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In  the present  work,  we  focus  on  the development  and  application  of  Lyapunov-based  economic  model
predictive  control  (LEMPC)  designs  to  a catalytic  alkylation  of benzene  process  network,  which  consists  of
four  continuously  stirred  tank reactors  and  a flash  separator.  We  initially  propose  a  new  economic  mea-
sure  for  the  entire  process  network  which  accounts  for a broad  set  of  economic  considerations  on  the
process  operation  including  reaction  conversion,  separation  quality  and  energy  efficiency.  Subsequently,
steady-state  process  optimization  is  first  carried  out  to locate  an  economically  optimal  (with  respect  to
the  proposed  economic  measure)  operating  steady-state.  Then,  a sequential  distributed  economic  model
predictive  control  design  method,  suitable  for large-scale  process  networks,  is  proposed  and  its  closed-
loop  stability  properties  are  established.  Using  the  proposed  method,  economic,  distributed  as  well  as
centralized,  model  predictive  control  systems  are  designed  and are  implemented  on the  process  to  drive

the closed-loop  system  state  close  to the  economically  optimal  steady-state.  Extensive  simulations  are
carried out  to  demonstrate  the  application  of  the  proposed  economic  MPC  (EMPC)  designs  and  compare
them  with  a  centralized  Lyapunov-based  model  predictive  control  design,  which  uses  a  conventional,
quadratic  cost  function  that  includes  penalty  on  the  deviation  of  the  states  and  inputs  from  their  eco-
nomically  optimal  steady-state  values,  from  computational  time  and  closed-loop  performance  points  of

view.

. Introduction

The traditional, and currently dominant, approach to the
chievement of economic optimization considerations of a plant
elies on the use of a two-layer approach in which the upper layer
s used to compute optimal process operation points taking into
ccount economic considerations and using steady-state process
odels, and the lower-layer (i.e., process control layer) employs

utomatic feedback control systems to force the process to oper-
te at the economically optimal steady-state computed by the
pper layer. In the process control layer, classical control schemes
herever appropriate, as well as model predictive control (MPC)
ue to its ability to deal with multivariable constrained control
roblems and to account for optimization considerations [7,18],
re widely used in industry. In the context of MPC, the standard
pproach is to use a quadratic cost function that involves penalties

n the deviations of the state variables and of the control actions
rom their economically-optimal steady-state values over a finite
rediction horizon. This consideration, together with appropriate
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stability constraints, allows standard MPC  schemes to drive the
state of the closed-loop system to the economically optimal steady-
state for a suitable set of initial conditions. While this approach to
enforcing economic considerations in the context of standard MPC
formulations is widely used, there is room to improve upon the
incorporation of economic considerations in the control layer and
the computation of the control action.

To this end, there have been several authors within process
control advocating the tighter integration of MPC  and economic
optimization of processes (e.g., [17,1,21,10]). In [9],  two  economic
MPC  schemes were proposed for cyclic processes and nominal
stability of the closed-loop system was established via Lyapunov
techniques. MPC  designs using an economics-based cost function
were proposed in [5] and the closed-loop stability properties were
established via a suitable Lyapunov function through adoption of
a terminal constraint which requires that the closed-loop system
state is driven to a steady-state at the end of the prediction horizon.
Even though a rigorous stability analysis is included in [5],  it is diffi-
cult, in general, to characterize, a priori, the set of initial conditions
starting from where feasibility and closed-loop stability of the pro-
posed MPC  scheme are guaranteed. In contrast, in [8],  we proposed

a Lyapunov-based centralized economic MPC  (LEMPC) scheme
which has two  different operation modes. The first operation
mode corresponds to the period in which the cost function should
be optimized while the second operation mode corresponds to

dx.doi.org/10.1016/j.jprocont.2012.01.016
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:pdc@seas.ucla.edu
dx.doi.org/10.1016/j.jprocont.2012.01.016
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peration in which the system is driven by the economic MPC  to an
ppropriate ideally economically optimal steady-state. The design
roposed in [8] took advantage of the pre-defined Lyapunov-based
ontroller to achieve feasibility and characterize the closed-loop
tability region.

All of the above economic MPC  designs are centralized in nature,
hat is the optimal manipulated input trajectories are computed
rom the solution of a single optimization problem. This approach is
learly effective in a number of applications but it may  be limited in
he context of large-scale nonlinear process networks that involve

 large number of manipulated inputs. Distributed MPC (DMPC)
as emerged as a feasible alternative to reduce the computational
omplexity of centralized MPC  by solving multiple, reduced-order
ptimization problems in a parallel, iterative fashion; the reader
ay  refer to [2,22,15,23,16,4] for recent results in this area. How-

ver, all the existing DMPC methods utilize quadratic cost function
hat penalize the deviation of the states and inputs from their
perating steady-state values, and generally, they do not explicitly
ccount for economic objectives.

Motivated by the above, we focus on the development and
pplication of distributed and centralized LEMPC designs to a cat-
lytic alkylation of benzene process network, which consists of four
ontinuously stirred tank reactors and a flash separator. A new eco-
omic measure for the entire process network is proposed which
ccounts for a broad set of economic considerations on the process
peration including reaction conversion, separation quality and
nergy efficiency. Subsequently, steady-state process optimization
s first carried out to locate an economically optimal (with respect
o the proposed economic measure) operating steady-state. Then,

 sequential distributed economic model predictive control design
ethod, suitable for large-scale process networks, is proposed and

ts closed-loop stability properties are established. Using the pro-
osed method, economic, distributed as well as centralized, model
redictive control systems are designed and are implemented on
he process to drive the closed-loop system state close to the eco-
omically optimal steady-state. The closed-loop performance and
ime needed for control action calculation are evaluated through
imulations and compared with the ones of a centralized Lyapunov-
ased model predictive control design, which uses a conventional,
uadratic cost function that includes penalty on the deviation of
he states and inputs from their economically optimal steady-state
alues.

. Preliminaries

.1. Notation

The notation | · | is used to denote the Euclidean norm of a vec-
or, and a continuous function  ̨ : [0,  a) → [0,  a) is said to belong to
lass K if it is strictly increasing and satisfies ˛(0) = 0. The symbol ˝r

s used to denote the set ˝r : = {x ∈ Rnx : V(x) ≤ r} where V is a scalar
ontinuous differentiable positive definite function, and the oper-
tor ‘/’ denotes set subtraction, that is, A/B : = {x ∈ Rnx : x ∈ A, x /∈ B}.
he symbol diag(v) denotes a matrix whose diagonal elements are
he elements of vector v and all the other elements are zeros.

.2. Class of nonlinear systems

We  consider nonlinear systems described by the following
tate-space model:

˙ (t) = f (x(t), u1(t), . . . , um(t), w(t)) (1)
here x(t) ∈ Rnx denotes the vector of state variables of the sys-
em, ui(t) ∈ Rmui (i = 1, . . .,  m) and w(t) ∈ Rnw are the ith set of
ontrol (manipulated) inputs and disturbances, respectively. The

 sets of inputs are restricted to be in m nonempty convex sets
ontrol 22 (2012) 689– 699

Ui ⊆ Rmui , i = 1, . . .,  m,  which are defined as Ui := {ui ∈ Rmui : |ui| ≤
umax

i
} where umax

i
, i = 1, . . .,  m,  are the magnitudes of the input con-

straints. We will design m controllers to compute the m sets of
control inputs ui, i = 1, . . .,  m,  respectively. We  will refer to the con-
troller computing ui as controller i. w(t) is assumed to be bounded,
that is, w(t) ∈ W with W := {w ∈ Rnw : |w|  ≤ �, � > 0}. We  assume
that f is a locally Lipschitz vector function and that the origin is an
equilibrium point of the unforced nominal system (i.e., system of
Eq. (1) with ui(t) = 0, i = 1, . . .,  m, w(t) = 0 for all t) which implies
that f(0, . . .,  0) = 0.

2.3. Stabilizability assumptions

We  assume that there exists a feedback controller
h(x) = [h1(x) · · · hm(x)]T which renders the origin of the nomi-
nal closed-loop system asymptotically stable with ui = hi(x), i = 1,
. . .,  m,  while satisfying the input constraints for all the states x
inside a given stability region. Using converse Lyapunov theorems
[14,3], this assumption implies that there exist class K functions
˛i(·), i = 1, 2, 3, 4 and a continuously differentiable Lyapunov
function V(x) (corresponding to the equilibrium point which is
assumed to be the origin here) for the nominal closed-loop system
which is continuous and bounded in O ⊆ Rnx where O is an open
neighborhood of the origin, that satisfy the following inequalities:

˛1(|x|) ≤ V(x) ≤ ˛2(|x|)
∂V(x)

∂x
f (x, h1(x), . . . , hm(x), 0) ≤ −˛3(|x|)∣∣∣∣∂V(x)

∂x

∣∣∣∣ ≤ ˛4(|x|), hi(x) ∈ Ui, i = 1, . . . , m

(2)

for all x ∈ O. We  denote the region ˝� ⊆ O (˝� is a level set of V(x)) as
the stability region of the closed-loop system under the Lyapunov-
based controller h(x). Note that explicit stabilizing control laws
that provide explicitly defined regions of attraction for the closed-
loop system have been developed using Lyapunov techniques for
specific classes of nonlinear systems, particularly input-affine non-
linear systems; the reader may  refer to [11,3,13] for results in this
area including results on the design of bounded Lyapunov-based
controllers by taking explicitly into account constraints for broad
classes of nonlinear systems. The Lyapunov-based controller, h(x),
will be used as an auxiliary controller in the formulation of the
economic distributed MPC  in Section 4 below.

By continuity, the local Lipschitz property assumed for the vec-
tor field f and taking into account that the manipulated inputs ui,
i = 1, . . .,  m are bounded, there exists a positive constant M such
that:∣∣f (x, u1, . . . , um, w)

∣∣ ≤ M (3)

for all x ∈ ˝� and ui ∈ Ui, i = 1, . . .,  m. By the continuous differentiable
property of the Lyapunov function V(x) and the Lipschitz property
assumed for the vector field f, there exist positive constants Lx, Lw ,
L′

x and L′
w such that:

∣∣f (x, u1, . . . , um, w) − f (x′, u1, . . . , um, 0)
∣∣ ≤ Lx

∣
x − x′∣ + Lw |w|∣∣∣ ∂V(x)

∂x
f (x, u1, . . . , um, w) − ∂V(x′)

∂x
f (x′, u1, . . . , um, 0)

∣∣∣ ≤ L′
x

∣
x − x′∣ + L′

w |w|
(4)

for all x, x′ ∈ ˝� , ui ∈ Ui, i = 1, . . .,  m and w ∈ W .

3.  Nonlinear chemical process network
In this section, we  initially describe the alkylation of benzene
process network. Subsequently, we  introduce the economic cost
measure.
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are ±6% from the steady-state values of Table 1. The values of
the rest of the state variables (concentrations) are required to be
Fig. 1. Process flow diagram of alkylation of benzene.

.1. Description of the alkylation of benzene process

The process of alkylation of benzene with ethylene to produce
thylbenzene is widely used in the petrochemical industry. Dehy-
ration of the product produces styrene, which is the precursor to
olystyrene and many copolymers. Over the last two  decades, sev-
ral modeling and simulation results of alkylation of benzene with
atalysts have been reported in the literature. The process model
eveloped in this section is based on Refs. [6,12,20,25,26]. More
pecifically, the process considered in this work consists of four
ontinuously stirred tank reactors (CSTRs) and a flash tank separa-
or, as shown in Fig. 1. The CSTR-1, CSTR-2 and CSTR-3 are in series
nd involve the alkylation of benzene with ethylene. Pure benzene
s fed through stream F1 and pure ethylene is fed through streams
2, F4 and F6. Two catalytic reactions take place in CSTR-1, CSTR-2
nd CSTR-3. Benzene (A) reacts with ethylene (B) and produces the
equired product ethylbenzene (C) (reaction 1); ethylbenzene can
urther react with ethylene to form 1,3-diethylbenzene (D) (reac-
ion 2) which is the byproduct. The effluent of CSTR-3, including
he products and leftover reactants, is fed to a flash tank separator,
n which most of benzene is separated overhead by vaporization
nd condensation techniques and recycled back to the plant and
he bottom product stream is removed. A portion of the recycle
tream Fr2 is fed back to CSTR-1 and another portion of the recy-
le stream Fr1 is fed to CSTR-4 together with an additional feed
tream F10 which contains 1,3-diethylbenzene from further distil-
ation process that we do not consider in this example. In CSTR-4,
oth reaction 2 and the catalyzed transalkylation reaction in which
,3-diethylbenzene reacts with benzene to produce ethylbenzene
reaction 3) take place. All chemicals left from CSTR-4 eventually
ass into the separator. All the materials in the reactions are in liq-
id phase due to high pressure. The dynamic equations describing
he behavior of the process, obtained through material and energy
alances under standard modeling assumptions, can be found in
16]. The process model consists of 25 coupled nonlinear ordinary
ifferential equations.

Each of the tanks has an external heat/coolant input. The manip-
lated inputs to the process are the heat injected to or removed
rom the five vessels, Q1, Q2, Q3, Q4 and Q5, and the feed streams F2,
4 and F6 to CSTR-1, CSTR-2 and CSTR-3, respectively. The states of
he process consist of the concentrations of A, B, C, D in each of the
ve vessels and the temperatures of the vessels. The measurement

f the process state is assumed to be available continuously to the
ontrollers; i.e., state feedback control is considered.
ontrol 22 (2012) 689– 699 691

3.2. Economic cost measure

In this example, we consider the economic measure shown
below accounting for three aspects: reaction conversion, separation
quality, and energy efficiency:

L(x, u1, . . . , um) = A1
r1

r2
+ A2r3 − A4Q4 − A5Q5

+ A3
F8CC4

F8(CA4 + CB4 + CC4 + CD4)
(5)

where L(x, u1, . . .,  um) is the economic measure, x is the state
of the system, u1, . . .,  um are the manipulated inputs with
U : = [u1 . . . um] = [Q1 Q2 Q3 Q4 Q5 F2 F4 F6] and A1, . . .,  A5 are con-
stant weighting coefficients, r1, r2 and r3 are the reaction rates
of reactions 1, 2 and 3, respectively, and CA4, CB4, CC4 and CD4 are
concentrations of species A, B, C, D in the product outlet flow F8.
Note that the reaction rates are related to the concentrations of the
reactants and the temperature in each reactor.

The first two terms of the measure describe the reaction con-
version and the goal is to increase the rate of reactions 1 and 3 but
suppress the rate of reaction two  since it produces a by-product.
The third and forth terms of the measure focus on energy efficiency.
The fifth term of the measure takes the separation step into account,
and the separation quality is measured in terms of the mole frac-
tion of species C in the outlet stream F8. We  first solve a steady-state
optimization problem using the economic measure of Eq. (5) as the
cost function to be maximized to compute an economically optimal
operating steady-state. The detailed formulation is shown below:

max
x,u1, ..., um

L(x, u1, . . . , um) (6a)

s.t. f (x, u1, . . . , um, 0) = 0 (6b)

ui ∈ Ui (6c)

x ∈ X (6d)
2,4,6∑

i

Fi = Fmax (6e)

V(x) ≤ �̃ (6f)

where L(x, u1, . . .,  um) is the economic measure in Eq.
(5), f(x, u1, . . .,  um, 0) is the nominal steady-state pro-
cess model that described in [16], Fmax is the maximum
amount of reactant B that is allowed to enter the pro-
cess per second, and V is a Lyapunov function of the form
V(x) = (x − xs)TP(x − xs) with P being a diagonal matrix of the form
diag([1 10 1 1 102 1 10 1 1 102 1 10 1 1 102 1 10 1 1 102 1 10 1 1 102]);
the approach that we follow to compute V(x) will be discussed in
Remark 2. The optimal solution to this optimization problem is
denoted as xs and us

i
, i = 1, . . .,  m.

In  the problem of Eq. (6),  the constraint of Eq. (6b) guarantees
that the optimal solution satisfies the steady-state process model;
the constraints of Eqs. (6c) and (6d) define the state and input con-
straints; the constraint of Eq. (6e) implies that the total amount of
feed input B distributed through the stream F2, F4, and F6 has to be
equal to the maximum feed input Fmax; and, the constraint of Eq.
(6f) imposes a Lyapunov constraint so that the solution has to lie
inside the level set �̃.

We consider the system starting at t = 0 from a stable steady-
state (x0) that is defined by the steady-state inputs shown in Table 1.
The state constraints that are imposed in this example require that
the upper and lower bounds of the optimal temperature states
positive. The constrains that the manipulated inputs are subjected
to are shown in Table 2. The values of Fmax and �̃ are taken to
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Table  1
Steady-state input values.

u1 −4.4 × 106 [J/s] u2 −4.6 × 106 [J/s]
u3 −4.7 × 106 [J/s] u4 9.2 × 106 [J/s]
u5 5.9 × 106 [J/s] u6 8.697 × 10−4 [m3/s]
u7 8.697 × 10−4 [m3/s] u8 8.697 × 10−4 [m3/s]

Table 2
Manipulated input constraints.

|us
1 − u1| ≤ 4.0 × 106 [J/s] |us

5 − u5| ≤ 2.0 × 106 [J/s]
|us

2 − u2| ≤ 4.0 × 106 [J/s] |us
6 − u6| ≤ 8.679 × 10−4 [m3/s]

|us
3 − u3| ≤ 4.0 × 106 [J/s] |us

7 − u7| ≤ 8.679 × 10−4 [m3/s]
|us

4 − u4| ≤ 4.0 × 106 [J/s] |us
8 − u8| ≤ 8.679 × 10−4 [m3/s]

Table 3
Optimal steady-state input values.

us
1 −5.773 × 106 [J/s] us

2 −4.281 × 106 [J/s]
us −1.481 × 106 [J/s] us 6.238 × 106 [J/s]

b
fi
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us

5 7.010 × 106 [J/s] us
6 1.296 × 10−3 [m3/s]

us
7 7.355 × 10−4 [m3/s] us

8 5.773 × 10−4 [m3/s]

e 26.091 × 10−4 mol/s and 2.4 × 106, respectively, and the coef-
cients A1, A2, A3, A4, A5 are chosen to be 3, 1, 45, 27 × 10−7, and
1 × 10−7, respectively.

The steady-state optimization problem of Eq. (6) was solved
y the open source interior point optimizer Ipopt under default
ettings in a JAVA programming environment. Simulation results
ndicate that there is only one optimal solution, and the optimal
nput values are given in Table 3. We  also note that the optimal
teady-state is unstable, determined by computing the Jacobian
igenvalues, and some temperature states of the final solution are
t the boundary of the set X. The value of the Lyapunov function of
he optimal solution of Eq. (6) is 1.45 × 106, which lies inside the set
˜ . The optimal value of the economic measure is 33.41, which is a
.7% increase from the initial steady-state of Table 1, and the weight
laced on the various terms of the economic measure is shown in
ig. 2. We  note that we nearly-equally weigh reaction conversion
first two terms), energy efficiency (third and fourth terms) and
eparation (fifth term). This was done because we consider, from a
ost point of view, that these three terms equally contribute into
he cost but if this is not the case, then the weights can be readily

odified to accommodate different cost contributions of each one
f these terms.

. Distributed LEMPC

As the number of manipulated inputs increases as it is the case

n the context of control of large-scale chemical plants, the eval-
ation time of a centralized MPC  may  increase significantly. This
ay impede the ability of centralized MPC  to carry out real-time

Reaction
rate

   34%

Energy efficiency
              33%

Separation
quality

     33%

ig. 2. Weight percentage on the terms of the economic measure used by the steady-
tate optimization problem.
Fig. 3. Distributed LEMPC architecture.

calculations within the limits imposed by process dynamics and
operating conditions. Moreover, a centralized control system for
large-scale systems may  be difficult to organize and maintain and
is vulnerable to potential process faults. To overcome these issues,
in this work, we propose to utilize a sequential distributed eco-
nomic model predictive control (EMPC) architecture as shown in
Fig. 3. In this architecture, each set of the m sets of control inputs
is calculated using an LEMPC. The distributed controllers are con-
nected using one-directional communication network, evaluated
in sequence. We  will refer to the controller computing ui associ-
ated with subsystem i as LEMPC i. In this section, we propose two
different implementation strategies for the sequential distributed
EMPC architecture and we  assume that the state x of the system
is sampled synchronously and the time instants at which we have
state measurements are indicated by the time sequence {tk≥0} with
tk = t0+ k�, k = 0, 1, . . . where t0 is the initial time and � is the
sampling time.

4.1. Implementation strategy I

In this implementation strategy for the distributed LEMPC archi-
tecture, all the distributed controllers are evaluated in sequence
and once at each sampling time. Specifically, at a sampling time,
tk, when a measurement is received, the distributed controllers
evaluate their future input trajectories in sequence starting from
LEMPC m to LEMPC 1. Once a controller finishes evaluating its own
future input trajectory, it sends its own  future input trajectory and
the future input trajectories it received to the next controller (i.e.,
LEMPC j sends input trajectories of ui, i = m,  . . .,  j, to LEMPC j − 1).

This implementation strategy implies that LEMPC j, j = m,  . . .,  2,
does not have any information about the values that ui, i = j − 1, . . .,
1 will take when the optimization problem of LEMPC j is solved.
In order to make a decision, LEMPC j, j = m,  . . .,  2 must assume tra-
jectories for ui, i = j − 1, . . .,  1, along the prediction horizon. To this
end, the Lyapunov-based controller h(x) is used. In order for the dis-
tributed EMPC to inherit the stability properties of the controller
h(x), each control input ui, i = 1, . . .,  m must satisfy a constraint that
guarantees a given minimum contribution to the decrease rate of
the Lyapunov function V(x). Specifically, the proposed design of
the LEMPC j, j = 1, . . .,  m, is based on the following optimization
problem:

max
uj∈S(�)

∫ tk+N

tk

L(x̃j(�), u1(�), . . . , um(�)) d� (7a)

s.t. ˙̃x
j
(t) = f (x̃j(t), u1(t), . . . , um(t), 0) (7b)
ui(t) = hi(x̃
j(tk+l)), i = 1, . . . , j − 1, ∀t ∈ [tk+l, tk+l+1), l

= 0, . . . , N − 1 (7c)
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ui(t) = u∗
i (t|tk), i = j + 1, . . . , m (7d)

uj(t) ∈ Uj, i = 1, . . . , m (7e)

x̃j(tk) = x(tk) (7f)

V(x̃j(t)) ≤ �̃, ∀t ∈ [tk, tk+N), if tk ≤ t′ and V(x(tk)) ≤ �̃ (7g)

∂V(x(tk))
∂x

f  (x(tk), un
1(tk), . . . , un

j−1(tk), uj(tk), . . . , um(tk))

≤ ∂V(x(tk))
∂x

f  (x(tk), un
1(tk), . . . , un

j (tk), uj+1(tk), . . . , um(tk)), if tk

> t′ or �̃ < V(x(tk)) ≤ � (7h)

where x̃j is the predicted trajectory of the nominal system with
i, i = j + 1, . . .,  m,  the input trajectory computed by the LEMPC con-
rollers of Eq. (7) evaluated before LEMPC j, ui, i = 1, . . .,  j − 1, the
orresponding elements of h(x) applied in a sample-and-hold fash-
on, u∗

i
(t|tk) denotes the future input trajectory of ui obtained by

EMPC i of the form of Eq. (7),  and un
i
(tk), i = 1, . . .,  m,  are inputs

etermined by hi(x(tk)) (i.e., un
i
(tk) = hi(x(tk))). The optimal solution

o the optimization problem of Eq. (7) is denoted u∗
j
(t|tk) which is

efined for t ∈ [tk, tk+N). The relation between �̃ and � is character-
zed in Theorem 1.

In the optimization problem of Eq. (7),  the constraint of Eq. (7g)
s only active when x(tk) ∈ ˝�̃ in the first operation mode and is
ncorporated to ensure that the predicted state evolution of the
losed-loop system is maintained in the region ˝�̃ (thus, the actual
tate of the closed-loop system is in the stability region ˝�; this
oint will be proved in Theorem 1 below). Due to the fact that
ll of the controllers receive state feedback x(tk) at sampling time
k, all of the distributed controllers operate in the same operation

ode by verifying whether V(x(tk)) ≤ �̃; the constraint of Eq. (7h) is
nly active in the second operation mode or when �̃ < V(x(tk)) ≤ �
n the first operation mode. This constraint guarantees that the
ontribution of input uj to the decrease rate of the time deriva-
ive of the Lyapunov function V(x) at the initial time (i.e., tk), if
j = u∗

j
(tk|tk) is applied, is bigger than or equal to the value obtained

hen uj = hj(x(tk)) is applied.
The manipulated inputs of the proposed distributed control

esign from time tk to tk+1 (k = 0, 1, 2, . . .)  are applied in a receding
orizon scheme as follows:

i(t) = u∗
i (t|tk), i = 1, . . . , m, ∀t ∈ [tk, tk+1) (8)

To proceed for the closed-loop stability analysis, we need the
ollowing propositions.

roposition 1 (c.f. [16]). Consider the systems:

ẋa(t) = f (xa(t), u1(t), . . . , um(t), w(t))
ẋb(t) = f (xa(t), u1(t), . . . , um(t), 0)

(9)

ith initial states xa(t0) = xb(t0) ∈ ˝� . There exists a class K function
W(·) such that:

xa(t) − xb(t)| ≤ fW (t − t0), (10)

or all xa(t), xb(t) ∈ ˝� and all w(t) ∈ W with fW (�) = Lw�(eLx� −
)/Lx .

Proposition 1 provides an upper bound on the deviation of the
tate trajectory obtained using the nominal model, from the actual

ystem state trajectory when the same control input trajectories
re applied. Proposition 2 below bounds the difference between
he magnitudes of the Lyapunov function of two different states in

� .
ontrol 22 (2012) 689– 699 693

Proposition 2 (c.f. [16]). Consider the Lyapunov function V(·) of the
system of Eq. (1).  There exists a quadratic function fV(·) such that:

V(x) ≤ V(x̂) + fV (|x − x̂|) (11)

for all x, x̂ ∈ ˝� with fV (s) = ˛4(˛−1
1 (�))s + Mvs2 where Mv is a posi-

tive constant.

Proposition 3 below ensures that if the nominal system con-
trolled by h(x) implemented in a sample-and-hold fashion and
with open-loop state estimation starts in ˝� , then it is ultimately
bounded in ˝�min .

Proposition 3 (c.f. [16]). Consider the nominal sampled trajectory
x̂(t) of the system of Eq. (1) in closed-loop for a controller h(x), which
satisfies the condition of Eq. (2),  obtained by solving recursively:

˙̂x(t) = f (x̂(t), h1(x̂(tk)), . . . , hm(x̂(tk)), 0) (12)

where t ∈ [tk, tk+1) with tk = t0+ k�, k = 0, 1, . . ..  Let �,  �s > 0 and
� > �s > 0 satisfy:

−˛3
(

˛−1
2 (�s)

)
+ L′

xM� ≤ −�s

�
(13)

Then, if x̂(t0) ∈ ˝� and �min < � where �min = max  {V(x(t
+ �))  : V(x(t)) ≤ �s}, the following inequality holds: V(x̂(t)) ≤
V(x̂(tk)), ∀t ∈ [tk, tk+1) and V(x̂(tk)) ≤ max{V(x̂(t0)) − k�s, �min}.

Theorem 1 below provides sufficient conditions under which
the LEMPC of Eq. (7) guarantees that the state of the closed-loop
system is always bounded in ˝� and is ultimately bounded in a
small region containing the origin.

Theorem 1. Consider the system of Eq. (1) in closed-loop under the
distributed LEMPC design of Eq. (7) based on a controller h(x) that
satisfies the conditions of Eq. (2).  Let �w > 0, � > 0, � > �̃ > 0 and
� > �s > 0 satisfy:

�̃ ≤ � − fV (fW (�)) (14)

and

−˛3(˛−1
2 (�s)) + L′

xM� + L′
w� ≤ −�w

�
(15)

If x(t0) ∈ ˝� , �s ≤ �̃, �min ≤ � and N ≥ 1, then the state x(t) of the
closed-loop system is always bounded in ˝� and is ultimately bounded
in ˝�min with �min defined in Proposition 3.

Proof: The proof consists of three parts. We  first prove that the
optimization problem of Eq. (7) is feasible for all states x ∈ ˝� . Sub-
sequently, we prove that, in the first operation mode, under the
LEMPC design of Eq. (7), the closed-loop state of the system of Eq.
(1) is always bounded in ˝� . Finally, we prove that, in the second
operation mode, under the LEMPC of Eq. (7),  the closed-loop state
of the system of Eq. (1) is ultimately bounded in �min.

Part 1: When x(t) is maintained in ˝� (which will be proved
in Part 2), the feasibility of the distributed EMPC (DEMPC) of Eq.
(7) follows because input trajectory uj(t), j = 1, . . .,  m,  such that
uj(t) = hj(x(tk+q)), ∀ t ∈ [tk+q, tk+q+1) with q = 0, . . .,  N − 1 is a feasible
solution to the optimization problem of Eq. (7) since such trajectory
satisfied the input constraint of Eq. (7e) and the Lyapunov-based
constraints of Eqs. (7g) and (7h). This is guaranteed by the closed-
loop stability property of the Lyapunov-based controller h(x); the
reader may  refer to [19] for more detailed discussion on the stability
property of the Lyapunov-based controller h(x).

Part 2: We  assume that the LEMPC of Eq. (7) operates in the first

operation mode. We  prove that if x(tk) ∈ ˝�̃ , then x(tk+1) ∈ ˝�; and
if x(tk) ∈ ˝�/˝�̃ , then V(x(tk+1)) < V(x(tk)) and in finite steps, the
state converges to ˝�̃ (i.e., x(tk+j) ∈ ˝�̃ where j is a finite positive
integer).



6 ocess Control 22 (2012) 689– 699

x
i

V

N
r
V
c

x

W
d

T
t

V

A
(
w

D
t

V

T
b

|
S
w

V

I
t

V

I

f
i
s

t
V
a
c
U
s
o

94 X. Chen et al. / Journal of Pr

When x(tk) ∈ ˝�̃ , from the constraint of Eq. (7g), we obtain that
˜1(tk+1) ∈ ˝�̃ . By Propositions 1 and 2, we obtain the following
nequality:

(x(tk+1)) ≤ V(x̃1(tk+1)) + fV (fW (�)) (16)

ote that LEMPC 1 has access to all of the optimal input trajecto-
ies of the other distributed controllers evaluated before it. Since
(x̃1(tk+1)) ≤ �̃, if the condition of Eq. (14) is satisfied, we can con-
lude that:

(tk+1) ∈ ˝�

hen x(tk) ∈ ˝�/˝�̃ , from the constraint of Eq. (7h) and the con-
ition of Eq. (2),  we can obtain:

∂V(x(tk))
∂x

f  (x(tk), u∗
1(tk|tk), . . . , u∗

m(tk|tk), 0)

≤ ∂V(x(tk))
∂x

f  (x(tk), h1(x(tk)), u∗
2(tk|tk), . . . , u∗

m(tk|tk), 0)

≤ · · ·
≤ ∂V(x(tk))

∂x
f  (x(tk), h1(x(tk)), . . . , hm(x(tk)), 0)

≤ −˛3(|x(tk)|)

(17)

he time derivative of the Lyapunov function along the actual sys-
em state x(t) for t ∈ [tk, tk+1) can be written as follows:

˙ (x(t)) = ∂V(x(t))
∂x

f (x(t), u∗
1(tk|tk), . . . , u∗

m(tk|tk), w(t)) (18)

dding and subtracting (∂V(x(tk)))/(∂x)f (x(t), u∗
1(tk|tk), . . . , u∗

m
tk|tk), 0) to/from the above equation and accounting for Eq. (17),
e have:

V̇(x(t)) ≤ −˛3(|x(tk)|) + ∂V(x(t))

∂x
f (x(t), u∗

1(tk |tk), . . . , u∗
m(tk |tk), w(t))

− ∂V(x(tk))

∂x
f (x(t), u∗

1(tk |tk), . . . , u∗
m(tk |tk), 0)

(19)

ue to the fact that the disturbance is bounded (i.e., |w| ≤ �) and
he Lipschitz properties of Eq. (4),  we can write:

˙ (x(t)) ≤ −˛3(˛−1
2 (�s)) + L′

x|x(t) − x(tk)| + Lw� (20)

aking into account Eq. (3) and the continuity of x(t), the following
ound can be written for all � ∈ [tk, tk+1)

x(�) − x(tk)| ≤ M� (21)

ince x(tk) ∈ ˝�/˝�̃ , it can be concluded that x(tk) ∈ ˝�/˝�s . Thus,
e can write for t ∈ [tk, tk+1):

˙ (x(t)) ≤ −˛3(˛−1
2 (�s)) + L′

xM� + Lw� (22)

f the condition of Eq. (15) is satisfied, then there exists �w > 0 such
hat the following inequality holds for x(tk) ∈ ˝�/˝�̃:

˙ (x(t)) ≤ −�w

�
, ∀t = [tk, tk+1)

ntegrating this bound on t ∈ [tk, tk+1), we obtain that:

V(x(tk+1)) ≤ V(x(tk)) − �w

V(x(t)) ≤ V(x(tk)), ∀t ∈ [tk, tk+1)
(23)

or all x(tk) ∈ ˝�/˝�̃ . Using Eq. (23) recursively, it is proved that,
f x(tk) ∈ ˝�/˝�̃ , the state converges to ˝�̃ in a finite number of
ampling times without leaving ˝� .

Part 3: We  assume that the DEMPC of Eq. (7) operates in
he second operation mode. We  prove that if x(tk) ∈ ˝� , then
(x(tk+1)) ≤ V(x(tk)) and the system state is ultimately bounded in
n invariant set ˝�min . Following the similar steps as in Part 2, we

an derive that the inequality of Eq. (23) hold for all x(tk) ∈ ˝�/˝�s .
sing this result recursively, it is proved that, if x(tk) ∈ ˝�/˝�s , the

tate converges to ˝�s in a finite number of sampling times with-
ut leaving ˝� . Once the state converges to ˝�s ⊆ ˝�min , it remains
Fig. 4. Distributed controller evaluation sequence.

inside ˝�min for all times. This statement holds because of the def-
inition of �min. This proves that the closed-loop system under the
LEMPC of Eq. (7) is ultimately bounded in ˝�min .

4.2. Implementation strategy II

In the implementation strategy introduced in the previous sub-
section, the evaluation time of the distributed LEMPC at a sampling
time is the summation of the evaluation times of all the distributed
controllers; this is because at each sampling time all distributed
controllers are evaluated in a sequential fashion. However, for
applications in which a small sampling time needs to be used and
fast controller evaluation is required, we may  distribute the evalu-
ation of the distributed controllers into multiple sampling periods.
In this implementation strategy, the distributed controllers are
evaluated in sequence but over several sampling times and only
one controller is evaluated at each sampling time. Fig. 4 shows a
possible evaluation sequence of the distributed controllers in this
implementation strategy. In Fig. 4, at tk, LEMPC m is evaluated and
it sends the input trajectories of um to LEMPC m − 1; at tk+1, LEMPC
m − 1 is evaluated and it sends um and um−1 to LEMPC m − 2; from
time tk+2 to tk+m, LEMPC m − 2 to LEMPC 1 are evaluated in sequence
and one complete distributed control system evaluation cycle is
carried out. Another controller evaluation cycle starts at tk+m+1 with
the evaluation of LEMPC m again. In order to guarantee the closed-
loop stability of this implementation strategy, the design of the
distributed LEMPC of Eq. (7) needs to be modified to account for
the multiple sampling time evaluation cycle. We  note that both
implementation strategy I and implementation strategy II can be
executed using parallel computing.

Remark 1. Referring to the choice of the Lyapunov function in
the context of a specific chemical process application, we  note the
following: first, an economically-optimal equilibrium point is com-
puted as the solution of the steady-state optimization problem of
Eq. (6).  This equilibrium point is then used to construct a Lyapunov
function for the process expressed in terms of state variable devi-
ations from this equilibrium point (in most applications, quadratic
Lyapunov functions can be used; please see application example
in Section 5). Subsequently, this Lyapunov function is used for the
design of a state feedback controller h(x) and the computation of the
set of initial conditions starting from where closed-loop stability
(i.e., convergence to a small neighborhood of the economically-
optimal equilibrium point) is guaranteed. This set is typically a
level set, ˝� , of the Lyapunov function V embedded within the
set where the time derivative of V along the trajectories of the
nonlinear closed-loop system with h(x) is negative. Therefore, the
construction of ˝� accounts explicitly for the process nonlinear-
ity and it is not a local (i.e., based on the linearization) stability
region. Referring to the economic MPC, we  note that no assump-
tion is made that the optimization problem at sampling time tk
with x(tk) ∈ ˝� has a unique solution. Due to the incorporation of
the Lyapunov-based constraint of Eq. (7h), for any x(tk) ∈ ˝� , the
economic MPC  problem has a solution; the one defined by h(x).

Therefore, the purpose of the optimization problem is to compute
control actions over the prediction horizon that optimize the cost
of Eq. (7) further, yet they satisfy the Lyapunov-based constraint of
Eq. (7h). Given the constraint that x(t), t ∈ [tk, tk+N], stays in ˝� , the
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Table 4
Manipulated input constraints for all controllers.

|ũ1| ≤ 3.5 × 105 [J/s] |ũ2| ≤ 3.5 × 105 [J/s]
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k g (x̃(t ))u (t ) ≤ inf g (x̃(t))h (x̃(t)) (25h)
|ũ3| ≤ 7 × 105 [J/s] |ũ4| ≤ 10 × 105 [J/s]
|ũ5| ≤ 3 × 105 [J/s] |ũi| ≤ 1.7394 × 10−4 [m3/s](i = 6, 7, 8)

conomic MPC  optimization problem can be solved either locally
r globally (with respect to its optimum) within ˝� , depending on
he type of optimal solution that is required to be found. Note that
uring mode 1 operation under the economic MPC  of Eq. (7),  the
yapunov constraint is not used to steer the closed-loop system
tate to the economically-optimal equilibrium point used in the
onstruction of the Lyapunov function but it is simply used to con-
train the closed-loop state within a certain operating set (typically

�) where feasibility of the economic MPC  optimization problem is
uaranteed. As a consequence, there is no need to impose explicit
onstraints that limit the discrepancy between h(x) and the eco-
omic MPC-based control action in the centralized LEMPC case.
inally, due to the use of a finite sampling time, asymptotic stability
f the final equilibrium point can not be studied instead practi-
al stability (i.e., ultimate boundedness of the state in a small ball
ontaining the desired steady-state) is studied.

. Application to nonlinear chemical process network

In this section, we apply the two economic MPC  architectures to
he process; that is: the centralized Lyapunov-based economic MPC
nd the sequential distributed Lyapunov-based economic MPC. The
bjective of all controllers is to drive the system from the stable
teady-state defined in Table 1 to the economically optimal steady-
tate. We  will also compare the performance of the economic MPC
nd DMPC with the performance of a conventional centralized MPC
tilizing a quadratic cost function.

.1. Preliminaries

We begin with some preliminaries that will be used in the for-
ulations of the various MPC  designs. All MPCs utilize the following

yapunov function V(x) = (x − xs)TP(x − xs) with P being the same
atrix as in Section 3.2.  We  assume that the state x of the system

s sampled synchronously and the time instants at which we have
tate measurements are indicated by the time sequence tk≥0 with
k = t0 + k�,  k = 0, 1, . . . where t0 is the initial time and � is the sam-
ling time. The manipulated input in this control problem is defined
elow with respect to the optimal steady-state input values:

˜
 = [ũ1 . . . ũ8] = [u1 − us

1 . . . u8 − us
8]

he constraints that all MPC  controllers have to satisfy are listed
n Table 4. It is important to note that even though the input con-
traints have been modified accordingly, the set U still satisfies the
onstrains in Table 2.

The process model in [16] belongs to the following class of non-
inear systems (which is included in the broad class of nonlinear
ystems of Eq. (1)):

˙ (t) = f (x) +
8∑

i=1

gi(x)ũi

here the state x is the deviation of the states variables from the

conomically-optimal steady-state. For the control of the process,
he input ũ1, ũ2,ũ3, ũ4 and ũ5 are necessary to keep the stability of
he closed-loop system, while ũ6, ũ7 and ũ8 can be used as extra
nputs to improve the closed-loop performance. The design of the
ontrol 22 (2012) 689– 699 695

Lyapunov-based controller hi(x), i = 1, . . .,  5 is based on Sontag’s
formula [24]:

hi(x) =

⎧⎪⎨
⎪⎩

−
Lf V +

√
(Lf V)2 + (Lgi

V)4

(Lgi
V)2

Lgi
V if Lgi

V /= 0

0 if Lgi
V = 0

where i = 1, . . .,  5, LfV = (∂V/∂x)f(x) and Lgi
V = (∂V/∂x)gi(x) denote

the Lie derivatives of the scalar function V with respect to the vector
fields f and gi, respectively. The controllers h6(x), h7(x) and h8(x) are
chosen to be 0.

For comparison purposes, we consider the following objective
function of the conventional centralized MPC:

J =
N�∑
i=0

[x(ti)
T Qcx(ti) +

8∑
j=1

uj(ti)
T Rcjuj(ti)] (24)

the weighting matrices are chosen to be
Qc = diag([1 1 1 1 103 1 1 1 1 103 10 10 10 10 104 1 1 1 1 103 1 1 1 1
103]), and Rcj = diag([10−8 10−8 10−8 10−8 10−8 1 1 1]).

Remark 2. Referring to the computation of V(x), we note that the
computation of V̇ was  carried out on the basis of the nonlinear
vector fields of the process dynamic model and not on the basis of
any type of linearization. Furthermore, the matrix P was  computed
via simulations to maximize: (a) the region where V̇ of the closed-
loop system under the Lyapunov-based controller is negative and
(b) the corresponding closed-loop system stability region ˝� . We
also note that the terms in P were scaled based on the different
magnitudes of the state variables.

Remark 3. Referring to the switching time t′, we note that t′

depends on the amount of time that we want to spend to eco-
nomically optimize the closed-loop system while keeping the
closed-loop system state in an invariant set.

5.2. Centralized LEMPC

The centralized Lyapunov-based economic MPC  design follows
the formulation of our previous work [8] with minor modifications
(appropriate for the chemical process example in this work) as
follows:

ũ∗
j (tk) = max

uj∈S(�)

∫ tk+N

tk

L(x̃(�), ũj(�)) d� (25a)

s.t. ˙̃x(t) = f (x̃(t)) +
8∑

i=1

gi(x̃(t))ũi(t) (25b)

∀ t ∈ [tk, tk+1), k = 0, . . . , N − 1
ũj(t) ∈ Uj

(25c)

x̃(tk) = x(tk) (25d)∑
i=2,4,6

Fi = Fmax (25e)

Mode one:

x̃(tk) ∈ X (25f)

V(x̃(tk)) ≤ �̃e (25g)

Mode two:

∂V(x̃(t )) ∂V(x̃(t))

∂x

j k j k
t∈[tk−1,tk] ∂x

j j

where x̃ is the predicted closed-loop system state, S(�) is the family
of piecewise constant function with period � and tk+N = tk + N�. The
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Fig. 5. Trajectories of the economic measure and of the Lyapunov function using
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conomic measure L of Eq. (25) has the same set up as in Section
.2 Eq. (5) and Eq. (25e) imposes the quantity constraint of reactant
, from which Fmax has the same value as in Section 3.2.

At mode one operation, Eq. (25f) of the formulation ensures that
he state variable x̃(tk) that has been obtained by applying the solu-
ion ũ∗

j
(tk) is bounded. It is important to distinguish the difference

etween the constraints of Eq. (6d) and Eq. (25f). Since steady-state
ptimization focuses on a steady-state solution, Eq. (6d) merely
tates that the solution has to be bounded; however, the economic
PC, which is a finite-horizon dynamic optimization problem, has

o enforce a more aggressive constraint on the closed-loop state
rajectory, where the state variables at the end of each sampling
ime have to be bounded. With respect to the constraint x(tk) ∈ X,
e require that the state variables x(tk) remain within ±6% of their

nitial steady-state values for all times; note that the economically
ptimal steady-state is within X. The level set �e is chosen to be
.45 × 106. At mode two operation, the constraint of Eq. (25h) is

 tighter version of the Lyapunov-based constraint in [8],  and it is
sed to ensure that the closed-loop system state converges suffi-
iently close to the economically optimal steady-state.

.3. Sequential distributed LEMPC

In this section, we design a sequential distributed LEMPC archi-
ecture for the benzene process. Specifically, the first distributed

odel predictive controller (DMPC 1) obtains the optimal values of
˜4 and ũ5, the second distributed controller (DMPC 2) is designed
o obtain the optimal values of ũ1, ũ2 and ũ3, while the third dis-
ributed controller (DMPC 3) is designed to obtain the optimal
alues of ũ6, ũ7 and ũ8. Specifically, DMPC j (j = 1, 2, 3) can be
ormulated as follows:

∗
s,j(tk) = max

us,j∈S(�)

∫ tk+N

tk

L(x̃(�), ũs,j(�)) d� (26a)

.t. ˙̃x(t) = f (x̃(t)) +
8∑

i=1

gi(x̃(t))ũs,i(t) (26b)

∀ t ∈ [tk, tk+1), k = 0, . . . , N − 1
ũs,i(tk) = u∗

s,i
(tk), i = 1, . . . , j − 1 (26c)

ũs,i(tk) = hi(x̃(tk)), i = j, . . . , m (26d)

ũs,j(t) ∈ Uj (26e)

x̃(0) = x(tk) (26f)∑
i={2,4,6}

Fi = Fmax (26g)

ode one:

˜(tk) ∈ Xs (26h)

(x̃(tk)) ≤ �̃e (26i)

ode two:

∂V(x̃(tk))
∂x

gj(x̃(tk))uj(tk) ≤ ∂V(x(tk))
∂x

gj(x̃(tk))hj(x̃(tk)) (26j)

here the economic measure L has the same form as in Section 3.2
q. (5) and Fmax and �̃e have the same values as in Section 5.2.

Since each DMPC controller is designed to obtain a subset of the
anipulated inputs, the state constraint enforced in the centralized

yapunov-based economic MPC  design may  not be satisfied in each
MPC calculation, and thus, a relaxed version of this constraint is

sed where we require that the state variables x(tk) remain within
7% of their initial steady-state values for all times in all DMPC

alculations. Thus, appropriate bounds on the initial state condition
eeds to be enforced (close enough to the desired steady-state).
the  centralized LMPC with conventional quadratic cost of Eq. (24) (solid line), the
centralized LEMPC (dashed line) at mode two, and the DLEMPC (dotted line) at mode
two.  The prediction horizon N = 3.

5.4. Closed-loop simulation results

The simulations were performed in a JAVA platform by a Core2
Quad Q6600 computer. The simulation time for each run is 3000 s.
Three different simulation cases are studied here in order to eval-
uate the properties of the proposed controller designs. The first
case studies the closed-loop system performance by the central-
ized LEMPC and by the DLEMPC both operating at mode two. The
second case studies the closed-loop system performance by the
same controllers but operating at mode one. In the last case, we
study the closed-loop system performance by the same controllers
operating at mode one first and then at mode two. We  will compare
the closed-loop system performance of the economic MPC  to the
performance of the conventional centralized Lyapunov-based MPC
(LMPC) which uses the conventional quadratic cost function of Eq.
(24).

All simulation studies apply the same prediction horizon, which
is N = 3. Only the first piece from the computed optimal input trajec-
tory of the optimization problems is implemented in each sampling
time following a receding horizon scheme. The sampling time of the
optimization problems is � = 30 s, and as a result, the total num-
ber of sampling times along one simulation is one hundred. All
state measurements are available to the MPC  controllers at each
sampling time.

The numerical method that is used to integrate the process
model is explicit Euler with a fixed time step equal to 0.5 s. Again, as
in the case of steady-state optimization, the optimization problems
of each MPC  scheme are solved using the open source interior point
optimizer Ipopt. The Hessian is approximated by Quasi-Newton’s
method. Regarding the termination criteria and the maximum
number of iterations, the values used by all simulations are 10−3

and 200, respectively.
The results of case one are shown in Figs. 5 and 6 . It is important

to note that even though the conventional centralized MPC  does not
use the economic measure as its objective function, we  recalculate
its performance from an economic perspective based on Eq. (25a)
and include it in the figures. The Lyapunov function in Fig. 5 clearly
indicates that both economic MPC  schemes stabilize the process

asymptotically to the optimal steady state. Specifically, the cen-
tralized LEMPC drives the system to the optimal steady-state, and
in terms of accumulated economic measure, it performs better than
the conventional MPC  controller by 1.5% up to 1000 s of simulation



X. Chen et al. / Journal of Process Control 22 (2012) 689– 699 697

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100
E

v
al

u
at

io
n
 t

im
e 

(s
)

time (s)

Fig. 6. The total evaluation time needed for evaluation of each MPC  method. Cen-
t
t
l

t
t
o
a
i
t
i
t

i
D
t
t

a
L
a
t

F
t
c
o

0 500 1000 1500 2000 2500 3000
2

4

6

8

10

12

14

16

18

20

22

E
v
al

u
at

io
n
 t

im
e 

(s
)

time (s)
ralized LMPC with conventional quadratic cost of Eq. (24) (dotted line with squares),
he centralized LEMPC (dashed line with circles) at mode two, and the DLEMPC (solid
ine with asterisks) at mode two. The prediction horizon N = 3.

ime. In contrast, there exists an offset of the economic measure of
he DLEMPC, and that is in coincidence with the fact that the value
f its Lyapunov function converges to a non-zero positive number
t the end. We  note here that even though all simulations reported
n Figs. 5, 7 and 9 have been carried out using a total simulation
ime of 3000 s, in order to better show the initial transient behav-
or in Figs. 5 and 9, we report the results up to 1500 s where the
rajectories of all simulations have reached steady-state.

With respect to the centralized LEMPC, we notice that the offset
s caused primarily by the structure of the DLEMPC. While each
MPC controller accomplishes each mission successfully according

o its formulation, the overall closed-loop cost does not converge
o the one of the centralized LEMPC.

With respect to the evaluation time of the different controllers

t each sampling time, the DLEMPC outperforms the centralized
EMPC by more than 50% in average and even the centralized MPC
t the beginning. It is important to note that the total evaluation
ime required for the DLEMPC in one sampling time is the sum of the

0 500 1000 1500
28

30

32

34

36

L
(t

)

Time (s)

0 500 1000 1500
0

5

10

15
x 10

5

V
(t

)

Time (s)

ig. 7. Trajectories of the economic measure and of the Lyapunov function using
he  centralized LMPC with conventional quadratic cost of Eq. (24) (solid line), the
entralized LEMPC (dashed line) at mode one, and the DLEMPC (dotted line) at mode
ne.  The prediction horizon N = 3, and the level set �̃e = 1.45 × 106.
Fig. 8. The total evaluation time needed for each evaluation of centralized LEMPC
(dashed line with circles) at mode one and DLEMPC (solid line with asterisks) at
mode one. The prediction horizon N = 3.

evaluation times of all the DMPC controllers. We  also observe that
the evaluation time of centralized LMPC overshoots at few sampling
times after t = 1800 s. This increase in the controller evaluation time
is due to a significant sampling time which allows for deviation of
the closed-loop trajectories from the steady-state, as well as the
effort of the controller to satisfy the Lyapunov constraint in the
first move and the non-convexity of the optimization problem.

The results of case two  are shown in Figs. 7 and 8. The Lyapunov
function of Fig. 7 indicates that starting from �̃e = 1.45 × 106, both
control schemes are not able to stabilize the closed-loop system
to the economically optimal steady-state but converge to a region
with their V values approximately equal to �̃ = 1 × 105. This result
is expected since as we  have mentioned in Section 3.2 the eco-
nomically optimal operating steady-state is an unstable steady
state. Looking at the economic measure, even though both control
schemes have similar value of the Lyapunov function at the end,
the DLEMPC has a higher economic measure overall compared with
the one of the centralized economic MPC. The reason is due to the
different state constraints imposed in each of their problem formu-
lations. Finally, comparing the evaluation time of the different MPC
schemes at mode one, we  see that, as expected, the DLEMPC out-
performs the other schemes at the first 500 s. The average control
action evaluation times for the different cases are summarized in
Table 5.

The last two figures (Figs. 9 and 10 ) belong to the study of case
three, for which we  want to demonstrate that the controllers can
switch their operating mode between mode one and mode two
under either the centralized LEMPC or the DLEMPC; the switching
choice, depends on the control objective, e.g., fast computational
time or offset elimination. Finally, it is worthwhile to discuss few
benefits of using economic MPC  instead of conventional MPC  based

on the results of this study. First, the centralized LEMPC is charac-
terized by an improved coupling between the different layers of
a plant-wide process control system, in particular, the economic

Table 5
Average control action evaluation time.

Average control action
evaluation time

LEMPC Mode 1 5.58 s
Mode 2 22.91 s

DLEMPC Mode 1 5.16 s
Mode 2 11.10 s

Centralized LMPC 17.49 s
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ptimization and process control layer. In terms of performance,
he economic MPC  is able to drive the system to the set-point for
igher profit return with comparable computational time. Another
enefit of applying economic MPC  is the ease of tuning. It is a
ifficult task to assign a reasonable value to the parameters of con-
entional MPC  with quadratic cost since very often they do not have
ny physical meaning. On the other hand, all parameters of eco-
omic MPC  have specific economic meaning, and thus, their tuning

s more intuitive.

. Conclusions
In this work, we carried out an application of centralized
EMPC and sequential distributed LEMPC architectures to a cat-
lytic alkylation of benzene process network which consists of
our continuous stirred tank reactors and a flash separator. In the

[

ontrol 22 (2012) 689– 699

sequential distributed LEMPC design, three separate Lyapunov-
based model predictive controllers were designed to control the
process in a sequential coordinated fashion. The closed-loop sta-
bility properties of the sequential distributed LEMPC design were
rigorously analyzed and sufficient conditions for closed-loop sta-
bility were established. Simulations were carried out to compare
the proposed economic MPC  architectures with a centralized LMPC
which uses a quadratic cost function that includes penalty on the
deviation of the states and inputs from their economically opti-
mal  steady-state values, from computational time and closed-loop
performance points of view.
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