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Alternation of normal action-potential morphology in the myocardium is a condition with a beat-to-beat
oscillation in the length of the electric wave which is linked through electromechanical coupling to the
cardiac muscle contraction, and is believed to be the first manifestation of the onset of life threatening
ventricular arrhythmias and sudden cardiac death. In this work, the effects of electrical and mechanical
stimuli are utilized in alternans annihilation problem. Electrical stimuli that alter the action-potential
morphology are represented by a pacer located at the domain's boundary, while mechanical stimuli are
distributed within the spatial domain and affect the action potential by altering intracellular calcium
kinetics. Alternation of action potential is described by the small amplitude of alternans parabolic par-
tial differential equation (PDE). Spatially uniform unstable steady state of the alternans amplitude PDE
is stabilized by optimal control methods through boundary and spatially distributed actuation. Mixed
boundary and spatially distributed actuation is manipulated by a linear quadratic regulator (LQR) in the
full-state-feedback control structure and in a compensator design with a finite-dimensional Luenberger-
type observer, and it achieves exponential stabilization in a finite size tissue cable length. The proposed
control problem formulation and the performance and robustness of the closed-loop system under the
proposed linear controller are evaluated through simulations.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Sudden cardiac death and ventricular fibrilation are believed to be
linked to the alternation of the electric activity of the myocardium.
Electric activity in the heart is the consequence of propagation of
electric waves caused by the exchange of ionic species between in-
tracellular and extracellular spaces which is reflected in changes in
themembrane potential of themyocardium cells. Electric wave prop-
agation in myocardium belongs to the class of transport-reaction
processes which are characterized by significant spatial variations
due to the coupling of underlying diffusion and nonlinear dynamics
phenomena. Hence, it has been shown that when cardiac tissue is
stimulated at short pacing rates, the duration of electrical excitation
varies from beat to beat, and it is manifested as a variation in the
action potential duration (APD). These beat-to-beat oscillations are
referred to as “alternans”, see Fig. 1.

Annihilation of detrimental alternans may represent an effective
antiarrhythmic strategy and it has been addressed in the theoretical
studies of Echebarria and Karma which demonstrated that alternans
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can be abolished only in a small portion of tissue by applying mod-
ulated feedback gain which perturbs the fixed pacing period and
can be produced by consecutive APD measurements at the pacing
site (Echebarria and Karma, 2002b). Control of this type belongs to
the class of boundary control realizations since the pacing site is
at the boundary of the domain which undergoes stabilization. Cur-
rent assessment is that the applied pacing control stabilization of
alternans is not successful due to limited ability of the applied pac-
ing boundary input to alter the APD length away from the pacing
site which has been demonstrated by theoretical and experimental
works (Echebarria and Karma, 2002b; Christini et al., 2006; Lin and
Dubljevic, 2007; Dubljevic et al., 2008).

An independent from pacing way to change the cell's electrical
activity is to apply mechanical stimuli. In recent experimental and
theoretical studies (Kohl et al., 1999; Solovyova et al., 2004; Kohl
and Ravens, 2003; Calaghan et al., 2003; Bers, 2001), it has been
demonstrated that stretch-induced changes of myocardium cell
length alter the electric activity through stretch-activated channels
and by modulation of intercellular calcium kinetics. Namely, the
kinetics of intercellular calcium is primarily responsible for the link
among electrical and mechanical properties of the cell since binding
of the intercellular calcium ions with contractile proteins pro-
vides a local mechanism of mechanic contractile act. Motivated by
these findings, in this work stretch-based mechanical perturbation,
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Fig. 1. Schematic time course of the transmembrane potential at a point along the
cable with APD alternans, where the amplitude of alternans a(�, t) is defined as
a(�,n)= (APDn,� − APDn−1,�)(−1)n with n being the beat number and t = n�, where �
is the basic beat length.

which does not belong to the type of superthreshold stimuli, al-
ters the intercellular calcium kinetics by which the cells electrical
activity is modulated (Calaghan et al., 2003). The stretch-based
mechanical perturbation is spatially distributed within the my-
ocardium tissue, and when paired with boundary applied pacing,
it can provide a mixed boundary–spatially distributed mechano-
electric perturbation that may, by mechanisms of mechano-electric
feedback (MEF), lead to successful cardiac alternans annihilation.
Boundary actuation is represented by the alternation of the pacing
period at the boundary of the domain and it is realized by placing
an electrode at the cardiac muscle. Spatially distributed actuation
is associated with MEF, as a result of stretch-based mechanical
perturbations on the tissue through stretch-activated and stretch-
modulated ionic currents among which the calcium current is the
most important one in the mechano-electric coupling mechanism.
Spatially distributed mechanical stretch actuation can be easily re-
alized by sewing the micro-electro-mechanical-based built patch to
the epicardial myocardial tissue. Therefore, a mixed boundary and
spatially distributed mechano-electric control actuation formula-
tion is proposed in this work, as a new promising way to cardiac
alternans annihilation therapy since two independent ways of in-
teraction with cardiac tissue by electrical and mechanical stimuli
are more capable to tame the heart into regular action-potential
propagation. This work is appealing from a clinical point of view
since the mechanical actuation of the heart muscle, which has not
been addressed from the annihilation of alternans perspective, is
investigated.

A small amplitude of alternans equation that was derived by
Echebarria and Karma (2002b) obeys the form of parabolic partial dif-
ferential equations (PDEs) that model diffusion–convection–reaction
processes (Ray, 1981; Cross and Hohenberg, 1993). Typically, sys-
tems described by parabolic PDEs admit an abstract evolutionary
form on an appropriate functional space, and in the case of lin-
ear parabolic PDEs, the spatial differential operator is characterized
by a spectrum that can be partitioned into a finite (possibly unsta-
ble) slow part and an infinite-dimensional stable fast complement

(Friedman, 1976). Hence, the traditional approach to control
parabolic PDEs is to stabilize the unstable slow modal states via
feedback, while the infinite-dimensional stable modal complement
remains stable under the applied feedback control structure.

Within the theory of control of parabolic PDEs, this work focuses
on the subset of mixed boundary/distributed control problems for
linear parabolic PDEs. In this area, significant research has been car-
ried out in theworks of Fattorini (1968), Triggiani (1980), Curtain and
Zwart (1995), Christofides (2001) and Emirsjlow and Townley (2000),
wherein necessary conditions for the stabilization under state- and
output-feedback control have been defined. More recent results on
the boundary control of distributed parameter systems include the
use of singular functions for identification and control (Chakravarti
and Ray, 1999), boundary control of nonlinear distributed parameter
systems by means of static and dynamic output-feedback regulation
(Byrnes et al., 2004), development of boundary feedback control laws
based on the backstepping methodology (Boskovic et al., 2001) and
model predictive methodology that includes input and state con-
straints in the boundary/distributed control design (Dubljevic and
Christofides, 2006a; Dubljevic et al., 2006). Building on these already
developed control methods, the issue of stabilization of cardiac al-
ternans by boundary and distributed applied actuation needs to be
explored as a possible antiarrhythmic strategy.

In this paper, mixed boundary and distributed stabilization of
small amplitude of the alternans equation described by a linear
parabolic PDE by optimal control methods is demonstrated. Linear
parabolic PDE of amplitude of alternans is defined as amixed abstract
boundary/distributed control problem in a well-defined functional
space. The analysis demonstrates that the spatial operator of the am-
plitude of alternans PDE is a Sturm–Liouville type operator, which
possesses a few unstable modes that can be stabilized by means of
boundary and distributed feedback control. Namely, only few unsta-
ble modes are exponentially stabilized by a full-state-feedback linear
quadratic regulator (LQR), while the remaining infinite-dimensional
complement remains stable under the applied feedback controller.
In the case of output-feedback control, a Luenberger-type observer
is integrated with the LQR control law to achieve exponential sta-
bilization of the alternans amplitude PDE. In simulation studies, the
relevant model of the Beeler–Reuter cardiac cell is considered in
order to obtain parameters of the amplitude of alternans equation.
Successful stabilization by means of optimal boundary/distributed
control of small amplitude of alternans is demonstrated and the
effect of measurement noise and uncertainty/nonlinearities on the
performance of the proposed controller is examined.

2. Preliminaries

When cardiac myocytes are subjected to an electrical stimulus of
sufficient magnitude, the affected cells undergo a quick depolarizing
upstroke followed by a slow repolarization phase that returns cells
to their resting membrane potential (see Fig. 1). The observed elec-
trical phenomena, which are due to the exchange of ionic species
among extracellular and intracellular space, are known as the action
potential. Additionally, diffusive coupling between cells allows for an
action potential from the pacing site to propagate into surrounding
tissue, thus bringing about a wave of voltage depolarization (voltage
upstroke) and subsequent slow repolarization (voltage downstroke
to the resting potential) in the entire system.

The system used in our study is a one-dimensional (1D) homo-
geneous cell cable of length L = 2.5 cm, described by the following
equation:

�V(�, t)
�t

= D
�2V(�, t)

��2
− Iion(�, t)/Cm (1)
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with the following boundary conditions:

�V(0, t)
��

= Vp(t),
�V(L, t)

��
= 0 (2)

Iion(�, t) is the membrane current with equations taken from the
Beeler and Reuter (1977) model. The Beeler–Reuter model is the first
relevant physiological model that accounts for calcium dynamics in
the cardiac myocyte. Vp(t)=Istim/Cm is the voltage stimulus supplied
by the pacer. The basic pacing period is �=288ms, the electric diffu-
sion constant is D=1.0e−3 cm2/ms and the membrane capacitance is
set at Cm = 1�F/cm2. Voltage evolution in the cable equation is cal-
culated using a finite difference approximation of Eq. (1) with mesh
size �� = 0.025 and standard explicit Euler time integration scheme
with step size �t=0.1ms. Beeler–Reuter model of cardiac cell is used
to determine all relevant parameters in the amplitude of alternans
equation (Eq. (5)). The APD is calculated from the length of time dur-
ing which the cell membrane potential is above the threshold value
(−40mV) and the diastolic time interval (DI = � − APD) is taken to
be the length of time during which the cell membrane potential is
below the given threshold value for the given n-th beat (see Fig. 1).
When the applied pacing period becomes sufficiently short, subse-
quent stimuli will result in cardiac alternans, which are manifested
by an alternating pattern of long and short APDs. The amplitude of
alternans, an(�), is defined as

a(�,n) = (APDn,� − APDn−1,�)(−1)n (3)

That is, the beat-to-beat variation in the APD in the pattern
long–short L–S–L–S–L . . . yields the non-negative amplitude of al-
ternans along the cable which is defined as the difference between
the APD of the current beat and of the previous beat. This conve-
nient definition allows the use of discrete APD measurements for
mapping the continuous voltage evolution into an(�), where n= t/�.
Stabilization of alternans in the cardiac cells cable described by
Eqs. (1)–(2) can be achieved by coupling boundary and spatially
distributed feedback control. The boundary control component of
our control protocol is established by measuring the difference be-
tween the current APD and previous APD at the pacing site. This
difference is used as the input to modulate the pacing period at the
pacing site. In other words,

Tn(�=0) = � + �(APDn(�=0) − APDn−1(�=0)) (4)

where � is the basic pacing cycle period and � is the adjustable
feedback gain for APD alternation of the basic pacing period at a
pacing site. Tn is the applied pacing period.

On the basis of slow beat-to-beat variation of the amplitude of
alternans and functional relation given by Eq. (3), the equation which
describes the small amplitude oscillations of the APD was developed
by Echebarria and Karma (2002a,b), and for 1D � ∈ [0, l] case, the
amplitude of alternans parabolic PDE takes the following form:

�c
�a(�, t)

�t
= D2

a
�2a(�, t)

��2
− w

�a(�, t)
��

+ �a(�, t) − ga(�, t)3

− 1
�

∫ �

0
a(�̄, t) d�̄ + h

n∑
i=1

bdi(�)udi(t) (5)

�a(0, t)
��

= a(0, t) + u(t)

�a(l, t)
��

= 0 (6)

y(t) =
∫ l

0
c(�)a(�, t) d� (7)

The parameters Da and w are taken to be Da ≈ √
D ∗ APDc and w ≈

2D/c∗v , where D is the voltage diffusion among the cells in the ionic
model (Beeler and Reuter, 1977), APDc is the APD evaluated at the
bifurcation point, �c is the basic pacing cycle length at the bifurca-
tion point, and c∗v is the propagation speed of the wave front at the
bifurcation point at which alternans start to emerge (Echebarria and
Karma, 2002b). The parameter � is the growth rate of alternans at
the onset of period doubling oscillations in the APD, while the pa-
rameter g is the nonlinear stabilizing contribution (see Echebarria
and Karma, 2002a, for exact derivation of � and g). The integral term
in Eq. (5) reflects the contribution of the perturbation of the basic
pacing cycle length on the amplitude of alternans. The parameter
h represents the correlation that relates the changes in the intra-
cellular calcium dynamics due to mechanical perturbations with re-
spect to the alternans amplitude. In this analysis, the exact length
and timing of the stretch-activated excitation is not provided and
the assumption is that stretch actuation is mainly manifested by the
modulation of the intracellular calcium dynamics which is reflected
in the changes in the APD morphology.

The amplitude of alternans PDE of Eqs. (5) and (6) is linearized
around the spatially uniform unstable steady state (a(�, t) = 0). We
assume that alternans are slowly varying from the beat to beat in
the proximity of the bifurcation point. We consider the case when
alternans start to emerge and since alternans dynamics is described
by a nonlinear bistable equation, a first approximation is given by
the linearized amplitude of alternans equation. Further, the integral
term in Eq. (5) that reflects the contribution of the perturbation of
the basic pacing cycle length on the amplitude of alternans, in the
context of control of relevant cardiac tissue size is negligible and can
be neglected (the parameter � ≈ 45–50cm, Echebarria and Karma,
2002b). See the Simulation section for results, demonstrating that
the use of the linearized model for controller design is adequate
in the sense that a controller that is designed on the basis of the
linearized PDE stabilizes the full model of Eqs. (5) and (6).

In the ensuing text, the linearized amplitude of alternans PDE
is considered and it can be formulated as a mixed abstract bound-
ary/distributed control problem:

ȧ(t) =Fa(t) +Bdud(t), t�0, a(0) = a0 (8)

Ba(t) = u(t)

y(t) =Ca(t)

where F : D(F) ⊂ W�W, Bd ∈ L(Ud,W), B : D(B) ⊂ W�U
satisfies D(F) ⊂ D(B), and U, Ud and W([0, l]; t) are well-defined
Sobolev spaces, with the state a(·, t) = {a(�, t), 0��� l} ∈ W([0, l]; t)
(Curtain and Zwart, 1995), t is the time variable, u(t) ∈ R is the
control input at the boundary, and ud(t) is the spatially distributed
input. L2(0, l) denotes the Hilbert space of measurable square-
integrable real-valued functions f : [0, l] → R,

∫ l
0 |f (�)|2 d� <∞,

with weighted inner product and norm on L2(0, l), defined by
(f , g)�,L2 = ∫ l

0 e
−��f (�)g(�) d� and ‖f‖2 =

√
(f , f )�,L2 . Associated with

Eq. (8) is the operator F which is given by

F�(�) =
[
D2
a
d2

d�2
− w

d
d�

+ �

]
�(�) (9)

with the domain defined by

D(F) = {�(�) ∈ L2(0, l) : �(�),�(�)′, are abs. cont.,

F�(�) ∈ L2(0, l), and �(l)′ = 0} (10)
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while the input operator of spatially distributed control actuation is
given by

Bdud(t) = h
n∑

i=1

bdi(�)udi(t) (11)

where bdi(�) = (1/2	)1[�di−	,�di+	](�) ∈ L2(0, l) (this notation means

that bdi(�) = 1/2	 for �di − 	����di + 	 and bdi(�) = 0 else-
where). The output operator is defined by a sensor function as
c(�) = (1/2	)1[�c−	,�c+	](�) ∈ L2(0, l), and it is given by

y(t) = (c(�), a(�, t)) =Ca(t) (12)

The boundary operator B : L2(0, l)�R and its domain are given by

B�(�) = d�(0)
d�

− �(0) with D(F) ⊂ D(B) (13)

In order to define a mixed abstract boundary/distributed control
problem it is necessary to introduce a new operator A which is
defined by

A�(�) =F�(�) and

D(A) =D(F) ∩ ker(B)

= {� ∈ L2(0, l) : �(�),�(�)′ are abs. cont.,

A�(�) ∈ L2(0, l),�
′(0) = �(0) and �′(l) = 0} (14)

where A is the infinitesimal generator of a strongly continuous
semigroup on W. An assumption made here is that there exists a
function B(�) so that for all u(t), Bu(t) ∈ D(F) and the following
holds:

BBu(t) = u(t), u(t) ∈ U (15)

The existence of B together with the assumption that the input u(t) ∈
C2([0, t];U) and ud(t) ∈ C1([0, t];Ud) are sufficiently smooth, yield
the following well-posed abstract differential equation:

ṗ(t) =Ap(t) +FBu(t) − Bu̇(t) +Bdud(t)

p(0) = p0 ∈ D(A)

y(t) =Cp(t) +CBu(t) (16)

which has a well-defined mild solution due to the boundedness of
linear operators B andFB, and due to the fact thatA is the infinites-
imal generator of a C0-semigroup. Eqs. (16) and (8) are related by
the following transformation p(t)= a(t)− Bu(t). As the abstract evo-
lutionary equation of Eq. (16) includes in its expression a derivative
of the control term, it is reformulated on the extended state space
We := W

⊗
U, as ae(t) = [u(t) p(t)]′ and together with ũ(t) = u̇(t)

yields

ȧe(t) =
(

0 0
FB A

)
ae(t) +

(
I 0

−B Bd

)(
ũ(t)
ud(t)

)
ae(0) = [u(0) p(0)]′ = ae0
ye(t) = [CB C]ae(t) (17)

The operator Ae = (0 0;FB A) with domain D(Ae) =D(A)
⊗

U
is the infinitesimal generator of a C0-semigroup on We. The Riesz
spectral operator A generates a C0-strongly continuous semigroup
T(t) given by

T(t) =
∞∑
n=0

e
nt(·,�n(�))�n(�) (18)

so that supn�1 Re(
n)�∞, where 
n{n�1}, are simple eigenvalues
of A, and �n(�) and �n(�) are the eigenfunctions of A and A∗,
respectively, so that the inner product (�n(�),�m(�))L2 =�nm holds.

The eigenvalue problem of the Sturm–Liouville operator given by
Eqs. (9) and (14) can be easily solved (Curtain and Zwart, 1995).
Namely, the operator A is given, for any function in the domain
D(A), by

A�(·) = 1
(·)

d
d�

[
p(·) d�

d�
(·)
]

+ q(·)�(·) (19)

where (�) := e−(w/D2
a )�, p(�) := D2

a(�), q(�) := � which are contin-
uously differentiable functions on [0, l]. The spectrum of eigenvalues
of the operator A is �(A) and consists of isolated eigenvalues with
finite multiplicity and it is given by


n = � − D2
a

[
�n + w2

4D4
a

]
, 0 <�n <�n+1, n�1 (20)

where �n is the solution to the following transcendental equation:

tan(
√

�L) =
√

�

� − w

2D2
a

[
1 − w

2D2
a

] (21)

while the eigenfunctions for all n�1 are given by

�n(�) = Ane(w/2D2
a )�

[
cos(

√
�n�) +

(
1 − w

2D2
a

)
1√
�n

sin(
√

�n�)

]
(22)

and the adjoint eigenfunctions by �n(�) = �∗
n(�) = �n(�)e

−(w/D2
a�),

where An are nonzero constants which are calculated by the orthog-
onality condition (�n(�),�

∗
m(�))w/D2

a ,L2
= �nm. The semigroup T(t)

growth bound is given by �0=supn�1 Re(
n)�∞ and the following
characterization of the operatorA that generates the operatorT(t)
is given by the Hille–Yoshida theorem (Curtain and Zwart, 1995),
‖T(t)‖�Me�0t for a M>0.

Remark 1. The approximate controllability of mixed bound-
ary/distributed controlled system of Eq. (17) can be assured by
checking that the following condition holds for all n�1:

rank[(FB(�) − 
nB(�),�n(�))w/D2
a ,L2

(Bd,�n(�))w/D2
a ,L2

] = 1 (23)

where the first entry corresponds to the boundary actuation
related condition of approximate controllability, while the second
entry refers to approximate controllability of spatially distributed
actuation. In the same vein, the condition of approximate observ-
ability for the boundary/distributed controlled problem holds if
the rank[(C(B(�) + I),�n(�))] = 1 holds for n�1. The approximate
controllability and observability conditions of boundary/distributed
controlled system are transformed from their standard forms due
to the boundary transformation (Curtain and Zwart, 1995).

3. Optimal controller design

The operator Ae spectrum is partitioned into a finite-
dimensional unstable part �+(Ae) and an infinite-dimensional
stable complement �−(Ae), �(Ae) = �+(Ae) ∪ �−(Ae). The
finite-dimensional LQR problem for the finite-dimensional state
given by aeu(t) = [u(t) pu(t)]′ and boundary/distributed actuation
ū(t) = [ũ(t) ud(t)]

′ is formulated in the following form:

min
ū

J(aeu(0); ū) =
∫ ∞

0
(aeu(t)

′Qaeu(t) + ū(t)′Rū(t)) dt (24)

s.t. ȧeu(t) =Auaeu(t) +Buū(t) (25)

whereAu andBu are matrices that correspond by their dimensions
to the dimensions of an unstable eigenspace �+(Ae), and Q and R
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are positive semidefinite and positive definite matrices, respectively.
The resulting linear optimal controller is ū(t) = − 1

2R
−1B′

uPa
e
u(t) =

−Kaeu(t), where P is a positive definite solution to the LQR-Algebraic
Riccati Equation (Willems, 1971):

0 =A′
uP + PAu + Q − PBuR−1B′

uP (26)

Standard Lyapunov-based analysis of stabilization of unstable
modes aeu(t) by LQR state feedback can be demonstrated by con-
sidering the following standard control Lyapunov function (CLF),
V(t) = aeu(t)

′Paeu(t), so that

V̇(t) = d
dt

[aeu(t)
′Paeu(t)]

= aeu(t)
′(A′

uP + PAu − PBuR−1B′
uP)a

e
u(t)

= − aeu(t)
′Qaeu(t) <0 (27)

From Eq. (27), it can be concluded that the unstable modes are op-
timally stabilized and due to the cascaded interconnection between
unstable and stable modal states, once the unstable states are sta-
bilized under the stabilizing feedback law, aeu(t) → 0 and ū(t) → 0,
the stable infinite modal states evolution is only driven by the zero-
input dynamics which renders exponential stability of the infinite-
dimensional closed-loop system. The approximate controllability of
the mixed boundary/distributed control system can be assured by
checking that the condition given by Eq. (23) holds. In the formula-
tion of the LQR control law given by Eqs. (24) and (25) the associated
weights given by Q and R matrices represent weights on the state
evolution p(t), control input evolution u(t) and ud(t), and derivative
of boundary control input ũ(t). The first diagonal term in the matrix
Q represents the weight that is associated with u(t), while the re-
maining nonzero terms are weights on modal states p(t). The term
R consists of the weight on the derivative of the input and weights
on the distributed control input.

In the case where state-feedback control cannot be realized, it
is natural to extend the controller synthesis by incorporating an
observer in the feedback structure. A state observer of the Luenberger
type is considered (Dochain, 2001). The assumption of approximate
observability is made (Curtain and Zwart, 1995), and the Luenberger
observer is constructed as

˙̂aeu =Auâeu(t) +Buũ(t) −L(y(t) −Cuâe(t)) (28)

where Cu is a matrix of appropriate dimensions corresponding to
the dimensions of the unstable eigenspace �+(A) and the number
of measurement sensors. Finally, under the assumption of exponen-
tial stabilizability and detectability of (Au,Bu) and (Au,Cu), re-
spectively, there existK andL so thatAu+BuK andAu+CuL
are exponentially stable. The resulting output-feedback controller
enforces exponential stability in the linearized finite-dimensional
closed-loop system.

Remark 2. It is of importance to address the issue of noise in the
framework of the compensator design. Propagation of the electric
wave front in the myocardium is approximately around 65 cm/s
which implies that a small noise introduced at the boundary where
the control is applied may generate perturbations that will propa-
gate and form a standing wave solution, which is usually, in a crude
approximation, a linear combination of the eigenfunctions of the
modes of the unstable eigenspace. This effect is indeed observed in
the experimental realization of pacing protocols that measure the
amplitude of alternans at the pacing site and apply a self-referencing
gain feedback modulation of the basic pacing period at the pacing
site (Christini et al., 2006). In simulation studies in the following sec-
tion, it is demonstrated that the noise level that will produce a sub-
stantial deviation of the state a(n, �) from zero under a compensator
in use in the closed loop is very low.

Remark 3. Although the optimal stabilization of unstable modes of
the finite-dimensional subsystem via state-feedback control achieves
the exponential stabilization of infinite-dimensional state, it neglects
the influence of the feedback law on the remaining set of eigen-
modes in a sense that the feedback law may excite higher modes
of the operator A and produce high gain that amplifies the higher
modes evolution. This phenomenon is referred to as spillover effect
and it is analyzed in Balas (1978) and Hagen and Mezic (2003). This
phenomenon is reflected in a possible high excursion of the state
from the spatially uniform equilibrium state a(�, t) = 0 far from the
boundary where the control is applied before the state a(�, t) even-
tually settles to zero.

Remark 4. One of the important issues arising in the realization of
boundary/distributed control actuation in the cardiac relevant size
tissue is the issue of the optimal placement of distributed actuation.
The optimal placement of the distributed actuators, which can be ex-
plored in light of the work delinated in Antoniades and Christofides
(2001) and Armaou and Demetriou (2006) should be incorporated in
a complementary manner with the life threatening anatomical and
structural features of a sick cardiac tissue in order to lead physicians
to the “best possible site” for location of the distributed control ac-
tuators.

Remark 5. There is a number of clinically important factors related
with sick cardiac tissue. For example, scars on the cardiac muscle
due to myocardial infraction, or ischemic (lacking of oxygen) parts
of the heart due to the smoking or other coronary related diseases
(high cholesterol that induces reduced blood supply to the heart
muscle), or some other structural problems in the heart geometry,
represent important factors that impinge on the design of the type
of the controller that uses boundary/distributed mechano-electric-
based actuation. These features that can be assessed by the physi-
cian with noninvasive techniques may be represented as constraints
in the controller synthesis, and the natural selection of the optimal
controller synthesis would be model predictive control (MPC) in the
context of the parabolic PDEs which is capable of input and state con-
straints inclusion (Dubljevic et al., 2006; Dubljevic and Christofides,
2006b). However, this controller realization will be highly depen-
dent on the correct reconstruction of the state of the amplitude of
alternans which must be obtained in real time on the chip that is
embedded in the implantable cardiac device. Having this in mind,
this will lead to a difficult controller framework to be realized in
practice, while on the other hand, precomputed and easily imple-
mentable LQR (LQG) compensator is more desirable since the mild
stabilization of the alternans is achievable with this type of control.

4. Simulation study

The parabolic PDE of Eqs. (5) and (6) is considered. The parame-
ters Da, w, �, h, g and � are obtained from the Beeler–Reuter model
of a cardiac cell (Beeler and Reuter, 1977). The critical basic pacing
cycle at the bifurcation point where the onset of alternans emerges
is at �c =275ms. The following values of D2

a =0.1732 cm2 with volt-
age diffusion being D= 10−3 cm2/ms, w= 0.0107 cm and � = log(8),
and h = −0.0201ms are calculated. The parameters associated with
the nonlinear and integral term are �=49 and g=0.0739. The spec-
trum of the operator �(A) is calculated using Eqs. (20) and (21) and
it reveals different distributions of eigenvalues for different cable
lengths. Namely, for l= 2.5 that is considered as a case study length
of the cable under the optimal control law of Eqs. (24) and (25), the
first three eigenvalues of the operatorA are unstable (
1=0.007429,

2=0.0061607, 
3=0.0031352), while the remaining infinite eigen-
values are stable, see Fig. 2. The eigenfunctions corresponding to the
first three eigenvalues are given in Fig. 3. It can been seen from Fig. 2
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Fig. 2. Left plot: distribution of eigenvalues on the basis of Eq. (20) for different lengths of the cable (1 cm (∗), 2.5 cm (·), 5 cm ()). Right plot: first three eigenfunctions of
unstable eigenmodes of the operator A given by Eq. (22) for the cable length equal to 2.5 cm.
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Fig. 3. Open-loop evolution of amplitude of alternans Eqs. (5) and (6).

that an increase in the cable length increases the number of un-
stable modes of the operator A which need to be stabilized in or-
der to achieve stabilization along the entire cable length. Moreover,
Fig. 2 demonstrates that increase in the cable length promotes more
convective nature of the underlying PDE, since the necessary “gap”
condition that provides that consecutive stable eigenvalues have a
sufficiently large difference among themselves (see the appendix of
Christofides, 2001; Temam, 1988), fails to hold. This condition is dif-
ficult to satisfy in systems with strong convective terms and/or a
small diffusion parameter.

The parabolic PDE of Eqs. (5) and (6) is linearized around the spa-
tially uniform unstable steady state a(�, 0)=0 and the integral term is
neglected in order to allow for LQR controller synthesis. A high-order
finite-dimensional approximation of the infinite-dimensional ab-
stract boundary/distributed control problem given by Eq. (17) is first
obtained by considering 39 eigenfunctions a(�, t) = ∑39

i=1ai(t)�i(�),

and it is given by

ȧe(t) = Ā
e
ae(t) + B̄

e
ũ(t) (29)

yi(t) = C̄
e
ae(t) (30)

where Ā
e
, B̄

e
and C̄

e
are matrices of the following dimen-

sions (40 × 40), (40× (# of spatially distributed actuators)),
((# of spatially distributed sensors) ×40), respectively, with
four sensors used at c(�, �ci) = (1/2	)1[�ci−	,�ci+	](�), where
�ci = [0.0501 1.0772 1.6533 2.3046], while spatially distributed
mechanical actuation bd(�, �di ) = (1/2	)1[�di−	,�ci+	](�) is placed at

�di = [1.6250 2.2250]. Standard Galerkin method is performed (see
for details Christofides, 2001), where modal finite-dimensional ap-
proximation of Eqs. (5) and (6) is obtained by taking weighted inner
product on L2(0, l) with adjoint eigenfunctions (a(�, t),�∗

j (�))w/D2
a ,L2

.

Function B(�) ∈ D(F) is selected to satisfy the following condition
BBu(t) = u(t) and it is chosen to be B(�) = � − (1/2l)�2. In the ex-
tended space D(Ae)=D(A)

⊕
U, the entries of finite-dimensional

matrices Ā
e
, B̄

e
and C̄

e
are calculated as follows:

(FB)n =
(

−D2
a
l

− w
(
1 − 1

l
�
)

+ �
(
� − 1

2l
�2
)
,�∗

n(�)

)
w/D2

a ,L2

Bn =
(
� − 1

2l
�2,�∗

n(�)
)
w/D2

a ,L2

Bdn = (
bd(�, �ci),�

∗
n(�)

)
w/D2

a ,L2

Cin =
((

c(�, �ci), � − 1
2l

�2
)
; (c(�, �ci),�n(�))

)
w/D2

a ,L2

for n�1 and i = 1, . . . , 4. Note that when the nonlinear and integral
terms are considered, they can be computed within the Galerkin-
discretization scheme as follows:

Gn(t) = (ga(�, t)3,�∗
n(�))w/D2

a ,L2

Ln(t) =
(
1
�

∫ l

0
a(�̄, t) d�̄,�∗

n(�)

)
w/D2

a ,L2

To construct the linear model used for controller design, the first
four unstable modal states of the model of Eq. (29) are considered
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Fig. 4. Boundary/distributed stabilization of the linearized alternans amplitude PDE
under the state-feedback control law ū(t)=−Kae

u(t), where a(�, t)=∑39
i ai(t)�i(�) and

with initial condition ae
u2(0) = 0.4, ae

u3(0) = 0.15 and ae
u4(0) = 0.35.
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Fig. 5. Boundary/distributed stabilization of the linearized alternans amplitude PDE
under linear output-feedback control, where a(�, t) =∑39

i ai(t)�i(�) and with initial
condition ae

u2(0) = 0.21, ae
u3(0) = 0.4 and ae

u4(0) = 0.2.

as follows:

aeu(t) = [u(t);p1(t);p2(t); p3(t)]

with associated matrices which are of appropriate dimensions (4×4)
in the case of

Āu = [0 0 0 0; (FB)1 
1 0 0; (FB)2 0 
2 0; (FB)3 0 0 
3]

(4 × 2) in the case of B̄u = [I 0;−B1 Bd1;−B2 Bd2;−Bd3], with Bd1,
Bd2, Bd3 being (2 × 1) matrices, and (4 × 4) in the case of C̄u =
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Fig. 6. Boundary/distributed stabilization of the linearized alternans amplitude PDE
under linear output-feedback control, with measurement noise �(t)�0.001 and with
initial condition ae

u2(0) = 0.21, ae
u3(0) = 0.4 and ae

u4(0) = 0.2.

[B(�ci);�1(�ci);�2(�ci);�3(�ci)], with ū(t)= [ũ(t) ud(t)]
′ and ũ(t) be-

ing derivative of u(t). The LQR regulator control law ū(t) = −Kaeu(t)
is the solution of the following optimization problem:

min
ū

J(aeu(0); ū) =
∫ ∞

0
(aeu(t)

′Qaeu(t) + ū(t)′Rū(t)) dt (31)

s.t. ȧeu(t) = Āuaeu(t) + B̄uū(t) (32)

which yields the following stabilizing gain:

K =
⎛
⎝ 3.136 0.7755 0.1967 0.06276
1403.5 24.1305 66.790 59.2839
995.30 38.431 123.71 −61.4311

⎞
⎠

that places the unstable eigenmodes of the four-dimensional
closed-loop system at the following locations 
cl = [−4.0508 −
0.0074 − 0.0062 − 0.0032] for the following values of matrices
Qe = [qu 0; 0 qaI], where qa = 0.01 and I is the unitary matrix and
qu =0.0001, where R=diag{Ru,Rud} with Ru =100 and Rud =0.0001.
Furthermore, the gain of the Luenberger observer of Eq. (28) is
calculated as the gain that places the observer eigenvalues at

LC = 
cl − 2.5 in order to ensure faster convergence of the ob-
server dynamics compared to the closed-loop system dynamics
under state feedback control. The control law ũ(t) = −Kaeu(t) is first
applied to the linear finite-dimensional approximation of Eqs. (29)
and (30) with 39 eigenfunctions and the solution is obtained by
integrating the closed-loop system by an explicit Euler integration
scheme where the time step is taken as �t = (1/4max |eig{�(A)e}|)
so that numerical stability is ensured.

Complementary with Fig. 4 is Fig. 8 that shows the evolution
of the control u(t) applied at the boundary � = 0 and spatially dis-
tributed ud(t) at �di = [1.6250 2.2250]. In the simulation study, it is
demonstrated that the PDE state close to the boundary where con-
trol is applied undergoes large variations in the magnitude even for
a relatively small excursion of initial conditions, which is due to the
necessity to have the three unstable modes stabilized, see Figs. 4–8.
In the case of linear output-feedback control with four point mea-
surements, the successful stabilization of alternans is achieved in
a similar manner as in the case of state-feedback stabilization, see
Fig. 5. As expected, it is observed that the state-feedback controller
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slightly outperforms the output-feedback controller, see Figs. 5–8. In
Fig. 8 both dashed and solid lines converge to the same trajectory,
as it takes initially some time for the state estimate to converge to
the actual state.

In addition, when the impact of noisy measurements is included
in the output-feedback controller implementation, our simulation
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Fig. 7. Boundary/distributed stabilization of the nonlinear alternans amplitude PDE
given by Eqs. (5) and (6) under the linear LQR state-feedback control law ū(t)=−Ka(t),
and with initial condition ae

u2(0) = 0.21, ae
u3(0) = 0.4 and ae

u4(0) = 0.2.

0 10 20 30 40 50 60 70
−15

−10

−5

0

5

u 
(n

)

0 10 20 30 40 50 60
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20

n=t/τc

u d
 (n

)

Fig. 8. Optimal control input computed by the state-feedback control law (solid-line—boundary input u(n) and distributed input ud(n)), by the output-feedback control
law (dashed-line—boundary input u(n) and distributed input ud(n)), by the output-feedback control law with the additive noise (dotted-line—boundary input u(n) and
distributed input ud(n)), applied to the linearized alternans amplitude PDE, and optimal control input under the LQR state-feedback control law applied to Eqs. (5) and (6)
(dashed-dotted-line—boundary input u(n) and distributed input ud(n)).

studies, using the linearized PDEmodel, demonstrate that even a very
small noise level results in substantial deviation of the state a(n, �)
from the zero solution. Namely, for noise of magnitude �(t)�0.001
that is directly added to y(t) in Eq. (28), we observe, see Figs. 6
and 8 (dotted and dashed lines of the input profiles almost coincide
as the difference is only due to the additive measurement noise),
that a(n, �) behaves like a near standing wave in space which os-
cillates around a(n, �) = 0 with respect to time. This strongly advo-
cates and confirms that the current realization of noisy stabilizing
protocols cannot inherently stabilize (i.e., set a(n, �) = 0) alternans
due to high sensitivity to noisy measurements used in the feedback
controller.

Finally, in Fig. 7, it can be seen that the stabilization of the spatially
uniform unstable steady state of the full nonlinear model of Eqs.
(5) and (6) under the linear LQR control law is achieved. This result
makes sense since essentially both the nonlinear and integral terms
provide a stabilizing effect on the amplitude of alternans, which is
also manifested in the faster convergence of the applied boundary
and spatially distributed inputs to zero, see Fig. 8.

5. Summary

The work focused on mixed boundary/spatially distributed con-
trol of the amplitude of alternans parabolic PDE using optimal control
methods. This problem arises in the context of stabilization of car-
diac alternans using mechano-electric feedback. The proposed con-
trol problem formulation and the performance and robustness of the
closed-loop system were studied through simulations.
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