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This work focuses on predictive output feedback control of linear parabolic partial differential equation (PDE)
systems with state and control constraints. Under the assumption that a finite, yet sufficiently large, number
of output measurements is available, two predictive output feedback controllers are constructed and sufficient
conditions are derived under which these controllers enforce stability and constraint satisfaction in the infinite-
dimensional closed-loop system, respectively. The controllers are applied to an example of a linear parabolic
PDE with Dirichlet boundary conditions subject to state and control constraints, and the numerical simulations
demonstrate their ability to enforce closed-loop system stability and constraint satisfaction.

1. Introduction

Transport-reaction processes (e.g., tubular reactors, chemical
vapor deposition processes) exhibit significant spatial variations,
because of the underlying diffusive and convective phenomena,
and pose significant challenges from a control point of view.
Specifically, the distinguishing feature of control problems
arising in the context of transport-reaction processes is that
they involve the regulation of distributed process variables, using
spatially distributed control actuators and measurement sensors,
and, thus, such control problems cannot be addressed on the
basis of ordinary differential equation (ODE) models derived
under the assumption of lumped process behavior. First-principle
modeling of transport-reaction processes typically leads to
systems of linear/nonlinear parabolic partial differential equa-
tions (PDEs) when the diffusive mode of transport is dominant
(or as significant as convection).

From a mathematical point of view, the main feature of
parabolic PDEs is that the spectrum of the spatial differential
operator can be partitioned into a finite set of eigenvalues that
are close to the imaginary axis (“slow” eigenvalues) and an
infinite-dimensional complement which includes eigenvalues
that are far left in the complex plane (“fast” eigenvalues).1 This
implies that the dominant dynamic behavior of parabolic PDEs
can be approximately described by finite-dimensional systems.
Therefore, the standard approach to control of parabolic PDEs
utilizes eigenfunction expansion techniques to obtain an ODE
system, which is then used for controller design (see, e.g., refs
2-4). The key disadvantage of this approach, especially for
nonlinear parabolic PDEs, is that the number of modes that
should be retained, to derive an ODE system that yields the
desired degree of approximation, may be very large, leading to
complex controller design and high dimensionality of the
resulting controllers. These controller synthesis and implementa-
tion problems have motivated extensive research efforts on the
problem of deriving low-order ODE systems that accurately
reproduce the dynamics and solutions of nonlinear parabolic
PDEs. The concept of inertial manifold (IM) has provided a
natural framework for addressing this problem.5 Unfortunately,
even for PDE systems for which an IM is known to exist, the
computation of the closed-form expression of the IM (and,

therefore, the computation of accurate low-order ODE systems)
is a formidable task. Motivated by this, a novel procedure based
on singular perturbations was proposed in ref 6 for the
construction of approximate inertial manifolds (AIMs), which
are used to derive low-dimensional ODE systems that accurately
reproduce the solutions of the parabolic PDE system (also see
refs 7 and 8 for other approaches for the construction of AIMs).
These ODE systems were used as the basis for the synthesis of
nonlinear low-dimensional output feedback controllers that
guarantee stability and enforce output tracking in the closed-
loop system. More recently, control algorithms for diffusion-
convection-reaction processes described by nonlinear parabolic
PDEs that compensate for the effect of uncertain variables on
process output were also developed,9-11 as well as steady-state12

and dynamic13 optimization algorithms. The developed control
methods were successfully applied to a rapid thermal chemical
vapor deposition process14 to achieve a spatially uniform
deposition of a thin film and a Czochralski crystal growth
process15 to regulate crystal internal thermal gradients and were
shown to outperform conventional control schemes. In addition
to the aforementioned methods, other significant results on
analysis and control of nonlinear PDE systems have been
recently derived, including order reduction and control using
wavelets as basis functions in Galerkin’s method,16 distributed
control using generalized invariants17,18 and concepts from
passivity and thermodynamics,9,19techniques for monitoring and
identification,20,21 and techniques for optimal placement of
actuators and sensors, and switching policies among actuators
within an optimal control setting.22-28

Although the aforementioned research efforts have led to the
development of several systematic approaches for controller
design for broad classes of linear/nonlinear parabolic PDEs, they
do not explicitly account for the presence of constraints in the
manipulated inputs and states. Model predictive control (MPC),
which is also known as receding horizon control, is a popular
control method for handling constraints (both on manipulated
inputs and state variables) within an optimal control setting. In
MPC, the control action is obtained by solving repeatedly, on-
line, a finite-horizon constrained open-loop optimal control
problem (see refs 29-32 for surveys of results and references
in this area). However, most of the research in the area of MPC
has focused on lumped-parameter processes modeled by ODE
systems. Compared with lumped-parameter systems, the prob-
lem of designing predictive controllers for distributed parameter
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systems has received much less attention (see refs 33 and 34
for recent results on MPC of first-order hyperbolic PDE systems
and ref 35 for state feedback MPC of a diffusion reaction process
on the basis of finite-dimensional approximations derived by
the finite difference method). In a previous work,36 we
considered linear parabolic PDE systems and derived predictive
controller formulations that systematically handle the objectives
of state and input constraints satisfaction and stabilization of
the infinite dimensional system; subsequently, we extended these
results to quasi-linear parabolic PDEs.37 However, in these
works, we assumed that on-line measurements of the entire state
of the PDE system are available and considered the full-state
feedback predictive control problem.

To overcome this limitation, this work focuses on linear
parabolic PDEs with state and control constraints and addresses
the problem of designing predictive output feedback controllers
that enforce stability and constraint satisfaction in the infinite-
dimensional closed-loop system. The manuscript is structured
as follows. First, the parabolic PDE is formulated as an abstract
evolution equation in an appropriate Hilbert space. Modal
decomposition techniques then are used to develop finite-
dimensional systems that capture the dominant dynamics of the
infinite-dimensional system. Subsequently, under the assumption
that a finite, yet sufficiently large, number of output measure-
ments is available, two predictive output feedback controllers
are constructed and sufficient conditions are derived under which
these controllers enforce stability and constraint satisfaction in
the infinite-dimensional closed-loop system, respectively. The
controllers are applied to an example of a linear parabolic PDE
with Dirichlet boundary conditions subject to state and control
constraints and the numerical simulations demonstrate their
ability to enforce closed-loop system stability and constraint
satisfaction.

2. Preliminaries

2.1. Parabolic Partial Differential Equations. This work
focuses on predictive output feedback control of highly dis-
sipative linear infinite-dimensional systems. To provide a PDE
example that belongs in this class of infinite-dimensional
systems, we begin by focusing on a linear parabolic PDE with
distributed control of the form

with the following boundary and initial conditions:

subject to the following input and state constraints:

wherexj(z,t) denotes the state variable,z ∈ [0,π] is the spatial
coordinate,t ∈ [0,∞) is the time,yj(t) ∈ R is the jth measured
output,ui(t) ∈ R denotes theith constrained manipulated input;
ui

min and ui
max are real numbers representing the lower and

upper bounds on theith input, respectively, andømin andømax

are real numbers representing the lower and upper state

constraints, respectively. The term∂2xj/∂z2 denotes the second-
order spatial derivative ofxj(z,t); bh, cj, and w are constant
coefficients (withbh > 0), andxj0(z) is a sufficiently smooth
function of z. The functionbi(z) ∈ L2(0,π) is a known square
integrable function ofz that describes how the control action,
ui(t), is distributed in the spatial interval [0,π]; L2(0,π) denotes
the space of square-integrable functions defined on the interval
[0,π]. The function sj(z) ∈ L2(0,π) is also a known square
integrable function ofz that captures thejth measurement sensor
specifications. In eq 4, the functionr(z) ∈ L2(0,π) is a “state
constraint distribution” function that is square-integrable and
describes how the state constraint is enforced in the spatial
domain [0,π]. Whenever the control action is applied to the
spatial domain at a single pointzai, with zai ∈ [0,π] (i.e., point
actuation), the functionbi(z) is taken to be nonzero in a finite
spatial interval of the form [zai - µ,zai + µ], whereµ is a small
positive real number, and zero elsewhere in [0,π]; a similar
approach can be used to handle point sensing and point
constraints. Throughout the paper, the notation|‚| will be used
to denote the standard Euclidian norm inRn, whereas the
notation|‚|Q will be used to denote the weighted norm defined
by |x|Q2 ) x′Qx, whereQ is a positive-definite matrix andx′
denotes the transpose ofx.

To proceed with the presentation of our results, we formulate
the PDE of eqs 1, 2, 3, and 4 as an infinite-dimensional system
in the state spaceH ) L2(0,π), with an inner product of

and norm of

whereω1 andω2 are any two elements ofL2(0,π).
The state functionx(t) on the state-spaceH ) L2(0,π) is

defined as

and the operatorA is defined as

whereφ(z) is a smooth function on [0,π] with φ(0) ) 0 and
φ(π) ) 0, with the following dense domain:

The input operator is defined as

the measured output operator is defined as

and the state constraint is defined as

∂xj(z,t)

∂t
) bh

∂
2xj(z,t)

∂z2
+ cjxj(z,t) + w∑

i)1

m

bi(z)ui(t) (1a)

yj(t) ) ∫0

π
sj(z)xj(z, t) dz (j ) 1, ...,p) (1b)

xj(0,t) ) 0, xj(π,t) ) 0, xj(z,0) ) xj0(z) (2)

ui
min e ui(t) e ui

max (i ) 1, ...,m) (3)

ømin e ∫0

π
r(z)xj(z,t) dz e ømax (4)

(ω1,ω2) ) ∫0

π
ω1(z)ω2(z) dz (5a)

||ω1||2 ) (ω1,ω1)
1/2 (5b)

x(t) ) xj(z,t) (for t > 0, 0< z < π) (6)

Aφ ) bh(d2
φ

dz2) + cjφ (for 0 < z < π) (7)

D(A) ) {φ(z) ∈ L2(0,π): φ(z) and
dφ(z)

dz
are absolutely

continuous;Aφ ∈ L2(0,π), φ(0) ) 0, andφ(π) ) 0} (8)

Bu(t) ) w∑
i)1

m

bi(·)ui(t) (9)

Sx(t) ) [(s1,x(t)) (s2,x(t)), ..., (sj,x(t))] (10)

ømin e (r,x(t)) e ømax (11)
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Using the aforementioned definitions, the system of eqs 1,
2, 3, and 4 can be written as follows:

on H ) L2(0,π). The spectrum of the operatorA can be
obtained by solving the following eigenvalue problem:

subject to

whereλj denotes an eigenvalue andφj denotes an eigenfunction.
A direct computation of the solution of the aforementioned
eigenvalue problem yields

The spectrum ofA, σ(A), is defined as the set of all
eigenvalues ofA, i.e., σ(A) ) {λ1,λ2,...}. All the eigenvalues
of A are real, and for a givenbh andcj, only a finite number of
unstable eigenvalues exists, and the distance between any two
consecutive eigenvalues (i.e.,λj andλj+1) increases asj increases.
This implies that the dominant dynamics of the PDE can be
described by a finite-dimensional system, and motivates the use
of modal decomposition to derive a finite-dimensional system
that captures the dominant (slow) dynamics of the PDE (see
subsection 2.3 later in this paper).

From the properties ofA and its spectrum, it follows thatA
generates a strongly continuousC0-semigroup,u(t).38 Moreover,
becauseB is a bounded operator, the system of eq 12 has a
mild solution of the form

Remark 1. Note that, although we use the PDE system of eqs
1-4 to motiVate and illustrate the deVelopment of the infinite-
dimensional system of eq 12, our subsequent results are not
limited to single PDEs of the form of eqs 1-4. Specifically, the
results deVeloped in this work apply to parabolic PDEs, with
other types of boundary conditions (for example, mixed bound-
ary conditions) and systems of parabolic PDEs, as long as they
possess an operatorA for which the spectrum decomposition
property holds. These conditions can be shown to hold for all
linear parabolic PDEs with self-adjoint operators, which haVe
finitely many eigenValues with positiVe real part. In the domain
of chemical process control, the class of linear parabolic PDEs
with self-adjoint operators arises frequently from the lineariza-
tion of first-principle models of transport-reaction processes.
HoweVer, one must be cautious with the possible transformation
applied in the case of nonhomogeneous boundary conditions,
because the transformation applied might change the structure
in the definition of operators and the inner product of the
associated Hilbert state space (see examples in ref 38).

2.2. Model Predictive Control. Referring to the system of
eq 12, we consider the problem of asymptotic stabilization of

the origin, subject to the control constraints of eq 14 and the
state constraint of eq 15. The problem will be addressed within
the MPC framework (see ref 32 for a review of various MPC
algorithms for finite-dimensional systems), where the control,
at a statex(t) and timet, is conventionally obtained by solving,
on-line, a finite-horizon constrained optimal control problem
of the form

whereS) S(t,T) is the family of piecewise continuous functions
(functions continuous from the right), with period∆, mapping
[t, t + T] into U ) {u(t) ∈ Rm: ui

min e ui(t) e ui
max, for i ) 1,

..., m}, andT is the specified horizon. The controlu(‚) in S is
characterized by the sequenceu[k], where u[k] ) u(k∆) and
satisfiesu(t) ) u[k] for all t ∈ [k∆,(k + 1)∆). The performance
index is given by

whereq is a positive real number, andR is a positive number;
xu(τ; x(t),t) denotes the solution of eq 12 that is due to the control
u(t), with an initial statex(t) at a timet, andF(‚) denotes the
terminal penalty. The minimizing controlu0(‚) ) {u(k∆), u((k
+ 1)∆), u((k + 2)∆), ...} ∈ S is then applied to the system over
the interval [k∆,(k + 1)∆] and the procedure is repeated
indefinitely. This defines an implicit model predictive control
law,

in which M(x(t)) denotes the nonlinear map between the state
and control. The predictive control problem of eqs 20 and 21
is formulated on the basis of an infinite-dimensional system,
and therefore, it leads to a predictive controller that is of infinite
order and cannot be realized in practice. To overcome this
problem, in the next section, we develop computationally
efficient predictive control formulations that achieve stabilization
of the system of eq 12, subject to the control and state constraints
of eqs 14 and 15. Throughout the manuscript, because we work
with continuous time PDE systems in order to present the
closed-loop stability results concisely, we will allow the hold
time to have a value of∆ ) 0; our results can be extended to
the case where∆ is greater than zero but sufficiently small (i.e.,
sample-and-hold implementation of the predictive controller)
at the expense of proving practical stability of the closed-loop
system (i.e., the state of the infinite-dimensional closed-loop
system converges in finite-time in a small ball around the origin,
whose size decreases as the hold time∆ decreases).

Remark 2. It is well-known that, eVen for the finite-
dimensional systems, the control law that is defined by eqs 20-
23 is not necessarily stabilizing. For finite-dimensional systems,
the issue of closed-loop stability is usually addressed by means
of imposing suitable penalties and constraints on the state at
the end of the optimization horizon (e.g., see refs 30 and 32 for
surVeys of different approaches).

2.3. Modal Decomposition.Referring to the system of eq
12, letHs andHf be modal subspaces ofA, which are defined
asHs ) span{φ1,φ2,...,φm} andHf ) span{φm+1,φm+2,...} (the

x̆(t) ) Ax(t) + Bu(t) , x(0) ) x0 (12)

y(t) ) Sx(t) (13)

ui
min e ui(t) e ui

max (for i ) 1, ...,m) (14)

ømin e (r,x(t)) e ømax (15)

Aφj ) bh(d2
φj

dz2 ) + cjφj ) λjφj (16)

φj(0) ) 0, φj(π) ) 0 (17)

λj ) cj - bhj2, φj(z) ) x2
π

sin(jz) (for j ) 1, ...,∞) (18)

x(t) ) u(t)x0 + ∫0

t
u(t - τ)Bu(τ) dτ (19)

P(x(t),t): min{J(x(t),t,u(·)) | u(·)∈ S} (20)

s.t. x̆(τ) ) Ax(τ) + Bu(τ) (21a)

u(τ) ∈ U (21b)

ømin e (r,x(τ)) e ømax (for τ ∈ [t, t + T]) (21c)

J(x,t,u(·)) ) ∫t

t+T
[q||xu(τ; x,t)||22 + | u(τ)|R2] dτ +

F(x(t + T)) (22)

u(t) ) M(x(t)) ) u0(k∆; x(t),t) (23)
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existence ofHs, Hf follows from the properties ofA, andm is
chosen such thatλm+1 < 0). Defining the orthogonal projection
operators,Ps andPf, such thatxs(t) ) Psx(t) andxf(t) ) Pfx(t),
the statex(t) of the system of eq 12 can be decomposed as

Applying Ps and Pf to the system of eq 12 and using the
aforementioned decomposition forx(t), the system of eq 12 can
be rewritten in the following equivalent form:

whereAs ) PsA, Bs ) PsB, Af ) PfA, Bf ) PfB, Ss )
SPs, and Sf ) SPf. In the aforementioned system,As is a
diagonal matrix of dimensionm × m of the formAs ) diag-
{λj} (note that some of theλj, j ) 1,‚‚‚, m eigenvalues may be
unstable) andAf is an infinite-dimensional operator that is
exponentially stable (following from the fact thatλm+1 < 0 and
the selection ofHs,Hf). From the properties ofAs andAf, it
follows that there existC0 semigroupsus(t) anduf(t) for which
the following characterization is given by the Hille-Yoshida
theorem,||ui(t)|| e Mieωit,(i ) s, f).38 In addition, because of
the fact thatBs and Bf are bounded operators, thexs(t) and
xf(t) subsystems of eq 25 admit the following mild solutions:

Furthermore, becauseAf is a stable operator, the spectrum of
Af satisfies sup{Re {σ(Af)}} < ωf < 0, for someωf > cj -
bh(m + 1)2, and thus,uf(t) satisfies

where Mf is a positive constant. Furthermore, there exists a
positive constantM such that

whereu(t) ) diag{us(t),uf(t)} andω ) max{ωs,ωf}.

3. Predictive Output Feedback Control

3.1. State Estimation.The objective of this section is to
propose predictive control formulations that make use of
measurements of a finite number,p, of measured outputsyj to
enforce stability and constraint satisfaction in the closed-loop
system. To this end, we follow39 and use a state estimation
scheme, based on direct inversion of the measured output map,
to obtain estimates of the statesxs(t) of the system of eq 25. To
develop this estimation scheme, we must impose the following
assumption on the number of measured outputs and the form
of the sensor shape function.

Assumption 1: p) m (i.e., the number of measured outputs
is equal to the number of slow states) andSs

-1 exists.
Assumption 1 ensures that the finite-dimensionalxs(t) subsystem

is stabilizable via static output feedback control (together with
the assumption that the pair (As,Bs) is controllable) and can
be satisfied by proper placement of the measurement sensors.
Under assumption 1, an estimate of the state of thexs(t)
subsystem can be obtained as follows:

wherex̂s(t) is an estimate ofxs(t).
3.2. Low-Order Predictive Output Feedback Control. In

this subsection, we present a predictive control formulation that
is developed on the basis of the finite-dimensionalxs(t)
subsystem of eq 25. Specifically, the control action is computed
by solving, in a receding horizon fashion, the following
optimization problem:

whereF(‚) is the terminal cost. The predictive control law of
eqs 31 and 32 is stabilizing for the set of initial conditionsxs-
(0) ∈ Ωs, where the setΩs is dependent on the constraints on
the states and inputs, the system dynamics, the horizon length
T, and the location where the output measurements are taken;
the reader may refer to refs 40 and 41 for a Lyapunov-based
approach for the construction of estimates ofΩs.

Assumption 2 below states the properties that we assume that
the model predictive controller of eqs 31 and 32 enforces in
the closed-loop finite-dimensionalxs(t) subsystem under the use
of state feedback control (i.e.,x̂s(t) ) xs(t); the state feedback
control xs(t) is assumed to be known).

Assumption 2: Consider the closed-loop system resulting from
the finite-dimensional xs(t) subsystem of eq 25 and the predictiVe
controller of eqs 31 and 32 with xˆs(t) ) xs(t). There, then exists
a compact setΩs ⊂ Hs (Ωs includes in its interior xs(t) ) 0)
such that, for all xs(0) ∈ Ωs, xs(t) ∈ Ωs for all t g 0 and the
equilibrium xs(t) ) 0 of the closed-loop system is asymptotically
stable and, locally, is exponentially stable.

Theorem 1 below states sufficient conditions under which
the predictive output feedback controller of eqs 31 and 32
enforces stability in the infinite-dimensional closed-loop system.

Theorem 1: Consider the closed-loop infinite-dimensional
system resulting from the application of the predictiVe controller
of eqs 31 and 32 to the system of eq 25 and suppose that
assumptions 1 and 2 hold. Then, giVen a compact setΩ′s ⊂ Ωs

and a positiVe constant b, there exists anε* such that ifε )
|λ1|/|λm+1| ∈(0,ε* ], and x(0)) xs(0) + xf(0) is such that xs(0)
∈ Ω′s and |xf(0)| e b, the equilibrium (xs, xf) ) (0, 0) of the
closed-loop infinite-dimensional system is asymptotically stable.

Proof: Let u(t) ) M(x̂s) ) M(xs(t),xf(t)) be the general
expression of the control law corresponding to the predictiVe
control formulation of eqs 31 and 32. Consider the closed-loop
system under this control law:

Usingε ) |λ1|/|λm+1|, we can rewrite the aforementioned system

x(t) ) Psx(t) + Pfx(t) ) xs(t) + xf(t) (24)

dxs(t)

dt
) Asxs(t) + Bsu(t), xs(0) ) Psx(0) ) Psx0 (25a)

dxf(t)

dt
) Afxf(t) + Bfu(t), xf(0) ) Pfx(0) ) Pfx0 (25b)

y(t) ) Ssxs(t) + Sfxf(t) (25c)

xs(t) ) us(t)xs(0) + ∫0

t
us(t - τ)Bsu(τ) dτ (26)

xf(t) ) uf(t)xf(0) + ∫0

t
uf(t - τ)Bfu(τ) dτ (27a)

y(t) ) Ssxs(t) + Sfxf(t) (27b)

||uf(t)||2 e Mfe
ωft (for t g 0) (28)

||u(t)|| e Meωt (29)

x̂s(t) ) Ss
-1y(t) (30)

min
u

∫t

t+T
[q||x̂s(τ)||22 + |u(τ)|R2] dτ + F(x̂s(t + T)) (31)

s.t. x̂̇s(τ) ) Asx̂s(τ) + Bsu(τ) (32a)

u(τ) ∈ U (32b)

ømin e (r,x̂s(τ)) e ømax (τ ∈ [t, t + T]) (32c)

x̂s(t) ) Ss
-1y(t) (32d)

x̆s(t) ) Asxs(t) + BsM(xs(t),xf(t)) (33)

x̆f(t) ) Afxf(t) + BfM(xs(t),xf(t)) (34)
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in the following standard singularly perturbed form:

whereAfε ) εAf and the matrixesAs andAf have eigenvalues
of the same order of magnitude. Performing a two-time scale
decomposition of the above system, we can see that the slow
subsystem takes the form

or

Under assumption 2, the origin of the system of eq 39 for every
xs(0) ∈ Ωs is asymptotically stable and, locally, exponentially
stable. Introducing the “stretched” time scaleτ ) t/ε, the system
of eqs 35 and 36 can be written as

and settingε ) 0, we obtain the fast subsystem:

which is exponentially stable. From the stability properties of
the subsystems of eqs 39-41, we can use arguments similar to
those in ref 42 and the result of proposition 1 in ref 6 to conclude
that, given a compact setΩ′s ⊂ Ωs and a positive constantb,
there exists anε* such that, ifε ∈ (0,ε*] and x(0) ) xs(0) +
xf(0), such thatxs(0) ∈ Ω′ and |xf(0)| e b, the equilibrium (xs,
xf) ) (0, 0) of the closed-loop infinite-dimensional system is
asymptotically stable. This completes the proof of Theorem 1.

However, in the controller formulation described by eqs 31
and 32, the evolution of the fast states is not taken into account,
neither in the cost functional nor in the state constraints.
Therefore, a potential drawback of this formulation is the fact
that the resulting predictive control law, when implemented on
the infinite-dimensional system of eq 12, will enforce closed-
loop stability but not necessarily full-state constraint satisfaction,
because it neglects the evolution of the fast states. In particular,
because the full state,x(t), includes contributions from bothxs-
(t) andxf(t) (recall thatx(t) ) xs(t) + xf(t)), it is possible that
the xf(t) subsystem, which is affected by the control input,
evolves in a way that causes the full-state constraints to be
violated for some time. Therefore, although the stabilization
objective can be achieved, the additional objective of state
constraints satisfaction requires that the evolution of fast states
be properly taken into account when designing the predictive
controller.

3.3. Predictive Output Feedback Control Accounting for
Fast Modes.In this subsection, we develop a predictive output
feedback control formulation that explicitly accounts for the fast
modesxf(t) and derive sufficient conditions under which the
predictive controller enforces stability and constraint satisfaction
in the infinite-dimensional closed-loop system. To proceed with

this task, we must first devise an estimation scheme that will
allow computing estimates of thexf(t) states from the output
measurements. Because the number of output measurements is
finite, the entire infinite-dimensional statexj(z, t) (or x(t)) cannot
be computed through inversion of the measurement equation.
To this end, we propose to use a large, but finite-dimensional,
approximation of the statexf(t) in the predictive controller.
Therefore, we decomposex(t) as

wherexs(t) ∈ Hs is the state of the slow subsystem,xf1(t) ∈ Hf1

) span{φm+1,...,φm+q} is the state of a finite-dimensional system
including modes from (m + 1) to (m + q), and xf2(t) is the
state of an infinite-dimensional system including modes from
(m + q + 1) to infinity (xf2(t) ∈ Hf2 ) span{φm+q+1,‚‚‚,∞}).
Using this decomposition, the system of eq 25 can be written
as

whereAf1 ) Pf1A, Bf1 ) Pf1B, Af2 ) Pf2A, Bf2 ) Pf2B,
Sf1 ) SPf1, Sf2 ) SPf2 andPf1 andPf2 are orthogonal projection
operators that projectx(t) ∈ H ontoxf1(t) ∈ Hf1 andxf2(t) ∈ Hf2

(i.e., xf1(t) ) Pf1x(t) and xf2(t) ) Pf2x(t)), respectively. We
introduce the following assumption that is important for the
computation of estimates of thexs(t) andxf1(t) states.

Assumption 3: p) m + q (i.e., the number of measurements
is equal to the dimension of the model used for control design)
and the inVerseSsf1

-1 exists (whereSsf1 is a p× p matrix whose
(i, j) element is (sj,φi), i ) 1,‚‚‚, p; j ) 1,‚‚‚, p), such that [xˆs(t)
x̂f1(t)] ′ ) Ssf1

-1y(t).
The predictive controller that uses fast states takes the form

whereR is a positive constant. The important feature of the
control law of eqs 44 and 45 is the inclusion of the fast states
xf1(t) in the predictive control law. However, in eqs 44 and 45,
the (x̂s(t), x̂f1(t)) in the state constraints is dependent on the
accuracy of the state estimates, so it is necessary to develop
some quantitative measure that would address the issue of the
accuracy of the estimated modes, and therefore, the issue of
the successful state and input constraints satisfaction. To address
this issue in a quantitative manner, we introduce the “back-
off” parameter R, which is dependent on the number of
measurementsp. In other words, this back-off correction
decreases as the number of measurements increases, because,
in this case,x̂s(t) and x̂f1(t) estimate betterxs(t) and xf1(t). To
provide the relation between the set of initial conditions, the

x̆s(t) ) Asxs(t) + BsM(xs(t),xf(t)) (35)

εx̆f(t) ) Afε
xf(t) + εBfM(xs(t),xf(t)) (36)

x̆s(t) ) Asxs(t) + BsM(xs(t),xf(t)) (37)

0 ) Afε
xf(t) (38)

x̆s(t) ) Asxs(t) + BsM(xs(t)) (39)

dxs(τ)

dτ
) ε(Asxs(τ) + BsM(xs(τ),xf(τ))) (40a)

dxf(τ)

dτ
) Afε

xf(τ) + εBfM(xs(τ), xf(τ)) (40b)

dxf(τ)

dτ
) Afε

xf(τ) (41)

x(t) ) xs(t) + xf1(t) + xf2(t) (42)

x̆s(t) ) Asxs(t) + Bsu(t) (43a)

x̆f1(t) ) Af1xf1(t) + Bf1u(t) (43b)

x̆f2(t) ) Af2xf2(t) + Bf2u(t) (43c)

y(t) ) Ssxs(t) + Sf1xf1(t) + Sf2xf2(t) (43d)

min
u

∫t

t+T
[q||x̂s(τ)||22 + |u(τ)|R2] dτ + F(x̂s(t + T)) (44)

s.t. x̂̇s(τ) ) Asx̂s(τ) + Bsu(τ) (45a)

x̂̇f1(τ) ) Af1x̂f1(τ) + Bf1u(τ) (τ ∈ [t, t + T]) (45b)

u(τ) ∈ U (45c)

ømin - R e (r,x̂s(τ) + x̂f1(τ)) e ømax - R (45d)

[x̂s(t) x̂f1(t)]′ ) Ssf1
-1y(t) (45e)
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controller parameters, and the back-off parameterR, we
introduce the following assumption.

Assumption 4: Consider the closed-loop system

There then exists a compact setΩsf1 that includes xs ) xf1 ) 0
in its interior, such that, for any [xs(0) xf1(0)] ∈ Ωsf1, the
equilibrium (xs, xf1) ) (0, 0) of the system of eqs 46 and 47 is
asymptotically stable and, locally, is exponentially stable.

Theorem 2 below states sufficient conditions under which
the predictive output feedback controller of eqs 44 and 45
enforces stability and constraints satisfaction in the infinite-
dimensional closed-loop system.

Theorem 2: Consider the infinite-dimensional system of eq
25 under the predictiVe output feedback controller of eqs 44
and 45 and suppose that assumptions 3 and 4 hold. Then, giVen
a compact setΩ′sf1 ⊂ Ωsf1, there existε* and b such that if
[xs(0) xf1(0)] ∈ Ω′sf1, |xf(0)| e b and ε ) |λ1|/|λm+1| ∈(0,ε* ],
the equilibrium (xs, xf) ) (0, 0) of the closed-loop infinite-
dimensional system is asymptotically stable and the state
constraint of eq 25 is satisfied in the closed-loop system for all
t g 0.

Proof: Let the control law resulting from the predictiVe
control formulation of eqs 44 and 45 be denoted by u(t))
M2(x̂s(t),x̂f1(t)) ) M2(xs(t),xf1(t),xf2(t)). Consider the closed-loop
system under the predictiVe controller:

Usingε ) |λ1|/|λm+q+1| and multiplying the xf2(t) subsystem by
ε, we haVe

whereAf2ε
) εAf2. Performing a two-time scale decomposition

of the aforementioned system, we obtain the slow subsystem:

Under assumption 4, the solution (xs, xf1) ) (0,0) of the
aforementioned system is asymptotically stable and, locally, is
exponentially stable for every [xs(0) xf1(0)] ∈ Ωsf1. Furthermore,
the fast subsystem has the form

which is exponentially stable. From the stability properties of
the slow and fast subsystems of eqs 52, 53, and 54, we can use
similar arguments to the proof of Theorem 1 to show that, given
a compact setΩ′sf ∈ Ωsf1 and a positive real numberb, there
exists anε* such that if [x̂s(0) x̂f1(0)] ∈ Ωsf1 and ||xf(0)|| e b
andε ∈ (0,ε*1], the equilibrium (xs,xf) ) (0,0) of the closed-loop
infinite-dimensional system of eq 25 is asymptotically stable.

Furthermore, there existε*2 andb for which the estimation error
is sufficiently small andxf2(τ) is also sufficiently small (the fact
that there existε*2 and b such thatxf2(τ) is sufficiently small
follows from the structure and stability property of thexf2(t)
subsystem), and then the fact thatømin - R e (r,x̂s(τ) + x̂f1(τ))
e ømax - R implies thatømin e (r,x̂s(τ) + x̂f1(τ) + x̂f2(τ)) e
ømax. Pick ε* ) min{ε*1,ε*2} to complete the proof.

Remark 5.The back-off parameterR applied in eqs 44 and
45 can be seen as a conservative bound on the evolution of the
xf2 states that guarantees state constraints satisfaction. This
measure cannot exceed the absolute value of the difference
betweenømax - ømin, nor should it be such that it mutually
excludes other constraints imposed, for example, a stability
constraint of the formxs(t + T) ) 0. A good estimate ofR can
be determined by simulations.

Remark 6.The successful application of the predictive control
law of eqs 44 and 45 hinges on the accuracy of the estimated
states through the state reconstruction scheme that is used. To
improve this accuracy, one can consider formulating and solving
an optimal sensor placement problem. This has been addressed
in ref 43, where the optimal sensor placement problem has been
addressed via a min-max optimization formulation, which is
solved through a guided search technique.

4. Simulation Example

In this section, we demonstrate and compare, through
computer simulations, the implementation of the two MPC
formulations discussed in the previous section. To this end, we
consider the parabolic PDE of eq 1, withbh ) 1, cj ) 1.66,w )
2, and two control actuators (m ) 2) with the following
distribution functions:bi(z) ) 1/µ for z ∈ [zai - µ,zai + µ] and
bi(z) ) 0 elsewhere in [0,π], whereµ ) 0.005,za1 ) π/3, and
za2 ) 2π/3. For these values, it was verified that the operating
steady state,xj(z,t) ) 0, is an unstable one. The control objective
is to stabilize the state profile at the unstable zero steady state
by manipulatingui(t) subject to the input and state constraints
of eqs 3 and 4 withui

min ) - 2.5,ui
max ) 2.5, for i ) 1 and 2,

ømin ) -0.035,ømax ) 2.0. The state constraints distribution
function, r(z), is chosen to ber(z) ) 1/µ for z ∈ [zc - µ, zc +
µ] and r(z) ) 0 elsewhere in [0,π], where zc ) 1.047 is the
point where the state constraint is to be enforced andµ ) 0.005.
The eigenvalue problem for the spatial differential operator of
the PDE of eq 16 can be solved analytically, and its solution
yields

For this system, we consider the first two eigenvalues to be the
dominant ones and use two point control actuators (m ) 2) to
achieve the control objective, subject to the constraints of eqs
14 and 15. In particular, using modal decomposition, we can
derive the following high-order ODE system that describes the
temporal evolution of the firstl modes:

whereas(t) ) [a1(t) a2(t)]′, af(t) ) [a3(t) a4(t) ‚‚‚ al(t)]′, ai(t) ∈
R is the ith mode, the notationas(t)′ denotes the transpose of
as(t), u(t) ) [u1(t) u2(t)]′, the matricesAs andAf are diagonal
matrixes, given byAs ) diag{λi}, for i ) 1 and 2 andAf )

x̆s(t) ) Asxs(t) + BsM(xs(t),xf1(t)) (46)

x̆f1(t) ) Af1xf1(t) + Bf1M(xs(t),xf1(t)) (47)

x̆s(t) ) Asxs(t) + BsM2(xs(t),xf1(t),xf2(t)) (48a)

x̆f1(t) ) Af1xf1(t) + Bf1M2(xs(t),xf1(t),xf2(t)) (48b)

x̆f2(t) ) Af2xf2(t) + Bf2M2(xs(t),xf1(t),xf2(t)) (48c)

x̆s(t) ) Asxs(t) + BsM2(xs(t),xf1(t),xf2(t)) (49)

x̆f1(t) ) Af1xf1(t) + Bf1M2(xs(t),xf1(t),xf2(t)) (50)

εx̆f2(t) ) Af2ε
xf2(t) + εBf2M2(xs(t),xf1(t),xf2(t)) (51)

x̆s(t) ) Asxs(t) + BsM2(xs(t),xf1(t),0) (52)

x̆f1(t) ) Af1xf1(t) + Bf1M2(xs(t),xf1(t),0) (53)

dxf2(τ)

dτ
) Af2ε

xf2(τ) (54)

λj ) 1.66- j2, φj(z) ) x2
π

sin(jz) (j ) 1, ...,∞) (55)

ăs(t) ) Asas(t) + Bsu(t) (56a)

ăf(t) ) Afaf(t) + Bfu(t) (56b)

y(t) ) Ssas(t) + Sfaf(t) (56c)
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diag{λi}, for i ) 3, ..., l. Bs andBf are a 2× 2 matrix and an
(l - 2) × 2 matrix, respectively, the (i, j)th elements of which
are given byBij ) (bj(z),φi(z)). We now proceed with the design
and implementation of the two predictive output feedback
control formulations presented in the previous section. The
following initial condition is considered in all simulation runs:
xj(z,0) ) 0.04 sin(z) + 0.015 sin(2z) and l is chosen to be 35
(further increases of the value ofl led to identical results for
both the open-loop and closed-loop systems). In the first
scenario, we use the predictive controller of Theorem 1.
Specifically, we use theas(t) subsystem of eq 56 as the basis
for the predictive controller design (theaf(t) subsystem is
neglected). According to Theorem 1, we consider an MPC
formulation with the following objective function and con-
straints:

whereqs ) 60, R ) rI (with r ) 0.01), andT ) 0.0429. To
ensure stability, we impose a terminal equality constraint of the
form âs(t + T) ) 0 on the optimization problem and setF(âs(t
+ T)) ) 0. According to assumption 1, the number of
measurements needed to obtain estimates of theâs(t) is p ) m
) 2 and the matrixSs is a 2× 2 matrix whose (i, j)th element
is given by (sj(z),φi(z)), wherei ) 1, 2 andj ) 1, 2; two point
measurements are taken, atπ/3 and 2π/3. The resulting quadratic
program is solved using the MATLAB subroutine QuadProg.
The control action is then implemented on the 35th order model
of eq 56. For this case, our calculations demonstrate that the
use of two output measurements, although sufficient for the
predictive controller of eqs 57 and 58 to achieve the closed-
loop stability of the system of eq 56, is not sufficient to estimate
the âs(t) states accurately, so that PDE state constraint satisfac-
tion is achieved. Furthermore, to demonstrate that, in addition
to more measurements, we need to include fast states in the
predictive controller to achieve constraint satisfaction, we
assume that we have available 30 measurements placed equi-
distantly in the following way:

and use them to compute a better estimate ofâs(t), using the
estimation scheme of assumption 3 (i.e., [âs(t) âf1(t)]′ )
Ssf1

-1y(t)), whereSsf1 is a square matrix whose (i, j)th element is
given by (sj(z),φi(z)) i ) 1, ..., 30;j ) 1, ..., 30. Figure 1, Figure
2, and Figures 3 and 4 (solid lines) show the closed-loop state,
the closed-loop profile at the point where the state constraint is
enforced, and manipulated input profiles, respectively, under
the MPC controller of eqs 57 and 58, using 30 measurements.
It is clear that the predictive controller successfully stabilizes
the state at the zero steady state. However, by examining the
solid line in Figure 2, we observe that the state atzc1 ) 1.047
violates the lower constraint for some time. The violation of
the state constraint comes from neglecting the contribution of
the âf(t) states in the predictive controller of eqs 57 and 58. To
account for the evolution of the fast states in the optimization

problem, we consider the predictive output feedback control
formulation of Theorem 2, which takes the form

where âs(t) ) [â1(t) â2(t)]′ and âf1(t) ) [â3(t) ‚‚‚ â30(t)]′. The
control law tuning parameters have the same values as those
used in the previous formulation. The back-off parameter is
taken to beR ) 0.0011. The resulting quadratic program is
solved using the MATLAB subroutine QuadProg. The control

min
u

∫t

t+T
[qs| âs(τ)|I2 + |u(τ)|R2] dτ + F(âs(t + T)) (57)

s.t. â̇s(τ) ) Asâs(τ) + Bsu(τ) (58a)

ui
min e ui(τ) e ui

max (for i ) 1, 2) (58b)

ømin e ∫0

π
r(z)[∑

i)1

2

âi(τ)φi(z)] dz e ømax (58c)

âs(t) ) Ss
-1y(t) (τ ∈ [t, t + T]) (58d)

[π/31 2π/31 ‚‚‚ 30π/31 ]

Figure 1. Closed-loop state profile under the MPC formulation of eqs 57
and 58, without accounting for the fast states in the state constraints, using
30 measurements.

Figure 2. Closed-loop output profiles (R(zc,t) ) ∫0
πδ(z - zc)xj(z, t) dz) at

zc ) 1.047, under the MPC formulation of eqs 57 and 58 (solid line), under
the MPC formulation of eqs 59 and 60 with 30 measurement points (dotted
line), and under the MPC formulation of eqs 59 and 60 with 5 measurement
points (dashed-dotted line).

min
u

∫t

t+T
[qs| âs(τ)|I2 + |u(τ)|R2] dτ + F(âs(t + T)) (59)

s.t. â̇s(τ) ) Asâs(τ) + Bsu(τ) (60a)

â̇f1(τ) ) Af1âf1(τ) + Bf1u(τ) (60b)

ui
min e ui(τ) e ui

max (for i ) 1, 2) (60c)

ømin - R e ∫0

π
r(z)[∑

i)1

30

âi(τ)φi(z)] dz e ømax - R (60d)

[âs(t) âf1(t)]′ ) Ssf1
-1y(t) (τ ∈ [t, t + T]) (60e)
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action is then implemented on the 35th-order model of eq 56.
Figure 5, Figure 2, and Figures 3 and 4 (dotted lines) show the
closed-loop state, the closed-loop profile at the point where the
state constraint is enforced, and manipulated input profiles,
respectively, under the MPC controller of eqs 59 and 60, using
30 measurements. It can be seen that closed-loop stability and
PDE state constraint satisfaction is achieved. Finally, to
demonstrate that, in addition to including fast states in the
predictive controller, we need to use a sufficiently large number
of measurements to achieve state constraint satisfaction, we
implemented the predictive controller of eqs 59 and 60 under
the use of only 5 point measurements. In this case, theâs(t) )
[â1(t) â2(t)]′ andâf1(t) ) [â3(t) ‚‚‚ â30(t)]′ states were computed
as

where∆z ) π/5 andzj ) j(π/6) (for j ) 1, ..., 5). The dashed-
dotted lines in Figures 2, 3, and 4, and Figure 6, show that,

even though fast states estimates are used in the controller
formulation of eqs 59 and 60 withR ) 0, the number of
measurement points is not large enough so that the predictive
controller can only achieve successful stabilization of the PDE
system but not PDE state constraint satisfaction.

5. Conclusions

This work considered linear parabolic partial differential
equation (PDE) systems with state and control constraints and
focused on the problem of designing predictive output feedback
controllers that enforce stability and constraint satisfaction in
the infinite-dimensional closed-loop system. Under the assump-
tion that a finite, yet sufficiently large, number of output
measurements is available, two predictive output feedback
controllers were constructed and sufficient conditions were
derived under which these controllers enforce stability and
constraint satisfaction in the infinite-dimensional closed-loop
system, respectively. The performance of the proposed control-
lers was successfully tested using a linear parabolic PDE
example.

Figure 3. Manipulated input profiles for the second control actuator applied
atza1 ) π/3 under the MPC formulation of eqs 57 and 58 (solid line), under
the MPC formulation of eqs 59 and 60 with 30 measurement points (dotted
line), and under the MPC formulation of eqs 59 and 60 with 5 measurement
points (dashed-dotted line).

Figure 4. Manipulated input profiles for the second control actuator applied
at za2 ) 2π/3 under the MPC formulation of eqs 57 and 58 (solid line),
under the MPC formulation of eqs 59 and 60 with 30 measurement points
(dotted line), and under the MPC formulation of eqs 59 and 60 with 5
measurement points (dashed-dotted line).

âi(t) )
1

π
∑
j)1

5

xj(zj, t)φi(zj)∆z (for i ) 1, 2, ..., 30) (61)

Figure 5. Closed-loop state profile under the MPC formulation of eqs 59
and 60, accounting for the fast states in the state constraints, using 30
measurements.

Figure 6. Closed-loop state profile under the MPC formulation of eqs 59
and 60, accounting for the fast states in the state constraints, using 5
measurements.
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