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a b s t r a c t 

This article focuses on the design of distributed model predictive control (DMPC) systems for nonlinear 

processes with input constraints using a Control Lyapunov-Barrier Function (CLBF) to achieve simultane- 

ous closed-loop stability and process safety. Specifically, we first use a constrained CLBF to design explicit 

control laws for each subsystem and to characterize a set of initial conditions, starting from which the 

closed-loop states of the overall nonlinear system are guaranteed to converge to the operating steady- 

state under the CLBF-based control laws while avoiding unsafe regions in state space. We then propose 

the CLBF-based DMPC, and prove its feasibility and effectiveness in ensuring the stability and avoidance 

of unsafe regions under sample-and-hold implementation of DMPC control actions. The CLBF-based DMPC 

is applied to both sequential and iterative DMPC designs in the general sense, and a modification to the 

DMPC formulation is presented for special cases of systems where the coupling between subsystems is in 

a one-way cascading manner. The proposed CLBF-DMPC method is demonstrated via a nonlinear chemical 

process example consisting of two subsystems. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Process safety is inarguably a top priority in industrial engi- 

eering given the involvement of operators with potential haz- 

rds and exposure to the environment. During each stage of de- 

ign, operation, and maintenance, risk assessment and analysis is 

n irreplaceable part of engineering and implementation in or- 

er to prevent catastrophic events from happening. Process control 

ystems not only enable automated control, operation, and mon- 

toring of the plant, but also allow safe, stable, and optimal pro- 

uction if robust control designs are implemented. The work in 

eveson and Stephanopoulos (2014) provides a control-inspired ap- 

roach for the engineering of safe processes, and by defining pro- 

ess safety within a system-theoretic framework, allows for a com- 

rehensive treatment of process safety. The interacting dynamics 

etween multiple subsystems of a complex industrial plant and 

heir combined impact on process safety and operations are fac- 

ors that should be taken into consideration in order to handle and 

void unexpected circumstances and hazards. To this end, a model 
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redictive control (MPC) system stands out as a candidate control 

ethod to handle safety constraints, multi-variable interactions, 

nd nonlinearities in large-scale processes ( Garcia et al., 1989 ). In 

articular, in order to work with large-scale processes that pos- 

ess large amount of state variables and sensor data, distributed 

PC (DMPC) has been proposed to reduce computational time and 

omplexity of the optimization problem ( Christofides et al., 2013 ). 

n a DMPC framework, collective control objectives are achieved 

y multiple controllers which have inter-controller communication 

stablished to calculate their respective control actions. Previous 

orks on decentralized and distributed MPC systems ( Venkat et al., 

004; Stewart et al., 2010; Christofides et al., 2013 ) have shown 

he effectiveness of this approach in improving closed-loop per- 

ormance while reducing computational time; and more recently, 

hey have been used in cases where machine-learning modeling 

ay be adopted ( Chen et al., 2020 ), as well as in applications of

emonstrated robustness against cyber-attacks ( Chen et al., 2021a ). 

ithin a distributed framework, there exist many configuration 

ariants depending on the degree of communication between sub- 

ontrollers, and have been applied to various engineering appli- 

ations such as distributed smart grid optimization, moving hori- 

on estimation of reactor-separator process, and distributed model 

redictive control of multi-motor driving cutterhead systems 

https://doi.org/10.1016/j.compchemeng.2022.107690
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107690&domain=pdf
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 Zhang and Liu, 2013; Qi et al., 2013; Yang et al., 2019 ). Sequen-

ial DMPC allows one-way communication from one controller to 

he next, while iterative DMPC allows two-way communication be- 

ween all controllers and iteration during the optimization calcula- 

ions until a termination criterion has been met. Both of these two 

rameworks have been used in recent literature ( Liu et al., 2010; 

012; Yang et al., 2019 ) and will be discussed in this work. 

Barrier functions, or barrier certificates, serve as an important 

ool in safety-critical systems where multi-objective control is in- 

olved ( Xu et al., 2015 ). To account for safety constraints in a pro-

ess, control laws based on a Control-Lyapunov-Barrier-Function 

CLBF) can be developed and subsequently incorporated in the de- 

ign of MPC algorithms to ensure stability and safety of operation 

 Wu et al., 2019 ). More specifically, CLBFs can be developed by in-

egrating a Control Barrier Function (CBF), which is an extension 

f barrier functions applied to a controlled system, and a Con- 

rol Lyapunov function (CLF). While CLFs work to characterize a 

tability region, CBFs characterize unsafe regions that closed-loop 

tate must not enter during operation ( Romdlony and Jayaward- 

ana, 2016 ). CLBF-MPC has been proposed in Wu et al. (2019) ;

u and Christofides (2019) , where the stability and safety anal- 

sis for the closed-loop system in the presence of both bounded 

nd unbounded unsafe sets have been provided. Many other recent 

orks ( Marvi and Kiumarsi, 2021; Zeng et al., 2021 ) have also ex- 

lored MPC with discrete-time control barrier functions, as well as 

ptimal control based on reinforcement learning with the inclusion 

f control barrier functions. In this work, we introduce CLBF to the 

esign of DMPC in controlling multiple subsystems. This contribu- 

ion is essential to the operation of complex industrial processes 

here the overall system may encounter regions in state-space for 

hich they would like to avoid, and the sub-controllers for each 

ubsystem need to work cooperatively to achieve the stability and 

afety objectives. In this work, we use an analytical representation 

f the unsafe operating points in state-space to specify the CLBFs. 

owever, interested readers may also refer to previous works in 

hen et al. (2022) for machine-learning-based methods of char- 

cterizing such regions and designing MPC algorithms based on 

 feedforward-neural-network-based control barrier function. The 

nsafe operating regions may be specified for each subsystem in- 

ividually, or if these unsafe points are interdependent across sub- 

ystems, the unsafe regions may be specified holistically with re- 

pect to the overall process. 

The remainder of the paper is organized as follows. We ad- 

ress the class of systems considered, the stabilizability assump- 

ions, and the definition of Control Lyapunov-Barrier Functions in 

ection 2 . In Section 3 , we provide the formulation of DMPCs, and

evelop a CLBF-based DMPCs that guarantee recursive feasibility, 

losed-loop stability and safety under the sample-and-hold con- 

rol action implementation for the general case. We also provide 

 modified DMPC framework for special cases of coupled subsys- 

ems in order to demonstrate its advantages and drawbacks. In 

ection 4 , we demonstrate the applicability of the proposed con- 

rol scheme using a nonlinear chemical process example. 

. Preliminaries 

.1. Notation 

We use | ·| to denote the Euclidean norm of a vector. x T de- 

otes the transpose of x . If a function f (·) is continuously differ- 

ntiable, it is of class C 1 . L f V (x ) := 

∂V (x ) 
∂x 

f (x ) represents the Lie

erivative. We say that a continuous scalar function V : R 

n → R is

 proper function, if the set { x ∈ R 

n | V (x ) ≤ k } is a compact set

 k ∈ R . With positive real numbers β and ε, we use B β (ε) := { x ∈
 

n | | x − ε| < β} to represent an open ball around ε with radius of

. A \ B := { x ∈ R 

n | x ∈ A, x / ∈ B } denotes set subtraction. 
2 
.2. Class of systems 

A general class of nonlinear systems is considered in which 

ultiple distinct sets of manipulated inputs exist. Each set of in- 

uts regulates a specific subsystem. Throughout the manuscript, 

e consider two subsystems – subsystem-1 and subsystem-2 – for 

he simplicity of notation. Subsystem-1 and subsystem-2 consist of 

tates x 1 and x 2 respectively, which are controlled by and only by 

 1 and u 2 respectively. The general class of system under consid- 

ration can be represented by nonlinear ordinary differential equa- 

ions as follows: 

˙ 
 = F (x, u 1 , u 2 , w ) := f (x ) + g 1 (x ) u 1 + g 2 (x ) u 2 + v (x ) w, 

 (t 0 ) = x 0 
(1) 

here x ∈ R 

n denotes the state vector, u 1 ∈ R 

m 1 and u 2 ∈ R 

m 2 

re the two distinct sets of input vectors, and the distur- 

ance is denoted by w ∈ W with W := { w ∈ R 

r | | w | ≤ w m 

, w m 

≥
 } . There are constraints on the control actions as defined by 

 1 ∈ U 1 := { u min 
1 i 

≤ u 1 i ≤ u max 
1 i 

, i = 1 , . . . , m 1 } ⊂ R 

m 1 , and u 2 ∈ U 2 :=
 u min 

2 i 
≤ u 2 i ≤ u max 

2 i 
, i = 1 , . . . , m 2 } ⊂ R 

m 2 . f (·) , g 1 (·) , g 2 (·) , and v (·)
re matrix and vector functions of dimensions n × 1 , n × m 1 , n ×
 2 , and n × r, respectively, which are assumed to be sufficiently 

mooth. The initial time t 0 is taken to be zero ( t 0 = 0 ), and we as-

ume that f (0) = 0 . Therefore, the origin is an equilibrium point 

f the nominal system of Eq. (1) with w (t) ≡ 0 (i.e., (x s , u 1 s , u 2 s ) =
0 , 0 , 0) , where x s , u 1 s and u 2 s represent the steady-state state and

nput vectors). 

.3. Control Lyapunov function 

With the nominal system of Eq. (1) with w (t) ≡ 0 in considera- 

ion, it is assumed that a Control Lyapunov Function (CLF) V exists, 

hich is positive definite and proper; the CLF meets the small con- 

rol property, which indicates that for every positive ε, there ex- 

sts a positive δ, such that ∀ x ∈ B δ (0) , ∃ u T = [ u T 
1 
, u T 

2 
] that meet

he conditions of | u | < ε and L f V (x ) + L g 1 V (x ) · u 1 + L g 2 V (x ) · u 2 <

 Sontag (1989) . In addition, the CLF also satisfies the following 

onditions: 

 f V (x ) < 0 , 

 x ∈ { z ∈ R 

n \{ 0 } | L g 1 V (z) = 0 , L g 2 V (z) = 0 } (2) 

he existence of V implies the existence of explicit feedback con- 

rol laws �1 (x ) ∈ U 1 , �2 (x ) ∈ U 2 such that Eq. (2) holds for the

ominal system of Eq. (1) under u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 ,

nd for all x in an explicitly defined neighborhood around the ori- 

in, the closed-loop system is rendered asymptotically stable. The 

ontag control law in Lin and Sontag (1991) is one example of such 

tabilizing feedback control laws. A region φu can be characterized 

round the origin where the time derivative of the Lyapunov func- 

ion V (x ) is negative under u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 as:

u = { x ∈ R 

n | ˙ V (x ) = L f V (x ) + L g 1 V (x ) · u 1 + L g 2 V (x ) · u 2 < 0 , u 1 =
1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 } ∪ { 0 } . Within φu , we define 	b :=

 x ∈ φu | V (x ) ≤ b, b > 0 } , which is a level set of V (x ) and a for-

ard invariant set. For the closed-loop system under u 1 = �1 (x ) ∈ 

 1 , u 2 = �2 (x ) ∈ U 2 , 	b is considered as the stability region in the

ense that, for any x 0 ∈ 	b , the closed-loop trajectory x (t) , t ≥ 0 of

he nominal system of Eq. (1) (i.e., w (t) ≡ 0 ) remains in 	b . 

.4. Control barrier function 

During operation, there are undesirable regions within state- 

pace that must be avoided for safety and/or other considerations 

elated to cost, environment, and optimality. Let us assume that 

n open set D exists, and it sufficiently describes the region to 

e avoided. In the remainder of the manuscript, the notation D
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s used to represent the unsafe set. A safe set can be subsequently 

efined as X 0 := { x ∈ R 

n \D} where X 0 ∩ D = ∅ , { 0 } ∈ X 0 . X 0 will in-

lude the set of initial conditions that we consider. Both bounded 

nd unbounded unsafe regions have been studied in literature; in 

his manuscript, bounded unsafe set is denoted as D b , unbounded 

nsafe set is denoted as D u , respectively. 

The definition of process operational safety studied in this 

anuscript entails closed-loop states not entering any unsafe sets. 

ormally, operational safety has a definition described as follows: 

efinition 1. The nominal system of Eq. (1) under input con- 

traints u ∈ U and with w (t) ≡ 0 is considered. If a set of con-

trained control actions u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 exists

uch that, for any initial state x (t 0 ) = x 0 ∈ X 0 , the process state tra-

ectories do not enter the unsafe region and converge to the origin 

symptotically (i.e., x (t) ∈ X 0 , x (t) / ∈ D, ∀ t ≥ 0 ), then the control

ctions u 1 = �1 (x ) , u 2 = �2 (x ) are able to maintain the closed-

oop state within a safe operating region X 0 at all times. 

Subsequently, with the introduction of safe and unsafe oper- 

ting regions in state-space, we can define a valid Control Bar- 

ier Function (CBF) in the following definition: Wieland and All- 

öwer (200 7) . 

efinition 2. With a set of unsafe points D in state-space, a C 1 
unction B (x ) : R 

n → R is a Control Barrier Function if it satisfies

hese properties: 

 (x ) > 0 , ∀ x ∈ D (3a) 

 f B (x ) ≤ 0 , ∀ x ∈ { z ∈ R 

n \D | L g B (z) = 0 } (3b) 

 B := { x ∈ R 

n | B (x ) ≤ 0 } � = ∅ (3c) 

. Stabilization and safety via control Lyapunov-barrier 

unction 

The work in Romdlony and Jayawardhana (2016) proposed a 

ontrol Lyapunov-Barrier Function (CLBF) and proved that if a valid 

LBF exists for the nominal system of Eq. (1) , then for any initial

ondition x 0 ∈ X 0 , a control law exists which maintains the closed- 

oop state outside of D and within an explicitly characterized re- 

ion around the steady-state (which is a level set of CLBF) at all 

imes. In Wu and Christofides (2019) ; Wu et al. (2019) , this work is

xtended to including constraints on the manipulated inputs u ∈ U

n the design of CLBFs. In all three works, the CLBF was designed 

sing a weighted sum of a CBF and a CLF, where the CBF satisfies

he properties outlined in Eq. (3) , and the CLF meets the relevant 

onditions in Section 2.3 . Then, a practical design guideline is pre- 

ented in Wu et al. (2019) to construct this CLBF. We can reference 

nd utilize the same guidelines, applied on the nonlinear system 

f Eq. (1) consisting of multiple subsystems to design the CLBF for 

he overall process. 

The definition of a constrained CLBF W (x ) with respect to the 

verall process as represented by the nonlinear model of Eq. (1) is 

hown as below: 

efinition 3. Considering an unsafe set in state-space D, a lower- 

ounded, proper, and C 1 function W (x ) : R 

n → R is a constrained

LBF if W (x ) satisfies the following properties and has a minimum 

t the origin: 

 (x ) > ρ, ∀ x ∈ D ⊂ φuc (4a) 

 f W (x ) < 0 , 

 x ∈ { z ∈ φuc \ (D ∪ { 0 } ∪ X e ) | L g 1 W (z) = 0 , 
3 
 g 2 W (z) = 0 } (4b) 

 ρ := { x ∈ φuc | W (x ) ≤ ρ} � = ∅ (4c) 

uc \ (D ∪ U ρ ) ∩ D = ∅ (4d) 

here X e := { x ∈ φuc \ (D ∪ { 0 } ) | ∂W (x ) 
∂x 

= 0 } represents a set of

tates where L f W (x ) = 0 (for x � = 0 ) due to ∂W (x ) 
∂x 

= 0 . ρ ∈ R is

 real constant. f, g 1 , g 2 are the vector and matrix functions 

rom Eq. (1) . Using a set of explicit control laws subject to 

heir lower and upper bounds u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 ,

uc is defined to be the union of the origin, the set X e , and

he set where the time-derivative of W (x ) is negative: φuc = 

 0 } ∪ X e ∪ { x ∈ R 

n | ˙ W (x (t) , �1 (x ) , �2 (x )) = L f W + L g 1 W · u 1 +
 g 2 W · u 2 < −αW 

| W (x ) − W (0) | , u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈
 2 , αW 

> 0 } . For the nominal system of Eq. (1) with w (t) ≡ 0 ,

f a C 1 constrained CLBF W (x ) exists, then there exists a set of

ontrol laws u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 that together ren-

er the origin asymptotically stable within φuc . The CLBF function 

as a minimum at the origin and is able to satisfy the following 

roperties ∀ x ∈ φuc : 

 1 | x | 2 ≤ W (x ) − ρ0 ≤ c 2 | x | 2 , (5a) 

∂W (x ) 

∂x 
F (x, �1 (x ) , �2 (x )) ≤ −c 3 | x | 2 , ∀ x ∈ φuc \B δ(x e ) (5b)

∂W (x ) 

∂x 

∣∣∣∣ ≤ c 4 | x | (5c) 

here F (x, u 1 , u 2 ) is the nominal system of Eq. (1) with w (t) ≡ 0 ,

 j (·) > 0 , j = 1 , 2 , 3 , 4 are real numbers, ρ0 represents the global

inimum of W (x ) at the origin (i.e., W (0) = ρ0 ), and B δ (x e ) de-

otes a neighborhood surrounding a saddle point in state-space, 

 e ∈ X e . 

Within the nonlinear system described by Eq. (1) , the functions 

f, g 1 , g 2 and v are assumed to be sufficiently smooth, thus positive 

onstants L x , L w 

, L 
′ 
x , L 

′ 
w 

, and M exist (by continuity) s.t. ∀ x, x ′ ∈ U ρ ,

 ∈ W , and u 1 ∈ U 1 , u 2 ∈ U 2 , the conditions below will hold: 

 F (x, u 1 , u 2 , w ) | ≤ M (6a) 

 F (x, u 1 , u 2 , w ) − F (x ′ , u 1 , u 2 , 0) | ≤ L x | x − x ′ | + L w 

| w | (6b) 

∂W (x ) 

∂x 
F (x, u 1 , u 2 , w ) − ∂W (x ′ ) 

∂x 
F (x ′ , u 1 , u 2 , 0) 

∣∣∣∣
≤ L 

′ 
x | x − x ′ | + L 

′ 
w 

| w m 

| (6c) 

emark 1. When designing local controllers, we could consider 

esigning a CLBF for individual subsystems W j (x j ) , where x j are 

he states of the subsystem j. We can characterize the region φuc j 

or each subsystem j, which includes the set for which under a 

et of constrained control laws u j = � j (x ) ∈ U j , the CLBF satisfies

˙ 
 j (x j , � j (x j )) < −αW j 

| W j (x j ) − W j (0) | . However, in the context of

MPC where multiple controllers work collaboratively to achieve 

 collective control objective of guaranteeing safety and stability 

or each subsystem, some initial conditions may result in trajecto- 

ies where the control objective for each controller in the DMPC 

etwork may lead to a conflict. For example, one controller may 

ncounter an unsafe region for its respective local subsystem and 

ttempts to navigate the closed-loop states away from the un- 

afe region, consequently increasing the Lyapunov function V (x ) 

or the overall system. On the other hand, another controller may 

e attempting to navigate the process state of the other subsys- 

em to the origin, thereby decreasing V (x ) for the overall system. 

herefore, the set of initial conditions for which the conditions of 
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ρ  
q. (5) are satisfied will only be a subset of the combination of 

ets for which the CLBF conditions on W j (x j ) are satisfied for each

ubsystem individually. In other words, if the stability and safety 

egion for each subsystem j is defined with respect to W j (x j ) as 

 ρ j 
, j = 1 , 2 , then U ρ ⊆ (U ρ1 

∪ U ρ2 
) . 

An example of such CLBF-based controllers �1 (x ) ∈ U 1 ⊂ R 

m 1 

nd �2 (x ) ∈ U 2 ⊂ R 

m 2 , is given as follows: 

j i (x ) = 

⎧ ⎨ 

⎩ 

− p + 

√ 

p 2 + q 4 

q T q 
q if q � = 0 

0 if q = 0 

(7a) 

j i (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

u 

min 
j i 

if φ j i (x ) < u 

min 
j i 

φ j i (x ) if u 

min 
j i 

≤ φ j i (x ) ≤ u 

max 
j i 

u 

max 
j i 

if φ j i (x ) > u 

max 
j i 

(7b) 

here j = 1 , 2 represents the two candidate controllers for the two 

ubsystems, p denotes L f W (x ) where f = [ f 1 . . . f n ] 
T , and q denot es

 g j i 
W (x ) , where g j i = [ g j i 1 , . . . , g j in ] 

T , ( i = 1 , 2 , . . . , m 1 for j = 1 cor-

esponding to �1 (x ) , and i = 1 , 2 , . . . , m 2 for j = 2 corresponding

o �2 (x ) .) φ j i 
(x ) of Eq. (7a) denotes the i th component of the con-

rol action φ j (x ) . After accounting for the input constraints u j ∈ U j ,

j i 
(x ) of Eq. (7) represents the i th component of the saturated 

ontrol law � j (x ) . 

.1. Design of constrained CLBF 

The set U ρ , as defined in Eq. (4c) , is a forward invariant set

f W (x ) , and it will define the set of initial conditions we con-

ider in the rest of the manuscript. We analyze the scenario of 

ounded unsafe sets first following similar logic as presented in 

heorem 1 in Wu and Christofides (2019) , and present theoreti- 

al analysis on the closed-loop stability and safety for the non- 

inear system of Eq. (1) . Specifically in the case of bounded un- 

afe regions, stationary points in addition to the origin x e ∈ X e are 

resent in state-space which can be considered as saddle points. 

he continuous control actions u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 

re not able to help the states escape the stationary points once 

he states reach them. Therefore, discontinuous control actions 

 1 = ū 1 (x ) ∈ U 1 , u 2 = ū 2 (x ) ∈ U 2 that decrease W (x ) are designed,

here [ ̄u 1 (x ) , ū 2 (x )] � = [�1 (x ) , �2 (x )] , to navigate x away from

hese stationary points along the direction of W (x ) decreasing. On 

he other hand, in the presence of unbounded unsafe sets, the 

nly unique stationary point in state-space is the origin, there- 

ore u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 are able to render the ori-

in asymptotically stable and simultaneously guaranteeing process 

afety. More work on handling bounded and unbounded unsafe 

ets are detailed in Wu and Christofides (2019) for further refer- 

nce. 

. CLBF-based control law 

.1. Effect of bounded disturbance and sample-and-hold 

mplementation of control actions 

As the CLBF will be used in the design of DMPC, which imple- 

ents its control actions in a sample-and-hold manner, we need 

o consider the impact of sample-and-hold control as well as the 

resence of disturbances in the nonlinear system of Eq. (1) which 

re sufficiently small and bounded when analyzing stability and 

afety properties of the closed-loop system. We provide proof for 

hese considerations in the next proposition. 

roposition 1. Consider the nominal system of Eq. (1) with w (t) ≡
 and a constrained CLBF W (x ) that meets the requirements of 
4 
efinition 3 and has a minimum at the origin. Subsequently, we char- 

cterize the set of initial conditions U ρ ⊂ X 0 . Let u 1 (t) = �1 (x (t k )) ∈
 1 , u 2 (t) = �2 (x (t k )) ∈ U 2 for all t k ≤ t < t k +1 , x (t k ) ∈ U ρ\B δ (x e )

here δ > 0 , x e ∈ X e and t k represents the time stamp t = k �, k =
 , 1 , 2 , . . . , and u 1 (t) = ū 1 (x ) ∈ U 1 , u 2 (t) = ū 2 (x ) ∈ U 2 such that if

 (t k ) ∈ B δ (x e ) , then W (x (t k +1 )) < W (x (t k )) for any � > 0 . Then,

here exists a real valued �∗, such that, if � ∈ (0 , �∗] and x 0 ∈
 ρ , then x (t) ∈ U ρ , and lim t→∞ 

| x (t) | ≤ d, for any positive real

umber d. 

roof. For any initial conditions in U ρ , we will first show that x (t)

onverges to a terminal level set around the origin U ρmin 
:= { x ∈

uc | W (x ) ≤ ρmin } as t → ∞ where ρmin < ρ . Then by the con-

inuity of W (x ) , we prove that lim t→∞ 

| x (t) | ≤ d as t → ∞ . First,

e consider the case when x (t k ) ∈ U ρ\ (U ρs ∪ B δ (x e )) , where ρs <

min < ρ , and demonstrate that ˙ W (x (t) , u 1 (t) , u 2 (t)) < −ε holds

n the set Z := { x ∈ φuc \B δ (x e ) | ρs ≤ W (x ) ≤ ρ} under u 1 (t) =
 1 (t k ) = �1 (x (t k )) , u 2 (t) = u 2 (t k ) = �2 (x (t k )) , ∀ t ∈ [ t k , t k + �∗) .
he time derivative of the CLBF can be represented as follows: 

˙ W (x (t) , u 1 (t) , u 2 (t)) 

= 

˙ W (x (t k ) , u 1 (t k ) , u 2 (t k )) + ( ˙ W (x (t) , u 1 (t) , u 2 (t)) 

− ˙ W (x (t k ) , u 1 (t k ) , u 2 (t k )) 
= L f W (x (t k )) + L g 1 W (x (t k )) u 1 (t k ) + L g 2 W (x (t k )) u 2 (t k ) 

+ (L f W (x (t)) − L f W (x (t k ))) 
+ (L g 1 W (x (t)) − L g 1 W (x (t k ))) u 1 (t) 
+ (L g 2 W (x (t)) − L g 2 W (x (t k ))) u 2 (t) 

(8) 

�

Since W (x ) is a C 1 function that satisfies Eq. (4) , and f (·) ,
 1 (·) and g 2 (·) are assumed to be smooth, there exist positive real

umbers k f , k g 1 and k g 2 , such that | (L f W (x (t)) − L f W (x (t k )) | ≤
 f | x (t) − x (t k ) | , | (L g 1 W (x (t)) − L g 1 W (x (t k ))) u 1 (t)) | ≤ k g 1 | x (t) −
 (t k ) | , | (L g 2 W (x (t)) − L g 2 W (x (t k ))) u 2 (t)) | ≤ k g 2 | x (t) − x (t k ) | . In

ddition, since f (x ) , g 1 (x ) and g 2 (x ) are continuous, and

is bounded, there exists a positive real number k s and 

 sampling period �′ such that | x (t) − x (t k ) | ≤ k s �′ for all

 ∈ [ t k , t k + �′ ) . According to how φuc is defined, it is given that
˙ 
 (x (t k )) < −αW 

| W (x ) − W (0) | < −αW 

ρm 

holds for all x ∈ Z ,

here ρm 

:= min 

x ∈Z 
| W (x ) − W (0) | . We choose �′ < 

αW 

ρm −ε
k s (k f + k g 1 + k g 2 ) 

nd 0 ≤ ε < αW 

ρm 

, where αW 

is used to characterize φuc . Using 

hese inequalities derived from Lipschitz conditions, Eq. (8) can be 

ritten as: 

˙ 
 (x (t) , u 1 (t) , u 2 (t)) ≤ ˙ W (x (t k ) , u 1 (t k ) , u 2 (t k )) 

+ k s (k f + k g 1 + k g 2 )�
′ 

< −αW 

ρm 

+ k s (k f + k g 1 + k g 2 )�
′ 

< −ε

(9) 

hich implies that for any initial conditions in U ρ , W (x (t)) <

 (x (t k )) ≤ ρ, ∀ t > t k and the closed-loop state x (t) will enter a

erminal set U ρs within finite steps. We have proven that x (t) is 

ounded in U ρ ∀ t ∈ [ t k , t k + �′ ) . 
In addition, we discuss the case where the closed-loop state 

s in the neighborhood of saddle points, x (t k ) ∈ B δ (x e ) where x e 
re saddle points. Since ū 1 (x ) , ū 2 (x ) are a set of control actions

hat decrease W (x ) , as a result, W (x (t k +1 )) < W (x (t k )) as x (t k +1 )

oves to a smaller level set of W (x ) and the closed-loop state 

ventually leaves B δ (x e ) within finite time steps. After it leaves the 

addle point neighborhood, x (t) will not come back to B δ (x e ) as

q. (9) (i.e., W (x (t)) < W (x (t k )) , ∀ t > t k ) holds thereafter. 

We will now address the effect of sample-and-hold control and 

ounded disturbance on the convergence and boundedness of the 

losed-loop state. First, we will show that given x (t k ) ∈ U ρs , the tra-

ectory of x (t) will stay in U ρ′ 
min 

, ∀ t ∈ [ t k , t k + �′′ ) . Consider �′′ 
uch that 

′ 
min = max 

�∈ [0 , �′′ ) 
{ W (x (t k + �)) | x (t k ) ∈ U ρs 

, u ∈ U} . (10)
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There exists a sufficiently small �′′ such that Eq. (10) holds. 

herefore, let �∗ = min { �′ , �′′ } , and we have shown that for 

ny x (t k ) ∈ U ρs , the closed-loop state x (t) under sample-and-hold

ontrol implementation will remain in U ρ′ 
min 

during one sam- 

ling period � ∈ (0 , �∗] . When taking the bounded disturbance 

 w (t) | ≤ w m 

into account and the CLBF-based controller applied in 

 sample-and-hold fashion, we can show that Proposition 1 still 

olds for the system of Eq. (1) subject to the bounded distur- 

ance. Given the local Lipschitz property of v (·) , we can derive 

he following inequality for L v W (x ) : ∃ k d > 0 , s.t. | (L v W (x (t)) −
 v W (x (t k )) | ≤ k d | x (t) − x (t k ) | . Therefore, similar results can be

hown for ˙ W (x (t) , u 1 (t) , u 2 (t)) and ρmin that account for w (t) as

ollows: 

˙ W (x (t) , u 1 (t) , u 2 (t)) 

≤ ˙ W (x (t k ) , u 1 (t k ) , u 2 (t k )) + k s (k f + k g 1 + k g 2 + k d w m 

)�′ 

< −αW 

ρm 

+ k s (k f + k g 1 + k g 2 + k d w m 

)�′ 

< −ε

(11) 

min = max 
�∈ [0 , �′′ ) 

{ W (x (t k + �) , u 1 , u 2 , w ) | x (t k ) ∈ U ρs 
, 

u ∈ U, | w | ≤ w m 

} . (12) 

here �′ < 

αW 

ρm −ε
k s (k f + k g 1 + k g 2 + k d w m ) 

and 0 ≤ ε < αW 

ρm 

, respectively. 

ence, when sufficiently small bounded disturbance | w | ≤ w m 

is 

resent, ˙ W < 0 still holds within each sampling period if �′ 
nd ε are chosen. Furthermore, if x (t k ) ∈ B δ (x e ) , the discontin-

ous control laws ū 1 (x ) , ū 2 (x ) are assumed to exist and satisfy

 (x (t k +1 )) < W (x (t k )) , ∀ | w | ≤ w m 

. By the definition of ρmin of

q. (12) , it is shown that for any x (t k ) ∈ U ρs , the trajectory of x (t)

ill stay in U ρmin 
, ∀ t ∈ [ t k , t k + �′′ ) . The proof above shows the

obustness of the CLBF-based control law against the sample-and- 

old execution in the presence of sufficiently small bounded dis- 

urbances, and serves as an underlying foundation for proving that 

he CLBF-DMPC is also robust to sample-and-hold control execu- 

ion and bounded disturbances. 

. CLBF-DMPC formulations and analysis 

DMPC has proven to provide improved computational time and 

losed-loop control performance, where some level of communica- 

ion may be established between the different controllers. In this 

ramework, two separate MPCs are designed to compute control 

ctions u 1 and u 2 respectively; the control law trajectories com- 

uted by MPC-1 and MPC-2 are denoted by u d 1 and u d 2 , respec- 

ively. In the following few sections, we will discuss a sequen- 

ial distributed MPC design and an iterative distributed MPC de- 

ign; interested readers may refer to Christofides et al. (2013) ; 

hen et al. (2021a) for other distributed and decentralised MPC ar- 

hitectures. 

.1. Sequential distributed MPC system 

Between two MPCs in a sequential DMPC structure, the com- 

unication is one-way. In other words, the set of the optimal con- 

rol laws calculated by one MPC will be relayed to the other MPC, 

hich will utilize this additional knowledge to optimize its corre- 

ponding set of control laws. In a sequential DMPC framework, the 

ollowing implementation strategy is used: 

1. At each sampling instant t = t k , sensor measurements on the 

states x (t) , t = t k are sent to both MPC-1 and MPC-2. 

2. The optimal trajectory of u d 1 is calculated by MPC-1 and sent 

to MPC-2, and the first value of the input trajectory u ∗
d 1 

(t k ) is

sent to the corresponding actuators. 

3. MPC-2 calculates the optimal trajectory of u d 2 based on state 

measurement x (t) at t = t k and the optimal trajectory of u d 
1 

5 
received from MPC-1, then sends the first optimal control ac- 

tion over the next sampling period u ∗
d 2 

(t k ) to the corresponding 

control actuators. 

4. At the next sampling instance, when an updated state measure- 

ment is available ( k ← k + 1 ), go to Step 1. 

In the calculation of MPC-1, it first assumes a trajectory for 

 d 2 
along the prediction horizon, which is computed using the 

xplicit nonlinear CLBF-based control law, �2 (x ) . In addition, we 

ncorporate a contractive constraint in the optimization problem 

f the MPC in order to ensure that u d 1 will inherit the stability 

nd safety properties of � j (x ) , j = 1 , 2 , and decrease the CLBF

 (x ) at a minimum rate of that of the CLBF-based control laws 

j (x ) , j = 1 , 2 . The optimization problem of MPC-1 is given as fol-

ows: 

 = min 

u d 1 
∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u d 1 (t) , �2 ( ̃  x (t))) dt (13a) 

.t. ˙ ˜ x (t) = F ( ̃  x (t ) , u d 1 (t ) , �2 ( ̃  x (t ))) (13b) 

˜ 
 (t k ) = x (t k ) (13c) 

 d 1 (t) ∈ U 1 , ∀ t ∈ [ t k , t k + N ) (13d) 

˙ 
 

(
x ( t k ) , u d 1 ( t k ) , �2 ( x ( t k ) ) 

)
≤ ˙ W ( x ( t k ) , �1 ( x ( t k ) ) , �2 ( x ( t k ) ) ) , 

(13e) 

f x ( t k ) / ∈ B δ( x e ) and W ( x ( t k ) ) > ρs (13f) 

 ( ̃  x (t)) ≤ ρs , ∀ t ∈ [ t k , t k + N ) , if W (x (t k )) ≤ ρs (13g) 

 ( ̃  x (t)) < W (x (t k )) , ∀ t ∈ (t k , t k + N ) , 

f x (t k ) ∈ B δ(x e ) (13h) 

here S(�) is the set of piece-wise constant functions with sam- 

ling period �, N is the number of sampling periods in the pre- 

iction horizon, and ˜ x represents the predicted state trajectory. 

he optimal input trajectory calculated over the prediction hori- 

on t ∈ [ t k , t k + N ) by MPC-1 is denoted as u ∗
d 1 

(t) . The cost func-

ion of Eq. (13a) is the integral of L ( ̃  x (t) , u d 1 (t) , �2 (t)) over the

rediction horizon; here, L (x, u 1 , u 2 ) typically takes on a quadratic

orm, i.e., L (x, u 1 , u 2 ) = x T Qx + u T 
1 

R 1 u 1 + u T 
2 

R 2 u 2 , where Q , R 1 , and

 2 are positive definite weighting matrices. The minimum value 

f the objective function of Eq. (13a) is at the origin. The con- 

traint of Eq. (13b) is the nominal system of Eq. (1) with w (t) ≡
 and predicts the closed-loop state trajectory. Eq. (13d) defines 

he input variable constraints on u d 1 . The initial condition ˜ x (t k ) 

f Eq. (13b) is taken as the state sensor measurement at t = t k 
efined in Eq. (13c) . The constraints of Eqs. (13f) –(13h) are acti- 

ated depending on the location of the process state in state-space, 

nd they work together to make certain of operational safety and 

tability. When x (t k ) / ∈ B δ (x e ) and W (x (t k )) > ρs , the constraint

q. (13f) ensures that W ( ̃  x ) decreases at least as fast as the rate

chieved by the CLBF-based control laws u 1 = �1 (x ) ∈ U 1 , u 2 =
2 (x ) ∈ U 2 . If W (x (t k )) ≤ ρs , the constraint of Eq. (13g) maintains

he predicted state within U ρs , so that in the presence of suffi- 

iently bounded disturbances in the nonlinear system of Eq. (1) , 

he closed-loop state still remains in U ρmin 
. Furthermore, if x (t k ) 

nters a neighborhood of a saddle point B δ (x e ) , the constraint 

q. (13h) ensures that W (x ) decreases over the predicted trajec- 

ory, and with decreasing W (x ) , the closed-loop process state can 

ventually escape x e within finite steps. Once the state escapes 

rom the saddle points B (x e ) , the constraint of Eq. (13f) will drive
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t towards the origin into smaller level sets of the CLBF W (x ) , thus

uaranteeing the state will not return to B δ (x e ) thereafter. Each 

ime MPC-1 is executed, it communicates the entire trajectory of 

 

∗
d 1 

(t) , t ∈ [ t k , t k + N ) to MPC-2 and sends the first value of the in-

ut trajectory u ∗
d 1 

(t k ) to its actuators. The horizon rolls one sam- 

ling time step forward while the above optimization problem is 

olved again. 

MPC-2 computes control actions u d 2 based on the latest re- 

eived state measurement, and in addition, the control action com- 

uted by MPC-1 (i.e., u ∗
d 1 

(t) , ∀ t ∈ [ t k , t k + N ) ). By utilizing the op-

imal input trajectory of MPC-1 as well as the CLBF-based con- 

rol law �2 (x (t k )) , the closed-loop performance is optimized while 

uaranteeing that the stability and safety properties of the CLBF- 

ased control laws are preserved. Specifically, MPC-2 calculates the 

ollowing optimization problem: 

 = min 

u d 2 
∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u 

∗
d 1 

(t) , u d 2 (t)) dt (14a) 

.t. ˙ ˜ x (t) = F ( ̃  x (t ) , u 

∗
d 1 

(t ) , u d 2 (t )) (14b) 

˜ 
 (t k ) = x (t k ) (14c) 

 d 2 (t) ∈ U 2 , ∀ t ∈ [ t k , t k + N ) (14d) 

˙ 
 

(
x ( t k ) , u 

∗
d 1 

( t k ) , u d 2 ( t k ) 
)

≤ ˙ W 

(
x ( t k ) , u 

∗
d 1 

( t k ) , �2 ( x ( t k ) ) 
)
, (14e) 

f x ( t k ) / ∈ B δ( x e ) and W ( x ( t k ) ) > ρs (14f) 

 ( ̃  x (t)) ≤ ρs , ∀ t ∈ [ t k , t k + N ) , if W (x (t k )) ≤ ρs (14g) 

 ( ̃  x (t)) < W (x (t k )) , ∀ t ∈ (t k , t k + N ) , 

f x (t k ) ∈ B δ(x e ) (14h) 

The notation and the explanation of the optimization problem 

f MPC-2 are akin to that of MPC-1 and will be omitted here for 

revity. To account for the total computation time for the sequen- 

ial DMPC framework, one would add the times taken to solve each 

PC problem respectively, since the solution of MPC-2 depends on 

he MPC-1 results. 

.2. Iterative distributed MPC system 

The communication between two MPCs in an iterative frame- 

ork is two-ways. The optimal control actions calculated by each 

PC are exchanged to better predict future states, and the opti- 

ization problem in each MPC is solved independently in a paral- 

el structure until an iteration criterion has been met. The imple- 

entation strategy is as follows: 

1. MPC-1 and MPC-2 receive the state sensor measurement x (t) 

at t = t k at each sampling instant t k . 

2. At iteration c = 1 , MPC-1 calculates u d 1 (t) over the predic- 

tion horizon assuming u 2 (t) = �2 (t) , ∀ t ∈ [ t k , t k + N ) . MPC-2 cal-

culates u d 2 (t) over the prediction horizon assuming u 1 (t) = 

�1 (t) , ∀ t ∈ [ t k , t k + N ) . The future trajectories of u d 1 (t) and u d 2 (t)

are exchanged between the two MPCs, and each MPC calculates 

and stores the value of its own cost function. 

3. At iteration c > 1 : 

(a) Based on state measurement x (t k ) as well as the latest input 

trajectories received from the other MPC, each MPC evalu- 

ates its own future input trajectory again. 

(b) The MPCs cross-communicate their newest calculated future 

input trajectories. Each MPC computes then stores the value 
of its cost function. 

6 
4. If a termination criterion is met, each MPC selects the input tra- 

jectory corresponding to the smallest cost function value, and 

sends the first control action of this optimal trajectory to its 

actuators. If the termination criterion is not satisfied, go to Step 

3 ( c ← c + 1 ). 

5. At the next sampling instance, when an updated state measure- 

ment is available, go to Step 1 ( k ← k + 1 ). 

he optimization problem of MPC-1 in an iterative distributed 

MPC at iteration c = 1 is presented as follows. Readers may refer 

o the formulations of sequential DMPC design for detailed defini- 

ions of the same variables and constraints. 

 = min 

u d 1 
∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u d 1 (t) , �2 ( ̃  x (t))) dt (15a) 

.t. ˙ ˜ x (t) = F ( ̃  x (t ) , u d 1 (t ) , �2 ( ̃  x (t ))) (15b) 

˜ 
 (t k ) = x (t k ) (15c) 

 d 1 (t) ∈ U 1 , ∀ t ∈ [ t k , t k + N ) (15d) 

˙ 
 

(
x ( t k ) , u d 1 ( t k ) , �2 ( x ( t k ) ) 

)
≤ ˙ W ( x ( t k ) , �1 ( x ( t k ) ) , �2 ( x ( t k ) ) ) , 

(15e) 

f x ( t k ) / ∈ B δ( x e ) and W ( x ( t k ) ) > ρs (15f) 

 ( ̃  x (t)) ≤ ρs , ∀ t ∈ [ t k , t k + N ) , if W (x (t k )) ≤ ρs (15g) 

 ( ̃  x (t)) < W (x (t k )) , ∀ t ∈ (t k , t k + N ) , 

if x (t k ) ∈ B δ(x e ) (15h) 

At iteration c = 1 , the optimization problem of MPC-2 is shown 

s follows: 

 = min 

u d 2 
∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , �1 ( ̃  x (t)) , u d 2 (t)) dt (16a) 

.t. ˙ ˜ x (t) = F ( ̃  x (t) , �1 ( ̃  x (t )) , u d 2 (t )) (16b) 

˜ 
 (t k ) = x (t k ) (16c) 

 d 2 (t) ∈ U 2 , ∀ t ∈ [ t k , t k + N ) (16d) 

˙ 
 

(
x ( t k ) , �1 ( x ( t k ) ) , u d 2 ( t k ) 

)
≤ ˙ W ( x ( t k ) , �1 ( x ( t k ) ) , �2 ( x ( t k ) ) ) , 

(16e) 

f x ( t k ) / ∈ B δ( x e ) and W ( x ( t k ) ) > ρs (16f) 

 ( ̃  x (t)) ≤ ρs , ∀ t ∈ [ t k , t k + N ) , if W (x (t k )) ≤ ρs (16g) 

 ( ̃  x (t)) < W (x (t k )) , ∀ t ∈ (t k , t k + N ) , 

if x (t k ) ∈ B δ(x e ) (16h) 

At iteration c > 1 , after the optimized input trajectories u ∗
d 1 

(t) 

nd u ∗
d 2 

(t) have been exchanged between the two MPCs, the opti- 

ization problem of MPC-1 becomes: 

 = min 

u d 1 
∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u d 1 (t) , u 

∗
d 2 

(t)) dt (17a) 
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.t. ˙ ˜ x (t) = F ( ̃  x (t ) , u d 1 (t ) , u 

∗
d 2 

(t )) (17b) 

˜ 
 (t k ) = x (t k ) (17c) 

 d 1 (t) ∈ U 1 , ∀ t ∈ [ t k , t k + N ) (17d) 

˙ 
 

(
x ( t k ) , u d 1 ( t k ) , u 

∗
d 2 

( t ) 
)

≤ ˙ W ( x ( t k ) , �1 ( x ( t k ) ) , �2 ( x ( t k ) ) ) , (17e) 

f x ( t k ) / ∈ B δ( x e ) and W ( x ( t k ) ) > ρs (17f) 

 ( ̃  x (t)) ≤ ρs , ∀ t ∈ [ t k , t k + N ) , if W (x (t k )) ≤ ρs (17g) 

 ( ̃  x (t)) < W (x (t k )) , ∀ t ∈ (t k , t k + N ) , 

if x (t k ) ∈ B δ(x e ) (17h) 

And the optimization problem of MPC-2 becomes: 

 = min 

u d 2 
∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u 

∗
d 1 

(t) , u d 2 (t)) dt (18a) 

.t. ˙ ˜ x (t) = F ( ̃  x (t ) , u 

∗
d 1 

(t ) , u d 2 (t )) (18b) 

˜ 
 (t k ) = x (t k ) (18c) 

 d 2 (t) ∈ U 2 , ∀ t ∈ [ t k , t k + N ) (18d) 

˙ 
 

(
x ( t k ) , u 

∗
d 1 

( t k ) , u d 2 ( t ) 
)

≤ ˙ W ( x ( t k ) , �1 ( x ( t k ) ) , �2 ( x ( t k ) ) ) , (18e) 

f x ( t k ) / ∈ B δ( x e ) and W ( x ( t k ) ) > ρs (18f) 

 ( ̃  x (t)) ≤ ρs , ∀ t ∈ [ t k , t k + N ) , if W (x (t k )) ≤ ρs (18g) 

 ( ̃  x (t)) < W (x (t k )) , ∀ t ∈ (t k , t k + N ) , 

if x (t k ) ∈ B δ(x e ) (18h) 

Since the two MPCs in an iterative framework can be simulta- 

eously solved in a parallel structure using separate processors, the 

otal computation time would equal to the maximum time of the 

wo MPCs including all iterations taken until termination of itera- 

ions. The total number of iterations would depend on the termi- 

ation criterion. Some examples of these criteria may include, the 

otal iterations must not exceed a maximum threshold, c ≤ c max ; 

he computation time each MPC takes must not surpass a time 

hreshold; between two consecutive iterations, the difference in 

he cost function value or the computed trajectory of control ac- 

ions must be sufficiently small. 

emark 2. In this work, we have presented the formulations and 

imulations of DMPC systems in the case of two subsystems (and 

hus, two controllers) for simplicity of notation, but the results are 
7 
onceptually straightforward and can be similarly extended to the 

ase of N sys subsystems having N sys controllers in total. 

Once solving both optimization problems of MPC-1 and MPC-2 

s complete, the proposed CLBF-DMPC provides the optimal control 

ctions in the following form: 

 1 (t) = u 

∗
d 1 

(t k ) , ∀ t ∈ [ t k , t k +1 ) 

 2 (t) = u 

∗
d 2 

(t k ) , ∀ t ∈ [ t k , t k +1 ) 
(19) 

he control actions computed by each MPC will be applied in a 

ample-and-hold manner to the nonlinear process of Eq. (1) with 

ounded disturbances. 

We will now demonstrate that, for the nonlinear system of 

q. (1) , stability and safety can be established under the CLBF- 

ased DMPC system with the theorem and proof below. Note that 

he proof is written with respect to the sequential DMPC, but the 

ame concept can be applied to the iterative DMPC as well. 

heorem 1. Consider the system described by Eq. (1) , and it has a

onstrained CLBF W (x ) that satisfies Eq. (4) with its minimum value 

t the origin. Given any initial condition x 0 ∈ U ρ , the CLBF-DMPC op- 

imization problems of Eqs. (13) and (14) are guaranteed to have re- 

ursive feasibility for all times, and under the sample-and-hold imple- 

entation of CLBF-DMPC control actions [ u 1 u 2 ] = [ u ∗
d 1 

u ∗
d 2 

] , x (t) is

ounded in U ρ for all t ≥ 0 , and as t → ∞ , converges to U ρmin 
. 

roof. 

Part 1: In Eq. (13) and (14) , the optimization problems of the 

CLBF-DMPC have feasible solutions at all times, and this is 

because the CLBF-DMPC constraints of Eqs. (13d) , (13h) , and 

(14d), (14h) can be met respectively by the sample-and-hold 

implementation of control actions u 1 = ū 1 (x ) ∈ U 1 , u 2 = 

ū 2 (x ) ∈ U 2 , ∀ x ∈ B δ (x e ) and u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈
U 2 , ∀ x ∈ U ρ\B δ (x e ) . By letting u 1 (t k ) = �1 (x (t k )) , u 2 (t k ) =
�2 (x (t k )) when x (t k ) ∈ U ρ\ (B δ (x e ) ∪ U ρ ) , Eqs. (13f) and

(14f) are also satisfied. In Proposition 1 , we have shown 

that once x is driven inside U ρs by the CLBF-based control 

laws u 1 = �1 (x ) ∈ U 1 , u 2 = �2 (x ) ∈ U 2 , it will not exit U ρmin 

within one sampling period for any u 1 ∈ U 1 , u 2 ∈ U 2 . There-

fore, the CLBF-based control laws are able to provide a fea- 

sible solution for the input trajectories and satisfy the con- 

straints of Eqs. (13g) and (14g) . Lastly, as the controller u 1 = 

ū 1 (x ) ∈ U 1 , u 2 = ū 2 (x ) ∈ U 2 are able to satisfy W (x (t k +1 )) <

W (x (t k )) , the control action u j (t) = ū j (x (t k + i )) ∈ U j , for j =
1 , 2 , ∀ t ∈ [ t k + i , t k + i +1 ) with i = 0 , . . . , N − 1 will satisfy the

constraints of Eqs. (13h) and (14h) and eventually navigate 

the states away from the stationary saddle points if x (t k ) ∈ 

B δ (x e ) . 

Part 2: We will now demonstrate simultaneous stability and 

safety for the nonlinear system of Eq. (1) can be guaran- 

teed under the optimized solutions of Eqs. (13) and (14) . For 

any x 0 ∈ U ρ\U ρs , the constraints of Eqs. (13f) and (14f) en-

sure that the CLBF-DMPC control actions u ∗
d 1 

, and sequen- 

tially u ∗
d 2 

, are optimized to decrease the value of the CLBF 

and will drive x towards the origin; the closed-loop state x 

will eventually enter U ρs within finite sampling steps. �

After x enters U ρs , the constraints of Eqs. (13g) and (14g) en- 

ure the boundedness of the closed-loop state in U ρmin 
for the re- 

aining time considering the impact of sample-and-hold control 

nd the presence of bounded disturbance. As the safe operating 

egion U ρ does not intersect with the unsafe region D, x will not 

nter D for all times and will remain inside U ρ for any x 0 ∈ U ρ .

ith x 0 ∈ U ρ\U ρs , the constraints of Eqs. (13f) and (14f) pull the

tate towards the origin. The constraint of Eqs. (13h) and (14h) will 

e activated when x arrives at a saddle point neighborhood, i.e., 
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 (t k ) ∈ B δ (x e ) ; x will be driven away from B δ (x e ) in the direc-

ion of W (x ) decreasing. After it leaves from B δ (x e ) , the DMPC

onstraints of Eqs. (13f) , (13g) and (14f) , (14g) will take over and

ontinue to ensure closed-loop safety and stability thereafter; ul- 

imately, the closed-loop state converges towards the origin and 

s bounded in U ρmin 
. Thus, closed-loop stability and safety under 

he sample-and-hold implementation of CLBF-DMPC for the non- 

inear system of Eq. (1) with sufficiently bounded disturbance in 

he presence of bounded unsafe sets have been shown. 

.3. Modified DMPC structure in special cases 

In many industrial processes, there are examples where the 

rocess variables of an upstream sub-process impact the dynam- 

cs of a downstream sub-process, but not vice versa. In these cases 

here the first subsystem is independent and the second sub- 

ystem is dependent on the first subsystem, we can design the 

MPC with some special considerations to assess whether safety 

nd stability can be simultaneously guaranteed. We use sequential 

MPC as an example. Since the first subsystem is completely inde- 

endent, its contractive constraint of Eq. (13f) can be modified to 

nly account for the CLBF of subsystem-1 ˙ W j , j = 1 , and therefore

nly depends on the states and inputs of subsystem-1, x j (t k ) , u j 
here j = 1 . In doing so, MPC-1 can guarantee the stability and

afety of the upstream process, subsystem-1. The contractive con- 

traint of Eq. (14f) can also be similarly modified to account for the 

LBF function of subsystem-2 only, ˙ W j , j = 2 , where ˙ W 2 (x 1 , x 2 , u 2 )

an be simplified to be a function of x 1 of subsystem-1, x 2 of 

ubsystem-2, and u 2 of subsystem-2. This leads to a modified for- 

ulation of the DMPC system with simpler computation complex- 

ty. However, since the constraints to each controller are only with 

espect to its own subsystem, one caveat to this modification is 

hat the state measurements of subsystem-1 will be treated as 

isturbances in the computation of MPC-2. Therefore, as we will 

emonstrate with a nonlinear example in Section 6 , there are val- 

es of states for subsystem-1 that may result in non-negative val- 

es of ˙ W 2 for subsystem-2. 

The DMPC formulation for such processes can be modified for 

mproved computation time and algorithm simplicity. Using se- 

uential DMPC as an example, the optimization problem of MPC-1 

s as follows: 

 = min 

u d 1 
∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u d 1 (t) , �2 ( ̃  x (t))) dt (20a) 

.t. ˙ ˜ x (t) = F ( ̃  x (t ) , u d 1 (t ) , �2 ( ̃  x (t ))) (20b) 

˜ 
 (t k ) = x (t k ) (20c) 

 d 1 (t) ∈ U 1 , ∀ t ∈ [ t k , t k + N ) (20d) 

˙ 
 1 

(
x 1 ( t k ) , u d 1 ( t k ) 

)
≤ ˙ W 1 ( x 1 ( t k ) , �1 ( x ( t k ) ) ) , (20e) 

f x 1 ( t k ) / ∈ B δ1 
( x 1 e ) and W 1 ( x 1 ( t k ) ) > ρs 1 (20f) 

 1 ( ̃  x 1 (t)) ≤ ρs 1 , ∀ t ∈ [ t k , t k + N ) , if W 1 (x 1 (t k )) ≤ ρs 1 (20g) 

 1 ( ̃  x 1 (t)) < W 1 (x 1 (t k )) , ∀ t ∈ (t k , t k + N ) , 

if x 1 (t k ) ∈ B δ (x 1 e ) (20h) 

1 n

8 
here the level sets of W j (x j ) will be respectively defined with 

ositive real constants ρs j , j = 1 , 2 , and the neighborhood of 

addle points present in the stability and safety region of the 

ubsystem- j will be correspondingly denoted as B δ j 
(x je ) . 

The predicted state trajectory calculation of subsystem-2 ˜ x 2 re- 

ies on the state measurements of subsystem-1 x 1 (t k ) . The calcu- 

ation of ˙ W 2 will need the measurements of x 1 (t k ) in addition to 

 2 (t k ) and u 2 (t k ) . Note that the full state vector is the combina-

ion of states of subsystems 1 and 2, i.e., x (t k ) 
T = [ x 1 (t k ) 

T , x 2 (t k ) 
T ] .

herefore, the formulation of the modified MPC-2 in a sequential 

istributed design is as follows: 

 = min 

u d 2 
∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u 

∗
d 1 

(t) , u d 2 (t)) dt (21a) 

.t. ˙ ˜ x (t) = F ( ̃  x (t ) , u 

∗
d 1 

(t ) , u d 2 (t )) (21b) 

˜ 
 (t k ) = x (t k ) (21c) 

 d 2 (t) ∈ U 2 , ∀ t ∈ [ t k , t k + N ) (21d) 

˙ 
 2 

(
x ( t k ) , u d 2 ( t k ) 

)
≤ ˙ W 2 ( x ( t k ) , �2 ( x ( t k ) ) ) , (21e) 

f x 2 ( t k ) / ∈ B δ2 
( x 2 e ) and W 2 ( x 2 ( t k ) ) > ρs 2 (21f) 

 2 ( ̃  x 2 (t)) ≤ ρs 2 , ∀ t ∈ [ t k , t k + N ) , if W 2 (x 2 (t k )) ≤ ρs 2 (21g) 

 2 ( ̃  x 2 (t)) < W 2 (x 2 (t k )) , ∀ t ∈ (t k , t k + N ) , 

if x 2 (t k ) ∈ B δ2 
(x 2 e ) (21h) 

A similar modification can be applied to iterative DMPC struc- 

ures. Following the MPC-1 calculation, closed-loop stability and 

afety can be guaranteed for subsystem-1 using the CLBF-based 

onstraints on W 1 . Since subsystem-2 is dependent on the states 

f subsystem-1 and since the calculation of MPC-2 is carried out 

ith CLBF-based constraints on W 2 only, there may exist points in 

tate space where the explicit control law �2 (x (t k )) can no longer 

uarantee a negative ˙ W 2 (x (t k ) , �2 (x (t k ))) given the impact from 

he state measurements of subsystem-1 x 1 (t k ) . When this happens, 

he optimizer for MPC-2 may still attempt to find a set of input 

rajectory u ∗
d 2 

that decreases W 2 , i.e., ˙ W 2 (x (t k ) , u d 2 (t k )) < 0 . Alter-

atively, MPC-2 can opt to use the discontinuous control actions 

¯ 2 (x ) ∈ U 2 , which ensures the existence of a solution for u ∗
d 2 

that

ill decrease W 2 ( ̃  x 2 ) along the predicted trajectory. 

emark 3. With respect to the use of a Barrier function to express 

afety specifications, it is important to note that the Barrier Func- 

ion plays essentially the role of a safety constraint (i.e., temper- 

ture needs to be below a certain value or a nonlinear function 

f several state variables needs to be within a certain range) but 

t is implemented within the MPC scheme in a way that ensure 

hat the closed-loop state does not enter the unsafe set (i.e., re- 

ion of increased risk) in a guaranteed manner (simply, setting up 

 constraint in the MPC to require that the closed-loop state does 

ot enter in a certain unsafe region cannot ensure that such an 

xcursion of the closed-loop state to the unsafe set will not oc- 

ur). Regions in state-space where the system trajectory may be 

llowed to enter, but due to increasing safety risk the state should 

ot stay there long, can be formulated as soft constraints in MPC, 
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nd have been studied in past works ( Zhang et al., 2019 ). Such

oft constraints can be added in the DMPC framework presented 

n this work as they do not lead to infeasibility of the MPC opti-

ization problem. In the case where the closed-loop state is al- 

owed to enter the unsafe region for a particular subsystem, the 

mount of time a controller takes to return the closed-loop sys- 

em state to a safe region is related to the speed of the closed- 

oop response under the CLBF-based DMPC, which can be tuned 

y adjusting the weights in the MPC cost function. Finally, it is im- 

ortant to note that if there exist model uncertainties and process 

isturbances that lead to process/model mismatch, the proposed 

MPC provides a robustness margin to sufficiently small bounded 

isturbances through the negative margin in the Lyapunov function 

ime-derivative, which is a consequence of the use of measurement 

eedback in MPC at each sampling time. 

. Application to a nonlinear chemical process 

We will demonstrate the proposed CLBF-DMPC method on a 

hemical process example, which consists of two well-mixed, non- 

sothermal continuous stirred tank reactors (CSTRs) in series. An 

rreversible second-order exothermic reaction takes place in each 

eactor that transforms a reactant A to a product B ( A → B ). Each

STR is fed with reactant material A with the inlet concentration 

 A j0 , the inlet temperature T j0 and feed volumetric flow rate of the 

eactor F j0 , j = 1 , 2 , where j = 1 denotes the first CSTR and j = 2

enotes the second CSTR. The reactors are equipped with heating 

ackets to remove/supply heat at a rate Q j , j = 1 , 2 . This system can

e modelled by the following material and energy balance equa- 

ions: 

dC A 1 
dt 

= 

F 10 

V 1 

(C A 10 − C A 1 ) − k 0 e 
−E 
RT 1 C 2 A 1 (22a) 

dT 1 
dt 

= 

F 10 

V 1 

(T 10 − T 1 ) + 

−�H 

ρL C p 
k 0 e 

−E 
RT 1 C 2 A 1 + 

Q 1 

ρL C p V 1 

(22b) 

dC B 1 
dt 

= − F 10 

V 1 

C B 1 + k 0 e 
−E 
RT 1 C 2 A 1 

(22c) 

dC A 2 
dt 

= 

F 20 

V 2 

C A 20 + 

F 10 

V 2 

C A 1 −
F 10 + F 20 

V 2 

C A 2 (22d) 

k 0 e 
−E 
RT 2 C 2 A 2 (22e) 

dT 2 
dt 

= 

F 20 

V 2 

T 20 + 

F 10 

V 2 

T 1 − F 10 + F 20 

V 2 

T 2 (22f) 

 

−�H 

ρL C p 
k 0 e 

−E 
RT 2 C 2 A 2 + 

Q 2 

ρL C p V 2 

(22g) 

dC B 2 
dt 

= 

F 10 

V 2 

C B 1 − F 10 + F 20 

V 2 

C B 2 + k 0 e 
−E 
RT 2 C 2 A 2 (22h) 

here Q j , V j , C A j , T j , where j = 1 , 2 , are the heat input rate, the

olume of the reacting liquid, concentration of reactant A , and 

he temperature in the first and the second reactor, respectively. 

H, E, k 0 , and R represent the enthalpy of the reaction, activa- 

ion energy, pre-exponential constant, and ideal gas constant, re- 

pectively. All process parameter values can be found in Table 1 . 

he manipulated inputs for both CSTRs are the inlet concentra- 

ion of species A and the heat input rate, which are in devia- 

ion variable representations �C A j0 = C A j0 − C A j0 s , �Q j = Q j − Q j s , 
9 
j = 1 , 2 , respectively. The manipulated inputs have their respec- 

ive lower and upper bounds: | �C A j0 | ≤ 3 . 5 kmol/m 

3 and | �Q j | ≤
 × 10 5 kJ/h, j = 1 , 2 . The states of the two-CSTR system are x T =
 C A 1 − C A 1 s T 1 − T 1 s C A 2 − C A 2 s T 2 − T 2 s ] , where C A 1 s , C A 2 s , T 1 s and

 2 s are the steady-state values of concentration of A and tem- 

erature in the two reactors, such that the operating steady- 

tate and equilibrium of the nonlinear system is at the origin 

f the state-space. States of the CSTR-1 can be separately de- 

oted as [ x 1 , x 2 ] = [ C A 1 − C A 1 s T 1 − T 1 s ] and the states of the CSTR-

 are denoted as [ x 3 , x 4 ] = [ C A 2 − C A 2 s T 2 − T 2 s ] . In a distributed

PC framework, both MPCs have knowledge of full-state mea- 

urements as well as the overall plant model of the two-CSTR 

rocess. Feedback measurements on x (t) are received by both 

PCs, where MPC-1 optimizes [ u 1 , u 2 ] = [�C A 10 �Q 1 ] and MPC-

 optimizes [ u 3 , u 4 ] = [�C A 20 �Q 2 ] . The common control ob-

ective of the two MPCs is to stabilize the two-CSTR process at 

he unstable operating steady-state x T s = [ C A 1 s C A 2 s T 1 s T 2 s ] = 

1 . 9537 kmol / m 

3 , 1 . 9537 kmol / m 

3 , 401 . 9 K , 401 . 9 K ] . To nu-

erically simulate the dynamic ODE model of Eq. (22) , we use 

he explicit Euler method with an integration time step of h c = 

0 −5 h. We demonstrate our simulations with the sequential DMPC 

ramework. The nonlinear optimization problems of the sequen- 

ial DMPC of Eqs. (20) and (21) are calculated every sampling 

eriod � = 10 −3 h using the Python module of the IPOPT soft- 

are package ( Wächter and Biegler, 2006 ). The objective func- 

ion in the DMPC optimization problem has the form L (x, u 1 , u 2 ) =
 

T Qx + u T 1 R 1 u 1 + u T 2 R 2 u 2 , where Q = diag[2 × 10 3 1 2 × 10 3 1] ,

 1 = R 2 = diag[8 × 10 −13 0 . 001] ; the same objective function is

sed in both MPC-1 and MPC-2. Due to the special structure of the 

onlinear process studied, where the first CSTR is completely inde- 

endent of the second CSTR, we can adopt the modified DMPC de- 

ign in Eqs. (20) and (21) . In this manuscript, we present the sim- 

lation results of a sequential DMPC; however, the same closed- 

oop performance can be similarly demonstrated with an iterative 

MPC. 

We first consider a bounded unsafe region D b , which is embed- 

ed fully in the closed-loop system stability region, and is located 

n the middle of the stability region, as shown in Fig. 1 . This is so

hat the state will encounter this unsafe set on its trajectory as it 

onverges towards the origin if no safety control is considered. It 

s challenging to handle such unsafe sets for the CLBF-DMPC as 

he closed-loop state needs to be driven around the unsafe set, 

owards the steady-state thereafter, and ultimately bounded in a 

eighborhood around the steady-state. In this work, we consider 

n ellipsoid described as D b := { x ∈ R 

4 | h 1 (x ) = (x 1 + 0 . 92) 2 +
(x 2 −42) 2 

500 < 0 . 06 , h 2 (x ) = (x 3 + 0 . 92) 2 + 

(x 4 −42) 2 

500 < 0 . 06 } . By follow-

ng the design method in Wu and Christofides (2019) , we can 

efine the set H which encloses D as H := { x ∈ R 

4 | h 1 (x ) ≤
 . 07 , h 2 (x ) ≤ 0 . 07 } . Then, the CBF B j (x ) , j = 1 , 2 can be con-

tructed as follows: 

 j (x ) = 

{ 

e 
h j (x ) 

h j (x ) −0 . 07 − e −6 , if x ∈ H 

−e −6 , if x / ∈ H 

(23) 

rom Eq. (23) , it is guaranteed that B (x ) is positive in the un-

afe region D. The overall CLBF is the sum of the CLBFs for the 

wo CSTRs, i.e., W (x ) = W 1 (x ) + W 2 (x ) = V 1 (x ) + V 2 (x ) + μ(B 1 (x ) +
 2 (x )) + ν where V 1 (x ) = x T 1 P 1 x 1 and V 2 (x ) = x T 2 P 2 x 2 . U ρ , which is

afe operating region and the set of valid initial conditions, is de- 

ned with ρ = 0 as per Eq. (4c) . W (x ) is designed using ν = −340 ,

= 1 × 10 9 , which are selected based on the design method in 

 Wu and Christofides, 2019 ), and the following positive definite P 

atrices: 

 1 = P 2 = 

[
1060 22 

22 0 . 52 

]
(24) 
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Table 1 

Values and descriptions of process parameters and steady-states of state and input variables. 

Parameter/value Description 

F 10 , F 20 = 5 m 

3 /h Feed flow rate of CSTR 1 & 2 

T 10 = 300 K, T 20 = 300 K Feed temperatures of CSTR 1 & 2 

V 1 = 1 . 0 m 

3 , V 2 = 1 . 0 m 

3 Volume of reacting liquid in CSTR 1 & 2 

k 0 = 8 . 46 × 10 6 h −1 Pre-exponential constant 

E = 5 . 0 × 10 4 kJ/kmol Activation energy 

�H = −1 . 15 × 10 4 kJ/kmol, Enthalpy of reaction 

C p = 0 . 231 kJ/(kg K) Heat capacity 

R = 8 . 314 kJ/(kmol K) Gas constant 

ρ = 10 0 0 kg/m 

3 Liquid solution density 

C A 10 s = 4 kmol/m 

3 , C A 20 s = 4 kmol/m 

3 Inlet concentration steady-state values 

Q 1 s = 0 kJ/hr, Q 2 s = 0 kJ/hr Heat input rate steady-state values 

C A 1 s = 1 . 9537 kmol/m 

3 , C A 2 s = 1 . 9537 kmol/m 

3 Concentration of reactant A steady-state values 

T 1 s = 401 . 9 K, T 2 s = 401 . 9 K Temperature steady-state values 

Fig. 1. Closed-loop trajectories of CSTR-1 and CSTR-2 under the sequential CLBF-DMPC in the presence of a bounded unsafe set. 
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imilarly, we also study the scenario of unbounded unsafe region, 

hich is defined as D u := { x ∈ R 

4 | h 1 (x ) = x 1 + x 2 > 7 . 2 , h 2 (x ) =
 3 + x 4 > 7 . 2 } . The enclosing compact set H is defined as H := { x ∈
 

4 | h 1 (x ) > 6 . 8 , h 2 (x ) > 6 . 8 } , and the corresponding CBFs for the

wo subsystems B j (x ) , j = 1 , 2 are shown as follows: 

 j (x ) = 

{
e h j (x ) −7 . 2 − 2 × e −0 . 4 , if x ∈ H 

−e −0 . 4 , if x / ∈ H 

(25) 

he CLBF W (x ) for the unbounded unsafe region is constructed 

ith ν = −0 . 104 and μ = 50 0 0 . 

Closed-loop simulations are run starting from various initial 

onditions of the two CSTRs inside the safety and stability regions 

nder two scenarios: (1) in the presence of bounded, and (2) un- 

ounded unsafe sets. The state trajectories of both CSTRs under 

LBF-DMPC for cases of bounded and unbounded unsafe sets are 

hown in Figs. 1 and 2 respectively. These initial conditions are 

hosen to cover various points in state-space where the control 

roblem becomes challenging to solve. For example, both CSTRs 

tart at an initial condition very close to the boundary of the un- 

afe set, but at different positions such that the directions of state 

volution may be different; one CSTR may start from the side of 

he unsafe set and the other CSTR may start from the side without 

he unsafe set, such that one MPC drives the closed-loop state of 

ts respective subsystem around the unsafe ellipse, and the other 

PC drives the closed-loop state of its subsystem towards the ori- 

in at optimal rate. It is demonstrated that the closed-loop system 

chieve stability while successfully avoiding the unsafe regions in 
10 
oth CSTRs when the simulation starts at the illustrated five ini- 

ial conditions inside their respective regions U ρ1 
for CSTR-1 and 

 ρ2 
for CSTR-2, and eventually converges and is bounded in their 

espective terminal sets U ρmin 1 
and U ρmin 2 

. This is shown for both 

cenarios of bounded and unbounded unsafe sets. 

Note that we have selected initial conditions of the two CSTRs 

nside their respective stability and safety regions, U ρ1 
and U ρ2 

, and 

he stability and safety region for the overall system U ρ should be 

 subset of the union of the two individual sets, U ρ ⊆ (U ρ1 
∪ U ρ2 

) .

s it is difficult to have a closed-form representation of U ρ , the 

haracterization of U ρ can be carried out through numerical simu- 

ation to first find a region for which 

˙ W (x, �1 (x ) , �2 (x )) < 0 , and

hen find the largest level set of W (x ) within this region. 

The stability and safety region U ρ1 
for CSTR-1 can be 

haracterized through numerical simulation by assessing 
˙ 
 1 (x 1 (t k ) , �1 (x 1 (t k ))) and using information on the states of 

STR-1 itself. To rigorously characterize the stability and safety 

egion U ρ2 
for CSTR-2, discretized points in state-space for which 

˙ 
 2 (x (t k ) , �2 (x (t k ))) < 0 need to be assessed first. However, since

 (t k ) also includes the x 1 (t k ) , the characterization of U ρ2 
cannot

e done without considering the process state of CSTR-1; this 

egion can be also found via state-space discretization and ex- 

ensive numerical simulations, but is difficult to visualize since it 

nvolves a 4-D state vector. Thus, considering bounded unsafe sets, 

igs. 4 and 5 show some CSTR-2 points in state-space where ˙ W 2 is 

endered negative under the CLBF-based Sontag control law �2 (x ) 

lotted with respect to x 1 of CSTR-1 and x 2 of CSTR-1 separately. 
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Fig. 2. Closed-loop trajectories of CSTR-1 and CSTR-2 under the sequential CLBF-DMPC in the presence of an unbounded unsafe set. 

Fig. 3. Closed-loop trajectories starting from different initial conditions of CSTR-1 and the same initial condition of CSTR-2 under the sequential CLBF-DMPC in the presence 

of a bounded unsafe set showing safe and stable performance. 
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he x 1 and x 2 points of CSTR-1 are generated by discretizing U ρ1 
, 

nd the x 3 and x 4 points of CSTR-2 are generated by discretizing 

nly the region in between the unsafe set D 2 and the compact 

et H 2 which encloses D 2 . We only assess discretized points in 

his critical region of safety to see which points may contribute to 

eopardized safety when the states of CSTR-2 are near the bound- 

ry of the unsafe set. We can see that there exists combinations of 

x 1 , x 2 ) values that result in 

˙ W 2 ≥ 0 under the CLBF-based Sontag 

ontrol law �2 (x (t k )) . In these situations, the CLBF-DMPC can 

till optimize for solutions of u d 2 (x (t k )) that will yield decreasing 

 2 along the predicted trajectory; for example, the constraint of 

q. (21h) can be activated and the set of discontinuous control 

ctions ū 2 (x ) ∈ U 2 that exist to address the cases of saddle points

an be used. In situations where ˙ W 2 (x, �2 (x )) = 0 , the existence

f ū 2 (x ) ∈ U 2 ensure the feasibility of DMPC-2 in guaranteeing sta- 

ility and safety. However, in situations where ˙ W 2 (x, �2 (x )) > 0 , 

MPC-2 may run into points of in-feasibility during optimization 

nd this is demonstrated in Fig. 6 . 

In this study, we only consider the set of initial conditions in 

he respective regions U ρ1 
and U ρ2 

for the closed-loop simulations 
11 
f CSTR-1 and CSTR-2. In our simulations, U ρ2 
mirrors U ρ1 

for 

implistic visualization and to provide a preliminary set of initial 

onditions for which we can consider to perform closed-loop con- 

rol using the CLBF-DMPC. As such, we can demonstrate that there 

re certain values of states of CSTR-1 that may jeopardize closed- 

oop safety for the same valued CSTR-2 states under the explicit 

LBF-based Sontag control law. Furthermore, even though the 

iscontinuous control actions ū 2 (x ) ∈ U 2 ensure feasibility of the 

LBF-DMPC and provide a set of solutions that decrease W 2 along 

he prediction trajectory in the neighborhood of saddle points 

here ˙ W 2 = 0 , there may be situations where ˙ W 2 > 0 and DMPC-2 

s unable to reach a feasible solution that decreases W 2 at that 

articular point in state-space. Fig. 3 demonstrates that starting 

rom five different initial conditions of CSTR-1 within U ρ1 
and the 

ame initial condition of CSTR-2 within U ρ2 
, simultaneous stability 

nd safety can be achieved for both CSTRs where the closed-loop 

tates for the overall system do not enter the unsafe region and 

onverges to the terminal sets. This demonstrates the efficacy of 

he CLBF-DMPC in handling the impact of the states of CSTR-1 on 

he closed-loop evolution of CSTR-2. We may also examine the 
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Fig. 4. Discretized points (x 3 , x 4 ) near CSTR-2’s unsafe region D 2 in state-space showing the negativity and non-negativity of ˙ W 2 under the CLBF-based Sontag control law 

with respect to different values of x 1 discretized from CSTR-1’s safe operating region U ρ1 
. 

Fig. 5. Discretized points (x 3 , x 4 ) near CSTR-2’s unsafe region D 2 in state-space showing the negativity and non-negativity of ˙ W 2 under the CLBF-based Sontag control law 

with respect to different values of x 2 discretized from CSTR-1’s safe operating region U ρ1 
. 
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fficacy of CLBF-DMPC when the state of CSTR-2 is on the verge of 

ritical safety. Starting from the same initial condition of CSTR-2 

x 3 , x 4 ) = (−1 . 135 kmol / m 

3 , 45 . 2 K ) that is within the enclosing

ompact set H 2 but outside the unsafe set D 2 , we can see in

ig. 6 that some initial conditions of CSTR-1 (orange, (x 1 , x 2 ) =
−1 . 08 kmol / m 

3 , 64 K ) ) may result in safe closed-loop operation

here the closed-loop state successfully avoids the unsafe sets 
12 
 1 and D 2 , but some (blue, (x 1 , x 2 ) = (−0 . 6 kmol / m 

3 , 36 K ) )

ay result in the closed-loop state of CSTR-2 entering the un- 

afe set D 2 . Note that both sets of initial conditions of CSTR-1 

hown in Fig. 6 have been evaluated to have ˙ W 2 (x, �2 (x )) > 0 .

owever, it is shown that starting from (x 1 , x 2 , x 3 , x 4 ) =
−1 . 08 kmol / m 

3 , 64 K , −1 . 135 kmol / m 

3 , 45 . 2 K ) (or-

nge), the CLBF-DMPC is able to provide feasible so- 
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Fig. 6. Closed-loop trajectories starting from two different initial conditions of CSTR-1 and the same initial condition of CSTR-2 under the sequential CLBF-DMPC in the 

presence of a bounded unsafe set showing one safe (orange) and one unsafe (blue) trajectory. 
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utions that yield 

˙ W 2 (x (t k ) , u 
∗
d 2 

(t k )) < 0 and drive the

losed-loop states away and around the unsafe set D 2 . 

n the other hand, starting from (x 1 , x 2 , x 3 , x 4 ) =
−0 . 6 kmol / m 

3 , 36 K , −1 . 135 kmol / m 

3 , 45 . 2 K ) (blue), the

LBF-DMPC fails to provide a set of feasible solutions with 

˙ 
 2 (x (t k ) , u 

∗
d 2 

(t k )) < 0 , therefore resulting in the closed-loop state

f CSTR-2 entering the unsafe set D 2 within the first sampling 

eriod. 

. Conclusion 

We have shown theoretical analysis that nonlinear systems with 

nput constraints and consisting of multiple subsystems can be sta- 

ilized by a CLBF-DMPC while not crossing the boundary of unsafe 

egions. A constrained CLBF is designed to characterize a stability 

egion that has no intersection with the unsafe regions, and sub- 

equently used to design CLBF-based explicit control laws for each 

ubsystem. A CLBF-DMPC, which can be calculated either sequen- 

ially or iteratively, is presented and proven to have recursive feasi- 

ility as well as stability and safety properties with considerations 

f sample-and-hold control action implementation and presence of 

ounded disturbances. A modified DMPC structure is also studied 

nd simulated for particular considerations of nonlinear subsys- 

ems. Lastly, the effectiveness of the proposed CLBF-DMPC system 

s demonstrated on a two-CSTR process with both bounded and 

nbounded unsafe sets. 
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