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SUMMARY

This work focuses on predictive control of linear parabolic partial differential equations (PDEs) with state
and control constraints. Initially, the PDE is written as an infinite-dimensional system in an appropriate
Hilbert space. Next, modal decomposition techniques are used to derive a finite-dimensional system that
captures the dominant dynamics of the infinite-dimensional system, and express the infinite-dimensional
state constraints in terms of the finite-dimensional system state constraints. A number of model predictive
control (MPC) formulations, designed on the basis of different finite-dimensional approximations, are then
presented and compared. The closed-loop stability properties of the infinite-dimensional system under the
low order MPC controller designs are analysed, and sufficient conditions that guarantee stabilization and
state constraint satisfaction for the infinite-dimensional system under the reduced order MPC formulations
are derived. Other formulations are also presented which differ in the way the evolution of the fast
eigenmodes is accounted for in the performance objective and state constraints. The impact of these
differences on the ability of the predictive controller to enforce closed-loop stability and state constraints
satisfaction in the infinite-dimensional system is analysed. Finally, the MPC formulations are applied
through simulations to the problem of stabilizing the spatially-uniform unstable steady-state of a linear
parabolic PDE subject to state and control constraints. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transport-reaction processes are characterized by significant spatial variations due to the
underlying diffusion and convection phenomena. The dynamic models of transport-reaction
processes over finite spatial domains typically consist of parabolic partial differential equation
(PDE) systems whose spatial differential operators are characterized by a spectrum that can be
partitioned into a finite (possibly unstable) slow part and an infinite stable fast complement [1].
The traditional approach for control of linear/quasi-linear parabolic PDEs involves the
application of spatial discretization techniques to the PDE system to derive systems of ordinary
differential equations (ODEs) that accurately describe the dynamics of the dominant (slow)
modes of the PDE system. The finite-dimensional systems are subsequently used as the basis for
the synthesis of finite-dimensional controllers (e.g. see References [2–4]). A potential drawback
of this approach, especially for quasi-linear parabolic PDEs, is that the number of modes that
should be retained to derive an ODE system that yields the desired degree of approximation
may be very large, leading to complex controller design and high dimensionality of the resulting
controllers.

Motivated by these considerations, significant recent work has focused on the development of
a general framework for the synthesis of low-order controllers for quasi-linear parabolic PDE
systems (and other highly dissipative PDE systems that arise in the modelling of spatially-
distributed systems) on the basis of low-order nonlinear ODE models derived through a
combination of the Galerkin method (using analytical or empirical basis functions) with the
concept of inertial manifolds [5]. Using these order reduction techniques, a number of control-
relevant problems, such as nonlinear and robust controller design, dynamic optimization, and
control under actuator saturation have been addressed for various classes of dissipative PDE
systems (e.g. see References [6–10] and the book [5] for results and references in this area). In
addition to these works, other recent studies on control of PDE systems include [11, 12]. The
approaches proposed in the above works, however, do not address the issue of state constraints
in the controller design. Operation of transport-reaction processes typically requires that the
state of the closed-loop system be maintained within certain bounds to achieve acceptable
performance. Examples include requiring the temperature of a tubular reactor not to exceed a
certain value, and requiring the product concentration not to drop below some purity
requirement. Handling both state and control constraints}the latter typically arising due to the
finite capacity of control actuators}in the design of the controller, therefore, is an important
consideration.

Model predictive control (MPC), also known as receding horizon control, is a popular control
method for handling constraints (both on manipulated inputs and state variables) within an
optimal control setting. In MPC, the control action is obtained by solving repeatedly, on-line, a
finite horizon constrained open-loop optimal control problem. The popularity of this approach
stems largely from its ability to handle, among other issues, multi-variable interactions,
constraints on controls and states, and optimization requirements. Numerous research studies
have investigated the properties of model predictive controllers and led to a plethora of MPC
formulations that focus on a number of control-relevant issues, including issues of closed-loop
stability, performance, implementation and constraint satisfaction (e.g. see References [13–16]
for surveys of results and references in this area).

Most of the research in the area of predictive control, however, has focused on lumped-
parameter processes modelled by ODE systems. Compared with lumped-parameter systems, the
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problem of designing predictive controllers for distributed parameter systems modelled by PDEs
has received much less attention. Of the few results available on this problem, some have
focused on analysing the receding horizon control problem on the basis of the infinite-
dimensional system using control Lyapunov functionals (e.g. Reference [17]), while others have
used spatial discretization techniques such as finite differences (e.g. Reference [18]) to derive
approximate ODE models (of possibly high-order) for use within the MPC design, thus leading
to computationally expensive model predictive control designs that are, in general, difficult to
implement on-line.

Motivated by the above considerations, we focus in this work on the development of a
framework for the design of predictive controllers for linear parabolic PDEs with state and
control constraints. The rest of the paper is organized as follows. In Section 2, a class of
parabolic PDEs is described and formulated as an infinite-dimensional system, and the predictive
control problem is formulated on the basis of the infinite-dimensional system. Then, in Section 3,
modal decomposition techniques are used to derive a finite-dimensional system that captures
the dominant dynamics of the infinite-dimensional system and to express the state constraints for
the infinite-dimensional system in terms of the finite-dimensional system state constraints. A
number of MPC formulations, designed on the basis of different finite-dimensional approxima-
tions, are presented and compared. The closed-loop stability properties of the infinite-
dimensional system under the low order MPC controller designs are analysed and sufficient
conditions, which guarantee stabilization and state constraint satisfaction for the infinite-
dimensional system under the reduced order MPC formulations, are derived. We also present
other formulations which differ in the way the evolution of the fast eigenmodes is accounted for
in the performance objective and state constraints. The implications of these differences, in terms
of the ability of the predictive controller to enforce closed-loop stability and state constraints
satisfaction in the infinite-dimensional system, is analysed. Finally, in Section 4, the MPC
formulations are applied through simulations to the problem of stabilizing the spatially-uniform
unstable steady-state of a linear parabolic PDE subject to state and control constraints.

2. PRELIMINARIES

2.1. Parabolic PDEs

To motivate the class of infinite-dimensional systems considered, we focus on a linear parabolic
PDE, with distributed control, of the form

@ %x

@t
¼ b

@2 %x

@z2
þ c %xþ w

Xm
i¼1

biðzÞui ð1Þ

with the following boundary and initial conditions:

%xð0; tÞ ¼ 0; %xðp; tÞ ¼ 0; %xðz; 0Þ ¼ %x0ðzÞ ð2Þ

subject to the following input and state constraints:

umin
i 4ui4umax

i ; i ¼ 1; . . . ;m ð3Þ

wmin4
Z p

0

rðzÞ %xðz; tÞ dz4wmax ð4Þ
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where %xðz; tÞ denotes the state variable, z 2 ½0; p� is the spatial co-ordinate, t 2 ½0;1Þ is the time,
ui 2 R denotes the ith constrained manipulated input; umin

i and umax
i are real numbers

representing the lower and upper bounds on the ith input, respectively, and wmin and wmax are
real numbers representing the lower and upper state constraints, respectively. The term @2 %x=@z2

denotes the second-order spatial derivative of %x; b; c and w are constant coefficients with b > 0;
and %x0ðzÞ is a sufficiently smooth function of z: The function biðzÞ 2 L2ð0;pÞ is a known ‘square
integrable’ function of z that describes how the control action, uiðtÞ; is distributed in the spatial
interval ½0;p�: Whenever the control action is applied to the spatial domain at a single point za;
with za 2 ½0;p� (i.e. point actuation), the function biðzÞ is taken to be non-zero in a finite spatial
interval of the form ½za � m; za þ m�; where m is a small positive real number, and zero elsewhere
in ½0; p�: In Equation (4), the function rðzÞ 2 L2ð0;pÞ is a ‘state constraint distribution’ function
that describes how the state constraint is enforced in the spatial domain ½0;p�: Note that we
consider only integral constraints with square integrable state constraint distribution functions,
and not pointwise or general state constraints distribution functions. Throughout the paper, the
notation j � j will be used to denote the standard Euclidian norm in Rn; while the notation j � jQ
will be used to denote the weighted norm defined by j #xj2Q ¼ #x0Q #x; where Q is a positive-definite
matrix and #x0 denotes the transpose of #x: A function bðr; sÞ : ½0; aÞ � ½0;1Þ ! ½0;1Þ is said to be
of class KL if, for each fixed s50; the mapping bðr; sÞ is continuous, strictly increasing with
respect to r and satisfies bð0; sÞ ¼ 0; and, for each fixed r; the mapping bðr; sÞ is decreasing with
respect to s and bðr; sÞ ! 0 as s!1:

To proceed with the presentation of our results, we formulate the PDE of Equations (1)–(4) as
an infinite-dimensional system in the state space H ¼ L2ð0;pÞ; with inner product and norm

ðo1;o2Þ ¼
Z p

0

o1ðzÞo2ðzÞ dz; jjo1jj2 ¼ ðo1;o1Þ
1=2 ð5Þ

where o1; o2 are two elements of L2ð0;pÞ:
Defining the state function xðtÞ on the state-space H as

xðtÞ ¼ %xðz; tÞ; t > 0; 05z5p ð6Þ

the operator A as

Af ¼ b
d2f
dz2
þ cf; 05z5p ð7Þ

where fðzÞ is a smooth function on ð0;pÞ with fð0Þ ¼ 0 and fðpÞ ¼ 0; with the following dense
domain:

DðAÞ ¼ fðzÞ 2 L2ð0;pÞ : fðzÞ;
dfðzÞ
dz

are absolutely continuous

�

Af 2 L2ð0;pÞ;fð0Þ ¼ 0 and fðpÞ ¼ 0g ð8Þ

the input operator as

Bu ¼ w
Xm
i¼1

bið�Þui ð9Þ

and the state constraint as

wmin4ðr;xÞ4wmax ð10Þ
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the system of Equations (1)–(4) can be written as

’x ¼AxþBu; xð0Þ ¼ x0 ð11Þ

umin
i 4uiðtÞ4umax

i ð12Þ

wmin4ðr;xÞ4wmax ð13Þ

The spectrum of A can be obtained by solving the following eigenvalue problem:

Afj ¼ b
d2fj

dz2
þ cfj ¼ ljfj ð14Þ

subject to

fjð0Þ ¼ fjðpÞ ¼ 0 ð15Þ

where lj denotes an eigenvalue and fj denotes an eigenfunction. A direct computation of the
solution of the above eigenvalue problem yields

lj ¼ c� bj2; fjðzÞ ¼

ffiffiffi
2

p

r
sinðjzÞ; j ¼ 1; . . . ;1 ð16Þ

The point spectrum of A; sðAÞ; is defined as the set of all eigenvalues of A; i.e. sðAÞ ¼
fl1; l2; . . .g: From the expression for the eigenvalues, it is clear that all the eigenvalues of A are
real, and that, for a given b and c; only a finite number of unstable eigenvalues exist, and the
distance between any two consecutive eigenvalues (i.e. lj and ljþ1) increases as j increases.
Furthermore, sðAÞ can be partitioned as sðAÞ ¼ s1ðAÞ [ s2ðAÞ; where s1ðAÞ ¼ fl1; . . . ; lmg
contains the first m (with m finite) ‘slow’ eigenvalues (including all, if any, possibly unstable
eigenvalues) and s2ðAÞ ¼ flmþ1; lmþ2; . . .g contains the remaining ‘fast’ stable eigenvalues. This
implies that the dominant dynamics of the PDE can be described by a finite-dimensional system,
and motivates the use of modal decomposition to derive a finite-dimensional system that
captures the dominant (slow) dynamics of the PDE.

From the properties of A and its spectrum, it follows (Theorem 2.10 in Reference [1]) that A
generates a strongly continuous C0-semigroup, TðtÞ:Moreover, since B is a bounded operator,
the system of Equation (11) has a mild solution (Theorem 2.31 in Reference [1]) of the form

xðtÞ ¼TðtÞx0 þ
Z t

0

Tðt� tÞBuðtÞ dt ð17Þ

2.2. MPC formulation

Referring to the system of Equation (11), we consider the problem of asymptotic stabilization of
the origin, subject to the control constraints of Equation (12) and the state constraints of
Equation (13). The problem will be addressed within the MPC framework (see Reference [16]
for a review of various MPC algorithms for finite-dimensional systems) where the control, at
state x and time t; is conventionally obtained by solving, repeatedly, a finite horizon constrained
optimal control problem of the form

Pðx; tÞ : minfJðx; t; uð�ÞÞjuð�Þ 2 Sg ð18Þ
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s:t: ’xðtÞ ¼AxðtÞ þBuðtÞ

uðtÞ 2 U

wmin4ðr;xðtÞÞ4wmax; t 2 ½t; tþ T � ð19Þ

where S ¼ Sðt;TÞ is the family of piecewise constant functions, with period D;mapping ½t; tþ T �
into U :¼ fu 2 Rm : umin

i 4ui4umax
i ; i ¼ 1; . . . ;mg; and T is the specified horizon. A control uð�Þ

in S is characterized by the sequence u½k�; where u½k� :¼ uðkDÞ; and satisfies uðtÞ ¼ u½k� for all
t 2 ½kD; ðkþ 1ÞDÞ: The performance index is given by

Jðx; t; uð�ÞÞ ¼
Z tþT

t

½qjjxuðt; x; tÞjj22 þ juðtÞj
2
R� dtþ Fðxðtþ TÞÞ ð20Þ

where q is a strictly positive real number, xuðt; x; tÞ denotes the solution of Equation (11), due to
control u; with initial state x at time t; and Fð�Þ denotes the terminal penalty. The minimizing
control u0ð�Þ 2 S is then applied to the system over the interval ½kD; ðkþ 1ÞD� and the procedure
is repeated indefinitely. This defines an implicit model predictive control law

MðxÞ :¼ u0ðt; x; tÞ ð21Þ

Since the predictive control problem of Equations (18)–(19) is formulated on the basis of the
infinite-dimensional system, it leads to a predictive controller that is of higher-order and cannot
be readily implemented in practice. To overcome this problem, we develop in the next section
computationally efficient predictive control formulations that achieve stabilization of the system
of Equation (11) subject to the control and state constraints of Equations (12)–(13).

Remark 1
It is well known that even in the case of finite-dimensional systems, the control law defined by
Equations (18)–(21) is not necessarily stabilizing. For finite-dimensional systems, the issue of
closed-loop stability is usually addressed by means of imposing suitable penalties and
constraints on the state at the end of the optimization horizon (e.g. see References [14, 16] for
surveys of different approaches).

3. PREDICTIVE CONTROL OF INFINITE-DIMENSIONAL SYSTEMS

In this section, we initially apply modal decomposition techniques to the system of
Equation (11) to derive a finite-dimensional system that captures its dominant dynamics, and
express the state constraints of Equation (13) in terms of constraints on the state of the finite-
dimensional system. The finite-dimensional system is then used for the construction of a
low-order predictive controller, and sufficient conditions guaranteeing stabilization and state
constraints satisfaction for the infinite-dimensional closed-loop system are derived. Other MPC
formulations, designed on the basis of appropriate finite-dimensional approximations and
differing in the way the state constraints are handled within the optimization problem, are then
presented and compared.
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3.1. Modal decomposition

Referring to the system of Equation (11), let Hs and Hf be modal subspaces of A; defined as
Hs ¼ spanff1;f2; . . . ;fmg and Hf ¼ spanffmþ1;fmþ2; . . .g (the existence of Hs; Hf follows
from the properties of A). Defining the orthogonal projection operators, Ps and Pf ; such that
xs ¼ Psx; xf ¼ Pf x; the state x of the system of Equation (11) can be decomposed as

x ¼ xs þ xf ¼ Psxþ Pf x ð22Þ

Applying Ps and Pf to the system of Equation (11) and using the above decomposition for x; the
system of Equation (11) can be re-written in the following equivalent form:

dxs

dt
¼Asxs þBsu; xsð0Þ ¼ Psxð0Þ ¼ Psx0

dxf

dt
¼Af xf þBf u; xf ð0Þ ¼ Pf xð0Þ ¼ Pf x0 ð23Þ

where As ¼ PsA; Bs ¼ PsB; Af ¼ PfA; Bf ¼ PfB: In the above system, As is a diagonal
matrix of dimension m�m of the form As ¼ diagfljg (lj are possibly unstable eigenvalues of
As) and Af is an unbounded differential operator which is exponentially stable (following from
the fact that lmþ150 and the selection of Hs;Hf ). In the remainder of the paper, we will refer
to the xs- and xf -subsystems in Equation (23) as the slow and fast subsystems, respectively.
From the properties of As and Af and the fact that Bs and Bf are bounded operators, it
follows (Theorems 2.10 and 2.31 in Reference [1]) that there exist C0-semigroups Ts and Tf

such that the xs- and xf -subsystems of Equation (23) admit, on the interval t 2 ½0;1Þ; the
following mild solutions:

xsðtÞ ¼TsðtÞxsð0Þ þ
Z t

0

Tsðt� tÞBsuðtÞ dt ð24Þ

xf ðtÞ ¼Tf ðtÞxf ð0Þ þ
Z t

0

Tf ðt� tÞBf uðtÞ dt ð25Þ

Furthermore, since Af is a stable operator, the spectrum of Af satisfies supfRe sðAf Þg5� g;
for some g > jc� bðmþ 1Þ2j; and thus, Tf ðtÞ satisfies ([1], p. 74)

jjTf ðtÞjj24M0e
�gt; t50 ð26Þ

for some M0 > 0:

Remark 2
Note that while we use the PDE of Equations (1)–(4) to motivate and illustrate the development
of the infinite-dimensional system of Equation (11), our subsequent results are not limited to
single PDEs of the form of Equations (1)–(4). The results developed in this work apply to
parabolic PDEs with possibly other types of boundary conditions (e.g. mixed boundary
conditions), or other means of implementing control, such as boundary control [19] and also
systems of parabolic PDEs, as long as they possess operators A that have a finite number of
eigenvalues with positive real parts and the decomposition of Equations (22)–(23) can be
written. These conditions can be shown to hold for all linear parabolic PDEs with self-adjoint
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operators that have only finitely many eigenvalues with positive real parts. In the domain of
chemical process control, the class of linear parabolic PDEs with self-adjoint operators arises
frequently from the linearization of first-principle models of diffusion–reaction processes. Note
also, that while this work focusses on addressing the problem of ensuring state constraint
satisfaction for the infinite dimensional system, and uses linear systems under the assumption of
full-state feedback to illustrate the main idea, the proposed approach can also be used to address
practical issues such as unavailability of state measurements [20] and nonlinearity [21].

3.2. MPC formulations: accounting for input and state constraints

We first present an MPC formulation, designed on the basis of the slow subsystem in
Equation (23), that ensures stabilization of the infinite-dimensional system. The MPC law in this
case is obtained by solving, in a receding horizon fashion, the following optimization problem:

min
u

Z tþT

t

½qsjjxsðtÞjj22 þ juðtÞj
2
R� dtþ Fðxsðtþ TÞÞ

� �
ð27Þ

s:t: ’xsðtÞ ¼AsxsðtÞ þBsuðtÞ

uðtÞ 2 U

wmin4ðr;xsðtÞÞ4wmax; t 2 ½t; tþ T �

xsðtþ TÞ ¼ 0 ð28Þ

To proceed, we assume that the predictive control law of Equations (27)–(28), with a fixed
horizon length T ; is initially and successively feasible and achieves stabilization of the
xs-subsystem for all xsð0Þ 2 Os �Hs: Note that the set Os depends on the constraints on the
states and inputs, the system dynamics and T (see remarks 5 and 6 for discussion on this issue).
This assumption is precisely stated below.

Assumption 1
There exists a set Os �Hs such that for all xsð0Þ 2 Os; the steady-state solution xsðtÞ ¼ 0 of the
closed-loop system of Equation (24) under the MPC law of Equations (27)–(28) is asymp-
totically stable in the sense that xsðtÞ 2 Os for all t50 and satisfies jjxsðtÞjj24bðjjxsð0Þjj2; tÞ;
where bð�; �Þ is a class KL function.

Note that the symbolic terminal endpoint constraint of Equation (28) is used as an example of
a stability constraint, and the results of this work are not limited to this particular choice of
stability constraint. Other approaches, that account for stability considerations via incorporat-
ing other form of constraints or penalties on the state variables can very well be used within the
proposed approach. What is required, though, is for the predictive control formulation to be
able to stabilize the closed-loop system and Assumption 1 above formalizes this requirement.
Proposition 1 below establishes that the predictive control law of Equations (27)–(28), for which
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Assumption 1 holds, also achieves asymptotic stability of the closed-loop infinite-dimensional
system.

Proposition 1
Consider the system of Equation (11) subject to the input and state constraints of
Equations (12)–(13), under the predictive controller of Equations (27)–(28) for which
Assumption 1 holds. If the initial condition of the infinite-dimensional system, xð0Þ; is such
that xsð0Þ 2 Os; then xðtÞ ¼ 0 is an asymptotically stable solution of the closed-loop infinite-
dimensional system.

Proof of Proposition 1
We first note that the control law of Equations (27)–(28) is only a function of the state of the
slow subsystem, u ¼MðxsÞ; and satisfies limt!1 juðtÞj ¼ 0 (this follows from the assumption
that xðtÞ ¼ 0 is a steady-state solution of the closed-loop system of Equation (24) and
Equations (27)–(28), Assumption 1). Using the decomposition of Equation (23), the closed-loop
system of Equation (11) under the MPC law of Equations (27)–(28) can therefore be written as a
cascaded system of the form

dxs

dt
¼Asxs þBsMðxsÞ ð29Þ

dxf

dt
¼Af xf þBfMðxsÞ ð30Þ

Since xsð0Þ 2 Os; we have from Assumption 1 that xsðtÞ of Equation (29) satisfies
jjxsðtÞjj4bðjjxsð0Þjj2; tÞ for all t50: We now show that the origin of the fast xf -subsystem of
Equation (30) is also asymptotically stable, and thus the origin of the infinite-dimensional
closed-loop system of Equations (11)–(13) under the control of Equations (27)–(28) is
asymptotically stable. To this end, we first note that since Af is a stable operator, which
generates a C0-semigroup Tf that satisfies Equation (26), and since Bf is a bounded operator
(boundedness of Bf follows from the fact that bðzÞ 2 L2ð0;pÞ), by taking the 2-norm in space of
both sides of Equation (25), the following bound for the state of the xf -subsystem of Equation
(30) can be written

jjxf ðtÞjj24Ke�gtjjxf ð0Þjj2 þ jjBf jj2

Z t

0

M0e
�gðt�tÞuðtÞ dt

����
���� ð31Þ

where K5M0 is a positive real number and uðtÞ ¼MðxsðtÞÞ: Further, since uðtÞ is bounded (i.e.
juðtÞj4%u where %u ¼ maxfjumaxj; juminjg) and e�gðt�tÞ50 for 04t4t; Equation (31) can be written
as

jjxf ðtÞjj24Ke�gtjjxf ð0Þjj2 þM0jjBf jj2 sup
04t4t

juðtÞj
Z t

0

e�gðt�tÞ dt
����

���� ð32Þ

or

jjxf ðtÞjj24Ke�gtjjxf ð0Þjj2 þM2 sup
04t4t

juðtÞj ð33Þ

where M2 ¼M0jjBf jj2=g: To use Equation (33) to prove that limt!1 jjxf ðtÞjj2 ¼ 0; we need the
following argument. First, we note that by taking the supremum over time of both sides of the
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inequality of Equation (33), we have

sup
t50

jjxf ðtÞjj24K jjxf ð0Þjj2 þM2 %u ¼: %K ð34Þ

The fact that the inequality of Equation (33) holds for every initial time, t0; yields that for 8t5t0

jjxf ðtÞjj24Ke�gðt�t0Þjjxf ðt0Þjj2 þM2 sup
t5t0

juðtÞj ð35Þ

Taking t0 ¼ t=2 and using the bound of Equation (34) in Equation (35), we have

jjxf ðtÞjj24Ke�gðt=2Þ %K þM2 sup
t5t=2

juðtÞj ð36Þ

Taking the limit of both sides as t!1 and using the fact that limt!1 supt5t juðtÞj ¼ 0 (this
follows directly from limt!1 juðtÞj ¼ 0), we finally have

lim
t!1
jjxf ðtÞjj24 lim

t!1
ðKe�gðt=2Þ %KÞ þ lim

t!1
M2 sup

t5t=2
juðtÞj

 !
¼ 0 ð37Þ

We therefore have that limt!1 jjxf ðtÞjj2 ¼ 0 and thus the infinite-dimensional closed-loop system
is asymptotically stable. This completes the proof of Proposition 1. &

Remark 3
Note that the MPC formulation of Equations (27)–(28) is designed on the basis of the slow
subsystem only. The evolution of the fast states is unaccounted for, whether in the cost function
or in the state constraints. Therefore, while the resulting MPC controller enforces closed-loop
stability for the infinite-dimensional system, there is no guarantee that the state constraints for
the infinite-dimensional system will be satisfied for all times (note that satisfaction of wmin4
ðr;xsÞ4wmax does not guarantee that wmin4ðr; xs þ xf Þ ¼ ðr;xÞ4wmax). So, unlike the stabiliza-
tion objective, which can be achieved independently of the fast subsystem, the additional
objective of state constraints satisfaction requires that the MPC design accounts in some way for
the contribution of the fast states to the evolution of the state of the infinite-dimensional system.

We now present a modification of the MPC controller of Equations (27)–(28), and give a
sufficient condition on the initial condition of the fast subsystem such that the resulting control
law, when applied to the infinite-dimensional system, achieves both stabilization and state
constraint satisfaction. The key idea is to revise (shrink) the bounds on the slow states in the
controller design to compensate for the contribution of the fast states to the evolution of the
infinite-dimensional system state. By invoking input-to-state boundedness of the fast subsystem,
we then derive appropriate bounds on the initial condition for the fast subsystem which ensure
state constraint satisfaction for the infinite-dimensional closed-loop system. Proposition 2 below
formalizes the input-to-state boundedness property, and Theorem 1 states the sufficient
condition for state constraints satisfaction for the infinite-dimensional system. To this end,
consider the MPC formulation of Equations (27)–(28) with the bounds wmax and wmin replaced
by Smax and Smin; respectively, as follows:

min
u

Z tþT

t

½qsjjxsðtÞjj22 þ juðtÞj
2
R� dtþ Fðxsðtþ TÞÞ

� �
ð38Þ

s:t: ’xsðtÞ ¼AsxsðtÞ þBsuðtÞ
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uðtÞ 2 U

Smin4ðr;xsðtÞÞ4Smax; t 2 ½t; tþ T �

xsðtþ TÞ ¼ 0 ð39Þ

where Smax4wmax � a and Smin5wmin þ a; where a is a positive real number to be determined
later. We denote by O0s the set of initial conditions for which the predictive controller of
Equations (38)–(39) satisfies the conditions of Assumption 1.

Proposition 2
Consider the system of Equation (11) and the input and state constraints of Equations (12)–(13).
There exist positive real numbers Mn

1 and Mn
2 such that jðr; xf ðtÞÞj4Mn

1 jjxf ð0Þjj2 þMn
2 %u; for all

t50; where %u ¼ maxfjumaxj; juminjg:

Proof of Proposition 2
First, using Holder’s inequality [22], we getZ p

0

rðzÞf ðz; tÞ dz
����

����4
Z p

0

rðzÞ2 dz
� �1=2

�
Z p

0

f ðz; tÞ2 dz
� �1=2

ð40Þ

Let M3 ¼ ð
R p
0 jrðzÞj

2dzÞ1=2: Note that since rðzÞ 2 L2ð0;pÞ; M3 is a positive real number.
Identifying the term on the left-hand side of the inequality with jðr;xf Þj; and the second term on
the right-hand side with jjxf jj2; we have that

jðr;xf Þj4M3jjxf jj2 ð41Þ

From Equation (33), using the fact that sup04t4t juðtÞj4%u; it follows that

jjxf ðtÞjj24M1jjxf ð0Þjj2 þM2 %u ð42Þ

where M1 ¼ K and M2 ¼M0jjBf jj2=g: Substituting Equation (42) into Equation (41), we have

jðr;xf ðtÞÞj4Mn

1 jjxf ð0Þjj2 þMn

2 %u ð43Þ

where Mn
1 ¼M1M3 and Mn

2 ¼M2M3: This completes the proof of Proposition 2. &

Theorem 1
Consider the system of Equation (11), subject to the input and state constraints of
Equations (12)–(13), under the predictive control law of Equations (38)–(39) for which
Assumption 1 holds with xsð0Þ 2 O0s: Then, given that there exists a positive real number d such
that wmax � wmin52ðMn

2 %uþ dÞ; where Mn
2 ; %u were defined in Proposition 2, there exist positive

real numbers a and b such that if xsð0Þ 2 O
0
s and jjxf ð0Þjj24b; then xðtÞ ¼ 0 is an asymptotically

stable solution of the closed-loop system under the controller of Equations (38)–(39) and
wmin4ðr; xðtÞÞ4wmax for all t50:

Proof of Theorem 1
Asymptotic stability of the closed-loop infinite-dimensional system under the control law
of Equations (38)–(39) for which Assumption 1 holds with xsð0Þ 2 O

0
s can be shown using

arguments similar to the ones in the Proof of Proposition 1. We now consider the problem of
constraint satisfaction. First, we assume that there exists a positive real number d such that
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wmax � wmin52ðMn
2 %uþ dÞ; where Mn

2 ; %u were defined in Proposition 2. We also note that

ðr; xs þ xf Þ ¼ ðr;xsÞ þ ðr; xf Þ ð44Þ

and pick a ¼Mn
2 %uþ d and b ¼ d=Mn

1 : By choosing jjxf ð0Þjj24b; we have from Equation (43)
that �Mn

1b�Mn
2 %u4ðr;xf ðtÞÞ4Mn

1bþMn
2 %u (Proposition 2) which, upon substitution of

b ¼ d=Mn
1 ; yields �d�Mn

2 %u4ðr;xf ðtÞÞ4dþMn
2 %u and thus �a4ðr;xf ðtÞÞ4a:

Furthermore, satisfaction of the constraint ðr; xsðtÞÞ4Smax4wmax � a; together with
Equation (44), implies that ðr;xðtÞÞ4wmax � aþ ðr;xf ðtÞÞ4wmax since ðr; xf ðtÞÞ4a: Similarly,
satisfaction of the constraint ðr;xsðtÞÞ5Smin5wmin þ a; together with Equation (44), implies
that ðr;xðtÞÞ5wmin þ aþ ðr; xf ðtÞÞ5wmin since ðr;xf ðtÞÞ5� a: This proves that for the above
choices of a and b; the satisfaction of the constraint of Smin4ðr;xsÞ4Smax implies wmin4ðr;xÞ
4wmax; which is the state constraint for the infinite-dimensional system. Note that the condition
wmax � wmin52ðMn

2 %uþ dÞ ensures that for this choice of a; we get Smax5Smin; which is necessary
for the optimization problem to be feasible. This completes the Proof of Theorem 1. &

Remark 4
Note that the evolution of the fast subsystem is affected by both the initial condition and the
control input, and therefore finding initial conditions starting from where the future evolution of
xf is guaranteed to remain within a certain range requires that the effect of the input on xf not
exceed this range. Towards this end, the assumption regarding the existence of a positive d that
satisfies wmax � wmin52ðMn

2 %uþ dÞ ensures that the control input does not have such a strong
influence that causes xf to violate the given state constraints regardless of the initial condition.
In some sense, the existence of d ensures the needed compatibility between the effects of the
input and the state constraints on the evolution of xf :

Remark 5
Note that the conditions imposed on the initial condition, and the revision of the state
constraints in the controller design, are ‘worst case’ corrections, and are therefore only sufficient
conditions. It may happen, for instance, that the controller design of Theorem 1, when
implemented in the closed-loop system may achieve infinite-dimensional state constraint
satisfaction, even if the fast modes of the infinite-dimensional system do not satisfy the required
condition ðjjxf ð0Þjj24bÞ:

Remark 6
Note that the set of initial conditions for which a given MPC formulation is guaranteed to be
initially and successively feasible is in general a complex function of the inherent dynamics of the
system ðA;BÞ; the constraints on the input and the states ðumin; umax; wmin; wmax; rð�ÞÞ and the
controller parameters ðT ;Q;RÞ: Within the MPC framework, it is in general difficult to come
up with an explicit characterization of this set and/or compare, for instance, the sets Os (of
Proposition 1) and O0s (of Theorem 1) or the sets we subsequently define. This, however, is not
the focus of this work. What Theorem 1, and other formulations that follow, do is only provide
sufficient conditions that need to be incorporated in the reduced-order MPC formulation, and
once satisfied guarantee state constraints satisfaction and stabilization for the infinite-
dimensional closed-loop system. Note also that this resolves a more fundamental issue of just
being unable to implement control and enforce constraints using the infinite dimensional model.
In practice, this also translates into computational cost savings; not through a reduction in the
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number of decision variables in the optimization problem (whether using the reduced-order
model or the ‘full’ model, the number of decision variables depends on the number of
manipulated inputs), but via a reduction in the number of ‘states’ that are in the model used for
prediction, with the cost savings varying on a problem-by-problem basis.

Remark 7
The problem of implementing the predictive control approach in a way that provides an explicit
characterization of the closed-loop stability region for finite-dimensional systems has been
addressed via embedding the implementation of predictive control algorithms within the
stability region of another controller (the hybrid predictive control approach, see Reference [23])
or via the design of predictive control algorithms in a way that they allow for an explicit
characterization of their stability region [24]. A similar approach can be utilized to provide an
explicit characterization for the closed-loop stability region for finite-dimensional input and
state constrained systems. The use of the reduced-order MPC formulations allows the use of
these approaches because the set Os only pertains to the set of initial conditions for a finite
number of state variables, and can be obtained using the approach in References [23, 24]. Note
that the initial conditions for the fast states only need to satisfy a bound, and hence are also
characterized by a finite (in this case, one) number of conditions.

3.3. Higher-order MPC formulations

Since the MPC formulation of Theorem 1 accounts only indirectly for the evolution of the fast
states (by shrinking the slow state constraints and restricting the initial fast states), the
formulation can be conservative in terms of restricting the set of initial conditions for which
stabilization and state constraints satisfaction for the infinite-dimensional system are
accomplished simultaneously. To alleviate this conservatism, we present in this subsection
two MPC formulations which explicitly account for the evolution of the xf -subsystem.

One way to account for the effect of the fast states on the state constraints of the infinite-
dimensional system, is to incorporate the fast states explicitly into the state constraints equation.
The control action in this case is computed by solving the following optimization problem:

min
u

Z tþT

t

½qsjjxsðtÞjj22 þ juðtÞj
2
R� dtþ Fðxsðtþ TÞÞ

� �
ð45Þ

s:t: ’xsðtÞ ¼AsxsðtÞ þBsuðtÞ

’xf ðtÞ ¼Af xf ðtÞ þBf uðtÞ

uðtÞ 2 U

wmin4ðr;xsðtÞ þ xf ðtÞÞ4wmax

xsðtþ TÞ ¼ 0; t 2 ½t; tþ T � ð46Þ
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Note that given any initial condition, for which the above formulation is initially and
successively feasible, stabilization and state constraints satisfaction for the infinite-dimensional
system are achieved. Stabilization of the infinite-dimensional closed-loop system under the
formulation of Equations (45)–(46) can be proved using an argument similar to the one in the
Proof of Proposition 1. The implementation of the above controller, however, requires
computation of the fast mode dynamics, which can only be done approximately in practice. The
key feature of this formulation is that it underscores the fact that even when using a sufficiently
high number of modes to simulate the dynamics of the fast modes, the fast modes need not be
part of the cost function, thereby keeping the computational requirement low.

Remark 8
A drawback of incorporating the fast states directly in the state constraints equation is that the
set of initial conditions for which the optimization problem is feasible becomes infinite-
dimensional, and therefore impossible to compute or even estimate. The realization that
stability of the slow subsystem is sufficient to ensure stability of the infinite-dimensional system
justifies the use of only the slow modes in the cost functional and the stability constraint, thereby
substantially reducing the computational requirement. In practice, the evolution of fast modes
can be accounted for in the state constraint equation by including a sufficiently high, but finite,
number of fast modes.

To reduce some of the computational load associated with solving the xf -subsystem in the
formulation of Equations (45)–(46), we now present another MPC formulation that
approximates the effect of the fast dynamics by exploiting the two time-scale separation
between the slow and fast subsystems and deriving an approximate model that describes
the evolution of the fast subsystem. We define e :¼ jRefl1gj=jReflmþ1gj and multiply the
xf -subsystem of Equation (23) by e to obtain the following system [5]:

dxs

dt
¼Asxs þBsu

e
dxf

dt
¼Af exf þ eBf u ð47Þ

where Af e is an unbounded differential operator defined as Af e ¼ eAf : Introducing the fast
time scale %t ¼ t=e; the system of Equation (47) takes the form

dxs

d%t
¼ eðAsxs þBsuÞ

dxf

d%t
¼Af exf þ eBf u ð48Þ

Setting e ¼ 0; we get

d %xs

d%t
¼ 0

d %xf

d%t
¼Af e %xf ð49Þ
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From the properties of Af e; we have that the solution of the xf -subsystem of Equation (23) can
be approximated by %xf ðtÞ ¼ eAf t %xf ð0Þ (note that from the properties of Af ; it follows that
Tf ðtÞ ¼ eAf t; [25], p. 153). Based on this two time-scale analysis, we consider the following
MPC formulation:

min
u

Z tþT

t

½qsjjxsðtÞjj22 þ juðtÞj
2
R� dtþ Fðxsðtþ TÞÞ

� �
ð50Þ

s:t: ’xsðtÞ ¼AsxsðtÞ þBsuðtÞ

uðtÞ 2 U

%Smin4ðr;xsðtÞ þ eAf ðt�tÞxf ðtÞÞ4 %Smax ð51Þ

where t 2 ½t; t 2 T �; and %Smin ¼ wmin þMn
2 %u and %Smax ¼ wmax �Mn

2 %u; where Mn
2 ; %u were defined

in Proposition 2. We denote the set of initial conditions for which the predictive controller of
Equations (50)–(51) achieves stabilization of the xðtÞ ¼ 0 solution of the closed-loop infinite-
dimensional systems by O0: Note that, unlike Theorem 1, the set of initial conditions now
includes the slow as well as the fast states because the fast states appear explicitly}though
‘approximately’}in the constraints in the optimization problem. State constraints satisfaction
for the infinite-dimensional system is achieved by revising the state constraints in the controller
formulation by the worst-case error (due to neglecting the effect of the input on the evolution of
the fast modes) in the prediction of the fast state dynamics. We formalize this idea in the
following theorem.

Theorem 2
Consider the system of Equation (11), the input and state constraints of Equations (12)–(13),
under the control law of Equations (50)–(51). Then, if xð0Þ 2 O0; the xðtÞ ¼ 0 is an asymptotically
stable solution of the closed-loop system of Equation (11) and Equations (50)–(51), and wmin

4ðr;xðtÞÞ4wmax for all t50:

Proof of Theorem 2
The fact that the control law of Equations (50)–(51) achieves stabilization of the closed-loop
infinite-dimensional system can be proved using an argument similar to the one in the Proof of
Proposition 1. We focus on constraint satisfaction.

Satisfaction of the constraint ðr;xs þ eAf ðt�tÞxf ðtÞÞ4 %Smax ¼ wmax �Mn
2 %u implies that

ðr;xsðtÞÞ þ ðr; eAf ðt�tÞxf ðtÞÞ þMn
2 %u4wmax: Note that ðr;xsðtÞÞ þ ðr;xf ðtÞÞ4ðr; xsðtÞÞþ ðr; eAf ðt�tÞ

xf ðtÞÞ þMn
2 %u (see Proof of Proposition 2). Hence, ðr; xsðtÞÞ þ ðr; eAf ðt�tÞxf ðtÞÞ þMn

2 %u4
wmax implies that ðr;xðtÞÞ4wmax: Similarly, satisfaction of the constraint ðr;xsðtÞ þ eAf ðt�tÞ

xf ðtÞÞ5 %Smin ¼ wmin þMn
2 %u implies that ðr;xsðtÞÞ þ ðr; eAf ðt�tÞxf ðtÞÞ �Mn

2 %u5wmin: Note, once
again, that ðr;xf ðtÞÞ5ðr; eAf ðt�f Þxf ðtÞÞ �Mn

2 %u (see Proof of Proposition 2). Therefore,
ðr;xsðtÞÞ þ ðr; eAf ðt�tÞxf ðtÞÞ �Mn

2 %u5wmin implies that ðr;xðtÞÞ5wmin: This completes the
Proof of Theorem 2. &
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4. SIMULATION EXAMPLE

In this section, we demonstrate and compare, through computer simulations, the implementa-
tion of the various MPC formulations discussed in the previous section. To this end, we consider
the parabolic PDE of Equation (1) with b ¼ 1; c ¼ 1:66; w ¼ 2 and two control actuators
ðm ¼ 2Þ with the following distribution functions biðzÞ ¼ 1=2m for z 2 ½zai � m; zai þ m� and
biðzÞ ¼ 0 elsewhere in ½0; p�; where m ¼ 0:005 is a small positive real number and za1 ¼ p=3 and
za2 ¼ 2p=3: For these values, it was verified that the operating steady-state, %xðz; tÞ ¼ 0; is an
unstable one. The control objective is to stabilize the state profile at the unstable zero steady-
state by manipulating uiðtÞ subject to the input and state constraints of Equations (12)–(13) with
umin
i ¼ �3; umax ¼ 3; for i ¼ 1; 2; wmin ¼ �3:0; wmax ¼ 3:0: rðzÞ is the state constraint distribution

function, chosen to be rðzÞ ¼ 1=z for z 2 ½zc � n; zc þ n�; with z ¼ 0:0036; n ¼ 0:0018 and
zc ¼ 1:156; and zero elsewhere. The solution of the eigenvalue problem of the spatial differential
operator of Equation (14) is

lj ¼ 1:66� j2; fjðzÞ ¼

ffiffiffi
2

p

r
sinðjzÞ; j ¼ 1; . . . ;1 ð52Þ

For this system, we consider the first two eigenmodes to be the dominant ones. To simplify the
presentation of the results, eigenmodes of the PDE of Equation (11) are considered as state
variables. Specifically, using standard modal decomposition, we derive the following high-order
ODE system that describes the temporal evolution of the first l eigenmodes:

’asðtÞ ¼AsasðtÞ þ BsuðtÞ

’af ðtÞ ¼Af af ðtÞ þ Bf uðtÞ ð53Þ

where asðtÞ ¼ ½a1ðtÞ a2ðtÞ�0; af ðtÞ ¼ ½a3ðtÞ a4ðtÞ � � � alðtÞ�0; aiðtÞ 2 R is the modal amplitude
of the ith eigenmode, the notation a0s denotes the transpose of as; l is chosen to be 50,
uðtÞ ¼ ½u1 ðtÞ u2ðtÞ�0; the matrices As and Af are diagonal matrices, given by As ¼ diagflig; for
i ¼ 1; 2 and Af ¼ diagflig; for i ¼ 3; . . . ; l: Bs and Bf are a 2� 2 and ðl � 2Þ �m matrices,
respectively, whose ði; jÞth element is numerically calculated by taking inner product of bjðzÞ and
fiðzÞ; that is Bij ¼ ðbjðzÞ;fiðzÞÞ: Note that %xðz; tÞ ¼

Pl
i¼1 aiðtÞfiðzÞ; xsðtÞ ¼ a1ðtÞf1 þ a2ðtÞf2;

xf ðtÞ ¼
P50

i¼3 aiðtÞfi and that ðxðtÞ;fiÞ ¼ aiðfi;fiÞ: Using these projections, the state constraints
of Equation (13) can be expressed as constraints on the modal states as follows:

wmin4
Z p

0

rðzÞ
X2
i¼1

aiðtÞfiðzÞ þ
Xl
i¼3

aiðtÞfiðzÞ

" #
dz4wmax ð54Þ

We now proceed with the design and implementation of the different predictive control
formulations presented in the previous section. In the first scenario, we use the as-subsystem in
Equation (53) as the basis for the predictive controller design (the af -subsystem is neglected).
For this case, we consider an MPC formulation of the form of Equations (27)–(28) with the
following objective function and constraints:

min
u

Z tþT

t

½qsjasðtÞj2 þ juðtÞj2R� dt
� �

ð55Þ

s:t: ’asðtÞ ¼ AsasðtÞ þ BsuðtÞ
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umin4uiðtÞ4umax; i ¼ 1; 2 ð56Þ

wmin4
Z p

0

rðzÞ
X2
i¼1

aiðtÞfiðzÞ

" #
dz4wmax; t 2 ½t; tþ T � ð57Þ

where qs ¼ 8:79; R ¼ rI ; with r ¼ 0:01; and T ¼ 0:007: To ensure stability, we also impose a
terminal equality constraint of the form asðtþ TÞ ¼ 0 on the optimization problem. The
resulting quadratic program is solved using the MATLAB subroutine QuadProg. The control
action is then implemented on the 50th order model of Equation (53). Figure 1 shows the closed-
loop state under MPC law of Equations (55)–(57) stabilizes the PDE state at the unstable zero
steady-state starting from the initial condition %xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 3:15 sinð3zÞ
þ3:15 sinð4zÞ: By examining Figure 2 (solid line), we observe that the integral constraint
Rðzc; tÞ ¼

R p
0 rðzÞ %xðz; tÞ dz violates the lower constraint for some time. The violation of the state

constraint is a consequence of neglecting the contribution of the af states to the state of the PDE
in the MPC formulation.

We now revise the constraints in the previous MPC formulation, and consider the following
objective function and constraints (analysed in Theorem 1):

min
u

Z tþT

t

½qsjasðtÞj2 þ juðtÞj2R� dt
� �

ð58Þ

s:t: ’asðtÞ ¼ AsasðtÞ þ BsuðtÞ

umin4uiðtÞ4umax; i ¼ 1; 2 ð59Þ

Smin4
Z p

0

rðzÞ
X2
i¼1

aiðtÞfiðzÞ

" #
dz4Smax; t 2 ½t; tþ T � ð60Þ
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Figure 1. Closed-loop state profile under the MPC formulation of Equations (55)–(57) with
%xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 3:15 sinð3zÞ þ 3:15 sinð4zÞ:
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where qs; R; r and T have the same values used in the first scenario, and Smax ¼ 3� a
and Smin ¼ �3þ a: Following the result of Theorem 1, we have verified that d ¼ 1 satisfies
wmax � wmin52ðMn

2 %uþ dÞ where %u ¼ 3 and Mn
2 ¼M2M3 ¼M3M0jjBf jj2=g ¼ 0:477; and pick

a ¼Mn
2 %uþ d ¼ 2:43 and b ¼ d=Mn

1 ¼ 1:0=1:003 ¼ 0:99:
Picking the initial condition %xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 0:95 sinð3zÞ which satisfies

jjxf ð0Þjj240:99; the implementation of the predictive controller of Equations (58)–(60) results in
the stabilization and satisfaction of the state constraint of the closed-loop system (Figure 3 and
dashed lines in Figures 2 and 4). Note that, since the control action is computed on the basis of
the slow states}and since the initial conditions for the slow states are the same as in the
previous scenario}the controller implements the same control action as before (i.e. the solid
and the dashed lines coincide in Figure 4). The closed-loop state profile, however, stays within
the constraints because of appropriate initialization of the fast modes and modification of the
state constraint in the predictive controller of Equations (58)–(60).

We now consider higher-order MPC formulations. First, we demonstrate the implementation
of the MPC formulation of Equations (45)–(46) where the PDE state constraints are exactly
accounted for in the controller design. In this case, the objective function and constraints are
given by

min
u

Z tþT

t

½qsjasðtÞj2 þ juðtÞj2R� dt
� �

ð61Þ

s:t: ’asðtÞ ¼ AsasðtÞ þ BsuðtÞ

’af ðtÞ ¼ Af af ðtÞ þ Bf uðtÞ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

t

R
(z

c
,t
)

Figure 2. Rðzc; tÞ ¼
R p
0 rðzÞ %xðz; tÞ dz under the MPC formulation of Equations (55)–(57)

(solid line) and under the MPC formulation of Equations (58)–(60) (dashed line). The dotted line
represents the lower state constraint.
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umin4uiðtÞ4umax; i ¼ 1; 2 ð62Þ

wmin4
Z p

0

rðzÞ
X2
i¼1

aiðtÞfiðzÞ þ
Xl
i¼3

aiðtÞfiðzÞ

" #
dz4wmax ð63Þ

where t 2 ½t; tþ T � and the MPC tuning parameters have the same values used in the previous
two cases. The results are shown in Figures 5 and 7 (dashed lines), where we see that starting

0 0.5 1 1.5 2 2.5 30 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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0.6

zt

x(
z,
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Figure 3. Closed-loop state profile under the MPC formulation of Equations (58)–(60) with
%xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 0:95 sinð3zÞ:
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Figure 4. Manipulated input profiles for the first and second control actuators applied
at za1 ¼ p=3 and za2 ¼ 2p=3 under the MPC formulation of Equations (55)–(57) (solid
line) and under the MPC formulation of Equations (58)–(60) (dashed line); note that the
dashed and solid line coincide because of the same initial conditions of the as-states.

PREDICTIVE CONTROL OF PARABOLIC PDEs 767

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:749–772

DOI: 10.1002/rnc



from the initial condition %xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 2:8 sinð3zÞ þ 2:85 sinð4zÞ the
predictive controller of Equations (61)–(63) successfully stabilizes the system at the zero
steady-state and the PDE state constraint is satisfied for all times. The corresponding
manipulated input profiles are given in Figure 8. Finally, we demonstrate the implementation of
the MPC formulation of Equations (50)–(51) (analysed in Theorem 2). Using the approximation
of Equation (49) in the formulation of Equations (61)–(63) yields the following objective
function and constraints:

min
u

Z tþT

t

½qsjasðtÞj2 þ juðtÞj2R� dt
� �

ð64Þ

s:t: ’asðtÞ ¼AsasðtÞ þ BsuðtÞ

umin4 uiðtÞ4umax; i ¼ 1; 2

%Smin4
Z p

0

rðzÞ
X2
i¼1

aiðtÞfiðzÞ þ
Xl
i¼3

eliðt�tÞaiðtÞfiðzÞ

" #
dz4 %Smax ð65Þ

where t 2 ½t; tþ T �: %Smax and %Smin are calculated by using the value Mn
2 %u ¼ 1:431; as follows

%Smax ¼ wmax �Mn
2 %u ¼ 1:569 and %Smin ¼ wmin þMn

2 %u ¼ �1:569: The above formulation does not
require solving the state evolution equation for the af -subsystem at each time step; instead it
uses an explicit (approximate) expression, af ðtÞ ¼ eAf ðt�tÞaf ðtÞ; to account for the dynamics of
the fast subsystem which contribute to the PDE state constraints. The initial condition in this
scenario is chosen as %xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 1:45 sinð3zÞ þ 1:5 sinð4zÞ; note that for
the initial condition %xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 2:8 sinð3zÞ þ 2:85 sinð4zÞ; the formula-
tion of Equations (64)–(65) is not feasible. The receding horizon implementation of the
predictive controller implies that for subsequent computations, this expression is used with the
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Figure 5. Closed-loop state profile under the MPC formulation of Equations (61)–(63) with
%xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 2:8 sinð3zÞ þ 2:85 sinð4zÞ:
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updated value of af ðtÞ: Note, however, that this does not imply that the optimization problem
needs to solve the fast mode dynamics; it only means that at the new initial condition, the
optimization problem in the predictive controller is solved starting from this updated system
state, in line with the standard receding horizon implementation of predictive controllers. The
resulting predictive controller, when implemented on the system of Equation (1) successfully
stabilizes the zero steady-state and enforces PDE state constraints satisfaction (see Figure 6 and
solid lines Figures 7 and 8).
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Figure 6. Closed-loop state profile under the MPC formulation of Equations (64)–(65) with
%xðz; 0Þ ¼ 0:02 sinðzÞ þ 0:01 sinð2zÞ þ 1:45 sinð3zÞ þ 1:5 sinð4zÞ:
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Figure 7. Rðzc; tÞ ¼
R p
0 rðzÞ %xðz; tÞ dz under the MPC formulation of Equations (61)–(63), (dashed line) and
under the MPC formulation of Equations (64)–(65) (solid line).
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Remark 9
As a final note, we want to demonstrate that even if %xðz; 0Þ does not violate the state constraints,
these constraints can be violated for some time t50: To this end, we pick wmin ¼ �0:035 and
wmax ¼ 2; and umin

i ¼ �10; umax
i ¼ 10; and use the as-subsystem in Equation (53) as the basis for

the predictive controller design (the af -subsystem is neglected). For this case, we consider the
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Figure 8. Manipulated input profiles for the first and second control actuators applied at za1 ¼ p=3 and
za1 ¼ 2p=3 under the MPC formulation of Equations (61)–(63) (dashed line) and under the MPC

formulation of Equations (64)–(65) (solid line).
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Figure 9. Rðzc; tÞ ¼
R p
0
rðzÞ %xðz; tÞ dz under the MPC formulation of Equations (55)–(57)

with %xðz; 0Þ ¼ 0:04 sinðzÞ þ 0:0005 sinð2zÞ þ 0:07 sinð3zÞ and state constraints �0:0354
Rðzc; tÞ42 with ½umax; umin� ¼ ½�10; 10�:
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predictive controller of Equations (55)–(57) where qs ¼ 8:79; R ¼ rI ; with r ¼ 0:01; and
T ¼ 0:007: To ensure stability, we impose a terminal equality constraint of the form
asðtþ TÞ ¼ 0 on the optimization problem. The control action is then implemented on the
50th order model of Equation (53). Figure 9 shows state constraint profile starting from
the initial condition %xðz; 0Þ ¼ 0:04 sinðzÞ þ 0:0005 sinð2zÞ þ 0:07 sinð3zÞ; that does not violate
state constraints. It is clear that the predictive controller successfully stabilizes the state at the
zero steady-state and that the state violates the lower constraint for some time.

5. CONCLUSIONS

In this work we presented and compared a number of MPC formulations for control of linear
parabolic PDEs with state and input constraints. Modal decomposition techniques were initially
used to derive finite-dimensional systems that capture the dominant dynamics of the PDE, and
express the infinite-dimensional state constraints as appropriate constraints on the finite-
dimensional system states. The closed-loop stability properties of the infinite-dimensional
system under the low order MPC designs were analysed and sufficient conditions, which
guarantee stabilization and state constraints satisfaction for the infinite-dimensional system
under the reduced order MPC formulations, were derived. We also presented other
formulations which differed in the way the evolution of the fast eigenmodes is accounted for
in the performance objective and state constraints. The comparison underscored the fact that
the fast states, while unimportant in achieving closed-loop stability, are central to the predictive
controller’s ability to enforce the constraints in the closed-loop state of the infinite-dimensional
system. Finally, the MPC formulations were applied, through simulations, to the problem of
stabilizing an unstable steady-state of a linear parabolic PDE subject to state and control
constraints.
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