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Abstract

A beat-to-beat variation in the electric wave propagation morphology in myocardium is referred to as cardiac alternans and it has been linked
to the onset of life threatening arrhythmias and sudden cardiac death. Experimental studies have demonstrated that alternans can be annihilated by
the feedback modulation of the basic pacing interval in a small piece of cardiac tissue. In this work, we study the capability of feedback control
to suppress alternans both spatially and temporally in an extracted rabbit heart and in a cable of cardiac cells. This work demonstrates real-time
control of cardiac alternans in an extracted rabbit heart and provides an analysis of the control methodology applied in the case of a one-dimensional
(1D) cable of cardiac cells. The real-time system control is realized through feedback by proportional perturbation of the basic pacing cycle length
(PCL). The measurements of the electric wave propagation are obtained by optical mapping of fluorescent dye from the surface of the heart and
are fed into a custom-designed software that provides the control action signal that perturbs the basic pacing cycle length. In addition, a novel
pacing protocol that avoids conduction block is applied. A numerical analysis, complementary to the experimental study, is also carried out, by
the ionic model of a 1D cable of cardiac cells under a self-referencing feedback protocol, which is identical to the one applied in the experimental
study. Furthermore, the amplitude of alternans linear parabolic partial differential equation (PDE) that is associated with the 1D ionic cardiac cell
cable model under feedback control is analyzed. We provide an analysis of the amplitude of alternans parabolic PDE which admits a standard
evolutionary form in a well defined functional space. Standard modal decomposition techniques are used in the analysis and the controller synthesis
is carried out through pole placement. State and output feedback controller realizations are developed and the important issue of measurement noise
in the controller implementation is addressed. The analysis of stabilization of the amplitude of alternans PDE is in agreement with the experimental
results and numerical results produced by the ionic 1D cable of cardiac cells model. Finally, a discussion is provided in light of these results in
order to use control to suppress alternans in the human myocardium.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Sudden cardiac death due to ventricular fibrillation (VF) is
the most common and often the first manifestation of coronary
heart disease. It is responsible for about 50% of the mortal-
ity from cardiovascular diseases in the United States and other
developed countries (Zipes &Wellens, 1998). In many cases VF
is associated with, and may well be caused by, electrical alter-
nans (Pastore,Girouard, Laurita, Akar,&Rosenbaum, 1999a). It
has been shown experimentally that when cardiac tissue is stim-
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ulated by a rapid pacing protocol, the duration of the electrical
excitation varies from beat-to-beat, and it is manifested as a vari-
ation in the action potential duration (APD), whichmay undergo
a transition to the VF (Cao et al., 1999). These period doubling
oscillations are referred to as “alternans” and on the scale of
the whole heart these alternans are reflected in a beat-to-beat
variation of the electrocardiogram (ECG) T-wave segments. In
animal (Pastore, Girouard, Laurita, Akar, &Rosenbaum, 1999b)
and clinical human research studies (Rosenbaum et al., 1994) it
has been shown that even hearts with a small level of T-wave
alternans in the ECG where at a higher risk to develop VF and
sudden cardiac death.
A well-known way to produce temporal alternans in a sin-

gle cell or spatiotemporal alternans in the cardiac tissue is to
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Fig. 1. Schematic of time evolution of transmembrane potential at a point along
the cable with APD alternans.

start pacing of the cardiac cell/tissue with sufficiently large pac-
ing period and then to slowly decrease the length of the pacing
interval until the critical pacing period at which alternation in
the APD emerges. Typically, the end of action potential is fol-
lowed by a period of rest, called diastolic period (DI), until the
next excitable stimuli that activates new action potential propa-
gation occurs, see Fig. 1. In the case of a short diastolic period,
the cell/tissue does not have time to fully recover its resting
electric properties before the next activation, which yields a
shorter APD. Hence, these oscillations between patterns of a
short DI→ short APD→ long DI→ long APD are of period
doubling nature and their analysis was first demonstrated in the
pioneering works of Nolasco and Dahlen (1968) where the basic
mathematical analysis of alternans based on their analogy with
electric systems was demonstrated. This instability of APD and
DI patterns is crucially related to the onsets of VF, as it has been
demonstrated by2Dnumerical simulations in (Karma, 1994;Qu,
Garfinkel, Chen, &Weiss, 2000). Specifically, large oscillations
in the APD induce spiral wave breakup and wave turbulence. In
particular, if there is a large spatial gradient among the regions
of different APDs, the length of the diastolic interval falls below
a critical value that is necessary for the next wave propagation.
This brings about propagation failure, as the next wave front
encounters the regions of the tissue that are less prone to undergo
wave propagation. Propagation failure then results in the local
wave break that initiates a spiral, which can initiate a similar
wave break and by this mechanism invade the entire domain of
the cardiac tissue. Since cardiac alternans is believed to be a pre-
cursor to VF and sudden cardiac death, an important question
to address is whether in principle spatiotemporal alternans in
cardiac tissue can be annihilated by means of feedback control,
as this can represent an effective antiarrhythmic strategy.
In the past decade, most research efforts in the area of con-

trol of physiological systems were focused on the development
of model-independent control techniques for chaotic systems,
where the stabilization algorithm is based on the fact that there is
an infinite number of unstable periodic orbits (UPOs) embedded

in the chaotic attractor, so that small time-dependent pertur-
bations to an accessible system parameter drive the system
toward a desired UPO (Hall & Gauthier, 1994, 2002; Hall et al.,
1997; Ott, Grebori, & York, 1990; Socolar & Gauthier, 1998;
Tolkaceva, Romeo, Guerraty, & Gauthier, 2004). In the same
vein, Christini and Collins developed a novel real-time adap-
tive model-independent (RTAMI) control technique (Christini
& Collins, 1997; Jordan & Christini, 2004). All aforementioned
control algorithms are model-independent and are based on
the proportional perturbation feedback control paradigm which
has been demonstrated to be suitable for some physiological
systems. Specifically, experimental and theoretical works have
demonstrated that simple closed-loop proportional perturbation
feedback methods could be used to suppress the type of alter-
nans that occur in a single cell, or in small pieces of tissue
where significant spatiotemporal variations of repolarization and
wave propagation dynamics do not take place (Christini et al.,
2006; Garfinkel, Spano, Ditto, &Weiss, 1992; Hall & Gauthier,
2002; Hall et al., 1997). In the theoretical study of Echebarria
and Karma (2002a) it has been demonstrated that alternans can
be abolished in a small one-dimensional cable of cardiac cell
tissue by applying pacing feedback produced by consecutive
APD measurements at the pacing site. Analysis of this result
is based on a small amplitude of alternans equation, which
belongs to the class of parabolic partial differential equations
(PDEs). However, this study did not provide an insight from a
control point of view, which necessarily requires more detailed
analysis of control-theoretic system properties (such as control-
lability and observability) and analysis of the closed-loop system
under various feedback control laws. Specifically, the issues of
implementing successful feedback control and handling inher-
ent constraints present in the implementation of the feedback
control algorithm need more careful and comprehensive exam-
ination. A possibility to suppress alternans by dynamic control
methods in the human ventricles and possibly to prevent sud-
den cardiac death needs to be addressed from a control point
of view accounting explicitly for the practical implementation
of the controllers. Given that there is only a small number of
electrodes that can be placed in the human ventricle for pacing
purposes, and that there is only a small number of leads that can
be placed in vivo in humans for the recording of cardiac activ-
ity, the main questions that need to be addressed are (1) Can in
principle cardiac alternans be controlled? (2) What are the pos-
sible limitations on the applied control action? and (3) Are there
any improvements in the pacing control algorithm that can be
made on the basis of insight obtained by the experimental and
theoretical works?
In this work, we provide quantitative answers to these

questions by demonstrating first, real-time control of cardiac
alternans in an extracted rabbit heart; second, by providing a
numerical demonstration of the features of the pacing proto-
cols applied; and third, by addressing analytical features of the
feedback-based alternans annihilation problem. In the ensuing
section, we provide features of the experimentally implemented
real-time control system. The real-time control is realized by the
perturbation of the basic pacing cycle length (PCL). The pac-
ing protocol uses the feedback gain based on modulated surface
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optical mappingmeasurements of theAPDduration in the vicin-
ity of the pacing electrode. Experimental results demonstrate a
marked reduction of the amplitude of alternans in the rabbit heart
with a novel pacing protocol that utilizes large values of feed-
back gain; the controller prevents conduction block at the pacing
site by using only positive basic pacing cycle length perturba-
tions. In this way, the pacing protocol differs from previously
proposed self-referencing gain feedback protocols (Christini et
al., 2006; Hall & Gauthier, 2002; Hall et al., 1997). In addition,
in numerical studies associated with the experiment, successful
alternans stabilization has been demonstrated with the use of
the novel pacing protocol in the case of a 1D cable of cardiac
cells (2.5 cm in length), which exceeds the length of experimen-
tally considered rabbit heart tissue. The novel pacing protocol
in numerical studies uses the measurements of APD alternans
at the boundary where the pacing is applied and at a distant site
away from the pacing boundary. In this way, the pacing proto-
col accounts for the spatial evolution of APD alternans in order
to prevent occurrence of a conduction block. In Section 3, the
experimental and numerical studies are complemented with an
analysis of the associated amplitude of the alternans equation.
Specifically, the amplitude of alternans linear parabolic PDE
which includes a Sturm–Liouville spatial differential operator
is considered (Ray, 1981). First, a modal representation of the
linear parabolic PDE is computed. The analysis demonstrates
that the spatial operator of the amplitude of alternans contains a
few unstable modes that can be stabilized by means of bound-
ary control. Namely, only a few unstable modes are stabilized
by the standard pole placement technique while the remaining
infinite-dimensional modal complement remains stable under
feedback. In the same section, a basic condition for the con-
trollability and observability required for an output feedback
controller to achieve closed-loop stability is given. Simulation
studies initially demonstrate agreement among results obtained
by numerical simulations of 1D ionic cardiac cell cable model
when the pacing protocol using the measurement of alternans
along the cable is applied, and further results demonstrate expo-
nential stabilization of the amplitude of alternans parabolic PDE
by full state and output boundary feedback control. Finally, we
point out critical features of the experimental, numerical and
analytical study in order to use control to suppress alternans in
the human myocardium.

2. Experimental and numerical study of pacing control

2.1. Cable of cardiac cells model and pacing control

The one-dimensional (1D) homogeneous cable of cardiac
cells of length L paced at one end is considered, and it is
described by the following parabolic PDE:

∂V (ζ, t)

∂t
= D

∂2V (ζ, t)

∂ζ2
− Iion(ζ, t)

Cm
(1)

∂V (0, t)

∂ζ
= Vp(t),

∂V (L, t)

∂ζ
= 0 (2)

where the membrane current Iion(ζ, t) is given by the
Noble model (Noble, 1962), Vp(t) = Istim/Cm repre-
sents the voltage that is supplied by the pacer which
generates voltage pulses in the form of square pulses
(amplitude: 3.5mV; duration: 1ms and period τ = 250ms),
D = 2.5 e−4 cm2/ms and Cm = 12�F/cm2. The membrane
current Iion(ζ, t) is given by Iion(ζ, t) = INa + IK + Ileak,
where INa = (gNamaxm3h+ gNa)(V (t)− ENa), gNamax =
400mmol/cm2, gNa = 0.14mmol/cm2, ENa = 40mV,
gleak = 0, Vleak = −60mV, GK1 = 1.2 exp((−V (t)−
90)/50)+ 0.015 exp((V (t)+ 90)/60), GK2 = 1.2n4, IK =
(GK1 +GK2)(V (t)+ 100), and Ileak = gleak(V (t)− Vleak). The
ionic channel dynamics are given by dι/dt = αι(1− ι)− βιι,
ι = m, h, n, where αm = 0.1(−V (t)− 48)/(exp((−V (t)−
48)/15)− 1), βm = 0.12(V (t)+ 8)/(exp((V (t)+ 8)/5)− 1),
αn = 0.0001(−V (t)− 50)/(exp((−V (t)− 50)/10)− 1),
βn = 0.002 exp((−V (t)− 90)/80), αh = 0.17 exp((−V (t)−
90)/20) and βh = 1/(exp((−V (t)− 42)/10)+ 1). The voltage
evolution in the cell cable model of Eqs. (1) and (2) is calculated
on the basis of the centered finite difference approximation of
Eq. (1) with a spatial discretization step size �ζ = 0.02, and
with an explicit Euler time integration scheme (�t = 0.05ms).
When stimulated at ζ = 0 with the Vp(t) stimuli, membrane

voltage at a paced cell crosses the threshold value of excitabil-
ity which opens sodium channels and provides a large influx
of sodium ions in the cell to create an effect of a depolarizing
membrane. The depolarization of the membrane turns on the
potassium channels that slowly recover the membrane potential
by repolarization until themembrane reaches its resting negative
potential. Due to diffusive coupling among cells this excitable
wave travels in one direction along the cable, from cell to cell.
This process is repeated at each time when action potential is
elicited by the pacing stimulus. The action potential duration
(APD) in the cells along the cable is the period of time dur-
ing which the action potential is over the prespecified threshold
value and the diastolic time interval (DI) is defined as the period
of time during which the transmembrane potential is below a
given value, see Fig. 1. The restitution curve establishes a func-
tional relationship between the APD generated by the (n+ 1)th
stimulus and the diastolic time interval during which the tissue
recovers its resting properties after the end of the previous (n)th
action potential, see Fig. 2. This relationship is given by

APDn+1 = f (DIn) (3)

while the basic pacing interval is given by Tn = APDn + DIn.
This one-dimensional discrete nonlinear map provides infor-
mation of the critical diastolic period at which the slope of
the function, f ′, exceeds unity, which determines the onset
of a period doubling bifurcation of alternans. The restitution
curve, see Fig. 2, given by Eq. (3) is obtained by a so-called
S1S2-pacing protocol (Tolkaceva et al., 2004). The S1S2-pacing
protocol is realized by applying a large number of “S1” stim-
uli (≈ 50–100beats) to a single cell at a sufficiently large basic
pacing cycle length Tn, so that the last in the series of “S1” stim-
uli is followed by “S2” stimuli which is applied at a different
time within the diastolic time period and which produces action
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Fig. 2. Restitution curveAPDn+1 = f (DIn) of the Noble ionicmodel computed
for a single cell.

potential duration that provides the restitution curve of Eq. (3),
see Figs. 2 and 3.
Under a short periodic pacing at one end of the cardiac cells

cable, the propagating stimulus induces action potential along
the cable and the action potential induced by two successive
stimuli at a given point in space is characterized by different
durations of the APD, a short APD is followed by a long one
which follows a short one, etc. At a given point in space ζ, this
alternation of the APD defines the amplitude of alternans, an(ζ),
for then th stimulus, oran(ζ) = (APDn(ζ)− APDn−1(ζ))(−1)n.
In this way continuous voltage evolution is mapped through dis-
crete APD measurements onto the amplitude of alternans an(ζ),
where n = t/τ. This output mapping of the alternating APD
length provides an evolution of the amplitude of alternans on a
beat-to-beat basis at each point along the cable. Stabilization of
alternans in the case of a single cell and in the case of a short
cardiac cable given by Eqs. (1) and (2) can be achieved by the

Fig. 3. The S1S2-pacing protocol.

boundary perturbation proportional feedback control law. The
perturbation proportional feedback is realized by a boundary
pointmeasurement of APD, and perturbs the basic pacing period
τ at a pacing site (we refer to Tn as an applied PCL period), or
in other words:

Tn(ζ=0) = τ + γ(APDn(ζ=0) − APDn−1(ζ=0)) (4)

where τ is the basic pacing cycle period and γ is a tunable param-
eter which defines the feedback gain of the APD alternation of
the basic pacing cycle. It can be demonstrated that such a simple
feedback gain structure can annihilate alternans at the pacing site
andup to afinite distance (≤ 1 cm) from thepacing site (Christini
et al., 2006; Echebarria & Karma, 2002a). The stability analysis
of a two-dimensional iterative map based on Eqs. (3) and (4)
applied to a single cell (or, in other words, zero length cable)
yields the following system:

APDn+1 = f (τ + γ(APDn − Yn)− APDn),

Yn+1 = APDn (5)

where the fixed point of the system is (APD∗, Y∗) with the prop-
erty (APD∗ = Y∗). The Jacobian of the systemof Eq. (5) is given
by(

γ − 1 −γ

1 0

)
(6)

which yields the range of local stabilization gains γ = (0, 1).
Stabilization of a two-dimensional iterativemap is ensuredwhen
the Jacobian eigenvalues of Eq. (6) lie within the unit circle.
However, this iterative map stability analysis is valid only for a
single paced cell and not for the cable of cells where diffusive
coupling among cells and traveling wave morphology change
the action potential duration characteristics. In the ensuing sub-
section, we demonstrate experimental alternans annihilation by
feedback control given by Eq. (4) in an extracted rabbit heart
(Fig. 4).

2.2. Experimental procedure and results

An isolated rabbit heart, see Fig. 4, is used for the experi-
mental realization of pacing protocols that stabilize alternans.
New Zealand White rabbits (female, 56 months old) weigh-
ing 3–5 kg were anesthetized with an intravenous injection of
ketamine (10mg) and xylazine (20mg) containing 1000 units of
heparin. After thoracotomy, the heart was rapidly isolated and
the ascending aorta was cannulated and secured for retrograde
perfusion with a warm (36.5± 0.5 ◦C), oxygenated Tyrode’s
solution at a rate of 30–40mL/min. To perform optical mapping
of voltage V, hearts were stained with the voltage-sensitive dye
di-4-ANEPPS (Molecular Probes, Eugene,OR).Theheartswere
illuminated with a solid-state, frequency-doubled laser (Verdi,
Coherent, SantaClara, CA) at awavelength of 532 nm.The emit-
ted fluorescence was transmitted through a 600 nm long-pass
filter and acquired with a charge-coupled device camera (CA-
D1-0128T, Dalsa, Waterloo, Canada) from 128× 128 sites over
a 20mm× 20mm area of the epicardial ventricular surface at
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Fig. 4. Figure of the extracted rabbit heart.

2.0ms/frame.Optical datawere recorded to a personal computer
using custom-designed software (LabVIEW, National Instru-
ments, Austin, TX). Cytochalasin D (Sigma, St. Louis, MO;
5M) was added to the perfusate to inhibit heart contraction.
Stainless steel stimulating electrodes (tip diameter 0.20mm)
were placed on the ventricle. A 4 cm2 stainless wire mesh sit-
uated on the left ventricle posterior wall served as a reference
electrode. We applied two dynamic pacing protocols at a lateral
location on the ventricle with a line array of recording sites of
electrical activity placed at the heart surface in proximity to the
pacing site:

• P1: In the diastolic state (DI), 2× threshold current pulses
were applied with the basic pacing cycle lengths (PCLs) of
τ = 140,160,180,200ms with the applied protocol given by
Eq. (4), with various levels of the feedback gain γ .

• P2: Identical protocol as P1, when only positive values
of �Tn = (APDn(ζ=0) − APDn−1(ζ=0)) > 0 are considered
with various levels of the feedback gain γ .

In Fig. 4 the evolution of the voltage dye sensitive signal
in the neighborhood of the pacing site is provided along with
APDs which are used by the pacing protocol given by Eq. (4).
In all experimental realizations, the recordings of the heart sur-
face electric activity used in the pacing control law of Eq. (4)
were taken from the heart surface site which is closest to the
pacing site (Fig. 5). Our experimental findings demonstrate for
the first time that alternans stabilization can be realized in the
rabbit heart tissue. Specifically, Figs. 6 and 7 show the evo-
lution of the amplitude of alternans at four aligned recording
sites which undergo stabilization after the control is turned on
at 1500ms. One can notice in Fig. 7 that before the control is
applied, the amplitude of alternans is almost uniform across the
length of four recording sites in the case of the shorter pac-
ing cycle length τ = 160ms. Also, the applied control through

Fig. 5. Recorded evolution of the voltage dye signalV (t) (blue line), filtered volt-
age signal (green line) (Vthreshold = 1367) and associated APDs in the vicinity
of the pacing site under the pacing protocol given by Eq. (4) with γ = 0.75 and
τ = 180ms. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)

the perturbation of the basic pacing cycle length of Eq. (4) is not
robust with respect to noise and tomismatch between pacing and
recording sites. Namely, the pacing site is within the tissue since
the electrode is attached to the heart muscle, while the record-
ing site used for feedback control is at the heart surface close
to the pacing electrode. This mismatch among recording and
pacing sites results in a time delay in Eq. (4) that may produce
destabilizing effects that propagate along with the action poten-
tial wave front which propagates at the speed of ≈ 50–60 cm/s.
Since the demonstrated experimental findings are realized in

Fig. 6. Evolution of the amplitude of alternans a(nτ) = APDn − APDn−1 at
four sites placed in an array 3mm apart from the pacing site under the pacing
protocol given by Eq. (4) with γ = 0.75 and τ = 180ms (blue solid line: close
to the pacing site; red dashed-dotted line: middle recording site; green dashed
line: remote site; black line: the most distant recording site from the pacing site
≈ 1.3 cm). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)
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Fig. 7. Evolution of the amplitude of alternans a(nτ) = APDn − APDn−1 at
four sites placed in an array 4mm apart from the pacing site under the pacing
protocol given by Eq. (4) with γ = 1 and τ = 160ms (blue solid line: close
to the pacing site; red dashed-dotted line: middle recording site; green dashed
line: remote site; black line: the most distant recording site from the pacing site
≈ 1.5 cm). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)

an extremely noisy recording environment of electrical closed-
loop system activity at the heart surface, small oscillations of
the amplitude of alternans (less than 5ms, see Fig. 6) appear
due to both the inherent noise of our experimental setup and
mismatch among the recording and pacing site location. Also, it
has been observed that the pacing protocol (P1) with the basic
pacing cycle length of 160 and 140ms with a feedback gain in
the range γ = [0, 1] was more prone to initiate ventricular fib-
rillation, mainly due to the conduction block induction at the
pacing site, compared to the pacing protocol (P2) with the same
basic pacing cycle length and γ values. In Figs. 6 and 7, it is also
shown that the recording site that is more than (1 cm) away from
the pacing site cannot undergo successful alternans annihilation,
as the amplitude of alternans exceeds 5ms. This inability to
annihilate alternans beyond a certain small characteristic length
by model-independent self-referencing pacing protocol will be
elaborated in the ensuing sections.

2.3. Numerical simulation

In the alternans stabilization numerical simulation study of
the model given by Eqs. (1) and (2), we used an identical control
law as in the experimental realization which is given by Eq. (4).
However, in the numerical simulation study we were interested
in understanding the effects of large gain perturbation values of
basic PCL and to explore the possibility of alternans annihilation
in a domain larger than 1 cm (which is bigger than the corre-
sponding domain in the experimental system). We constructed a
novel pacing protocol that explores the spatial evolution of alter-
nans and usesmeasurements of alternans far from the pacing site
in order to achieve stabilization of alternans in a cable of over
1 cm without inducing the conduction block (e.g., the preceding

Fig. 8. Conduction block at the pacing site.

wave’s back collides with the following wave’s front) (Fig. 9). It
can be demonstrated that the increase in the feedback parameter
γ increases the size of the perturbation around the fixed basic
pacing cycle period τ, so that high gain values of negative per-
turbations are prone to produce a conduction block at the pacing
site, see Fig. 8 (a stimuli will be applied on the wave back of the
preceding wave which is in excitable state and not in the resting
state so it will not elicit excitable wave propagation along the
cable). Also, the pacing algorithm that takes only positive �Tn

perturbation values, and in the case where the �Tn is negative,
it applies only basic (PCL) τ, may produce a conduction block
away from the pacing site (see Fig. 9, the ninth beat in this fig-
ure is blocked to propagate along the cable since by its front it

Fig. 9. Evolution of the voltage V (ζ, t) in the cable model of Eqs. (1) and (2)
under the pacing protocol given by Eq. (4) with γ = 0.4. Note that the ninth
beat propagation along the cable is blocked since its front encounters an eighth
beat wave back.
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Fig. 10. Evolution of the voltage V (ζ, t) in the cable model of Eqs. (1) and (2)
under the pacing protocol given by Eqs. (7) and (8) with γ = 0.71. Note that the
ninth beat propagates along the cable and its front passes an eighth beat wave
back.

encounters less excitable area, which inevitably leads into wave
front dissipation).
Therefore, in order to avoid the block at the pacing site

and far from the pacing site, one needs to change the basic
pacing protocol given by Eq. (4) and include a condition that
accounts for the conduction block. In order to prevent conduc-
tion block, an appropriate measure of the APD at the distant
site is obtained. The voltage threshold value for the APD mea-
surements in our numerical simulation is given as −40mV,
while the threshold voltage value of Vblock(ζci) = −75mv is
used at a location ζci where conduction block is prevented.
Under the assumption that the propagation wave velocity does
not vary significantly, which is a reasonable assumption for
the length of cardiac relevant tissue size (1–5 cm), the differ-
ence in the APD at the pacing site and far away will create
a necessary condition to prevent the block away from the
pacing site; in other words the quantity that delays a pacer
is defined as �T̄ (that is, �T̄n(ζci) = APD(−40mV)n−1(ζ=0) −
APD(−75mV)n−1(ζci)). Namely, for a short cable length of up to
2.5 cm and τ = 250ms the pacing protocol that achieves stabi-
lization of amplitude of alternans is defined as follows:

Tn(ζ=0) =
{

τ +�Tn, if�Tn > 0,

τ +�T̄n(ζci), if �Tn ≤ 0
(7)

�T̄n(ζci) =
{

T̄n(ζci), if T̄n(ζci) ≥ 0,
0, if T̄n(ζci) ≤ 0

(8)

with �Tn = γ(APDn(ζ=0) − APDn−1(ζ=0)) and �T̄n(ζci) =
APD(−40mV)n−1(ζ=0) − APD(−75mV)n−1(ζci). When the pacing
protocol given by Eqs. (7) and (8) is applied, the pacing
algorithmprovides a pacing stimuliwhich does not induce a con-
duction block (i.e. see Fig. 10 where the ninth beat propagates
along the cable, compared to the ninth beat propagation along
the cable in Fig. 9 which is blocked since its front encounters

Fig. 11. Boundary stabilization of alternans in the case of cable equation (Eqs.
(1) and (2)) where the pacing protocol given by Eqs. (7) and (8) is applied with
γ = 0.71 and ζc = 1.9 (n = t/τ).

an eighth beat wave back). The conduction block demonstrated
in Fig. 9 cannot be allowed by any means as it generates spi-
ral wave that may lead into ventricular fibrillation. Therefore,
since the pacing algorithm of Eqs. (7) and (8) ensures conduc-
tion block prevention at the pacing and away from the pacing site
the entire alternans profile is stabilized at the spatially uniform
steady state an(ζ) = 0 (where n = t/τ), see Fig. 11. In Fig. 10,
the voltage evolution in the cable of first 10 beats is presented,
while Fig. 11 demonstrates that it takes effectively about 30–40
beats to bring the amplitude of alternans close to the spatially
uniform unstable steady state an(ζ) = 0. Still, it is important to
emphasize two points: First, that the pacing protocol constructed
in this way prevents conduction block at both the pacing site and
at a desired location away from the pacing site. This is achieved
by not allowing the shortening of the basic pacing period in the
case of a prevention block at the pacing site (Eq. (7)), while for
the prevention of a conduction block at a desired location away
from the pacing site, this is achieved bymeasuring the difference
in APDs at the pacing site and at the distant site ζci (Eq. (8)); see
also the ninth beat wave front in Fig. 10 which just passes close
to the eighth beat wave back. Second, since only positive pertur-
bations are considered in Eqs. (7) and (8), the constrained ability
of the control action essentially reduces the space of available
control values and places a natural constraint on the length of
the cable that can undergo successful alternans annihilation by
model-independent cycle length perturbation pacing protocol.
Therefore, it is clear that model-independent pacing protocols
which do not incorporate any spatial features in their realization
have limited ability in achieving alternans annihilation.

Remark 1. In light of the experimental implementation, the
pacing protocol in the numerical study given by Eqs. (7) and
(8) differs by the term�T̄n(ζci) from the experimentally applied
pacing protocols P1 and P2. In experimental protocols only Eq.
(7) is used and the term�T̄n(ζci) is set to zero. Also, it is impor-
tant to emphasize that the Noble cardiac cell model used in
numerical simulations belongs to the Purkinje fibers cells which
conduct the electric pulse faster than the cells of the ventricular
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walls used in the experiment. In addition, the heart tissue in the
experimental setup may exhibit some memory effects.

3. Analysis and control of amplitude of alternans PDE

3.1. Analysis of amplitude of alternans PDE

In this section, we provide an analysis of the amplitude of
alternans equation by analyzing the structure of the alternans
equation and studying the ability of model-based control to sup-
press alternans. Namely, associated with Eqs. (1) and (2) is the
small amplitude of APD alternans PDEwhich was developed by
Echebarria andKarma (2002a). The small amplitude of alternans
parabolic PDE is linearized around the spatially uniform steady
state a(ζ, t) = 0 and takes the following form:

τ
∂a(ζ, t)

∂t
= Da

∂2a(ζ, t)

∂ζ2
− w

∂a(ζ, t)

∂ζ
+ σa(ζ, t) (9)

∂a(0, t)

∂ζ
= a(0, t)+ v(t),

∂a(L, t)

∂ζ
= 0 (10)

y(t) =
∫ l

0
c(ζ)a(ζ, t) dζ (11)

where the parameters Da and w are taken to be Da ≈√
D× APDc and w ≈ 2D/c̄ where APDc is the APD evalu-

ated at the onset of alternans, and c̄ is the value obtained from a
standard dispersion curve that links the propagation speed of the
wave front with a local diastolic interval, that is c̄ = fd(DIc), see
Echebarria and Karma (2002b). Note that in Eq. (9) there is no
term that accounts for small oscillations of alternans along the
cable due to differences in propagation velocity of two consec-
utive waves. This contribution in Eq. (9) can be neglected when
the tissue cable length is between 1 and 5 cm, which is the size
of a cardiac ventricle of human myocardium that varies within
these limits as a function of age (Oh, Seward, & Tajik, 1999).
The term v(t) in the PDE of Eq. (9) can be inserted into the

PDE (Ray, 1981), to yield:

∂a(ζ, t)

∂t
=
{

D̄a
∂2

∂ζ2
− w̄

∂

∂ζ
+ σ̄

}
a(ζ, t)+ δ(ζ − ζ0)v(t) (12)

∂a(0, t)

∂ζ
= a(0, t),

∂a(L, t)

∂ζ
= 0 (13)

y(t) =
∫ l

0
c(ζ)a(ζ, t) dζ (14)

where a(ζ, t) is the state of the PDE, v(t)/τ = v̄(t)∈R is the
manipulated input, and the parameters D̄a = Da/τ = 0.182/τ,
w̄ = w/τ = 0.045/τ, ζ0 = 0, σ̄ = σ/τ = log(1.5)/τ and τ =
250ms are taken as in Echebarria and Karma (2002a). We pro-
ceed by seeking solution of Eqs. (12) and (13) in the following
form a(ζ, t) =∑∞

i=1ai(t)φi(ζ), which allows us to formulate the
following abstract evolutionary equation:

ȧ(t) = Aa(t)+ Bv̄(t), a(0) = a0 (15)

y(t) = Ca(t) (16)

where the domain of the Sturm–Liouville operatorA is defined
as follows:

D(A) = {φ∈L2(0, L) : φ, φ′ are abs. cont.,

Aφ∈L2(0, L), φ(0)′ = φ(0) andφ(L)′ = 0} (17)

where L2(0, L) denotes, the Hilbert space of measurable
square-integrable real-valued functions f : [0, L]→ R, such
that

∫ L

0 |f (ζ)|
2
dζ, with weighted inner product and norm on

L2(0, L) defined, respectively, by (f, g)η,L2 =
∫ L

0 ηf (ζ)g(ζ) dζ
and ‖f‖2 =

√
(f, f )η,L2 . The input operatorB is given by inner

product as follows:

Bv(t) = (φi(ζ), δ(ζ − ζ0))η,L2v(t) (18)

where δ(ζ − ζ0) is an approximated delta function δ(ζ − ζ0) =
(1/2ε)1[ζ0−ε,ζ0+ε](ζ)∈L2(0, L). The function δ(ζ − ζ0) is taken
to be nonzero in a finite spatial interval of the form [ζ0 − ε, ζ0 +
ε], where ε is a small positive real number, and zero else-
where. The output operator is parameterized by the locations
wheremeasurements of amplitude of alternans are obtained. The
point sensor function is given by approximated delta function
as c(ζ − ζc) = (1/2ε)1[ζc−ε,ζc+ε](ζ)∈L2(0, L), and it is taken to
be nonzero in a finite spatial interval of the form [ζc − ε, ζc + ε],
where ε is a small positive real number, and zero elsewhere. The
output operator is given as

y(t) = (c(ζ − ζc), a(ζ, t))η,L2 = Ca(t) (19)

It can be demonstrated that the Sturm–Liouville operator is a
self-adjoint operator onL2(0, L)with respect to an appropriately
weighted inner product (φi, φj)η (Curtain & Zwart, 1995,Ray,
1981). Namely, the operator A is given, for any function in the
domain D(A), by

Aφ(·) = 1

ρ(·)
d

dζ

[
ρ(·)dφ

dζ
(·)
]
+ q(·)φ(·) (20)

where ρ(ζ):=e−(w̄/D̄a)ζ , p(ζ):=D̄aρ(ζ), q(ζ):=σ̄ are contin-
uously differentiable functions on [0, L]. The spectrum of
eigenvalues of the operator A consists of isolated eigenvalues
and it is given by

λn = σ̄ − D̄a

[
αn + w̄2

4D̄2a

]
, 0 < αn < αn+1, n ≥ 1 (21)

where αn is the solution to the following transcendental equa-
tion:

tan
(√

αL
) = √

α

[1− w̄/2D̄a]+ α
(22)

The eigenfunctions and adjoint eigenfunctions (φ∗(ζ) =
φ(ζ) e−(w̄/D̄a)ζ) for all n ≥ 1, are given by
φn(ζ) = An e

(w̄/2D̄a)ζ

×
[
cos(

√
αnζ)+

(
1− w̄

2D̄a

)
1√
αn

sin(
√

αnζ)

]
(23)

where An are nonzero constants, which are calculated by the
orthogonality condition (φi(ζ), φ∗j (ζ))(w̄/D̄a),L2 = δij (where δij
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Fig. 12. Distribution of eigenvalues on the basis of Eq. (21) for different lengths of the cable L (1, 2.5 and 5 cm); APD profiles of two consecutive beats calculated
by Eqs. (1) and (2) and eigenfunctions of unstable eigenmodes of the operator A given by Eq. (23) for L = 2.5.

is the Kronecker delta), and are given by

An =
[∫ L

0

(
cos(

√
αnζ)+

(
1− w̄

2D̄a

)

× 1√
αn

sin
(√

αnζ
))2

dζ

]−1/2
(24)

In the case of a small amplitude oscillation of Eqs. (9)–(11)
and given parameters, the spectrum of the operator A reveals
that for L = 2.5 cm, the first three eigenvalues of the oper-
ator A are unstable (λ1 = 0.0015527, λ2 = 0.0012787, λ3 =
0.00064788), while the remaining infinite eigenvalues are sta-
ble (Fig. 12). It can also be seen from Fig. 12 that the increase
in the cable length increases the number of unstable modes of
the operatorA so that for the maximum anatomical length con-
sidered which is approximately ≈ 5 cm, five eigenvalues are
unstable.Also, in relation to experimental and numerical studies,
the tissue characteristic length of approximately 1 cm has one
eigenvalue unstablewhich confirms experimental and numerical
studies that have demonstrated successful alternans annihilation
at this characteristic length.

3.2. State feedback control

In this section, we address the problem of constructing
model-based state feedback controllerswhich can stabilize alter-
nans in the model given by Eqs. (9) and (10). In particular,
the eigenspectrum of the dissipative operator of the parabolic
PDE of Eqs. (12)–(14) provides beneficial structure that can
be exploited by a state feedback controller that can achieve
the stabilization of the unstable modes, while the stable modes
remain invariant under the state feedback control structure.
Namely, due to the partitioning of the operator eigenspec-

trum�{A} = �+{As} ∪�−{Af} into a finite-dimensional part
�+{As} and an infinite-dimensional complement �−{Af}, the
formulated control algorithm is finite-dimensional and places
eigenmodes of the operator As at desired locations in the left
half of the complex plane. In order to proceed, it is impor-
tant to assume approximate modal controllability which holds
if rank((δ(ζ), φn(ζ))(w̄/D̄a),L2 ) = 1, for all n ≥ 1 (Curtain &
Zwart, 1995). Hence, it can be easily verified by simple vec-
tor algebra that the approximate controllability of the reduced
system (As,Bs) is satisfied by checking the rank of Cctrb =
[BsAsBsA2sBs] (that is rank(As) = rank(Cctrb)). Accordingly,
there exists a similarity transformation so that all three unsta-
ble states can be controlled from a single input (Antsaklis &
Michel, 1997). In other words, by applying the transformation
as(t) = T ′z(t), Ās = TAsT ′, and B̄s = TBs, the linear finite-
dimensional system dynamics given by

ȧs(t) = Asas(t)+ Bsv̄(t) (25)

can be transformed into a controllable form that couples all three
states and provides control from a single input, and is given by

ż(t) = Āsz(t)+ B̄sv̄(t) (26)

The simple pole placement gain state feedback control law
given by v̄(t) = −Kz(t) places all three eigenmodes at desired
locations in the closed-loop, so that λcl = eig{Ās − B̄sK}
and the desired locations of the stabilized eigenmodes are
given as λcl = [−0.0019 − 0.0025 − 0.0029]. The feed-
back gain K is given as K = [−0.5845 0.0804 − 0.0080]
and the similarity transformation T is given as,
T = [−0.6754 0.7113 − 0.1949; 0.5793 0.3482 −
0.7370; −0.4563 − 0.6106 − 0.6472], so that the manip-
ulated input v̄(t) = −KTas(t) = −Kas(t) in Eq. (25) places the
unstable eigenvalues in the closed-loop system at λcl. There-
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Fig. 13. Boundary stabilization of the amplitude equations (9)–(11) under state
feedback control with initial condition a1(0) = 0.1.

fore, by stabilizing the unstable modes of a finite-dimensional
subsystem the exponential stabilization of alternans is achieved.
However, even though this state feedback controller achieves
exponential stability of the closed-loop system, it does excite the
evolution of the highermodes of the operatorA. This is reflected
in a high excursion of the state from the spatially uniform
equilibrium state a(ζ, t) = 0 at both the boundary and far away
from the boundary where the control is applied. Fig. 13 shows
that the amplitude of alternans increases at both the pacing site
and far away from it and as a consequence a propagation failure
(conduction block) may be created as the amplitude of alternans
in neighboring cells undergoes significant value changes (see
detailed analysis of the conduction block dynamics in Henry
and Rappel, 2005). In particular, the propagation failure at the
pacing site may happen as a consequence of a large negative
perturbation of the basic pacing cycle length that may place an
excitation stimuli at the wave back of the preceding wave which
is not in the complete refractory state, see for demonstration
Fig. 4. Such a stimuli will not elicit a wave to propagate from
the pacing site along the cable. Similarly, the propagation
failure away from the pacing site may happen as the preceding
wave’s back can collide with the following wave’s front, see
for demonstration Fig. 9. Another important notion that is
revealed from Fig. 12 is that the increase in the cable length
results in an increase of the number of unstable modes of the
operator A which needs to be stabilized in order to achieve
stabilization along the entire cable length. Moreover, Fig. 12
demonstrates that increase of the cable length strengthens the
convective nature of the underlying PDE, since the necessary
“gap” condition, i.e. that consecutive stable eigenvalues
have a sufficiently large separation (see Temam, 1988, and
Christofides, 2001), fails to hold. This condition is difficult
to satisfy in systems with strong convective terms and/or a
small diffusion parameter. The amplitude equations (12)–(14)
given in the modal form is solved by Galerkin’s method (40
eigenfunctions are considered, a(ζ, t) =∑40

i=1ai(t)φi(ζ), see
for details Christofides, 2001) using an explicit Euler time inte-
gration scheme (�t = 1/2max{eig{A}}). Finally, we note that

Fig. 14. Boundary stabilization of the amplitude equations (9)–(11) under the
output feedback control with initial condition a1(0) = 0.1.

the application of mixed boundary/distributed state feedback
control to the full nonlinear model to achieve stabilization
has been done in Dubljevic and Christofides (submitted). The
addition of spatially distributed actuators to a boundary control
system results in a boundary/distributed control problem which
requests, owing to the addition of spatially distributed actuators,
boundary control action of significantly smaller magnitude
compared to the case of pure boundary control and may prove
to be very beneficial from a practical implementation point of
view.

3.3. Output feedback control

A natural extension of the state feedback controller is to
extend the synthesis in the cases where only output mea-
surements are used in the feedback structure. In order to
do this a state observer of the Luenberger type is consid-
ered (Dochain, 2001). Under the assumption of approximate
modal observability (Curtain & Zwart, 1995), which holds if
rank((c(ζ, ζci), φn(ζ))(w̄/D̄a),L2 ) = 1, for alln ≥ 1, a linear Luen-
berger type observer is constructed of the form:

˙̂as = Asâs(t)+ Bsv̄(t)− Lo(y(t)− Csâs(t)) (27)

where Cs is the matrix of appropriate dimensions corresponding
to the dimensions of the unstable eigenspace �+(A) and the
number of measurement sensors. In this simulation study, three
measurements are used at c(ζ − ζci) = (1/2ε)1[ζci−ε,ζci+ε](ζ),
where ζci = [0 1.1364 2.2727]. In the case of cable length
of L = 2.5 cm there are three unstable eigenvalues. Finally,
due to the approximate controllability and observability of
(As,Bs, Cs), there exist K and Lo such that As + BsK and
As + CsLo are stable matrices. The control gain is chosen
to be K = [−0.5845 0.0804 − 0.0080] and the closed-loop
poles are λcl = [−0.0019 − 0.0025 − 0.0029]. The gain Lo is
chosen to be Lo = [0.0015 0.0016 0.0004; 0.0023 − 0.0001 −
0.0006; 0.0014 − 0.0010 0.0003] and the estimation error poles
are chosen asλLo = −[0.0025 0.003 0.0035]. In Fig. 14 the suc-
cessful stabilization of amplitude of alternans is demonstrated by
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Fig. 15. Boundary stabilization of the amplitude equations (9)–(11) under the
output feedback control with a measurement noise level of �(t) ≤ 0.02 and with
initial condition a1(0) = 0.1.

the output feedback control law. The effect of noise in the output
feedback controller realization is demonstrated in Fig. 15 which
demonstrates that the presence of even small noise prevents
successful alternans annihilation.

Remark 2. Above we demonstrated alternans annihilation by
full state feedback control and output feedback control, where
it was assumed that the evolution of alternans is known in the
case of state feedback control, while in the output feedback con-
trol case alternans were measured at three appropriately chosen
locations. In light of experimental and numerical studies, our
controller design which is based on the model of Eqs. (9)–(11)
is a special case of the single point measurement gain-based
output feedback controller of the form v(t) = −γa(ζm, t). The
amplitude of alternans is measured in the case of the experimen-
tal study in the vicinity of the pacing cite while in the numerical
study it is obtained at the pacing site. In this case, it is obvious
that a single measurement provides a gain-based feedback that
can only stabilize a single unstable mode and as unstable modes
appear as a function of the length of the tissue size considered,
see Eq. (21) and Fig. 12, such a local feedback fails to stabilize
cable tissue longer than 1 cm. Therefore, it is important to point
out that any feedback control law must utilize more measure-
ments in order to achieve successful stabilization, or the number
of measurements applied must be at least equal to the number
of the unstable modes. Only under this condition of observabil-
ity of unstable modes subsequent stabilizability of the system
can be ensured. Previous studies failed to address that inherent
limitation of the collocated recording and pacing site control
law feature in the perturbation feedback control law of Eq. (4).
Moreover, since the maximal number of unstable eigenmodes
for the cardiac relevant tissue size, which is ≈ 5 cm, and it can
vary due to the physiological conditions of tissue, the worst case
scenario of stabilization of large number of modes by boundary
control must be addressed within the robust control synthesis
methods which are developed in (Christofides, 2001).

Remark 3. The desired locations of the closed-loop eigenval-
ues are chosen arbitrarily such that the gain-based control will

Fig. 16. Manipulated input profiles under output feedback control with the addi-
tive noise (dashed line) and under full state feedback control (solid line). Both
controllers are applied to the amplitude of alternans equations (9) and (10).

not generate a large input effort thatmay lead to highmodulation
of alternans away from the pacing site. In the context of the con-
trol applied to physiological systems one needs to be cautious
with the control input effort that can lead to high fluctuation of
relevant physiological parameters. Large negative values of the
closed-loop eigenvalues will force faster convergence of the sys-
tem to the spatially uniform unstable steady state, but however
this might produce a large perturbation at the pacing site which
will propagate due to convective instabilities along the cable
so that perturbations of amplitude of alternans would eventu-
ally grow and reach some critical threshold at which wave front
may break and lead into formation of the spiral wave which is
precursor to ventricular fibrillation.

Remark 4. It is important to address the issue of noise in the
framework of the output feedback controller design. Namely,
the sensitivity of the closed-loop system to noisy measurements
is very high. Specifically, a small amount of noise introduced
at the boundary where the control is applied will generate per-
turbations that will form a standing wave, which is usually a
crude approximation of a linear combination of the eigenfunc-
tions corresponding to the unstable modes. This effect is indeed
observed in the experimental realization of pacing protocols that
measure the amplitude of alternans at the pacing site and apply
a self-referencing gain feedback close to the pacing site. In the
simulation studies, it is demonstrated that the noise level thatwill
produce the standing wave solution under output feedback con-
trol is very low, see Figs. 15 and 16. Therefore, when the impact
of noisy measurements at the output is included in the output
feedback controller realization, simulation studies demonstrate
that the stabilization of spatially uniform steady state of car-
diac alternans (i.e. set a(ζ, t) = 0) due to the high sensitivity to
the measurement noise cannot be achieved. Namely, for the ran-
domnoise perturbationwithmagnitude�(t) ≤ 0.02 that is added
to y(t) in Eq. (27), the output feedback fails to stabilize alter-
nans, giving rise to a standing wave solution instead, see Fig. 15.
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This strongly advocates that the current collocated pacing and
measurement site experimental realizations of pacing protocols,
can produce small perturbations which will be amplified, and
subsequently produce failure of alternans stabilization. Small
destabilizing perturbations in the closed-loop system may be
attributed to two factors: the first is inherent noise due to the finite
accuracy in themeasurements, and the second is small timedelay
in the realization of close but different locations of measuring
and pacing cites. Therefore, one can regard that these two effects
whencombinedmaybe responsible for the creationof destabiliz-
ing effects in the closed-loop system. Another important aspect
is the interplay between the influence of the inherent noise and
the large number ofmeasurement sensors applied. In general, the
reconstruction of alternans statewill be improved under the large
number of measurement sensors applied. However, it is unlikely
that the large number of the measurements can be realized in the
real heart application setting. There should be probably some
tradeoff between the smallest number of sensors applied to guar-
antee stabilization in the cardiac relevant tissue size (that is
≈ 5 cm) and the largest number of sensors that can be placed
along the tissue such that functionality of the tissue should not be
jeopardized.

Remark 5. One important point from a controller synthesis
perspective is to connect the diffusion-reaction mechanism of
voltage propagation given by Eqs. (1) and (2) with the amplitude
of alternans equation given by Eqs. (9)–(11). In the diffusively
coupled cardiac cell model of Eqs. (1)–(2) excitable waves are
traveling from the pacing site along the cable and the ampli-
tude of alternans is generated by two consecutive beats; this
property of the model of Eqs. (1) and (2) does not have a cor-
responding feature in the amplitude of alternans PDE equation
of Eqs. (9)–(11). The discrete nature of the amplitude of alter-
nans an(ζ) is approximated with the continuous representation
a(ζ, t) in Eqs. (9)–(11). Hence, the amplitude of alternans PDE
of Eqs. (9)–(11) does not provide enough information on how
to apply control and handle the presence of constraints in the
system (e.g., conduction block) as it is the case for the ampli-
tude of alternans an(ζ) generated from the cardiac cell model
of Eqs. (1) and (2). However, since constraints are naturally
present, the controller synthesis based on the model given by
Eqs. (9)–(11) must include them in its realization in order to be
relevant for implementation in the cell cable model of Eqs. (1)
and (2). This implies that a model-based optimal constrained
controller synthesis needs to be invoked in order to successfully
achieve alternans control. In particular, model predictive control
(MPC) methods for parabolic PDEs (Dubljevic & Christofides,
2005, 2006; Dubljevic, El-Farra, Mhaskar, & Christofides,
2006; Dubljevic, Mhaskar, El-Farra, & Christofides, 2005)
can be used in the alternans control problem since it can
explicitly account for state and input constraints in their for-
mulation. Furthermore, the model-based optimal constrained
controller synthesis can also benefit from the low-order approx-
imations of the PDE system and the corresponding dynamic
optimization algorithms developed in Armaou and Christofides
(2002).

4. Concluding remarks

Our experimental work has demonstrated real-time stabiliza-
tion of the cardiac alternans in an intact rabbit heart. Although
our experimental work addresses only alternans stabilization
that is recorded at the surface of the optically mapped rab-
bit heart, we believe that the interior of the heart close to the
recording sites also undergoes successful alternans stabiliza-
tion. In our experimental findings the alternans annihilation is
demonstrated with model-independent self-referencing propor-
tional perturbation feedback of the basic pacing cycle length that
is successful in alternans annihilation up to a certain length of
the cardiac tissue. Our results are in agreement with other sim-
ilar experimental (Christini et al., 2006) and theoretical results
(Echebarria & Karma, 2002a). However, our experimental find-
ings are obtained by a novel pacing protocol that prevents the
occurrence of the conduction block at the pacing site. Comple-
mentary numerical analysis for the ionic 1D cardiac cell cable
model supports the experimental findings in that when only
positive perturbations are applied in the feedback control law
the negative effect of possible conduction block or fibrillation
induction may be prevented.
Furthermore, the analysis of the associated amplitude of alter-

nans linear PDE reveals that the boundary stabilization of the
parabolic PDE can be easily achieved by stabilizing the unsta-
ble modes of the dissipative evolutionary operator, provided
that the entire state measurement is utilized in the feedback
control structure. The analysis demonstrates that the boundary
input injection has an effect on all modes of the evolutionary
operator and that it is not selective since the operator’s eigen-
functions do not vanish at the boundary where the pacing is
applied (i.e.

∫ L

0 φi(ζ)δ(ζ) dζ = φi(0) �= 0, i ≥ 1). This finding
that the boundary input injection has an effect on allmodes of the
evolutionary operator is contrary to the findings in Echebarria
and Karma (2002a) where the claim was made that only the
first eigenvalue of the evolutionary operator can be stabilized.
In addition, this finding advocates that the stabilization of the
alternans amplitude can be achieved in a longer cable when
the entire state and not only point-measurement point-control
feedback structure is used. The knowledge of the entire state of
alternans can be reconstructed from the real-time measurements
and used in a model-based control algorithm.
Furthermore, the pacing control algorithm that uses the pac-

ing site measurement of the amplitude of alternans achieves
stabilization only in a certain size domain tissue, since increase
in the gain parameter γ cannot achieve stabilization of alter-
nans in cables of arbitrary lengths. This is due to the fact that
the number of measurements which must be used in the feed-
back realization must be at least equal to the number of unstable
modes. That is why the boundary point measurement of the
amplitude of alternans can stabilize only a single mode and con-
firms that when we increase the length of the tissue beyond the
length of 1 cm (see eigenvalue distribution in Fig. 12), a model-
based control algorithm that is realizedwithmoremeasurements
must be used in order to annihilate alternans. We also demon-
strated state and output feedback control that achieve alternans
stabilization in the cardiac relevant cable length.
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Finally, the current inability of pacing algorithms to control
alternans in the longer tissue size stems from neglecting the
spatial evolution of alternans. Another factor that also impacts
the ability of the controller to suppress alternans is the need
to account for the occurrence of the conduction block and the
limited ability to measure and utilize the relevant evolution of
the alternans in the entire domain in the pacing-based algo-
rithms (a single point measurement of APDs leads to a feedback
signal which allows stabilization of only one unstable mode).
Therefore, this strongly advocates that the spatiotemporal con-
trol of cardiac alternans must be posed as amodel-based optimal
constrained control problem that accounts for the rate of stabi-
lization and for the constraints imposed on the available control
input and spatial evolution of alternans.
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