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SUMMARY

In this work, we focus on distributed control of quasi-linear parabolic partial differential equations (PDEs)
and address the problem of enforcing a prespecified spatio-temporal behaviour in the closed-loop system
using nonlinear feedback control and a sufficiently large number of actuators and sensors. Under the
assumption that the desired spatio-temporal behaviour is described by a ‘target parabolic PDE’, we use a
combination of Galerkin’s method and nonlinear control techniques to design nonlinear state and static
output feedback controllers to address this problem. We use examples of diffusion–reaction processes to
demonstrate the formulation of the control problem and the effectiveness of our systematic approach to
creating prespecified spatio-temporal behaviour. Using these illustrative examples, we demonstrate that
both (a) a sufficiently large number of actuators/sensors, and (b) nonlinear control laws are needed to
achieve this goal. Copyright # 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

Parabolic PDE systems arise naturally in the modelling of transport-reaction processes in finite
spatial domains and involve spatial differential operators whose spectrum can be partitioned
into a finite (possibly unstable) slow part and an infinite stable fast complement. Therefore, the
traditional approach to the control of parabolic PDEs involves the application of spatial
discretization techniques (predominantly Galerkin’s method) to the PDE system to derive large
systems of ordinary differential equations (ODEs) that accurately describe the dynamics of the
dominant (slow) modes of the PDE system. These are subsequently used as the basis for the
synthesis of finite-dimensional controllers (e.g. [1–3]). A potential drawback of this approach is
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that the number of modes that should be retained to derive an ODE system that yields the
desired degree of approximation may be very large, leading to complex controller design and
high dimensionality of the resulting controllers.

Motivated by this, recent work has focused on the synthesis of linear and nonlinear low-order
controllers on the basis of ODE models obtained through Galerkin’s method with data-based
construction of the basis functions (empirical eigenfunctions) and combination of Galerkin’s
method with techniques for the construction of approximate inertial manifolds (see, for
example, [4–8] and the recent book [9] for results in this area and references). In addition
to this work, other notable advances in control of PDE systems have been made, including
controller design based on the infinite-dimensional system and subsequent use of approximation
theory to design and compute low-order finite-dimensional compensators [10], results on
distributed control using generalized invariants [11] and concepts from passivity and
thermodynamics [12], and boundary backstepping control of a class of parabolic PDE
systems [13].

While the above efforts have led to the development of a number of systematic approaches for
distributed controller design, an underlying theme of the available approaches is to achieve
stabilization of the process at a (possibly open-loop unstable) spatially non-uniform profile by
using a finite (typically small) number of measurement sensors and control actuators, that are
distributed along the spatial extent of the process. Significant recent advances in actuation and
sensing technology make possible the use of large numbers of actuators and sensors to control
spatially distributed processes. Examples include the manufacturing of arrays of micro-
actuators/sensors for flow control (see, for example, the review article [14]) and the recent
development of computer-controlled focused laser beams for temperature control of catalytic
surfaces [15–17] (Figure 1). The advances in distributed actuation and sensing have motivated
research on linear distributed control of linear spatially invariant distributed parameter
systems (e.g. Reference [18]) and the discussion of the concept of inducing complex
behaviour in spatially distributed systems using feedback (e.g. [19]). However, a systematic
procedure for the design of nonlinear feedback laws that employ a large number of actuators
and sensors to create a prespecified, yet complex, spatio-temporal behaviour is currently not
available.

Motivated by the possibility of using such finely spatially resolved actuation/sensing, we focus
on distributed control of quasi-linear parabolic PDEs and consider the problem of enforcing a

Figure 1. Example of distributed actuation for diffusion–reaction processes using a large
number of computer-controlled focused laser beams.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:133–156

S. DUBLJEVIC, P. D. CHRISTOFIDES AND I. G. KEVREKIDIS134



prespecified spatio-temporal behaviour in the closed-loop system using distributed nonlinear
feedback control and a large number of actuators and sensors. Our control objectives go beyond
the stabilization of unstable profiles to feedback laws that completely change the nonlinear
vector field of the underlying PDE model when the loop is closed. Under the assumption that
the desired spatio-temporal behaviour is described by a ‘target parabolic PDE’, we use a
combination of Galerkin’s method and nonlinear control techniques to design nonlinear state
and static output feedback controllers to address this problem. To simplify our development, we
consider ‘target parabolic PDEs’ in which the structure of the spatial differential operator
and boundary conditions is identical to the one of the original PDE model. We use examples
of diffusion–reaction processes to demonstrate the formulation of the control problem
and the effectiveness of the proposed systematic approach to creating prespecified
spatio-temporal behaviour. Using these illustrative examples, we demonstrate that both
(a) a sufficiently large number of actuators/sensors, and (b) nonlinear control laws are needed to
achieve this goal.

PRELIMINARIES

In this work, we focus on quasi-linear parabolic PDE systems with the following state–space
description:

@ %xx

@t
¼B

@2 %xx

@z2
þ w

Xm
i¼1

biðzÞui þ f ð %xxÞ

ykm ¼
Z p

0

skðzÞo %xxðz; tÞ dz; k ¼ 1; . . . ; p

ð1Þ

subject to the boundary conditions

%xxð0; tÞ ¼ 0; %xxðp; tÞ ¼ 0 ð2Þ

and the initial condition:

%xxðz; 0Þ ¼ %xx0ðzÞ ð3Þ

where %xxðz; tÞ ¼ ½ %xx1ðz; tÞ � � � %xxnðz; tÞ�T 2 Rn denotes the vector of state variables, z 2 ½0;p� � R is
the spatial co-ordinate, t 2 ½0;1Þ is the time, ui 2 R denotes the ith manipulated input, and
ykm 2 R denotes the kth measured output. @2 %xx=@z2 denotes the second-order spatial derivative of
%xx; f ð %xxÞ is a sufficiently smooth nonlinear vector function, w;o are constant vectors, B is a
positive-definite, constant matrix, and %xx0ðzÞ is the initial condition. biðzÞ is a known smooth
function of z which describes how the control action uiðtÞ is distributed in the finite interval ½0;p�;
and skðzÞ is a known smooth function of z which depends on the shape (point or distributed
sensing) of the kth measurement sensors in the interval ½0; p�:Whenever the control action enters
the system at a single point z0; with z0 2 ½0;p� (i.e. point actuation), the function biðzÞ is taken to
be non-zero in a finite spatial interval of the form ½z0 � m; z0 þ m�; where m is a small positive real
number, and zero elsewhere in ½0; p�:

To present the controller design method that we follow for enforcing complex spatio-
temporal behaviour in the closed-loop system, we formulate Equation (1) as an infinite-
dimensional system in the Hilbert space Hð½0; p�;RnÞ; with H being the space of measurable
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functions defined on ½0; p�; with inner product and norm

ðo1;o2Þ ¼
Z p

0

ðo1ðzÞ;o2ðzÞÞRn dz; jjo1jj2 ¼ ðo1;o1Þ
1=2 ð4Þ

where o1;o2 are two elements of Hð½0; p�;RnÞ and the notation ð�; �ÞRn denotes the standard
inner product in Rn: Defining the state function x on Hð½0; p�;RnÞ as

xðtÞ ¼ %xxðz; tÞ; t > 0; z 2 ½0;p� ð5Þ

the operator A in Hð½0;p�;RnÞ as

Ax ¼B
@2 %xx

@z2
; x 2 DðAÞ ¼ fx 2 Hð½0;p�;RnÞ

%xxð0; tÞ ¼ 0; %xxðp; tÞ ¼ 0g

ð6Þ

and the input and measured output operators as

Bu ¼
Xm
i¼1

biui; Sx ¼ ðs;xÞ ð7Þ

the system of Equations (1)–(3) takes the form

’xx ¼AxþBuþ f ðxÞ; xð0Þ ¼ x0

ym ¼Sx

ð8Þ

where f ðxðtÞÞ ¼ f ð %xxÞ and x0 ¼ x0ðzÞ:

PROBLEM FORMULATION AND SOLUTION METHOD

To formulate the control problem, we assume that the target spatio-temporal profile, to be
enforced in the closed-loop system, can be accurately captured by a ‘target parabolic PDE’
system subject to boundary and initial conditions of the following form:

@ %xx

@t
¼ %BB

@2 %xx

@z2
þ #ff ð %xx; z; tÞ

%xxð0; tÞ ¼ 0; %xxðp; tÞ ¼ 0; %xxðz; 0Þ ¼ %xx0ðzÞ

ð9Þ

where #ff ð %xx; z; tÞ is a nonlinear vector field and %BB is a positive-definite, constant matrix. It is
assumed that #ff ð %xx; z; tÞ is a sufficiently smooth nonlinear vector function and satisfies #ff ð0; 0; 0Þ ¼
0: To simplify our development, the initial conditions of the original and ‘target PDE’ are
chosen to be the same.

The control problem is formulated as the one of determining a sufficient number of control
actuators and measurements sensors and computing the corresponding explicit form of the
control law that make the closed-loop system to be close (with respect to an appropriate norm)
to the target spatio-temporal profile (Equation (9)).

To address this problem, we employ the following methodology:

* Initially, Galerkin’s method is used to derive nonlinear finite-dimensional approximations
of the original (Equation (1)) and target (Equation (9)) parabolic PDE systems. The order
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of both finite-dimensional systems should be sufficiently high to ensure that the behaviour
of the original PDE system and of the ‘target PDE system’ can be accurately captured by
their finite-dimensional approximations (this is particularly important when the original
and target PDEs involve complex spatio-temporal behaviour and can be established by
careful numerical simulation). Furthermore, to simplify the controller design, the order of
both finite-dimensional systems is chosen here to be the same and equal to the smallest
order needed to derive finite-dimensional approximations for both the original and target
PDE systems that yield the desired accuracy.

* Once the order of the finite-dimensional approximations is fixed, the number of control
actuators and measurement sensors is chosen to be equal to the order of the discretization
(this requirement simplifies the controller design and can be relaxed), and nonlinear
inversion-based control techniques are used to design nonlinear state and output feedback
control laws that enforce the target behaviour in the closed-loop finite-dimensional system.
The design of the output feedback control laws involves a procedure proposed in [20]
to obtain estimates for the states of the finite-dimensional system from the
measurements.

* Finally, the closed-loop PDE system is analysed to confirm that the target behaviour is
enforced in the infinite-dimensional system under appropriate convergence conditions of
the finite-dimensional systems.

CONTROLLER DESIGN METHOD

Galerkin’s method

We apply Galerkin’s method to the system of Equation (8) to derive an approximate finite-
dimensional system. Let Hs; Hf be modal subspaces of A; defined as Hs ¼ spanff1;f2; . . . ;
fmg andHf ¼ spanffmþ1;fmþ2; . . . ; g (the existence ofHs;Hf follows from the properties ofA
and fj are eigenfunctions of A). Defining the orthogonal projection operators Ps and Pf such
that xs ¼ Psx; xf ¼ Pf x; the state x of the system of Equation (8) can be decomposed as

x ¼ xs þ xf ¼ Psxþ Pf x ð10Þ

Applying Ps and Pf to the system of Equation (8) and using the above decomposition for x; the
system of Equation (8) can be equivalently written in the following form:

dxs

dt
¼Asxs þBsuþ fsðxs;xf Þ

@xf
@t

¼Af xf þBf uþ ff ðxs;xf Þ

ym ¼Sxs þSxf

xsð0Þ ¼Psxð0Þ ¼ Psx0; xf ð0Þ ¼ Pf xð0Þ ¼ Pf x0

ð11Þ

where As ¼ PsA; Bs ¼ PsB; fs ¼ Ps f ; Af ¼ PfA; Bf ¼ PfB and ff ¼ Pf f and the notation
@xf =@t is used to denote that the state xf belongs in an infinite-dimensional space. Note that due
to the choice of Hs and Hf to be modal subspaces of A; PsAxf ¼ 0 and PfAxs ¼ 0: In the
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above system, As is a diagonal matrix of dimension m�m of the form As ¼ diagfljg (lj are
eigenvalues of As), fsðxs;xf Þ and ff ðxs; xf Þ are Lipschitz vector functions, and Af is an
unbounded differential operator which is exponentially stable (following from the fact that
lmþ150 and the selection of Hs;Hf ). Neglecting the fast and stable infinite-dimensional
xf -subsystem in the system of Equation (11), the following m-dimensional slow system is
obtained:

d *xxs

dt
¼As *xxs þBsuþ fsð *xxs; 0Þ

*yym ¼S *xxs

ð12Þ

where the bar symbol in *xxs and *yym denotes that these variables are associated with a finite-
dimensional system.

In our development, we will also need to use a finite-dimensional approximation of the target
parabolic PDE system of Equation (9). To this end, Equation (9) is formulated as an infinite-
dimensional system in the Hilbert spaceHð½0;p�;RÞ and Galerkin’s method is used to obtain the
following target finite-dimensional system:

d *xxs

dt
¼ #AAs *xxs þ #ff sð *xxs; 0; tÞ ð13Þ

Referring to the finite-dimensional approximations of Equations (12)–(13), we make the
following assumptions: (a) both approximations converge uniformly to the solution of their
corresponding infinite-dimensional system as m ! 1; and (b) the orders of both approxima-
tions are taken to be the same (equal to m) and sufficiently high to satisfy the desired accuracy
with which the closed-loop behaviour needs to be enforced. From these assumptions, the first
one is standard and holds for most parabolic PDEs arising in the modelling of diffusion–
convection–reaction processes (see also the example in Section 4). The second assumption is
made to simplify the controller design formulas and achieve the desired control objective, and it
does not pose any limitations on the class of parabolic PDE systems for which the proposed
method can be applied.

Nonlinear state feedback control

In this section, we consider the use of point control actuators and assume that measurements of
the states of the system of Equation (12) are available. We first address the problem of
synthesizing nonlinear static state feedback control laws of the general form

u ¼ Fð *xxsÞ ð14Þ

where Fð *xxsÞ is a nonlinear vector function that force the closed-loop finite-dimensional system
to be identical to the target finite-dimensional system of Equation (13). To address this problem
and simplify our development, we need to impose the following assumption.

Assumption 1
l ¼ m (i.e., the number of control actuators is equal to the order of the finite-dimensional
approximations), and the inverse of the matrix Bs exists.
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The requirement l ¼ m is sufficient and not necessary, and it is made to simplify the synthesis of
the controller (see also discussion in Remark 2 below).

Proposition 1 that follows provides the explicit formula for the state feedback controller that
achieves the control objective.

Proposition 1
Consider the finite-dimensional system of Equation (12) for which Assumption 1 holds. Then,
under the state feedback controller:

u ¼ B�1
s ðð #AAs �AsÞ *xxs þ #ff sð *xxs; 0; tÞ � fsð *xxs; 0ÞÞ ð15Þ

the closed-loop finite-dimensional system is identical to the one of Equation (13).

Remark 1
The proof of Proposition 1 can be obtained by substituting the controller of Equation (15) in
Equation (12) and performing several algebraic manipulations to show that the resulting closed-
loop finite-dimensional system is identical to the one of Equation (13).

Remark 2
It is important to note that the requirements l ¼ m and existence ofB�1

s are sufficient to design a
state feedback law that enforces the behaviour of Equation (13) in the closed-loop finite-
dimensional system. To ensure (approximate) controllability and invertibility of the matrix Bs;
we impose that rankðBsÞ ¼ m by appropriate selection of actuator locations zj, this requirement
excludes several point actuator locations for which rank Bs5m; see [21] for discussion on this
issue. For certain classes of systems, it may be possible to use co-ordinate changes and nonlinear
feedback to achieve the desired control objective with a smaller number of control actuators.

Output feedback control

The nonlinear controller of Equation (15) was derived under the assumption that measurements
of the states *xxs are available, which implies that measurements of the state variable, xðz; tÞ; are
available at all positions and times. However, from a practical point of view, measurements of
the state variables are only available at a finite number of spatial positions. Motivated by this,
we address in this section the synthesis of nonlinear output feedback controllers that use
measurements of the process outputs, ym; that make the closed-loop finite-dimensional system to
be identical to the ‘target’ finite-dimensional system of Equation (13).

Specifically, we consider output feedback control laws of the general form

u ¼ Fð ymÞ ð16Þ

where Fð ymÞ is a nonlinear vector function and ym is the vector of measured outputs. The
synthesis of the controller of Equation (16) will be achieved by combining the state feedback
controller of Equation (15) with a procedure proposed in Reference [20] for obtaining estimates
for the states of the approximate ODE model of Equation (12) from the measurements. To this
end, we need to impose the following requirement on the number of measured outputs in order
to obtain estimates of the states xs of the finite-dimensional system of Equation (12), from the
measurements ykm; k ¼ 1; . . . ; p:
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Assumption 2
p ¼ m (i.e., the number of measurements is equal to the order of the finite-dimensional
approximations), and S�1 exists, so that #xxs ¼ S�1ym:

We note that the requirement that the inverse of the operator S exists can be achieved by
appropriate choice of the location of the measurement sensors (i.e. functions skðzÞ). When point
measurement sensors are used, this requirement can be verified by checking the invertibility of a
matrix (see example in the next section).

Theorem 1 presents the proposed output feedback controller which enforces the target
behaviour in the closed-loop system.

Theorem 1
Consider the system of Equation (11), and the finite-dimensional system of Equation (12), for
which Assumptions 1 and 2 hold, under the nonlinear output feedback controller:

#xxs ¼S�1ym

u ¼B�1
s ðð #AAs �AsÞ #xxs þ #ff sð #xxs; 0; tÞ � fsð #xxs; 0ÞÞ

ð17Þ

Then, the closed-loop infinite-dimensional system under the output feedback controller
(Equations (1)–(17)) converges to the ‘target’ parabolic PDE system of Equation (9) as m ! 1:

Proof
Under the output feedback controller of Equation (17), the infinite-dimensional closed-loop
system takes the following form:

#xxs ¼S�1ym

’xx ¼Axþ f ðxÞ þBB�1
s ðð #AAs �AsÞ #xxs þ #ff sð #xxs; 0; tÞ � fsð #xxs; 0ÞÞ

xð0Þ ¼ x0

ym ¼Sx

ð18Þ

or equivalently

#xxs ¼S�1Sx

’xx ¼Axþ f ðxÞ þBB�1
s ðð #AAs �AsÞ #xxs þ #ff sð #xxs; 0; tÞ � fsð #xxs; 0ÞÞ;

ð19Þ

xð0Þ ¼ x0

Taking the limit as m ! 1; we have that #xxs ! x; Bs ! B; #AAs ! #AA; As ! A; #ff s ! #ff and
fs ! f ; and thus Equation (19) takes the form

’xx ¼Axþ f ðxÞ þBB�1ðð #AA�AÞxs þ #ff ðx; tÞ � f ðxÞÞ

xð0Þ ¼ x0
ð20Þ
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or after some algebraic manipulations

’xx ¼ #AAxþ #ff ðx; tÞ; xð0Þ ¼ x0 ð21Þ

which is the infinite-dimensional representation of the ‘target’ parabolic PDE system of
Equation (19); this completes the proof. &

Remark 3
Even though static output feedback is more sensitive to measurement noise than dynamic
output feedback, we prefer to use static feedback of ym in the controller of Equation (17)
because the use of a state observer to obtain estimates of the finite-dimensional state variables
would significantly increase the computational demand for the computation of the control
action, thereby impacting on the practical applicability of the proposed method. Note that in
such a formulation, an mth order nonlinear ODE system (with m potentially a large number
depending on the complexity of the spatio-temporal profile to be enforced in the closed-loop
system) would have to be integrated in real time in order to compute the control action.

Remark 4
To understand the essence of the result of Theorem 1 and the structure of the controller, it is
useful to put the control problem in question into perspective with respect to existing controller
design methods whose objective is to make the process output to track a reference signal
produced by an exogenous system. Under state feedback control, this problem is known as the
state feedback regulator problem and was solved by Francis [22] for linear multivariable finite-
dimensional systems. When only error measurements are available, this problem is known as the
error (output) feedback regulator problem for which it was shown, in the context of linear finite-
dimensional systems, by Francis and Wonham [23] that any controller (regulator) that solves
this problem has to incorporate a model of the exogenous system generating the reference signal
which is to be tracked (a property known as the internal model principle). More recently, the
complete solution to the error (output) regulation problem for linear distributed parameter
systems with bounded input/output operators was presented [24] and was shown that the
resulting regulator incorporates a model of the exogenous system generating the tracking signal.
With this in mind, it is easy to see why the controller of Equation (15) incorporates the entire
vector field of the finite-dimensional approximation of the ‘target parabolic PDE’ (which
captures the desired closed-loop behaviour); in this sense, the controller of Equation (15) obeys
the internal model principle. Our result also shows that it is possible by using a large number of
control actuators and sensors to force not only the output (tracking error in the regulation
problem) but the entire distributed state to behave according to a ‘target’ behaviour; this is not
unexpected since a large number of actuators and sensors provides large number of degrees of
freedom to shape the process dynamics according to a known ‘target PDE system’. We also note
that the notion of ‘target PDE system’ was recently used in [13] in the context of backstepping
boundary control of parabolic PDEs with the objective of stabilization.

Remark 5
Referring to the requirement that the initial condition of the original (Equation (1)) and ‘target’
(Equation (9)) parabolic PDEs are identical, it is important to note that this is sufficient to
ensure that the ‘target’ spatio-temporal profile is enforced in the closed-loop system as m ! 1
for all times. This requirement can be relaxed for initial conditions #xx0ðzÞ for which the solution
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of the ‘target’ parabolic PDE asymptotically converges to the target spatiotemporal profile. This
can be seen from the proof of Theorem 1 since for m ! 1; the resulting closed-loop system
would take the form of Equation (21) with xð0Þ ¼ #xx0=x0: So for #xx0; for which the solution of
the ‘target’ parabolic PDE converges asymptotically ðt ! 1Þ to the ‘target’ spatio-temporal
profile, the desired behaviour can be asymptotically ðt ! 1Þ enforced in the closed-loop system,
provided that a sufficiently large number of control actuators and measurement sensors is
employed.

SIMULATION STUDIES

Application to a 1D diffusion–reaction process

In this subsection, the proposed control methodology is applied to a one-dimensional diffusion–
reaction process example to enforce desired spatio-temporal behaviour in the closed-loop
system. The control is assumed to be implemented on the process by using spatially distributed
arrays consisting of large numbers of control actuators and measurement sensors, which are
placed at equidistant positions. Throughout the example, we consider point actuation and point
sensing.

Specifically, we consider a diffusion–reaction process described by a quasi-linear parabolic
PDE of the form

@ %xx

@t
¼ D

@2 %xx

@z2
þ bTe

�g=ð1þ %xxÞ þ bUðbðzÞuðtÞ � %xxÞ � bTe
�g ð22Þ

subject to the boundary and initial conditions

%xxð0; tÞ ¼ 0; %xxðp; tÞ ¼ 0; %xxðz; 0Þ ¼ %xx0ðzÞ ð23Þ

where %xx denotes the state of the process, bT denotes a dimensionless heat of reaction, g
denotes a dimensionless activation energy, bU denotes a dimensionless heat transfer
coefficient, D denotes a dimensionless diffusion coefficient, uðtÞ denotes the vector of
manipulated inputs (control actions) and bðzÞ is the vector of the actuator distribution
functions. The following typical values are given to the process parameters: bT ¼ 50:0; bU ¼
2:0; g ¼ 4:0; and D ¼ 1: For these, it was verified that the spatially uniform steady state
%xxðz; tÞ ¼ 0 is an unstable one. Specifically, the linearization of the PDE of Equation (22) around
%xxðz; tÞ ¼ 0 has the following form:

@ %xx

@t
¼ D

@2 %xx

@z2
þ ðbTe

�gg� bUÞ %xxþ bUbðzÞuðtÞ ð24Þ

To demonstrate the applicability and investigate the effect of various process and controller
parameters on the ability of the proposed method to enforce desired spatio-temporal behaviour
in the closed-loop system, we will consider a set of three ‘target parabolic PDEs’. Note that in
an engineering application, the desired closed-loop behaviour should be obtained from the
solution of an optimization problem whose objective is to maximize process performance; in
such a case the ‘target PDE’ can be subsequently constructed using a closed-form
approximation of the optimal spatio-temporal profile. Specifically, we consider the following
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‘target parabolic PDEs’: ð1Þ a linear parabolic PDE with spatially dependent additive term of
the form

@ %xx

@t
¼ b

@2 %xx

@z2
� 4 sin ð2zÞ

%xxð0; tÞ ¼ 0; %xxðp; tÞ ¼ 0; %xxðz; 0Þ ¼ %xx0ðzÞ

ð25Þ

where b is a positive constant parameter, with the value b ¼ 1:5; ð2Þ the so-called Chafee–Infante
diffusion–reaction equation:

@ %xx

@t
¼ b

@2 %xx

@z2
þ a %xx� b %xx3

%xxð0; tÞ ¼ 0; %xxðp; tÞ ¼ 0; %xxðz; 0Þ ¼ %xx0ðzÞ

ð26Þ

where a; b and b are constant positive parameters, with the following values a ¼ 2; b ¼ 2 and
b ¼ 1:5; and (3) a nonlinear time-varying parabolic PDE of the following form:

@ %xx

@t
¼ b

@2 %xx

@z2
þ #ff ð %xx; tÞ ð27Þ

where #ff ð %xx; tÞ ¼ a %xx� b %xx3 þ 2:5 sinð0:5tÞbTe
�g=ð1þ %xxÞ; and a; b; bT ; g are constant positive

parameters with the following values a ¼ 2; b ¼ 2; bT ¼ 50:0 and g ¼ 4:0:
In the first set of simulation runs, we consider the linear PDE of Equation (24) (which results

from the linearization of Equation (22) around %xxðz; tÞ ¼ 0; and thus, it has an unstable solution)
and focus on linear state feedback control. The ‘target PDE’ is Equation (25) with b ¼ 1:5: The
reason for considering the linear PDE of Equation (24) as the starting point is to show that the
desire to enforce a spatially varying profile necessitates the use of a large number of control
actuators and cannot be enforced, with the desired accuracy, when a restricted number of
control actuators is available. A 40th-order Galerkin discretization of Equation (25) is
computed and used in the simulation (higher-order discretizations led to identical results).
Figure 2 shows the target spatio-temporal behaviour described by Equation (25) with b ¼ 1:5:

The control problem is to compute the sufficient number of actuators and the corresponding
state feedback law so that the solution of a 40th-order discretization of the closed-loop PDE
system (linear PDE of Equation (24) under the state feedback law) is very close to the solution
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Figure 2. Spatio-temporal profile of linear parabolic PDE of Equation (25) with b ¼ 1:5:
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of the 40th-order discretization of the ‘target PDE’ of Equation (25). The closeness of the two
solutions is achieved after a short time needed for the fast transients associated with the modes
of the high-order discretization, which are not included in the model used for controller design,
to die out (note that this is possible because the initial conditions of the original and ‘target
PDE’ are chosen to be the same). To solve this problem, we derive several finite-dimensional
approximations of Equation (24) and use them to design state feedback laws that make the
vector fields of the corresponding closed-loop systems to be identical to the ones of the finite-
dimensional approximations of the ‘target PDE’ of Equation (25) of the same dimension. At this
point, it is important to note that (a) closeness of the solutions of the closed-loop system and of
the target PDE can be defined by using various norms; in this work, the closeness is evaluated by
checking the discrepancy between the two solutions at all positions and times, and (b) the fast
decay of the modes which are not included in the model used for controller design is a
consequence of the highly dissipative behaviour of parabolic PDEs.

Specifically, we construct second-, fifth- and tenth-order Galerkin approximations of the
PDEs of Equations (24) and (25) and design three state feedback control laws that exactly
enforce the target behaviour in the corresponding finite-dimensional closed-loop systems.
Following our approach, the developed control laws require two, five and ten control actuators
to be implemented. Figures 3–5 show the spatio-temporal profile of the closed-loop system
(simulated by the 40th-order Galerkin approximation) in the case of using ten, five and two
control actuators, respectively. The use of ten and five control actuators suffices to enforce the
desired target behaviour in the closed-loop system after a short time needed for the transients
associated with the higher-order modes to die out; the use of two control actuators is not
adequate to enforce the desired behaviour with the desired accuracy, see Figure 6 for the profiles
of the error between the solution of the ‘target PDE’ and the solution of the closed-loop system
under ten, five and two control actuators.

In the second set of simulation runs, we consider the nonlinear parabolic PDE of Equation
(22) as the starting point and the target PDE is Equation (25). The objective of this set of
simulations is to study the ability of linear feedback control, which uses a large number of
control actuators, to enforce (in the sense discussed above for the first set of simulation runs) the
desired behaviour. A 40th-order Galerkin’s discretization of Equation (25) with b ¼ 1:5 is
computed and used in the simulation (higher-order discretizations led to identical results).
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Figure 3. Closed-loop spatio-temporal profile of linearized diffusion–reaction equation (Equation (24))
under linear state feedback control with 10 equidistant control actuators}target behaviour:

linear parabolic PDE of Equation (25) with b ¼ 1:5:

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:133–156

S. DUBLJEVIC, P. D. CHRISTOFIDES AND I. G. KEVREKIDIS144



We apply the method of Section 4 to construct second order, fifth-order and twentieth-order
Galerkin approximations of the PDEs of Equations (22) and (25) and to design three nonlinear
state feedback control laws that exactly enforce the target behaviour to the finite-dimensional
closed-loop systems. Then, the nonlinear state feedback laws are linearized around the steady
state %xxðz; tÞ ¼ 0 to obtain three linear state feedback laws. The developed control laws are
implemented on a 40th-order Galerkin approximation of the nonlinear parabolic PDE of
Equation (22) using two, five and 20 control actuators, respectively. Figures 7–9 show the
spatio-temporal profile of the closed-loop system in the case of using 20, five and two control
actuators, respectively. It is clear that linear control cannot satisfactorily compensate for the
presence of nonlinear terms in Equation (22), and thus, the behaviour of Equation (25) cannot
be enforced in the closed-loop system. We note that when nonlinear control is implemented, the
use of 10 control actuators suffices to enforce the desired closed-loop behaviour. This set of
simulations demonstrates that linear feedback control may not be adequate to enforce a desired
behaviour in a quasi-linear parabolic PDE system (even though a large number of control
actuators is used).

In the third set of simulation runs, we consider the nonlinear parabolic PDE of Equation (22)
as the starting point and the target PDE is the Chafee–Infante diffusion–reaction equation of

0
5 10 15 20 25 30 35 40 45 0

0.5
1

1.5
2

2.5
3-1

-0.5

0

0.5

t

z
- x

Figure 4. Closed-loop spatio-temporal profile of linearized diffusion–reaction equation (Equation (24))
under linear state feedback control with five equidistant control actuators}target behaviour:

linear parabolic PDE of Equation (25) with b ¼ 1:5:
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Figure 5. Closed-loop spatio-temporal profile of linearized diffusion–reaction equation (Equation (24))
under linear state feedback control with two equidistant control actuators}target behaviour:

linear parabolic PDE of Equation (25) with b ¼ 1:5:
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Figure 6. Time profiles of the error eðtÞ is defined as eðtÞ ¼
R p
0 ð %xx� xtargetÞ

2 dz, between the solution
of the closed-loop system under 2, 5 and 10 control actuators and the solution of the target

PDE-original PDE-linearized diffusion–reaction equation (Equation (24))}target behaviour}linear
parabolic PDE of Equation (25) with b ¼ 1:5.
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Figure 7. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under linear state feedback control with 20 equidistant control actuators}target behaviour:

linear parabolic PDE of Equation (25) with b ¼ 1:5:
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Figure 8. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under linear state feedback control with five equidistant control actuators}target behaviour:

linear parabolic PDE of Equation (25) with b ¼ 1:5:
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Equation (26). The objective of this set of simulations is to show that it is possible to enforce (in
the sense discussed above for the first set of simulations) a desired behaviour in the closed loop
which is described by a ‘target nonlinear PDE’.

We use the methodology of Section 4 to construct second- and fifth-order Galerkin
approximations of the PDEs of Equations (22) and (26) and to design two nonlinear state
feedback control laws that exactly enforce the target behaviour to the finite-dimensional closed-
loop systems. The developed control laws are implemented on a 40th-order Galerkin
approximation of Equation (22) using two and five control actuators, respectively. Figures 10
and 11 show the spatio-temporal profile of the closed-loop system in the case of using two and
five control actuators, respectively. Clearly, the use of five control actuators and nonlinear
feedback enforces (in the sense discussed above for the first set of simulation runs) the desired
closed-loop behaviour.

In the fourth set of simulation runs, we consider the nonlinear parabolic PDE of Equation
(22) as the starting point and the target PDE is the nonlinear time-dependent PDE of Equation
(27). The objective is to show that is possible to use the proposed method to enforce
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Figure 9. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under linear state feedback control with two equidistant control actuators}target behaviour:

linear parabolic PDE of Equation (25) with b ¼ 1:5:
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Figure 10. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under nonlinear state feedback control with two equidistant control actuators}target behaviour: Chafee–

Infante diffusion–reaction equation of Equation (26) with a ¼ 2; b ¼ 1:5 and b ¼ 2:
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time-varying behaviour in the closed-loop system. We use the methodology of Section 4 to
construct second- and tenth-order Galerkin approximations of the PDEs of Equations (22) and
(27) and to design two nonlinear state feedback control laws that enforce the time-dependent
behaviour described by the ‘target’ nonlinear PDE of Equation (27) in the closed-loop finite-
dimensional system. The two control laws are implemented on the 40th-order Galerkin
approximation of Equation (22) using two and ten control actuators, respectively. Figures 12
and 13 show the spatio-temporal profile of the closed-loop system in the case of using two and
ten control actuators, respectively. It can be seen that while the use of two control actuators is
not adequate to enforce the requested behaviour in the closed-loop system, the use of ten control
actuators and nonlinear feedback suffices to enforce the desired time-varying behaviour in the
closed-loop system (compare Figures 13 and 14).

In the fifth set of simulation runs, the objective is to investigate the effect of the coefficient of
the diffusion term on the ability of the proposed method to enforce a desired spatio-temporal
behaviour in the closed-loop system. We consider the nonlinear PDE of Equation (22) as the
starting point and the target PDE is Equation (25). We also consider the following two values
for the coefficient of the diffusion term in the original PDE (a) D ¼ 0:4 and (b) D ¼ 0:06: In the
first simulation run D ¼ 0:4; we consider two control actuators and design a nonlinear state
feedback control law; Figure 15 shows the state of the resulting closed-loop system.
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Figure 11. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under nonlinear state feedback control with five equidistant control actuators}target behaviour: Chafee–

Infante diffusion–reaction equation of Equation (26) with a ¼ 2; b ¼ 1:5 and b ¼ 2:
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Figure 12. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under nonlinear state feedback control with two equidistant control actuators}target behaviour:

nonlinear parabolic time-varying PDE of Equation (27) with a ¼ 2; b ¼ 2; bT ¼ 50:0 and g ¼ 4:0:
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Figure 13. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under nonlinear state feedback control with 10 equidistant control actuators}target behaviour: nonlinear

parabolic time-varying PDE of Equation (27) with a ¼ 2; b ¼ 2; bT ¼ 50:0 and g ¼ 4:0:
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Figure 14. Evolution of the state of nonlinear time-varying parabolic PDE of Equation (27)
with a ¼ 2; b ¼ 2; bT ¼ 50:0 and g ¼ 4:0:
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Figure 15. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
with D ¼ 0:4 under nonlinear state feedback control with two equidistant control actuators}linear

parabolic PDE of Equation (25) with b ¼ 1:5:
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We can see that the use of two control actuators is not sufficient to enforce the behaviour of
Equation (25) (note that when the value of diffusion coefficient D ¼ 1 the use of two control
actuators is sufficient to achieve the same control objectives).

This result is expected since when D ¼ 0:4 the effect of the higher-order (residual) modes
(modes which are not included in the model used for controller design) increases and leads to
poor performance. Of course this effect can be suppressed by increasing the number of control
actuators and number of modes used in the controller design model. To clearly demonstrate this
point, we also considered the case of D ¼ 0:06 and used 20 control actuators and a nonlinear
state feedback law to enforce the behaviour of Equation (25) in the closed-loop system (in order
to preserve numerical stability, the order of the Galerkin approximation of the original PDE,
where the controller is implemented is taken to be 80). Figure 16 shows the state of the closed-
loop system. We can see that, even though the effect of the residual modes is stronger, the use of
20 control actuators and nonlinear feedback suffices to enforce the desirable behaviour in the
closed-loop system.

In the sixth set of simulation runs, we consider relaxing the requirement that the initial
conditions of the original (Equation (12)) and ‘target’ (Equation (13)) parabolic PDEs are
identical. Specifically, the initial condition for the original PDE is taken to be #xx0ðzÞ ¼
0:9 sinðzÞ þ 1:5 sinð2zÞ: Figure 17 shows the profile of the closed-loop system under a nonlinear
state feedback control law (designed using the proposed method) which uses ten control
actuators. As expected, the ‘target’ spatio-temporal profile is asymptotically ðt ! 1Þ enforced
in the closed-loop system.

Finally, we consider the case where state measurements are not available and we focus on
output feedback controller design. Under the assumption that the number of measurements is
equal to the number of control actuators (note that the number of control actuators should be
chosen so that the target behaviour is enforced in the closed-loop system, with the desired
accuracy, under state feedback control), we employ a procedure proposed in [20] for obtaining
estimates for the states of the finite-dimensional system from the measurements. The nonlinear
parabolic PDE of Equation (22) is taken to be as the starting point and the target PDE is the
linear parabolic PDE of Equation (25). Two nonlinear output feedback control laws are derived
on the basis of second- and fifth-order finite-dimensional approximations. Figure 18 shows the
evolution of the state of Equation (22) under a nonlinear output feedback control law which
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Figure 16. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
with D ¼ 0:06 under nonlinear state feedback control with 20 equidistant control actuators}linear

parabolic PDE of Equation (25) with b ¼ 1:5:
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uses two control actuators and two measurement sensors; Figure 19 shows the evolution of the
state of Equation (22) under a nonlinear state feedback control law which uses two control
actuators. Clearly, there is some discrepancy between the closed-loop systems under state and
output feedback control which is due to the estimation error. Figure 20 shows the evolution of
the state of Equation (22) under a nonlinear output feedback control law which uses five control
actuators and five measurement sensors; the target behaviour has been enforced (in the sense
discussed previously under state feedback control) which implies that five actuators/sensors
suffice to achieve the desired control objective. We note that similar results have been obtained
in the case of enforcing the spatio-temporal profiles of Equations (26)–(27) in the closed-loop
system using output feedback control.

Application to a 2D diffusion–reaction process

In this subsection, the proposed control methodology is applied to a two-dimensional diffusion–
reaction process example to enforce a desired spatio-temporal behaviour in the closed-loop
system. The control is assumed to be implemented on the process by using spatially distributed
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Figure 17. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under nonlinear state feedback control with 10 equidistant control actuators}target behaviour: linear

parabolic PDE of Equation (25) with b ¼ 1:5: Effect of variation on the initial condition.
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Figure 18. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under nonlinear output feedback control with two equidistant control actuators and measurement

sensors}target behaviour: linear parabolic PDE of Equation (25) with b ¼ 1:5:
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arrays with large numbers of point control actuators, which are placed at equidistant positions.
Specifically, we consider a parabolic PDE of the form

@ %xx

@t
¼

@2 %xx

@z2
þ

@2 %xx

@y2
þ #ff ð %xx; tÞ ð28Þ

where #ff ð %xx; tÞ is a possibly nonlinear vector field, which is defined in a two-dimensional spatial
domain O ¼ ½�p;p� � ½�p;p� (i.e. z 2 ½�p;p� and y 2 ½�p;p�). Dirichlet boundary conditions are
considered throughout the boundary of the domain, G; of the form %xxðz; y; tÞ ¼ 0 for all ðz; yÞ
on G:

To demonstrate the application of our method, we assume that the vector field of the
‘original’ PDE is given by #ff ð %xx; tÞ ¼ 0; whereas the vector field of the ‘target PDE’ is of the form
#ff ð %xx; tÞ ¼ a %xx� b %xx3; where a; b are constant positive parameters with the following values a ¼ 2
and b ¼ 2: A 1600th-order Galerkin discretization of Equation (28) is computed and used in the
simulation (higher order discretizations led to identical results). Figure 21 shows the steady-state
profile of the ‘original’ PDE.
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Figure 19. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under nonlinear state feedback control with two equidistant control actuators}target behaviour:

linear parabolic PDE of Equation (25) with b ¼ 1:5:
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Figure 20. Closed-loop spatio-temporal profile of nonlinear diffusion–reaction equation (Equation (22))
under nonlinear output feedback control with five equidistant control actuators and measurement

sensors}target behaviour: linear parabolic PDE of Equation (14) with b ¼ 1:5:
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Figure 21. Steady-state of the two-dimensional parabolic PDE of Equation (28) with #ff ð %xx; tÞ ¼ 0:

Figure 23. Closed-loop profile of the two-dimensional parabolic PDE under nonlinear state
feedback control for t ¼ 2:2}target behaviour: two-dimensional parabolic PDE

of Equation (28) with #ff ð %xx; tÞ ¼ 2 %xx� 2 %xx3:

Figure 22. Closed-loop profile of the two-dimensional parabolic PDE under nonlinear state
feedback control for t ¼ 1:7}target behaviour: two-dimensional parabolic PDE

of Equation (28) with #ff ð %xx; tÞ ¼ 2 %xx� 2 %xx3:
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Figures 22–25 show the profiles of the closed-loop two-dimensional parabolic PDE (simulated
by the 1600th-order Galerkin approximation) under state feedback control, which employs one
hundred control actuators, for t ¼ 1:7; 2.2, 3.0 and 5.0, respectively. The target behaviour given
by Equation (28) with #ff ð %xx; tÞ ¼ 2 %xx� 2 %xx3 is asymptotically enforced in the closed-loop system.

CONCLUSIONS

This work focused on distributed control of quasi-linear parabolic PDEs and presented a
systematic solution to the problem of enforcing a prespecified spatio-temporal behaviour in the
closed-loop system using nonlinear feedback control and a sufficiently large number of actuators
and sensors. Under the assumptions that (1) the desired spatio-temporal behaviour is described

Figure 24. Closed-loop profile of the two-dimensional parabolic PDE under nonlinear state
feedback control for t ¼ 3:0}target behaviour: two-dimensional parabolic PDE

of Equation (28) with #ff ð %xx; tÞ ¼ 2 %xx� 2 %xx3:

Figure 25. Closed-loop profile of the two-dimensional parabolic PDE under nonlinear state
feedback control for t ¼ 5:0}target behaviour: two-dimensional parabolic PDE

of Equation (28) with #ff ð %xx; tÞ ¼ 2 %xx� 2 %xx3:
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by a ‘target parabolic PDE’, and (2) a sufficiently large number of actuators and sensors is
available, we designed nonlinear state and static output feedback controllers to address this
problem on the basis of appropriate finite-dimensional approximations of the original and
target PDEs. Illustrative examples of parabolic PDEs which model diffusion–reaction processes
were used to demonstrate the formulation of the control problem and the effectiveness of our
approach to enforcing a prespecified spatio-temporal behaviour, as well as to investigate the
effect of various problem parameters. Using these illustrative examples, we demonstrated that
both (a) a sufficiently large number of actuators/sensors, and (b) nonlinear control laws are
needed to achieve this goal.
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