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a  b  s  t  r  a  c  t

In  this  work,  we  propose  a conceptual  distributed  control  framework  for electrical  grid  integrated  with
distributed  renewable  energy  generation  systems  in  order  to  enable  the  development  of the  so-called
“smart  electrical  grid”.  First,  we  introduce  the  key  elements  and  their  interactions  in  the  proposed  control
architecture  and  discuss  the  design  of  the  distributed  control  systems  which  are  able  to  coordinate  their
actions  to  account  for  optimization  considerations  on  the  system  operation.  Subsequently,  we  focus on  a
specific  wind/solar  energy  generation  system  connected  to  a  reverse  osmosis  water  desalination  system
and the  electrical  grid  and  design  two  supervisory  predictive  controllers  via  model  predictive  control
to operate  the  integrated  system  taking  into  account  short-term  and  long-term  optimal  maintenance
and  operation  considerations,  respectively.  Simulations  are  carried  out  to  illustrate  the  applicability  and
effectiveness  of  the  proposed  approach.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional electrical grid involves large, centralized power
plants that feed power over an electro-mechanical grid to end
users using one-directional power flows. While the traditional elec-
trical grid has been successful, in recent years there have been
numerous calls for the development of “smart” electrical grid
(e.g., Refs. [1–4]) by expanding the traditional electrical grid with
distributed, medium-scale renewables-based energy generation
systems and digital technologies, for example, communications,
computing, sensing and automation, to better meet the increas-
ing energy demand and environmental regulations. Incorporated
with two-way communication networks, digital devices and dis-
tributed optimization and control systems, the so-called “smart
grid” is expected to be more reliable, more secure, more energy
efficient and more environmentally friendly. One important fea-
ture of the smart grid is its capability of integrating distributed
energy resources and generation, for example, renewable energy
resources, into the electrical grid. Renewable energy resources,
like wind and solar-based energy generation systems, are receiv-
ing national and worldwide attention owing to the rising rate of
consumption of fossil fuels. In addition to the environmental ben-
efits, solar and wind renewable energy generation systems also
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have a reduced investment risk and an increased energy efficiency.
However, integrating renewable energy generation systems with
the electrical grid requires addressing key fundamental challenges,
for example, variable output, in the operation of intermittent
renewable resources like solar- and wind-based energy generation
systems. One approach to deal with the variable output of wind and
solar energy generation systems is through the use of energy gen-
eration systems using both wind and solar energy integrated with
loads, the electrical grid and distributed energy storage systems.

In the literature, most of the results on the control of wind
and solar systems have focused on wind or solar systems. Specif-
ically, there is a significant body of literature dealing with control
of wind-based energy generation systems (see, for example, Refs.
[5–16] for results and references in this area), while several con-
tributions have been made to the control of solar-based energy
generation systems (see, for example, Refs. [17–21]). There are also
a few pieces of work on the regulation of stand-alone [22–25] and
grid-connected [26,27] hybrid wind-solar energy generation sys-
tems. However, no attention has been given to the development
of supervisory control systems for hybrid wind-solar energy gen-
eration systems that take into account system maintenance and
optimal system operation considerations, except for our recent
efforts [28,29]. Specifically, in Ref. [28], we proposed a supervisory
predictive control method for short-term optimal management
and operation of wind-solar energy generation systems in which
the supervisory control system was  designed via model predictive
control (MPC) to take into account optimal allocation of gener-
ation assignment between the two subsystems. In Ref. [29], we

0959-1524/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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Fig. 1. Electrical grid integrated with renewable energy generation systems, storage, loads and distributed control systems.

designed a computationally efficient supervisory control system
for long-term optimal management and operation of an integrated
wind-solar energy generation and a reverse-osmosis (RO) water
desalination system, based on a two-time-scale decomposition of
the integrated system model.

In this work, we propose a conceptual distributed control frame-
work for electrical grid integrated with distributed renewable
energy generation systems in order to enable the development
of the so-called “smart electrical grid”. First, we introduce the
key elements and their interactions in the proposed control archi-
tecture and discuss the design of the distributed control systems
which are able to coordinate their actions to account for opti-
mization considerations on the system operation. Subsequently,
we focus on a specific wind/solar energy generation system con-
nected to a reverse osmosis desalination system and the electrical
grid and design two supervisory predictive controllers via model
predictive control to operate the integrated system taking into
account short-term and long-term optimal maintenance and oper-
ation considerations, respectively. In the long-term operation case,
the wind/solar/water system is assumed to be integrated into the
electrical grid and is able to trade power with the electrical grid
with explicit consideration of real-time electricity pricing. Simula-
tions are carried out to illustrate the applicability and effectiveness
of the proposed supervisory predictive controllers.

2. Distributed control architecture for integrating
distributed energy resources and loads to the electrical grid

The proposed distributed control architecture for electrical grid
integrated with distributed renewable energy generation systems
and distributed loads is shown in Fig. 1. The key elements of the
proposed control architecture include an electrical grid divided into
several control areas, distributed renewable energy generation sys-
tems, distributed control systems and a real-time communication
network.

In the architecture shown in Fig. 1, we consider that the elec-
trical grid is decomposed into n control areas. Each control area
typically consists of numerous generators and loads. The different
control areas are interconnected through bi-directional power lines

and electrical power can flow between the different control areas
bi-directionally via the power lines. For example, in Fig. 1, electri-
cal power can flow from control area 1 to the other control areas
(e.g., control areas 2 to n) and be transmitted to control area 1 from
other control areas. The symbol Pij (i = 1, . . . , n and j = 1, . . . , n)
is used to denote the power transmitted between control areas i
and j. When the energy generated in a control area is not enough
to satisfy the total power demands in that control area, the energy-
deficient control area may  obtain additional energy from other
control areas or its associated renewable energy generation sys-
tem. When the energy generation in a control area is sufficient and
there is a surplus of energy, this area may  transmit energy to other
control areas or its associated loads or storage systems.

Each of the electrical grid control areas may  connect with many
different types of renewable energy generation systems. To sim-
plify the description, in Fig. 1, we  assume that all the renewable
energy generation systems connected to a control area can be
lumped into one equivalent renewable energy generation system
which is also connected with the control area using bi-directional
power lines. A renewable energy generation system first uses its
generated energy to satisfy the loads connected to it and also
sends, if the generation capacity permits, extra energy produced
to its associated control area. If the energy generated by a renew-
able energy generation system is not sufficient to satisfy its load
demands, it may  also get energy from its associated control area. In
Fig. 1, the symbol Pii (i = 1, . . . , n) is used to denote the power trans-
mitted between control area i and the renewable energy generation
system i.

We propose to design a control system for each control area
and its associated renewable energy generation system. The control
system calculates the operating set-points for the control area and
the renewable energy generation system. There is also a real-time
communication network integrated in the overall system. The con-
trol areas, renewable energy generation systems and the control
systems communicate via the real-time communication network
at specific sampling time instants. In Fig. 1, the symbols Xi and Yi

(i = 1, . . . , n) are used to indicate the state of control area i and
of the renewable energy generation system i; the symbols Xis and
Yis (i = 1, . . . , n) are used to indicate the operating set-points calcu-
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Fig. 2. Integrated wind/solar energy generation and water desalination system.

lated by control system i for the control area i and renewable energy
generation system i. At a sampling time tk, control areas and renew-
able energy generation systems broadcast their state information
at tk (i.e., X1(tk), . . . , Xn(tk), Y1(tk), . . . , Yn(tk)) to the communi-
cation network, and the control systems also broadcast their last
control actions (e.g., control system i broadcasts Xis(tk−1), Yis(tk−1))
to the communication network and receive all the state and con-
trol actions information at tk. Based on the state information and
control actions of other control systems, control system i calcu-
lates its own control actions (i.e., Xis(tk) and Yis(tk)). In the design
of the distributed control systems, model predictive control, espe-
cially distributed MPC, is particularly suited because of its ability to
account for the control actions of other control systems and its abil-
ity to take into account optimization considerations and constraints
in the calculation of control actions in real-time. There are some

distributed MPC  designs that have been proposed in the literature
[30–33] (see also Ref. [34] for an application of distributed MPC  to
power system) which are very suitable for this control problem and
currently being explored by our group.

The successful development of the proposed distributed
control architecture needs to address many key challenging
issues including: (1) the predictive control of different types
of renewables-based energy generation systems, for example,
integrated wind and solar energy generation systems, (2) the coor-
dination of a renewables-based energy generation system with the
electrical grid and loads, and (3) the cooperation between differ-
ent control systems. In this work, we will focus on an integrated
wind/solar energy generation system which is connected to an RO
water desalination system and the electrical grid and design control
systems to address the first two  issues.
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Fig. 3. Environmental conditions. (a) Wind speed �; (b) insolation �l; and (c) PV panel temperature T.
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Fig. 4. (a) Time-varying water demand (dashed line) and actual water production (solid line) and (b) corresponding load current iL.

3. Integrated wind/solar/RO system modeling

In this section, we introduce the integrated wind/solar energy
generation system which is connected to an RO water desalination
system and the electrical grid. A schematic of the integrated system
is shown in Fig. 2.

3.1. Energy generation system description

There is a wind generation subsystem, a solar generation sub-
system and a lead-acid battery bank which is used to overcome
periods of scarce generation as well as store energy in the energy
generation system.

Specifically, in the wind generation subsystem, there is a
windmill, a multipolar permanent-magnet synchronous generator
(PMSG), a rectifier, and a DC/DC converter. The DC/DC converter is
used to control the operating point of the wind generation subsys-
tem. The mathematic description of the wind subsystem written in
a rotor reference frame is as follows [22]:

i̇q = − rs

L
iq − ωeid + ωe�sr

L
− �vbiquw

3
√

3L
√

i2q + i2q

i̇d = − rs

L
id − ωeiq − �vbiduw

3
√

3L
√

i2q + i2d

ω̇e = P

2J

(
Tt − 3

2
P

2
�sriq

) (1)

where iq and id are the quadrature current and the direct current in
the rotor reference frame, respectively, rs and L are the per phase
resistance and inductance of the stator windings, respectively, ωe

is the electrical angular speed, �sr is the flux linked by the stator
windings; vb is the voltage on the battery bank terminals, uw is the
control signal (duty cycle of the DC/DC converter (DC/DC converter
1 in Fig. 2)), P is the PMSG number of poles, J is the inertial of the
rotating parts and Tt is the wind turbine torque. The wind turbine
torque can be written as:

Tt = 1
2

Ct(�)�ARv2 (2)

where � is the air density, A is the turbine-swept area, R is the
turbine radius, � is the wind speed, and Ct(�) is a nonlinear torque
coefficient which depends on the tip speed ratio (� = Rωm/v with
ωm = 2ωe/P being the angular shaft speed).

Based on Eq. (1),  we can express the power generated by the
wind subsystem and injected into the DC bus as follows:

Pw = iwvb (3)

where iw = (�/(2
√

3))
√

i2q + i2duw denotes the current which is
injected to the DC bus by the wind subsystem.

In the solar generation subsystem, there is a photo-voltaic (PV)
panel array and a half-bridge buck DC/DC converter (DC/DC con-
verter 2 in Fig. 2). In this subsystem, similar to the wind subsystem,
the converter is used to control the operating point of the PV pan-
els. The mathematic description of the solar subsystem is as follows
[23]:

v̇PV = iPV

C
− is

C
uPV

i̇s = − vb

Lc
+ vPV

Lc
uPV

iPV = npIph − npIrs

(
exp

(
q(vPV + iPVRs)

nsAcKT

)
− 1

) (4)

where vPV is the voltage level on the PV panel array terminals, is is
the current injected on the DC bus, C and Lc are electrical parameters
of the buck converter, uPV is the control signal (duty cycle), iPV is
the current generated by the PV array, Rs is the series resistance in
the PV circuit, ns is the number of PV cells connected in series, np is
the number of series strings in parallel, K is the Boltzman constant,
Ac is the cell deviation from the ideal p–n junction characteristic,
Iph is the photocurrent, and Irs is the reverse saturation current.
The power injected by the PV solar module into the DC bus can be
computed by:

Ps = isvb. (5)

Note that this power indirectly depends on the control signal
uPV.

The lead-acid battery bank may  be modeled as a voltage source
Eb connected in series with a resistance Rb and a capacitance Cb.
Based on this simple model, the DC bus voltage expression can be
written as follows:

vb = Eb + vc + ibRb, (6)
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Fig. 5. (a) Generated power Pw + Ps (solid line), total power demand PT (dashed line) and power provided by battery bank Pb (dotted line); (b) Power generated by wind
subsystem Pw (solid line) and maximum wind generation Pw,max (dashed line); and (c) Power generated by solar subsystem Ps (solid line) and maximum solar generation
Ps,max (dashed line).

where ib is the current across the battery bank, vc is the voltage in
capacitor Cb and its dynamics is as follows:

v̇c = 1
Cb

ib. (7)

The quantity of electricity stored in the battery bank can be
calculated as follows:

Qc = Cbvc. (8)

Based on Eq. (8),  the state of charge (SOC) of the battery bank,
sb, can be calculated as follows:

sb = Qc

Q max
c

= vc

vmax
c

(9)

where Q max
c is the maximum capacity of the capacitor correspond-

ing to the maximum voltage vmax
c that can be tolerated by the

capacitor. We  also introduce the concept of depth of discharge of
the battery bank and denote it as db, which is calculated as follows:

db = 1 − sb. (10)

The integrated system has two operating modes. A binary vari-
able, Is, is used to indicate the operating mode of the integrated
system. When Is = 1, the integrated system is connected to the
electrical grid; and when Is = 0, the integrated system works in
stand-alone mode. Assuming an ideal voltage inverter, we can write
an energy balance equation as follows:

Pw + Ps = PRO + IsPG + ibvb, (11)

where PRO denotes the total power demand from the water desali-
nation system and the term IsPG is used to denote the power sent
to the electrical grid. Note that when ib is positive, the battery bank
is being charged and when ib is negative, the battery bank supplies
energy to the RO water desalination system or to the electrical grid.
The energy balance of Eq. (11) can be also expressed in the form of
current balance as follows:

iw + is = iRO + IsiG + ib, (12)

where iRO and iG are the currents injected to the RO water desali-
nation system and the electrical grid, respectively. From Eq. (12),
we obtain the current across the battery bank as follows:

ib = iw + is − iRO − IsiG. (13)

3.2. Water desalination system description

There is a high-pressure pump, a membrane module and a water
storage tank in the RO water desalination system. Salt water is fed
into the system through the pump, which is equipped with a vari-
able frequency drive. The feed water is pressurized to a desired
pressure [35] in the pump and then is sent to the membrane mod-
ule where it is separated into a low-salinity product (or permeate)
stream, and a high-salinity brine (or retentate) stream. The per-
meate stream enters the storage tank which provides desalinated
water to satisfy the water consumption demand. Note that the dif-
ference between the water drawn from (water consumption) and
the water fed into (water production) the storage tank is accumu-
lated in the storage tank.

In the RO system, the pressure downstream of the actuated valve
and at the permeate outlet is assumed to be equal to atmospheric
pressure. The RO system model is based on a mass balance taken
around the entire system and an energy balance taken around the
actuated retentate valve as follows [35]:

dvr

dt
= PsysAp

�wV
− 1

2
Apevrv2

r

V
(14)

where vr is the retentate stream velocity, Psys is the feed pressure,
Ap is the pipe cross-sectional area, V is the system volume, �w is the
fluid density, and evr is the retentate valve resistance. The system
pressure Psys can be calculated as follows:

Psys = �wAp

AmKm
(vf − vr) + ��.  (15)

where Am is the membrane area, Km is the membrane overall mass
transfer coefficient, vf is the feed stream velocity, and �� is the dif-
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Fig. 6. Environmental conditions. (a) Wind speed v; (b) insolation �l; and (c) PV panel temperature T.

ference in osmotic pressure between the feed side of the membrane
and the permeate side and can be computed by [35]:

�� = ıCeff(Tw + 273)

where Ceff is the effective average concentration at the membrane
surface, ı is a constant relating effective concentration to osmotic
pressure and Tw is the water temperature in degrees Celsius.

Note that the three velocities vf, vr and vp (the permeate stream
velocity) satisfy an overall steady-state mass balance as follows
(since all pipe cross-sectional areas are assumed to be the same):

0 = vf − vr − vp. (16)

Using the above dynamic equation, various control techniques
can be applied using the valve resistance value (evr) as the manip-
ulated input.

We operate the RO system at energy optimal water recovery,
Yopt, which requires that vp/vf is adjusted in real time [36,37]. Based
on the Bernoulli equation and ignoring the water elevation change,
we can obtain the power needed for the water desalination system
as follows:

PRO = 1
	

(
Psys

Fp

Yopt
+ 1

2

F3
p

Y3
optA

2
p

�w

)
, 0 < 	 < 1 (17)

where 	 is the overall power efficiency of the pump of the RO
desalination system and Fp = Apvp is the permeate flow rate (i.e.,
desalinated water production rate) which is used to satisfy the
water consumption and storage demands. If we denote the water
consumption demand as Fd and water storage demand as Fs, then
we obtain the following equation from a steady-state mass balance:

0 = Fp − Fd − Fs. (18)

Note that the water storage demand Fs can take positive or neg-
ative values.

Based on the Eqs. (16) and (18), the dynamics of the water level
in the storage tank, hl, can be obtained as follows:

ḣl = Fs

As
= Ap

As
(vf − vr) − Fd

As
(19)

where As is the cross-sectional area of the water storage tank. Sim-
ilarly, we define the state of storage (SOS), st, for the storage tank
as follows:

st = hl

hmax
l

where hmax
l is the maximum water level in the storage tank.

The dynamics of the integrated wind/solar/RO system can be
written in the following compact form:

ẋ = f (x) + g(x)u
h(x) = 0

(20)

where x = [iq id ωe vPV is vc vr hl]
T , u = [uw uPV evr]

T , and
f, g, h are nonlinear vector functions whose explicit forms are omit-
ted for brevity.

For the wind subsystem, the solar subsystem, the battery bank
and the RO water desalination system, each of them has an asso-
ciated local controller which is able to regulate them to track
appropriate operating set-points. For the wind subsystem con-
troller, the objective is to force the wind subsystem to track the
operating trajectory, which is the desired power generation (power
reference), Pref

w . We  follow the controller design proposed in Ref.
[12] to design the local controller for the wind subsystem. For the
solar subsystem controller, the objective is to force the solar sub-
system to track the operating trajectory, which is the desired power
generation, Pref

s . We  follow the controller design proposed in Ref.
[23] to design this local controller. For the local controller associ-
ated with the RO water desalination, the objective is to regulate
the retentate valve resistance to track the reference retentate flow
velocity, vref

r . We  adopt the method proposed in Ref. [35] to design
a nonlinear model-based controller for the RO subsystem.

We  note that the local controllers for wind/solar subsystems
are designed based on sliding-mode control techniques and are
robust with respect to uncertainty and yield essentially offset-free
behavior [12,23].

4. Short-term supervisory predictive control of the
integrated system

In this section, we focus on the stand-alone operating mode
of the integrated system (Is = 0) and design a supervisory con-
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Fig. 7. Time-varying water demand Fd and corresponding load current iL.

trol system to account for short-term optimal operation of the
integrated system. We  assume that the storage demand of the
storage tank Fs = 0 to simplify the description of the controller
formulation.

4.1. Supervisory control system design

Specifically, we re-design the supervisory MPC  in Ref. [28]
for the control of the integrated energy generation and water
desalination system. In this proposed design, the supervisory MPC
optimizes the power references Pref

w and Pref
s (operating points) of

the wind and solar subsystems, respectively, but also takes into
account the dynamics of the RO system. Note that in this design,

ib and vr are not considered as decision variables in the formula-
tion of the supervisory MPC  because ib is determined by the current
balance of Eq. (12) in stand-alone operating mode and vref

r is deter-
mined by the water demand Fd. The primary control objective of
the supervisory control system is to coordinate the wind and solar
subsystems as well as the battery bank to provide enough energy
to the RO system to satisfy the power demand of the scheduled
water production. In addition, we try to reduce battery short-term
charge–discharge cycles which can be caused by the variability of
the renewable energy resources or the load demand. We  operate
the wind subsystem as the primary generation system and only
activate the solar subsystem when the wind subsystem alone can-
not satisfy the power demand. In the following, we first design
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Fig. 8. (a) Generated power Pw + Ps (solid line), total power demand PT (dashed line) and power provided by battery bank Pb (dotted line); (b) Power generated by wind
subsystem Pw (solid line) and maximum wind generation Pw,max (dashed line); and (c) Power generated by solar subsystem Ps (solid line) and maximum solar generation
Ps,max (dashed line).
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Fig. 9. Forecast of weather conditions, water demand and grid electricity price. (a) Wind speed v; (b) insolation �l; (c) PV panel temperature T; (d) water demand Fd, and (e)
grid  electricity price p.

the cost function used in the MPC  to take into account the control
objectives and then formulate the MPC  based on the cost function.
The supervisory control system is designed via MPC  because it can
take into account optimality considerations and handle state and
input constraints. In this stand-alone operating mode, the oper-
ation strategy of the integrated energy generation system is as
follows: (1) when the wind subsystem can generate enough energy
to satisfy the total power demand, only the wind subsystem is
activated and operated to track the power demand; (2) when the
wind subsystem alone cannot generate enough energy to satisfy
the total power demand, the solar subsystem is also activated to
provide extra energy to satisfy the power demand; (3) when the
two subsystems are not sufficient to complement the generation to
satisfy the total power demand, the battery bank discharges to pro-
vide extra power to satisfy the load requirements. However, when
the power limit that can be provided by the battery is surpassed,
the load must be disconnected to recharge the battery and avoid
damages.

We consider the case where the future water demand is
known, that is Fd(t) is known. We  note that this assumption
is a reasonable one given that there has been extensive work
in short-term forecasting for weather conditions and munici-
pal water demand [38]. The main implementation element of
supervisory predictive control is that the supervisory controller
is evaluated at discrete time instants tk = t0 + k
,  k = 0, 1, . . . ,
with t0 being the initial time and 
 being the sampling time,
and the optimal future power references, Pref

w and Pref
s , for a

time period (prediction horizon) are obtained and only the first
part (move) of the optimal reference trajectories are sent to
the local control systems and implemented on the two units. In
order to design this controller, first, a proper number of predic-
tion steps, N, and a sampling time, 
,  are chosen. Before going
to the formulation of the supervisory MPC, we  design the cost
function used in the MPC  to take into account the control objec-
tives. Specifically, the proposed design of the cost function is as

follows:

Js(tk) =
∫ tk+N

tk

˛(PRO(�) − Pref
w (�) − Pref

s (�))
2
d� +

∫ tk+N

tk

ˇPref
s (�)2d�

+
∫ tk+N−1

tk

�(Pb(� + 
)  − Pb(�))2d� (21)

where ˛,  ̌ and � are positive weighting factors on different terms.
The first term in the cost function penalizes the difference between
the power generated by the wind-solar system and the total power
demand, which drives the wind and solar subsystems to satisfy
the total demand to the maximum extent. Because there are infi-
nite combinations of Pref

w and Pref
s that can minimize the first term,

in order to allow only one solution to the optimization problem
and to operate the wind subsystem as the primary generation sys-
tem, we  also put a small penalty on the reference power of the
solar subsystem, Pref

s . This term guarantees that the solar genera-
tion subsystem is only activated when the wind subsystem alone
cannot satisfy the power demand. The third term in the cost func-
tion penalizes the change of the power provided by the battery bank
to the load to reduce battery short-term charge–discharge cycles.
Note that, if one wants to operate the solar system as the primary
generation subsystem, the second term in the cost function can
be modified to penalize the power reference of the wind subsys-
tem. Note also that, other considerations (for example, charge of
the battery bank) can be also taken into account in the design of
the cost function by adding additional terms or modifying existing
terms.

The proposed MPC  design for the supervisory control system is
as follows:

min
Pref

w ,Pref
s ∈ S(
)

Js(tk) (22a)

s.t. Pref
w (�) ≤ min

�
{Pmax

w (�)}, � ∈ [tk+j, tk+j+1) (22b)
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Pref
s (�) ≤ min

�
{PPV,max(�)}, � ∈ [tk+j, tk+j+1) (22c)

Pref
w (tk+j+1) − Pref

w (tk+j) ≤ dPw,max (22d)

Pref
s (tk+j+1) − Pref

s (tk+j) ≤ dPs,max (22e)

˙̃x(�) = f (x̃(�)) + g(x̃(�))u(�) (22f)

h(x̃) = 0 (22g)

x̃(0) = x(tk) (22h)

where j = 0, . . . , N − 1, Js(tk) is the cost function to be minimized
at time tk, Pmax

w (�) and Pmax
s (�) are the maximum powers that can

be generated by the wind and solar subsystems at time �, respec-
tively, dPw,max and dPs,max are the maximum allowable increasing
values of Pref

w and Pref
s in two consecutive power references, x̃ is  the

predicted future state trajectory of the integrated system and x(tk)
is the state measurement obtained at time tk. We  denote the opti-
mal  solution to the optimization problem of Eq. (22) as Pref,∗

w,s (�|tk)

and Pref,∗
s,s (�|tk).

The power references of the wind and solar subsystems gener-
ated by the supervisory predictive controller of Eq. (22) are defined
as follows:

Pref
w (t) = Pref,∗

w,s (t|tk), ∀ t ∈ [tk, tk+1)

Pref
s (t) = Pref,∗

s,s (t|tk), ∀ t ∈ [tk, tk+1)
(23)

In the optimization problem of Eq. (22), the constraints of Eqs.
(22b) and (22c) require that the computed power references should
be smaller than the minimum of the maximum available within
each sampling interval, which means the power references should
be achievable for the wind and solar subsystems. The constraints of
Eqs. (22d) and (22e) impose limits on the rate of change of the two
power references. Note that the future maximum available pow-
ers for the wind and the solar subsystems are estimated using the
information of future weather conditions forecast [12,23].  The con-
straints of Eqs. (22f) and (22g) are the system model of Eq. (20)
with initial condition defined by Eq. (22h). The constraints of Eqs.
(22b)–(22h) are inspired by results on the design of Lyapunov-
based model predictive control systems (please see Refs. [39,40]).

4.2. Simulation results

In this subsection, we  carry out simulations to demonstrate
the effectiveness and applicability of the proposed supervisory
MPC  of Eq. (22). The sampling time and the prediction horizon
of the MPC  are chosen to be 
 = 1 s and N = 2. Note that the
choice of the prediction horizon is based on the fast dynamics
of the wind-solar energy generation system and the RO system,
the uncertainty associated with wind speed and is also made to
achieve a balance between the evaluation time of the optimiza-
tion problem of the supervisory MPC  of Eq. (22) and of the desired
closed-loop performance. The maximum increasing values of the
two power references are chosen to be dPw,max = 1000 W and
dPs,max = 500 W, respectively. The RO water desalination system
is operated at a recovery rate Y = 0.8 and the overall power effi-
ciency is assumed to be 	 = 0.7. The weighting factors in the cost
function are chosen to be  ̨ = 1,  ̌ = 0.01 and � = 0.4.

We first carry out simulations under varying environmental
conditions without disturbances. The time evolution of wind speed,
PV panel temperature and insolation are shown in Fig. 3(a–c).

We consider time-varying water demand Fd(t) with step
changes as shown in Fig. 4(a) (dashed line). This water demand
is reflected as a load current iL with transient processes on the side
of the energy generation system as shown in Fig. 4(b), which are
due to the dynamic properties of the RO system.

The simulation results are shown in Fig. 5. It can be seen from
Fig. 5(a) that the wind/solar/battery powers coordinate their behav-
ior to meet the power demand of the RO system. Time evolution of
output power and maximum available power from the wind sub-
system and the solar subsystem are plotted in Fig. 5(b and c). When
sufficient energy supply can be extracted from the two  subsystems
such as during 0–17 s, 25–78 s, 125–137 and 155–173 s, the bat-
tery is being recharged. In other periods, load demand is relatively
high and the weather condition, which determines the maximum
available generation capacity of the two  subsystems, cannot permit
sufficient energy supply. Thus, the supervisory controller drives the
wind/solar subsystems to their instant maximum capacity and calls
the battery bank for shortage compensation. Note that because of
the dynamics of the RO desalination system, when there is a step
change in the water demand, the RO desalination system takes a
short time to track the water demand (see Fig. 4(a) (solid line)).

We have also carried out simulations to evaluate the robustness
of the proposed supervisory control system of Eq. (22) subject to
disturbances in wind speed and insolation; specifically, 10% vari-
ation in the wind speed and 5% variation in the insolation and
additional high frequency disturbances to simulate real forecasting
inaccuracy. The profiles of the wind speed and insolation are shown
in Figs. 6(a and b). The simulation results are shown in Figs. 7 and 8.
From these figures, we  can see that the proposed supervisory con-
trol system of Eq. (22) operates in a robust fashion to coordinate
the wind and solar subsystems as well as the battery bank to meet
the total power demand of the desired water production.

We note that the simulations in this section were carried out in a
computer with a Core 2 Duo 1.6 GHz processor. The MPC  optimiza-
tion problems were solved by Matlab built-in optimization solver
fmincon and the average evaluation time was  a little more than
one minute. We  also note that this evaluation time can be signif-
icantly reduced by code optimization, improved processor speed
and model reduction.

5. Integration with the electrical grid and long-term
operation

In this section, we focus on the electrical grid-connected operat-
ing mode of the integrated system (Is = 1) and design a supervisory
predictive control system to accomplish long-term optimal oper-
ation of the integrated system. The primary control objective is
to regulate the integrated system to produce enough desalinated
water to satisfy the total water consumption, Fd, and storage
demand, Fs. The secondary objective is to take into account opti-
mality considerations on system operation, for example, battery
maintenance and time-varying electric power pricing. The super-
visory control system determines the reference retentate flow rate
(vref

r ) for the RO water desalination subsystem and the current sent
to the electrical grid (iref

G ). In this case, the wind and solar subsys-
tems operate at their maximum power generation points.

5.1. Supervisory control system design

In this supervisory MPC  design, we  explicitly take into account
the following battery bank maintenance considerations [41,42]: (1)
small charge/discharge currents are favorable; (2) the charge cur-
rent should be constrained under a certain upper bound (we set
the upper bound of the charge currents based on a simple taper
charging approach [41]); (3) The depth of discharge (DOD) of the
battery bank should not exceed dmax

b in order to protect the bat-
tery bank, and (4) the battery should be charged if extra generated
power is available (in addition to satisfying water production power
demand).
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We  also take into account the time-varying electric power pric-
ing and try to achieve economically optimal operation by sending
(selling) energy to the electrical grid at high electric power price
and obtaining (buying) energy from the electrical grid at low elec-
tric power price. In order to send more energy to (or obtain less
energy from) the electrical grid, we operate the RO water desalina-
tion subsystem at the energy optimal water recovery Yopt so that the
energy consumption per unit water produced is minimized [36].

In addition, we assume that there is a preferred SOS, sopt
t , of the

storage tank which is a balance between the capacities of the tank to
supply unexpected water consumption demand and to store extra
water production. We  consider the case where the future water
consumption demand of the RO subsystem is known; that is, Fd(t),
is known. We  also assume that future hourly weather conditions
(i.e., wind speed, insolation, photovoltaic cell temperature) forecast
information is available.

The cost function of the proposed supervisory controller is
designed as follows:

Jg(tk) = 


∫ tk+N

tk

db(�)d� + �

∫ tk+N

tk

ib(�)2d� + �

∫ tk+N

tk

p(�)PG(�)d�

+ ε

∫ tk+N

tk

∣∣st(�) − sopt
t

∣∣d� + �

∫ tk+N

tk
PRO(�)d�∫ tk+N

tk
Fp(�)d�

(24)

where 
 , �, �, ε, and � are positive weighting factors, p(�) denotes
the time-varying electric power price and PG (PG = −iGvb) is the
power drawn from the electrical grid by the integrated system. In
this cost function, the first term implies that the battery should
be charged if the battery is not fully charged; the second term
takes into account that small charge currents are preferred; the
third term is used to account for the economic optimization con-
sideration by selling/buying power to/from the electrical grid; the
fourth term is used to make sure that the water level in the storage
tank is maintained around the optimal water level; and the fifth
term penalizes the power consumption per unit of permeate water
produced.

For this case, the proposed MPC  design for the supervisory con-
trol system at time tk is as follows:

min
iref
G

,vref
r ∈ S(
)

Jg(tk) (25a)

s.t. PRO(�) − Pw(�) − Ps(�) + iref
G (�)vb(�) + ibvb = 0 (25b)

Fmin
p ≤ Fp(�) ≤ Fmax

p (25c)

0 ≤ db(�) ≤ dmax
b (25d)

smin
t ≤ st(�) ≤ smax

t (25e)

ib(�) ≤ imax
b (sb(�)) (25f)

˙̃x(�) = f (x̃(�)) + g(x̃(�))u(�) (25g)

h(x̃) = 0 (25h)

x̃(0) = x(tk) (25i)

We  denote the optimal solution to the optimization problem
of Eq. (25) as iref,∗

G (�|tk) and vref,∗
r (�|tk). The references of battery

charge/discharge current and of the RO retentate flow rate sent to
the local controllers by the supervisory controller of Eq. (22) are
defined as follows:

iref
G (t) = iref,∗

G (t|tk), ∀ t ∈ [tk, tk+1),

vref
r (t) = vref,∗

r (t|tk), ∀ t ∈ [tk, tk+1).
(26)

In the optimization problem of Eq. (25), the constraint
of Eq. (25b) is an energy balance for the integrated system.
The constraint of Eq. (25c) imposes upper and lower bounds

(Fmax
p and Fmin

p , respectively) on the permeate flow rate Fp,
which are used to guarantee the equipment safety of the membrane
module in the RO water desalination subsystem. The constraint of
Eq. (25d) requires that the depth of discharge of the battery bank
should not exceed dmax

b . The constraint of Eq. (25e) imposes upper
and lower bounds on the water level in the storage tank. The con-
straint of Eq. (25f) places an upper bound on the charge current of
the battery bank and this upper bound is a function of the current
depth of discharge of the battery bank. The constraints of Eqs. (25g)
and (25h) are the system model of Eq. (20) with initial condition
defined by Eq. (25i).

Note that the dynamics of the integrated system exhibit a two-
time-scale behavior. Specifically, the dynamics of the states, iq, id,
we, wPV, is and vr, are relatively fast (in the order of seconds); and the
dynamics of the states, vc and hl, are relatively slow (in the order of
minutes). In order to achieve long-term system optimal operation,
we  take advantage of this two-time-scale property in the design
of the supervisory MPC  design of Eq. (25) to significantly reduce
the evaluation time of the MPC. Specifically, in the evaluation of
the MPC  of Eq. (25), only the slow system dynamics is taken into
account and the fast system states that are (explicitly or implicitly)
used in the MPC  are estimated by the computed future operating
trajectories (decision variables of the MPC). For example, in the
calculation of future Fp(�), the fast state vr is assumed to be equal
to vref

r .

5.2. Simulation results

We carry out a closed-loop simulation to demonstrate the appli-
cability and effectiveness of the supervisory MPC of Eq. (25) in
achieving efficient integration of the wind/solar/RO system with
the electrical grid. The prediction horizon and the sampling time of
the MPC  are chosen to be N = 24 and 
 = 1 h taking into account
that the water demand (for example, of a community) usually
presents periodic fluctuations with a period of 24 h. The weighting
factors in the cost function are chosen to be 
 = 0.001, � = 1.8 ×
10−7, � = 1 × 10−6, ε = 0.01 and � = 2 × 10−7. The overall RO
system pump power efficiency is assumed to be 	 = 0.7, the upper
bound on db is dmax

b = 0.8, the lower and upper bounds on Fp are
Fmin

p = 0.1814 m3/h and Fmax
p = 3.9918 m3/h, respectively, and

the lower and upper bounds on st are smin
t = 0 and smax

t = 1, respec-
tively.

Specifically, we  carry out simulations for one day (24 h) start-
ing at 8 a.m. We  assume that hourly weather forecast, hourly
water demand and hourly grid electricity price are available to the
supervisory MPC  for the entire 24-h period. A two-day forecast
information of weather conditions, water demand and grid elec-
tricity price, used in our simulations, is shown in Fig. 9. We  also
introduce up to 15%, 10% and 10% deviations and additional high
frequency disturbances to simulate the forecasting inaccuracy for
wind-speed, PV cell temperature and isolation, respectively, and
also introduce a low frequency disturbance in the water demand.
The actual weather conditions and water demand along with real-
time electricity price variations are shown in Fig. 10.  Fig. 11 displays
the time evolutions of power generation by the wind and solar sub-
systems and power consumption by the RO subsystem. Fig. 10(a
and b) shows that in this scenario the supervisory MPC  forces the
wind/solar subsystems to track the maximum power generation
points all the time. Fig. 12(a) shows the profile of power trading of
the system with the grid. We  denote the power purchased from the
grid as positive and the power sold to the grid as negative. It can
be seen that the supervisory MPC  controller outputs optimal grid
power trading references at each sampling time taking into account
one day ahead variations of electricity price, states of battery bank
and water tank as well as wind/solar power generation capabilities.
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Fig. 10. Weather conditions, water demand and grid electricity price including realistic variations. (a) Wind speed �; (b) insolation �l; (c) PV panel temperature T; (d) water
demand Fd, and (e) grid electricity price p.

Note that the periods when grid power is fluctuating indicates that
part of battery current is diverted to the grid at that moment so that
the upper battery current limit cannot be exceeded. Consequently,
profiting from power trading is achieved while system performance
is optimized. The cumulative revenue of power trading is shown in
Fig. 12(b).

In addition to efficient grid integration, an advantage of our
supervisory MPC  design is that it is able to schedule water produc-
tion to be smooth (nearly uniform with respect to time) by taking
into account future conditions/demand variations and by coordi-
nating the subsystems. Given a total amount of water demand,
uniformly producing water is not only beneficial in terms of equip-
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Fig. 11. Power generation and consumption. (a) Power generated by the wind subsystem Pw; (b) Power generated by the solar subsystem Ps; (c) Generated power Pw + Ps

(solid line) and total power demand PRO (dashed line).
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Fig. 12. (a) Electrical grid power trading profile PG and (b) Cumulative revenue of power trading with the grid.
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Fig. 13. (a) Rate of water demand Fd (solid line), permeate flow rate Fp (dashed line) and the energy-efficient production flow rate Fs (dash-dotted line); (b) Battery state of
charge  sb (solid line) and water tank state of storage st (dashed line).

ment maintenance, but it also consumes a smaller amount of energy
as well. In fact, deviation from the optimal operating point as spec-
ified in Fig. 13(a) results in additional energy consumption. It can
be seen from Fig. 13(a) that water production is relatively smooth
despite significantly varying water demand and weather condi-
tions during a day. This is largely due to the optimized utilization of
capacities of the battery bank and of the water tank as well as inte-
gration with the electrical grid, which jointly act as buffers against
external fluctuations. The states of charge of the battery bank and
of storage of the water tank are shown in Fig. 13(b), displaying, as
expected, periodic variations.

We note that the simulations in this section were carried out
in a computer with a Core 2 Quad 2.66 GHz processor. The MPC
optimization problems were solved using the open source interior
point optimizer Ipopt and the average evaluation time was  less
than 0.5 s, which is sufficiently fast compared with the sampling
interval of 1 h. We  note that the reduction in the evaluation time

compared to the one in Section 4.2 is primarily due to the use of a
reduced-order process model in the optimization problem.

6. Conclusions

In order to enable the development of the “smart electrical
grid”, we proposed a conceptual distributed control framework for
electrical grid integrated with distributed renewable energy gen-
eration systems. We  first introduced the different elements and
their interactions in the distributed control framework. Then, we
focused on a specific wind/solar energy generation system con-
nected to a RO water desalination system and the electrical grid and
designed a supervisory predictive controller via MPC  to operate the
integrated system taking into account short-term optimal mainte-
nance and operation considerations. Subsequently, we designed a
supervisory MPC  for long-term optimal operation of the integrated
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system accounting for battery maintenance and time-varying elec-
tric power pricing. Simulations were carried out to illustrate the
applicability and effectiveness of the proposed designs.
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[31] J. Liu, D. Muñoz de la Peña, P.D. Christofides, Distributed model predictive
control of nonlinear process systems, AIChE Journal 55 (2009) 1171–1184.
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