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Abstract

In this paper, we propose a control Lyapunov-barrier function-based model predic-

tive control method utilizing a feed-forward neural network specified control barrier

function (CBF) and a recurrent neural network (RNN) predictive model to stabilize

nonlinear processes with input constraints, and to guarantee that safety require-

ments are met for all times. The nonlinear system is first modeled using RNN tech-

niques, and a CBF is characterized by constructing a feed-forward neural network

(FNN) model with unique structures and properties. The FNN model for the CBF is

trained based on data samples collected from safe and unsafe operating regions, and

the resulting FNN model is verified to demonstrate that the safety properties of the

CBF are satisfied. Given sufficiently small bounded modeling errors for both the FNN

and the RNN models, the proposed control system is able to guarantee closed-loop

stability while preventing the closed-loop states from entering unsafe regions in

state-space under sample-and-hold control action implementation. We provide the

theoretical analysis for bounded unsafe sets in state-space, and demonstrate the

effectiveness of the proposed control strategy using a nonlinear chemical process

example with a bounded unsafe region.
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1 | INTRODUCTION

The severity of potential hazards involved and the close interaction

between human lives and environment make safety a top priority in any

industrial plant operations. The catastrophic outcomes of these incidents

alarm us of the importance of maintaining, designing, and implementing

stricter and more robust process and operational safety measures.1 One

way to ensure this is by designing a comprehensive and robust process

control system that not only maintains stable production and economic

optimality, but also handles unexpected production scenarios that could

lead to unsafe operating conditions and environmental hazards. In addi-

tion to configuring alarming thresholds on process variables, the interac-

tions between multiple process variables in a large-scale complex plant

and their impact on the operational safety of the system should also be

considered. Hence, MPC has been proposed as an advanced control

methodology to account for multivariable interactions, variable and

safety constraints, and nonlinearities in industrial plants.

Amongst many MPC formulations, Lyapunov-based MPC (LMPC)

ensures feasibility and stabilizability within an explicitly defined stabil-

ity region using a Lyapunov-based stabilizing control law.2,3 Previ-

ously, safety considerations have been incorporated in the design of

LMPC algorithms to specify unsafe regions of operation in state space

characterized by the relative safeness of process states,4 as well as to

ensure that unsafe regions are avoided at all times by utilizing a con-

trol Lyapunov-barrier function (CLBF).5,6 CLBFs are developed from

the combination of a control Lyapunov function (CLF) and a control

barrier function (CBF), and can be used in control algorithms to

account for both stability and safety, respectively.7–9 Unsafe regions
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can be characterized by CBFs, which were proposed in many litera-

ture works10–12 to ensure closed-loop safe performance. Amongst the

many advanced control methods, CLBF has been included as part of

the MPC formulation in Wu et al.13 to account for input constraints,

safety considerations, and the stability of the closed-loop system.

One challenge of implementing CLBF-based controllers is whether

the unsafe operating region can be explicitly and accurately represented

in closed form as a function of process states. While this may be possi-

ble to do for simple shapes or patterns of the unsafe region, it is practi-

cally difficult to express such a barrier function for real industrial

processes with complex unsafe regions that cannot be readily described

with common explicit functions. To this end, feed-forward neural net-

works (FNNs) can be used to model barrier functions based on data

samples collected from the safe and the unsafe operating regions.

Neural networks (NNs) have a proven record of success in solving

both classification and regression problems, whether it be via super-

vised or unsupervised approaches. According to the universal approxi-

mation theorem, NNs with sufficient number of neurons are able to

approximate any nonlinear functions on compact subsets of the state

space.14,15 Many previous works have been developed to incorporate

various machine learning modeling approaches with the design of

MPC.16–18 In this work, in addition to using a recurrent neural network

(RNN) as the prediction model in the MPC, we also characterize the

CLBF using an FNN model. Provided with extensive training data which

are labeled, NN models can be constructed with strategically chosen

architectures, activation and objective functions, and evaluation met-

rics, and ultimately trained with supervision to approximate the barrier

function. The FNN-specified barrier function can be proven to satisfy

all required conditions of a barrier function, and can then be applied to

the CLBF-based controllers. In our study, we consider a CLBF-MPC,

where the barrier function is found using FNN structures.

The remaining paper is organized as follows. Preliminaries on the

class of systems considered, the stabilizability assumptions and safety

considerations given by CLBF are described in Section 2. We introduce

the structure and the development of the NN model in Section 3, along

with proofs of its efficacy when applied in the CLBF-based controllers.

In Section 4, the formulation of the CLBF-MPC with NN-specified BF is

presented, where the proof for recursive feasibility of the optimization

problem, as well as the boundedness and convergence of the closed-

loop state while always avoiding the unsafe region is shown, given

bounded modeling error of the NN-BF, sample-and-hold implementa-

tion of control actions, and a well-characterized set of initial conditions.

Lastly, in Section 5, the control method proposed in this work is applied

to a chemical process example to illustrate its effectiveness.

2 | PRELIMINARIES

2.1 | Notation

We use �j j to denote the Euclidean norm of a vector. LfV xð Þ≔ ∂V xð Þ
∂x f xð Þ

denotes the standard Lie derivative. Furthermore, a scalar continuous

function V :Rn !R is proper if for all k∈R, the set x∈Rn jV xð Þ≤ kf g is

a compact set. xT denotes the transpose of x. Bβ εð Þ≔
x∈Rn j x�εj< βjf g is an open ball around ε with radius of β, with posi-

tive real numbers β and ε. Set subtraction is denoted by “n”, that is,
AnB≔ x∈Rn j x∈A,x =2Bf g. ; signifies the null set. Lastly, a function

f �ð Þ is of class C1 if it is continuously differentiable.

2.2 | Class of systems

The class of continuous-time nonlinear systems considered is

described by the following state-space form:

_x¼ f xð Þþg xð Þuþh xð Þw, x t0ð Þ¼ x0, ð1Þ

where x∈Rn represents the state vector, u∈Rm represents the input

vector, and w∈W is the bounded disturbance vector, where

W≔ w∈Rl j jwj≤ θ,θ ≥0
n o

. The input control actions are constrained

by their lower and upper bounds, u∈U≔ umin ≤ u≤ umaxf g�Rm. f �ð Þ,
g �ð Þ, and h �ð Þ are vector and matrix functions of dimensions n�1,

n�m, and n� l, respectively, and we assume that they are sufficiently

smooth. Without loss of generality, we take the initial time t0 to be

zero, that is, t0 ¼0. It is assumed that f 0ð Þ¼0. Thus, the system of

Equation (1) with w tð Þ�0 has a steady state at the origin. Addition-

ally, it is assumed the feedback measurement of x tð Þ is available at

synchronous sampling times, tk .

2.3 | Stabilizability assumptions expressed via
Lyapunov-based control

For the nominal system of Equation (1) with w tð Þ�0, we assume that

there exists a positive definite and proper CLF, V, that satisfies the

small control property as well as the following conditions:

LfV xð Þ<0, 8x∈ z∈Rnn 0f g j LgV zð Þ¼0
� �

: ð2Þ

The small control property states that for every ε >0, 9δ> 0,
s.t. 8x∈Bδ 0ð Þ, there exists u that satisfies j u j < ε and

LfV xð ÞþLgV xð Þ �u<0.19 The existence of such CLF implies that there

exists a stabilizing feedback control law Φ xð Þ∈U for the nominal sys-

tem of Equation (1) such that Equation (2) holds for u¼Φ xð Þ∈U, and

the origin of the closed-loop system is rendered asymptotically stable

for all x in a neighborhood around the origin under u¼Φ xð Þ∈U. A

candidate of a stabilizing feedback control law is shown in Lin and

Sontag.20 We can characterize a region ϕu where the time derivative

of V xð Þ is rendered negative using u¼Φ xð Þ∈U as: ϕu ¼
x∈Rn j _V xð Þ¼
n

LfV xð ÞþLgV xð Þ �u< 0,u¼Φ xð Þ∈Ug[ 0f g. Within this

region ϕu, we define a level set of V xð Þ, Ωb≔ x∈ϕu j V xð Þ≤ b,b>0f g,
which is a forward invariant set such that the closed-loop trajectory

x tð Þ,t≥ 0 of the nominal system of Equation (1) with w tð Þ�0 under

u¼Φ xð Þ∈U remains in Ωb, for any initial condition x0 ∈Ωb.

2 of 16 CHEN ET AL.



2.4 | Process modeled using RNN

When first-principles models of a process are not available or may not

be accurate, one way to model the process is to use data-based

machine-learning methods. A RNN is an effective algorithm that is

capable of modeling the dynamics of the nonlinear system of Equa-

tion (1), and its general formulation is shown as follows:

_̂x¼ Fnn x̂,uð Þ≔Ax̂þΘTy, ð3Þ

where x̂∈Rn is the state vector of the RNN model and u∈Rm

is the manipulated input vector. y¼ y1,…,yn,ynþ1,…,ynþm½ � ¼
σ bx1ð Þ,…,σ bxnð Þ,u1,…,um½ � � Rnþm is a vector that contains both the net-

work state x̂ and the input u, where σ �ð Þ is the nonlinear activation

function. A is a diagonal coefficient matrix, that is,

A¼ diag �a1,…,�anf g∈Rn�n, and Θ¼ θ1,…,θn½ �∈R mþnð Þ�n with

θi ¼ bi wi1,…,wi mþnð Þ
� �

, i¼1,…,n. ai and bi are constants. wij represents

the weight connecting the jth input to the ith neuron where i¼1,…,n

and j¼1,…, mþnð Þ. ai is assumed to be positive for each state x̂i to be

bounded-input bounded-state stable. For the remainder of the manu-

script, x will be used to denote the state of the nonlinear system of

Equation (1), and x̂ will be used to denote the state of the RNN model

of Equation (3).

As the RNN model of Equation (3) is an input-affine system, it can

be also written in the form that is similar to the general nonlinear

system of Equation (1):

_x¼ f̂ xð Þþ ĝ xð Þu, ð4Þ

where f̂ �ð Þ and ĝ �ð Þ can be derived from the coefficient matrices A

and Θ in Equation (3) and are assumed to be sufficiently smooth. The

construction of RNN models including procedures on data generation,

model training and validation, as well as developing an ensemble of

models have been outlined in Wu et al.21 Note that f̂ �ð Þ and ĝ �ð Þ can
be approximated via numerical methods. The modeling error of the

RNN, j ν j, needs to be below a certain threshold νm during training,

and is bounded as follows: j ν j¼j F x,u,0ð Þ�Fnn x,uð Þ j ≤ γ j x j ≤ νm,
where γ >0. The bounded modeling error is a requirement to ensure that

the nonlinear system of Equation (1) and the RNN model of Equation (3)

have the same steady-state within the operating region considered, and

is a requirement used in subsequent stability and safety proofs. Further-

more, we assume that there exists a CLF V̂ and a Lyapunov-based stabi-

lizing control law u¼Φnn xð Þ∈U that renders the origin of the RNN

modeled system of Equation (3) asymptotically stable.

2.5 | Control barrier function

We assume that there exists an open set D in state-space that should

be avoided during operations; for example, the operating conditions

within this region may result in process safety risks. We also charac-

terize a set of safe states, X0≔ x∈RnnDf g where 0f g∈X0 and

X0 \ D¼;. The set of initial conditions to be considered in this study

will be developed from X0.

Two types of unsafe regions are generally considered in literature—

bounded and unbounded sets—the details of which can be found in Wu

and Christofides.6 We denote bounded unsafe set and unbounded

unsafe set as Db and Du, respectively. Due to the data-driven

approach of constructing the CBF, there are relevant restrictions with

collecting finite samples from compact sets of safe and unsafe data.

Therefore, only bounded unsafe sets can be handled in this approach.

Details of the limitations on the compactness of the unsafe set will be

further presented in Section 3.2.2. We address process operational

safety in the sense of not entering any unsafe sets. The formal defini-

tion of process operational safety is defined as follows:

Definition 1. Consider the nominal system of Equa-

tion (1) with w tð Þ�0 and input constraints u∈U. If

there exists a control law u¼Φ xð Þ∈U such that, for any

initial state x t0ð Þ¼ x0 ∈X0, the origin of the closed-loop

system of Equation (1) is rendered asymptotically stable,

and the state trajectories of the system do not enter the

unsafe region, that is, x tð Þ∈X0, x tð Þ =2D, 8t≥0, then the

control law u¼Φ xð Þ maintains the process state within

a safe operating region X0 for all times.

Following the definition of safe operation, the definition of a valid

CBF is as follows22:

Definition 2. Given a set of unsafe points in state-

space D, a C1 function B xð Þ :Rn !R is a CBF if it sat-

isfies the following properties:

B xð Þ>0, 8x∈D, ð5aÞ

LfB xð Þ≤0, 8x∈ z∈RnnD j LgB zð Þ¼0
� �

, ð5bÞ

XB≔ x∈Rn jB xð Þ≤0f g≠ ;: ð5cÞ

Remark 1. In many chemical processes, unbounded

unsafe sets represent unsafe operations where process

variables exceed their safety envelopes, for example,

when temperature is above a threshold that can lead to

overheating, or when concentration is below a threshold

which could lead to incomplete reaction. Bounded

unsafe sets are more common in mechanical processes;

for example, robotics navigation to avoid obstacles in its

trajectory. In chemical processes, many mid-range oper-

ating conditions are suboptimal to achieving high yields

of reactions. For example, low pressure steam could be

used as a coolant at low temperature, or as a heat

source at high temperature. However, if its temperature
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is in the middle ranges, then it is not fit for either pur-

pose and might be discarded as waste.

Remark 2. For many industrial operations where the

dynamics of the process is not well understood, it is dif-

ficult to model the intertwined relations between multi-

tudes of variables. Although it is possible to specify

certain operating envelopes within which individual pro-

cess variables should operate within, the impact of

these variables on other variables, and vice versa, may

not be preassessed and therefore, cannot be explicitly

described. It is common for plant operators to provide

data points at or near which operation would be

avoided. With these data points, we can use the

approach discussed in this manuscript to model a CBF.

3 | CONSTRUCTION OF BARRIER
FUNCTION USING NEURAL NETWORKS

3.1 | Neural network structure and training

In our study, we use a feed-forward artificial neural network (FNN) to

synthesize the CBF B̂ xð Þ. A conventional FNN consists of an input layer,

an output layer, and any number of hidden layers in between that can be

customized depending on network complexity and computational need.

Each layer undergoes nonlinear transformations, which consists of activa-

tion functions of a bias term plus the weighted sum of neurons in the pre-

vious layer. In turn, the results of these activation functions provide the

values of the neurons in the current layer. The neurons in the first hidden

layer are derived from the input layer, and the outputs are calculated based

on the neurons in the last hidden layer. The input layer contains the state

vector x of the nonlinear system of Equation (1) with a dimension of

Rn, and the single output in the output layer provides the predicted

barrier function B̂ xð Þ for the particular input data sample x.

Without having prior knowledge on an explicit formulation of the

barrier function B xð Þ, training data for the NN will be collected for

both the safe and unsafe regions with target values of B xð Þ that satisfy
the conditions of Equations (5a) and (5c) for each region respectively.

We choose nonlinear activation functions that will best fit the dichot-

omous nature of the barrier function, which will aid in obtaining better

prediction accuracy. Furthermore, we encode custom loss function

and evaluation metric for the FNN in order to ensure that the condi-

tion of Equation (5b) is also satisfied. Since this approach is data-

driven and dependent on the sampling of training data generation, we

also provide formal proof for the verification of the FNN-learned bar-

rier function B̂ xð Þ, proving that the B̂ xð Þ indeed satisfies all conditions

of Equations (5a)–(5c). The structure of a 2-hidden-layer FNN is pres-

ented in Figure 1 and in Equations (6a)–(6c):

θ 1ð Þ
j ¼ g1

Xn
i¼1

w 1ð Þ
ij xiþb 1ð Þ

j

 !
, ð6aÞ

θ 2ð Þ
j ¼ g2

Xh1
i¼1

w 2ð Þ
ij θ 1ð Þ

i þb 2ð Þ
j

 !
, ð6bÞ

B̂¼ g3
Xh2
i¼1

w 3ð Þ
i θ 2ð Þ

i þb 3ð Þ
 !

, ð6cÞ

with θ 1ð Þ
j and θ 2ð Þ

j representing neurons in the first and second hidden

layer, respectively, where j¼1,…,hl is the number of neurons in layer

l¼1 and l¼2. The weight associated with the connections between

neurons i and j, which are in consecutive layers (from l�1 to l), is den-

oted by w lð Þ
ij , and b lð Þ

j represents the bias term added to the weighted

sum for each neuron in hidden layers l¼1,2 and output layer l¼3.

Upon receiving the information from the previous layer, neurons in

the current layer l then computes an output via a nonlinear activation

function, denoted gl. There are many choices of activation functions,

for example, sigmoid function, g zð Þ¼ 1
1þe�z, hyperbolic tangent sigmoid

function g zð Þ¼ 2
1þe�2z �1, and ReLu function, g zð Þ¼max 0,zð Þ; inter-

ested readers may refer to23 for more details on the different activa-

tion functions and their characteristics. The two-hidden-layer

representation in this section can be similarly extended to multiple

hidden layers for better fitting suited for other applications.

To train the FNN, training data are generated by sampling points

from the operating region of the system (i.e., x∈X �Rn where X is a

compact set). In order to ensure that the FNN developed from dis-

crete data samples is able to meet the conditions of B xð Þ in a continu-

ous sense (for reasons that will be further explained in Section 3.2),

the safe and the unsafe operating regions we consider need to be

compact and connected sets within X . Therefore, we first characterize

a compact and connected set H, that encloses the open set D such

that a key condition used for designing CBF, as shown in Equa-

tion (12), is satisfied. These design guidelines are explained in detail in

Section 4.1. Then, we useH0, which encloses H with sufficient margin,

to represent the unsafe region. Samples from the unsafe region H0

and the safe region XnH0 are collected by discretizing the respective

regions with a fixed mesh size δxð ÞH0 and δxð ÞXnH0 respectively. We

F IGURE 1 Structure of a 2-hidden-layer feedforward neural
network with the state vector x∈Rn as inputs and the CBF B̂ xð Þ as the
output
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denote the finite sampled data set of the unsafe region as SH0 , and the

finite sampled data set of the safe region as SI . To achieve best train-

ing results, equal number of samples for each set is obtained, where

ND and NI represents the number of sampled data points in the unsafe

and the safe regions respectively.

Due to the dichotomous condition of B xð Þ as specified by

Equations (5a) and (5c) (depending on whether the particular point x

belongs to the safe or the unsafe region in state-space), the activation

functions of the two hidden layers and the output layer are all chosen

to be the hyperbolic tangent sigmoid function (i.e., tanh zð Þ) due to the

nature of tanh zð Þ functions settling at 1 as z approaches þ∞, and �1

as z approaches �∞, effectively polarizing the outputs and allowing

the outputs of the FNN to take either relatively constant positive

values, or relatively constant negative values. According to the

requirement of conditions Equations (5a) and (5c), we can then label

safe data points in SI as having an output value B xð Þ of �1, and

unsafe data points in SH0 as having an output value B xð Þ of þ1. These

labeled target output values can be then compared to the predicted

output values given by the layers of neurons and tanh activation func-

tions; more specifically, we use mean squared error (MSE) in the

objective function to track the error between the target B xð Þ and the

predicted B̂ xð Þ values. Minimizing the MSE between the target B xð Þ
and the predicted B̂ xð Þ values will address the conditions of

Equations (5a) and (5c). Furthermore, we add an additional term in the

cost function, which uses the ReLu function and penalizes sample

points that violate the condition of Equation (5b). To obtain an opti-

mal set of weights and biases that will produce an output B̂ xð Þ that

meets all three conditions of Equations (5a)–(5c), we use an optimiza-

tion algorithm to minimize the cost function, which has the follow-

ing form:

Cost ¼Cost1þCost2,

Cost1 ¼ α
1
Ns

XNs

k¼1

B̂k�Bk

� �2
,

Cost2 ¼ β
XNI

j¼1

ReLu L̂f B̂jþ τI
� �

,

ð7Þ

where Cost1 represents the MSE between the target and the

predicted outputs for all samples in the operating region, and Cost2

represents the penalizing term to ensure that Lf̂ B̂≤0 for all x∈SH. k¼
1,…,Ns represents the total number of samples in the training dataset,

that is, Ns ¼NDþNI, and j¼1,…,NI represents all sample points in the

safe operating region. In Cost2, τI is a small positive constant. Since

ReLu is defined to take the maximum between its argument and 0, we

penalize any occurrences of data samples producing Lf̂ B̂jþ τI >0,

thereby forcing Lf̂ B̂j to be negative for all points in the safe region.

Positive constants α and β are hyper-parameters representing the

weights of the two terms in the cost function. During training, whenPNI
j¼1ReLu L̂f B̂jþ τI

� �
has reached 0, then we have arrived at a

predicted barrier function B̂ xð Þ that satisfies the condition

Equation (5b). In order to ensure the efficacy of the predicted barrier

function B̂ xð Þ at the end of the network training, we evaluate and

monitor Cost1 and Cost2 separately during training, and implement

stopping criteria that would require both Cost1 and Cost2 to reach

below their respective thresholds to ensure bounded modeling

error for B̂ xð Þ as well as negative semi-definiteness of Lf̂ B̂≤0 for

all x∈ SI .

3.2 | Effectiveness of NN-based barrier function

The definition given in Definition 2 presents the properties and charac-

teristics of an adequate barrier function. In this section, we will show

how FNN-based barrier function can be verified to satisfy Definition 2

and be applied to continuous nonlinear systems of Equation (1).

3.2.1 | Continuity and differentiability

By Definition 2, the barrier function is a continuously differentiable

function, thus we need to show that B̂ xð Þ and _̂B xð Þ are continuous. By

the universal approximation theorem, feed-forward artificial neural

networks are able to model any continuous nonlinear functions on

compact subsets of the state space Rn with sufficient number of neu-

rons.15 Furthermore, B̂ xð Þ is the output of a series of nonlinear activa-

tion functions of inputs, weights and biases. We choose activation

functions that are Lipschitz continuous in the compact subset within

which the FNN training data is collected, such as tanh. All hidden

layers and output layer of the FNN model for approximating B xð Þ use
tanh as the activation function, therefore making B̂ xð Þ also Lipschitz

continuous.

3.2.2 | Verification

Minimizing the cost function of Equation (7) aims to minimize the

error between the values of B xð Þ and B̂ xð Þ as well as to penalize viola-

tions of the decrease condition Lf̂ B̂ xð Þ≤0, 8x∈SI , but does not

enforce the conditions of Equations (5a)–(5c) in a continuous sense.

Therefore, we must verify that these conditions hold over the com-

pact subsets for which the respective data samples are collected from.

Many verification techniques can be used, such as the satisfiability

modulo theories (SMT) algorithm in Chang et al.24 and the Lipschitz

method in Jin et al.25 and Richards.26 More specifically, the work in

Bobiti and Lazar27 has shown the verification of the decrease condi-

tion for a candidate Lyapunov function on a finite sampling of a

bounded set of initial conditions. The following theorem is adapted

from the work in Bobiti and Lazar,27 in which the full proof of the the-

orem is presented in details.

Theorem 1. Let Ss be a finite set sampled from a compact

set S�Rn such that for all x∈ S, there exists at least a pair

xs,δxsð Þ∈ Ss�Rþ s.t. j x�xs j ≤ δxs. If for all xs ∈Ss it holds

that F xsð Þ≤ �LF �δxs (or respectively F xsð Þ< �LF �δxs),
where LF >0 is the Lipschitz constant for function F, then

F xð Þ≤0 (respectively F xð Þ<0) holds for all x∈S.27
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Therefore, by Theorem 1, we can show that Lf̂ B̂ xð Þ≤0, 8x∈XnH0

by checking the tightened condition L̂f B̂ xð Þ≤ �L0 �δxXnH0 ,8x∈SI ,

where the sampled finite set SI is a discretization of the compact set

XnH0 , L0 >0 is the Lipschitz constant for Lf̂ B̂ xð Þ, and δxXnH0 >0 is the

discretization mesh size in the safe region XnH0. Similarly, we can

show that B̂ xð Þ≤0,8x∈XnH0 by showing that B̂ xð Þ≤�
L �δxXnH0 8x∈SI , where L is the Lipschitz constant for B̂. Once this

tightened condition is verified, it is sufficient to show that the condi-

tion of Equation (5c) is satisfied. Lastly, we show that the condition of

Equation (5a) is satisfied by verifying that �B̂ xð Þ< �L �δxH0 ,8x∈SH0

(where the sampled finite set SH0 is a discretization of the compact set

H0), which means �B̂ xð Þ<08x∈H0 , and equivalently B̂ xð Þ>08x∈H0.

3.2.3 | Characterization of unsafe data

It is generally difficult to describe the exact unsafe operating conditions of

nonlinear processes as the actual unsafe set D can be open and not con-

nected. For example, unsafe sets are not connected if there are multiple

clusters of unsafe operating regions located within close proximity such

that navigating around them would be nearly impossible. Therefore, in

order to proceed with designing an adequate CBF, we first characterize a

compact, connected set, denoted asH, to embed the unsafe set D. This

approach is similarly applied in the design of constrained CLBF Wc xð Þ
proposed in Wu et al.,13 where an explicit form of the CBF was con-

structed. In our study, we use a similar compact and connected set H,

such that D�H, to characterize the set of unsafe states considered.

To obtain a FNN model for the CBF, we need to supply the model

with training data samples from the unsafe and the safe operating

regions in state-space. As there always exists inherent modeling error

in the approximation of the CBF, a contingency margin should be con-

sidered when generating these training data. More specifically, we use

a larger compact set, H0 where H�H0 , to distinguish the different

labels assigned to safe and unsafe data samples. Data samples

obtained from a discretization of the region H0 will be labeled as

“unsafe,” and data samples obtained from a discretization of the set

XnH0 will be labeled as “safe.” Upon verification of the trained model

with regards to the definition of CBF (Equations (5a)–(5c)) and with

regards to the classification accuracy, we ensure that the resulting

unsafe region as predicted by the FNN-modeled CBF, denoted as Ĥ,

should be as close to H0 as possible and always be a superset of the

compact unsafe region H. We leave sufficient margin between H and

H0 so that, with bounded modeling error in the FNN model for CBF

(Equations (6a)–(6c)) and in the RNN model for the nonlinear process

(Equation (3)), it is guaranteed that the closed-loop state will not enter

H given any initial condition x0 ∈XnH0.

Remark 3. Despite rigorous training and extensive vali-

dation, there may still exist modeling error in the testing

phase or in the implementation of the NN model that

we cannot eliminate completely. Without knowing an

explicit analytical form of B xð Þ, it is difficult to quantify

such modeling error as well. We assume that the

contingency margin that we leave when characterizing

the set of unsafe points for which training data will be

generated from is able to account for the inherent

modeling error of the FNN-modeled CBF B̂ xð Þ. Hence,

while the FNN output B̂ aims to characterize the unsafe

region boundary as close to H0 as possible, in the pres-

ence of modeling error, the predicted B̂ xð Þ will satisfy all

conditions on CBF and CLBF with respect to the actual

unsafe closed and compact set H.

Remark 4. To verify that the FNN-modeled barrier func-

tion B̂ xð Þ satisfies the properties of a CBF in a continu-

ous sense, the finite sets of safe and unsafe data used

to build the FNN must be sampled from a compact

(i.e., closed and bounded) safe set XnH0, and a compact

unsafe set H0 , respectively, as shown in Section 3.2.2. It

should be noted that the unsafe set H0 is a set charac-

terized by the user to enclose the compact set H to

account for the error margin in the neural network

model. Moreover, the compact set H is a set character-

ized by the user to enclose the actual unsafe region D.

In this study, we focus on bounded unsafe sets, Db.

Bounded unsafe sets in the middle of the operating

region could obstruct the state trajectories, and are

therefore the more difficult case to handle. In the case

of unbounded unsafe sets, Du, they must be first

approximated by a sufficiently large compact set within

a reasonable physical range, Deb. Based on this approxi-

mated unsafe set, we can then characterize the compact

set H0 �Deb from which we will collect finite samples of

unsafe data used for training the FNN, and subse-

quently, the analysis and design of CLBF will follow that

of the bounded unsafe set.

4 | STABILIZATION AND SAFETY VIA
CONTROL LYAPUNOV-BARRIER FUNCTION

A CLBF was proposed in Romdlony and Jayawardhana,5 which is a

weighted average of a CLF and a CBF, where it was shown that if a

CLBF exists for the system of Equation (1) with w tð Þ�0, there exists

a controller u¼Φ xð Þ that will maintain the closed-loop state with

x0 ∈X0 within a level set of the CLBF and outside of D at all times.

The work in Wu et al.6,13 extends the analysis to constrained CLBFs,

accounting for physical constraints on manipulated inputs u∈U. In the

recent work in Wu and Christofides,28 a constrained CLBF-MPC is

analyzed where the MPC uses a prediction model built from an

ensemble of RNN models, and the stability and safety properties of

this approach were guaranteed using a control law u¼Φnn xð Þ∈U. The

CLF needs to meet the conditions outlined in Section 2.3 and the CBF

needs to meet the conditions of Equations (5a)–(5c). As we have

shown in Section 3.2, upon successful verification of B̂ xð Þ against the
conditions of Equations (5a)–(5c), it is a valid CBF which CLBF-based
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controllers can take in. Therefore, the theoretical results shown in28

can be similarly applied to a CLBF constructed with a FNN-specified

CBF B̂ xð Þ, where closed-loop stability and safe operation can be

achieved under the CLBF-based control law u¼Φnn xð Þ∈U for the

RNN system of Equation (3).

The definition of a constrained CLBF constructed using the FNN-

CBF B̂, denoted as Wnn xð Þ with respect to the RNN model of Equa-

tion (3) is as follows:

Definition 3. Given a set of unsafe points in state-

space D, a proper, lower-bounded and C1 function

Wnn xð Þ :Rn !R is a constrained CLBF if Wnn xð Þ has a

minimum at the origin and also satisfies the following

properties:

Wnn xð Þ> ρ, 8x∈D�ϕuc, ð8aÞ

L̂fWnn xð Þ<0,
8x∈ z∈ϕucn D[ 0f g[X eð Þ j LĝWnn zð Þ¼0

� �
,

ð8bÞ

Uρ≔ x∈ϕuc jWnn xð Þ≤ ρf g≠ ;, ð8cÞ

ϕucn D[Uρ

� 	 \ D¼;, ð8dÞ

where ρ∈R is a constant, X e≔ x∈ϕucn D[ 0f gð Þ j ∂Wnn xð Þ=∂x¼0f g is

a set of states for the RNN model of Equation (4) where L̂fWnn xð Þ¼0

(for x≠0) due to ∂Wnn xð Þ=∂x¼0. f̂ and ĝ are from the RNN model in

Equation (4). Under a stabilizing control law u¼Φnn xð Þ∈U, ϕuc is

defined to be the union of the set where the time-derivative

of Wnn xð Þ is negative with constrained inputs, the origin, and the set

X e: ϕuc ¼ x∈Rn j _Wnn x tð Þ,Φnn xð Þð Þ¼
n

Lf̂WnnþLĝWnn �u<�
αW jWnn xð Þ�Wnn 0ð Þju¼Φnn xð Þ∈Ug[ 0f g[X e, and αW is a positive

real number used to characterize the set ϕuc. A control law u¼
Φnn xð Þ∈U that renders the origin exponentially stable within ϕuc is

assumed to exist for the RNN system of Equation (3) in the sense that

there exists a C1 constrained CLBF Wnn xð Þ. The CLBF function sat-

isfies the following conditions 8x∈ϕuc and has a minimum at the

origin:

ĉ1 xj j2 ≤Wnn xð Þ�ρ0 ≤ ĉ2 xj j2, ð9aÞ

∂Wnn xð Þ
∂x

Fnn x,Φnn xð Þð Þ≤ � ĉ3 xj j2,8x∈ϕucnBδ xeð Þ ð9bÞ

∂Wnn xð Þ
∂x





 



≤ ĉ4 j x j ð9cÞ

where ĉj �ð Þ, j¼1,2,3,4 are positive real numbers, Wnn 0ð Þ¼ ρ0 is the

global minimum value of Wnn xð Þ, and Bδ xeð Þ is a small neighborhood

around xe ∈X e. Fnn x,uð Þ is the RNN system of Equation (3).

In addition, in the nonlinear system of Equation (1), we assumed

that functions f,g, and h are sufficiently smooth, by continuity, there

exist positive constants Lx,Lw , L
0
x,L

0
w , M, such that for all x,x0 ∈Uρ,

w∈W, and u∈U, the following conditions will hold:

j F x,u,wð Þ j ≤M, ð10aÞ

j F x,u,wð Þ�F x0,u,0ð Þ j ≤ Lx j x�x0 j þLw jw j , ð10bÞ

∂Wnn xð Þ
∂x

F x,u,wð Þ� ∂Wnn x0ð Þ
∂x

F x0 ,u,0ð Þ




 



≤ L0x j x�x0 j þ j ≤ L0w jwm j :

ð10cÞ

In Wu and Christofides,6 an exemplar stabilizing control law Φnn xð Þ is
shown. The Lyapunov function V xð Þ can be replaced with the CLBF

Wnn xð Þ within the Lyapunov-based control law that is presented in

the form of the universal Sontag controller.20

4.1 | Design of constrained CLBF

We first design CLF and CBF separately to meet their respective condi-

tions, and we follow the practical design guidelines presented in Wu

et al.13 to construct the CLBF. We present the design method for choosing

the CLF, the CBF, and the corresponding weights in this section, and show

that the B̂ xð Þ is able to meet all the conditions on CBF, through which

Wnn xð Þ is able to meet all its required properties of Equations (8a)–

(8d) and (9a)–(9c) and has a global minimum at the origin.

Proposition 1. Given an open set D of unsafe states for

the system of Equation (1) with w tð Þ�0, assume that

there exists a C1 CLF V :Rn !Rþ, and a C1 CBF

B̂ :Rn !R, such that the following conditions hold:

c1 xj j2 ≤V xð Þ≤ c2 xj j2,8x∈Rn,c2 > c1 > 0, ð11Þ

D�H�H0 �ϕuc,0=2H,0 =2H0 , ð12Þ

B̂ xð Þ¼�η<0, 8x∈RnnH0; B̂ xð Þ> 0,8x∈H0, ð13Þ

where H is a compact and connected set within ϕuc, and H0 is a com-

pact and connected set within ϕuc that encloses H with sufficient

margin to account for modeling errors in B̂ xð Þ, f̂, and ĝ. Define Wnn xð Þ
to have the form Wnn xð Þ≔V xð ÞþμB̂ xð Þþν, where

∂Wnn xð Þ
∂x





 



≤ ĉ4 j x j , ð14Þ

Lf̂Wnn xð Þ<0,
8x∈ z∈ϕucn D[ 0f g[X eð Þ j LĝWnn zð Þ¼0

� � ð15Þ

μ>
c2c3�c1c4

η
, ð16aÞ

ν¼ ρ� c1c4, ð16bÞ
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c3≔ max
x ∈ ∂H0

xj j2, ð16cÞ

c4≔min
x ∈ ∂D

xj j2, ð16dÞ

then the control law Φnn xð Þ (Lyapunov-based Sontag controller

with Wnn xð Þ replacing V xð Þ) guarantees that the closed-loop state

is bounded in ϕucnH and does not enter the unsafe region H for

all times, for any initial state x0 ∈ϕucnDH0 , where

DH0≔ x∈H0 jWnn xð Þ> ρf g.

Proof. By the construction of the FNN model for the

CBF, B̂ xð Þ meets the condition of Equation (13) despite

modeling error due to the characterization of H0 �H,

where the margin between H0 and H accounts for the

modeling error of B̂ xð Þ, and of f̂ and ĝ of the RNN model

of Equation (4). It was proven in Wu et al.13 and Wu

and Christofides28 that a constrained CLBF designed

following these guidelines satisfies the properties of

Equations (8a)–(8d) and (9c); the proofs will be

omitted here.

In addition, we also need to prove that the constrained CLBF

Wnn xð Þ designed using a CLF V xð Þ and a CBF B̂ xð Þ satisfies the addi-

tional properties of Equations (9a) and (9b), which are required for u¼
Φnn xð Þ∈U to render the origin of the RNN system of Equation (3)

exponentially stable. In order to make sure Equation (9a) holds, both j
V xð Þ�V 0ð Þ j and j B̂ xð Þ� B̂ 0ð Þ j need to be bounded. From Equa-

tion (11), we know that c1 xj j2 ≤V xð Þ�V 0ð Þ≤ c2 xj j2,8x∈Rn since

V 0ð Þ¼0. Based on the construction and the training objectives of the

FNN-modeled CBF, we also know that j B̂ xð Þ� B̂ 0ð Þ j ≤2 within a suf-

ficiently small bounded error that includes modeling inaccuracies and

numerical error in the B̂ predictions. Therefore, the resulting CLBF,

Wnn xð Þ�Wnn 0ð Þ, which is a linear combination of the bounded V xð Þ
and B̂ xð Þ, is also bounded by its respective lower and upper bounds as

shown in Equation (9a).

The condition of Equation (9b) holds due to the definition of ϕuc

as well as the boundedness of jWnn xð Þ�Wnn 0ð Þ j, where ĉ3 ¼ αWĉ2.

Furthermore, V xð Þ has a global minimum at the origin: V 0ð Þ¼0 and

V xð Þ>0 for all x∈Rnn 0f g. With a sufficiently small bounded numerical

error and modeling error, B̂ xð Þ¼�1 for all x∈ϕucnH0 , where

0f g∈ϕucnH0, and B̂ xð Þ¼þ1 for all x∈H0. Therefore, B̂ xð Þ also has a

global minimum at the origin within bounded numerical error. Since

Wnn xð Þ is a weighted average of V xð Þ and B̂ xð Þ, the global minimum of

Wnn xð Þ is also at the origin. Therefore, we have demonstrated, a CLBF

Wnn xð Þ and a controller u¼Φnn xð Þ∈U exist that together satisfy all

conditions of Equations (8a)–(8d) and (9a)–(9c), and will guarantee

exponential stability for all x0 ∈ϕucnDH0 .

In the rest of our paper, we will focus on initial conditions in Uρ,

which is a forward invariant set of Wnn xð Þ as defined in Equation (8c).

Furthermore, closed-loop stability and safety for the RNN system of

Equation (3) are analyzed with respect to bounded unsafe sets similar

to Theorem 1 in Wu and Christofides.6 Specifically, in the presence of

bounded unsafe sets, there exist stationary points xe ∈X e in state-

space other than the origin that can be treated as saddle points. When

states reach these stationary points, the continuous control law of u¼
Φnn xð Þ∈U is unable to drive the states away from them. We design

discontinuous control actions u¼ u xð Þ∈U, u xð Þ≠Φnn xð Þ, to drive the

states away from these saddle points in the direction of decreasing

Wnn xð Þ. The theorem below provides the sufficient conditions under

which the controller u¼Φnn xð Þ∈U designed based on the CLBF

Wnn xð Þ is able to fulfill stability and safety for the closed-loop RNN

system of Equation (3).

Theorem 2. Consider a constrained CLBF Wnn xð Þ : Rn !
R built using B̂ xð Þ, that has a minimum at the origin and

satisfies the conditions of Equations (8a)–(8d), exists for

the RNN system of Equation (3). The controller u¼
Φnn xð Þ∈U that satisfies Equations (9a)–(9c) guarantees

that the closed-loop state stays within Uρ for all times for

any x0 ∈Uρ. In the presence of a bounded unsafe region in

state-space, the origin can be rendered exponentially sta-

ble under u¼Φnn xð Þ∈U (if x is not near a saddle point xe)

and under discontinuous control actions u¼ u xð Þ∈U that

decrease Wnn xð Þ (if x is near a saddle point xe) for

all x0 ∈Uρ.

Proof. It has been proven in Wu et al.6,13,28 that the

universal Sontag controller19 with the CLBF Wnn xð Þ
replacing the Lyapunov function V xð Þ gives a valid u¼
Φnn xð Þ∈U that ensures _Wnn xð Þ≤0 for all x∈Uρ, there-

fore ensuring that for x0 ∈Uρ, x is bounded in Uρ for all

times. Furthermore, since Uρ is a level set of Wnn xð Þ in
ϕuc (ϕuc is a set within which Eqs. (9a)–(9c) is met), the

origin is rendered exponentially stable under

u¼Φnn xð Þ∈U. In the presence of bounded unsafe

regions, the saddle points at which _Wnn xð Þ¼0 can be

handled by discontinuous control actions u¼
u xð Þ∈U,u xð Þ≠Φnn xð Þ that decrease Wnn xð Þ. The

detailed proofs for handling bounded unsafe sets can be

referenced from Theorem 1 in Wu and Christofides,6

and will be omitted here.

5 | CLBF-BASED MPC USING FNN CBF
AND RNN PREDICTION MODEL

In this work, we propose a CLBF-based MPC which is designed based

on a CLBF-based controller that ensures simultaneous closed-loop

stability and process safety for the nonlinear system of Equation (1).

The CLBF-based controller u¼Φnn xð Þ∈U, which uses a Wnn xð Þ incor-
porating an FNN-modeled CBF (B̂ xð Þ), is designed based on the f̂ and

ĝ of the RNN system of Equation (4). Then, the CLBF-MPC is devel-

oped to optimize process performance while driving the process

states to a small ball around the origin. So far, we have shown that a

valid CLBF Wnn xð Þ can be constructed using B̂ xð Þ, from which the
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controller u¼Φnn xð Þ∈U exponentially stabilizes the origin of the RNN

system of Equation (3) while keeping closed-loop states in a safe

region of operation Uρ.

The control actions of the CLBF-MPC are implemented in a

sample-and-hold manner to the original nonlinear system of Equa-

tion (1), that is, for any t∈ tk ,tkþ1½ Þ, u tð Þ¼ u tkð Þ, where tkþ1≔tkþΔ.

Note that Δ is the sampling period of the MPC. Due to the presence

of bounded disturbances in the nonlinear system of Equation (1), as

well as the modeling mismatch between the RNN system of Equation (3)

and the first-principles system of Equation (1), we must investigate the safety

and stability properties of the system with these considerations in mind.

In Proposition 1 of Wu and Christofides,28 given that the model-

ing error of the RNN model of Equation (3) is bounded by

j ν j¼j F x,u,0ð Þ�Fnn x,uð Þ j ≤ γ j x j ≤ νm, and the nonlinear system of

Equation (1) has bounded disturbances jw j ≤wm, the boundedness of

the state error j x� x̂ j and the difference between jWc xð Þ�Wc x̂ð ÞÞ j
was shown, where Wc is a CLBF that uses an explicitly defined CBF

B xð Þ. More specifically, j x tð Þ� x̂ tð Þ j ≤ fw tð Þ≔ Lwwmþνm
Lx

eLxt�1
� 	

, and

Wc xð Þ≤Wc x̂ð Þþ κ x� x̂j j2þ ĉ4
ffiffiffiffiffiffiffiffi
ρ�ρ0

p ffiffiffiffi
ĉ1

p j x� x̂ j, where κ >0. Since Wnn xð Þ
can be also shown to be continuous and bounded on a compact set and

behaves the same as Wc xð Þ, the same proofs apply on Wnn xð Þ, and we

can conclude that Wnn xð Þ≤Wnn x̂ð Þþ ĉ4
ffiffiffiffiffiffiffiffi
ρ�ρ0

p ffiffiffiffi
ĉ1

p fw tð Þþκfw tð Þ2, where ĉ1,

and ĉ4 are positive real constants in Equations (9a)–(9c) for Wnn xð Þ.
All subsequent proofs on the stability and safety of the nominal

system of Equation (1) under the CLBF-based control law designed

based on Wnn xð Þ follow the same proofs in Wu and Christofides28

(Propositions 2 and 3), with Wnn replacing Wc. This is shown for

bounded unsafe regions, where the CLBF-based control law designed

using the RNN model of Equation (3) can also guarantee closed-loop

exponential stability and safety for the nominal system of Equation (1).

We will show that the combination of the CLBF-based control law

u¼Φnn xð Þ∈U along with discontinuous control actions that yield

decreasing Wnn xð Þ will provide exponential stability and safety in the

case of bounded unsafe sets.

We consider the nominal system of Equation (1) with a bounded

unsafe set, where saddle points xe ∈X e are present in Uρ. We provide

sufficient conditions, under which the continuous CLBF-based control

actions u¼Φnn xð Þ∈U and the control actions u¼ u xð Þ∈U designed in

a discontinuous manner, can ensure closed-loop stability and safety.

The proof for the following adapted proposition can be found in Wu

and Christofides.28

Proposition 2. If the RNN model is developed such that

for all x∈Uρ and u∈U, the modeling error is constrained

by j ν j¼j F x,u,0ð Þ�Fnn x,uð Þ j ≤ γ j x j, where γ is a positive

real number that satisfies γ < ĉ3=ĉ4, and furthermore,

Equation (17) is satisfied under discontinuous control

actions u¼ u xð Þ∈U when x tkð Þ¼ x̂ tkð Þ∈Bδ xeð Þ,

Wnn x̂ tð Þð Þ<Wnn x̂ tkð Þð Þ� fe t� tkð Þ,8t> tk ð17Þ

where

fe t� tkð Þ≔ ĉ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�ρ0

p ffiffiffiffiffi
ĉ1

p fw t� tkð Þ� κfw t� tkð Þ2

and fw tð Þ is the upper bound on the state error j x tð Þ� x̂ tð Þ j ≤ fw tð Þ, then
the stability and safety properties outlined in Theorem 2 also apply to the

nominal system of Equation (1) with a bounded unsafe region Db under

u¼Φnn xð Þ∈U and u¼ u xð Þ∈U.28

In the presence of bounded disturbances (i.e., jw tð Þ j ≤wm), now

we show that the nonlinear system of Equation (1) can be rendered

exponentially stable and maintained within the safe region Uρ. Under

the sample-and-hold implementation of the control actions, the state

of the closed-loop system of Equation (1) is always bounded in Uρ,

and converges to a small neighborhood Uρmin
. Given that the set of ini-

tial conditions Uρ for which exponential stability and safety of the

RNN system of Equation (3) can be guaranteed under the CLBF-based

control laws is characterized using Wnn xð Þ, the following proposition

has been adapted from Proposition 4 in Wu and Christofides.28

Proposition 3. Consider the nonlinear system of

Equation (1) under the CLBF-based controller u¼
Φnn xð Þ∈U (under sample-and-hold implementation), which

is built using a valid Wnn following Proposition 1 and sat-

isfies Equations (9a)–(9c). If Equation (17) is satisfied under

the controller u¼ u xð Þ∈U in a sample-and-hold fashion for

x∈Bδ xeð Þ, and there exist εw >0, Δ>0 and

ρs < ρnn < ρmin < ρ that satisfy

�ec3
ĉ2

ρs�ρ0ð ÞþL
0
xMΔþL

0
wwm ≤ � εw ð18Þ

and

ρnn≔max Wnn x̂ tþΔð Þð Þ j u∈U, x̂ tð Þ∈Uρs

� � ð19aÞ

ρnnþ fe Δð Þ≤ ρmin ð19bÞ

where fe tð Þ is given by Equation (17), then for any x tkð Þ∈UρnUρs ,

Wnn x tð Þð Þ is guaranteed to decrease within every sampling period, and

can be bounded in Uρ for all times and ultimately bounded in Uρmin
.

5.1 | Formulation of CLBF-MPC

The following optimization problem represents the CLBF-MPC

design:

J ¼ min
u ∈ S Δð Þ

ð tkþN

tk

L ex tð Þ,u tð Þð Þdt, ð20aÞ

s:t: _ex tð Þ¼ Fnn ex tð Þ,u tð Þð Þ, ð20bÞ
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ex tkð Þ¼ x tkð Þ, ð20cÞ

u tð Þ∈U,8t∈ tk ,tkþN½ Þ, ð20dÞ

_Wnn x tkð Þ,u tkð Þð Þ≤ _Wnn x tkð Þ,Φnn tkð Þð Þ,
if x tkð Þ=2Bδ xeð Þ andWnn x tkð Þð Þ> ρnn,

ð20eÞ

Wnn ex tð Þð Þ≤ ρnn ,8t∈ tk ,tkþN½ Þ, ifWnn x tkð Þð Þ≤ ρnn, ð20fÞ

Wnn ex tð Þð Þ<Wnn x tkð Þð Þ� fe t� tkð Þ,8t∈ tk ,tkþNð Þ,
if x tkð Þ∈Bδ xeð Þ, ð20gÞ

where ex tð Þ is the predicted state trajectory, N is the number of sam-

pling periods in the prediction horizon, S Δð Þ represents the set of

piece-wise constant functions with sampling period Δ. The CLBF-

MPC optimization problem has an objective function of

Equation (20a), which is the integral of L ex tð Þ,u tð Þð Þ over the prediction

horizon typically in a quadratic form, that is, L ex tð Þ,u tð Þð Þ¼exTQexþuTRu, where Q, R are positive definite weighting matrices, and

the minimum of this objective function is achieved at the origin. In

Equation (20b), the predicted state trajectory ex tð Þ, t∈ tk ,tkþN½ Þ are cal-

culated using the RNN model Fnn of Equation (3). _Wnn x,uð Þ represents
∂Wnn xð Þ

∂x f̂ xð Þþ ĝ xð Þu
� �

, where f̂ and ĝ are the approximated nonlinear

functions of the RNN model of Equation (4). The input constraints of

Equation (20d) are applied over the entire prediction horizon. We

assume that the measured states of the closed-loop system are avail-

able at each sampling time. For the predicated state trajectory of

Equation (20b), the initial condition is obtained from the feedback

measurement of Equation (20c) at t¼ tk . To ensure closed-loop stabil-

ity and process operational safety, the constraints of Equations (20e)–

(20g) are utilized. When x tkð Þ =2Bδ xeð Þ and Wnn x tkð Þð Þ> ρnn, the con-

straint of Equation (20e) forces Wnn exð Þ to decrease along at a rate less

than or equal to that under the CLBF-based control law

u¼Φnn xð Þ∈U. If Wnn x tkð Þð Þ≤ ρnn, the constraint of Equation (20f)

maintains the predicted state of the RNN system of Equation (3)

within Uρnn such that the closed-loop state of the nonlinear system of

Equation (1) is bounded in Uρmin
. Furthermore, if x tkð Þ∈Bδ xeð Þ, the

constraint of Equation (20g) decreases Wnn xð Þ over the predicted

state trajectory such that the closed-loop state can escape from sad-

dle points xe within a finite number of sampling periods. Once the

state leaves Bδ xeð Þ, it will be driven to smaller level sets of Wnn xð Þ
under the constraint of Equation (20e), therefore guaranteeing that

the state does not go back to Bδ xeð Þ afterwards. After solving the

optimal solution u* tð Þ, the control action at the first time instant,

u* tkð Þ, is applied over the next sampling period in a sample-and-hold

manner. The horizon will be moved forward one sampling period, and

the above process is repeated.

The following theorem and proof will show that safety and stabil-

ity can be established for the closed-loop nonlinear system of Equa-

tion (1) using the CLBF-based MPC.

Theorem 3. Consider the system of Equation (1) with a

constrained CLBF Wnn built using a NN-BF B̂ xð Þ following
the procedures in Section 3. The constrained NN-based

CLBF Wnn xð Þ satisfies Equations (8a)–(8d) and has a mini-

mum at the origin. Given any initial state x0 ∈Uρ, it is

guaranteed that the CLBF-MPC optimization problem of

Equations (20a)–(20g) can be solved with recursive feasi-

bility for all times. Additionally, under the sample-and-hold

implementation of CLBF-MPC based on an RNN prediction

model that satisfies j ν j¼j F x,u,0ð Þ�Fnn x,uð Þ j ≤ γ j x j
≤ νm and the conditions in Proposition 3, it is guaranteed

that for any x0 ∈Uρ, the state is bounded in Uρ, 8t≥0,
and ultimately converges to Uρmin

as t!∞.

Proof. Part1: The optimization problem of

Equations (20a)–(20g) for the CLBF-MPC has a feasible

solution at all times since the CLBF-MPC constraints of

Equations 20d-20g can be satisfied by the sample-and-

hold control laws u¼ u xð Þ∈U, 8x∈Bδ xeð Þ and

u¼Φnn xð Þ∈U, 8x∈UρnBδ xeð Þ. This has been demon-

strated in Propositions 2 and 3 with detailed proofs out-

lined in Wu and Christofides.28 More specifically, the

control laws u¼ u xð Þ∈U, 8x∈Bδ xeð Þ and u¼Φnn xð Þ∈U,

8x∈UρnBδ xeð Þ are already constrained by u∈U, there-

fore the input constraint of Equation (20d) can be met

over the prediction horizon. By letting u tkð Þ¼Φnn x tkð Þð Þ
when x tkð Þ∈Uρn Bδ xeð Þ[Uρnn

� 	
, Equation (20e) is also

satisfied. It has been shown in Proposition 3 that once

the closed-loop state is inside Uρs under the control law

u¼Φnn xð Þ∈U, it will not leave Uρnn for any u∈U within

one sampling period. Thus, the CLBF-based control law

u tð Þ¼Φnn x tkþið Þð Þ∈U, 8t∈ tkþi ,tkþiþ1½ Þ with i¼
0,…,N�1 provides a feasible trajectory of control

actions that meet the constraint of Equation (20f).

Lastly, as the controller u¼ u xð Þ∈U satisfies Equa-

tion (17), the control action u tð Þ¼ u x tkþið Þð Þ∈U,

8t∈ tkþi ,tkþiþ1½ Þ with i¼0,…,N�1 will satisfy the con-

straint of Equation (20g) and drive the state away from

saddle points if x tkð Þ∈Bδ xeð Þ. The proof for recursive

feasibility of the optimization problem of

Equations (20a)–(20g) is complete.

Part2: Now we will prove that the optimized solu-

tion of Equations (20a)–(20g) will guarantee simulta-

neous safety and stability for the closed-loop nonlinear

system of Equation (1). For any x0 ∈UρnUρnn , the con-

straint of Equation (20e) ensures that the optimized

CLBF-MPC control action u* will drive the closed-loop

state of the RNN system towards the origin and into

Uρnn within finite sampling periods. After the state

enters Uρnn , the constraint of Equation (20f) ensures the
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boundedness of the closed-loop state of the RNN

model in Uρnn for the remaining time. With the impact of

the RNN modeling error, bounded disturbances, and

sample-and-hold implementation of control actions, it

has been shown in Proposition 3 that when the closed-

loop state of the RNN system is bounded in Uρnn , the

actual state of the nonlinear system of Equation (1) is

ultimately bounded in Uρmin
. Furthermore, since the safe

operating region Uρ has no intersection with the unsafe

region D, the closed-loop state will be bounded in Uρ

for any x0 ∈Uρ, and thus will not enter D at all times.

In addition, avoiding convergence to saddle points needs to be

considered. Saddle points are points in state-space at which the CLBF

Wnn has a local minima. Starting from an initial condition x0 ∈UρnUρnn ,

the constraint of Equation (20e) pulls the state towards the origin.

When the closed-loop state reaches a neighborhood around the sad-

dle point where x tkð Þ∈Bδ xeð Þ, the constraint of Equation (20g) will

drive the state away from the neighborhood of saddle point in a direc-

tion of decreasing Wnn xð Þ. Once the state escapes Bδ xeð Þ, then the

constraints of Equations (20e)–(20f) will ensure operational safety and

closed-loop stability, and the closed-loop state ultimately converges

to the origin and is bounded in Uρmin
. Therefore, the presence of saddle

points have been addressed, and closed-loop stability and safety

under the CLBF-MPC for the nonlinear system of Equation (1) with

bounded unsafe sets have been proven.

6 | APPLICATION TO A CHEMICAL
PROCESS EXAMPLE

In this section, we apply the proposed CLBF-MPC on a chemical

process example. The process considered consists of a well-

mixed, nonisothermal continuous stirred tank reactor (CSTR)

where an irreversible first-order exothermic reaction A!B takes

place. There is a heating jacket installed on the reactor to supply and

remove heat. The material and energy balances of this CSTR system is

as follows:

dCA

dt
¼ F
VL

CA0�CAð Þ�k0e
�E=RTCA , ð21aÞ

dT
dt

¼ F
VL

T0�Tð Þ�ΔHk0
ρLCp

e�E=RTCAþ Q
ρLCpVL

, ð21bÞ

where T is the temperature in the reactor, CA represents the concen-

tration of reactant A, Q is the heat rate, and VL is the volume of the

reacting liquid in the reactor. The reactor feed contains the reactant A

at a concentration CA0, temperature T0, and volumetric flow rate F. ρL,

Cp, k0, E, and ΔH are the liquid density, heat capacity, reaction pre-

exponential factor, activation energy and the enthalpy of the reaction,

respectively. Process parameter values can be found in Wu et al.13

The control objective is to operate the CSTR at the steady-state point

CAs,Tsð Þ¼ 0:57kmol=m3,395:3K
� 	

and maintain the state in a safe

region by manipulating the inlet concentration of species A,

ΔCA0 ¼CA0�CA0s , and the heat input rate ΔQ¼Q�Qs. The input

constraints for ΔQ and ΔCA0 are jΔQ j ≤0:0167kJ=min and

jΔCA0 j ≤1kmol=m3, respectively.

Deviation variables are used such that the equilibrium point of

the system is at the origin of the state-space. xT ¼ CA�CAs T�Ts½ �,
uT ¼ ΔCA0ΔQ½ � represent the state vector and the manipulate input

vector in deviation variable forms, respectively. As the focus of the

current work is on the machine-learning construction of CBF and its

application on an RNN-MPC, we do not consider bounded distur-

bances. Further simulations can be run with added disturbances to

assess the robustness of the proposed control system.

We construct a Control Lyapunov Function using the standard

quadratic form V xð Þ¼ xTPx with P¼ 9:35 0:41

0:41 0:02

� 
. The P matrix of the

control Lyapunov function is determined via extensive closed-loop

simulations of the process. With the goal of finding the largest stabil-

ity and safety region in state space, we carry out an iterative search

where we start with an initial guess of the P matrix, then find the

region in state space within which the time derivative of CLBF can be

rendered negative under the Sontag control law, and characterize the

largest forward invariant set within this region to be considered as the

stability and safety region. We define the unsafe region, D, as a region

embedded fully within the closed-loop system stability region. The

unsafe region is located in the middle of the stability region such that

the state trajectory will intersect the unsafe region on its converging

route towards the origin. Such a bounded unsafe set poses both theo-

retical as well as implementation challenges for CLBF-MPC as the

controller has to drive the state around the unsafe region and to the

steady-state.

6.1 | Development of the RNN model for the
CSTR process

We follow similar procedures of data generation, training and valida-

tion as outlined in Wu and Christofides28 to obtain an RNN model for

the nonlinear process of Equation (1). To generate training data suffi-

ciently large to represent the entire operating region, open-loop simu-

lations are run for finite sampling steps starting at various initial

conditions within the safe and stabilizable set Uρ with various control

actions u∈U. The RNN model constructed takes the form of a long–

short-term-memory network, which is a special kind of RNN known

for its superior performance in remembering longer-intervaled tempo-

ral relationships. The RNN model uses one input layer, one hidden

layer consisting of 20 recurrent units, and one output layer. State

measurements x tkð Þ and the control actions u tkð Þ are the inputs to the

RNN model, and the RNN model has the outputs of the predicted

state trajectory over one sampling period x̂ tð Þ for t∈ tk ,tkþ1½ �. The
number of recurrent units in the hidden layer corresponds with the

number of internal states within each sampling period. In our simula-

tions, the time progression of states are simulated using an Euler inte-

gration method at an integration time step of hc, and the sampling
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period of MPC is Δ¼100hc. In order to predict the states at the end

of each sampling period, we could choose to have a maximum of

100 internal states, with a time interval of hc between each internal

state. In order to provide the RNN with sufficient neurons to achieve

adequate accuracy and to also reduce computational effort, we have con-

ducted a grid search between various numbers of internal states, and

have chosen the design of 20 internal states with a time interval of 5hc

between each internal state. An early stopping criterion of achieving a

validation MSE of below 1�10�6 is implemented to avoid over-fitting

and to ensure that the modeling error is rendered sufficiently small.

After 65 epochs, early stopping is triggered and the obtained RNN model

achieves a training MSE of 4:17�10�6 and a validation MSE

of 9:03�10�7.

6.2 | Development of the FNN model for barrier
function

In this example, we define the unsafe region as follows:

D≔ x∈R2 jF xð Þ¼ x1þ0:22ð Þ2
1 þ x2�4:6ð Þ2

1�104 < 2�10�4
n o

. H is defined as

H≔ x∈R2 jF xð Þ<2:5�10�4
n o

such that it satisfies D�H�ϕuc in

Proposition 1. We define the unsafe region to be an ellipse as an illus-

trative example of a challenging case of bounded unsafe set embed-

ded in the operating region. In practice, the bounded unsafe set can

be of any bounded form in state-space, and may not be easily

described explicitly. For example, operating at certain mid-ranges of

temperature and concentration could lead to material corrosion,

incomplete reactions, or generation of byproducts from side reactions.

There are also circumstances where specific ranges of operation are

suboptimal to efficiency and productivity. To generate training data

for the FNN model, we specify H0≔ x∈R2 jF xð Þ< 5:6�10�4
n o

. The

set of initial conditions considered Uρ is characterized with ρ¼0 as

per Equation (8c). The CLBF Wnn xð Þ is constructed with the following

parameters: c1 ¼0:001,c2 ¼10,c3 ¼48:269,c4 ¼16:85,ν¼ ρ� c1c4 ¼
�1:685�10�2, and μ¼5000. The safe region, UρnH0 , and the unsafe

region H0, are discretized into 18,000 data samples, respectively. The

data samples are assigned a target label of “+1” if they belong in the

unsafe region, and “�1” if they belong in the safe region. The FNN

model is constructed with 2 hidden layers of 12 and 10 neurons

respectively. The inputs to the FNN model are the state measurement

vector, and the output of the FNN model gives the predicted class of

the data point in state-space indicating whether it is located inside the

safe or the unsafe region. Both hidden layers use an activation func-

tion of tanh, and the cost function of Equation (7) has the following

weighting parameters: α¼1:1,β¼0:005. The validation metric exam-

ines the magnitude of Cost2 of Equation (7), and early stopping is trig-

gered if Cost2 has reached 0. After 700 epochs of training, the MSE

(Cost1) is 0.0155, and Cost2 has a cumulative value of 0.4233. The

classification accuracy over the testing dataset is 99.5%. The

predicted B̂ values are shown in Figure 2, and the misclassified data

points in the testing set are shown in Figure 3. Cost2 has not reached

0 as required by the algorithm within the specified number of epochs;

however, the classification accuracy has reached an acceptable level

to cease training. Then, the model can be assessed in terms of its

F IGURE 2 FNN-predicted barrier function B̂ xð Þ for all data points in the training and the testing datasets
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misclassification rate, as well as the conditions on the values of B̂ xð Þ
and Lf̂ B̂ xð Þ as specified by Equations (5a)–(5c). There are 171 out of

36,000 data points being misclassifed, all of them are safe data classi-

fied as being unsafe. This does not cause any problems as the control-

ler will simply be prompted to act sooner due to this misclassification

when the closed-loop state approaches the boundary of the unsafe

region. This also means that the predicated unsafe region given by the

FNN-modeled CBF, denoted as Ĥ, is larger than H0 as specified by

the training data samples, therefore more conservative than what

was intended. Moreover, to verify that the FNN model satisfies

the safety conditions of CBF of Equations (5a)–(5c), we verify that

the tighter conditions hold for all discretized data points in their

respective regions. It is shown that all predicted B̂ xð Þ>0:0197 for

all discretized x points in Ĥ, and the predicted B̂ xð Þ< �0:0241 for all

discretized x points in UρnĤ. Since Ĥ is a superset of D, it is proven

that conditions Equations (5a) and (5c) hold, respectively. We also

examine Lf̂ B̂ xð Þ values for all discretized x points outside of the unsafe

region and where LĝB̂ xð Þ¼0. Although both the FNN and the RNN

models can be expressed in continuous forms, for simplicity, we use

numerical approximation to calculate L̂f B̂ xð Þ and LĝB̂ xð Þ respectively.

Due to the dichotomous nature of B̂ having nearly constant values

close to þ1 or �1, all discretized points in x∈UρnD such that LĝB̂ xð Þ¼
0 have Lf̂ B̂ xð Þ¼0. Although we cannot conclude that

8x∈ z∈RnnD j LĝB̂ xð Þ¼0
n o

, Lf̂ B̂ xð Þ≤0 holds, we know that the FNN

model with a high accuracy can achieve L̂f B̂ xð Þ¼0 within the dis-

cretized region. Therefore, we proceed with this FNN model for CBF

and apply it in the CLBF-MPC to assess its closed-loop performance.

Remark 5. When training the FNN model, one may find

that the weighting parameters α and β need to be cho-

sen based on a grid-search approach as these two

parameters indicate the trade-off between classification

accuracy and enforcing Lf̂ B̂ xð Þ≤0 for all discretized data

points in the safe region. In our simulations, striving for

high classification accuracy while minimizing Cost2

yielded a good model with its safety requirements met.

In the case that the verification against the safety

requirements of Equations (5a)–(5c) are not met, the

FNN needs to be retrained with more weighting on

Cost2 and more epochs.

6.3 | Closed-loop simulations

To demonstrate that the closed-loop state trajectory does not reach

the unsafe region D when being driven towards the origin, we choose

F IGURE 3 State values in the safe (black) and unsafe (red) operating regions, with misclassified data points (blue circles) showing that all
inaccuracies are safe points misclassified as unsafe points
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various initial conditions within Uρ to start the simulation. It is demon-

strated that the stabilization of the closed-loop system can be

achieved when the simulation starts at an initial condition

(x1,x2) = (0.18, �4.5), which is on the opposite side far from the

unsafe region. More initial conditions near the unsafe region within

the ellipse Uρ are selected, from which the closed-loop state would
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-10

-8

-6

-4

-2

0

2

4

6

8

10

F IGURE 4 State trajectories originated from six different initial conditions in the safe operating regions under the closed-loop control of the
CLBF-MPC using the RNN predictive model and the FNN-based control barrier function
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F IGURE 5 Closed-loop state trajectories under the CLBF-MPC using different combinations of first-principles (FP) process model or RNN
process model, and analytical control barrier function (CBF) or FNN-based CBF
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have encountered the unsafe region if a conventional tracking con-

troller were to be implemented. It is demonstrated that although the

state enters the region H0 due to inevitable modeling error within the

FNN model for the CBF and the RNN model for the nonlinear pro-

cess, the state never reaches the border of D. Note that D represents

the actual unsafe set in state-space from physical law, H is the closed

and compact set that encloses D, H0 is the set within which training

data collected are deemed as “unsafe.” In addition, we use Ĥ to

denote the unsafe set predicted by B̂ xð Þ, which as shown in the previ-

ous section, encloses the unsafe set given by the training dataset H0.

All trajectories demonstrate that the states can successfully converge

to the terminal set Uρmin
while not entering the unsafe region D, as

shown in Figure 4. We also compare the closed-loop performance of

the proposed machine-learning-based CLBF-MPC with other CLBF-

MPC's with various levels of machine-learning implemented as part of

the formulation. The trajectories are shown in Figure 5. As shown, all

trajectories successfully avoided the unsafe region, bounded in Uρ,

and ultimately converged to Uρmin
. The trajectories using the analytical

CBF, which is designed based on the region H, enter and trespass the

H0 region (as they should in order to converge to the origin faster)

while not entering the H region. The trajectories using the FNN-

modeled CBF do oscillate around the boundary of the H0 region due

to modeling error, but remain distanced from the H region with the

conservative contingency margin considered.

7 | CONCLUSION

In this work, we have demonstrated that nonlinear systems subject to

input constraints could be stabilized by a CLBF-MPC while not entering

unsafe regions where the barrier function was constructed using an

FNN model and the predictive model within MPC was obtained using

an RNN model. A CBF was first characterized by building an FNN

model with unique structures and properties, and was then trained and

validated using discretized data collected from a conservative rendition

of unsafe and safe regions. Given sufficiently small bounded modeling

errors with the two NN models, the proposed CLBF-MPC was able to

meet its control objective of ensuring simultaneous stability and safety

for all initial conditions within a subset of the stability region under

sample-and-hold control action implementation. The effectiveness of

the machine-learning-based CLBF-MPC was demonstrated using a

nonlinear chemical process example with a bounded unsafe set.

ACKNOWLEDGMENTS

Financial support from the National Science Foundation and the

Department of Energy is gratefully acknowledged.

AUTHOR CONTRIBUTION

Scarlett Chen: Conceptualization (equal); data curation (equal); formal

analysis (equal); methodology (equal); software (equal); writing–

original draft (equal). Zhe Wu: Conceptualization (supporting); formal

analysis (supporting); methodology (supporting); writing–original draft

(supporting). Panagiotis Christofides: Conceptualization (supporting);

project administration (lead); supervision (lead), writing review &

editing (lead).

DATA AVAILABILITY STATEMENT

Our source data are available upon request.

ORCID

Panagiotis D. Christofides https://orcid.org/0000-0002-8772-4348

REFERENCES

1. Crowl DA, Louvar JF. Chemical process safety-fundamentals with

applications. Process Safety Progress. 2011;30:408-409.

2. Mhaskar P, El-Farra NH, Christofides PD. Stabilization of nonlinear

systems with state and control constraints using Lyapunov-based pre-

dictive control. Systems Control Lett. 2006;55:650-659.

3. Muñoz de la Peña D, Christofides PD. Lyapunov-based model predic-

tive control of nonlinear systems subject to data losses. IEEE Trans

Autom Control. 2008;53:2076-2089.

4. Albalawi F, Durand H, Christofides PD. Process operational safety

using model predictive control based on a process safeness index.

Comput Chem Eng. 2017;104:76-88.

5. Romdlony MZ, Jayawardhana B. Stabilization with guaranteed

safety using control Lyapunov-barrier function. Automatica. 2016;

66:39-47.

6. Wu Z, Christofides PD. Handling bounded and unbounded unsafe

sets in control Lyapunov-barrier function-based model predictive con-

trol of nonlinear processes. Chem Eng Res Des. 2019;143:140-149.

7. Jankovic M. Combining control Lyapunov and barrier functions for

constrained stabilization of nonlinear systems. Proceedings of the

American Control Conference, IEEE; 2017:1916-1922.

8. Niu B, Zhao J. Barrier Lyapunov functions for the output tracking con-

trol of constrained nonlinear switched systems. Syst Control Lett.

2013;62:963-971.

9. Tee KP, Ge SS, Tay EH. Barrier Lyapunov functions for the control

of output-constrained nonlinear systems. Automatica. 2009;45:

918-927.

10. Ames AD, Grizzle JW, Tabuada P. Control barrier function based qua-

dratic programs with application to adaptive cruise control. Proceed-

ings of the 53rd IEEE Conference on Decision and Control. IEEE; 2014:

6271-6278.

11. Prajna S, Jadbabaie A. Safety verification of hybrid systems using bar-

rier certificates. Proceedings of the 7th International Workshop, Hybrid

Systems: Computation and Control. Vol 2993, Berlin, Heidelberg:

Springer; 2004:477-492.

12. Xu X, Tabuada P, Grizzle JW, Ames AD. Robustness of control barrier func-

tions for safety critical control. IFAC-PapersOnLine. 2015;48(27):54-61.

13. Wu Z, Albalawi F, Zhang Z, Zhang J, Durand H, Christofides PD. Con-

trol Lyapunov-barrier function-based model predictive control of

nonlinear systems. Automatica. 2019;109:108508.

14. Kosmatopoulos EB, Polycarpou MM, Christodoulou MA, Ioannou PA.

High-order neural network structures for identification of dynamical

systems. IEEE Trans Neural Netw. 1995;6:422-431.

15. Sontag ED. Neural nets as systems models and controllers. Proceed-

ings of the Seventh Yale Workshop on Adaptive and Learning Systems.

Yale University; 1992:73-79.

16. Draeger A, Engell S, Ranke H. Model predictive control using neural

networks. IEEE Control Syst Magaz. 1995;15:61-66.

17. Hewing L, Wabersich KP, Menner M, Zeilinger MN. Learning-based

model predictive control: toward safe learning in control. Annu Rev

Control Robot Auton Syst. 2020;3:269-296.

18. Wong WC, Chee E, Li J, Wang X. Recurrent neural network-based

model predictive control for continuous pharmaceutical manufactur-

ing. Mathematics. 2018;6:242.

CHEN ET AL. 15 of 16

https://orcid.org/0000-0002-8772-4348
https://orcid.org/0000-0002-8772-4348


19. Sontag ED. A “universal” construction of Artstein's theorem on

nonlinear stabilization. Syst Control Lett. 1989;13:117-123.

20. Lin Y, Sontag ED. A universal formula for stabilization with bounded

controls. Syst Control Lett. 1991;16:393-397.

21. Wu Z, Tran A, Rincon D, Christofides PD. Machine learning-based

predictive control of nonlinear processes. Part I: theory. AIChE J.

2019;65:e16729.

22. Wieland P, Allgöwer F. Constructive safety using control barrier func-

tions. IFAC Proc Vol. 2007;40:462-467.

23. Sibi P, Jones SA, Siddarth P. Analysis of different activation functions

using back propagation neural networks. J Theor Appl Inf Technol.

2013;47:1264-1268.

24. Y. C. Chang, N. Roohi, and S. Gao. Neural Lyapunov control. arXiv pre-

print arXiv:2005.00611; 2020.

25. W. Jin, Z. Wang, Z. Yang, and S. Mou. Neural certificates for safe con-

trol policies. arXiv preprint arXiv:2006.08465; 2020.

26. Richards SM, Berkenkamp F, Krause A. The Lyapunov neural net-

work: adaptive stability certification for safe learning of dynamical

systems. Proceedings of the Conference on Robot Learning, PMLR;

2018:466-476.

27. Bobiti R, Lazar M. A sampling approach to finding Lyapunov functions

for nonlinear discrete-time systems. In Proceedings of the 2016

European Control Conference (ECC), IEEE; 2016:561-566.

28. Wu Z, Christofides PD. Control Lyapunov-barrier function-based pre-

dictive control of nonlinear processes using machine learning model-

ing. Comput Chem Eng. 2020;134:106706.

How to cite this article: Chen S, Wu Z, Christofides PD.

Machine-learning-based construction of barrier functions and

models for safe model predictive control. AIChE J. 2022;68(6):

e17456. doi:10.1002/aic.17456

16 of 16 CHEN ET AL.

info:doi/10.1002/aic.17456

	Machine-learning-based construction of barrier functions and models for safe model predictive control
	1  INTRODUCTION
	2  PRELIMINARIES
	2.1  Notation
	2.2  Class of systems
	2.3  Stabilizability assumptions expressed via Lyapunov-based control
	2.4  Process modeled using RNN
	2.5  Control barrier function

	3  CONSTRUCTION OF BARRIER FUNCTION USING NEURAL NETWORKS
	3.1  Neural network structure and training
	3.2  Effectiveness of NN-based barrier function
	3.2.1  Continuity and differentiability
	3.2.2  Verification
	3.2.3  Characterization of unsafe data


	4  STABILIZATION AND SAFETY VIA CONTROL LYAPUNOV-BARRIER FUNCTION
	4.1  Design of constrained CLBF

	5  CLBF-BASED MPC USING FNN CBF AND RNN PREDICTION MODEL
	5.1  Formulation of CLBF-MPC

	6  APPLICATION TO A CHEMICAL PROCESS EXAMPLE
	6.1  Development of the RNN model for the CSTR process
	6.2  Development of the FNN model for barrier function
	6.3  Closed-loop simulations

	7  CONCLUSION
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTION
	DATA AVAILABILITY STATEMENT

	REFERENCES


