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ABSTRACT

In this work, we present statistical model predictive control with Control Lyapunov-Barrier Functions
(CLBF) built using machine learning approaches, and analyze closed-loop stability and safety properties
in probability using statistical machine learning theory. A feedforward neural network (FNN) is used to
construct the Control Barrier Function, and a generalization error bound can be obtained for this FNN
via the Rademacher complexity method. The FNN Control Barrier Function is incorporated in a CLBF-
based model predictive controller (MPC), which is used to control a nonlinear process subject to input
constraints. The stability and safety properties of the closed-loop system under the sample-and-hold im-
plementation of FNN-CLBF-MPC are evaluated in a statistical sense. We use a chemical process example
to demonstrate the relation between various factors of building an FNN model and the generalization
error, as well as the probabilities of closed-loop safety and stability for both bounded and unbounded
unsafe sets.

Statistical machine learning

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Safety-critical systems are prevalent in many application do-
mains such as aviation, automobiles, energy, chemical processing,
medicine, and safety-related requirements must be strictly satis-
fied on their inputs and states in order to prevent harm on process
stability, economic gains, and/or operational safety. There has been
extensive research on providing safety verification of a system as
well as synthesizing control laws with provable safety properties
(Prajna and Jadbabaie, 2004; Ratschan and She, 2007; Althoff et al.,
2011; Mitra et al., 2013). Amongst these methods, Control Barrier
Functions (CBFs) are proposed as a tool to characterize the safety
of dynamical systems by certifying whether a control law achieves
forward invariance of a safe set, similar to the utility of Control
Lyapunov Function (CLF) in certifying stability properties (Ames
et al,, 2014, 2016, 2017; Xu et al., 2015; Xu, 2016). CBFs can be
incorporated in the design of control laws for multi-objective con-
trol of safety-critical systems, e.g., controllers designed based on
Control Lyapunov Barrier Functions (CLBF), where a CLF is used to
characterize a stability region and ensure stability properties, and a
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CBF is used to characterize an unsafe region where the state trajec-
tory under the CLBF-based control law will not enter at all times
(Romdlony and Jayawardhana, 2016). This approach has been fur-
ther explored for nonlinear systems subject to constrained inputs
in Wu and Christofides (2019), Wu et al. (2019a), where CLBF-
based control laws are used as contractive constraints in the de-
sign of a model predictive controller (MPC) to provide closed-loop
safety and stability guarantees for nonlinear processes with em-
bedded bounded and unbounded unsafe regions.

The development of an explicit CBF expressed in closed form
remains a challenging task, especially for nonlinear processes, re-
gardless of whether the process dynamics is well-defined. There
has been previous works on characterizing a barrier function us-
ing machine learning methods, such as using support vector ma-
chines (Srinivasan et al., 2020) and neural networks (Jin et al.,
2020; Zhao et al., 2020). Moreover, in Lindemann et al. (2020),
Robey et al. (2020), optimization-based approaches are used to
learn CBFs from data for nonlinear continuous control affine dy-
namical systems as well as hybrid systems. In (Yaghoubi et al.,
2020), an imitation learning framework is proposed to learn neural
network-based feedback controllers with CBF constraints for sys-
tems under disturbances. The work in Jin et al. (2020) uses neural
networks to jointly learn a Lyapunov-like function and a barrier
function and obtains a safe and goal-reaching control policy. Simi-
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larly, in Zhao et al. (2020), barrier functions are synthesized using
neural networks that use a devised activation function Bent-ReLu
and checked against the barrier function criteria as a formal guar-
antee. Although formal proofs of guaranteed safety and stability
have been provided either from a priori theoretical development
or posterior empirical verification, the question of generalization
accuracy of machine learning techniques has not been addressed.

There has been some research into probabilistic safety certifi-
cation of barrier functions, but the probability analysis is with re-
spect to uncertainties that exist in the process dynamics (Luo et al.,
2020; Khojasteh et al., 2020; Liu et al., 2021), and not in the sense
of analyzing the generalization error of the modeling method. For
example, in Liu et al. (2021), a Gaussian process is used to model
the projection of unknown residual dynamics onto a CBF; simi-
larly in Khojasteh et al. (2020), the Gaussian process approach is
used to obtain a distribution over the system dynamics, which is
then used to ensure safety with high probability by specifying a
chance constraint on a CBF. The work in Clark (2019) develops bar-
rier functions for stochastic systems with sufficient conditions for
safety with probability.

On the other hand, probably approximately correct (PAC) learn-
ing theory provides a framework for analyzing the generalization
ability of machine learning models, and provides the conditions
under which a learning algorithm is probably able to yield an
output that is approximately correct (Valiant, 1984; Mohri et al.,
2018). One way to characterize the machine learning model’s ca-
pability to generalize new unseen data based on learned data is
to examine the generalization error in Eryarsoy et al. (2009), a
tighter error bound on the performance of classification via Sup-
port Vector Machine (SVM) is characterized by exploiting domain
knowledge. A bound on the generalization error of feed-forward
neural networks has been developed by providing a bound on the
Rademacher complexity of the network (Golowich et al., 2018). In
Wu et al. (2021), a similar bound is provided for recurrent neural
networks, and statistical stability analysis of Lyapunov-based MPC
using the recurrent neural network model was introduced. Gen-
eralization error in deep learning algorithms has been surveyed
in Jakubovitz et al. (2019) with discussions on different measures
to assess generalization capabilities of deep neural networks, such
as PAC-Bayes theory, algorithm stability, algorithm robustness, and
compression-based approach. In this work, we provide statistical
analysis on the CBF construction method proposed in our previous
work in Chen et al. (2021), and model the CBF using a feed-forward
neural network, which will be used to design a CLBF-based model
predictive control system. We first develop the generalization er-
ror bound on the FNN-CBF, and derive probabilistic safety and sta-
bility guarantees for the control law designed using a CLBF with
FNN-CBF under sufficient conditions. The sampling, modeling, and
verification procedures of the FNN are discussed. Then, we extend
the probabilistic stability and safety properties to the FNN-CLBF-
MPC, and demonstrate that with high probability, the FNN-CLBF-
MPC is able to maintain the closed-loop state of a nonlinear pro-
cess within a safe set and ultimately keep it bounded within a ter-
minal set around the origin.

The rest of the paper is organized as follows. Preliminaries on
the nonlinear system and definitions of Lyapunov Function and
Barrier Function are given in Section 2. The construction of barrier
functions using neural networks, including assumptions, design,
data generation and model verification, are presented in Section 3.
Section 4 develops the generalization error bounds on the FNN-
CBF and explain their implications. In Section 5, the design of the
FNN-CLBF control law and the FNN-CLBF-based MPC are provided,
and the probabilistic stability and safety properties of the control
system are provided. Lastly, the proposed control method and the
associated generalization error and closed-loop performance are
shown via a nonlinear chemical process example in Section 6.
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Table 1
Descriptions of frequently used variables.
Variable  Description
X State vector of nonlinear system
u Input vector of nonlinear system
B(x) Barrier function
V(x) Lyapunov function
W(x) Control Lyapunov-Barrier function
X Input of FNN model
v.y True and predicted output of FNN model
dy, dy Dimension of FNN input and output
[/10] Activation function of in each layer | of the FNN model
w, Weight parameter matrix in each layer | of the FNN model
Bx, Bw Upper bound on the FNN inputs and FNN weight matrices
m Number of samples
d FNN depth (number of layers)
L Loss function minimized during FNN training
h(x) Hypothesis function mapping FNN input to FNN output
1) Confidence associated with generalization error upper bound
€ Rademacher random variable
LV Lie derivative of Lyapunov function along f
LV Lie derivative of Lyapunov function along g

2. Preliminaries
2.1. Notation

The Euclidean norm is denoted by the operator |-|. The nota-
tion [|W]; o, = max; (3 }W,-,j’) denotes the infinity norm of the 1-
norms of the columns of matrix W. We use "\” to represent set
subtraction, i.e, A\B:={x e R" | x € A,x ¢ B}. x” denotes the trans-
pose of matrix x. LfV(x) := % f(x) represents the Lie deriva-
tive of V with respect to f. A function f is class C! if the first
derivative of f exists and is continuous. A function f : R" — R™ is
said to be L-Lipschitz continuous, if there exists L > 0 such that
for all a,beR", |f(a) — f(b)| <L|la—b|. A continuous function r:
[0,a) — [0, 0) belongs to a class K function if r(0) =0, and is
strictly increasing. Lastly, P(A) represents the probability of the oc-
currence of an event A, and E[X] denotes the expected value of a
random variable X. More descriptions of frequently used variables
can be found in Table 1.

2.2. Class of systems

In this study, we consider a general class of continuous-time
nonlinear systems, which can be represented by the following
state-space model:

x=Fx u) := f(x)+gX)u, x(ty) = xo (1)

where x € R" is the state vector, u € R¢ denotes the manipulated
input vector bounded by u € U, where U := {up, < U < tmax} C RK.
It is assumed that the vector and matrix functions f(-) and g(-) are
sufficiently smooth with f(0) =0, and thus the origin is a steady-
state of the nonlinear system. Lastly, the initial time is assumed to
be at 0, i.e., tp = 0.

2.3. Stabilizability via lyapunov-based control

For the nonlinear system of Eq. (1), it is assumed that a stabi-
lizing feedback control law u = ®(x) € U exists such that there ex-
ists a positive definite and proper Control Lyapunov Function (CLF),
denoted as V (x), that satisfies the following inequalities as well as
the small control property:

cilxl? < V(o) < el (2a)
'mgfj‘) <y (1x) (2b)
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LiV(x) < 0,Vx e {z e R"\{0} | LV (2) = 0} (2¢)

where 1, is a function that belongs to class K, and ¢, c; are
positive constants. V(x) also meets the small control property,
which states that, for every ¢ > 0,3 § >0, s.t. V x € B5(0), there
exists an input u satisfying |u| <& and L;V(x) +LgV(x)-u <0
(Sontag, 1989). The existence of such CLF implies that the origin
of the nonlinear system of Eq. (1) is rendered asymptotically sta-
ble under u = ®(x) € U for all x in a neighborhood around the ori-
gin. This region where the time derivative of V(x) can be rendered
negative under u = ®(x) e U is defined as ¢, = {x eR" | V(x) =
LiV(x) +LgV(x) -u < 0,u= ®(x) e U}U{0}. Furthermore, we de-
fine a level set of V(x) within ¢, as Uy :={xe ¢, | V(x) <b, b>
0}, which is a forward invariant set in a sense that for any initial
condition xqg € Uy, the closed-loop trajectory x(t), t > 0 of the non-
linear system of Eq. (1) remains in U, under u = ®(x) € U.

2.4. Control barrier function

Consider that an open set D exists in state space, forming an
unsafe region that should be avoided at all times for reasons such
as violation of safety protocols. In contrast, a set of safe states can
also be characterized as Xy := {x € R"\D} where {0} € Ay and Xy N
D = ¢. The safe set X, represents the set of initial conditions that
will be considered. In this work, we consider process operational
safety as follows:

Definition 1. For any initial state x(tg) = xg € &y, if there exists a
constrained control law u = ®(x) € U that renders the origin of the
closed-loop system of Eq. (1) asymptotically stable, and the closed-
loop state trajectories do not enter the unsafe set D at all times,
i.e, x(t) € Xy, x(t) ¢ D, V t > 0, then the control law u = ®(x) e U
maintains the closed-loop state within the safe region A for all
times.

Subsequently, we present the properties of a Control Barrier
Function (CBF) in the following definition: (Wieland and All-
gower, 2007)

Definition 2. Consider D which is a set of unsafe state values in
state space, a ¢! function B(x) : R" — R is a Control Barrier Func-
tion (CBF) if the following conditions are met:

B(x) >0, VxeD (3a)
LiB(x) <0, Y xe {ze R\D | LgB(z) = 0} (3b)
Xg:={xeR" | Bx) <0} #0 (30)

3. Barrier function construction using feed-forward neural
networks

3.1. Model structure and training

The control barrier function is developed from operating data
in the state space that are labelled based on their safety status.
This barrier function will then be synthesized using a feed-forward
neural network (FNN), which typically consists of an input layer,
some hidden layers, and an output layer. Each layer contains neu-
rons undergoing nonlinear transformations, with activation func-
tions of the weighted sum of neurons in the previous layer plus a
bias term. In this study, the inputs to the FNN are the state vec-
tor x € R" of the nonlinear system of Eq. (1), and the output of
the FNN predicts the barrier function value B(x) € R". Training data
points are collected from both the unsafe and the safe operating
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regions, where the target output values of B(x) will satisfy the CBF
conditions of Eqs. (3a) and (3c) for the unsafe and the safe regions,
respectively. More specifically, safe data points are labeled with a
target output value of B(x) = —1, and unsafe data points are la-
beled with a target output value of B(x) = +1.

A general FNN model is considered, where m number of data
samples are used to develop this model. The data samples are
generated independently as per the data distribution over X xY ¢
R% x R%, where dy and dy denote the dimension of the FNN input
and output vectors respectively; in this application, dx = n, which
is the dimension of the state vector of the nonlinear system of
Eq. (1), and dy = 1, which is the dimension of the barrier function
output B(x). The general structure of FNN model with inputs de-
noted as x € R% and predicted output denoted as § € R% in terms
of scalar or vector-valued functions and weight matrices for d total
number of layers can be formulated as follows:

Y =04(Wy04_1(Wy_104_2(...01(W1X)))) (4)

where each W, for I =1, ..., d layers represents the weight param-
eter matrix, and each o; represents the activation function in each
layer. The number of layers d represents the depth of the network,
and the width of the network hmax can be defined as the maxi-
mum number of neurons in a hidden layer (maximal column or
row dimension of W), i.e., hmax = max;_;__4{h}, where h; denotes
the number of neurons in the I-th layer.

In this study, due to the unique dichotomous nature of B(x),
we choose a hyperbolic tangent sigmoid function o (z) = tanh(z) =
ﬁ —1 as the activation function to polarize the output of the
network and in turn, improve the prediction accuracy. This is be-
cause of the property of the tanh(z) function approaching +1 as z
approaches +oo, and —1 as z approaches —oo, thus polarizing the
outputs of each layer and enforces the output of the FNN to ap-
proximate constant positive values (+1 for safe points), or constant
negative values (-1 for unsafe points). To clarify notations used in
this paper, when discussing the general properties of FNN, the in-
put and output of the FNN model are denoted by the bold face
x € R% and y € R% respectively. For this particular application, x
is the state vector of Eq. (1) (x € R"), and y is the barrier function
value (B(x) € R1).

Before proceeding with developing the generalization error
bound, there are some standard assumptions presented as follows:

Assumption 1. The FNN inputs are bounded, i.e., |X;| < By, for all
i=1,...,m samples.

Assumption 2. The maximal 1-norm (l;/l-) of the rows of weight
matrices in the output and in the hidden layers are bounded as
follows:

Wl o = Bw (3)

Assumption 3. All the datasets (i.e., training and testing) are
drawn from the same underlying distribution.

Assumption 4. o; (where | denotes any hidden layers) is a 1-
Lipschitz continuous activation function, and satisfies 0;(0) = 0.

Remark 1. Assumption 1 specifies the upper bound on the FNN in-
puts, which is consistent with the way we sample the FNN inputs
(i.e., the state vector) as we only consider a bounded set around
the steady-state of the nonlinear system of Eq. (1). Assumption
2 assumes the boundedness of the FNN weight matrices; this can
be ensured during FNN training, as only a finite class of hypothesis
functions are searched to find the optimal set of FNN parameters.
Assumption 3 is required as the model trained from the training
dataset will be evaluated on the testing dataset, and training and
testing model accuracy metrics are compared against each other.
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The evaluation of the model on the testing data (including closed-
loop simulations) as well as the comparison of accuracy metrics
are only valid if the two datasets have the same underlying tar-
get distribution. Assumption 4 is an assumption on the activation
functions of the FNN, which is satisfied by many common activa-
tion functions, and can be used to derive the upper bound for the
Rademacher complexity of the FNN hypothesis class. An example
of a 1-Lipschitz continuous activation function is tanh(-).

We sample points from the operating region of the system (i.e.,
x € X Cc R" where X is a compact set) to use as training and test-
ing data for the FNN. Since the conditions of Eq. (3) imposed on
the resulting B(x) must be satisfied in a continuous sense, the re-
gions from which discrete data points are sampled from must be
compact and connected. This is done by first characterizing a com-
pact and connected set 7, which is a superset of the open set D
(as indicated in Eq. (32) in Section 5), then designing a larger com-
pact and connected set 7/, which is a superset of # and encloses
H with sufficient margin. This region #’ is used to generate unsafe
data points from, such that the unsafe set the FNN model predicts
will remain as a superset of 7, given bounded modeling and nu-
merical error of the FNN model. This means that the FNN model
may classify safe points as unsafe, but will not classify unsafe
points as safe; the latter is not tolerated and should be avoided.
Readers who are interested may refer to Chen et al. (2021) for
more details on how to characterize the unsafe region for data col-
lection purposes when building a FNN-CLBF-MPC that uses both
first-principles and RNN models. We collect samples from the safe
region X\  and the unsafe region #’ by discretizing the regions
by a grid size of (6x),, and (éx) x\w Tespectively. The datasets
consisting of finite samples are denoted as Sz and S_. for safe and
unsafe regions, respectively. Together, Sz and SH. form the overall
sample set S;.

The FNN parameters (weights and biases) are optimized by
minimizing the loss function shown in Eq. (6) using the Adam
solver as a part of the Tensorflow Keras software package. Specifi-
cally, the loss function consists of two parts. The first part L; uses
mean squared error to calculate the difference between the target
B(x) and the prediction B(x), and in minimizing this error, aims to
satisfy the conditions of Eqs. 3a and (3c). The second part L, pe-
nalizes sample points that do not comply with the conditions of
Eq. (3b) by using the ReLu(-) function and adding a small positive
constant 7; as seen in Eq. (6¢).

L(é, B) =ol + /SLZ (6a)
1 &, 2
Ll = E Z (B(Xk) - Bk) (Gb)
k=1
1<
Ly = N > Relu(LiB(x;) + 7) (6¢)
fj=1

where L; tracks the mean squared error (MSE) between the
target B and the predicted barrier function B for all discretized
data points x;, k=1,...,m, in the entire operating region that we
sample from, and L, is the loss function term that aims to sat-
isfy L;B <0 for all x e {S7|LgB(x) = 0}, where Ny, is the number
of discretized data points that satisfies this condition in the safe
region. Since ReLu takes the maximum between its argument and
0, i.e., ReLu(z) = max{0, z}, L, penalizes any samples that produce
Lféj + 17; > 0, therefore forcing Lfl§j < 0 to hold for the applicable
points in the safe region. @ >0 and B > 0 are hyperparameters
that adjust the weighting of L; and L, in the cost function. When
L, has reached 0 during training, then the weights and biases have
been optimized in a way that the predicted barrier function B(x)
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satisfies the condition Eq. (3b). To make sure that all conditions
of Eq. (3) are satisfied at the end of training, L; and L, are evalu-
ated and monitored separately during training, and both L; and L,
are required to be below a respective threshold value such that
the modeling error for B(x) is bounded and the negative semi-
definiteness of Lfﬁ(x) for all x in the safe region with Lgﬁ(x) =0
can be shown.

3.2. Verification of FNN-based CBF

Upon arriving at an FNN-CBF from the discretized data samples,
it is important to demonstrate that the conditions of Eq. (3) in the
Definition of CBF are satisfied and that FNN-CBF can be used to
design control laws for the continuous nonlinear system of Eq. (1).

3.2.1. Continuity and differentiability
The CBF is continuously differentiable (e, a C! function)

by Definition 2, mandating that B(x) and B(x) must be proven
to be continuous. As per the universal approximation theorem
(Sontag, 1992), with sufficient model complexity, FNNs are capa-
ble of modeling any continuous nonlinear functions on a com-
pact set of the state space. In addition, B(x) is the output of an
FNN that consists of a chain of nonlinear activation functions, i.e.,
tanh(-), which is a Lipschitz continuous and continuously differ-
entiable function in the compact subset we sample from. Thus,
B(x) is also Lipschitz continuous and continuously differentiable on
the sampled compact subset. In terms of FNN notations, we have
shown that the overall hypothesis function class h(x) that maps
the FNN inputs x to the FNN output y in the form of barrier func-
tion value is also a C! function. It is assumed that the barrier func-
tion satisfies the following inequality:

| = re(|x]) (7)

where rp is a class K function similar to r, in Eq. (2b).

3.2.2. Verification

Training an FNN that minimizes the loss function of Eq. (6) aims
to meet the conditions of Eq. (3) in Definition 2 for all discretized
points sampled from the compact subsets that we consider, but
does not guarantee that the conditions are met for all points in
the respective compact subsets. Therefore, the conditions must be
verified to hold over the compact subsets in a continuous sense.
Similar to the approaches implemented in Bobiti and Lazar (2016),
Richards et al. (2018), Jin et al. (2020), we use a Lipschitz method
to verify that the decrease condition holds for a candidate func-
tion on a finite sample of a bounded set. The following theorem
presents the necessary criteria to use this verification technique:

Theorem 1. Consider a compact set S C R" and let Ss be a finite set
sampled from S s.it. V x €S, there exists at least a pair (xs, dx,) €
Ss x Ry such that |x — xs| < 8xs. If F(xs) < —Lg - §xs (or respectively
F(xs) < —Lg - §x5) holds for all xs € Ss , where the Lipschitz constant
for the function F is denoted by Lr > 0, then F(x) < 0 (respectively
F(x) < 0) holds for all x € S (Bobiti and Lazar, 2016).

Therefore, by checking the tightened inequality Lfl§(x) <-L.
8xy\3» VY X €Sz, it will be verified that LiB(x) <0, V xe X\#/,
where L’ > 0 is the Lipschitz constant for Lfg(x), the finite set Sz
is sampled from the compact set X\#’, and 8xy\3y > 0 is the dis-
cretization grid size (distance between two discretized x points) of
the safe set X\#’. On a similar note, B(x) <0, ¥V x € X\’ can be
shown to hold by verifying that B(x) < —L" - 3xy\3 ¥ X € Sz, where
the Lipschitz constant for B is denoted by L”. Lastly, we show
that Eq. (3a) is satisfied by checking —B(x) < —L” . 8%y, Y X €Sy,
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which is sufficient to verify that —B(x) <0 V x e %/, thus equiv-
alent to B(x) > 0 V x € #’. These conditions will be checked for
all sample points in the respective discretized sets after an FNN
model is obtained. More details on the sampling, design, training,
and verification of the FNN-CBF can be found in our previous work
in Chen et al. (2021).

4. FNN generalization error

When we train an FNN model, the model is obtained by min-
imizing the loss function calculated based on training data sam-
ples only. Therefore, there is no information given on the error or
performance of the model on new testing data. The generalization
error measures the model’s ability of making an accurate predic-
tion for new data from the same underlying distribution that has
not been seen or studied by the neural network. Using statistical
theory commonly used in machine learning, we present an upper
bound for the generalization error of the FNN model in predicting
the value of the barrier function output.

We first introduce some important preliminary concepts that
will be referenced in the development of FNN generalization er-
ror bound. Without loss of generality, we let 7, be the hypoth-
esis class of FNN functions h(-) that map a dx-dimensional input
x € R% to a dy-dimensional output § € R%. We use § = h(x) to de-
note the predicted output of the FNN model and L(y,y) to rep-
resent the loss function. Here, the loss function can be of many
forms; for example, in our case of constructing a barrier function
FNN, the loss function is the sum of two loss functions as shown
in Eq. (6), where one loss function (L;) assesses the mean squared
error between the predicted and the true barrier function output
values, and the other loss function (L) ensures that the Lie deriva-
tive properties of the resulting FNN barrier function are met. Nev-
ertheless, in supervised learning where the true output values are
known and used during training, the loss function will involve cal-
culating the difference between § and y. The following error defi-
nitions are presented for FNN model training.

Definition 3. Mohri et al. (2018) Given a function h that predicts y
(output) using X (input), the generalization error or expected loss |
error over an underlying data distribution is Dy is

Lp, (h) £ E[L(h(X),y)] =/X YL(h(X),y)p(X, y)dxdy (8)

where p(x,y) is the joint probability distribution for x and y, X
and Y respectively denote the vector space for all possible inputs
and outputs.

In most cases, the joint probability distribution p is not known.
Therefore, we approximate the expected error by using the empir-
ical error presented as follows:

Definition 4. Mohri et al. (2018) Consider a dataset Ss=
(s1,---,Sm), Si = (X;,¥;), with m number of data samples collected
from the underlying data distribution Dy, the empirical risk or er-
ror is

Es[L(h0.9)] = & 3 L%, ) 9

i=1

In addition, we also need to demonstrate the loss function
L(¥.y) is locally Lipschitz continuous. In this particular study, the
true FNN output is the true barrier function value B € R! that takes
the values of either —1 or +1, thus |y| < 1. Since the FNN uses

hyperbolic tangent sigmoid o (z) = tanh(z) = ﬁ —1 as the ac-

tivation function, the predicted FNN output B is also bounded by
|§] < 1. Furthermore, the training of FNN is designed such that
it will only stop after L, in Eq. (6) reaches below a threshold
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(ie. LiB(x) < 0V x € {Sz|LB(x) = 0} is satisfied only when L, < 7,
where 7; > 0 is a small positive constant). Therefore, L, is also up-
per bounded. With these considerations, both L; and L, loss func-
tions are locally Lipschitz continuous, and the overall loss function
L is also locally Lipschitz continuous with the following inequality
satisfied for any two predictions:

IL(Y. §2) — L(y. 9| < Le[¥> — 91 (10)

where L; denotes the local Lipschitz constant for the loss function
L.

4.1. Rademacher complexity

We use empirical Rademacher complexity to bound the gener-
alization error as it is commonly used in machine learning theory
to quantify the richness of a class of functions. The Rademacher
complexity is defined as follows:

Definition 5. Mohri et al. (2018) Given a dataset of m samples

Ss={s1,...,Sm}, and a hypothesis class F of scalar-valued func-
tions, the empirical Rademacher complexity of F is defined as:
.l m
Rs,(F) =Ee| sup — > € f(s;) (11)
fer M3

where € = (¢1, ..., €n)T contains Rademacher random variables ¢;
that are independent and identically distributed (i.i.d.) and satisfy
P(Ei = —]) = ]P)(El' = 1) =0.5.

For the hypothesis class #;, of vector-valued functions h € R%,
it also satisfies the inequality shown in the following lemma:

Lemma 1 (c.f. Corollary 4 in (Maurer, 2016)). Given a hypothesis
class #;, of vector-valued functions h € R%, and a dataset of m sam-

ples Sg = {s1,...,Sm}. Consider the loss function L(-) which is a L-
Lipschitz function mapping h € R to R, then we have
m m dy
Ee| sup Y €L(h(X).y;) | < V2LEe| sup Y > exh(x) | (12)
hetn j—q hetn i1 k=1

where €, is a m x dy matrix consisting of independent Rademacher
variables, and h;(-) denotes the k-th component of the vector-valued
function h(-). For simplicity, the subscript € on the expectation will be
omitted for the remainder of the manuscript.

The following bound (Maurer, 2016) can be derived to simplify
the bound in terms of vector-valued functions to one in terms of
scalar-value functions:

m dy dy m
IE3|:SUD Zzeikhk(xi):| < ZE|: sup ZGih(Xi)] (13)
k=1

heMn =1 k=1 heMnk i1

where Hy, k=1,...,dy represent scalar-valued function classes
for the components of the vector-valued function class %, for
a network of d layers. We derive the bound for empirical
Rademacher complexity in terms of scalar-valued function class
first, then use Eq. (13) to develop the bound for vector-valued func-
tions.

4.2. Generalization error bound of FNN

Consider the class of loss functions associated with the function
class Hy:
G={g: xy) = L(h(X),y), h € Hy} (14)

where y is the true FNN output vector, x is the FNN input vector,
and h(x) represents the predicted FNN output vector. We have the
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following lemma to upper bound the generalization error using the
Rademacher complexity of the family of loss functions R, (G).

Lemma 2 (c.f. Theorem 3.3 in Mohri et al. (2018)). Given a data
set of m number of i.i.d samples, the following inequality holds for all
g1 € G over the sample space Ss = (s;), S; = (X;,y;) with probability of
at least 1 - 6:

1 ¢ log($)
Elg(y)] = - 3 8%, ¥i) +2Rs,(G) + 3y — (15)
i=1
Interested readers may refer to Wu et al. (2021) and

Mohri et al. (2018) for the full proof of this lemma. The RHS of
this inequality includes three terms, the sum of which specifies the
upper bound for the FNN generalization error. These three terms
represent the empirical loss based on the sample dataset S, the
Rademacher complexity, and an error term that depends on the
sample size and confidence §. We further bound the Rademacher
complexity such that the upper bound of the generalization error
can be quantified by known specific values such as the sample size
m, confidence §, neural network depth d, input dimension dy, and
upper bounds on the input vector By and on the weight matrices
Byy.

We first consider the hypothesis class #j,, of scalar-valued
functions, where k represents components of the vector-valued
function class 7. For the scalar-valued function class #;, the
following lemma is presented to upper-bound the scaled empiri-
cal Rademacher complexity. We will later use this lemma to derive
the upper bound for the empirical Rademacher complexity for the
vector-valued hypothesis function class #,.

Lemma 3 (cf. Lemma 4 in Wu et al. (2021)). With A >
0, the scaled empirical Rademacher complexity mRs (Hpy) =
IE[sup,,E%I1 . Y €ih(x;)] satisfies the following inequality:

MR, (Hnx) = E|: sup Zéih(xi):|

heHnk i1

1 log exp (ME|: sup iﬂh(xi)j|>
A hetny i1
< %log <1E{SUp exp(XZth(xf))D (16)

heHp i=1

A

We further specify the upper bound of the Rademacher com-
plexity by breaking down the function h(x;); this is done through
a “peeling” approach to “peel” off the weights and activation func-
tions of the FNN model layer by layer. Here, due to the unique ap-
plication of the FNN model we construct, all the activation func-
tions are tanh(-) in order to polarize the results to +1 and -1
values. We present the following lemma, which is modified from
Lemma 2 in (Golowich et al., 2018), to demonstrate this peel-
ing step inside a convex, monotonically increasing function (such
as exp(-)) for a 1-Lipschitz activation function o (-) that satisfies
o (0) = 0 (such as tanh(-)).

Lemma 4 (cf. Lemma 2 in Golowich et al. (2018)). Given any
vector-valued function class N' with a 1-Lipschitz continuous activa-
tion function o (-) that satisfies o (0) = 0 applied element-wise, and
a convex and monotonically increasing function p : R — R, the fol-
lowing inequality holds:

E su €i0 (W (X))l
|:IWI1.w<ngveNp(”§ y ! )}
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S2]E|:15)SEP<BW||Zeiv(xi)||oo)j| (17)

i=1

Lemma 4 holds for the vector-valued function class v e A (or
equivalently h € #;,), and therefore also holds for the scalar-valued
function class v € NV (or equivalently h € #;, ), where k represents
the k-th component of the vector-valued function class. Following
Lemma 4, we now reference Theorem 2 in Golowich et al. (2018) to
derive a bound on the Rademacher complexity for the scalar-
valued FNN function class #yp, as presented in Lemma 5. The
full proof of Lemma 5 can be found in Golowich et al. (2018).
First, Eq. (16) is used as a starting point to provide an inequal-
ity involving the scaled Rademacher complexity for the scalar-
valued function class #j and the scalar-valued hypothesis func-
tion h(X) € Hy, which provides the predicted output in the out-
put layer. Since the function exp(-) in Eq. (16) qualifies as a convex,
monotonically increasing function, we can apply Lemma 4 repet-
itively to Eq. (16) by “peeling” off the neural network layer by
layer, starting from h(x) in the output layer. The function p(-) in
Eq. (17) refers to exp(-), and the scalar-valued functions v € N, re-
fer to subnetworks of the FNN from the input layer up to the layer
being “peeled”. The resulting upper bound on the Rademacher
complexity for the scalar-valued function class Hy is presented
in Lemma 5 and can be represented in terms of FNN input bound,
weight matrix bounds, FNN depth, sample size, and FNN input di-
mension.

Lemma 5 (c.f. Theorem 2 in Golowich et al. (2018)). Given neu-
ral networks with depth d and a class of scalar-valued functions Hy,
where ||W||1.. <Bw foralll=1,...,d, and Assumptions 1 - 4 sat-
isfied, the following inequality holds:

ZBx(Bw)d\/d+ 1 +10g(dx) (18)
Jm

Interested readers may refer to Section 7 of Golowich et al. (2018) for

the proof of this theorem.

Rs, (Hnx) <

The above lemma presents the Rademacher complexity upper
bound for the scalar-valued functions %, k=1, ..., d,, for the k-
th component of the vector-valued function class #;,. Now we will
derive the generalization error bound for the loss function class as-
sociated with the vector-valued hypothesis FNN function class #,,.
We use Egs. (12),(13) to derive the following theorem:

Theorem 2 (c.f. Theorem 1 in Wu et al. (2021)). Consider the
dataset Ss consisting of m i.id. data samples and the class of loss
functions associated with the vector-valued FNN hypothesis class H,
satisfying Assumptions 1 - 4. With probability of at least 1 - &, we
have the following inequality:

By(Bw)d/d+ 1+ Iog(dx))

Elg(x,y)] < O(ery

Jm
log(3) 1 &
+3 5o+ E;&(thz‘) (19)

where By is the upper bound on FNN inputs defined in Eq. (1), By
is the upper bound on FNN weight matrices as stated in Eq. (2), Ly is
the local Lipschitz constant for the loss function L(-) as defined in Eq.
(10), dx is the FNN input dimension, dy is the FNN output dimension.

Proof. Using Eqs. (12),(13), we can derive the following upper
bound for the loss function L(h(x;),y;) with h(x;) being vector-
valued functions:

heHy i—1

Rs,(0) = E[sup u ZaL(h(xf),yi)}
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hew, Mo

m dy
< [LrIE|:SUP *szrkhk(xl j|
< V2L, — ZIE|:sup Zeh(x, ] (20)

1 heHyk i1

Using the definition of Rademacher complexity for the scalar-
valued function class #j, ;, we have the following:

ZE|: sup Zelh(x ):|

heMtpy -1

_fLr ZmRss(Hhk)—fLrZRss(Hhk) (21)

k=

Therefore, using Eq. (18), we can derive the bound on the
Rademacher complexity of the loss function as follows:

dy
Rs,(G) < V2L Y Rs, (Hp1)

k=1

4 2By (B ,/ 1
[er X( W) d+ +lOg(dx

k=1

d
- 2\@eryBx(Bw) v ff/-%l + log(dy) (22)

Lastly, we can substitute Eq. (22) into Eq. (15), and obtain the gen-
eralization error bound as seen in Eq. (19). O

4.3. Implications of generalization error bound for different loss
functions

As seen in Eq. (6), there are two parts to the loss function of the
FNN, and each part is being monitored separately during training.
As explained in Section 4, both loss functions L; and L, are locally
Lipschitz continuous functions satisfying the following inequalities:

ILi(¥.92) — L1 (¥. 9] < L1 [§2 — 91 (23a)

IL2(¥2) — L3 < L2 |92 — 911 (23b)

where L4 and L, denote the local Lipschitz constant for loss func-
tions L; and L, respectively. Note that L; is a function assessing the
MSE between the true output y and the predicted output y, and L,
is a function of the predicted output § only (the explicit form of
hence LB(x), are not known ahead of time).

Therefore, we can develop the generalization error bound with
respect to each loss function, and explain their respective impli-
cations. Here, we replace the general notations of FNN inputs x
and output y with the specific variables under consideration in our
case, which include states of the nonlinear system of Eq. (1) x as
the inputs, barrier function value B as the true output, and B(x) as
the predicted output. The expected loss of L; is upper bounded by
the following inequality with probability of at least 1 — §:

d
E[L (B(x). B)] < o(LﬂdyBX(Bw) W)

Bx'

1
°§,§1 Zh (Bx), By) (24)

+3

Since L; evaluates error between true FNN output (i.e., B) and pre-
dicted FNN output (i.e., B(x)) in terms of MSE, the upper bound on
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|B— B is:
. By By )d/d+1+log(d log(3) 1M
|B—B§JO<Lr1dy x (Bw ) 4 og x))+3 o +E§L1(B(xi),3,-) (25)

We can further develop a bound on the value of B(x), which holds
with probability of at least 1 —§ as follows:

B =|B+B-B]
<|B| +|B—B|
<B| +\/0(LndyM ng‘*’g(“’) +3,/ 1955 4 Ly L Bx), By)

(26)

Given the conditions of Egs. (3a) and (3c), the true barrier function
B take values of +1 for unsafe x, and —1 for safe x; therefore, |B| <
1 for all x in the operating region. In order to ensure that B satisfies
B < 0 for all safe x, and B > 0 for all unsafe x, the upper bound on
the modeling error of the barrier function output must be less than
1, thus,

J o(L,] " By(Bw)d\/d+1+ log(dx)) L3 [log®)

T o Zu Bx).B) <1

(27)

The FNN model must be trained and built by selecting the ap-
propriate number of samples m, the depth of the network d, the
bound on the weight matrices By, such that this bound on the
modeling error is satisfied.

Moreover, the generalization error bound of L, represents the
upper bound of the expected value of L, when applied on testing
data that has not been studied by the FNN. The generalization er-
ror bound of L, can be written as follows:

d
ElL(BX] = O<Lr2dyBX(BW) de;nw )

log(3) 1&, 4
>m +E§L2(B(Xi)) (28)

+3

where the term % > L (B(x;)) represents the empirical loss of
L, resulting from m data samples from the training dataset. As de-
scribed in Section 3.1, we monitor L, during training and only stop
training when L, reaches 0 for all training data samples. There-
fore, % L (B(x;)) = 0. Furthermore, by the law of large num-
bers, with sufficiently large number of data sample size, the sam-
ple mean can sufficiently approximate the real expected value. In
this case, we can use the testing dataset empirical loss to approx-
imate the expectation of L, which assesses ReLu(LfB(x) + 1) for
x values that have not been studied by the FNN. We can further
simplify Eq. (28) to the following form by utilizing the fact that
the empirical loss of L, on the training dataset is 0:

Nresl
I

1
N > " Relu(LB(x;) + 1)
i=1

d 2
< O(erdyBX(BW) v ‘i/%l HOg(dX)) +3 105;5) (29a)

d
E[Relu(LB(x) +1)] = @(erdyBx(Bw) W)

log(2)

+3 m

(29b)
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where x; for i= 1,...,N,tf95f represents safe states in the testing

dataset at which Lgﬁ(xi) =0. In order to meet the condition of
Eq. (3b) for testing data points that have not been previously stud-
ied by the FNN, the following inequality must hold:

Bx(Bw)%/d + 1+ log(d log(2
o(erdy x (Bw) \/J% + log( x))+3 oi(na)_nSO (30)

By carefully choosing the number of layers to the FNN (depth d),
the number of training sample size m, the upper bounds on weight
matrices By, as well as the upper bound on the input vector By by
selecting the range of states considered in the compact set in state
space appropriately, we build a FNN that satisfies Eq. (30), and in
turn, ensures that Lfé(x) < 0 in the operating region for which we
consider the states are constrained within with probability 1 — 4.

5. Probabilistic stabilization and safety via Control
Lyapunov-Barrier Function

The Control Lyapunov-Barrier Function (CLBF) in the form of a
weighted average of CLF and CBF was proposed in Romdlony and
Jayawardhana (2016), and it shows that when a CLBF exists for the
system of Eq. (1), there exists a controller u = ®(x) that keeps the
closed-loop state bounded within a level set of the CLBF and out-
side of the unsafe set D for all times for any initial condition xq €
Xo. This work is further extended in Wu and Christofides (2019),
Wu et al. (2019a) to account for input constraints in the sys-
tem and the constrained CLBF was presented. Furthermore, a con-
strained CLBF-MPC where the prediction model inside the MPC
was developed using an ensemble of Recurrent Neural Network
(RNN) models was proposed in Wu and Christofides (2020). Based
on this work, we proposed a machine-learning-based CLBF-MPC in
Chen et al. (2021) where the CBF is built using an FNN model to
characterize the safety status of the states inside the operating re-
gion, and the MPC uses an RNN model for its predictions. In this
work, we provide statistical analysis on the probability of stabi-
lization and safety of a CLBF-based controller where the CBF is
built using an FNN, first under the control law u = ®(x) € U for the
nonlinear system of Eq. (1), then under the CLBF-MPC where MPC
uses the first-principles model in the form of ODE as described by
Eq. (1) to predict future states. The FNN-CBF B can be shown to
meet the conditions outlined in Eq. (3) in probability with proper
model construction, parameter selection, and post-training verifi-
cation. Therefore, it can be readily used as a valid CBF in the de-
sign of CLBF. The constrained CLBF built using the FNN-CBF B is
defined as follows:

Definition 6. Given a set of unsafe points in state-space D, a
proper, lower-bounded and ¢! function W(x) : R" — R is a con-
strained CLBF if W (x) has a minimum at the origin and also satis-
fies the following properties:

W) >p, YXxeDC Pue (31a)
‘8‘/‘8/;’() < rw(|x]) (31b)
LfW(X) <0,

Vxe{zedu\(DU{O}UX,) | LW(2) =0} (31¢)
Up = {Xxedu |[WEK) < p}#0 (31d)
Guc\(DUU,)) ND =0 (31e)
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where f and g are from the nonlinear model in Eq. (1), p €
R is a constant, ry is a class K function, X, := {x € ¢uc\(DU
{0}) | 3W(x)/0x =0} is a set of states for the nonlinear model
of Eq. (1) where LfW(x) =0 (for x #0) due to dW (x)/9x = 0. If
W (x) exists for the nonlinear system of Eq. (1) as defined in Eq. 6,
then there exists a control law u = ®(x) e U such that the ori-
gin of the system is rendered asymptotically stable within a re-
gion ¢y, which is defined as the union of the origin, and the set
Xe, and the set for which the time-derivative of W(x) is negative
with constrained inputs: ¢uc = {x € R" | {0} U X, UW (x(t), ®(x)) =
LfW+LgW ‘U< —ay |[W(x) —W(0)|,u=®(x) eU}, and oy > 0 is
a real constant used to characterize the set ¢,.. An example of
such control law ®(x) takes the form of the Lyapunov-based uni-
versal Sontag law (Lin and Sontag, 1991) with the Lyapunov func-
tion V (x) replaced by the CLBF W (x); details can be found in Wu
et al. (2018, 2019a), Wu and Christofides (2019).

5.1. Design of constrained CLBF

The design of CLBF can be carried out following the practical
design guidelines in Wu et al. (2019a), by first designing valid CLF
and CBF that meet their conditions outlined in Eq. (2) and Eq. (3),
respectively. This design method is further expanded and proven
in Chen et al. (2021) in the case of FNN-based CBF and RNN-based
process model, and it was shown that through a FNN-CBF B(x) that
meets all its required conditions, the resulting machine-learning
based W(x) has a global minimum at the origin and is able to
meet all its requirements of Eq. (31). The proof for the follow-
ing proposition can be found in Wu and Christofides (2019) and
Chen et al. (2021) and will be omitted here. In this work, we have
introduced the statistical analysis on the generalization error of the
FNN-CBF B. Accounting for the general expected error of B, the
FNN-CBF B is shown to meet all the requirements of Eq. (3) with
probability of 1—§ if the two conditions on the modeling error
bound shown in Eqgs. (27) and (30) are met. Therefore, the prop-
erties of the resulting CLBF W as well as the associated safety and
stabilizability properties of the CLBF-based controller will also hold
with probability 1 — 4.

Proposition 1. Consider the C! FNN-CBF B(x) :R" — R, trained
using the dataset Ss consisting m iid data samples satisfying
Assumptions 1-4, and has a resulting loss function errors constrained
by Eqgs. (27) and (30). Given an open set D of unsafe states for the
system of Eq. (1), assume that there exists a ' CLFV : R" — R, such
that the following conditions hold:

DCHCH Cu, 0¢H, 0¢H (32)

B(x)=-n <0, Vxe R\¥; B(x) >0, Vxe# (33)

where H and H' are both compact and connected sets within ¢y, and
H' encloses H with sufficient margin accounting for modeling errors
in B(x). Consider W (x) designed as W (x) :=V (x) + uB(x) + v, and
satisfies:

MW < i) (34)
LW (x) <0,

Vxe{zedu\(DU{O}UX) | LW (z) =0} (35)

- C2C3 ; C1C4 ’ (363)

V= p —C1C4, (36b)
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c3 := max |x|?, (36¢)
XeOH'

4 := min |x|? (36d)
XedD

then, with probability of at least 1 — 8, the control law <1>(x) elU
(Lyapunov-based Sontag control law with V(x) replaced by W (x))
guarantees that, for any initial state Xy € ¢uc\ Dy, where D, = {x e

H | W(x) > p), the state is bounded in ¢uc\H and does not enter
the unsafe region H for all t > 0.

Proof. Through the selection of parameters p and v, the condi-
tions of Eqs. (31a) and (31e) can be met. The proofs for these
two conditions are shown in Wu et al. (2019a) and will be omit-
ted here. We will focus on how the conditions of Eqgs. (31b) and
(31¢) can be met. Given that Egs. (27) and (30) are met, B(x) sat-
isfies the CBF properties presented in Eq. (3) with probability at
least 1 — 6. From Egs. (2b) and (7), as well as the way the CLBF is
constructed W (x) := V (x) + uB(x) + v, we have the following:
|52 = | % +

= rv([x]) + prp(lx])

< rw(|x[)

(37)

where 1y, as the weighted sum of two class K functions r, and
g, is also a class K function. Thus, it is shown that Eq. (31b) is
satisfied. Similarly, for all x € {z € ¢uc\ (DU {0} U Xp) | LgW(z) =0},
Eq. (31c) can be also shown to hold with the following derivation:
LWx) =LV(x) +uLiB(x) <0 (38)
Thus, Egs. (31b) and (31c) are both satisfied. In addition, the global
minimum of V(x) is at the origin, i.e., V(0) =0, and V(x) > 0 for
all x e R"\{0}. With a sufficiently small modeling error as char-
acterized by its generalization error bound, B(x) = —1 for all x e
duc\H', where {0} € ¢yc\#H/, and B(x) = +1 for all x € %' in proba-
bility. Hence, B(x) also has a global minimum at the origin in prob-
ability. Since W (x) is a weighted average of V(x) and B(x), the
global minimum of W (x) is at the origin. Therefore, it has been
demonstrated that a CLBF W (x) and the control law u = ®(x) e U
exist that satisfy all conditions of Eq. (31) with probability 1 — 4,
and guarantee the safety and asymptotic stability of the states for
all Xp € ¢uC\D’H’- O

We specify the set of initial conditions considered in our study
as U,, which is a level set of W(x) as described in Eq. (31d).

Since W (x) = 0 for x = 0 and x = xe € X, and W (x) < 0 within the
set ¢uc\(Xe U0) under the control law u = ®(x) € U, it holds that
W(x) <0 for all x e U,. We know that W (x) is a proper function,
therefore the level set of W (x), Up, is a compact, forward invari-
ant set. For any initial condition xo € U, the closed-loop state x(t)
is bounded in U, under the continuous control law u = ®(x) € U.
Furthermore, since the set 2/, has no intersection with the set D,
the closed-loop state will not enter the unsafe set D,, character-
ized by Proposition 1.

For bounded unsafe sets (e.g., the entire unsafe region occurs
as an obstacle in the middle of the operating region), there are
stationary points in state space (in addition to the origin), de-

noted as xe € X where W = 0, which can be considered as sad-
dle points. When states reach these stationary points, the continu-
ous controller u = ®(x) € U is incapable of steering the states away
from these points and they will remain there and become trapped.
Thus, we design discontinuous control actions u =1ti(x) e U that
can drive the states away from x. in a path of decreasing W (x).
Once the states leave x, under ti(x), then the controller u = ®(x) e
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U is able to continue driving the state towards the origin asymp-

totically since W (x) < 0 for all x e Up\ (X, U0). In the case of un-
bounded unsafe sets, the origin will be the only stationary point
in state-space, therefore the CLBF-based control law u = ®(x) e U
is able to ensure asymptotic stability and safety.

5.2. Sample-and-hold implementation of CLBF-based controller

We have shown that if there exists a constrained CLBF W built
from FNN-CBF B that meets the conditions of Eq. (31) and a set
of control law u = ®(x) € U that is continuously implemented, the
closed-loop state can be maintained within the safe region for all
times. This CLBF-based control law u = ®(x) € U is used to design
CLBF-based constraints in MPC. As the MPC is executed every sam-
pling period A, the control law will be implemented in a sample-
and-hold manner. Therefore, we will now discuss the impact of
sample-and-hold application of control actions on the probabilis-
tic stability and safety of the nonlinear system of Eq. (1).

We consider the region U, \ (Up, U Bs(xe)), where ps < pmin <
o, and prove that for all x(t,) in this region, W (x(t), u(t)) < —e
where u(t) is applied in a sample-and-hold manner u(t) = u(t,) =
Dd(x(ty)), Y t € [ty, t, + A’). Since this region is a bounded region
within ¢y and the functions f(-) and g(-) are continuous, we have
the following inequalities:

W (x(ty)) < —otw [W (x) — W (0)] < —atw o (39a)

[x(t) —x(t)| < ki A/, Vtelty e+ A) (39b)

where k; is a positive real number and A’ > 0 represents a sam-
pling period, where the sampling period of the CLBF-based con-
troller and CLBF-MPC A will be taken from the range A e (0, A*].
Eq. (39a) comes from the definition of the region ¢y, and pg :=

min |W (x) — W (0)|, and W(0) is the minimum of W (x)
Xellp \ (Ups UB; (xe))

which is found at the origin. Furthermore, since W (x) is a ¢! func-
tion that meets the property of Eq. (31b), and considering the fact
that f(-) and g(-) are sufficiently smooth functions, we have the
following inequalities:

LW (x(t)) — LW (x(&)] < ka|x(t) — x(t;)] (40a)

| (LW (x(£)) — LW (x(6)))u ()] < ks|x(£) — x(t)| (40b)

where k, and k3 are positive real numbers. With these inequalities
established, the following proposition is presented to show that
with sufficient conditions, the controller u = ®(x) ¢ U designed
based on the FNN-based CLBF W (x) and the discontinuous con-
trol law u=1(x) e U are able to guarantee closed-loop stability
and safety for the nonlinear system in Eq. (1).

Proposition 2. Consider the nonlinear system of Eq. (1) with a FNN-
based CLBF W (x) designed based on a valid CLF V(x) and a valid
FNN-CBF B(x) that satisfies Eq. (3 )with probability of at least 1 — 8.
There exists € > 0, A’ > 0, A” >0, p > pnin > ps that satisfy:

/ QwPo — €

< (o1 ks’ 0<e<awpo (41a)

Omin i= max {W(x(ty + At)) | x(t,) € U, ueU} (41b)
Ate[0,A”)

A* =min{A’, A"} (41¢)

such that, for any x(t;) € U,, under the sample-and-hold application
of either u(t) = ®(x(t)) Vt € [ty ty, 1) where tj 1 =t + Aand A €
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(0, A*], or u(t) = ii(x(ty)) € U when x(t;) € Bs(xe), W (x) is guaran-
teed to decrease over one sampling period with probability of at least
1-4, and x(t) is bounded in U, for all times and ultimately con-
verges to Up . .

Proof. We first consider the case of bounded unsafe sets in state
space. We will first prove that the closed-loop state trajectory x(t)
will be bounded in ¢, and will enter U, in finite steps under the
sample-and-hold implementation of control actions u= ®(x) U
or u=1u(x) eU if x € Bs(xe). Then we will prove that once the
state enters Uy, ie., X(fy) € Up,, x(t) will stay in Uy . for t =
[te te + A,

Under the sample-and-hold implementation of u(t), for x(t;) €
Up\ (Ups U Bs(xe)), we can write W (x) as follows:

WD), u(t)) = Wx(@), u(t)) + W (), u())
W (x(6). u(t))
= LW (x(t,)) + LgW (x(tr) Ju (te)
H(LW (x()) — LW (x(8)))
+(LgW (x(£)) — LW (x(t0)) )u(t)

Substituting Eqs. (39a), (40) and (39b), we derive the following
inequality:

(42)

W), u(t)) < —awpo + ki (ks + k) A < —¢ (43)

which sufficiently shows that under sample-and-hold implemen-

tation of control actions u(t), W (x) can be rendered negative for
any x(ty) € U\ Up, U Bs(xe)), and W (x(t)) < W (x(ty)) < p, there-
fore bounded within ¢, Vt > t. Within finite steps, x(t) will even-
tually enter Up,.

For bounded unsafe sets where stationary points in state-space
exist, consider x(f) € Bs(xe). x(ty,1) can be driven to a smaller
level set of W (x) under the discontinuous control law u = ii(x) € U
which decreases W (x) over one sampling period; i.e., W(x(tkﬂ)) <
W (x(t,,)). Within finite sampling periods, the closed-loop state will
eventually leave Bs(x.), and will never return since the control law
u=®(x) €U will take over and ensure that W(x(t)) < W (x(t;))
for all t > t,.

Once the state enters the set Uy, X(fy) €Uy, the definition
of Uy, .. in Eq. (41b) shows that the trajectory x(t) will stay in
Uppin TOT € € [ty + A”). We choose a maximal sampling period
A* which is the minimum of A’ and A” as described by Eq. (41c),
and choose a sampling period A € (0, A*]. Within t € [, t, + A),
under the sample-and-hold implementation of u = ®(x) e U or u =
it e U, we are able to show that, with probability at least 1 -6,
for x(ty) € Up\Up,, x(t) moves towards the origin into smaller level
sets of W and eventually into the level set Up,, and for x(t,) € Up,,
x(t) remains in Uy, . . Since the CLBF properties on W (x) are sat-
isfied with a probability of at least 1 — &, the closed-loop stability
and safety of the system under the sample-and-hold implementa-
tion of CLBF-based control laws also follow the same probability.

In the case of unbounded unsafe sets, stationary points other
than the origin Bs(xe) do not exist, therefore, the sample-and-hold
control actions u = ®(x) € U are able to Qrive closed-loop state to-

wards smaller level sets of W (x) since W (x, ®(x)) < 0 holds, and
similarly, will be bounded within ¢/, . eventually. O

5.3. ENN-CLBF-based MPC
Given the probabilistic stability and safety analysis provided by

the sample-and-hold implementation of FNN-CLBF-based control
laws u = ®(x) € U, the FNN-CLBF-based MPC is formulated as fol-
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lows:
7 =min /tk MO, u(o))de (442)
st X(6) = fR(D) +gu(t)) (44b)
X(te) = x(t) (44c)
u(t) eU, VYt e[ty tipn) (44d)
W (6. ut) < W x(t). DR ()

if x(t) ¢ Bs(xe) and W (x(t,)) > Prmin (44e)
WR(O)) < pins ¥ £ € [t tipn), i W) < ppuin (44)
WR(t) < W), ¥t € (b tin),

if x(t;) € Bs(xe) (44g)

where the state trajectory predicted by the ODE model of
Eq. (1) is represented by %(t), the number of sampling periods
in the prediction horizon is denoted by N, and S(A) is a piece-
wise constant function with a sampling time A. This optimiza-
tion problem of Eq. (44) is solved by the MPC every time a new
measurement is received (every A), and the optimization prob-
lem has an objective function Eq. (44a) that is in the form of
the integral of I(%(t), u(t)) = X' QX + u”Ru over the prediction hori-
zon. Here, Q, R are positive definite weight matrices. The ob-
jective function is formulated this way such that it has a mini-
mum at the origin. Eq. (44d) describes the constraints imposed
on the input vector along the predicted trajectory. It is assumed
that state measurements are received at every sampling period.
As seen in Eq. (44c), the initial condition of the predicted state
trajectory in Eq. (44b) are obtained from the feedback state mea-
surements at t = t;. The constraints of Eqs. (44e)-(44g) are used
to ensure closed-loop stability and safety. When x(t;) ¢ Bs(x.) and
W(x(tk)) > Pmin, the constraint in Eq. (44e) decreases W (%) at a
rate at least of the rate achieved by the CLBF-based controller u =
®(x) e U. When W(x(tk)) < Pmin» EQ. (44f) maintains the closed-
loop state trajectory over the prediction horizon inside the level
set Up,... If x(ty) € Bs(xe), Eq. (44g) is activated to decrease W (x)
over the next sampling period so that the state will escape the sad-
dle point within finite steps. The first control action u*(t;) of the
optimized input trajectory u*(t) will be applied in a sample-and-
hold manner for the next sampling period. After that, the horizon
will move forward one sampling period, and the above optimiza-
tion problem is solved again.

The CLBF used in the CLBF-MPC of Eq. (44) is one constructed
using an FNN-based CBF B(x), which is well-trained and designed
to satisfy modeling error constraints in Eqgs. (27) and (30). Sub-
sequently, with probability at least 1—§, B(x) meets the condi-
tions of Eq. 3, CLBF meets the conditions of Eq. (31) via the de-
sign method presented in Proposition 1, and therefore, probabilis-
tic safety and stability under the CLBF-based control laws are pro-
vided. The following theorem will demonstrate that probabilistic
stability and safety can be established under the CLBF-MPC of
Eq. (44).

Theorem 3. Consider the nonlinear system of Eq. (1) with a con-
strained CLBF W (x) built following Proposition 1 using a FNN-CBF
B(x) that satisfies Eqs. (27) and (30) and meets the conditions of
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Fig. 2. Generalization performance for the FNN models for characterizing unbounded unsafe region utilizing various neurons.

Eq. (3) with probability of at least 1 —§. Let A >0, € >0, p > Pmin >
ps satisfy the requirements in Proposition 2. Given Xy € U, with prob-
ability of at least 1 — §, recursive feasibility can be guaranteed for the
optimization problem of Eq. (44), and the closed-loop state is bounded
in Uy, Y t >0, and converges to Uppyin S t— 00.

Proof. There always exists a feasible solution for the CLBF-MPC
optimization problem since sample-and-hold implementation of
the CLBF-based control law u = ®(x) € U (when x(t,) € Up\Bs(xe))
and the discontinuous control law u =1 € U (when x(t;) € Bs(xe)

1

in the case of bounded unsafe sets) provide one such solution that
satisfy the constraints of Eqs. (44d)-(44g) for all x(t;) € Up. This
has been proven in Proposition 2. The properties Eq. (33) ensure
that the CBF B is able to discern the unsafe region from the safe re-
gion accurately with a probability of at least 1 — §. Furthermore, it
has been shown in Proposition 1 that W (x) < 0 is held with prob-
ability at least 1 —§ in the region U,.

For unbounded unsafe sets, there are no stationary points in the
operating region other than the origin. For any xg € U, \ (Bs (xe) U
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Up,in)» EQ. (44e) forces the optimal control action calculated by the
FNN-CLBF-based MPC u*(t;) to decrease W (x) at a rate at least as
fast as that achieved by the control law & (x(t;)). Therefore, u*(t)
will drive the closed-loop state towards the origin and into 4, .
within finite steps. After that, Eq. (44f) ensures that the closed-
loop state remains inside U, . . We can conclude that the closed-
loop state under the CLBF-MPC will be bounded in 2/, for t > 0 and
eventually be bounded in U, _, , thus will not enter the unsafe set
D for all times since the safe set Z, has no intersection with the
unsafe set D.

In the case of bounded unsafe sets, when the closed-loop state
reaches a stationary point, x(t) € Bs(xe), Eq. (44g) is activated
to ensure that the optimal solution of the MPC drives the state
away from the stationary point in a direction of decreasing W. Af-
ter the state escapes the neighborhood around the saddle point,
Eqs. (44e)-(44f) will continue to ensure that x(t) is bounded in U,
and eventually converges to U, . without entering the bounded
unsafe set. O

When Eq. (44e) is activated, the FNN-CBF is used to predict
the corresponding barrier function value B based on x(t). This
B(x(t,)) prediction is shown to satisfy the CBF properties of Eq. (3)
with probability of at least 1 — §, and therefore stability and safety
properties enforced by Eq. 44e are achieved with a probability of
at least 1 —6. When Eqs. (44f) or (44g) are activated, FNN pre-
dictions of the barrier function are carried out for the entire tra-
jectory B(X(t)) for t € [tx. tepn]- Each of the FNN inputs, %(t), are
calculated based on the ODE model of Eq. (1), which are accu-
rate assuming there are no modeling mismatches. The predictions
B(%(t)) based on X(t) are therefore independent predictions and
do not affect one another. At each time step of the trajectory in
the MPC prediction horizon, the probability of the actual closed-
loop state being maintained inside U, . (in the case of Eq. (44f)),
or the actual closed-loop state being driven around the unsafe set
in the direction of decreasing CLBF (in the case of Eq. (44f)) is at
least 1 — 6. However, to ensure that the entire trajectory satisfies
its safety and stability properties, the probability will be reduced
(specifically, (1 —8)N for N time steps in the prediction horizon).
Although the overall probability of stability and safety for this pre-
dicted trajectory is reduced, the stability and safety properties of
the system under the first control action u*(t;) of the FNN-CLBF-
MPC for the current time step t = t; is guaranteed with probability
1—45. When a new feedback measurement is received, the MPC
is executed again and computes a new control action to be ap-
plied that ensures stability and safety with probability 1 —§ over
the next sampling step.

Remark 2. In this study, we study the generalization error bound
of the FNN-CBF and the probabilistic closed-loop stability and
safety properties of the FNN-CLBF-MPC where the MPC uses the
first-principles model for prediction. In our previous work in
Chen et al. (2021), we have also developed FNN-CLBF-MPC sys-
tems where the MPC can use a prediction model of the nonlin-
ear process built using recurrent neural networks (RNN). Simi-
lar to the FNN used in this study, with a neural-network-based
model, there exists an expected error in the predicted output £
of the nonlinear system that can be upper-bounded following ma-
chine learning theory; this has been developed in Wu et al. (2021).
In our previous work (Chen et al., 2021), we have discussed de-
sign methods with data generation and unsafe region character-
ization to account for both modeling error in the FNN-CBF and
in the RNN process model, as well as with numerical approxi-
mations of the predicted vector and matrix functions f and g
We have demonstrated through theoretical development as well as
closed-loop simulations that with adequate design and verification
of the FNN-CBF as well as sufficient boundedness of the model-
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ing and numerical errors, closed-loop stability and safety can be
achieved for FNN-CLBF-MPC using both first-principles and RNN
models. In this work, we have only conducted closed-loop stud-
ies on FNN-CLBF-MPC using a first-principles model as the focus
of this manuscript is on the generalization error upper bound of
the FNN model. We can easily extend the statistical stability and
safety analysis to FNN-CLBF-MPC using RNN models by following
the work in Wu et al. (2021), where we can further specify the
upper bound on the modeling error of the RNN process model as
it depends on a number of factors such as sample size, weight
matrix bounds, input length, and network complexity, and in turn
construct the RNN to meet Lyapunov-based stability properties in
probability.

6. Application to a chemical process example
6.1. Preliminaries

A chemical process example is simulated to demonstrate the ef-
fectiveness of the FNN-based CLBF in ensuring the closed-loop sta-
bility and safety of a nonlinear process, and to demonstrate how
various aspects of FNN design and training may impact the out-
come of the FNN model. The system we consider is a continu-
ously stirred tank reactor (CSTR) which is non-isothermal and as-
sumed to be well-mixed, undergoing a second-order, exothermic,
irreversible reaction converting reactant A into product B. There is
a heating jacket equipped to remove and supply heat. The pro-
cess dynamics can be modelled by material and energy balances
as shown below:

dC, F

Tp = VL(CAO —Cp) — koe E/RTC2 (45a)
dT F AHkO —E Q

= (Ty-T)- =—e FRIC2 4 45b
dt VL( 0 ) pLCp A ,OLCpVL ( )

where the two states of the system, C4 and T, are the concentration
of A in the tank and the temperature inside the tank, respectively.
Vi, F, Ty represent the volume of the reacting fluid in the reactor,
volumetric flow rate of the feed, and temperature of the feed, re-
spectively. Q denotes the heat jacket input rate, and Cy9 denotes
the feed concentration of reactant A. It is assumed that the react-
ing liquid has a constant heat capacity C, and density o;. Other
constants such as the pre-exponential constant, ideal gas constant,
enthalpy and activation energy of the reaction are denoted by kg,
R, AH, and E, respectively. The values of these process parameters
are given in Wu et al. (2019b).

The CSTR process is stabilized at its unstable equilibrium point
(Cas» Ts) = (1.954 kmol/m3, 401.9 K) by the CLBF-based MPC,
which manipulates the inputs C4 and Q with corresponding
steady-state values (Cyo, Qs) = (4 kmol/m3, 0 kj/hr). The manipu-
lated inputs have the following bounds: |ACy| < 3.5 kmol/m3 and
|AQ| <5 x 10° kj/hr, which originate from physical constraints.
The states and the inputs of the system are represented in devia-
tion variable for the subsequent analyses such that the equilibrium
point of Eq. (45) is at the origin, i.e., [ACy = Cy — Cys, AT = T — T,
and [ACy = Cyo — Cao,» AQ =Q — Qs]. For simplicity of notation,
the state and input vectors are represented in the following forms:
xT =[ACy AT] and uT = [ACyy AQ]. The CLBF-MPC is executed ev-
ery sampling period where A = 103 hr, where the nonlinear op-
timization problem of Eq. (44) is solved using the python module
Pylpopt. To simulate the CSTR process and predict the state tra-
jectory inside the MPC, the system of ODE of Eq. (45) is solved
using the explicit Euler method with an integration time step of
he =105 hr.
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We use the following positive definite P matrix to build a CLF
V(x) in the form of V(x) = xTPx:

p_ [1060 22 ]
| 22 0.52
where the values of the P matrix are determined via extensive
closed-loop simulations of the process. The unsafe region D can
be either bounded or unbounded, and is a set within the stabil-
ity region such that the state may enter the unsafe region on its
path while it is driven towards the origin under a control law that
does not consider safety constraints. The CLBF-MPC accounts for

(46)
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these unsafe regions in state-space and is capable of navigating
the states around the unsafe set and towards the equilibrium point
thereafter.

6.2. Development of the FNN model for barrier function

The control barrier function within the CLBF is built using
an FNN model, which takes x as inputs and computes the value
B(x). In this study, we consider the cases of both bounded
and unbounded unsafe regions. First, the bounded unsafe set
is considered, where the unsafe region is defined as Dy :={x ¢
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R? | F(x) = w + % <0.06}. Hj is defined as Hj :=
{xeR% | F,(x) <0.07} such that it satisfies D, C H; C ¢uc in
Proposition 1. The unsafe region is an ellipse embedded in the op-
erating region to demonstrate the challenging case of a bounded
unsafe set obstructing the trajectory of the closed-loop state. Prac-
tically, the unsafe sets may not be easily represented in a closed
form function. However, based on engineering knowledge or simu-
lations, one may collect sufficiently dense data in the operating re-
gion with corresponding labels indicating whether the data point
is safe or unsafe. Following this, we can obtain respective sets of
data samples that are labelled as unsafe and safe, and can be sub-
sequently used for model training. In our study, after specifying the
region of unsafe operation, we generate training data for the FNN
model. This is done by first specifying a region which the system is
likely operated within, in this case, we specify V(x) < 368, which
is a level set of CLF characterized as the stability region in the
absence of unsafe sets under the use of Lyapunov-based control
laws. Then, we specify #'j := {x € R? | F,(x) < 0.0952}, which is a
larger compact set that encloses # with enough contingency ac-
counting for modeling and numerical error. Similarly, we also con-
sider the case of unbounded unsafe sets, which have the unsafe re-
gion defined as follows: Dy, := {x € R? | F,(x) = X; + X, > 47}. Since
both the unsafe and the safe sets from which we sample must be
compact, we first approximate this unbounded region with a suf-
ficiently large compact set within the operating region D, = {x €
R? | F,(x) > 46 and V(x) < 368}. We then characterize #'y > D,y
as H'y :={x e R% | F;(x) > 45 and V(x) < 368}.

Data points that fall in the set %’ are labeled as “unsafe”, while
data points outside of this set are labeled as “safe”. Both the safe
and the unsafe regions are discretized into the same number of
data samples, where the samples are labeled with a target output
of B(x) = +1 if x belongs to the unsafe set, and B(x) = —1 if x be-
longs to the safe set. The inputs to the FNN model are the vector
of state measurements x, and the FNN model produces B(x) values
that classify x as being safe or unsafe.

The following three case studies are examined: varying the
number of neurons in the FNN, varying the number of layers in
the FNN, and varying the number of training sample size in the
FNN. We construct numerous FNN models under each scenario to
study the impact of the structure and training of FNN on the gen-
eralization error of the resulting model. In all models we construct,
the activation functions used in all hidden layers are tanh(-), and
the cost functions of Eq. (6) are used, where both loss functions
are monitored separately during training. The FNN undergoes 500
epochs of training. L, = 0 and L; no longer decreasing for 100 con-
secutive epochs are the two criteria to trigger early-stopping of
training.

Once a FNN-CBF is built, it must be verified that the condi-
tions of Eq. (3) must hold for all x in their respective compact
sets, by examining whether the strict inequalities of Eq. (3) hold
for a tightened bound as described in Theorem 1. For example, it
has been shown that for a 3-hidden-layer FNN with 10 neurons in
each layer, B(x) > 0.5751 for all discretized x e 71, where % is the
unsafe region characterized by the predictions of the FNN model,
and B(x) < —0.0033 for all discretized x e ¢/, \#. It is shown that 7
is a superset of D, since there are safe points outside the bound-
ary of D being misclassified as unsafe by the FNN, but there are no
unsafe points being misclassified as safe. Therefore, the conditions
of Egs. (3a) and (3c) are proven to hold in a continuous sense. To
prove that the condition of Eq. (3b) also holds, we examine L fl§(x)
values for all discretized x in the safe set for which LgB(x) =0.
This can be seen from the error metrics in Fig. 6, where for a 3-
hidden-layer model, the errors from ReLu(Lfﬁ(x) +0.01) for all safe
Xx's at which Lgﬁ(x) =0 in both training and testing datasets are
below 1.18 x 10-%, which means that L;B < ~0.01 - 1.18 x 105,
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Thus, the condition of Eq. (3b) is proven to be true in a contin-
uous sense.

Once the control barrier function is verified, the CLBF W (x) is
characterized with the following parameters: ¢; = 0.001, ¢, = 100,
c3 =49.38, ¢4 =35.21, £ =5000, p =0, and v = —0.0352 follow-
ing the guidelines in Proposition 1. The stability and safety region
U, is therefore defined according to Eq. (31d).

6.3. Analysis on generalization performance and closed-loop stability
and safety

The generalization performance is assessed via three metrics:
the misclassification rate calculated as the ratio of misclassified
samples over the total number of samples in the training and test-
ing data sets, the MSE between the predicted and true barrier
function output, and loss function calculated from ReLu(LfE(x) +71
for all safe x's in each data set, where 7; = 0.01 is a positive con-
stant used to ensure the negative definiteness of Lft?(x).

Within each case study of FNN models trained using differ-
ent width, depth, and sample size, both bounded and unbounded
unsafe sets are studied. In addition to studying the generaliza-
tion performance of these FNN models, closed-loop simulations are
also ran and compared, and the probability of stability and safety
has been investigated. We also run closed-loop simulations with
these FNN models and assess its probability of unsafe, unstable, or
non-convergent behavior. Unsafe behavior is defined as the closed-
loop state entering the unsafe region D any time during its trajec-
tory from the initial condition to the final state. Unstable behav-
ior is when the closed-loop state exits the stability operating re-
gion any time during the simulation period. Non-convergence oc-
curs when the final state at the end of the simulation period is
not within the terminal set ¢, . , or when the state exits the ter-
minal set after entering it for the first time. We discretize the op-
erating region evenly to generate a set of xy used as initial con-
ditions for closed-loop studied. We run closed-loop simulations
starting from 83 different initial conditions in the operating region
Up\ Up,,;, U Bs(xe)) for the case of bounded unsafe sets, and from
74 different initial conditions in the operating region U, \U,_ . for
the case of unbounded unsafe sets. The probability of each of these
three undesirable behaviors is calculated by tabulating the number
of occurrences out of the total number of initial conditions ran.

6.3.1. Varying number of neurons

In this case study, the FNN is trained with different number
of neurons within 1 hidden layer, where the number of neurons
(or the width of the FNN) varies from n,, =1 to ny, = 300. In the
case of the bounded unsafe set, by discretizing the boxes around
both the safe and the unsafe regions along each dimension of the
state vector by a mesh grid size of 350 by 350, we obtain 20,472
unsafe samples and 25,695 safe samples. In the case of the un-
bounded unsafe set, since it is a simpler case where the boundary
of safety is linear, we discretize the safe and unsafe regions by 150
by 150, resulting in a dataset of 3021 unsafe and 4198 safe sam-
ples respectively. 70% of these samples are used for training, and
30% are used for testing. The generalization performance for FNN
models with various number of neurons to address the presence
of bounded and unbounded unsafe sets are shown in Figs. 1 and 2,
respectively.

In the case of bounded unsafe regions, the drop in misclas-
sification rate and barrier function output MSE are prominently
shown as the number of neurons increases from ny,, = 1 to ny = 10
for both training and testing datasets. The misclassification rate
and output MSE for the training dataset stay consistently low for
nw > 10, where its misclassification rate is maintained below 0.018
and MSE output is maintained below 0.067 (this high point occurs
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in the case of unbounded unsafe regions.

at n, = 300). Misclassification rate and output MSE in the test-
ing dataset are consistently higher than the training dataset for
all variations of ny,, which is expected as there exists a gap be-
tween the expected error and the empirical error as shown in the
generalization error analysis in this work. For the testing dataset,
misclassification rate stays below 0.04 and output MSE stays be-
low 0.11 for ny € [10,200] except for the one-off case at ny = 25,
which has a testing data misclassification rate of 7 x 102 and an
output MSE of 2.3 x 10~!. Sometimes one-off cases of FNN mod-
els occur where their resulting errors are higher than other FNN
models of similar structure due to the stochastic nature of FNN
training and prediction. For n, > 200, it is seen that the testing
errors in misclassification rate and output MSE increase as ny, in-
creases while the training errors for these two metrics stay consis-
tently low. This is expected as the FNN model is essentially over-
parametrized by too many number of neurons, and while this im-
proves the model’s ability to learn and fit existing data, it becomes
overfitted and therefore producing increasingly larger errors when
applied to other data samples that do not exist in the training set.
The third error metric is the loss calculated from ReLu(Lfﬁ(x) +
0.01) for all safe x that satisfy LgB(x) =0 in both training and test-
ing datasets. Although there are no obvious trends in the relation
between this error and the number of neurons, it is observed that
the error in the training set stays below 1.008 x 10~2, while the
highest error in the testing set is at 1.154 x 102,

In the case of unbounded unsafe sets, all three error metrics
achieve relatively low values compared to the case of bounded un-
safe sets due to the less challenging nature of unbounded unsafe
sets similar to a linear boundary. There are no obvious trends of
errors increasing or decreasing as the number of neurons increase
because the errors are already maintained at a low level (misclas-
sification rate is kept under 2 x 102, output MSE is kept under
6x 1072, and L;B(x) is kept under 1.107 x 102, accounting for
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both training and testing errors). However, we do observe that the
gap between training and testing error generally increases as ny
increases beyond 50. This may be due to model overfitting where
the model is again parametrized with too many neurons.

The probabilities of unsafe, unstable, and non-convergent
closed-loop behavior under the control of FNN-based CLBF-MPC
built using FNN models with varying number of neurons in the
case of bounded unsafe set are shown in Fig. 3. In addition, the
figure also shows the probability of any of these three behav-
iors occurring. It is demonstrated that the probability decreases
drastically for n, > 2 and reaches its minimum at n, = 15. It is
also noted that the instances of non-convergence also increases
for n, > 250, which is consistent with the trend of testing error
and generalization error gap increasing for overfitted models with
ny > 200.

To better illustrate how FNN models trained with insufficient
number of neurons may impact the closed-loop performance of
the FNN-CLBF-MPC, Fig. 4 compares two state trajectories starting
from the same initial condition, one under an FNN barrier func-
tion trained with 15 neurons (blue), and one under an FNN bar-
rier function trained with 2 neurons (red). The FNN barrier func-
tion trained with 2 neurons, which has much higher errors and
probabilities of instability and violation of safety, falsely identifies
all states within this time-series trajectory as “unsafe” (labeled by
diamond markers), including the initial condition xy. Therefore, it
is shown to produce a closed-loop trajectory that fails to navigate
the state around the unsafe region. The closed-loop state enters
the unsafe region and struggles to leave within the simulation pe-
riod. This shows an instance of unsafe and non-convergent behav-
ior amongst the 83 runs of closed-loop simulations starting from
different initial conditions. On the other hand, with an FNN barrier
function trained with 15 neurons, starting from the same initial
condition, the closed-loop state of the CSTR process is able to con-
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verge to the terminal set within the simulation period and avoid
entering the unsafe region #’. All states within this trajectory are
correctly classified as “safe”, which is labeled by the circle markers.

The probabilities of unsafe, unstable, and non-convergent
closed-loop behavior in the presence of unbounded unsafe regions
are shown in Fig. 5. Since all models have low misclassification rate
and low barrier function output MSE, the number of occurrences
of such unsafe, unstable, or non-convergent trajectories is zero for
various FNN models trained with different number of neurons. In
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other words, all of the closed-loop simulation runs starting from 74
different initial conditions are able to converge to the terminal set
within the simulation period while not entering the unsafe region
and not exiting the stability region.

6.4. Varying number of layers

The relation between model depths and generalization perfor-
mance are also studied, where FNN models with various number
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of layers from n; =1 to n; = 20 are constructed with 10 neurons
within each hidden layer. The same data generation and sampling
method is used as in the case study of varying number of neurons.
The generalization performance for FNN models with various num-
ber of layers for both cases of bounded and unbounded unsafe sets
are shown in Figs. 6 and 7, respectively.

In the case of bounded unsafe sets, the misclassification rate
and the output MSE for the testing dataset are maintained below
5.6 x 1072 and 1.79 x 10~! respectively for layers n; =1 to n; = 12,
and the testing errors are shown to be higher than the training er-
rors for all layers. For layers n; > 15, the generalization error gap
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between testing and training error drastically increases, which can
be attributed to the model being overfitted, thus unable to gener-
alize to new data as effectively. It is also observed that both train-
ing and testing error increase as the number of layer increases for
n; > 15. This is a common phenomenon that has been seen in neu-
ral networks with increasing depth; some possible explanations in-
clude: the network may be not able to find an appropriate map-
ping between two consecutive layers and becomes hard to opti-
mize, or higher-level layers may lose access to important lower-
level layer features. However, this remains a topic that is contin-
uously studied by researchers. For the third error metric which



S. Chen, Z. Wu and PD. Christofides

Computers and Chemical Engineering 163 (2022) 107860

1 T T T
O Anyofthe 3
0.8 % Unsafe i
) Unstable
o No Convergence
0.6 |
04r .
> 0.2r .
E
_8 or @ @ @ @ @ @ @ @ @ @
o
o
0.2+ .
-0.4 - 7
-0.6 - 7
-0.8 7
-q ! ! ! I | I 1 1 !
0 2 4 6 8 10 12 14 16 18 20

Number of layers

Fig. 10. Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop control of the FNN-based CLBF-MPC for FNN models trained with varying layers in

the case of unbounded unsafe regions.

assesses the negative definiteness of Lfﬁ, all models produced an
average ReLu(LfE(x) +0.01) of less than 0.01 in both training and
testing datasets, and this error is maintained under 2.8 x 10~% in
both training and testing sets for models with n; > 2. This shows
that an FNN of at least 2 layers is needed.

In the case of unbounded unsafe sets, the resulting training and
testing misclassification rate and output MSE are again sporadic
because their values are already low for all layers. The highest mis-
classification rate and output MSE are 1.37 x 1072 and 3.65 x 102
respectively, which are obtained at n; = 5. For the first two error
metrics, the testing dataset consistently yields a higher error than
the training dataset, which agrees with the theoretical develop-
ment of Section 4. The training loss from ReLu(LfEJr 0.01) is oddly
higher than the testing losses for n; = 1,2, 3. The highest loss of
this error metric is 0.0109 for training and 6.8 x 103 for testing
at n; = 2. For n; > 3, Lfﬁ(x) <0,xe {up|Lg§(x) = 0} holds for both
training and testing datasets. For this particular study, Fig. 7 shows
that it is best to choose an FNN built with 4 layers.

Closed-loop probability studies are also conducted for both
bounded and unbounded unsafe sets. For bounded unsafe sets,
the probability of non-convergent behavior starts increasing for
n; > 12, and the probability of unsafe, unstable behavior starts in-
creasing for n; > 15. The probabilities are plotted against varying
FNN depth in Fig. 8. This is consistent with the generalization error
performance, where the model becomes overfitted as the number
of layer increases beyond n; > 15, and the training error, the test-
ing error, as well as the generalization error gap all increase. The
larger the generalization error gap, the less likely that closed-loop
stability and safety can be guaranteed, thus the occurrences of un-
stable, unsafe, and non-convergent behavior increase.

We further demonstrate the difference in closed-loop per-
formance between two models trained with different number
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of layers for systems with bounded unsafe sets in state space.
Fig. 9 shows two state profiles under the FNN-CLBF-MPC, one of
them has an FNN barrier function trained with 2 layers (blue), and
the other one has an FNN barrier function trained with 18 lay-
ers (red). Along the red-colored state trajectory, all state values are
falsely identified as “unsafe” by the 18-layer FNN barrier function,
causing the closed-loop state to move very slowly, eventually into
the unsafe region and unable to escape. The blue-colored trajec-
tory starts from the same initial conditon, and is driven inside the
terminal set while avoiding the unsafe set successfully. Along this
trajectory, only one state at xT = [—1.2537, 41.3475], which is out-
side the unsafe region, is being falsely identified as “unsafe”. This
is because the predicted unsafe region 7 characterized by the FNN
barrier function B(x) constructed using 2 layers turns out to be a
superset of 7/, which allows the MPC to act preemptively before
the state actually enters #’.

Similarly, the probability of unsafe, unstable, and non-
convergent behaviors for the case of unbounded unsafe regions are
shown in Fig. 10. Due to the consistently low modeling error, the
probability of such behavior is zero across all variations of FNN
depth.

6.5. Varying training data sample size

Lastly, the number of training data sample size is varied to ex-
amine its impact on the generalization error and closed-loop per-
formance. The same data generation method is applied with the
exception of varying the discretization grid size along each dimen-
sion of x from ny = 10, 20, 30, ..., 450, 500. The resulting datasets
range from having a total sample size of m = 38 to m = 94251. The
same neural network structure is used, consisting of 2 hidden lay-
ers of 10 neurons each. Figs. 11 and 12 illustrate the three error
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metrics in training and testing datasets for the bounded and un-
bounded unsafe sets respectively.

In the case of bounded unsafe regions, it is seen that for train-
ing data sample size between m =38 to m = 3775, both training
and testing sets produce high misclassification rate and the out-
put MSE. The testing errors are higher than the testing errors with
a generalization error gap, and the magnitude of these errors as
well as the generalization error gap between training and testing
sets decrease as the sample size increases. This is aligned with
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theoretical derivations as larger sample size results in improved
model accuracy and reduced generalization error. The generaliza-
tion gap, which captures the difference between expected error
(testing dataset) and empirical error (training dataset), is roughly
proportional to # as indicated by Eq. (19). This is consistent with
the trend observed here where the decrease is drastic when m
is small, and reaches a plateau as m increases to larger values.
For data sample size m > 8499, both training and testing errors in
the first two metrics stay consistently low below 0.018 and 0.056
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Fig. 14. Closed-loop state trajectories under CLBF-MPC with FNN-based barrier function trained with 8499 data samples (blue) vs. 152 data samples (red), where states
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for misclassification and MSE respectively, and no significant im-
provement is seen beyond m > 8499. For the losses calculated from
ReLu(LfE(x) +0.01), it is observed that both training and testing
errors are able to achieve extremely low values for m =38 to
m = 3775 where the misclassification rate and MSE are high. This
may be because the data samples are too few for the FNN to learn
the underlying relation between input and output, and therefore it
fails to minimize L; and only stresses on satisfying L,. The maxi-
mum ReLu(LfE(x) +0.01) for all models is 7.79 x 10~% and there-

fore the expected LfE(x) stays below 0 for all models.
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In the case of unbounded unsafe regions, it is similarly seen
in Fig. 12 that the testing error and generalization error gap for
misclassification rate and output MSE at the smallest sample size
m = 38 is drastically higher than the other FNN models trained
with larger training sample size, and they reach a low, stable level
after m > 3199. For the loss term of ReLu(LfE(x) +0.01), all losses
stay below 9.27 x 103, which means that the expected Lfl§(x) <0
for all models.

We also simulate closed-loop runs starting from various ini-
tial conditions within the operating region to assess probabilities



S. Chen, Z. Wu and PD. Christofides

Computers and Chemical Engineering 163 (2022) 107860

1 T T T T T T T
O Any of the 3
0.8+ * Unsafe 4
| Unstable
o No Convergence
0.6 i
0.4 A
> 0.2 7
E
@® @e @ @ @ @ @ -
o]
o
[a
0.2 7
-0.4 -
-0.6 7
-0.8 1 7
_1 | 1 | | 1 | | 1 |
0 1 2 3 4 5 6 7 8 9 10
Number of training size %104

Fig. 15. Probabilities of unsafe, unstable, and non-convergent behavior under closed-loop control of the FNN-based CLBF-MPC for FNN models trained with varying data

sample size in the case of unbounded unsafe regions.

of unstable, unsafe, and non-convergent behaviors. It is shown in
Fig. 13 that the probabilities of unsafe and non-convergent in-
stances drop to 0 for m > 3775, and the probability of unsafe in-
stances is also in general lower when the sample size is larger.
This is better demonstrated in the comparison of two closed-loop
trajectories shown in Fig. 14 where the closed-loop state under
an FNN model trained with 152 samples (red) and under an FNN
model trained with 8499 samples (blue) are plotted together. The
FNN model trained with 152 samples incorrectly classifies the ini-
tial condition as well as many states around the unsafe region as
“unsafe” (diamond markers), and the closed-loop state under this
FNN-CLBF-MPC enters the unsafe region and eventually traverses
across the unsafe region, exiting on the other side. The closed-loop
state continues to migrate towards terminal set, where eventually
the FNN model correctly identifies the state as being “safe” (la-
beled by circle markers), and the closed-loop state ultimately is
driven inside the terminal set. The closed-loop state along the tra-
jectory controlled by the FNN-CLBF-MPC trained with 8499 sam-
ples are all correctly classified as “safe”, and the MPC is able to
quickly drive and maintain the state inside the terminal set in
a stable and safe manner. Closed-loop simulations are also con-
ducted starting from various initial conditions inside the operating
region for the unbounded unsafe sets, and the probabilities of any
of these undesirable instances occurring are zero for all models, as
shown in Fig. 15.

Remark 3. As shown in Theorem 2, the generalization perfor-
mance of the FNN model depends on a number of factors, includ-
ing the sample size m, the network weight matrix bounds By, the
bound on the possible values of state vector as inputs to the FNN
By, the depth of the neural network d, the output dimension dy
and the input dimension dy. In this study, we have demonstrated
case study results on the impact of neural network hypothesis class
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complexity (depth and width) and the training sample size m on
the overall generalization and closed-loop performance. As an ex-
tension to this study, one may also study the impact of By, By,
which have been investigated in (Wu et al., 2021), or dy, by adjust-
ing the number of input features if possible.

7. Conclusion

A machine-learning-based Control Lyapunov-Barrier Function is
used to design model predictive controllers for nonlinear systems
with the presence of bounded and unbounded unsafe sets. Specifi-
cally, an FNN model is used to construct the Control Barrier Func-
tion, for which the generalization error bound is analyzed us-
ing the Rademacher complexity method from statistical machine
learning theory. Subsequently, probabilistic stability and safety is
established for CLBF-based control laws designed using this FNN-
CBF, which is then extended to the sample-and-hold implementa-
tion of an FNN-CLBF-MPC. We demonstrate the impact that struc-
tural complexity and sample size of the FNN model have on the
generalization performance, as well as the probabilities of closed-
loop stability and safety in the cases of bounded and unbounded
unsafe sets through a chemical reactor example.
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