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Abstract

This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic
PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process
described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to input and state
constraints. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the parabolic PDE, which
are subsequently used for controller design. Various model predictive control (MPC) formulations are constructed on the basis of the finite
dimensional approximations and are demonstrated, through simulation, to achieve the control objectives. We then consider a convection-
reaction process example described by a set of hyperbolic PDEs and address the problem of stabilization of the desired steady-state subjec
to input and state constraints, in the presence of disturbances. An easily implementable predictive controller based on a finite dimensional
approximation of the PDE obtained by the finite difference method is derived and demonstrated, via simulation, to achieve the control objective.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction finite-dimensional systems are subsequently used as the
basis for the synthesis of finite-dimensional controllers (e.g.,
Transport-reaction processes are characterized by signifi-see Balas, 1979; Curtain, 1982; Ray, 198JA potential
cantspatial variations and nonlinearities due to the underlying drawback of this approach, especially for quasi-linear
diffusion and convection phenomena and complex reaction parabolic PDEs, is that the number of modes that should be
mechanisms, respectively. The dynamic models of transport-retained to derive an ODE system that yields the desired de-
reaction processes over finite spatial domains in which gree of approximation may be very large, leading to complex
both the diffusion and convection transport mechanisms arecontroller design and high dimensionality of the resulting
important typically consist of parabolic partial differential controllers.
equation (PDE) systems whose spatial differential operators Motivated by these considerations, significant recent
are characterized by a spectrum that can be partitioned into awork has focused on the development of a general framework
finite (possibly unstable) slow part and an infinite stable fast for the synthesis of low-order controllers for quasi-linear
complement(Curtain & Pritchard, 1978)The traditional parabolic PDE systems — and other highly dissipative PDE
approach to control of linear/quasi-linear parabolic PDEs systems that arise in the modeling of spatially-distributed
involves the application of spatial discretization techniques systems including fluid dynamic systems — on the basis
to the PDE system to derive systems of ordinary differential of low-order nonlinear ODE models derived through a
equations (ODEs) that accurately describe the dynamicscombination of Galerkin’s method (using analytical or em-
of the dominant (slow) modes of the PDE system. These pirical basis functions) with the concept of inertial manifolds
(Christofides, 2001)Using these order reduction techniques,
" * Corresponding author. a number of control-relevant problems, such as nonlinear
E-mail address: pdc@seas.ucla.edu (P.D. Christofides). and robust controller design, dynamic optimization, and

0378-4754/$ — see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compchemeng.2005.05.008



2336 S. Dubljevic et al. / Computers and Chemical Engineering 29 (2005) 2335-2345

control under actuator saturation have been addressed foissues, including issues of closed-loop stability, perfor-
various classes of dissipative PDE systems (e.gAs®@ou mance, implementation and constraint satisfaction (e.g., see
& Christofides, 2002a, 2002b; Baker & Christofides, 2000; Allgower & Chen, 1998; Garcia, Prett, & Morari, 1989;
Christofides & Daoutidis, 1997; El-Farra, Armaou, & Mayne, Rawlings, Rao, & Scokaert, 2000; Rawlings, 2000
Christofides, 2003and the bookChristofides, 2001for for surveys of results and references in this area).
results and references in this area). Most of the research in the area of predictive control, how-
When convective mechanisms dominate over diffusive ever, hasfocused onlumped-parameter processes modeled by
ones, transport-reaction processes can be adequately de@DE systems. Compared with lumped-parameter systems,
scribed by systems of hyperbolic PDEs, whose spatial the problem of designing predictive controllers for distributed
differential operator possesses different features than theparameter systems, modeled by PDEs, has received much
one associated with parabolic PDEs. Specifically, all the less attention. Of the few results available on this problem,
eigenmodes of the spatial differential operator of hyperbolic some have focused on analyzing the receding horizon control
PDEs contain the same, or nearly the same amount of energyproblem on the basis of the infinite-dimensional system using
and thus, high order finite dimensional approximation is control Lyapunov functionals (e.glto & Kunisch, 2003,
necessary to accurately describe the dynamic behavior ofwhile others have used spatial discretization techniques such
hyperbolic PDEs. This feature unfortunately prevents the as finite differences (e.gQufour, Toug, Blanc, & Laurent,
application of aforementioned reduction techniques, to 2003 to derive approximate ODE models (of possibly high-
derive reduced-order models that approximately describe order)for use within the MPC design, thus leading to compu-
the dynamics of the PDE system, and motivates addressingtationally expensive model predictive control designsthatare,
the control problem on the basis of the infinite-dimensional in general, difficult to implement on-line. In a previous work
model itself. Following this approach, a methodology (Dubljevic, El-Farra, Mhaskar, & Christofides, submitted for
based on combination of the method of characteristics publication) we considered linear parabolic PDE systems
and sliding mode techniques was proposed for the de-and derived finite-dimensional predictive controller for-
sign of distributed state feedback controllgfidanczyc mulations that handled the objectives of state and input
& Palazoglu, 1995; Sira-Ramirez, 198%Iso, geometric constraints satisfaction and stabilization of the infinite
control and Lyapunov-based control methodologies were dimensional system.
developed for the design of nonlineg€Christofides & In this work, we focus on the development of computa-
Daoutidis, 1996)and robust(Christofides & Daoutidis, tionally efficient predictive control algorithms for nonlinear
1998)controllers. Within the framework of model predictive parabolic and hyperbolic PDEs with state and control con-
control, in(Shang, Forbes, & Guay, 2004 model predic-  straints arising in the context of transport-reaction processes.
tive control (MPC) formulation was developed on the basis The rest of the paper is organized as follows: in Se@jome
of an ODE model derived by the method of characteristics. consider a diffusion-reaction process described by a nonlin-
The control methods proposed in the above works, for both ear parabolic PDE and address the problem of stabilization of
nonlinear parabolic and hyperbolic PDEs, however, do not an unstable steady-state subject to input and state constraints.
address the issue of state constraints in the controller designGalerkin’s method is used to derive finite-dimensional sys-
Operation of transport-reaction processes typically requirestems that capture the dominant dynamics of the parabolic
that the state of the closed-loop system be maintained withinPDE, which are subsequently used for controller design.
certain bounds to achieve acceptable performance (for ex-Various MPC formulations are constructed on the basis of
ample, requiring reactor temperature not to exceed a certainthe finite dimensional approximations and are demonstrated,
value or requiring a product concentration not to drop below through simulation, to achieve the control objectives. Next,
some purity requirement). Handling both state and control in Section3, we consider a convection-reaction process ex-
constraints — the latter typically arising due to the finite ca- ample described by a set of hyperbolic PDEs and address the
pacity of control actuators — in the design of the feedback problem of stabilization of the desired steady-state subject to
controller, therefore, is an important consideration. input and state constraints, in the presence of disturbances.
Model predictive control, also known as receding horizon An easily implementable predictive controller based on a fi-
control, is a popular control method for handling constraints nite dimensional approximation of the PDE obtained by the
(both on manipulated inputs and state variables) within finite difference method is derived and demonstrated, via sim-
an optimal control setting. In MPC, the control action is ulation, to achieve the control objective.
obtained by solving repeatedly, on-line, a finite-horizon con-
strained open-loop optimal control problem. The popularity
of this approach stems largely from its ability to handle, 2. Predictive control of diffusion-reaction processes
among other issues, multi-variable interactions, constraints
on controls and states, and optimization requirements. 2.1. Motivating example
Numerous research studies have investigated the properties
of model predictive controllers and led to a plethora of MPC In this section, we consider a representative example of
formulations that focus on a number of control-relevant a diffusion-reaction system described by a parabolic PDE of
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Fig. 1. Open-loop profile showing the instability of thé, 7) = 0 steady-
state.

the following form:

A@=ﬁiﬁwwmm4ﬂrmﬂmfyxmm
a 972 p
x(0,1)=0, Xx(m,1)=0, x(z,0)=x0(2)

(1)

wherex denotes the dimensionless state of the sysigm,
denotes a dimensionless heat of reactjodenotes a dimen-
sionless activation energgy denotes a dimensionless heat
transfer coefficienty;(¢) denotes the manipulated input and
bi(z) is the actuator distribution function of théh actua-
tor, chosen to bé;(z) = 1/u for z € [zes — 1, za + 1] and
bi(z) = 0 elsewhere in [Or], whereu is a small positive real
number andg is the center of the interval where actuation is
applied. The following typical values are given to the process
parameters8t = 50, Sy = 2 andy = 4. For these values, it
was verified that the operating steady-stafe, /) = 0, is an
unstable one, as can be seen fiieim 1. The control objective

is to stabilize the state profile at the unstable zero steady-state

subject to the following input and state constraints

u;nin <u; < u;’nax )
i T
XM < / r(2)x(z, 1) dz < ™ 3)
0
where M = —10,uM* =10, for i=1,2 x"" =

—0.035 xM =2, The state constraints distribution func-
tion, r(-), is chosen to be(z) = 8(z — z¢) for z € [0, ] and
zc = 1.156. This choice of(z) implies that the state con-
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2.2. Galerkin’s method

To present our results, we first formulate the PDE of Eq.
(1) as an infinite dimensional system in the Hilbert space
H([O, ]; R), with H being the space of measurable functions
defined on [Qx], with inner product and norm:

(MWFA%WMWMM

)12 4)
wherew1, wy are two elements df{([0, r]; R) and the nota-
tion (-, -)r denotes the standard inner product in R. Defining
the state function on #([0, n]; R) as:

lwill2 = (w1, @1

t>0, zel0,n], 5)

x(t) = x(z, 1),
the operatord in H([0, x]; R) as:

°x dx
= @,x € D(A) = {x € Lz([o, JT], R) . EZ,

2
x, abs. cont.% e Lo([0, 7]; R), x(0) = 0, x(x) = o}
Z

(6)
and the input operators as:
Bu = zm:b,'u,', (7)
i=1
the system of Eq(1) takes the form:
x=Ax + F(x) + Bu, x(0)=xo (8)

wherexg = xo(z). For the operata#, the eigenvalue problem
takes the form

2
ng =2j®; )
subject to

#j(0)=¢j(m) =0 (10)

The above eigenvalue problem can be solved analytically and
its solution yields

—j4 %@=V§wwa j
T

Throughout the rest of the paper, the notatiofwill be used

to denote the standard Euclidian norm ifi,R/hile the nota-
tion | - | will be used to denote the weighted norm defined
by |x|% = x'Qx, whereQ is a positive-definite matrix and

)Lj 1,...,00 (11)

straints are to be enforced only at a single point in the spatial ;" denotes the transpose.ofFinally the notatior| - || will

domain, i.e.,—0.035< Xx(zc, ) < 2. For this system, we

be used to denote the, norm (as defined in Eq4) above)

consider the first two eigenvalues as the dominant ones andassociated with a finite or infinite dimensional Hilbert space.

use two point control actuators: (= 2), with finite support,
centered aty1 = /3 andza2 = 27/3, to achieve the control
objective subject to the constraints of E(®). and (3)

Next, we apply standard Galerkin’s method to the infinite-
dimensional system of E@3) to derive a finite-dimensional
system. Lets, H; be modal subspacesdf defined ag{s =
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sparig1, g2, ..., ¢} andHs = sparipu+1, dm+2, - - .} (the

existence ofs, Hs follows from the properties ofl). Defin-

ing the orthogonal projection operatofs,and Ps, such that
xs = Psx, x; = Pix, the statex of the system of E¢(8) can

be decomposed as:

X = x5+ xf = Psx + Pix (12)

Applying Ps and Ps to the system of Eq(8) and using the
above decomposition for, the system of E((8) can be re-
written in the following equivalent form

dx

dfts = Asxs + Fsl(xs, x¢) + Bsu,

o

o Asxt + Fi(xs, xt) + Bru (13)

x5(0) = Psx(0) = Psxo
x1(0) = Prx(0) = Prxo

where As = Ps A, Bs = PsB, As = P A, Bf = P:B. In the
above systemds is a diagonal matrix of dimension x m

of the form As = diag{x ;} (1; are possibly unstable eigen-
values of As) and A; is an unbounded differential operator
which is exponentially stable (following from the fact that
Am+1 < 0 and the selection df(s, Hs). In the remainder of
the paper, we will refer to thes- andxs-subsystems in Eq.
(13) as the slow and fast subsystems, respectively.

2.3. Control problem formulation

Referring to the system of E{B), we consider the prob-

lem of asymptotic stabilization of the origin, subject to the

following control and state constraints:

x(t) = Ax(@) + F(x(@)) + Bu(r), x(0) = xo (14)
u™ < ui(r) < u™ (15)
Xmin < (r’ x(t)) < Xmax (16)

This problem will be addressed within an MPC framework

where the control, at stateand timet, is conventionally

obtained by solving, on-line, a finite-horizon constrained op-

timal control problem of the form
P(x, 1) tmin{J(x, £, u(-)u(-) € S}

s.t.x(tr) = Ax(z) + F(x(v)) + Bu(r)
XM < x(D) < XM T e [t 1 4 T

17)
(18)

where S = S(¢, T) is the family of piecewise continuous
functions (functions continuous from the right), with pe-
riod A, mapping{, t + T]intold := {u € R" : u™ < u; <
u® i=1,...,m},andTis the specified horizon. A control
u(-) in Sis characterized by the sequengg], whereu[k] :=
u(kA), and satisfies(r) = u[k] for all ¢ € [kA, (k + 1)A).
The performance index is given by

t+T
/ g2 (i x. D3 + lu(@)B]de + FG(+T)  (19)
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whereg > 0, R is a strictly positive definite matrix*(r) =
x(t; x, t) denotes the solution of E¢8), due to control,
with initial statex at timez, and F(-) denotes the terminal
penalty. The minimizing contral®(:) € S is then applied to
the system over the intervatf\, (k + 1)A] and the proce-
dure is repeated indefinitely. This defines an implicit model
predictive control law

M) = u°(; x, 1) (20)
Remark 1. It is well known that the control law defined
by Egs.(17)-(20)is not necessarily stabilizing (even for
the finite-dimensional system). For finite-dimensional sys-
tems, the issue of closed-loop stability is usually addressed
by means of imposing suitable penalties and constraints on
the state at the end of the optimization horizon (e.g., see
Allgower & Chen, 1998; Bemporad & Morari, 1999; Mayne
et al., 2000for surveys of different approaches). Further-
more, for a given stabilizing MPC formulation, it is in gen-
eral difficult to compute the set of initial conditions starting
from where the closed-loop system is guaranteed to be sta-
ble. In one approach, the implementation of MPC is comple-
mented with Lyapunov-based bounded control in a way that
allows both approaches to complement the stability and per-
formance properties of each other, and has been utilized for
state(El-Farra, Mhaskar, & Christofides, 2004dmd output
(Mhaskar, El-Farra, & Christofides, 200fépdback stabiliza-
tion of linear systems, nonlinear syste(g$Farra, Mhaskar,

& Christofides, 2004aand nonlinear systems with uncer-
tainty (Mhaskar, El-Farra, & Christofides, 2005ubject to
input constraints. For the simulation example presented here,
and for the choice of MPC parameters and initial conditions,
the closed-loop system under MPC was found to be stabiliz-
ing; we therefore do not impose stability constraints in the
optimization problem, but focus on the task of state constraint
satisfaction.

One possible way to formulate the constrained nonlinear
MPC problem is to design it on the basis of the full system of
Eq. (13). The control action is then obtained by solving the
following optimization problem:

t+T
min [ asls 01 + a1 + ORI @)
S.t. Xs(7) = Asxs(t) + Fslxs(7), xt(7)) + Bsu(z)
() = Ap(0) + A ) + B

u(t) ed

XM < (rx(@) < XM

wheregs, g are positive real numbers amtlis a positive
definite matrix. The above formulation includes penalties on
both the slow and fast states and uses models that describe
their evolution for prediction purposes. The infinite dimen-
sional nature of the controller, however, renders it unsuitable
for the purpose of online implementation. We now present
and compare nonlinear MPC formulations that differ in the

tett+ T
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way the state constraints are enforced and in the construction

of the performance functional in the optimization problem.
2.4. Low-order predictive control formulation

In this formulation, the predictive controlleris designed on
the basis of the low-order, finite-dimensional slow subsystem
describing the evolution of the, states (the fast subsystem is
neglected). Specifically, the nonlinear MPC law is obtained
by solving, in a receding horizon fashion, the following op-
timization problem:

t+T
min [ laslls(o)13 + (@) lde (23)
S.t.xs(7) = Asxs(7) + Fs(xs(7), 0) + Bsu(7)
u(t) et (24)

XM < (1, x5(2)) < X™ T et t+T]
To simplify the presentation of the results, we will work with
the amplitudes of the eigenmodes of the PDE of @9.

Specifically, using Galerkin’s method, we derive the follow-

ing high-order ODE system that describes the temporal evo-

lution of the amplitudes of the firgteigenmodes:

as(t) = Asas(t) + Fs(as(t), at(t)) + Bsu(t)
ai(t) = Atas(t) + Fi(as(t), at(1)) + Bru(r)

where  as(t) = [a1()az(t)]', ai(t) = [as()aa(t) - - ai(?)],
ai(t) e R is the modal amplitude of theth eigen-
mode, the notationas denotes the transpose of
as, u(t) = [u1(t) u2(t)]’, the matricesAs and As are di-
agonal matrices, given byAs=diag{);}, for i=1,2
and A; =diag{»;}, for i=3,...,l.Bs and B; are a
2x2 and (—2)xm matrices, respectively whose
(i, )th element is given byB;; = (b;(z), ¢i(z)). Note

that  x(z, 1) = Si_q ai(0)¢i(2), xs(r) = ar(D)1 + az(t)epo,

x(1) = Yoi_aai()¢i and that €5(1), ¢i) = ai(¢i, ¢1). Using
these projections, the state constraints of &).can be

(25)
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Fig. 2. Closed-loop state profile under the MPC formulation of E23)
and (24)without accounting for the fast modal states in the constraints.

r = 0.001, andrl' = 0.011. In all simulation runs, we consid-
ered the following initial conditionx(z, 0) = 0.08 sing) +
0.001 sin(Z) and!is chosen to be 30. The resulting program
is solved using the MATLAB subroutine fmincon. The con-
trol action is then implemented on the 30th order model of
Eq.(25). The closed-loop state and manipulated input profiles
under the MPC controller of Eq&3) and (24)are shown in
Figs. 2, 6 and 7solid lines), respectively. It is clear that the
controller successfully stabilizes the state at the zero steady-
state. However, by examinirfgg. 5(solid line), we observe
that the state ai. = 1.156 violates the lower constraint for
some time. The violation of the state constraint is a conse-
quence of neglecting the contribution of thestates to the
full state of the PDE in the MPC formulation.

Remark 2. Note that while the controller is designed only
on the basis of the slow modes, the stabilization of the slow
modes of the system leads to the stabilization of the infi-
nite dimensional system, since the remaining fast modes are
open loop stable (for a similar result in the context of linear

expressed as constraints on the modal amplitudes as followsparabolic PDE systems, s&ribljevic et al., submitted for

2 1
XM<Y aidilze) + Y ail)di(ze) < X

i=1 i=3

(26)

The MPC formulation of Eq(24), when written in terms
ofthe amplitudes of the eigenmodes takes the following form:

+T
min [ laslas(o)? + (o) Rl dr @)
t
s.t.as(r) = Asas(t) + Fslas, 0) + Bsu(t)
Umin < #;(T) < Umax, =12 (28)
x™N < Coas(t) < x™* te[rt+T]

whereCs = [¢1(zc) 92(zc)] is a row vector. We now proceed
with the implementation of the predictive control formulation
of Egs.(27) and (28)and chooses = 100Q R = r1, with

publicatior).

Remark 3. For linear parabolic PDEs, low order pre-
dictive controller formulations can be derived, which,
upon being feasible, guarantee stabilization and state con-
straint satisfaction of the infinite dimensional system (see,
Dubljevic et al., submitted for publicatipnThe inherent
coupling between the fast and slow subsystems through
the termsFs(xs, x1), Fi(xs, xf), however, significantly com-
plicates the derivation of similar results in the nonlinear
setting.

Remark 4. State constraints arise either due to the ne-
cessity to keep the process state variables within accept-
able ranges, to avoid, for example, runaway reactions (in
which case they need to be enforced at all times, and treated
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as hard constraints) or due to the desire to maintain them
within desirable bounds dictated by performance consid-
erations (in which case they may be relaxed, and treated 0.054.
as soft constraints). In the formulations presented in this 0044
work, we consider state constraints that need to be enforced 0.034..
at all times, and treated as hard constraints; for predic-

006

= 0.024 -
tive controller formulations where the constraints are han- & .01 4
dled as soft and/or hard constraints, see, dghaskar, 0
El-Farra, & Christofides, in press; Scokaert & Rawlings, -0.01
1999) —0.02
=0.03 oo

2.5. Higher-order predictive control formulation

In order to account for the evolution of the fast states in
the optimization problem, we consider the following MPC

formulation with the objective function and constraints given 79: 3: Closed-loop state profile under the MPC formulation of &§g)

and (32)accounting for the fast modes in the state constraints.

by:
+T . o - S
; 2 2 Even if a solution is not a global minimum (which, in general
min d 29
u /, [gsllxs(m)lI2 + lu(D)IR] de (29) it will not be), the feasibility of the constraints in the opti-
) mization problem ensure that upon implementation of this
S.t.X5(7) = Asxs(7) + Fslxs(7), x4(7)) + Bsu(7) control action, the state constraints will be satisfied for the
xi(t) = Asxs(t) + Fi(xs(2), x¢(7)) + Biu(z) infinite dimensional system.

(30)

Umin < ui(T) < Umax, =12
XM < (1, xs(7) 4 x1(7)) < M Remark 6. Performance considerations can often be ex-
pressed as constraints on the state variables. The reduced
wherer € [z, ¢t + T]. Note that even though the fast modes order MPC formulations, while achieving suboptimal solu-
appear explicitly in the state constraint equation, they do not tions compared to the infinite dimensional optimal control
appear in the cost function, keeping the computational re- problem (which may not be even computable), can satisfy

quirement relatively low. the performance requirement through satisfaction of the state
The MPC formulation above, when written using modal constraints. Furthermore, while it is not possible to quantify
amplitudes, takes the following form: how suboptimal the solution obtained via the reduced order
4T formula_tio_n _is (d_ue to fthe inability to Compute_ the_ solution
min/ lgslas(t)? + |u(r)|%]dr (31) for_the mﬂmte dlmenS|on§I prgbler_n), th(_a optimality prop-
“oJt erties (with respect to the infinite dimensional problem) can

. be improved by including more modes in the reduced order
s.tas(t) = Asas(z) + Folas(r), ar(1)) + Bau(r) Pl ihiid ?

af(t) = Aras(t) + Fi(as(7), af(7)) + Bru(r)

. 32)
umin < 4i(7) < umax,  i=1,2 2.6. High-order predictive control formulation based on
XM < Csas(t) + Cras(r) < xMaX two-time-scale approximation
wherer € [, 1 + T], Gt = [¢3(zc) - - - #30(zc)] is @ row vec- As evidenced by the examples shown before, accounting
torand the MPC tuning parameters have the same values usegby the evolution of the fast modes is important for the purpose
in the previous formulation. of satisfying state constraints. The computational complexity

Figs. 3 and Rdotted lines) demonstrate that the MPC for-  a5s0ciated with accounting for the fast modes could be eased
mulation of Eqs(31) and (32successfully stabilizes the state by approximating the dynamics of the fast modes, while re-
profile at the zero steady-state and that the state constraint$aining the nonlinear dynamics of the slow modes (so as to
are satisfied for all times. The corresponding manipulated not adversely effect the task of stabilization). One possible
input profiles are given ifrigs. 6 and 7 way of approximation is to neglect the nonlinearity in the

equations describing the evolution of the fast modes. This is
Remark 5. Note that even though the optimization prob- because the terms behaves like A¢, wheree is a small pa-
lem is nonconvex, and the solution obtained may only rep- rameter, and thereford; is much larger thai; and thusF;
resent a local minimum, it does not detrimentally affect the can be neglected from the equation (€&eistofides, 200for
task of state constraint satisfaction, because state constraintmore discussion and analysis of this approximation). Using
are posed as explicit constraints in the optimization problem. this approximation, the predictive control formulation takes
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Fig. 4. Closed-loop state profile under the MPC formulation of Eg3)

and (34)accounting for the fast modes in the state constraints. Fig. 5. Closed-loop state profile af = 1.156 under the MPC formulation

of Egs.(23) and (24)without accounting for the evolution of fast modes
(solid), under the MPC formulation of Eg&1) and (32ccounting for the
. fast modes in the state constraints (dotted), and under the MPC formulation
the following form: of Egs.(33) and (34)sing linearization approximation for the evolution of
modal states in the constraints (dashed-dotted).

min [ Taslas(0) + lu(0) Rl o (33)

S.t.ds(1) = Asas + Fs(as(t), ag(r)) + Bsu() : : : :

as (1) = Asas(t) + Biu(z 0r
af(t) = Atas(t) + Bru( ) (34)
umin < ui(t) < umax, =12

. -1F
x™" < Csas(t) + Craf(r) < XM

Figs. 4 and Rdotted lines) demonstrate that the MPC formu- -2 ol &
lation of Egs.(33) and (34)successfully stabilizes the state £

profile at the zero steady-state and that the state constraints® -3 o8 i

are satisfied for all times. The corresponding manipulated in- -1l

put profiles are given iifrigs. 6 and 7Note also, that using vy s :

the approximations leads to substantial ease in the computa- ’

tional burden and the time required for the computation of s} 0018 0.02 0.025 0.03 0.038

the control moves decreases by about 50%.

0 0.01 0.02 0.03 0.04 0.05

3. Predictive control of convection-reaction processes
Fig. 6. Manipulated input profiles for the first control actuator applied at
We consider a convection-reaction process example za1 = 7/3 under the MPC formulation of Eq&23) and (24)solid), under

described by the foIIowing hyperbolic first-order PDE the MPC formulation of Eqs(31) and (32)(dotted), and under the MPC
formulation of Eqs(33) and (34)dashed-dotted).

system:
3x1 a.x_‘]_ (1+ )
—= = ——= + Da(1l — xy)e¥?/(+x2/y.
ot 0z
3x2 8x2 @ ) n
Pl + BDa(1 — x1)€?/ 2V 4 Bu(w.n — x2) + Bu ;bi(z)ui(t) (35)

xl(03 t) = xl(t)v XZ(O, t) = x2(t)r .XJ_(Z, O) = )71(Z),
x2(z, 0) = x2(2)

where x; denotes a dimensionless conversion, apdle- sionless heat of reactiom,y denotes a dimensionless heat
notes a dimensionless temperatuf®; is the Damidhler transfer coefficienty;(tr) denotes change in wall tempera-
number, y is a dimensionless activation energyy . is ture from the nominal value and is the manipulated input,

the nominal dimensionless wall temperatuBds a dimen- andb;(z) is the distribution function of théh actuator, cho-
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Fig. 7. Manipulated input profiles for the second control actuator applied at
za2 = 2m/3 under the MPC formulation of Eq&3) and (24)solid), under ) ) ) ) )
the MPC formulation of Eqs(31) and (32)(dotted), and under the MPC Fig. 8. Open-loop profile showing the steady-state temperature profile (solid

formulation of Eqs(33) and (34)dashed-dotted). lines). The dashed lines denote the upper and lower constraints on the tem-

perature.

sen to beb;(z) = [H(z — z;) — H(z — zi+1)] where H(z) is
the standard Heaviside function. The following typical val-
ues are given to the process paramet@&sg:= 0.25, B =
10.5, Bu = 5.4, xw., = 0.1 andy = 8. The initial condi-
tions chosen were;(z) = x2(z) = 0, and the boundary con-
ditions were chosen to beg(f) = 0.05 andxz(r) = 4.0. For

Note that reducing the value of(r) implies greater inlet re-
actant concentration, increased reaction and heat generation
in the reactor, that subsequently leads to violation of the state
constraints in the reactor.
We therefore consider the control objective of maintain-
ing the desired steady-state profile along the reactor within
€he bounds of allowed temperature variation in the presence
of disturbances. A predictive control algorithm, designed to
achieve the aforementioned control objective takes the fol-

profile is stable (solid lines ikig. 8 depict the steady state
profile of the temperaturg in the reactor). The dashed lines

lowing form:
+T
min H/ e(z, 7)%q dz} + u’Ru] dr
u(r) Jy VA
s.t. dx1 = o + Da(1 — x1) er2/(L+x2/y)
ot 0z
0x2 0x2 1 m
—= = ——= + BDa(1 — x1) €2/ 4 By (. — x2) + Bu > bil)uit) (36)
ot 0z ot
2(0.0) =x1(r). x2(0.1) = x2(r),  x1(e.0)=x1(z).  x2(z. 0) = ¥2(2)
uMN <y <u™ i=1,....m

x2min < x2(z, t + 1) < xomaVz € Z, 1 € [t, t + T]

where e(z, 1) = x4 — x2(2, T), u]"®, ulmin’ i=1....,m
represent constraints on the manipulated variables, and
represent constraints on the temperature in the reactor and"", x5'®* represent state constraints. The above optimiza-
correspond to the constraints in the dimensionless state varition problem may be solved off-line or solved in a receding
able given byxgnax = xp5+ 0.25, xg““ = x5 — 0.25. horizon fashion and implemented online in order to achieve
Due to the exothermic nature of the reaction, a small robustness ofthe closed-loop system with respectto unknown
increase/decrease in the inlet concentration may result (bydisturbances.
changing the net reaction, and therefore, the net heat gener- The PDE system of Eq35) being hyperbolic, however,
ation) in a significant change in the peak of the temperature prevents the use of low-order approximations that can be used
profile in the reactor (see dash-dotted lineFig. 9 for the for the purpose of controller design, and renders the task of
steady-state profile in the reactor under the presence of a negreal-time implementation of the controller design of E3§),

ative disturbance of magnitude 0.03 in batltr) andx2()). or of quantifying the loss in optimality when implementing
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Fig. 9. The steady-state temperature profile (dash-dotted lines) induced by
a negative disturbance of magnitude 0.03 in the dimensionless inlet temper-
ature and concentration.

an approximation, very difficult. To come up with a con-
troller design that can be readily implemented in real time,
we make the following simplifications: first, we exploit the
fact that for the system under consideration, the transients
are very fast, and both the control objective, and the state
constraint satisfaction can be required to hold at the steady-
state. Then, to reduce the complexity of the computation, the

decision variable is chosen as a feedback gain, instead of the

manipulated inputs themselves. Finally, instead of requiring
the constraints to hold over the entire spatial domain, we re-
strict it to a zone, and furthermore, divide the zone into a

number of subzones, such that in each subzone, a different

value of the control action can be implemented. Specifically,
we solve the following optimization problem:

mKin HIAZ ges(z)? dz} + u/SRuS}

/
s.t. 0= _3;715 + Da(l — xjg) €25/ 25/
Z
0xs Y e/ (L 557)

0=~ + BDa(l - x19 €227 + By (wn
x140) = x1a,  x5¢(0) = x24

fAZ,’ es(Z) dZ
ujs=Ki———

NZ;

ulr»mnfuisfugnax i=1....,m

’

o < xhy(z) < x5PVz e AZ

X2
whereK = [K;],i = 1, ..., m, arethe gainsthat multiply the
error,es(z) = x5 — Xx2s, Wherexpsis the ‘unperturbed’, open-
loop steady-state profiles, is the closed-loop steady-state
profiles, andAZ;,i = 1, ..., m denote the subzones within
the control zoneyy; andxy, represent the steady-state inlet
concentration and temperature, respectively.

2343

Fig. 10. Closed-loop evolution of the temperature profile in the presence of
disturbance.
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Fig. 11. Steady state closed-loop profile (dash-dotted line) in the presence
of disturbance.

2
— x50+ Bu Y _ bi(2uis

=1 (37)

In the simulation results, the control zone is chosen
to be AZ €[0.04,0.3] and divided into three subzones.
The finite-difference method is used for the integra-
tion of the hyperbolic PDE with discretization in space
3z = 0.02, and with explicit Newton integration in time with
3t = 0.0001. The parameters in the objective function of
Eq.(37)were chosen ag = 20, R = rI,r = 0.001 xJ'® =
x25 +0.25, X" = xp; — 0.25,u™" = -2 and u"*=2.
Figs. 10 and lldemonstrate that the controller success-
fully achieves state constraint satisfaction and drives the
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