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ABSTRACT: In this article, we propose the development of a recurrent neural
network (RNN)-based model predictive controller (MPC) for a plasma etch
process on a three-dimensional substrate using inductive coupled plasma (ICP)
analysis. Specifically, the plasma etch process is simulated by a multiscale model:
(1) A macroscopic fluid model is applied to simulate the gas flows and chemical
reactions of plasma. (2) A kinetic Monte Carlo (kMC) model is applied to
simulate the etching process on the substrate. Subsequently, proper orthogonal
decomposition (POD) is used to derive the empirical eigenfunctions of the
plasma model. Then the empirical eigenfunctions are utilized as basis functions
within a Galerkin’s model reduction framework to compute a low-order system
capturing dominant dynamics of the plasma model. Additionally, RNN is
introduced to approximate dynamics of both the reduced-order plasma system
and the microscopic etch process. The training data for the RNN models are
generated from discrete sampling of open-loop simulations. A probability distribution function is also involved to present the
stochastic characteristic of the kMC model. The trained RNN models are then implemented as the prediction model in the
development of MPC to achieve desired control objectives. Closed-loop simulation results are presented to compare the
performance of the model predictive controller and a proportional-integral (PI) controller, which show that the proposed MPC
framework is effective and exhibits better performance than does a PI controller.

1. INTRODUCTION

Plasma etching has been applied in integrated circuits (IC)
processing since the 1960s and has became one of the core
techniques due to the continuous decreases in fabricating
scale.1,2 Simulations of plasma etching are effective ways to
maintain and optimize the etching process techniques.3,4

Among all the simulation models for plasma, fluid models are
commonly used because they are computationally efficient and
flexible in coupling the electromagnetic fields. Additionally, the
complex transport phenomena and reactions of the etching
process are simulated by some quite precise approaches, like
the level set method and the kinetic Monte Carlo method
(kMC). kMC has the most potential to realize a high-
resolution simulation of plasma etch processes while
maintaining a relatively high computational efficiency.5−7 An
appropriate modeling methodology is established by kMC
transforming every physical phenomena into stochastically
selected events. Through simulations or experiments, the
probability table of the simulated process can be attained,
which is the key step for kMC.
However, the natural disparity of scales between the

macroscopic plasma chamber and the microscopic etching
process is a big challenge. The large temporal/spatial
differences of scales prevent us to simulate the plasma behavior
and the etching process concurrently. Continuous models used

to simulate plasma are insufficient at microscopic scale.
Meanwhile, high-resolution approaches applied to simulating
etching process, like kMC, are impossible to apply on
macroscopic domains considering the computational effi-
ciency. Multiscale models are the solution to this problem
and such models were developed in the crystallization process,8

pulping,9 and catalytic reactors.10 Microscopic models and
macroscopic models are computed concurrently in these works
through coupling bridges to exchange data. Nevertheless,
three-dimensional (3D) multiscale models for plasma etch
processes were rarely developed in previous works. In an
earlier work by our group, we have presented a 3D multiscale
model for the silicon etch process using Cl2/Ar inductive
coupled plasma (ICP) analysis.11

Plasma models are complex in that they are derived from
conservation laws and are described by highly dissipative
(typically parabolic) partial differential equation (PDE)
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systems. Traditional methods to solve PDEs involve temporal
and spatial discretization by using a finite-difference or finite-
element method,12,13 the main drawback of which is that they
require significant computational resources. A promising
approach to solve this problem for dissipative PDE systems
is model order reduction, in which the dominant behavior can
be captured by a finite number of modes.14,15 If global basis
functions of the system are available, then the dissipative PDE
can be discretized using weighted residual methods such as
Galerkin projection, and then a reduced-order system of finite
dimensional ordinary differential equations (ODEs) can be
derived.16 An appropriate approach to obtain the global basis
functions is that of applying statistical techniques to compute
empirical basis functions (EBFs) based on dominant dynamics
of systems.17,18 The empirical functions are computed by
applying proper orthogonal decomposition (POD) to process
the data.19 Subsequently, the empirical eigenfunctions can be
used as basis functions within a Galerkin’s method and
approximate an inertial manifold model reduction framework
to derive low-order ODE systems that accurately describe the
dominant dynamics of the PDE system.20,21

Machine-learning and deep-learning methods have grown
rapidly in last 20 years owing to the development of advanced
machine-learning algorithms, innovative neural network
structures, powerful computers and open-source software
libraries. Among all of these machine-learning methods, a
recurrent neural network (RNN) is an outstanding method to
be applied in approximating nonlinear dynamical systems.
RNN was first proposed in 1980s and was utilized in pattern
recognition.22 Later, more complex networks like long short-
term memory (LSTM) and gated recurrent unit (GRU) were

invented to overcome the gradient vanishing problem of
RNN.23,24 What distinguishes RNN from the commonly
known feed-forward neural networks is the existence of
feedback cycles in the connections topology. These recurrent
cycles make it possible for RNN to capture the dynamic
behaviors of nonlinear systems.25 Results in the literature
showed that RNN can approximate any dynamic system to an
arbitrary accuracy.26 Several works on using RNN to
approximate dynamic systems have been already published in
both discrete-time systems27 or continuous systems.28

As a powerful and advanced control methodology, model
predictive control (MPC) has been applied in real-time
operation of various industrial processes in order to optimize
process performance.29,30 While most studies on MPC pay
attention to lumped-parameter process models, the application
of MPC on distributed parameter systems is a large area that
need to be further developed. Exceptions include refs 31 and
32. In the first work,31 a finite-difference method was utilized
to generate a high-order ODE system as a prediction model in
a MPC framework. In the second work,32 a low-order ODE
model was developed as a prediction model by using Galerkin’s
method in an economic MPC framework. Designs of MPC for
multiscale systems were proposed in previous works,33,34 which
rely on the following: (1) POD was employed to construct
reduced order models of the continuum model. (2) The
microscopic model was approximated by a discrete system
using in situ adaptive tabulations (ISAT), in which the
identified state-space of the coarse microscopic state can be
tabulated.35,36 A prediction model is one of the key elements of
MPC and can be derived by first-principle models or data-
driven models. In practical implementations, first-principles

Figure 1. (a) the half cross section of the ICP equipment and (b) the multiscale model.
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models are always difficult to attain, especially for systems with
complex and nonlinear behaviors. Data-driven modeling is an
appropriate method to address this issue and has been
historically researched.37,38 In these works, data-driven
methods like subspace methods were utilized to identify
input−output systems. Machine-learning models such as RNN
were applied as prediction models to solve model predictive
control problems for nonlinear systems in several works.39−42

It should be noted that the computational complexity of RNN
would increase if it is utilized to approximate high-order
complex systems, which would lead to significant difficulties for
the practical use of RNN in MPC. The combination of a low-
order solution and RNN can be a reasonable method for this
problem.
Motivated by the above considerations, we focus on the

design of MPC for a plasma etch process on a 3D substrate
using inductive coupled plasma (ICP) analysis. Specifically, the
plasma etch process is simulated by a multiscale model: (1) A
macroscopic fluid model is applied to simulate the gas flows
and chemical reactions of plasma and is constructed in
COMSOL Multiphysics (for convenience, called COMSOL
from now on). (2) kMC is applied to simulate the etch process
on the substrate. Subsequently, POD is used to derive
empirical eigenfunctions of the plasma model. Then the
empirical eigenfunctions are utilized as basis functions within a
Galerkin’s model reduction framework to compute a low-order
system capturing the dominant dynamics of the plasma model.
Additionally, RNN is implemented to approximate the
dynamics of both the reduced-order plasma system and the
microscopic etch process. Training data for RNN models are
generated from discrete sampling of open-loop simulations. A
probability distribution function is also involved in order to
present the stochastic nature of the kMC model. The trained
RNN models are then implemented as prediction model in the
development of MPC to achieve desired control objectives.
Closed-loop simulation results are presented to compare the
performance of the model predictive controller and a
proportional-integral (PI) controller, which show that the
effectiveness of the proposed MPC framework and improved
control performance compared to PI controller.
The article is organized as following: In section 2, the

multiscale system and methodologies of our framework is
presented. In section 3, the macroscopic model and the model
reduction procedure are given. The training process of the
RNN model for macroscopic model is also described in section
3. Subsequently, in section 4, we briefly show the microscopic
kMC model. The training process of the RNN model for kMC
model and the development of the probability distribution
function are also presented in section 4. The designs of the PI
and model predictive controllers are presented in section 5.
Finally, the simulation results are discussed in section 6, and a
conclusion is presented in section 7.

2. PRELIMINARIES
2.1. Multiscale Model. In Figure 1, we present the

schematic diagram of the ICP reactor considered in this work.
The reactive gases are pumped into the chamber through two
inlets: the edge inlet (inlet1) and the center inlet (inlet2). Top
coils generate the plasma in the plasma chamber. The bottom
electrode accelerates the ions in the plasma chamber, which
will impact the substrate placed on top of the electrode.
Complex reactions occur on the substrate and derive the
microscopic etching process.

The disparity of scales of simulation models and a flow
diagram of the multiscale model are shown in Figure 1. In
order to capture both macroscopic plasma behaviors and
microscopic etching behaviors, a multiscale model consisting
of two simulation model components is developed: The
continuous fluid model consisting of three modules (electro-
magnetic field, electron and electron energy density, and heavy
species density) is established in COMSOL; the kMC model
simulating three kinetic behaviors of the etching surface
(particle transport, surface reaction, and deposition) is
completed through C language. In addition, the macroscopic
model and the microscopic model were coupled by applying a
spatial-temporal discrete method. Fluxes data is exchanged
between the two models in discrete time step ts. Furthermore,
the whole substrate is divided into five parts. The etching
process of each part is represented by one microscopic model.

2.2. Proper Orthogonal Decomposition. We use
solution data of the fluid model to construct global basis
functions by utilizing POD. POD is applied to an ensemble of
process solution data to derive a small set of empirical
eigenfunctions which describe dominant spatial patterns of the
nonlinear PDE system. In this work, the ensemble of solutions
is constructed based on solutions of the fluid model for
different profiles of plasma parameters and different initial
conditions.14,15 Application of POD to this ensemble of data
provides an orthogonal set of basis functions (known as
empirical eigenfunctions) for the representation of the
ensemble, as well as a measure of the relative contribution of
each basis function to the total energy (mean square
fluctuation) of the ensemble. A truncated series representation
of the ensemble data in terms of the dominant basis functions
has a smaller mean square error than a representation by any
other basis of the same dimension.43 These computed
eigenfunctions will then be used as basis functions within the
Galerkin’s model reduction framework. Specifically, we first
generate a large ensemble set of the solutions of our PDE
system. In particular, we can only consider five PDEs, which
will be illustrated in detail in the following sections. We assume
one set of these solutions as v̅k, which consists of K sampled
states v̅k(z) (typically called snapshots). Then we define the
ensemble average as

∑⟨ ̅ ⟩ = ̅
=

v
K

v z
1

( )k
n

K

k
1 (1)

Furthermore, the ensemble average of snapshots ⟨v̅k⟩ is
subtracted out from the snapshots.

= ̅ − ⟨ ̅ ⟩v v vk k k (2)

Subsequently, we define the covariance matrix B as follows:

∫=κ
κ

Ω
B

K
v z v z dz

1
( ) ( )k

k (3)

Figure 2. Recurrent neural network and its unfolded structure.
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where Ω denotes the domain of definition of the process, and
the eigenvalues can be obtained by following equation:

λ=Bc c (4)

The solution of the above eigenvalue problem yields the
eigenvectors c = [c1, ..., cK]

T which can be used in following
equations to construct the eigenfunctions:

∑ϕ =z c v( ) (z)
k

k k
(5)

2.3. Galerkin’s Method. In this section, we use Galerkin’s
method to derive low-order systems of nonlinear ordinary
differential equations, which represent the dominant dynamics
of the nonlinear PDE system. To simplify the presentation, we
first present a general form of PDEs. Subsequently, we assume
that an orthogonal and complete set of analytical eigenfunc-
tions is available, which can span the entire domain of the
nonlinear process. Specifically in our work, the basis functions
ϕk(z) are the set of empirical eigenfunctions computed
through POD.
First we present the general form of PDEs:

∂
∂

= ∂
∂

+ ∂
∂

+ +x
t

A
x
z

B
x

z
Wu t f x z t( ) ( ( , ))

2

2 (6)

subject to the mixed-type boundary conditions:

η η
= Γq x

x x
,

d
d

,
d
d

0, on
2

2

i
k
jjjjj

y
{
zzzzz (7)

and the initial conditions:

=x z x z( , 0) ( )0 (8)

where x(z, t) = [x1(z, t), ..., xn(z, t)]
T ∈ Ω ⊂ n denotes the

vector of state variables, t ∈ [0, ∞) is the time,
= [ ] ∈z z z,1 2

2 is the vector of spatial coordinates, f(x(z,
t)) denotes a nonlinear vector function, ∈u nu denotes the
manipulated input vector, A, B, andW are matrices and vectors

of appropriate dimensions, η η( )q x , ,x
d

x
d

d d2

2 is a nonlinear vector

function which is assumed to be sufficiently smooth, Γ is the

boundary of the domain Ω, |
η Γ
xd

d
denotes the derivative in the

direction perpendicular to the boundary, and x0(z) is a smooth
vector function of z.
Then, we formulate the parabolic PDE system of eq 6 in the

Hilbert space Ω( , )n , where is the space of n-
dimensional vector functions defined on Ω that satisfy the
boundary condition eq 7, with inner product and norm:

∫ω ω ω ω

ω ω ω

=

=

Ω
( , ) ( (z), (z)) dz

( , )

1 2 1 2

1 2 1 1
1/2

n

(9)

where ω1 and ω2 are two elements of Ω( , )n and the
notation · ·( , ) n denotes the standard inner product in n.
Subsequently, we define the state function x̅(t) = x(z, t), t > 0,
z ∈ Ω, and the operator in Ω( , )n as

̅ = ̅ + ̅ ∈ Ωx A
x
z

B
x

z
z

d
d

d
d

,
2

2 (10)

and the input operator as well as the nonlinear function
operator as ̅ =x t Wu t( ) ( ), ̅x t( ( )). The system of eq 6 can
be written in an n-dimensional semilinear form:

̇ = ̅ + + ̅ ̅ = ̅x t x t u t x t x x( ) ( ) ( ) ( ( )), (0) 0 (11)

where x̅0 = x0(z). Then, we let [λ1, ..., λN] be the eigenvalues of
and [ϕ1, ..., ϕN] be the corresponding eigenvectors, and we

let σ λ λ= { }( ) , ..., N1 be the eigenspectrum of . On the
basis of the assumption that most diffusion−reaction processes
have a large separation between slow and fast modes, σ( ) can
be divided as σ σ σ= ⊕( ) ( ) ( )s f , where σ ( )s consists
of the first m slow eigenvalues and σ ( )f consists of the
remaining fast eigenvalues. Then, we define the s and f
modal subspaces of as ϕ ϕ= { }span , ..., ms 1 and

ϕ ϕ= { }+span , ...,m Nf 1 . We define ϵ = |Reλ1|/|Reλm+1|. Let
Ps and Pf denote the orthogonal projection operators that
project the state x̅ onto the subspaces s and f of as x̅ =
x̅s ⊕ x̅f = Psx̅ ⊕ Pfx̅. Utilizing the decomposition of x̅ in eq 11,
the following equations are given:

̇ = ̅ + ̅ ̅ +

̅ = ̅ = ̅
̇ = ̅ + ̅ ̅ +

̅ = ̅ = ̅

x t x t x t x t u t

x Px Px

x t x t x t x t u t

x P x P x

( ) ( ) ( ( ), ( )) ( ),

(0) (0)

( ) ( ) ( ( ), ( )) ( ),

(0) (0)

s s s s s f s

s s s 0

f f f f s f f

f f f 0 (12)

where = Ps s , = Ps s , = Ps s , = Pf f , = Pf f ,
and = Pf f . It should be noted that s is a diagonal matrix
and that the operator f is an unbounded exponentially stable
differential operator. To capture the dominant dynamics of the
PDE system, only the slow modes of resulting ODE system is
considered:

̇ = ̅ + ̅ ̅ +

̅ = ̅

x t x t x t x t u t

x Px

( ) ( ) ( ( ), ( )) ( ),

(0)
s s s s s f s

s s 0 (13)

Following the approximation procedure in previous work,16 an
O(ϵ) approximation can be presented:

̇ = ̅ + ̅ + ̅ = ̅x t x t x t u t x Px( ) ( ) ( ( ), 0) ( ), (0)s s s s s s s s 0
(14)

2.4. RNN Model. RNN is an outstanding approach to
approximate dynamic systems for that it has the memory of
past states. The unfolded structure of RNN is shown in Figure
2. Specifically, U, V, and W represent the RNN parameters, x
represents the model inputs, o represents the model outputs,
and h represents the hidden states. The states derived from
past inputs are imported into next RNN cell, which shows
dynamic behaviors. With recent advancements of GPU
technology and open-source software libraries, RNN can be
easily developed and efficiently trained in an open-source
toolkit, e.g., Pytorch or Tensorflow, which makes it proper for
identifying dynamic models with high accuracy.

3. MACROSCOPIC MODEL
3.1. Fluid Model. There are three main modules in

computing the macroscopic fluid model: the Maxwell
equations, the drift−diffusion equations, and the heavy species
transportation equations (simplified Stefan−Maxswell equa-
tions). The electromagnetic field is simulated through Maxwell
equations:
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ω

σ ω

∇ × =

= ∇ ×
= −

= +

j

j

H J

B A
E A

J E D (15)

Second, the electron density and the electron energy density
are solved through drift−diffusion equations:44

μ

μ

∂
∂

+ ∇·Γ = − ·∇

Γ = − · − ∇

∂
∂

+ ∇·Γ + ·Γ =

− ·∇ + +

Γ = − · − ∇

ε ε

ε

ε ε ε ε ε

t
n R n

n n

t
n

S n Q Q q

n n

u

E D

E

u

E D

( ) ( )

( ) ( )

( )

( ) ( )/

( ) ( )

e e e e

e e e e e

e

en gen

(16)

where ne is the electron density, Re is the electron rate
expression, μe is the electron mobility, E is the electric field, De
is the electron diffusivity, u is the neutral fluid velocity vector,
nε is the electron energy density, Sen is the energy loss/gain due
to inelastic collisions, Q is an external heat source, Qgen is a
generalized heat source, με is the electron energy mobility
which is either a scalar or a tensor, and Dε is the electron
energy diffusivity.
Third, all the heavy species densities are computed through

heavy species transportation equations:45

ρ ρ∂
∂

+ ·∇ = ∇· +
t

w w Ru j( ) ( )k k k k (17)

where jk is the diffusive flux vector, Rk is the rate expression for
species k, u is the mass averaged fluid velocity vector, ρ is the
density of the mixture, and wk is the mass fraction of species k.
It should be noted that the drift−diffusion equations and the
heavy species transportation equations (14 equations in total)
can be approximated by a reduced order system via POD and
Galerkin’s method.
Specifically, 12 species and their corresponding reactions are

taken into account. Species are divided into three classes: the
ground-state species (Cl, Cl2, and Ar), the excitation species
(Cl2V, Cl2(B3PI), Cl2(C1PI), Cl2(B3PI+C1PI), Ars), and ions
(Cl−, Cl+, Cl2

+, and Ar+). Three types of reactions are taken
into account: electron impact reactions, heavy species reactions
and wall reactions. The electron impact reactions and heavy
species reactions play determinant roles in the plasma
chemistry, which are considered in terms Re, Sen, and Rk
during the computational process of the fluid model. The
wall reactions are considered in boundary conditions during
the computational process. All the reaction coefficients and
reaction rates can be found in the literature.46−49 Specific and
detailed illustrations on the plasma chemistry can be found in
our previous work.11 The control variables of the plasma
chamber are set as the power of the top coils (Prf), the bottom
electrode bias (VB), Ar/Cl2 ratio of the input gases at edge inlet
(R1), and Ar/Cl2 ratio of the input gases at center inlet (R2).
3.2. Low-Order Model. Of the 12 species of plasma

model, only Cl, Cl2, Cl
+, Cl2

+, and Ar+ are considered capable
to participate in the reactions on the substrate. Thus, five low-
order approximations that capture the dominant dynamics of
these five species should be generated by utilizing POD and

Galerkin’s method. The states of the plasma species can be
written as

∑ ϕ=
=

x z t c t z( , ) ( ) ( )
i

m

i i
1 (18)

where [c1(t), ..., cm(t)]
T are amplitudes of the first m

eigenfunctions. The computational procedure can be presented
as follows:
(1) Generate an ensemble data set of the five plasma species

states from extensive open-loop simulations. To capture all the
dynamics of the plasma states, open-loop simulations should
be operated with combinations of different initial conditions
and inputs (as mentioned in above section, the inputs would
be R1, R2, Prf, and VB).
(2) Utilize POD on the ensemble data set to construct the

empirical eigenfunctions. The normalized computed eigenval-
ues are also measures of the relative contribution of each basis
function to the total energy, or equivalently, the percentage of
time that the solution of the PDE system spends along the
spatial structure of the empirical functions.
(3) Arrange these empirical eigenfunctions in a descending

order of their eigenvalues and generate a set of the first m
eigenfunctions to store large enough (>99.9%) energy of the
whole system, which means the sum of the first m eigenvalues
should be greater than 99.9% of the total sum of all eigenvalues
identified.
(4) Decompose the plasma states into the form of c(t) by

utilizing Galerkin’s method and the dominant empirical
eigenfunctions for model reduction.

3.3. Development of RNN Models. In this section, RNN
models are implemented to approximate the low-order system.
Theoretically, RNN models are able to directly learn the
dynamics of the high-order fluid model with enough solution
data. However, in practical implementation, it is quite difficult
to construct and train an RNN model that captures the whole
states of the fluid model. Therefore, training the RNN model
based on low-order solutions is a more feasible and simpler
approach. Five corresponding RNN models are constructed for
the five low-order approximations of the plasma states. The five
RNN models are named as the RNNL model, where L
represents Cl, Cl2, Cl

+, Cl2
+, and Ar+, respectively. Training

data comes from the low-order solutions for the open-loop
simulations of the plasma model (the data set c(t)). The
sampling period of open-loop simulations is ts = 0.2 s.
Specifically, the inputs of RNNL are the values of R1, R2, Prf,
and VB at every time step tk (tk = kts, k = 1, 2, ...) . The initial
conditions of RNNL are the corresponding coefficients [c1(tk),
..., cm(tk)]

T at time tk. The outputs of RNNL would be the
corresponding coefficients [c1(tk+1), ..., cm(tk+1)]

T at time tk+1.
The inputs are selected randomly at the beginning of every
time step within the ranges 0.05 ≤ R1 ≤ 0.5, 0.05 ≤ R2 ≤ 0.5,
800 W ≤ Prf ≤ 1400 W, and 50 V ≤ VB ≤ 250 V. The whole
data set is finally obtained from an open-loop simulation which
includes 24 000 time steps.
The RNNL model is constructed using the RNN module of

pytorch with python version 3.0, torch version 1.2.0, and cuda
version 10.0. The GPU used for training is GTX 1080ti.
Specifically, for each sub-RNN model of RNNL, the number of
neurons and layers as well as the learning rate are determined
by the grid search method. Specifically, there will be one layer
in the recurrent layer and two linear layers as well as one
rectified linear unit (ReLU) layer in the output layer. The
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Adam optimization method is applied as the parameter
optimization algorithm; the mean square error (MSE) is
applied as the loss function. In order to avoid the overfitting
problem, the training process was terminated if the loss of the
validation data set falls below a desired threshold (set as 10−6),
which is chosen based on pre-experiments. Normalization
method is applied to the input and output values:

̅ =
−

−
x

x x

x xj
j j

j j

min,

max, min, (19)

where xj is the jth variable of the data set and xmax,j and xmin,j
are the maximum and minimum values of the jth variable,
respectively.

4. MICROSCOPIC MODEL
Simulation of the etching process is completed by using kMC
method. To reduce computing resource requirements, we

further implement an RNN model (called RNNk) and a
probability distribution function to approximate the kMC
model outputs. Specifically, we use RNNk to approximate the
expectation of the kMC model and use the probability
distribution function to describe the stochastic nature of kMC.
The development of the kMC method, the RNN model, and
the probability distribution function applied in this work
follows closely that in our previous works.11,50 For
completeness of the modeling process, we will present the
main structure of these methods.

4.1. kMC Model. kMC uses stochastically selected events
to represent all phenomena of the etching process, and realize
a kinetic simulation. In Figure 3, the virtual simulation box of
the kMC model is exhibited. The black sphere is the particle
injected from the plasma region to the virtual box. A lattice
that is composed of atomic cubic cells is implemented to
simulate the substrate. One cell only has one atom in it. When
particles bombard the lattice surface, the etching parameters
are calculated based on the material type, injection angle, and
local coverage type. The atomic kinetic simulation is realized
by adding or removing atoms on the lattice. In this work, the
substrate material is silicon. The resist material is set as
incorruptible since the sputtering rate of etchable resist is
relatively low. Specifically, the initial structure of the lattice is
set as following: the lattice size is 100 × 100 × 100
monolayers3 (ML3); the resistive mask is on the substrate
and its height is 50 ML; a 40 × 40 ML2 surface is uncovered by
the resistive mask, which is in the middle of the whole surface.
The inputs to the kMC model are the particle fluxes Fi,k
(denotes the flux of ith species at jth location) and the
electrode bias (VB). The average etching depth (D) of all
uncovered surface sites is defined as the etching depth of the

Figure 3. Virtual simulation box of the kMC model.

Figure 4. Numerical algorithm flowchart of the kMC model.

Table 1. All Surface Reactions and Depositions

chemical reaction of
chlorine with Si

Cl + Si(s) → SiCl(s) 0.9949,55

Cl + SiCl(s) → SiCl2(s) 0.2049,55

Cl + SiCl2(s) → SiCl3(s) 0.1549,55

Cl + SiCl3(s) → SiCl4(g) 0.000149,55

Cl2 + Si(s) → SiCl2(s) 0.0549,55

Cl2 + SiCl(s) →SiCl2(s) + Cl 0.0549,55

Cl2 + SiCl2(s) → SiCl3(s) + Cl 0.0549,55

Cl2 + SiCl3(s) → SiCl4(g) + Cl 0.000149,55

deposition of Si

Si + Si(s) → Si(s) + Si(s) 1.0049

Si + SiCl(s) → Si(s) + SiCl(s) 1.0049

Si + SiCl2(s) → Si(s) + SiCl2(s) 1.0049

Si + SiCl3(s) → Si(s) + SiCl3(s) 1.0049

deposition of SiCl

SiCl + Si(s) → SiCl(s) + Si(s) 0.8049

SiCl + SiCl(s) → SiCl(s) + SiCl(s) 0.5049

SiCl + SiCl2(s) → SiCl(s) + SiCl2(s) 0.3049

SiCl + SiCl3(s) → SiCl(s) + SiCl3(s) 0.1049

deposition of SiCl2

SiCl2 + Si(s) → SiCl2(s) + Si(s) 0.8049

SiCl2 + SiCl(s) → SiCl2(s) + SiCl(s) 0.5049

SiCl2 + SiCl2(s) → SiCl2(s) + SiCl2(s) 0.3049

SiCl2 + SiCl3(s) → SiCl2(s) + SiCl3(s) 0.1049
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substrate. Because of the placed resistive mask, the etching
trench is getting narrower over time. Therefore, the bottom
roughness (rb) of the substrate is defined by MSE in a
narrower surface with size of 32 × 32 ML2.
Figure 4 presents the numerical algorithm of the micro-

scopic kMC model. All reaction and deposition rate
expressions are presented in Table 1. Species denoted with
(g) are gas phase products and the species denoted with (s)
are solid surface products. The flux data is used to choose the
type of the injected particle at the beginning of each time step.
Then the injection trajectory is computed based on selections
of particle initial position and injection angle. When the
selected particle bombard a surface site, it will react with the
atom in this site or reflect to vacuum. The etching product will
also reflect to vacuum after a etching reaction occurs. When
the etching product reaches one surface site, it will deposit on
this site or reflect to vacuum again. A periodic boundary
condition is implemented in all sidewalls of the virtual
simulation box. All particles are not computed again when
they reach the interface between the simulation box and the
plasma chamber. All related reaction coefficients and
expressions of functions can be found in literature.3,49,51−55

4.2. Development of RNN Model. The data for training
the RNNk model come from single-run open-loop simulations
of the kMC model. Specifically, the inputs are Fi,k and VB; the
initial conditions and outputs are the height data of the 40 ×
40 ML2 uncovered surface sites at last time step tk and current
time step tk+1, which are denoted as SkMC(tk) and SkMC(tk+1),
respectively. The open simulation time is set as 15 s, and the

sampling period is 0.2 s. Thus, 75 sampling periods are
included in each simulation. With 150 open-loop simulations,
the size of the whole data set is 150 × 75 = 11 250.
It should be noted that RNNk is implemented to

approximate the expectation of the microscopic process.
Thus, the training data should be the average data of
multiple-run, open-loop simulations under the same initial
condition and inputs. In pre-experiments, we utilized data from
single-run, open-loop simulations as training data set and the
first validation data set and utilized average data from multiple-
run, open-loop simulations as the second validation data set.
Experiment results showed that loss values for the training data
set, first validation data set, and second validation data set are
close and all can be reduced to a desired threshold (10−6).
Thus, the single-run, open-loop data set was directly used to
train the RNNk model. Specifically, there is one layer in the
recurrent layer and four linear layers as well as three rectified
linear unit (ReLU) layers in the output layer. The other
settings of the training process for RNNk model are the same
as those in the RNNL model.

4.3. Stochastic Characteristic Analysis. Due to the
stochastic nature of kMC, the height data of the lattice surface
sites will stochastically oscillate around the expectation values.
In order to capture this important feature, the statistical
properties of the lattice surface height data should be analyzed.
The variances of the height data of the lattice are computed
from the sampling data of multiple-run, open-loop simulations
with the same initial conditions and inputs. Specifically, one
simulation was carried out 100 times with same initial

Figure 5. (a) Evolutions of variance sampling number in range (0, 5), [5, 10), [10, 15), [15, + ∞) and (b) the statistical properties of variance.

Figure 6. (a) Sampling statistical histogram of the variance at a typical time step (at 10 s) and (b) of all time steps.
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conditions and inputs. One open simulation lasts 15 s, and the
sampling period is 0.2 s. Thus, 75 sampling periods are
included in each simulation. With 20 open-loop simulations,
the size of the whole data set is 20 × 75 × 100 = 150 000. In
Figure 5, we show the evolutions of sampling numbers and the
statistical properties of the height data variances. At all time
steps, most of the height data are in the variance range of (0,
5). Besides of the first few time steps, the mean values of the
height data variance oscillate around a constant value.
Compared to the mean values, the variance of the height
data variance presents a trend of increasing from 1 to 15 s.
However, its increasing rate is relatively low. Thus, we assume
that the height variance is in the range of (0, 5) and can be
considered time-invariant.
The sampling statistical histograms of the variance at a

typical time step (at 10 s) and of all time steps are shown in
Figure 6, in which the variance range is divided into 200 parts
and the corresponding sampling numbers are given. This
sampling statistical histogram of all time steps and the
sampling statistical histogram at 10 s are quite similar, which
suggests that our previous assumption is reasonable.
Subsequently, a Gaussian Mixture fitting curve is developed
to approximate the statistical histogram of all time steps, which

has two terms: = +− − − −y a ae ex b c x b c
1

( / )
2

( / )1 1
2

2 2
2
, where a1 =

0.02083, b1 = 0.3785, c1 = 0.3211, a2 = 0.009339, b2 = 0.7318,
and c2 = 0.8555. In practical use, we normalized the sampling
statistical histogram and utilized it as a discrete probability
distribution function. The RNNk model predicts the expect-
ation of the lattice profile SRNN(i) and the probability
distribution function computes a variance value for each site
of the lattice ε(i), where i denotes ith surface sites. The

prediction profile for kMC model is ε±S i i( ) ( )RNN , and the
whole prediction model that approximates the kMC model is
named RNNk,p.

5. CLOSED-LOOP CONTROLLER DESIGN
In this section, we present both the PI controller and the
model predictive controller for the plasma etch process by

utilizing the above RNN models as the prediction model. The
control objective is to achieve a desired average etching depth
and average bottom roughness at the final time. Specifically,
the RNNk,p-based predictive optimizer optimizes the set points
(the particle fluxes Fi,k) of critical PI control loops of R1, R2,
and Prf. Such methodologies of customized PI controller tuning
were also developed in previous works, in which the
parameters of the PI controller were estimated by mathemat-
ical programming.56,57 The RNNk,p model and the RNNL

model are utilized as prediction model in the development
of the model predictive controller. It should be noted that the
prediction model developed in previous sections is designed to
predict system states within a single time step [tk,tk+1]. By
utilizing previous prediction results as initial condition for
current time step, long time horizon prediction can be
achieved. From pre-experiments, long-time prediction error
between the prediction model and the kMC model is reduced
by adding the probability distribution function in the
prediction model.

5.1. PI Control. This PI controller is developed following
our former work.11 The block diagram of the closed-loop PI
controller is developed in Figure 7. A RNNk,p-based predictive
optimizer is developed to optimize the set points of the PI
controllers. Specifically, the prediction horizon is from the
present time step tk (tk = kts) to the final time step tfinal. The
optimization problem can be formulated as

= ̅ − ̅ + ̅ − ̅
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≤ ≤

J t w D D w r r
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i k, B

(20)

where wD and wr are the penalty weights on etching depth and
bottom roughness, respectively; D̅final, rb̅,final, D̅set, and rb̅,set are
the average etching depth at final time, the average bottom
roughness at the final time, the set value of the final average
etching depth, and the set value of the final average bottom
roughness, respectively. Fi,k is the flux of the ith species at the
kth location; S̃kMC(tk) is the initial surface profile measured
from kMC model. Vmin, Vmax, Fi,k,min, and Fi,k,max are the lowest
and the highest bounds of VB and Fi,k, respectively. In this
work, the nonlinear programming (NLP) tool box of
MATLAB was implemented to solve the optimization
problem. Specifically, the MultiStart method and fmincon
function were used in our work. Specific settings are presented
in the following sections. With the measurement data from the
last time step, the optimizer computes the optimal trajectories
of VB and Fi,k, which are then used as the set points for the PI
controllers to compute the control actions at next time step.

5.2. Model Predictive Control. The RNNL model and the
RNNk,p model are combined as the prediction model for the
multiscale process. With initial states of the plasma chamber
and values of R1, R2, Prf, and VB, this data-driven prediction
model can predict the future etch profiles of the substrate.
Specifically, in every time step tk, an open-loop optimization
problem is solved. The optimizing time ranges from the
present time step tk to the final time step tfinal, and the
optimized parameters are R1, R2, Prf, and VB. The optimization
problem is presented below:

Figure 7. Block diagram of the closed-loop PI controller system.
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where FRNN is the multiscale prediction model that consists of
the RNNL and RNNk,p models; Rmin, Rmax, Pmin, Pmax, Vmin, and
Vmax are the lowest and the highest bounds of the optimized
parameters; the initial coefficients c(̃tk) and the initial etch
profile S̃kMC(tk) come from c(tk) (measurement of current
plasma state) and FkMC(tk) (measurement of current etch
profile). Similarly, this optimization problem is solved in
MATLAB with NLP tool box. The optimal inputs trajectories
computed by MPC are applied to the multiscale process within
the next time step. The MPC is recomputed with new
measurements from the multiscale model at the next sampling
time.

6. SIMULATION RESULTS

The plasma chemistry and microscopic structure of the etched
lattice have been described in section 2. The frequency of the
top coils is 13.56 MHz; the chamber temperature is 60 °C.
The chamber pressure is 40 mTorr. In the following sections,
we will present the computation process of the empirical

eigenfunctions and Galerkin’s method, the validation process
of the RNN models, and the closed-loop simulation results
under the PI controller as well as the model predictive
controller.

6.1. Computation of Empirical Eigenfunctions and
Galerkin’s Method. As we mentioned in previous sections,
we computed five sets of eigenfunctions for five species in the
plasma chamber, based on the ensemble of solutions data
obtained by solving the plasma model in COMSOL. With
combinations of different initial conditions and inputs, we
generated 69 600 snapshots of the plasma states. According to
pre-experiments, 11 600 snapshots with nonuniform time
intervals were extracted to utilize in POD and compute the
eigenfunctions. We note that in order to capture the dominant
dynamics of the PDE system, the low-order ODE system
should account for 99.9% energy included in the ensemble.
The resulting numbers of the required empirical functions for
Cl, Cl2, Cl

+, Cl2
+, and Ar+ were 4, 5, 4, 5, and 5, respectively. In

Figure 8, we show the four dominant empirical eigenfunctions
of Cl species, which are arranged in descending order of
corresponding eigenvalues.
The computed empirical eigenfunctions were then used as

the basis functions and employed in Galerkin’s method. Using
the empirical eigenfunctions to decompose the solution of
plasma model, we obtained the coefficients c(t) and derived
the low-order Galerkin’s model. In Figure 9, a high-order
solution of Cl computed by COMSOL and the corresponding
four-order Galerkin’s solution are compared. It can be seen
that in most areas the low-order model captures the dominant
dynamics of the high-order model, except the middle area of
the plasma chamber, where the plasma dynamic change is the
most dramatic. From validation experiments, the single time
step average relative errors between the high-order systems and
the low-order systems of Cl, Cl2, Cl

+, Cl2
+, and Ar+ were

0.01968, 0.00748, 0.02225, 0.02192, and 0.01906, respectively.
These average errors were computed based on 400 solutions,

Figure 8. Four dominant eigenfunctions computed by POD for the obtained ensemble data of Cl species.
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which were extracted randomly from our open-loop simulation
results. The simulation results show that our low-order model
is capable of approximating the dominant dynamics of the
plasma states.
6.2. Validation of RNN Models. In this section, we

present the validation process to verify the prediction
performance of our RNN models. The RNNL model, which
consists of five sub RNN models, was constructed to predict
the coefficients c(t) of the low-order systems. In Figure 9, the
low-order solution of Cl species and the corresponding
predicted profile computed by RNNL model are shown.

According to the validation experiments, the errors between
the low-order systems and the RNNL model were relatively
small compared to the error between the high-order systems
and the low-order systems. The single time step average
relative errors of Cl, Cl2, Cl

+, Cl2
+, and Ar+ between the high-

order fluid model and the RNNL model were 0.01966,
0.00763, 0.02217, 0.02186, and 0.01925, respectively. As
above, these average errors were also computed based on 400
solutions, which were extracted randomly from our open-loop
simulation results.
Furthermore, the RNNk model was also validated. Figure 10

shows the evolutions of D̅ and rb̅ as well as the minimum and
maximum values of D̅ and rb̅ among the 100 simulations of the
kMC model. In Figure 10a,b, the solid lines represent the D̅
and rb̅ evolutions of the kMC model and the dotted lines
represent the predicted D̅ and rb̅ evolutions of the RNNk
model. In Figure 10c,d, the solid lines represent the maximum
values, and the dotted lines represent the minimum values. The
D̅ and rb̅ data are sampled every 0.2 s, and the model inputs are
randomly selected from the selection range at the beginning of
every 0.2 s. The evolutions computed by the kMC model are
the average of the 100 run simulations in order to obtain the
expectation evolution. From Figure 10a,b, it can be seen that
the predicted evolutions of D̅ and rb̅ are close to the
expectation evolutions of kMC model. From Figure 10c,d, it
can be seen that the average bottom roughness is more
influenced by the stochastic nature of the etching process
compared to the results of the average etching depth.

6.3. Closed-Loop Simulations. In our experiments, a
disturbance of Prf (set to be maximum value 1400 W when
disturbance occurs) was added on both open-loop simulations
and closed-loop simulations from 2 to 5 s. The control
objectives were the final average etching depth and final
bottom roughness of a 10 s open-loop simulation (without
disturbance) with the initial conditions R1 = 0.12, R2 = 0.12, Prf
= 1000 W, and VB = 150 V. The open-loop simulations were
operated 100 times, and the average results were generated to
eliminate the randomness of the etching process. The finial
objectives are rset = 11.0977 ML2 and Dset = 40.5293 ML. Two
experiments were carried out with different ranges of the
control variables. The optimization problems were solved by
MultiStart method and fmincon function in MATLAB. The
specific settings were as follows: optimization algorithm,
sequential quadratic programming (SQP); difference step
size, 0.01; maximum number of function evaluations, 1000;
number of random initializations, 10.
The first experiment was performed with the control variable

ranges 0.05 ≤ R1 ≤ 0.2, 0.05 ≤ R2 ≤ 0.2, 900 W ≤ Prf ≤ 1100
W, 120 V ≤ Bias ≤ 180 V. The evolutions of the average
etching depth and average bottom roughness as well as the
evolutions of control variables R1, R2, Prf, and VB are shown in
Figure 11. It can be seen that the disturbance of Prf is added at
2 s and ends at 5 s. The etching rate increases due to this
disturbance, which causes the average etching depth and
average bottom roughness deviate from their expected
evolutions. The final average etching depth and average final
bottom roughness of the open-loop simulations with
disturbance finally showed about 9.73 and 25.24% deviation
at the final time step, respectively. While the deviations of the
final average etching depth and final bottom roughness
between the desired objectives and the results under PI
controller were 0.53 and 2.45%. The deviations for model
predictive controller were 0.94 and 2.18%. Both the PI

Figure 9. (a) High-order solution of Cl computed by COMSOL. (b)
Corresponding four-order Galerkin’s solution. (c) Corresponding
predicted profile computed by RNNL model.
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controller and the model predictive controller presented
sufficient performance and managed to complete the desired
objectives by compensate the disturbance through modifying
the control variables.
The second experiment was performed with a narrower

control variable ranges 0.01 ≤ R1 ≤ 0.15, 0.10 ≤ R2 ≤ 0.15,
950 W ≤ Prf ≤ 1050 W, 130 V ≤ Bias ≤ 170 V. The evolutions
of the average etching depth and bottom roughness as well as
the evolutions of control variables R1, R2, Prf, and VB are shown
in Figure 12. In this experiment, the deviations of the final
average etching depth and final average bottom roughness
between the desired objectives and the results under PI
controller were 4.78 and 10.89%, and the deviations for model
predictive controller were 1.11 and 4.52%. The desired etching
roughness was achieved by the model predictive controller,
while the resulting error of etching depth under the PI
controller was unacceptable in nanoscale etching process.
Though the resulting bottom roughness deviation under the
model predictive controller was still relatively large, the model
predictive controller performed much better than the PI
controller to reduce the influence of the disturbance. This
difference can be partly explained by that the model predictive
controller is able to predict the expected evolution and attain
the states of the whole multiscale system, while the PI
controller is implemented with an optimizer that only predicts
the future profiles of the microscopic system, which makes it
unable to timely adjust the plasma parameters. In the first
experiment, it is possible for the PI controller to achieve the

control objectives by adjusting the control variables when a
wide range of actions is allowed. However, in the second
experiment, the PI controller cannot approach the control
objectives with narrow box constraints. Other reasons for the
poor performance of the PI controller are the integral windup
and chattering problem. Although an antiwindup approach was
implemented in the PI controller, the integral windup problem
could still lead to significance deviation when narrow box
constraints were utilized. Moreover, chattering is observed
from the results of the PI controller. From Figure 11a and
12a,c, we can see that control variables under PI controller
oscillate during a period of time, which can lead to poor
performance of the controller and is disadvantageous in
manufacturing. As a contrast, the model predictive controller is
able to predict the expected evolution and attain the states of
the whole multiscale system, which enables it to adjust the
control variables relatively stably and predictively within the
narrow box constraints.
Remark 1. In future research, we are interested in including

more model order reduction techniques in our f ramework, such as
dynamic mode decomposition method.58,59 Identif ication techni-
ques that do not require large amount of data, such as subspace
identif ication method,60 are also potential research directions in
our group. Moreover, we consider to include research on addressing
the problem of input data colinearity in developing RNN-based
dynamic models for MPC, in which multiple-step approaches were
proposed and closed-loop data was used to develop RNN models.61

Figure 10. Evolutions of (a) D̅ and (b) rb̅. Minimum and maximum values of (c) D̅ and (d) rb̅.
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Remark 2. It should be noted that although the microscopic
processes of the real etch process are the same given a specif ic etch
chemistry the macroscopic dynamics and reaction kinetics of the
plasma are highly equipment-dependent with respect to the
accuracy needed for real applications. While such high f idelity
models are not openly available, equipment vendors typically have
their own proprietary plasma models for their plasma processing
equipment, and these models can be easily integrated into our
multiscale modeling and control f ramework when needed.

7. CONCLUSIONS
An RNN-based MPC for the plasma etch process on a 3D
substrate using ICP analysis was proposed. The plasma etch
process was simulated by a multiscale model, in which the
macroscopic plasma model was simulated by a continuous fluid
model and the microscopic etching process was simulated by a
kMC model. Empirical eigenfunctions were derived from the
solution data of the plasma model by utilizing POD. These
empirical eigenfunctions were applied in Galerkin’s method as
basis functions to compute a reduced order ODE system that
capture the dominant dynamics of the plasma model.
Subsequently, the RNN models were trained by open-loop
simulation data to approximate the dynamics of both the

reduced order plasma system and the microscopic etch
process. A probability distribution function was analyzed to
approximate the stochastic nature of the etch process. Utilizing
the RNN models as the prediction model, the model predictive
controller was designed to achieve desired etching depth and
bottom roughness at the final time. In the simulations and
discussions sections, the computation process of the empirical
eigenfunctions and Galerkin’s method as well as the validation
process of the RNN models were shown, which suggested that
the proposed model reduction framework is effective and the
data-driven prediction models are sufficiently accurate.
Furthermore, the closed-loop simulation results under the PI
controller and model predictive controller were also presented.
Though both controllers showed desired performance with
wide box constraints on control variables, the model predictive
controller outperformed the PI controller when a narrow range
of control variables values was allowed. In both experiments,
the model predictive controller prevented the chattering of the
control variables, which the PI controller failed to eliminate.
These results demonstrated the effectiveness of the proposed
MPC framework.

Figure 11. Profiles of (a) R1, (b) R2, (c) Prf, and (d) VB and the resulting evolutions of (e) D̅ and (f) rb̅ when control variables are in the ranges of
0.05 ≤ R1 ≤ 0.2, 0.05 ≤ R2 ≤ 0.2, 900 W ≤ Prf ≤ 1100 W, 120 V ≤ Bias ≤ 180 V. The cyan double-dotted and dashed lines in (e) and (f) denote
the control objectives.
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