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Abstract

This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic
PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process
described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to input and state
constraints. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the parabolic PDE, which
are subsequently used for controller design. Various model predictive control (MPC) formulations are constructed on the basis of the finite
d convection-
r state subject
t imensional
a l objective.
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imensional approximations and are demonstrated, through simulation, to achieve the control objectives. We then consider a
eaction process example described by a set of hyperbolic PDEs and address the problem of stabilization of the desired steady-
o input and state constraints, in the presence of disturbances. An easily implementable predictive controller based on a finite d
pproximation of the PDE obtained by the finite difference method is derived and demonstrated, via simulation, to achieve the contro
2005 Elsevier Ltd. All rights reserved.
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. Introduction

Transport-reaction processes are characterized by signifi-
ant spatial variations and nonlinearities due to the underlying
iffusion and convection phenomena and complex reaction
echanisms, respectively. The dynamic models of transport-

eaction processes over finite spatial domains in which
oth the diffusion and convection transport mechanisms are

mportant typically consist of parabolic partial differential
quation (PDE) systems whose spatial differential operators
re characterized by a spectrum that can be partitioned into a
nite (possibly unstable) slow part and an infinite stable fast
omplement(Curtain & Pritchard, 1978). The traditional
pproach to control of linear/quasi-linear parabolic PDEs

nvolves the application of spatial discretization techniques
o the PDE system to derive systems of ordinary differential
quations (ODEs) that accurately describe the dynamics
f the dominant (slow) modes of the PDE system. These

∗ Corresponding author.
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finite-dimensional systems are subsequently used a
basis for the synthesis of finite-dimensional controllers (
seeBalas, 1979; Curtain, 1982; Ray, 1981). A potentia
drawback of this approach, especially for quasi-lin
parabolic PDEs, is that the number of modes that shou
retained to derive an ODE system that yields the desire
gree of approximation may be very large, leading to com
controller design and high dimensionality of the resul
controllers.

Motivated by these considerations, significant re
work has focused on the development of a general frame
for the synthesis of low-order controllers for quasi-lin
parabolic PDE systems – and other highly dissipative
systems that arise in the modeling of spatially-distribu
systems including fluid dynamic systems – on the b
of low-order nonlinear ODE models derived through
combination of Galerkin’s method (using analytical or e
pirical basis functions) with the concept of inertial manifo
(Christofides, 2001). Using these order reduction techniqu
a number of control-relevant problems, such as nonli
and robust controller design, dynamic optimization,

378-4754/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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control under actuator saturation have been addressed for
various classes of dissipative PDE systems (e.g., seeArmaou
& Christofides, 2002a, 2002b; Baker & Christofides, 2000;
Christofides & Daoutidis, 1997; El-Farra, Armaou, &
Christofides, 2003and the bookChristofides, 2001for
results and references in this area).

When convective mechanisms dominate over diffusive
ones, transport-reaction processes can be adequately de-
scribed by systems of hyperbolic PDEs, whose spatial
differential operator possesses different features than the
one associated with parabolic PDEs. Specifically, all the
eigenmodes of the spatial differential operator of hyperbolic
PDEs contain the same, or nearly the same amount of energy,
and thus, high order finite dimensional approximation is
necessary to accurately describe the dynamic behavior of
hyperbolic PDEs. This feature unfortunately prevents the
application of aforementioned reduction techniques, to
derive reduced-order models that approximately describe
the dynamics of the PDE system, and motivates addressing
the control problem on the basis of the infinite-dimensional
model itself. Following this approach, a methodology
based on combination of the method of characteristics
and sliding mode techniques was proposed for the de-
sign of distributed state feedback controllers(Hanczyc
& Palazoglu, 1995; Sira-Ramirez, 1989). Also, geometric
control and Lyapunov-based control methodologies were
d
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issues, including issues of closed-loop stability, perfor-
mance, implementation and constraint satisfaction (e.g., see
Allgower & Chen, 1998; Garcia, Prett, & Morari, 1989;
Mayne, Rawlings, Rao, & Scokaert, 2000; Rawlings, 2000
for surveys of results and references in this area).

Most of the research in the area of predictive control, how-
ever, has focused on lumped-parameter processes modeled by
ODE systems. Compared with lumped-parameter systems,
the problem of designing predictive controllers for distributed
parameter systems, modeled by PDEs, has received much
less attention. Of the few results available on this problem,
some have focused on analyzing the receding horizon control
problem on the basis of the infinite-dimensional system using
control Lyapunov functionals (e.g.,Ito & Kunisch, 2002),
while others have used spatial discretization techniques such
as finite differences (e.g.,Dufour, Touŕe, Blanc, & Laurent,
2003) to derive approximate ODE models (of possibly high-
order) for use within the MPC design, thus leading to compu-
tationally expensive model predictive control designs that are,
in general, difficult to implement on-line. In a previous work
(Dubljevic, El-Farra, Mhaskar, & Christofides, submitted for
publication), we considered linear parabolic PDE systems
and derived finite-dimensional predictive controller for-
mulations that handled the objectives of state and input
constraints satisfaction and stabilization of the infinite
dimensional system.
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eveloped for the design of nonlinear(Christofides &
aoutidis, 1996)and robust(Christofides & Daoutidis
998)controllers. Within the framework of model predict
ontrol, in(Shang, Forbes, & Guay, 2004), a model predic
ive control (MPC) formulation was developed on the b
f an ODE model derived by the method of characterist

The control methods proposed in the above works, for
onlinear parabolic and hyperbolic PDEs, however, do
ddress the issue of state constraints in the controller de
peration of transport-reaction processes typically req

hat the state of the closed-loop system be maintained w
ertain bounds to achieve acceptable performance (fo
mple, requiring reactor temperature not to exceed a ce
alue or requiring a product concentration not to drop be
ome purity requirement). Handling both state and co
onstraints – the latter typically arising due to the finite
acity of control actuators – in the design of the feedb
ontroller, therefore, is an important consideration.

Model predictive control, also known as receding hori
ontrol, is a popular control method for handling constra
both on manipulated inputs and state variables) w
n optimal control setting. In MPC, the control action
btained by solving repeatedly, on-line, a finite-horizon c
trained open-loop optimal control problem. The popula
f this approach stems largely from its ability to han
mong other issues, multi-variable interactions, constr
n controls and states, and optimization requirem
umerous research studies have investigated the prop
f model predictive controllers and led to a plethora of M

ormulations that focus on a number of control-relev
In this work, we focus on the development of comp
ionally efficient predictive control algorithms for nonline
arabolic and hyperbolic PDEs with state and control
traints arising in the context of transport-reaction proce
he rest of the paper is organized as follows: in Section2, we
onsider a diffusion-reaction process described by a no
ar parabolic PDE and address the problem of stabilizati
n unstable steady-state subject to input and state const
alerkin’s method is used to derive finite-dimensional

ems that capture the dominant dynamics of the para
DE, which are subsequently used for controller de
arious MPC formulations are constructed on the bas

he finite dimensional approximations and are demonstr
hrough simulation, to achieve the control objectives. N
n Section3, we consider a convection-reaction process
mple described by a set of hyperbolic PDEs and addre
roblem of stabilization of the desired steady-state subje

nput and state constraints, in the presence of disturba
n easily implementable predictive controller based on
ite dimensional approximation of the PDE obtained by
nite difference method is derived and demonstrated, via
lation, to achieve the control objective.

. Predictive control of diffusion-reaction processes

.1. Motivating example

In this section, we consider a representative examp
diffusion-reaction system described by a parabolic PD
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Fig. 1. Open-loop profile showing the instability of the ¯x(z, t) = 0 steady-
state.

the following form:

∂x̄

∂t
= ∂2x̄

∂z2 +βT(e−(γ/(1+x̄))−e−γ )−βUx̄+βU

m∑
i=1

bi(z)ui(t)

x̄(0, t) = 0, x̄(π, t) = 0, x̄(z, 0) = x0(z)

(1)

wherex̄ denotes the dimensionless state of the system,βT
denotes a dimensionless heat of reaction,γ denotes a dimen-
sionless activation energy,βU denotes a dimensionless heat
transfer coefficient,ui(t) denotes the manipulated input and
bi(z) is the actuator distribution function of theith actua-
tor, chosen to bebi(z) = 1/µ for z ∈ [zai − µ, zai + µ] and
bi(z) = 0 elsewhere in [0, π], whereµ is a small positive real
number andzai is the center of the interval where actuation is
applied. The following typical values are given to the process
parameters:βT = 50, βU = 2 andγ = 4. For these values, it
was verified that the operating steady-state, ¯x(z, t) = 0, is an
unstable one, as can be seen fromFig. 1. The control objective
is to stabilize the state profile at the unstable zero steady-state
subject to the following input and state constraints

umin
i ≤ ui ≤ umax

i (2)

χmin ≤
∫ π

r(z)x̄(z, t) dz ≤ χmax (3)

w
− nc-
t
z n-
s atial
d e
c s and
u ,
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o

2.2. Galerkin’s method

To present our results, we first formulate the PDE of Eq.
(1) as an infinite dimensional system in the Hilbert space
H([0, π]; IR), withHbeing the space of measurable functions
defined on [0, π], with inner product and norm:

(ω1, ω2) =
∫ π

0
(ω1(z), ω2(z))IR dz,

‖ω1‖2 = (ω1, ω1)1/2 (4)

whereω1, ω2 are two elements ofH([0, π]; IR) and the nota-
tion (·, ·)IR denotes the standard inner product in IR. Defining
the state functionx onH([0, π]; IR) as:

x(t) = x̄(z, t), t > 0, z ∈ [0, π], (5)

the operatorA inH([0, π]; IR) as:

Ax = ∂2x̄

∂z2 , x ∈ D(A) =
{

x ∈ L2([0, π]; IR) :
dx

dz
,

x, abs. cont.,
d2x

dz2 ∈ L2([0, π]; IR), x(0) = 0, x(π) = 0

}

(6)

and the input operators as:
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here umin
i = −10, umax

i = 10, for i = 1, 2, χmin =
0.035, χmax = 2. The state constraints distribution fu

ion, r(·), is chosen to ber(z) = δ(z − zc) for z ∈ [0, π] and
c = 1.156. This choice ofr(z) implies that the state co
traints are to be enforced only at a single point in the sp
omain, i.e.,−0.035≤ x̄(zc, t) ≤ 2. For this system, w
onsider the first two eigenvalues as the dominant one
se two point control actuators (m = 2), with finite support
entered atza1 = π/3 andza2 = 2π/3, to achieve the contr
bjective subject to the constraints of Eqs.(2) and (3).
u =
m∑

i=1

biui, (7)

he system of Eq.(1) takes the form:

˙ = Ax + F(x) + Bu, x(0) = x0 (8)

herex0 = x0(z). For the operatorA, the eigenvalue proble
akes the form

d2φj

dz2 = λjφj (9)

ubject to

j(0) = φj(π) = 0 (10)

he above eigenvalue problem can be solved analyticall
ts solution yields

j = −j2, φj(z) =
√

2

π
sin(j z), j = 1, . . . , ∞ (11)

hroughout the rest of the paper, the notation| · | will be used
o denote the standard Euclidian norm in IRn, while the nota
ion | · |Q will be used to denote the weighted norm defi
y |x|2Q = x′Qx, whereQ is a positive-definite matrix an
′ denotes the transpose ofx. Finally the notation‖ · ‖2 will
e used to denote theL2 norm (as defined in Eq.(4) above)
ssociated with a finite or infinite dimensional Hilbert sp

Next, we apply standard Galerkin’s method to the infin
imensional system of Eq.(8) to derive a finite-dimension
ystem. LetHs,Hf be modal subspaces ofA, defined asHs =



2338 S. Dubljevic et al. / Computers and Chemical Engineering 29 (2005) 2335–2345

span{φ1, φ2, . . . , φm} andHf = span{φm+1, φm+2, . . .} (the
existence ofHs,Hf follows from the properties ofA). Defin-
ing the orthogonal projection operators,Ps andPf , such that
xs = Psx, xf = Pfx, the statex of the system of Eq.(8) can
be decomposed as:

x = xs + xf = Psx + Pfx (12)

Applying Ps andPf to the system of Eq.(8) and using the
above decomposition forx, the system of Eq.(8) can be re-
written in the following equivalent form

dxs

dt
= Asxs + Fs(xs, xf ) + Bsu,

dxf

dt
= Afxf + Ff (xs, xf ) + Bfu

xs(0) = Psx(0) = Psx0

xf (0) = Pfx(0) = Pfx0

(13)

whereAs = PsA, Bs = PsB,Af = PfA,Bf = PfB. In the
above system,As is a diagonal matrix of dimensionm × m

of the formAs = diag{λj} (λj are possibly unstable eigen-
values ofAs) andAf is an unbounded differential operator
which is exponentially stable (following from the fact that
λm+1 < 0 and the selection ofHs,Hf ). In the remainder of
the paper, we will refer to thexs- andxf -subsystems in Eq.
(13)as the slow and fast subsystems, respectively.
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whereq > 0, R is a strictly positive definite matrix,xu(τ) =
x(τ; x, t) denotes the solution of Eq.(8), due to controlu,
with initial statex at time t, andF (·) denotes the terminal
penalty. The minimizing controlu0(·) ∈ S is then applied to
the system over the interval [k∆, (k + 1)∆] and the proce-
dure is repeated indefinitely. This defines an implicit model
predictive control law

M(x) := u0(t; x, t) (20)

Remark 1. It is well known that the control law defined
by Eqs. (17)–(20) is not necessarily stabilizing (even for
the finite-dimensional system). For finite-dimensional sys-
tems, the issue of closed-loop stability is usually addressed
by means of imposing suitable penalties and constraints on
the state at the end of the optimization horizon (e.g., see
Allgower & Chen, 1998; Bemporad & Morari, 1999; Mayne
et al., 2000for surveys of different approaches). Further-
more, for a given stabilizing MPC formulation, it is in gen-
eral difficult to compute the set of initial conditions starting
from where the closed-loop system is guaranteed to be sta-
ble. In one approach, the implementation of MPC is comple-
mented with Lyapunov-based bounded control in a way that
allows both approaches to complement the stability and per-
formance properties of each other, and has been utilized for
state(El-Farra, Mhaskar, & Christofides, 2004b)and output
( -
t r,
& er-
t
i here,
a ons,
t biliz-
i the
o raint
s

near
M of
E the
f

m

w
d s on
b scribe
t en-
s table
f sent
a the
.3. Control problem formulation

Referring to the system of Eq.(8), we consider the prob
em of asymptotic stabilization of the origin, subject to
ollowing control and state constraints:

˙(t) = Ax(t) + F(x(t)) + Bu(t), x(0) = x0 (14)

min
i ≤ ui(t) ≤ umax

i (15)

min ≤ (r, x(t)) ≤ χmax (16)

his problem will be addressed within an MPC framew
here the control, at statex and timet, is conventionally
btained by solving, on-line, a finite-horizon constrained

imal control problem of the form

(x, t) : min{J(x, t, u(·))|u(·) ∈ S} (17)

s.t. ẋ(τ) = Ax(τ) + F(x(τ)) + Bu(τ)

χmin ≤ (r, x(τ)) ≤ χmax, τ ∈ [t, t + T ]
(18)

here S = S(t, T ) is the family of piecewise continuo
unctions (functions continuous from the right), with
iod∆, mapping [t, t + T ] into U := {u ∈ IRm : umin

i ≤ ui ≤
max
i , i = 1, . . . , m}, andT is the specified horizon. A contr
(·) in S is characterized by the sequenceu[k], whereu[k] :=
(k∆), and satisfiesu(t) = u[k] for all t ∈ [k∆, (k + 1)∆).
he performance index is given by

t+T

t

[q‖xu(τ; x, t)‖2
2 + |u(τ)|2R] dτ + F (x(t + T )) (19)
Mhaskar, El-Farra, & Christofides, 2004)feedback stabiliza
ion of linear systems, nonlinear systems(El-Farra, Mhaska

Christofides, 2004a)and nonlinear systems with unc
ainty (Mhaskar, El-Farra, & Christofides, 2005), subject to
nput constraints. For the simulation example presented
nd for the choice of MPC parameters and initial conditi

he closed-loop system under MPC was found to be sta
ng; we therefore do not impose stability constraints in
ptimization problem, but focus on the task of state const
atisfaction.

One possible way to formulate the constrained nonli
PC problem is to design it on the basis of the full system
q. (13). The control action is then obtained by solving

ollowing optimization problem:

in
u

∫ t+T

t

[qs‖xs(τ)‖2
2 + qf‖xf (τ)‖2

2 + |u(τ)|2R] dτ (21)

s.t. ẋs(τ) = Asxs(τ) + Fs(xs(τ), xf (τ)) + Bsu(τ)

ẋf (τ) = Afxf (τ) + Ff (xs(τ), xf (τ)) + Bfu(τ)

u(τ) ∈ U
χmin ≤ (r, x(τ)) ≤ χmax, τ ∈ [t, t + T ]

(22)

hereqs, qf are positive real numbers andR is a positive
efinite matrix. The above formulation includes penaltie
oth the slow and fast states and uses models that de

heir evolution for prediction purposes. The infinite dim
ional nature of the controller, however, renders it unsui
or the purpose of online implementation. We now pre
nd compare nonlinear MPC formulations that differ in
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way the state constraints are enforced and in the construction
of the performance functional in the optimization problem.

2.4. Low-order predictive control formulation

In this formulation, the predictive controller is designed on
the basis of the low-order, finite-dimensional slow subsystem
describing the evolution of thexs states (the fast subsystem is
neglected). Specifically, the nonlinear MPC law is obtained
by solving, in a receding horizon fashion, the following op-
timization problem:

min
u

∫ t+T

t

[qs‖xs(τ)‖2
2 + |u(τ)|2R]dτ (23)

s.t. ẋs(τ) = Asxs(τ) + Fs(xs(τ), 0) + Bsu(τ)

u(τ) ∈ U
χmin ≤ (r, xs(τ)) ≤ χmax, τ ∈ [t, t + T ]

(24)

To simplify the presentation of the results, we will work with
the amplitudes of the eigenmodes of the PDE of Eq.(1).
Specifically, using Galerkin’s method, we derive the follow-
ing high-order ODE system that describes the temporal evo-
lution of the amplitudes of the firstl eigenmodes:

ȧs(t) = Asas(t) + Fs(as(t), af (t)) + Bsu(t)
(25)

w
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Fig. 2. Closed-loop state profile under the MPC formulation of Eqs.(23)
and (24)without accounting for the fast modal states in the constraints.

r = 0.001, andT = 0.011. In all simulation runs, we consid-
ered the following initial condition: ¯x(z, 0) = 0.08 sin(z) +
0.001 sin(2z) andl is chosen to be 30. The resulting program
is solved using the MATLAB subroutine fmincon. The con-
trol action is then implemented on the 30th order model of
Eq.(25). The closed-loop state and manipulated input profiles
under the MPC controller of Eqs.(23) and (24)are shown in
Figs. 2, 6 and 7(solid lines), respectively. It is clear that the
controller successfully stabilizes the state at the zero steady-
state. However, by examiningFig. 5(solid line), we observe
that the state atzc = 1.156 violates the lower constraint for
some time. The violation of the state constraint is a conse-
quence of neglecting the contribution of theaf states to the
full state of the PDE in the MPC formulation.

Remark 2. Note that while the controller is designed only
on the basis of the slow modes, the stabilization of the slow
modes of the system leads to the stabilization of the infi-
nite dimensional system, since the remaining fast modes are
open loop stable (for a similar result in the context of linear
parabolic PDE systems, seeDubljevic et al., submitted for
publication).

Remark 3. For linear parabolic PDEs, low order pre-
dictive controller formulations can be derived, which,
u con-
s see,
D t
c ough
t -
p ear
s

R ne-
c cept-
a s (in
w eated
ȧf (t) = Afaf (t) + Ff (as(t), af (t)) + Bfu(t)

here as(t) = [a1(t)a2(t)]′, af (t) = [a3(t)a4(t) · · · al(t)]′,
i(t) ∈ IR is the modal amplitude of theith eigen-
ode, the notation as denotes the transpose

s, u(t) = [u1(t) u2(t)]′, the matricesAs and Af are di-
gonal matrices, given byAs = diag{λi}, for i = 1, 2
nd Af = diag{λi}, for i = 3, . . . , l.Bs and Bf are a
× 2 and (l − 2) × m matrices, respectively who

i, j)th element is given byBij = (bj(z), φi(z)). Note
hat x̄(z, t) = ∑l

i=1 ai(t)φi(z), xs(t) = a1(t)φ1 + a2(t)φ2,

f(t) = ∑l
i=3ai(t)φi and that (xs(t), φi) = ai(φi, φi). Using

hese projections, the state constraints of Eq.(3) can be
xpressed as constraints on the modal amplitudes as fo

min ≤
2∑

i=1

ai(t)φi(zc) +
l∑

i=3

ai(t)φi(zc) ≤ χmax (26)

The MPC formulation of Eq.(24), when written in term
f the amplitudes of the eigenmodes takes the following fo

in
u

∫ t+T

t

[qs|as(τ)|2 + |u(τ)|2R] dτ (27)

s.t. ȧs(τ) = Asas(τ) + Fs(as, 0) + Bsu(τ)

umin ≤ ui(τ) ≤ umax, i = 1, 2

χmin ≤ Csas(τ) ≤ χmax, τ ∈ [t, t + T ]

(28)

hereCs = [φ1(zc) φ2(zc)] is a row vector. We now procee
ith the implementation of the predictive control formulat
f Eqs.(27) and (28)and chooseqs = 1000, R = rI, with
pon being feasible, guarantee stabilization and state
traint satisfaction of the infinite dimensional system (
ubljevic et al., submitted for publication). The inheren
oupling between the fast and slow subsystems thr
he termsFs(xs, xf ), Ff (xs, xf ), however, significantly com
licates the derivation of similar results in the nonlin
etting.

emark 4. State constraints arise either due to the
essity to keep the process state variables within ac
ble ranges, to avoid, for example, runaway reaction
hich case they need to be enforced at all times, and tr



2340 S. Dubljevic et al. / Computers and Chemical Engineering 29 (2005) 2335–2345

as hard constraints) or due to the desire to maintain them
within desirable bounds dictated by performance consid-
erations (in which case they may be relaxed, and treated
as soft constraints). In the formulations presented in this
work, we consider state constraints that need to be enforced
at all times, and treated as hard constraints; for predic-
tive controller formulations where the constraints are han-
dled as soft and/or hard constraints, see, e.g.,(Mhaskar,
El-Farra, & Christofides, in press; Scokaert & Rawlings,
1999).

2.5. Higher-order predictive control formulation

In order to account for the evolution of the fast states in
the optimization problem, we consider the following MPC
formulation with the objective function and constraints given
by:

min
u

∫ t+T

t

[qs‖xs(τ)‖2
2 + |u(τ)|2R] dτ (29)

s.t. ẋs(τ) = Asxs(τ) + Fs(xs(τ), xf (τ)) + Bsu(τ)

ẋf (τ) = Afxs(τ) + Ff (xs(τ), xf (τ)) + Bfu(τ)

umin ≤ ui(τ) ≤ umax, i = 1, 2

χmin ≤ (r, xs(τ) + xf (τ)) ≤ χmax

(30)
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Fig. 3. Closed-loop state profile under the MPC formulation of Eqs.(31)
and (32)accounting for the fast modes in the state constraints.

Even if a solution is not a global minimum (which, in general
it will not be), the feasibility of the constraints in the opti-
mization problem ensure that upon implementation of this
control action, the state constraints will be satisfied for the
infinite dimensional system.

Remark 6. Performance considerations can often be ex-
pressed as constraints on the state variables. The reduced
order MPC formulations, while achieving suboptimal solu-
tions compared to the infinite dimensional optimal control
problem (which may not be even computable), can satisfy
the performance requirement through satisfaction of the state
constraints. Furthermore, while it is not possible to quantify
how suboptimal the solution obtained via the reduced order
formulation is (due to the inability to compute the solution
for the infinite dimensional problem), the optimality prop-
erties (with respect to the infinite dimensional problem) can
be improved by including more modes in the reduced order
formulation.

2.6. High-order predictive control formulation based on
two-time-scale approximation

As evidenced by the examples shown before, accounting
for the evolution of the fast modes is important for the purpose
o xity
a ased
b re-
t s to
n sible
w the
e is is
b -
r
c
m sing
t kes
hereτ ∈ [t, t + T ]. Note that even though the fast mod
ppear explicitly in the state constraint equation, they do
ppear in the cost function, keeping the computationa
uirement relatively low.

The MPC formulation above, when written using mo
mplitudes, takes the following form:

in
u

∫ t+T

t

[qs|as(τ)|2 + |u(τ)|2R] dτ (31)

s.t. ȧs(τ) = Asas(τ) + Fs(as(τ), af (τ)) + Bsu(τ)

ȧf (τ) = Afas(τ) + Ff (as(τ), af (τ)) + Bfu(τ)

umin ≤ ui(τ) ≤ umax, i = 1, 2

χmin ≤ Csas(τ) + Cfaf (τ) ≤ χmax

(32)

hereτ ∈ [t, t + T ], Cf = [φ3(zc) · · · φ30(zc)] is a row vec-
or and the MPC tuning parameters have the same value
n the previous formulation.

Figs. 3 and 5(dotted lines) demonstrate that the MPC
ulation of Eqs.(31) and (32)successfully stabilizes the sta
rofile at the zero steady-state and that the state cons
re satisfied for all times. The corresponding manipul

nput profiles are given inFigs. 6 and 7.

emark 5. Note that even though the optimization pr
em is nonconvex, and the solution obtained may only
esent a local minimum, it does not detrimentally affect
ask of state constraint satisfaction, because state cons
re posed as explicit constraints in the optimization prob
f satisfying state constraints. The computational comple
ssociated with accounting for the fast modes could be e
y approximating the dynamics of the fast modes, while

aining the nonlinear dynamics of the slow modes (so a
ot adversely effect the task of stabilization). One pos
ay of approximation is to neglect the nonlinearity in
quations describing the evolution of the fast modes. Th
ecause the termAf behaves like 1/ε, whereε is a small pa
ameter, and therefore,Af is much larger thanFf and thusFf
an be neglected from the equation (seeChristofides, 2001for
ore discussion and analysis of this approximation). U

his approximation, the predictive control formulation ta
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Fig. 4. Closed-loop state profile under the MPC formulation of Eqs.(33)
and (34)accounting for the fast modes in the state constraints.

the following form:

min
u

∫ tf

0
[qs|as(τ)|2 + |u(τ)|2R] dτ (33)

s.t. ȧs(τ) = Asas + Fs(as(τ), af (τ)) + Bsu(τ)

ȧf (τ) = Afaf (τ) + Bfu(τ)

umin ≤ ui(τ) ≤ umax, i = 1, 2

χmin ≤ Csas(τ) + Cfaf (τ) ≤ χmax

(34)

Figs. 4 and 5(dotted lines) demonstrate that the MPC formu-
lation of Eqs.(33) and (34)successfully stabilizes the state
profile at the zero steady-state and that the state constraints
are satisfied for all times. The corresponding manipulated in-
put profiles are given inFigs. 6 and 7. Note also, that using
the approximations leads to substantial ease in the computa-
tional burden and the time required for the computation of
the control moves decreases by about 50%.

3. Predictive control of convection-reaction processes

We consider a convection-reaction process example
described by the following hyperbolic first-order PDE
system:

+ βU

m∑
i=1

bi(z)ui(t) (35)

w
n
n
t -

Fig. 5. Closed-loop state profile atzc = 1.156 under the MPC formulation
of Eqs.(23) and (24)without accounting for the evolution of fast modes
(solid), under the MPC formulation of Eqs.(31) and (32)accounting for the
fast modes in the state constraints (dotted), and under the MPC formulation
of Eqs.(33) and (34)using linearization approximation for the evolution of
modal states in the constraints (dashed-dotted).

Fig. 6. Manipulated input profiles for the first control actuator applied at
za1 = π/3 under the MPC formulation of Eqs.(23) and (24)(solid), under
the MPC formulation of Eqs.(31) and (32)(dotted), and under the MPC
formulation of Eqs.(33) and (34)(dashed-dotted).

sionless heat of reaction,βU denotes a dimensionless heat
transfer coefficient,ui(t) denotes change in wall tempera-
ture from the nominal value and is the manipulated input,
andbi(z) is the distribution function of theith actuator, cho-
∂x1

∂t
= −∂x1

∂z
+ Da(1 − x1)ex2/(1+x2/γ)

∂x2

∂t
= −∂x2

∂z
+ BDa(1 − x1)ex2/(1+x2/γ) + βU(χw,n − x2)

x1(0, t) = x1(t), x2(0, t) = x2(t), x1(z, 0) = x̄1(z),

x2(z, 0) = x̄2(z)

herex1 denotes a dimensionless conversion, andx2 de-
otes a dimensionless temperature,Da is the Damk̈ohler
umber,γ is a dimensionless activation energy,χw,n is

he nominal dimensionless wall temperature,B is a dimen
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Fig. 7. Manipulated input profiles for the second control actuator applied at
za2 = 2π/3 under the MPC formulation of Eqs.(23) and (24)(solid), under
the MPC formulation of Eqs.(31) and (32)(dotted), and under the MPC
formulation of Eqs.(33) and (34)(dashed-dotted).

sen to bebi(z) = [H(z − zi) − H(z − zi+1)] whereH(z) is
the standard Heaviside function. The following typical val-
ues are given to the process parameters:Da = 0.25, B =
10.5, βU = 5.4, χw,n = 0.1 andγ = 8. The initial condi-
tions chosen were ¯x1(z) = x̄2(z) = 0, and the boundary con-
ditions were chosen to bex1(t) = 0.05 andx2(t) = 4.0. For
these values, it was verified that the operating steady-state
profile is stable (solid lines inFig. 8 depict the steady state
profile of the temperatureT in the reactor). The dashed lines

represent constraints on the temperature in the reactor and
c vari-
a

mall
i lt (by
c ener-
a ture
p
s a neg-
a

Fig. 8. Open-loop profile showing the steady-state temperature profile (solid
lines). The dashed lines denote the upper and lower constraints on the tem-
perature.

Note that reducing the value ofx1(t) implies greater inlet re-
actant concentration, increased reaction and heat generation
in the reactor, that subsequently leads to violation of the state
constraints in the reactor.

We therefore consider the control objective of maintain-
ing the desired steady-state profile along the reactor within
the bounds of allowed temperature variation in the presence
of disturbances. A predictive control algorithm, designed to
achieve the aforementioned control objective takes the fol-
lowing form:

min
u(τ)

∫ t+T

t

[{∫
Z

e(z, τ)2q dz

}
+ u′Ru

]
dτ

s.t.
∂x1

∂t
= −∂x1

∂z
+ Da(1 − x1) ex2/(1+x2/γ)

∂x2

∂t
= −∂x2

∂z
+ BDa(1 − x1) ex2/(1+x2/γ) + βU(χw,n − x2) + βU

m∑
i=1

bi(z)ui(t)

x1(0, t) = x1(t), x2(0, t) = x2(t), x1(z, 0) = x̄1(z), x2(z, 0) = x̄2(z)

umin
i ≤ ui ≤ umax

i , i = 1, . . . , m

x2min ≤ x2(z, t + τ) ≤ x2max∀z ∈ Z, τ ∈ [t, t + T ]

(36)

where e(z, τ) = x2ss − x2(z, τ), umax
i , umin

i , i = 1, . . . , m

represent constraints on the manipulated variables, and
xmin

2 , xmax
2 represent state constraints. The above optimiza-

t ing
h ieve
r nown
d

r,
p used
f sk of
r
o ing
orrespond to the constraints in the dimensionless state
ble given byxmax

2 = x2s + 0.25, xmin
2 = x2s − 0.25.

Due to the exothermic nature of the reaction, a s
ncrease/decrease in the inlet concentration may resu
hanging the net reaction, and therefore, the net heat g
tion) in a significant change in the peak of the tempera
rofile in the reactor (see dash-dotted line inFig. 9 for the
teady-state profile in the reactor under the presence of
tive disturbance of magnitude 0.03 in bothx1(t) andx2(t)).
ion problem may be solved off-line or solved in a reced
orizon fashion and implemented online in order to ach
obustness of the closed-loop system with respect to unk
isturbances.

The PDE system of Eq.(35) being hyperbolic, howeve
revents the use of low-order approximations that can be

or the purpose of controller design, and renders the ta
eal-time implementation of the controller design of Eq.(36),
r of quantifying the loss in optimality when implement



S. Dubljevic et al. / Computers and Chemical Engineering 29 (2005) 2335–2345 2343

Fig. 9. The steady-state temperature profile (dash-dotted lines) induced by
a negative disturbance of magnitude 0.03 in the dimensionless inlet temper-
ature and concentration.

an approximation, very difficult. To come up with a con-
troller design that can be readily implemented in real time,
we make the following simplifications: first, we exploit the
fact that for the system under consideration, the transients
are very fast, and both the control objective, and the state
constraint satisfaction can be required to hold at the steady-
state. Then, to reduce the complexity of the computation, the
decision variable is chosen as a feedback gain, instead of the
manipulated inputs themselves. Finally, instead of requiring
the constraints to hold over the entire spatial domain, we re-
strict it to a zone, and furthermore, divide the zone into a
number of subzones, such that in each subzone, a different
value of the control action can be implemented. Specifically,
we solve the following optimization problem:

min
K

[{∫
�Z

qes(z)2 dz
}

+ u′
sRus

]
s.t. 0= −∂x′

1s

∂z
+ Da(1 − x′

1s) ex′
2s/(1+x′

2s/γ)

0 = −∂x′
2s

∂z
+ BDa(1 − x′

1s) ex′
2s/(1+x′

2s/γ) + βU(χw,n − x′
2s) + βU

2∑
i=1

bi(z)uis

x′
1s(0) = x1d, x′

2s(0) = x2d

ui,s = Ki

∫
�Zi

es(z) dz

�Zi

min max

(37)

w e
e -
l te
p in
t let
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Fig. 10. Closed-loop evolution of the temperature profile in the presence of
disturbance.

Fig. 11. Steady state closed-loop profile (dash-dotted line) in the presence
of disturbance.

In the simulation results, the control zone is chosen
to be �Z ∈ [0.04, 0.3] and divided into three subzones.
The finite-difference method is used for the integra-
tion of the hyperbolic PDE with discretization in space
δz = 0.02, and with explicit Newton integration in time with
δt = 0.0001. The parameters in the objective function of
Eq. (37) were chosen asq = 20, R = rI, r = 0.001, xmax

2 =
x2s + 0.25, xmin

2 = x2s − 0.25, umin = −2 and umax = 2.
Figs. 10 and 11demonstrate that the controller success-
fully achieves state constraint satisfaction and drives the
ui ≤ uis ≤ ui , i = 1, . . . , m

xmin
2 ≤ x′

2s(z) ≤ xmax
2 ∀z ∈ �Z

hereK = [Ki], i = 1, . . . , m, are the gains that multiply th
rror,es(z) = x′

2s − x2s, wherex2sis the ‘unperturbed’, open
oop steady-state profiles,x′

2s is the closed-loop steady-sta
rofiles, and�Zi, i = 1, . . . , m denote the subzones with

he control zone,x1d andx1d represent the steady-state in
oncentration and temperature, respectively.
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Fig. 12. Dotted, dash-dotted, and dashed lines represent the evolution of the
wall temperature,Tw, in the control zones 1, 2 and 3, respectively.

closed-loop state profile (dash-dotted lines) close to the
desired state profile. Note that in the absence of control, the
state constraints are violated in the presence of disturbance
(seeFig. 9).

4. Conclusions

In summary, this work focussed on the development of
computationally efficient predictive control algorithms for
nonlinear parabolic and hyperbolic PDEs with state and con-
trol constraints arising in the context of transport-reaction
processes. We first considered a diffusion-reaction process
described by a nonlinear parabolic PDE and addressed the
problem of stabilization of an unstable steady-state subject
to input and state constraints. Galerkin’s method was used to
derive finite-dimensional systems that capture the dominant
dynamics of the parabolic PDE, which were subsequently
used for controller design. Various MPC formulations were
constructed on the basis of the finite dimensional approxima-
tions and were demonstrated, through simulation, to achieve
the control objectives. We then considered a convection-
reaction process example described by a set of hyperbolic
PDEs and addressed the problem of stabilization of the de-
sired steady-state subject to input and state constraints, in the
presence of disturbances. An easily implementable predic-
t tion
o de-
r ntrol
o
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