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a b s t r a c t 

In this work, we present statistical model predictive control with Control Lyapunov-Barrier Functions 

(CLBF) built using machine learning approaches, and analyze closed-loop stability and safety properties 

in probability using statistical machine learning theory. A feedforward neural network (FNN) is used to 

construct the Control Barrier Function, and a generalization error bound can be obtained for this FNN 

via the Rademacher complexity method. The FNN Control Barrier Function is incorporated in a CLBF- 

based model predictive controller (MPC), which is used to control a nonlinear process subject to input 

constraints. The stability and safety properties of the closed-loop system under the sample-and-hold im- 

plementation of FNN-CLBF-MPC are evaluated in a statistical sense. We use a chemical process example 

to demonstrate the relation between various factors of building an FNN model and the generalization 

error, as well as the probabilities of closed-loop safety and stability for both bounded and unbounded 

unsafe sets. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Safety-critical systems are prevalent in many application do- 

ains such as aviation, automobiles, energy, chemical processing, 

edicine, and safety-related requirements must be strictly satis- 

ed on their inputs and states in order to prevent harm on process 

tability, economic gains, and/or operational safety. There has been 

xtensive research on providing safety verification of a system as 

ell as synthesizing control laws with provable safety properties 

 Prajna and Jadbabaie, 2004; Ratschan and She, 2007; Althoff et al., 

011; Mitra et al., 2013 ). Amongst these methods, Control Barrier 

unctions (CBFs) are proposed as a tool to characterize the safety 

f dynamical systems by certifying whether a control law achieves 

orward invariance of a safe set, similar to the utility of Control 

yapunov Function (CLF) in certifying stability properties ( Ames 

t al., 2014, 2016, 2017; Xu et al., 2015; Xu, 2016 ). CBFs can be

ncorporated in the design of control laws for multi-objective con- 

rol of safety-critical systems, e.g., controllers designed based on 

ontrol Lyapunov Barrier Functions (CLBF), where a CLF is used to 

haracterize a stability region and ensure stability properties, and a 
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BF is used to characterize an unsafe region where the state trajec- 

ory under the CLBF-based control law will not enter at all times 

 Romdlony and Jayawardhana, 2016 ). This approach has been fur- 

her explored for nonlinear systems subject to constrained inputs 

n Wu and Christofides (2019) , Wu et al. (2019a) , where CLBF- 

ased control laws are used as contractive constraints in the de- 

ign of a model predictive controller (MPC) to provide closed-loop 

afety and stability guarantees for nonlinear processes with em- 

edded bounded and unbounded unsafe regions. 

The development of an explicit CBF expressed in closed form 

emains a challenging task, especially for nonlinear processes, re- 

ardless of whether the process dynamics is well-defined. There 

as been previous works on characterizing a barrier function us- 

ng machine learning methods, such as using support vector ma- 

hines ( Srinivasan et al., 2020 ) and neural networks ( Jin et al.,

020; Zhao et al., 2020 ). Moreover, in Lindemann et al. (2020) , 

obey et al. (2020) , optimization-based approaches are used to 

earn CBFs from data for nonlinear continuous control affine dy- 

amical systems as well as hybrid systems. In ( Yaghoubi et al., 

020 ), an imitation learning framework is proposed to learn neural 

etwork-based feedback controllers with CBF constraints for sys- 

ems under disturbances. The work in Jin et al. (2020 ) uses neural 

etworks to jointly learn a Lyapunov-like function and a barrier 

unction and obtains a safe and goal-reaching control policy. Simi- 

https://doi.org/10.1016/j.compchemeng.2022.107860
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107860&domain=pdf
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.compchemeng.2022.107860
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Table 1 

Descriptions of frequently used variables. 

Variable Description 

x State vector of nonlinear system 

u Input vector of nonlinear system 

B (x ) Barrier function 

V (x ) Lyapunov function 

W (x ) Control Lyapunov-Barrier function 

x Input of FNN model 

y , ̂ y True and predicted output of FNN model 

d x , d y Dimension of FNN input and output 

σl (·) Activation function of in each layer l of the FNN model 

W l Weight parameter matrix in each layer l of the FNN model 

B X , B W Upper bound on the FNN inputs and FNN weight matrices 

m Number of samples 

d FNN depth (number of layers) 

L Loss function minimized during FNN training 

h ( x ) Hypothesis function mapping FNN input to FNN output 

δ Confidence associated with generalization error upper bound 

ε Rademacher random variable 

L f V Lie derivative of Lyapunov function along f

L g V Lie derivative of Lyapunov function along g
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∣∣∣∣
arly, in Zhao et al. (2020) , barrier functions are synthesized using 

eural networks that use a devised activation function Bent-ReLu 

nd checked against the barrier function criteria as a formal guar- 

ntee. Although formal proofs of guaranteed safety and stability 

ave been provided either from a priori theoretical development 

r posterior empirical verification, the question of generalization 

ccuracy of machine learning techniques has not been addressed. 

There has been some research into probabilistic safety certifi- 

ation of barrier functions, but the probability analysis is with re- 

pect to uncertainties that exist in the process dynamics ( Luo et al., 

020; Khojasteh et al., 2020; Liu et al., 2021 ), and not in the sense

f analyzing the generalization error of the modeling method. For 

xample, in Liu et al. (2021) , a Gaussian process is used to model

he projection of unknown residual dynamics onto a CBF; simi- 

arly in Khojasteh et al. (2020) , the Gaussian process approach is 

sed to obtain a distribution over the system dynamics, which is 

hen used to ensure safety with high probability by specifying a 

hance constraint on a CBF. The work in Clark (2019) develops bar- 

ier functions for stochastic systems with sufficient conditions for 

afety with probability. 

On the other hand, probably approximately correct (PAC) learn- 

ng theory provides a framework for analyzing the generalization 

bility of machine learning models, and provides the conditions 

nder which a learning algorithm is probably able to yield an 

utput that is approximately correct ( Valiant, 1984; Mohri et al., 

018 ). One way to characterize the machine learning model’s ca- 

ability to generalize new unseen data based on learned data is 

o examine the generalization error in Eryarsoy et al. (2009) , a 

ighter error bound on the performance of classification via Sup- 

ort Vector Machine (SVM) is characterized by exploiting domain 

nowledge. A bound on the generalization error of feed-forward 

eural networks has been developed by providing a bound on the 

ademacher complexity of the network ( Golowich et al., 2018 ). In 

u et al. (2021) , a similar bound is provided for recurrent neural 

etworks, and statistical stability analysis of Lyapunov-based MPC 

sing the recurrent neural network model was introduced. Gen- 

ralization error in deep learning algorithms has been surveyed 

n Jakubovitz et al. (2019) with discussions on different measures 

o assess generalization capabilities of deep neural networks, such 

s PAC-Bayes theory, algorithm stability, algorithm robustness, and 

ompression-based approach. In this work, we provide statistical 

nalysis on the CBF construction method proposed in our previous 

ork in Chen et al. (2021) , and model the CBF using a feed-forward

eural network, which will be used to design a CLBF-based model 

redictive control system. We first develop the generalization er- 

or bound on the FNN-CBF, and derive probabilistic safety and sta- 

ility guarantees for the control law designed using a CLBF with 

NN-CBF under sufficient conditions. The sampling, modeling, and 

erification procedures of the FNN are discussed. Then, we extend 

he probabilistic stability and safety properties to the FNN-CLBF- 

PC, and demonstrate that with high probability, the FNN-CLBF- 

PC is able to maintain the closed-loop state of a nonlinear pro- 

ess within a safe set and ultimately keep it bounded within a ter- 

inal set around the origin. 

The rest of the paper is organized as follows. Preliminaries on 

he nonlinear system and definitions of Lyapunov Function and 

arrier Function are given in Section 2 . The construction of barrier 

unctions using neural networks, including assumptions, design, 

ata generation and model verification, are presented in Section 3 . 

ection 4 develops the generalization error bounds on the FNN- 

BF and explain their implications. In Section 5 , the design of the 

NN-CLBF control law and the FNN-CLBF-based MPC are provided, 

nd the probabilistic stability and safety properties of the control 

ystem are provided. Lastly, the proposed control method and the 

ssociated generalization error and closed-loop performance are 

hown via a nonlinear chemical process example in Section 6 . 
2 
. Preliminaries 

.1. Notation 

The Euclidean norm is denoted by the operator | ·| . The nota- 

ion ‖ W ‖ 1 , ∞ 

= max j ( 
∑ 

i 

∣∣W i, j 

∣∣) denotes the infinity norm of the 1- 

orms of the columns of matrix W . We use ”\ ” to represent set 

ubtraction, i.e., A \ B := { x ∈ R 

n | x ∈ A, x / ∈ B } . x T denotes the trans-

ose of matrix x . L f V ( x ) := 

∂V ( x ) 
∂x 

f ( x ) represents the Lie deriva-

ive of V with respect to f . A function f is class C 1 if the first

erivative of f exists and is continuous. A function f : R 

n → R 

m is

aid to be L -Lipschitz continuous, if there exists L ≥ 0 such that 

or all a, b ∈ R 

n , | f (a ) − f (b) | ≤ L | a − b| . A continuous function r :

0 , a ) → [0 , ∞ ) belongs to a class K function if r(0) = 0 , and is

trictly increasing. Lastly, P (A ) represents the probability of the oc- 

urrence of an event A , and E [ X] denotes the expected value of a

andom variable X . More descriptions of frequently used variables 

an be found in Table 1 . 

.2. Class of systems 

In this study, we consider a general class of continuous-time 

onlinear systems, which can be represented by the following 

tate-space model: 

˙ 
 = F (x, u ) := f (x ) + g(x ) u, x (t 0 ) = x 0 (1)

here x ∈ R 

n is the state vector, u ∈ R 

k denotes the manipulated

nput vector bounded by u ∈ U , where U := { u min ≤ u ≤ u max } ⊂ R 

k .

t is assumed that the vector and matrix functions f (·) and g(·) are 

ufficiently smooth with f (0) = 0 , and thus the origin is a steady- 

tate of the nonlinear system. Lastly, the initial time is assumed to 

e at 0, i.e., t 0 = 0 . 

.3. Stabilizability via lyapunov-based control 

For the nonlinear system of Eq. (1) , it is assumed that a stabi-

izing feedback control law u = �(x ) ∈ U exists such that there ex- 

sts a positive definite and proper Control Lyapunov Function (CLF), 

enoted as V (x ) , that satisfies the following inequalities as well as 

he small control property: 

 1 | x | 2 ≤ V (x ) ≤ c 2 | x | 2 (2a) 

∂V (x ) 

∂x 

∣∣∣∣ ≤ r V (| x | ) (2b) 
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 f V (x ) < 0 , ∀ x ∈ { z ∈ R 

n \{ 0 } | L g V (z) = 0 } (2c) 

here r V is a function that belongs to class K, and c 1 , c 2 are

ositive constants. V (x ) also meets the small control property, 

hich states that, for every ε > 0 , ∃ δ > 0 , s.t. ∀ x ∈ B δ(0) , there

xists an input u satisfying | u | < ε and L f V (x ) + L g V (x ) · u < 0

 Sontag, 1989 ). The existence of such CLF implies that the origin 

f the nonlinear system of Eq. (1) is rendered asymptotically sta- 

le under u = �(x ) ∈ U for all x in a neighborhood around the ori-

in. This region where the time derivative of V (x ) can be rendered

egative under u = �(x ) ∈ U is defined as φu = { x ∈ R 

n | ˙ V (x ) =
 f V (x ) + L g V (x ) · u < 0 , u = �(x ) ∈ U} ∪ { 0 } . Furthermore, we de-

ne a level set of V (x ) within φu as U b := { x ∈ φu | V (x ) ≤ b, b >

 } , which is a forward invariant set in a sense that for any initial

ondition x 0 ∈ U b , the closed-loop trajectory x (t) , t ≥ 0 of the non-

inear system of Eq. (1) remains in U b under u = �(x ) ∈ U . 

.4. Control barrier function 

Consider that an open set D exists in state space, forming an 

nsafe region that should be avoided at all times for reasons such 

s violation of safety protocols. In contrast, a set of safe states can 

lso be characterized as X 0 := { x ∈ R 

n \D} where { 0 } ∈ X 0 and X 0 ∩
 = ∅ . The safe set X 0 represents the set of initial conditions that

ill be considered. In this work, we consider process operational 

afety as follows: 

efinition 1. For any initial state x (t 0 ) = x 0 ∈ X 0 , if there exists a

onstrained control law u = �(x ) ∈ U that renders the origin of the

losed-loop system of Eq. (1) asymptotically stable, and the closed- 

oop state trajectories do not enter the unsafe set D at all times, 

.e., x (t) ∈ X 0 , x (t) / ∈ D, ∀ t ≥ 0 , then the control law u = �(x ) ∈ U

aintains the closed-loop state within the safe region X 0 for all 

imes. 

Subsequently, we present the properties of a Control Barrier 

unction (CBF) in the following definition: ( Wieland and All- 

öwer, 200 7 ) 

efinition 2. Consider D which is a set of unsafe state values in 

tate space, a C 1 function B (x ) : R 

n → R is a Control Barrier Func-

ion (CBF) if the following conditions are met: 

 (x ) > 0 , ∀ x ∈ D (3a) 

 f B (x ) ≤ 0 , ∀ x ∈ { z ∈ R 

n \D | L g B (z) = 0 } (3b) 

 B := { x ∈ R 

n | B (x ) ≤ 0 } � = ∅ (3c) 

. Barrier function construction using feed-forward neural 

etworks 

.1. Model structure and training 

The control barrier function is developed from operating data 

n the state space that are labelled based on their safety status. 

his barrier function will then be synthesized using a feed-forward 

eural network (FNN), which typically consists of an input layer, 

ome hidden layers, and an output layer. Each layer contains neu- 

ons undergoing nonlinear transformations, with activation func- 

ions of the weighted sum of neurons in the previous layer plus a 

ias term. In this study, the inputs to the FNN are the state vec- 

or x ∈ R 

n of the nonlinear system of Eq. (1) , and the output of

he FNN predicts the barrier function value ˆ B (x ) ∈ R 

n . Training data

oints are collected from both the unsafe and the safe operating 
3 
egions, where the target output values of B (x ) will satisfy the CBF 

onditions of Eqs. (3a) and (3c) for the unsafe and the safe regions, 

espectively. More specifically, safe data points are labeled with a 

arget output value of B (x ) = −1 , and unsafe data points are la-

eled with a target output value of B (x ) = +1 . 

A general FNN model is considered, where m number of data 

amples are used to develop this model. The data samples are 

enerated independently as per the data distribution over X × Y ∈ 

 

d x × R 

d y , where d x and d y denote the dimension of the FNN input 

nd output vectors respectively; in this application, d x = n , which 

s the dimension of the state vector of the nonlinear system of 

q. (1) , and d y = 1 , which is the dimension of the barrier function

utput B (x ) . The general structure of FNN model with inputs de- 

oted as x ∈ R 

d x and predicted output denoted as ˆ y ∈ R 

d y in terms 

f scalar or vector-valued functions and weight matrices for d total 

umber of layers can be formulated as follows: 

ˆ  = σd (W d σd−1 (W d−1 σd−2 ( . . . σ1 (W 1 x )))) (4) 

here each W l for l = 1 , . . . , d layers represents the weight param-

ter matrix, and each σl represents the activation function in each 

ayer. The number of layers d represents the depth of the network, 

nd the width of the network h max can be defined as the maxi- 

um number of neurons in a hidden layer (maximal column or 

ow dimension of W l ), i.e., h max = max l=1 , ... ,d { h l } , where h l denotes

he number of neurons in the l-th layer. 

In this study, due to the unique dichotomous nature of B (x ) , 

e choose a hyperbolic tangent sigmoid function σ (z) = tanh (z) = 

2 
1+ e −2 z − 1 as the activation function to polarize the output of the 

etwork and in turn, improve the prediction accuracy. This is be- 

ause of the property of the tanh (z) function approaching +1 as z

pproaches + ∞ , and −1 as z approaches −∞ , thus polarizing the 

utputs of each layer and enforces the output of the FNN to ap- 

roximate constant positive values (+1 for safe points), or constant 

egative values (-1 for unsafe points). To clarify notations used in 

his paper, when discussing the general properties of FNN, the in- 

ut and output of the FNN model are denoted by the bold face 

 ∈ R 

d x and y ∈ R 

d y respectively. For this particular application, x 

s the state vector of Eq. (1) ( x ∈ R 

n ), and y is the barrier function

alue ( B (x ) ∈ R 

1 ) . 

Before proceeding with developing the generalization error 

ound, there are some standard assumptions presented as follows: 

ssumption 1. The FNN inputs are bounded, i.e., | x i | ≤ B X , for all 

 = 1 , . . . , m samples. 

ssumption 2. The maximal 1-norm ( l 1 /l ∞ 

) of the rows of weight

atrices in the output and in the hidden layers are bounded as 

ollows: 

 

W ‖ 1 , ∞ 

≤ B W 

(5) 

ssumption 3. All the datasets (i.e., training and testing) are 

rawn from the same underlying distribution. 

ssumption 4. σl (where l denotes any hidden layers) is a 1- 

ipschitz continuous activation function, and satisfies σl (0) = 0 . 

emark 1. Assumption 1 specifies the upper bound on the FNN in- 

uts, which is consistent with the way we sample the FNN inputs 

i.e., the state vector) as we only consider a bounded set around 

he steady-state of the nonlinear system of Eq. (1) . Assumption 

 assumes the boundedness of the FNN weight matrices; this can 

e ensured during FNN training, as only a finite class of hypothesis 

unctions are searched to find the optimal set of FNN parameters. 

ssumption 3 is required as the model trained from the training 

ataset will be evaluated on the testing dataset, and training and 

esting model accuracy metrics are compared against each other. 
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he evaluation of the model on the testing data (including closed- 

oop simulations) as well as the comparison of accuracy metrics 

re only valid if the two datasets have the same underlying tar- 

et distribution. Assumption 4 is an assumption on the activation 

unctions of the FNN, which is satisfied by many common activa- 

ion functions, and can be used to derive the upper bound for the 

ademacher complexity of the FNN hypothesis class. An example 

f a 1-Lipschitz continuous activation function is tanh (·) . 
We sample points from the operating region of the system (i.e., 

 ∈ X ⊂ R 

n where X is a compact set) to use as training and test-

ng data for the FNN. Since the conditions of Eq. (3) imposed on 

he resulting ˆ B (x ) must be satisfied in a continuous sense, the re- 

ions from which discrete data points are sampled from must be 

ompact and connected. This is done by first characterizing a com- 

act and connected set H, which is a superset of the open set D
as indicated in Eq. (32) in Section 5 ), then designing a larger com-

act and connected set H 

′ , which is a superset of H and encloses 

with sufficient margin. This region H 

′ is used to generate unsafe 

ata points from, such that the unsafe set the FNN model predicts 

ill remain as a superset of H, given bounded modeling and nu- 

erical error of the FNN model. This means that the FNN model 

ay classify safe points as unsafe, but will not classify unsafe 

oints as safe; the latter is not tolerated and should be avoided. 

eaders who are interested may refer to Chen et al. (2021) for 

ore details on how to characterize the unsafe region for data col- 

ection purposes when building a FNN-CLBF-MPC that uses both 

rst-principles and RNN models. We collect samples from the safe 

egion X \ H 

′ and the unsafe region H 

′ by discretizing the regions 

y a grid size of (δx ) H 

′ and (δx ) X\ H 

′ respectively. The datasets 

onsisting of finite samples are denoted as S I and S H 

’ for safe and 

nsafe regions, respectively. Together, S I and S H 

’ form the overall 

ample set S s . 

The FNN parameters (weights and biases) are optimized by 

inimizing the loss function shown in Eq. (6) using the Adam 

olver as a part of the Tensorflow Keras software package. Specifi- 

ally, the loss function consists of two parts. The first part L 1 uses 

ean squared error to calculate the difference between the target 

 (x ) and the prediction 

ˆ B (x ) , and in minimizing this error, aims to

atisfy the conditions of Eqs. 3a and (3c) . The second part L 2 pe-

alizes sample points that do not comply with the conditions of 

q. (3b) by using the ReLu (·) function and adding a small positive 

onstant τI as seen in Eq. (6c) . 

 

(
ˆ B , B 

)
= αL 1 + βL 2 (6a) 

 1 = 

1 

m 

m ∑ 

k =1 

(
ˆ B (x k ) − B k 

)2 
(6b) 

 2 = 

1 

N I f 

N I f ∑ 

j=1 

ReLu 

(
L f ˆ B (x j ) + τI 

)
(6c) 

where L 1 tracks the mean squared error (MSE) between the 

arget B and the predicted barrier function 

ˆ B for all discretized 

ata points x k , k = 1 , . . . , m , in the entire operating region that we

ample from, and L 2 is the loss function term that aims to sat- 

sfy L f ̂  B ≤ 0 for all x ∈ { S I | L g ̂  B (x ) = 0 } , where N I f 
is the number

f discretized data points that satisfies this condition in the safe 

egion. Since ReLu takes the maximum between its argument and 

, i.e., ReLu (z) = max { 0 , z} , L 2 penalizes any samples that produce

 f ̂
 B j + τI > 0 , therefore forcing L f ̂  B j ≤ 0 to hold for the applicable

oints in the safe region. α > 0 and β > 0 are hyperparameters 

hat adjust the weighting of L 1 and L 2 in the cost function. When 

 2 has reached 0 during training, then the weights and biases have 

een optimized in a way that the predicted barrier function 

ˆ B (x ) 
4 
atisfies the condition Eq. (3b) . To make sure that all conditions 

f Eq. (3) are satisfied at the end of training, L 1 and L 2 are evalu-

ted and monitored separately during training, and both L 1 and L 2 
re required to be below a respective threshold value such that 

he modeling error for ˆ B (x ) is bounded and the negative semi- 

efiniteness of L f ̂  B (x ) for all x in the safe region with L g ̂  B (x ) = 0

an be shown. 

.2. Verification of FNN-based CBF 

Upon arriving at an FNN-CBF from the discretized data samples, 

t is important to demonstrate that the conditions of Eq. (3) in the 

efinition of CBF are satisfied and that FNN-CBF can be used to 

esign control laws for the continuous nonlinear system of Eq. (1) . 

.2.1. Continuity and differentiability 

The CBF is continuously differentiable (i.e., a C 1 function) 

y Definition 2 , mandating that ˆ B (x ) and 

˙ ˆ B (x ) must be proven

o be continuous. As per the universal approximation theorem 

Sontag, 1992) , with sufficient model complexity, FNNs are capa- 

le of modeling any continuous nonlinear functions on a com- 

act set of the state space. In addition, ˆ B (x ) is the output of an

NN that consists of a chain of nonlinear activation functions, i.e., 

anh (·) , which is a Lipschitz continuous and continuously differ- 

ntiable function in the compact subset we sample from. Thus, 
ˆ 
 (x ) is also Lipschitz continuous and continuously differentiable on 

he sampled compact subset. In terms of FNN notations, we have 

hown that the overall hypothesis function class h ( x ) that maps 

he FNN inputs x to the FNN output y in the form of barrier func- 

ion value is also a C 1 function. It is assumed that the barrier func- 

ion satisfies the following inequality: 

∂B 

∂x 

∣∣∣∣ ≤ r B (| x | ) (7) 

here r B is a class K function similar to r V in Eq. (2b) . 

.2.2. Verification 

Training an FNN that minimizes the loss function of Eq. (6) aims 

o meet the conditions of Eq. (3) in Definition 2 for all discretized 

oints sampled from the compact subsets that we consider, but 

oes not guarantee that the conditions are met for all points in 

he respective compact subsets. Therefore, the conditions must be 

erified to hold over the compact subsets in a continuous sense. 

imilar to the approaches implemented in Bobiti and Lazar (2016) , 

ichards et al. (2018) , Jin et al. (2020) , we use a Lipschitz method

o verify that the decrease condition holds for a candidate func- 

ion on a finite sample of a bounded set. The following theorem 

resents the necessary criteria to use this verification technique: 

heorem 1. Consider a compact set S ⊂ R 

n and let S s be a finite set

ampled from S s.t. ∀ x ∈ S, there exists at least a pair (x s , δx s ) ∈
 s × R + such that | x − x s | ≤ δx s . If F (x s ) ≤ −L F · δx s (or respectively

 (x s ) < −L F · δx s ) holds for all x s ∈ S s , where the Lipschitz constant

or the function F is denoted by L F > 0 , then F (x ) ≤ 0 (respectively

 (x ) < 0 ) holds for all x ∈ S ( Bobiti and Lazar, 2016 ). 

Therefore, by checking the tightened inequality L f ̂  B (x ) ≤ −L ′ ·
x X\ H 

′ , ∀ x ∈ S I , it will be verified that L f ̂  B (x ) ≤ 0 , ∀ x ∈ X \ H 

′ ,
here L ′ > 0 is the Lipschitz constant for L f ̂  B (x ) , the finite set S I 

s sampled from the compact set X \ H 

′ , and δx X\ H 

′ > 0 is the dis-

retization grid size (distance between two discretized x points) of 

he safe set X \ H 

′ . On a similar note, ˆ B (x ) ≤ 0 , ∀ x ∈ X \ H 

′ can be

hown to hold by verifying that ˆ B (x ) ≤ −L ′′ · δx X\ H 

′ ∀ x ∈ S I , where

he Lipschitz constant for ˆ B is denoted by L ′′ . Lastly, we show 

hat Eq. (3a) is satisfied by checking − ˆ B (x ) < −L ′′ · δx H 

′ , ∀ x ∈ S H 

′ ,
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hich is sufficient to verify that − ˆ B (x ) < 0 ∀ x ∈ H 

′ , thus equiv-

lent to ˆ B (x ) > 0 ∀ x ∈ H 

′ . These conditions will be checked for

ll sample points in the respective discretized sets after an FNN 

odel is obtained. More details on the sampling, design, training, 

nd verification of the FNN-CBF can be found in our previous work 

n Chen et al. (2021) . 

. FNN generalization error 

When we train an FNN model, the model is obtained by min- 

mizing the loss function calculated based on training data sam- 

les only. Therefore, there is no information given on the error or 

erformance of the model on new testing data. The generalization 

rror measures the model’s ability of making an accurate predic- 

ion for new data from the same underlying distribution that has 

ot been seen or studied by the neural network. Using statistical 

heory commonly used in machine learning, we present an upper 

ound for the generalization error of the FNN model in predicting 

he value of the barrier function output. 

We first introduce some important preliminary concepts that 

ill be referenced in the development of FNN generalization er- 

or bound. Without loss of generality, we let H h be the hypoth- 

sis class of FNN functions h (·) that map a d x -dimensional input 

 ∈ R 

d x to a d y -dimensional output ˆ y ∈ R 

d y . We use ˆ y = h ( x ) to de-

ote the predicted output of the FNN model and L ( ̂ y , y ) to rep-

esent the loss function. Here, the loss function can be of many 

orms; for example, in our case of constructing a barrier function 

NN, the loss function is the sum of two loss functions as shown 

n Eq. (6) , where one loss function ( L 1 ) assesses the mean squared

rror between the predicted and the true barrier function output 

alues, and the other loss function ( L 2 ) ensures that the Lie deriva-

ive properties of the resulting FNN barrier function are met. Nev- 

rtheless, in supervised learning where the true output values are 

nown and used during training, the loss function will involve cal- 

ulating the difference between ˆ y and y . The following error defi- 

itions are presented for FNN model training. 

efinition 3. Mohri et al. (2018) Given a function h that predicts y 

output) using x (input), the generalization error or expected loss / 

rror over an underlying data distribution is D d is 

 D d (h ) � E [ L (h ( x ) , y )] = 

∫ 
X×Y 

L (h ( x ) , y ) ρ( x , y ) d x d y (8)

here ρ( x , y ) is the joint probability distribution for x and y , X

nd Y respectively denote the vector space for all possible inputs 

nd outputs. 

In most cases, the joint probability distribution ρ is not known. 

herefore, we approximate the expected error by using the empir- 

cal error presented as follows: 

efinition 4. Mohri et al. (2018) Consider a dataset S s = 

s 1 , . . . , s m 

) , s i = ( x i , y i ) , with m number of data samples collected

rom the underlying data distribution D d , the empirical risk or er- 

or is 

ˆ 
 S s [ L (h ( x ) , y )] = 

1 

m 

m ∑ 

i =1 

L (h ( x i ) , y i ) (9)

In addition, we also need to demonstrate the loss function 

 ( ̂ y , y ) is locally Lipschitz continuous. In this particular study, the 

rue FNN output is the true barrier function value B ∈ R 

1 that takes

he values of either −1 or +1 , thus | y | ≤ 1 . Since the FNN uses

yperbolic tangent sigmoid σ (z) = tanh (z) = 

2 
1+ e −2 z − 1 as the ac- 

ivation function, the predicted FNN output ˆ B is also bounded by 

 ̂ y | ≤ 1 . Furthermore, the training of FNN is designed such that 

t will only stop after L in Eq. (6) reaches below a threshold 
2 

5

i.e., L f ̂  B (x ) ≤ 0 ∀ x ∈ { S I | L g ̂  B (x ) = 0 } is satisfied only when L 2 ≤ τI ,

here τI > 0 is a small positive constant). Therefore, L 2 is also up- 

er bounded. With these considerations, both L 1 and L 2 loss func- 

ions are locally Lipschitz continuous, and the overall loss function 

 is also locally Lipschitz continuous with the following inequality 

atisfied for any two predictions: 

 L ( y , ̂  y 2 ) − L ( y , ̂  y 1 ) | ≤ L r | ̂ y 2 − ˆ y 1 | (10) 

here L r denotes the local Lipschitz constant for the loss function 

 . 

.1. Rademacher complexity 

We use empirical Rademacher complexity to bound the gener- 

lization error as it is commonly used in machine learning theory 

o quantify the richness of a class of functions. The Rademacher 

omplexity is defined as follows: 

efinition 5. Mohri et al. (2018) Given a dataset of m samples 

 s = { s 1 , . . . , s m 

} , and a hypothesis class F of scalar-valued func-

ions, the empirical Rademacher complexity of F is defined as: 

 S s (F ) = E ε

[ 

sup 

f∈F 

1 

m 

m ∑ 

i =1 

εi f (s i ) 

] 

(11) 

here ε = (ε1 , . . . , εm 

) T contains Rademacher random variables εi 

hat are independent and identically distributed (i.i.d.) and satisfy 

 (εi = −1) = P (εi = 1) = 0 . 5 . 

For the hypothesis class H h of vector-valued functions h ∈ R 

d y , 

t also satisfies the inequality shown in the following lemma: 

emma 1 (c.f. Corollary 4 in ( Maurer, 2016 )) . Given a hypothesis 

lass H h of vector-valued functions h ∈ R 

d y , and a dataset of m sam-

les S s = { s 1 , . . . , s m 

} . Consider the loss function L (·) which is a L r -

ipschitz function mapping h ∈ R 

d y to R , then we have 

 ε

[ 

sup 

h ∈H h 

m ∑ 

i =1 

εi L (h ( x i ) , y i ) 

] 

≤
√ 

2 L r E ε

[ 

sup 

h ∈H h 

m ∑ 

i =1 

d y ∑ 

k =1 

εik h k ( x i ) 

] 

(12) 

here εik is a m × d y matrix consisting of independent Rademacher 

ariables, and h k (·) denotes the k -th component of the vector-valued 

unction h (·) . For simplicity, the subscript ε on the expectation will be 

mitted for the remainder of the manuscript. 

The following bound ( Maurer, 2016 ) can be derived to simplify 

he bound in terms of vector-valued functions to one in terms of 

calar-value functions: 

 

[ 

sup 

h ∈H h 

m ∑ 

i =1 

d y ∑ 

k =1 

εik h k ( x i ) 

] 

≤
d y ∑ 

k =1 

E 

[ 

sup 

h ∈H h,k 

m ∑ 

i =1 

εi h ( x i ) 

] 

(13) 

here H h,k , k = 1 , . . . , d y represent scalar-valued function classes 

or the components of the vector-valued function class H h for 

 network of d layers. We derive the bound for empirical 

ademacher complexity in terms of scalar-valued function class 

rst, then use Eq. (13) to develop the bound for vector-valued func- 

ions. 

.2. Generalization error bound of FNN 

Consider the class of loss functions associated with the function 

lass H h : 

 = { g L : ( x , y ) → L (h ( x ) , y ) , h ∈ H h } (14)

here y is the true FNN output vector, x is the FNN input vector, 

nd h ( x ) represents the predicted FNN output vector. We have the 
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ollowing lemma to upper bound the generalization error using the 

ademacher complexity of the family of loss functions R S s (G) . 

emma 2 (c.f. Theorem 3.3 in Mohri et al. (2018) ) . Given a data

et of m number of i.i.d samples, the following inequality holds for all 

 L ∈ G over the sample space S s = (s i ) , s i = ( x i , y i ) with probability of

t least 1 − δ: 

 [ g L ( x , y )] ≤ 1 

m 

m ∑ 

i =1 

g L ( x i , y i ) + 2 R S s (G) + 3 

√ 

log ( 2 
δ
) 

2 m 

(15)

Interested readers may refer to Wu et al. (2021) and 

ohri et al. (2018) for the full proof of this lemma. The RHS of

his inequality includes three terms, the sum of which specifies the 

pper bound for the FNN generalization error. These three terms 

epresent the empirical loss based on the sample dataset S s , the 

ademacher complexity, and an error term that depends on the 

ample size and confidence δ. We further bound the Rademacher 

omplexity such that the upper bound of the generalization error 

an be quantified by known specific values such as the sample size 

 , confidence δ, neural network depth d, input dimension d x , and 

pper bounds on the input vector B X and on the weight matrices 

 W 

. 

We first consider the hypothesis class H h,k of scalar-valued 

unctions, where k represents components of the vector-valued 

unction class H h . For the scalar-valued function class H h,k , the 

ollowing lemma is presented to upper-bound the scaled empiri- 

al Rademacher complexity. We will later use this lemma to derive 

he upper bound for the empirical Rademacher complexity for the 

ector-valued hypothesis function class H h . 

emma 3 (c.f. Lemma 4 in Wu et al. (2021) ) . With λ >

 , the scaled empirical Rademacher complexity m R S s (H h,k ) = 

 [ sup h ∈H h,k 

∑ m 

i =1 εi h ( x i )] satisfies the following inequality: 

 R S s (H h,k ) = E 

[ 

sup 

h ∈H h,k 

m ∑ 

i =1 

εi h ( x i ) 

] 

= 

1 

λ
log exp 

( 

λE 

[ 

sup 

h ∈H h,k 

m ∑ 

i =1 

εi h ( x i ) 

] ) 

≤ 1 

λ
log 

( 

E 

[ 

sup 

h ∈H h,k 

exp (λ
m ∑ 

i =1 

εi h ( x i )) 

] ) 

(16) 

We further specify the upper bound of the Rademacher com- 

lexity by breaking down the function h ( x i ) ; this is done through

 “peeling” approach to “peel” off the weights and activation func- 

ions of the FNN model layer by layer. Here, due to the unique ap-

lication of the FNN model we construct, all the activation func- 

ions are tanh (·) in order to polarize the results to +1 and −1

alues. We present the following lemma, which is modified from 

emma 2 in ( Golowich et al., 2018 ), to demonstrate this peel- 

ng step inside a convex, monotonically increasing function (such 

s exp(·) ) for a 1-Lipschitz activation function σ (·) that satisfies 

(0) = 0 (such as tanh (·) ). 

emma 4 (c.f. Lemma 2 in Golowich et al. (2018 )) . Given any

ector-valued function class N with a 1-Lipschitz continuous activa- 

ion function σ (·) that satisfies σ (0) = 0 applied element-wise, and 

 convex and monotonically increasing function p : R → R + , the fol-

owing inequality holds: 

E 

[ 

sup 

|| W || 1 , ∞ ≤B W ,ν∈N 
p 

( 

|| 
m ∑ 

i =1 

εi σ (W ν( x i )) || ∞ 

) ] 
6

≤ 2 E 

[ 

sup 

ν∈N 
p 

( 

B W 

|| 
m ∑ 

i =1 

εi ν( x i ) || ∞ 

) ] 

(17) 

Lemma 4 holds for the vector-valued function class ν ∈ N (or 

quivalently h ∈ H h ), and therefore also holds for the scalar-valued 

unction class ν ∈ N k (or equivalently h ∈ H h,k ), where k represents 

he k -th component of the vector-valued function class. Following 

emma 4 , we now reference Theorem 2 in Golowich et al. (2018) to

erive a bound on the Rademacher complexity for the scalar- 

alued FNN function class H h,k , as presented in Lemma 5 . The 

ull proof of Lemma 5 can be found in Golowich et al. (2018) .

irst, Eq. (16) is used as a starting point to provide an inequal- 

ty involving the scaled Rademacher complexity for the scalar- 

alued function class H h,k and the scalar-valued hypothesis func- 

ion h ( x ) ∈ H h,k , which provides the predicted output in the out-

ut layer. Since the function exp(·) in Eq. (16) qualifies as a convex, 

onotonically increasing function, we can apply Lemma 4 repet- 

tively to Eq. (16) by “peeling” off the neural network layer by 

ayer, starting from h ( x ) in the output layer. The function p(·) in

q. (17) refers to exp(·) , and the scalar-valued functions ν ∈ N k re- 

er to subnetworks of the FNN from the input layer up to the layer 

eing “peeled”. The resulting upper bound on the Rademacher 

omplexity for the scalar-valued function class H h,k is presented 

n Lemma 5 and can be represented in terms of FNN input bound, 

eight matrix bounds, FNN depth, sample size, and FNN input di- 

ension. 

emma 5 (c.f. Theorem 2 in Golowich et al. (2018) ) . Given neu-

al networks with depth d and a class of scalar-valued functions H h,k 

here || W l || 1 , ∞ 

≤ B W 

for all l = 1 , . . . , d, and Assumptions 1 - 4 sat-

sfied, the following inequality holds: 

 S s (H h,k ) ≤
2 B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

(18) 

nterested readers may refer to Section 7 of Golowich et al. (2018) for 

he proof of this theorem. 

The above lemma presents the Rademacher complexity upper 

ound for the scalar-valued functions H h,k , k = 1 , . . . , d y , for the k -

h component of the vector-valued function class H h . Now we will 

erive the generalization error bound for the loss function class as- 

ociated with the vector-valued hypothesis FNN function class H h . 

e use Eqs. (12) , (13) to derive the following theorem: 

heorem 2 (c.f. Theorem 1 in Wu et al. (2021) ) . Consider the 

ataset S s consisting of m i.i.d. data samples and the class of loss 

unctions associated with the vector-valued FNN hypothesis class H h 

atisfying Assumptions 1 - 4 . With probability of at least 1 − δ, we

ave the following inequality: 

 [ g L ( x , y )] ≤ O 

( 

L r d y 
B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

) 

+3 

√ 

log ( 2 
δ
) 

2 m 

+ 

1 

m 

m ∑ 

i =1 

g L ( x i , y i ) (19) 

here B X is the upper bound on FNN inputs defined in Eq. ( 1 ) , B W 

s the upper bound on FNN weight matrices as stated in Eq. ( 2 ) , L r is

he local Lipschitz constant for the loss function L (·) as defined in Eq. 

10) , d x is the FNN input dimension, d y is the FNN output dimension. 

roof. Using Eqs. (12) , (13) , we can derive the following upper 

ound for the loss function L (h ( x i ) , y i ) with h ( x i ) being vector-

alued functions: 

 S s (G) = E 

[ 

sup 

h ∈H h 

1 

m 

m ∑ 

i =1 

εi L (h ( x i ) , y i ) 

] 
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≤
√ 

2 L r E 

[ 

sup 

h ∈H h 

1 

m 

m ∑ 

i =1 

d y ∑ 

k =1 

εik h k ( x i ) 

] 

≤
√ 

2 L r 
1 

m 

d y ∑ 

k =1 

E 

[ 

sup 

h ∈H h,k 

m ∑ 

i =1 

εi h ( x i ) 

] 

(20) 

sing the definition of Rademacher complexity for the scalar- 

alued function class H h,k , we have the following: 

√ 

2 L r 
1 

m 

d y ∑ 

k =1 

E 

[ 

sup 

h ∈H h,k 

m ∑ 

i =1 

εi h ( x i ) 

] 

= 

√ 

2 L r 
1 

m 

d y ∑ 

k =1 

m R S s (H h,k ) = 

√ 

2 L r 

d y ∑ 

k =1 

R S s (H h,k ) (21) 

herefore, using Eq. (18) , we can derive the bound on the 

ademacher complexity of the loss function as follows: 

 S s (G) ≤
√ 

2 L r 

d y ∑ 

k =1 

R S s (H h,k ) 

≤
√ 

2 L r 

d y ∑ 

k =1 

2 B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

≤ 2 

√ 

2 L r d y 
B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

(22) 

astly, we can substitute Eq. (22) into Eq. (15) , and obtain the gen-

ralization error bound as seen in Eq. (19) . �

.3. Implications of generalization error bound for different loss 

unctions 

As seen in Eq. (6) , there are two parts to the loss function of the

NN, and each part is being monitored separately during training. 

s explained in Section 4 , both loss functions L 1 and L 2 are locally

ipschitz continuous functions satisfying the following inequalities: 

 L 1 ( y , ̂  y 2 ) − L 1 ( y , ̂  y 1 ) | ≤ L r1 | ̂ y 2 − ˆ y 1 | (23a) 

 L 2 ( ̂ y 2 ) − L 2 ( ̂ y 1 ) | ≤ L r2 | ̂ y 2 − ˆ y 1 | (23b) 

here L r1 and L r2 denote the local Lipschitz constant for loss func- 

ions L 1 and L 2 respectively. Note that L 1 is a function assessing the 

SE between the true output y and the predicted output ˆ y , and L 2 
s a function of the predicted output ˆ y only (the explicit form of 
∂B 
∂x 

, hence L f B (x ) , are not known ahead of time). 

Therefore, we can develop the generalization error bound with 

espect to each loss function, and explain their respective impli- 

ations. Here, we replace the general notations of FNN inputs x 

nd output y with the specific variables under consideration in our 

ase, which include states of the nonlinear system of Eq. (1) x as 

he inputs, barrier function value B as the true output, and 

ˆ B (x ) as

he predicted output. The expected loss of L 1 is upper bounded by 

he following inequality with probability of at least 1 − δ: 

 [ L 1 ( ̂  B (x ) , B )] ≤ O 

( 

L r1 d y 
B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

) 

+3 

√ 

log ( 2 
δ
) 

2 m 

+ 

1 

m 

m ∑ 

i =1 

L 1 ( ̂  B (x i ) , B i ) (24) 

ince L 1 evaluates error between true FNN output (i.e., B ) and pre- 

icted FNN output (i.e., ˆ B (x ) ) in terms of MSE, the upper bound on
7 
 ̂

 B − B | is: 

 ̂

 B −B | ≤
√ √ √ √ O 

( 

L r1 d y 
B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

) 

+ 3 
√ 

log ( 2 
δ
) 

2 m 

+ 1 
m 

m ∑ 

i =1 

L 1 ( ̂ B (x i ) , B i ) (25) 

e can further develop a bound on the value of ˆ B (x ) , which holds

ith probability of at least 1 − δ as follows: 

 ̂

 B | = | ̂ B + B − B | 
≤ | B | + | ̂ B − B | 
≤ | B | + 

√ 

O 

(
L r1 d y 

B X (B W ) d 
√ 

d+1+ log(d x ) √ 
m 

)
+ 3 

√ 

log ( 2 
δ
) 

2 m 
+ 

1 
m 

∑ m 
i =1 L 1 ( ̂ B (x i ) , B i ) 

(26) 

iven the conditions of Eqs. (3a) and (3c) , the true barrier function 

 take values of +1 for unsafe x , and −1 for safe x ; therefore, | B | ≤
 for all x in the operating region. In order to ensure that ˆ B satisfies 

ˆ 
 ≤ 0 for all safe x , and ˆ B > 0 for all unsafe x , the upper bound on 

he modeling error of the barrier function output must be less than 

, thus, 

 

 

 

 O 

( 

L r1 d y 
B X (B W ) d 

√ 

d + 1 + log(d x ) √ 

m 

) 

+ 3 

√ 

log ( 2 
δ
) 

2 m 

+ 

1 

m 

m ∑ 

i =1 

L 1 ( ̂ B (x i ) , B i ) ≤ 1 

(27) 

he FNN model must be trained and built by selecting the ap- 

ropriate number of samples m , the depth of the network d, the 

ound on the weight matrices B W 

such that this bound on the 

odeling error is satisfied. 

Moreover, the generalization error bound of L 2 represents the 

pper bound of the expected value of L 2 when applied on testing 

ata that has not been studied by the FNN. The generalization er- 

or bound of L 2 can be written as follows: 

 [ L 2 ( ̂  B (x )] ≤ O 

( 

L r2 d y 
B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

) 

+3 

√ 

log ( 2 
δ
) 

2 m 

+ 

1 

m 

m ∑ 

i =1 

L 2 ( ̂  B (x i )) (28) 

here the term 

1 
m 

∑ m 

i =1 L 2 ( ̂  B (x i )) represents the empirical loss of 

 2 resulting from m data samples from the training dataset. As de- 

cribed in Section 3.1 , we monitor L 2 during training and only stop 

raining when L 2 reaches 0 for all training data samples. There- 

ore, 1 
m 

∑ m 

i =1 L 2 ( ̂  B (x i )) = 0 . Furthermore, by the law of large num-

ers, with sufficiently large number of data sample size, the sam- 

le mean can sufficiently approximate the real expected value. In 

his case, we can use the testing dataset empirical loss to approx- 

mate the expectation of L 2 , which assesses ReLu (L f ̂  B (x ) + τI ) for

 values that have not been studied by the FNN. We can further 

implify Eq. (28) to the following form by utilizing the fact that 

he empirical loss of L 2 on the training dataset is 0: 

E 

⎡ 

⎣ 

1 

N 

test 
I f 

N test 
I f ∑ 

i =1 

ReLu 

(
L f ˆ B (x i ) + τI 

)⎤ 

⎦ 

≤ O 

( 

L r2 d y 
B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

) 

+ 3 

√ 

log ( 2 
δ
) 

2 m 

(29a) 

 

[
ReLu (L f ˆ B (x ) + τI ) 

]
≤ O 

( 

L r2 d y 
B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

) 

+3 

√ 

log ( 2 
δ
) 

2 m 

(29b) 
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here x i for i = 1 , . . . , N 

test 
I f 

represents safe states in the testing

ataset at which L g ̂  B (x i ) = 0 . In order to meet the condition of

q. (3b) for testing data points that have not been previously stud- 

ed by the FNN, the following inequality must hold: 

 

( 

L r2 d y 
B X (B W 

) d 
√ 

d + 1 + log(d x ) √ 

m 

) 

+ 3 

√ 

log ( 2 
δ
) 

2 m 

− τI ≤ 0 (30) 

y carefully choosing the number of layers to the FNN (depth d), 

he number of training sample size m , the upper bounds on weight 

atrices B W 

, as well as the upper bound on the input vector B X by

electing the range of states considered in the compact set in state 

pace appropriately, we build a FNN that satisfies Eq. (30) , and in 

urn, ensures that L f ̂  B (x ) ≤ 0 in the operating region for which we

onsider the states are constrained within with probability 1 − δ. 

. Probabilistic stabilization and safety via Control 

yapunov-Barrier Function 

The Control Lyapunov-Barrier Function (CLBF) in the form of a 

eighted average of CLF and CBF was proposed in Romdlony and 

ayawardhana (2016) , and it shows that when a CLBF exists for the 

ystem of Eq. (1) , there exists a controller u = �(x ) that keeps the

losed-loop state bounded within a level set of the CLBF and out- 

ide of the unsafe set D for all times for any initial condition x 0 ∈
 0 . This work is further extended in Wu and Christofides (2019) , 

u et al. (2019a) to account for input constraints in the sys- 

em and the constrained CLBF was presented. Furthermore, a con- 

trained CLBF-MPC where the prediction model inside the MPC 

as developed using an ensemble of Recurrent Neural Network 

RNN) models was proposed in Wu and Christofides (2020) . Based 

n this work, we proposed a machine-learning-based CLBF-MPC in 

hen et al. (2021) where the CBF is built using an FNN model to

haracterize the safety status of the states inside the operating re- 

ion, and the MPC uses an RNN model for its predictions. In this 

ork, we provide statistical analysis on the probability of stabi- 

ization and safety of a CLBF-based controller where the CBF is 

uilt using an FNN, first under the control law u = �(x ) ∈ U for the

onlinear system of Eq. (1) , then under the CLBF-MPC where MPC 

ses the first-principles model in the form of ODE as described by 

q. (1) to predict future states. The FNN-CBF ˆ B can be shown to 

eet the conditions outlined in Eq. (3) in probability with proper 

odel construction, parameter selection, and post-training verifi- 

ation. Therefore, it can be readily used as a valid CBF in the de- 

ign of CLBF. The constrained CLBF built using the FNN-CBF ˆ B is 

efined as follows: 

efinition 6. Given a set of unsafe points in state-space D, a 

roper, lower-bounded and C 1 function 

ˆ W (x ) : R 

n → R is a con-

trained CLBF if ˆ W (x ) has a minimum at the origin and also satis-

es the following properties: 

ˆ 
 (x ) > ρ, ∀ x ∈ D ⊂ φuc (31a) 

∂ ˆ W (x ) 

∂x 

∣∣∣∣ ≤ r W 

(| x | ) (31b) 

 f 
ˆ W (x ) < 0 , 

 x ∈ { z ∈ φuc \ (D ∪ { 0 } ∪ X e ) | L g ˆ W (z) = 0 } (31c) 

 ρ := { x ∈ φuc | ˆ W (x ) ≤ ρ} � = ∅ (31d) 

uc \ (D ∪ U ρ ) ∩ D = ∅ (31e) 
8 
where f and g are from the nonlinear model in Eq. (1) , ρ ∈ 

 is a constant, r W 

is a class K function, X e := { x ∈ φuc \ (D ∪
 0 } ) | ∂ ˆ W (x ) /∂x = 0 } is a set of states for the nonlinear model

f Eq. (1) where L f ˆ W (x ) = 0 (for x � = 0 ) due to ∂ ˆ W (x ) /∂x = 0 . If

ˆ 
 (x ) exists for the nonlinear system of Eq. (1) as defined in Eq. 6 ,

hen there exists a control law u = �(x ) ∈ U such that the ori-

in of the system is rendered asymptotically stable within a re- 

ion φuc , which is defined as the union of the origin, and the set 

 e , and the set for which the time-derivative of ˆ W (x ) is negative

ith constrained inputs: φuc = { x ∈ R 

n | { 0 } ∪ X e ∪ 

˙ ˆ W (x (t) , �(x )) =
 f 

ˆ W + L g ˆ W · u < −αW 

| ̂  W (x ) − ˆ W (0) | , u = �(x ) ∈ U} , and αW 

> 0 is

 real constant used to characterize the set φuc . An example of 

uch control law �(x ) takes the form of the Lyapunov-based uni- 

ersal Sontag law ( Lin and Sontag, 1991 ) with the Lyapunov func- 

ion V (x ) replaced by the CLBF ˆ W (x ) ; details can be found in Wu

t al. (2018, 2019a) , Wu and Christofides (2019) . 

.1. Design of constrained CLBF 

The design of CLBF can be carried out following the practical 

esign guidelines in Wu et al. (2019a) , by first designing valid CLF 

nd CBF that meet their conditions outlined in Eq. (2) and Eq. (3), 

espectively. This design method is further expanded and proven 

n Chen et al. (2021) in the case of FNN-based CBF and RNN-based 

rocess model, and it was shown that through a FNN-CBF ˆ B (x ) that 

eets all its required conditions, the resulting machine-learning 

ased 

ˆ W (x ) has a global minimum at the origin and is able to 

eet all its requirements of Eq. (31) . The proof for the follow- 

ng proposition can be found in Wu and Christofides (2019) and 

hen et al. (2021) and will be omitted here. In this work, we have

ntroduced the statistical analysis on the generalization error of the 

NN-CBF ˆ B . Accounting for the general expected error of ˆ B , the 

NN-CBF ˆ B is shown to meet all the requirements of Eq. (3) with 

robability of 1 − δ if the two conditions on the modeling error 

ound shown in Eqs. (27) and (30) are met. Therefore, the prop- 

rties of the resulting CLBF ˆ W as well as the associated safety and 

tabilizability properties of the CLBF-based controller will also hold 

ith probability 1 − δ. 

roposition 1. Consider the C 1 FNN-CBF ˆ B (x ) : R 

n → R , trained

sing the dataset S s consisting m i.i.d data samples satisfying 

ssumptions 1 –4 , and has a resulting loss function errors constrained 

y Eqs. (27) and (30) . Given an open set D of unsafe states for the

ystem of Eq. (1) , assume that there exists a C 1 CLF V : R 

n → R + , such

hat the following conditions hold: 

 ⊂ H ⊂ H 

′ ⊂ φuc , 0 / ∈ H, 0 / ∈ H 

′ (32) 

ˆ 
 (x ) = −η < 0 , ∀ x ∈ R 

n \ H 

′ ; ˆ B (x ) > 0 , ∀ x ∈ H 

′ (33)

here H and H 

′ are both compact and connected sets within φuc , and 

 

′ encloses H with sufficient margin accounting for modeling errors 

n ˆ B (x ) . Consider ˆ W (x ) designed as ˆ W (x ) := V (x ) + μ ˆ B (x ) + ν , and

atisfies: 

∂ ˆ W (x ) 

∂x 

∣∣∣∣ ≤ r W 

(| x | ) (34) 

L f ˆ W (x ) < 0 , 

∀ x ∈ { z ∈ φuc \ (D ∪ { 0 } ∪ X e ) | L g ˆ W (z) = 0 } (35) 

> 

c 2 c 3 − c 1 c 4 
η

, (36a) 

ν = ρ − c 1 c 4 , (36b) 
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c 3 := max 
x ∈ ∂ H 

′ 
| x | 2 , (36c) 

c 4 := min 

x ∈ ∂D 
| x | 2 (36d) 

then, with probability of at least 1 − δ, the control law �(x ) ∈ U

Lyapunov-based Sontag control law with V (x ) replaced by ˆ W (x ) ) 

uarantees that, for any initial state x 0 ∈ φuc \D H 

′ , where D H 

’ := { x ∈
 

’ | ˆ W (x ) > ρ} , the state is bounded in φuc \H and does not enter

he unsafe region H for all t > 0 . 

roof. Through the selection of parameters μ and ν , the condi- 

ions of Eqs. (31a) and (31e) can be met. The proofs for these 

wo conditions are shown in Wu et al. (2019a) and will be omit- 

ed here. We will focus on how the conditions of Eqs. (31b) and 

31c) can be met. Given that Eqs. (27) and (30) are met, ˆ B (x ) sat-

sfies the CBF properties presented in Eq. (3) with probability at 

east 1 − δ. From Eqs. (2b) and (7) , as well as the way the CLBF is

onstructed 

ˆ W (x ) := V (x ) + μ ˆ B (x ) + ν , we have the following: 

∂ ̂  W (x ) 
∂x 

∣∣∣ = 

∣∣∣ ∂V 
∂x 

+ μ∂ ̂ B 
∂x 

∣∣∣
≤ r V (| x | ) + μr B (| x | ) 
≤ r W 

(| x | ) 
(37) 

here r W 

, as the weighted sum of two class K functions r V and 

 B , is also a class K function. Thus, it is shown that Eq. (31b) is

atisfied. Similarly, for all x ∈ { z ∈ φuc \ (D ∪ { 0 } ∪ X e ) | L g ˆ W (z) = 0 } ,
q. (31c) can be also shown to hold with the following derivation: 

 f 
ˆ W (x ) = L f V (x ) + μL f ˆ B (x ) < 0 

(38) 

hus, Eqs. (31b) and (31c) are both satisfied. In addition, the global 

inimum of V (x ) is at the origin, i.e., V (0) = 0 , and V (x ) > 0 for

ll x ∈ R 

n \{ 0 } . With a sufficiently small modeling error as char-

cterized by its generalization error bound, ˆ B (x ) = −1 for all x ∈
uc \ H 

′ , where { 0 } ∈ φuc \ H 

′ , and 

ˆ B (x ) = +1 for all x ∈ H 

′ in proba-

ility. Hence, ˆ B (x ) also has a global minimum at the origin in prob-

bility. Since ˆ W (x ) is a weighted average of V (x ) and 

ˆ B (x ) , the

lobal minimum of ˆ W (x ) is at the origin. Therefore, it has been 

emonstrated that a CLBF ˆ W (x ) and the control law u = �(x ) ∈ U

xist that satisfy all conditions of Eq. (31) with probability 1 − δ, 

nd guarantee the safety and asymptotic stability of the states for 

ll x 0 ∈ φuc \D H 

′ . �

We specify the set of initial conditions considered in our study 

s U ρ , which is a level set of ˆ W (x ) as described in Eq. (31d) .

ince ˙ ˆ W (x ) = 0 for x = 0 and x = x e ∈ X e , and 

˙ ˆ W (x ) < 0 within the

et φuc \ (X e ∪ 0) under the control law u = �(x ) ∈ U , it holds that
˙ ˆ 
 (x ) ≤ 0 for all x ∈ U ρ . We know that ˆ W (x ) is a proper function,

herefore the level set of ˆ W (x ) , U ρ , is a compact, forward invari-

nt set. For any initial condition x 0 ∈ U ρ , the closed-loop state x (t)

s bounded in U ρ under the continuous control law u = �(x ) ∈ U .

urthermore, since the set U ρ has no intersection with the set D H 

′ , 
he closed-loop state will not enter the unsafe set D H 

′ character- 

zed by Proposition 1 . 

For bounded unsafe sets (e.g., the entire unsafe region occurs 

s an obstacle in the middle of the operating region), there are 

tationary points in state space (in addition to the origin), de- 

oted as x e ∈ X e where ˙ ˆ W = 0 , which can be considered as sad-

le points. When states reach these stationary points, the continu- 

us controller u = �(x ) ∈ U is incapable of steering the states away

rom these points and they will remain there and become trapped. 

hus, we design discontinuous control actions u = ū (x ) ∈ U that 

an drive the states away from x e in a path of decreasing ˆ W (x ) .

nce the states leave x e under ū (x ) , then the controller u = �(x ) ∈
9 
is able to continue driving the state towards the origin asymp- 

otically since ˙ ˆ W (x ) < 0 for all x ∈ U ρ\ (X e ∪ 0) . In the case of un-

ounded unsafe sets, the origin will be the only stationary point 

n state-space, therefore the CLBF-based control law u = �(x ) ∈ U

s able to ensure asymptotic stability and safety. 

.2. Sample-and-hold implementation of CLBF-based controller 

We have shown that if there exists a constrained CLBF ˆ W built 

rom FNN-CBF ˆ B that meets the conditions of Eq. (31) and a set 

f control law u = �(x ) ∈ U that is continuously implemented, the 

losed-loop state can be maintained within the safe region for all 

imes. This CLBF-based control law u = �(x ) ∈ U is used to design

LBF-based constraints in MPC. As the MPC is executed every sam- 

ling period �, the control law will be implemented in a sample- 

nd-hold manner. Therefore, we will now discuss the impact of 

ample-and-hold application of control actions on the probabilis- 

ic stability and safety of the nonlinear system of Eq. (1) . 

We consider the region U ρ\ (U ρs ∪ B δ (x e )) , where ρs < ρmin <

, and prove that for all x (t k ) in this region, ˙ W (x (t) , u (t)) < −ε
here u (t) is applied in a sample-and-hold manner u (t) = u (t k ) =
(x (t k )) , ∀ t ∈ [ t k , t k + �′ ) . Since this region is a bounded region

ithin φuc and the functions f (·) and g(·) are continuous, we have 

he following inequalities: 

˙ ˆ 
 (x (t k )) < −αW 

| ˆ W (x ) − ˆ W (0) | < −αW 

ρ0 (39a) 

 x (t) − x (t k ) | ≤ k 1 �
′ , ∀ t ∈ [ t k , t k + �′ ) (39b) 

here k 1 is a positive real number and �′ > 0 represents a sam- 

ling period, where the sampling period of the CLBF-based con- 

roller and CLBF-MPC � will be taken from the range � ∈ (0 , �∗] .

q. (39a) comes from the definition of the region φuc , and ρ0 := 

min 

 ∈U ρ\ (U ρs ∪B δ (x e )) 
| ̂  W (x ) − ˆ W (0) | , and 

ˆ W (0) is the minimum of ˆ W (x ) 

hich is found at the origin. Furthermore, since ˆ W (x ) is a C 1 func-

ion that meets the property of Eq. (31b) , and considering the fact 

hat f (·) and g(·) are sufficiently smooth functions, we have the 

ollowing inequalities: 

 L f ˆ W (x (t)) − L f ˆ W (x (t k )) | ≤ k 2 | x (t) − x (t k ) | (40a) 

 (L g ˆ W (x (t)) − L g ˆ W (x (t k ))) u (t) | ≤ k 3 | x (t) − x (t k ) | (40b) 

here k 2 and k 3 are positive real numbers. With these inequalities 

stablished, the following proposition is presented to show that 

ith sufficient conditions, the controller u = �(x ) ∈ U designed 

ased on the FNN-based CLBF ˆ W (x ) and the discontinuous con- 

rol law u = ū (x ) ∈ U are able to guarantee closed-loop stability 

nd safety for the nonlinear system in Eq. (1) . 

roposition 2. Consider the nonlinear system of Eq. (1) with a FNN- 

ased CLBF ˆ W (x ) designed based on a valid CLF V (x ) and a valid

NN-CBF ˆ B (x ) that satisfies Eq. (3 ) with probability of at least 1 − δ.

here exists ε > 0 , �′ > 0 , �′′ > 0 , ρ > ρmin > ρs that satisfy: 

′ < 

αW 

ρ0 − ε

k 1 (k 2 + k 3 ) 
, 0 ≤ ε < αW 

ρ0 (41a) 

min := max 
�t∈ [0 , �′′ ) 

{ ˆ W (x (t k + �t)) | x (t k ) ∈ U ρs 
, u ∈ U} (41b) 

∗ = min { �′ , �′′ } (41c) 

uch that, for any x (t k ) ∈ U ρ , under the sample-and-hold application 

f either u (t) = �(x (t k )) ∀ t ∈ [ t k , t k +1 ) where t k +1 = t k + � and � ∈
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0 , �∗] , or u (t) = ū (x (t k )) ∈ U when x (t k ) ∈ B δ (x e ) , ˆ W (x ) is guaran-

eed to decrease over one sampling period with probability of at least 

 − δ, and x (t) is bounded in U ρ for all times and ultimately con-

erges to U ρmin 
. 

roof. We first consider the case of bounded unsafe sets in state 

pace. We will first prove that the closed-loop state trajectory x (t) 

ill be bounded in U ρ and will enter U ρs in finite steps under the

ample-and-hold implementation of control actions u = �(x ) ∈ U

r u = ū (x ) ∈ U if x ∈ B δ (x e ) . Then we will prove that once the

tate enters U ρs , i.e., x (t k ) ∈ U ρs , x (t) will stay in U ρmin 
for t =

 t k , t k + �′′ ) . 
Under the sample-and-hold implementation of u (t) , for x (t k ) ∈ 

 ρ\ (U ρs ∪ B δ (x e )) , we can write ˙ ˆ W (x ) as follows: 

˙ ˆ 
 (x (t) , u (t)) = 

˙ ˆ W (x (t k ) , u (t k )) + ( ˙ ˆ W ( x ( t) , u ( t)) 

− ˙ ˆ W (x (t k ) , u (t k ))) 

= L f ˆ W (x (t k )) + L g ˆ W (x (t k )) u (t k ) 

+ 

(
L f ˆ W (x (t)) − L f ˆ W (x (t k )) 

)
+ 

(
L g ˆ W (x (t)) − L g ˆ W (x (t k )) 

)
u (t) (42) 

Substituting Eqs. (39a), (40) and (39b) , we derive the following 

nequality: 

˙ ˆ 
 (x (t) , u (t)) < −αW 

ρ0 + k 1 (k 2 + k 3 )�
′ < −ε (43)

hich sufficiently shows that under sample-and-hold implemen- 

ation of control actions u (t) , ˙ ˆ W (x ) can be rendered negative for

ny x (t k ) ∈ U ρ\ (U ρs ∪ B δ (x e )) , and 

ˆ W (x (t)) < 

ˆ W (x (t k )) ≤ ρ , there-

ore bounded within U ρ ∀ t > t k . Within finite steps, x (t) will even-

ually enter U ρs . 

For bounded unsafe sets where stationary points in state-space 

xist, consider x (t k ) ∈ B δ(x e ) . x (t k +1 ) can be driven to a smaller

evel set of ˆ W (x ) under the discontinuous control law u = ū (x ) ∈ U

hich decreases ˆ W (x ) over one sampling period; i.e., ˆ W (x (t k +1 )) < 

ˆ 
 (x (t k )) . Within finite sampling periods, the closed-loop state will 

ventually leave B δ (x e ) , and will never return since the control law

 = �(x ) ∈ U will take over and ensure that ˆ W (x (t)) < 

ˆ W (x (t k ))

or all t > t k . 

Once the state enters the set U ρs , x (t k ) ∈ U ρs , the definition

f U ρmin 
in Eq. (41b) shows that the trajectory x (t) will stay in

 ρmin 
for t ∈ [ t k , t k + �′′ ) . We choose a maximal sampling period

∗ which is the minimum of �′ and �′′ as described by Eq. (41c) , 

nd choose a sampling period � ∈ (0 , �∗] . Within t ∈ [ t k , t k + �) ,

nder the sample-and-hold implementation of u = �(x ) ∈ U or u = 

¯ ∈ U , we are able to show that, with probability at least 1 − δ,

or x (t k ) ∈ U ρ\U ρs , x (t) moves towards the origin into smaller level

ets of ˆ W and eventually into the level set U ρs , and for x (t k ) ∈ U ρs ,

 (t) remains in U ρmin 
. Since the CLBF properties on 

ˆ W (x ) are sat-

sfied with a probability of at least 1 − δ, the closed-loop stability 

nd safety of the system under the sample-and-hold implementa- 

ion of CLBF-based control laws also follow the same probability. 

In the case of unbounded unsafe sets, stationary points other 

han the origin B δ (x e ) do not exist, therefore, the sample-and-hold 

ontrol actions u = �(x ) ∈ U are able to drive closed-loop state to-

ards smaller level sets of ˆ W (x ) since ˙ ˆ W (x, �(x )) < 0 holds, and

imilarly, will be bounded within U ρmin 
eventually. �

.3. FNN-CLBF-based MPC 

Given the probabilistic stability and safety analysis provided by 

he sample-and-hold implementation of FNN-CLBF-based control 

aws u = �(x ) ∈ U , the FNN-CLBF-based MPC is formulated as fol-
10 
ows: 

 = min 

u ∈ S(�) 

∫ t k + N 

t k 

l( ̃  x (t) , u (t)) dt (44a) 

.t. ˙ ˜ x (t) = f ( ̃  x (t)) + g(u (t)) (44b) 

˜ 
 (t k ) = x (t k ) (44c) 

 (t) ∈ U, ∀ t ∈ [ t k , t k + N ) (44d) 

˙ ˆ 
 (x (t k ) , u (t k )) ≤ ˙ ˆ W (x (t k ) , �(x (t k ))) 

if x (t k ) / ∈ B δ(x e ) and 

ˆ W (x (t k )) > ρmin (44e) 

ˆ 
 ( ̃  x (t)) ≤ ρmin , ∀ t ∈ [ t k , t k + N ) , if ˆ W (x (t k )) ≤ ρmin (44f) 

ˆ 
 ( ̃  x (t)) < 

ˆ W (x (t k )) , ∀ t ∈ (t k , t k + N ) , 

if x (t k ) ∈ B δ(x e ) (44g) 

where the state trajectory predicted by the ODE model of 

q. (1) is represented by ˜ x (t) , the number of sampling periods 

n the prediction horizon is denoted by N, and S(�) is a piece- 

ise constant function with a sampling time �. This optimiza- 

ion problem of Eq. (44) is solved by the MPC every time a new

easurement is received (every �), and the optimization prob- 

em has an objective function Eq. (44a) that is in the form of 

he integral of l( ̃  x (t) , u (t)) = ˜ x T Q ̃  x + u T Ru over the prediction hori-

on. Here, Q , R are positive definite weight matrices. The ob- 

ective function is formulated this way such that it has a mini- 

um at the origin. Eq. (44d) describes the constraints imposed 

n the input vector along the predicted trajectory. It is assumed 

hat state measurements are received at every sampling period. 

s seen in Eq. (44c) , the initial condition of the predicted state 

rajectory in Eq. (44b) are obtained from the feedback state mea- 

urements at t = t k . The constraints of Eqs. (4 4e) –(4 4g) are used

o ensure closed-loop stability and safety. When x (t k ) / ∈ B δ(x e ) and
ˆ 
 (x (t k )) > ρmin , the constraint in Eq. (44e) decreases ˆ W ( ̃  x ) at a

ate at least of the rate achieved by the CLBF-based controller u = 

(x ) ∈ U . When 

ˆ W (x (t k )) ≤ ρmin , Eq. (44f) maintains the closed- 

oop state trajectory over the prediction horizon inside the level 

et U ρmin 
. If x (t k ) ∈ B δ (x e ) , Eq. (44g) is activated to decrease ˆ W (x )

ver the next sampling period so that the state will escape the sad- 

le point within finite steps. The first control action u ∗(t k ) of the

ptimized input trajectory u ∗(t) will be applied in a sample-and- 

old manner for the next sampling period. After that, the horizon 

ill move forward one sampling period, and the above optimiza- 

ion problem is solved again. 

The CLBF used in the CLBF-MPC of Eq. (44) is one constructed 

sing an FNN-based CBF ˆ B (x ) , which is well-trained and designed 

o satisfy modeling error constraints in Eqs. (27) and (30) . Sub- 

equently, with probability at least 1 − δ, ˆ B (x ) meets the condi- 

ions of Eq. 3, CLBF meets the conditions of Eq. (31) via the de-

ign method presented in Proposition 1 , and therefore, probabilis- 

ic safety and stability under the CLBF-based control laws are pro- 

ided. The following theorem will demonstrate that probabilistic 

tability and safety can be established under the CLBF-MPC of 

q. (44) . 

heorem 3. Consider the nonlinear system of Eq. (1) with a con- 

trained CLBF ˆ W (x ) built following Proposition 1 using a FNN-CBF 
ˆ 
 (x ) that satisfies Eqs. (27) and (30) and meets the conditions of 
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Fig. 1. Generalization performance for the FNN models for characterizing bounded unsafe regions utilizing various neurons. 

Fig. 2. Generalization performance for the FNN models for characterizing unbounded unsafe region utilizing various neurons. 
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q. (3) with probability of at least 1 − δ. Let � > 0, ε > 0 , ρ > ρmin >

s satisfy the requirements in Proposition 2 . Given x 0 ∈ U ρ , with prob-

bility of at least 1 − δ, recursive feasibility can be guaranteed for the 

ptimization problem of Eq. (44) , and the closed-loop state is bounded 

n U ρ , ∀ t ≥ 0 , and converges to U ρmin 
as t → ∞ . 

roof. There always exists a feasible solution for the CLBF-MPC 

ptimization problem since sample-and-hold implementation of 

he CLBF-based control law u = �(x ) ∈ U (when x (t k ) ∈ U ρ\B δ (x e ) )

nd the discontinuous control law u = ū ∈ U (when x (t ) ∈ B (x e )
k δ

11
n the case of bounded unsafe sets) provide one such solution that 

atisfy the constraints of Eqs. (4 4d) –(4 4g) for all x (t k ) ∈ U ρ . This

as been proven in Proposition 2 . The properties Eq. (33) ensure 

hat the CBF ˆ B is able to discern the unsafe region from the safe re- 

ion accurately with a probability of at least 1 − δ. Furthermore, it 

as been shown in Proposition 1 that ˙ ˆ W (x ) ≤ 0 is held with prob-

bility at least 1 − δ in the region U ρ . 

For unbounded unsafe sets, there are no stationary points in the 

perating region other than the origin. For any x 0 ∈ U ρ\ (B δ (x e ) ∪



S. Chen, Z. Wu and P.D. Christofides Computers and Chemical Engineering 163 (2022) 107860 

U
F  

f  

w

w

l

l  

e

D
u

r  

t

a

t

E

a

u

t

B  

w

p

a

d

j  

c

r

B

d

t

l

o

i  

l

i

(

A

d

t

M

1

i

p

t

R

o

s

fi

C

t

e

l

m  

o

c

I  

s

i

i

m

W

c

o

i

a

m

i

o

t

s

t

u

i

m

c

p

6

6

f

b

v

c

o

s

i

a

c

a

w  

o

V  

v

s

t

i

c

e

R

a

(  

w

s  

l  

|
T

t

p  

a  

t

x  

e

t

P

j

u

h

 ρmin 
) , Eq. (44e) forces the optimal control action calculated by the 

NN-CLBF-based MPC u ∗(t k ) to decrease ˆ W (x ) at a rate at least as

ast as that achieved by the control law �(x (t k )) . Therefore, u ∗(t k )

ill drive the closed-loop state towards the origin and into U ρmin 

ithin finite steps. After that, Eq. (44f) ensures that the closed- 

oop state remains inside U ρmin 
. We can conclude that the closed- 

oop state under the CLBF-MPC will be bounded in U ρ for t > 0 and

ventually be bounded in U ρmin 
, thus will not enter the unsafe set 

for all times since the safe set U ρ has no intersection with the 

nsafe set D. 

In the case of bounded unsafe sets, when the closed-loop state 

eaches a stationary point, x (t k ) ∈ B δ (x e ) , Eq. (44g) is activated

o ensure that the optimal solution of the MPC drives the state 

way from the stationary point in a direction of decreasing ˆ W . Af- 

er the state escapes the neighborhood around the saddle point, 

qs. (4 4e) –(4 4f) will continue to ensure that x (t) is bounded in U ρ
nd eventually converges to U ρmin 

without entering the bounded 

nsafe set. �

When Eq. (44e) is activated, the FNN-CBF is used to predict 

he corresponding barrier function value ˆ B based on x (t k ) . This 
ˆ 
 (x (t k )) prediction is shown to satisfy the CBF properties of Eq. (3)

ith probability of at least 1 − δ, and therefore stability and safety 

roperties enforced by Eq. 44e are achieved with a probability of 

t least 1 − δ. When Eqs. (44f) or (44g) are activated, FNN pre- 

ictions of the barrier function are carried out for the entire tra- 

ectory ˆ B ( ̃  x (t)) for t ∈ [ t k , t k + N ] . Each of the FNN inputs, ˜ x (t) , are

alculated based on the ODE model of Eq. (1) , which are accu- 

ate assuming there are no modeling mismatches. The predictions 
ˆ 
 ( ̃  x (t)) based on ˜ x (t) are therefore independent predictions and 

o not affect one another. At each time step of the trajectory in 

he MPC prediction horizon, the probability of the actual closed- 

oop state being maintained inside U ρmin 
(in the case of Eq. (44f) ), 

r the actual closed-loop state being driven around the unsafe set 

n the direction of decreasing CLBF (in the case of Eq. (44f) ) is at

east 1 − δ. However, to ensure that the entire trajectory satisfies 

ts safety and stability properties, the probability will be reduced 

specifically, (1 − δ) N for N time steps in the prediction horizon). 

lthough the overall probability of stability and safety for this pre- 

icted trajectory is reduced, the stability and safety properties of 

he system under the first control action u ∗(t k ) of the FNN-CLBF- 

PC for the current time step t = t k is guaranteed with probability 

 − δ. When a new feedback measurement is received, the MPC 

s executed again and computes a new control action to be ap- 

lied that ensures stability and safety with probability 1 − δ over 

he next sampling step. 

emark 2. In this study, we study the generalization error bound 

f the FNN-CBF and the probabilistic closed-loop stability and 

afety properties of the FNN-CLBF-MPC where the MPC uses the 

rst-principles model for prediction. In our previous work in 

hen et al. (2021 ), we have also developed FNN-CLBF-MPC sys- 

ems where the MPC can use a prediction model of the nonlin- 

ar process built using recurrent neural networks (RNN). Simi- 

ar to the FNN used in this study, with a neural-network-based 

odel, there exists an expected error in the predicted output x̂ 

f the nonlinear system that can be upper-bounded following ma- 

hine learning theory; this has been developed in Wu et al. (2021) . 

n our previous work ( Chen et al., 2021 ), we have discussed de-

ign methods with data generation and unsafe region character- 

zation to account for both modeling error in the FNN-CBF and 

n the RNN process model, as well as with numerical approxi- 

ations of the predicted vector and matrix functions ˆ f and ˆ g . 

e have demonstrated through theoretical development as well as 

losed-loop simulations that with adequate design and verification 

f the FNN-CBF as well as sufficient boundedness of the model- 
12 
ng and numerical errors, closed-loop stability and safety can be 

chieved for FNN-CLBF-MPC using both first-principles and RNN 

odels. In this work, we have only conducted closed-loop stud- 

es on FNN-CLBF-MPC using a first-principles model as the focus 

f this manuscript is on the generalization error upper bound of 

he FNN model. We can easily extend the statistical stability and 

afety analysis to FNN-CLBF-MPC using RNN models by following 

he work in Wu et al. (2021) , where we can further specify the 

pper bound on the modeling error of the RNN process model as 

t depends on a number of factors such as sample size, weight 

atrix bounds, input length, and network complexity, and in turn 

onstruct the RNN to meet Lyapunov-based stability properties in 

robability. 

. Application to a chemical process example 

.1. Preliminaries 

A chemical process example is simulated to demonstrate the ef- 

ectiveness of the FNN-based CLBF in ensuring the closed-loop sta- 

ility and safety of a nonlinear process, and to demonstrate how 

arious aspects of FNN design and training may impact the out- 

ome of the FNN model. The system we consider is a continu- 

usly stirred tank reactor (CSTR) which is non-isothermal and as- 

umed to be well-mixed, undergoing a second-order, exothermic, 

rreversible reaction converting reactant A into product B . There is 

 heating jacket equipped to remove and supply heat. The pro- 

ess dynamics can be modelled by material and energy balances 

s shown below: 

dC A 
dt 

= 

F 

V L 

(C A 0 − C A ) − k 0 e 
−E/RT C 2 A (45a) 

dT 

dt 
= 

F 

V L 
( T 0 − T ) − �Hk 0 

ρL C p 
e −E/ RT C 2 A + 

Q 

ρL C p V L 

(45b) 

here the two states of the system, C A and T , are the concentration

f A in the tank and the temperature inside the tank, respectively. 

 L , F , T 0 represent the volume of the reacting fluid in the reactor,

olumetric flow rate of the feed, and temperature of the feed, re- 

pectively. Q denotes the heat jacket input rate, and C A 0 denotes 

he feed concentration of reactant A . It is assumed that the react- 

ng liquid has a constant heat capacity C p and density ρL . Other 

onstants such as the pre-exponential constant, ideal gas constant, 

nthalpy and activation energy of the reaction are denoted by k 0 , 

 , �H, and E, respectively. The values of these process parameters 

re given in Wu et al. (2019b) . 

The CSTR process is stabilized at its unstable equilibrium point 

C As , T s ) = (1 . 954 kmol/m 

3 , 401 . 9 K) by the CLBF-based MPC,

hich manipulates the inputs C A 0 and Q with corresponding 

teady-state values (C A 0 s Q s ) = (4 kmol/m 

3 , 0 kJ/hr) . The manipu-

ated inputs have the following bounds: | �C A 0 | ≤ 3 . 5 kmol/m 

3 and

 �Q| ≤ 5 × 10 5 kJ/hr, which originate from physical constraints. 

he states and the inputs of the system are represented in devia- 

ion variable for the subsequent analyses such that the equilibrium 

oint of Eq. (45) is at the origin, i.e., [ �C A = C A − C As , �T = T − T s ],

nd [ �C A 0 = C A 0 − C A 0 s , �Q = Q − Q s ]. For simplicity of notation,

he state and input vectors are represented in the following forms: 

 

T = [�C A �T ] and u T = [�C A 0 �Q] . The CLBF-MPC is executed ev-

ry sampling period where � = 10 −3 hr, where the nonlinear op- 

imization problem of Eq. (44) is solved using the python module 

yIpopt. To simulate the CSTR process and predict the state tra- 

ectory inside the MPC, the system of ODE of Eq. (45) is solved 

sing the explicit Euler method with an integration time step of 

 c = 10 −5 hr. 
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Fig. 3. Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop control of the FNN-based CLBF-MPC for FNN models trained with varying neurons 

in the case of bounded unsafe region. 

Fig. 4. Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function trained with 15 neurons (blue) vs. 2 neurons (red), where states classified as safe by 

each FNN model are labelled by circle markers, and states classified as unsafe by each FNN model are labelled by diamond markers. 
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We use the following positive definite P matrix to build a CLF 

 (x ) in the form of V (x ) = x T P x : 

 = 

[
1060 22 

22 0 . 52 

]
(46) 

here the values of the P matrix are determined via extensive 

losed-loop simulations of the process. The unsafe region D can 

e either bounded or unbounded, and is a set within the stabil- 

ty region such that the state may enter the unsafe region on its 

ath while it is driven towards the origin under a control law that 

oes not consider safety constraints. The CLBF-MPC accounts for 
13 
hese unsafe regions in state-space and is capable of navigating 

he states around the unsafe set and towards the equilibrium point 

hereafter. 

.2. Development of the FNN model for barrier function 

The control barrier function within the CLBF is built using 

n FNN model, which takes x as inputs and computes the value 
ˆ 
 (x ) . In this study, we consider the cases of both bounded 

nd unbounded unsafe regions. First, the bounded unsafe set 

s considered, where the unsafe region is defined as D := { x ∈
b 
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2 | F b (x ) = 

(x 1 +0 . 92) 2 

1 + 

(x 2 −42) 2 

500 < 0 . 06 } . H b is defined as H b :=
 x ∈ R 

2 | F b (x ) < 0 . 07 } such that it satisfies D b ⊂ H b ⊂ φuc in

roposition 1 . The unsafe region is an ellipse embedded in the op- 

rating region to demonstrate the challenging case of a bounded 

nsafe set obstructing the trajectory of the closed-loop state. Prac- 

ically, the unsafe sets may not be easily represented in a closed 

orm function. However, based on engineering knowledge or simu- 

ations, one may collect sufficiently dense data in the operating re- 

ion with corresponding labels indicating whether the data point 

s safe or unsafe. Following this, we can obtain respective sets of 

ata samples that are labelled as unsafe and safe, and can be sub- 

equently used for model training. In our study, after specifying the 

egion of unsafe operation, we generate training data for the FNN 

odel. This is done by first specifying a region which the system is 

ikely operated within, in this case, we specify V (x ) ≤ 368 , which

s a level set of CLF characterized as the stability region in the 

bsence of unsafe sets under the use of Lyapunov-based control 

aws. Then, we specify H 

′ 
b := { x ∈ R 

2 | F b (x ) < 0 . 0952 } , which is a

arger compact set that encloses H with enough contingency ac- 

ounting for modeling and numerical error. Similarly, we also con- 

ider the case of unbounded unsafe sets, which have the unsafe re- 

ion defined as follows: D u := { x ∈ R 

2 | F u (x ) = x 1 + x 2 > 47 } . Since

oth the unsafe and the safe sets from which we sample must be 

ompact, we first approximate this unbounded region with a suf- 

ciently large compact set within the operating region D u ′ := { x ∈ 

 

2 | F u (x ) ≥ 46 and V (x ) ≤ 368 } . We then characterize H 

′ 
u ⊃ D u ′ 

s H 

′ 
u := { x ∈ R 

2 | F u (x ) > 45 and V (x ) ≤ 368 } . 
Data points that fall in the set H 

′ are labeled as “unsafe”, while 

ata points outside of this set are labeled as “safe”. Both the safe 

nd the unsafe regions are discretized into the same number of 

ata samples, where the samples are labeled with a target output 

f B (x ) = +1 if x belongs to the unsafe set, and B (x ) = −1 if x be-

ongs to the safe set. The inputs to the FNN model are the vector 

f state measurements x , and the FNN model produces ˆ B (x ) values 

hat classify x as being safe or unsafe. 

The following three case studies are examined: varying the 

umber of neurons in the FNN, varying the number of layers in 

he FNN, and varying the number of training sample size in the 

NN. We construct numerous FNN models under each scenario to 

tudy the impact of the structure and training of FNN on the gen- 

ralization error of the resulting model. In all models we construct, 

he activation functions used in all hidden layers are tanh (·) , and 

he cost functions of Eq. (6) are used, where both loss functions 

re monitored separately during training. The FNN undergoes 500 

pochs of training. L 2 = 0 and L 1 no longer decreasing for 100 con-

ecutive epochs are the two criteria to trigger early-stopping of 

raining. 

Once a FNN-CBF is built, it must be verified that the condi- 

ions of Eq. (3) must hold for all x in their respective compact 

ets, by examining whether the strict inequalities of Eq. (3) hold 

or a tightened bound as described in Theorem 1 . For example, it 

as been shown that for a 3-hidden-layer FNN with 10 neurons in 

ach layer, ˆ B (x ) ≥ 0 . 5751 for all discretized x ∈ 

ˆ H , where ˆ H is the

nsafe region characterized by the predictions of the FNN model, 

nd 

ˆ B (x ) ≤ −0 . 0033 for all discretized x ∈ U ρ\ ̂  H . It is shown that ˆ H
s a superset of D, since there are safe points outside the bound- 

ry of D being misclassified as unsafe by the FNN, but there are no 

nsafe points being misclassified as safe. Therefore, the conditions 

f Eqs. (3a) and (3c) are proven to hold in a continuous sense. To

rove that the condition of Eq. (3b) also holds, we examine L f ̂  B (x )

alues for all discretized x in the safe set for which L g ̂  B (x ) = 0 .

his can be seen from the error metrics in Fig. 6 , where for a 3-

idden-layer model, the errors from ReLu (L f ̂  B (x ) + 0 . 01) for all safe

 ’s at which L g ̂  B (x ) = 0 in both training and testing datasets are

elow 1 . 18 × 10 −6 , which means that L f ̂  B ≤ −0 . 01 − 1 . 18 × 10 −6 .

a

14 
hus, the condition of Eq. (3b) is proven to be true in a contin- 

ous sense. 

Once the control barrier function is verified, the CLBF ˆ W (x ) is 

haracterized with the following parameters: c 1 = 0 . 001 , c 2 = 100 ,

 3 = 49 . 38 , c 4 = 35 . 21 , μ = 50 0 0 , ρ = 0 , and ν = −0 . 0352 follow-

ng the guidelines in Proposition 1 . The stability and safety region 

 ρ is therefore defined according to Eq. (31d) . 

.3. Analysis on generalization performance and closed-loop stability 

nd safety 

The generalization performance is assessed via three metrics: 

he misclassification rate calculated as the ratio of misclassified 

amples over the total number of samples in the training and test- 

ng data sets, the MSE between the predicted and true barrier 

unction output, and loss function calculated from ReLu (L f ̂  B (x ) + τI 

or all safe x ’s in each data set, where τI = 0 . 01 is a positive con-

tant used to ensure the negative definiteness of L f ̂  B (x ) . 

Within each case study of FNN models trained using differ- 

nt width, depth, and sample size, both bounded and unbounded 

nsafe sets are studied. In addition to studying the generaliza- 

ion performance of these FNN models, closed-loop simulations are 

lso ran and compared, and the probability of stability and safety 

as been investigated. We also run closed-loop simulations with 

hese FNN models and assess its probability of unsafe, unstable, or 

on-convergent behavior. Unsafe behavior is defined as the closed- 

oop state entering the unsafe region D any time during its trajec- 

ory from the initial condition to the final state. Unstable behav- 

or is when the closed-loop state exits the stability operating re- 

ion any time during the simulation period. Non-convergence oc- 

urs when the final state at the end of the simulation period is 

ot within the terminal set U ρmin 
, or when the state exits the ter- 

inal set after entering it for the first time. We discretize the op- 

rating region evenly to generate a set of x 0 used as initial con- 

itions for closed-loop studied. We run closed-loop simulations 

tarting from 83 different initial conditions in the operating region 

 ρ\ (U ρmin 
∪ B δ (x e )) for the case of bounded unsafe sets, and from 

4 different initial conditions in the operating region U ρ\U ρmin 
for 

he case of unbounded unsafe sets. The probability of each of these 

hree undesirable behaviors is calculated by tabulating the number 

f occurrences out of the total number of initial conditions ran. 

.3.1. Varying number of neurons 

In this case study, the FNN is trained with different number 

f neurons within 1 hidden layer, where the number of neurons 

or the width of the FNN) varies from n w 

= 1 to n w 

= 300 . In the

ase of the bounded unsafe set, by discretizing the boxes around 

oth the safe and the unsafe regions along each dimension of the 

tate vector by a mesh grid size of 350 by 350, we obtain 20,472 

nsafe samples and 25,695 safe samples. In the case of the un- 

ounded unsafe set, since it is a simpler case where the boundary 

f safety is linear, we discretize the safe and unsafe regions by 150 

y 150, resulting in a dataset of 3021 unsafe and 4198 safe sam- 

les respectively. 70% of these samples are used for training, and 

0% are used for testing. The generalization performance for FNN 

odels with various number of neurons to address the presence 

f bounded and unbounded unsafe sets are shown in Figs. 1 and 2 ,

espectively. 

In the case of bounded unsafe regions, the drop in misclas- 

ification rate and barrier function output MSE are prominently 

hown as the number of neurons increases from n w 

= 1 to n w 

= 10

or both training and testing datasets. The misclassification rate 

nd output MSE for the training dataset stay consistently low for 

 w 

≥ 10 , where its misclassification rate is maintained below 0.018 

nd MSE output is maintained below 0.067 (this high point occurs 
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Fig. 5. Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop control of the FNN-based CLBF-MPC for FNN models trained with varying neurons 

in the case of unbounded unsafe regions. 
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t n w 

= 300 ). Misclassification rate and output MSE in the test- 

ng dataset are consistently higher than the training dataset for 

ll variations of n w 

, which is expected as there exists a gap be-

ween the expected error and the empirical error as shown in the 

eneralization error analysis in this work. For the testing dataset, 

isclassification rate stays below 0.04 and output MSE stays be- 

ow 0.11 for n w 

∈ [10 , 200] except for the one-off case at n w 

= 25 ,

hich has a testing data misclassification rate of 7 × 10 −2 and an 

utput MSE of 2 . 3 × 10 −1 . Sometimes one-off cases of FNN mod- 

ls occur where their resulting errors are higher than other FNN 

odels of similar structure due to the stochastic nature of FNN 

raining and prediction. For n w 

> 200 , it is seen that the testing

rrors in misclassification rate and output MSE increase as n w 

in- 

reases while the training errors for these two metrics stay consis- 

ently low. This is expected as the FNN model is essentially over- 

arametrized by too many number of neurons, and while this im- 

roves the model’s ability to learn and fit existing data, it becomes 

verfitted and therefore producing increasingly larger errors when 

pplied to other data samples that do not exist in the training set. 

he third error metric is the loss calculated from ReLu (L f ̂  B (x ) +
 . 01) for all safe x that satisfy L g ̂  B (x ) = 0 in both training and test- 

ng datasets. Although there are no obvious trends in the relation 

etween this error and the number of neurons, it is observed that 

he error in the training set stays below 1 . 008 × 10 −2 , while the

ighest error in the testing set is at 1 . 154 × 10 −2 . 

In the case of unbounded unsafe sets, all three error metrics 

chieve relatively low values compared to the case of bounded un- 

afe sets due to the less challenging nature of unbounded unsafe 

ets similar to a linear boundary. There are no obvious trends of 

rrors increasing or decreasing as the number of neurons increase 

ecause the errors are already maintained at a low level (misclas- 

ification rate is kept under 2 × 10 −2 , output MSE is kept under 

 × 10 −2 , and L f ̂  B (x ) is kept under 1 . 107 × 10 −2 , accounting for
15 
oth training and testing errors). However, we do observe that the 

ap between training and testing error generally increases as n w 

ncreases beyond 50. This may be due to model overfitting where 

he model is again parametrized with too many neurons. 

The probabilities of unsafe, unstable, and non-convergent 

losed-loop behavior under the control of FNN-based CLBF-MPC 

uilt using FNN models with varying number of neurons in the 

ase of bounded unsafe set are shown in Fig. 3 . In addition, the 

gure also shows the probability of any of these three behav- 

ors occurring. It is demonstrated that the probability decreases 

rastically for n w 

> 2 and reaches its minimum at n w 

= 15 . It is

lso noted that the instances of non-convergence also increases 

or n w 

≥ 250 , which is consistent with the trend of testing error 

nd generalization error gap increasing for overfitted models with 

 w 

> 200 . 

To better illustrate how FNN models trained with insufficient 

umber of neurons may impact the closed-loop performance of 

he FNN-CLBF-MPC, Fig. 4 compares two state trajectories starting 

rom the same initial condition, one under an FNN barrier func- 

ion trained with 15 neurons (blue), and one under an FNN bar- 

ier function trained with 2 neurons (red). The FNN barrier func- 

ion trained with 2 neurons, which has much higher errors and 

robabilities of instability and violation of safety, falsely identifies 

ll states within this time-series trajectory as “unsafe” (labeled by 

iamond markers), including the initial condition x 0 . Therefore, it 

s shown to produce a closed-loop trajectory that fails to navigate 

he state around the unsafe region. The closed-loop state enters 

he unsafe region and struggles to leave within the simulation pe- 

iod. This shows an instance of unsafe and non-convergent behav- 

or amongst the 83 runs of closed-loop simulations starting from 

ifferent initial conditions. On the other hand, with an FNN barrier 

unction trained with 15 neurons, starting from the same initial 

ondition, the closed-loop state of the CSTR process is able to con- 
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Fig. 6. Generalization performance for the FNN models for characterizing bounded unsafe regions utilizing various layers. 

Fig. 7. Generalization performance for the FNN models for characterizing unbounded unsafe region utilizing various layers. 
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6

erge to the terminal set within the simulation period and avoid 

ntering the unsafe region H 

′ . All states within this trajectory are 

orrectly classified as “safe”, which is labeled by the circle markers. 

The probabilities of unsafe, unstable, and non-convergent 

losed-loop behavior in the presence of unbounded unsafe regions 

re shown in Fig. 5 . Since all models have low misclassification rate 

nd low barrier function output MSE, the number of occurrences 

f such unsafe, unstable, or non-convergent trajectories is zero for 
arious FNN models trained with different number of neurons. In m

16 
ther words, all of the closed-loop simulation runs starting from 74 

ifferent initial conditions are able to converge to the terminal set 

ithin the simulation period while not entering the unsafe region 

nd not exiting the stability region. 

.4. Varying number of layers 

The relation between model depths and generalization perfor- 

ance are also studied, where FNN models with various number 
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Fig. 8. Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop control of the FNN-based CLBF-MPC for FNN models trained with varying layers in 

the case of bounded unsafe region. 

Fig. 9. Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function trained with 2 layers (blue) vs. 18 layers (red), where states classified as safe by each 

FNN model are labelled by circle markers, and states classified as unsafe by each FNN model are labelled by diamond markers. 
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f layers from n l = 1 to n l = 20 are constructed with 10 neurons

ithin each hidden layer. The same data generation and sampling 

ethod is used as in the case study of varying number of neurons. 

he generalization performance for FNN models with various num- 

er of layers for both cases of bounded and unbounded unsafe sets 

re shown in Figs. 6 and 7 , respectively. 

In the case of bounded unsafe sets, the misclassification rate 

nd the output MSE for the testing dataset are maintained below 

 . 6 × 10 −2 and 1 . 79 × 10 −1 respectively for layers n l = 1 to n l = 12 ,

nd the testing errors are shown to be higher than the training er- 

ors for all layers. For layers n ≥ 15 , the generalization error gap 
l 

17 
etween testing and training error drastically increases, which can 

e attributed to the model being overfitted, thus unable to gener- 

lize to new data as effectively. It is also observed that both train- 

ng and testing error increase as the number of layer increases for 

 l ≥ 15 . This is a common phenomenon that has been seen in neu- 

al networks with increasing depth; some possible explanations in- 

lude: the network may be not able to find an appropriate map- 

ing between two consecutive layers and becomes hard to opti- 

ize, or higher-level layers may lose access to important lower- 

evel layer features. However, this remains a topic that is contin- 

ously studied by researchers. For the third error metric which 
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Fig. 10. Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop control of the FNN-based CLBF-MPC for FNN models trained with varying layers in 

the case of unbounded unsafe regions. 
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ssesses the negative definiteness of L f ̂  B , all models produced an 

verage ReLu (L f ̂  B (x ) + 0 . 01) of less than 0.01 in both training and

esting datasets, and this error is maintained under 2 . 8 × 10 −4 in 

oth training and testing sets for models with n l ≥ 2 . This shows 

hat an FNN of at least 2 layers is needed. 

In the case of unbounded unsafe sets, the resulting training and 

esting misclassification rate and output MSE are again sporadic 

ecause their values are already low for all layers. The highest mis- 

lassification rate and output MSE are 1 . 37 × 10 −2 and 3 . 65 × 10 −2 

espectively, which are obtained at n l = 5 . For the first two error

etrics, the testing dataset consistently yields a higher error than 

he training dataset, which agrees with the theoretical develop- 

ent of Section 4 . The training loss from ReLu (L f ̂  B + 0 . 01) is oddly

igher than the testing losses for n l = 1 , 2 , 3 . The highest loss of

his error metric is 0.0109 for training and 6 . 8 × 10 −3 for testing

t n l = 2 . For n l ≥ 3 , L f ̂  B (x ) < 0 , x ∈ {U ρ | L g ̂  B (x ) = 0 } holds for both

raining and testing datasets. For this particular study, Fig. 7 shows 

hat it is best to choose an FNN built with 4 layers. 

Closed-loop probability studies are also conducted for both 

ounded and unbounded unsafe sets. For bounded unsafe sets, 

he probability of non-convergent behavior starts increasing for 

 l ≥ 12 , and the probability of unsafe, unstable behavior starts in- 

reasing for n l ≥ 15 . The probabilities are plotted against varying 

NN depth in Fig. 8 . This is consistent with the generalization error 

erformance, where the model becomes overfitted as the number 

f layer increases beyond n l ≥ 15 , and the training error, the test- 

ng error, as well as the generalization error gap all increase. The 

arger the generalization error gap, the less likely that closed-loop 

tability and safety can be guaranteed, thus the occurrences of un- 

table, unsafe, and non-convergent behavior increase. 

We further demonstrate the difference in closed-loop per- 

ormance between two models trained with different number 
e

18 
f layers for systems with bounded unsafe sets in state space. 

ig. 9 shows two state profiles under the FNN-CLBF-MPC, one of 

hem has an FNN barrier function trained with 2 layers (blue), and 

he other one has an FNN barrier function trained with 18 lay- 

rs (red). Along the red-colored state trajectory, all state values are 

alsely identified as “unsafe” by the 18-layer FNN barrier function, 

ausing the closed-loop state to move very slowly, eventually into 

he unsafe region and unable to escape. The blue-colored trajec- 

ory starts from the same initial conditon, and is driven inside the 

erminal set while avoiding the unsafe set successfully. Along this 

rajectory, only one state at x T = [ −1 . 2537 , 41 . 3475] , which is out-

ide the unsafe region, is being falsely identified as “unsafe”. This 

s because the predicted unsafe region 

ˆ H characterized by the FNN 

arrier function 

ˆ B (x ) constructed using 2 layers turns out to be a 

uperset of H 

′ , which allows the MPC to act preemptively before 

he state actually enters H 

′ . 
Similarly, the probability of unsafe, unstable, and non- 

onvergent behaviors for the case of unbounded unsafe regions are 

hown in Fig. 10 . Due to the consistently low modeling error, the 

robability of such behavior is zero across all variations of FNN 

epth. 

.5. Varying training data sample size 

Lastly, the number of training data sample size is varied to ex- 

mine its impact on the generalization error and closed-loop per- 

ormance. The same data generation method is applied with the 

xception of varying the discretization grid size along each dimen- 

ion of x from n d = 10 , 20 , 30 , . . . , 450 , 500 . The resulting datasets

ange from having a total sample size of m = 38 to m = 94251 . The

ame neural network structure is used, consisting of 2 hidden lay- 

rs of 10 neurons each. Figs. 11 and 12 illustrate the three error 
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Fig. 11. Generalization performance for the FNN models for characterizing bounded unsafe regions utilizing various data sample size. 

Fig. 12. Generalization performance for the FNN models for characterizing unbounded unsafe region utilizing various data sample size. 
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etrics in training and testing datasets for the bounded and un- 

ounded unsafe sets respectively. 

In the case of bounded unsafe regions, it is seen that for train- 

ng data sample size between m = 38 to m = 3775 , both training

nd testing sets produce high misclassification rate and the out- 

ut MSE. The testing errors are higher than the testing errors with 

 generalization error gap, and the magnitude of these errors as 

ell as the generalization error gap between training and testing 

ets decrease as the sample size increases. This is aligned with 
19 
heoretical derivations as larger sample size results in improved 

odel accuracy and reduced generalization error. The generaliza- 

ion gap, which captures the difference between expected error 

testing dataset) and empirical error (training dataset), is roughly 

roportional to 1 √ 

m 

as indicated by Eq. (19) . This is consistent with 

he trend observed here where the decrease is drastic when m 

s small, and reaches a plateau as m increases to larger values. 

or data sample size m ≥ 8499 , both training and testing errors in 

he first two metrics stay consistently low below 0.018 and 0.056 
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Fig. 13. Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop control of the FNN-based CLBF-MPC for FNN models trained with varying data 

sample size in the case of bounded unsafe region. 

Fig. 14. Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function trained with 8499 data samples (blue) vs. 152 data samples (red), where states 

classified as safe by each FNN model are labelled by circle markers, and states classified as unsafe by each FNN model are labelled by diamond markers. 
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or misclassification and MSE respectively, and no significant im- 

rovement is seen beyond m ≥ 8499 . For the losses calculated from 

eLu (L f ̂  B (x ) + 0 . 01) , it is observed that both training and testing

rrors are able to achieve extremely low values for m = 38 to 

 = 3775 where the misclassification rate and MSE are high. This 

ay be because the data samples are too few for the FNN to learn

he underlying relation between input and output, and therefore it 

ails to minimize L 1 and only stresses on satisfying L 2 . The maxi- 

um ReLu (L f ̂  B (x ) + 0 . 01) for all models is 7 . 79 × 10 −4 and there-

ore the expected L f ̂  B (x ) stays below 0 for all models. 
20 
In the case of unbounded unsafe regions, it is similarly seen 

n Fig. 12 that the testing error and generalization error gap for 

isclassification rate and output MSE at the smallest sample size 

 = 38 is drastically higher than the other FNN models trained 

ith larger training sample size, and they reach a low, stable level 

fter m ≥ 3199 . For the loss term of ReLu (L f ̂  B (x ) + 0 . 01) , all losses

tay below 9 . 27 × 10 −3 , which means that the expected L f ̂  B (x ) < 0

or all models. 

We also simulate closed-loop runs starting from various ini- 

ial conditions within the operating region to assess probabilities 
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Fig. 15. Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop control of the FNN-based CLBF-MPC for FNN models trained with varying data 

sample size in the case of unbounded unsafe regions. 
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f unstable, unsafe, and non-convergent behaviors. It is shown in 

ig. 13 that the probabilities of unsafe and non-convergent in- 

tances drop to 0 for m ≥ 3775 , and the probability of unsafe in-

tances is also in general lower when the sample size is larger. 

his is better demonstrated in the comparison of two closed-loop 

rajectories shown in Fig. 14 where the closed-loop state under 

n FNN model trained with 152 samples (red) and under an FNN 

odel trained with 8499 samples (blue) are plotted together. The 

NN model trained with 152 samples incorrectly classifies the ini- 

ial condition as well as many states around the unsafe region as 

unsafe” (diamond markers), and the closed-loop state under this 

NN-CLBF-MPC enters the unsafe region and eventually traverses 

cross the unsafe region, exiting on the other side. The closed-loop 

tate continues to migrate towards terminal set, where eventually 

he FNN model correctly identifies the state as being “safe” (la- 

eled by circle markers), and the closed-loop state ultimately is 

riven inside the terminal set. The closed-loop state along the tra- 

ectory controlled by the FNN-CLBF-MPC trained with 8499 sam- 

les are all correctly classified as “safe”, and the MPC is able to 

uickly drive and maintain the state inside the terminal set in 

 stable and safe manner. Closed-loop simulations are also con- 

ucted starting from various initial conditions inside the operating 

egion for the unbounded unsafe sets, and the probabilities of any 

f these undesirable instances occurring are zero for all models, as 

hown in Fig. 15 . 

emark 3. As shown in Theorem 2 , the generalization perfor- 

ance of the FNN model depends on a number of factors, includ- 

ng the sample size m , the network weight matrix bounds B W 

, the

ound on the possible values of state vector as inputs to the FNN 

 X , the depth of the neural network d, the output dimension d y 
nd the input dimension d x . In this study, we have demonstrated 

ase study results on the impact of neural network hypothesis class 
21 
omplexity (depth and width) and the training sample size m on 

he overall generalization and closed-loop performance. As an ex- 

ension to this study, one may also study the impact of B W 

, B X ,

hich have been investigated in ( Wu et al., 2021 ), or d x , by adjust-

ng the number of input features if possible. 

. Conclusion 

A machine-learning-based Control Lyapunov-Barrier Function is 

sed to design model predictive controllers for nonlinear systems 

ith the presence of bounded and unbounded unsafe sets. Specifi- 

ally, an FNN model is used to construct the Control Barrier Func- 

ion, for which the generalization error bound is analyzed us- 

ng the Rademacher complexity method from statistical machine 

earning theory. Subsequently, probabilistic stability and safety is 

stablished for CLBF-based control laws designed using this FNN- 

BF, which is then extended to the sample-and-hold implementa- 

ion of an FNN-CLBF-MPC. We demonstrate the impact that struc- 

ural complexity and sample size of the FNN model have on the 

eneralization performance, as well as the probabilities of closed- 

oop stability and safety in the cases of bounded and unbounded 

nsafe sets through a chemical reactor example. 
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