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A B S T R A C T   

The laser powder bed fusion (LPBF) process is strongly influenced by the characteristics of the powder layer, 
including its thickness and thermal transport properties. This paper investigates in-situ characterization of the 
powder layer using thermographic inspection. A thermal camera monitors the temperature history of the powder 
surface immediately after a layer of new powder is deposited by the recoating system. During this process, 
thermal energy diffuses from the underlying solid part, eventually raising the temperature of the above powder 
layer. Guided by 1D modeling of this heat-up process, experiments show how the parameterized thermal history 
can be correlated with powder layer thickness and its thermal conductivity. A neural network, based on the 
parameterized thermal history, further improves the correlation after training. It is used to predict the part 
distortion for an unsupported structure. This method detects serious part distortion several layers before the part 
breaks through the powder layer and interacts with the recoater. This approach can be automated to prevent 
catastrophic recoater crashes or abrasion of soft wipers and has the potential to monitor local properties of the 
powder layer in-situ.   

1. Introduction 

The process dynamics of laser powder bed fusion (LPBF) have 
received considerable study. In particular, both experimental and 
computational studies have shown how the process parameters, e.g. 
laser power and scan speed, affect the local properties of the part, e.g. 
porosity. In-situ diagnostics have also focused on monitoring the melt 
pool and several research groups have shown significant correlations 
between radiative signatures and the local part quality. While it has not 
received as much attention, the properties of the powder layer, partic-
ularly the thickness, also has a significant influence on the local melt 
pool and overall properties of the part. In general, a thicker powder layer 
increases the production rate but can lead to porosity due to lack of 
fusion [1]. Also, if the powder layer becomes too thin, it becomes 
discontinuous with vacancies that can negatively affect the final part 
porosity [2–4]. The powder layer thickness has been shown to affect the 
melt pool size [5], grain size [6], density [7], microhardness [6,7], 
surface roughness [8], strength, and elasticity [9,10] of the produced 

part. 
The nominal powder layer thickness can be specified for each layer 

by controlling the elevator step size in between layers. However, unlike 
other process parameters (e.g. laser power, scan-speed, beam path), 
there is less control authority for powder layer thickness, both overall 
and locally. At a global level, consolidation of the powder on the first 
few layers, leads to a substantial increase in powder thickness over the 
nominal build layer thickness [11,12]. Locally, the powder thickness is 
affected by thermal distortion of the part as the separation between the 
part and the wiper changes. The thinner powder bed layers also have 
been shown to increase the thermally induced residual stresses [13–15]. 
This is particularly a concern for overhanging structures, where the 
unsupported edge bends away from the build plate and reduces the 
powder layer thickness. The reduction in powder layer thickness feed-
backs to higher local temperatures, producing more part distortion and 
resulting in further reductions in powder layer thickness in subsequent 
layers. This cycle can progress rapidly and lead to interference between 
the part and the recoater, equivalent to a negative powder layer 
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thickness. In the case of soft wipers, this interaction leads to abrasion of 
the wiper surface which can affect all the parts in line with the damage 
region (increasing the local powder layer thickness). For a rigid wiper, 
the interference leads to a collision, which stops the motion of the 
recoater or damages it. Recoater crashes are a widespread failure and 
impedes the automation of additive manufacturing processes such as 
LPBF [16]. 

Monitoring the surface with high-resolution optical imaging can 
capture regions of the build not fully covered by powder after the 
recoating step [17,18]. While this can capture a part that has broken 
through the powder layer, it does not resolve local variances in powder 
thickness, which would provide advanced warning of part distortion, 
and could potentially be used in feedback control. Several techniques 
have been developed to measure the part height after laser consolidation 
and this can be used to infer the powder layer thickness. For example, 
Williams et al. [19] used a fixed laser displacement to measure the local 
height of the powder layer and consolidated material. DePond et al. [20] 
presented a technique using optical coherence tomography (OCT) to 
generate a high-resolution point-by-point map of the part height. 
Several groups have studied fringe projection techniques to measure 
part height [21–23]. These techniques require pausing the process to 
measure the height which adds time to the print. 

This paper investigates a thermography based technique to estimate 
the powder bed thickness. Infrared thermography uses the diffusion of 
heat through a material to evaluate the material properties [24] 
including the thermal diffusivity and optical absorption coefficient [25], 
as well as discontinuities such as sub-surface cracks or defects and 
coating thicknesses [26]. The surface temperature is observed using a 
thermal camera and the heat source forcing the thermal diffusion can be 
active or passive [27,28]. The information about the thermal transport is 
often dynamic and a wide range of techniques to evaluate process 
transient thermal histories have been developed, particularly for active 
thermography where there is temporal control of the heat source 
[29–32]. 

In this paper, the printed part serves as the heat source, which retains 
heat from the deposition process. This heating can be supplemented by a 
heated build plate but is not required. When the recoating process 
spreads relatively cool powder over the previously deposited region, 
heat diffuses through powder to its top surface. The temperature history 
of the top surface is observed with a thermal camera. The transient 
thermal response is a function of the layer thickness as well as the 
thermal properties of the powder layer. For a powder with constant 
thermal properties, the transient response can be parameterized and 
these signatures correlated with layer thickness. 

Thermal cameras are present in many LPBF machines, particularly 
research installations, and are used to monitor thermal features during 
additive manufacturing [33]. Short-wavelength infrared (SWIR) and 
long-wavelength infrared (LWIR) cameras combined with visible cam-
era have been used to measure melt-pool dimensions [34], cooling rate 
[35], thermal distortion [36], surface temperature [37,38], and thermal 
history [39]. This is largely motivated by defect detection. A number of 
data-driven approaches aid in relating signatures to thermal features to 
defects or properties [40]. In particular, machine learning algorithms 
have been used to process imaging data to efficiently assess the part 
quality and detect build defects [41,42]. This data-based method to train 
a detection algorithm for potential errors is widely used due to its robust 
performance for an extensive range of operating conditions. Among 
advanced machine-learning methods, feed-forward neural networks 
(FNN) have successfully performed regression tasks in many applica-
tions [43,44]. This paper shows how a FFN improves on a simple physics 
based regression by allowing more feature data to be included in the 
correlation. 

The paper is organized as follows. The experimental setup, including 
the configuration of the thermal camera, and representative thermal 
histories are first presented. A 1D thermal model is developed and used 
to suggest a parameterization for the thermal history. The rise time is 

extracted from this parameterization. The measured rise time is corre-
lated with experimental powder bed thicknesses for a calibration spec-
imen. This data is compared to the 1D model to provide an estimate for 
the thermal conductivity. Next, all the parameterized data is used with 
FNN to improve the ability to predict powder layer thickness. This is 
validated by monitoring the powder layer thickness for a printed part 
with an overhang. This experiment also shows the potential to predict 
the interaction with the wiper 10 layers before it occurs. The thermo-
graphic inspection technique is shown to have significant potential for 
monitoring the powder bed thickness and can be expanded to detect 
variations in the powder properties. This has the potential to limit 
recoater/part collisions which are a common failure in LPBF. Monitoring 
the powder layer health is critical to ensuring part quality. The tech-
nique requires a relatively low cost thermal camera, but by using the 
powder spreading process, the inspection technique does not add delays 
or otherwise modify the LPBF process. These advantages may make the 
approach attractive for industrial adoption. 

2. Experimental setup 

Fig. 1 illustrates the experimental setup with a long-wavelength 
infrared (LWIR) camera (FLIR A655sc) integrated with a commercial 
LPBF machine (Renishaw AM250). A ZnSe window on the chamber al-
lows the LWIR camera to observe the build plate from 15◦ off-normal. 
The LWIR camera has 640 × 480 pixels which corresponds to a spatial 
resolution of 325 µm in this configuration. The spectral range of this 
LWIR camera is 7.5–14.0 µm. The noise-equivalent temperature differ-
ence (NETD) is 30 mK and frame rate is 200 Hz. The camera reports the 
temperature of the scene assuming an emissivity of 0.95 (gray body 
approximation) and is not corrected for transmission through the win-
dow. Because the emissivity of the powder and the printed solid material 
as well as the wiper differ, the measured temperatures are lower than the 
true temperatures. However, the relevant information for the procedure 
presented in this paper is in the time domain. This allows the measured 
temperatures to be normalized for calculations and removes re-
quirements for emissivity and non-uniformity calibrations, significantly 
simplifying the instrumentation. 

Fig. 2 shows the temperature history of a single pixel for a 67.6 s 
duration layer during a typical build using 304 L stainless steel powder 
in a Renishaw AM250. The powder used in this paper had diameters 
ranging between 15 and 40 µm with a mean diameter 25 µm. At the start 
of the process, powder is dispensed from the hopper at the back of the 
chamber. The wiper spreads the powder over the build area, traveling 
from the back of the chamber to the front of the chamber. The time index 
is shifted so that the wiper passes over the pixel in Fig. 2 at t = 0. As the 
wiper completes its travel, it pushes any excess powder into a catchment 

Fig. 1. Illustration of the LPBF experimental setup including the LWIR camera.  
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at the front of the chamber. The laser is then scanned over the pattern for 
the layer to fuse the powder to the part. The camera captures this 
interaction but is saturated when the pixel is heated directly by the laser. 
At the conclusion of the laser patterning, the build plate is lowered by 
the layer height, δ, and the wiper returns to the back of the chamber, 
passing back over the pixel at t = 63.5 s. The emissivity of the pixel 
changes depending on the states of the material and presence of the 
wiper. These changes are indicated by the color of the trace. 

Fig. 2(b) shows a close-up of the interaction with the wiper during 
the powder-spreading step. Initially the pixel corresponds to the printed 
part which has a lower emissivity. This has cooled from the interaction 
with the laser, although there still retains some residual heat as well as 
any heating from the build plate (maintained at 80 ◦C for the builds). 
The wiper pushes powder in front of it. Some of this powder enters the 
pixel before the wiper. Although the fresh powder is cooler, the 
increased emissivity leads to a slight increase in the measured temper-
ature to Tmin at T = 60.75 ◦C. When the wiper blocks the camera’s view 
of the pixel there is a decrease in the measured temperature (indicated in 
grey), followed by a sharp rise in the measured temperature (t = 0). The 
surface temperature of the powder increases as heat diffuses from the 
underlying part. This asymptotically approaches a steady state value of 
Tmax, which is the temperature of the build plate i.e. Tmax = Ts = 80 ◦C. It 
should be noted that both Tmin and Tmax have the same emissivity 
because they both correspond to the powder state. 

The dynamic response of the surface temperature is a function of the 
powder layer thickness as well as the thermal properties of the powder. 
The remainder of the paper focuses on this portion of the temperature- 
time history. It is convenient to normalize the local surface tempera-
ture by 

T ′ =
T − Tmin

Tmax − Tmin
(1)  

which removes the effects of the temperature of the underlying part as 
well as the dependence on the camera’s calibration. 

3. 1D heat transfer model and finite differential elements 
solution 

3.1. 1D heat transfer model 

Insight into the temperature history can be achieved from modeling 
the thermal diffusion through the powder from the underlying part. 
While the powder layer is made of discrete particles, evaluating it as 
continuous effective medium significantly simplifies the analysis. Also, 
the thickness of the powder is much less than the lateral extent of most 
parts, so it is reasonable to model the problem as 1D problem in the z- 
direction. Lastly, the temperature range for the system during the 
recoating step does not vary significantly enough to consider thermally 
dependent properties. Fig. 3(a) illustrates this model. A powder layer of 
thickness, δ, is in contact with the printed solid part. Radiation exchange 
at the free surface of the powder is neglected, but a convection boundary 
condition is applied. The printed solid part is modeled as semi-infinite. 
The temperature of the semi-infinite end side is constant temperature 
at Ts = 80 ◦C. This problem is governed by the heat transfer equation, 

∂T
∂t

=
ki

ρici

∂2T
∂z2 (2)  

with boundary conditions, 

kp
∂T
∂z

⃒
⃒
⃒
⃒

z=0
= h[T(z = 0, t) − T∞] (3)  

T(z→∞, t) = Ts (4)  

and initial condition 

T(z, t = 0) =
{

Tp
Ts

0 < z < δ
δ < z (5)  

where T is the temperature and is a function of time, t, and distance from 
the surface of the powder, z. The thermal properties in Eq. (2) depend on 
the material and can be either powder or printed solid (denoted by the 
subscript, i, which is p for powder and s for printed solid). k, ρ and c are 
the effective thermal conductivity, density and specific heat of the ma-
terials. h is the convection heat transfer coefficient. T∞ is the ambient 
temperature while Ts and Tp are the initial temperatures of the printed 

Fig. 2. Temperature history of a single pixel, for (a) one complete layer and (b) 
new powder layer heating process with insets highlighting the changes of 
emissivity of the pixel. 

Fig. 3. 1D heat diffusion model (a) model definition and (b) simulated tem-
perature distribution at various times. 
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solid and powder, respectively. 
The temperature distribution is solved using a finite difference 

method using material properties shown in Table 1 [45,46]. The pow-
der’s effective thermal conductivity is fit from experiments as described 
in Section 4.2. The calculated temperature distribution is shown as a 
function of depth z in Fig. 3(b) for Ts= 80 ◦C, Tp= 60 ◦C, T∞= 60 ◦C, 
h= 15 W/m2K. The thermal camera only has access to the surface tem-
perature of the powder. The model predicts that the powder surface 
temperature approaches the steady state within almost 1 s 

3.2. Thermal feature: rise time 

It is helpful to have a parameterized expression to fit to the surface 
temperature history. The following equation captures the surface tem-
perature rise predicted by the finite difference solution to Eqs. (2)–(5). 

T(z = 0, t) = A1 − A2e− β1(t− ti) − A3e− β2(t− ti) t > ti (6)  

where A1 is the powder free surface’s steady-state temperature and A1- 
A2-A3 is the powder free surface’s initial temperature, Tp. Replacing t 
with t-ti allows the time history to be shifted so the initial condition 
occurs at ti (when the wiper introduces fresh powder to the printed solid 
surface). The coefficients β1 and β2 depend on the powder layer thick-
ness and thermal diffusivity of the materials. For a sufficiently thick 
powder layer on a high thermal diffusivity material (α = k/ρc) material, 
it can be shown that β∝αp/δ2. While this serves as a starting point, it 
breaks down for thinner powder layers and this paper fits the co-
efficients numerically for both simulation and experiments. After 
normalization using Eq. (1), the initial temperature of powder free 
surface T′(z = 0,t = ti) is zero, so that A1-A2-A3 = 0 and Eq. (6) can be 
simplified as 

T ′(z = 0, t) = A1 − A2e− β1(t− ti) − (A1 − A2)e− β2(t− ti) t > ti. (7) 

The coefficients A1, A2, β1, β2 and ti can be fit to the free surface 
temperature. Fig. 4(a) shows the ability of Eq. (7) to capture the free 
surface temperature predicted by the finite difference model for 
different powder layer thicknesses. The mean squared error for the 
powder thicknesses in Fig. 4(a) is less than 5.3 × 10− 6. 

A characteristic rise time, τ, defined as the time from t-ti for the 
surface temperature to reach 90% of steady state, can be obtained from 
Eq. (7). 

A2e− β1τ +(A1 − A2)e− β2τ = 0.1A1 (8) 

The rise time serves as a thermal feature which can be related to the 
powder layer thickness or the thermal properties. Fig. 4(b) shows the 
dependence of the rise time on the powder layer thickness from finite 
difference model calculated results. This relationship is captured by a 
power law dependence 

δ = 296.8τ0.5048. (9) 

Assuming the constant properties in Table 1, this function can be 
used to predict the powder thickness δ from rise-time τ, which can be fit 
to simulated or experimental data. The uncertainty in the predicted 
powder layer thickness depends on the first derivative of Eq. (9). An 
estimate for the uncertainty in the powder layer thickness, Δδ is given by 

Δδ =
∂δ
∂τ Δτ (10)  

where Δτ is the uncertainty in the rise time. For example, if we assume 
that the uncertainty in the time constant scales with the reciprocal of the 
frame rate of the camera (200 Hz), the uncertainty for a 40 µm powder 
layer would be 5.21 µm while the uncertainty for a 100 µm decreases to 
2.17 µm. Coincidentally, this agrees with the breakdown in the treat-
ment of the powder layer as an effective medium as the layer thickness 
approaches the powder particle diameter (40 µm for the powder in this 
paper). 

4. Experimental validation 

4.1. Calibration to experimental powder thickness 

The parametric expressions in Eqs. (7) and (8) can also be applied to 
experimentally gathered data, and the experimentally fit coefficients 
can then be used to predict the powder thickness. This approach requires 
collection of temperature histories for various known powder thick-
nesses. Fig. 5(a) and b shows a simple gage specimen printed with the 
Renishaw AM250. It consists of 5 mm wide strips, 35 mm long, at 
different elevations h from a printed datum plane. After the specimen 
was printed, the unfused powder is removed from above the gage 
specimen. The specimen is not removed from the build platform. After 
the powder is removed the chamber is resealed again, the argon atmo-
sphere restored, and the build plate heated to 80 ◦C, before commanding 
the system to add a new layer of powder. The wiper then spreads powder 
over the build plate including the specimen. This gives a powder layer 
thickness that varies spatially with the height of the individual strips of 
the gage specimen. The powder layer thickness is δ = h0-h, where h0 is 
the height above the datum of the build plane. In this experiment h0 
= 360 µm so that the highest specimen has δ = 40 µm of powder above 
it. The heights of the gage specimen and corresponding powder thick-
nesses are listed in Table 2. The 8 different heights in the table are 
repeated three times along the width of the specimen. The thermal 
histories for each pixel above the specimen are recorded during the 
recoating process. After this, the build plate is removed from chamber 

Table 1 
Material properties of 304 L solid and powder.  

Properties 304 L Solid 304 L Powder 

Density, ρ [kg/m3] 8030 4818 
Specific heat capacity, c [J/kg⋅K] 490 490 
Thermal conductivity, k [W/m⋅K] 16.2 0.269  

Fig. 4. Fitted 1D thermal diffusion model results (a) parameterized fitted re-
sults overlayed on results from finite difference solution with rise time for the 
δ = 320 µm layer highlighted (b) powder thickness as a function of rise time 
with power law fit and calculated powder layer thickness uncertainty. 
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and cleaned. The top surface of the specimen is then laser scanned (LMI 
Gocater 2320) to measure precisely and map the height of each strip 
above the datum plane. Fig. 5(b) shows the measured height of each 
specimen and Fig. 5(c) shows a spatial map of the corresponding powder 
thickness registered to the camera pixels. This shows minimal local 
variances from the nominal powder thickness. 

Fig. 6(a) shows examples of the temperature histories for pixels with 
different nominal powder thicknesses. Eq. (7) is fit to the temperature 
history pixel-by-pixel. The five fitted coefficients are plotted in Fig. 5(e)- 

(i). As mentioned in Section 3.2, A1 corresponds to the normalized 
steady state temperature and should have a nominal value of unity. 
Fig. 5(e) shows that the fitted values of A1 range between 0.97 and 1.03. 
The time shift ti is related to when the wiper passes over the pixel. The 
coefficient β1 is inversely proportionate to the thickness of the powder 
layer as should be expected. Fig. 5(f) shows that ti scales linearly with y 
for thinner powder layers. This agrees with the constant velocity 
(v=140 mm/s) of the wiper in the y-direction. For thicker powder layers, 
there is a delay between when the powder is deposited and when a 
temperature rise can be observed on the free surface because of the time 
it takes for thermal energy to diffuse through the powder layer. 

The coefficient of determination, R2, for these fits is shown in Fig. 5 
(j). The figure shows that Eq. (7) captures the local temperature histories 
well and the minimum R2 over the entire gage specimen is 0.98 with an 
average for all the data of R2 = 0.997. The five fitted coefficients can be 
combined using Eq. (8) to calculate the rise time for each pixel. This is 
plotted in Fig. 5(d). The correspondence between powder layer thick-
ness and rise time is clearly visible in Fig. 5(c) and (d). Fig. 6(b) also 
shows the powder layer thickness as a function of rise time. A power law 
fit to this data gives the relationship 

δ = 296.9τ0.5074. (11)  

which has R2 = 0.869. 
While the parameterization from the 1D model captures the response 

well for the interior of the strips as illustrated in Fig. 6(a). Fig. 6(b) 
shows significant scatter in the rise time and the measured powder 
thickness. Much of this occurs at the boundary between strips. In these 
regions, the assumptions of the 1D model are not satisfied and the 
thermal disturbance spreads laterally (cylindrically away from the edge 
defined by the adjacent strips). Experimentally, this lateral spread is on 
the order of two pixels (0.65 mm for this setup) and is convoluted with 
resolution of the camera. 

Fig. 5. (a) Photograph of height artifact and (b) surface profile along cross 
section A-A. 2D maps of the (c) measured powder layer thickness, (d) rise-time 
τ, (e) A1, (f) A2, (g) β1, (h) β2, (i) ti, (j) coefficient of determination 2. 

Table 2 
The height of each of the eight different strips and corresponding 
powder thickness δ.  

n h [µm] δ [µm] 

1 320 40 
2 120 240 
3 40 320 
4 240 120 
5 80 280 
6 200 160 
7 160 200 
8 280 80  

Fig. 6. (a) Measured temperature histories for different powder thicknesses and 
fitted parameters (b) powder thickness δ with respect to rise-time τ. 
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4.2. Powder thermal conductivity 

The temperature history also depends on the thermal properties of 
the powder layer. Fig. 7(a) shows the predicted relationship between the 
rise time and powder layer thickness for different effective thermal 
conductivities of the powder, kp, calculated using the 1D heat transfer 
model in Section 3. As expected, the rise time scales inversely to the 
thermal conductivity. Fig. 7(a) also shows the experimental data from 
Fig. 6(b) again and suggests that the effective thermal conductivity can 
be fit to the experimental data. Fig. 7(b) shows the coefficient of 
determination R2 for fitting experimental data with the 1D diffusion 
model results obtained using different effective thermal conductivities. 
A third order polynomial is used to fit the data and has the maximum 
when the powder’s effective thermal conductivity kp is 0.269 W/m⋅K. 
This agrees with the experimentally measured thermal conductivity for 
316 L stainless steel powder in Lien et al. [46]. While the same approach 
could be used to estimate the powder’s other thermal properties, the 
density and specific heat are more straightforward to measure experi-
mentally. This analysis suggests that local changes in the powder 
properties, including density, can be detected using a thermal camera to 
monitor the thermal diffusion through the powder. 

5. Basic machine learning with FNN regression learner for 
powder thickness prediction 

The previous section showed that working with the rise time leads to 
straightforward correlations to the powder thickness or thermal prop-
erties. However, the relatively low R2 in Fig. 6(b) indicates a large 
variance of predictive performance in certain regions. Specifically, for 
powder thicknesses δ < 180 µm, the power law model shows a large 
variance as certain points are over-estimated by as much as over 200%. 
In application, this large error will cause the prediction algorithm to 
miss defects at low powder thickness levels since the algorithm tends to 

over-estimate powder thickness levels. 
The consolidation of the five thermal history fitted parameters (A1, 

A2, β1, β2, and ti) fitted thermal history to the rise time can lead to some 
loss of information. Generating physics based correlations with all five 
parameters is challenging. Machine learning techniques are well suited 
to this type of problem, provided sufficient data is available. A feed-
forward neural network (FNN) is applied to the data in Fig. 5 using the 
Regression Learner toolbox in MATLAB. The five parameters A1, A2, β1, 
β2, and ti in Fig. 5(e)-(i) are directly used to train the FNN to predict the 
powder layer thickness. 

The general structure of an FNN model can be mathematically rep-
resented by the following equations 

input layer : a[1]
j = σ[1]

(
∑n[1]

i=1
w[1]

ij xi + b[1]

)

hidden layer : a[l− 1]
j = σ[l− 1]

(
∑n[l− 1]

i=1
w[l− 1]

ij a[l− 2]
j + b[l− 1]

)

output layer : yj = σ[l]

(
∑n[l]

i=1
w[l]

ij a[l− 1]
j + b[l]

)

(12)  

where xi is input features and yj is the desired output target. w[k]
ij is the 

weight from neuron i of the k-1 layer to neuron j of the k layer. l and n[k] 

denote the number of layers and number of neurons for the k layer, 
respectively. b[k] and σ[k] are the bias and activation function for the k 
layer. 

In this study, there are 42,510 total data points that are split based on 
a ratio of 70–15–15 into the training, validation, and testing dataset for 
the FNN, respectively. The training dataset is used to adjust the weights 
and biases of the FNN, the validation dataset is used to adjust the 
hyperparameters (number neurons) of the FNN, and the testing dataset 
is used to evaluate the performance of the FNN to an unseen dataset. It is 
important to note that data splitting is conducted before any further data 
processing steps such as normalization and scaling to prevent data 
leakage. Using the regression learner MATLAB toolbox, several different 
FNN architectures are tested against each other with their own specifi-
cations. A model with a single hidden layer with 100 hidden neurons 
and ReLu as the activation function displayed the best performance with 
an R-squared value of 0.962. 

Fig. 8 compares the prediction results from the rise time only cor-
relation and the five parameters based FNN. The FNN preforms signifi-
cantly better for thinner powder layers. The overall coefficient of 
determination R2 improves to 0.962 for the FNN as opposed to 0.859 
using the rise time correlation. Fig. 8(c) shows histograms of the true 
powder thicknesses when the predicted powder layer thickness is δp 
= 200 ± 5 µm. Fitting a normal distribution to the results from both 
models gives a 95% confidence interval estimate of the true powder 
layer thickness of δ = 194.2 ± 60.6 µm for the rise time correlation 
which is improved to δ = 201.5 ± 32.2 µm for the FNN model. 

6. In-situ thermographic monitoring for recoater interaction 

Thermal distortion occurs commonly in LPBF. This can occur for 
unsupported parts when there is inadequate conduction to the build 
plate leading to excessive heating. The distortion lowers the powder 
thickness on next layer which exasperates the overheating as less ma-
terial is melted. When the distortion of the part causes it to break 
through the powder layer, it can interact with the recoater. The inter-
action of the recoater with the part can abrade a soft wiper while a rigid 
wiper can crash into the part and damage the machine, part, or both. In 
the case of a flexible wiper, the abraded area allows an increase in the 
powder layer thickness for every part in-line with the abraded area. The 
contact with the wiper is potentially catastrophic for both types of 
wipers. Detecting thermal distortion prior to a part breaking through the 
powder layer allows the local process parameters to be adjusted in order 

Fig. 7. (a) Effect of powder layer effective thermal conductivity on simulated 
rise time/powder layer thickness relationship (b) dependence of coefficient of 
determination R2 for power law fitted rise time/powder layer thickness rela-
tionship with respect to powder layer effective thermal conductivity. 
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to limit distortion or to have the part suppressed to save the build. The 
distorted part leads to a change in the local powder layer thickness 
which can be detected using the thermographic powder layer moni-
toring technique. 

Artifacts with an overhang are printed to demonstrate a change in 
powder layer thickness caused by thermal stress as reported in our 
previous work [42]. The dimensions of the overhang artifact are shown 
in Fig. 9(a). Fig. 9(b) shows a photograph of the specimen and a block 
printed with the Renishaw AM250 system using a flexible (silicone) 
wiper. The block is added behind the specimen to capture any subse-
quent changes in the powder bed thickness due to the abraded wiper. 
These artifacts are printed using nominal process parameters developed 
for stainless steel 304 L. Specifically, a laser power of 200 W, beam size 
of 75 µm, scan speed of 800 mm/s and setup nominal powder thickness 
δN = 50 µm. For simplicity, the laser was only rastered in the x-direction. 
The parts in Fig. 9(b) were stopped after 219 layers and show significant 
distortion in the unsupported overhanging region. 

The height of the powder layer is monitored using the thermal 
camera, the temperature history for each point fitted using the 5-param-
eters in Fig. 5, and the FNN used to predict the powder layer thickness.  

Fig. 10(a) shows the predicted powder thickness averaged along the 
leading edge of the overhang artifact (red line). For reference, the pre-
dicted powder thickness averaged over a line at the center of each layer 
(blue line) is also plotted. The constant raster direction leads to a slightly 
higher part (lower thickness) at the edge almost immediately. This is 
stable by layer 40. The powder layer thickness on the unsupported edge 
starts decreasing more and more at layer 180 due to thermal distortion. 
Over the entire print, the reference thickness in the center of the part is 
stable. 

To verify these predictions, specimens were stopped at intermediate 
heights during the build. Photographs of the specimens stopped at layers 
50, 140, and 215 are shown in Fig. 10(a). At the conclusion of the build, 
these parts were laser scanned (after removing powder but without 
removing the parts from the build plate). The nominal height is calcu-
lated by multiplying the number of layers with the nominal powder 
layer thickness. The actual powder layer thickness is this nominal height 
minus the laser scanner measured height. This thickness is plotted for 
both the unsupported edge and center of the part in Fig. 10(a) as points, 
by averaging the data measured over each line (red dash line or blue 
dash line) for the various layers. This validation was repeated for three 

Fig. 8. Predicted powder thickness δ by using (a) rise time method, (b) neural network regression method and (c) powder thickness with normal distribution when 
the predicted powder layer thickness is δp = 200 ± 5 µm. 

Fig. 9. (a) Schematic image of overhang with dimensions in mm (b) photograph of distortion grows on the overhang top surface with a block behind it.  
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different parts (stopped at the same layer) and the error bars show the 
standard deviations. The figure shows that the predicted layer height 
from the thermal inspection method agrees well with the measured 
height. In particular, the thermal distortion predicted that the part broke 
through the powder layer at layer 212 while the measurements show a 
broke-through between layers 200 and 205. 

Fig. 10(b) shows the thermal inspection predicted height for the 
block behind the overhang artifact. The predicted powder layer height is 
plotted for the same x-position as the traces in Fig. 10(a) (immediately 
behind the leading edge of the artifact and at its center). The powder 
layer stabilizes by layer 40. At layer 215, the local powder layer thick-
ness behind the unsupported edge starts to increase dramatically. This is 
due to the abrasion of the wiper and leads to the local deposition of more 
powder. While not visible in the photograph of the part in Fig. 9(b), if 

this continued, it could negatively affect the local part properties. 
Fig. 10(c) shows photographs of five identical parts, stopped at layer 

219, and the wiper. The damage to the wiper is visible (scratched metal 
and abraded silicone). The decrease in the powder layer thickness 
indicating an imminent crash could be detected by layer 190 from the 
thermal inspection estimate. This is at least 10 layers before the collision 
and would allow the part to be suppressed to prevent damage to the 
wiper as well as any other parts in the build. 

It is interesting to observe that the measured as well as predicted 
powder layer thicknesses are so much larger than the nominal powder 
layer thickness, about 200 and 50 µm, respectively. This is consistent 
with Mahmoodkhani et al. [11] who showed a nominal powder thick-
ness of 20 µm resulted in a measured powder layer thickness of more 
than 100 µm as well as Wischeropp et al. [12] who showed nominal 
powder layer thicknesses of 30 and 50 µm corresponded to actual 
thicknesses of 165 and 225 µm. This phenomenon is the result of 
shrinkage of powder consolidation over multiple layers [11] in addition 
to significant losses of the powder from spatter and denudation [12]. 

In addition to suppressing a bad part before it breaks through, 
detecting thermal distortion early could be used to adjust the process 
parameters to match the reduced powder layer thickness. This includes 
lowering the laser power or increasing the scan speed. There is also the 
possibility to adjust the scan path to minimize overheating. Because the 
distortion is detected early, there is time to react by making more 
gradual changes. Other more drastic approaches are possible, including 
laser ablation of the distorted region or physically deforming it down. 

7. Conclusion 

This paper demonstrates the potential of using in-situ thermographic 
inspection to evaluate the powder layer thickness and estimate local 
powder layer thermal properties. An experimental study, conducted 
using realistic process parameters in a commercial LPBF machine, agrees 
well with a 1D thermal diffusion model for the powder layer. This uses a 
stationary LWIR thermal camera in a staring configuration. A parametric 
fit of the temperature history is used to generate a correlation to the 
powder layer thickness. A simplified rise time model provides insight 
and was used to estimate thermal conductivity, but it was outperformed 
by a FNN machine learning method for data obtained from a calibration 
specimen. This was tested for a simple artifact with an overhanging 
unsupported edge. Without underlying supported structure, the ability 
of the overhang to dissipate heat is significantly reduced, causing heat to 
build up at the edge. Overheating causes thermal distortion, which re-
duces the thickness of the next powder layer. The overheating is exas-
perated as there is less powder for the laser to melt and the distortion 
rapidly increases to the point where it breaks through the powder layer 
and produces the abrasion of the silicone wiper. The FNN model was 
applied to monitor thermal distortion and could ultimately predict a 
wiper collision at least 10 layers before it occurred. 

The thermal inspection method appears to have several advantages 
relative to existing methods for monitoring the powder layer in-situ. In 
particular, because the inspection occurs during the recoating step, it 
does not add additional processing time for the inspection. Comparing 
with optical coherence tomography and fringe projection methods, this 
method’s additional equipment costs are minimal. The thermographic 
inspection technique was able to resolve the powder layer height to 
± 32.2 µm (within the mean particle diameter). 

Future work will include the development of automatic part sup-
pression algorithms as well as providing feedback to try to minimize 
thermal distortion. In addition, the ability to certify additional aspects of 
the powder bed health will also be expanded. For example, variances in 
the powder size distribution can be detected by identifying changes in 
the local thermal properties of the bed. While quantitative measure-
ments require training, the thermographic inspection technique can 
reveal local deviations from the standard thermal history in the bed. This 
approach extends to other aspects of the LBPF process including the gas 

Fig. 10. (a) Comparison of powder thickness δ between thermal measure and 
height measure. The blue line indicates the inner center powder thickness 
averaged over the blue dots line for every layer. The red line denotes the un-
supported edge powder thickness averaged over the red dots line for every 
layer. (b) Powder thickness δ at different block areas. Blue and red lines 
represent the powder thickness of block along blue and red dots with respect to 
layers. The insert images are the 3D map of block powder thickness δ obtained 
from the thermal measure. (c) Final overhang samples and the abraded wiper. 
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flow over the powder bed. This study also suggests that other techniques 
from thermographic based non-destructive testing, including active 
thermography, may add significant insight to the LBPF process. 
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factors of residual stresses in selective laser melting using a novel analysis method, 
Proc. Inst. Mech. Eng. Part. B. J. Eng. Manuf. 226 (2012) 980–991. 

[16] H.A. Kumar, S. Kumaraguru, Distortion in Metal Additive Manufactured Parts, 3D 
Printing and Addit. Manuf. Technol, Springer,, Singapore, 2019, pp. 281–295. 

[17] M. Abdelrahman, E.W. Reutzel, A.R. Nassar, T.L. Starr, Flaw detection in powder 
bed fusion using optical imaging, Addit. Manuf. 15 (2017) 1–11. 
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