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A general methodology is proposed for the synthesis of practically-implementable
nonlinear output feedback controllers for spatially-homogeneous particulate processes
modeled by population balance equations. Initially, a nonlinear model reduction proce-
dure based on a combination of the method of weighted residuals and the concept of
approximate inertial manifold is presented for the construction of low-order ordinary

( )differential equation ODE systems that accurately reproduce the dominant dynamics
of the particulate process. These ODE systems are then used for the synthesis of nonlin-
ear low-order output feedback controllers that enforce exponential stability in the
closed-loop system and achie®e particle-size distributions with desired characteristics.
Precise closed-loop stability conditions are gi®en and controller implementation issues
are discussed. The proposed nonlinear control method is successfully applied to a con-
tinuous crystallizer, and is shown to outperform a proportional-integral controller and
cope effecti®ely with model uncertainty and measurement delays.

Introduction

ŽParticulate processes also known as dispersed-phase proc-
.esses are characterized by material domains that are com-

prised of a continuous phase and a dispersed phase and are
essential in making many high-value industrial products. Ex-
amples include the crystallization of proteins for pharmaceu-
tical applications, the emulsion polymerization reactors for
the production of latex, and the titania powder aerosol reac-
tors used in the production of white pigments. It is now well
understood that the physicochemical and mechanical proper-
ties of materials made with particulates depend heavily on
the characteristics of the corresponding particle-size distribu-

Ž . Žtion PSD for example, a nearly monodisperse PSD is re-
quired for titania pigments to obtain the maximum hiding

.powder per unit mass . Therefore, the problem of synthesiz-
ing and implementing high-performance model-based feed-
back control systems on particulate processes to achieve PSDs
with desired characteristics has significant industrial value.
On the other hand, recent developments in measurement
technology allow the accurate and fast on-line measurement

wof key process variables, including PSDs see Rawlings et al.
Ž .1993 for an excellent review of the available measurement

xtechnology , which can then be used for feedback control
purposes.

Population balances have provided a natural framework for
Žthe mathematical modeling of PSDs see, for example, the

Correspondence concerning this article should be addressed to P. D. Christofides.

Ž .tutorial article by Hulburt and Katz 1964 and the review
Ž ..article by Ramkrishna 1985 , and have been successfully

used to describe PSDs in emulsion polymerization reactors
Ž . Ž .Dimitratos et al., 1994 , crystallizers Rawlings et al., 1993 ,

Žand aerosol reactors Friedlander, 1977; Williams and Loy-
.alka, 1991 . Application of population balances to particulate

processes typically leads to systems of nonlinear partial inte-
gro-differential equations that describe the rate of change of
the PSD. The population balances are coupled with the ma-
terial and energy balances that describe the rate of change of

Žthe state variables of the continuous phase these are usually
systems of nonlinear differential equations, which include in-

.tegrals over the entire particle-size spectrum , leading to
complete particulate process models.

ŽThe nonlinear owing to complex growth, nucleation, ag-
glomeration and breakage mechanisms, and their Arrhenius

.dependence on temperature and distributed nature of popu-
lation balances has motivated extensive research on the de-
velopment of efficient numerical methods for the accurate
computation of their solution. Examples of solution methods
for continuous population balances include the method of

Ž .self-preserving distributions Friedlander, 1977 , the method
Žof weighted residuals Ramkrishna, 1985; Gelbard and Sein-

. Žfeld, 1978 , the sectional method Gelbard et al., 1980; Lan-
.grebe and Pratsinis, 1990 , and discretization via fixedrmov-

Ž .ing pivot techniques Kumar and Ramkrishna, 1996a,b , while
methods for the solution of discretized population balances
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Ž .have been proposed in Hounslow 1990 , and Hill and Ng
Ž .1996 . An excellent review of results in this area can be found

Ž .in Ramkrishna 1985 . The ability to accurately solve popula-
tion balance models motivated numerous research studies on
the dynamics of particulate processes. These studies con-
firmed the existence of a wide range of complex static and
dynamic phenomena including multiple steady states and sus-

w Ž .tained oscillations see, for example, Lei et al. 1971 , Jerauld
Ž . Ž .et al. 1983 , and Rawlings and Ray 1987a,b for a theoreti-

cal analysis of oscillatory behavior in crystallizers and emul-
xsion polymerization reactors, respectively , which had been

wpreviously observed in experimental studies see the classic
Ž .book by Randolph and Larson 1988 for results and refer-

xences . The highly nonlinear and oscillatory behavior of many
particulate processes implies the need to implement nonlin-
ear model-based feedback controllers in order to ensure a
stable and efficient operation.

In spite of the rich literature on population balance model-
ing, numerical solution, and dynamical analysis of particulate
processes, research on model-based control of such processes
has been very limited. Specifically, previous efforts have
mainly focused on the understanding of fundamental

Ž .control-theoretic properties controllability and observability
Ž .of population balance models Semino and Ray, 1995a and

Žthe application of conventional control schemes such as pro-
portional-integral and proportional-integral-derivative con-

.trol, self-tuning control to crystallizers and emulsion poly-
wmerization processes see, for example, Semino and Ray

Ž . Ž . Ž .1995b ; Rohani and Bourne 1990 ; Dimitratos et al. 1994
xand the references therein . Notable exceptions on model-

based control of particulate processes include an optimiza-
tion-based control method which was developed in Eaton and

Ž .Rawlings 1990 and successfully applied to a batch crystal-
ization process, as well as nonlinear state feedback control of

Ž .a cell culture in Kurtz et al. 1998 . The main difficulty in
synthesizing nonlinear model-based feedback controllers for
particulate processes is the distributed parameter nature of
the population balance models which does not allow their

Ždirect use for the synthesis of low-order and therefore, prac-
.tically-implementable output feedback controllers. Further-

more, a direct application of the aforementioned solution
methods to derive finite-dimensional approximations of the
population balance models may lead to ODE systems of very
high order, which are inappropriate for the synthesis of low-
order controllers.

This article focuses on nonlinear feedback control of spa-
tially-homogeneous particulate processes modeled by a class
of nonlinear partial integro-differential equation systems. The
objective is to develop a general and rigorous method for the
synthesis of practically-implementable nonlinear model-based
feedback controllers that enforce the desired stability and

Žperformance specifications such as PSDs with desired total
.mass and mean particle size in the closed-loop system.

A general class of nonlinear partial integro-differential
equation systems is initially given, which describes the major-
ity of spatially-homogeneous particulate processes, and a
crystallizer example is used to motivate the proposed ap-
proach for control of particulate processes. Then, a model
reduction procedure based on a combination of the method
of weighted residuals and the concept of approximate inertial
manifold is proposed for the construction of low-order ODE

systems that accurately reproduce the dominant dynamics of
the particulate process. These ODE systems are subsequently
used for the synthesis of nonlinear low-order output feed-
back controllers that enforce exponential stability in the
closed-loop system and achieve a desired PSD. Precise
closed-loop stability conditions are given and controller im-
plementation issues are addressed. The performance and ro-
bustness of the proposed control method are successfully
tested through simulations on a continuous crystallizer and
are shown to be superior to the ones of a proportional-in-
tegral control scheme.

Modeling and Dynamics of Particulate Processes
Particulate process model

We focus on spatially homogeneous particulate processes
with simultaneous particle growth, nucleation, agglomera-
tion, and breakage and consider the case of a single internal
particle coordinate which, for the sake of exposition, is as-
sumed to be the particle size. Applying a dynamic material

Žbalance on the number of particles of size r to r q dr popu-
.lation balance , we obtain the following general nonlinear

partial integro-differential equation which describes the rate
Ž .of change of the PSD n r, t

w x n  G x ,r nŽ .
sy qw n , x , r 1Ž . Ž .

 t  r

Ž . w . Ž w .where n r, t g L 0, r L 0, r is the Hilbert space of2 max 2 max
w ..continuous functions defined on the interval 0, r , r gmax

w x0, r is the particle size, and r is the maximum particlemax max
Ž . nsize which may be infinity , t is the time and xgR is the

vector of state variables which describe properties of the con-
Žtinuous phase such as solute concentration, temperature and

.pH in a crystallizer . See Eq. 2 below for the system that
Ž . Ž .describes the dynamics of x. G x, r and w n, x, r are non-

linear scalar functions whose physical meaning can be ex-
Ž .plained as follows: G x, r accounts for particle growth

through condensation and is usually referred to as growth
rate. It usually depends on the concentrations of the various
species present in the continuous phase, the temperature of
the process, and the particle size. On the other hand,
Ž .w n, x, r represents the net rate of introduction of new par-

ticles into the system. It includes all the means by which par-
ticles appear or disappear within the system including parti-

Ž .cle agglomeration merging of two particles into one , break-
Ž .age division of one particle to two , as well as, nucleation of

particles of size r G0 and particle feed and removal.
The rate of change of the continuous-phase variables x can

be derived by a direct application of mass and energy bal-
ances to the continuous phase and is given by a nonlinear
integro-differential equation system of the general form

rma x
xs f x q g x u t q A a n , r , x dr 2Ž . Ž . Ž . Ž . Ž .˙ H

0

Ž . Ž . Ž .where f x , a n, r, x are nonlinear vector functions, g x is
Ž .a nonlinear matrix function, A is a constant matrix, and u t

w x ms u u ??? u gR is the vector of manipulated inputs.1 2 m
rma x Ž .The term AH a n, r, x dr accounts for mass and heat0
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transfer from the continuous phase to all the particles in the
population.

We define a vector of controlled outputs to express the
Žvarious control objectives such as regulation of total number

.of particles, mean particle size, temperature, pH, and so on
as

rma x
y t s h c r n r , t dr , x , is1, . . . , m , k s1, . . . , lŽ . Ž . Ž .Hi i k

0

3Ž .

Ž . w rma x Ž . Ž .where y t is the ith controlled output, h H c r n r, t dr,i i 0 k

xx is a nonlinear smooth scalar function of its arguments, and
Ž .c r is a known smooth function of r which depends on thek

desired performance specifications. To simplify the notation
of the theoretical development of this article, we will not con-
sider measured outputs separately from controlled outputs,
which means that we need to assume the availability of on-line

Ž .measurements of the controlled outputs y t .i
Throughout this article we will use the inner product and

w .norm in L 0, r , which are defined, respectively, as2 max

rma x 1r2
f ,f s f z f z dz , If I s f , f 4Ž . Ž . Ž .Ž . Ž .H1 2 1 2 1 2 1 1

0

w .where f ,f are two elements of L 0, r . Furthermore,1 2 2 max
the order of magnitude and Lie derivative notations will be

Ž . Ž .needed in our development. In particular, d e sO e if
< Ž . <there exist positive real numbers k and k such that d e1 2

< < < <F k e , ; e - k , and L h denotes the standard Lie deriva-1 2 f
Ž .tive of a scalar function h x with respect to the vector func-

kŽ .tion f x , L h denotes the k th order Lie derivative andf
ky1 Ž .L L h denotes the mixed Lie derivative where g x is ag f

vector function.
Remark 1. Referring to the general mathematical model

Ž .of Eqs. 1]2, the following remarks are in order: a the parti-
Ž . Ž .cle-size distribution PSD function n r, t is assumed to be a

w Ž .sufficiently smooth function of its arguments that is, n r, t
and its partial derivatives with respect to r and t, up to a

xdesired order, are continuous functions ; this is a reasonable
assumption for large-size distributions, even though particles

Ž .are discrete and their number is integer-valued; b a single
Ž .internal coordinate particle size is considered; this is moti-

vated by the majority of industrial particulate process control
problems where the central objective is to produce particu-

Ž .lates with a desired PSD; c the particles are assumed to be
small enough so that the environment in which they are dis-
persed can be adequately described by a local value of its

Ž . Ž .state vector; d the vector of manipulated inputs u t is a
Žlumped variable that is, it only depends on time, for exam-

.ple, the inlet concentration of solute in a crystallizer and the
Ž .controlled outputs y t are taken to be nonlinear functionsi

Žof x and appropriate weighted averages of n examples of
controlled outputs included in this formulation are total mass
of particles, mean particle size, solute concentration, process

.temperature, and pH . Both choices are typical in most prac-
tical applications as illustrated by the crystallization process
studied in the section Application to a Continuous Crystal-
lizer.

Remark 2. The nonlinear model reduction and controller
synthesis results that will be presented in this article can be
generalized to particulate processes, which include manipu-

Žlated inputs in the population balance such as manipulation
Ž .of fines destruction rate. See Lei et al. 1971 , Randolph et

Ž . .al. 1987 , and Remark 6 below with the following state-space
description

w x n  G x , r nŽ .
sy qw n , x , r q g n , x , r u tŽ . Ž . Ž .1 t  r

rma x
xs f x q g x , a n , r , x dr u tŽ . Ž . Ž .˙ H2 1

0

rma x
q g x , a n , r , x drŽ .H3 2

0

rma x
y t s h c r n r , t dr , x ,Ž . Ž . Ž .Hi i k

0

is1, . . . , m , k s1, . . . , l 5Ž .

Ž . w rma x Ž . x Ž .where g n, x, r , g x, H a n, r, x dr , a n, r, x ,1 3 0 2 1
Ž . w rma xa n, r, x are nonlinear vector functions and g x, H2 2 0
Ž . xa n, r, x dr is a nonlinear matrix function.1

Dynamics of particulate processes: continuous crystallizer
Crystallization is a particulate process which is widely used

in industry for the production of many products including
fertilizers, proteins, and pesticides. The fact that the shape of
the crystal-size distribution influences significantly the neces-
sary liquid-solid separation, as well as the properties of the
product, implies that crystallization requires a population
balance in order to be accurately described, analyzed, and
controlled. Crystallizers typically exhibit highly oscillatory be-
havior which suggests the use of feedback control to ensure
stable operation and attain a crystal-size distribution with de-
sired characteristics.

Ž .We consider a continuous crystallizer Figure 1 , which ex-
hibits highly oscillatory behavior and we show that its domi-

Figure 1. Continuous crystallizer.
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nant dynamics can be accurately described by a small set of
ODEs; this finding implies that the dominant dynamics of
the process are characterized by a small number of degrees

Ž .of freedom low-dimensional and motivate the proposed ap-
proach for nonlinear model-based feedback control of partic-
ulate processes. Under the assumptions of isothermal opera-
tion, constant volume, mixed suspension, nucleation of crys-
tals of infinitesimal size, mixed product removal, a dynamic
model for the crystallizer can be derived from a population
balance for the particle phase and a mass balance for the

Žsolute concentration, and it is of the form Lei et al., 1971;
.Jerauld et al., 1983

 n  R t n nŽ .Ž .
sy y qd r y0 Q tŽ . Ž .

 t  r t

dc c y r r yc r yc deŽ . Ž . Ž .0
s q q 6Ž .

dt et t e dt

Ž . w .where n r, t is the number of crystals of radius r g 0, `
at time t per unit volume of suspension, t is the residence
time, c is the solute concentration in the crystallizer, c is the0

` Ž .solute concentration in the feed, and e s 1y H n r, t0
Ž . 34r3 p r dr is the volume of liquid per unit volume of suspen-

Ž . Ž .sion. R t is the growth rate, d r y0 is the standard Dirac
Ž . Žfunction, and Q t is the nucleation rate. The term d r y

. Ž .0 Q t accounts for the production of crystals of infinitesimal
Ž . Ž . Ž .zero size via nucleation. R t and Q t are assumed to fol-
low McCabe’s law and Volmer’s nucleation law, respectively

2yk rwŽcrc .y1x3 sR t s k cyc , Q t se k e 7Ž . Ž . Ž . Ž .1 s 2

where k , k , and k are constants and c is the concentra-1 2 3 s
Ž .tion of solute at saturation. Using the expressions for Q t

Ž .and R t , the system of Eq. 6 can be equivalently written as

 n  n n 2yk rwŽcrc .y1x3 ssy k cyc y qd r y0 e k eŽ . Ž .1 s 2 t  r t

dc c y r r yc r yc deŽ . Ž . Ž .0
s q q 8Ž .

dt et t e dt

To study the dynamic behavior of the crystallizer in question,
a second-order accurate finite difference scheme with 1,000
discretization points was used to obtain the solution of the
system of Eq. 6. The values of the process parameters used in
the simulations are given in Tables 1 and 2. Figure 2 shows
the open-loop oscillatory profiles of the total crystal concen-
tration and total crystal size, respectively. It is clear that the

Table 1. Process Parameters
y3c s1,000.0 kg ?m0
y3c s980.2 kg ?ms
y3r s1,770.0 kg ?m

t s1.0 h
y2 3 y1 y1k s5.065=10 mm ?m ?kg ?h1

y3 y1k s7.958 mm ?h2
y3k s1.217=103

( )Figure 2. Open-loop crystal concentration top and to-
( )tal crystal size bottom ; distributed parame-

ter model.

crystallizer exhibits highly oscillatory behavior, which is the
result of the interplay between growth and nucleation caused
by the relative nonlinearity of the nucleation rate as com-

Žpared to growth rate compare the nonlinear dependence of
Ž . Ž . .Q t and R t on c in Eq. 7 . To establish that the dynamics

of the crystallizer are characterized by a small number of de-
grees of freedom, the method of moments is applied to the
system of Eq. 6 to derive an approximate ODE model. This is
possible because the nucleation and growth rates are as-
sumed to be independent of particle size which allows clo-

Ž .sure of the moment equations see Eq. 12 below . It is noted
that the method of moments has been extensively used in the

wpast to analyze the dynamics of particulate processes see, for
Ž . Ž .xexample, Hulburt and Katz 1964 and Pratsinis 1988 .

Ž .Defining the n th moment of n r, t as

`
nm s r n r , t dr , n s0, . . . , 9Ž . Ž .Hn

0

multiplying the population balance in Eq. 8 by r n, and inte-
grating over all particle sizes, the following system of infinite

Table 2. Dimensionless Variables

Ž .s s k t c yc s1.0 mm1 0 s
3Das8ps k t s200.02

2 2Ž .F s k c r c yc s3.03 s 0 s
Ž . Ž .a s r yc r c yc s40.0s 0 s
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ordinary differential equations, which describes the rate of
change of the moments of the PSD and the solute concentra-
tion, is obtained

dm m 4 20 0 yk rwŽcrc .y1x3 ssy q 1y pm k e3 2ž /dt t 3

dm mn n
sy qn k cyc m , n s1, 2, 3, . . . ,Ž .1 s ny1dt t

dc c ycy4pt cyc m r ycŽ . Ž .0 s 2
s 10Ž .4dt

t 1y pm3ž /3

Introducing the following set of dimensionless variables and
parameters

t
3 2ts , x s8ps m , x s8ps m , x s4psm ,˜ ˜ ˜0 0 1 1 2 2t

4
3x s pm , . . . , s s k t c yc , Das8ps k t ,Ž .3̃ 3 1 0 s 23

k c2 r yc cycŽ . Ž .3 s s s
F s , a s , ys 11Ž .˜2 c yc c ycŽ . Ž .c ycŽ . 0 s 0 s0 s

the following dimensionless system is obtained

dx̃ 20 yFrỹsy x q 1y x DaeŽ .˜ ˜0 3dt

dx̃1
sy x q yx˜ ˜̃1 0dt

dx̃2
sy x q yx˜ ˜̃2 1dt

dx̃3
sy x q yx˜ ˜̃3 2dt

dx̃n
sy x q yx , n s4, . . . ,˜ ˜̃n ny1dt

dy 1y yy a y y yxŽ .˜ ˜ ˜ ˜̃ 2
s 12Ž .

dt 1y x̃3

On the basis of the system of Eq. 12, it is clear that the mo-
ments of order four and higher do not affect those of order
three and lower, and, moreover, the state of the infinite-di-
mensional system

dx̃n
sy x q yx , n s4, . . . , 13Ž .˜ ˜̃n ny1dt

is bounded when x and y are bounded, and it converges to3
a globally exponentially stable equilibrium point when
lim x sc and lim ysc , where c , c are constants.˜t™` 3 1 t ™` 2 1 2

ŽThis implies that the dominant dynamics that is, dynamics
associated with eigenvalues that are close to the imaginary

.axis of the process of Eq. 8 can be adequately captured by

( )Figure 3. Open-loop crystal concentration top , total
( )crystal size middle , and solute concentra-

( )tion bottom obtained from the distributed
parameter model and the moment model.

the following fifth-order moment model

dx̃ 20 yFrỹsy x q 1y x DaeŽ .˜ ˜0 3dt

dx̃1
sy x q yx˜ ˜̃1 0dt

dx̃2
sy x q yx˜ ˜̃2 1dt

dx̃3
sy x q yx˜ ˜̃3 2dt

dy 1y yy a y y yxŽ .˜ ˜ ˜ ˜̃ 2
s 14Ž .

dt 1y x̃3
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Figure 4. Effect of the number of discretization points
( )on crystal concentration top and total crys-

( )tal size bottom ; distributed parameter model.

The ability of the above fifth-order moment model to repro-
duce the dynamics, and to some extent the solutions, of the
distributed model of Eq. 6 is shown in Figure 3, where the
profiles of the total particle concentration generated by the

Žtwo models are compared both models start from the same
.initial conditions . Even though the discrepancy of the total

particle concentration profiles predicted by the two models
Žincreases with time this is expected due to the open-loop

.instability of the process; see remark 7 below , it is clear that
the fifth-order moment model of Eq. 14 provides a very good
approximation of the distributed model of Eq. 6, thereby es-
tablishing that the dominant dynamics of the system of Eq. 8
are low-dimensional and motivating the use of the moment

Žmodel for nonlinear controller design see the section Appli-
cation to a Continuous Crystallizer for the design and imple-
mentation of a nonlinear controller based on the fifth-order

.model of Eq. 14 .
Remark 3. The stability properties of the fifth-order model

Ž .of Eq. 14 have been thoroughly studied in Jerauld et al. 1983
w Ž .xsee also Lei et al. 1971 , where it has been shown that the
global phase space of this model consists of a unique unsta-
ble steady state surrounded by a stable periodic orbit, and
that the linearization of the system of Eq. 6 around the un-
stable steady state includes two isolated complex conjugate
eigenvalues with a positive real part. For the parameters of
Table 1, the unique unstable steady state is x s0.047, x s˜ ˜0 1
0.028, x s0.017, x s0.01, ys0.5996.˜ ˜ ˜2 3

Remark 4. We note that even though the number of dis-
cretization points, 1,000, used to solve the system of Eq. 6 is

Žvery large owing to the poor convergence properties of the
.finite-difference scheme , the computation of an accurate

Ž .that is, independent of the discretization solution is critical
for the thorough evaluation of the performance of a nonlin-
ear feedback controller synthesized on the basis of a low-order
approximation of the distributed parameter system of Eq. 6
Žsee the section Application to a Continuous Crystallizer for
closed-loop system simulations under nonlinear low-order

.output feedback control . The adequacy of 1,000 discretiza-
tion points to yield an accurate solution is established in Fig-
ure 4, where the profiles of the total crystal concentration
and total crystal size for 800 and 1,000 discretization points
are compared and are shown to be almost identical.

Remark 5. Despite the fact that the model of Eq. 6 con-
Ž .sists of a first-order hyperbolic PDE population balance

Žcoupled with a nonlinear integro-differential equation solute
.mass balance , it is evident from the above dynamical analy-

sis, and the results of the simulation study, that its open-loop
dynamic behavior is completely different than the one usually

Žexhibited by systems of first-order hyperbolic PDEs which
.arise in the modeling of convection-reaction processes . More

specifically, the dominant dynamic behavior of the system of
Eq. 6 is characterized by a small number of degrees of free-

Ždom and, thus, it can be described by low-order ODE sys-
.tems . On the other hand, first-order hyperbolic PDE sys-

tems involve spatial differential operators whose eigenvalues
cluster along vertical, or nearly vertical, asymptotes in the
complex plane, and, therefore, they do not exhibit low-di-
mensional dynamic behavior. This fundamental difference on
the nature of the dynamic behavior between first-order hy-
perbolic PDE systems and particulate process models moti-
vates employing fundamentally different approaches for de-
signing controllers for such systems. In particular, for first-
order hyperbolic PDEs, the controller design problem is ad-

Ždressed directly on the basis of the PDE system see
Ž .Christofides and Daoutidis 1996a for results on nonlinear

.control , while for systems of Eqs. 1]2, the controller design
problem will be addressed on the basis of low-order approxi-
mations that capture the dominant dynamics, as outlined in
the next section.

Remark 6. When a fines trap is used to remove fines, small
w Ž .crystals, from the crystal magma see Lei et al. 1971 and

Ž .Randolph et al. 1987 for a detailed description of crystal-
xlizer with fines trap , the model of the crystallizer takes the

Ž .following form Lei et al., 1971

 n  n n n
sy k cyc y y h rŽ . Ž .1 s t  r t t̃

2y�k rwŽc rc .y1x 43 1 sqd r y0 e k eŽ . 2

dc c y r r yc r yc deŽ . Ž . Ž .0
s q q 15Ž .

dt et t e dt

where 1rt s F rV is the rate at which crystals are circulated˜ 0
Žthrough the fines trap F is the fines recirculation rate, and0

. Ž .V is the active volume of the crystallizer and h r expresses
Žthe desired selection curve for fines destruction classifica-
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.tion function . For example, if we desire to remove crystals of
Ž .size r and smaller, then h r has the formm

1, for r F rm
h r s 16Ž . Ž .0, for r ) rm

For the distributed parameter model of Eq. 15 with the above
Ž .expression for h r , one can easily show that a direct applica-

tion of the method of moments leads to an unclosed set of
moments equations, thereby implying the need of using a
general model reduction procedure for particulate processes
Žsee the section Nonlinear Model Reduction of Particulate

.Process Models .

Methodological Framework for Control of
Particulate Processes

Owing to its distributed parameter nature, the system of
Eqs. 1]2 cannot be directly used as the basis for the synthesis
of low-order nonlinear controllers that can be implemented.
This fact, together with the realization that the dominant dy-
namics of particulate processes are characterized by a small
number of degrees of freedom, motivates employing the fol-
lowing methodology for the synthesis of low-order nonlinear
output feedback controllers for systems of the form of Eqs.
1]2:
Ž .1 Initially, the method of weighted residuals is used to

derive a nonlinear, possibly high-order, ODE system that ac-
curately reproduces the solutions and dynamics of the system
of Eqs. 1]2. Then, a procedure based on the concept of ap-
proximate inertial manifold is employed for the construction
of low-order ODE systems that accurately reproduce the
dominant dynamics of the large-scale ODE system obtained
by the method of weighted residuals. The asymptotic validity
of the ODE approximation is established by using results from
perturbation theory.
Ž .2 Then, the low-order ODE approximation of the system

of Eqs. 1]2 is used as the basis for the synthesis via geomet-
ric control methods of nonlinear output feedback controllers
that stabilize the closed-loop ODE system and enforce out-
put tracking.
Ž . Ž3 Finally, the resulting closed-loop system particulate

.process model of Eqs. 1]2 and controller is analyzed to de-
rive conditions that guarantee that the desired stability and
set point tracking properties are enforced in the infinite-
dimensional closed-loop system.

Nonlinear Model Reduction of Particulate Process
Models

In this section, we introduce a general methodology for de-
riving low-order ODE systems that accurately reproduce the
dominant dynamics of the nonlinear integro-differential
equation system of Eqs. 1]2. The proposed model reduction
methodology exploits the low-dimensional behavior of the
dominant dynamics of the system of Eqs. 1]2 and is based on
a combination of the method of weighted residuals with the
concept of approximate inertial manifold.

Method of weighted residuals
We initially use the method of weighted residuals to con-

struct a nonlinear, possibly high-order, ODE system that ac-
curately reproduces the solutions and dynamics of the dis-
tributed parameter system of Eqs. 1]2. The central idea of

w Ž .the method of weighted residuals see Ramkrishna 1985 for
a comprehensive review of results on the use of this method

xfor solving population balance equations is to approximate
Ž .the exact solution of n r, t by an infinite series of orthogonal

w .basis functions defined on the interval 0, r with time-max
varying coefficients, substitute the series expansion into Eq. 1
to form the residual, and then force the residual to be or-

Žthogonal to a complete set of weighted functions that is, the
inner product of the residual with a complete set of weight-

w . .ing functions in L 0, r is set equal to zero to compute a2 max
set of ODEs which describe the rate of change of the time-
varying coefficients of the series expansion of the solution.

Specifically, we consider an orthogonal set of basis func-
Ž . w .tions f r , where r g 0, r , ks1, . . . , `, and expand thek max

Ž . Ž .PSD function n r, t in an infinite series in terms of f r ask
follows

`

n r , t s a t f r 17Ž . Ž . Ž . Ž .Ý k k
k s1

Ž .where a t are time-varying coefficients. Substituting Eq. 17k
into Eqs. 1]2, we get

`  a tŽ .k
f rŽ .Ý k  tk s1

` ` G x , r f rw xŽ . Ž .k
sy a t qw a t f r , x , rŽ . Ž . Ž .Ý Ýk k k rk s1 k s1

`rma x
xs f x q g x u t q A a a t f r , r , x drŽ . Ž . Ž . Ž . Ž .˙ H Ý k k

0 k s1

18Ž .

Multiplying the population balance with the weighting func-
Ž .tions c r , and integrating over the entire particle-size spec-n

Ž w .trum that is, taking inner product in L 0, r with the2 max
.weighting functions , the following set of infinite ODEs is ob-

tained

`  a tr Ž .ma x k
c r f r drŽ . Ž .H Ýn k  t0 k s1

`  G x , r f rr w xŽ . Ž .ma x k
sy a t c r drŽ . Ž .HÝ k n  r0k s1

`rma x
q c r w a t f r , x , r dr , n s1, . . . , `Ž . Ž . Ž .H Ýn k k

0 k s1

`rma x
xs f x q g x u t q A a a t f r , r , x drŽ . Ž . Ž . Ž . Ž .˙ H Ý k k

0 k s1

19Ž .
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Ž .Truncating the series expansion of n r, t up to order N and
Ž .keeping the first N equations that is, n s1, . . . , N , the

infinite-dimensional system of Eq. 19 reduces to the follow-
ing finite set of ODEs

N  a tr Ž .ma x k N
c r f r drŽ . Ž .H Ýn k  t0 k s1

N  G x , r f rr w xŽ . Ž .ma x N k
sy a t c r drŽ . Ž .HÝ k N n  r0k s1

Nrma x
q c r w a t f r , x , r dr , n s1, . . . , NŽ . Ž . Ž .H Ýn k N k N

0 k s1

x s f x q g x u tŽ . Ž . Ž .˙N N N

Nrma x
q A a a t f r , r , x drŽ . Ž .H Ý k N k N

0 k s1

Nrma x
y t s h c a t f r dr , x ,Ž . Ž . Ž .H Ýi i k k N k N

0 k s1

is1, . . . , m , k s1, . . . , l 20Ž .

where x and a are the approximations of x and a ob-N k N k
tained by an Nth order truncation. From Eq. 20, it is clear
that the form of the ODEs that describe the rate of change

Ž .of a t depends on the choice of the basis and weightingk N
functions, as well as on N. The basis and weighting functions
determine the type of weighted residual method being used
Ž .see Remarks 8 and 9 below .

Proposition 1 that follows establishes a convergence prop-
erty for the discrepancy between the solutions of the particu-
late process model of Eqs. 1]2 and the approximation of Eq.
20 for sufficiently large N.

Ž .Proposition 1. Consider the system of Eqs. 1]2 with u t
'0 and assume that n and  nr r are continuous functions
of r. Suppose also that the system of Eq. 20 is locally expo-
nentially stable for any N. Then, there exists an N suffi-
ciently large so that ; tG0

w xn r , t s n r , t qO e NŽ . Ž . Ž .N

w xx t s x t qO e N 21Ž . Ž . Ž . Ž .N

Ž .where e N is a small positive real number that depends on
Ž . Ž . NN and satisfies lim e N s 0, and n r , t s ÝN™ ` N ks1

Ž . Ž . Ž .a t f r is the approximation of n r, t which is obtainedk N k
Ž .by solving Eq. 20 with u t '0.

ŽRemark 7. The assumption that the system of Eq. 20 and,
.thus, the system of Eqs. 1]2 is locally exponentially stable is

necessary in order to prove that the estimates of Eq. 21 hold
for all times. When the system of Eq. 20 is not exponentially
stable, one can only prove that the estimates of Eq. 21 hold

w x Ž . Žfor tg 0, t where t is a positive real number of O 1 see
simulations results in the subsection on the dynamics of par-

.ticulate processes for a verification of this fact . Furthermore,
w .the convergence result can be shown for the L 0, ` norm of2

the difference between the solution of the population bal-

Ž .ance n r, t and its approximation of Eq. 17, that is, for all
w .tg 0, `

N

lim n r , t y a t f r s0 22Ž . Ž . Ž . Ž .ÝN™` k N k
k s1 2

Remark 8. The method of weighted residuals reduces to
the method of moments when the basis functions are chosen
to be Laguerre polynomials and the weighting functions are
chosen as c s r n. The moments of the PSD are defined asn

`
nm s r n r , t dr , n s0, . . . , ` 23Ž . Ž .Hn

0

and the moment equations can be directly generated from
the population balance model by multiplying it by r n, n s0,
. . . , ` and integrating from 0 to `. The procedure of forming
moments of the population balance equation very often leads
to terms that may not reduce to moments, terms that include
fractional moments, or to an unclosed set of moment equa-
tions. To overcome this problem, the PSD is expanded in

w .terms of Laguerre polynomials defined in L 0, ` and the2
series solution is used to close the set of moment equations
Žthis procedure can be used for models of crystallizers with

.fines trap; see Eqs. 15]16 .
Ž .Remark 9. When the number of basis functions f r re-k

Žquired to obtain a good approximation measured in a de-
.sired norm of the solution of the population balance is small,

Žthen the weighting functions are usually chosen Rawlings et
.al., 1993 to be identical to the basis functions, in which case

the method of weighted residuals reduces to Galerkin’s
method.

ŽRemark 10. When a ‘‘good’’ in the sense of leading to the
derivation of an ODE system of desired accuracy whose di-

. Ž .mension is not extremely high set of basis functions f rk
cannot be found within the standard basis function sets, one
can compute a set of empirical eigenfunctions by applying

Žthe Karhunen-Loeve expansion Fukunaga, 1990; Holmes et´
. Žal., 1996; Shvartsman and Kevrekidis, 1998 also known as

.proper orthogonal decomposition on an approximate ensem-
ble of solutions of the particulate process model of Eqs. 1]2,
which are obtained from detailed finite-difference discretiza-
tions.

Inertial manifold and approximate inertial manifold
The system of Eq. 20 was obtained from a direct applica-

Žtion of the method of weighted residuals with arbitrary basis
.functions to the system of Eqs. 1]2 and, thus, may be of very

high order in order to provide an accurate description of the
dominant dynamics of the particulate process model. High-
dimensionality of the system of Eq. 20 leads to complex con-
troller design and high-order controllers, which cannot be
readily implemented in practice. To circumvent these prob-
lems, we exploit the low-dimensional behavior of the domi-
nant dynamics of particulate processes and use an approach
based on the concept of inertial manifold to derive low-order
ODE systems that accurately describe the dominant dynam-
ics of the system of Eq. 20. The concept of inertial manifold
is an appropriate tool for model reduction, because if the
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trajectories of the system of Eq. 20 are on the manifold, then
this system is exactly described by a low-order system.

We begin with the definition of the concept of inertial
manifold, and we continue with the concept of approximate
inertial manifold. To this end, we exploit the orthogonality of

Ž .the basis functions f r to uniquely splitk

p N

n s a t f r q a t f r s:n q nŽ . Ž . Ž . Ž .Ý ÝN k N k k N k p q
k s1 k s pq1

24Ž .

where the first p eigenmodes are associated with the domi-
Ž .nant possibly unstable dynamics of the system of Eq. 20,

and the remaining q eigenmodes are associated with expo-
nentially stable dynamics.

w xIntroducing the vector notation a s a ??? a andN 1 N NN
w T T xTdefining the new vectors of state variables xs a x , a˜ sN N sN

w xT w xTs a ??? a and a s a ??? a , the system of1N pN f N Ž pq1.N NN
Eq. 20 can be written as

a s f a , x˙ ˜Ž .fN q fN

˜ẋs f x , a q g x , a u˜ ˜ ˜ ˜Ž . Ž .fN fN

˜y s h x , a , is1, . . . , m 25Ž .˜Ž .i i fN

˜Ž . Ž .where the explicit expression of f a , x , f x, a ,˜ ˜q f N f N
˜Ž . Ž .g x, a , h x, a can be obtained by comparing Eq. 20˜ ˜ ˜fN i fN

and Eq. 25 and will be omitted for brevity. Assuming that
˜ ˜ ˜Ž . Ž .f a , x s Aa q f a , x where A is a Hurwitz matrix˜ ˜q fN fN q fN

˜Ž .and f a , x is a nonlinear vector function which does not˜q fN
Žinclude linear terms this assumption is made to simplify the

.development and can be readily relaxed , the system of Eq.
25 can be written as

˜ ˜a s Aa q f a , x˙ ˜Ž .fN fN q fN

˜ẋs f x , a q g x , a u˜ ˜ ˜ ˜Ž . Ž .fN fN

˜y s h x , a , is1, . . . , m 26Ž .˜Ž .i i fN

For the above system, an inertial manifold MM is a subset
Nqn Žof R , which satisfies the following properties Temam,
.1988 :

Ž .a MM is a finite-dimensional Lipschitz manifold;
Ž . Ž .b MM is a graph of a Lipschitz function S x mapping˜
pqn q Ž . Ž .R into R and for every solution x t , a t of Eq. 26˜ fN

Ž . w Ž .xwith a 0 sS x 0 ; then˜fN

w xa t sS x t , ; tG0 27Ž . Ž . Ž .˜fN

Ž .c MM attracts every trajectory exponentially.
Ž .The evolution of the state a t on MM is given by Eq. 27,fN

while the evolution of the state x is governed by the follow-˜
Ž .ing pq n -order system

˜˙ w x w xxs f x , S x q g x , S x uŽ . Ž .˜ ˜ ˜ ˜ ˜ ˜

˜ w xy s h x , S x , is1, . . . , m 28Ž . Ž .˜ ˜i i

Ž .Differentiating Eq. 27 and utilizing Eq. 26, S x can be com-˜
puted as the solution of the following partial differential
equation

 S
˜ ˜ ˜w x w x w xf x , S x q g x , S x u s AS x q f S x , xŽ . Ž . Ž . Ž .� 4˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜q x̃

29Ž .

Ž . pqnwhich S x has to satisfy for all xgR . From the struc-˜ ˜
ture of Eq. 29, it is obvious that the computation of the ex-

Ž . Ž .plicit form of S x is a very difficult if not impossible task˜
in most practical applications. To overcome this problem, and
since the dynamics of the a modes are stable and fasterfN

Žthan the ones of the x modes note that the number of unsta-˜
ble eigenvalues of the system of Eqs. 1]2 is finite, and by
assumption, all the unstable eigenvalues are included in the x̃

˜. Ž . Ž .w Ž .subsystem , we obtain S x by setting a s  Sr x f x, S˜ ˙ ˜ ˜fN
Ž . xq g x, S u '0 and solving the equation˜ ˜

˜ ˜ w xAS x q f S x , x s0 30Ž . Ž . Ž .˜ ˜ ˜q

Ž .using a standard successive approximation fixed point algo-
Ž . writhm Foias and Temam, 1988 see also Shvartsman and´

Ž .xKevrekidis 1998

y1˜ ˜ ˜ ˜ ˜S x sy A f S x , x , k s0, . . . , l , S x s0Ž . Ž . Ž .˜ ˜ ˜ ˜kq1 q k 0

˜a sS x 31Ž . Ž .˜ ˜fN lq1

˜ Ž . Ž . Žwhere S x is an approximation of S x called approxi-˜ ˜lq1
.mate inertial manifold and a is the approximation of a .˜fN fN

˜ Ž .Substituting S x into the system of Eq. 28, the following˜lq1
Ž .pq n -order approximation of the particulate process model
is obtained

˜ ˜ ˜ ˜ẋs f x , S x q g x , S x us: f x q g x uŽ . Ž . Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜lq1 lq1

˜ ˜ ˜y s h x , S x s:h x , is1, . . . , m 32Ž . Ž . Ž .˜ ˜ ˜s i lq1 ii

where the subscript s in the controlled output y denotessi

that this controlled output is associated with an approximate
Žlow-order ODE system refer to Eq. 3 for the formulation of

.y for the distributed parameter model .i
Proposition 2 that follows establishes that the local stability

properties and solutions for large times of the systems Eq. 32
and Eq. 20 are identical. The proof is given in the Appendix.

Proposition 2. Suppose that the sequence of Eq. 31 for
˜ Ž .the construction of S x converges for l sufficiently large˜lq1

U UŽthat is, for any e , there exists an l such that if l G l , then˜
˜< Ž . Ž . < . Ž .S x yS x Fe . Suppose also that the pq n -order˜ ˜ ˜lq1

Ž .system of Eq. 32 with u t '0 is locally exponentially stable.
Ž . Ž .Then, the Nq n -order system of Eq. 20 with u t '0 is lo-

˜5 5 w Ž .xcally exponentially stable and lim n y n sO e l ,˜2t ™` N N
p N ˜Ž . Ž . Ž . Ž . w Ž .where n sÝ a t f r qÝ S x f r a t˜ ˜ ˜N ks1 k N k kspq1 lq1 k k N

x Ž .is the solution obtained from the system of Eq. 32 and e l˜
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is a small positive real number that depends on l and satisfies
Ž .lim e l s0.˜l™`

Remark 11. We note that even though many particulate
processes exhibit low-dimensional dynamic behavior, the del-
icate mathematical question of rigorously establishing exist-
ence of inertial manifolds for particulate process models, at
this stage, is unresolved. Such a question has been positively
answered for certain classes of diffusion-reaction systems and

w Ž .the Kuramoto-Sivashinsky equation see Temam 1988 for
xdetails .

Remark 12. The expression of the approximate inertial
˜ Ž . Žmanifold S x of Eq. 31 where l is chosen based on the˜lq1

.desired degree of approximation was originally proposed in
Ž .Foias and Temam 1988 and is called the steady manifold.´

Ž .Also refer to Christofides and Daoutidis 1996b and Shvarts-
Ž .man and Kevrekidis 1998 for alternative expressions of

˜ Ž .S x , as well as detailed computational studies that show that˜
the use of approximate inertial manifolds leads to accurate
low-order ODE approximations and low-order controllers for
diffusion-reaction systems described by parabolic partial dif-
ferential equations.

Ž . ŽRemark 13. For S x s0, we obtain the following pq˜
.n -order approximation of the particulate process model

a s f a , 0, xŽ .˙sN p sN N

rma x
x s f x q g x u t q A a n , x , r dr 33Ž . Ž . Ž . Ž . Ž .˙ HN N N p N

0

The above system is identical to the one obtained by a direct
application of the method of weighted residuals to the partic-

Ž .ulate process model of Eqs. 1]2 Eq. 20 with Ns p .

Nonlinear Output Feedback Control of Particulate
Processes

In this section, the system of Eq. 32 is used to synthesize a
nonlinear finite-dimensional output feedback controller that
guarantees stability and enforces output tracking in the
closed-loop ODE system and to establish that the same con-
troller exponentially stabilizes the closed-loop particulate
process model. The output feedback controller is constructed
through a standard combination of a state feedback con-
troller with a state observer. The state feedback controller is
synthesized via geometric control methods, and the state ob-
server is an extended Luenberger-type observer. This section
begins with some preliminaries, which will be used to state
the controller synthesis result.

Preliminaries
Referring to the system of Eq. 32, we define the relative

order of the output y with respect to the vector of manipu-si

lated inputs u as the smallest integer r for whichi

r y1 r y1i i˜ ˜ w xL L h x ??? L L h x k 0 ??? 0 34Ž . Ž . Ž .˜ ˜g i g i˜ ˜˜ ˜f f1 m

where g is the ith vector of the matrix g, or r s` if such an˜ ˜i i
integer does not exist. We also define the characteristic ma-

trix

r y1 r y11 1˜ ˜L L h x ??? L L h xŽ . Ž .˜ ˜g 1 g 1˜ ˜˜ ˜f f1 m

r y1 r y12 2˜ ˜L L h x ??? L L h xŽ . Ž .˜ ˜g 2 g 2˜ ˜˜ ˜f f1 mC x s 35Ž . Ž .˜ . .. .???. .
r y1 r y1m m˜ ˜L L h x ??? L L h xŽ . Ž .˜ ˜g m g m˜ ˜˜ ˜f f1 m

Controller synthesis
We use the nonlinear system of Eq. 32 as a basis for the

synthesis, via geometric control methods, of nonlinear state
feedback controllers of the general form

us p x qQ x ® 36Ž . Ž . Ž .˜ ˜

Ž . Ž .where p x is a smooth vector function, Q x is a smooth˜ ˜
matrix, and ®gR m is the constant reference input vector.
The controllers guarantee local exponential stability and en-
force a linear inputroutput response in the system of Eq. 32
wthe details on controller synthesis can be found in Isidori
Ž . x1989 and will be omitted here for brevity .

Under the hypothesis that the system of Eq. 32 is locally
Žobservable that is, its linearization around the desired oper-

.ating steady state is observable , the practical implementa-
tion of a nonlinear state feedback controller of the form of
Eq. 36 will be achieved by employing the following nonlinear
state observer

dv
˜ ˜s f v q g v uq L yy h v 37Ž . Ž . Ž . Ž .˜

dt

Žwhere v denotes the observer state vector the dimension of
the vector v is equal to the dimension of x in the system of˜

. w xTEq. 32 , ys y y ??? y is the measured output vector,1 2 l
and L is a matrix chosen so that the eigenvalues of the ma-

˜ ˜Ž . Ž .trix C s  frv y L  hrv , where v is theL Žvsv . Žvsv . ss s

operating steady state, lie in the open left-half of the complex
plane. The state observer of Eq. 37 consists of a replica of
the system of Eq. 32 plus a linear gain multiplying the dis-
crepancy between the actual and the estimated value of the
output, and, therefore, it is an extended Luenberger-type ob-
server.

The state feedback control law of Eq. 36 and the state ob-
server of Eq. 37 can be combined to yield the following non-
linear output feedback control law

dv
˜ ˜w xs f v q g v p v qQ v ® q L yy h vŽ . Ž . Ž . Ž . Ž .˜

dt

us p v qQ v ® 38Ž . Ž . Ž .

Theorem 1 below provides an explicit synthesis formula of
the above output feedback control law and conditions that
guarantee closed-loop stability and asymptotic output track-

Ž .ing the proof can be found in the Appendix .
Theorem 1. Suppose that the sequence of Eq. 31 con-

verges for l is sufficiently large. Consider the system of Eq.
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Ž .32 and assume that: 1 it is locally observable in the sense
Ž .that there exists a matrix L such that C s 1rm A, where mL

Ž .is a small positive parameter and A is a Hurwitz matrix; 2
Ž . pqnits characteristic matrix C x is nonsingular ; xg D;R ;˜ ˜

Ž . Ž .3 its unforced ®'0 zero dynamics are locally exponen-
tially stable. Finally, consider the particulate process model
of Eqs. 1]2 under the nonlinear output feedback controller

dv y1˜s f v q g v b ??? b C vŽ . Ž . Ž .˜ � 41r m r1 mdt

rm i
k ˜ ˜= ®y b L h v q L yy h vŽ . Ž .Ž .Ý Ý ik if̃½ 5

is1 k s 0

rm i
y1 k ˜us b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if1 m ½ 5

is1 k s 0

39Ž .

where the parameters b are chosen so that the roots of theik
w Ž .xequation det B s s0 are in the open left-half of the com-

w Ž . Ž .plex plane B s is an l = l matrix, whose i, j th element is
ri i k xof the form Ý b s . Then, there exists a positive realks0 jk

U Ž U xnumber m such that if mg 0, m , the closed-loop system
Ž .particulate process model and controller of Eq. 39 is expo-

< < w Ž .xnentially stable and lim y y ® sO e Nq l , where ® isˆt™` i i i
Ž .the set point for the ith controlled output and e Nq l is aˆ

small positive real number that depends on N, l and satisfies
Ž .lim e Nq l s0.ˆN, l ™`

Remark 14. Regarding the practical application of theo-
rem 1, one has to initially pick an l and construct the system
of Eq. 32, and then verify assumptions 1, 2, and 3 of the
theorem on the basis of this system. If these assumptions are
satisfied, the synthesis formula of Eq. 39 can be directly used

Žto derive the explicit form of the controller see the next sec-
tion for an application of this procedure to the crystallizer

.example .
Remark 15. The assumption that l is sufficiently large is

needed to obtain the stability and closeness of solutions re-
sults of proposition 2 for the appropriate approximations of

Ž .the closed-loop system, while the assumption C s 1rm A,L
where m is a small positive parameter and A is a Hurwitz
matrix, is needed to ensure that the presence of closed-loop
system states, which are not included in the model used for
controller synthesis, in the state observer does not lead to
closed-loop instability. Finally, the assumption that the char-

Ž .acteristic matrix C x is nonsingular is made to simplify the˜
presentation of the controller synthesis results and can be

Ž .relaxed see Isidori, 1989, for details .
Remark 16. The exponential stability of the closed-loop

system guarantees that in the presence of small initialization
w Ž . Ž .xerrors of the observer states that is, v 0 / x 0 , and uncer-˜

tainty in the process parameters and disturbances, the states
of the closed-loop system will be bounded. Furthermore, since
the number of manipulated inputs and controlled outputs is
finite, it is possible to implement a linear error feedback con-

Ž Ž .troller for example, a proportional integral PI controller
. Ž .for single-input single-output processes around the y y ® ,i i

is1, . . . , l, loops to ensure asymptotic offsetless output

tracking in the closed-loop system in the presence of such
uncertainty.

Remark 17. Theorem 1 establishes that a nonlinear out-
put feedback controller which guarantees local exponential
stability and output tracking in the finite-dimensional

Ž .closed-loop system Eqs. 32]39 , continues to enforce the
same properties in the infinite-dimensional closed-loop sys-

Ž .tem Eqs. 1]2]39 . This result is intuitively expected be-
Ž .cause: a the dynamics of the modes of the particulate

process model which are not taken into account in the con-
Žtroller design that is, not included in the ODE model of Eq.

. Ž .32 , are locally exponentially stable; and b the control ac-
Ž .tion u t does not influence the dynamics of the modes which

ware not taken into account in the controller design note that
Ž . xu t does not enter in the a -subsystem of Eq. 25 .fN
Remark 18. The nonlinear controller of Eq. 39 possesses

a robustness property with respect to fast and asymptotically
Žstable unmodeled dynamics that is, the controller enforces

exponential stability and output tracking in the closed-loop
system despite the presence of additional dynamics in the

.process, as long as they are stable and sufficiently fast . This
property of the controller of Eq. 39 can be rigorously estab-
lished by analyzing the closed-loop system with the unmod-
eled dynamics using singular perturbations and is of particu-
late importance for many practical applications where un-
modeled dynamics often occur due to actuator and sensor
dynamics, fast process dynamics, and so on.

Application to a Continuous Crystallizer
Controller synthesis

The proposed nonlinear control method is used in this
section to stabilize the continuous crystallizer introduced in
the second section. Motivated by the fact that the crystallizer
with the crystal-size distribution as controlled variable and
the solute feed concentration as manipulated input is an ap-

w Ž .proximately controllable system see Semino and Ray 1995a
xfor a rigorous controllability analysis , we study two represen-

tative control problems: the first one involves manipulating
Ž .the solute feed concentration u t sc yc , where c is the0 0 s 0 s

steady-state solute feed concentration, to achieve a crystal-
size distribution with desired mass, that is, the controlled
output is defined as

`
3y t s8ps n r , t dr s x ; 40Ž . Ž . Ž .˜H 0

0

and the second one involves manipulating the solute feed
concentration to achieve a crystal-size distribution with a de-
sired total particle size, that is, the controlled output is de-
fined as

`
2y t s8ps rn r , t dr s x 41Ž . Ž . Ž .˜H 1

0

Ž . Ž .Refer to Lei et al. 1971 , Randolph et al. 1987 , Eaton and
Ž . Ž .Rawlings 1990 , and Rawlings et al. 1993 for the use of

other manipulated variables including fines destruction rate
and crystallizer temperature for the stabilization of crystalliz-
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Žers note that the proposed control method can be used for
the synthesis of nonlinear controllers when such manipulated

.inputs are considered .
Including the above specifications for manipulated input

and controlled outputs in the model of Eq. 8, one can easily
see that the resulting system is in the form of Eq. 5. Applying
the method of moments to this system, utilizing the dimen-

Ž . Ž .sionless variables of Eq. 11 and us c yc r c yc and0 0 s 0 s
neglecting the moments of order four and higher, one can

wderive a system of the form of Eq. 25 with xs x x x x˜ ˜ ˜ ˜ ˜0 1 2 3
xTy and˜

2yFrỹy x q 1y x DaeŽ .˜ ˜0 3 0
y x q yx˜ ˜̃1 0 0

0y x q yx˜ ˜̃2 1f̃ x s , g x sŽ . Ž .˜ ˜ ˜ 0
y x q yx˜ ˜̃3 2 1

1y yy a y y yxŽ .˜ ˜ ˜̃ 2 1y x̃3
1y x̃3

On the basis of this system, one can easily verify that assump-
tions 1, 2, and 3 of theorem 1 are satisfied. A direct applica-
tion of the synthesis formula of Eq. 39 then yields the follow-
ing nonlinear output feedback controllers

dv 20 yFrv 4 ˜ ˜sy v q 1y v Dae q L h x y h vŽ . Ž .Ž . ˜0 3 0dt

dv1 ˜ ˜sy v q v v q L h x y h vŽ . Ž .˜1 4 0 1dt

dv2 ˜ ˜sy v q v v q L h x y h vŽ . Ž .˜2 4 1 2dt

dv3 ˜ ˜sy v q v v q L h x y h vŽ . Ž .˜3 4 2 3dt

dv 1y v y a y v v vŽ .4 4 4 4 2 ˜ ˜s q L h x y h vŽ . Ž .˜4dt 1y v3

y1 2˜ ˜ ˜ ˜b L L h v ®yb h v yb L h v yb L h vŽ . Ž . Ž . Ž .� 4˜ ˜ ˜2 g f 0 1 f 2 f˜
q

1yv3

y1˜u t s b L L h vŽ . Ž .˜2 g f˜

˜ ˜ 2 ˜= ®y b h v y b L h v y b L h v 42Ž . Ž . Ž . Ž .� 4˜ ˜0 1 f 2 f

wwhere ® is the set point, b , b , b , and Ls L L L L0 1 2 0 1 2 3
T ˜ ˜x Ž . Ž .L are controller parameters and h v s v or h v s v .4 0 1

The nonlinear controller of Eq. 42 was also combined with a
˜w Ž .PI controller that is, the term ®y b h v was substituted by0

˜ X ˙ ˜ XŽ . Ž . Ž . Ž .®y b h x q 1rt j , where j s ®y h x , j 0 s0 and t is˜ ˜0 i i
.the integral time constant to ensure offsetless tracking in the

presence of constant uncertainty in process parameters. The
practical implementation of the nonlinear controllers of Eq.
42 requires on-line measurements of the controlled outputs
x or x ; in practice, such measurements can be obtained by˜ ˜0 1

Table 3. Controller Parameters with x as Controlled0̃
Output

Without
DisturbancerDelay With Disturbance With Delay

K 2.5 2.5 2.5c
t 0.5 0.5 1.0i

T T Tw x w x w xL 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0
b 1.0 1.0 1.00
b 2r3 2r3 2r31
b 1r9 1r9 1r92

Xt 20.0 20.0 20.0i

Žusing, for example, light scattering Bohren and Huffman,
.1983; Rawlings et al., 1993 .

Closed-loop simulations
Several simulation runs were performed to evaluate the

performance and robustness properties of the nonlinear con-
trollers of Eq. 42 and compare them with the ones of a PI
controller. The values of the nonlinear controller parameters
b , b , b and L and the PI controller parameters K , t ,0 1 2 c I
which were used in the simulations, are given in Tables 3 and
Ž .4 K , t were computed through extensive trial and error .c I

In all the simulation runs, the initial condition

n r , 0 s0.0, c 0 s990.0 kgrm3Ž . Ž .

was used for the process model of Eq. 8, and the finite differ-
ence method with 1,000 discretization points was used for its
simulation. The initial conditions for the dynamic system in-
cluded in the controller of Eq. 42 were set to be: v s0.047,0

Žv s0.028, v s0.017, v s0.01, and v s0.5996 note that1 2 3 4
they do not correspond to the initial conditions used for the
distributed parameter model in order to study the perform-
ance of the controller in the presence of significant initializa-

.tion errors .
In the first set of simulation runs, x was considered to be0̃

the controlled output. Initially, the set point tracking capabil-
ity of the nonlinear controller was evaluated under nominal
conditions for a 0.5 increase in the value of the set point
Ž . Ž .®s0.5 . Figure 5 shows the closed-loop output top plot

Ž .and manipulated input bottom plot profiles obtained by us-
Ž .ing the nonlinear controller solid lines of Eq. 42. For the

sake of comparison, the corresponding profiles under PI con-
Ž .trol are also included dashed lines . Clearly, the nonlinear

Table 4. Controller Parameters with x as Controlled1̃
Output

Without
DisturbancerDelay With Disturbance With Delay

K 2.5 2.5 2.0c
t 0.5 0.5 0.5i

T T Tw x w x w xL 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0
b 1.0 1.0 1.00
b 2.0 2.0 2.01
b 1.0 1.0 1.02

Xt 20.0 20.0 20.0i
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( )Figure 5. Closed-loop output top and manipulated in-
( )put bottom under nonlinear and PI control

for a 0.5 increase in the set point.
x is the controlled output.˜0

controller drives the controlled output to its new set point
value in a significantly shorter time than the one required by

Žthe PI controller note that both controlled outputs exhibit
.the same overshoot . For the same simulation run, the evolu-

tion of the closed-loop profile and the final steady-state pro-
file of the crystal-size distribution are shown in Figure 6. An
exponentially-decaying crystal-size distribution is obtained at
the steady state. Next, the robustness properties of the non-
linear controller in the presence of parametric uncertainties,
unmodeled dynamics, and measurement sensor dead-time
were investigated for a 0.5 increase in the value of the set

Ž .point. Figures 7 and 8 show the closed-loop output top plot
Ž .and manipulated input bottom plot profiles under the non-

Ž .linear controller solid lines in the presence of 5% error in
both F and t , and in the presence of fast actuator dynamics.
To account for the actuator dynamics, the process model of
Eq. 6 was augmented with the dynamical system e z sy z˙z 1 1
q z , e z sy z q u, where z , z gR are the actuator˙2 z 2 2 1 2
states, z is the actuator output and e is a small parameter1 z
characterizing how fast are the actuator dynamics. The corre-
sponding output and input profiles under PI control are also

Ž .included dashed lines . In the case of parametric uncertain-
ties, the nonlinear controller exhibits very good robustness
properties, driving quickly the output to its new set point. In
the case of unmodeled actuator dynamics, the nonlinear con-
troller was also found to be more robust since the maximum
e , for which a stable closed-loop system was obtained, underz
nonlinear control is e s0.04, while under proportional inte-z

( )Figure 6. Evolution of crystal-size distribution top and
final steady-state crystal-size distribution
( )bottom under nonlinear control.
x is the controlled output.˜0

gral control e s0.02. Finally, a 10.0 min delay in the mea-z
surement sensor was considered and the nonlinear controller
of Eq. 42 was redesigned within a Smith-Predictor frame-
work, according to the results in Antoniades and Christofides
Ž . Ž .1999 details are omitted for brevity to account for the
presence of the delay. Figure 9 shows the profiles of the con-

Ž . Žtrolled outputs top plot and manipulated inputs bottom
. Ž . Ž .plot under nonlinear solid lines and PI dashed lines con-

trol for a 0.5 increase in the value of the set point. Clearly,
the presence of the measurement delay deteriorates signifi-

Žcantly the output response under PI control note the oscilla-
.tions of the controlled output , while it affects very little the

output response under nonlinear control.
In the second set of simulation runs, x was considered to1̃

be the controlled output. Initially, the performance of the
nonlinear controller for a 0.5 increase in the value of the set
point was tested under nominal conditions. Figure 10 shows

Ž . Žthe closed-loop output top plot and manipulated input bot-
. Ž . Žtom plot profiles under nonlinear solid lines and PI dashed

.lines control. Again, the nonlinear controller drives the out-
put to its new set point much faster than the PI controller.
The closed-loop profile of the evolution of the crystal-size

Ž .distribution is plotted in Figure 11 top plot , along with the
Žfinal steady-state profile of the crystal-size distribution mid-

. Ždle plot and the evolution of the mean crystal size bottom
.plot . The stabilization of the crystal-size distribution is
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( )Figure 7. Closed-loop output top and manipulated in-
( )put bottom under nonlinear and PI control

for a 0.5 increase in the set point in the pres-
ence of a 5% modeling error in both F and t .
x is the controlled output.˜0

( )Figure 8. Closed-loop output top and manipulated in-
( )put bottom under nonlinear and PI control

for a 0.5 increase in the set point in the pres-
ence of unmodeled actuator dynamics.
x is the controlled output.˜0

( )Figure 9. Closed-loop output top and manipulated in-
( )put bottom under nonlinear and PI control

for a 0.5 increase in the set point in the pres-
ence of a 10.0 min delay in the output mea-
surements.
x is the controlled output.˜0

( )Figure 10. Closed-loop output top and manipulated
( )input bottom under nonlinear and PI con-

trol for a 0.5 increase in the set point.
x is the controlled output.1̃
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Figure 11. Profile of evolution of crystal-size distribu-
( )tion top , final steady-state crystal-size dis-

( )tribution middle , and evolution of mean
( )crystal size bottom under nonlinear con-

trol.
x is the controlled output.1̃

quickly achieved and an exponentially-decaying crystal-size
distribution is obtained at steady state. Moreover, the final
steady-state mean crystal size x rx s0.77 is about 28%˜ ˜1 0
higher than the mean crystal size of the open-loop unstable
steady-state x rx s0.60, establishing that control of x al-˜ ˜ ˜1 0 1
lows regulating the mean crystal size at a desired value. The
robustness properties of the nonlinear controller in the pres-
ence of parametric uncertainties, unmodeled dynamics, and
measurement sensor dead-time were also investigated. Ini-
tially, a 5% error in both F and t , and unmodeled actuator
dynamics, as described above, were separately considered.

( )Figure 12. Closed-loop output top and manipulated
( )input bottom under nonlinear and PI con-

trol for a 0.5 increase in the set point in the
presence of a 5% modeling error in both F
and t .
x is the controlled output.1̃

ŽFigures 12 and 13 show the resulting closed-loop output top
. Ž .plot and manipulated input bottom plot profiles under

Ž . Ž .nonlinear solid lines and PI dashed lines control. It is clear
that the nonlinear controller possesses very good robustness
properties with respect to parametric uncertainties, attenuat-
ing their effect on the output. Also, the nonlinear controller
was found to be more robust with respect to unmodeled dy-
namics e s0.02, compared to the proportional integral con-z
troller e s0.01. Finally, a delay of 10.0 min in the outputz

Žmeasurement was considered again, the nonlinear controller
of Eq. 42 was redesigned within a Smith-Predictor framework

.to account for the measurement delay . Figure 14 presents
Ž . Ž .the output top and manipulated input bottom profiles un-

Ž . Ž .der nonlinear solid lines and PI dashed lines control.
Again, the superior performance of the nonlinear controller
is evident.

Remark 19. We note that the fifth-order model of Eq. 14,
which was used for the design of the nonlinear output feed-
back controllers of Eq. 42, was obtained by using the method
of moments and no improvement of its accuracy was pursued
by using approximate inertial manifolds. The reason is that
the closed-loop performance and robustness properties of the

Žcontrollers of Eq. 42 are clearly excellent see the closed-loop
.output profiles in Figures 5 and 10, respectively , thereby

leaving no room for further improvement of the performance
of the controller by using approximate inertial manifolds.
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( )Figure 13. Closed-loop output top and manipulated
( )input bottom under nonlinear and PI con-

trol for a 0.5 increase in the set point in the
presence of unmodeled actuator dynamics.
x is the controlled output.1̃

Conclusions
In this work, we considered spatially-homogeneous particu-

late processes modeled by a class of nonlinear partial inte-
gro-differential equation systems and developed a rigorous
and general method for the synthesis of practically-imple-
mentable nonlinear output feedback controllers. The con-
trollers enforce stability and attain a particle-size distribution
Ž .PSD with desired characteristics in the closed-loop system.
Initially, a model reduction procedure based on a combina-
tion of the method of weighted residuals and the concept of
approximate inertial manifold was presented for the con-
struction of low-order ODE systems that accurately repro-
duce the dynamics of the particulate process. These ODE
systems were then used for the synthesis of nonlinear low-
order output feedback controllers that enforce exponential
stability in the closed-loop system and achieve a desired PSD.
The performance and robustness properties of the proposed
control method were successfully tested through simulations
on a continuous crystallizer which exhibits open-loop unsta-

Ž .ble oscillatory behavior and were shown to be superior to
the ones of a proportional integral controller.
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( )Figure 14. Closed-loop output top and manipulated
( )input bottom under nonlinear and PI con-

trol for a 0.5 increase in the set point in the
presence of a 10.0 min delay in the output
measurements.
x is the controlled output.1̃
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Appendix
Proof of proposition 1

To simplify the notation of the proof, we assume that the
Ž .growth rate G x, r is independent of r. Furthermore, since

Ž . Ž .the nonlinear terms w n, x, r , a n, r, x are smooth functions
of their arguments, they can be exactly expanded in an infi-
nite series as follows

`

w n , x , r s b x , a , t f rŽ . Ž .Ž .Ý k k k
k s1

`

a n , r , x s c x , a , t f r A1Ž . Ž . Ž .Ž .Ý k k k
k s1

Ž . Ž . Ž .where b x, a , t , c x, a , t are coefficients and f r , ksk k k k k
1, . . . , ` is the complete set of basis functions used to expand
Ž . Ž .n r, t in Eq. 17. Using that, G x, r is independent of r and

the expansions of Eq. A1, the infinite dimensional system of
Eq. 19, can be written as

`  a tr Ž .ma x k
c r f r drŽ . Ž .H Ýn k  t0 k s1

` f rr Ž .ma x k
syG x a t c r drŽ . Ž . Ž .HÝ k n  r0k s1

`rma x
q c r b x , a , t f r dr , n s1, . . . , `Ž . Ž .Ž .H Ýn k k k

0 k s1

`rma x
xs f x q A c x , a , t f r dr A2Ž . Ž . Ž .Ž .˙ H Ý k k k

0 k s1

while the truncated system of Eq. 20 takes the form

N  a tr Ž .ma x k N
c r f r drŽ . Ž .H Ýn k  t0 k s1

N f rr Ž .ma x k
syG x a t c r drŽ . Ž . Ž .HÝN k N n  r0k s1

Nrma x
q c r b x , a , t f r dr , n s1, . . . , NŽ . Ž .Ž .H Ýn k N k N k

0 k s1

Nrma x
x s f x q A c x , a , t f r dr A3Ž . Ž . Ž .Ž .˙ H ÝN N k N k N k

0 k s1

Ž . Ž .Defining the error variables e s n r , t y n r , t sn N
` Ž . Ž . N Ž . Ž . Ž . Ž .Ý a t f r yÝ a t f r and e s x t y x t andks1 k k ks1 k N k x N

computing the difference between Eq. A2 and Eq. A3, we get

 erma x n
c r drŽ .H n  t0

 n  nr rma x max N
syG x c r dr qG x c r drŽ . Ž . Ž . Ž .H Hn N n r  r0 0

`rma x
q c r b x , a , t f r drŽ . Ž .Ž .H Ýn k k k

0 k s1

Nrma x
y c r b x , a , t f r drŽ . Ž .Ž .H Ýn k N k N k

0 k s1

`rma x
e s f x y f x q A c x , a , t f r drŽ . Ž . Ž .Ž .˙ H Ýx N k k k

0 k s1

Nrma x
y A c x , a , t f r dr A4Ž . Ž .Ž .H Ý k N k N k

0 k s1
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ŽThe above error system is locally exponentially stable this
follows from the assumption that the system of Eq. 20 is lo-

.cally exponentially stable for any N , and, thus, applying
Žstandard results from perturbation theory Khalil, 1992, The-

.orem 8.2 , we have that there exists an N sufficiently large so
Ž . Ž .that the following results hold for e r, t , e t for all tG0n x

w xe r , t sO e NŽ . Ž .n

w xe t sO e N A5Ž . Ž . Ž .x

From the above result, the estimates of Eq. 21 follow di-
rectly.

Proof of proposition 2
To prove that local exponential stability of the system of

Eq. 32 ensures local exponential stability of the system of Eq.
20, we need to show that the off manifold transients decay

˜ Ž .exponentially. To this end, we define e s a yS x s˜m fN lq1
a y a and compute e˜ ˙fN fN m

˜ ˜ ˙e s Aa q f a , x y a A6Ž .˙ ˜ ˜Ž .m fN q fN fN

˙From the definition of the approximate inertial manifold ã fN
˜ ˜Ž .'0s Aa q f a , x , and, thus, the system of Eq. A6 can˜ ˜ ˜fN q fN

be written as

˜ ˜ ˜ ˜e s Aa q f a , x y Aa y f a , x˙ ˜ ˜ ˜ ˜Ž . Ž .m fN q fN fN q fN

˜ ˜ ˜s Ae q f a , x y f a , x A7Ž .˜ ˜ ˜Ž . Ž .m q fN q fN

˜ ˜ ˜Ž . Ž .Since A is Hurwitz, the terms f a , x , f a , x do not˜ ˜ ˜q fN q fN
include linear terms and the system of Eq. 32 is locally expo-
nentially stable, one can show that the linearization of the
system of Eq. 26 is exponentially stable, and, thus, the non-
linear system is locally exponentially stable.

To establish the closeness of solutions result, we exploit
Žthe fact that the local exponential stability implies Khalil,

˜. Ž . Ž . Ž . Ž . Ž .1992 a t s a t qe l , and also that S x sS x q˜ ˜ ˜k N k N lq1
Ž . 5 5e l , as t™`. Computing the lim n y n , using the2t ™` N N

5 5above estimates, it can be shown that lim n y n s2t ™` N N
w Ž .xO e l .

Proof of theorem 1
Under the controller of Eq. 39, the closed-loop system takes

the form

dv
˜ ˜s f v q L yy h v q g vŽ . Ž . Ž .˜

dt

rm i
y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

w x n  G x , r nŽ .
sy qw n , x , rŽ .

 t  r

rma x
xs f x q A a n , r , x dr q g xŽ . Ž . Ž .˙ H

0

rm i
y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

A8Ž .

Applying the method of weighted residuals to the above sys-
tem, we obtain the following approximate ODE system

dv
˜ ˜s f v q L yy h v q g vŽ . Ž . Ž .˜

dt

rm i
y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

N  a tr Ž .ma x k N
c r f r drŽ . Ž .H Ýn k  t0 k s1

N  G x , r f rr w xŽ . Ž .ma x N k
sy a t c r drŽ . Ž .HÝ k N n  r0k s1

Nrma x
q c r w a t f r , x , r dr , n s1, . . . , NŽ . Ž . Ž .H Ýn k N k N

0 k s1

Nrma x
x s f x q A a a t f r , r , x dr q g xŽ . Ž . Ž . Ž .˙ H ÝN N k N k N N

0 k s1

rm i
y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

A9Ž .

w xTUsing the vector notation a s a ??? a , the aboveN 1 N NN
system can be written as

dv
˜ ˜s f v q L yy h v q g vŽ . Ž . Ž .˜

dt

rm i
y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

a s f a , xŽ .˙N N N

Nrma x
x s f x q A a a t f r , x , r dr q g xŽ . Ž . Ž . Ž .˙ H ÝN N k N k N N

0 k s1

rm i
y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

A10Ž .

Ž .where the explicit form of the nonlinear function f a , x isN N
omitted for brevity. Exploiting the orthogonality of the basis

Ž .functions f r and using the expression for n of Eq. 24,k N
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we can write the system of Eq. A10 as

dv
˜ ˜s f v q L yy h v q g vŽ . Ž . Ž .˜

dt
rm i

y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5
is1 k s 0

a s f a , a , xŽ .˙sN p sN fN N

a s f a , a , xŽ .˙fN q sN fN N

rma x
x s f x q A a n q n , x , r dr q g xŽ . Ž . Ž .˙ HN N p q N N

0

rm i
y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

A11Ž .

T T T Tw x w x wwhere f s f f , a s a ??? a , and a s ap q sN 1 N pN f N Ž pq1.N
xT??? a . Defining the observer error vector e s v y x, us-˜NN o

Ž .ing the assumption C s 1rm A, where A is a Hurwitz ma-L
trix, and multiplying the e -subsystem by m, the system of Eq.ȯ
A11 can be written as

deo ˆm s Ae qm f v , x , ®Ž .˜odt

a s f a , a , xŽ .˙sN p sN fN N

a s f a , a , xŽ .˙fN q sN fN N

rma x
x s f x q A a n q n , x , r dr q g xŽ . Ž . Ž .˙ HN N p q N N

0

rm i
y1 k ˜= b ??? b C v ®y b L h vŽ . Ž .� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

A12Ž .

Ž̂ .where f v, x, ® is a nonlinear vector function. The above˜
w Ž .system is in singularly perturbed form see Khalil 1992 for

xdetails and possesses an exponentially stable fast subsystem:

de rdt s Ae , where t s trm, and a slow subsystem that haso o
the form

a s f a , a , xŽ .˙sN p sN fN N

a s f a , a , xŽ .˙fN q sN fN N

rma x
x s f x q A a n q n , x , r dr q g xŽ . Ž . Ž .˙ HN N p q N N

0

rm i
y1 k ˜= b ??? b C x ®y b L h xŽ . Ž .˜ ˜� 4 Ý Ý1r m r ik if̃1 m ½ 5

is1 k s 0

A13Ž .

˜ Ž . ŽSetting a sS a , x model reduction based on thefN lq1 sN N
.concept of approximate inertial manifold and using the no-

tation of the subsection on inertial manifold, we finally ob-
tain

˜ẋs f x q g xŽ . Ž .˜ ˜ ˜ ˜
rm i

y1 k ˜= b ??? b C x ®y b L h xŽ . Ž .˜ ˜� 4 Ý Ý1r m r ik if̃1 m ½ 5
is1 k s 0

˜y s h x , is1, . . . , m A14Ž . Ž .˜s ii

Using assumptions 2 and 3 of the theorem, one can show that
the above system is locally exponentially stable and

< <lim y y ® s0. From the assumption that l is suffi-t™` s ii

ciently large and proposition 2, we have that the system of
Eqs. A13 and A14 possess the same stability properties, and,
thus, the slow subsystem of Eq. A13 is also locally exponen-
tially stable. The local exponential stability of the fast and

Ž . Uslow subsystems implies Khalil, 1992 that there exists a m
Ž U xsuch that if mg 0, m , then the closed-loop system of Eq.

A11 is locally exponentially stable. From the closeness of so-
lutions results of propositions 1 and 2, the asymptotic output

< < w Ž .xtracking result lim y y ® sO e Nq l then follows.ˆt™` i i
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