-
spectively. All process parameter values can be found in Table 1.
The manipulated inputs for both CSTRs are the inlet concentra-
tion of species A and the heat input rate, which are in devia-
tion variable representations ACyjo = Cajo —Cajo,, AQj =Qj —Qj,
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j=1,2, respectively. The manipulated inputs have their respec-
tive lower and upper bounds: |ACyjo| < 3.5 kmol/m3 and |AQ;| <
5 x 10° kJ/h, j =1, 2. The states of the two-CSTR system are x! =
[Ca1 —Car, Ti =Ty, Cap —Capy T — Ty, where Cpy, Capg, Ty, and
T,, are the steady-state values of concentration of A and tem-
perature in the two reactors, such that the operating steady-
state and equilibrium of the nonlinear system is at the origin
of the state-space. States of the CSTR-1 can be separately de-
noted as [x1,Xy] = [Ca; —Ca1, Ty —Tq,] and the states of the CSTR-
2 are denoted as [x3,x4] =[G4y —Caa, T —Tp]. In a distributed
MPC framework, both MPCs have knowledge of full-state mea-
surements as well as the overall plant model of the two-CSTR
process. Feedback measurements on x(t) are received by both
MPCs, where MPC-1 optimizes [uq,uy] = [ACq190 AQq] and MPC-
2 optimizes [u3,uy] =[ACs9 AQy]. The common control ob-
jective of the two MPCs is to stabilize the two-CSTR process at
the unstable operating steady-state x! =[Ca;, Cap, Ti, To,l=
[1.9537 kmol/m3, 1.9537 kmol/m3, 401.9 K, 401.9 K]. To nu-
merically simulate the dynamic ODE model of Eq. (22), we use
the explicit Euler method with an integration time step of h, =
10> h. We demonstrate our simulations with the sequential DMPC
framework. The nonlinear optimization problems of the sequen-
tial DMPC of Eqgs. (20) and (21) are calculated every sampling
period A =10-3 h using the Python module of the IPOPT soft-
ware package (Wdchter and Biegler, 2006). The objective func-
tion in the DMPC optimization problem has the form L(x, uq,uy) =
xTQx + uTRyuy + ulRyup, where Q = diagl2 x 103 1 2x 103 1],
Ry =R, = diag[8 x 10-13  0.001]; the same objective function is
used in both MPC-1 and MPC-2. Due to the special structure of the
nonlinear process studied, where the first CSTR is completely inde-
pendent of the second CSTR, we can adopt the modified DMPC de-
sign in Egs. (20) and (21). In this manuscript, we present the sim-
ulation results of a sequential DMPC; however, the same closed-
loop performance can be similarly demonstrated with an iterative
DMPC.

We first consider a bounded unsafe region Dy, which is embed-
ded fully in the closed-loop system stability region, and is located
in the middle of the stability region, as shown in Fig. 1. This is so
that the state will encounter this unsafe set on its trajectory as it
converges towards the origin if no safety control is considered. It
is challenging to handle such unsafe sets for the CLBF-DMPC as
the closed-loop state needs to be driven around the unsafe set,
towards the steady-state thereafter, and ultimately bounded in a
neighborhood around the steady-state. In this work, we consider
an ellipsoid described as Dy :={x€R* | hj(x) = (x; +0.92)% +
% 0.06, hy(x) = (x5 +0.92)% + &4=42° _ 0 06}. By follow-
ing the design method in Wu and Christofides (2019), we can
define the set % which encloses D as H:={x<cR* | hj(x) <
0.07. hy(x) < 0.07}. Then, the CBF Bj(x), j=1,2 can be con-
structed as follows:

hjeo
Bj(X) _ el <x>6007 _e 67 le cH (23)
—e ifx¢H

From Eq. (23), it is guaranteed that B(x) is positive in the un-
safe region D. The overall CLBF is the sum of the CLBFs for the
two CSTRs, i.e., W(x) = Wy (x) + Wr(x) = V1 (x) + Vo (x) + w(B; (x) +
By(x)) + v where V;(x) = xIPx; and V,(x) = xIPx,. Uy, which is
safe operating region and the set of valid initial conditions, is de-
fined with p = 0 as per Eq. (4c). W(x) is designed using v = —340,
1 =1 x 10° which are selected based on the design method in
(Wu and Christofides, 2019), and the following positive definite P
matrices:

1060 22
=P = |: 2 0452i| (24)
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Table 1
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Values and descriptions of process parameters and steady-states of state and input variables.

Parameter/value

Description

Fio.Bo =5 m3/h

Tio =300 K, T,p =300 K
Vi=10m3 V,=1.0m>

ko = 8.46 x 105 h-1

E = 5.0 x 10* kJ/kmol

AH = —1.15 x 10* k]/kmol,

C, = 0.231 kJ/(kg K)

R = 8.314 kJ/(kmol K)

p = 1000 kg/m?

Cato, = 4 kmol/m3, Cppo, = 4 kmol/m?
Qq, =0 KJ/hr, Q2, =0 kJ/hr

Ca1, = 1.9537 kmol/m?, Csp, = 1.9537 kmol/m?
T, =401.9 K, T, = 401.9 K

Feed flow rate of CSTR 1 & 2

Feed temperatures of CSTR 1 & 2
Volume of reacting liquid in CSTR 1 & 2
Pre-exponential constant

Activation energy

Enthalpy of reaction

Heat capacity

Gas constant

Liquid solution density

Inlet concentration steady-state values
Heat input rate steady-state values
Concentration of reactant A steady-state values
Temperature steady-state values
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Fig. 1. Closed-loop trajectories of CSTR-1 and CSTR-2 under the sequential CLBF-DMPC in the presence of a bounded unsafe set.

Similarly, we also study the scenario of unbounded unsafe region,
which is defined as Dy :={x e R* | hy(X) = X1 + X, > 7.2, hy(x) =
X3 + X4 > 7.2}. The enclosing compact set # is defined as H :={x
R* | h;(x) > 6.8, hy(x) > 6.8}, and the corresponding CBFs for the
two subsystems Bj(x), j=1,2 are shown as follows:

ehj(x)—72 —2x 670‘4,

if H
Bj(x) = {_eOA e

if x ¢ M (25)
The CLBF W (x) for the unbounded unsafe region is constructed
with v = —0.104 and u = 5000.

Closed-loop simulations are run starting from various initial
conditions of the two CSTRs inside the safety and stability regions
under two scenarios: (1) in the presence of bounded, and (2) un-
bounded unsafe sets. The state trajectories of both CSTRs under
CLBF-DMPC for cases of bounded and unbounded unsafe sets are
shown in Figs. 1 and 2 respectively. These initial conditions are
chosen to cover various points in state-space where the control
problem becomes challenging to solve. For example, both CSTRs
start at an initial condition very close to the boundary of the un-
safe set, but at different positions such that the directions of state
evolution may be different; one CSTR may start from the side of
the unsafe set and the other CSTR may start from the side without
the unsafe set, such that one MPC drives the closed-loop state of
its respective subsystem around the unsafe ellipse, and the other
MPC drives the closed-loop state of its subsystem towards the ori-
gin at optimal rate. It is demonstrated that the closed-loop system
achieve stability while successfully avoiding the unsafe regions in

10

both CSTRs when the simulation starts at the illustrated five ini-
tial conditions inside their respective regions i/, for CSTR-1 and
Up, for CSTR-2, and eventually converges and is bounded in their
respective terminal sets Uprin, and Upmin, - This is shown for both

scenarios of bounded and unbounded unsafe sets.

Note that we have selected initial conditions of the two CSTRs
inside their respective stability and safety regions, U5, and ,,, and
the stability and safety region for the overall system U/, should be
a subset of the union of the two individual sets, U, S (Up, Ulp,).
As it is difficult to have a closed-form representation of #,, the
characterization of ¢, can be carried out through numerical simu-
lation to first find a region for which W (x, ®; (x), ®5(x)) < 0, and
then find the largest level set of W (x) within this region.

The stability and safety region i, for CSTR-1 can be
characterized through numerical simulation by assessing
Wi (%1 (t,). @1 (x1(t,))) and using information on the states of
CSTR-1 itself. To rigorously characterize the stability and safety
region U, for CSTR-2, discretized points in state-space for which
Wh (x(ty,), D, (x(t,))) < 0 need to be assessed first. However, since
x(t) also includes the x;(t;), the characterization of u/,, cannot
be done without considering the process state of CSTR-1; this
region can be also found via state-space discretization and ex-
tensive numerical simulations, but is difficult to visualize since it
involves a 4-D state vector. Thus, considering bounded unsafe sets,
Figs. 4 and 5 show some CSTR-2 points in state-space where W, is
rendered negative under the CLBF-based Sontag control law & (x)
plotted with respect to x; of CSTR-1 and x, of CSTR-1 separately.
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Fig. 2. Closed-loop trajectories of CSTR-1 and CSTR-2 under the sequential CLBF-DMPC in the presence of an unbounded unsafe set.
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Fig. 3. Closed-loop trajectories starting from different initial conditions of CSTR-1 and the same initial condition of CSTR-2 under the sequential CLBF-DMPC in the presence

of a bounded unsafe set showing safe and stable performance.

The x; and x; points of CSTR-1 are generated by discretizing p,,
and the x3 and x4 points of CSTR-2 are generated by discretizing
only the region in between the unsafe set D, and the compact
set H, which encloses D,. We only assess discretized points in
this critical region of safety to see which points may contribute to
jeopardized safety when the states of CSTR-2 are near the bound-
ary of the unsafe set. We can see that there exists combinations of
(%1, X2) values that result in W, > 0 under the CLBF-based Sontag
control law ®;,(x(t,)). In these situations, the CLBF-DMPC can
still optimize for solutions of ug, (x(t;)) that will yield decreasing
W, along the predicted trajectory; for example, the constraint of
Eq. (21h) can be activated and the set of discontinuous control
actions 1, (x) € U, that exist to address the cases of saddle points
can be used. In situations where W5 (x, ®,(x)) = 0, the existence
of 1, (x) € U, ensure the feasibility of DMPC-2 in guaranteeing sta-
bility and safety. However, in situations where W, (x, ®5(x)) > 0,
DMPC-2 may run into points of in-feasibility during optimization
and this is demonstrated in Fig. 6.

In this study, we only consider the set of initial conditions in
the respective regions Uy, and Uy, for the closed-loop simulations

1

of CSTR-1 and CSTR-2. In our simulations, U,, mirrors Uy, for
simplistic visualization and to provide a preliminary set of initial
conditions for which we can consider to perform closed-loop con-
trol using the CLBF-DMPC. As such, we can demonstrate that there
are certain values of states of CSTR-1 that may jeopardize closed-
loop safety for the same valued CSTR-2 states under the explicit
CLBF-based Sontag control law. Furthermore, even though the
discontinuous control actions u,(x) € U, ensure feasibility of the
CLBF-DMPC and provide a set of solutions that decrease W, along
the prediction trajectory in the neighborhood of saddle points
where W, = 0, there may be situations where W, > 0 and DMPC-2
is unable to reach a feasible solution that decreases W, at that
particular point in state-space. Fig. 3 demonstrates that starting
from five different initial conditions of CSTR-1 within #,, and the
same initial condition of CSTR-2 within #/,,, simultaneous stability
and safety can be achieved for both CSTRs where the closed-loop
states for the overall system do not enter the unsafe region and
converges to the terminal sets. This demonstrates the efficacy of
the CLBF-DMPC in handling the impact of the states of CSTR-1 on
the closed-loop evolution of CSTR-2. We may also examine the
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Fig. 4. Discretized points (x3,x;) near CSTR-2’s unsafe region D, in state-space showing the negativity and non-negativity of W, under the CLBF-based Sontag control law
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Fig. 5. Discretized points (x3,x4) near CSTR-2's unsafe region D, in state-space showing the negativity and non-negativity of W, under the CLBF-based Sontag control law
with respect to different values of x; discretized from CSTR-1's safe operating region ), .

efficacy of CLBF-DMPC when the state of CSTR-2 is on the verge of
critical safety. Starting from the same initial condition of CSTR-2
(x3, X4) = (—1.135 kmol/m3, 45.2 K) that is within the enclosing
compact set H, but outside the unsafe set D,, we can see in
Fig. 6 that some initial conditions of CSTR-1 (orange, (X1, X3) =
(—1.08 kmol/m3, 64 K)) may result in safe closed-loop operation
where the closed-loop state successfully avoids the unsafe sets

12

Dy and D,, but some (blue, (x;, x3) = (=0.6 kmol/m3, 36 K))
may result in the closed-loop state of CSTR-2 entering the un-
safe set D,. Note that both sets of initial conditions of CSTR-1
shown in Fig. 6 have been evaluated to have W, (x, ®5(x)) > 0.

However, it is shown that starting from (x;, X5, X3, X4) =
(-1.08 kmol/m3, 64 K, -1.135 kmol/m3, 452 K) (or-
ange), the CLBF-DMPC is able to provide feasible so-
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Fig. 6. Closed-loop trajectories starting from two different initial conditions of CSTR-1 and the same initial condition of CSTR-2 under the sequential CLBF-DMPC in the
presence of a bounded unsafe set showing one safe (orange) and one unsafe (blue) trajectory.

lutions that yield Wz(x(tk),uj;z(tk)) <0 and drive the
closed-loop states away and around the unsafe set D,.
On the other hand, starting from (X1, X3, X3, X3)=
(=0.6 kmol/m3, 36 K, —1.135 kmol/m3, 45.2 K) (blue), the
CLBF-DMPC fails to provide a set of feasible solutions with
Wh (x(ty), u;z (t;)) < 0, therefore resulting in the closed-loop state

of CSTR-2 entering the unsafe set D, within the first sampling
period.

7. Conclusion

We have shown theoretical analysis that nonlinear systems with
input constraints and consisting of multiple subsystems can be sta-
bilized by a CLBF-DMPC while not crossing the boundary of unsafe
regions. A constrained CLBF is designed to characterize a stability
region that has no intersection with the unsafe regions, and sub-
sequently used to design CLBF-based explicit control laws for each
subsystem. A CLBF-DMPC, which can be calculated either sequen-
tially or iteratively, is presented and proven to have recursive feasi-
bility as well as stability and safety properties with considerations
of sample-and-hold control action implementation and presence of
bounded disturbances. A modified DMPC structure is also studied
and simulated for particular considerations of nonlinear subsys-
tems. Lastly, the effectiveness of the proposed CLBF-DMPC system
is demonstrated on a two-CSTR process with both bounded and
unbounded unsafe sets.
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