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Distributed Supervisory Predictive Control of Distributed Wind
and Solar Energy Systems
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Abstract—In this work, we design a distributed supervisory
model predictive control (MPC) system for optimal management
and operation of distributed wind and solar energy generation
systems integrated into the electrical grid to facilitate the devel-
opment of the so-called “smart electrical grid”. We consider a
topology in which two spatially distributed energy generation
systems, a wind subsystem and a solar subsystem, are integrated
in a DC power grid, providing electrical power to a local area, and
each subsystem is coupled with an energy storage device. A super-
visory MPC optimization problem is first formulated to take into
account optimality considerations on system operation and bat-
tery maintenance; then a sequential and an iterative distributed
supervisory MPC architectures are developed to coordinate the
actions of the subsystems accordingly. Simulations of 24-hour
system operation are carried out under the different control
architectures to demonstrate the applicability and effectiveness of
the distributed supervisory predictive control design.

Index Terms—Distributed control, distributed energy genera-
tion, electrical grid, solar energy systems, supervisory model pre-
dictive control, wind energy systems.

I. INTRODUCTION

I N a traditional electrical grid, electrical power generated by
large, centralized power plants is transmitted to end users

using one-directional power flows. In recent years there have
been many calls for the development of the so-called “smart
electrical grid” (e.g., [1]–[3]) by expanding the traditional elec-
trical grid with distributed, medium-scale renewables-based en-
ergy generation systems to better meet the increasing energy de-
mand and environmental regulations. A “smart electrical grid”
is expected to be more reliable, more energy efficient and more
environmentally friendly. Specifically, it is possible to integrate
distributed energy resources and generation systems, like wind
and solar systems, into the electrical grid.

Manuscript received September 13, 2011; revised December 02, 2011; ac-
cepted December 12, 2011. Manuscript received in final form December 15,
2011. Date of publication January 11, 2012; date of current version February
14, 2013. Recommended by Associate Editor S. Varigonda.
W. Qi and J. Liu are with the Department of Chemical and Biomolecular En-

gineering, University of California, Los Angeles, CA 90095-1592 USA (e-mail:
qiwei.0216@gmail.com; jinfeng@ucla.edu).
P. D. Christofides is with the Department of Chemical and Biomolecular En-

gineering, University of California, Los Angeles, CA 90095-1592 USA, and
also with the Department of Electrical Engineering, University of California,
Los Angeles, CA 90095-1592 USA (e-mail: pdc@seas.ucla.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCST.2011.2180907

Most of the results on the control of wind and solar systems
have focused on isolated wind or solar systems. Specifically,
there is a significant body of literature dealing with control of
wind-based energy generation systems (see, for example, [4],
[6], [7] for results and references in this area), while several
contributions have been made to the control of solar-based en-
ergy generation systems (see, for example, [8]–[10]). There are
also a few pieces of work on the regulation of stand-alone [13],
[14] and grid-connected [15] hybrid wind-solar energy genera-
tion systems. However, little attention has been given to the de-
velopment of supervisory control systems for hybrid wind-solar
energy generation systems that take into account system main-
tenance and optimal system operation considerations, except
from some recent efforts [16], [17]. In [16], a supervisory MPC
method was proposed for short-term optimal management and
operation of hybrid wind-solar energy generation systems in
which the supervisory control system was designed via MPC.
In [17], a computationally efficient supervisory control system
was designed for long-term optimal management and operation
of an integrated wind-solar energy generation and a reverse-os-
mosis (RO) water desalination system. However, the centralized
nature of the supervisory MPC architecture which was used in
[16] and [17], may impede its potential for large-scale imple-
mentation. For example, the evaluation time of a centralized
supervisory MPC may increase significantly with the increase
of optimization variables and may exceed the limit for real-time
implementation, as well as failures of one or several sensors and
actuators may result in consequences such as collapse of the
entire centralized control system. These considerations moti-
vated us to develop [18] a conceptual distributed control frame-
work for integrating distributed renewable energy generation
systems with the electrical grid, controllable loads and storage
systems but did not carry out a detailed control system design
or a closed-loop implementation. On the other hand, there have
been extensive recent studies with respect to the development
of distributed MPC architectures (see, for example, [19]–[24])
but their potential applicability to control of distributed energy
systems has not been studied.
In the present work, a distributed supervisory MPC system

is designed for the optimal management and operation of dis-
tributed wind and solar energy generation systems integrated
into the electrical grid. We consider a topology in which a wind
subsystem and a solar subsystem are integrated in a direct cur-
rent (DC) power grid in a distributed fashion, providing elec-
trical power to a local area, and each subsystem is coupled with
an energy storage device. We first formulate a supervisory MPC
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problem that takes into account optimality considerations on
system operation and battery maintenance; then a sequential and
an iterative distributed supervisory MPC architectures are de-
veloped to coordinate the actions of the subsystems. Simula-
tions of 24-hour system operation are carried out to demonstrate
the applicability and effectiveness of the distributed supervisory
predictive control designs.

II. DISTRIBUTED ENERGY GENERATION SYSTEMS

In a subset of a typical “smart-grid” topology, a wind sub-
system and a solar subsystem are integrated into a DC power
grid in a distributed fashion, providing electrical power to a local
area in which a number of end-users are involved. Each sub-
system is also coupled with an energy storage device (lead-acid
battery bank) to be used to store excessive energy and to prevent
an energy supply shortage. Note that this topology can be ex-
panded to incorporate a large number of diversified energy gen-
eration systems which can be geographically isolated to each
other. Specifically, the wind system consists of a fixed pitch
wind turbine, a multipolar permanent-magnet synchronous gen-
erator (PMSG), a rectifier, a DC/DC converter and an auxiliary
battery bank denoted as Battery Bank 1. Please refer to [11] for
detailed modeling of the wind subsystem. The dynamics of the
wind energy generation subsystem can be represented by three
state equations describing the time derivatives of the quadrature
current , the direct current , in a rotor reference frame and
the electrical angular speed . A sliding mode control tech-
nique proposed in [5] is adopted to control the operating point
of the wind turbine by manipulating the duty cycle of the con-
verter which commands the voltage across the PMSG terminals.
The power generated by the wind subsystem can be expressed as

, where denotes the
output current of the wind subsystem, is the voltage across
the terminals of Battery Bank 1 and is the control signal
(duty cycle of the DC/DC converter). The solar subsystem in-
volves a photovoltaic (PV) panel array, a DC/DC converter and
a battery bank denoted as Battery Bank 2. Two state variables,
the voltage across the PV array terminals, , and the output
current , are used to characterize its dynamics. For the detailed
mathematical model and control of the solar subsystem, please
refer to [12]. The power delivered by the solar subsystem can
be computed as where is the solar subsystem
output voltage.
Battery Banks 1 and 2 can be both modeled as a voltage

source connected in series with a resistance and a ca-
pacitance . As the voltage drop on and is
very small compared with , for simplicity, we assume a con-
stant battery voltage, i.e., which is the imposed
voltage of the DC power grid. Moreover, the state of charge
(SOC) and the depth of discharge of the battery banks
are calculated as

, where is the maximum
capacity of the Battery Bank and is the current across Bat-
tery Bank . Note that the inputs/outputs of the battery banks are
the charge/discharge currents which affect the states of charge

of the batteries. is the current energy storage of the Bat-
tery in ampere hour. The distributed energy systems are co-
ordinated to deliver electrical power to the DC grid to meet
the total power demand given by the load current (i.e.,

) while the batteries are being charged/discharged
during the system operation. Assuming ideal voltage inverters,
an energy balance equation can be obtained in the form of cur-
rents as follows .

III. CONTROL PROBLEM FORMULATION AND DESIGN

In this work, we design distributed supervisory control sys-
tems for spatially distributed wind and solar energy generation
systems. The objective of the distributed supervisory control
system is to determine the optimal reference trajectories of the
hourly wind and solar power generation and the
charge/discharge currents of the two battery banks
while accounting for a series of optimization considerations and
constraints. Specifically, the primary goal of the supervisory
control system is to operate the wind and solar systems as well as
the battery banks to generate enough energy to meet the power
demand of a given local area. In order to achieve this goal, we
utilize future weather forecast information and predictions of
future power demand of the loads. The reader may refer to [25]
for extensive work in short-term forecasting for weather con-
ditions and power consumption. We explicitly account for the
following considerations on the battery banks maintenance ac-
cording to [26] and [27] as follows.
1) Small charge/discharge currents are favorable, as large
charge/discharge currents result in more energy dissipated
in the battery internal resistance.

2) The charge current should be constrained under a certain
upper bound which is a monotonically increasing function
of the depth of discharge (DOD) of the battery banks. In
this work, we set the upper bounds of the charge currents
based on a taper charging approach [26].

3) The DOD of Battery Bank should not exceed the upper
bound in order to protect the battery bank.

4) The batteries should be charged if extra generated power
is available (in addition to satisfying power demand).

Specifically, we propose the following cost function to be min-
imized in the supervisory MPC optimization problem:

(1)

where is the prediction horizon of the MPC, is
the forecast power demand at time predicted
at time and , and are positive weight fac-
tors. The first term in the cost function penalizes the gap be-
tween the scheduled wind/solar/battery power delivery to the
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electrical grid and the forecast power demand from the local
consumers, thus driving the two distributed systems to satisfy
the power demand to the maximum extent. The second and the
third terms prevent the charge/discharge currents of the Battery
1 and 2 from surging, respectively, so as to maintain an accept-
able internal cell temperature and prevent electrolyte dry-out.
Besides, large charge/discharge current flowing through the in-
ternal cell resistance dissipates more energy. The fourth and the
fifth terms drive the two batteries to be fully charged when sur-
plus energy is available by penalizing their depths of discharge
so that they can make full use of the battery capacities to counter
a possible power shortage in the future. The last term in the
cost function implies that the wind energy generation system
is operated as the primary generation system while the solar en-
ergy generation system is activated when necessary. Note that
in sizing the capacities of the batteries, larger variations in en-
vironmental conditions require more capacity investment of the
batteries so as to reduce the possibility of unexpected power
shortage brought about by unfavorable weather or sudden de-
mand surge. However, there are also other factors that affect the
sizing of the batteries. Primarily, the battery storage capacity
should be comparable to the capacity of its affiliated generator;
and it may also be favorable to have additional capacity space
for power trading, that is, to store more energy than needed by
generating or by purchasing from the grid when electricity price
is low and sell it to the grid when the price is high. Also note
that the weight factors in the cost function are carefully tuned to
account for the following priority considerations: 1) the power
demand should be satisfied under any conditions; 2) when 1) is
ensured, the terms concerning the state of charge of the batteries
become dominant, followed by the terms on charge/discharge
current; and 3) a slight weight is assigned to the last term only
to ensure that the MPC optimization problem has a unique so-
lution at any time.

A. Centralized Supervisory MPC Architecture

We first present a centralized supervisory MPC architecture
where the MPC problem at time is formulated as

(2a)

s.t.

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

In the above optimization problem, ,
denote reference trajectories
and , respectively. is the sampling time and
denotes the family of piece-wise constant functions and

, indicating that the control actions of the MPC are

constant within each sampling time. Equations (2b)–(2e) im-
pose constraints on the trajectories of the decision variables as
well as on the depths of discharge of the Battery Banks 1 and
2. Specifically, and are the maximum
available powers predicted at time that can be generated by
the wind and the solar subsystems at time , respectively, es-
timated based on the information of the weather forecast [16].

is the upper bound on the depth of discharge of the Bat-
tery Bank and is the upper bound on the charge
current of the Battery Bank , which is a function of the state
of charge, following the taper charging strategy. In addition, in
(2f)–(2g), and are the predicted future state and control input
trajectories of the distributed system, respectively, and and
are nonlinear vector functions representing the state space and

is the local control law which guarantees that the system
tracks the power reference values [16], [13]. We consider all
turbine and solar dynamics as fast and at quasi-steady state in
the model used in all the MPCs; however, in the model used to
simulate the closed-loop system and where we implement both
the distributed supervisory MPC and the local control scheme,
the full-order plant model is used accounting explicitly for the
dynamics of all subsystems. Specifically, we note that the dy-
namics of the state variables in the wind/solar energy genera-
tion subsystems have transient time in the time scale of a few
seconds. Therefore, when solving a long-term (e.g., one-day)
MPC problem, the steady state assumption can be safely made
in the model used in the supervisory MPC. In this way, we
exploit the “two-time-scale” behavior of the system and sig-
nificantly increase the efficiency of the MPC problem evalu-
ation without much loss of accuracy (see also [17]). At each
sampling time , the supervisory MPC problem of (2) is up-
dated and solved, providing the optimal trajectories denoted as

. Subsequently, the supervisory con-
troller sends the reference values to the local controllers.

B. Distributed Supervisory MPC Architecture

We utilize two distributed MPC (DMPC) architectures, se-
quential and iterative, for large scale nonlinear systems devel-
oped in [23]; please see [21] and [22] for further important re-
sults on distributed design. A schematic of the distributed su-
pervisory MPC system is shown in Fig. 1. The centralized su-
pervisory MPC controller is replaced with two distributed su-
pervisory MPC controllers, each of which is responsible for
providing optimal reference trajectories to the local controller
of each corresponding subsystem. Accordingly, the supervisory
MPC problem of (2) is decoupled into two distributed MPC
problems with the global cost function (2a). Specifically, the su-
pervisory MPC 1 problem can be expressed as follows:

(3a)

s.t.

(3b)

(3c)

(3d)

(3e)

(3f)



QI et al.: DISTRIBUTED SUPERVISORY PREDICTIVE CONTROL OF DISTRIBUTED WIND AND SOLAR ENERGY SYSTEMS 507

Fig. 1. Distributed supervisory MPC control system. and are wind
speed, power demand, insolation and cell temperature, respectively.

and as follows for the supervisory MPC 2:

(4a)

s.t.

(4b)

(4c)

(4d)

(4e)

(4f)

Note that the dimensions of optimization variables with respect
to the above two optimization problems are reduced to be

and , respectively, where are the
numbers of trajectories to be optimized in the wind and the
solar subsystems, respectively. Again, all state measurements
of the wind/solar subsystems, their slow-dynamics models and
the forecast of the future power demand and weather forecast
are available to both supervisory controllers at each sampling
time and they are interconnected by a communication network.
Additionally, we assume that the optimal solutions of the opti-
mization problems of (3) and (4) obtained in the previous sam-
pling interval, ,
and , or denoted as
for simplicity, are available at the current sampling time;
and the initial trajectory guesses for the current optimization
problems is taken as their latest elements plus one step
zero-order extrapolation, which can be expressed as follows:

(5)
In what follows, we develop two distributed supervisory MPC
architectures which coordinate the two supervisory MPC con-
trollers in different fashions.

1) Sequential Distributed Supervisory MPC: Under the ar-
chitecture of sequential distributed supervisory MPC, the com-
munication channel shown in Fig. 1 is one-directional from the
supervisory MPC 1 to the supervisory MPC 2. The implemen-
tation strategy is as follows:
1) At each , the supervisory MPC 1 and 2 receive the state
measurements from the sensors and update the fore-
cast of weather conditions and power demand.

2) Supervisory MPC 1
a) The supervisory MPC problem of (3) is evaluated
based on and the initial trajectories guess
set according to (5).

b) The supervisory MPC 1 sends the first steps of the
optimal reference trajectories and to the
wind subsystem local controller for implementation
and the entire optimal trajectories to the supervisory
MPC 2.

3) Supervisory MPC 2
a) The supervisory MPC problem of (4) is evaluated
based on and the initial trajectories guess set
as and .

b) The supervisory MPC 2 sends the first steps of the
optimal reference trajectories and to the
solar subsystem local controller for implementation.

Note that in this case the supervisory MPC problems of (3)
and (4) are evaluated in sequence and once at each sampling
time. Therefore, the reference trajectories and are
optimal only with respect to and , which may result
in suboptimality of the whole system. Note that we follow
the “wind-solar” sequence because we assume that the wind
subsystem has larger capacity than the solar subsystem and
reason that this sequence, generally, provides a solution closer
to the optimum corresponding to the centralized supervisory
MPC compared with the reverse sequence.
2) Iterative Distributed Supervisory MPC: An alternative to

the architecture of the sequential distributed supervisory MPC
is to evaluate the supervisory MPC problems of (3) and (4) in
parallel and iterate to improve the closed-loop performance. In
this architecture, a bi-directional communication channel is uti-
lized to interconnect the two distributed supervisory controllers.
When a new state measurement is available at a sampling time,
both distributed supervisory MPC controllers evaluate and then
broadcast their future reference trajectories to each other. On the
basis of the newly received as well as previously retained refer-
ence trajectories, this process of parallel evaluation and broad-
cast is carried out again and repeated until the maximum itera-
tion number is reached. Upon the termination of iterations,
the reference trajectories of the iteration step which provides the
minimum value of the cost function of (1) are chosen for imple-
mentation by the local controllers. The specific implementation
strategy of the iterative distributed supervisory MPC is stated as
follows:
1) At each , the supervisory MPC controllers 1 and 2
receive the state measurements from the sensors
and update the forecast of weather conditions and power
demand. The initial trajectory guesses are set ac-
cording to (5) for the supervisory MPC problem of (3)
and (4).
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2) At iteration
a) The supervisory MPC problems (3) and (4) are solved
in parallel based on and the initial trajectory
guesses.

b) The supervisory MPC controllers 1 and 2 ex-
change their newly obtained future reference tra-
jectories
and , or for simplicity denoted as

( indicates “newly
obtained”), through bi-direction communication.

c) The reference trajectories obtained at iteration are
calculated as follows:

(6)

where is a tuning parameter controlling the
rate of updating the reference trajectories at each iter-
ation. The reference trajectories at iteration as well
as the the corresponding value of the cost function de-
fined by (1) are then stored in both supervisory con-
trollers. When , (6) is also used to compute
the initial trajectory guesses for iteration .

3) Upon completion of iterations, the optimal reference
trajectories are determined by the reference trajectories of
the iteration that provides the minimum value of the cost
function, as follows:

(7)

with . The supervisory MPC controllers
1 and 2 then send their first step of the optimal reference
trajectories to the wind/solar subsystems local controllers,
respectively.

Note that under this architecture, the parameters and
are tuning parameters for the iterative distributed MPC. con-
trols the rate of updating the reference trajectories at each iter-
ation (i.e., how fast the new reference trajectories can deviate
from the previous ones) and is the maximum iteration
number which implicitly determines the time that will be used
in the optimization calculation at each sampling time. In gen-
eral, these parameters can be picked based on experiments. In
our simulations, the values for the two parameters were deter-
mined via extensive simulations. Specifically, an over-conser-
vative choice (i.e., being close to zero) requires too many iter-
ations before satisfactory reference trajectories can be obtained
in the sense of the entire system performance, while being too
aggressive (i.e., being close to one) may result in non-conver-
gence of the solutions given by the two distributed supervisory
MPCs. Similarly, a balance should also be struck between the
overall evaluation time and the system performance in choosing
the maximum iteration . Furthermore, one can expect that
the implementation of these designs is able to reduce the com-
putational burden in the evaluation of the optimization problem
with less optimization variables in each supervisory MPC con-
troller. However, this reduction in the evaluation may lead to
increased communication; and in order to achieve (if possible)
the optimal solution given by a centralized MPC, the increased
number of iterations of the iterative MPC may result in more

computational time. However, we noted that the reduction of
evaluation time in each distributed MPC evaluations makes the
use of smaller sampling time in MPC possible at the expense
of performance cost. Besides, there is no guarantee that the so-
lution of the optimization problem of (2) provided by the dis-
tributed supervisory MPC can converge to that by the central-
ized supervisory MPC, which is illustrated in the last subsection
of the simulation results.

C. Design of Local Controllers

The objective of the wind subsystem controller is to drive the
wind energy generation subsystem to track the operating ref-
erence value sent from the supervisory control system.
Similar to our previous work [17], we follow the nonlinear con-
troller design proposed in [5] to design the local controller for
the wind subsystem. For the solar subsystem controller, the local
controller drives the solar energy generation subsystem to track
the reference value . We also follow the nonlinear con-
troller design proposed in [12] to design this local controller.
In each energy generation subsystem, two operation modes are
used: when the real weather conditions permit the power gen-
eration as the reference value dictates, the reference is tracked;
otherwise, a maximum power point tracking approach is imple-
mented. As to the regulation of the Battery Banks 1 and 2, the
real-time charge/discharge currents are determined by the cur-
rent balance and adopt the following control strategy for
(see also [26]):

(8)

IV. SIMULATION RESULTS

We carry out simulations of the wind and solar system oper-
ation with the sequential, the iterative and the centralized MPC,
respectively, in order to demonstrate the effectiveness and ap-
plicability of the distributed supervisory MPC design. For com-
parison purposes, the environmental settings for each set of sim-
ulations are set to be identical. The prediction horizon and the
sampling time of each MPC are chosen to be and
1 h, taking into account that the power demand in a local area
usually presents periodic fluctuations with a period of 24 h. In
addition, all parameters are tuned to reflect the optimization con-
siderations stated in the previous section. For example, , which
controls the rate of updating reference trajectories, is chosen
to be 0.5, since simulations showed that when was chosen
to be over 0.7, the performance cost exhibited oscillation with
respect to iteration steps and no longer converges to the value
given by the centralized MPC. On the other hand, when was
less than 0.3, the convergence rate of the performance cost be-
came unnecessarily slow. In the cost function, all the weight
factors were first assigned initial values so that all terms were in
a comparable order of magnitude. Then, is tuned to be 5. An
less than 2.5 would result in severely power generation insuffi-
ciency, whereas too much sacrifices of other optimization con-
siderations would occur with larger than 7.5. Using similar
arguments, the other weight factors are chosen to be

, and . Note that
the parameter tuning is a trial-and-error process with respect to
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Fig. 2. Upper bounds on charge current of the Battery Bank 1 (solid line) and
the Battery Bank 2 (dashed line).

Fig. 3. Forecast of weather conditions and power demand. (a) Wind speed ,
(b) insolation , (c) PV panel temperature , and (d) power demand .

the specific system scale and topology which we consider in this
work. However, the optimization considerations as well as their
priorities expressed in Section III can be generalized to the de-
sign of other distributed energy generation systems. In all the
simulations, the optimization problems of the supervisory MPC
are solved by the open source interior point optimizer Ipopt [28]
and are under the same optimality options settings. In solving
the supervisory MPC problem, the scheduled power generation
is constrained within 9000 W for the wind subsystem and

2500 W for the solar subsystem. As to the battery cou-
pled to each subsystem, the capacities of the Battery 1 and 2
are chosen to be 420 Ah and 140 Ah (am-
pere-hour), respectively, to be consistent with the wind/solar en-
ergy generation system capacities and environment uncertainty.
The upper bounds on depth of discharge (DOD) and are
both and the upper bounds on the battery charge cur-
rent are functions of and , respectively, following a
taper charging method as shown in Fig. 2.

A. System Operation

The simulations for 24-h operation are carried out starting at
8 am. We assume that day-ahead weather forecast and power
demand requirements are available, noting that hourly weather
condition forecast is commercially available and power demand
of future 24 h can be estimated based on past energy consump-
tion data. A two-day forecast of wind speed, insolation, PV cell
temperature, and power demand is shown in Fig. 3. The un-
certainty of environmental variables is a key issue in the de-

Fig. 4. Weather conditions and power demand. (a) Wind speed , (b) insolation
, (c) PV panel temperature , and (d) power demand .

Fig. 5. Power generation and consumption with the sequential supervisory
MPC. (a) Power generated by wind subsystem (solid line) and wind power
reference (dashed line), (b) power generated by solar subsystem (solid
line) and solar power reference (dashed line), and (c) : generated
power : total power demand , and : the power gap filled by
the batteries .

sign of a wind/solar energy generation system and is taken into
account in the distributed supervisory MPC design. The devi-
ations of real hourly wind speed, solar radiance intensity, PV
panel temperature and power demand from hour-ahead forecast
are mitigated by the coordinated behavior of the energy gener-
ation subsystems which are able to update their power genera-
tion schedules accordingly; meanwhile, the robustness against
high frequency disturbances of these environmental variables
is guaranteed by the local controllers implemented on the wind
and solar subsystems (see [11]–[13]). In this work, we set up to
15%, 10%, 10%, and 10% hourly deviations in the wind speed,
insolation, PV panel temperature and power demand, respec-
tively, and introduce high frequency normally distributed noise
to these variables with standard deviations of 7%, 2.5%, 2.5%,
and 5%, respectively, which are shown in Fig. 4. Figs. 5–7 show
the evolution of wind/solar power generation with the sequen-
tial, the iterative and the centralized supervisory
MPC, respectively. In each figure, one can see that the super-
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Fig. 6. Power generation and consumption with the iterative supervisory MPC
. (a) Power generated by wind subsystem (solid line) and wind

power reference (dashed line), (b) power generated by solar subsystem
(solid line) and solar power reference (dashed line), and (c) : generated
power : total power demand , and : the power gap filled by
the batteries .

Fig. 7. Power generation and consumption with the centralized supervisory
MPC. (a) Power generated by wind subsystem (solid line) and wind power
reference (dashed line), (b) power generated by solar subsystem (solid
line) and solar power reference (dashed line), and (c) : generated power

: total power demand , and : the power gap filled by the
batteries .

visory MPC at the beginning of each hour is able to send op-
timized wind/solar power generation references for the current
hour to the local controllers which drive their respective sub-
systems accordingly. However, when the reference value is not
achievable under the current weather condition during 21
h and during 7 h for the wind subsystem, the local con-
troller switches to the operation mode of maximum power point
tracking. Moreover, it can be seen from Figs. 5(c), 6(c), and 7(c)
that power generation falls into three stages with respect to the
supply/demand gap: insufficient ( 12 h and 8 h), bal-
anced ( 20 h) and excessive ( 4 h). The supervisory
MPC coordinates the charge/discharge currents of the two bat-
teries in order to meet the energy gap while making optimized
use of their capacities, as shown in Figs. 8–10. Note that the

Fig. 8. Time evolution of battery charge/discharge with the sequential supervi-
sory MPC. (a) Charge/discharge current of the Battery 1, (b) charge/discharge
current of the Battery 2, and (c) state of charge of the Battery 1 (solid line)
and the Battery 2 (dashed line).

Fig. 9. Time evolution of battery charge/discharge with the iterative super-
visory MPC . (a) Charge/discharge current of the Battery 1, (b)
charge/discharge current of the Battery 2, and (c) state of charge of the Bat-
tery 1 (solid line) and the Battery 2 (dashed line).

Fig. 10. Time evolution of battery charge/discharge with the centralized super-
visory MPC. (a) Charge/discharge current of the Battery 1, (b) charge/discharge
current of the Battery 2, and (c) state of charge of the Battery 1 (solid line)
and the Battery 2 (dashed line).

outcome of the battery current is based on and at
each hour, and the states of charge of the two batteries present
periodic charge cycles during the day in each case.

B. Discussion on Performance of the Distributed MPC

We next discuss the performance of the distributed supervi-
sory MPC schemes in this application compared with that of
the centralized MPC. First, we compare the computational time
consumed for solving MPC optimization problems with the dif-
ferent schemes as shown in Table I. Note that in the table the
“overall” in the row of sequential MPC can be calculated by

, which means the sum of evaluation times required by
the two distributed MPC controllers while in the row of itera-
tive MPC the “overall” equals , denoting
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TABLE I
MEAN EVALUATION TIME OF INDIVIDUAL AND OVERALL MPC
OPTIMIZATION PROBLEM OF EACH HOUR UNDER DIFFERENT

POWER GENERATION CONDITIONS

the sum of evaluation times of each iteration step which is de-
termined by the maximum of the computational times of the two
distributed MPCs. The following observations can be made.
• During each period, the time needed to solve an individual
distributed MPC optimization problem, or even the overall
time for the sequential MPC, is significantly less than the
time needed for the centralized MPC. This is because the
number of decision variables involved in the optimization
problem is halved in the former case.

• The overall evaluation time for the iterative supervisory
MPC increases as the iteration number becomes larger, but
not in a linear fashion in general. In fact, one can see that
the mean overall evaluation time for the whole day with

10, 71.93 s, is almost equal to the evaluation time
(71.00 s) with . This results from the fact that
the larger number of iterations provides more optimized
reference trajectories. The next-hour MPC optimization
problem, whose initial guess is based on the last hour so-
lution, can thus be solved in shorter time. This can also be
seen from the table that the evaluation time of each indi-
vidual MPC optimization problem with is less
than that with . However, it does not necessarily
indicate that the performance cost can converge to the cost
corresponding to the centralized MPC, which will be fur-
ther discussed.

We also compare the different control schemes from a perfor-
mance cost point of view. To be consistent with the cost function
in the supervisory MPC optimization problem, the mean perfor-
mance cost of each hour’s system operation is calculated by the
following expression:

(9)

where and are the initial hour and the terminal hour of
the period to be considered and , and

are mean values in hour . Each term after the summation
symbol corresponds to a term in the cost function of (1) with the

Fig. 11. Mean performance cost of each hour. (a) It-
erative MPC (solid line): For

, respectively, (b)
centralized MPC (dashed line), (c) sequential MPC

(dash-dotted line), and (d) reversed sequential MPC
(dotted line).

TABLE II
MEAN PERFORMANCE COST OF EACH HOUR UNDER DIFFERENT POWER

GENERATION CONDITIONS

weigh factors unchanged. Note that the high frequency fluctua-
tions are not taken into account in the cost evaluation.
From Table II and Fig. 11, one can see that the centralized

MPC provides the lowest performance cost. As the iteration
number increases, the performance cost given by the iterative
MPC decreases significantly and converges to a value which
is slightly larger than the value corresponding to the sequen-
tial MPC. However, this does not indicate that the sequential
MPC is superior to the iterative MPC in general, as can be seen
from the reversed sequential MPC in which case we adopt a
solar/wind sequence. Also note that due to the high nonlinearity
and non-convexity of the MPC problem, the iterative MPC is
not ensured to provide a performance cost converging to that
corresponding to the centralized MPC.
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