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Predictive Output Feedback Control of Parabolic Partial Differential Equations
(PDESs)

Stevan Dubljevic and Panagiotis D. Christofides*

Department of Chemical and Biomolecular Engineering, déngity of California,
Los Angeles, California 90095-1592

This work focuses on predictive output feedback control of linear parabolic partial differential equation (PDE)
systems with state and control constraints. Under the assumption that a finite, yet sufficiently large, number
of output measurements is available, two predictive output feedback controllers are constructed and sufficient
conditions are derived under which these controllers enforce stability and constraint satisfaction in the infinite-
dimensional closed-loop system, respectively. The controllers are applied to an example of a linear parabolic
PDE with Dirichlet boundary conditions subject to state and control constraints, and the numerical simulations
demonstrate their ability to enforce closed-loop system stability and constraint satisfaction.

1. Introduction therefore, the computation of accurate low-order ODE systems)
is a formidable task. Motivated by this, a novel procedure based
Transport-reaction processes (e.g., tubular reactors, chemical g, singular perturbations was proposed in ref 6 for the
vapor deposition processes) exhibit significant spatial variations, construction of approximate inertial manifolds (AIMs), which
because of the underlying diffusive and convective phenomena, are used to derive low-dimensional ODE systems that accurately
and pose significant challenges from a control point of view. yeproduce the solutions of the parabolic PDE system (also see
Specifically, the distinguishing feature of control problems refs 7 and 8 for other approaches for the construction of AIMs).
arising in the context of transperteaction processes is that These ODE systems were used as the basis for the synthesis of
they involve the regulation of distributed process variables, using nonlinear low-dimensional output feedback controllers that
spatially distributed control actuators and measurement Sensorsguarantee stability and enforce output tracking in the closed-
and, thus, such control problems cannot be addressed on th§oop system. More recently, control algorithms for diffusion
basis of ordinary differential equation (ODE) models derived conyection-reaction processes described by nonlinear parabolic
under the assumption of lumped process behavior. First-principle ppgs that compensate for the effect of uncertain variables on
modeling of transportreaction processes typically leads to process output were also develofiett as well as steady-state
systems of linear/nonlinear parabolic partial differential equa- and dynami&® optimization algorithms. The developed control
tions (PDEs) when the diffusive mode of transport is dominant methods were successfully applied to a rapid thermal chemical
(or as significant as convection). vapor deposition proce¥sto achieve a spatially uniform
From a mathematical point of view, the main feature of deposition of a thin film and a Czochralski crystal growth
parabolic PDEs is that the spectrum of the spatial differential proces#® to regulate crystal internal thermal gradients and were
operator can be partitioned into a finite set of eigenvalues that shown to outperform conventional control schemes. In addition
are close to the imaginary axis (“slow” eigenvalues) and an to the aforementioned methods, other significant results on
infinite-dimensional complement which includes eigenvalues analysis and control of nonlinear PDE systems have been
that are far left in the complex plane (“fast” eigenvaluhis recently derived, including order reduction and control using
implies that the dominant dynamic behavior of parabolic PDEs wavelets as basis functions in Galerkin’s methbdistributed
can be approximately described by finite-dimensional systems. control using generalized invariahtd® and concepts from
Therefore, the standard approach to control of parabolic PDES passivity and thermodynamié4?techniques for monitoring and
utilizes eigenfunction expansion techniques to obtain an ODE identification2>2! and techniques for optimal placement of
system, which is then used for controller design (see, e.g., refsactuators and sensors, and switching policies among actuators
2—4). The key disadvantage of this approach, especially for within an optimal control settingz28
nonlinear parabolic PDEs, is that the number of modes that  Although the aforementioned research efforts have led to the
should be retained, to derive an ODE system that yields the development of several systematic approaches for controller
desired degree of approximation, may be very large, leading to design for broad classes of linear/nonlinear parabolic PDEs, they
complex controller design and high dimensionality of the do not explicitly account for the presence of constraints in the
resulting controllers. These controller synthesis and implementa- manipulated inputs and states. Model predictive control (MPC),
tion problems have motivated extensive research efforts on thewhich is also known as receding horizon control, is a popular
problem of deriving low-order ODE systems that accurately control method for handling constraints (both on manipulated
reproduce the dynamics and solutions of nonlinear parabolic jnputs and state variables) within an optimal control setting. In
PDEs. The concept of inertial manifold (IM) has provided a MpC, the control action is obtained by solving repeatedly, on-
natural framework for addressing this problétdnfortunately, line, a finite-horizon constrained open-loop optimal control
even for PDE systems for which an IM is known to exist, the problem (see refs 2932 for surveys of results and references
computation of the closed-form expression of the IM (and, in this area). However, most of the research in the area of MPC
has focused on lumped-parameter processes modeled by ODE
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systems has received much less attention (see refs 33 and 34onstraints, respectively. The tel¥x/0z? denotes the second-
for recent results on MPC of first-order hyperbolic PDE systems order spatial derivative ok(zt); b, T, and w are constant
and ref 35 for state feedback MPC of a diffusion reaction process coefficients (withb > 0), andXy(2) is a sufficiently smooth
on the basis of finite-dimensional approximations derived by function of z. The functionbi(z) € Ly(0,7) is a known square
the finite difference method). In a previous wéfk,we integrable function of that describes how the control action,
considered linear parabolic PDE systems and derived predictiveu;(t), is distributed in the spatial interval [g, L»(0,r) denotes
controller formulations that systematically handle the objectives the space of square-integrable functions defined on the interval
of state and input constraints satisfaction and stabilization of [0,z]. The functions(z) € Lx(0,7) is also a known square
the infinite dimensional system; subsequently, we extended thesdntegrable function of that captures thgh measurement sensor
results to quasi-linear parabolic PDEsHowever, in these specifications. In eq 4, the functiaifz) € L,(0,7) is a “state
works, we assumed that on-line measurements of the entire stateonstraint distribution” function that is square-integrable and
of the PDE system are available and considered the full-statedescribes how the state constraint is enforced in the spatial
feedback predictive control problem. domain [Osr]. Whenever the control action is applied to the
To overcome this limitation, this work focuses on linear spatial domain at a single poiaf;, with z; € [0,7] (i.e., point
parabolic PDEs with state and control constraints and addresses®ctuation), the functiof(z) is taken to be nonzero in a finite
the problem of designing predictive output feedback controllers spatial interval of the formzy; — u«,zy + ], whereu is a small
that enforce stability and constraint satisfaction in the infinite- positive real number, and zero elsewhere int[0a similar
dimensional closed-loop system. The manuscript is structuredapproach can be used to handle point sensing and point
as follows. First, the parabolic PDE is formulated as an abstract constraints. Throughout the paper, the notattomill be used
evolution equation in an appropriate Hilbert space. Modal to denote the standard Euclidian norm %, whereas the
decomposition techniques then are used to develop finite- notation|-|q will be used to denote the weighted norm defined
dimensional systems that capture the dominant dynamics of theby |x|é = X'Qx, whereQ is a positive-definite matrix ang
infinite-dimensional system. Subsequently, under the assumptiondenotes the transpose xf
that a finite, yet sufficiently large, number of output measure-  To proceed with the presentation of our results, we formulate
ments is available, two predictive output feedback controllers the PDE of egs 1, 2, 3, and 4 as an infinite-dimensional system
are constructed and sufficient conditions are derived under whichin the state spacé/ = L,(0,7), with an inner product of
these controllers enforce stability and constraint satisfaction in
the infinite-dimensional closed-loop system, respectively. The (0,0,) = fﬂw (Dw.(2) dz (5a)
controllers are applied to an example of a linear parabolic PDE 2 o T2
with Dirichlet boundary conditions subject to state and control

constraints and the numerical simulations demonstrate their"’mOI norm of
ability to enforce closed-loop system stability and constraint 12
satisfaction. llwyll, = (wy,0,) (5b)

wherew; andw, are any two elements df;(0,7).
The state functiorx(t) on the state-space’ = L,(0,7) is
2.1. Parabolic Partial Differential Equations. This work defined as
focuses on predictive output feedback control of highly dis-
sipative linear infinite-dimensional systems. To provide a PDE X(t) =X(zt) (fort>0,0<z<n) (6)
example that belongs in this class of infinite-dimensional . i
systems, we begin by focusing on a linear parabolic PDE with @nd the operator¢ is defined as

2. Preliminaries

distributed control of the form Fo
Ap=Db|=%]|+T for0<z< 7
xz)  OX(zb) m i (df) @ ) @
=b FTX(zt) + W b(Du(t) (1a)
ot 4 i= where¢(z) is a smooth function on [&] with ¢(0) = 0 and

¢(r) = 0, with the following dense domain:

yO = [s@xztdz (=1,..p)  (ib)

with the following boundary and initial conditions: NN = {¢(Z) € L,(0): ¢(2 and% are absolutely
X(0,t) = 0, X(7,t) = 0, X(z,0) = X,(2) 2 continuous; (¢ € L,(0,7), $(0) = 0, andg () = O} (8)
subject to the following input and state constraints: The input operator is defined as
UM< < U™ (i=1,..m) (3) ) = w i bOu(® ©)
M= [T r@X(@) dz < 4) .

the measured output operator is defined as
whereX(zt) denotes the state variableg [0,7] is the spatial
coordinatef € [0,) is the time,yj(t) € R is thejth measured JX(t) = [(spx(1) (5X(1), .., §:X(D)] (20)
output,u;(t) € R denotes théth constrained manipulated input;
u™ and U™ are real numbers representing the lower and and the state constraint is defined as
upper bounds on thigh input, respectively, ang™n and ymax )
are real numbers representing the lower and upper state 2= (rx(t) < ™ (11)
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Using the aforementioned definitions, the system of eqs 1, the origin, subject to the control constraints of eq 14 and the

2, 3, and 4 can be written as follows: state constraint of eq 15. The problem will be addressed within
] ) the MPC framework (see ref 32 for a review of various MPC
X(t) = Ax() + Bu(t) , X(0) = % 12) algorithms for finite-dimensional systems), where the control,

at a state(t) and timet, is conventionally obtained by solving,

_ y(t) = X (13) on-line, a finite-horizon constrained optimal control problem
U= u® =u™ (fori=1,..,m)  (14)  of the form
1M < (rx() < ™ (15) P(x(t),t): min{J(x(t),t,u()) [ u()e S (20)

on % = Ly(0x). The spectrum of the operator/ can be s.t.X(7) = AX(1) + L6u(?) (21a)
obtained by solving the following eigenvalue problem: u(t) e % (21b)

o, 1M < (rx@) < ™ (forrelt,t+T]) (21c)

Ap;=b 2

+ Cd’j = lj(pj (16)

whereS= ,T) is the family of piecewise continuous functions

(functions continuous from the right), with peridd mapping

[t, t+ T]into 7= {u(t) € R™ u™ < u(t) < u™ fori =1,

(0)=0,p(7)=0 17 ..., m}, andT is the specified horizon. The contro{-) in Sis

%) % (17) characterized by the sequengk], where uk] = u(kA) and

where/; denotes an eigenvalue agdenotes an eigenfunction.  Satisfiesu(t) = u[k] for all t  [kA,(k + 1)A). The performance

A direct computation of the solution of the aforementioned Ndexis given by

eigenvalue problem yields

subject to

JxtuE) = L [alX(m xDl, + | u(@)l dr +
A =t—Db% ¢ = \/% sinfz)  (forj=1,...,0) (18) Fx(t+T) (22)

whereq is a positive real number, ariRlis a positive number;
. o N - x4(t; x(t),t) denotes the solution of eq 12 that is due to the control
eigenvalues of ¢, i.e., o(.() = {41,42,..}. All the eigenvalues ¢y \ith an initial statex(t) at a timet, andF(-) denotes the

of (are rgal, and for a giveh andc, onl_y a finite number of terminal penalty. The minimizing contraP(-) = {u(kA), u((k
unstable eigenvalues exists, and the distance between any two_ 1)A), u((k+ 2)A), ..} € Sis then applied to the system over

consecutive eigenvalues (i.8. and4;+1) increases asincreases. the interval kA,(k + 1)A] and the procedure is repeated

This implies that the dominant dynamics of the PDE can be j,qefinitely. This defines an implicit model predictive control
described by a finite-dimensional system, and motivates the use,,,

of modal decomposition to derive a finite-dimensional system

The spectrum of ¢, o(.©), is defined as the set of all

that captures the dominant (slow) dynamics of the PDE (see _ — O(A-

subsection 2.3 later in this paper). u(®) = MX() = u(ka; x(0).0) (23)
From the properties of¢ and its spectrum, it follows that/ in which M(x(t)) denotes the nonlinear map between the state
generates a strongly continuotigsemigroup t).38 Moreover, and control. The predictive control problem of eqs 20 and 21
bejcause(/). is a bounded operator, the system of eq 12 has a s formulated on the basis of an infinite-dimensional system,
mild solution of the form and therefore, it leads to a predictive controller that is of infinite
‘ i order and cannot be realized in practice. To overcome this
X(t) = 7%, + [ 7t — 1)Bu(r) dr (19) problem, in the next section, we develop computationally

efficient predictive control formulations that achieve stabilization

Remark 1. Note that, although we use the PDE system of eqsof the system of eq 12, subject to the control and state constraints
1-4 to motiate and illustrate the deelopment of the infinite- of egs 14 and 15. Throughout the manuscript, because we work
dimensional system of eq 12, our subsequent results are notwith continuous time PDE systems in order to present the
limited to single PDEs of the form of eqs-4. Specifically, the closed-loop stability results concisely, we will allow the hold
results deeloped in this work apply to parabolic PDEs, with  time to have a value oA = 0; our results can be extended to
other types of boundary conditions (for example, mixed bound- the case whera is greater than zero but sufficiently small (i.e.,
ary conditions) and systems of parabolic PDEs, as long as they sample-and-hold implementation of the predictive controller)
possess an operator/ for which the spectrum decomposition at the expense of proving practical stability of the closed-loop
property holds. These conditions can be shown to hold for all system (i.e., the state of the infinite-dimensional closed-loop
linear parabolic PDEs with self-adjoint operators, which:lea system converges in finite-time in a small ball around the origin,
finitely many eigenmalues with positie real part. In the domain ~ whose size decreases as the hold tindecreases).
of chemical process control, the class of linear parabolic PDEs  Remark 2. It is well-known that, ven for the finite-
with self-adjoint operators arises frequently from the lineariza- dimensional systems, the control law that is defined by egs 20
tion of first-principle models of transportreaction processes. 23 is not necessarily stabilizing. For finite-dimensional systems,
However, one must be cautious with the possible transformation the issue of closed-loop stability is usually addressed by means
applied in the case of nonhomogeneous boundary conditions,of imposing suitable penalties and constraints on the state at
because the transformation applied might change the structure the end of the optimization horizon (e.g., see refs 30 and 32 for
in the definition of operators and the inner product of the surveys of different approaches).
associated Hilbert state space (see examples in ref 38). 2.3. Modal Decomposition.Referring to the system of eq

2.2. Model Predictive Control. Referring to the system of 12, let.% and.% be modal subspaces of, which are defined
eq 12, we consider the problem of asymptotic stabilization of as.% = spaH ¢1,¢2,...4m} and % = spaf ¢m+1,¢m+2,..4 (the
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existence of’, %; follows from the properties aof¢, andm is
chosen such thai,+1 < 0). Defining the orthogonal projection
operators, /% and %4, such thakg(t) = 7x(t) andx:(t) = #x(t),
the statex(t) of the system of eq 12 can be decomposed as

X(t) = () + A1) =x(0) + (V)

Applying ¢% and % to the system of eq 12 and using the
aforementioned decomposition f(t), the system of eq 12 can
be rewritten in the following equivalent form:

(24)

dx(t) | o

T AXSL) + Bu(t), x(0) = Ax(0)= %X, (25a)

() ) o

g = W) T Gu), %(0) = Ax(O0) = Sx,  (25D)
y(1) = Sx(t) + () (25¢)

where (s = AA, Bs = BB, A= KA, By = AB, Js =
J%, and s = J%4. In the aforementioned systemys is a
diagonal matrix of dimensiom x m of the form .4 = diag-
{4} (note that some of thg;, j = 1,+-, m eigenvalues may be
unstable) and ¢ is an infinite-dimensional operator that is
exponentially stable (following from the fact that, < 0 and
the selection o7, %;). From the properties of s and .4, it
follows that there existy semigroups”/4(t) and Z(t) for which
the following characterization is given by the Hitt&¥oshida
theorem,|| Zi(t)|| = Mie“(i = s, f).%8 In addition, because of
the fact that?s and 23 are bounded operators, thet) and
x(t) subsystems of eq 25 admit the following mild solutions:

X() = TOX0) + [ 7Lt — Db dr  (26)
X0 = ZOXO) + [ 7t~ %bu@ dr  (27a)
Y(t) = X (1) + S (t) (27b)

Furthermore, because; is a stable operator, the spectrum of
A satisfies supRe{o(.#)}} < wf < 0, for somews > € —
b(m + 1)?, and thus,7{(t) satisfies

7)1, = Mg

where M; is a positive constant. Furthermore, there exists a
positive constanM such that

1701l = Me”
where 7(t) = diag[ 74(t), 7{(t)} andw = maX ws,ws}.

(fort = 0) (28)

(29)

3. Predictive Output Feedback Control

3.1. State Estimation.The objective of this section is to
propose predictive control formulations that make use of
measurements of a finite number,of measured outputg to
enforce stability and constraint satisfaction in the closed-loop
system. To this end, we follo#¥ and use a state estimation

scheme, based on direct inversion of the measured output map

to obtain estimates of the stateft) of the system of eq 25. To

develop this estimation scheme, we must impose the following
assumption on the number of measured outputs and the form

of the sensor shape function.

Assumption 1: p= m (i.e., the number of measured outputs
is equal to the number of slow states) an@™! exists.
Assumption 1 ensures that the finite-dimensiog@) subsystem

is stabilizable via static output feedback control (together with
the assumption that the pair#,s) is controllable) and can

be satisfied by proper placement of the measurement sensors.
Under assumption 1, an estimate of the state of xo
subsystem can be obtained as follows:

(1) = 7 y(t)

whereXs(t) is an estimate okg(t).

3.2. Low-Order Predictive Output Feedback Control. In
this subsection, we present a predictive control formulation that
is developed on the basis of the finite-dimensiong(t)
subsystem of eq 25. Specifically, the control action is computed
by solving, in a receding horizon fashion, the following
optimization problem:

(30)

min [ {117 + @I 0T+ FEE+T)  (32)
S.t.&(1) = AX(T) + BU(T) (32a)

u(r) e % (32b)

A (D) <M (reltt+T)  (320)

(1) = STy (32d)

whereF(+) is the terminal cost. The predictive control law of
egs 31 and 32 is stabilizing for the set of initial conditiogs

(0) € Qs, where the sef2s is dependent on the constraints on
the states and inputs, the system dynamics, the horizon length
T, and the location where the output measurements are taken;
the reader may refer to refs 40 and 41 for a Lyapunov-based
approach for the construction of estimate<hf

Assumption 2 below states the properties that we assume that
the model predictive controller of eqs 31 and 32 enforces in
the closed-loop finite-dimensiong(t) subsystem under the use
of state feedback control (i.eX(t) = x(t); the state feedback
control xg(t) is assumed to be known).

Assumption 2: Consider the closed-loop system resulting from
the finite-dimensionalgt) subsystem of eq 25 and the predieti
controller of eqs 31 and 32 withy%) = x(t). There, then exists
a compact sef2s C s (Qs includes in its interior xt) = 0)
such that, for all ¥0) € Qs, x(t) € Qs for allt = 0 and the
equilibrium x(t) = 0 of the closed-loop system is asymptotically
stable and, locally, is exponentially stable.

Theorem 1 below states sufficient conditions under which
the predictive output feedback controller of eqs 31 and 32
enforces stability in the infinite-dimensional closed-loop system.

Theorem 1. Consider the closed-loop infinite-dimensional
system resulting from the application of the predietcontroller
of eqs 31 and 32 to the system of eq 25 and suppose that
assumptions 1 and 2 hold. Thenygn a compact se®; C Qg
and a positie constant b, there exists afi such that ife =
|21/ Am+1] €(0,*], and x(0) = x¢(0) + x¢(0) is such that X0)

e Q¢ and [x(0)] = b, the equilibrium (¥ x) = (0, 0) of the
closed-loop infinite-dimensional system is asymptotically stable

Proof: Let u(t) = M(Xs) = M(xg(t),%(t)) be the general
expression of the control law corresponding to the predecti
tontrol formulation of egs 31 and 32. Consider the closed-loop
system under this control law:

x(t) = - (x(t) + LMoL X ()
X(t) = - (x(0) + BMxD.%()

Usinge = |A1|/|Am+1l, we can rewrite the aforementioned system

(33)
(34)
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in the following standard singularly perturbed form: this task, we must first devise an estimation scheme that will
) allow computing estimates of the(t) states from the output
X(t) = AX[) + BMXS(t), X(1)) (35) measurements. Because the number of output measurements is
S . finite, the entire infinite-dimensional stakéz, t) (or x(t)) cannot
(1) = 4 X(0) + €SBMO(0). %(D) (36) be computed through inversion of the measurement equation.

) , ) To this end, we propose to use a large, but finite-dimensional,
where_¢, = e {; and the ma@nxes{s and_ have e|genyalues approximation of the stateg(t) in the predictive controller.
of the same order of magnitude. Performing a two-time scale Therefore. we decomposét) as

decomposition of the above system, we can see that the slow

subsystem takes the form X(1) = X((t) + X, () + Xeo(t) (42)
() = 7
KO = A + BMOLO).x() (37) wherexy(t) € % is the state of the slow subsystex(t) € %
0= _4x(t) (38) = spaf ¢m+1,...m+q} IS the state of a finite-dimensional system
‘ including modes fromrg + 1) to (M + @), and xp(t) is the
or state of an infinite-dimensional system including modes from
(m+ g + 1) to infinity (X(t) € %2 = spaf ¢m+q+1,°**,}).
X(t) = Ax(t) + BMxL)) (39) Using this decomposition, the system of eq 25 can be written
as
Under assumption 2, the origin of the system of eq 39 for every ] .
x{0) € Qs is asymptotically stable and, locally, exponentially X(t) = Ax(t) + Bu(t) (43a)
stable. Introducing the “stretched” time scale t/e, the system . _ ,
of egs 35 and 36 can be written as Xa() = AnXa () + uu() (43Db)
dXS(T) sz(t) = “/{fzxfz(t) + %’fzu(t) (430)
= (. 9 _ . . .
G~ D) + BM(1)x(r))  (40a) Y(t) = JX() + SixXa(B) + Jpxea(t) (43d)
d(r) _

/ 7 where 1 = S A, B = S B, Ao = S A, Brp = S48,
dr "/{fexf(f) + MO, %(1)) (40b) Ji = S, Jp = S and %4 and 44, are orthogonal projection
operators that projea{t) € 77 ontox;(t) € 9% andxw(t) € Yt
(e, xa(t) = Fhx(t) and xp(t) = FpX(t)), respectively. We
dx(7) introduce' the foIIO\_Ning assumption that is important for the
—— = (1) (41) computation of estimates of thg(t) andxq(t) states.
dr € Assumption 3: p= m+ q (i.e., the number of measurements

S . . . is equal to the dimension of the model used for control design)
which is exponentially stable. From the stability properties of dthe i L ayi herefn i i wh
the subsystems of eqs 381, we can use arguments similar to an the IVErseJsn e>§|sts (w Eresulsapxp matrix whose

; (i, j) element s (s¢i), i = 1,2+, p; j = 1,*+, p), such that [x(t)

those in ref 42 and the result of proposition 1 in ref 6 to conclude =y
that, given a compact s€; C Qs and a positive constat, (O] = sfl (.t)'

there exists am* such that, ife € (0.4] and x(0) = x0) + The predictive controller that uses fast states takes the form
x¢(0), such thak(0) € Q' and|x(0)| < b, the equilibrium X, T ) 2 R

x) = (0, 0) of the closed-loop infinite-dimensional system is mulnﬂ [AlI%@)I" + u@Ig]dT + F(+T)  (44)
asymptotically stable. This completes the proof of Theorem 1.

and settinge = 0, we obtain the fast subsystem:

However, in the controller formulation described by eqs 31 S-t-fg(f) = AX(7) + Bu(7) (45a)
and 32, the evolution of the fast states is not taken into account, . A ;
neither in the cost functional nor in the state constraints. 1(?) = <G:%a(7) + Buu(@) (e[t t+T) (45b)
Therefore, a potential_dr_awback of this formul_ation is the fact u(r) e % (45¢)
that the resulting predictive control law, when implemented on )
the infinite-dimensional system of eq 12, will enforce closed- M=o (RR(T) R (7) = " —a (45d)
loop stability but not necessarily full-state constraint satisfaction, o
because it neglects the evolution of the fast states. In particular, [0 %, (D] = SeuY(V) (45e)

because the full stat&(t), includes contributions from botk-
(t) andx(t) (recall thatx(t) = x(t) + x(t)), it is possible that wherea is a positive constant. The important feature of the
the x(t) subsystem, which is affected by the control input, control law of eqs 44 and 45 is the inclusion of the fast states
evolves in a way that causes the full-state constraints to bex:u(t) in the predictive control law. However, in eqs 44 and 45,
violated for some time. Therefore, although the stabilization the (t), %u1(t)) in the state constraints is dependent on the
objective can be achieved, the additional objective of state accuracy of the state estimates, so it is necessary to develop
constraints satisfaction requires that the evolution of fast statessome quantitative measure that would address the issue of the
be properly taken into account when designing the predictive accuracy of the estimated modes, and therefore, the issue of
controller. the successful state and input constraints satisfaction. To address
3.3. Predictive Output Feedback Control Accounting for this issue in a quantitative manner, we introduce the “back-
Fast Modes.In this subsection, we develop a predictive output off” parameter o, which is dependent on the number of
feedback control formulation that explicitly accounts for the fast measurement$. In other words, this back-off correction
modesx(t) and derive sufficient conditions under which the decreases as the number of measurements increases, because,
predictive controller enforces stability and constraint satisfaction in this caseXs(t) and %;(t) estimate betterg(t) and xq(t). To
in the infinite-dimensional closed-loop system. To proceed with provide the relation between the set of initial conditions, the
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controller parameters, and the back-off paramedgrwe
introduce the following assumption.
Assumption 4: Consider the closed-loop system

X(t) = AX(t) + BMX() X1 (1))
X () = A1 (1) + DBM(X(1) %1(1))

(46)
(47)

Furthermore, there exist andb for which the estimation error
is sufficiently small andg,(t) is also sufficiently small (the fact
that there exist3 and b such thatxq(z) is sufficiently small
follows from the structure and stability property of tRg(t)
subsystem), and then the fact th&f" — o < (r,%(7) + %(7))
< ym& — g implies thaty™" < (r (1) + Ka(r) + Xe(1)) <
¥ Pick e* = min{¢f,e3} to complete the proof.

Remark 5.The back-off parametexr applied in egs 44 and
45 can be seen as a conservative bound on the evolution of the
Xrp States that guarantees state constraints satisfaction. This
measure cannot exceed the absolute value of the difference
betweeny™ax — min nor should it be such that it mutually
excludes other constraints imposed, for example, a stability
constraint of the formxg(t + T) = 0. A good estimate of can
be determined by simulations.

Remark 6The successful application of the predictive control
aw of egs 44 and 45 hinges on the accuracy of the estimated
states through the state reconstruction scheme that is used. To
improve this accuracy, one can consider formulating and solving
an optimal sensor placement problem. This has been addressed
in ref 43, where the optimal sensor placement problem has been
addressed via a mirmax optimization formulation, which is
solved through a guided search technique.

There then exists a compact $§:; that includes x= xn = 0
in its interior, such that, for any [X0) %1(0)] € Qsfn, the
equilibrium (%, X1) = (0, 0) of the system of eqs 46 and 47 is
asymptotically stable and, locally, is exponentially stable.

Theorem 2 below states sufficient conditions under which
the predictive output feedback controller of eqs 44 and 45
enforces stability and constraints satisfaction in the infinite-
dimensional closed-loop system.

Theorem 2: Consider the infinite-dimensional system of eq I
25 under the predictie output feedback controller of eqs 44
and 45 and suppose that assumptions 3 and 4 hold. Theem gi
a compact sef2y;; C Qqn, there existe* and b such that if
[X40) %1(0)] € iy, [(0) = b ande = [Asl/|Ams1| €(0,e*],
the equilibrium (%, %) = (0, 0) of the closed-loop infinite-
dimensional system is asymptotically stable and the state
constraint of eq 25 is satisfied in the closed-loop system for all
t>0.

Proof: Let the control law resulting from the predicti
control formulation of eqs 44 and 45 be denoted by &ft)
Ma(R(t) X1(t)) = Ma(Xs(t), X1 (1), Xi2(t)). Consider the closed-loop
system under the predieé controller:

4. Simulation Example

In this section, we demonstrate and compare, through
computer simulations, the implementation of the two MPC
formulations discussed in the previous section. To this end, we
consider the parabolic PDE of eq 1, whh= 1,C = 1.66,w =

X(t) = AXSt) + BMy(x(1) X1 (1) Xi(1))  (48a) 2, and two control actuatorsm(= 2) with the following

. _ . distribution functions:bi(2) = 1/u for z € [z — u,z4 + u] and
%a(O) = iXa() T LM (02 (0%(D)  (48D) bi(2) = 0 elsewhere in [Gf], whereu = 0.005,zy = 7/3, and
Keo(t) = ApXeot) + BiMo(X (1) Xy (1) Xo(1))  (48C) Zp = 271/3. For these values, it was verified that the operating

steady statex(zt) = 0, is an unstable one. The control objective

is to stabilize the state profile at the unstable zero steady state
by manipulatingui(t) subject to the input and state constraints
of egs 3 and 4 withi™" = — 2.5,u™* = 2.5, fori = 1 and 2,

Usinge = |A1//|Am+q+1| @and multiplying the (t) subsystem by
€, we hae

X{t) = AXLL) + BM(X[t) X1 (1), X(1)) (49) ™" = —0.035,y™> = 2.0. The state constraints distribution
] . function,r(2), is chosen to be(z) = 1ju for z € [ze — u, z- +
(1) = A (t) + BuMa(x (D)X (). %(1))  (50) u] and r(z) = 0 elsewhere in [05], wherez. = 1.047 is the
oM — . point where the state constraint is to be enforcediasd0.005.
() = i Xoll) + € LMo (0. X (0.%(0)  (51) The eigenvalue problem for the spatial differential operator of

the PDE of eq 16 can be solved analytically, and its solution

where_{r,, = e_1,. Performing a two-time scale decomposition yields

of the aforementioned system, we obtain the slow subsystem:
%) = AX(D) + BMax(0)X,(1),0) (52) 4 =166-J"¢@= \/g sinfz)  (=1,..,)

X, (1) = A t) + By M,(X{(t) X (1),0 53 ) . i )
Xa() a(® nM2((0)%4(1).0) (43) For this system, we consider the first two eigenvalues to be the
Under assumption 4, the solutioms(x1) = (0,0) of the dominant ones and use two point control actuators<2) to

aforementioned system is asymptotically stable and, locally, is achieve the control objective, subject to the constraints of eqs

exponentially stable for everyd0) x(0)] € Qsu. Furthermore, 14 _and 15. In pqrticu_lar, using modal decomposition,_we can
the fast subsystem has the form derive the following high-order ODE system that describes the

temporal evolution of the first modes:

(55)

dxep(7)
= el (54) at) = Aa) + Bu() (56a)
t) = t) + Bu(t 56b
which is exponentially stable. From the stability properties of () = Aa() () (56b)
the slow and fast subsystems of eqs 52, 53, and 54, we can use y(t) = SaJ(t) + Sa(t) (56¢)

similar arguments to the proof of Theorem 1 to show that, given

a compact sef2;; € Qsn and a positive real numbdx, there
exists ane* such that if Ry(0) X1(0)] € Qsn and|[x(0)|| < b
ande € (0,t], the equilibrium &s,x;) = (0,0) of the closed-loop

whereag(t) = [au(t) ax(t)]', a(t) = [as(t) au(t) -~ a())]’, ai(t) €
R is theith mode, the notatioag(t)’ denotes the transpose of
ag(t), u(t) = [uy(t) u(t)]’, the matriceshs and A¢ are diagonal

infinite-dimensional system of eq 25 is asymptotically stable. matrixes, given byAs = diag{/A}, fori = 1 and 2 andAs =
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diag{Ai}, fori = 3, ...,I. BsandBs are a 2x 2 matrix and an

(I — 2) x 2 matrix, respectively, the,(j)th elements of which
are given byB; = (bj(2),¢i(2)). We now proceed with the design
and implementation of the two predictive output feedback
control formulations presented in the previous section. The
following initial condition is considered in all simulation runs:
X(z,0) = 0.04 sing) + 0.015 sin(2) and! is chosen to be 35
(further increases of the value bied to identical results for ~0.024
both the open-loop and closed-loop systems). In the first
scenario, we use the predictive controller of Theorem 1.
Specifically, we use theg(t) subsystem of eq 56 as the basis
for the predictive controller design (tha(t) subsystem is
neglected). According to Theorem 1, we consider an MPC
formulation with the following objective function and con-

x(z,t)

-0.04+

-0.06+

straints: 008l
. t+T A 2 2. ~ X - .
min [ [od &@)1 + U@ dr + F@(t+T)  (57) t© o5 g o5 11
A A Figure 1. Closed-loop state profile under the MPC formulation of eqs 57
S.t. as(f) - Asas(f) + Bsu(f) (58a) and 58, without accounting for the fast states in the state constraints, using

30 measurements.

u™ < () = U™ (fori=1,2) (58b)

0.04
2
s TS a@e@] dzs ™ (580) "
£ 0.02
0.01
A=y (@eltt+T) (58d) of
-0.01F
wheregs = 60, R = rl (with r = 0.01), andT = 0.0429. To 002}
ensure stability, we impose a terminal equality constraint of the o _ooabt
form &4t + T) = 0 on the optimization problem and Jefag(t T -f_J-.pgg_
+ T)) = 0. According to assumption 1, the number of MR
measurements needed to obtain estimates oddlleis p = m 005 1
= 2 and the matrixS is a 2 x 2 matrix whosei( j)th element -0.06r ‘
is given by §(2).4i(2)), wherei = 1, 2 andj = 1, 2; two point -0.07 H
measurements are takens#8 and 2r/3. The resulting quadratic -0.08f '. If
program is solved using the MATLAB subroutine QuadProg. -009F v 4
The control action is then implemented on the 35th order model Y| - . . . . . .
0 002 004 006 008 01 012 014 016

of eq 56. For this case, our calculations demonstrate that the

use of two output measurements, although sufficient for the Fiaure 2. Closed-Ioon otbut rofile;Hzc D= 760z — 203z 1) d) at

predlcnve.contm”er of eqs 57 and .58 to achleve the CI.Osed' zcg: 1.047, under theR/IPCFI)‘orrgulation of’eqs 57O and 58 (solid line), under

loop stability of the system of eq 56, is not sufficient t? es“mate the MPC formulation of egs 59 and 60 with 30 measurement points (dotted

the &4(t) states accurately, so that PDE state constraint satisfac-line), and under the MPC formulation of eqs 59 and 60 with 5 measurement

tion is achieved. Furthermore, to demonstrate that, in addition points (dasheddotted line).

to more measurements, we need to include fast states in the ) .

predictive controller to achieve constraint satisfaction, we Problem, we consider the predictive output feedback control

assume that we have available 30 measurements placed equiomulation of Theorem 2, which takes the form

distantly in the following way: S R
3L 21 . 30031] min [ o (0" + u@)lgT dr + F@t+T)  (59)

7

s.t.A(r) = AA(7) + Bu(z 60a
and use them to compute a better estimat@ij, using the . a(r) = A(D) () (60a)
estimation scheme of assumption 3 (i.€(t) an(t)]' = a5 (1) = Ay (1) + Buu(z) (60Db)
SaY(), whereSyy is a square matrix whose, {)th element is - . _
given by §(2),¢i(2) i =1, ..., 30;j =1, ..., 30. Figure 1, Figure U = () =y (fori=1,2) (60c)
2, and Figures 3 and 4 (solid lines) show the closed-loop state, 30
the closed-loop profile at the point where the state constraint is _ min _ o< foﬂ rAlS a()¢(d] dz < 1™ — (60d)
&

enforced, and manipulated input profiles, respectively, under

the MPC controller of eqs 57 and 58, using 30 measurements.

It is clear that the predictive controller successfully stabilizes [A() 8,(0)]' = Say() (e[t t+T])  (60e)

the state at the zero steady state. However, by examining the

solid line in Figure 2, we observe that the statg.at= 1.047 wheredg(t) = [ai(t) &(t)]" and &u(t) = [&s(t) -+ &so(t)]’. The
violates the lower constraint for some time. The violation of control law tuning parameters have the same values as those
the state constraint comes from neglecting the contribution of used in the previous formulation. The back-off parameter is
the &(t) states in the predictive controller of eqs 57 and 58. To taken to bea = 0.0011. The resulting quadratic program is
account for the evolution of the fast states in the optimization solved using the MATLAB subroutine QuadProg. The control
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x(z,t)

-0.024

u,®

-0.044

-0.06 4

0.1
t 015 g 1

Figure 3. Manipulated input profiles for the second control actuator applied . ’ :

= ) A Figure 5. Closed-loop state profile under the MPC formulation of eqs 59
atz, = /3 underthe MPC formulation Of. eqs 57 and 58 (solid I|r_1e), under and 60, accounting for the fast states in the state constraints, using 30
the MPC formulation of eqs 59 and 60 with 30 measurement points (dotted measurements

line), and under the MPC formulation of egs 59 and 60 with 5 measurement
points (dasheddotted line).

z

001 002 003 004 005 006 0.07 0.08
t

Fi 4. Manioulated input profiles for th d trol actuat lied Figure 6. Closed-loop state profile under the MPC formulation of eqs 59
|gure_ - Manipulated input profiies for the second control actuator applied 5y 60, accounting for the fast states in the state constraints, using 5
at Zz,, = 27/3 under the MPC formulation of egs 57 and 58 (solid line), measurements

under the MPC formulation of egs 59 and 60 with 30 measurement points
(dotted line), and under the MPC formulation of eqs 59 and 60 with 5
measurement points (dashedbtted line). even though fast states estimates are used in the controller

formulation of eqs 59 and 60 with = 0, the number of
measurement points is not large enough so that the predictive
controller can only achieve successful stabilization of the PDE
system but not PDE state constraint satisfaction.

action is then implemented on the 35th-order model of eq 56.
Figure 5, Figure 2, and Figures 3 and 4 (dotted lines) show the
closed-loop state, the closed-loop profile at the point where the
state constraint is enforced, and manipulated input profiles,
respectively, under the MPC controller of eqs 59 and 60, using
30 measurements. It can be seen that closed-loop stability ands. Conclusions

PDE state constraint satisfaction is achieved. Finally, to

demonstrate that, in addition to including fast states in the  This work considered linear parabolic partial differential
predictive controller, we need to use a sufficiently large number equation (PDE) systems with state and control constraints and
of measurements to achieve state constraint satisfaction, wefocused on the problem of designing predictive output feedback
implemented the predictive controller of eqs 59 and 60 under controllers that enforce stability and constraint satisfaction in

the use of only 5 point measurements. In this caseadip= the infinite-dimensional closed-loop system. Under the assump-
[aa(t) &2(t)]" andan(t) = [as(t) -** &so(t)]’ states were computed  tion that a finite, yet sufficiently large, number of output
as measurements is available, two predictive output feedback

controllers were constructed and sufficient conditions were

derived under which these controllers enforce stability and

constraint satisfaction in the infinite-dimensional closed-loop

system, respectively. The performance of the proposed control-
whereAz = /5 andz = j(/6) (forj = 1, ..., 5). The dashes lers was successfully tested using a linear parabolic PDE
dotted lines in Figures 2, 3, and 4, and Figure 6, show that, example.

A 12 .
a = ;;x(q, Hei(z) Az (fori=1,2,...,30) (61)
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