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a b s t r a c t   

With the growing scarcity of semiconducting devices stemming from volatile prices, 

shortened supplies, and increased demand that are attributed to the Covid-19 pandemic, 

manufacturers are looking for efficient ways to facilitate the production of nanoscale 

semiconducting devices. Thermal atomic layer etching (ALE) is a promising method that 

can overcome the obstacles encountered during the production of semiconducting de-

vices via conventional approaches by delivering precise dosages of reagent to etch 

monolayers of substrate surface material in a cyclic operation. However, thermal ALE has 

not been extensively studied and characterized to become fully embraced by the semi-

conductor manufacturing industry. Recent work by our group has led to the development 

of a multiscale computational fluid dynamics modeling framework that was used to op-

timally design a desirable reactor configuration and operating conditions for the thermal 

ALE process. Despite this progress, additional research is needed to ensure that the film 

quality is maintained in the presence of operational disturbances. Therefore, the present 

work is focused on the development of a multivariable run-to-run (R2R) control system to 

mitigate the impact of critical operational disturbances. It is demonstrated that the de-

veloped multivariable R2R control system can efficiently overcome the negative effects of 

unknown disturbances that may impact film uniformity by regulating input variables 

within a minimal number of batch runs. 

© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.     

1. Introduction 

Recently triggered by the Covid-19 pandemic, there has been 
a transition from the real world to the digital world or the so- 
called “metaverse.” As telecommuting has been increasing, 
the demand for a wider range of electronic devices has 
surged. This trend requires robust and reliable computing 
power, which are obtained from high-performance semi-
conductors. In addition, the autonomous vehicle market is 

greatly expanding and more vehicles are integrating addi-
tional safety and convenience features that would require 
additional semiconducting materials. The combination of 
these factors is resulting in a growing demand for these va-
luable ultra-high-performance semiconductors from dif-
ferent industries during this Fourth Industrial Revolution. 
However, the semiconductor fabrication speed has not been 
able to sustain this growing demand and with the un-
certainty of the Covid-19 pandemic, shortages are becoming 
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more prevalent in the semiconductor market (Voas et al., 
2021). Thus, a more effective and efficient method for pro-
ducing these semiconductors must be established to meet 
the consumer demand for these materials. Despite the de-
mand for the miniaturization of semiconductors, the con-
tinued shrinking of the fin dimensions of the fin field-effect 
transistors (FinFETs) has been obstructed by an obstacle that 
is associated with the 5 nm node (Razavieh et al., 2019). Gate- 
all-around (GAA) transistors have become the most pro-
mising competitor to replace FinFET technology, which are 
able to enter the sub-5 nm era. 

Atomic layer etching (ALE), considered one of the most 
advanced etching techniques in semiconductor fabrication, 
is anticipated to overcome this miniaturization issue (Lu 
et al., 2018). ALE is an etching process that uses sequential 
precursor pulses in between purge steps to achieve self- 
limiting behavior by etching monolayers of substrate surface. 
Due to this behavior, ALE has received great attention as a 
promising etching process that is able to evoke the sub-5 nm 
era. Many researchers have investigated and demonstrated 
the technical viability of ALE processes with various mate-
rials such as Si (Abdulagatov and George, 2018), SiO2 (Metzler 
et al., 2014), MoS2 (Kim et al., 2017), Si3N4 (Li et al., 2016), and 
Al2O3 (Lee et al., 2016). In particular, high-k materials, which 
increase computing speed with lower current leakage 
(Jurczak et al., 2009), have received tremendous attention. 
Recently, Lee et al. (2016) has validated the self-limiting be-
havior of the thermal ALE of aluminum oxide. Thermal ALE 
processes are particularly noticeable since they can ensure 
uniformity and conformity of thin films, thus resulting in 
ultra-smooth thin films. Nevertheless, the thermal ALE of 
aluminum oxide has not been extensively studied, and thus, 
the process has not been fully characterized. The thermal 
ALE of Al2O3 has been investigated microscopically (Yun 
et al., 2022a) and from a multiscale modeling framework 
(Yun et al., 2022b) that provides a multiscale perspective on 
the process, which was validated from the experimental re-
sults of Lee et al. (2016). 

Despite the advancements made in ALE modeling, an 
optimal control scheme and guideline for performing process 
control for the ALE system are lacking. For example, prior 
research has been conducted in the feedback control of si-
licon (Crose et al., 2019). However, one of the most notable 
control methods in the semiconductor industry is run-to-run 
(R2R) control, which is a form of a batch system where a 
process recipe is modified between “batches” according to 
the given input-output relation. Despite the fact that R2R 
control has been gradually used in semiconductor fabrication 
facilities, the lack of quantitative and qualitative process 
information and nonlinear dynamic behaviors are some 
reasons why semiconductor manufacturers are skeptical 
about integrating R2R control to ALE processes. In addition, a 
single R2R algorithm may not be sufficient to cover all pos-
sible disturbances such as process drift, shift, and other 
kinds of variability (Ning et al., 1996). To overcome this issue, 
a combination of batch process control and feedback control 
has recently emerged in the semiconductor manufacturing 
industry (Campbell et al., 2002). The conjunctive strategy of 
R2R and feedback control has been studied by Yun et al. 
(2021) and Zhang et al. (2020). As another combined strategy, 
effective multi-algorithms for R2R control have emerged as 
robust, stable, and optimal control schemes in the semi-
conductor manufacturing industry (Moyne et al., 2018). In 
this research, multiple algorithms for multivariable R2R 

control are developed to ensure conformity and uniformity of 
thin films and to adapt to disturbances that impede the 
standard operating conditions in the context of thermal ALE 
of aluminum oxide thin films. 

2. Multiscale CFD modeling of thermal ALE 

Thermal atomic layer etching (ALE) for aluminum oxide 
(Al2O3) thin films is simulated using multiscale computa-
tional fluid dynamics (CFD) modeling, which is an integrated 
form of microscopic and macroscopic modeling. This multi-
scale model is conducted similarly to prior research by Kwon 
et al. (2015) and Crose et al. (2017). Based on the kinetic Monte 
Carlo (kMC) method, microscopic modeling composes of a 
general simulation of the kinetic components of the reaction 
under ideal conditions and is simulated through randomness 
to generate a kinetic model of the surface. For the gas 
transport domain, the previously developed inclined plate 
reactor is used and CFD simulations are performed using 
Ansys Fluent 2021R2, which is a widely used commercial CFD 
software. For the surface domain, the process data from the 
CFD model is exported and transferred to the microscopic 
model to calculate the coverage or etching fraction in the 
atomistic point of view. 

In the previous research (Yun et al., 2022b), the multiscale 
CFD simulation included the influence of transport phe-
nomena and kinetic effects to various reactor models, which 
were examined for their effectiveness in delivering a uniform 
precursor flow pattern to the substrate surface and for the 
time to achieve complete coverage and etching. It was re-
vealed that the inclined plate reactor delivered the most 
optimal results when comparing the types of reactors that 
were studied. Therefore, in this work, the multiscale CFD 
model of the inclined plate reactor design is adopted to de-
velop and optimize a multivariable R2R control system. 

2.1. Microscopic surface modeling 

The thermal atomic layer etching (ALE) of Al2O3 uses two 
precursor pulses in a sequential manner. Thus, there are two 
reaction steps in between the purge steps: Step A and Step B. 
In Step A, the wafer is exposed to hydrogen fluoride (HF), 
which fluorinates the aluminum oxide on the surface to 
produce an AlF3 layer. Next, a purge step sweeps the re-
maining HF in the reactor to avoid undesired reactions and to 
guarantee self-limiting behavior. Then, the fluorinated sur-
face (AlF3) undergoes a ligand-exchange and is converted 
into a volatile species, dimethylaluminum fluoride [DMAF, 
AlF(CH3)2], when trimethylaluminum (TMA), Al(CH3)3, is 
supplied during Step B. The volatile layer, DMAF, is desorbed 
and thus, a monolayer of the substrate surface is removed. 
Lastly, another purge step removes the remaining TMA and 
residual products. A cyclical operation consists of the afore-
mentioned steps, which are repeated until the desired film 
thickness is achieved. The overall reaction is described by 

+ + +Al O (s) 6HF (g) 4Al(CH ) (g) 6AlF(CH ) (g) 3H O (g)2 3 3 3 3 2 2

A microscopic surface model for the etching of Al2O3 thin 
films was described in the previous work (Yun et al., 2022a). A 
brief description of the microscopic model is presented here. 
θ-Al2O3 (2 0 1) was found on Si(1 0 0) through the atomic layer 
deposition (ALD) process under annealing (Broas et al., 2017). 
Thus, θ-Al2O3 (2 0 1) is used as the preferred lattice structure. 
A 300 × 300 lattice is applied to the microscopic model in 
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which etch reactions take place. The surface kinetics in the 
atomistic level is modeled using the kinetic Monte-Carlo 
(kMC) method, in particular the variable step size method 
(VSSM) that is often called the n-fold way or BKL, which re-
fers to the algorithm developed by Bortz, Kalos, and Lebowitz 
(Jansen, 2012). The kMC algorithm was popularized by  
Gillespie (1976) who integrated the Monte Carlo algorithm 
into chemical kinetics. The kMC method is widely used to 
simulate individual reactions on the microscopic scale in-
cluding the dependence on the lattice structure (Lou and 
Christofides, 2003). In the kMC algorithm, the total rate 
constant, ktotal, is an important parameter that selects a re-
action on the reaction site and calculates the time progres-
sion, which is computed as follows: 

=
=

k k
i

N

itotal
1

(1) 

where ki is the reaction rate constant of the reaction i, and N 
is the number of reactions. After all reactions are defined and 
the total reaction rate constant is calculated, a random 
number, γ1 ∈ (0, 1], is chosen to determine the reaction on the 
site by using the criterion as follows: 

= =
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i
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where j represents the reaction j. Finally, an additional 
random number, γ2 ∈ (0, 1], is generated to compute the time 
interval defined as: 

=t
k

ln( )2

total
(3) 

Detailed kinetic mechanisms for the fluorination and ligand- 
exchange reaction as well as their kinetic parameters, which 
were calculated using electronic structure optimization 
methods and Density Functional Theory, can be found in the 
research of Yun et al. (2022a). 

2.2. Macroscopic modeling 

In the previous work, as shown in Fig. 1a, a 3D computational 
fluid dynamics (CFD) model for the inclined plate reactor 
design was developed and evaluated by Yun et al. (2022b). 

The optimized inclined plate reactor showed the uniform 
precursor distribution while preserving the fastest cycle time 
among other geometries. Thus, in this paper, the inclined 
plate reactor is adopted to formulate the control scheme. The 
reactor configuration consists of a cylindrical-shaped 
chamber with a 500 mm diameter and 10 mm height, a round- 
shaped inlet of 20 mm diameter, and a round-shaped outlet 
of 40 mm diameter. A substrate of 300 mm is placed at the 
center of the reactor. To optimize the precursor distribution, 
an arch-shaped inclined plate with 2 mm thickness and 5∘ 

angle from the horizontal is equipped near the inlet. Meshing 
Mode, a feature of Ansys Fluent 2021R2, was utilized to 
generate the mesh for the plate reactor. Tetrahedral cells 
were adopted to reduce simulation time while maintaining 
the accuracy of the numerical calculations. Mesh quality 
criteria ranges recommended from ANSYS (2021) including 
orthogonality, skewness, aspect ratio, and resolution were 
integrated into the development of the plate mesh, which is 
illustrated in Fig. 1b. The characteristics of the plate mesh as 
well as the quality criteria calculated from Ansys Fluent 
2021R2 are discussed in greater detail by Yun et al. (2022b). 

Ansys Fluent 2021R2 is utilized to conduct numerical 
computational fluid dynamics (CFD) calculations of the fluid 
flow and to simulate the surface kinetics of the HF and TMA 
half-cycles in the ALE process. The pressure-based solver 
under transient mode in Ansys Fluent is used with a time 
step of 0.025 s and 200 maximum iterations per time step. 
The coupled algorithm is used to decrease the computation 
time. The pressure-based solver in Ansys Fluent solves the 
mass and momentum conservation equations, which are 
expressed as follows: 

+ =
t

v S( ) m (4)    

+ = + + +v
t

vv p g F
( )

( ) () ) (5) 

where ρ is the density of the mixture, v is the velocity of the 
mixture, Sm is the mass transfer source term, p is the static 

pressure, is a symmetric rank two stress tensor, g is the 

gravitational body force, and F is the external body force. In 

Fig. 1 – A schematic diagram of the inclined plate reactor (a) and the inclined plate reactor mesh generated from Ansys 
Fluent (b) are illustrated from Yun et al. (2022b). 

3 Chemical Engineering Research and Design 182 (2022) 1–12   



addition, Ansys Fluent solves the conservation of energy 
equation which is described by: 

+ + = +
t

E v E p h J S( ) ( ( )) ( )j j h (6) 

where E is the internal energy, hj is the sensible enthalpy of 
species j, Jj is the diffusion flux of species j, and Sh is the heat 
transfer source term. To ensure more accurate results in the 
pressure-based coupled solver, the second-order upwind 
scheme is used for spatial discretization, leading to a 
higher order accuracy through a Taylor series expansion. It is 
also required to calculate gradients to compute the values of 
scalars at the cells on the mesh. To calculate the gradients, 
the Incomplete Lower Upper (ILU) method is employed, 
which requires more computing power but offers better 
smoothing properties for the pressure-based coupled solver. 
Based on these solver settings, the aforementioned equa-
tions are solved iteratively at a given time step. Once the 
solution satisfies the convergence criteria, the solver ad-
vances to the next time step. 

To generate a more realistic profile, the consumption of 
precursors and generation of products are included in the 
CFD model by determining the reaction rate from the mod-
ified Arrhenius equation that includes the temperature de-
pendence of the pre-exponential factor, which is defined as 
follows: 

=k A T ej j
E RTj A j, (7) 

In the above equation, kj is the reaction rate constant for 
reaction j, T is the temperature on the surface, βj is the 
temperature exponent for reaction j, EA,j is the activation 
energy for reaction j, and R is the ideal gas constant. Both 
half-cycle reactions are developed in Ansys Fluent, which are 
described below: 

+ +Al O (s) 6HF (g) 2AlF (s) 3H O (g)2 3 3 2

+2AlF (s) 4Al(CH ) (g) 6AlF(CH ) (g)3 3 3 3 2

The monitoring of the surface temperature in real time is 
necessary to ensure that the temperature does not decrease, 
especially for Step A, which requires higher operating pres-
sures for HF at lower temperatures (Yun et al., 2022a). Typi-
cally, the surface temperature is maintained to guarantee 
film quality, and thus, a PI (proportional-integral) controller 
is assumed to work appropriately in this process. In addition, 
the cyclical operation is carried out through a user-defined 
function (UDF) in which operating conditions and boundary 
conditions are specified. The detailed description for the 
macroscopic model can be found in the previous work of Yun 
et al. (2022b). 

3. Multivariable R2R control formulation 

Various algorithms have been employed in existing run-to- 
run (R2R) control algorithms for chemical vapor deposition 
(CVD) and chemical mechanical polishing (CMP) processes 
including the exponentially weighted moving average 
(EWMA), predictor-corrector control (PCC), and optimizing 
adaptive quadratic controller (OAQC) methods. For example,  
Yun et al. (2021) utilized the EWMA and PCC methods on 
PEALD of HfO2 thin films to compare their effectiveness and  
Crose et al. (2017) developed an R2R controller using the 
EWMA algorithm for thin film Si-H solar cells. The EWMA 
controller, which is a linear approximation model-based 

controller, is widely utilized and integrated into semi-
conductor fabrication processes due to its versatility to 
compensate for process shift, drift, and noise among other 
disturbances (Chien et al., 2014). Run-to-Run controllers are 
adjusted through multiple batches by using statistical pro-
cess control (SPC) and by tuning the controllers using en-
gineering process control (EPC) to provide a new recipe (i.e., 
input) for the next batch run (Fan et al., 2002). 

In this work, an EWMA-based multivariable R2R control 
scheme is developed using two inputs (the process time 
and the precursor flow rate) and two outputs (the coverage 
or etching fraction and the precursor partial pressure). In 
order to tune an EWMA-based R2R controller, the input- 
output relationship must be established first. A multi- 
input-multi-output (MIMO) model may be used to for-
mulate the multivariable R2R controller; however, in this 
work, the process is locally approximated by two single- 
input-single-output (SISO) linear regression models, with 
each SISO model being defined by an equation of the fol-
lowing form: 

= +y ut t 1 (8) 

where yt is the output of the process for batch run t, α is the 
bias, β is the process gain, and ut−1 is the recipe (or input 
variable) in between batch run t − 1 and batch run t. The 
process parameters, α and β, are determined using the 
standard least squares method where α is the y-intercept 
and β is the slope of the linear regression model. R2R 
controllers are modeled under an evolutionary operation 
mode (Box, 1957) that combines statistical results to im-
prove efficiency and increase productivity. In other words, 
the control system works to adapt to changes in the pro-
cess environment and tune the manipulated variables to 
sustain standard output conditions from the R2R 

Fig. 2 – Multivariable run-to-run control of the inclined 
plate reactor. 

Table 1 – Standard operating conditions for the 
multiscale CFD simulation.     

Standard Condition Step A Step B  

Precursor Flow Rate (sccm)  150  70 
Operating Pressure (Pa)  133  133 
Temperature (K)  573  573 
N2 Flow Rate (sccm)  150  150 
Process Time (s)  1.1  2.0   
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controller. The first step of the control work is to update 
the model, which is expressed below: 

= +a y bu a( ) (1 )t t t t1 1 (9) 

where λ represents the weight factor that is responsible for 
the translation of the regression model, at is the updated 
bias, and b is the process gain that is the same as β in Eq.  
(8). Typically, λ is chosen to be 0.1 ~ 0.3 (Campbell et al., 
2002). After the model is updated, the new recipe for the 
next batch run is computed by the following expression: 

=u
T a

t
t

(10) 

where ut is the new recipe for the next batch run and T is 
the target or desired value of the output variable. 

The stability and robustness of the EWMA-based R2R 
controllers have been studied; however, it has been reported 
that the EWMA and PCC (also known as double-EWMA) 
methods underperform for nonlinear systems due to the 
linear model-based R2R algorithm (Ning et al., 1996; Moyne 
et al., 2018). Nevertheless, the EWMA method is able to be 
used for nonlinear systems if linear regression models are 
well-developed for fitting nonlinear responses, which is dis-
cussed in this work. In this paper, two different R2R con-
trollers are formulated and integrated, resulting in the 
Multivariable R2R control system in which each controller is 
modeled using a single-input-single-output (SISO) regression 
model as shown in Fig. 2. The first R2R (denoted as R2R-1) 
tracks the reaction progression (reflected by the coverage or 
etching fraction) to adjust the process time. Typically, a 
quartz crystal microbalance (QCM) is used to monitor the 

etching rate through mass changes along the surface of the 
thin film substrate (Lee and George, 2015) in real time, which 
allows the etching and coverage fractions to be computed. 
The second R2R (denoted as R2R-2) manipulates the flow rate 
of the precursors by monitoring the precursor partial pres-
sure deviation from the desired partial pressure at the 
standard operating conditions for the developed inclined 
plate reactor outlined in Table 1. The following sections 
discuss the tuning methodology of R2R-1 and R2R-2 in 
greater detail (Table 2). 

3.1. R2R-1 modeling and tuning 

The schematic process diagram shown in Fig. 3 illustrates 
the Multivariable R2R control system. R2R-1 is implemented 
to adjust the valve opening time (i.e., process time) for pre-
cursor injection to the reactor to achieve complete AlF3 

coverage and etching for Steps A and B, respectively. Multi-
scale computational fluid dynamics (CFD) simulation data 
are collected at standard operating conditions for Steps A 
and B for the inclined plate reactor, which are summarized in  
Table 1. Process or valve opening times of 1.1 s and 2.0 s in  
Table 1 reflect the ideal time for the Al2O3 thin film substrate 
to reach complete coverage or etching, respectively, 
under the standard operating conditions. In this work, it is 
assumed that the time for the valve to fully opens is negli-
gible, and thus, the dynamics of the valve do not interfere 
with the process dynamics. In other words, R2R-1 only 
adjusts the process time; however, the flow rate is only ad-
justed by the upstream valve as shown in Fig. 3, which is 

Table 2 – A comparison of the standard linear, piecewise, and modified median-effect regression model parameters that 
are calculated from the standard least squares method for Steps A and B.        

R2R Half-Cycle Regression Model R2 Process gain Bias  

R2R-1 Step A Linear Model  0.9251  1.1807 − 0.1350   
Piecewise-1  0.9366  1.4446 − 0.2335   
Piecewise-2  0.8688  0.1820 0.8069   
Modified Median-Effect  0.9740  7.5727 1.5184  

Step B Linear Model  0.8019  0.7011 − 0.1728   
Piecewise-1  0.9520  1.3256 − 0.7072   
Piecewise-2  0.8531  0.1222 0.7719   
Modified Median-Effect  0.9854  7.3701 0.8523 

R2R-2 Step A Linear Model  0.9651  0.8286 −145.6438  
Step B Linear Model  0.9398  1.2388 − 74.8118   

Fig. 3 – The Multivariable Run-to-Run control system.  
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controlled by R2R-2. The R2R-1 controller is approximated to 
a single-input-single-output (SISO) model in which the pro-
cess time (t) for the precursor injection serves as the recipe 
(u = t in Eqs. (12 and 13)) and the etch or coverage fraction (f) 
of AlF3 serves as the output variable (y = f in Eqs. (12 and 13)). 
It is of paramount importance to determine a reasonable 
solution to the SISO regression model with low variance 
along the regression line since the solution has a great im-
pact on the control work (Moyne et al., 2018). In this work, 
multiple regression models for R2R-1 are developed and 
evaluated using the standard least squares method between 
the result data and the solution of the SISO model. First, the 
standard linearization of the multiscale CFD simulation re-
sults for Steps A and B are presented in Fig. 4. 

Fig. 4 reveals that the linear regression model does not fit 
the simulation data for Steps A and B due to their nonlinear 

process responses and the larger variance of the data from 
the regression line, thus the linear regression of the entire 
data set may be difficult to accomplish. To improve the least 
squares values and thereby strengthen the fit of the regres-
sion model to the multiscale CFD results, several techniques 
are used to achieve a better correlation of the model data: 
piecewise and modified median-effect. For the piecewise 
regression model, the data curve is divided into two groups 
to generate two linear piecewise plots that have an inter-
section point (tp,fp) at a time of, tp, which is expressed as 
follows: 

=fp
2 1

1 2
(11) 

where α1 and α2 are the biases for the two plots, respectively, 
and β1 and β2 are the process gains, respectively. A 

Fig. 4 – The input-output relationship between the 
fractional coverage of AlF3 and the precursor valve opening 
time (a) for Step A and the etching fraction of AlF3 and the 
precursor valve opening time (b) for Step B, which is derived 
from a standard linear regression model for the EWMA- 
based R2R controller, R2R-1. For Steps A and B, the R2 values 
from Table 2 indicate marginal linear behavior for Step A 
and a lack of linear behavior for Step B. 

Fig. 5 – The input-output relationship between the 
fractional coverage of AlF3 and the precursor valve opening 
time (a) for Step A and the etching fraction of AlF3 and the 
precursor valve opening time (b) for Step B, which is derived 
from a standard linear regression model divided into linear 
piecewise functions for the EWMA-based R2R controller, 
R2R-1. The R2 values from Table 2 indicate a marginal to 
moderate linear relationship of multiscale CFD data. 
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conditional loop is necessary to ensure the correct piecewise 
regression model to use, which is based on the intersection 
point, fp. The piecewise regression models are presented in  
Fig. 5 and displays a marginal improvement of linearity for 
both precursor injection steps. 

As another alternative technique to improve the curve 
fitting of the multiscale CFD results, the median-effect 
equation is adopted from prior research (Chou, 1976) and is 
applied to the formulation for the coverage and etching 
fraction progression with time. The median-effect equation 
is suitable for the EWMA method because of its logistic-like 
function behavior, which exemplifies the multiscale CFD 
data trend and its ability to transform both the coverage (or 
etching) fraction and the process time into logarithmic 
forms. The median-effect method can also be modified into a 
linearized function in the form of Eq. (8), which will be dis-
cussed later in this section. The median-effect equation is 
defined as follows: 

=f
f

t
1 (12) 

where f is the coverage or etching fraction, t is the process 
time, and the constants, η and δ, are obtained by regressing 
the median-effect equation into a linearized form to obtain 
the slope and y-intercept. It is also notable that f can be 
solved algebraically, which demonstrates the practicality of 
integrating the median-effect equation into the EWMA 
model. In this research, additional tuning constants (γ and ϵ) 
are introduced to reduce the variance of the data to generate 
a “modified” median-effect equation, which is defined below. 

= +f
f

t
1 (13) 

In particular, γ and ϵ are adjustable parameters for modifying 
the median-effect equation in Eq. (12) and are determined by 
tuning the factors until a desirable R2 value of the linear re-
gression is obtained. The original median-effect equation 
from Chou (1976) is obtained by declaring γ = 1 and ϵ = 0 in Eq.  
(13). The parameter, γ, is bounded such that γ ∈ (0, 1], and is 
employed to shift the upper horizontal asymptote of the 
median-effect regression while ϵ is utilized for translating 

Fig. 6 – The input-output relationship with the logarithmized multiscale CFD data and logarithmized time from the modified 
median-effect equation for Step A (a) with γ = 0.99 and ϵ = 0.35 and for Step B (c) with γ = 1.00 and ϵ = 0 for the EWMA-based 
R2R controller, R2R-1. The R2 values in Table 2 indicate a strong linear relationship for Steps A and B. The multiscale CFD 
results with the standard modified median-effect equation are presented in (b) and (d) for Steps A and B, respectively. 
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the regression line along the ordinate direction. The linear-
ized form of the modified median-effect equation ex-
emplified by Chou (2011) is derived below: 

= +f
f

tln
1

ln( ) ln( ) (14) 

Plotting the left-hand side of Eq. (14) as a function of +tln( )
can generate a linearized plot to determine the values of η 
and δ through linear regression where β = δ and = ln( )
from Eq. (8). The regression models of the modified median- 
effect equations for Steps A and B are presented in Fig. 6. For 
Step A, values of γ = 0.99 and ϵ = 0.35 are used and for Step B, 
values of γ = 1.0 and ϵ = 0 are used, and hence, Step B is re-
presented by the original median-effect model. The linear-
ized modified median-effect regression model in Fig. 6a 
shows that the transformed multiscale CFD dataset exhibits 
a more linear relationship compared to that of the linear and 
piecewise regression models. The regression model also 
correlates the data from the multiscale CFD simulation 

reasonably, which is observed in Fig. 6b. The results from the 
modified median-effect regression model for Step B indicate 
a strong correlation of the multiscale CFD data and are dis-
played in Fig. 6c and d. The transformation of the multiscale 
CFD data improves the linearization of both the linear 
(Fig. 4b) and piecewise (Fig. 5b) regression models, which is 
validated by an R2 value of 0.9854 and exhibits a strong least 
squares fit. In the simulations, a given output variable is 
logarithmized to compute a logarithmized recipe for the next 
batch run, while a logarithmized recipe is calculated from Eq.  
(14) and the antilogarithmic form is used to simulate the 
process. 

In conclusion, the SISO regression models of R2R-1 con-
trollers for both half-cycles are obtained using three different 
regression methods and the parameters are presented in  
Table 2. As a result, the modified median-effect method 
provides better linear models for the SISO regression and 
overcomes the nonlinear relationship of the multiscale CFD 
data. The performances of the three models are evaluated in 
Section 4. 

Fig. 7 – The input-output relationship between the sum of 
partial pressure deviations and the flow rate for Step A (a) 
and Step B (b), which is derived from a standard linear 
regression model for R2R-2. The R2 values from Table 2 
indicate a moderate linear relationship. 

Fig. 8 – Comparison of the responses for various regression 
methods of R2R-1 under the presence of a kinetic 
disturbance for Steps A (a) and B (b). The weight factors (λ) of 
0.3 and 0.1 are used for Steps A and B, respectively. 
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3.2. R2R-2 modeling and tuning 

R2R-2 is developed to minimize the precursor partial pres-
sure deviation from the ideal partial pressure at the standard 
operating condition within the reactor by adjusting the pre-
cursor flow rate to the reactor. The R2R-2 controllers for both 
half-cycles are also approximated to SISO models with the 
precursor flow rate, V, serving as the recipe (u = V), and the 
sum of the partial pressure deviation at various times, Es, is 
defined as the output variable (y = Es). The controlled variable 
for R2R-2 is expressed as the following: 

= =E C P t P t[ ( ) ( )]i i i is 1
4

m d (15) 

where Pm(ti) refers to the measured partial pressure at time 
ti for four times of 0.1 s, 0.2 s, 0.4 s, and 0.6 s, and Pd(ti) refers 
to the desired partial pressure obtained from the standard 
operating pressure condition that is outlined in Table 1 
without any disturbances. Ci represents a coefficient that is 

selectively chosen to improve the linearity of the recorded 
pressure deviation at the four times. A pressure measuring 
device such as a pressure sensor can be implemented to 
monitor the pressure within the reactor at various times to 
ensure that the sum of the partial pressure deviations is 
reduced to prevent further loss of control of the system and 
degradation of the substrate materials. Therefore, R2R-2 
can effectively function with the sum of pressure devia-
tions as the output parameter, yt, and as the precursor (HF 
and TMA) flow rates serving as the recipe, ut. As illustrated 
in Fig. 7a and b, the SISO regression models fit the multi-
scale CFD data well using the coefficients of 1.0 for all times 
for Step A and 1.0 for all times for Step B except for 2.0 for 
the first timestep (C1 = 2.0) for Step B. The solutions of the 
SISO model have R2 values of 0.9651 and 0.9398 for Steps A 
and B, respectively. 

4. Simulation results and discussion 

Semiconductor manufacturing processes can be subject to 
some unmeasurable drifts or shifts from wall deposition and 
equipment aging in the semiconductor industry. In this 
work, two different disturbances are simulated to evaluate 
the performance of the multivariable R2R control system. 
The first disturbance is a shift (referred to as a “kinetic dis-
turbance”), which is able to be driven by cyclical operations, 
machine maintenance or changes in process settings (Moyne 
et al., 2018). It can be implemented simply by multiplying the 
reaction constants by a factor that is less than 1. The other 
disturbance (referred to as a “pressure disturbance”) is si-
mulated by reducing the operating pressure, which can be 
caused by a malfunction of the vacuum pump. In particular, 
R2R-2 is designed to deal with any pressure deviation from 
the standard conditions. A threshold value of 0.999 is set as 
the target for the fractional coverage for Step A and of the 
etching fraction for Step B. The multiscale computational 
fluid dynamics (CFD) simulation is performed by using 24 
parallel computing processors with 384 GB memory on a 
compute cluster. Simulation time for a half-cycle takes half 
an hour on average. The batch-to-batch calculation of the 
control action is not demanding compared to the multiscale 
CFD simulation, and thus, it is considered negligible. 

Initially, the R2R-1 controllers for both half-cycles are si-
mulated under a kinetic disturbance using the multiscale 
CFD model to evaluate the regression models discussed in  
Section 3.1. After a regression model with a better control 
performance is selected, the Multivariable R2R control 
system is simulated, evaluated, and then compared with the 
single R2R control system (R2R-1 and R2R-2) under the two 
disturbances. As shown in Fig. 8, the modified median-effect 
regression model outperforms the linear and piecewise re-
gression models under a kinetic disturbance. The kinetic 
disturbance is modeled such that the reaction rate constants 
are multiplied by a shift factor of 0.7 in the kMC model when 
the process time is updated, leading to a reduction in the 
reaction rates. The modified median-effect regression 
models reach the target for Step A and Step B at batch runs of 
8 and 9, respectively. However, the individual R2R models do 
not reach the target value until a batch run of 30. One of the 
major concerns of process control is the possibility that the 
controllers may dramatically overshoot the target threshold. 
However, Fig. 8 reveals that the modified median-effect 
models not only reach the target in a reduced number of 
batch runs, but also when they approach the target, the 

Fig. 9 – Comparison of the responses of various R2R control 
systems under the presence of a kinetic and pressure 
disturbance for Steps A (a) and B (b). A weight factor (λ) of 0.3 
is chosen for all case studies. R2R-1 and the multivariable 
R2R system are simulated with the modified median-effect 
regression model. 
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controllers add sufficiently small increments to the new re-
cipe to prevent the possibility of overshooting the target. In 
other words, the controller response overshoots and rapid 
control actions are not allowed in the process due to the best 
curve fit, and thus, the modified median-effect regression 
model is selected for the R2R-1 controllers. 

The results of the Multivariable R2R and individual R2R 
control systems under the two shift disturbances for Steps A 
and B, respectively, are presented in Fig. 9. To model the 
kinetic disturbance, shift factors of 0.55 and 0.7 are multi-
plied to the reaction rate constants for Step A and Step B, 
respectively, and the pressure disturbance is simulated by 
reducing the operating pressure of the reactor to 40 Pa from 
133 Pa. For Step A, both individual R2R configurations reveal 
that the effects of the disturbances are not able to be re-
moved within 15 batch runs as shown in Fig. 9a. For Step B, 
as illustrated in Fig. 9b, R2R-1 is able to mitigate the impact of 
the disturbances within 7 batch runs. However, R2R-2 is not 
able to eliminate the effects of the disturbances within 15 
batch runs. In contrast to individual R2R controllers, the 
multivariable R2R control system is able to successfully mi-
tigate the effect of the disturbances within batch number 5 
for Step A in Fig. 9a and within 3 batch runs for Step B in  

Fig. 9b. As a result, the multivariable R2R configuration per-
forms more efficiently since a lesser number of batch runs is 
required to approach complete coverage or etching, which is 
represented by the target line. 

The multivariable R2R control algorithm is also efficient in 
regard to adjusting the input variables: process time and 
precursor flow rate. Fig. 10 shows the corresponding input 
values from the control work in Fig. 9. For both half-cycles, 
R2R-1 continuously increases the process time to compen-
sate for the effect of the disturbances, as can be seen in  
Fig. 10a and c. However, In Step B, R2R-1 does not update the 
recipe after batch run 9 since it achieves a full etching frac-
tion. R2R-2 also continues to increase the flow rate to reach 
the target as shown in Fig. 10b and d. In this work, there is no 
limit to the precursor flow rate even though there are valve 
opening constraints in the semiconductor industry. As pre-
dicted, the multivariable R2R algorithm manipulates the two 
input values such that both parameters (process time and 
flow rate) are significantly less than those of the R2R-1 and 
R2R-2. Therefore, it is demonstrated that the multivariable 
R2R control system exhibits a stronger performance com-
pared to that of the individual R2R-1 and R2R-2 control 
systems. 

Fig. 10 – Progression of the adjustments made to the recipes (process time, precursor flow rate) in the presence of a kinetic 
and pressure disturbance through various EWMA-based R2R control systems for Steps A (a-b) and B (c-d). 
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5. Conclusion 

In this work, the previously developed multiscale computa-
tional fluid dynamics (CFD) model for the thermal atomic 
layer etching (ALE) of aluminum oxide thin films was em-
ployed to build a multivariable R2R control system using an 
integration strategy. First, two individual R2R controllers 
(R2R-1 and R2R-2) were formulated based on the single- 
input-single-output (SISO) regression method using the ex-
ponentially weighted moving average (EWMA) algorithm. To 
significantly increase the linearity of the SISO model, a novel 
regression method, the modified median-effect, was im-
plemented and compared to standard linearization and pie-
cewise linearization. The modified median-effect method 
outperformed the other regression models and demon-
strated the best fit of the multiscale CFD data using the 
EWMA method for the nonlinear system. R2R-1 was designed 
to adjust the valve opening time of precursor release to the 
reactor by measuring the coverage or etching fraction on the 
wafer, while R2R-2 was formulated to maintain the desired 
partial pressure of the precursor by manipulating the pre-
cursor flow rate into the reactor. Kinetic and pressure dis-
turbances, which are industrially-relevant disturbances, 
were introduced to the system to determine the effectiveness 
of various R2R control algorithms. Consequently, this study 
substantiates that the multivariable R2R control scheme is 
able to successfully achieve complete coverage and etching 
and overcome the effects of disturbances in the least number 
of batch runs compared to that of the individual R2R control 
schemes implemented only one at the time. 
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