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Abstract

This work focuses on predictive control of linear parabolic partial differential equations (PDEs) with boundary control actuation subject to
input and state constraints. Under the assumption that measurements of the PDE state are available, various finite-dimensional and infinite-
dimensional predictive control formulations are presented and their ability to enforce stability and constraint satisfaction in the infinite-
dimensional closed-loop system is analyzed. A numerical example of a linear parabolic PDE with unstable steady state and flux boundary
control subject to state and control constraints is used to demonstrate the implementation and effectiveness of the predictive controllers.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The model predictive control framework is widely used in
the control of process systems due to its ability to explic-
itly handle manipulated input and state variable constraints.
Manipulated input constraints express limits on the capacity
of the control actuators and state constraints usually express
desired specifications on the operating range of the process
state variables. Despite the significant efforts on the develop-
ment of model predictive control methods for lumped param-
eter processes described by linear/nonlinear ordinary differen-
tial equation (ODE) systems (see, for example, Garcia et al.,
1989; Mayne et al., 2000), at this stage, few results are avail-
able on the model predictive control of distributed parameter
systems.

On the other hand, control of various classes of nonlin-
ear highly dissipative distributed parameter systems, arising in
the modeling of transport-reaction processes, particulate pro-
cesses and fluid dynamic systems, has attracted a lot of at-
tention in the last 10 years. Specifically, motivated by the
property of highly dissipative distributed parameter systems
that their dominant dynamic behavior is low dimensional in
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nature, research has focused on the development of a general
framework for the synthesis of nonlinear low-order controllers
for nonlinear parabolic partial differential equations (PDEs)
systems with distributed control (i.e., in-domain control actua-
tion which typically results in control formulations where the
manipulated inputs enter directly into the PDE)—and other
highly dissipative PDE systems that arise in the modeling
of spatially distributed processes—on the basis of nonlin-
ear low-order ODE models derived through combination of
Galerkin’s method (using analytical or empirical basis func-
tions) with approximate inertial manifolds (Christofides and
Daoutidis, 1997; Christofides, 2001). Using these order reduc-
tion techniques, a number of control-relevant problems—such
as nonlinear and robust controller design, dynamic optimiza-
tion, and the control under actuator saturation—have been
addressed for various classes of dissipative PDE systems (e.g.,
see Baker and Christofides, 2000; Bendersky and Christofides,
2000; Armaou and Christofides, 2002; El-Farra et al., 2003
and the book by Christofides (2001) for results and references
in this area). In addition to the above results which deal with
dissipative PDEs subject to distributed control, significant
research has been carried out on boundary-controlled linear
distributed parameter systems (see, for example, Fattorini,
1968; Triggiani, 1980; Curtain, 1985; Emirsjlow and Townley,
2000) and necessary conditions for stabilization under state
and output feedback control have been derived. More recently,
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results on boundary control of distributed parameter systems
include the use of singular functions for identification and con-
trol (Chakravarti and Ray, 1999), boundary control of nonlinear
distributed parameter systems by means of static and dynamic
output feedback regulation (Byrnes et al., 2004) and the de-
velopment of feedback control laws based on the backstepping
methodology (Krstic et al., 1995; Boskovic et al., 2001). Other
important recent results on boundary control of parabolic PDEs
also include motion planning (Laroche et al., 2000), output
tracking using a flatness-based approach for controller design
(Fliess et al., 1998; Lynch and Rudolph, 2002) and feedfor-
ward and feedback tracking control using summability methods
(Meurer and Zeitz, 2005). Referring to these results, it is im-
portant to point out that they do not address directly the issue
of state stabilization subject to state and control constraints.

Recently, we have initiated a research effort trying to de-
velop computationally efficient predictive control algorithms
for parabolic PDEs subject to state and control constraints.
Specifically, in Dubljevic et al. (2004), we considered linear
parabolic PDEs with distributed control and derived predictive
controller formulations that systematically handle the objec-
tives of state and input constraints satisfaction and stabilization
of the infinite-dimensional system; subsequently, we extended
these results to linear parabolic PDEs under output feedback
control (Dubljevic and Christofides, 2006) and quasi-linear
parabolic PDEs (Dubljevic et al., 2005). Other results in this
area include model predictive control of first-order hyperbolic
PDE systems (Shang et al., 2004; Choi and Lee, 2005) and state
feedback model predictive control of a diffusion reaction pro-
cess on the basis of finite-dimensional approximations derived
by the finite difference method (Dufour et al., 2003). However,
in all these works, the attention is focused on PDEs in which
the manipulated inputs enter directly into the PDE (distributed
control).

Motivated by these considerations, this work focuses on
predictive control of linear parabolic PDEs with boundary
control actuation subject to input and state constraints. A stan-
dard transformation is initially used to rewrite the original
boundary control problem as a distributed control problem that
involves the presence of both the input and its time deriva-
tive in the PDE and has homogeneous boundary conditions.
Then, modal decomposition techniques are applied to the
transformed system to decompose it into an interconnection
of a finite-dimensional subsystem, capturing the dominant
dynamics of the parabolic PDE (slow subsystem), with an
infinite-dimensional (fast) subsystem. Subsequently, under the
assumption that measurements of the PDE state are available,
various finite-dimensional and infinite-dimensional predictive
control formulations are proposed and their ability to enforce
stability and constraint satisfaction in the infinite-dimensional
closed-loop system is analyzed. Finally, an example of bound-
ary control of a linear parabolic PDE, with spatially uniform
unstable steady state and flux boundary control, subject to
state and control constraints, is considered. Simulations are
carried out to demonstrate the ability of the predictive con-
trollers in enforcing closed-loop system stability and state
constraint satisfaction.

2. Preliminaries

2.1. Parabolic PDEs with boundary control

In this work, we consider linear parabolic PDEs of the fol-
lowing form:

�x̄(z, t)

�t
= b̄

�2x̄(z, t)

�z2 + c̄x̄(z, t), (1)

with the following boundary and initial conditions:

b̄1
�x̄

�z
(0, t) + c̄1x̄(0, t) = 0,

b̄2
�x̄

�z
(l, t) + c̄2x̄(l, t) = u(t),

x̄(z, 0) = x̄0(z) (2)

subject to the following input and state constraints:

umin �u(t)�umax, (3)

�min �
∫ l

0
r(z)x̄(z, t) dz��max, (4)

where x̄(z, t) denotes the state variable, z ∈ [0, l] is the spa-
tial coordinate, t ∈ [0, ∞) is the time, u(t) ∈ R denotes the
constrained manipulated input; umin and umax are real numbers
representing the lower and upper bounds on the manipulated
input, respectively, and �min and �max are real numbers repre-
senting the lower and upper state constraints, respectively. The
term �2x̄/�z2 denotes the second-order spatial derivative of
x̄(z, t); b̄, c̄, b̄1, c̄1, b̄2, c̄2 are constant coefficients with b̄ > 0,
b̄2

1 + c̄2
1 �= 0, b̄2

2 + c̄2
2 �= 0 and x̄0(z) is a sufficiently smooth

function of z. In Eq. (4), the function r(z) ∈ L2(0, l) is a “state
constraint distribution” function which is square-integrable and
describes how the state constraint is enforced in the spatial do-
main [0, l]. Whenever the state constraint is applied at a single
point of the spatial domain zc, with zc ∈ (0, l), the function r(z)

is taken to be non-zero in a finite spatial interval of the form
[zc − �, zc + �], where � is a small positive real number, and
zero elsewhere in [0, l]. Throughout the paper, the notation | · |
will be used to denote the standard Euclidian norm in Rn, while
the notation | · |Q will be used to denote the weighted norm
defined by |x|2Q = x′Qx, where Q is a positive-definite matrix
and x′ denotes the transpose of x. Furthermore, throughout the
manuscript, we focus on the state feedback control problem,
that is we assume that measurements of x̄(z, t) are available;
the reader may refer to Dubljevic and Christofides (2006) for
results on predictive output feedback control of parabolic PDEs
with in-domain actuation.

In order to simplify the notation and the presentation of the
theoretical results, the PDE of Eqs. (1)–(4) is formulated as an
infinite-dimensional system in the state space H = L2(0, l),
with the inner product and norm:

(�1, �2) =
∫ l

0
�1(z)�2(z) dz, ‖�1‖2 = (�1, �1)

1/2, (5)

where �1, �2 are any two elements of L2(0, l).
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To this end, we define the state function x(t) on the state-
space H = L2(0, l) as

x(t) = x̄(z, t), t > 0, 0 < z < l (6)

the operator F as

F� = b̄
d2�

dz2 + c̄�, 0 < z < l, (7)

where �(z) is a smooth function on [0, l], with the following
dense domain:

D(F) =
{
�(z) ∈ L2(0, l) : �(z),

d�(z)

dz
are absolutely continuous,

F�(z) ∈ L2(0, l), b̄1
d�

dz
(0) + c̄1�(0) = 0

}
(8)

the boundary operator B : L2(0, l) �→ R as

B�(z) = b̄2
d�(l)

dz
+ c̄2�(l),

with

D(B) =
{
�(z) ∈ L2(0, l) : �(z) is absolutely continuous,

d�(z)

dz
∈ L2(0, l)

}
(9)

and the state constraint as

�min �(r, x(t))��max. (10)

Using the above definitions, the system of Eqs. (1)–(4) can be
written as follows:

ẋ(t) = Fx(t), x(0) = x0,

Bx(t) = u(t),

umin �u(t)�umax,

�min �(r, x(t))��max (11)

on H = L2(0, l). However, the above equation has inhomo-
geneous boundary conditions owing to the presence of u(t) in
the boundary conditions. To be able to transform this boundary
control problem into an equivalent distributed control problem
(i.e., the manipulated input u(t), and possibly its time deriva-
tive u̇(t), enter directly into the differential equation and do not
appear in the boundary condition), we follow Fattorini (1968)
and Curtain (1985) and assume that a function B(z) exists such
that for all the u(t), Bu(t) ∈ D(F) and the following holds:

BBu(t) = u(t). (12)

The requirement of existence of B, together with the assumption
that the input u(t) is sufficiently smooth, allow us to define
the following transformation (Fattorini, 1968; Curtain, 1985)
p(t) = x(t) − Bu(t) which leads to the following equation:

ṗ(t) = Ap(t) + FBu(t) − Bu̇(t),

p(0) = p0 ∈ D(A), (13)

where the operator A on H is defined as

A�(z) = F�(z)

and

D(A) = D(F) ∩ ker(B)

=
{
�(z) ∈ L2(0, l) : �(z),

d�(z)

dz
are abs. cont.,

A�(z) ∈ L2(0, l), and b̄1
d�

dz
(0) + c̄1�(0) = 0,

b̄2
d�

dz
(l) + c̄2�(l) = 0

}
. (14)

Eq. (13) has a well-defined mild solution since A is the in-
finitesimal generator of a C0-semigroup and the operators B
and FB are bounded. Specifically, the operator A generates a
C0-strongly continuous semigroup T(t) given by

T(t) =
∞∑

n=0

e�nt (·, �n(z))�n(z) (15)

such that supn�1 Re(�n)�∞, where �n{n�1}, are simple
eigenvalues of A, and �n and �n are the corresponding
eigenfunctions of A and A∗ (A∗ refers to the adjoint op-
erator of A), respectively, such that (�n, �m) = �nm. When
b̄1 = 1, c̄1 = 0, b̄2 = 1, c̄2 = 0, the eigenvalues and eigenfunc-
tions of A are obtained by solving the eigenvalue problem
analytically and are of the form

�n = c̄ − b̄(n�/l)2, n�0, �0 = 1√
l
,

�n(z) =
√

2

l
cos(n�z/l), n = 1, . . . ,∞. (16)

In this case, �n(z)=�n(z) because the operatorA is symmetric.

2.2. Modal decomposition

Referring to the system of Eq. (13), let Hs and Hf be
modal subspaces of A, defined as Hs =span{�1, �2, . . . , �m}
and Hf = span{�m+1, �m+2, . . .} (the existence of Hs , Hf

follows from the properties of A and m is chosen such that
�m+1 < 0). Defining the orthogonal projection operators, Ps

and Pf , such that ps(t) = Psp(t), pf (t) = Pf p(t), the state
p(t) of the system of Eq. (13) can be decomposed as

p(t) = Psp(t) + Pf p(t) = ps(t) + pf (t). (17)

Applying Ps and Pf to the system of Eq. (13) and using the
above decomposition for x(t), the system of Eq. (13) can be
written in the following equivalent form:

dps

dt
= Asps + (FB)su − Bsu̇,

dpf

dt
= Af pf + (FB)f u − Bf u̇, (18)

where As =PsA, (FB)s =PsFB, Bs =PsB, Af =PfA,
(FB)f = PfFB, Bf = Pf B. In the above system, As is
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a diagonal matrix of dimension m × m of the form As =
diag{�k} (�k are, possibly unstable, eigenvalues of As , k =
1, . . . , m) and Af is an infinite-dimensional operator which is
exponentially stable (following from the fact that �m+1 < 0 and
the selection of Hs ,Hf ). In the remainder of the paper, we
will refer to the ps(t)- and pf (t)-subsystems in Eq. (18) as the
slow and fast subsystems, respectively. Both the slow and fast
subsystems in Eq. (18) include a derivative of the control term
which is undesirable and it cannot be handled by the standard
model predictive control formulation. Therefore, we introduce
a new variable ũ = u̇, and rewrite the system of Eq. (18) in the
following form:[

u̇(t)

ṗs(t)

ṗf (t)

]
=

[ 0 0 0
(FB)s As 0
(FB)f 0 Af

] [
u(t)

ps(t)

pf (t)

]

+
[ 1

−Bs

−Bf

]
ũ(t). (19)

The state constraint of Eq. (11) in terms of the state variables
of Eq. (19) takes the form:

�min �(Bu(t), r(z)) + (ps(t) + pf (t), r(z))��max. (20)

Finally, a finite-dimensional approximation of the system of
Eq. (19) can be obtained by neglecting the pf (t) subsystem in
Eq. (19) and has the form:[

u̇(t)

ṗs(t)

]
=

[
0 0

(FB)s As

] [
u(t)

ps(t)

]
+

[
1

−Bs

]
ũ(t). (21)

3. Model predictive control

In this section, we present various predictive control formu-
lations. We begin with a predictive control formulation con-
structed on the basis of the finite-dimensional approximation
of Eq. (21), subject to the input constraints of Eq. (3) and the
state constraints given by Eq. (20) of the form:

min
ũ

∫ t+T

t

[Quu
2(	) + Qps‖ps(	)‖2

2] d	

+ F(u(t + T ), ps(t + T )) (22)

s.t.

[
u̇(	)
ṗs(	)

]
=

[
0 0

(FB)s As

] [
u(	)
ps(	)

]
+

[
1

−Bs

]
ũ(	),

umin �u(	)�umax, 	 ∈ [t, t + T ],
�min �(Bu(	), r(z)) + (ps(	), r(z))��max, (23)

where Qu > 0 denotes the weight associated with the control
input and Qps > 0 denotes the weight imposed on the slow
modes, and F(u(t+T ), ps(t+T )) denotes the terminal penalty
(in the numerical example section F(u(t + T ), ps(t + T )) =
Q̄uu

2(	 + T ) + Q̄ps‖ps(	 + T )‖2
2 where Q̄u, Q̄ps are positive

real numbers; see Eq. (45)). Referring to the model predictive
control formulation of Eqs. (22)–(23), we note that owing to the
extension of the state space the minimization is performed with
respect to the auxiliary input ũ and not with respect to the ma-
nipulated input u; however, the constraints on u, due to actuator

limits, are directly included in the optimization. Furthermore,
the predictive control formulation of Eqs. (22)–(23) may not be
necessarily stabilizing for the closed-loop finite-dimensional
system (Eq. (21) under the controller of Eq. (22)–(23)). To ad-
dress this potential problem, a number of terminal constraints
have been proposed in the literature (Mayne, 1997), which, if
the initial condition (u(0), ps(0)) is one for which the resulting
predictive control problem of Eqs. (22)–(23) with the terminal
constraint has a solution for all future times, guarantee stability
of the closed-loop finite-dimensional system. Terminal inequal-
ity constraints include, for example, (u(t+T ), ps(t+T )) ∈ Ws

where Ws is an invariant set centered around the origin or sim-
ply setting (u(t + T ), ps(t + T )) = (0, 0). Furthermore, in the
predictive controller of Eqs. (22)–(23) the control action applied
to the process is penalized in the cost with weight Qu and is sub-
jected to the constraint umin �u(	)�umax, which appears as a
state constraint since the optimization is done with respect to the
auxiliary input ũ(t) (resulting from the dynamic extension u̇ =
ũ). This type of input penalty and input constraint is consistent
with the practical implementation of the computed control ac-
tion since what is applied to the PDE is u(t) and not ũ(t). How-
ever, it is important to note here that it is still possible to include
a penalty term in the predictive controller of Eqs. (22)–(23)
which penalizes ũ in the optimization formulation to reflect
physical limitations on the actuator speed; such a penalty
could be chosen based on the feasible rate of change of the
manipulated input as specified by the physical actuator limits.

Regarding the stability of the closed-loop system, we note
that since the predictive controller of Eqs. (22)–(23) is inde-
pendent of the fast states pf (t), it generates an implicit con-
trol law of the form ũ(t) = M(ps(t), u(t)), and thus, it can
be shown that if a terminal equality constraint is added to this
controller and the initial conditions are chosen such that the
resulting predictive controller enforces stability in the closed-
loop finite-dimensional system, then the closed-loop infinite-
dimensional system under the same predictive controller is also
asymptotically stable. To provide an explanation of why this is
the case, we first note that in the infinite-dimensional system
of Eq. (19) the states of the pf -subsystem (which is infinite-
dimensional) do not appear in the ps-subsystem, and thus, the
finite-dimensional system of Eq. (21) is asymptotically stable
by the use of the predictive controller of Eqs. (22)–(23) (pro-
vided that a terminal equality constraint is added to this finite-
dimensional controller and the initial conditions are appropri-
ately chosen). The question is now whether the same controller
(Eqs. (22)–(23)) will destabilize that pf -subsystem which in-
cludes states that are present in the infinite-dimensional system
(Eq. (19)) but are not included in the model used for controller
design (Eq. (21)); this is the so-called spillover effect and is an
important one in the context of control of distributed parameter
systems. In the present case, since the operator Af is stable
(this is always achievable for parabolic PDEs) because there is
always a finite number of eigenvalues that are unstable (Curtain
and Zwart, 1995), and thus, Af can be made stable by increas-
ing the number of modes included in the finite-dimensional
system of Eq. (21) and the manipulated input, u(t), decays to
zero asymptotically (this is true because the controller stabilizes
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the finite-dimensional system of Eq.(21)), the pf -subsystem is
also asymptotically stable. Consequently, the zero solution of
the infinite-dimensional system of Eq. (19) under the predictive
controller of Eqs. (22)–(23) is also asymptotically stable.

While closed-loop stability can be achieved, since the pf (t)

states are not included either in the cost functional or in the
state constraints, there is no guarantee, however, that the state
constraints imposed on the infinite-dimensional system will be
satisfied for all times (i.e., satisfaction of �min �(r, Bu(t) +
ps(t))��max does not guarantee that �min �(r, x(t))��max).
So, unlike the stabilization objective, which is achieved inde-
pendently of the fast subsystem, the additional objective of state
constraint satisfaction requires that the MPC design accounts
in some way for the contribution of the fast states.

To deal with this problem, we present below two MPC formu-
lations which explicitly account for the evolution of the pf (t)-
subsystem; this, of course, makes the resulting MPC formula-
tions to be infinite dimensional, and thus, they cannot be directly
implemented in practice—however, owing to the high dissipa-
tivity of the spatial differential operator for parabolic PDEs it
is possible to obtain high-order approximations of sufficiently
high accuracy of the pf (t)-subsystem that can be used in the
context of implementing the following predictive controllers
(see also numerical example section). In particular, one way to
account for the effect of the fast states on the state constraints of
the infinite-dimensional system is to incorporate the fast states
explicitly into the state constraint inequality. The control ac-
tion, under the resulting predictive control law in this case, is
computed by solving the following optimization problem:

min
ũ

∫ t+T

t

[Quu
2(	) + Qps‖ps(	)‖2

2] d	

+ F(u(t + T ), ps(t + T )) (24)

s.t.

[
u̇(	)
ṗs(	)
ṗf (	)

]
=

[ 0 0 0
(FB)s As 0
(FB)f 0 Af

] [
u(	)
ps(	)
pf (	)

]

+
[ 1

−Bs

−Bf

]
ũ(	),

umin �u(	)�umax, 	 ∈ [t, t + T ],
�min �(Bu(	), r(z)) + (ps(	), r(z))

+ (pf (	), r(z))��max. (25)

Note that given any initial condition, for which the above for-
mulation is initially and successively feasible, stabilization and
state constraint satisfaction for the infinite-dimensional system
are achieved. Stabilization of the infinite-dimensional closed-
loop system under the formulation of Eqs. (24)–(25) can be
proved using an argument similar to the one used above for
the formulation of Eqs. (22)–(23). The implementation of the
above controller, however, requires computation of the infinite-
dimensional state pf (t), which can only be done approximately
in practice. The key feature of this formulation is that it under-
scores the fact that even when using a sufficiently high number
of modes to simulate the dynamics of the fast modes, the fast
modes need not be part of the cost function, thereby keeping the

computational requirement low. The drawback of incorporating
the fast states directly in the state constraints equation is that
the set of initial conditions for which the optimization problem
is feasible belongs in an infinite-dimensional space, and there-
fore impossible to compute; however, approximations of this set
can be computed working with high-order finite-dimensional
approximations of the pf (t)-subsystem. The realization that
stability of the slow subsystem is sufficient to ensure stability
of the infinite-dimensional system justifies the use of only the
slow modes in the cost functional and the stability constraint,
thereby potentially reducing the computational requirement.

To further reduce some of the computational load associ-
ated with solving the pf (t)-subsystem in the formulation of
Eqs. (24)–(25), we now present another MPC formulation that
approximates the effect of the fast dynamics by exploiting the
two time-scale separation between the slow and fast subsystems
and deriving an approximate model that describes the evolu-
tion of the fast subsystem. We define 
 := |Re{�1}|/|Re{�m+1}|
and multiply the pf (t)-subsystem of Eq. (19) by 
 to obtain
the following system:

du

dt
= ũ(t),

dps(t)

dt
= Asps(t) + (FB)su(t) − Bsũ(t),



dpf (t)

dt
= Af 
pf (t) + 
(FB)f u(t) − Bf 
ũ(t), (26)

where Af 
 is an infinite-dimensional bounded differential op-
erator defined as Af 
 = 
Af and Bf 
 is a bounded operator
defined as Bf 
 = 
Bf . Introducing the fast time scale 	̂ = t/

and setting 
 = 0, the fast subsystem takes the form:

dpf (	̂)

d	̂
= Af 
pf (	̂) + Bf 
ũ(	̂). (27)

In the Eq. (27), the term Bf 
ũ(	) is kept because we do not
impose any constraint on the evolution of ũ(	), so we improve
the accuracy of the fast subsystem by keeping this term; we do
remove the term 
(FB)f u(t) because u(	) is bounded because
of the constraints of Eq. (3). This approximation leads to the
following predictive control formulation:

min
ũ

∫ t+T

t

[Quu
2(	) + Qps‖ps(	)‖2

2] d	

+ F(u(t + T ), ps(t + T )) (28)

s.t.

[
u̇(	)
ṗs(	)
ṗf (	)

]
=

[ 0 0 0
(FB)s As 0

0 0 Af

] [
u(	)
ps(	)
pf (	)

]

+
[ 1

−Bs

−Bf

]
ũ(	),

umin �u(	)�umax, 	 ∈ [t, t + T ],
Smin �(Bu(	), r(z)) + (ps(	), r(z)) + (pf (	), r(z))

�Smax, (29)

where 	 ∈ [t, t + T ], and Smin = �min + � and Smax = �max −
�, where � is a small parameter. We denote the set of initial
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conditions for which the predictive controller of Eqs. (28)–(29)
is initially and successively feasible and achieves exponential
stability of the pc(t) = [u(t) ps(t) pf (t)] = [0 0 0] solution
of the corresponding closed-loop infinite-dimensional system
(Eq. (26) with 
(FBf )u(t) = 0 under the predictive controller
of Eqs. (28)–(29)) by �′ and assume that �′ is non-empty
and contains the origin. Note that the set �′ depends on the
constraints on the states and inputs, the system dynamics and
T; the reader may refer to El-Farra et al. (2003, 2004) for a
Lyapunov-based approach for the construction of estimates of
�′. This assumption is precisely stated below.

Assumption 1. There exists a set �′ such that for all pc(0) ∈
�′, the steady-state solution pc(t) = 0 of the closed-loop sys-
tem of Eq. (26) with 
(FBf )u(t)=0 under the predictive con-
troller of Eqs. (28)–(29) is exponentially stable in the sense that
pc(t) ∈ �′ for all t �0 and satisfies ‖pc(t)‖2 �Ke−t‖pc(t)‖2,
where K �1 and  > 0.

State constraints satisfaction for the infinite-dimensional sys-
tem is achieved by revising the state constraints (through the
� parameter) in the controller formulation of Eqs. (28)–(29)
because of the error (due to neglecting the effect of the term

(FB)f u(t) on the evolution of the fast modes) in the predic-
tion of the fast state dynamics. Theorem 1 states precise con-
ditions under which the predictive controller of Eqs. (28)–(29)
enforces stability and constraint satisfaction in the infinite-
dimensional closed-loop system of Eq. (26).

Theorem 1. Consider the system of Eq. (26) under the pre-
dictive control law of Eqs. (28)–(29) with � > 0, let Assump-
tion 1 hold and pick a compact set �′′ within �′. Then,
there exists an 
∗ such that if 
 ∈ (0, 
∗] and pc(0) ∈ �′′,
the pc(t) = 0 solution of the infinite-dimensional closed-
loop system (Eqs. (26)–(28)–(29)) is exponentially stable and
�min �(r, x(t))��max for all t �0.

Proof of Theorem 1. Let ũ(t) = M(u(t), ps(t), pf (t)) be the
implicit control law generated by the predictive controller of
Eqs. (28)–(29) for pc(0) ∈ �′′. Under this control law, the
system of Eq. (26) takes the form:

du

dt
= M(u(t), ps(t), pf (t)),

dps(t)

dt
= Asps(t) + (FB)su(t) − BsM(u(t), ps(t), pf (t)),



dpf (t)

dt
= Af 
pf (t) + 
(FB)f u(t)

− Bf 
M(u(t), ps(t), pf (t)). (30)

Referring to the above system, we first note that when the
term 
(FB)f u(t) is not present (i.e., 
(FB)f u(t) = 0),
then this system reduces to the one obtained by coupling the
predictive controller of Eqs. (28)–(29) with the system of
Eq. (26) with 
(FBf )u(t) = 0; for this system Assumption
1 yields that there exists a non-empty set �′ such that for
each pc(0) ∈ �′ the zero solution pc(t) = 0 is rendered ex-
ponentially stable by the controller. Furthermore, referring

to the term 
(FB)f u(t) we have that there exists a positive
constant M such that ‖
(FB)f u(t)‖2 �
M (this follows from
the boundedness of (FB)f and the constraints of Eq. (3))
on u(t) and furthermore, ‖
(FB)f u(t)‖ converges to zero
when pc(t) converges to zero. Therefore, the stability of the
full infinite-dimensional closed-loop system of Eq. (30) can
be studied within the framework of robustness of exponential
stability of parabolic PDEs with respect to sufficiently small
and vanishing perturbations. Specifically, to prove the result of
the theorem, we need to prove that the state of the closed-loop
system of Eq. (30) pc(t) ∈ �′ for all times (boundedness) and
that it is exponentially converging to zero as t → ∞. First,
we prove boundedness. From Assumption 1 and the fact that
(FB)f is a bounded operator, it follows (Theorems 2.10 and
2.31 in Curtain and Pritchard, 1978) that the following bound
for the state pc(t) of the system of Eq. (30) can be written:

‖pc(t)‖2 �Ke−t‖pc(0)‖2

+ 
‖(FB)f ‖2

∣∣∣∣
∫ t

0
M0e−(t−	)u(	) d	

∣∣∣∣ , (31)

where 1�M0 �K is a positive real number. Furthermore, since
u(t) is bounded (i.e., |u(t)|� ū where ū= max{|umax|, |umin|})
and e−(t−	) �0 for 0�	� t , Eq. (31) can be written as

‖pc(t)‖2 �Ke−t‖pc(0)‖2 + M0
‖(FB)f ‖2 sup
0�	� t

|u(	)|

×
∣∣∣∣
∫ t

0
e−(t−	) d	

∣∣∣∣ (32)

or

‖pc(t)‖2 �Ke−t‖pc(0)‖2 + 
M2ū, (33)

where M2 = M0
‖(FB)f ‖2/. From Assumption 1 and the
fact that �′′ ⊂ �′, we have that: (a) there exist positive real
numbers �′ > �′′ > 0 such that for every pc(0) ∈ �′′, the state
of the system of Eq. (30) with 
(FB)f u(t) = 0 satisfies
‖pc(t)‖2 �K‖pc(0)‖2 ��′′, and (b) pc(t) ∈ �′ if and only
if ‖pc(t)‖2 ��′. Thus, referring to the bound of Eq. (33), we
have that there exists an 
∗∗ (in particular, 
∗∗ =(�′ −�′′)/M2ū)
such that if 
 ∈ (0, 
∗∗] and pc(0) ∈ �′′, the following bound
holds for the state of the system of Eq. (30) for all times:

‖pc(t)‖2 �Ke−t‖pc(0)‖2 + 
M2ū

��′′ + 
M2ū

��′, (34)

which implies that the state of the closed-loop system of Eq.
(30) will be in �′.

To prove exponential stability, we will employ a Lyapunov-
type argument. Specifically, Assumption 1 implies (see Theo-
rem 4.2.1 and Corollary 4.2.3 in the book of Henry (1981, pp.
86 and 88)) that there exists a Lyapunov functional, V (pc(t)),
for the system of Eq. (26) with 
(FBf )u(t)=0 under the pre-
dictive controller of Eqs. (28)–(29), and positive real numbers
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�1, �2, �3, �4 such that the following holds:

�1‖pc‖2
2 �V (pc)��2‖pc‖2

2,
dV

dt
� − �3‖pc‖2

2,∥∥∥∥ dV

dpc

∥∥∥∥
2
��4‖pc‖2. (35)

Using that ‖u‖2 �‖pc‖2 and computing the time derivative
of the above Lyapunov function along the trajectories of the
system of Eq. (30), we obtain:

dV

dt
� − �3‖pc‖2

2 + 
�4‖(FB)f ‖2‖pc‖2
2

� − (�3 − 
�4‖(FB)f ‖2)‖pc‖2
2. (36)

Therefore, there exists an 
∗∗∗ = (�3 − �5)/(�4‖(FB)f ‖2), for
some �3 > �5 > 0 such that if 
 ∈ (0, 
∗∗∗], then

dV

dt
� − �5‖pc‖2

2, (37)

which implies that the closed-loop system of Eq. (30) is ex-
ponentially stable. Finally, since the term 
(FB)f u(t) is of
order 
, given � > 0, we can always find an 
∗ � min{
∗∗, 
∗∗∗}
such that if 
 ∈ (0, 
∗], then �min + ��(Bu(t), r(z)) +
(ps(t), r(z)) + (p̃f (t), r(z))��max − � (where p̃f (t) is
the solution for pf of the system of Eq. (29)) implies
�min �(Bu(t), r(z)) + (ps(t), r(z)) + (pf (t), r(z))��max.
This completes the proof. �

Remark 1. From the proof of Theorem 1, it follows that the as-
sumption that the predictive controller enforces exponential sta-
bility in the closed-loop system is needed to establish exponen-
tial stability of the zero solution because the term 
(FB)f u(t)

(which is present in the process model but not in the con-
troller) is linear with respect to the state u(t), and thus, assum-
ing asymptotic stability of the zero solution will not suffice to
prove asymptotic stability of the full closed-loop system. How-
ever, this assumption can be relaxed to asymptotic stability in
�′ and local exponential stability; this would enlarge the class
of predictive controllers for which Assumption 1 can be found
to be satisfied.

4. Numerical example

We consider the boundary-controlled parabolic PDE of the
form:

�x̄(z, t)

�t
= b̄

�2x̄(z, t)

�z2 + c̄x̄(z, t), x̄(z, 0) = x̄0,

dx̄(0, t)

dz
= 0,

dx̄(1, t)

dz
= u(t),

x̄(z, 0) = sin(z),

umin �u(t)�umax,

�min �
∫ 1

0
r(z)x̄(z, t) dz��max, (38)

where c̄=0.66 and b̄=1.0, [umin, umax]=[−18, 18] and �min =
−0.1 and �max = 2.5. The state constraint distribution function
is given by the function r(z) = 1/2� for z ∈ [zc − �, zc + �]
where zc = 0.11 and � = 0.006 and is zero elsewhere in z ∈
[0, 1].

We first formulate the PDE of Eq. (38) into the infinite-
dimensional equation of the form of Eq. (11) by formulating
the operator F= b̄(d2/dz2) + c̄ with

D(F) =
{
�(z) ∈ L2(0, 1) : �(z),

d�(z)

dz
,

are abs. cont.,F�(z) ∈ L2(0, 1) and

�′(0) = 0

}
(39)

and the boundary operator defined by B� = (d�/dz)(1). Fur-
thermore, we select B(z) = 1

2z2 which satisfies BBu(t) = u(t)

and use the transformation p(t) = x(t) − Bu(t) to end up with
Eq. (18) where the operator A = b̄(d2/dz2) + c̄ with domain

D(A) = D(F) ∩ ker(B)

= {�(z) ∈ L2(0, 1) : �(z), �′(z) are abs. cont.,

A�(z) ∈ L2(0, 1) and �′(0) = 0 = �′(1)}. (40)

The eigenspectrum and associated eigenfunctions of the sym-
metric operator A are given by

�n = c̄ − b̄n2�2, n�0, �0 = 1,

�n(z) = √
2 cos(n�z), n = 1, . . . ,∞ (41)

and �n(z) = �n(z). By applying the formulation of Eq. (13),
we obtain the following modal representation of the infinite-
dimensional equation:

˙̃a(t) = Ãã(t) + B̃ũ(t), ã(0) = [u(0) a(0)], (42)

where ã(t) = [u(t) a1(t) a2(t) . . . al(t)], Ã = [0 0;FB A]
and B̃=[I −B̂]′, with ũ(t) being the time derivative of the con-
trol u(t), FB = (b̄I + c̄B(z), �(z)) and B̂j = (B(z), �j (z)). In
our calculations, Eq. (42) is solved by using a finite-dimensional
approximation with 20 modes (further increase in the number
of equations led to identical numerical results). The model used
for controller design is of the form:

ȧs(t) = Ãsas(t) + B̃s ũ(t),

ȧf (t) = Ãf af (t) + B̃f ũ(t), (43)

with as(t)=[u(t) as1(t) as2(t)]′ (m=3, the number of modes
considered in the cost functional), af (t) = [a3(t) . . . a15(t)]′
(i.e., l = 16) and the sampling time used is � = 7.0298 ∗ 10−4.
In the case of using an MPC formulation constructed on the
basis of the slow subsystem, the state constraints of Eq. (38)
are expressed as constraints on modal states as follows:

�min �
[
−

∫ 1

0
r(z)B(z) dz

∫ 1

0
r(z)�0 dz

∫ 1

0
r(z)�1 dz

]

×
[

u(	)
as1(	)
as2(	)

]
��max. (44)
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Fig. 1. Closed-loop state profile under the MPC formulation of Eqs. (45)–(46).

Then, the low-dimensional MPC formulation of Eqs. (22)–(23)
takes the form:

min
ũ

∫ t+T

t

as(	)
′Qas(	) d	 + a′

s(T )Q̄as(T ) (45)

s.t. ȧs(	) = Ãsas(	) + B̃s ũ(	), 	 ∈ [t, t + T ],
umin �u(	)�umax,

�min �Csas(	)��max, (46)

where the weight Q = diag{R, Qs} is given as Qs = 50I2×2
and R = 0.01, the horizon length T = 0.2109, Cs is
given as [− ∫ 1

0 r(z)B(z) dz
∫ 1

0 r(z)�0 dz
∫ 1

0 r(z)�1 dz] and
Q̄ = diag{R, Qs}. A terminal constraint with respect to the
slow modes is used of the form as(T ) = 0 and the initial
condition is given as x̄(z, 0) = sin(z) in all simulation runs.
The resulting quadratic program is solved using the MATLAB
subroutine QuadProg. The control action is then implemented
on the 20th order model of Eq. (42).

Simulation studies demonstrate that the MPC law of
Eqs. (45)–(46) stabilizes the PDE state (Fig. 1), but it fails
to satisfy the state constraint (Fig. 3—solid line). In order to
appropriately account for the fast states, the MPC formulation
given by Eqs. (24)–(25) is considered which takes the form:

min
ũ

∫ t+T

t

as(	)
′Qas(	) d	 + as(T )′Q̄as(T ) (47)

s.t. ȧs(	) = Ãsas(	) + B̃s ũ(	), 	 ∈ [t, t + T ],
ȧf (	) = Ãf af (	) + B̃f ũ(	),

umin �u(	)�umax,

�min + ��Csas(	) + Cf af (	)��max − �, (48)

where Ãf is a matrix of dimensions (l−m)×(l−m), and B̃f is

a vector of dimension (l −m)×1, Cfj =∫ 1
0 r(z)�j (z) dz, j =

m + 1, . . . , l, and � = 0.0151. Figs. 2 and 3 (dotted line) and
Fig. 4 show the closed-loop state, state constraint and manip-

Fig. 2. Closed-loop state profile under the MPC formulation of Eqs. (47)–(48).
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Fig. 3. Closed-loop state constraint R(zc, t)=
∫ 1

0 �(z−zc)x̄(z, t) dz at zc=0.11
under the MPC formulation of Eqs. (45)–(46) (solid line) and under the MPC
formulation of Eqs. (47)–(48) (dotted line).

ulated input profiles, respectively. It is clear that the MPC for-
mulation attains closed-lop stability and constraint satisfaction
for the same initial condition for which the formulation of Eqs.
(45)–(46) violates state constraints.

Remark 2. We note that the initial condition for both simula-
tions is x̄(z, 0) = sin(z); such an initial condition does not sat-
isfy the boundary conditions of Eq. (38)—however, there is no
need, from a computational point of view, for the initial con-
dition to satisfy the boundary conditions (the initial condition
just needs to be an L2 function—this is a consequence of the
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Fig. 4. The manipulated input profile applied at the boundary under the MPC
formulations of Eqs. (45)–(46) (solid line) and Eqs. (47)–(48) (dotted line).

parabolic nature of the PDE). The subsequent solution profile
x̄(z, t) ∀t > 0 does satisfy the boundary conditions. Further-
more, these simulations show that even for initial conditions
which are not in the domain of the spatial differential opera-
tor, the predictive controllers can be used to achieve stabiliza-
tion and constraint handling; this is important from a practical
point of view because most initial conditions will not satisfy
the boundary conditions.

5. Conclusions

This work considered linear parabolic PDEs with boundary
control actuation subject to input and state constraints and pre-
sented several predictive control formulations that allow enforc-
ing, under the assumption that measurements of the PDE state
are available, stability and constraint satisfaction in the infinite-
dimensional closed-loop system. Specifically, a standard trans-
formation was initially used to rewrite the original boundary
control problem as a distributed control problem that involves
the presence of both the input and its time derivative in the
PDE and has homogeneous boundary conditions. Then, modal
decomposition techniques were applied to the transformed
system to decompose it into an interconnection of a finite-
dimensional subsystem, capturing the dominant dynamics
of the parabolic PDE (slow subsystem), with an infinite-
dimensional (fast) subsystem. Subsequently, various state
feedback predictive controllers, both finite-dimensional and
infinite-dimensional, were designed and their ability to enforce
stability and constraint satisfaction in the infinite-dimensional
closed-loop system was analyzed. Finally, a numerical exam-
ple of a linear parabolic PDE with input and state constraints
was used to demonstrate the properties and performance of the
various predictive controllers. Specifically, a linear parabolic

PDE with unstable steady state and flux boundary control
was used to demonstrate a successful application of the pre-
dictive control algorithm proposed in Theorem 1 in a way
that stability and constraint satisfaction were enforced in the
infinite-dimensional closed-loop system.
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